_bs lazs

Faghatketab.ir

FaEII"E'tKF.'tab N

Andrew Mead

Learning Node.js
Development

Learn the fundamentals of Node.js, and deploy and test
Node.js applications on the web

L1

Learning Node.js Development

Learn the fundamentals of Node.js, and deploy and test Node.js
applications on the web

Andrew Mead

Packh

BIRMINGHAM - MUMBAI

Learning Node.Jjs Development

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Acquisition Editor: Ben Renow-Clarke

Content Development Editor: Monika Sangwan
Technical Editors: Anupam Tiwari, Gaurav Gavas
Copy Editors: Safis Editing, Tom Jacob

Project Editor: Suzanne Coutinho

Proofreader: Safis Editing

Indexer: Pratik Shirodkar

Production Coordinator: Nilesh Mohite

First published: January 2018
Production reference: 1300118

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78839-554-0

www . packtpub.com

http://www.packtpub.com

. Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books
and videos, as well as industry leading tools to help you plan your personal
development and advance your career. For more information, please visit our
website.

https://mapt.io/

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and
Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book published, with
PDF and ePub files available? You can upgrade to the eBook version at www.packtp
ub.com and as a print book customer, you are entitled to a discount on the eBook
copy. Get in touch with us at service@packtpub.com for more details.

At www.Packtpub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers on
Packt books and eBooks.

http://www.PacktPub.com
http://www.packtpub.com

Contributor

About the author

Andrew Mead is a full-stack developer living in beautiful Philadelphia! He
launched his first Udemy course in 2014 and had a blast teaching and helping
others. Since then, he has launched 3 courses with over 21,000 students and over
1,900 5-star reviews.

Andrew currently teaches Node, Gulp, and React. Before he started teaching, he
created a web app development company. He has helped companies of all sizes
launch production web applications to their customers. He has had the honor of
working with awesome companies such as Siemens, Mixergy, and Parkloco. He
has a Computer Science degree from Temple University, and he has been
programming for just over a decade. He loves creating, programming, launching,
learning, teaching, and biking.

Packt is searching for authors
like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.c
om and apply today. We have worked with thousands of developers and tech
professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic
that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Preface
Who this book is for

What this book covers
To get the most out of this book

Download the example code files

Conventions used
Get in touch

Reviews

1. Getting set up
Node.js installation

Node.js version confirmation
Installing Node

Verifying installation
What is Node?

Differences between JavaScript coding using Node and in the browser
Why use Node
Blocking and non-blocking software development

The working of blocking I/O
The working non-blocking I/0
Blocking and non-blocking examples using Terminal
Node community - problem solving open source libraries

Different text editors for node applications
Hello World - creating and running the first Node app

Creating the Node application
Running the Node application
Summary

2. Node Fundamentals - Part 1
Module basics
Using case for require()

Initialization of an application
The built-in module to use require()

Creating and appending files in the File System module
The 0S module in require()
Concatenating user.username

Using template strings
Require own files

Making a new file to load other files
Exporting files from note.js to use in app.js

A simple example of the working of the exports object
Exporting the functions

Exercise - adding a new function to the export object

Solution to the exercise
Third-party modules

Creating projects using npm modules
Installing the lodash module in our app

Installation of lodash
Using the utilities of lodash

Using the _.isString utility

Using _.unig

The node_modules folder
Global modules

Installing the nodemon module
Executing nodemon
Getting input
Getting input from the user inside the command line
Accessing the command-line argument for the notes application
Adding if/else statements
Exercise - adding two else if clauses to an if block
Solution to the exercise
Getting the specific note information

Summary

3. Node Fundamentals - Part 2
yargs

Installing yargs
Running yargs

Working with the add command
Working with the list command

The read command
Dealing with the errors in parsing commands
The remove command

Fetching command
JSON

Converting objects into strings
Defining a string and using in app as an object

Converting a string back to an object
Storing the string in a file

Writing the file in the playground folder

Reading out the content in the file

Adding and saving notes
Adding notes

Adding notes to the notes array
Fetching new notes

Trying and catching code block

Making the title unique
Refactoring
Moving functionality into individual functions

Working with fetchNotes
Working with saveNotes
Testing the functionality
Summary

4. Node Fundamentals - Part 3
Removing a note

Using the removeNote function

Printing a message of removing notes
Reading note
Using the getNote function

Running the getNote function
The DRY principle

Using the logNote function
Debugging

Executing a program in debug mode
Working with debugging

Using debugger inside the notes application
Listing notes

Using the getAll function
Advanced yargs
Using chaining syntax on yargs

Calling the .help command
Adding the options object

Adding the title

Adding the body
Adding support to the read and remove commands

Adding the titleOption and bodyOption variables

Testing the remove command
Arrow functions

Using the arrow function
Exploring the difference between regular and arrow functions

Exploring the arguments array
Summary

5. Basics of Asynchronous Programming in Node.js
The basic concept of asynchronous program

Illustrating the async programming model
Call stack and event loop
A synchronous program example

The call stack
Running the synchronous program

A complex synchronous program example
An async program example

The Node API in async programming
The callback queue in async programming
The event loop

Running the async code
Callback functions and APIs
The callback function
Creating the callback function

Running the callback function

Simulating delay using setTimeout
Making request to Geolocation API
Using Google Maps API data in our code

Installing the request package
Using request as a function

Running the request
Pretty printing objects

Using the body argument
Making up of the HTTPS requests

The response object

The error argument
Printing data from the body object

Printing the formatted address
Printing latitude and longitude
Summary

6. callbacks in Asynchronous Programming
Encoding user input

Installing yargs
Configuring yargs

Printing the address to screen
Encoding and decoding the strings

Encoding URI component
Decoding URI component

Pulling the address out of argv
Callback errors
Checking error in Google API request

Adding the if statement for callback errors
Adding if else statement to check body status property

Testing the body status property
Abstracting callbacks
Refactoring app.js and code into geocode.js file

Working on request statement

Creating geocode file
Adding callback function to geocodeAddress

Setting up the function in geocodeAddress function in app.js

Implementing the callback function in geocode.js file

Testing the callback function in geocode.js file
Wiring up weather search
Exploring working of API in the browser

Exploring the actual URL for code

Making a request for the weather app using the static URL
Error handling in the the callback function

Another way of error handling

Testing the error handling in callback
Chaining callbacks together
Refactoring our request call in weather.js file

Defining the new function getWeather in weather file

Providing weather directory in app.js
Passing the arguments in the getWeather function

Printing errorMessage in the getWeather function
Implementing getWeather callback inside weather.js file

Adding dynamic latitude and longitude

Changing console.log calls into callback calls
Chaining the geocodeAddress and getWeather callbacks together

Moving getWeather call into geocodeAddress function
Replacing static coordinates with dynamic coordinates
Testing the chaining of callbacks

Summary

7. Promises in Asynchronous Programming
Introduction to ES6 promises
Creating an example promise

Calling the promise method then
Running the promise example in Terminal
Error handling in promises

Merits of promises
Advanced promises
Providing input to promises

Returning the promises
Promise chaining
Error handling in promises chaining

The catch method
The request library in promises

Testing the request library
Weather app with promises

Fetching weather app code from the app.js file
Axios documentations

Installing axios
Making calls in the app-promise file

Making axios request
Error handling in axios request

Error handling with ZERO_RESULT body status

Generating the weather URL
Chaining the promise calls
Summary

8. web servers in Node
Introducing Express
Configuring Express

Express docs website

Installing Express
Creating an app

Exploring the developer tools in the browser for the app request

Passing HTML to res.send
Sending JSON data back

Error handling in the JSON request
The static server
Making an HTML page

The head tag

The body tag
Serving the HTML page in the Express app

The call to app.listen
Rendering templates

Installing the hbs module

Configuring handlebars
Our first template

Getting the static page for rendering
Injecting data inside of templates

Rendering the template for the root of the website
Advanced templates
Adding partials

Working of partial

The Header partial
The Handlebars helper

Arguments in Helper
Express Middleware
Exploring middleware

Creating a logger

Printing message to file
The maintenance middleware without the next object

Testing the maintenance middleware
Summary

9. Deploying Applications to Web
Adding version control
Installing Git

Git on macO0S

Git on Windows

Testing the installation

Turning the node-web-server directory into a Git repository
Using Git

Adding untracked files to commit

Making a commit
Setting up GitHub and SSH keys
Setting up SSH keys

SSH keys documentations
Working on commands

Generating a key

Starting up the SSH agent
Configuring GitHub

Testing the configuration
Creating a new repository

Setting up the repository
Deploying the node app to the Web
Installing Heroku command-line tools

Log in to Heroku account locally

Getting SSH key to Heroku
Setting up in the application code for Heroku

Changes in the server.js file
Changes in the package.json file
Making a commit in Heroku
Running the Heroku create command
Summary

10. Testing the Node Applications - Part 1
Basic testing

Installing the testing module
Testing a Node project

Mocha - the testing framework
Creating a test file for the add function

Creating the if condition for the test
Testing the squaring a number function

Autorestarting the tests
Using assertion libraries in testing Node modules

Exploring assertion libraries
Chaining multiple assertions

Multiple assertions for the square function
Exploring usage of expect with bogus test

Using toBe and toNotBe to compare array/objects
Using the toEqual and toNotEqual assertions
Using toInclude and toExclude

Testing the setName method
The asynchronous testing

Creating the asyncAdd function using the setTimeout object
Writing the test for the asyncAdd function

Making assertion for the asyncAdd function

Adding the done argument
The asynchronous testing for the square function

Creating the async square function
Writing test for asyncSquare

Making assertions for the asyncSquare function
Summary

11. Testing the Node Applications - Part 2
Testing the Express application

Setting up testing for the Express app
Testing the Express app using SuperTest

The SuperTest documentation

Creating a test for the Express app
Writing the test for the Express app

Testing our first API request
Setting up custom status

Adding flexibility to SuperTest
Creating an express route

Writing the test for the express route
Organizing test with describe()

Adding describe() for individual methods

Adding the route describe block for the server.test.js file
Test spies

Creating a test file for spies

Creating a spy
Setting up spies assertions

More details out of spy assertion
Swapping of the function with spy

Installing and setting up the rewire function

Replacing db with the spy

Writing a test to verify swapping of the function
Summary

Conclusion
Another Book You May Enjoy

Leave a review - let other readers know what you think

Preface

Welcome to Learning Node.js Development. This book is packed with a ton of
content, projects, challenges and real-world examples, all designed to teach you
Node by doing. This means you'll be getting your hands dirty early on in the
upcoming chapters writing some code, and you'll be writing code for every
project. You will be writing every line of code that powers our applications.
Now, we would require a text editor for this book. We have various text editor
options that you can use. I always recommend using Atom, which you can find
at atom.io. It's free, open-source, and it's available for all operating systems,
namely Linux, macOS, and Windows. It's created by the folks behind GitHub.

All the projects in the book are fun to build and they were designed to teach you
everything required to launch your own Node app, from planning to
development and testing to deploying. Now, as you launch these different Node
applications and move through the book, you will run into errors, which is bound
to happen. Maybe something doesn't get installed as expected, or maybe you try
to run an app and instead of getting the expected output, you get a really long
obscure error message. Don't worry, I am there to help. I'll show you tips and
tricks to get pass through those errors in the chapters. Let's go ahead and get to
it.

http://atom.io

Who this book is for

This book targets anyone looking to launch their own Node applications, switch
careers, or freelance as a Node developer. You should have a basic understanding
of JavaScript in order to follow this book.

What this book covers

chapter 1, Getting Set Up, talks about what Node is and why you want to use it. In
this chapter, you'll learn Node installation and by the end of the chapter, you'll be
able to run your first Node application.

chapter 2, Node Fundamentals - Part 1, talks about building Node applications.
The Node Fundamentals topic has been divided into 3 parts. Part 1 of this topic
includes module basics, requiring own files, and third-party NPM modules.

chapter 3, Node Fundamentals - Part 2, continues our discussion on some more
Node fundamentals. This chapter explores yargs, JSON, the addNote function,
and refactor, moving functionality into individual functions and testing the
functionality.

chapter 4, Node Fundamentals - Part 3, includes things such as read and write
from the file system. We'll look into advanced yargs configuration, debugging
broken apps, and some new ES6 functions.

chapter 5, Basics of Asynchronous Programming in Node.js, covers basic
concepts, terms, and technologies related to the async programming, making it
super-practical and using it in our weather application.

chapter 6, Callbacks in Asynchronous Programming, is the second part of async
programming in Node. We'll look into callbacks, HTTPS requests, and error
handling inside of our callback functions. We'll also look into the forecast API
and fetching real-time weather data for our address.

chapter 7, Promises in Asynchronous Programming, is the third and last part of
async programming in Node. This chapter focuses on Promises, how it works,
why they are useful, and so on. At the end of this chapter, we'll use Promises in
our weather app.

chapter 8, Web Servers in Node, talks about Node web servers and integrating
version control into Node applications. We'll also introduce a framework called
Express, one of the most important NPM libraries.

chapter 9, Deploying Applications to Web, talks about deploying the applications
to the Web. We'll be using Git, GitHub, and deploy our live app to the Web using
these two services.

chapter 10, Testing the Node Applications- Part 1, talks about how we can test our
code to make sure it is working as expected. We'll work on setting up for testing
and then writing our test cases. We'll look into the basic testing framework and
asynchronous testing.

chapter 11, Testing the Node Application - Part 2, continues our journey of testing
Node applications. In this chapter, we'll work on testing the Express applications
and look into some advanced methods of testing.

To get the most out of this book

A web browser, we'll be using Chrome throughout the course book but any
browser will do, and Terminal, sometimes known as the command line on Linux
or the Command Prompt on Windows. Atom as the text editor. The following list
of modules will be used throughout the course of this book:

lodash
nodemon
yargs
request
axios
express
hbs
heroku
rewire

Download the example code files

You can download the example code files for this book from your account at www.
packtpub.com. If you purchased this book elsewhere, you can visit www.packtpub.com/su
pport and register to have the files emailed directly to you.

You can download the code files by following these steps:

LOg in or register at www.packtpub.com.

Select the SUPPORT tab.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

Eal

Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at nttps://github.com/Packtpu
blishing/Learning-Node.js-Development. We also have other code bundles from our rich
catalog of books and videos available at nttps://github.com/Packtpublishing/. Check
them out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Learning-Node.js-Development
https://github.com/PacktPublishing/

Conventions used

There are a number of text conventions used throughout this book.

codeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. Here is an example: "Mount the downloaded webstorm-16*.dmg disk image
file as another disk in your system."

A block of code is set as follows:

console.log('Starting app.js');

const fs = require('fs');
const = require('lodash');

const yargs = require('yargs');

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

const argv = yargs.argv;

var command = process.argv[2];

console.log('Command:', command);

console.log('Process', process.argv);
console.log('Yargs', argv);

Any command-line input or output is written as follows:

cd hello-world
node app.js

Bold: Indicates a new term, an important word, or words that you see onscreen.
For example, words in menus or dialog boxes appear in the text like this. Here is
an example: "Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedbackepacktpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book,
please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we would
be grateful if you would report this to us. Please viSit www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering
the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packtpub.com With a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please ViSit authors. packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews

Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and
use your unbiased opinion to make purchase decisions, we at Packt can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/

Getting Set Up

In this chapter, you'll get your local environment set up for the rest of the book.
Whether you're on macOS, Linux, or Windows, we'll install Node and look at
exactly how we can run Node applications.

We'll talk about what Node is, why you would ever want to use it, and why you
would want to use Node as opposed to something like Rails, C++, Java, or any
other language that can accomplish similar tasks. By the end of this chapter, you
will be running your very first Node application. It's going to be simple, but it is
going to get us to the path to creating real-world production Node apps, which is
the goal of this book.

More specifically, we'll cover the following topics:

Node.js installation
What Node is

Why use Node
Atom

Hello World

Node.Js installation

Before we start talking about what Node is and why it's useful, you need to first
install Node on your machine, because in the next couple of sections, we'll want
to run a little bit of Node code.

Now, to get started, we just need two programs—a browser, I'll be using Chrome
throughout the book, but any browser will do, and Terminal. I'll use Spotlight to
open up Terminal, which is what it's known as on my operating system.

If you're on Windows, look for the Command Prompt, you can search using the
Windows key and then by typing command prompt, and on Linux, you're looking for
the command line, although depending on your distribution it might be called
Terminal or Command Prompt.

Now, once you have that program open, you'll see a screen, as shown in the
following screenshot:

= Gary — -—basn.— ‘EbeZQ

Last login: Wed Jan 18 16:04:81 on ttyse@ee
Gary:~ Gary$ I

Essentially, it's waiting for you to run a command. We'll run quite a few
commands from Terminal throughout the book. I'll discuss it in a few sections
later, so if you've never used this before, you can start navigating comfortably.

Node.Js version confirmation

In the browser, we can head over to nodejs.org to grab the installer for the latest
version of Node(as shown here). In this book, we'll use the most recent version,
version 9.3.0:

[] []) Nodejs X

“ C | & Secure | https://nodejs.org/en/

n de

HOME | ABOUT DOWNLOADS ‘ DOCS ‘ GET INVOLVED SECURITY NEWS FOUNDATION

Node.js® is a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.js uses an
event-driven, non-blocking 1/0 model that makes it lightweight and efficient. Node.js'
package ecosystem, npm, is the largest ecosystem of open source libraries in the world.

Spectre and Meltdown in the context of Node.js.

Download for macOS (x64)
8.9.4LTS 9.3.0 Current
Recommended For Most Users Latest Features
Other Downloads | Changelog | APIDocs Other Downloads | Changelog | APl Docs

Or have a look at the LTS schedule.

Sign up for Node.js Everywhere, the official Node.js Weekly Newsletter.

It is important that you install a V8 version of Node.js. It doesn't
have to be 4.0, it could be 1.0, but it is important it's on that V8
branch, because there is a ton of new features that come along with
V8, including all of the features you might have come to love in the
browser using ES6.

ES6 is the next version of JavaScript and it comes with a lot of great
enhancements we'll be using throughout the book. If you look at the following
image, Node.js Long Term Support Release Schedule
(https://github.com/nodejs/LTs), you can see that the current Node version is V8, out
in April 2017:

http://nodejs.org
https://github.com/nodejs/LTS

Node.js Long Term Support (LTS) Release Schedule

master

% | f |

MAINTENANCE ‘
f \ i Jun2016 1
Node s 5 [corrent || ‘
Node,s 6 § CURRENT | ACTIVE LTS MAINT.
§ j i Jun 2017
Node.js 7 -

Node.js 8 ; ‘ CURRENT ACTIVE LTS

COPYRIGHT © 2017 NODESOURCE, LICENSED UNDER CC-BY 4.0

Before going further, I would like to talk about the Node release cycle. What I
have in the preceding image is the official release cycle, this is released by Node.
You'll notice that only next to the even Node numbers do you find the active
LTS, the blue bar, and the maintenance bar. Now, LTS stands for long-term
support, and this is the wversion that's recommended for most users. I'd
recommend that you stick with the currently offered LTS option (Node v 8.9.4
LTS), though anything on the left-hand side will do, this is shown as the two
green buttons on nodejs.org.

Now, as you can see, the major version numbers, bump every six months.
Regardless of any sort of big overarching change, this happens like clockwork
even if nothing drastic has changed. It's not like Angular where jumping from
1.0 to 2.0 was almost like using a completely different library. This is just not the
case with Node, what you're getting from this book is the latest and greatest
Node has to offer.

http://nodejs.org

Installing Node

Once the version is confirmed and selected, all we have to do is to click the
required version button on the Node website (nodejs.org) and download the
installer. The installer is one of those basic click Next a few times and you're
done type of installers, there's no need to run any fancy commands. I'll start the
installer. As shown in the following screenshot, it'll just ask a few questions, then
let's click on Next or Continue through all of them:

@ ¢ Install Node.js =

Welcome to the Node.js Installer
This package will install:
Introduction

Node.js v8.3.0 1o fusr/local/bin/node

Hleense npm v5.5.1 to fusr/local/bin/npm

Destination Select
nstallation Type
nstallation

Summary

n .
s)@d =

You might want to specify a custom destination, but if you don't know what that
means, and you don't usually do it when installing programs, skip that step too.
Here, in the next screenshot, you can see that I'm using just 58.6 MB, no
problem.

I'll run the installer by entering my password. And once I enter my password, it
should really only take a couple of seconds to get Node installed:

http://nodejs.org

Introduction
License
Destination Select
Installation Type
Installation

Summary

n 2
0@60

e Install Node.js a8
Standard Install on "Mac"

This will take 58.6 MB of space on your computer.

Click Install to perform a standard installation of this software
on the disk "Mac".

Change Install Location...

Customize Go Back Install

As shown in the following screenshot, we have a message that says
installation was completed successfully, which means we are good to go:

Introduction
License
Destination Select
Installation Type
Installation

Summary

node

©

w Install Node.js ")

The installation was completed successfully.
This package has installed:

* Node.js v8.3.0to /usr/local/bin/node
* npmv5.5.110 fusr/local/bin/npm

Make sure that /usr/local/binisin your $PATH.

Close

The

Verifying installation

Now that Node has been installed successfully, we can go ahead and verify that
by running Node from Terminal. Inside Terminal, I'll shut it down by going to
Quit Terminal and open it up again:

& BN Shell Edit View Window Help Q
@ About Terminal & Gary — -bash — 108=29

on ttyseee

Preferences... 8,
Secure Keyboard Entry

Services

Hide Terminal
Hide Others
Show All

Quit Terminal

The reason I'm opening it up is because we've installed a new
o command, and some Terminals require a restart before they will be
able to run that new command.

In our case, we restarted things and we can run our brand new command so,
we'll type it:

| node -v

What we're doing in this command is we're running the Node command, and
we're passing in what's called a flag, a hyphen sign followed by a letter. It could
be a, it could be j, or in our case it's v. This command will print the version of

Node currently installed.

We might get an error like this:

® 0 7% Gary — -bash — 108x29

Gary:~ Gary$ nodeasdf
=-bash: nodeasdf: command not found
Gary:~ Gary$ |:|

If you try to run a command that doesn't exist, such as nodeasdf, you'll see
command not found. If you see this, it usually means the Node installer didn't
work correctly, or you haven't run it in the first place.

In our case though, running Node with the v flag should result in a number. In
our case, it's version 9.3.0. If you do have Node installed, and you see something
like the following screenshot, then you are done. In the next section, we'll start
exploring exactly what Node is.

[NoN) 72 Gary — -bash — 108x29

Gary:~ Gary$ nodeasdf
-bash: nodeasdf: command not found
Gary:~ Gary$ node -v

v9.3.8

Gary:~ Gary$ |:|

What is Node?

Node came about when the original developers took JavaScript, something you
could usually only run inside the browser, and they let it run on your machine as
a standalone process. This means that we could create applications using
JavaScript outside the context of the browser.

Now, JavaScript previously had a limited feature set. When I used it in the
browser, I could do things such as update the URL and remove the Node logo,
adding click events or anything else, but I couldn't really do much more.

With Node, we now have a feature set that looks much more similar to other
languages, such as Java, Python, or PHP. Some of these are as follows:

e We can write Node applications using the JavaScript syntax

¢ You can manipulate your filesystem, creating and removing folders
¢ You can create query databases directly

¢ You can even create web servers using Node

These were things that were not possible in the past, and they are because of
Node.

Now, both Node and the JavaScript that gets executed inside of your browser,
they're both running on the exact same engine. It's called the V8 JavaScript
runtime engine. It's an open source engine that takes JavaScript code and
compiles it into much faster machine code. And that's a big part of what makes
Node.js so fast.

Machine code is low-level code that your computer can run directly without
needing to interpret it. Your machine only knows how to run certain types of
code, for example, your machine can't run JavaScript code or PHP code directly
without first converting it into low-level code.

Using this V8 engine, we can take our JavaScript code, compile it to much
quicker machine code, and execute that. This is where all those new features
come in. The V8 engine is written in a language called C++. So if you want to

extend the Node language, you don't write Node code, you write C++ code that
builds off of what V8 already has in place.

not about adding onto Node, it is about using Node. So, we will

o Now, we'll not be writing any C++ code in this book. This book is
only be writing JavaScript code.

Speaking of JavaScript code, let's start writing some inside Terminal. Now,
throughout the book, we'll be creating files and executing those files, but we can
actually create a brand new Node process by running the node command.

Referring to the following screenshot, I have a little right caret, which is waiting
for JavaScript Node code, not a new command-prompt command:

®0e Gary — node — 108x29
Gary:~ Gary$ node -v

v9.3.8
Gary:~ Gary% node
>

This means that I can run something like console.109, Which, as you probably
already know, logs a message to the screen. 10g is a function, so I'll call it as
such, opening and closing my parentheses, and passing in a string inside two
single quotes, a message Hello world!, as shown in the following command line:

| console.log('Hello world!');

This will print Hello world to the screen. If T hit enter, Hello world! prints just
like you'd expect, as shown in the following code output:

® 09 Gary — node — 108x29

Gary:~ Gary$ node -v

v9.3.9

Gary:~ Gary$ node

> console.log('Hello world!');
Hello world!

;rher;ﬂju

Now, what actually happened behind the scenes? Well, this is what Node does. It
takes your JavaScript code, it compiles it into machine code, and executes it. In
the preceding code, you can see it executed our code, printing out Hello world!.
Now, the V8 engine is running behind the scenes when we execute this
command, and it's also running inside the Chrome browser.

If T open up the developer tools in Chrome by going to Settings | More Tools |
Developer Tools:

000 /g nodejs X ©

& C | & Secure | https://nodejs.org/en/ i
New Tab ®T
> New Window N
n \ c New Incognito Window OBN
History 3
Download o)
HoME | ABouT | DOwNLoADS | Docs | GETINVOED | SEcuRmY | News FounpaTion [SRs
Bookmarks
Zoom = or
Print... %P
Node.js®is a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.jsusesa Cast..
Find... #E
event-driven, non-blocking /0 model that makes it lightwei save page As... Pl More Tooks 3
package ecosystem, npm, is the largest ecosysterm of Open s¢ clear Browsing Data.. 08@ | dit Cut | Copy | Paste
Extensions i
Task Manager Settings
Help »

Spectre and Meltdown in the contextprr= =

Download for macQS (x64)

8.9.4 LTS 9.3.0 Current

Recommended For Most Users Latest Features

Other Downloads | Changelog | APIDocs Other Downloads | Changelog | APl Docs

Orhave a look at the LTS schedule.

Sign up for Node.js Everywhere, the official Node.js Weekly Newsletter.

I can ignore most of the things. I'm just looking for the Console tab, as shown in
the following screenshot:

e0e i’ Node.js X e

& C | & Secure | https://nodejs.org/en/ g

nede

HOME ABOUT DOWNLOADS | DOCS GET INVOLVED SECURITY NEWS FOUNDATION

Node.js® is a JavaScript runtime built on Chrome’s V8 JavaScript engine. Node.js uses an
event-driven, non-blocking |/0 model that makes it lightweight and efficient. Node.js'
package ecosystem, npm, is the largest ecosystem of open source libraries in the world.

Spectre and Meltdown in the context of Node.js.

e ﬂ Elements Console Sources Network Performance Memory Application Security Audits I

Q top Y | Fiter Defauit levels ¥

>

The preceding screenshot showing the console is a place where we can run some
JavaScript code. I can type the exact same command, console.log('Hello world!"');
and run it:

ece h’ Node.js x e

& C | & Secure | https://nodejs.org/en/ W

n de

HOME ABOUT DOWNLOADS | DOCS | GET INVOLVED SECURITY NEWS FOUNDATION

Node.js®is a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.js uses an
event-driven, non-blocking I/0 model that makes it lightweight and efficient. Node.js'
package ecosystem, npm, is the largest ecosystem of open source libraries in the world.

Spectre and Meltdown in the context of Node.js.

[ﬂ Elements Console Sources Network Performance Memory Application Security Audits PoX

Q wp Y | Fiter Defautlevels ¥

» console.log{'Helle warld!'});
Hello world! yM142:1
undefined

>

As you can see in the preceding screenshot, Hello world! prints to the screen,
which is the exact same result we got when we ran it up earlier using Terminal.
In both cases, we're running it through the V8 engine, and in both cases the
output is the same.

Now, we already know that the two are different. Node has features such as
filesystem manipulation, and the browser has features such as manipulating
what's shown inside the window. Let's take a quick moment to explore their
differences.

Differences between JavaScript
coding using Node and in the
browser

Inside the browser, you've probably used window if you've done any JavaScript
development:

ec e 0 Node.js X e

& C | & Secure | https://nodejs.org/en/ T

n de

HOME ABOUT DOWNLOADS | DOCS ‘ GET INVOLVED SECURITY NEWS FOUNDATION

Node.js® is a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.js uses an
event-driven, non-blocking I/0 model that makes it lightweight and efficient. Node.js'
package ecosystem, npm, is the largest ecosystem of open source libraries in the world.

Spectre and Meltdown in the context of Node.js.

[Q] CElmems Console Sources Network Performance Memory Application Securty Audits H 4
Q top ¥ | |Filter Default levels ¥

Hello world! {unknown)
window
¥ Window {postMessage: f, blur: f, focus: f, close: f, frames: Window, .}

>

Window is the global object, it stores basically everything you have access to. In
the following screenshot, you can see things such as array, we have all sorts of
CSS manipulation and Google Analytics keywords; essentially every variable
you create lives inside Window:

e0e @ Node.js X e

& C | & Secure | https://nodejs.org/en/ g

n de

HOME ABOUT DOWNLOADS | DOCS GET INVOLVED SECURITY NEWS

Node.js®is a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.js uses an
event-driven, non-blocking |/0 model that makes it lightweight and efficient. Node.js'
package ecosystem, npm, is the largest ecosystem of open source libraries in the world.

Spectre and Meltdown in the context of Node.js.

[¥ (] | Elemems Conscle Sources Netwerk Performance Memory Application Securty Audits D
® wp v | |Fiter Defauit levels v

Helle world! (unknown)
» window

¥ Window {postMessage: f, blur: f, focus: f, close: f, frames: Window, .}
F $scrollToTop: a#scroll-to-top
GoogleAnalyticsObject: "ga"
»alert: f alert()
»applicationCache: ApplicationCache {status: @, onchecking: null, onerror: null, onnoupdate: null, ondownloading: null, .}
b atob: f atob()
»blur: f ()
> btoa: f btoa()
P caches: CacheStorage {}

We have something similar inside Node called gioba1, as shown here:

[NN] Gary — node — 108x29

Gary:~ Gary$ node -v

ve.3.8

Gary:~ Gary$ node

> console.log('Hello world!');
Hello world!

It's not called window because there is no browser window in Node, thus it is called
global. The global object stores a lot of the same things as window. In the following
screenshot, you can see methods that might be familiar, such as settimeout and

setInterval.

I

Gary — node — 108x29

clearImmediate: [Functionl],

clearInterval: [Function],

clearTimeout: [Functionl],

setImmediate: { [Function: setImmediate] [i isi)1: [Function] },

setInterval: [Functionl],

setTimeout: { [Function: setTimeout] [) t [Function] },

module:

Module {
id: ' l>',
exports: {},
parent:
filename: null,
loaded: false,
children: [1,
path

[

require:
{ [Function: require]
resolv { [Function: resolve] paths: [Function: paths] },
LEFLH B
extensions: { '.js'! [Function], '.json': [Function], '.r '+ [Function] },
cache: {} } }

If we look at this code screenshot, we have most of the things that are defined
inside the window, with some exceptions, as shown in the following screenshot:

[CHeN] Gary — node — 108x29

> global
{ console: [Getter],
DTRACE_MET_SERVER_CONMECTION: [Functionl],
DTRACE_MET_STREAM_END: [Function],
DTRACE_HTTP_SERVER_REQUEST: [Function],
DTRACE_HTTP_SERVER_RESPONSE: [Function],
DTRACE_HTTP_CLIENT_REQUEST: [Function],
DTRACE_HTTP_CLIENT_RESPONSE: [Functionl,
global: [Circular],
process:
process {
title:
version: 3.
moduleLoadList:

Now, inside the Chrome browser, I also have access to document:

0ce 'i,Nodejs X 9

€ | # Secure | https: nodejs.org/en/ -

nide

HOME | ABOUT DOWNLOADS | DOCS GETINVOLVED | SECURMY | NEWS FOUNDATION

Nodejs s a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.js uses an
event-driven, non-blocking |/0 model that makes it lightweight and efficient. Node.js'
package ecosystem, npm, is the largest ecosystem of open source [ibraries in the world.

Spectre and Meltdown in the context of Node.js

Gﬂ Elements Console Sources Network Pedormance Memory Application Security Audits

0 tp Y Fller Defaul el ¥ B
y document

Vidocument

<htnl lang="en">
b <head>.z/head
¥ <body
b <header=..</header:
Fadiy 1d="main"s.c/div>
k<3 href="§" id="scroll-to-top" style="display: none;"s.e/a>
F<footer class="no-margin-top" role="contentinfo"s.</footers
<Link rel="stylesheet" href="/static/css/prisn-tomorrow.css" media="all"
script async src="//www. gooale-analytics. con/analytics. is"=</script=
kescript type="text/javascript"s.e/scripts
kescripts.e/scripts

<script sre="/static/js/dnt helper.is"s</scripts

The document Object stores a reference to the Document Object Model (DOM) in
the Node website. The document Object shows exactly what I have inside the
browser's viewport, as shown in the following screenshot:

000 g s Y@ 8

€ [iSecure|https:ﬁnudejs.org}en,‘ ﬂ E

(%] Cemens Consde Souces Nework Pefomance Memoy Apolcaion Securty Audss |+ X

0 to L™ Defat el ¥ 3

P unescape: f unescapef)
P webkitMediaStrean: f MediaStrean()
P webkitRTCPeerConnection: f RTCPeerConnection()
P webkitSpeechGramnar: f SpeechGrammar ()
P webkitSpeechbramnarList: f SpeechGramnarlist()
P webkitSpeechRecognition: f SpeechRecognition()
P webkitSpeechRecognitionError: f SpeechRecognitionError()
P webkitSpeechRecognitionkvent: f SpeechRecagnitionfvent()
PuebkitlRL: f URL()
¥ _proto__: Window
3 document
¢ kdocuent

i

I can make changes to the document to update what gets shown up on the
browser's viewport. Now, obviously we don't have this HTML document inside
Node, but we do have something similar, which is called process. You can view it
by running process from Node, and in the following screenshot, we have a lot of
information about the specific Node process that's being executed:

=
i,
[]
=

Gary — node — 108x29

> process
process {
title: °
version:

There's also methods available here to shut down the current Node process.
What I'd like you to do is run the process.exit command, passing in as an
argument the number zero, to say that things exited without error:

| process.exit(0);

When I run this command, you can see I'm now back at the command prompt, as
shown in the following screenshot:

[NoN] # Gary — -bash — 108x28

target_arch: 'xé
uv_parent_path:
uv_use_dtrace: true,
vB_enable_gdbjit: @,
vB_enable_il8n_support: 1,
vB_enable_inspector: 1,
vB_no_strict_aliasing: 1,
vB_optimized_debug: @,
vB_promise_internal_field_count: 1,
vB_random_seed: @,
v8_trace_maps: 6,
vB_use_snapshot: true,
want_separate_host_toolset: @,
xcode_version: '7.8' } },

setUncaughtExceptionCaptureCallback: [Function],

hasUncaughtExceptionCaptureCallback: [Function],

emitWarning: [Function],

nextTick: [Function: nextTick],

_tickCallback: [Function: _tickCallback],

stdout: [Getter],

stderr: [Getter],

stdin! [Getter],

openStdin: [Function],

exit: [Function],

kill: [Function],

_immediateCallback: [Function: processImmediate],

argv@: 'node’ }

> process.exit(@);
Gary:~ Gary$ D

I've left Node, and I'm at a place where I can run any regular command prompt
command, such as checking my Node version. I can always get back into Node
by running node, and I can leave it without using the process.exit command by
using control + C twice.

[JoN | 7 Gary — -bash —108x29

vB_no_strict_aliasing: 1,
vB_optimized_debug: @,
vB_promise_internal_field_count: 1,
vB_random_seed: @,
v8_trace_maps: 6,
vB_use_snapshot: true,
want_separate_host_toolset: @,
xcode_version: '7.8' } },
setUncaughtExceptionCaptureCallback: [Function],
hasUncaughtExceptionCaptureCallback: [Function],
emitWarning: [Function],
nextTick: [Function: nextTick],
tickCallback: [Function: _tickCallbackl,

stdout: [Getter],

stderr: [Getter],
stdin: [Getter],
openStdin: [Function],
exit: [Function],
kill: [Function],
_immediateCallback: [Function: processImmediate],
argv@d: 'node’ }
> process.exit(@);
Gary:~ Gary$ node -v
v9.3.8
Gary:~ Gary$ node
>
(To exit, press *C again or type .exit)
>
Gary:~ Gary$ ||

Now, I'm back at my regular command prompt. So, these are the notable
differences, obviously inside the browser you have the viewable area, window
gets changed to global, and a document basically becomes process. Now,
obviously that's a generalization, but those are some of the big picture changes.
We'll be exploring all the minutiae throughout the book.

Now, when someone asks you what is Node? You can say Node's a JavaScript
runtime that uses the V8 engine. When they ask you what the V8 engine is, you
can say the V8 engine is an open source JavaScript engine written in C++ that
takes JavaScript code and compiles it to machine code. It's used inside Node.js
and it's used in the Chrome browser.

Why use Node

In this section, we'll cover the why behind Node.js. Why is it so good at creating
backend apps? And why is it becoming so popular with companies such as
Netflix, Uber and Walmart, who are all using Node.js in production?

As you might have noticed since you're taking this course, when people want to
learn a new backend language, more and more they're turning to Node as the
language they want to learn. The Node skillset is in hot demand, for both
frontend developers who need to use Node day to day to do things such as
compile their applications, to engineers who are creating applications and
utilities using Node.js. All of this has made Node the backend language of
choice.

Now, if we look at the homepage of Node, we have three sentences, as shown in
the following screenshot:

® O ® /@ Nodeis x e

& > C | & Secure | https://nodejs.org/en/ w|

nede

HOME ABOUT DOWNLOADS ‘ DoCs ‘ GET INVOLVED SECURITY NEWS FOUNDATION

Node.js® is a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.js uses an
event-driven, non-blocking I/0 model that makes it lightweight and efficient. Node.js'
package ecosystem, npm, is the largest ecosystem of open source libraries in the world.

Spectre and Meltdown in the context of Node.js.

Download for macOS (x64)

8.94LTS 9.3.0 Current
Recommended For Most Users Latest Features

Other Downloads | Changelog | APIDocs Other Downloads | Changelog | API Docs

Or have a look at the LTS schedule.

In the previous section, we addressed the first sentence. We took a look at what
Node.js is. There's only three sentences in the image, so in this section, we'll take
a look at the second two sentences. We'll read them now, then we'll break it
down, learning exactly why Node is so great.

The first sentence, Node.js uses an event-driven, non-blocking I/O model that

makes it lightweight and efficient; we'll explore all of this now. The second
sentence we'll explore at the end of the section—Node.js' packaged ecosystem,
npm, is the largest ecosystem of open source libraries in the world. Now, these
two sentences have a ton of information packed into them.

We'll go over a few code examples, we'll dive into some charts and graphs, and
we'll explore what makes Node different and what makes it so great.

Node is an event-driven, non-blocking language. Now, what is I/O? I/O is
something that your application does all of the time. When you're reading or
writing to a database, that is I/O, which is short form for input/output.

This is the communication from your Node application to other things inside of
the Internet of Things. This could be a database read and write request, you may
be changing some files on your filesystem, or you may be making an HTTP
request to a separate web server, such as a Google API for fetching a map for the
user's current location. All of these use I/0, and I/O takes time.

Now, the non-blocking I/O is great. That means while one user is requesting a
URL from Google, other users can be requesting a database file read and write
access, they can be requesting all sorts of things without preventing anyone else
from getting some work done.

Blocking and non-blocking
software development

Let's go ahead and take a look at the differences between blocking and non
blocking software development:

Blocking Now-blocking
'] (¥ blocking.js — [Users/And mwuesk'opncnkng-m(V

1 var getUserSync uire H 1 var getlser = require('H
var userl tUserSync(|H jetlser(, function (userl) {

, userl); +log(, userl);

ync()i
, user2); jetlser(, function (user2) {
+logl , userl);
var sum=1+2; H;
+ 5umj ;
var sum = 1 + 2;
Aogl + s5um);

In the preceding screenshot, I have two files that we'll be executing. But before
going to that, first let's explore how each of these files operates, the steps that are
required in order to finish the program.

This will help us understand the big differences between blocking, which I have
on the left side of the image, which is not what Node uses, and non-blocking is
on the right side, which is exactly how all of our Node applications in the book

are going to operate.

You don't have to understand the individual details, such as what require is, in
order to understand what's going on in this code example. We'll be breaking
things down in a very general sense. The first line on each code is responsible
for fetching a function that gets called. This function will be our simulated I/0
function that is going to a database, fetching some user data and printing it to the
screen.

Refer to the preceding code image. After we load in the function, both files try to
fetch a user with an ID of 123. When it gets that user, it prints it to the screen with
the usera string first, and then it goes on and it fetches the user with 321 as the ID.
And it prints that to the screen. And finally both files add up 1 + 2, storing the
result, which is 3, in the sun variable and print it to the screen.

Now, while they all do the same thing, they do it in very different ways. Let's
break down the individual steps. In the following code image, we'll go over what
Node executes and how long it takes:

Blocking / Now-blocking

ece ¥ blocking s —

blocking.js non-blacking.js E
| 1 wvar getUserSync = require('./getUserSync'); 1 var getUser = require('./getUser');
var userl = geruirSynci'l?TJ: getlser|'123', function (userl) {
console. log('usef', userl); console. logl ‘userl’, userl);
i
var user = getUserSync('321');
console.log('user2’, user2); getUser('321°, function (user2) {
console, log('user2’, user?);
var sum =1+ 2; i

console.log('The sum is ' + sum);
var sum = 1 + 2;
console. log('The sum is ' + sum);

biockingjs 1:1 LF UTF8 JavaScript [1 update

You can consider the seconds shown in the preceding screenshot; it doesn't really
matter, it's just to show the relative operating speed between the two files.

The working of blocking 1/O

The blocking example can be illustrated as follows:

Blocking Now-blocking

e 0 ¥ blocking,js — [Users/Andrew/Desktop/blocking-gema
blocking. s nan-blacking.js
1 var getUserSync = require('./getUserSync'); 1 var getUser = require('./getUser');
var userl = getlUserSync('123'); getUser('123', function (userl) {
console. log(‘userd’, userl); console, Tog{ 'userl’, userl);
Hi
var user2 = getlserSync('321');
console, log('user2', user2); getlser('321', function (user2) {
console, log('user2', user2);
varsum=1+2; Hi
console, log('The sum is ' + sum);

var sum =1 + 2;
console, log('The sum is ' + sum);

_ Waiting on userl I starting gttu‘serfov wstrl

I Priwting userl

I Printing usera

I Priating sum

blockingjs 11 LF UTF-B JavaScript (371 update

The first thing that happens inside our blocking example, as shown in the
preceding screenshot, is that we fetch the user on line 3 in the code:

| var userl = getUserSync('123');

Now, this request requires us to go to a database, which is an I/O operation to

fetch that user by ID. This takes a little bit of time. In our case, we'll say it takes
three seconds.

Next, on line 4 in the code, we print the user to the screen, which is not an I/O
operation and it runs right away, printing user1 to the screen, as shown in the
following code:

| console.log('userl', userl);

As you can see in the following screenshot, it takes almost no time at all:

Blocking Now-blocking

00 e ¥ blocking,js — {Users/Andrew/Desktop/blocking-gema
blacking.js nan-blocking.js
1 var getUserSync = require('./getUserSync'); 1 var getUser = require('./getlser');
var userl = gs‘slhlar‘rﬁ\,’nrlf".."?); getlser({'123", function (userl) {
console. log{'userl', userl); console, log{ 'userl’, userl);
Hi
var user2 = getUserSync('321');
console.logl'user2', user); getUser('321', function (userd) {
console, log('user2', user2);
var sun=1+2; Hi

console. log('The sum is ' + sum);
var sum= 1+ 2;
console. log(‘The sum is ' + sum);

blockingjs 11 LF UTF-8 JavaScript "_"1...'.1.'.:-'

Next up, we wait on the fetching of user2:

var user2 = getUserSync('321");

Blocking Now-blocking

[K | ¥ blocking,s — [Users/Andrew|Desktop/blocking-dema
blocking. s non-blocking.js
1 var getUserSync = require('./getUserSync'); 1 var getUser = require('./getUser');
var userl = getlserSync('123'); getUser('123', function (userl) {
console.log('userl', userl); console, log('userl’, userl);
Hi

var user2 = getlserSync{'321');
:ons‘Le.lngli'-JserZ', user2); getUser('321', function (user2) {
console, log(user2', user2);
var sun=1+2; Hi
console.log('The sum is ' + sum};
var sum= 1+ 2;
console, log('The sum is ' + sum);

I Printing useri

I Printing user2

blockingjs 1.1 IF UTF-B JavaSeript (3% 1update

When user2 comes back, as you might expect, we print it to the screen, which is
exactly what happens on line 7:

| console.log('user2', user2);

Finally, we add up our numbers and we print it to the screen:

var sum = 1 + 2;
console.log('The sum is ' + sum);

None of this is I/O, so right here we have our sum printing to the screen in barely
any time.

This is how blocking works. It's called blocking because while we're fetching
from the database, which is an I/O operation, our application cannot do anything
else. This means our machine sits around idle waiting for the database to
respond, and can't even do something simple like adding two numbers and
printing them to the screen. It's just not possible in a blocking system.

The working non-blocking 1/O

In our non-blocking example, this is how we'll be building our Node
applications.

Let's break this code example down line by line. First up, things start much the
same way as we discussed in the blocking example. We'll start the getuser
function for user1, which is exactly what we did earlier:

Blocking Nown-blocking
[] (™ blocking.js — p’LIsers,lAnﬁrew.'Desklop,‘blocking-Mn(

non-blocking.js

1 var getUserSync = require('. ync'); 1 var getUser = require(b H

var userl = getUserSync| ¥ getUser(. function (userl) {
. logl . userl); « log(. userl);

r2', user?); getlser(. function (user2) {

But we're not waiting, we're simply kicking off that event. This is all part of the
event loop inside Node.js, which is something we'll be exploring in detail.

Notice it takes a little bit of time; we're just starting the request, we're not
waiting for that data. The next thing we do might surprise you. We're not
printing user1 to the screen because we're still waiting for that request to come
back, instead we start the process of fetching our user2 with the ID of 321:

Blocking Now-blocking

(N ¥ blocking.js — [Users/Andrew/Desktop/blocking-gema

blocking j& non-Blocking.j§

1 var getUserSync = require('./getUserSync'); 1 var getlser = require('./getUser');
var user] = getUsersync('123'); getUser('123', function (userl) {
console. log('userl’, userl); console. log('userl’, userl);

Hi

var user? = getUserSync('321');
console. log('user2', user2); getUser:\}:; , function (user2) {
console, log('user?’, user2);
varsun=1+2; Hi
console. log('The sum is ' + sum);
var sum= 1+ 2}
console; log('The sum is ' + sum);

_ WARitIAg o ustrL I starting getuaser for usert

I Printing usert I starting getser for usera

I Printing usera

I Printing sum

blockingjs 11 LF UTF-B JavaScript ';"!....':.:'-\

In this part of the code, we're kicking off another event, which takes just a little
bit of time to do-it is not an I/O operation. Now, behind the scenes, the fetching
of the database is I/0O, but starting the event, calling this function is not, so it
happens really quickly.

Next up, we print the sum. The sum doesn't care about either of the two user
objects. They're basically unrelated, so there's no need to wait for the users to
come back before I print that sum variable, as shown in the following screenshot:

Blocking Now-blocking

[I | ¥ blockingjs — [UsersfAndrew/Desktop/blocking-gemo
bleking js nn-blacking,s
1 var getUserSync = require('./getUserSync'); 1 var getUser = require('./getUser');
var userl = getUserSync{'123'); getUser('123', function (userl) {
console. log('userl', userl); console, log{'userl’, userl);
Hi
var user2 = getUserSync('321');
console.log('user2', user2); getUser('321', function (user2) {
console, log('user2', user2);
varsun=1+2; Hi

console.log{'The sum is ' + sum);
var sum=1+ 2;
console. log('The !uw is ' 4 sun);

_ WARItIAG o usert I starting getuser for usert

I Printing usert I starting getuser for user2

T e
I Printing user2

I Prinking sum.

bockigle 11 IF UTFE JavaSeript (11 update

What happens after we print the sum? Well, we have the dotted box, as shown in
the following screenshot:

Blocking Now-blocking

[X] ¥ blocking,s — [Users{Andrew/Desktop/blocking-gemo
bleckingjs no-blockingjs
| 1 var getUserSync = require('./getUserSync'); 1 var getUser = require('./getlser');
var userl = getlserSync('123'); getUser('123', function (userl) {
console.log('userl', userl); console. log('userl’, userl);

Hi
var user2 = getUserSync('321');

console.log('user2', user2); getUser('321', function (user2) {
console, log('user2’, user2);
varsun=1+2; Hi

console.log('The sum is ' + sum};
var sum=1+ 2}

console. log('The sum is

_ WAItiAg ow userL I Starting getuser for usert

+ sum);

I Printing wsert I starting getuser for usera
B e | e
I Printing usera I Printing userl

I Printinq SUM

blockingjs 11 IF UTFE JavaSeript [1update

This box signifies the simulated time it takes for our event to get responded to.
Now, this box is the exact same width as the box in the first part of the blocking
example (waiting on userl), as shown here:

Blocking Now-blocking

[K | ¥ blocking s — Users/AndrewDesktop/biocking-emo
biacking.js non-blocking.js
1 var getlserSync = require('./getUserSync'); 1 var getlser = require('./getlUser');
var userl = getliserSync('123'); getUser('123', function (userl) {
console.log('userl', userl); console. log('userl', userl);
B
var user2 = getUserSync('321');
console.log('user2', user2); getUser('321', function (user2) {
console, logl 'user2', user2);
var sun=1+2; F

console.log('The sum is ' + sum);

var sum=1 + 2;
console. log('The sum is ' + sun);

_ waithng o kst I Starting getuser for usert

I Printing userd I starting getuser for usera

I Printing user2 I Printing userl

I Printiwg S

blockingjs 11 LF UTF8 JavaSeript (1 update

Using non-blocking doesn't make our I/O operations any faster, but what it does
do is it lets us run more than one operation at the same time.

In the non-blocking example, we start two I/O operations before the half second
mark, and in between three and a half seconds, both come back, as shown in the
following screenshot:

Blocking Now-blocking

@ ¥ blockingjs — /Users{Andrew/Desktop/blocking-gemo
blacking. & nan-blacking.js
1 var getUserSync = require('./getUserSync'); 1 var getlser = require('./getlser');
var userl = getlserSyncl'123'); getlser{'123', function (userl) {
nsole. log('userl’, userl); onsole. log(‘userl’, userl);
Hi
var user2 = getlserSync{'321');
sole. logl 'user2', user); getlser('321', function (user2) {
console, logl 'user?’, user2);
varsum=1+2; s
console.log('The sum is ' + sum);
var sum =1+ 2;
console,log('The sum is ' + sum);
_ Waiting on userL I starting getuser for usert
I Printing wsert I starting getuser for usera

_ INa[tLM st I PH‘”"'[NB P

I Printing user2

I Printing sum

blockingjs 11 IF UTF-8 JavaSeript () 1updat

Now, the result here is that the entire application finishes much quicker. If you
compare the time taken in executing both the files, the non-blocking version
finishes in just over three seconds, while the blocking version takes just over six
seconds. A difference of 50%. This 50% comes from the fact that in blocking,
we have two requests each taking three seconds, and in non-blocking, we have
two requests each taking three seconds, but they run at the same time.

Using the non-blocking model, we can still do stuff like printing the sum without
having to wait for our database to respond. Now, this is the big difference
between the two; blocking, everything happens in order, and in non-blocking we
start events, attaching callbacks, and these callbacks get fired later. We're still
printing out user1 and userz, we're just doing it when the data comes back,

because the data doesn't come back right away.

Inside Node.js, the event loop attaches a listener for the event to finish, in this
case for that database to respond back. When it does, it calls the callback you
pass in the non-blocking case, and then we print it to the screen.

Now, imagine this was a web server instead of the preceding
example. That would mean if a web server comes in looking to
query the database, we can't process other users' requests without
spinning up a separate thread. Now, Node.js is single threaded,
which means your application runs on one single thread, but since
we have non-blocking I/O, that's not a problem.

In a blocking context, we could handle two requests on two separate threads, but
that doesn't really scale well, because for each request we have to beef up the
amount of CPU and RAM resources that we're using for the application, and this
sucks because those threads, are still sitting idle. Just because we can spin up
other threads doesn't mean we should, we're wasting resources that are doing
nothing.

In the non-blocking case, instead of wasting resources by creating multiple
threads, we're doing everything on one thread. When a request comes in, the I/O
is non-blocking so we're not taking up any more resources than we would be if it
never happened at all.

Blocking and non-blocking
examples using Terminal

Let's run these examples in real time and see what we get. And we have the two
files (b1ocking and non-blocking files) that we saw in the previous section.

We'll run both of these files, and I'm using the Atom editor to edit my text files.
These are things we'll be setting up later in the section, this is just for your
viewing purpose, you don't need to run these files.

Now, the biocking and non-blocking files, will both get run and they'll do similar
things to those we did in the previous section, just in a different way. Both use
I/O operations, getusersync and getuser, that take five seconds apiece. The time is
no different, it's just the order they execute in that makes the non-blocking
version much quicker.

Now, to simulate and show how things work, I'll add a few console.10g Statements
as shown in the fOHOWiI’lg code example, console.log('starting useri'),

console.log('starting user2').

This will let us visualize how things work inside Terminal. By running node
blocking.js, this is how we run files. We type node and we specify the filename, as
shown in the following code:

| node blocking.js

When I run the file, we get some output. starting userl prints to the screen and
then it sits there:

[TN] blocking-demo — node blocking.js — 108229
~[Desktop/blocking-demo — node blocking.js +

Andrew:~/Desktop/blocking-demo$ node blocking.js

starting userl

Now, we have the user1 object printing to the screen with the name Andrew, and
starting user2 prints to the screen, as shown in the following code output:

[N)] blocking-dema — -bash — 108x29
~[Desktop/blocking-demo — -bash +|

Andrew:~/Desktop/blocking-demo$ node blocking.js

starting userl

14931

userl { id: '123', name: 'Andrew' }
starting userd
user2z { id: '321', name: 'len' }

The sum is 3

Andrew:~/Desktop/blocking-demod

After that, the user2 object comes back around five seconds later with the name
of Jen.

As shown in the preceding screenshot, our two users have printed to the screen,
and at the very end our sum, which is 3, prints to the screen; everything works
great.

Notice that starting userl was immediately followed by the finishing of userl,
and starting user2 was immediately followed by the finishing of user2 because
this is a blocking application.

Now, we'll run the non-blocking file, which I've called non-biocking.js. When I run
this file, starting user1 prints, starting user2 prints, then the sum prints all back to
back:

[X) blocking-demo — -bash — 10829
~Desktop/blocking-demo — -bash +

Andrew:~/Desktop/blocking-demo$ node blocking.js
starting userl

userl { id: '123', name: 'Andrew' }

starting user?Z

13941

user2 { id: '321', name: 'len' }
The sum is 3

Andrew:~/Desktop/blocking-demo$ node non-blocking.js
starting userl

starting user2

.

The sum is 3

userl { id: 'l
)

23', name: 'Andrew’ }
userZ { id: '321', name: 'Jen' }

Andrew:~/Desktop/blocking-demo$

Around 5 seconds later, at basically the same time, user1 and user2 both print to
the screen.

This is how non-blocking works. Just because we started an I/O operation
doesn't mean we can't do other things, such as starting another one and printing
some data to the screen, in this case just a number. This is the big difference, and

this is what makes non-blocking apps so fantastic. They can do so many things
at the exact same time without having to worry about the confusion of multi-
threading applications.

Let's move back into the browser and take a look at those sentences again in the
Node website:

| JoN] Nadejs X e

& = (€ | & Secure | https://nodejs.org/en/ | ¢

n de

HOME ABOUT DOWNLOADS DOCS GET INVOLVED SECURITY NEWS FOUNDATION

Node.js® is a JavaScript runtime built on Chrome’s V& JavaScript engine. Node.js uses an
event-driven, non-blocking I/0 model that makes it lightweight and efficient. Node.js'
package ecosystem, npm, is the largest ecosystem of open source libraries in the world.

Spectre and Meltdown in the context of Node.js.

Download for macOS (x64)

8.9.4 LTS 9.3.0 Current
Recommended For Most Users Latest Features

Other Downloads | Changelog | APIDocs Other Downloads | Changelog | APIDocs

Or have a look at the LTS schedule.

Node.js uses an event-driven, non-blocking I/O model that makes it lightweight
and efficient, and we saw that in action.

Because Node is non-blocking, we were able to cut down the time our
application took by half. This non-blocking I/0O makes our apps super quick, this
is where the lightweight and efficient comes into play.

Node community - problem
solving open source libraries

Now, let's go to the last sentence on the Node website, as shown in the following
screenshot:

® 00 /@ nodeis X \ e

& = C | & Secure | https://nodejs.org/en/ e

n de

HOME | ABOUT DOWNLOADS | DOCS | GET INVOLVED SECURITY NEWS FOUNDATION

Node.js® is a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.js uses an
event-driven, non-blocking I/0 model that makes it lightweight and efficient. Node.js'
package ecosystem, npm, is the largest ecosystem of open source libraries in the world.

Spectre and Meltdown in the context of Node.js.

Download for macQS (x64)

8.9.4LTS 9.3.0 Current
Recommended For Most Users Latest Features

Other Downloads | Changelog | APIDocs Other Downloads | Changelog | APIDocs

Or have a look at the LTS schedule.

Node.js' package ecosystem, npm, is the largest ecosystem of open-source
libraries in the world. This is what really makes Node fantastic. This is the
cherry on top-the community, the people every day developing new libraries that
solve common problems in your Node.js applications.

Things such as validating objects, creating servers, and serving up content live
using sockets. There's libraries already built for all of those so you don't have to
worry about this. This means that you can focus on the specific things related to
your application without having to create all this infrastructure before you can
even write real code, code that does something specific to your apps use case.

Now, npm, which is available on npmjs.org, is the site we'll be turning to for a lot
of third-party modules:

000 ‘,-""mnpm % T 9

€ (| @ NPM,Inc. [US) | https: fwwwinomis.com -

¥ Numerous Pulsating Martians npm Enterprise features pricng documentation support

n p m Q signuporlogin O

Build amazing things

npmis the package manager for JavaScript and the world's largest
software registry. Discover packages of reusable code — and
assemble them in powerful new ways.

If you're trying to solve a problem in Node that sounds generic, chances are that
someone's already solved it. For example, if I want to validate some objects, let's
say I want to validate that a name property exists and that there's an ID with a
length of three. I could go into Google or go into npm; I usually choose Google,
and I could Google search npm validate object.

When I google that, I'll just look for results from npnjs.com, and you can find the

http://npmjs.org
http://npmjs.com

first three or so are from that:

© @ /5 npmvalidate object - Google - % | e
\GHA

& C | & Secure | hitps://www.google.co.in/search?ei=1clVWrPOEYblvg Too6GoBQ&g=npm+validate +object&og=npm+validate +&gs_I=psy-ab.3.0.0110.2557.5301.0.6788.1310.0... ¥

npm validate object y Q Il Sign in
(0] g e

All Videos Images News Maps More Settings Tools

About 2,19,000 results (0.37 seconds)

validate - npm
https://www.npmjs.com/packagelvalidate v
Typecasting. Values can be automatically typecasted before validation. To enable typecasting, pass an

options object to the schema constructor with typecast set to true . You can override this setting by
passing options to .validate(). var user = schema({. name: { type: 'string' },. age: { type: 'number'}. }, {
typecast: true });.

validate-object validate-model

Simple module to validate a given var ValidateModel = require('validate-
object according to a given ... model');. var validate ...
object.validate validate.io-object

Validates an object based on a pre- Installation. § npm install validate.io-
defined schema. object. For use in the browser ...

More results from npmijs.com »

object-validation - npm

https:/Awww.npmjs.com/package/object-validation

create(config): Creates and refuns new instance of Object Validation. validate(target, schema):
Creates and returns new instance of Object Validation. keys(target, schema): Get keys to affected
properties. mixin(target): Adds the prototypal methods of Object Validation to a target object. set(
key, value): Set a sefting to ...

I can click the first one, and this will let me explore the documentation and see if
it's right for me:

® 0 /[validate X e

& C | @ https://www.npmjs.com/package/validate | i
Vahdate npm install validate
Validate object properties in javascript. how? learn more

B eivifi published 2 years ago

3.0.1 s the latest of 24 releases
Example

github.com/eivindfjeldstad/validate

var schema = require('validate'); MIT
var user = schema ({
name: { Collaborators list
type: 'string',
required: true, E
message: 'Name is reguired.'

b

email: {

Stats

type: 'string', 350 downloads in the last day

required: true,

match: JH\Q.+\. .4/ 1,284 downloads in the last week
(el i e

message: 'Email must be valid.'

¥

4,877 downloads in the last month

This one looks great, so I can add it to my app without any effort.

Now, we'll go through this process. Don't worry, I'm not going to leave you high
and dry on how to add third-party modules. We'll be using a ton of them in the
book because this is what real Node developers do. They take advantage of the
fantastic community of developers, and that's the last thing that makes Node so
great.

This is why Node has come to the position of power that it currently sits at,
because it's non-blocking, meaning it's great for I/O applications, and it has a
fantastic community of developers. So, if you ever want to get anything done,
there's a chance someone already wrote the code to do it.

This is not to say you should never use Rails or Python or any other blocking
language again, that is not what I'm getting at. What I'm really trying to show
you is the power of Node.js and how you can make your applications even
better. Languages like Python have things such as the library Twisted, which
aims to add non-blocking features to Python. Though the big problem is all of
the third-party libraries, as they are still written in a blocking fashion, so you're
really limited as to which libraries you can use.

Since Node was built non-blocking from the ground up, every single library on n
pmjs.com iS non-blocking. So you don't have to worry about finding one that's non
blocking versus blocking; you can install a module knowing it was built from the
ground up using a non blocking ideology.

In the next couple of sections, you'll be writing your very first app and running it
from Terminal.

http://npmjs.com

Different text editors for node
applications

In this section, I want to give you a tour of the various text editors you can use
for this book. If you already have one you love using, you can keep using the
one you have. There's no need to switch editors to get anything done in this
book.

Now, if you don't have one and you're looking for a few options, I always
recommend using Atom, which you can find at atom.i0. It's free, open source, and
it's available on all operating systems, Linux, macOS, and Windows. It's created
by the folks behind GitHub and it's the editor that I'll be using inside of this
book. There's an awesome community of theme and plug-in developers so you
really can customize it to your liking.

Now, aside from Atom there are a few other options. I've heard a lot of people
talking about Visual Studio Code. It is also open source, free, and available on
all operating systems. If you don't like Atom, I highly recommend you check this
out, because I've heard so many good things by word of mouth.

Next up, we always have Sublime Text, which you can find at sublimetext.com.
Now, Sublime Text is not free and it's not open source, but it's a text editor that a
lot of folks do enjoy using. I prefer Atom because it's very similar to Sublime
Text, though I find it snappier and easier to use, plus it's free and open source.

Now, if you are looking for a more premium editor with all of the bells and
whistles in IDE as opposed to a text editor, I always recommend JetBrains.
None of their products are free, though they do come with a 30-day free trial, but
they really are the best tools of the trade. If you find yourself in a corporate
setting or you're at a job where the company is willing to pay for an editor, I
always recommend that you go with JetBrains. All of their editors come with all
of the tools you'd expect, such as version control integration, debugging tools,
and deploying tools built in.

So, take a moment, download the one you want to use, play around with it, make

http://atom.io
http://sublimetext.com

sure it fits your needs, and if not, try another one.

Hello World - creating and
running the first Node app

In this section, you will be creating and running your very first Node app. Well,
it will be a simple one. It'll demonstrate the entire process, from creating files to

running them from Terminal.

Creating the Node application

The first step will be to create a folder. Every project we create will go live
inside of its own folder. I'll open up the Finder on macOS and navigate to my
desktop. What I'd like you to do is open up the desktop on your OS, whether
youre on Linux, Windows, or macOS, and create a brand new folder called
hello-world.

I don't recommend using spaces in your project file or folder

' names, as it only makes it more confusing to navigate inside of
wlz» Terminal. Now, we have this neiio-worid folder and we can open it

up inside of our editor.

Now I'll use command + O (Ctrl + O for Windows users) to open up, and I'll
navigate to the desktop and double-click my hello-world folder, as shown here:

[NoN] [l Project — ~/Desktop/hello-world

Project untitled X

untitled 1:1 LF UTF-B Plain Text @Dfiics

On the left I have my files, which are none. So, let's create a new one. I'll make a
new file in the root of the project, and we'll call this one app.js, as shown here:

000) Project — ~/Desktop/hello-world

Praject untith + Enter the path for the new file.

app.]s

untitled 11 LF UTF-8 Plain Text @]Dfilcs

This will be the only file we have inside our Node application, and in this file we
can write some code that will get executed when we start the app.

In the future, we'll be doing crazy stuff like initializing databases and starting
web servers, but for now we'll simply use console.109, Which means we're
accessing the log property on the console object. It's a function, so we can call it
with parentheses, and we'll pass in one argument as string, Hello worid:. I'll toss a
semicolon on the end and save the file, as shown in the following code:

| console.log('Hello world!");
This will be the first app we run.

Now, remember, there is a basic JavaScript requirement for this
A, course, so nothing here should look too foreign to you. I'll be

“ covering everything new and fresh inside of this course, but the
basics, creating variables, calling functions, those should be
something you're already familiar with.

Running the Node application

Now that we have our app. js file, the only thing left to do is to run it, and we'll do
that over in Terminal. Now, to run this program, we have to navigate into our
project folder. If you're not familiar with Terminal, I'll give you a quick refresher.

You can always figure out where you are using pwd on Linux or macOS, or the dir
command on Windows. When you run it, you'll see something similar to the
following screenshot:

[NoN] # Gary — -bash — 108x28

Gary:~ Gary$ pwd
[Users/Gary
Gary:~ Gary$ D

I'm in the users folder, and then I'm in my user folder, and my user name happens
to be Gary.

When you open Terminal or Command Prompt, you'll start in your
user directory.

We can use cd to navigate into the desktop, and here we are:

Desktop — -bash — 108x29

Gary:~ Gary$ pwd
[Users/Gary

Gary:~ Gary$ cd Desktop
Gary:Desktop Gary$ D

Now we're sitting in the desktop. The other command you can run from
anywhere on your computer is cd /users/cary/desktop. And this will navigate to
your desktop, no matter what folder you're located in. The command cd desktop,
requires you to be in the user directory to work correctly.

Now we can start by cd-ing into our project directory, which we called neiio-
world, as shown in the following command:

| cd hello-world

With the following screenshot:

[NN] hello-world — -bash — 108x29

Gary:~ Gary$ pwd

fUsers/Gary

Gary:~ Gary$ cd Desktop
Gary:Desktop Gary$ cd hello-world
Gary:hello-world Gary$ D

Once we're in this directory, we can run at the 1s command on Linux or Mac
(which is the d¢ir command on Windows) to see all of our files, and in this case
we just have one, we have app.js:

[NN] hello-world — -bash — 108x29

Gary:~ Gary$ pwd

/Users/Gary

Gary:~ Gary$ cd Desktop
Gary:Desktop Gary$ cd hello-world
Gary:hello-world Gary$ 1s

app.js

Gary:hello-world Gary$ D

This is the file we'll run.

Now, before you do anything else, make sure you are in the heiio-wor1d folder and
you should have the app.js file inside. If you do, all we'll do is run the node
command followed by a space so we can pass in an argument, and that argument
will be the filename, app.js as shown here:

| node app.js

Once you have this in place, hit enter and there we go, Hello world! prints to the
screen, as shown here:

[NN] hello-world — -bash — 108x29

Gary:~ Gary$ pwd

/Users/Gary

Gary:~ Gary$ cd Desktop
Gary:Desktop Gary$ cd hello-world
Gary:hello-world Gary$ 1s

app.ijs

Gary:hello-world Gary3
[Gary:hello-world Gary3$ node app.js
Hello world!

Gary:hello-world Gary$ D

And that is all it takes to create and run a very basic Node application. While our
app doesn't do anything cool, we'll be using this process of creating folders/files
and running them from Terminal throughout the book, so it's a great start on our
way to making real-world Node apps.

Summary

In this chapter, we touched base with the concept of Node.js. We took a look at
what Node is and we learned that it's built on top of the V8 JavaScript engine.
Then we explored why Node has become so popular, its advantages and its
disadvantages. We took a look at the different text editors we can choose from
and, at the end, you created your very first Node application.

In the next chapter, we'll dive in and create our first app. I am really excited to
start writing real-world applications.

Node Funhdamentals — Part 1

In this chapter, you'll learn a ton about building Node applications, and you'll
actually build your first Node application. This is where all the really fun stuff is
going to start.

We'll kick things off by learning about all of the modules that come built in to
Node. These are objects and functions that let you do stuff with JavaScript
you've never been able to do before. We'll learn how to do things, such as
reading and writing from the filesystem, which we'll use in the Node's
application to persist our data.

We'll also be looking at third-party npm modules; this is a big part of the reason
that Node became so popular. The npm modules give you a great collection of
third-party libraries you can use, and they also have really common problems. So
you don't have to rewrite that boilerplate code over and over again. We'll be
using a third-party module in this chapter to help with fetching input from the
user.

The chapter will specifically cover the following topics:

Module basics
Require own files
Third-party modules
Global modules
Getting input

Module basics

In this section, you will finally learn some Node.js code, and we'll kick things
off by talking about modules inside Node. Modules are units of functionality, so
imagine I create a few functions that do something similar, such as a few
functions that help with math problems, for example, add, subtract, and divide. I
could bundle those up as a module, call it Andrew-math, and other people could
take advantage of it.

Now, we'll not be looking at how to make our own module; in fact, we will be
looking at how we can use modules, and that will be done using a function in
Node, called require(). The require() function will let us do three things:

e First, it'll let us load in modules that come bundled with Node.js. These
include the HTTP module, which lets us make a web server, and the fs
module, which lets us access the filesystem for our machine.

party libraries, such as Express and Sequelize, which will let us

0 We will also be using require() in later sections to load in third-
write less code.

e We'll be able to use prewritten libraries to handle complex problems, and all
we need to do is implement require() by calling a few methods.

e We will use require() to require our very own files. It will let us break up our
application into multiple, smaller files, which is essential for building real-
world apps.

If you have all of your code in one file, it will be really hard to test, maintain,
and update. Now, require() isn't that bad. In this section, we'll explore the first use
case for require().

Using case for require()

We'll take a look at two built-in modules; we'll figure out how to require them
and how to use them, and then we'll move on to starting the process of building

that Node application.

Initialization of an application

The first step we'll take inside of the Terminal is that we'll make a directory to
store all of these files. We'll navigate from our home directory to the desktop
using the cd pesktop command:

| cd Desktop
Then, we'll make a folder to store all of the lesson files for this project.

Now, these lesson files will be available in the resources section for
every section, so if you get stuck or your code just isn't working for
some reason, you can download the lesson files, compare your
files, and figure out where things went wrong.

Now, we'll make that folder using the mkdir command, which is the short form for
make directory. Let's call the folder notes-node, as shown in the following code:

| mkdir notes-node

We'll make a note app in Node so that notes-node Seems appropriate. Then we'll cd
into notes-node, and we can get started playing around with some of the built-in
modules:

| cd notes-node

These modules are built in, so there's no need to install anything in Terminal. We
can simply require them right inside of our Node files.

The next step in the process is to open up that directory inside the Atom text
editor. So open up the directory we just created on the Desktop, and you will
find it there, as shown in the following screenshot:

% <] 2)%= E M@y [notes-node :
© untitled
= Favorites Today
: El Recents [blocking-demo
[hello-world

il Bk

& Desktop [screens
@ Documents

ll:—>
o

Q Search

Ll v v

b

ﬁ Applications
¢ iCloud Drive
£5 Google Drive
Devices
[Gary
Multimedia
Projects
Remote Disc

Tags
\ New Folder | . Cancel |

" ——

untitled 1:1 LF UTF-B Plain Text @(}files

b

Now, we will need to make a file, and we'll put that file in the root of the project:

000 | Project — ~/Desktop/notes-nade

Project untitled X

New File A

" New Folder fA
Rename F2
Duplicate D
Delete &
Copy ®C
Cut ®X
Paste v

Add Project Folder {430
Remove Project Folder
Collapse All Project Folders

Copy Full Path G
Copy Project Path

Open In New Window

Search in Directory

Show in Finder

Split Up
Split Down
Split Left
Split Right

untitled 1:1 Close Pane #W LF UTF-8 PlainText [3) 0 files

We'll call this file app.js, and this is where our application will start:

L JO | il app.s — ~/Desktop/notes-node

Project app.js X

appjs 11 LF UTF-8 JavaScript @]Dfilcs

We will be writing other files that get used throughout the app, but this is the
only file we'll ever be running from Terminal. This is the initialization file for
our application.

The built-in module to use
require()

Now, to kick things off, the first thing I will do is to use console.log to print
starting app, as shown in the following code:

| console.log('Starting app');

The only reason we'll do this is to keep track of how our files are

executing, and we'll do this only for the first project. Down the line,
9 once you're comfortable with how files get loaded and how they

run, we'll be able to remove these console.10g Statements, as they
won't be necessary.

After we call the console.10g starting app, we'll load in a built-in module using

require().

We can get a complete list of all of the built-in modules in the
0 Node.js API docs.

To view Node.js API docs, g0 t0 nodejs.org/api. When you go to this URL, you'll
be greeted with a long list of built-in modules. Using the File System module
we'll create a new file and the OS module. The OS module will let us fetch
things such as the username for the currently logged-in user.

http://nodejs.org/api

Creating and appending files in
the File System module

To kick things off though, we will start with the File System module. We'll go
through the process of creating a file and appending to it:

000 (9 Idex | Node,5 9,30 Docume X || 8

€ | # Secure | https: nodejs.org/api/ %l

Node,s

Node,js v9.3.0 Documentation

Index \ View on single page \ View as JSON

Assertion Testing Table Of Contents

Async Hooks + About these Docs
Buffer v Usage &Example

C+t Addons ey
v Assertion Testing

C/C++ Addons - N-API v Async Hooks

v Buffer

v Ct+ Addons

v (/C++ Addons - N-API
Command Line Options « Dl Brncetnes
Console v Cluster

+ CommandLine Options

+ Console
v Crynto
Deprecated APIs » Debugger
DNS » Deprecated APls
v DNS
Domain :
+ Domain

When you view a docs page for a built-in module, whether it's File System or a
different module, you'll see a long list of all the different functions and
properties that you have available to you. The one we'll use in this section is
fs.appendFile.

If you click on it, it will take you to the specific documentation, and this is where

we can figure out how to use appendrile, as shown in the following screenshot:

00 "m&m X 1\ 0
€ (| 8 Secur | htps:)/nodejs.org/apiffs htmis_s_anpendfe_fle_data_options_callback ol
Node s fs.appendFilelfile, datal, options], callback) #
About these Docs b bisory

l ample v file «tring | Buffers | <umbers filename or file descriptor

v data <string | Buffers
Assertion Testing
v options <lbject> | <strings

Async Hooks o encoding <strings | <oull> Default: 'utfs"
Buffer o mode <integer> Default: Bo666
Ct+ Addons o flag <string> Default: 'a’

C/C+ Addans - N-AP) v callback <Function>

o err <Errors

Child Processes

Asynchronously append data to afile, creating the file if it does not yet exist. data canbe a string or 2 buffer.
Cluster

Example:

Command Line Options

Console
fs.appendFile('message. txt', "data to append', (err) => {

Crypto if (err) throw err;
console, Log('The "data to append” was appended to file!');
1;

Deprecated APIs

DNS If options is astring, then it specifies the encoding, Example:

Now, appendrile is pretty simple. We'll pass to it two string arguments (shown in
the preceding screenshot):

¢ One will be the file name
e The other will be the data we want to append to the file

This is all we need to provide in order to call fs.appendrile. Before we can call
fs.appendrile, we need to require it. The whole point of requiring is to let us load
in other modules. In this case, we'll load in the s module from app.js.

Let's create a variable that will be a constant, using const.

there's no need to use the var keyword; we will use the const

9 Since we'll not be manipulating the code the module sends back,
keyword.

Then we'll give it a name, fs and set it equal to require(), as shown in the
following code:

| const fs = require()

Here, require() is a function that's available to you inside any of your Node.js
files. You don't have to do anything special to call it, you simply call it as shown
in the preceding code. Inside the argument list, we'll just pass one string.

Now, every time you call require(), whether you're loading a built-in
9 module, a third-party module, or your own file, you just pass in one
string.
In our case, we'll pass in the module name, which is s and toss in a semicolon at
the end, as shown in the following code:

| const fs = require('fs');

This will tell Node that you want to fetch all of the contents of the rs module and
store them in the fs variable. At this point, we have access to all of the functions
available on the fs module, which we explored over in the docs, including
fs.appendFile.

Back in Atom, we can call the appendrile by calling fs.appendrile, passing in the
two arguments that we'll use; the first one will be the filename, so we add
greetings.txt, and the second one will be the text you want to append to the file.
In our case, we'll append Hel1lo worid:, as shown in the following code:

| fs.appendFile('greetings.txt', 'Hello world!');

Let's save the file, as shown in the preceding command, and run it from Terminal
to see what happens.

Warning when running the program on Node v7

If you're running Node v7 or greater, you'll get a little warning
0 when you run the program inside Terminal. Now, on v7, it'll still

work, it's just a warning, but you can get rid of it using the
following code:

// Orignal line
fs.appendFile('greetings.txt', 'Hello world!');

// Option one
fs.appendFile('greetings.txt', 'Hello world!', function (err){
if (err) {
console.log('Unable to write to file');
3
1)

// Option two
fs.appendFileSync('greetings.txt', 'Hello world!'");

In the preceding code, we have the original line that we have inside our program.

In option one here is to add a callback as the third argument to the append file.
This callback will get executed when either an error occurs or the file
successfully gets written too. Inside option one, we have an ir statement; if there
is an error, we simply print a message to the screen, unable to write to file.

Now, our second option in the preceding code, option two, is to call appendrilesync,
which is a synchronous method (we'll talk more about that later); this function
does not take the third argument. You can type it as shown in the preceding code
and you won't get the warning.

So, pick one of these two options if you see the warning; both will work much
the same.

If you are on v6, you can stick with the the original line, shown at the top of the
preceding code, although you might as well use one of the two options below
that line to make your code a little more future proof.

Fear not, we'll be talking about asynchronous and synchronous functions, as well
as callback functions, extensively throughout the book. What I'm giving you

here in the code is just a template, something you can write in your file to get
that error removed. In a few chapters, you will understand exactly what these
two methods are and how they work.

If we do the appending over in Terminal, node app.js, we'll see something pretty
cool:

notes-node — -bash — 10829

Gary:Desktop Gary$ mkdir notes-node

Gary:Desktop Gary$ cd notes-node

Gary:notes-node Gary$ node app.js

Starting app.

(node:2355) [DEP8@13] DeprecationWarning: Calling an asynchronous function without callback is deprecated.
Gary:notes-node Gary$ D

As shown in the preceding code, we get our one console.log Statement, starting
app.. SO we know the app started correctly. Also, if we head over into Atom,
we'll actually see that there's a brand new greetings.txt file, as shown in the
following code. This is the text file that was created by fs.appendrile:

console.log('Starting app.');
const fs = require('fs');

fs.appendFile('greetings.txt', 'Hello world!');

Here, fs.appendrile tries to append greetings.txt to a file; if the file doesn't exist, it
simply creates it:

[JOX | greetings.txt — ~/Desktop/notes-nade
Project app.js X greetings.txt X
Hello world!
@ app.js

@ greetings.txt

greetings.txt 11 LF UTF-8 Plain Text @]Dfilcs

You can see that we have our message, Hello world: in the greetings.txt file,
printing to the screen. In just a few minutes, we were able to load in a built-in
Node module and call a function that lets us create a brand new file.

If we call it again by rerunning the command using the up arrow key and the
enter key, and we head back into the contents of greetings.txt, you can see this
time around that we have He11o wor1d! twice, as shown here:

[JOX | greetings.txt — ~/Desktop/notes-nade
Project app.js X greetings.txt X
Hello world!Hello world."
B apis

@ greetings.txt

greetings.txt 1.25 LF UTF-8 Plain Text @]Dfilcs

It appended Hello worid: one time for each time we ran the program. We have an
application that creates a brand new file on our filesystem, and if the file already
exists, it simply adds to it.

The OS module in require()

Once we have created and appended the greetings.txt file, we'll customize this
greeting.txt file. To do this, we'll explore one more built-in module. We'll be
using more than just appendrile in the future. We'll be exploring other methods.
For this section, the real goal is to understand require(). The require() function lets
us load in the module's functionality so that we can call it.

The second module that we'll be using is OS, and we can view it in the
documentation. In the OS module, we'll use the method defined at the very
bottom, os.userInfo([options]):

000 /05 odeis 30 Doumer X |\ 8

€ | Secure | https: /nodejs.org/api/oshiml -

Nodejs Table of Contents

1 (0§

About these Dacs

v 0sEQL
[ample

v gsarch)
Assertion Testing " os.constants

v oscousl)
Async Hooks i

v gsendianness()
Buffer

v osfreemem()
Ct+ Addons v oshomedir]
C/C++ Addons - N-API 1 gshostnamel)

osJoadavg

Child Processes

os networklnterfaces|)

Cluster
: R v os,platforml)
Command Line Options

v osreleasel)
Console _

v ostmpdir

os.totalmem()

os.type(

as.uptime)

os.userlnfol[options])

05 Constants

Domain R

The os.userInfo([options]) method gets called and returns various information
about the currently logged-in user, such as the username, and this is what we'll
pull off:

000 /0 odeis 030 Doumer x |)

€ - (| Secure | https: /nodejs.org/api/oshimlas_os Userinfo_options i

os.userInfo(joptions]) i

Added in: v8.0.0

Node,s

v options <Objects
o encoding <strings Character encoding used tointerpret resulting strings. If encoding issetto 'buffer', the username,

shell,and homedir valueswillbe Buffer instances. Default: 'utf8'

Assertion Testing

+ Retums: <0bject>

I e ol

ASYNC Hoaks

The 0s.userInfo() method returns information about the currently effective user -- on POSIX platfarms, this is typically asubset of the

Buffer password file, The returned object includes the username, uid, gid, shell,and homedir.OnWindows, the uid and gid fields are -1,

C++ Addons and shell is null.

C/C+ Addons -N-API The value of homedir returned by os. userInfo() is provided by the operating system, This differs from the result of os. homedir(), which

Chid Processes ueries several environment variables for the home directory before falling back to the operating system response.

Cluster

05 Constants f#

The following constants are exported by 05, constants.

Command Line Options
Console

Crypto Note: Not all constants will be available on every operating system.

Signal Constants :
Deprecated APIs

DNS b History

Domain The following signal constants are exported by 0. constants, signals:

Using the username that comes from the OS, we can customize the greeting.txt
file so that instead of He11lo wor1d! it can SAy Hello Gary!.

To get started, we have to require OS. This means that we'll go back inside
Atom. Now, just below where I created my fs constant, I'll create a new constant
called os, setting it equal to require(); this gets called as a function and passes one

argument, the module name, os, as shown here:

console.log('Starting app.');

const fs
const os

require('fs');
require('os');

fs.appendFile('greetings.txt', 'Hello world!');

From here, we can start calling methods available on the OS module, such as
os.userInfo([optional]).

Let's make a new variable called user to store the result. The variable user will
get set equal to os.userinfo, and we can call userinfo without any arguments:

console.log('Starting app.');

const fs = require('fs');
const os = require('os');
var user = os.userInfo();

fs.appendFile('greetings.txt', 'Hello world!');

Now, before we do anything with the fs.appendrile line, I'll comment it out and
print the contents of the user variable using console. log:

console.log('Starting app.');

const fs
const os

= require('fs');

= require('os');

var user = os.userInfo();

console.log(user);

// fs.appendFile('greetings.txt', 'Hello world!');

This will let us explore exactly what we get back. Over in Terminal, we can
rerun our program using the up arrow key and enter key, and right here in the
following code, you see that we have an object with a few properties:

[NON] notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js
Starting app.
{ uid: 501,

gid: 28,

username: 'Gary',

homedir: '/Users/Gary',

shell: '/bin/bash' }
Gary:notes-node Gary$ D

We have uid, gid, username, homedir, and shell. Depending on your OS, YOU'H not
have all of these, but you should always have the username property. This is the
one we care about.

This means that back inside AtOIIl, We can use user.username inside of appendFile.
I'll remove the console.log Statement and uncomment our call to fs.appendrile:

console.log('Starting app.');

const fs = require('fs');
const os = require('os');
var user = os.userInfo();

fs.appendFile('greetings.txt', 'Hello world!');

Now, where we have worid in the fs.appendrile, we'll swap it with user.username.
There are two ways we can do this.

Concatenating user.username

The first way is to remove world: and concatenate user.username. Then we can
concatenate another string using the + (plus) operator, as shown in the following
code:

console.log('Starting app.');

const fs = require('fs');

const os = require('os');

var user = os.userInfo();

fs.appendFile('greetings.txt', 'Hello' + user.username + '!');

Now if we run this, everything is going to work as expected. Over in Terminal,
we can rerun our app. It prints Starting app.:

notes-node — -bash — 10829

Gary:notes-node Gary$ node app.js

Starting app.
(node:2433) [DEP8@13] DeprecationWarning: Calling an asynchronous function without callback is deprecated.

Gary:notes-node Gary$ D

Over in the greetings.txt file, you should see something like He11o sary! printing to

the screen, as shown here:

eceo greetings.txt — ~/Desktop/notes-nade

Project app.js X greetings.txt 0
v M notes-node Hello world!Hello world!HelloGary!
B ampis
greetings.txt* 1:35 LF UTF-8 Plain Text @]Ufilcs

Using the rs module and the os module, we were able to grab the user's
username, create a new file, and store it.

Using template strings

The second way to swap world with user.username in the fs.appendrile is, USiI'Ig an
ES6 feature known as template strings. Template strings start and end with the -
(tick) operator, which is available to the left of the 1 key on your keyboard. Then
you type things as you normally would.

This means that we'll first type neilo, then we'll add a space with the
(exclamation) mark, and just before !, we will put the name:

console.log('Starting app.');

const fs = require('fs');
const os = require('os');
var user = os.userInfo();

fs.appendFile('greetings.txt', “Hello !7);

To insert a JavaScript variable inside your template string, you use the s (dollar)
sign followed by opening and closing curly braces. Then we will just reference a
variable such as user.username:

console.log('Starting app.');

const fs = require('fs');

const os = require('os');

var user = os.userInfo();

fs.appendFile('greetings.txt', “Hello ${user.username}!’);

0 Notice that the Atom editor actually picks up on the syntax of curly
braces.

This is all it takes to use template strings; it's an ES6 feature available because
you're using Node v6. This syntax is much easier to understand and update than
the string/concatenation version we saw earlier.

If you run the code, it will produce the exact same output. We can run it, view
the text file, and this time around, we have He11o cary: twice, which is what we
want here:

[] [] greetings.txt — ~/Desktop/notes-node
Project app.js X greetings.txt x

v [l notes-node Hello world!Hello world!HelloGary!Hello Gary!

greetings.txt 1:46 LF UTF-8 Plain Text @Uhic:

With this in place, we are now done with our very basic example and we're ready
to start creating our own files for our notes application and requiring them inside
app.js in the next section.

First up, you learned that we can use require to load in modules. This lets us take
existing functionality written by either the Node developers, a third-party library,
or ourselves, and load it into a file so that it can be reusable. Creating reusable
code is essential for building large apps. If you have to build everything in an
app every time, no one would ever get anything done because they would get
stuck at building the basics, things such as HTTP servers and web servers. There
are already modules for such stuff, and we'll be taking advantage of the great
npm community. In this case, we used two built-in modules, s and os. We loaded
them in using require and we stored the module results inside two variables.
These variables store everything available to us from the module; in the case of
fs, we use the appendrile method, and in the case of OS, we use the userinfo
method. Together, we were able to grab the username and save it into a file,
which is fantastic.

Require own files

In this section, you will learn how to use require() to load in other files that you
created inside your project. This will let you move functions outside app.js into
more specific files; this will make your application easier to scale, test, and
update. To get started, the first thing we'll do is to make a new file.

Making a new file to load other
files

In the context of our notes app, the new file will store various functions for
writing and reading notes. As of now, you don't need to worry about that
functionality, as we'll get into the detail later in the section, but we will create the
file where it will eventually live. This file will be notes. js, and we'll save it inside
the root of our application, right alongside app.js and greetings.txt, as shown here:

000 4 notes.js — ~[Desktop/notes-node

Project app.js X greetings.txt X notesjs X

v [l notes-node
@ app.js

@ greetings.txt

notesjs 11 LF UTF-8 JavaScript [3 0files

For the moment, all we'll do inside notes is to use console.log to print a little log
showing the file has been executed using the following code:

| console.log('Starting notes.js');

Now, we have console.log On the top of notes and one on the top of app.js. I'll
C}Hﬂ]ge console.log iN the app.js from starting app. tO starting app.js. With this in
place, we can now require the notes file. It doesn't export any functionality, but
that's fine.

By the way, when I say export, I mean the notes file doesn't have
0 any functions or properties that another file can take advantage of.

We'll look at how to export stuff later in the section. For now though, we'll load
our module in much the same way we loaded in the built-in Node modules.

Let's make const; I'll call this one notes and set it equal to the return result from
require().

console.log('Starting app.js');

const fs = require('fs');

const os = require('os');

const notes = require('"');

var user = os.userInfo();

fs.appendFile('greetings.txt', “Hello ${user.username}!’);

Inside the parentheses, we will pass in one argument that will be a string, but it
will be a little different. In the previous section, we typed in the module name,
but what we have in this case is not a module, but a file, notes.js. What we need
to do is to tell Node where that file lives using a relative path.

Now, relative paths start with ./ (a dot forward slash), which points to the current
directory that the file is in. In this case, this points us to the app.js directory,
which is the root of our project notes-node. From here, we don't have to go into
any other folders to access notes. js, it's in the root of our project, so we can type
its name, as shown in the following code:

console.log('Starting app.js');
const fs = require('fs');

const os = require('os');

const notes = require('./notes.js');

var user = os.userInfo();

| fs.appendFile('greetings.txt', “Hello ${user.username}!’);

With this in place, we can now save app.js and see what happens when we run
our application. I'll run the app using the node app.js command:

notes-node — -bash — 108x28

Gary:notes-node Gary$ node app.js
Starting app.

Starting notes.js

(node:2477) [DEP@913] DeprecationWarning: Calling an asynchronous function without callback is deprecated.
Gary:notes-node Gary$ D

As shown in the preceding code output, we get our two logs. First, we get
Starting app.js and then we get Starting notes.js. NOW, Starting notes.js COINES from
the note.js file, and it only runs because we required the file inside of app.js.

Comment out this command line from the app.js file, as shown here:

console.log('Starting app.js');

const fs = require('fs');

const os = require('os');

// const notes = require('./notes.js');

var user = os.userInfo();

fs.appendFile('greetings.txt', “Hello ${user.username}!’);

Save the file, and rerun it from Terminal; you can see the notes.js file never
executes because we never explicitly touch it.

We never call it inside Terminal as we do in the preceding example, and we
never require.

For now though, we will be requiring it, so I'll uncomment that line.

By the way, I'm using command / (forward slash) to comment and
uncomment lines quickly. This is a keyboard shortcut available in
most text editors; if you're on Windows or Linux, it might not be
command, it might be Ctrl or something else.

Exporting files from note.js to use
In app.js

For now though, the focus will be to export something from notes.js which we
can use in app.js. Inside notes.js (actually, inside all of our Node files), we have
access to a variable called module. I'll use console.10g to print module to the screen so
that we can explore it over in Terminal, as shown here:

console.log('Starting notes.js');

console.log(module);

Let's rerun the file to explore it. As shown in the following screenshot, we get a
pretty big object, that is, different properties related to the notes. js file:

notes-node — -bash — 108x29

Starting notes.js
Module {
id: '/Users/Gary/Desktop/notes-node/notes.js',
exports: {},
parent:
Module {
id: '.',
exports: {3},
parent: null,
filename: '/Users/Gary/Desktop/notes-node/app.js',
loaded: false,
children: [[Circular] 1,
paths:

['/Users/BGary/Desktop/notes-node/node_modules',
'/Users/Gary/Desktop/node_modules',
'/Users/Gary/node_modules',

' fUsers/node_modules"',
* /node_modules' 1 },
filename: '/Users/Gary/Desktop/notes-node/notes.js’',
loaded: false,
children: [1,
paths:

['/Users/Gary/Desktop/notes-node/node_modules',
'/Users/Gary/Desktop/node_modules',
'/Users/Gary/node_modules',
'/Users/node_modules',

'fnode_modules'] }

(node:2486) [DEP8@13] DeprecationWarning: Calling an asynchronous function without callback is deprecated.
Gary:notes-node Gary$

Now, to tell the truth, we'll not be using most of these properties. We have things
such as id, exports, parent, and filename. The only one property we'll ever use in this
book is exports.

The exports object on the module property and everything on this object gets
exported. This object gets set as the const variable, notes. This means that we can
set properties on it, they will get set on notes, and we can use them inside app. js.

A simple example of the working
of the exports object

Let's take a quick look at how that works. What we'll do is to define an age
property using module.exports, the object we just explored over in Terminal. Also,
we know that it's an object because we can see it in the preceding screenshot
(exports: {3); this means that I can add a property, age, and set it equal to my age,
which is 25, as shown here:

console.log('Starting notes.js');

module.exports.age = 25;

Then I can save this file and move into app.js to take advantage of this new age
property. The const variable notes will be storing all of my exports, in the present
case, just age.

In fs.appendrile, after the greeting.txt file, I'll add vou are followed by the age.
Inside template strings, we will use s with curly braces, notes.age, and a period at
the end, as shown here:

console.log('Starting app.js');
const fs = require('fs');

const os = require('os');

const notes = require('./notes.js');

var user = os.userInfo();

fs.appendFile('greetings.txt', “Hello ${user.username}! You are ${notes.age}.’);

Now our greeting should say Hello cary! vou are 2s5. It's getting the 25 value from
our separate file (that is, note.js), which is fantastic.

Let's take a quick moment to rerun the program over in Terminal using the up
arrow key and enter keys:

notes-node — -bash — 10829

Gary:notes-node Gary$ node app.js
Starting app.js

Starting notes.js
(node:2582) [DEP8@13] DeprecationWarning: Calling an asynchronous function without callback is deprecated.

Gary:notes-node Gary$ D

Back inside the app, we can open greetings.txt, and as shown in the following

screenshot, we have Hello Gary! You are 25

[JOX | | greetings.txt — ~/Desktop/notes-node

Project app.js X greetings.txt X ' notes|s X
v M notes-node 1 Hello world!Hello world!HelloGary!Hello Gary!
B 2 Hello Gary'!Hello Gary!Hello Gary'Hello Gary! You are 25|
@ notes.js
greetings.txt 2:56 {1, 22) LF UTF-8 Plain Text @]Ufiles

Using require(), we were able to require a file that we created, and this file stored
some properties that were advantageous to the rest of the project.

Exporting the functions

Now, obviously, the preceding example is pretty contrived. We'll not be
exporting static numbers; the real goal of exports is to be able to export functions
that get used inside app.js. Let's take a quick moment to export two functions. In
the notes.js file, I'll set module.exports.addnote equal to a function; the function
keyword followed by opening and closing parentheses, which is followed by the
curly braces:

console.log('Starting notes.js');

module.exports.addNote = function () {

}

Now, throughout the course, I'll be using arrow functions where I can, as shown
in the preceding code. To convert a regular ES5 function into an arrow function,
all you do is remove the function keyword and replace it with an => sign right
between the parentheses and the opening curly braces, as shown here:

console.log('Starting notes.js');

module.exports.addNote = () => {

}

Now, there are some more subtleties to arrow functions that we'll
be talking about throughout the book, but if you have an
anonymous function, you can swap it with an arrow function
0 without any problems. The big difference is that the arrow function
is not going to bind the () => {3 keyword or the arguments array,
which we'll be exploring throughout the book. So if you do get some
errors, it's good to know that the arrow function could be the cause.

For now though, we'll keep things really simple, using console.1log to print addnote.
This will let us know that the addvote function was called. We'll return a string,
'New note', as shown here:

console.log('Starting notes.js');

module.exports.addNote = () => {
console.log('addNote');

return 'New note';

}

Now, the addnote function is being defined in notes. js, but we can take advantage
of it over in app.js.

Let's take a quick second to comment out both the appendriie and user line in

app.js:

console.log('Starting app.js');

const fs = require('fs');
const os = require('os');
const notes = require('./notes.js');

// var user = os.userInfo();
//
// fs.appendFile('greetings.txt', “Hello ${user.username}! You are ${notes.age}.’);

I'll add a variable, call the result, (res for short), and set it equal to the return
result from notes.addnote:

console.log('Starting app.js');

const fs = require('fs');
const os = require('os');
const notes = require('./notes.js');

var res = notes.addNote();
// var user = os.userInfo();

//
// fs.appendFile('greetings.txt', “Hello ${user.username}! You are ${notes.age}.’);

Now, the addvote function is a dummy function for the moment. It doesn't take
any arguments and it doesn't actually do anything, so we can call it without any
arguments.

Then we'll print the result variable, as shown in the following code, and we
would expect the result variable to be equal to the new note string:

console.log('Starting app.js');

const fs = require('fs');
const os = require('os');
const notes = require('./notes.js');

var res = notes.addNote();
console.log(res);

// var user = os.userInfo();
//
// fs.appendFile('greetings.txt', "Hello ${user.username}! You are ${notes.age}.’);

If I save both of my files (app.js and notes.js) and rerun things from Terminal,
you can see that new note prints to the screen at the very end and just before addnote
prints:

[NN] notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js

Starting app.js

Starting notes.js

(node:2582) [DEP8@13] DeprecationWarning: Calling an asynchronous function without callback is deprecated.
Gary:notes-node Gary$ node app.js

Starting app.js

Starting notes.js

addNote

Gary:notes-node Gary$ D

This means that we successfully required the notes file we called addnote, and its
return result was successfully returned to app. js.

Using this exact pattern, we'll be able to define our functions for adding and
removing notes over in our notes.js file, but we'll be able to call them anywhere
inside of our app, including in app. js.

Exercise — adding a new function
to the export object

Now it's time for a quick challenge. What I'd like you to do is make a new
function in notes. js called add. This add function will get set on the exports object.

0 Remember, exports is an object, so you can set multiple properties.

This add function will take two arguments, a and b; it'll add them together and
return the result. Then over in app.js, I'd like you to call that add function, passing
in two numbers, whatever you like, such as ¢ and -2, then print the result to the
screen and make sure it works correctly.

! You can get started by removing the call to addnote since this will not
be needed for the challenge.

So, take a moment, create that add function inside notes.js, call it inside app.js, and
make sure the proper result prints to the screen. How'd it go? Hopefully, you
were able to make that function and call it from app. js.

Solution to the exercise

The first step in the process will be to define the new function. In notes. js, I'll set
module.exports.add equal to that function, as shown here:

console.log('Starting notes.js');

module.exports.addNote = () => {
console.log('addNote');
return 'New note';

}

module.exports.add =

Let's set it equal to an arrow function. If you used a regular function, that is
perfectly fine, I just prefer using the arrow function when I can. Also, inside
parentheses, we will be getting two arguments, we'll be getting a and b, as shown
here:

console.log('Starting notes.js');

module.exports.addNote = () => {
console.log('addNote');
return 'New note';

}

module.exports.add = (a, b) => {

}

All we need to do is return the result, which is really simple. So we'll enter return

a + b.

console.log('Starting notes.js');

module.exports.addNote = () => {
console.log('addNote');
return 'New note';

}

module.exports.add = (a, b) => {
return a + b;

}

Now, this was the first part of your challenge, defining a utility function in
notes.js; the second part was to actually use it over in app. js.

In app.js, we can use our function by printing the console.10g result with a colon :

(this is just for formatting). As the second argument, we'll print the actual results,
notes.add. Then, we'll add up two numbers; we'll add ¢ and -2, as shown in this
code:

console.log('Starting app.js');

const fs = require('fs');
const os = require('os');
const notes = require('./notes.js');

console.log('Result:', notes.add(9, -2));
// var user = os.userInfo();

//
// fs.appendFile('greetings.txt', "Hello ${user.username}! You are ${notes.age}.’);

The result in this case should be 7. If we run the program you can see that we get
just that, 7 prints to the screen:

notes-node — -bash — 10829

Gary:notes-node Gary$ node app.js
Starting app.js

Starting notes.js

(node:2582) [DEP8@13] DeprecationWarning: Calling an asynchronous function without callback is deprecated.
Gary:notes-node Gary$ node app.js
Starting app.js

Starting notes.js

addNote

New note

Gary:notes-node Gary$ node app.js
Starting app.js

Starting notes.js

Result: 7

Gary:notes-node Gary$ D

If you were able to get this, congratulations, you successfully completed one of
your first challenges. These challenges will be sprinkled throughout the book
and they'll get progressively more complex. But don't worry, we'll keep the
challenges pretty explicit; I'll tell you exactly what I want and exactly how I
want it done. Now, you can play around with different ways to do it, the real goal
is to just get you writing code independent of following someone else's lead.
That is where the real learning happens.

In the next section, we will explore how to use third-party modules. From there,
we'll start building the notes application.

Third-party modules

You now know two out of the three ways to use require(), and in this section,
we'll explore the last way, which is to require a package you've installed from
npm. As I mentioned in the first chapter, npm is a big part of what makes Node
so fantastic. There is a huge community of developers that have created
thousands of packages that already solve some of the most common problems in
Node applications. We will be taking advantage of quite a few packages
throughout the book.

Creating projects using npm
modules

Now, in the npm packages, there's nothing magical, it's regular Node code that
aims to solve a specific problem. The reason you'd want to use it is so you don't
have to spend all your time writing these utility functions that already exist; not
only do they exist, they've been tested, they've been proven to work, and others
have used them and documented them.

Now, with all that said, how do we get started? Well, to get started, we actually
have to run a command from the Terminal to tell our application we want to use
npm modules. This command will be run over in the Terminal. Make sure you've
navigated inside your project folder and inside the notes-node directory. Now,
when you installed Node, you also installed something called npm.

At one point, npm stood for Node package manager, but that's now

a running joke because there are plenty of things on npm that are

not specific to Node. A lot of frontend frameworks, such as jQuery
o and react, now live on npm as well, so they've pretty much ditched

the Node package manager explanation and now on their site, they
cycle through a bunch of hilarious things that happen to match up
with npm.

We will be running some npm commands and you can test that you have it
installed by running npn, a space, and -v (we're running npm with the v flag). This
should print the version, as shown in the following code:

[NON) notes-node — -bash — 108x29

Gary:notes-node Gary$ npm -v
5.5.1
Gary:notes-node Gary$ D

It's okay if your version is slightly different, that's not important; what is
important is that you have npm installed.

Now, we'll run a command called npm init in Terminal. This command will
prompt us to fill out a few questions about our npm project. We can run the
command and we can cycle through the questions, as shown in the following
screenshot:

=

.

i)
o

notes-node — npm TERM_PROGRAM=Apple_Terminal TERM=xterm-256calor — 108x29

Gary:notes-node Gary$ npm -v

5.5.1

Gary:notes-node Gary$ npm init

This utility will walk you through creating a package.json file.

It only covers the most common items, and tries to guess sensible defaults.

See ‘npm help json’ for definitive documentation on these fields
and exactly what they do.

Use “npm install <pkg>’ afterwards to install a package and
save it as a dependency in the package.json file.

Press AC at any time to quit.
package name: (notes-node) [|

In the preceding screenshot, at the top is a quick description of what's happening,
and down below it'll start asking you a few questions, as shown in the following
screenshot:

=

.

i)
o

notes-node — npm TERM_PROGRAM=Apple_Terminal TERM=xterm-256calor — 108x29

Gary:notes-node Gary$ npm init
This utility will walk you through creating a package.json file.
It only covers the most common items, and tries to guess sensible defaults.

See ‘npm help json’ for definitive documentation on these fields
and exactly what they do.

Use “npm install <pkg>’ afterwards to install a package and
save it as a dependency in the package.json file.

Press AC at any time to quit.
package name: (notes-node)
version: (1.9.6)

description:

entry point: (app.js)

test command:

git repository:

keywords:

author:

license: (ISC)

About to write to /Users/Gary/Desktop/notes-node/package.json:

{
"name": "notes-node",
"version": "1.0.8",
"description": "",
"main": "app.js",
"seripts": {
"test": "echo \"Error: no test specified\" && exit 1"

The questions include the following:

e name: Your name can't have uppercase characters or spaces; you can use
notes-node, fOr example. You can hit enter to use the default value, which is
in parentheses.

e version: 1.0.0 works fine too; we will leave most of these at their default
value.

e description: We can leave this empty at the moment.

¢ entry point: This will be app.js, make sure that shows up properly.

e test command: We'll explore testing later in the book, so for now, we can
leave this empty.

e git repository: We'll leave that empty for now as well.

e keywords: These are used for searching for modules. We'll not be
publishing this module so we can leave those empty.

e author: You might as well type your name.

e license: For the license, we'll stick with ISC at the moment; since we're not
publishing it, it doesn't really matter.

After answering these questions, if we hit enter, we'll get the following on our
screen and a final question:

[NON] notes-node — npm TERM_PROGRAM=Apple_Terminal TERM=xterm-256calor — 108x29

Use “npm install <pkg>’ afterwards to install a package and
save it as a dependency in the package.json file.

Press AC at any time to quit.
package name: (notes-node)
version: (1.9.6)

description:

entry point: (app.js)

test command:

git repository:

keywords:

author:

license: (ISC)

About to write to /Users/Gary/Desktop/notes-node/package.json:

{
"name": "notes-node",
"version": "1.0.8",
"description": "",
"main": "app.js",
"seripts": {
"test": "echo \"Error: no test specified\" && exit 1"
h
"author": "v,
"license": "ISC"

Is this ok? (yes) [|

Now, I want to dispel the myth that this command is doing anything magical. All
this command is doing is creating a single file inside your project. It'll be in the
root of the project and it's called package.json, and the file will look exactly like
the preceding screenshot.

To the final question, as shown down below in the preceding image, you can hit
enter or type yes to confirm that this is what you want to do:

Is this ok? (yes) D

Now that we have created the file, we can actually view it inside our project. As
shown in the following code, we have the package. json file:

{
"name": "notes-node",
"version": "1.0.0",
"description": "",
llmainll: "app-js",
"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"

3
llauthorll: II||,
"license": "ISC"

3

And this is all it is, it's a simple description of your application. Now, as I
mentioned, we'll not be publishing our app to npm, so a lot of this information
really isn't important to us. What is important, though, is that package.json is
where we define the third-party modules we want to install in our application.

Installing the lodash module In
our app

To install a module in the app, we will run a command over in the Terminal. In
this chapter, we'll be installing a module called 10dash. The 10dash module comes
with a ton of utility methods and functions that make developing inside Node or
JavaScript a heck of a lot easier. To take a look at what exactly we're getting
into, let's move into the browser.

We'll to go to https://www.npmjs.com. Then we'll search for the package, 1odash, and
you can see it comes up, as shown in the following screenshot:

® 00 /[fnm x e

& > C | & NPM,Inc. [US] | https://www.npmjs.com | ¢

% Next Popular Module npm Enterprise features pricing documentation support

lodash Q sign up or login Q

odash._arrayevery
The modern build of lodash's internal ~arrayEvery™ as a module

ethod "_.isNil* exported as a module.

The lodash method "_.e exported as a module
odash._basefunc

The modern build of loda nternal “baseFunctions” as a module.
odash._arrayfilter

The modern build of lodash's internal ~arrayFilter” as a module.
odash

odash method

odash’s
build of lodash’s

odash’s internal

When you click on it, you should be taken to the package page, and the package
page will show you a lot of statistics about the module and the documentation, as
shown here:

https://www.npmjs.com

000 mlodasn._afrayewery X\ 9

€ C & NPM,Inc. [US] | https:)/wwwnpmis.com/packagelodash. arrayevery i
e
lOdaSh._arrayevery 5] non 1 Lodash. _arrayevery
The modern build of lodash’s internal arrayEvery exported as a Node. s/io.js module how? earn more

!"‘_ jdalton published 3 years ago

Installation
3.0.01s the [atest release
Using npm: _
github.com/lodash/lodash
$ {sudo -H} npm 1 -g npm Iodash.com

¢ mpn 1 --save lodash. arrayevery
MIT

InNode.js/io,s: Collaborators lit

var arrayEvery = require('lodash. arrayevery'); 9 I

See the pack for more details.
e the package source for more details Sats

327 downloadsin the last day
1,719 downloads in the [ast week
5,886 downloads in the [ast month

No apenissues on GitHub

Now, I use the 10dash package page when I'm looking for new modules; I like to
see how many downloads it has and when it was last updated. On the package
page, you can see it was updated recently, which is great it means the package is
most likely compatible with the latest versions of Node, and if you go further
down the page, you can see this is actually one of the most popular npm
packages, with over a million downloads a day. We will be using this module to

explore how to install npm modules and how to actually use them in a project.

Installation of lodash

To install 10dash, the first thing you need to grab is just a module name, which is
1lodash. Once you have that information, you're ready to install it.

Coming to Terminal, we'll run the npn insta11 command. After installing, we'll
specify the module, 10dash. Now, this command alone would work; what we'll
also do, though, is provide the save flag.

The npm install 1odash command will install the module, and the save flag, -- (two)
hyphens followed by the word save, will update the contents of the package.json
file. Let's run this command:

| npm install loadsh --save

The preceding command will go off to the npm servers and fetch the code and
install it inside your project, and any time you install an npm module, it'll live in
your pTOjECt in a node_modules folder.

Now, if you open that node_modules folder, you'll see the 1o0dash folder as shown in
the following code. This is the module that we just installed:

{
"name": "notes-node",
"version": "1.0.0",
"description": "",
llmainll: "app-js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
3
llauthorll: II||,
"license": "ISC",
"dependencies": {
"lodash": "A4.17.4"
3
b

As you can see over in package.json in the preceding figure, we've also had some
updates automatically take place. There's a new dependencies attribute that has an
object with key value pairs, where the key is the module we want to use in our
project and the value is the version number, in this case, the most recent version,
version 4.17.4. With this in place, we can now require our module inside the

project.

Over inside app.js, we can take advantage of everything that comes in 1odash by
going through the same process of requiring it. We'll make a const, we'll name
that const _, (which is a common name for the 10dash utility library), and we'll set
it equal to require(). Inside the require parentheses, we'll pass in the module name
exactly as it appears in the package.json file. This is the same module name you
used when you ran npm insta11. Then, we'll type 1odash, as shown here:

console.log('Starting app.js');

const fs require('fs');
const os require('os');
const = require('lodash');

const notes = require('./notes.js');

console.log('Result:', notes.add(9, -2));

// var user = os.userInfo();
//
// fs.appendFile('greetings.txt', “Hello ${user.username}! You are ${notes.age}.’);

Now, the order of operations is pretty important here. Node will first look for a
core module with the name 1odash. It'll not find one because there is no core
module, so the next place it will look is the node_modules folder. As shown in the
following code, it will find 10dash and load that module, returning any of the
exports it provides:

console.log('Starting app.js');

const fs require('fs');
const os require('os');
const = require('lodash');

const notes = require('./notes.js');

console.log('Result:', notes.add(9, -2));

// var user = os.userInfo();
//
// fs.appendFile('greetings.txt', "Hello ${user.username}! You are ${notes.age}.’);

Using the utilities of lodash

With the exports in place, we can now take advantage of some of the utilities that
come with Lodash. We'll quickly explore two in this section, and we'll be
exploring more throughout the book since Lodash is basically just a set of really
handy utilities. Before we do, we should take a look at the documentation so we
know exactly what we're getting into.

first, you install it; second, you've got to look at those docs and

0 This is a really common step when you're using an npm module:
make sure that you can get done what you want to get done.

On the npm page, click the lodash link given there, or go to 1odash.com and click
the API Documentation page, as shown here:

https://lodash.com

000 /" g ¥]

€ X | & Secure | https;lodash.com i

Lo o=
A modern JavaScript utility library delivering modularty, performance & extras.
 —

_defaults({ 'a's 1}, {'a's 3, 'b's 2});
N - + kA 1, h 3] }

partition([1, 2, 3, 4], n=>n % 2);
» [[1, 3], (2, ¢

Download
& Core build (~4kB gzipped)
& Ful buid (~24kB gzipped)
% CON copies

Lodash is released under the MIT license & supports modern environments.
Review the build differences & pick one that's right for you.

You can view all of the various methods you have available to you, as shown in
the following screenshot:

[]] __ Lodash Documentation X

&« C | & Secure | https://lodash.com/docs/4.17.4 be

LO 4174 %

Q, [search

o Array
chunk
compact
concat
difference
differenceBy
differenceWith
drop
dropRight

dropRightwhile

dropWhile

Limited time offer: Get
10 free Adobe Stock
images.

“Array” Methods

_«chunk(array, [size=1])

Creates an array of elements split into groups the length of s+ ze. If array can't be split evenly, the final chunk will be the
remaining elements.

Since

3.0.0

Arguments

array (Array): The array to process.
[size=1] (number): The length of each chunk

Returns

In our case, we'll be using command + F (Ctrl + F for Windows users) to search
for _.isstring. Then in the docs, we can click on it, opening it up in the main
page, as shown in the following screenshot:

000 __ Lodash Documentation X 9

€ - | Secure | https: fodash.com/docs/d.74#isString %

|_0 44 4

0 _isStrin r 7
e _.isString(value)
5 Lang
isString o " . pas
Checks if value is classified s a String primitive or object.
toString
. Since
= String
010
camelCase
capitalize Arguments
deburr
value (*): The value to check,
endshith
escape Returns
escapeRegkxp

(boolean): Retums true if valueis a string, else false,

Limited time offer: Get
10 free Adobe Stock
images. Example

MAKE IT WITH ADOBE STOCK,

s via Carbon

The _.isstring is a utility that comes with 1odash, and it returns true if the variable
you pass in is a string, and it returns raise if the value you pass in is not a string.
And we can prove that by using it over in Atom. Let's use this.

Using the _.isString utility

To use the _.isstring lltility, we'll add console.1log in app.js to show the result to the
screen and we'll use _.isstring, passing in a couple of values. Let's pass in true
first, then we can duplicate this line and we'll pass in a string such as cary, as
shown here:

console.log('Starting app.js');

const fs require('fs');
const os require('os');
const = require('lodash');

const notes = require('./notes.js');

console.log(_.isString(true));
console.log(_.isString('Gary'));

// console.log('Result:', notes.add(9, -2));
// var user = os.userInfo();

//
// fs.appendFile('greetings.txt', “Hello ${user.username}! You are ${notes.age}.’);

We can run our project over in the Terminal using the same command we've
used previously, node app.js, to run our file:

[NON) notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js
Starting app.js

Starting notes.js

false

true

Gary:notes-node Gary$ D

When we run the file, we get our two prompts that we've started both files, and
we get false and then true. false comes because the Boolean is not a string, and
true cOmes up because cary is indeed a string, so it passes the test of _.isstring.
This is one of the many utility functions that comes bundled with 1odash.

Now, 1odash can do a lot more than simple type checking. It comes with a bunch
of other utility methods we can take advantage of. Let's explore one more utility.

Using _.uniq

Back inside the browser, we can use command + F again to search for a new
utility, which is _.uniq:

000 __ Lodash Documentation X 9

€ (| & Secure | https;lodash.com/docs/d.17.4%uni i

|_0 44 4

(0 _unig

_unig(array)
2 Array
sortedlnig . . : . 2 p e :
Creates a duplicate-free version of an array, using SameValueZero for equality comparisons, in which only the first
sortedUnigy occurrence of each element is kept. The order of result values is determined by the order they occur in the array.
union
unionBy Since
unionith 010
unig
Arguments
unigBy
gt array (Array): The amay to inspect.
g Uil Returns

Limited time ofer: Get (Array): Retuns the new duplicate free array.
E‘! s 10 free Adobe Stock
i images.

Example

o _

MAKE IT WITH ADOBE STOCK,

This unique method, simply takes an array and it returns that array with all
duplicates removed. That means if I have the same number a few times or the
same string, it'll remove any duplicates. Let's run this.

Back inside Atom, we can add this utility into our project, we'll comment out our
_.isstring calls and we will make a variable called fiiteredarray. This will be the
array without the duplicates, and what we'll do is call, after the equal sign, _.uniq.

Now, as we know, this takes an array. And since we're trying to use the unique
function, we'll pass in an array with some duplicates. Use your name twice as a
string; I'll use my name once, followed by the number 1, followed by my name
again. Then I can use 1, 2, 3, and 4 as shown here:

console.log('Starting app.js');

const fs require('fs');
const os require('os');
const = require('lodash');

const notes = require('./notes.js');

// console.log(_.isString(true));

// console.log(_.isString('Gary'));

var filteredArray = _.uniq(['Gary', 1, 'Gary', 1, 2, 3, 4]);
console.log();

// console.log('Result:', notes.add(9, -2));
// var user = os.userInfo();

//
// fs.appendFile('greetings.txt', “Hello ${user.username}! You are ${notes.age}.’);

Now, if things go as planned, we should get an array with all the duplicates
removed, which means we'll have one instance of cary, one instance of 1, and
then 2, 3, and 4, which don't have duplicates.

The last thing to do is to print that using console.log SO We can view it inside the
Terminal. I'll pass in this filteredarray variable to our console.log Statement as
shown in the following code:

console.log('Starting app.js');

const fs require('fs');
const os require('os');
const = require('lodash');

const notes = require('./notes.js');

// console.log(_.isString(true));

// console.log(_.isString('Gary'));

var filteredArray = _.uniq(['Gary', 1, 'Gary', 1, 2, 3, 4]);
console.log(filteredArray);

// console.log('Result:', notes.add(9, -2));

// var user = os.userInfo();
//
// fs.appendFile('greetings.txt', "Hello ${user.username}! You are ${notes.age}.’);

From here, we can run our project inside Node. I'll use the last command, then I
can press the enter key, and you can see we get our array with all duplicates
removed, as shown in the following code output:

[NON] notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js
Starting app.js

Starting notes.js

false

true

Gary:notes-node Gary$ node app.js
Starting app.js

Starting notes.js

['Gary', 1, 2, 3, 4]
Gary:notes-node Gary$ D

We have one instance of the string cary, one instance of the number 1, and then
we have 2, 3, 4, exactly what we expected.

The 10dash utility really is endless. There are so many functions that it can be
kind of overwhelming to explore at first, but as you start creating more
JavaScript and Node projects, you'll find yourself solving a lot of the same

problems over and over again when it comes to sorting, filtering, or type
checking, and in that case, it's best to use a utility such as 1odash to get that lifting
done. The 1odash utility is great for the following reasons:

¢ You don't have to keep rewriting your methods
e [t is well tested and it has been tried in production

If there were any issues, they've been sorted out by now.

The node modules folder

Now that you know how to use a third-party module, there is one more thing I
want to discuss. That is the node_modules folder in general. When you take your
Node project and you put it on GitHub, or you're copying it around or sending it
to a friend, the node_modules folder really shouldn't be taken with you.

The node_modules folder contains generated code. This is not code you've written
and you should never make any updates to the files inside Node modules
because there's a pretty good chance they'll get overwritten next time you install
some modules.

In our case, we've already defined the modules and the versions inside
package.json as shown in the following code because we used that handy save flag:

{
"name": "notes-node",
"version": "1.0.0",
"description": "",
llmainll: "app-js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
3
llauthorll: II||,
"license": "ISC",
"dependencies": {
"lodash": "A4.17.4"
3
b

This actually means we can delete the node_modules folder completely. Now, we
can copy the folder and give it to a friend, we can put it on GitHub, or whatever
we want to do. When we want to get that node_moduies folder back, all we have to
do inside the Terminal is run the npm insta11 command without any module names
or any flags.

This command, when run without any names or flags, is going to load in your
package. json file, grab all of the dependencies and install them. After running this
command, the node_modules folder is going to look exactly as it looked before we
deleted it. Now, when you are using Git and GitHub, instead of deleting the
node_modules folder, you'll just ignore it from your repository.

Now, what we have explored so far is a process we'll be going through a lot
more throughout the book. So if npm still seems foreign or you're not quite sure
why it's even useful, it will become clear as we do more with our third-party
modules, rather than just type checking or looking for unique items in an array.
There's a ton of power behind the npm community and we'll be harnessing that
to our fullest as we make real-world apps.

Global modules

One of the major complaints I get is the fact that students have to restart the app
from the Terminal every time they want to see the changes they just made inside
their text editor. So, in this section, we'll take a look at how we can automatically
restart our app as we make changes to the file. That means if I change from cary
to mike and save it, it will automatically restart over in the Terminal.

Installing the nodemon module

Now, to automatically restart our app as we make changes to a file, we have to
install a command-line utility, and we'll do this using npm. To get started, we'll
go to Google Chrome (or the browser you are using) and head over to nttps://www.
npmjs.com, as we did previously in the Installing the lodash module in our app
section, and the module we're looking for is called nodemon.

The nodemon will be responsible for watching our app for changes and
restarting the app when those changes occur. Right here, as we see in the
following screenshot, we can view the docs for nodemon as well as various other
things such as current version numbers and so on:

https://www.npmjs.com

000 /[rodemen X 9

€ - C (O https/wwwnpmis.com/package/nodemon i

Naivete Precedes Misrepresentation npmEnterprise features pricing documentation support

It's your turn. Help us improve JavaScript, Take the 2017 JavaScript Ecosystem Survey»

n0dem0n npn install nodenon

how? learn mare
FI remy published 23 hours ago
1,14.101s the latest of 169 releases

github.com/remy/nodemon

nodeman.io

MIT

Collaborators ls
N

You will also notice that it's a really popular module, with over 30,000
downloads a day. Now, this module is a little different from the one we used in
the last section, that is, 1o0dash. The 10dash got installed and added into our project's
package. json file as shown in the following code block:

Foruse during development of a node.js based application.

{

"name": "notes-node",

"version": "1.0.0",
"description": "",
"main": "app.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
}
Ilauthorll: llll,
"license": "ISC",
"dependencies": {
"lodash": "n4.17.4"
}
b

That means it went into our node_modules folder and we were able to require it in
our app.js file (refer to the previous section for more detail). Nodemon, however,
works a little differently. It's a command-line utility that gets executed from the
Terminal. It will be a completely new way of starting our application, and to
install modules to be run from the command line, we have to tweak the insta11
command that we used in the last section.

For now, we can start off much the same way, though. We'll use npm insta11 and
type the name just like we did in the Installing the lodash module in our app
section, but instead of using the save flag, we'll use the ¢ flag, which is short for
global, as shown here:

| npm install nodemon -g

This command installs nodemon as a global utility on your machine, which means
it'll not get added to your specific project and you'll never require nodemon.
Instead, you'll be running the nodemon command from Terminal, as shown here:

[NON] notes-node — -bash — 108x29

node-pre-gyp at ChildProcess.<anonymous> (/usr/local/lib/node_modules/nodemon/node_modules/fs
events/node_modules/node-pre-gyp/lib/util/compile.js:83:29)

node-pre-gyp at ChildProcess.emit (events.js:159:13)

node-pre-gyp at maybeClose (internal/child_process.js:943:14)

node-pre-gyp at Process.ChildProcess._handle.onexit (internal/child_process.js:220:5)
node=-pre=-gyp Darwin 17.3.0

node-pre-gyp "fusr/local/bin/node" "fusr/local/lib/node_modules/nodemon/node_modules/fsevents/n
ode_modules/node-pre-gyp/bin/node-pre-gyp" "install" "--fallback-to-build"

node-pre-gyp Jusr/local/lib/node_modules/nodemon/node_modules/fsevents

node=-pre=-gyp v9.3.8

node=-pre=gyp ve.6.39

node=-pre=gyp

Failed to execute 'fusr/local/bin/node fusr/local/lib/node_modules/npm/node_modules/node-gyp/bin/node-gyp.js
clean' (1)

> nodemon@1.14.10 postinstall fusr/local/lib/node_modules/nodemon
> node -e "console.log('\u@@1b[32mLove nodemon? You can now support the project via the open collective:\ud@
1b[22m\u@81b[39m\n > \u@d1b[96m\u@dlb[imhttps://opencollective.com/nodemon/donate\uedlb[om\n')" || exit @

Lt You can now support the pro

> https://opencollective.com/nodemon/donate

npm (LG SKIPPING OPTIONAL DEPENDENCY: fsevents@l.1.3 (node_modules/nodemon/node_modules/fsevents):
npm (LG SKIPPING OPTIONAL DEPENDENCY: fsevents@l.1.3 install: “node install’
s MWARN SKIPPING OPTIONAL DEPENDENCY: Exit status 1

+ nodemon@l.14.18
added 264 packages in 45.893s
Gary:notes-node Gary$ D

When we install nodemon using the preceding command, it'll go off to npm and
fetch all of the code that comes with nodemon.

And it'll add it into the installation where Node and npm live on your machine,
outside the project you're working on.

The npm install nodemon -g command could be executed from anywhere in your
machine; it does not need to be executed from the project folder since it doesn't
actually update the project at all. With this in place, though, we now have a
brand new command on our machine, nodemon.

Executing nodemon

Nodemon will get executed as Node did, where we type the command and then
we type the file we want to start. In our case, app.js is the root of our project.
When you run it, you'll see a few things, as shown here:

[NON] notes-node — node jusr/local/bin/fnodemon app.js — 108x29

Gary:notes-node Gary$ nodemon app.js
[nodemon] 1.14.10

[nodemon] to restart at any time, enter 'rs’
[nodemon] watchin

[nodemon

Starting app.

Starting notes.js

['Gar

We'll see a combination of our app's output, along with nodemon logs that show
you what's happening. As shown in the preceding code, you can see the version
nodemon is using, the files it's watching, and the command it actually ran. Now, at
this point, it's waiting for more changes; it already ran through the entire app and
it'll keep running until another change happens or until you shut it down.

Inside Atom, we'll make a few changes to our app. Let's get started by changing
Gary tO Mike in app.js, and then we'll change the fiiteredarray variable to var
filteredArray = _.uniq(['Mike']), dS shown in the fOHOWiI'lg code:

console.log('Starting app.js');

const fs require('fs');
const os require('os');
const = require('lodash');

const notes = require('./notes.js');

// console.log(_.isString(true));

// console.log(_.isString('Gary'));
var filteredArray = _.uniq(['Mike']);
console.log(filteredArray);

Now, I'll be saving the file. In the Terminal window, you can see the app
automatically restarted, and within a split second, the new output is shown on
the screen:

.
)
i

notes-node — node fusr/local/bin/fnodemon app.js — 108x29

Gary:notes-node Gary$ nodemon app.js
[nodemon] 1.14.18

[nodemon] to restart at any time, enter 'rs’
[nodemon] watching: s

[nodemon] ng

Starting app

Starting notes.js

['Gary', 1, 2, 3, 4]

Starting app.Js
Starting notes.js

Starting app.js
Starting notes.js
['Mike']

As shown in the preceding screenshot, we now have our array with one item of
string, mike. And this is the real power of nodemon.

You can create your applications and they will automatically restart over in the
Terminal, which is super useful. It'll save you a ton of time and a ton of
headaches. You won't have to switch back and forth every time you make a small
tweak. This also prevents a ton of errors where you are running a web server,

you make a change, and you forget to restart the web server. You might think
your change didn't work as expected because the app is not working as expected,
but in reality, you just never restarted the app.

For the most part, we will be using nodemon throughout the book since it's super
useful. It's only used for development purposes, which is exactly what we're
doing on our local machine. Now, we'll move forward and start exploring how
we can get input from the user to create our notes application. That will the topic
of the next few sections.

Before we get started, we should clean up a lot of the code we've already written
in this section. I'll remove all of the commented-out code in app.js. Then, I'll
simply remove os, where we have fs, os and 1odash, since we'll not be using it
throughout the project. I'll also be adding a space between the third-party and
Node modules and the files I've written, which are as follows:

console.log('Starting app.js');

const fs = require('fs');
const = require('lodash');

const notes = require('./notes.js');

I find this to be a good syntax that makes it a lot easier to quickly scan for either
third-party or Node modules, or the modules that I've created and required.

Next up, over in notes.js, we'll remove the add function; this was only added for
demonstration purposes, as shown in the following figure. Then we can save
both the notes.js and app.js files, and nodemon will automatically restart:

console.log('Starting notes.js');

module.exports.addNote = () => {
console.log('addNote');
return 'New note';

}

module.exports.add = (a, b) => {
return a + b;

}

Now we can remove the greetings.txt file. That was used to demonstrate how the
fs module works, and since we already know how it works, we can wipe that
file. And last but not least, we can always shut down nodemon using Ctrl + C. Now

we're back at the regular Terminal.

And with this in place, now we should move on, figuring out how we can get
input from the user, because that's how users can create notes, remove notes, and
fetch their notes.

Getting input

If a user wants to add a note, we need to know the note's title as well as the body
of the note. If they want to fetch a note, we need to know the title of the note
they want to fetch, and all this information needs to come into our app. And note
apps, don't really do anything cool until they get this dynamic user input. This is
what makes your scripts useful and awesome.

Now, throughout the book, we'll be creating note apps that get input from the
user in a lot of different ways. We'll be using socket I/O to get real-time info
from a web app, we'll be creating our own API so other websites and servers can
make Ajax requests to our app, but in this section, we'll start things off with a
very basic example of how to get user input.

We'll be getting input from the user inside the command line. That means when
you run the app in the command line, you'll be able to pass in some arguments.
These arguments will be available inside Node, and then we can do other things
with them, such as create a note, delete a note, or return a note.

Getting input from the user inside
the command line

To start things off, let's run our app from the Terminal. We'll run it pretty
similarly to how we ran it in the earlier sections: we'll start with node (I'm not
using nodemon since we'll be changing the input), then we'll use app.js, which is the
file we want to run, but then we can still type other variables.

We can pass all sorts of command-line arguments in. We could
o have a command, and this would tell the app what to do, whether
you want to add a note, remove a note, or list a note.

If we want to add a note, that might look as a command shown in the following
code:

| node app.js add

This command will add a note; we can remove a note using the remove command,
as shown here:

| node app.js remove

And we could list all of our notes using the 1ist command:

| node app.js list

Now, when we run this command, the app is still going to work as expected. Just
because we passed in a new argument doesn't mean our app is going to crash:

[NON) notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js list
Starting app.js

Starting notes.js

Gary:notes-node Gary$ D

And we actually have access to the 1ist argument already, we're just not using it
inside the application.

To access the command-line arguments your app was initialized with, you'll
want to use that process object that we explored in the first chapter.

We can log out all of the arguments using console.1log to print them to the screen;
it's on the process object, and the property we're looking for is argv.

The argv object is short for arguments vector, or in the case of
JavaScript, it's more like an arguments array. This will be an array
of all the command-line arguments passed in, and we can use them
to start creating our application.

Now save app.js and it'll look like the following:

console.log('Starting app.js');

const fs = require('fs');
const = require('lodash');

const notes = require('./notes.js');

console.log(process.argv);
Then we'll rerun this file:

[NON] notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js list

Starting app.js

Starting notes.js

Gary:notes-node Gary$ node app.js list

Starting app.js

Starting notes.js

['/usr/local/bin/node’,
'{Users/Gary/Desktop/notes-node/app.js',
"ist' 1

Gary:notes-node Gary$ D

Now, as shown in the preceding command output, we have three items which are
as follows:

e The first one points to the executable for Node that was used.

e The second one points to the app file that was started; in this case, it was
app.js.

e The third one is where our command-line arguments start to come into play.

In it, we have our 1ist showing up as a string.

That means we can access that third item in the array, and that will be the
command for our notes application.

Accessing the command-line
argument for the notes
application

Let's access the command-line argument in the array now. We'll make a variable
called command, and set it equal to process.argv, and we'll grab the item in the third
position (which is 1ist, as shown in the preceding command output), which is the
index of two as shown here:

| var command = process.argv[2];

Then we can log that out to the screen by logging out command the string. Then, as
the second argument, I'll pass in the actual command that was used:

| console.log('Command: ' , command);

And this is just a simple log to keep track of how the app is getting executed.
The cool stuff is going to come when we add if statements that do different
things depending on that command.

Adding if/lelse statements

Let's create an if/eise block below the console.log('command: ', command);. We'll add
if (command === 'add'), @S shown here:

console.log('Starting app.js');

const fs = require('fs');
const = require('lodash');

const notes = require('./notes.js');

var command = process.argv[2];
console.log('Command: ', command);

if (command === 'add')

In this case, we'll go through the process of adding a new note. Now, we're not
specifying the other arguments here, such as the title or the body (we'll discuss
that in later sections). For now, if the command does equal add, we'll use console.1log
to print Adding new note, as shown in the following code:

console.log('Starting app.js');

const fs = require('fs');
const = require('lodash');

const notes = require('./notes.js');

var command = process.argv[2];
console.log('Command: ', command);

if (command === 'add') {
console.log('Adding new note');

}

And we can do the exact same thing with a command such as 1ist. We'll add e1se
if (command === 'list'), dS shown here:

console.log('Starting app.js');

const fs = require('fs');
const = require('lodash');

const notes = require('./notes.js');

var command = process.argv[2];
console.log('Command: ', command);

if (command === 'add') {
console.log('Adding new note');

| } else if (command === 'list')

If the command does equal the string 1ist, we'll run the following block of code
USiIlg console.log tO print Listing all notes. We can also add an eise clause if there
is no command, which is console.log ('Command not recognized'), dS shown here:

console.log('Starting app.js');

const fs = require('fs');
const = require('lodash');

const notes = require('./notes.js');

var command = process.argv[2];
console.log('Command: ', command);

if (command === 'add') {
console.log('Adding new note');

} else if (command === 'list') {
console.log('Listing all notes');

} else {
console.log('Command not recognized');

}

With this in place, we can now rerun our app for a third time, and this time
around, you'll see we have the command equal to list, and listing all notes shows
up, as shown in the following code:
if (command === 'add') {
console.log('Adding new note');
} else if (command === 'list') {
console.log('Listing all notes');

} else {
console.log('Command not recognized');

}

This means we were able to use our argument to run different code. Notice that
we didn't run adding new note and we didn't run command not recognized. We could,
however, switch the node app.js command from 1ist to add, and in that case, we'll
get adding new note printing, as shown in the following screenshot:

" NN | notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js list
Starting app.js

Starting notes.js

Command: list

Listing all notes

Gary:notes-node Gary$ D

And if we run a command that doesn't exist, for example read, you can see command
not recognized prints as shown in the following screenshot:

Gary:notes-node Gary$ node app.js add
Starting app.js

Starting notes.js

Command: add

Adding new note

Gary:notes-node Gary$ node app.js read
Starting app.js

Starting notes.js

Command: read

Command not recognized
Gary:notes-node Gary$ D

notes-node — -bash — 10829

Exercise - adding two else Iif
clauses to an if block

Now, what I'd like you to do is add two more ei1se if clauses to our if block,
which will be as follows:

e One will be for the read command, which will be responsible for getting an
individual note back
e Another one called remove will be responsible for removing the note

All you have to do is add the e1se if statement for both of them, and then just put
a QUiCk console.log printing something like Fetching note O Removing note.

Take a moment to knock that out as your challenge for this section. Once you
add those two e1se if clauses, run both of them from the Terminal and make sure
your log shows up. If it does show up, you are done, you can move ahead with
this section.

Solution to the exercise

For the solution, the first thing I'll do is to add an eise if for read. I'll open and
close my curly braces and hit enter right in the middle so everything gets
formatted correctly.

In the e1se ir statement, I'll check whether the command variable equals the string
read, as shown here:

console.log('Starting app.js');

const fs = require('fs');
const = require('lodash');

const notes = require('./notes.js');

var command = process.argv[2];
console.log('Command: ', command);

if (command === 'add') {
console.log('Adding new note');

} else if (command === 'list') {
console.log('Listing all notes');

} else if () {

} else {
console.log('Command not recognized');

b

In the future, we'll be calling methods that update our local
database with the notes.

For now, we'll use console.1og t0 print Reading note:

console.log('Starting app.js');

const fs = require('fs');
const = require('lodash');

const notes = require('./notes.js');

var command = process.argv[2];
console.log('Command: ', command);

if (command === 'add') {
console.log('Adding new note');
} else if (command === 'list') {

console.log('Listing all notes');
} else if (command === 'read') {

} else {
console.log('Command not recognized');

}

The next thing you need to do is add an eise if clause that checks whether the
command equals remove. In the eise if, I'll open and close my condition and hit enter
just as I did in the previous eise if clause; this time, I'll add ir the command equals
remove, We want to remove the note. And in that case, all we'll do is to use
console.log tO print Reading note, @S shown in the fOHOWiI'Ig code:

console.log('Starting app.js');

const fs = require('fs');
const = require('lodash');

const notes = require('./notes.js');

var command = process.argv[2];
console.log('Command: ', command);

if (command === 'add') {
console.log('Adding new note');

else if (command === 'list') {
console.log('Listing all notes');

else if (command === 'read') {
console.log('Reading note');

else {

console.log('Command not recognized');

L R o

And with this in place, we are done. If we refer to the code block, we've added
two new commands we can run over in the Terminal, and we can test those:

if (command === 'add') {
console.log('Adding new note');

else if (command === 'list') {
console.log('Listing all notes');

else if (command === 'read') {
console.log('Reading note');

else {

console.log('Command not recognized');

L R o o

First up, I'll run node app.js with the read command, and reading note shows up:

console.log('Starting app.js');

const fs = require('fs');
const = require('lodash');

const notes = require('./notes.js');

var command = process.argv[2];
console.log('Command: ', command);

if (command === 'add') {

console.log('Adding new note');

} else if (command === 'list') {
console.log('Listing all notes');

} else if (command === 'read') {
console.log('Reading note');

} else if (command == 'remove') {
console.log('Removing note');

} else {
console.log('Command not recognized');

}

Then I'll rerun the command; this time, I'll be using remove. And when I do that,
Removing note Prints to the screen, as shown in this screenshot:

[NoN | notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js remove
Starting app.js

Starting notes.js

Command: remove

Removing note

Gary:notes—-node Gary$ node app.js asdf
Starting app.js

Starting notes.js

Command: asdf

Command not recognized

Gary:notes—-node Gary$

I'll wrap up my testing using a command that doesn't exist, and when I run that,
you Cdn See command not recognized shows up.

Getting the specific note
iInformation

Now, what we did in the previous subsection is step 1. We now have support for
various commands. The next thing we need to figure out is how we'll get more
specific information. For example, which note do you want to remove? Which
note do you want to read? And what do you want the note text to be in the case
of adding a note? This is all information we need to get from the Terminal.

Now, getting it is going to be pretty similar to what we did earlier, and to show
you what it looks like, we'll print the entire argv object once again, using the
following command:

| console.log(process.argv);

Over in the Terminal, we can now run a more complex command. Let's say we
want to remove a note using the node app.js remove command, and we'll do that by
its title. We might use the tit1e argument, which looks like the following code:

| node app.js remove --title

In this titie argument, we have -- (two) hyphens followed by the argument
name, which is tit1e, followed by the = (equals) sign. Then we can type our note
title. Maybe the note title is secrets. This will pass the title argument into our
application.

Now, there are a couple of different ways you could format the titie argument,
which are as follows:

* You could have the title secrets like the one in the preceding command
e You could have title equals secrets inside quotes, which will let us use
spaces in the title:

| node app.js remove --title=secrets

¢ You can remove the = (equals) sign altogether and simply put a space:

| node app.js remove --title="secrets 2"

No matter how you choose to format your argument, these are all valid ways to
pass in the title.

As you see in the preceding screenshot, I am using double quotes
when wrapping my string. Now, if you switch to single quotes, it
will not break on Linux or OS X, but it will break on Windows. That
means when you're passing in command-line arguments such as the
9 title or the note body, you'll want to wrap your strings, when you
have spaces, in double quotes, not single. So, if you are using
Windows and you're getting some sort of unexpected behavior with

your arguments, make sure you're using double quotes instead of
single; that should fix the issue.

For the moment, I'll keep the = (equals) sign and the quotes and rerun the
command:

| node app.js remove --title="secrets 2"

When I run the command, you can see in the following code output that we have
our two arguments:

[NON) notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js remove --title="secrets 2"
Starting app.js

Starting notes.js

Command: remove

['/usr/local/bin/node’,
'{Users/Gary/Desktop/notes-node/app.js',
'remove’,

'--title=secrets 2']

Removing note

Gary:notes-node Gary$ D

These are the arguments that we don't need, then we have our remove command,
which is the third one, and we now have a new fourth string, the title that is
equal to secrets 2. And our argument was successfully passed into the
application. The problem is that it's not very easy to use. In the fourth string, we
have to parse out the key, which is titie, and the value, which is secrets 2.

When we used the command, which was the third argument in the previous
section, it was a lot easier to use inside our app. We simply pulled it out of the
arguments array and we referenced it by using the command variable and
ChECkng whether it equaled add, list, read, O remove.

Things get a lot more complex as we use different styles for passing in the
arguments. If we rerun the last command with a space instead of an = (equals)
sign, as shown in the following code, which is perfectly valid, our arguments
array now looks completely different:

notes-node — -bash — 10829

Gary:notes-node Gary$ node app.js remove --title "secrets 2"
Starting app.js

Starting notes.js

Command: remove

['/usr/local/bin/node’,
'{Users/Gary/Desktop/notes-node/app.js',
'remove’,
l--title',

'secrets 2']

Removing note

Gary:notes-node Gary$ D

In the preceding code output, you can see that we have the title as the fourth
item, and we have the value, which is secrets 2, as the fifth, which means we
have to add other conditions for parsing. And this turns into a pain really
quickly, which is why we will not do it.

We'll use a third-party module called yargs in the next chapter to make parsing
the command-line arguments effortless. Instead of having strings, as shown in
this one or the one we discussed earlier, we'll get an object where the title
property equals the secrets 2 string. That will make it super easy to implement the
rest of the notes application.

Now, parsing certain types of command-line arguments, such as key value pairs,
becomes a lot more complex, which is why, in the next chapter, we'll be using
yargs to do just that.

Summary

In this chapter, we learned how to use require to load in modules that come with
Node.js. We created our files for our notes application and required them inside
app.js. We explored how to use built-in modules and we explored how to use
modules we defined. We found out how to require other files that we created,
and how to export things such as properties and functions from those files.

We explored npm a little bit, how we can use npn init t0 generate a package.json
file, and how we can install and use third-party modules. Next, we explored the
nodemon Module, using it to automatically restart our app as we make changes to a
file. Last, we learned how to get input from the user, which is needed to create
the notes application. We learned that we can use command-line arguments to
pass data into our app.

In the next chapter, we'll explore some more interesting Node fundamental
concepts, including yargs, JSON, and Refactor.

Node Fundamentals — Part 2

In this chapter, we'll continue our discussion on some more node fundamentals.
We'll explore yargs, and we'll see how to parse command-line arguments using
process.argv and yargs. After that, we'll explore JSON. JSON is nothing more than
a string that looks kind of like a JavaScript object, with the notable differences
being that it uses double quotes instead of single quotes and all of your property
names—Iike name and age, in this case—require quotes around them. We'll look
into how to convert an object into a string, then define that string, use it, and
convert it back to an object.

After we've done that, we'll fill out the addnote function. Finally, we'll look into
refactor, moving the functionality into individual functions and testing the
functionality.

More specifically, we'll go through following topics:

yargs

JSON
Adding note
Refactor

yargs

In this section, we will use yargs, a third-party npm module, to make the process
of parsing much easier. It will let us access things such as title and body
information without needing to write a manual parser. This is a great example of
when you should look for an npm module. If we don't use a module, it would be
more productive for our Node application to use a third-party module that has
been tested and thoroughly vetted.

To get started, we'll install the module, then we'll add it into the project, parsing
for things such as a title of the body, and we'll call all the functions that will get
defined over in notes.js. If the command is add, we'll call add note, SO ON.

Installing yargs

Now, let's view the documents page for yargs. It's always a good idea to know
what you're getting yourself into. If you search for yargs on Google, you should
find the GitHub page as your first search result. As shown in the following
screenshot, we have the GitHub page for the yargs library:

000 QGitHub-yargs,'vargs;vargsl X\ 9

€ - C | GitHud, Inc. [US] | https:/lgithub.com/yerqs/yargs i

O Featwes Business Explore Marketplace Pricing Thisrepository Signin - Sign up

3' yargs | yargs OWatch 70 St 39207 Yok 330

{) Code Issues 130 Pull requests & Projects 0 Wiki Insights

yargs the modern, pirate-themed successor to optimist. http:yargs.js.org/

{11,332 commits 11 branches £132 releases 40132 contributors BMT
|
Branch: master= UGN Clone or download »
5 heoe chore(release): 10.1.1 Latest commit 232f9ca 4 days ago
i docs docs: fix middiware docs (#1037) 4 days ago
i example Use console.log instead of utilprint, fix #6813 10 months ago
mib feat: async command handlers (41001) 11 days ago
M locales feat: add Norwegian Nynorsk translations (¥1028) 13 days ago
i test chore: use chai 4.x (#1033) 11 days ago
B editorconfig chore: add editarconfig (#846) & months ago
E) gitignore feat: introduce pasitional() for configuring positional arquments (#967 3 months ago
E travisyml fi: positional arguments now work if no handler is provided to inner.. % months ago

Now, yargs is a very complex library. It has a ton of features for validating all
sorts of input, and it has different ways in which you can format that input. We
will start with a very basic example, although we will be introducing more
complex examples throughout this chapter.

If you want to look at any other features that we don't discuss in the

AR

chapter, or you just want to see how something works that we have
talked about, you can always find it in the yarg documents.

We'll now move into Terminal to install this module inside of our application. To
do this, we'll use npm insta11 followed by the module name, yargs, and in this case,
I'll use the @ sign to specify the specific version of the module I want to use,
11.0.0, which is the most recent version at the time of writing. Next, I'll add the
save flag, which, as we know, updates the package. json file:

npm install yargs@11.0.0 --save
p

If I leave off the save flag, yargs will get installed into the
node_modules folder, but lf we wipe that node_modules folder later and
run npm install, yargs won't get reinstalled because it's not listed in
the package. json flle This is Why we use the save ﬂag

http://yargs.js.org/docs/

Running yargs

Now that we've installed yargs, we can move over into Atom, inside of app.js,
and get started with using it. The basics of yargs, the very core of its feature set,
is really simple to take advantage of. The first thing we'll do is to require it up, as
we did with fs and 10dash in the previous chapter. Let's make a constant and call it
yargs, setting it equal tO require('yargs'), as shown here:

console.log('Starting app.js');

const fs = require('fs');
const = require('lodash');

const yargs = require('yargs');
const notes = require('./notes.js');

var command = process.argv[2];
console.log('Command:', command);
console.log(process.argv);

if (command === 'add') {
console.log('Adding new note');

else if (command === 'list') {
console.log('Listing all notes');

else if (command === 'read') {
console.log('Reading note');

else if (command === 'remove') {
console.log('Removing note');

else {

console.log('Command not recognized');

L S o

From here, we can fetch the arguments as yargs parses them. It will take the
same process.argv array that we discussed in the previous chapter, but it goes
behind the scenes and parses it, giving us something that's much more useful
than what Node gives us. Just above the command variable, we can make a const
variable called argv, setting it equal to yargs.argv, as shown here:

console.log('Starting app.js');

const fs = require('fs');
const = require('lodash');

const yargs = require('yargs');
const notes = require('./notes.js');

const argv = yargs.argv;

var command = process.argv[2];
console.log('Command:', command);
console.log(process.argv);

else if
else if
else if

else {

L S S S W

console.

console.

console.

console.

if (command === 'add') {
console.

log('Adding new note');
(command === 'list') {
log('Listing all notes');
(command === 'read') {
log('Reading note');
(command === 'remove') {
log('Removing note');

log('Command not recognized');

The yargs.argy module is where the yargs library stores its version of the
arguments that your app ran with. Now we can print it using console.1log, and this
will let us take a look at the process.argv and yargs.argv Variables; we can also
compare them and see how yargs differs. For the command where we use
console.log tO print process.argv, 1'll make the first argument a Stl‘il’lg called process
so that we can differentiate it in Terminal. We'll call console.109 again. The first
argument will be the vargs string, and the second one will be the actual argv
variable, which comes from yargs:

const =

console
else if
console
else if
console
else if
console
else {

console

[S o

console.log('Starting app.js');

const fs = require('fs');

require('lodash');

const yargs = require('yargs');
const notes = require('./notes.js');

const argv = yargs.argv;

var command = process.argv[2];
console.log('Command:', command);
console.log('Process', process.argv);
console.log('Yargs', argv);

if (command === 'add') {
.log('Adding new note');

(command === 'list') {

.log('Listing all notes');

(command === 'read') {

.log('Reading note');

(command === 'remove') {

.log('Removing note');

.log('Command not recognized');

Now we can run our app (refer to the preceding code block) a few different ways
and see how these two console.1log statements differ.

First up, we'll run at node app.js with the add command, and we can run this very
basic example:

| node app.js add

We already know what the process.argv array looks like from the previous chapter.
The useful information is the third string inside of the array, which is 'add'. In the
fourth string, Yargs gives us an object that looks very different:

[NON) notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js add
Starting app.js

Starting notes.js

Command: add

Process ['/usr/local/bin/node’,
'{Users/Gary/Desktop/notes-node/app.js',
add']
Yargs { _: ['add' 1, help: false, version: false, '$@': 'app.js' }
Adding new note
Gary:notes-node Gary$ D

As shown in the preceding code output, first we have the underscore property,
then commands such as add are stored.

If I were to add another command, say add, and then I were to add a modifier, say
encrypted, you would see that add would be the first argument and encrypted the
second, as shown here:

|node app.js add encrypted

notes-node — -bash — 10829

Gary:notes-node Gary$ node app.js add
Starting app.js
Starting notes.js
Command: add
Process ['/usr/local/bin/node’,
'{Users/Gary/Desktop/notes-node/app.js',
add']
Yargs { _: ['add' 1, help: false, version: false, '$@': 'app.js' }
Adding new note
Gary:notes-node Gary$ node app.js add encrypted
Starting app.js
Starting notes.js
Command: add
Process ['/usr/local/bin/node’,
'{Users/Gary/Desktop/notes-node/app.js',
'add',
'encrypted']
Yargs { _: ['add', BEN
help: false,
version: false,
'$0': 'app.js' }
Adding new note
Gary:notes-node Gary$ D

So far, yargs really isn't shining. This isn't much more useful than what we have
in the previous example. Where it really shines is when we start passing in key-
value pairs, such as the title example we used in the Getting input section of
Node Fundamentals - Part 1 in chapter 2. I can set my title flag equal to secrets,
press enter, and this time around, we get something much more useful:

|node app.js add --title=secrets

In the following code output, we have the third string that we would need to
parse in order to fetch the value and the key, and in the fourth string, we actually
have a title property with a value of secrets:

[NoN] notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js add --title=secret
Starting app.Jjs
Starting notes.js
Command: add
Process ['/usr/local/bin/node’,
'fUsers/Gary/Desktop/notes-nodefapp.js’',
|ad]

Yargs { _: ['add' 1],
help: false,
version: false,
title: 'secret',
'$8': 'app.js' }
Adding new note
Gary:notes-node Gary$ D

Also, yargs has built-in parsing for all the different ways you could specify this.

We can insert a space after title, and it will still work just as it did before; we
can add quotes around secrets, or add other words, like secrets from andrew, and it
will still parses it COITECﬂy, setting the titie property to the secrets from Andrew
string, as shown here:

|node app.js add --title "secrets from Andrew"

[NON) notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js add --title "secrets from Andrew"
Starting app.js
Starting notes.js
Command: add
Process ['/usr/local/bin/node’,
'{Users/Gary/Desktop/notes-node/app.js',
'add',
--title',
'secrets from Andrew']
Yargs { _: ['add' 1,
help: false,
version: false,
title: 'secrets from Andrew',
'$0': 'app.js' }

Adding new note
Gary:notes-node Gary$ D

This is where yargs really shines! It makes the process of parsing your
arguments a lot easier. This means that inside our app, we can take advantage of
that parsing and call the proper functions.

Working with the add command

Let's work with the ada command, for example, for parsing your arguments and
calling the functions. Once the add command gets called, we want to call a
function defined in notes, which will be responsible for actually adding the note.
The notes.addnote function will get the job done. Now, what do we want to pass to
the addnote function? We want to pass in two things: the title, which is accessible
on argv.title, as we saw in the preceding example; and the body, argv.body:

console.log('Starting app.js');

const fs = require('fs');
const = require('lodash');

const yargs = require('yargs');

const notes = require('./notes.js');
const argv = yargs.argv;

var command = process.argv[2];
console.log('Command:', command);
console.log('Process', process.argv);
console.log('Yargs', argv);

if (command === 'add') {
console.log('Adding new note');
notes.addNote(argv.title, argv.body);
else if (command "list') {

console
else if
console
else if

.log('Listing

(command

.log('Reading

(comman

all notes');
'read') {
note');
'remove') {

console
else {
console

.log('Removing note');

.log('Command not recognized');

[S o

Currently, these command-line arguments, titie and body, aren't
required. So technically, the user could run the application without
one of them, which would cause it to crash, but in future, we'll be
requiring both of these.

Now that we have notes.addnote in place, we can remove our console.log Statement,
which was just a placeholder, and we can move into the notes application

notes.js.

Inside notes. js, we'll get started by making a variable with the same name as the
method we used over app.js and addnote, and we will set it equal to an anonymous

arrow function, as shown here:

var addNote = () => {

}

Now, this alone isn't too useful, because we're not exporting the addnote function.
Below the variable, we can define module.exports in a slightly different way. In
previous sections, we added properties onto exports to export them. We can
actually define an entire object that gets set to exports, and in this case, we can set
addNote equal to the addnote function defined in preceding code block:

module.exports = {
addNote: addNote

}

In ES6, there's actually a shortcut for this. When you're setting an
object attribute and a value that's a variable and they're both
exactly the same, you can actually leave off the colon and the
value. Either way, the result identical.

In the preceding code, we're setting an object equal to module.exports, and that
object has a property, addnote, which points to the addnote function we defined as a
variable in the preceding code block.

Once again, addnote: and addnote are identical inside of ES6. We will be using the
ES6 syntax for everything throughout this book.

Now I can take my two arguments, title and body, and actually do something with
them. In this case, we'll call console.109 and adding note, passing in the two
arguments as the second and third argument to console.log, title and body, as
shown here:

var addNote = (title, body) => {
console.log('Adding note', title, body);

3

Now we're in a pretty good position to run the add command with titie and body
and see if we get exactly what we'd expect, which is the console.10g Statement
shown in the preceding code to print.

Over in Terminal, we can start by running the app with node app.js, and then
specify the filename. We'll use the ada command; which will run the appropriate

function. Then, we'll pass in titie, setting it equal to secret, and then we can pass
in body, which will be our second command-line argument, setting that equal to
the string, This is my secret:

|node app.js add --title=secret --body="This is my secret"

In this command, we specified three things: the add command the titie argument,
which gets set to secret; and the body argument, which gets set to "this is my
secret”. If all goes well, we'll get the appropriate log. Let's run the command.

In the following command output, you can see Adding note secret, which is the
title; and This is my secret, which is the body:

notes-node — -bash — 10829

Gary:notes-node Gary$ node app.js add --titlessecret --body="This is my secret"
Starting app.js
Starting notes.js
Command: add
Process ['/usr/local/bin/node’,
'{Users/Gary/Desktop/notes-node/app.js',
'add',
'--title=secret’,
'-=body=This is my secret']
Yargs { _: ['add' 1,
help: false,
version: false,
title: 'secret',
body: 'This is my secret’',

'$8': 'app.js' }
Adding note secret
Gary:notes-node Gary I

With this in place, we now have one of our methods set up and ready to go. The
next thing that we'll do is convert the other commands we have—the 1ist, read,

and remove commands. Let's look into one more command, and then you'll do the
other two by yourself as exercises.

Working with the list command

Now, with the 1ist command, I'll remove the console.10g Statement and call
notes.getAll, dS shown here:

console.log('Starting app.js');

const fs = require('fs');
const = require('lodash');

const yargs = require('yargs');
const notes = require('./notes.js');

const argv = yargs.argv;

var command = process.argv[2];
console.log('Command:', command);
console.log('Process', process.argv);
console.log('Yargs', argv);

if (command === 'add') {
notes.addNote(argv.title, argv.body);
else if (command === 'list') {
notes.getAll();

else if (command === 'read') {
console.log('Reading note');

else if (command === 'remove') {
console.log('Removing note');

else {

console.log('Command not recognized');

[o

At some point, notes.getall Will return all of the notes. Now, geta11 doesn't take
any arguments since it will return all of the notes regardless of the title. The read
command will require a title, and remove will also require the title of the note you
want to remove.

For now, we can create the geta11 function. Inside notes.js, we'll go through that
process again. We'll start by making a variable, calling it geta11, and setting it
equal to an arrow function, which we've used before. We start with our
arguments 1ist, then we set up the arrow (=>), which is the equal sign and the
greater than sign. Next, we specify the statements we want to run. Inside our
code block, we'll run console.log(Getting all notes), as shown here:

var getAll = () => {

console.log('Getting all notes');

}

The last step to the process after adding that semicolon will be to add geta11 to
the exports, as shown in the following code block:

module.exports = {
addNote,
getAll

+

Remember that in ES6, if you have a property whose name is
identical to the value, which is a variable, you can simply remove
the value variable and the colon.

Now that we have getal11 in notes.js in place, and we've wired it up in app.js, we
can run things over in Terminal. In this case, we'll run the 1ist command:

| node app.js list

[NON) notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js list
Starting app.js
Starting notes.js
Command: list
Process ['/usr/local/bin/node’,
'{Users/Gary/Desktop/notes-node/app.js',
"ist' 1
: ['list'], help: false, version: false, '$8': 'app.js' }

Gary:notes-node Gary$ D

In the preceding code output, you can see at the bottom that Getting all notes

prints to the screen. Now that we have this in place, we can remove
console.log('Process', process.argv) from the command variable in app.js. The resultant
code will look like the following code block:

console.log('Starting app.js');

const fs = require('fs');
const = require('lodash');

const yargs = require('yargs');
const notes = require('./notes.js');

const argv = yargs.argv;

var command = process.argv[2];
console.log('Command:', command);
console.log('Yargs', argv);

if (command === 'add') {
notes.addNote(argv.title, argv.body);
else if (command === 'list') {
notes.getAll();

else if (command === 'read') {
console.log('Reading note');

else if (command === 'remove') {
console.log('Removing note');

else {

console.log('Command not recognized');

[S o

We will keep the yargs log around since we'll be exploring the other ways and
methods to use yargs throughout the chapter.

Now that we have the 1ist command in place, next, I'd like you to create a
method for the read and remove commands.

The read command

When the read command is used, we want to call notes.getnote, passing in title.
Now, title will get passed in and parsed using yargs, which means that we can
use argv.title to fetch it. And that's all we have to do when it comes to calling the
function:

console.log('Starting app.js');

const fs = require('fs');
const = require('lodash');

const yargs = require('yargs');
const notes = require('./notes.js');

const argv = yargs.argv;

var command = process.argv[2];
console.log('Command:', command);
console.log('Yargs', argv);

if (command === 'add') {
notes.addNote(argv.title, argv.body);
else if (command === 'list') {
notes.getAll();

else if (command === 'read') {
notes.getNote(argv.title);

else if (command === 'remove') {
console.log('Removing note');

else {

console.log('Command not recognized');

L S o

The next step is to define getnote, because currently it doesn't exist. Over in
notes.js, right below the geta11 variable, we can make a variable called getnote,
which will be a function. We'll use the arrow function, and it will take an
argument; it will take the note title. The getnote function takes the title, then it
returns the body for that note:

var getNote = (title) => {

}

Inside getnote, We can use console.log to print something like cetting note, followed
by the title of the note you will fetch, which will be the second argument to
console.log.

var getNote = (title) => {
console.log('Getting note', title);

BE

This is the first command, and we can now test it before we go on to the second
one, which is remove.

Over in Terminal, we can use node app.js to run the file. We'll be using the new
read command, passing in a title flag. I'll use a different syntax, where tit1ie gets
set equal to the value outside of quotes. I'll use something like accounts:

|node app.js read --title accounts

This accounts value will read the accounts note in the future, and it will print it to
the screen, as shown here:

notes-node — -bash — 10829

Gary:notes-node Gary$ node app.js read --title accounts
Starting app.js
Starting notes.js
Command: read
Yargs { _: ['read'],
help: false,
version: false,
title: 'accounts',
'$6': 'app.js' }
JUsers/Gary/Desktop/notes-node/app.js:19
notes.getNote(argv.title);

A

TypeError: notes.getNote is not a function

at Object.<anonymouss (/Users/Gary/Desktop/notes-node/app.js:19:9)
at Module._compile (module.js:660:30)
at Object.Module._extensions..js (module.js:671:18)
at Module.load (module.js:573:32)
at tryModuleLoad (module.js:513:12)
at Function.Module._load (module.js:585:3)
at Function.Module.runMain (module.js:701:14)
at startup (bootstrap_node.js:194:16)
at bootstrap_node.js:618:3
Gary:notes-node Gary$ D

As you can see in the preceding code output, we get an error, which we'll debug
now.

Dealing with the errors in parsing
commands

Getting an error is not the end of the world. Getting an error usually means that
you have a small typo or you forgot one step in the process. So, we'll first figure
out how to parse through these error messages, because the error messages you
get in the code output can be pretty daunting. Let's refer to the code output error
here:

[NON) notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js read --title accounts
Starting app.js
Starting notes.js
Command: read
Yargs { _: ['read'],
help: false,
version: false,
title: 'accounts',
'$0': 'app.js' }
JUsers/Gary/Desktop/notes-node/app.js:19
notes.getNote(argv.title);

A

TypeError: notes.getNote is not a function

at Object.<anonymouss (/Users/Gary/Desktop/notes-node/app.js:19:9)
at Module._compile (module.js:660:30)
at Object.Module._extensions..js (module.js:671:18)
at Module.load (module.js:573:32)
at tryModuleLoad (module.js:513:12)
at Function.Module._load (module.js:585:3)
at Function.Module.runMain (module.js:701:14)
at startup (bootstrap_node.js:194:16)
at bootstrap_node.js:618:3
Gary:notes-node Gary$ D

As you can see, the first line shows you where the error occurred. It's inside of
our app.js file, and the number 19 after the colon is the line number. It shows you

exactly where thiIlgS went bad. The TypeError: notes.getNote is not a function line is
telling you pretty clearly that the getnote function you tried to run doesn't exist.
Now we can take this information and debug our app.

In app.js, we see that we call notes.getnote. Everything looks great, but when we
move into notes. js, we realize that we never actually exported getnote. This is why
when we try to call the function, we get getnote is not a function. All we have to
do to fix that error message is export getnote, as shown here:

module.exports = {
addNote,
getAll,
getNote

+

Now when we save the file and rerun the app from Terminal, we'll get what we
expect—Getting note followed by the title, which is accounts, as shown here:

& &

notes-node — -bash — 10829

help: false,
version: false,

title: 'accounts’',

'$6': 'app.js' }
[Users/Gary/Desktop/notes-node/app.js:19
notes.getNote(argv.title);

A

TypeError: notes.getNote is not a function
at Object.<anonymouss (/Users/Gary/Desktop/notes-node/app.js:19:9)
at Module._compile (module.js:660:30)
at Object.Module._extensions..js (module.js:671:18)
at Module.load (module.js:573:32)
at tryModuleLoad (module.js:513:12)
at Function.Module._load (module.js:585:3)
at Function.Module.runMain (module.js:701:14)
at startup (bootstrap_node.js:194:16)
at bootstrap_node.js:618:3
Gary:notes-node Gary$ node app.js read --title accounts
Starting app.js
Starting notes.js
Command: read
Yargs { _: ['read'],
help: false,
version: false,
title: 'accounts’',
$6': 'app.js' }

Gary:notes-node GafyS D

This is how we can debug our error messages. Error messages contain really
useful information. For the most part, the first couple of lines are code that
you've written, and the other ones are internal Node code or third-party modules.
In our case, the first line of the stack trace is important, as it shows exactly
where the error occurred.

The remove command

Now, since the read command is working, we can move on to the last one, which
is the remove command. Here, I'll call notes.removenote, passing in the title, which as
we know is available in argv.titie:

console.log('Starting app.js');

const fs = require('fs');
const = require('lodash');

const yargs = require('yargs');
const notes = require('./notes.js');

const argv = yargs.argv;

var command = process.argv[2];
console.log('Command:', command);
console.log('Yargs', argv);

if (command === 'add') {
notes.addNote(argv.title, argv.body);
else if (command === 'list') {
notes.getAll();

else if (command === 'read') {
notes.getNote(argv.title);

else if (command === 'remove') {
notes.removeNote(argv.title);

else {

console.log('Command not recognized');

L S o

Next up, we'll define the removenote function over inside of our notes API file,
right below the getnote variable:

var removeNote = (title) => {
console.log('Removing note', title);

}

Now, removenote Will work much the same way as getnote. All it needs is the title; it
can use this information to find the note and remove it from the database. This
will be an arrow function that takes the tit1e argument.

In this case, we'll print the console.10g Statement, removing note; then, as the second
argument, we'll simply print titie back to the screen to make sure that it's going
through the process successfully. This time around, we'll export our removenote
function; we'll define it using the ES6 syntax:

module.exports = {
addNote,
getAll,
getNote,
removeNote

}

The last thing to do is test it and make sure it works. We can reload the last
command using the up arrow key. We change read to remove, and that is all we
need to do. We're still passing in the tit1e argument, which is great, because that
is what remove needs:

|node app.js remove --title accounts

When I run this command, we get exactly what we expected. Removing note
prints to the screen, as shown in the following code output, and then we get the
title of the note that we're supposed to be removing, which is accounts:

notes-node — -bash — 10829

Gary:notes-node Gary$ node app.js remove --title accounts
Starting app.js
Starting notes.js
Command: remove
Yargs { _t ['remove'],
help: false,
version: false,
title: 'accounts',
36 }

Gary:notes-node Gary$ D

This looks great! That is all it takes to use yargs to parse your arguments.

With this, we now have a place to define all of that functionality, for saving,
reading, listing, and removing notes.

Fetching command

The last thing I want to discuss before we wrap up this section is—how we fetch

command.

As we know, command is available in the _ property as the first and only item. This
means that in the app.js, var command Statement, we can set command equal to argv,
then ._, and then we'll use] to grab the first item in the array, as shown in the
following code:

console.log('Starting app.js');

const fs = require('fs');
const = require('lodash');

const yargs = require('yargs');
const notes = require('./notes.js');

const argv = yargs.argv;

var command = argv._[0];
console.log('Command:', command);
console.log('Yargs', argv);

if (command === 'add') {
notes.addNote(argv.title, argv.body);
else if (command === 'list') {
notes.getAll();

else if (command === 'read') {
notes.getNote(argv.title);

else if (command === 'remove') {
notes.removeNote(argv.title);

else {

console.log('Command not recognized');

[o

With this in place, we now have the same functionality, but we'll use yargs
everywhere. If I rerun the last command, we can test that the functionality still
works. And it does! As shown in the following command output, we can see that
Command: remove shows up:

[NON | notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js remove --title accounts
Starting app.js

['remove' 1,
help: false,
version: false,
title: 'accounts',
'$0': 'app.js' }
Removing note accounts
Gary:notes-node Gary$ D

Next, we'll look into filling out the individual functions. We'll take a look first at
how we can use JSON to store our notes inside our file system.

JSON

Now that you know how to parse command-line arguments using process.argv and
yargs, you've solved the first piece to the puzzle for the notes application. Now,
how do we get that unique input from the user? The second piece to the puzzle is
to solve how we store this information.

When someone adds a new note, we want to save it somewhere, preferably on
the filesystem. So the next time they try to fetch, remove, or read that note, they
actually get the note back. To do this, we'll need to introduce something called
JSON. If you're already familiar with JSON, you probably know it is super
popular. It stands for JavaScript Object Notation, and it's a way to represent
JavaScript arrays and objects using a string. Now, why would you ever want to
do that?

Well, you might want to do that because strings are just text, and that's pretty
much supported anywhere. I can save JSON to a text file, and then I can read it
later, parse it back into a JavaScript array or object, and do something with it.
This is exactly what we'll take a look at in this section.

To explore JSON and how it works, let's go ahead and make a new folder inside
our project called p1ayground.

Throughout the book, I'll create the piayground folders and various
projects, which store simple one-off files that aren't a part of the
bigger application; they're just a way to explore a new feature or
learn a new concept.

In the piayground folder, we'll make a file called json.js, this is where we can
explore how JSON works. To get started, let's make a very simple object.

Converting objects Into strings

Let's first make a variable called obj, setting it equal to an object. On this object,
we'll just define one property, name, and set it equal to your first name; I'll set this
one equal to andrew, as shown here:

var obj = {

name: 'Andrew'

}

Now, let's assume that we want to take this object and work on it. Let's say we
want to, for example, send it between servers as a string and save it to a text file.
To do this, we'll need to call one JSON method.

Let's take a moment to define a variable to store the result, stringobj, and we'll set
it equal to sson.stringify, as shown here:

| var stringObj = JSON.stringify(obj);

The Json.stringify method takes your object, in this case, the obj variable, and
returns the JSON-stringified version. This means that the result stored in stringobj
is actually a string. It's no longer an object, and we can take a look at that using
console.log. I'll use console.10g twice. First up, we'll use the typeof operator to print
the type of the string object to make sure that it actually is a string. Since typeof is
an operator, it gets typed in lowercase, there is no camel casing. Then, you pass
in the variable whose type you want to check. Next up, we can use console.log t0
print the contents of the string itself, printing out the stringobj variable, as shown
here:

console.log(typeof stringObj);
console.log(string0bj);

What we've done here is we've taken an object, converted it into a JSON string,
and printed it onto the screen. Over in Terminal, I'll navigate into the piayground
folder using the following command:

| cd playground

For now, it doesn't matter where you run the command, but in
Q future it will matter when we are in the piayground folder, so take a

T moment to navigate into it.

We can now use node to run our json.js file. When we run the file, we see two
things:

[] [] playground — -bash — 108x29
Gary:notes-node Gary$ cd playground

Gary:playground Gary$ node json.js

string

{"name":"Andrew"}
Gary:playground Gary$ D

As shown in the preceding code output, first, we will get our type, which is a
string, and this is great, because remember, JSON is a string. Next, we will get
our object, which looks pretty similar to a JavaScript object, but there are a few
differences. These differences are as follows:

e First up, your JSON will have its attribute names automatically wrapped in
double quotes. This is a requirement of the JSON syntax.

e Next up, you'll notice your strings are also wrapped in double quotes as
opposed to single quotes.

Now, JSON doesn't just support string values, you can use an array, a Boolean, a
number, or anything else. All of those types are perfectly valid inside of your
JSON. In this case, we have a very simple example where we have a name
property and it's set to "andrew".

This is the process of taking an object and converting it into a string. Next up,
we'll define a string and convert that into an object we can actually use in our

dapp.

Defining a string and using in app
as an object

Let's get started by making a variable called personstring, and we'll to set it equal
to a string using single quotes since JSON uses double quotes inside of itself, as
shown here:

| var personString = '';

Then we'll define our JSON in the quotes. We'll start by opening and closing
some curly braces. We'll use double quotes to create our first attribute, which
we'll call name, and we'll set that attribute equal to andrew. This means that after the
closing quote, we'll add :; then we'll open and close double quotes again and
type the value andrew, as shown here:

| var personString = '{"name": "Andrew"}';

Next up, we can add another property. After the value, andrew, I'll create another
property after the comma, called age, which will be set equal to a number. I can
use my colon and then define the number without the quotes, in this case, 2s:

| var personString = '{"name": "Andrew", "age": 25}';

You can go ahead and use your name and your age, obviously, but make sure the
rest looks identical to what you see here.

Now, let's say we get the earlier-defined JSON from a server or we grab it from a
text file. Currently, it's useless; if we want to get the name value, there is no good
way to do that because we're using a string, SO personstring.name doesn't exist.
What we need to do is take the string and convert it back into an object.

Converting a string back to an
object

To convert the string back to object, we'll use the opposite of ison.stringify,
which is ison.parse. Let's make a variable to store the result. I'll create a person
variable and it will be set equal to sson.parse, passing in as the one and only
argument the string you want to parse, in this case, the person string, which we
defined earlier:

| var person = JSON.parse(personString);

Now, this variable takes your JSON and converts it from a string back into its
original form, which could be an array or an object. In our case, it converts it
back into an object, and we have the person variable as an object, as shown in the
preceding code. Also, we can prove that it's an object using the typeof operator.
I'll use console.10g twice, just like we did previously.

First up, we'll print typeof person, and then we'll print the actual person variable,

console.log(person).

console.log(typeof person);
console.log(person);

With this in place, we can now rerun the command in Terminal; I'll actually start
nodemon and Pdass in json.js.

| nodemon json.js

As shown in the following code output, you can now see that we're working with
an object, which is great, and we have our regular object:

I [] playground — node fusrflocal/bin/fnodemon json.js — 108x29

Gary:notes-node Gary$ cd playground
Gary:playground Gary$ node json.js
string

{"name": "Andrew"}

Gary:playground Gary$ nodemon json.ijs
[nodemon] 1.14.18

[nodemon] to

{ name: 'Andrew', age

L nc clean exit

We know that andrew is an object because it's not wrapped in double quotes; the
values don't have any quotes, and we use single quotes for andrew, which is valid
in JavaScript, but it's not valid in JSON.

This is the entire process of taking an object, converting it to a string, and then
taking the string and converting it back into the object, and this is exactly what
we'll do in the notes app. The only difference is that we'll be taking the following
string and storing it in a file, then later on, we'll be reading that string from the

file using Json.parse to convert it back to an object, as shown in the following
code block:

// var obj = {

// name: 'Andrew'

/7Y

// var stringObj = JSON.stringify(obj);
// console.log(typeof stringObj);

// console.log(stringObj);

var personString = '{"name": "Andrew",6 "age": 25}';
var person = JSON.parse{personString};
console.log(typeof person);

console.log(person);

Storing the string in a file

With the basics in place, let's take it just one step further, that is, by storing the
string in a file. Then, we want to read the contents of that file back by using the
fs module and printing some properties from it. This means that we'll need to
convert the string that we get back from fs.readfilesync into an object using

JSON. parse.

Writing the file in the playground
folder

Let's go ahead and comment out all the code we have so far and start with a
clean slate. First up, let's go ahead and load in the fs module. The const variable
s will be set equal to require, and we'll pass the fs module that we've used in the
past, as shown here:

// var obj = {

// name: 'Andrew'

/7Y

// var stringObj = JSON.stringify(obj);
// console.log(typeof stringObj);

// console.log(stringObj);

// var personString = '{"name": "Andrew", "age": 25}';
// var person = JSON.parse(personString);

// console.log(typeof person);

// console.log(person);

const fs = require('fs');

The next thing we'll do is define the object. This object will be stored inside of
our file, and then will be read back and parsed. This object will be a variable
called originainote, and we'll call it originainote because later on, we'll load it back
in and call that variable note.

Now, originalnote Will be a regular JavaScript object with two properties. We'll
have the tit1e property, which we'll set equal to some titie, and the body property,
which we will set equal to some body, as shown here:
var originalNote = {
title: 'Some title',

body: 'Some body'
+i

The next step that you will need to do is take the original note and create a
variable called originainotestring, and set that variable equal to the JSON value of
the object we defined earlier. This means that you'll need to use one of the two
JSON methods we used previously in this section.

Now, once you have that originalnotestring Variable, we can write a file to the

filesystem. I'll write that line for you, fs.writerilesync. The writerilesync method,
which we used before, takes two arguments. One will be the filename, and since
we're using JSON, it's important to use the JSON file extension. I'll call this file
notes.json. The other arguments will be text content, originalNotestring, wWhich is
not yet defined, as shown in this code block:

// originalNoteString
fs.writeFileSync('notes.json', originalNoteString);

This is the first step to the process; this is how we'll write that file into the
playground folder. The next step to the process will be to read out the contents,
parse it using the JSON method earlier, and print one of the properties to the
screen to make sure that it's an object. In this case, we'll print the title.

Reading out the content in the file

The first step to print the title is to use a method we haven't used yet. We'll use
the read method available on the filesystem module to read the contents. Let's
make a variable called notestring. The notestring variable will be set equal to
fs.readFileSync.

NOW, readFileSync is similar to writeFilesync €XcCept that it doesn't take the text
content, since it's getting the text content back for you. In this case, we'll just
specify the first argument, which is the filename, notes. sson:

| var noteString = fs.readFileSync('notes.json');

Now that we have the string, it will be your job to take that string, use one of the
preceding methods, and convert it back into an object. You can call that variable
note. Next up, the only thing left to do is to test whether things are working as
expected, by printing with the help of console.1log(typeof note). Then, below this,
we'll use console.log to print the title, note.title:

// note

console.log(typeof note);
console.log(note.title);

Now, over in Terminal, you can see (refer to the following screenshot) that I
have saved the file in a broken state and it crashed, and that's expected when
you're using nodemon:

(] playground — node Jusrflocal/bin/nodemon json.js — 108x28

Gary:playground Gary$ node json.js

string

{"name": "Andrew"}

Gary:playground Gary$ nodemon json.js
[nodemon] 1.14.1@

[nodemon] to restart at any time, enter "rs’

', age: 25 }

M

ne

fUsers/Gary/Desktop/note ode/playground/json.js:21

fs.writeFileSync('notes.json', originalNoteString);
A

ReferenceError: originalNoteString is not defined
at Object.<anonymous> (/Users/Gary/Desktop/notes-node/playground/json.js:21:32)
at Module._compile (module.js:660:38)
at Object.Module._extensions..js (module.js:671:18)
at Module.load (module.js:573:32)
at tryModuleLoad (module.js:513:12)
at Function.Module._load (module.js:585:3)
at Function.Module.runMain (module.js:781:18)
at startup (bootstrap_node.js:194:16)
at bootstrap_node.js:618:3

To resolve this, the first thing I'll do is fill out the originalnotestring variable,
which we had commented out earlier. It will now be a variable called
originalnotestring, and we'll set it equal to the return value from Json.stringify.

Now, we know usson.stringify takes our regular object and it converts the object
into a string. In this case, we'll take the originainote Object and convert it into a
string. The next line, which we already have filled out, will save that JSON
value into the notes. sson file. Then we will read that value out:

|var originalNoteString = JSON.stringify(originalNote);

The next step will be to create the note variable. The note variable will be set
equal {0 JsoN.parse.

The sson.parse method takes the string JSON and converts it back into a regular
JavaScript object or array, depending on whatever you save. Here we will pass in
notestring, which we'll get from the file:

| var note = JSON.parse(noteString);

With this in place, we are now done. When I save this file, nodemon will
automatically restart and we would expect to not see an error. Instead, we expect
that we'll see the object type as well as the note title. Right inside Terminal, we
have object and Some title printing to the screen:

.] playground — nede Jusrflocal/binfnedemon json.js — 108x29

Iy

ReferenceError: originalNoteString is not defined
at Object.<anonymous> (/Users/Gary/Desktop/notes-node/playground/json.js:21:32)
at Module._compile (module.js:668:38)
at Object.Module._extensions..js (module.js:671:18)
at Module.load (module.js:573:32)
at tryModuleLoad (module.js:513:12)
at Function.Module._load (module.js:585:3)
at Function.Module.runMain (module.js:761:18)
at startup (bootstrap_node.js:194:148)
at bootstrap_node.js:618:3

Some title

Some title

With this in place, we've successfully completed the challenge. This is exactly
how we will save our notes.

When someone adds a new note, we'll use the following code to save it:

var originalNote = {
title: 'Some title',
body: 'Some body'
3
var originalNoteString = JSON.stringify(originalNote);
fs.writeFileSync('notes.json', originalNoteString);

When someone wants to read their note, we'll use the following code to read it:

var noteString = fs.readFileSync('notes.json');
var note = JSON.parse(noteString);
console.log(typeof note);
console.log(note.title);

Now, what if someone wants to add a note? This will require us to first read all
of the notes, then modify the notes array, and then use the code (refer to the
previous code block) to save the new array back into the filesystem.

If you open up that notes.sson file, you can see right here that we have our JSON
code inside the file:

@ [] [4) notes.json — ~/Desktop/notes-node
Project app.js x json.js ® notes.json ®
v I notes-node {"title":"Some title","body":"Some hedy“}|
> [node modules

~ Il playground

B isonis

@ .DS_Store

B appis

@ greetings.txt

@ notes.js

@ package-lock.json

@ package.json

playground/notes.json 1:42 LF UTF-8 JSON @Dfllcs

.json is actually a file format that's supported by most text editors, so I actually
already have some nice syntax highlighting built in. Now, in the next section,
we'll be filling out the addnote function using the exact same logic that we just
used inside of this section.

Adding and saving notes

In the previous section, you learned how to work with JSON inside Node.js, and
this is the exact format we'll be using for the notes. js application. When you first
run a command, we'll load in all the notes that might already exist. Then we'll
run the command, whether it's adding, removing, or reading notes. Finally, if
we've updated the array, like we will when we add and remove notes, we'll save
those new notes back into the JSON file.

Now, this will all happen inside of the addnote function, which we defined in the
notes.js application, and we already wired up this function. In earlier sections, we
ran the app adda command, and this function executed with the titie and body
arguments.

Adding notes

To get started with adding notes, the first thing we'll do is create a variable called
notes, and for the moment, we'll set it equal to an empty array, just as in the
following, using our square brackets:

var addNote
var notes

}

(title, body) => {
[1;

Now that we have the empty array, we can go ahead and make a variable called
note, which is the individual note. This will represent the new note:
var addNote

var notes
var note = {

}
}

(title, body) => {
[1;

On that note, we'll have the two properties: a titlie and a body. NOw, title can be
set equal to the titie variable, but, as we know, inside ES6, we can simply
remove it when both values are the same; so we'll add titie and body as shown
here:

var addNote
var notes
var note = {

title,

body

iy

iy

(title, body) => {
[1;

Now we have the note and the notes array.

Adding notes to the notes array

The next step in the process of adding notes will be to add the note to the notes
array. The notes.push method will let us do just that. The push method on an array
lets you pass in an item, which gets added to the end of the array, and in this
case, we'll pass in the note object. So we have an empty array, and we add our
one item, as shown in the following code; next, we push it in, which means that
we have an array with one item:
var addNote
var notes
var note = {
title,

body
iy

notes.push(note);

3

(title, body) => {
[1;

The next step in the process will be to update the file. Now, we don't have a file
in place, but we can load an s function and start creating the file.

Up above the addvote function, let's load in the fs module. I'll create a const
variable called fs and set it equal to the return result from require, and we'll
require the rs module, which is a core node module, so there's no need to install
it using NPM:

| const fs = require('fs');
With this in place, we can take advantage of fs inside the addnote function.

Right after we push our item on to the notes array, we'll call fs.writerilesync,
which we've used before. We know we need to pass in two things: the file name
and the content we want to save. For the file, I'll call, notes-data.Json, and then
we'll pass in the content to save, which in this case will be the stringify notes
array, which means we can call sson.stringify passing in notes:

notes.push(note);
fs.writeFileSync('notes-data.json', JSON.stringify(notes));

We could have broken sson.stringfy(notes) out into its own variable

W and referenced the variable in the above statement, but since we'll
only be using it in one place, I find this is the better solution.

At this point, when we add a new note, it will update the notes-data.Json file,
which will be created on the machine since it does not exist, and the note will sit
inside it. Now, it's important to note that currently every time you add a new
note, it will wipe all existing ones because we never load in the existing ones,
but we can get started testing that this note works as expected.

I'll save the file, and over inside of Terminal, we can run this file using node
app.js. Since we want to add a note, we will be using that ada command which we
set up, then we'll specify our title and our body. The titie flag can get set equal
to secret, and for the body flag, I'll set it equal to the some body here string, as shown
here:

| node app.js add --title=secret --body="Some body here"

Now, when we run this command from Terminal, we'll see what we'd expect:

F Y &

notes-node — -bash — 10829

Gary:playground Gary$ cd ..
Gary:notes-node Gary$ node app.js add --titlessecret --body="Some body here"
Starting app.js
Starting notes.js
Command: add
Yargs { _: ['add' 1,
help: false,
version: false,
title: 'secret',
body: 'Some body here',
'$6': 'app.js’' }
Gary:notes-node Gary$ D

As shown in the preceding screenshot, we see a couple of the file commands we
added: we see that the adds command was executed, and we have our Yargs
arguments. The title and body arguments also show up. Inside Atom, we also see
that we have a new notes-data.json file, and in the following screenshot, we have
our note, with the secret title and the some body here bOdy:

[JOX | 4] notes-data,json — ~/Desktop/notes-node

Project app.js X notes|s X notes-data.json X ' jsonjs X
v Ml notes-node [{"title":"secret","body":"Some body here”}]‘
> M node_modules
v M playground
@ json.js
@ notes.json
@ .DS_Store
B apis

@ greetings.txt

@ notes.js
@ package-lock.json

@ package.json

notes-catajson 1:45 LF UTF-8 JSON @]Dfilcs

This is the first step in wiring up that addnote function. We have an existing notes
file and we do want to take advantage of these notes. If notes already exist, we
don't want to simply wipe them every time someone adds a new note. This
means that in notes.js, earlier at the beginning of the addnote function, we'll fetch
those notes.

Fetching new notes

I'll add code for fetching new notes where I define the notes and note variables.
As shown in the following code, we'll use fs.readrilesync, which we've already
explored. This will take the filename, in our case, notes-data.ison. Now, we will
want to store the return value from readrilesync on a variable; I'll call that
Variable, notesString:

| var notesString = fs.readFileSync('notes-data.json');

Since this is the string version, we haven't passed it through the ison.parse
method. So, I can set notes (the variable we defined earlier in addvote function)
equal to the return value from the sson.parse method. Then sson.parse will take the
string from the file we read and it will parse it into an array; we could pass in
notesString jUSt like this:

| notes = JSON.parse(notesString);

With this in place, adding a new note is no longer going to remove all of the
notes that were already there.

Over in Terminal, I'll use the up arrow key to load in the last command, and I'll
navigate over to the titie flag and change it to secret2 and rerun the command:

| node app.js add --title=secret2 --body="Some body here"

In Atom, this time you can see we now have two notes inside of our file:

[JOX | 4] notes-data,json — ~/Desktop/notes-node

Project app.js X notess X notes-datajson X ' jsonjs X

=

v I notes-node [{"title":"secret","body":"Some body here"},{"title":"secret2","body":"Some body here"}]
> M node_modles
v M playground
Bl jsonis
@ notes.json
@ .DS_Store

B apis

@ greetings.txt

@ notes.js

@ package-lock.json

@ package.json

notes-catajson 1:60 LF UTF-8 JSON @]Ufiles

We have an array with two objects; the first one has the title of secret and the
second one has the title of secret2, which is brilliant!

Trying and catching code block

Now, if the notes-data.json file does not exist, which it won't when the user first
runs the command, the program will crash, as shown in the following code
output. We can prove this by simply rerunning the last command after deleting
the note-data. sson file:

[NON) notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js add --titlessecret? --body="Some body here"
Starting app.js
Starting notes.js
Command: add
Yargs { _: ['add' 1,
help: false,
version: false,
title: 'secret?',
body: 'Some body here',
'$0': 'app.js' }
f5.j5:663
return binding.open{pathModule.toNamespacedPath(path),

A

Error: ENOENT: no such file or directory, open 'notes-data.json’
at Object.fs.openSync (fs.j5:663:18)
at Object.fs.readFileSync (fs.js:568:33)
at Object.addNote (/Users/Gary/Desktop/notes-node/notes.js:12:24)
at Object.<anonymouss (/Users/Gary/Desktop/notes-node/app.js:15:9)
at Module._compile (module.js:660:30)
at Object.Module._extensions..js (module.js:671:18)
at Module.load (module.js:573:32)
at tryModuleLoad (module.js:513:12)
at Function.Module._load (module.js:585:3)
at Function.Module.runMain (module.js:701:14)
Gary:notes-node Gary$ D

Right here, you can see we're actually getting a JavaScript error, no such file or
directory; it's trying to open up the notes-data.Json file, but without much success.
To fix this, we'll use a try-catch statement from JavaScript, which hopefully
you've seen in the past. To brush up this, let's go over it really quick.

To create a try-catch Statement, all you do is you type try, which is a reserved
keyword, and then you open and close a set of curly braces. Inside the curly
braces is the code that will run. This is the code that may or may not throw an
error. Next, you'll specify the catch block. Now, the catch block will take an
argument, an error argument, and it also has a code block that runs:

try{

} catch (e) {

}

This code will run if and only if one of your errors in try actually occurs. So, if
we load the file using readrilesync and the file exists, that's fine, catch block will
never run. If it fails, catch block will run and we can do something to recover
from that error. With this in place, all we'll do is move the notestring variable and
the json.parse statements into try, as shown here:
try{
var notesString = fs.readFileSync('notes-data.json');

notes = JSON.parse(notesString);
} catch (e) {

}

That's it; nothing else needs to happen. We don't need to put any code in catch,
although you do need to define the catch block. Now, let's take a look at what
happens when we run the whole code.

The first thing that happens is that we create our static variables—nothing
special there—then we try to load in the file. If the notesstring function fails, that
is fine because we already defined notes to be an empty array. If the file doesn't
exist and it fails, then we probably want an empty array for notes anyways,
because clearly there are no notes, and there's no file.

Next up, we'll parse that data into notes. There is a chance that this will fail if
there's invalid data in the notes-data.sson file, so the two lines can have problems.
By putting them in try-catch, we're basically guaranteeing that the program isn't
going to work unexpectedly, whether the file does or doesn't exist, but it contains
corrupted data.

With this in place, we can now save notes and rerun that previous command.
Note that I do not have the notes-data file in place. When I run the command, we

don't see any errors, everything seems to run as expected:

[NON] notes-node — -bash — 108x29

title: 'secret?',
body: 'Some body here',
Isal: Iapp'jsl }
f5.j5:663
return binding.open{pathModule.toNamespacedPath(path),

A

Error: ENOENT: no such file or directory, open 'notes-data.json’
at Object.fs.openSync (fs.j5:663:18)
at Object.fs.readFileSync (fs.js:568:33)
at Object.addNote (/Users/Gary/Desktop/notes-node/notes.js:18:24)
at Object.<anonymouss (/Users/Gary/Desktop/notes-node/app.js:15:9)
at Module._compile (module.js:660:30)
at Object.Module._extensions..js (module.js:671:18)
at Module.load (module.js:573:32)
at tryModuleLoad (module.js:513:12)
at Function.Module._load (module.js:585:3)
at Function.Module.runMain (module.js:701:14)
Gary:notes-node Gary$ node app.js add --title=secret? --body="Some body here"
Starting app.js
Starting notes.js
Command: add
Yargs { _: ['add' 1,
help: false,
version: false,
title: 'secret?',
body: 'Some body here',
'$6': 'app.js’' }
Gary:notes-node Gary$ D

When you now visit Atom, you can see that the notes-data file does indeed exist,
and the data inside it looks great:

000) Project — ~[Deskiop/notes-node
Project app.js X notes|s X notes-data.json X ' jsonjs X
v Ml notes-node [{"title":"secret2","body":"Some body here"}]
> M node_modules
vl playground
@ json.js
@ notes.json
@ .DS_Store
B apis

@ greetings.txt

@ notes.js

@ package-lock.json

@ package.json

notes-datajson 11 LF UTF-8 JSON @]Dfilcs

This is all we need to do to fetch the notes, update the notes with the new note,
and finally save the notes to the screen.

Now, there is still a slight problem with addvote. Currently, addnote allows for
duplicate titles; I could already have a note in the JSON file with the title of
secret. I can come along and try to add a new note with the title of secret and it
will not throw an error. What I'd like to do is to make the title unique, so that if
there's already a note with that title, it will throw an error, letting you know that
you need to create a note with a different title.

Making the title unique

The first step to make the title unique will be to loop through all of the notes
after we load them in and check whether there are any duplicates. If there are
duplicates, we'll not call the following two lines:

notes.push(note);
fs.writeFileSync('notes-data.json', JSON.stringify(notes));

If there are no duplicates then it's fine, we will call both of the lines shown in the
preceding code block, updating the notes-data file.

Now, we'll be refactoring this function down the line. Things are getting a little
wonky and a little out of control, but for the moment, we can add this
functionality right into the function. Let's go ahead and make a variable called

duplicateNotes.

The duplicatenotes variable will eventually store an array with all of the notes that
already exist inside the notes array that have the title of the note you're trying to
create. Now, this means that if the duplicatenotes array has any items, that's bad.
This means that the note already exists and we should not add the note. The
duplicateNotes variable will get set equal to a call to notes, which is our array of

notes.filter.

| var duplicateNotes = notes.filter();

The fiiter method is an array method that takes a callback. We'll use an arrow
function, and that callback will get called with the argument. In this case, it will
be the singular version; if I have an array of notes, it will be called with an
individual note:

var duplicateNotes = notes.filter((note) => {

1

This function gets called once for every item in the array, and you have the
opportunity to return either true or false. If you return true, it will keep that item
in the array, which will eventually get saved into duplicatenotes. If you return
false, the new array it generates will not have that item inside duplicatenotes

variable. All we want to do is to return true if the titles match, which means that
Wwe can return note.title === title, as Shown here:

var duplicateNotes = notes.filter((note) => {
return note.title === title;

1K

If the titles are equal, then the preceding return statement will result as true and
the item will be kept in the array, which means that there are duplicate notes. If
the titles are not equal, which is most likely the case, the statement will result as
false, which means that there are no duplicate notes. Now, we can simplify this a
little more using arrow functions.

Arrow functions actually allow you to remove the curly braces if
0 you only have one statement.

I'll use the arrow function, as shown here:

| var duplicateNotes = notes.filter((note) => note.title === title);

Here, I have deleted everything except note.title === title and added this in front
of the arrow function syntax.

This is perfectly valid using ES6 arrow functions. You have your arguments on
the left, the arrow, and on the right, you have one expression. The expression
doesn't take a semicolon and it's automatically returned as the function result.
This means that the code we have here is identical to the code we had earlier,
only it's much simpler and it only takes up one line.

Now that we have this in place, we can go ahead and check the length of the
duplicateNotes Variable. If the length of dupiicatenotes is greater than o, this means
that we don't want to save the note because a note already exists with that title. If
it is o, we'll save the note.

if(duplicateNotes.length === 0) {
}
Here, inside the if condition, we're comparing the notes length with the number

zero. If they are equal, then we do want to push the note onto the notes array and
save the file. I'll cut the following two lines:

notes.push(note);
fs.writeFileSync('notes-data.json', JSON.stringify(notes));

Let's paste them right inside of the if statement, as shown here:

if(duplicateNotes.length === 0) {
notes.push(note);
fs.writeFileSync('notes-data.json', JSON.stringify(notes));

}

If they're not equal, that's okay too; in that case we'll do nothing.

With this in place, we can now save our file and test this functionality out. We
have our notes-data.json file, and this file already has a note with a title of secret.
Let's rerun the previous command to try to add a new note with that same title:

|node app.js add --title=secret2 --body="Some body here"

eC® notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js add --titlessecret? --body="Some body here"
Starting app.js
Starting notes.js
Command: add
Yargs { _: ['add' 1,
help: false,
version: false,
title: 'secret?',
body: 'Some body here',
'$0': 'app.js' }
Gary:notes-node Gary$ D

You're in Terminal, so we'll head back into our JSON file. You can see right here
that we still just have one note:

[JOX | 4] notes-data,json — ~/Desktop/notes-node
Project app.js X notes|s X notes-data.json X ' jsonjs X
v [l notes-node [{"title":"secret2", "body":"Some body here"}]‘

> M node_modules

| playground
@ json.js

@ notes.json
@ .DS_Store
B ampis

@ greetings.txt

@ notes.js

@ package-lock.json

@ package.json

notes-catajson 1:46 LF UTF-8 JSON @]Dfilcs

Now all the titles inside of our application will be unique, so we can use these
titles to fetch and delete notes.

Let's go ahead and test that other notes can still be added. I'll change the titie
ﬂag from secret2 to secret, and run that command:

| node app.js add --title=secret --body="Some body here"

notes-node — -bash — 10829

Gary:notes-node Gary$ node app.js add --titlessecret --body="Some body here"

Starting app.js
Starting notes.js
Command: add
Yargs { _: ['add' 1,
help: false,
version: false,
title: 'secret',
body: 'Some body here',
'$0': 'app.js' }
Gary:notes-node Gary$

Inside our notes-data file, you can see both notes show up:

[JOX | 4] notes-data,json — ~/Desktop/notes-node
Project app.js X notes|s X notes-data.json X ' jsonjs X
vl notes-node [{"title":"secret2","body":"Some body here"},{"title":"secret","body":"Some body here"}]
> M node_modules
vl playground
@ json.js
@ notes.json
@ .DS_Store
B apis

@ greetings.txt

@ notes.js
@ package-lock.json

@ package.json

notes-catajson 1:47 LF UTF-8 JSON @]Ufilcs

As I mentioned earlier, next we will be doing some refactoring, since the code
that loads the file, and the code that saves the file, will both be used in most of
the functions we have defined and/or will define (that is, the geta11, getnote and
removeNote fUHCtiOHS).

Refactoring

In the previous section, you created the addnote function, which works well. It
starts by creating some static variables, then we fetch any existing notes, we
check for duplicates, and if there are none, we push it onto the list, and then we
save the data back into the filesystem.

The only problem is that we'll be doing a lot of these steps over and over again
for every method. For example, with geta11, the idea is to fetch all of the notes,
and send them back to app.js so it can print them to the screen for the user. The
first thing we'll to do inside of the geta11 statement is have the same code; we'll
have our try-catch block to fetch the existing notes.

Now, this is a problem because we'll be repeating code throughout the
application. It will be best to break out the fetching of notes and the saving of
notes into separate functions that we can call in multiple locations.

Moving functionality into
individual functions

To resolve the problem, I'd like to get started by creating two new functions:

® fetchNotes

® saveNotes

The first function, fetchnotes, will be an arrow function, and it will not to take any
arguments since it will be fetching notes from the filesystem, as shown here:

var fetchNotes = () => {

}

The second function, savenotes, will need to take an argument. It will need to take
the notes array you want to save to the filesystem. We'll set it equal to an arrow
function, and then we'll provide our argument, which I will name notes, as shown
here:

var saveNotes = (notes) => {

}

Now that we have these two functions, we can go ahead and start moving some
of the functionality from addnote up into the individual functions.

Working with fetchNotes

First up, let's do fetchnotes, which will need the following try-catch block.

I'll actually cut it out of addvote and paste it in the fetchnotes function, as shown
here:

var fetchNotes = () => {
try{
var notesString = fs.readFileSync('notes-data.json');
notes = JSON.parse(notesString);
} catch (e) {

}
}

This alone is not enough, because currently we don't return anything from the
function. What we want to do is to return the notes. This means that instead of
saving the result from Json.parse onto the notes variable, which we haven't
defined, we'll simply return it to the calling function, as shown here:

var fetchNotes = () => {
try{
var notesString = fs.readFileSync('notes-data.json');
return JSON.parse(notesString);
} catch (e) {

}
}

So, if I call fetchnotes in the addnote function, shown as follows, I will get the notes
array because of the return statement in the preceding code.

Now, if there are no notes, maybe there's no file at all; or there is a file, but the
data isn't JSON, we can return an empty array. We'll add a return statement inside
of catch, as shown in the following code block, because remember, catch runs if
anything inside try fails:

var fetchNotes = () => {

try{
var notesString = fs.readFileSync('notes-data.json');
return JSON.parse(notesString);
} catch (e) {
return [];
b

}

Now, this lets us simplify addnote even further. We can remove the empty space
and we can take the array that we set on the notes variable and remove it and
instead call fetchnotes, as shown here:
var addNote = (title, body) => {
var notes = fetchNotes();
var note = {
title,

body
}

With this in place, we now have the exact same functionality we had before, but
we have a reusable function, fetchnotes, which we can use in the addnote function
to handle the other commands that our app will support.

Instead of copying code and having it in multiple places in your file, we've
broken it into one place. If we ever want to change how this functionality works,
whether we want to change the filename or some of the logic such as the try-catch
block, we can change it once instead of having to change it in every function we
have.

Working with saveNotes

Now, the same thing will go for savenotes just as in the case of the fetchnotes
function. The savenotes function will take the notes variable and it will say this
using fs.writerilesync. I will cut out the line in addvote that does this (that is,
fs.writeFileSync('notes-data.json’', JSON.stringfy(notes));) ancll)aste it in the savenotes
function, as shown here:

var saveNotes = (notes) => {

fs.writeFileSync('notes-data.json', JSON.stringify(notes));
3

Now, savenotes doesn't need to return anything. In this case, we'll copy the line in
saveNotes and then call savenotes in the ir statement of the addvote function, as
shown in the following code:

if (duplicateNotes.length === 0) {

notes.push(note);
saveNotes();

}

This might seem like overkill, we've essentially taken one line and replaced it
with a different line, but it is a good idea to start getting in the habit of creating
reusable functions.

Now, calling savenotes with no data is not going to work, we want to pass in the
notes variable, which is our notes array defined earlier in the savenotes function:
if (duplicateNotes.length === 0) {

notes.push(note);
saveNotes(notes);

}

With this in place, the addnote function should now work as it did before we did
any of our refactoring.

Testing the functionality

The next step in the process will be to test this out by creating a new note. We
already have two notes, with a title of secret and a title of secret2 in notes-data.json,
let's make a third one using the node app.js command in Terminal. We'll use the
add command and pass in a title of to buy and a body of food, as shown here:

| node app.js add --title="to buy" --body="food"

This should create a new note, and if I run the command, you can see we don't
have any obvious errors:

[NoN] notes-node — -bash — 108x29
Gary:notes-node Gary$ node app.js add --title="to buy" --body="food"
Starting app.js
Starting notes.js
Command: add
Yargs { _: [‘'add' 1,
help: false,
version: false,
title: 'to buy',
body: *'food',
'$6': 'app.js' }
Gary:notes-node Gary$ D

Inside of our notes-data.json file, if I scroll to the right, we have our brand new
note as a title of to buy and a body of food:

[JOX | 4] notes-data,json — ~/Desktop/notes-node
Project app.js X notes|s X notes-data.json X ' jsonjs X
v [l notes-node ody here"},{"title":"secret",”body":”Sume body here"},{"title":"to buy","body":"food"}]
> M node_modules
vl playground
@ json.js
@ notes.json
@ .DS_Store
B apis

@ greetings.txt

@ notes.js

@ package-lock.json

@ package.json

notes-datajson 1:47 LF UTF-8 JSON @]Dfilcs

So, everything is working as expected even though we've refactored the code.
Now, the next thing I want to do inside addnote is take a moment to return the note
that's being added, and that will happen right after savenotes comes back. So we'll
return note:
if (duplicateNotes.length === 0) {
notes.push(note);

saveNotes(notes);
return note;

}

This note object will get returned to whoever called the function, and in this case,
it will get returned to app.js, where we called it in the if eise block of the add
command in the app.js file. We can make a variable to store this result and we
can call it note:

|if (command === 'add')

| var note = notes.addNote(argv.title, argv.body);

If note exists, then we know that the note was created. This means that we can go
ahead and print a message, like note created, and we can print the note title and the
note body. Now, if note does not exist, if it's undefined, this means that there was
a duplicate and that title already exists. If that's the case, I want you to print an
error message such as note title already in use.

is to print two different messages depending on whether or not a

0 There's a ton of different ways you could do this. The goal, though,
note was returned.

Now, inside addnote, if the duplicatenotes if Statement never runs, we don't have an
explicit call to return. But as you know, in JavaScript, if you don't call return,
then undefined automatically is returned. This means that if duplicatenotes.length is
not equal to zero, undefined will be returned and we can use that as the condition
for our statement.

The first thing I'll do here is to create an ir statement, right next to the note
variable we defined in app. js:

if (command === 'add') {
var note = notes.addNote(argv.title, argv.body);
if (note) {
3

This will be an object if things went well, and it will be undefined if things went
poorly. This code in here is only ever going to run if it's an object. The undefined
result will fail the condition inside of JavaScript.

Now, if the note was created successfully, what we'll do is to print a little message
to the screen, using the following console.10g Statement:
if (note) {

console.log('Note created');

}

If things went poorly, inside the eise clause, we can call console.10g, and we can
print something like note title taken, as shown here:
if (note) {

console.log('Note created');
} else {

console.log('Note title taken');
b

Now, the other thing that we want to do if things went well is print the notes
content. I'll do this by first using console.10g to print a couple of hyphens. This
will create a little space above my note. Then I can use console.1og twice: the first
time we'll print the title, I'll add rit1e: as a string to show you what exactly you're
seeing, then I can concatenate the title, which we have access to in note.title, as
shown in this code:

if (note) {
console.log('Note created');
console.log('--");
console.log('Title: ' + note.title);

Now, the preceding syntax uses an ES5 syntax; we can swap this out with an
ES6 syntax using what we've already talked about: template strings. We'll add
Title, @ colon, and then we can use our dollar sign with our curly braces to inject
the note.tit1e variable, as shown here:

| console.log(Title: ${note.title}");

Similarly, I'll add note.body after this to print out the body of the note. With this in
place, the code should look like:

if (command === 'add') {
var note = note.addNote(argv.title, argv.body);
if (note) {
console.log('Note created');
console.log('--"');
console.log(Title: ${note.title}");
console.log(Body: ${note.body}");
} else {
console.log('Note title taken');
b

Now, we should be able to run our app and see both of the title and body notes
printed. In Terminal, I'll rerun the previous command. This will try to create a
note with to buy, which already exists, so we should get an error message, and
right here you can see Note title taken:

notes-node — -bash — 10829

Gary:notes-node Gary$ node app.js add --title="to buy" --body="food"
Starting app.js
Starting notes.js
Command: add
Yargs { _: ['add' 1,
help: false,
version: false,
title: 'to buy',
body: 'food',
'$0': 'app.js' }
Note title taken
Gary:notes-node Gary$ D

Now, we can rerun the command, changing the title to something else, such as to
buy from store. This iS a unique note title so the note should get created without any
problems:

| node app.js add --title="to buy from store" --body="food"

[NON) notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js add --title="to buy from store" --body="food"
Starting app.js
Starting notes.js
Command: add
Yargs { _: ['add' 1,
help: false,
version: false,
title: 'to buy from store',
body: 'food',
'$0': 'app.js' }
Note created
Title: to buy from store
Body: food

Gary:notes-node Gary$ D

As shown in the preceding output, you can see that we get just that: we have our
Note created message, our little spacer, and our title along with the body.

The addnote command is now complete. We have an output when the command
actually finishes, and we have all the code that runs behind the scenes to add the
note to the data that gets stored in our file.

Summary

In this chapter, you learned that parsing in process.argv can be a real pain. We
would have to write a lot of manual code to parse out those hyphens, the equal
signs, and the optional quotes. However, yargs can do all of that for us and it
puts it on a really simple object we can access. You also learned how to work
with JSON inside Node.js.

Next, we filled out the addnote function. We're able to add notes using the
command line, and we're able to save those notes into a JSON file. Finally, we
pulled out a lot of the code from addnote into separate functions, fetchnotes and
saveNotes, Which are now separate, and they're able to be reused throughout the
code. When we start filling out the other methods, we can simply call fetchnotes
and savenotes instead of having to copy the contents over and over again to every
new method.

In the next chapter, we'll continue our journey on node fundamentals. We'll
explore some more concepts related to node, such as debugging; we'll work on
the read and remove Nnotes commands. Apart from this, we'll also learn about the
advanced features of yargs and the arrow function.

Node Fundamentals — Part 3

We start adding support for all the other commands inside of the notes
application. We'll take a look at how we can create our read command. The read
command will be responsible for fetching the body of an individual note. It will
fetch all the notes and print them to the screen. Now, aside from all of that, we'll
be looking at debugging broken apps, and we'll look at some new ES6 features.
You'll learn how to use the built-in Node debugger.

Then, you will learn a little bit more about how we can configure yargs for the
command-line interface applications. We'll learn how to set up the commands,
their descriptions, and the arguments. We'll be able to set various properties on
the arguments, for example, whether or not they're required, and others.

Removing a note

In this section, you will write the code for removing a note when someone uses
that remove command, and they pass in the title of the note they want to remove.
In the previous chapter, we already created some utility functions that help us
with fetching and saving notes, so the code should actually be pretty simple.

Using the removeNote function

The first step in the process is to fill out the removenote function, which we defined
in the previous chapters, and this will be your challenge. Let's remove console.10g
from the removenote function in the notes.js file. You only need to write three lines
of code to get this done.

Now, the first line will fetch the notes, then the job will be to filter out the notes,
removing the one with title of argument. That means we want to go through all
of the notes in the notes array, and if any of them have a title that matches the
title we want to remove, we want to get rid of them. And this can be done using
the notes.filter function we used earlier. All we have to do is switch the equality
statement in the duplicatenotes function from equals to not equals, and this code
will do just that.

It will go through the notes array. Every time it finds a note that doesn't match
the title it will keep it, which is what we want, and if it does find the title it will
return faise and remove it from the array. And then we will add the third line,
which is to save the new notes array:
var removeNote = (title) => {
// fetch notes

// filter notes, removing the one with title of argument
// save new notes array

}

The preceding code lines are the only three lines you need to fill out. Don't
worry about returning anything from removenote or filling out anything inside of

app.js.

The first thing we will do for the fetchnotes line is to create a variable called notes,
just like we did in addnote in the previous chapter, and we'll set it equal to the
return result from fetchnotes:

var removeNote = (title) => {
var notes = fetchNotes();
// filter notes, removing the one with title of argument
// save new notes array

}

At this point our notes variable stores an array of all of the notes. The next thing
we need to do is filter our notes.

If there is a note that has this title, we want to remove it. This will be done by
creating a new variable, and I'll call this one rfiiteredvotes. Here we'll set
filterednotes equal to the result that will come back from notes.fiiter, which we
already used up previously:
var removeNote = (title) => {
var notes = fetchNotes();
// filter notes, removing the one with title of argument

var filteredNotes = notes.filter();
// save new notes array

}

We know that notes.filter takes a function as its one and only argument, and that
function gets called with the individual item in the array. In this case it would be
a note. And we can do this all on one line using the ES6 arrow syntax.

If we have only one statement, we don't need to open and close
curly braces.

That means right here we can return true if note.tit1e does not equal the title that's
passed into the function:

var removeNote = (title) => {
var notes = fetchNotes();
var filteredNotes = notes.filter((note) => note.title !== title);
// save new notes array

}

This will populate fiiterednotes with all of the notes whose titles do not match the
one passed in. If the title does match the title passed in, it will not be added to
filteredNotes because of our filter function.

The last thing to do is to call savenotes. Right here, we'll call savenotes passing in
the new notes array which we have under the fiiterednotes variable:

var removeNote = (title) => {
var notes = fetchNotes();
var filteredNotes = notes.filter((note) => note.title !== title);
saveNotes(filteredNotes);
// save new notes array

}

If we were to pass in notes, it wouldn't work as expected; we're filtering the
notes out but we're not actually saving those notes, so it will not get removed
from the JSON. We need to pass filteredvotes as shown in the preceding code.
And we can test these by saving the file and trying to remove one of our notes.

I'll try to remove secret2 from the notes-data.json file. That means all we need to
do is run the command, which we called remove, that is specified over in app.js,
(refer to the following code image, and then it will call our function).

Il run Node with app.js, and we'll pass in the remove command. The only
argument we need to provide for remove is the title; there's no need to provide
the body. I'll set this equal to secreta:

| node app.js remove --title=secret2

notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js remove --title=secret2
Starting app.js
Starting notes.js
Command: remove
Yargs { _: ['remove' 1],
help: false,
version: false,
title: 'secret2’',
'$8': 'app.js' }
Gary:notes-node Gary$ D

As shown in the screenshot, if I hit enter you can see we don't get any output.
Although we do have the command remove printing, there is no message saying
whether or not a note was removed, but we'll add that later in the section.

For now, we can check the data. And right here you can see secret2 is nowhere in
sight:

[JOX | 4] notes-data,json — ~/Desktop/notes-node

Project app.js X notes|s X notes-datajson X ' jsonjs X
v [l notes-node [{"title":"secret","body":"Some body here"},{"title":"to buy","body":"food"},{"title":"t
> M node_modules
| playground
@ json.js
@ notes.json
@ .DS_Store
B apis

@ greetings.txt

@ notes.js

@ package-lock.json

@ package.json

notes-datajson 118 LF UTF-8 JSON @]Ufilcs

This means our remove method is indeed working as expected. It removed the
note whose title matched and it kept all the notes whose title was not equal to
secret2, exactly what we wanted.

Printing a message of removing
notes

Now, the next thing we'll do is print a message depending on whether or not a
note was actually removed. That means app.js, which calls the removenote function,
will need to know whether or not a note was removed. And how do we figure
that out? How can we possibly return that given the information we have in
notes.js removeNotes function?

Well, we can, because we have two really important pieces of information. We
have the length of the original notes array and we have the length of the new
notes array. If they're equal then we can assume that no note was removed. If
they are not equal, we'll assume that a note was removed. And that is exactly
what we'll do.

If the removenote function returns true, that means a note was removed; if it returns
false, that means a note was not removed. In the removenotes function we can add
return, as shown in the following code. We'll check if notes.1ength does not equal
filteredNotes.length.
var removeNote = (title) => {
var notes = fetchNotes();

var filteredNotes = notes.filter((note) => note.title !== title);
saveNotes(filteredNotes);

return notes.length !== filteredNotes.length;

}

If they're not equal it will return true, which is what we want because a note was
removed. If they're equal it will return faise, which is great.

Now, inside of app.js we can add a few lines in the removenote, e1se if block to
make the output for this command a little nicer. The first thing to do is to store
that Boolean. I'll make a variable called noteremoved and we'll set that equal to the
return, result as shown in the following code, which will either be true or faise:

} else if (command == 'remove') {
var noteRemoved = notes.removeNote(argv.title);

}

On the next line, we can create our message, and I'll do this all on one line using
the ternary operator. Now, the ternary operator lets you specify a condition. In
our case, we'll use a var message and it will be set equal to the condition
noteremoved, Which will be true if a note was removed and raise if it wasn't.

Now, the ternary operator can be a little confusing, but it's really
useful inside JavaScript and Node.js. The format for the ternary
operator is first we add the condition, question mark, the truthy
expression to run, colon, and then the falsy expression to run.

After the condition, we'll put a space with a question mark and a space; this is
the statement that will run if it's true. If the noteremoved condition passes, what we
want to do is set message equal {0 Note was removed:

| var message = noteRemoved ? 'Note was removed'

Now, if noteremoved is false, we can specify that condition right after the colon in
the previous statement. Here, if there is no note removed we'll use the text note

not found.

|var message = noteRemoved ? 'Note was removed' : 'Note not found';

Now with this in place, we can test out our message. The last thing to do is print
the message to the screen using console.log passing in message:
var noteRemoved = notes.removeNote(argv.title);

var message = noteRemoved ? 'Note was removed' : 'Note not found';
console.log(message);

This lets us avoid if statements that make our eise-if clause to remove
unnecessarily complex.

Back inside of Atom we can rerun the last command, and in this case no note
will get removed because we already deleted it. And when I run it, you can see
that note not found prints to the screen:

notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js remove —--title=secret2
Starting app.js
Starting notes.js
Command: remove
Yargs { _: ['remove' 1,

help: false,

version: false,

title: 'secret2',

'app.js' }

ry:nates-ﬁade Gary$ D

Now I'll remove a note that does exist; in notes-data.json I have a note with a title
of secret as shown here:

@ ‘g notes-data json — ~/Desktop/notes-node

Project app.js X ' notes.s X notes-data.json x ° jsonjs x

v Il notes-node [{"title":"secret","body":"Some body here“},{"tﬂtle":"to buy","body":" food"}, {"title":"t

> M node_modules
v M playground
B jsonjs
El notes.jsen
[El .Ds_store
B appis

Bl greetings.txt

B notes.js

&

Bl package-lock json

Bl package.json

LF UTF-8 JSON [Ofiles

Let's rerun the command removing the 2 from the title in Terminal. When I run
this command, you can see Note was removed prints to the screen:

@ & notes-node — -bash — 10829

Gary:notes-node Gary$ node app.js remove --title=secret2
Starting app.ijs
Starting notes.js
Command: remove
Yargs { _: ['remove' 1,

help: false,

version: false,

title: ‘'secret2’',

'$0': 'app.js' }
Note not found
Gary:notes-node Gary$ node app.js remove --title=secret
Starting app.js
Starting notes.js
Command: remove
Yargs { _: ['remove' 1,

help: false,

version: false,

title: 'secret’',

'app.js' }

Gary:notes-node Gary$ D

That is it for this section; we now have our remove command in place.

Reading note

In this section, you will be responsible for filling out the rest of the read
command. Now, the reas command does have an else-if block to find in app.js
where we call getnote:

} else if (command === 'read') {
notes.getNote(argv.title);

getnote is defined over inside notes.js, even though currently it just prints out
some dummy text:
var getNote = (title) => {

console.log('Getting note', title);

3

What you'll need to do in this section is wire up both of these functions.

First up, you will need to do something with the return value from getnote. Our
getNote function will return the note object if it finds it. If it doesn't, it will return
undefined just like we do for addvote discussed in the section Adding and saving
note, in the previous chapter.

After you store that value, you'll do some printing using console.log, Similar to
what we have here:

if (command === 'add') {

var note = notes.addNote(argv.title, argv.body);

if (note) {
console.log('Note created');
console.log('--"');
console.log(Title: ${note.title}");
console.log(Body: ${note.body}");

} else {
console.log('Note title taken');

}

ObViOUSly, Note created Will be something like note read and note title taken Will be
something like note not found, but the general flow is going to be exactly the
same. Now, once you have that wired up inside of app.js, you can move on to
notes. js, filling out the function.

Now, the function inside of notes.js isn't going to be that complex. All you need

to do is fetch the notes, like we've done in previous methods, then you're going
to use notes.filter, which we explored to only return notes whose title matches
the title passed in as the argument. Now, in our case this is either going to be
zero notes, which means the note is not found, or it's going to be one note, which
means we've found the note that the person wants to return.

Next, we do need to return that note. It's important to remember the return value
from notes.filter is always going to be an array, even if that array only has one
item. What you're going to need to do is return the first item in the array. If that
item doesn't exist that's fine, it'll return undefined, as we want. If it does exist,
great, that means we found the note. This method only requires three lines of
code, one for fetching, one for filtering, and the return statement. Now, once you
have all that done we'll test it out.

Using the getNote function

Let's work on this method. Now, the first thing I'll do is fill out, inside of app.js, a
variable called note which is going to store the return value from getnote:

} else if (command === 'read') {
var note = notes.getNote(argv.title);

Now, this could be an individual note object or it could be undefined. In the next
line, I can use an if statement to print the message if it exists, or if it does not
exist. I'll use if note, and I am going to attach an eise clause:

} else if (command === 'read') {
var note = notes.getNote(argv.title);
if (note) {
} else {
3

This e1se clause will be responsible for printing an error if the note is not found.
Let's get started with that first since it's pretty simple, console.log, Note not found, dS
shown here:

if (note) {

} else {
console.log('Note not found');

}

Now that we have our e1se clause filled out we can fill out the if statement. For
this, I'll print a little message, console.log ('Note found') will get the job done. Then
we can move on to printing the actual note details, and we already have that code
in place. We are going to add the hyphenated spacer, then we have our note title
and our note body as shown here:

if (note) {
console.log('Note found');
console.log('--"');

console.log(Title: ${note.title}");
console.log(Body: ${note.body}");

} else {
console.log('Note not found');

Now that we're done with the inside of app.js, we can move into the notes.js file
and fill out the getnote method because currently it doesn't do anything with the
title that gets passed in.

Inside notes, what you needed to do was fill out those three lines. The first one is
going to be responsible for fetching the notes. We already have did that before
with the fetchnotes function in the previous section:

var getNote
var notes

}

(title) => {
fetchNotes();

Now that we have our notes in place we, can call notes.fiiter, returning all of the
notes. I'll make a variable called fiiterednotes, setting it equal to notes.filter. Now,
we know that the filter method takes a function, I'll define an arrow function (=)
just like this:

var filteredNotes = notes.filter(() => {

1

Inside the arrow function (=>), we'll get the individual note passed in, and we'll
return true when the note title, the title of the note we found in our JSON file,
equals, using triple equals, title:

var filteredNotes = notes.filter(() => {
return note.title === title;

13K
}

This will return true when the note title matches and false if it doesn't.
Alternatively, we can use arrow functions, and we only have one line, as shown
following, where we return something; we can cut out our condition, remove the
curly braces, and simply paste that condition right here:

| var filteredNotes = notes.filter((note) => note.title === title);
This has the exact same functionality, only it's a lot shorter and easier to look at.

Now that we have all of the data, all we need to do is return something, and we'll
return the first item in the filterednotes array. Next, we'll grab the first item,
which is the index of zero, and then we just need to return it using the return
keyword:

var getNote = (title) => {
var notes = fetchNotes();
var filteredNotes = notes.filter((note) => note.title === title);
return filteredNotes[O];

}

Now, there is a chance that riiterednotes, the first item, doesn't exist, and that's
fine, it's going to return undefined, in which case our else clause will run,
printing note not found. If there is a note, great, that's the note we want to print,
and over in app.js we do just that.

Running the getNote function

Now that we have this in place we can test out this brand new functionality
inside of Terminal by running our app using node app.js. I'll use the read
command, and I'll pass in a title equal to some string that I know does not exist
inside of a title in the notes-data.json file:

| node app.js read --title="something here"

When I run the command, we get note not found, as shown here, and this is exactly
what we want:

notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js read --title="something here"
Starting app.js
Starting notes.js
Command: read
Yargs { _: ['read' 1,

help: false,

version: false,

: 'something here',
‘app.js' }

Gary:notes-node Gary$ D

Now, if I do try to fetch a note where the title does exist, I would expect that note
to come back.

In the data file I have a note with a title of to buy; let's try to fetch that one. I'll
use the up arrow key to populate the previous command and replace the title
with to space, buy, and hit enter:

o]] notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js read --title="to buy"
Starting app.ijs
Starting notes.js
Command: read
Yargs { _: ['read’ 1,
help: false,
version: false,

Body: food
Gary:notes-node Gary$ |:|

As shown in the previous code, you can see note found prints to the screen, which
is fantastic. Following note found we have our spacers and following that we have
the title, which is to buy, and the body, which is food, exactly as it appears inside
of the data file. With this in place, we are done with the read command.

The DRY principle

Now, there is one more thing I want to tackle before we wrap up this section.
Inside app.js we now have the same code in two places. We have the space or
title body in the add command as well as in the read command:

if (command === 'add') {

var note = notes.addNote(argv.title, argv.body);

if (note) {
console.log('Note created');
console.log('--"');
console.log(Title: ${note.title}");
console.log(Body: ${note.body}");

} else {
console.log('Note title taken');

} else if (command === 'list') {
notes.getAll();
} else if (command === 'read') {
var note = notes.getNote(argv.title);
if (note) {
console.log('Note found');
console.log('--");

console.log(Title: ${note.title}");
console.log(Body: ${note.body}");

} else {
console.log('Note not found');

When you find yourself copying and pasting code, it's probably best to break that
out into a function that both locations call. This is the DRY principle, which
stands for Don't Repeat Yourself.

Using the logNote function

In our case, we are repeating ourselves. It would be best to break this out into a
function that we can call from both places. In order to do this, all we're going to
do is make a function in notes.js called 1ognote.

Now, in notes.js, down following the removenote function, we can make that brand
new function a variable called 1ognote. This is going to be a function that takes
one argument. This argument will be the note object because we want to print
both the title and the body. As shown here, we'll expect the note to get passed in:

var logNote = (note) => {

}

Now, filling out the 10gnote function is going to be really simple, especially when
youre solving a DRY issue, because you can simply take the code that's
repeated, cut it out, and paste it right inside the 1ognote function. In this case the
variable names line up already, so there is no need to change anything:
var logNote = (note) => {
console.log('--");

console.log(Title: ${note.title}");
console.log(Body: ${note.body});

3

Now that we have the 1ognote function in place, we can change things over in
app.js. In app.js, where we have removed the console.10g Statements we can call
notes.logNote, passing in the note object just like this:

else if (command === 'read') {
var note = notes.getNote(argv.title);
if (note) {

console.log('Note found');
notes.logNote(note);

} else {
console.log('Note not found');

}

And we can do the same thing in case of the ada command ir block. I can remove
these three console.10g statements and call notes.1lognote, passing in note:

if (command === 'add') {
var note = notes.addNote(argv.title, argv.body);

if (note) {
console.log('Note created');
notes.logNote(note);

} else {
console.log('Note title taken');

}

And now that we have this in place, we can rerun our program and hopefully
what we see is the exact same functionality.

The last thing to do before we rerun the program is export the 1ognote function in
exports module in notes. js file. Lognote is going to get exported and we're using the
ES6 syntax to do that:

module.exports = {
addNote,
getAll,
getNote,
removeNote,
logNote

}

With this in place, I can now rerun the previous command from Terminal using
up and hit enter:

| node app.js read --title="to buy"

notes-node — -bash — 10829

Gary:notes-node Gary$ node app.js read --title="to buy"

Starting app.js

Starting notes.js

Command: read

Yargs { _: ['read'],
help: false,
version: false,
title: 'to buy',
'$6': 'app.js' }

Title: to buy
Body: food
Gary:notes-node Gary$ D

As shown, we get note found printing to the screen, with the title and the body just
like we had before. I'm also going to test out the asd command to make sure that
one's working, node app.js add; we will use a title of things to do and a body of go

to post office:

|node app.js add --title="things to do" --body="go to post office"

Now, when I hit enter, we would expect the same log to print as it did before for
the add command, and that's exactly what we get:

eC e notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js add --title="things to do" --body="go to post office"
Starting app.js
Starting notes.js
Command: add
Yargs { _: [‘'add'],
help: false,
version: false,
title: 'things to do',
body: 'go to post office’,
'$8': 'app.js' }
Note created
Title: things to do
Body: go to post office

Gary:notes-node Gary$ D

Note created prints, we get our spacer, and then we get our title and our body.

In the next section, we're going to cover one of the most important topics in the
book; which is debugging. Knowing how to properly debug programs is going to
save you literally hundreds of hours over your Node.js career. Debugging can be
really painful if you don't have the right tools, but once you know how it's done,
it really isn't that bad and it can save you a ton of time.

Debugging

In this section, we're going to use the built-in debugger, which can look a little
complex because it's run inside of the command line. That means that you have
to use the command-line interface, which is not always the most pleasant thing
to look at. In the next section, though, we are going to be installing a third-party
tool that uses Chrome DevTools in order to debug your Node app. That one
looks great because the Chrome DevTools are fantastic.

Executing a program in debug
mode

Before going ahead, we will learn that we do need to create a place to play
around with debugging and that's going to happen in a playground file, since the
code we're going to write is not going to be important to the notes app itself.
Inside the notes app I'll make a new file called debugging. js:

000) Project — ~[Deskiop/notes-node
Project an + Enter the path for the new file. ftajson X [sonjs X
vl notes-node playground/debugging. js

> M node_modules

TOT T Tod = TOCGImToToI (]

var filteredNotes = notes.filter((note) => note.title !== title);

B jsonis saveNotes(filteredNotes)

Ei return notes.length !== filteredNotes.length;
@ .DS_Store ; ;
B wois var loghote = (note) => {
Bl greetingsat console. log('—")
E) notes-datajson console. log(Title: ${note.title}');
B console. log(Body: ${note.body}');

h

@ package-lock.json

-~
) ackagejon module. exports = {

addiote,
getAll,
gethote,
removeNote,
logNote

notes.js 59:10 LF UTF-8 JavaScript @]Dfilcs

In debugging. js we're going to start off with a basic example. We're going to make
an object called person, and on that object for the moment, we're going to set one
property name. Set it equal to your name, I'll set mine equal to the string andrew as

shown:

var person = {
name: 'Andrew'

3
Next up we're going to set another property, but in the next line, person.age. I'll set
mine equal to my age, 2s:

var person = {
name: 'Andrew'

}

person.age = 25;

Then we're going to add another statement that changes the name, person.name
equals something like mike:

var person = {
name: 'Andrew'

+
person.age = 25;

person.name = 'Mike';

Finally, we're gOng tO console.log the person ObjECt, the code is gOng to look like
this:

var person = {
name: 'Andrew'

+i
person.age = 25;

person.name = 'Mike';

console.log(person);

Now, we actually already have a form of debugging in this example, we have a
console.log Statement.

As you're going through the Node application development process, you may or
may not have used console.l1og to debug your app. Maybe something's not
working as expected and you want to figure out exactly what that variable has
stored inside of it. For example, if you have a function that solves a math
problem, maybe at one part in the function the equation is wrong and you're
getting a different result.

Using console.log can be a pretty great way to do that, but it's super limited. We
can view that by running it from Terminal, I'll run the following command for
this:

| node playground/debugging.js

When I run the file, I do get my object printed out to the screen, which is great,
but, as you know, if you want to debug something besides the person object you
have to add another console.10g Statement in order to do that.

Imagine you have something like our app.js file, you want to see what command
equals, then you want to see what argv equals, it could take a lot of time to add
and remove those console.log statements. There is a better way to debug. This is
using the Node debugger. Now, before we make any changes to the project, we'll
take a look at how the debugger works inside of Terminal, and as I warned you in
the beginning of the section, the built-in Node debugger, while it is effective, is a
little ugly and hard to use.

For now, though, we are going to run the app much the same way, only this time
we're going to type node inspect. Node debug is going to run our app completely
differently from the regular Node command. We're running the same file in the
playground folder, it's called debugging. js:

| node inspect playground/debugging.js

When you hit enter, you should see something like this:

® [] notes-node — node « node inspect playground/debugging.js — 108x29

Gary:notes-node Gary$ node inspect playground/debugging.ijs

< Debugger listening on ws://127.0.08.1:9229/42a2b428-f6b0-4ed2-890a-08587e2f46T0

< For help see https://nodejs.org/en/docs/inspector

< Debugger attached.

Break on start in playground/debugging.js:1

> 1 (function ts, require, module, __filename, __dirname) { var person = {
2 name: 'Andrew’'
3k

debug> D

In the output, we can ignore the first two lines. This essentially means that the
debugger Was set up correctly and it's able to listen to the app running in the
background.

Next, we have our very first line break in playground debugging on line one, and
right following to it you can see line one with a little caret (>) next to it. When
you first run your app in debug mode, it pauses before it executes the first
statement. When we're paused on a line like line one, that means the line has not
executed, so at this point in time we don't even have the person variable in place.

Now, as you can see in the preceding code, we haven't returned to the command
line, Node is still waiting for input, and there are a few different commands we
can run. For example, we can run n, which is short for next. You can type n, hit
enter, and this moves on to the next statement.

The next statement we have, the statement on line one, was executed, so the
person variable does exist. Then I can use n again to go to the next statement
where we declare the person.name property, updating it from andrew to mike:

[] @ notes-node — node + node inspect playground/debugging.js — 108x29

Gary:notes-node Gary$ node playground/debugging.js

{ name: 'Mike', age: 25 }

Gary:notes-node Bary$ node inspect playground/debugging.js

< Debugger listening on ws://127.0.0.1:9229/97e30353-1363-43ea-8255-4c9bbcc37er9

< For help see https://nodejs.org/en/docs/inspector

< Debugger attached.

Break on start i layground/debugging.js:1

» 1 (function (e ts, require, module, __filename, __dirname) { var person = {
2 name: 'And
3)

debug> n

break in playground/debugging.js:1

» 1 (function (exports, require, module, __filename, __dirname) { var person = {
2 name: 'Andrew'
3}

debug> n

break in playground/debugging.js:5
3}
4

> 5 n.age = 25;

6

7 person.name = ‘'Mike';
debug> D

Notice, at this point, age does exist because that line has already been executed.

Now, the n command goes statement by statement through your entire program.
If you realize that you don't want to do that through the whole program, which
could take a lot of time, you can use c. The ¢ command is short for Continue,
and that continues to the very end of the program. In the following code, you can
see Our console.log Statement runs the name wmike and the age 2s:

(O] o notes-node — node inspect playground/debugging.js — 108x29

Gary:notes-node Gary$ node playground/debugging.js

{ name: 'Mike', age: 25 }

Gary:notes-node Gary$ node inspect playground/debugging.js

< Debugger listening on ws://127.0.0.1:9229/97e38353-1363-43ea-8255-4c%bbcc370f9

< For help see https://nodejs.org/en/docs/inspector

< Debugger attached.

Break on start in playground/debugging.js:1l

> 1 (function | s, require, module, __filename, __dirname) { var person
2 name: 'Andrew'
3 H

debug> n

break in playground/debugging.js:1

» 1 (function (exports, require, module, __filename, __dirname) { var person
2 name: 'Andrew'

<3 H

debug> n

break in playground/debugging.js:5
3}
4

> 5 person.age = 25;
]
7 person.name = 'Mike';
debug> ¢
< { name: 'Mike', age: 25 }
< Waiting for the debugger to disconnect...
debug> D

This is that's a quick example of how to use the debug keyword.

Now, we actually didn't do any debugging, we just ran through the program
since it is a little foreign in terms of writing these commands, such as next and
continue, I decided to do a dry run once with no debugging. You can use control
+ C to quit the debugger and get returned back to Terminal.

I'll use ciear to clear all the output. Now that we have a basic idea about how we
can execute the program in debug mode, let's take a look at how we can actually
do some debugging.

Working with debugging

I'll rerun the program using the up arrow key twice to return to the Node debug
command. Then, I'll run the program, and I'll hit next twice, n and n:

notes-node — node « node inspect playground/debugging.js — 108x29

Gary:notes-node Gary$ node inspect playground/debugging.js

< Debugger listening on ws://127.0.0.1:9229/3d7975%e-bc76-4ef8-9147-477370426584

< For help see https://nodejs.org/en/docs/inspector

< Debugger attached.

Break on start in playground/debugging.js:1

> 1 (function (ts, require, module, __filename, __dirname) { var person = {
2 name: 'Andrew’'
3}

debug> n

break in playground/debugging.js:1

»> 1 (function (exports, require, module, __filename, __dirname) { var person = {
2 name: 'Andrew’
3}

debug> n

break in playground/debugging.js:5

I H
&

> 5 person.age = 25;
]
7 person.name = 'Mike';
[debug> n
break in playground/debugging.js:7
5 person.age = 25;
&6
» 7 person.name = 'Mike’';
8
9 console.log(person);
debug> D

At this point in time, we are on line seven, that is where the line break currently
is. From here we can do some debugging using a command called rep1, which
stands for Read Evaluate Print Loop. The rep1 command, in our case, brings
you to an entirely separate area of the debugger. When you hit it you're essentially
in a Node console:
break in playground/debugging.js:7
5 person.age = 25;
&

> 7 n.name = 'Mike';
8

9 console.log(person);
[debug> repl
Press Ctrl + C to leave debug repl
>

You can run any Node commands, for example, I can use console.log to print
something like test, and test prints up right there.

I can make a variable a that is equal to 1 plus s, then I can reference a and I can

>var a = 1 + 3;
>

see it's equal to 4 as shown:

More importantly, we have access to the current program as it sits, meaning as it
was before line seven was executed. We can use this to print out person, and as
shown in the following code, you can see the person's name is andrew because line
seven hasn't executed and the age is 25, exactly as it appears in the program:

> person
{ name:

|

This is where debugging gets really useful. Being able to look at the program
paused at a certain point in time is going to make it really easy to spot errors. |
could do anything I want, I could print out the person name property, and that
prints andrew to the screen, as shown here:

> person
{ name: ‘Andrew', age: 25 }

> person.name

>..”_,_

Now, once again, we still have this problem. I have to hit next through the
program. When you have a really long program, there could literally be hundreds
or thousands of statements that need to run before you get to the point you care
about. Obviously that is not ideal, so we're going to look at a better way.

Let's quit rep1 using control + C; now we're back at the debugger.
From here we are going to make a quick change to our application in debugging. js.

Let's say we want to pause line seven between the person age property update
and the person name property update. In order to pause, what we're going to do
is run the statement debugger:

var person = {
name: 'Andrew'

}

person.age = 25;

debugger;
person.name = 'Mike';

console.log(person);

When you have a debugger statement exactly like previous, it tells the Node
debugger t0 stop here, which means instead of using n (next) to go statement by
statement, you can use ¢ (continue), which is going to continue until either the
program exits or it sees one of the debugger keywords.

Now, over in Terminal, we're going to rerun the program exactly like we did
before. This time around, instead of hitting n twice, we're going to use c to
continue:

(] (&) notes-node — node « node inspect playground/debugging.js — 108x29

Gary:notes-node Gary$ node inspect playground/debugging.js
< Debugger listening on ws://127.6.0.1:9229/7973815b-a465-4797-b365-b877584e5acT
< For help see https://nodejs.org/en/docs/inspector
< Debugger attached.
Break on start in playground/debugging.js:1
> 1 (function (e s, require, module, __filename, __dirname) { var person = {
2 name: 'Andrew’
3}
debug> ¢
break in playground/debugging.js:7
5 person.age = 25;
&
> 7 debugger;
8
9 person.name = 'Mike';

debug>

Now, when we first used ¢, it went to the end of the program, printing out our
object. This time around it's going to continue until it finds that debugger keyword.

Now, we can use rep1, access anything we like, for example, person.age, shown in
this code:
debug> repl

Press Ctrl + C to leave debug repl
> person.age

25
Al

Once we're done debugging, we can quit and continue through the program.

Again, we can use control + C to quit rep1 and the debugger.

All real debugging pretty much happens with the debugger keyword. You put it
wherever you want on your program, you run the program in debug mode,
eventually it gets to the debugger keyword and you do something. For example
you explore some variable values, you run some functions, or you play around
with a code to find the error. No one really uses n to print through the program,
finding the line that causes the problem. That takes way too much time and it's
just not realistic.

Using debugger inside the notes
application

Now that you know a little bit about the debugger, I want you to use it inside our
notes application. What we will do inside notes.js is add the debugger statement in
1ognote function as the first line of the function. Then I will run the program in
debug mode, passing in some arguments that will cause 1ognote to run; for
example, reading a note, after the note gets fetched, it's going to call 10gnote.

Now, once we have the debugger keyword in the 1ognote function and run it in
debug mode with those arguments, the program should stop at this point. Once
the program starts in debug mode, we'll use ¢ to continue, and it'll pause. Next,
we'll print out the note object and make sure it looks okay. Then, we can quit rep1
and qtﬁt the debugger.

Now, first we are adding the debugger statement right here:

var logNote = (note) => {

debugger;

console.log('--");

console.log(Title: ${note.title}");
console.log(Body: ${note.body});

3

We can save the file, and now we can move into Terminal; there's no need to do
anything else inside our app.

Inside Terminal we're going to run our app.js file, node debug app.js, because we
want to run the program in debug mode. Then we can pass in our arguments,
let's say the read command, and I'll pass in a title, "to buy" as shown here:

| node debug app.js read --title="to buy"

In this case I have a note with the title "to buy", as shown here:

@ [] [4 notes-data.json — ~/Desktop/notes-node
Project app.js x notes.js o debugging.js x notes-data.json x json.js x
~ [l notes-node [{“ti‘de":"rto buy" ,"body":" food"}, {"title":"to buy from store","body":"food"},{"title":"
> I node_modules
~ M playground
@ debugging.js
B jsonis
@ notes.json
@ .DS_Store
B appis

@ greetings.txt

Bl notes.js
@ package-lock.json

@ package json

notes-data.json 1:12 LF UTF-8 JSON |;T0fies

Now, when I run the preceding command, it's going to pause before that first
statement runs, this is expected:

00
Gary:notes-node Gary$ node inspect app.js read --title="to buy"

< Debugger listening on ws://127.9.9.1:9229/b4ee6ab7-6709-408c7-bacl-8f1857aeedcd
< For help see https://nodejs.org/en/docs/inspector

< Debugger attached.

Break on start in app.js:1

> 1 (function (ex| ts, require, module,
2

3 const fs = require('fs');

notes-node — node « node inspect app.js read --title=to buy — 108=29

filename, __dirname) { console.log('Starting app.js');

I can now use ¢ to continue through the program. It's going to run as many
statements as it takes for either the program to end or for the debugger keyword to
be found, and as shown in the following code, you can see the debugger was found
and our program has stopped on line 49 of notes.js:

® o notes-node — node « node inspect app.js read --title=to buy — 108x29

Gary:notes-node Gary$ node inspect app.js read —-title="to buy"
< Debugger listening on ws://127.8.8.1:9229/bkeeba57-67@89-48c7-bacl-8f1857aeedc5
< For help see https://nodejs.orgfen/docs/inspector

< Debugger attached.

Break on start in app.js:1

> 1 (function (s, require, module, __filename, __dirname) { console.log('Starting app.js'):

2
3 const fs = require('fs');

debug> ¢

< Starting app.js

< Starting notes.js

< Command: read

< Yargs { _: ['read’' 1,

< help: false,

< version: false,

< title: 'to buy',

< '$@': 'app.js' }

< Note found

break in notes.js:49

47

48 var logNote = (note) => {

»>49 de

5@ console.log('--');

51 console.log(Title: ${note.title}");
debug> D

This is exactly what we wanted to do. Now, from here, I'll go into rep1 and print
out note argument, and as shown in the following code, you can see we have the
note with the title of to buy and the body food:

debug> repl
Press Ctrl + C to leave debug repl

» note

{ title: 'to buy', body: 'food' }
A |

Now, if there was an error in this statement, maybe the wrong thing was printing
to the screen, this would give us a pretty good idea as to why. Whatever gets
passed into the note is clearly being used inside of the console.10g statements, so if
there was an issue with what's printing, it's most likely an issue with what gets
passed into the 1ognote function.

Now that we've printed the note variable, we can shut down rep1, and we can use
control + C or quit to quit the debugger.

Now we're back at the regular Terminal and we have successfully completed the
debugging inside the Node application. In the next section, we're going to look at
a different way to do the same thing, a way with a much nicer graphic user
interface that I find a lot easier to navigate and use.

Listing notes

Now that we've made some awesome progress on debugging, let's go back to the
commands for our app, because there is only one more to fill out (we have
covered the add, read, and remove commands in the chapter 3, Node Fundamentals -
Part 2, and this chapter, respectively). It's the 1ist command, and it's going to be
really easy, there is nothing complex going on in the case of the 1ist command.

Using the getAll function

In order to get started, all we need to do is fill out the list notes function, which
in this case we called geta11. The geta11 function is responsible for returning every
single note. That means it's going to return an array of objects, an array of all of
our notes.

All we have to do that is to return fetchnotes, as shown here:

var getAll = () => {
return fetchNotes();

}

There's no need to filter, there's no need to manipulate the data, we just need to
pass the data from fetchnotes back through geta11. Now that we have this in place,
we can fill out the functionality over inside of app. js.

We have to create a variable where we can store the notes, I was going to call it

notes, but I probably shouldn't because we already have a notes variable

declared. I'll create another variable, called ai1notes, setting it equal to the return

value from geta11, which we know because we just filled out returns all the notes:
else if (command === 'list') {

var allNotes = notes.getAll();
b

Now I can use console.log to print a little message and I'll use template strings so |
can inject the actual number of notes that are going to be printed.

Inside the template strings, I'll add printing, then the number of notes using the s
(dollar) sign and the curly braces, aiinotes.length: that's the length of the array
followed by notes with the s in parenthesis to handle both singular and plural
cases, as shown in the following code block:

else if (command === 'list') {

var allNotes = notes.getAll();
console.log(Printing ${allNotes.length} note(s).’);

}

So, if there were six notes, it would say printing six notes.

Now that we have this in place, we have to go about the process of actually
printing each note, which means we need to call 10gvote Once for every item in
the alinotes array. To do, this we'll use foreach, which is an array method similar to
filter.

Filter lets you manipulate the array by returning true or false to keep items or
remove items; foreach simply calls a callback function once for each item in the
array. In this case we can use it using alinotes.foreach, passing in a callback
function. Now, that callback function will be an arrow function (=>) in our case,
and it will get called with the note variable just like filter would have. And all
we'll call is notes.1ognote, passing in the note argument, which is right here:
else if (command === 'list') {
var allNotes = notes.getAll();
console.log(Printing ${allNotes.length} note(s).’);

allNotes.forEach((note) => {
notes.logNote(note);

IOF
}

And now that we have this in place, we can actually simplify it by adding the
lognote call, as shown in here:
else if (command === 'list') {
var allNotes = notes.getAll();

console.log(Printing ${allNotes.length} note(s).’);
allNotes.forEach((note) => notes.logNote(note));

}

This is the exact same functionality, only using the expression syntax. Now that
we have our arrow function (=>) in place, we are calling notes.1lognote Once for
each item in the all notes array. Let's save the app.js file and test this out over in
Terminal.

In order to test out the 1ist command, all I'll use is node app.js with the command
1ist. There is no need to pass in any arguments:

| node app.js list

When I run this, I do get printing 3 note(s) and then I get My 3 notes to buy, to buy
from store, and things to do, as shown in the following code output, which is
fantastic:

[NeN] notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js list
Starting app.Jjs

Starting notes.js

Command: 1list

Yargs { _: ['list' 1, help: false, version: false, '$8': 'app.js' }
Printing 3 note(s).

Title: to buy

Body: food

Title: to buy from store
Body: food

Title: things to do
Body: go to post office

Gary:notes-node Gary$ D

With this in place, all of our commands are now working. We can add notes,
remove notes, read an individual note, and list all of the notes stored in our
JSON file.

Moving on to the next section, I want to clean up some of the commands. Inside
app.js and notes.js, Weé have some console.log Statements that are printing out a few
things we no longer need.

At the very top of app.js, I am gOiDg to remove the console.log('starting app.js')
statement, making the constant s the first line.

I'll also remove the two statements: console.log('Command: ', command) and
console.log('Yargs', argv) that print the command and the yargs variable value.

Inside notes.js, I will also remove the console.log('stating notes.js') Sstatement at
the very top of that file, since it is no longer necessary, putting constant fs at the
top.

It was definitely useful when we first started exploring different files, but now
we have everything in place, there's no need. If I rerun the 1ist command, this
time you can see it looks a lot cleaner:

Gary:notes-node Gary$ node app.js list
Printing 3 note(s).

Title: to buy

Body: food

Title: to buy from store

Body: food

Title: things to do
Body: go to post office
Gary:notes-node Gary$ D

notes-node — -bash — 10829

printing three notes iS the very first line showing up. With this in place, we have

done our commands.

In the next section, we're going to take a slightly more in-depth look at how we
can configure yargs. This is going to let us require certain arguments for our
commands. So if someone tries to add a note without a title, we can warn the
user and prevent the program from executing.

Advanced yargs

Before we get into the advanced discussion of yargs, first, I want to pull up the
yargs docs so that you at least know where the information about yargs is
coming from. You can get it by Googling npm yargs. We're going to go to the yargs
package page on npm. This has the documentation for yargs, as shown here:

000 [vargs ¥]

€ - C | (O httpsy/wwwnpmjs.com/package/yargs i

Neptunium, Promethium, Manganese npmEnterprise features pricing documentation support

We need yourinput. Help make JavaScript better; Take the 2017 JavaScript Ecosystem survey»

yargs b non install yargs
i 8 e 3 e e i

o _ beoe published 5 days ago
Having prablems? want to contribute? join our community slack.

. o ‘ 10.L.1is the atest of 152 releases
Yargs be a node.s brary fer heartes tryin'ter parse optstrings.
github.com/yargs yargs

yargs,s.org

MIT

Collaborators lit

1]

Now there is no table of contents for the yargs docs, which makes it kind of
difficult to navigate. It starts off with some examples that don't go in any
particular order, and then eventually it gets into a list of all the methods you have
available, and that's what we're looking for.

So I'll use command + F (Ctrl + F) to search the page for methods, and as shown

in the following screenshot, we get the methods header, which is the one we're
looking for:

- = https://www.npmjs.com/package/yargs

methods oot

By itself,

AW ®

require('yargs').argv

willuse the process.argv array to construct the argv object.

You can passin the process. argv yourself:

require('yargs')(['-x', "1', '=y', '2']).argv
oruse . parse() todo the same thing: L3
require('yargs').parse(| '-x', '1', '-y', '2' 1)

The rest of these methods below come in just before the terminating . argwv.

If you scroll down on the page, we start to see an alphabetical list of all the
methods you have access to inside of yargs. We're specifically looking for
.command; this is the method we can use to configure all four of our commands: the

add, read, remove and 1ist notes:

- c https://www.npmjs.com/package/yargs
choices: ['xs', 's', 'm', 'l', 'xl'] methods [n v x
13}
.argv

.command(cmd, desc, [builder], [handler])
.command(cmd, desc, [module])

.command(module)

Document the commands exposed by your application.

Use desc to provide a description for each command your application accepts (the values stored inargv. _). Set
descto false tocreate a hidden command. Hidden commands don't show up in the help output and aren't

available for completion.

Optionally, you can previde a builder object to give hints about the options that your command accepts:

We're going to specify which options they require, if any, and we can also set up
things like descriptions and help functionality.

Using chaining syntax on yargs

Now in order to get started, we need to make some changes inside of app.js.
We're going to start with the ada command (for more information, please refer to
the Adding and saving notes section in the previous chapter).

We want to add a few helpful pieces of information in argv function inside app.js,
that will:

e Let yargs verify the add command is ran appropriately, and
e Let the user know how the add command is meant to be executed

Now we are going to be chaining property calls, which means right before I
access .argv I want to call .command, and then I'll call .argv on the return value from
command as shown here:

const argv = yargs

.command()
.argv;

Now this chaining syntax probably looks familiar if you've used jQuery, a lot of
different libraries are supported. Once we call .command On yargs, we're going to
pass in three arguments.

The first one is the command name, exactly how the user is going to type it in
Terminal, in our case it's going to be add:
const argv = yargs

.command('add"')
.argv;

Then we're going to pass another string in, and this is going to be a description
of what the command does. It is going to be some sort of English readable
description that a user can read to figure out weather that's the command that
they want to run:

const argv = yargs

.command('add', 'Add a new note')
.argv;

The next one is going to be an object. This is going to be the options object that
lets us specify what arguments this command requires.

Calling the .help command

Now before we get into the options object, let's add one more call right after
command. We're going to call .ne1p, which is a method, so we're going to call it
as a function, and we don't need to pass in any arguments:

const argv = yargs
.command('add', 'Add a new note', {

1)
.help()

.argv;

When we add on this help call, it sets up yargs to return some really useful
information when someone runs the program. For example, I can run the node
app.js command with the neip flag. The ne1p flag is added because we called that
help method, and when I run the program, you can see all of the options we have
available:

| node app.js --help

notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js --help
app.js [command]

Commands:
app.js add Add a new note

Options:
--version Show version number [boolean]
--help Show help [boolean]

Gary:notes—-node Gary$ |:|

As shown in the preceding output, we have one command, add Add a new note, and

a help option for the current command, neip. And the same thing holds true if we
run the node app.js add command with ne1p as shown here:

| node app.js add --help

In this output, we can view all of the options and arguments for adda command,
which in this case happens to be none because we haven't set those up:

notes-node — -bash — 10829

Gary:notes-node Gary$ node app.js add --help
app.js add

Add a new note
Options:

--yersion Show version number [boolean]
--help Show help [boolean]

Gary:notes-node Gary$ D

Adding the options object

Let's add options and arguments back inside Atom. In order to add properties,
we're going to update the options object, where the key is the property name,
whether it's title or body, and the value is another object that lets us specify how
that property should work, as shown here:

const argv = yargs

.command('add', 'Add a new note', {
title: {

}

1)
.help()

.argv;

Adding the title

In the case of title, we would add the title on the left-hand side, and we would
put our options object on the right-hand side. Inside the title, we're going to
configure three properties describe, demand, and alias:

The describe property will be set equal to a string, and this is going to describe
what is supposed to be passed in for the title. In this case, we can just use Title of

note:
const argv = yargs

.command('add', 'Add a new note', {

title: {
describe: 'Title of note'

3

1)

.help()

.argv;

Next we configure demand. It is going to tell yarg whether or not this argument is
required. demand is false by default, we'll set it to true:

const argv = yargs
.command('add', 'Add a new note', {
title: {
describe: 'Title of note',
demand: true
}

1)
.help()

.argv;

Now if someone tries to run the add command without the title, it's
going to fail, and we can prove this. We can save app.js, and in
Terminal, we can rerun our previous command removing the heip
flag, and when I do that, you see we get a warning, missing required
argument: title dS shown here:

& @ notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js add
app.js add

Add a new note

Options:
--version Show version number
--help Show help
-—-title Title of note

[boolean]
[boolean]
[required]

Missing required argument: title
Gary:notes-node Gary$ I

Notice that in the output the title argument, is Title of note, which is
the describe string we used, and it's required on the right side,
letting you know that you have to provide a title when you're
calling that adza command.

Along with describe and demand wWe are going to provide a third option, this is
called aiias. The alias lets you provide a shortcut so you don't have to type --
title; you can set the alias equal to a single character like t:

const argv = yargs

title: {
describe: 'Title of note',
demand: true,
alias: 't'

}

1)
.help()

.argv;

.command('add', 'Add a new note', {

When you have done that, you can now run the command in Terminal using the

new syntax.

Let's run our add command, node app.js add, instead of --titie. We're going to use
-t, which is the flag version, and we can set that equal to whatever we like, for
example, fiag title Will be the title, and --body will get set equal to body , as shown
in the following code. Note that we haven't set up the body argument yet so there

1S NO alias:

| node app.js add -t="flag title" --body="body"

If I run this command, everything works as expected. The flag title shows up
right where it should, even though we used the alias version which is the letter ¢,

as shown here:

® notes-node — -bash — 108x29
Gary:notes-node Gary$ node app.js add FESAflag title" --body="body"
Note created

Title: flag title
Body: body
Gary:notes-node Gary$ I

Adding the body

Now that we have our title configured, we can do the exact same thing for the
body. We'll specify our options object and provide those three arguments:
describe, demand, and alias for body.

const argv = yargs
.command('add', 'Add a new note', {

title: {
describe: 'Title of note',
demand: true,
alias: 't'

+

body: {

}

1)
.help()

.argv;

The first one is describe and that one's pretty easy. describe iS going to get set equal
to a string, and in this case sody of note will get the job done:

const argv = yargs
.command('add', 'Add a new note', {

title: {
describe: 'Title of note',
demand: true,
alias: 't'

+

body: {
describe: 'Body of note'

}

1)
.help()

.argv;

The next one will be demand, and to add a note we are going to need a body. SO
we'll set demand equal to true, just like we do up previous for titie:

const argv = yargs
.command('add', 'Add a new note', {

title: {
describe: 'Title of note',
demand: true,
alias: 't'

+

body: {
describe: 'Body of note'
demand: true

}

1)
.help()
.argv;

And last but not least is the aiias. The alias is going to get set equal to a single
letter, I'll use the letter b for body:

const argv = yargs
.command('add', 'Add a new note', {

title: {
describe: 'Title of note',
demand: true,
alias: 't'

}

body: {
describe: 'Body of note'
demand: true,
alias: 'b'

}

1)
.help()

.argv;

With this in place, we can now save app.js and inside Terminal, we can take a
moment to rerun node app.js add with the neip flag:

| node app.js add --help

When we run this command, we should now see the body argument showing up,
and you can even see it shows the flag version, as shown in the following output,
the alias -b (Body of note), and it is required:

©] notes-node — -bash — 108=29

Gary:notes-node Gary$ node app.js add —--help
app.js add

Add a new note

Options:
-=version Show version number [boolean]
--help Show help [boolean]
—-—title, -t Title of note [required]
--body, -b Body of note [required]

Gary:notes-node Gary$ I

Now I'll run node app.js add passing in two arguments t. I'll set that equal to t, and
b setting it equal to »b.

When I run the command, everything works as expected:

| node app.js add -t=t -b=b

[NoN] notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js add -t=t -b=b
Note created

Title: £
Body: b
Gary:notes-node Gary$ I

As shown in the preceding output screenshot, a new note was created with a title
of + and a body of ». With this in place, we've now successfully completed the
setup for the add command. We have our ada command title, a description, and the
block that specifies the arguments for that command. Now we do have three
more commands to add support for, so let's get started doing that.

Adding support to the read and
remove commands

On the next line, I'll call .command again, passing in the command name. Let's do
the 1ist command first because this one is really easy, no arguments are required.
Then we'll pass in the description for the 1ist command, List all notes, as shown
here:

.command('list', 'List all notes')

.help()
.argv;

Next up, we'll call command again. This time we'll do the command for read. The
read command reads an individual note, so for the description for the read
command, we'll use something like read a note:

.command('list', 'List all notes')
.command('read', 'Read a note')
.help()

.argv;

Now the read command does require the title argument. That means we are going
to need to provide that options object. I'll take titie from add command, copy it,
and paste it in the reas command options object:

.command('list', 'List all notes')
.command('read', 'Read a note', {
title: {

describe: 'Title of note',
demand: true,
alias: 't'

}

1)
.help()

.argv;

As you probably just noticed, we have repeated code. The title configuration just
got copied and pasted into multiple places. It would be pretty nice if this was
DRY, if it was in one variable we could reference in both locations, in add and
read cCOmmands.

Will call command for remove, just following where we called the command for

read. NOw, the remove command will have a description. We'll stick with
something simple like remove a note, and we will be providing an options object:

.command('remove', 'Remove a note', {

3)

Now I can add the options object identical to the read command. However, in that
options object, I'll set title equal to titieoptions, as shown here, to avoid the
repetition of code:

.command('remove', 'Remove a note', {
title: titleOptions

3)

Adding the titleOption and
bodyOption variables

Now I don't have the titieoptions object created yet so the code would currently
fail, but this is the general idea. We want to create the titieoptions Object once
and reference it in all the locations we use it, for add, read and remove command. I
can take titleoptions, and add it for read as well as for ad« command, as shown
here:

.command('add', 'Add a new note', {
title: titleOptions,
body: {
describe: 'Body of note',
demand: true,
alias: 'b'
3
1)

.command('list', 'List all notes')

.command('read', 'Read a note', {
title: titleOptions

1)

.command('remove', 'Remove a note', {

title: titleOptions

})

Now, just previous the constant argv, I can create a constant called titieoptions,
and I can set it equal to that object that we defined for add and reas command
earlier, which is describe, demand, and a1ias, as shown here:
const titleOptions = {
describe: 'Title of note',
demand: true,

alias: 't'

}

We now have the titieoptions in place, and this will work as expected. We have
the exact same functionality we did before, but we now have the titieoptions in a
separate object, which follows the DRY principle we discussed in the Reading
note section.

Now, we could also do the same thing for body. It might seem like overkill since
we're only using it in only one location, but if we're sticking to the pattern of
breaking them out into variables, I'll do it in the case of the body as well. Just

following the titieoptions constant, I can create the constant bodyoptions, setting it
equal to the options object we defined in the body, for add« command in the
previous subsection:
const bodyOptions = {
describe: 'Body of note',
demand: true,

alias: 'b'

}

With this in place, we are now done. We have add, read, and remove, all with their
arguments set up referencing the titieobject and bodyobject variables defined.

Testing the remove command

Let's test out the remove command in Terminal. I'll list out my notes using node
app.js list, SO I can see which notes I have to remove:

| node app.js list

[NON] notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js list
Printing 5 note(s).

Title: to buy

Body: food

Title: to buy from store

Body: food

Title: things to do

Body: go to post office

Title: flag title

Body: body

Title: t

Body: b
Gary:notes-node Gary$ D

I'll remove the note with the title t, USng the node app.js remove command and our
flag »cv:

|node app.js remove -t="t"

® notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js remove -t="t"
Note was removed
Gary:notes-node Gary$ I

We'll remove the note with the title t, and as shown previous, Note was removed
prints to the screen. And if I use the up arrow key twice, I can list the notes out
again, and you can see the note with the title + has indeed gone:

notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js remove -t="t"
Note was removed

Gary:notes-node Gary$ node app.js list

Printing & note(s).

Title: to buy

Body: food

Title: to buy from store

Body: food

Title: things to do

Body: go to post office

Title: flag title

Body: body
Gary:notes-node Gary$ I

Let's remove one more note using the node app.js remove command. This time
we're going to use --title, which is the argument name, and the note we're going
to remove has the title flag title, as shown in this code:

® notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js remove --title="flag title"
Note was removed

Gary:notes-node Gary$ I

When I remove it, it says Note was removed, and if I rerun the 1ist command, I can
see that we have three notes left, the note was indeed removed , as shown here:

® notes-node — -bash — 108x29
Gary:notes-node Gary$ node app.js remove --title="flag title"
Note was removed
Gary:notes-node Gary$ node app.js list
Printing 3 note(s).
Title: to buy
Body: food

Title: to buy from store

Body: food

Title: things to do
Body: go to post office
Gary:notes-node Gary$ I

And that is it for the notes application.

Arrow functions

In this section, you're going to learn the ins and outs of the arrow function. It's an
ES6 feature, and we have taken a little look at it. Inside notes.js we used it in a
few basic examples to create methods such as fetchnotes and savenotes, and we
also passed it into a few array methods like filter, and for each array, we used it
as the callback function that gets called once for every item in the array.

Now if you try to swap out all of the functions in a program with arrow
functions, it's most likely not going to work as expected because there are some
differences between the two, and it's really important to know what those
differences are, so you can make the decision to use a regular ES5 function or an
ES6 arrow function.

Using the arrow function

The goal in this section is to give you the knowledge to make that choice, and
we'll kick things off by creating a new file in the playground folder called arrow-

function.js.

[] [] B Project — ~/Desktop/notes-node
Project ap 4+ Enter the path for the new file. ita.json X json.js X
v M notes-node playground/arrow-function. js
> [l node_modules
oy
const argv = yargs
B .0s_store .command('add', 'Add a new note', {
Bl appis title: titleOptions,
B greetings.txt body: bodyOptions

)]

@ notes-data.json " .
_eammand({'Tist'. '"liet all nntec')

Inside this file, we're going to play around with a few examples, going over
some of the subtleties to the arrow function. Before we type anything inside of
the file, I'll start up this file with nodemon, so every time we make a change it
automatically refreshes over in Terminal.

If you remember, nodemon is the utility we installed in chapter 2, Node
Fundamentals - Part 1. It was a global npm module. The nodemon is the command
to run, and then we just pass in the file path like we would for any other Node
command. As we're going into the piayground folder, and the file itself is called
arrow-function.js, we'll run the fOHOWiDg command:

| nodemon playground/arrow-function.js

We'll run the file, and nothing prints to the screen, as shown in the following
output, besides the nodemon logs because we have nothing in the file:

[NON] nates-node — node [usr/local/binfnodemon playground/arrow-function.js — 108x29

Gary:notes-node Gary$ nodemon playground/arrow-function.js
[nodemon] 1.14.16

[nodemon] to restart at any time, enter "rs’

[nodemon] watching:

To get started, in the arrowfunction.js file, we'll create a function called square, by
making a variable called square and setting it equal to an arrow function.

To make our arrow function (=>), we'll first provide the arguments inside
parentheses. Since we'll be squaring a number, we just need one number, and I'll
refer to that number as . If I pass in 3, I should expect 9 back, and if I pass in 9,
I would expect 81 back.

After the arguments list, we have to put the arrow in arrow function (=>) by
putting the equal sign and the greater than symbol together, creating our nice
little arrow. From here we can provide, inside curly braces, all the statements we
want to execute:

var square = (x) => {

}

Next, we might create a variable called result, setting that equal to x times x, then
we might return the result variable using the return keyword, as shown here:

var square = (x) => {
var result = x * x;
return result;

}

Now, obviously this can be done on one line, but the goal here is to illustrate that
when you use the statement arrow function (=>), you can put as many lines as
you want in between those curly braces. Let's call a square, we'll do that using
console.log SO we can print the result to the screen. I'll call square; and we'll call
square with o, the square of 9 would be s1, so we would expect s1 to print to the
screen:

var square = (x) => {
var result = x * x;
return result;

}

console.log(square(9));

I'll save the arrow function (=>) file, and in Terminal, s1 shows up just as we
expect:

[NON] nates-node — node [usr/local/binfnodemon playgroundfarrow-function.js — 108x29

Gary:notes-node Gary$ nodemon playground/arrow-function.js
[nodemon] 1.14.10

[nodemon] to restart at any time, enter 'rs’

[nodemon] watching: #.%

Now the syntax we used in the previous example is the statement syntax for the
arrow function (=>). We've also explored the expression syntax earlier, which lets
you simplify your arrow functions when you return some expressions. In this
case all we need to do is specify the expression we want to return. In our case
that's x times x:

var square = (X) => X * X;
console.log(square(9));

You don't need to explicitly add the return keyword. When you use an arrow
function (=>) without your curly braces, it's implicitly provided for you. That
means we can save the function as shown previous and the exact same result is
going to print to the screen, s1 shows up.

This is one of the great advantages of arrow functions when you use them in
cases like filter or for those which we did in the notes. ;s file. It lets you simplify
your code keeping everything on one line and making your code a lot easier to
maintain and scan.

Now, there is one thing I want to note: when you have an arrow
function (=>) that has just one argument, you can actually leave off

0 the parentheses. If you have two or more arguments, or you have

zero arguments, you are going to need to provide the parentheses,
but if you just have one argument, you can reference it with no
parentheses.

If T save the file in this state, s1 still prints to the screen; and this is great we have
an even simpler version of our arrow function (=>):

Now that we have a basic example down, I want to move on to a more complex
example that's going to explore the nuances between regular functions and arrow
functions.

Exploring the difference between
regular and arrow functions

To illustrate the difference, I'll make a variable called user, which will be an
object. On this object we'll specify one property, name. Set name equal to the
string, your name, in this case I'll set it equal to the string andrew:

var user = {
name: 'Andrew'

}

Then we can define a method on the user object. Right after name, with my
comma at the end of the line, I'll provide the method say+i, setting it equal to an
arrow function (=>) that doesn't take any arguments. For the moment, we'll keep
the arrow function really simple:

var user = {
name: 'Andrew',
sayHi: () => {

}
}

All we'll do inside sayni is use console.log to print to the screen, inside of template
strings Hi:

var user = {
name: 'Andrew',
sayHi: () => {
console.log('Hi");
}
1

We're not using template strings yet, but we will later so I'll use them here.
Down following the user object, we can test out say+i by calling it, user.sayHi:

var user = {
name: 'Andrew',
sayHi: () => {
console.log("Hi");
}
iy

user.sayHi();

I'll call it then save the file, and we would expect that wi prints to the screen
because all our arrow function (=>) does is use console.log t0 print a static string.
Nothing in this case will cause any problems; you'd be able to swap out a regular
function for an arrow function (=>) without issue.

Now the first issue that will arise when you use arrow functions is the fact that
arrow functions do not bind a this keyword. So if you are using this inside your
function, it's not going to work when you swap it out for an arrow function (=>).
Now, this binding; refers to the parent binding, in our case there is no parent,
function so this would refer to the global this keyword. Now we have our
console.log that does not use this, I'll swap it out for a case that does.

We'll put a period after wi, and I'll say I'm, followed by the name, which we
would usually be able to access via this.name:

var user = {
name: 'Andrew',
sayHi: () => {
console.log('Hi. I'm ${this.name}");
3
+i

user.sayHi();

If I try to run this code, it is not going to work as expected; we're going to get i
I'm undefined printing to the screen, as shown here:

Hi. I'm undefined

In order to fix this, we'll look at an alternative syntax to arrow functions that's
great when you're defining object literals, as we are in this case.

After sayni, I'll make a new method called sayniait using a different ES6 feature.
ES6 provides us a new way to make methods on objects; you provide the method
name, saynialt, then you go right to the parentheses skipping the colon. There's
also no need for the function keyword, even though it is a regular function it's
not an arrow function (=>). Then we move on to our curly braces as shown here:
var user = {
name: 'Andrew',

sayHi: () => {
console.log('Hi. I'm ${this.name}");

3
sayHiAlt () {

}
}

user.sayHi();

Inside here I can have the exact same code we have in the sayni function, but it is
going to work as expected. It's going to print ni. 1'm andrew. I'll call sayniait down
following instead of the regular sayni method:

var user = {
name: 'Andrew',
sayHi: () => {
console.log('Hi. I'm ${this.name}");

3
sayHiAlt () {
console.log('Hi. I'm ${this.name}");
3
3
user.sayHiAlt();

And in Terminal, you can see Hi. 1'm Andrew, prints to the screen:

I'm Andrew '

The saynialt syntax is a syntax that you can use to solve this problem when you
create functions on object literals. Now that we know that the this keyword does
not get bound, let's explore one other quirk that arrow functions have, it also
does not bind the arguments array.

Exploring the arguments array

Regular functions, like sayniait, are going to have an arguments array that's
accessible inside of the function:

var user = {
name: 'Andrew',
sayHi: () => {
console.log('Hi. I'm ${this.name}");

3
sayHiAlt () {
console.log(arguments);
console.log('Hi. I'm ${this.name}");
3
+i
user.sayHiAlt();

Now, it's not an actual array, it's more like an object with array; like properties,
but the arguments object is indeed specified in a regular function. If I pass in
one, two, and three and save the file, we'll get that back when we log out
arguments:

var user = {
name: 'Andrew',
sayHi: () => {
console.log('Hi. I'm ${this.name}");

3
sayHiAlt () {
console.log(arguments);
console.log('Hi. I'm ${this.name}");
3
+i
user.sayHiAlt(1, 2, 3);

Inside nodemon, it's taking a quick second to restart, and right here we have our
object:

We have one, two, and three, we have the index for each as the property name,
and this works because we're using a regular function. If we were to switch to
the arrow function (=>) though, it is not going to work as expected.

I'll add console.1og(arguments) inside of my arrow function (=>), and I'll switch from
calling sayniait back to the original method say+i, as shown here:

var user = {
name: 'Andrew',
sayHi: () => {
console.log(arguments);
console.log('Hi. I'm ${this.name}");

+
sayHiAlt() {
console.log(arguments);
console.log('Hi. I'm ${this.name}");
}
}
user.sayHi(1, 2, 3);

When I save the file in arrow-function.js, we'll get something a lot different from
what we had before. What we'll actually get is the global arguments variable,
which is the arguments variable for that wrapper function we explored:

@00 notes-node — node Jusr/local/binfnodemon playground/arrow-function.js — 108x29

row-function.js’

{ [Function: require]
resolve: { [Function: resolve] paths: [Function: paths] },
L EMH
Module {
L L
exports: {},
parent: null,
filename: '/Users/Gary/Desktop/notes-node/playground/arrow-function.js',
loaded: false,
children: [],
paths: [Array] },
extensions: { '.js': [Function], '.json': [Function], '.node': [Function] },
cache!
{ '/Users/Gary/Desktop/notes-node/playground/arrow-function.js': [Module] } },
Ly -
Module {
adis L
exports: {},
parent: null,
filename: '/Users/Gary/Desktop/notes-node/playground/arrow-function.js',
loaded: false,
children: [1,
paths:
['/users/Gary/Desktop/notes-node/playground/node_modules',
'/Users/Gary/Desktop/notes-node/node_modules',
'/Users/Gary/Desktop/node_modules’',

In the previous screenshot, we have things like the require function, definition,
our modules object, and a couple of string paths to the file and to the current
directory. These are obviously not what we're expecting, and that is another thing
that you have to be aware of when you're using arrow functions; you're not going
to get the arguments keyword, you're not going to get the tnhis binding (defined in
sayHi syntax) that you'd expect.

These problems mostly arise when you try to create methods on an object and
use arrow functions. I would highly recommend that you switch to saynialt
syntax which we discussed, in those cases. You get a simplified syntax, but you
also get the disk binding and you get your arguments variable as you'd expect.

Summary

In this chapter, we were able to reuse the utility functions that we already made
in previous chapters, making the process of filling out a remove note that much
easier. Inside app.js, we worked on how the removenote function is executed, if it
was executed successfully, we print a message; if it didn't, we print a different
message.

Next, we were able to successfully fill out the reads command and we also created
a really cool utility function that we can take advantage of in multiple places.
This keeps our code DRY and prevents us from having the same code in multiple
places inside of our application.

Then we discussed a quick introduction to debugging. Essentially, debugging is
a process that lets you stop the program at any point in time and play around
with the program as it exists at that moment. That means you can play around
with variables that exist, or functions, or anything inside of Node. We learned
more about yargs, its configuration, setting up commands, their description, and
arguments.

Last, you explored a little bit more about arrow functions, how they work, when
to use them, and when not to use them. In general, if you don't need this
keyword, or the arguments keyword you can use an arrow function without a
problem, and I always prefer using arrow functions over regular functions when
I can.

In the next chapter, we will explore asynchronous programming and how we can
fetch data from third-party APIs. We'll use both regular functions and arrow
functions a lot more, and you'll be able to see firsthand how to choose between
one over the other.

Basics of Asynchronous
Programming in Node.|s

If you've read any article about Node, you'd have probably come across four
terms: asynchronous, non-blocking, event-based, and single-threaded. All of
those are accurate terms to describe Node; the problem is it usually stops there,
and it's really abstract. The topic of asynchronous programming in Node.js has
been divided into three chapters. The goal in these upcoming three chapters is to
make asynchronous programming super practical by putting all these terms to
use in our weather application. That's the project we're going to be building in
these chapters.

This chapter is all about the basics of asynchronous programming. We'll look
into the basic concepts, terms, and technology related to async programming.
We'll look into making requests to Geolocation APIs. We'll need to make
asynchronous HTTP requests. Let's dive in, looking at the very basics of async
programming in Node.

Specifically, we'll look into the following topics:

The basic concept of asynchronous program
Call stack and event loop

Callback functions and APIs

HTTPS requests

The basic concept of
asynchronous program

In this section, we're going to create our first asynchronous non-blocking
program. This means our app will continue to run while it waits for something
else to happen. In this section, we'll look at a basic example; however, in the
chapter, we'll be building out a weather app that communicates with third-party
APIs, such as the Google API and a weather API. We'll need to use
asynchronous code to fetch data from these sources.

For this, all we need to do is make a new folder on the desktop for this chapter.
I'll navigate onto my desktop and use mkdir to make a new directory, and I'll call
this one weather-app. All I need to do is navigate into the weather app:

rfD @ weather-app — -bash — 108x29

Gary:~ Gary$ cd Desktop

Gary:Desktop Gary$ mkdir weather-app
Gary:Desktop Gary$ cd weather-app
Gary:weather-app Gary$ I

Now, I'll use the ciear command to clear the Terminal output.

Now, we can open up that new weather app directory inside of Atom:

Favorites

.@ Recents

0 Downloads
=l Desktop

@ Documents
?’7:‘{ Applications
¢™Y iCloud Drive
Ifl Google Drive

Devices

[Gary

= E B5 v | | [weather-app v t
Today
7 CHOS E
B weather-app Lo

Previous 7 Days

| notes-node L

This is the directory we'll use throughout this entire chapter. In this section, we'll
not be building out the weather app just yet, we'll just play around with the async
features. So inside weather-app we'll make the playground folder.

This code is not going to be a part of the weather app, but it will be really useful
when it comes to creating the weather app in the later sections. Now inside
playground, we can make the file for this section. We'll name it async-basics.js as

shown here:

®=-@®
Project

| weather-app

v playground

= async-basics.js — ~/Desktop/weather-app

async-basics.js x

lllustrating the async
programming model

To illustrate how the asynchronous programming model works, we'll get started
with a simple example using console.10g. Let's get started by adding a couple of
console.log Statements in a synchronous way. We'll create one console.1og Statement
at the beginning of the app that will say starting app, and we will add a second
one to the end, and the second one will print rinishing up, as shown here:

console.log('Starting app');

console.log('Finishing up');

Now these are always going to run synchronously. No matter how many times
you run the program, starting app is always going to show up before rinishing up.

In order to add some asynchronous code, we'll take a look at a function that
Node provides called settimeout. The settimeout function is a great method for
illustrating the basics of non-blocking programming. It takes two arguments:

e The first one is a function. This will be referred to as callback function, and
it will get fired after a certain amount of time.

e The second argument is a number, which tells the number of milliseconds
you want to wait. So if you want to wait for one second, you would pass in
a thousand milliseconds.

Let's call settimeout, passing in an arrow function (=>) as our first argument. This
will be callback function. It will get fired right away; that is, it will get fired after
the timeout is up, after our two seconds. And then we can set up our second
argument which is the delay, 2000 milliseconds, which equals those two seconds:

console.log('Starting app');
setTimeout(() => {

}, 2000);

Inside the arrow function (=), all we'll do is use a console.1l0g Statement so that we

can figure out exactly when our function fires, because the statement will print to
the screen. We'll add console.109 and then inside callback to get the job done, as
shown here:

setTimeout(() => {

console.log('Inside of callback');
}, 2000);

With this in place, we're actually ready to run our very first async program, and
I'll not use nodemon to execute it. I'll run this file from the Terminal using the basic
Node command; node playground and the file inside the piayground folder which is

async-basic.js.

| node playground/async-basics.js

Now pay close attention to exactly what happens when we hit enter. We'll see
two messages show up right away, then two seconds later our final message,
Inside of callback, prints to the screen:

000 weather-app — -bash — 108x29

Gary:weather-app Gary$ node playground/async-basics.js
Starting app

Finishing up

Inside of callback

Gary:weather-app Gary$ I

The sequence in which these messages are shown is: first we got starting app;
almost immediately after this, rinishing up prints to the screen and finally (two
seconds later), inside of callback was printed as shown in the previous code.
Inside the file, this is not the order in which we wrote the code, but it is the order
the code executes in.

The starting app statement prints to the screen as we expect. Next, we call
setTimeout, but we're not actually telling it to wait two seconds. We're registering a
callback that will get fired in two seconds. This will be an asynchronous
callback, which means that Node can do other things while these two seconds
are happening. In this case, the other thing it moves down to the rinishing up
message. Now since we did register this callback by using settimeout, it will fire
at some point in time, and two seconds later we do see inside of callback printing

to the screen.

By using non-blocking 1/0, we're able to wait, in this case two seconds, without
preventing the rest of the program from executing. If this was blocking /O, we
would have to wait two seconds for this code to fire, then the Finishing up
message would print to the screen, and obviously that would not be ideal.

Now this is a pretty contrived example, we will not exactly use settimeout in our
real-world apps to create unnecessary arbitrary delays, but the principles are the
same. For example, when we fetch data from the Google API we'll need to wait
about 100 to 200 milliseconds for that data to come back, and we don't want the
rest of the program to just be idle, it will continue. We'll register a callback, and
that callback will get fired once the data comes back from the Google servers.
The same principles applies even though what's actually happening is quite
different.

Now, we want to write another settimeout right here. We want to register a
setTimeout function that prints a message; something like second setTimeout works.
This will be inside the callback, and we want to register a delay of o
milliseconds, no delay at all. Let's fill out the async basics settimeout. I'll call
setTimeout With my arrow function (=>), passing in a delay of ¢ milliseconds, as
shown in the following code. Inside the arrow function (=>), I'll use console.10g SO
I can see exactly when this function executes, and I'll use second setTimeout as the
text:

setTimeout(() => {
console.log('Second setTimeout');

}, 0);

Now that we have this in place, we can run the program from the Terminal, and
it's really important to pay attention to the order in which the statements print.
Let's run the program:

| node playground/async-basics.js

Right away we get three statements and then at the very end, two seconds later,
we get our final statement:

rfD @ weather-app — -bash — 108x29

Gary:weather-app Gary$ node playground/async-basics.js
Starting app

Finishing up

Second setTimeout

Inside of callback

Gary:weather-app Gary$ I

We start with starting app, which makes sense, it's at the top. Then we get
Finishing up. After rinishing up we get second setTimeout, which seems weird,
because we clearly told Node we want to run this function after o milliseconds,
which should run it right away. But in our example, second setTimeout printed after

Finishing up.

Finally, inside of callback printed to the screen. This behavior is completely
expected. This is exactly how Node.js is supposed to operate, and it will become
a lot clearer after the next section, where we'll go through this example exactly,
showing you what happens behind the scenes. We'll get started with a more basic
example showing you how the call stack works, we'll talk all about that in the
next section, and then we'll go on to a more complex example that has some
asynchronous events attached to it. We'll discuss the reason why second setTimeout
comes up after the rinishing up message after the next section.

Call stack and event loop

In the last section, we ended up creating our very first asynchronous application,
but unfortunately we ended up asking more questions than we got answers. We
don't exactly know how async programming works even though we've used it.
Our goal for this section is to understand why the program runs the way it does.

For example, why does the two-second delay in the following code not prevent
the rest of the app from running, and why does a o second delay cause the
function to be executed after rinishing up prints to the screen?

console.log('Starting app');

setTimeout(() => {
console.log('Inside of callback');
}, 2000);

setTimeout(() => {
console.log('Second setTimeout');

}, 0);

console.log('Finishing up');

These are all questions we'll answer in this section. This section will take you
behind the scenes into what happens in V8 and Node when an async program
runs. Now let's dive right into how the async program runs. We'll start with some
basic synchronous examples and then move on to figuring out exactly what
happens in the async program.

A synchronous program example

The following is example number one. On the left-hand side we have the code, a
basic synchronous example, and on the right-hand side we have everything that
happens behind the scenes, the Call Stack, our Node APIs, the Callback Queue,

and the Event Loop:

Node APIs

¥aGxi=il; Call Stack

var y = x + 9;

console.log('y is ${y}');

Event Loop O l

Callback Queue

Now if you've ever read an article or watched any video lesson on how Node
works, you've most likely heard about one or more of these terms. In this
section, we'll be exploring how they all fit together to create a real-world,
working Node application. Now for our first synchronous example, all we need
to worry about is the Call Stack. The Call Stack is part of a V8, and for our
synchronous example it's the only thing that's going to run. We're not using any
Node APIs and we're not doing any asynchronous programming.

The call stack

The Call Stack is a really simple data structure that keeps track of program
execution inside of a V8. It keeps track of the functions currently executing and
the statements that are fired. The Call Stack is a really simple data structure that
can do two things:

* You can add something on top of it
e You can remove the top item

This means if there's an item at the bottom of the data structure and there's an
item above it, you can't remove the bottom item, you have to remove the top
item. If there's already two items and you want to add something on to it, it has
to go on because that's how the Call Stack works.

Think about it like a can of Pringles or a thing of tennis balls: if there's already
an item in there and you drop one in, the item you just dropped will not be the
bottom item, it's going to be the top item. Also, you can't remove the bottom
tennis ball from a can of tennis balls, you have to remove the one on top first.
That's exactly how the Call Stack works.

Running the synchronous
program

Now when we start executing the program shown in the following screenshot,
the first thing that will happen is Node will run the main function. The main
function is the wrapper function we saw over in nodemon (refer to, Installing the
nodemon module section in chapter 2, Node Fundamentals Part-1) that gets
wrapped around all of our files when we run them through Node. In this case, by
telling V8 to run the main function we are starting the program.

As shown in the following screenshot, the first thing we do in the program is
create a variable x, setting it equal to 1, and that's the first statement that's going
to run:

var y = x + 9;

nsole.log('y is ${y});

Notice it comes in on top of main. Now this statement is going to run, creating
the variable. Once it's done, we can remove it from the Call Stack and move on
to the next statement, where we make the variable y, which gets set equal to x,
which is 1 plus 9. That means y is going to be equal to 1e:

var x = 1; Call Stack

var y = x + 9;

console.log('y is ${y}');

As shown in the previous screenshot, we do that and move on to the next line.
The next line is our console.log statement. The console.10g statement will print y is
10 to the screen. We use template strings to inject the y variable:

| console.log('y is ${y}");

When we run this line it gets popped on to the Call Stack, as shown here:

var x = 1; Call Stack

var y = X + 9;

console.log('y is ${y}');

console.log(’y is ...

main()

Once the statement is done, it gets removed. At this point, we've executed all the
statements inside our program and the program is almost ready to be complete.
The main function is still running but since the function ends, it implicitly
returns, and when it returns, we remove main from the Call Stack and the
program is finished. At this point, our Node process is closed. Now this is a
really basic example of using the Call Stack. We went into the main function,
and we moved line by line through the program.

A complex synchronous program
example

Let's go over a slightly more complex example, our second example. As shown
in the following code, we start off by defining an add function. The add function
takes arguments a and b, adds them together storing that in a variable called tota1,
and returns total. Next, we add up s and s, which is 11, storing it in the res
variable. Then, we print out the response using the console.log Statement, as
shown here:

var add = (a, b) => {
var total = a + b;

return total;

}

var res = add(3, 8);

console.log(res);

That's it, nothing synchronous is happening. Once again we just need the Call
Stack. The first thing that happens is we execute the main function; this starts the
program we have here:

var add = (a, b) = { Call Stack
var total = a + b;

Node APls

return total;
3

var res = add(3, 8);

console.log(res);

Event Loop Q

Callback Queue

Then we run the first statement where we define the add variable. We're not
actually executing the function, we're simply defining it here:

var add = (a, b) => { Call Stack
var total = a + b;

return total;
};

var res = add(3, 8);

console.log(res);

main()

var add = (a, b) ...

In the preceding image, the add() variable gets added on to the Call Stack, and we
define add. The next line, line 7, is where we call the add variable storing the
return value on the response variable:

var add = (a, b) => {
var total = a + b;

Call Stack

return total;
HH

var res = add(3, 8);

console.log(res);

varres = add(3 ...

main()

When you return from a function, it gets removed from the Call

0 When you call a function, it gets added on top of the Call Stack.
Stack.

In this example, we'll call a function. So we're going to add add() on to the Call
Stack, and we'll start executing that function:

var add = (a, b) => { Call Stack
var total = a + b;

return total;
| H

var res = add(3, 8);

console.log(res);

As we know, when we add main we start executing main and, when we add add()
we start executing add. The first line inside add sets the tota1 variable equal to a +
b, which would be 11. We then return from the function using the return total
statement. That's the next statement, and when this runs, add gets removed:

var add = (a, b) => { Call Stack
var total = a + b;

return total;
+:

var res = add(3, 8);

return total;
console.log(res);

add()

main()

So when return total finishes, add() gets removed, then we move on to the final
line in the program, our console.log Statement, where we print 11 to the screen:

var add = (a, b) => { Call Stack
var total = a + b;

return total;
)

var res = add(3, 8);

console. log(res);

console.log(res);

main()

The console.1log Statement will run, print 11 to the screen and finish the execution,
and now we're at the end of the main function, which gets removed from the
stack when we implicitly return. This is the second example of a program
running through the V8 Call Stack.

An async program example

So far we haven't used Node APIs, the Callback Queue, or the Event Loop. The
next example will use all four (Call Stack, the Node APIs, the Callback Queue,
and the Event Loop). As shown on the left-hand side of the following
screenshot, we have our async example, exactly the same as we wrote it in the
last section:

console. log('Starting app'); Call Stack Node APIs
setTimeout(() = {
console.log('Inside of callback');
}, 2000); Y
setTimeout(() = {
console. log('Second setTimeout');
}, 0);

console. log('Finishing up');

Event Loop Q l

Callback Queue

In this example, we will be using the Call Stack, the Node APIs, the Callback
Queue, and the Event Loop. All four of these are going to come into play for our
asynchronous program. Now things are going to start off as you might expect.
The first thing that happens is we run the main function by adding it on to the
Call Stack. This tells a V8 to kick off the code we have on the left side in the
previous screenshot, shown here again:

console.log('Starting app');

setTimeout(() => {
console.log('Inside of callback');
}, 2000);

setTimeout(() => {
console.log('Second setTimeout');

3, 0);

console.log('Finishing up');

The first statement in this code is really simple, a console.1log Statement that prints

starting app tO the screen:

1 [console.log('Starting app'):] Call Stack

setTimeout(() => {
console.log('Inside of callback');
}, 2000);

setTimeout(() => {
console.log('Second setTimeout');

}, 0);
console.log('Finishing up'); e e

This statement runs right away and we move on to the second statement. The
second statement is where things start to get interesting, this is a call to setTimeout,
which is indeed a Node API. It's not available inside a V8, it's something that
Node gives us access to:

console. log('Starting app'); Call Stack

setTimeout(() => {
console. log('Inside of callback');
}, 2000);

setTimeout(() => {
console. log('Second setTimeout');
}, 0);

sefTimeout (2 sec)

console. log('Finishing up');

main()

The Node APl In async
programming

When we call the settimeout (2 sec) function, we're actually registering the event
callback pair in the Node APIs. The event is simply to wait two seconds, and the
callback is the function we provided, the first argument. When we call setTimeout,
it gets registered right in the Node APIs as shown here:

console. log('Starting app'); Call Stack

Node APIs

setTimeout(() => {
console.log('Inside of callback');
}, 2000);

setTimeout (2 sec)

setTimeout(() => {
console.log('Second setTimeout');
}, 0);

console.log('Finishing up'); zedlimeouiti s

main()

Now this statement will finish up, the Call Stack will move on, and the setTimeout
will start counting down. Just because the settimeout is counting down, it doesn't
mean the Call Stack can't continue to do its job. The Call Stack can only run one
thing at a time, but we can have events waiting to get processed even when the
Call Stack is executing. Now the next statement that runs is the other call to

setTimeout.

console. log('Starting app'); Call Stack Node APls

setTimeout(() => {

console.log('Inside of callback');

}, 2000);

setTimeout(() => {
console.log('Second setTimeout');
b, 0);

console.log('Finishing up'); sefTimeout (0 sec)

main()

In this, we register a settimeout callback function with a delay of e milliseconds,
and the exact same thing happens. It's a Node API and it's going to get registered
as shown in the following screenshot. This essentially says that after zero
seconds, you can execute this callback:

console.log('Starting app'); Call Stack Node APls
setTimeout(() => {

console.log('Inside of callback');
}, 2000);

setTimeout (2 sec)

setTimeout (0 sec)

setTimeout(() => {
console. log('Second setTimeout');
}, 0);

console.log('Finishing up'); sefTimeout (0 sec)

main()

The settimeout (o sec) statement gets registered and the Call Stack removes that
statement.

The callback queue In async
programming

At this point let's assume that settimeout, the one that has a zero second delay,
finishes. When it finishes, it's not going to get executed right away; it's going to
take that callback and move it down into the Callback Queue, as shown here:

console. log('Starting app'); Call Stack Node APls
tTi e =

LI enEi L] ,> {. i setTimeout (2 sec)
console.log('Inside of callback');

}, 2000);

setTimeout(() => {
console. log('Second setTimeout');

}, 0);

console. log('Finishing up');

Event Loop O

Callback Queue

setTimeout callback (0 sec)

The Callback Queue is all the callback functions that are ready to get fired. In
the previous screenshot, we move the function from Node API into the Callback
Queue. Now the Callback Queue is where our callback functions will wait; they
need to wait for the Call Stack to be empty.

When the Call Stack is empty we can run the first function. There's another
function after it. We'll have to wait for that first function to run before the second
one does, and this is where the Event Loop comes into play.

The event loop

The Event Loop takes a look at the Call Stack. If the Call Stack is not empty, it
doesn't do anything because it can't, there is nothing it can do you can only run
one thing at a time. If the Call Stack is empty, the Event Loop says great let's see
if there's anything to run. In our case, there is a callback function, but because
we don't have an empty Call Stack, the Event Loop can't run it. So let's move on
with the example.

Running the async code

The next thing that happens in our program is we run our console.log Statement,
which prints rinishing up to the screen. This is the second message that shows up
in the Terminal:

console. log('Starting app'); Call Stack

Node APls

setTimeout (2 sec)

setTimeout(() => {
console. log('Inside of callback');
}, 2000);

setTimeout(() => {
console. log('Second setTimeout');
}, 0);

1 [console.log('Finishing up‘);]
'

Event Loop Q

Callback Queue

setTimeout callback (0 sec)

This statement runs, our main function is complete, and it gets removed from the
Call Stack.

At this point, the Event Loop says hey I see that we have nothing in the call
stack and we do have something in the Callback Queue, so let's run that callback
function. It will take the callback and move it into the Call Stack; this means the
function is executing:

console.log('Starting app'); Call Stack

Node APls

selTimeout (2 sec)

setTimeout(() => {
console.log('Inside of callback');
}, 2000);

setTimeout(() => {
console. log('Second setTimeout');

}, 0);

console.log('Finishing up');

Event Loop Q

Callback Queue

It will run the first line which is sitting on line s, console.log, printing second
setTimeout tO the screen. This is Why Second setTimeout ShHOWS up after rinishing up in
our previous section examples, because we can't run our callback until the Call
Stack is complete. Since rinishing up is part of the main function, it will always
run before second setTimeout.

After our second setTimeout Statement finishes, the function is going to implicitly
return and callback will get removed from the Call Stack:

console.log('Starting app'); Call Stack

Node APls

setTimeout (2 sec)

setTimeout(() => {
console.log('Inside of callback');
}, 2000);

setTimeout(() => {
console. log('Second setTimeout');
}, 0);

console, log('Finishing up');

Event Loop Q

Callback Queue

At this point, there's nothing in the Call Stack and nothing in the Callback
Queue, but there is still something in our Node APIs, we still have an event
listener registered. So the Node process is not yet completed. Two seconds later,
the settimeout(2 sec) event is going to fire, and it's going to take that callback
function and move it into the Callback Queue. It gets removed from the Node
APIs and it gets added to the Callback Queue:

1 console.log("Starting app’); Call Stack Node APls

setTimeout(() => {
console.log('Inside of callback');
}, 2000);

7 setTimeout(() => {
console.log('Second setTimeout');
}, 9);

console.log('Finishing up');

Event Loop O

Callback Queue

setTimeout callback (2 sec)

At this point, the Event Loop will take a look at the Call Stack and see it's empty.
Then it will take a quick look at the Callback Queue and see there is indeed
something to run. What will it do? It will take that callback, add it on to the Call
Stack, and start the process of executing it. This means that we'll run our one
statement inside callback. After that's finished, the callback function implicitly
returns and our program is complete:

console.log('Starting app'); Call Stack Node APIs
setTimeout(() => {
[console.log('lnside of callback'}d
}, 2000);
setTimeout(() => {

console.log('Second setTimeout');

}, 0);

console.log('Finishing up'); console.log('Insid...

callback()

Event Loop Q l

Callback Queue

This is exactly how our program ran. This illustrates how we're able to register
our events using Node APIs, and why when we use a settimeout Of zero the code
doesn't run right away. It needs to go through the Node APIs and through the
Callback Queue before it can ever execute on the Call Stack.

Now as I mentioned in the beginning of this section, the Call Stack, the Node
APIs, the Callback Queue, and the Event Loop are pretty confusing topics. A big
reason why they're confusing is because we never actually directly interact with
them; they're happening behind the scenes. We're not calling the Callback
Queue, we're not firing an Event Loop method to make these things work. This
means we're not aware they exist until someone explains them. These are topics
that are really hard to grasp the first time around. By writing real asynchronous
code it's going to become a lot clearer how it works.

Now that we got a little bit of an idea about how our code executes behind the

scenes, we'll move on with the rest of the chapter and start creating a weather
app that interacts with third-party APIs.

Callback functions and APlIs

In this section, we'll take an in-depth look at callback functions, and use them to
fetch some data from a Google Geolocation API. That's going to be the API that
takes an address and returns the latitude and longitude coordinates, and this is
going to be great for the weather app. This is because the weather API we use
requires those coordinates and it returns the real-time weather data, such as the
temperature, five-day forecast, wind speed, humidity, and other pieces of
weather information.

The callback function

Before we get started making the HTTPS request, let's talk about callback
functions, and we have already used them. Refer to the following code (we used
it in the previous section):

console.log('Starting app');

setTimeout(() => {
console.log('Inside of callback');
}, 2000);

setTimeout(() => {
console.log('Second setTimeout');

}, 0);

console.log('Finishing up');

Inside the settimeout function we used a cailiback function. In general, a caiiback
function is defined as a function that gets passed as an argument to another
function and is executed after some event happens. Now this is a general
definition, there is no strict definition in JavaScript, but it does satisfy the
function in this case:

setTimeout(() => {

console.log('Inside of callback');
}, 2000);

Here we have a function and we pass it as an argument to another function,
setTimeout, and it does get executed after some event—two-second pass. Now the
event could be other things, it could be a database query finishes, it could be an
HTTP request comes back. In those cases, you will want a callback function, like
the one in our case, to do something with that data. In the case of settimeout, we
don't get any data back because we're not requesting any; we're just creating an
arbitrary delay.

Creating the callback function

Now before we actually make an HTTP request to Google, let's create a callback
function example inside our piayground folder. Let's make a new file called

callbacks.js.

80 B Project — ~/Desktop/weather-app
Project async-basics.js X callbackjs X

| weather-app

@ async-basics.js

@ callback.js

Inside the file, we'll create a contrived example of what a callback function
would look like behind the scenes. We'll be making real examples throughout the
book and use many functions that require callbacks. But for this chapter, we'll
start with a simple example.

To get started, let's make a variable called getuser. This will be the function we'll
define that will show us exactly what happens behind the scenes when we pass a
callback to another function. The getuser callback will be something that
simulates what it would look like to fetch a user from a database or some sort of
web API. It will be a function, so we'll set it as such using arrow function (=>):

var getUser = () => {

}

The arrow function (=>) is going to take some arguments. The first argument it
will take is the id, which will be some sort of a unique number that represents
each user. I might have an id of 54, you might have an id of 2eee; either way we're
going to need the id to find a user. Next up we'll get a callback function, which is
what we will call later with the data, with that user object:

var getUser = (id, callback) => {

3
This is exactly what happens when you pass a function to setTimeout.

The settimeout function definition looks like this:
var getUser = (callback, delay) => {

};

0 It has a callback and a delay. You take the callback, and after a
certain amount of time passes, you call it. In our case, though, we'll
switch the order with an id first and the callback second.

Now we can call this function before actually filling it out. We'll call getuser, just
like we did with setTimeout in the previous code example. I'll call getuser, passing
in those two arguments. The first one will be some i4; since we're faking it for
now it doesn't really matter, and I'll go with s1. The second argument will be the
function that we want to run when the user data comes back, and this is really
important. As shown, we'll define that function:

getUser(31, () => {

1

Now the callback alone isn't really useful; being able to run this function after
the user data comes back only works if we actually get the user data, and that's
what we'll expect here:

getUser (31, (user) => {

1K

We'll expect that the user objects, things like id, name, email, password, Or whatever,
comes back as an argument to the callback function. Then inside the arrow
function (=>), we can actually do something with that data, for example, we could
show it on a web app, respond to an API request, or in our case we can simply

print it to the CODSOIE, console.log(user).

getUser (31, (user) => {
console.log(user);

1

Now that we have the call in place, let's fill out the getuser function to work like
we have it defined.

The first thing I'll do is create a dummy object that's going to be the user object.
In the future, this is going to come from database queries, but for now we'll just
create a variable user setting it equal to some object:

var getUser = (id, callback) => {
var user = {

}
}

Let's set an id property equal to whatever id the user passes in, and we'll set a name
property equal to some name. I'll use vikram:
var getUser = (id, callback) => {
var user = {
id: id,
name: 'Vikram'

3
}

Now that we have our user object, what we want to do is call the callback,
passing it as an argument. We'll then be able to actually run, getuser(s1, (user)
function, printing the user to the screen. In order to do this, we would call the
callback function like any other function, simply referencing it by name and
adding our parentheses like this:
var getUser = (id, callback) => {
var user = {

id: id,
name: 'Vikram'

}
callback();
+i

Now if we call the function like this, we're not passing any data from getuser
back to the callback. In this case, we're expecting a user to get passed back,
which is why we are going to specify user as shown here:

| callback(user);

Now the naming isn't important, I happen to call it user, but I could easily call
this userobject and userobject as shown here:

callback(user);

}

getUser (31, (userObject) => {
console.log(userObject);

1

All that matters is the arguments, position. In this case, we call the first argument
userobject and the first argument pass back is indeed that userobject. With this in
place we can now run our example.

Running the callback function

In the Terminal, we'll run the callback function using node, which is in the
playground folder, and we call the file callbacks.js.

| node playground/callback.js

When we run the file, right away our data prints to the screen:

000 weather-app — -bash — 108x29

Gary:weather-app Gary$ node playground/callback.js
{ id: 31, name: 'Vikram' }

Gary:weather-app Gary$ I

We've created a callback function using synchronous programming. Now as I
mentioned, this is still a contrived example because there is no need for a
callback in this case. We could simply return the user object, but in that case, we
wouldn't be using a callback, and the whole point here is to explore what
happens behind the scenes and how we actually call the function that gets passed
in as an argument.

Simulating delay using
setTimeout

Now, we can also simulate a delay using setTimeout, SO let's do that. In our code,
just before the caliback (user) statement, we'll use settimeout just like we did before
in the previous section. We'll pass an arrow function (=>) in as the first argument,
and set a delay of 3 seconds using seee milliseconds:

setTimeout(() => {

}, 3000);
callback(user);

}

Now I can take my callback call, delete it from line 10, and add it inside of the
callback function, as shown here:
setTimeout(() => {
callback(user);

}, 3000);
}

Now we'll not be responding to the getuser request until three seconds have
passed. Now this will be more or less similar to what happens when we create
real-world examples of callbacks, we pass in a callback, some sort of delay
happens whether we're requesting from a database or from an HTTP endpoint,
and then the callback gets fired.

If T save calibacks.js and rerun the code from the Terminal, you'll see we wait
those three seconds, which is the simulated delay, and then the user object prints
to the screen:

@00 weather-app — node playground/callback.js — 108x29

Gary:weather-app Gary$ node playground/callback.js
{ id: 31, name: 'Vikram' }
Gary:weather-app Gary$ node playground/callback.js

This is exactly the principle that we need to understand in order to start working
with callbacks, and that is exactly what we'll start doing in this section.

Making request to Geolocation
API

The requests that we'll be making to that Geolocation API can actually be
simulated over in the browser before we ever make the request in Node, and
that's exactly what we want to do to get started. So follow along for the URL, ntt

ps://maps.googleapis.com/maps/api/geocode/json.

Now this is the actual endpoint URL, but we do have to specify the address for
which we want the geocode. We'll do that using query strings, which will be
provided right after the question mark. Then, we can set up a set of key value
pairs and we can add multiples using the ampersand in the URL, for example: htt

ps://maps.googleapis.com/maps/api/geocode/json?key=value&keytwo=valuetwo.

In our case, all we need is one query Stl‘iﬂg address, https://maps.googleapis.com/maps
/api/geocode/json?address, and for the address query string we'll set it equal to an
address. In order to fill out that query address, I'll start typing 13e1 lombard street
philadelphia.

Notice that we are using spaces in the URL. This is just to illustrate a point: we
can use spaces in the browser because it's going to automatically convert those
spaces to something else. However, inside Node we'll have to take care of that
ourselves, and we'll talk about that a little later in the section. For now if we
leave the spaces in, hit enter, and we can see they automatically get converted
for us:

000 Dmlps:ffmaps.goog\eam’s‘cor X B

€ -~ (C |# Secure | https: maps.googleapis.com/maps/api/geocodejsontaddrss=1301k20lombard®20street%20philadelphia %l

Space characters get converted to %20, which is the encoded version of a space. In
this page, we have all of the data that comes back:

https://maps.googleapis.com/maps/api/geocode/json
https://maps.googleapis.com/maps/api/geocode/json?key=value&keytwo=valuetwo
https://maps.googleapis.com/maps/api/geocode/json?address

000 Dmlps:ﬂmaps.goog\eau\'s‘cor X\ 9
€ - | # Secure | https: maps.googleapis.com/maps/api/geocode/json?address=1301%20lmbard®20street%20philadelphia s

{

- iresults: [
- {
- address_components: |
- {
long name: "1301",
short_name: "1301",
= types: [
"gtreet nunber'

]

long nane: "Lombard Strest’,
short name: "Lorbard St',
= types: [
"route"

]

long nane: 'Center City',
short name: 'Center City',
= types: [
"neighborhood",
"political"

]

long neme: 'Philadelphia’,
short name: "Philadelphia”,
= types: [
"locality,
"political"

]

long name: 'Philadelphia County",
short name: "Philadelphia County',
= types: [

results

Now we'll use an extension called JSONView, which is available for Chrome
and Firefox.

I highly recommend installing JSONView, as we should see a much
nicer version of our JSON data. It lets us minimize and expand
various properties, and it makes it super easy to navigate.

Now as shown in the preceding screenshot, the data on this page has exactly
what we need. We have an address_components property, we don't need that.
Next, we have a formatted address which is really nice, it includes the state, the
zip code, and the country, which we didn't even provide in the address query.

Then, we have what we really came for: in geometry, we have location, and this
includes the latitude and longitude data.

Using Google Maps API data in
our code

Now, what we got back from the Google Maps API request is nothing more than
some JSON data, which means we can take that JSON data, convert it to a
JavaScript object, and start accessing these properties in our code. To do this,
we'll use a third-party module that lets us make these HTTP requests inside of
our app; this one is called request.

We can visit it by gOng tO https://www.npmjs.com/package/request. When we visit this
page, we'll see all the documentation and all the different ways we can use the
request package to make our HTTP requests. For now, though, we'll stick to
some basic examples. On the request documentation page, on the right-hand
side, we can see this is a super popular package and it has seven hundred
thousand downloads in the last day:

https://www.npmjs.com/package/request

000 f/ T} hitpsmaps.googleapis.car xf.\f:m fequest X ‘—\]

€ | NPM,Inc. [US] | https: wwwnpmis.com/package request &
reqUQSt W npn install request
npn install request how? leam more
m 22 dependencies verston 2.83.0
24,573 dependents updated 4 nonths ago
1477%

% mikeal published 4 months ago

""'*"ﬁ' ;F' : 2.83.0isthe [atest of 120 releases

build |passing | coverage

github.com/request/request

Supersimple to use
Apache-20

Request is desioned to be the simplest way possible to make htp calls. It supports HTTPS and follows
\ b dais 4 4 Collaborators ls

'HLE

console.log('error:', error); // Print the error if one occurred Stats

redirects by default.

var raquest = require('request');

request ('http://wiv.google.con', function (error, response, body) |

console.log('statusCode:', response &4 response.statusCode); // Prii)
g il i e 1,233,549 downloads inthe last day

console.log('bedy:', body); // Print the BTML for the Google homepar
Hi 8,041,430 downloads in the [2st week
29,013,118 downloadsinthe [ast month

Table of contents 567 openissues on GitHub

490pen pull requests on GitHub
+ Streaming

In order to get started we're going to install the package inside our project, and
we'll make a request to this URL.

Installing the request package

To install the package, we'll go to the Terminal and install the module using npm
init, to create the package.json file:

[NON] weather-app — npm TERM_PROGRAM=Apple_Terminal TERM=xterm-256color — 108x29

Gary:weather-app Gary$ npm init
This utility will walk you through creating a package.json file.
It only covers the most common items, and tries to guess sensible defaults.

See ‘npm help json’ for definitive documentation on these fields
and exactly what they do.

Use “npm install <pkg>’ afterwards to install a package and
save it as a dependency in the package.json file.

Press AC at any time to quit.
package name: (weather-app) D

WEe'll run this command and use enter to use the defaults for every single option:

=

.

e
o

weather-app — npm TERM_PROGRAM=Apple_Terminal TERM=xterm-256color — 108x29

Use “npm install <pkg>’ afterwards to install a package and
save it as a dependency in the package.json file.

Press AC at any time to quit.
package name: (weather-app)
version: (1.9.6)

description:

entry point: (index.js)

test command:

git repository:

keywords:

author:

license: (ISC)

About to write to /Users/Gary/Desktop/weather-app/package.json:

{
"name": "weather-app",
"version": "1.0.8",
"description": "",
"main": "index.js",
"seripts": {
"test": "echo \"Error: no test specified\" && exit 1"
h
"author": "",
"license": "ISC"

Is this ok? (yes) D

At the end, we'll type yes and hit enter again.

Now that we have our package.json file we can use npm instal1, followed by the
module name, request, and I will specify a version. You can always find the
latest version of modules on the npm page. The latest version at the time of
writing is 2.73.e, so we'll add that, e2.73.0. Then we can specify the save flag
because we do want to save this module in our package. json file:

|npm install request®2.73.0 --save

It will be critical for running the weather application.

Using request as a function

Now that we have the request module installed, we can start using it. Inside
Atom we'll wrap up the section by making a request to that URL, in a new file in
the root of the project called app.js. This will be the starting point for the weather
application. The weather app will be the last command-line app we create. In the
future we'll be making the backend for web apps as well as real-time apps using
Socket.IO. But to illustrate asynchronous programming, a command-line app is
the nicest way to go.

Now, we have our app file, and we can get started by loading in request just like
we did with our other npm modules. We'll make a constant variable, call it
request, and set it equal tO require(request), as shown here:

| const request = require('request');

Now what we need to do is make a request. In order to do this, we'll have to call
the request function. Let's call it, and this function takes two arguments:

e The first argument will be an options object where we can configure all
sorts of information

e The second one will be a callback function, which will be called once the
data comes back from the HTTP endpoint

request({}, () => {
1

In our case, it's going to get called once the JSON data, the data from the Google
Maps API, comes back into the Node application. We can add the arguments that
are going to get passed back from request. Now, these are arguments that are
outlined in the request documentation, I'm not making up the names for these:

Super simple to use

Request is designed to be the simplest way possible to make http calls. It supports HTTPS and follows
redirects by default.

var regquest = require('request');

request ("http://www.google.com', function (error, response, body) |
console.log('error:', error);
console.log('statusCode:', response && response.statusCode);
console.log('body:', body}:

b2

In the documentation, you can see they call it error, response, and body. That's
exactly what well call ours. So, inside Atom, we can add error, response, and body,
just like the docs.

Now we can fill out that options object, which is where we are going to specify
the things unique to our request. In this case, one of the unique things is the URL.
The URL specifies exactly what you want to request, and in our case, we have
that in the browser. Let's copy the URL exactly as it appears, pasting it inside of
the string for the URL property:

request({

url: 'https://maps.googleapis.com/maps/api/geocode/json?address=1301%201ombard%20stre
}, (error, response, body) => {

1

Now that we have the URL property in place, we can add a comma at the very
end and hit enter. Because we will specify one more property, we'll set json equal
{O true:
request({
url: 'https://maps.googleapis.com/maps/api/geocode/json?address=1301%201ombard%20stre

json: true
}, (error, response, body) => {

1

This tells request that the data coming back is going to be JSON data, and it

should go ahead, take that JSON string, and convert it to an object for us. That
lets us skip a step, it's a really useful option.

With this in place, we can now do something in the callback. In the future we'll
be taking this longitude and latitude and fetching weather. For now, we'll simply
print the body to the screen by using console.109. We'll pass the body argument into
console.log, dS shown here:
request({
qu: '"https://maps.googleapis.com/maps/api/geocode/json?address=1301%201lombard%20stre
},J?g:;o:ruiesponse, body) => {

console.log(body);
1)

Now that we have our very first HTTP request set up, and we have a callback
that's going to fire when the data comes back, we can run it from the Terminal.

Running the request

To run the request, we'll use node and run the app. js file:

| node app.js

When we do this, the file will start executing and there will be a really short
delay before the body prints to the screen:

[NON) weather-app — -bash — 108x29

Gary:weather-app Gary$ node app.js
{ results:
[{ address_components: [Arrayl,
formatted_address: '1381 Lombard St, Philadelphia, PA 19147, USA',
geometry: [Object],
place_id: 'EiwxMzAxIExvbWIhcmQgU3QsIFBoaWxhZGVscGhpYSwgUEEgMTkxNDesIFVTQQ',
types: [Arrayl } 1,

status: '0K' }
Gary:weather-app Gary$ D

What we get back is exactly what we saw in the browser. Some of the properties,
such as address_components, show object in this case because we're printing it to the
screen. But those properties do indeed exist; we'll talk about how to get them
later in the chapter. For now, though, we do have our formatted_address as shown in
the preceding screenshot, the geometry object, the piace_id, and types. This is what
we'll be using to fetch the longitude and latitude, and later to fetch the weather
data.

Now that we have this in place, we are done. We have the first step of the
process complete. We've made a request to the Google Geolocation API, and
we're getting the data back. We'll continue creating the weather app in the next
section.

Pretty printing objects

Before we continue learning about HTTP and what exactly is inside of error,
response, and body, let's take a quick moment to talk about how we can pretty print
an object to the screen. As we saw in the last subsection, when we ran our app
with node app.js, the body prints to the screen.

But since there is a lot of objects nested inside of each other, JavaScript starts
clipping them:

[NON) weather-app — -bash — 108x29

Gary:weather-app Gary$ node app.js
{ results:
[{ address_components: [Arrayl,
formatted_address: '1381 Lombard St, Philadelphia, PA 19147, USA',
geometry: [Object],
place_id: 'EiwxMzAxIExvbWlhcmQgU3QsIFBoaWxhZGVscGhpYSwgUEEGMTkxNDesIFVTQQ'
types: [Arrayl } 1,
status: '0K' }
Gary:weather-app Gary$ D

As shown in the preceding screenshot, it tells us an object is in the resuits, but we
don't get to see exactly what the properties are. This takes place for
address_components, geometry, and types. ObViOUSly this is not USEfUl; what we want to
do is see exactly what's in the object.

Using the body argument

To explore all of the properties, we're going to look at a way to pretty print our
objects. This is going to require a really simple function call, a function we've
actually already used, sson.stringify. This is the function that takes your
JavaScript objects, which body is, remember we used the json: true statement to
tell request to take the JSON and convert it into an object. In the console.1og,
statement we'll take that object, pass body in, and provide the arguments as shown
here:

const request = require('request');

request({
url: 'https://maps.googleapis.com/maps/api/geocode/json?address=1301%201ombard%20stre
json: true

}, (error, response, body) => {
console.log(JSON.stringify(body));

1)

Now, this is how we've usually used sson.stringify, in the past we provided just
one argument, the object we want to stringify, in this case we're going to provide
a couple of other arguments. The next argument is used to filter out properties.
We don't want to use that, it's usually useless, so we're going to leave it as
undefined as of now:

| console.log(JSON.stringify(body, undefined));

The reason we need to provide it, is because the third argument is the thing we
want. The third argument will format the JSON, and we'll specify exactly how
many spaces we want to use per indentation. We could go with 2 or 4 depending
on your preference. In this case, we'll pick 2:

| console.log(JSON.stringify(body, undefined, 2));

We'll save the file and rerun it from the Terminal. When we stringify our JSON
and print it to the screen, as we'll see when we rerun the app, we get the entire
object showing up. None of the properties are clipped off, we can see the entire
address_components array, everything shows up no matter how complex it is:

[NON weather-app — -bash — 108x29

Gary:weather-app Gary$ node app.js
{

"results": [

"long_name": "1381",

"short_name": "1361",

"types": [
"street_number"

"long_name": "Lombard Street",
"short_name": "Lombard St",
"types": [

"route"

"long_name": "Center City",
"short_name": "Center City",
"types": [
"neighborhood”,
"political”

h
{

"long_name": "Philadelphia",

Next, we have our geometry object, this is where our latitude and longitude are
stored, and you can see them as shown here:

[NON] weather-app — -bash — 10829

N
"formatted_address": "1301 Lombard St, Philadelphia, PA 19147, USA",
geom HE
"location™: {
"lat": 39.9444871,
"lng": -75.1631718
h
"location_type": "RANGE_INTERPOLATED",
"yviewport": {
"northeast": {
"lat": 39.9457560802915,
"Ing": -75.16182281978849
h
"southwest": {
"lat": 39.94308581197085,
"lng": -75.1645287882915
}
1
h
"place_id": "EiwxMzAxIExvbWJhcmQgU3QsIFBoaWxhZGVscGhpYSwgUEEgMTkxNDesIFVTQQ"
"types": [
"street_address"
|
}
1
"status": "OK"
}
Gary:weather-app Gary$ D

Then below that, we have our types, which was cut off before, even though it was
an array with one item, which is a string:

[NON] weather-app — -bash — 10829

N
"formatted_address": "1301 Lombard St, Philadelphia, PA 19147, USA",
"geometry": {
"location™: {
"lat": 39.9444871,
"lng": -75.1631718
h
"location_type": "RANGE_INTERPOLATED",
"yviewport": {
"northeast": {
"lat": 39.9457560802915,
"Ing": -75.16182281978849
h
"southwest": {
"lat": 39.94308581197085,
"lng": -75.1645287882915
}
1
h
"W_id ": "EiwxMzAxIExvbWlhcmQgU3QsIFBoaWxhZGVscGhpYSwgUEEgMTkxNDesIFVTQQ",
" it |
"street_address"
|
}
1
"status": "OK"
}
Gary:weather-app Gary$ D

Now that we know how to pretty print our objects, it will be a lot easier to scan
data inside of the console—none of our properties will get clipped, and it's
formatted in a way that makes the data a lot more readable. In the next section,
we'll start diving into HTTP and all of the arguments in our callback.

Making up of the HTTPS requests

The goal in the previous section was not to understand how HTTP works, or
what exactly the arguments, error, response, and body are the goal was to come up
with a real-world example of a callback, as opposed to the contrived examples
that we've been using so far with settimeout:

const request = require('request');

request({

url: 'https://maps.googleapis.com/maps/api/geocode/json?address=1301%201lombard%20stree
json: true
}, (error, response, body) => {

console.log(JSON.stringify(body, undefined, 2));
1)

In the preceding case, we had a real callback that got fired once the HTTP
request came back from the Google servers. We were able to print the body, and
we saw exactly what we had in the website. In this section, we'll dive into these
arguments, so let's kick things off by taking a look at the body argument. This is
the third argument that request passes to the callback.

Now the body is not something unique to the request module (body is part of HTTP,
which stands for the Hypertext Transfer Protocol). When you make a request
to a website, the data that comes back is the body of the request. We've actually
used the body about a million times in our life. Every single time we request a
URL in the browser, what we get rendered inside the screen is the body.

In the case of https://www.npmjs.com, the bOdy that comes back is an HTML web
page that the browser knows how to render. The body could also be some JSON
information, which is the case in our Google API request. Either way, the body is
the core data that comes back from the server. In our case, the body stores all of
the location information we need, and we'll be using that information to pull out
the formatted address, the latitude, and the longitude in this section.

https://www.npmjs.com

The response object

Before we dive into the body, let's discuss about the response object. We can look
at the response object by printing it to the screen. Let's swap out body in the
console.log Statement for response in the code:
const request = require('request');
request({
url: 'https://maps.googleapis.com/maps/api/geocode/json?address=1301%201ombard%20stre
json: true
}, (error, response, body) => {
console.log(JSON.stringify(response, undefined, 2));

1

Then save the file and rerun things inside of the Terminal by running the node
app.js command. We'll get that little delay while we wait for the request to come
back, and then we get a really complex object:

weather-app — -bash — 108x29

Gary:weather-app Gary$ node app.js

"results": [
{
"address_components": [
{
"long_name": "1381",
"short_name": "1361",
"types": [
"street_number"

"long_name": "Lombard Street",
"short_name": "Lombard St",
"types": [

"route"

b
{

"long_name": "Center City",
"short_name": "Center City",
"types": [
"neighborhood",
"political”
|
h

In the preceding screenshot, we can see the first thing we have in the response
object is a status code. The status code is something that comes back from an
HTTP request; it's a part of the response and tells you exactly how the request
went.

In this case, 200 means everything went great, and you're probably familiar with
some status codes, like 404 which means the page was not found, or 500 which
means the server crashed. There are other body codes we'll be using throughout
the book.

We'll be making our very own HTTP API, so you'll become
o intimately familiar with how to set and use status codes.

In this section, all we care about is that the status code is 200, which means things

went well. Next up in the response object, we actually have the vody repeated
because it is part of the response. Since it's the most useful piece of information
that comes back, the request module developers chose to make it the third
argument, although you could access it using response.body as you can clearly see
in this case. Here, we have all of the information we've already looked at,
address components, formatted address geometry, so on.

Next to the body argument, we have something called headers, as shown here:

eC 0O weather-app — -bash — 108x29

"headers": {
"content-type": "application/json; charset=UTF-8",
"date": "Tue, 16 Jan 2018 @85:08:11 GMT",
"expires": "Wed, 17 Jan 2018 85:88:11 GMT",
"cache-control": "public, max-age=86400",
"access-control-allow-origin": "%,
"server": "mafe",
"x-xs5-protection": "1; mode=block",
"x-frame-options": "SAMEORIGIN",
"alt-svc": "hg=\":443\"; ma=2592000; quic=51303431; quic=51363339; quic=51303338; quic=51303337; quic=51

303335,quic=\":443\"; ma=2592000; v=\"41,39,38,37,35\"",

"accept-ranges": "none",
"vary": "Accept-Language,Accept-Encoding",
"connection": "close"

h

Now, headers are part of the HTTP protocol, they are key-value pairs as you can
see in the preceding screenshot, where the key and the value are both strings.
They can be sent in the request, from the Node server to the Google API server,
and in the response from the Google API server back to the Node server.

Headers are great, there's a lot of built-in ones like content-type. The content-type is
HTML for a website, and in our case, it's application/json. We'll talk about headers
more in the later chapters. Most of these headers are not important to our
application, and most we're never ever going to use. When we go on and create
our own API later in the book, we'll be setting our own headers, so we'll be
intimately familiar with how these headers work. For now, we can ignore them
completely, all I want you to know is that these headers you see are set by
Google, they're headers that come back from their servers.

Next to the headers we have the request object, which stores some information
about the request that was made:

eC® weather-app — -bash — 108x29

"alt-svc": "hg=\":443\"; ma=2592000; quic=51303431; quic=51363339; quic=51303338; quic=51303337; quic=51
303335,quic=\":443\"; ma=2592000; v=\"41,39,638,37,35\"",
"accept-ranges": "none",
"vary": "Accept-Language,Accept-Encoding”,
"connection": "close"
h
"request": {
nyri's {
"protocol": "https:",
"slashes": true,
"auth": null,
"host": "maps.googleapis.com",
"port": 443,
"hostname": "maps.googleapis.com”,
"hash": null,

"search": "?address=1381%Z@lombard%2@street%26philadelphia",

"query": "address=1301%281lombard%2@street%28philadelphia",

"pathname": "/maps/api/geocode/json",

"path": "/maps/api/geocode/json?address=1301%20lombard%2@street%20philadelphia”,

"href": "https://maps.googleapis.com/maps/api/geocode/json?address=1301%20lombard%20street%28philadelp

Y
"method": "GET",
"headers": {
"accept": "application/json”
}
1
}
Gary:weather-app Gary$ D

As shown in the preceding screenshot, you can see the protocol HTTPS, the
host, the maps.googleapis.com website, and other things such as the address
parameters, the entire URL, and everything else about the request, which is
stored in this part.

Next, we also have our own headers. These are headers that were sent from
Node to the Google API:

weather-app — -bash — 108x29

"alt-svc": "hg=\":443\"; ma=2592000; quic=51303431; quic=51363339; quic=51303338; quic=51303337; quic=51
303335,quic=\":443\"; ma=2592000; v=\"41,39,638,37,35\"",

"accept-ranges": "none",

"vary": "Accept-Language,Accept-Encoding”,

"connection": "close"

h
"request": {

nyri's {
"protocol": "https:",
"slashes": true,
"auth": null,
"host": "maps.googleapis.com",
"port": 443,
"hostname": "maps.googleapis.com”,
"hash": null,
"search": "7address=1301%20lombard%2@street%2@philadelphia"”,
"guery": "address=1301%2@lombard%2@street%28philadelphia”,
"pathname": "/maps/api/geocode/json",
"path": "/maps/api/geocode/json?address=1301%201lombard%26street%28philadelphia”,
"href": "https://maps.googleapis.com/maps/api/geocode/json?address=1301%201lombard%20street%26philadelp

hia"

h
"method": "GET",

}

}
Gary:weather-app Gary$ D

This header got set when we added json: true to options object in our code. We
told request we want JSON back and request went on to tell Google, Hey, we
want to accept some JSON data back, so if you can work with that format send it
back! And that's exactly what Google did.

This is the response object, which stores information about the response and about
the request. While we'll not be using most of the things inside the response
argument, it is important to know they exist. So if you ever need to access them,
you know where they live. We'll use some of this information throughout the
book, but as I mentioned earlier, most of it is not necessary.

For the most part, we're going to be accessing the body argument. One thing we
will use is the status. In our case it was 2ee. This will be important when we're
making sure that the request was fulfilled successfully. If we can't fetch the
location or if we get an error in the status code, we do not want to go on to try to

fetch the weather because obviously we don't have the latitude and longitude
information.

The error argument

For now, we can move on to the final thing which is error. As I just mentioned,
the status code can reveal that an error occurred, but this is going to be an error
on the Google servers. Maybe the Google servers have a syntax error and their
program is crashing, maybe the data that you sent is invalid, for example, you
sent an address that doesn't exist. These errors are going to become evident via
the status code.

What the error argument contains is errors related to the process of making that
HTTP request. For example, maybe the domain is wrong: if I delete s and the dot
with go in the URL, in our code, I get a URL that most likely doesn't exist:

const request = require('request');

request({
url: 'https://mapogleapis.com/maps/api/geocode/json?address=1301%201lombard%20street%2

In this case, I'll get an error in the error object because Node cannot make the
HTTP request, it can't even connect it to the server. I could also get an error if
the machine I'm making the request from does not have access to the internet. It's
going to try to reach out to the Google servers, it's going to fail, and we're going
to get an error.

Now, we can check out the error object by deleting those pieces of text from the
URL and making a request. In this case, I'll swap out response for error, as
shown here:

const request = require('request');

request({
url: 'https://mapogleapis.com/maps/api/geocode/json?address=1301%201lombard%20street%2
json: true

}, (error, response, body) => {
console.log(JSON.stringify(error, undefined, 2));

1)

Now, inside the Terminal, let's rerun the application by running the node app.js
command, and we can see exactly what we get back:

[NON weather-app — -bash — 108x29

Gary:weather-app Gary$ node app.js
{

"code": "ENOTFOUND",
"errno": "ENOTFOUND",
"syscall": "getaddrinfo”,
"hostname": "mapogleapis.com",
"host": "mapogleapis.com",
"port": 443
}
Gary:weather-app Gary$ D

When we make the bad request, we get our error object printing to the screen,
and the thing we really care about is the error code. In this case we have the
enoTrouno error. This means that our local machine could not connect to the host

provided. In this case mapogleapis.com, it doesn't exist so we'll get an error right
here.

These are going to be the system errors, things such as your program not being
able to connect to the internet or the domain not being found. This is also going
to be really important when it comes to creating some error handling for our
application there is a chance that the user's machine won't be connected to the
internet. We're going to want to make sure to take the appropriate action and
we'll do that depending on what is inside the error object.

If we can fix the URL, setting it back to maps.googleapis.com, and make the exact
same request by using the up arrow key and the enter key, the request error
object it's going to be empty, and you can see null print to the screen:

[NON weather-app — -bash — 108x29

Gary:weather-app Gary$ node app.js
null
Gary:weather-app Gary$ D

https://developers.google.com/maps/

In this case, everything went great, there was no error, and it was able to
successfully fetch the data, which it should be able to because we have a valid
URL. That is a quick rundown of the body, the response, and the error argument.
We will use them in more detail as we add error handling.

Printing data from the body
object

Now, we'll print some data from the body to the screen. Let's get started by
printing the formatted address, and then we will be responsible for printing both

the latitude and the longitude.

Printing the formatted address

We'll start with figure out where the formatted address is. For this, we'll go to the
browser and use JSONView. At the bottom of the browser page, you can see that
little blue bar shows up when we highlight over items, and it changes as we
switch items. For formatted address, for example, we access the resuits property,
results is an array. In the case of most addresses, you'll only get one result:

ece Dhnps;ﬁ'maps.qoogleapis.cor X mrequesi X

& C | & Secure | https://maps.googleapis.com/maps/api/geocode/json?address=1301%20lombard%20streat%20philadelphia

{

results: |
- {
+ address_components: [.],
formatted_address: "1301 Lombard St, Philadelphia, PA 19147, USA",
- geometry: {
- location: {
lat: 39.9444071,
Ing: -75.1631718
}'J’
location_type: "RANGE INTERPOLATED",
- viewport: {
- northeast: {
lat: 39.9457560802915,
lng: -75.16182281970849

b
- southwest: {
lat: 39.9430581197085,
lng: -75.1645207802915

}
}J’
place_id: "EiwxMzAxIExvbWIhemQgU30sIFBoaWxhIGVscGhpY SwgUEEgMTkxNDesIFVTQQ",
- types: [
"street_address"
]
}

1
status: "OK"

We'll use the first result every time, so we have the index of o, then it's the
.formatted_address property. This bottom line is exactly what we need to type
inside of our Node code.

Inside Atom, in our code, we'll delete the console.10g Statement, and replace it
with a new console.10g Statement. We'll use template strings to add some nice
formatting to this. We'll add address with a colon and a space, then I'll inject the
address using the dollar sign and the curly braces. We'll access the body, results,
and the first item in the results array followed by formatted address, as shown
here:

const request = require('request');

request({

url: 'https://maps.googleapis.com/maps/api/geocode/json?address=1301%201lombard%20stree
json: true
}, (error, response, body) => {

console.log(Address: ${body.results[0].formatted_address}’);
1)

With this in place, I can now add a semicolon at the end and save the file. Next,
we'll rerun the application inside of the Terminal, and this time around we get
our address printing to the screen, as shown here:

[NON) weather-app — -bash — 108x29

Gary:weather-app Gary$ node app.js
Address: 1301 Lombard St, Philadelphia, PA 19147, USA
Gary:weather-app Gary$ D

Now that we have the address printing to the screen, what we would like to print
both the latitude and the longitude next.

Printing latitude and longitude

In order to get started, inside Atom, we'll add another console.10g line right next to
the console.10g we added for formatted address. We'll use template strings again to
add some nice formatting. Let's print the latitude first.

For this, we'll add latitude followed by a colon. Then we can inject our variable
using the dollar sign with the curly braces. Then, the variable we want is on the
body. Just like the formatted address, it's also in the first results item; results at
the index of zero. Next, we'll be going into geometry. From geometry, we'll grab
the location property, the latitude, .1at, as shown here:

console.log(Address: ${body.results[0].formatted_address}");
console.log(Latitude: ${body.results[0].geometry.location.lat}");

1

Now that we have this in place, we'll do the exact same thing for longitude. We'll
add another console.10g statement in the next line of the code. We'll use template
strings once again, typing longitude first. After that, we'll put a colon and then
inject the value. In this case, the value is on the body; it's in that same results
item, the first one. We'll go into geometry location again. Instead of .1at, we'll
access .1ng. Then we can add a semicolon at the end and save the file. This will
look something like the following:
console.log(Address: ${body.results[0].formatted_address}");

console.log(Latitude: ${body.results[0].geometry.location.lat}");
console.log(Longitude: ${body.results[0].geometry.location.1lng});

1

Now we'll test it from the Terminal. We'll rerun the previous command, and as
shown in the following screenshot, you can see we have the latitude, 39.94, and
the longitude, -75.16 printing to the screen:

[JoN] weather-app — -bash — 10829

Gary:weather-app Gary$ node app.js

Address: 1301 Lombard St, Philadelphia, PA 19147, USA
Latitude: 39.9444071

Longitude: -75.1631718

Gary:weather-app Gary$ D

And these are the exact same values we have inside the Chrome browser, 39.94,
-75.16. With this in place, we've now successfully pulled off the data we need to

make that request to the weather API.

Summary

In this chapter, we have gone through a basic example of asynchronous
programming. Next, we talked about what happens behind the scenes when you
run asynchronous code. We got a really good idea about how your program runs
and what tools and tricks are happening behind the scenes to make it run the way
it does. We through a few examples that illustrate how the Call Stack, Node
APIs, the Callback Queue, and the Event Loop work.

Then, we learned how to use the request module to make an HTTP request for
some information, the URL we requested was a Google Maps Geocoding URL,
and we passed in the address we want the latitude and the longitude for. Then we
used a callback function that got fired once that data came back.

At the end of the section Callback functions and APIs, we looked into a quick tip
on how we can format objects when we want to print them to the console. Last,
we looked into what makes up the HTTPS request.

In the next chapter, we'll add some error handling to this callback because that's
going to be really important for our HTTP requests. There's a chance that things
will go wrong, and when they do, we'll want to handle that error by printing a
nice error message to the screen.

Callbacks In Asynchronous
Programming

This chapter is the second part of our asynchronous programming in Node.js. In
this chapter, we'll look at callbacks, HTTP requests, and more. We're going to
handle a lot of the errors that happen inside callbacks. There's a lot of ways our
request in app.js can go wrong, and we'll want to figure out how to recover from
errors inside of our callback functions when we're doing asynchronous
programming.

Next, we'll be moving our request code block into a separate file and abstracting
a lot of details. We'll talk about what that means and why it's important for us.
We'll be using Google's Geolocation API, and we'll be using the Dark Sky API
to take location information like a zip code and turn that into real-world current
weather information.

Then, we'll start wiring up that forecast API, fetching real-time weather data for
the address that's geocoded. We'll add our request inside of the callback for
geocodeaddress. This will let us take that dynamic set of latitude and longitude
coordinates, the 1at/ing for the address used in the arguments list, and fetch the
weather for that location.

Specifically, we'll look into the following topics:

e Encoding user input
Callback errors

Abstracting callbacks
Wiring up weather search
Chaining callbacks together

Encoding user input

In this section, you'll learn how to set up yargs for the weather app. You'll also
learn how to include user input, which is very important for our application.

As shown in the previous chapter, HTTPS request section, the user will not type
their encoded address into the Terminal; instead they will be typing in a plain
text address like 1301 Lombard street.

Now this will not work for our URL, we need to encode those special characters,
like the space, replacing them with %2e. Now %26 is the special character for the
space, other special characters have different encoding values. We'll learn how to
encode and decode strings, so we can set up our URL to be dynamic. It's going
to be based off of the address provided in the Terminal. That's all we're going to
discuss in this section. By the end of the section, you'll be able to type in any
address you like, and you'll see the formatted address, the latitude, and the
longitude.

Installing yargs

Before we can get started doing any encoding, we have to get the address from
the user, and before we can set up yargs we have to install it. In the Terminal,
we'll run the npm instai1 command, the module name is yargs, and we'll look for
version 10.1.1, which is the latest version at the time of writing. We'll use the
save flag to run this installation, as shown in the following screenshot:

[NON) weather-app — -bash — 108x29

Gary:weather-app Gary$ npm install yargs --save

npm ([l weather-app@1.8.8 No description
npm (LUl weather-app@1.0.9 No repository field.

+ yargs@10.1.1
added 49 packages in 10.273s

Gary:weather-app Gary$ D

Now the save flag is great because as you remember. It updates the package.json
file and that's exactly what we want. This means that we can get rid of the node
modules folder which takes up a ton of space, but we can always regenerate it
USiIlg npm install.

If you run npm insta11 without anything else, no other module names
or flags. It will dig through that package. json file looking for all the
modules to install, and it will install them, recreating your node
modules folder exactly as you left it.

While the installation is going on, we do a bit of configuration in the app.js file.
So we can get started by first loading in yargs. For this, in the app.js file, next to
request constant, I'll make a constant called yargs, setting it equal to require(yargs)
just like this:

const request = require('request');
const yargs = require('yargs');

Now we can go ahead and actually do that configuration. Next we'll make
another constant called argv. This will be the object that stores the final parsed
output. That will take the input from the process variable, pass it through yargs,
and the result will be right here in the argv constant. This will get set equal to
yargs, and we can start adding some calls:

const request = require('request');

const yargs = require('yargs');

const argv = yargs

Now when we created the notes app we had various commands, you could add a
note and that required some arguments, list a note which required just the title,
list all notes which didn't require any arguments, and we specified all of that
inside Of yargs.

For the weather app the configuration will be a lot simpler. There is no
command, the only command would be get weather, but if we only have one
why even make someone type it. In our case, when a user wants to fetch the
weather all they will do is type node app.js followed by the address ﬂag jUSt like
this:

| node app.js --address

Then they can type their address inside of quotes. In my case it could be
something like 1301 1ombard street:

| node app.js --address '1301 lombard street'

This is exactly how the command will get executed. There's no need for an
actual command like fetch weather, we go right from the file name right into our
arguments.

Configuring yargs

To configure yargs, things will look a little different but still pretty similar. In the
Atom, I'll get started by calling .options, which will let us configure some top
level options. In our case, we'll pass in an object where we configure all of the
options we need. Now I'll format this like I do for all of my chained calls, where
I move the call to the next line and I indent it like this:

const argv = yargs
.options({

})

Now we can set up our options and in this case we just have one, it will be that a
option; a will be short for address. I could either type address in the options and I
could put a in the alias, or I could put a in the options and type address in the
alias. In this case I'll put a as shown here:

const argv = yargs

.options({

a: {

b
1)

Next up, I can go ahead and provide that empty object, and we'll go through
these same exact options we used inside of the notes app. We will demand it. If
you'll fetch the weather we need an address to fetch the weather for, so I'll set
demand equal tO true:

const argv = yargs

.options({

a: {

demand: true,
}

1)

Next up, we can set an alias, I'll set alias equal to address. Then finally we'll set
describe, We can set describe to anything we think would be useful, in this case I'll
go with address to fetch weather for, dS shown here:

const argv = yargs

.options({

a: {

demand: true,
alias: 'address',
describe: 'Address to fetch weather for'

by
1)

Now these are the three options we provided for the notes app, but I'll add a
fourth one to make our yargs configuration for the weather app even more full
proof. This will be an option called string. Now string takes a Boolean either true
or false. In our case we want true to be the value. This tells yargs to always parse
the a Or address argument as a string, as opposed to something else like a number
or a Boolean:

const argv = yargs
.options({
a: {
demand: true,
alias: 'address',
describe: 'Address to fetch weather for',
string: true
}
1)

In the Terminal, if I were to delete the actual string address, yargs would still
accept this, it would just think I'm trying to add a Boolean flag, which could be
useful in some situations. For example, do I want to fetch in Celsius or in
Fahrenheit? But in our case, we don't need any sort of true or faise flag, we need
some data, so we'll set string to true to make sure we get that data.

Now that we have our options configuration in place, we can go ahead and add a
couple other calls that we've explored. I'll add .neip, calling it as shown in the
following code, which adds the ne1p flag. This is really useful especially when
someone is first using a command. Then we can access .argv, which takes all of
this configuration, runs it through our arguments, and restores the result in the
argv variable:

const argv = yargs
.options({

a: {
demand: true,
alias: 'address',
describe: 'Address to fetch weather for',
string: true

}

1)
.help()

.argv;

Now the he1p method adds that he1p argument, we can also add an alias for it right
afterwards by calling .aiias. Now .alias takes two arguments, the actual
argument that you want to set an alias for and the alias. In our case, we already
have ne1p registered, it gets registered when we call ne1p, and we'll set an alias
which will just be the letter n, awesome:

.help()

.alias('help', 'h'")
.argv;

Now we have all sorts of really great configurations set up for the weather app.
For example, inside the Terminal I can now run ne1p, and I can see all of the help
information for this application:

@ weather-app — -bash — 108x29

Gary:weather-app Gary$ node app.js --help

Options:
--version Show version number [boolean]
-3, --address Address to fetch weather for [string] [required]
--help, =h Show help [boolean]

Gary:weather-app Gary$ I

I could also use the shortcut -n, and I get the exact same data back:

@ weather-app — -bash — 108x29

Gary:weather-app Gary$ node app.js =h

Options:
--version Show version number [boolean]
-3, --address Address to fetch weather for [string] [required]
--help, =h Show help [boolean]

Gary:weather-app Gary$ I

Printing the address to screen

Now the address is also getting passed through but we don't print it to the screen,
so let's do that. Right after the configuration, let's use console.10g to print the
entire argv variable to the screen. This will include everything that got parsed by
yargs.

.help()

.alias('help', 'h")

.argv;
console.log(argv);

Let's go ahead and rerun it in the Terminal, this time passing in an address. I'll
use the a flag, and specifying something like 1301 1ombard street, closing the
quotes, and hitting enter:

node app.js -a '1301 lombard street'
pp

When we do this we get our object, and as shown in the code output, we have
1301 Lombard St, Philadelphia, PA 19147, USA, the plain text address:

@ weather-app — -bash — 108x29

Gary:weather-app Gary$ node app.js -a '13081 lombard street'
{ il []|I

version: false,

help: false,

h: false,

a: '1301 lombard street',

address: '1301 lombard street',

'$6': 'app.js' }

Address: 1301 Lombard St, Philadelphia, PA 19147, USA
Latitude: 39.9444871

Longitude: -75.1631718
Gary:weather-app Gary$ I

In the preceding screenshot, notice that we happen to fetch the latitude and
longitude for that address, but that's just because we have it hard coded in the
URL in app.js. We still need to make some changes in order to get the address,

the one that got typed inside the argument, to be the address that shows up in the
URL.

Encoding and decoding the
strings

To explore how to encode and decode strings we'll head into the Terminal. Inside
the Terminal, first we'll clear the screen using the ciear command, and then we
boot up a node process by typing the node command as shown:

| node

Here we can run any statements we like. When we're exploring a really basic
node or JavaScript feature, we'll look into some examples first, and then we go
ahead and add it into our actual application. We'll look at two functions,
encodeURIComponent and decodeurRIcomponent. We'll get started with EI'lCOdiIlg first.

Encoding URI component

Encoding, the method is called encodeuricomponent, encode URI in uppercase
component, and it takes just one argument, the string you want to encode. In our
case, that String will be the address, something like 1301 1ombard street philadelphia.
When we run this address through encodeuricomponent by hitting enter, we get the
encoded version back:

| encodeURIComponent('1301 lombard street philadelphia')

As shown in the following code output, we can see all the spaces, like the space
between 1301 and lombard, have been replaced with their encoded character,
and for the case of the space it is %20. By passing our string through
encodeUrIcomponent, We'll create something that's ready to get injected right into the
URL so we can fire off that dynamic request.

000 weather-app — node — 108x29

Gary:weather-app Gary$ node
» encodeURIComponent('1381 lombard street philadelphia')

philadelphia

Decoding URI component

Now the alternative to encodeuricomponent is. This will take an encoded string like
the one in the previous example, and take all the special characters, like %20, and
convert them back into their original values, in this case space. For this, inside of
decodeURIComponent ONCe again we'll pass a string.

Let's go ahead and type our first and last name. In my case it's andrew, and instead
of a space between them I'll add %2e, which we know is the encoded character for
a space. Since we're trying to decode something, it's important to have some
encoded characters here. Once yours looks like the following code with your
first and last name, you can go ahead and hit enter, and what we get back is the
decoded version:

| decodeURIComponent (' Andrew%20Mead ')
As shown in the following code output, I have Andrew Mead with the %20 being

replaced by the space, exactly what we expected. This is how we can encode and
decode URI components in our app:

» decodeURIComponent(' Andrew%28Mead")

Pulling the address out of argv

Now what we want to do is pull the address out of argv, we already saw that it's
there, we want to encode it and we want to inject it in our URL in app.js file,
replacing the address:

20 naps.googleapis.com/maps/api/geocode/json?address=1381%201ombard%2@street%20@philadelphia’,

This will essentially create that dynamic request we've been talking about. We'll
be able to type in any address we want, whether it's an address or a zip code or a
city state combination, and we'll be able to fetch the formatted address, the
latitude, and the longitude.

In order to get started, the first thing I'll do is get the encoded address. Let's
make a variable called encodedaddress in the app.js next to the argv variable, where
we can store that result. We'll set this equal to the return value from the method
we just explored in the Terminal, encodeuricomponent. This will take the plain text
address and return the encoded result.

Now we do need to pass in the string, and we have that available on argv.address
which is the alias:

.help()
.alias('help', 'h")
.argv;
var encodedAddress = encodeURIComponent(argv.address);

8 Here we could use argv.a as well as argv.address, both will work the
same.

Now we have that encoded result all that's left to do is inject it inside of the URL
string. In the app.js, currently we're using a regular string. We'll swap this out for
a template string so I can inject a variable inside of it.

Now that we have a template string, we can highlight the static address which
ends at philadelphia and goes up to the = sign, and remove it, and instead of typing
in a static address we can inject the dynamic variable. Inside of my curly braces,

encodedAddress, dS shown here:

var encodedAddress = encodeURIComponent(argv.address);

request({
url: “https://maps.googleapis.com/maps/api/geocode/json?address=${encodedAddress}",

With this in place we are now done. We get the address from the Terminal, we
encode it, and we use that inside of a geocode call. So the formatted address,
latitude, and longitude should match up. Inside the Terminal, we'll shut down
node by using control + C twice and use clear to clear the Terminal output.

Then we can go ahead and run our app using node app.js, passing in either the a or
address flag. In this case, we'll just use a. Then we can go ahead and type in an
address, for example, 1614 south broad street philadelphia as shown here:

| node app.js -a '1614 south broad street philadelphia’

When you run it you should have that small delay while we fetch
the data from the geocode URL.

In this case we'll find that it's actually taking a little longer than we would
expect, about three or four seconds, but we do get the address back:

000 weather-app — -bash — 108x29

Gary:weather-app Gary$ node app.js -a '1614 broad street philadelphia’
Address: 1414 Broad Street, Philadelphia, PA 19145, USA
Latitude: 39.93008846

Longitude: -75.16877829999999
Gary:weather-app Gary$ I

Here we have the formatted address with a proper zip code state and country, and
we also have the latitude and longitude showing up. We'll try a few other
examples. For example for a town in Pennsylvania called Chalfont, we can type
in chaifont pa which is not a complete address, but the Google Geocode API will
convert it into the closest thing, as shown here:

ri) [] weather-app — -bash — 108x29

Gary:weather-app Gary$ node app.js -a 'chalfont pa’
Address: Chalfont, PA 18914, USA
Latitude: 40.2884395

Longitude: -75.20898623
Gary:weather-app Gary$ I

We can see that it's essentially the address of the town, Chalfont, PA 18914 is the
zip, with the state USA. Next, we have the general latitude and longitude data
for that town, and this will be fine for fetching weather data. The weather isn't
exactly changing when you move a few blocks over.

Now that we have our data coming in dynamically, we are able to move on to the
next section where we'll handle a lot of the errors that happen inside of
callbacks. There are a lot of ways this request can go wrong, and we'll want to
figure out how to recover from errors inside of our callback functions when
we're doing asynchronous programming.

Callback errors

In this section we'll learn how to handle errors inside of your callback functions,
because as you might guess things don't always go as planned. For example, the
current version of our app has a few really big flaws, if I try to fetch weather
using node app.js with the a flag for a zip that doesn't exist, like ooccce, the
program crashes, which is a really big problem. It's going off. It's fetching the
data, eventually that data will come back and we get an error, as shown here:

[NON weather-app — -bash — 108x29

Gary:weather-app Gary$ node app.js -a 000000
[Users/Gary/Desktop/weather-app/app.js:22
console.log(Address: ${body.results[@].formatted_address}’);

A

TypeError: Cannot read property 'formatted_address' of undefined
at Request.request [as _callback] (/Users/Gary/Desktop/weather-app/app.js:22:43)
at Reqguest.self.callback (/Users/Gary/Desktop/weather-app/node_modules/request/request.js:184:22)
at Request.emit (events.js:159:13)
at Request.<anonymous> (/Users/Gary/Desktop/weather-app/node_modules/request/request.js:1163:18)
at Request.emit (events.js:159:13)
at IncomingMessage.<anonymous> (/Users/Gary/Desktop/weather-app/node_modules/request/request.js:1885:12)
at Object.onceWrapper (events.js:254:19)
at IncomingMessage.emit (events.js:164:20)
at endReadableNT (_stream_readable.js:1062:12)

at process._tickCallback (internal/process/next_tick.js:152:19)
Gary:weather-app Gary$ D

Its trying to fetch properties that don't exist, such as
body.results[0].formatted_address iS NOt a real property, and this is a blg pFOblEHl.

Our current callback expects everything went as planned. It doesn't care about
the error object, doesn't look at response codes; it just starts printing the data that
it wants. This is the happy path, but in real world node apps we have to handle
errors as well otherwise the applications will become really useless, and a user
can get super frustrated when things don't seem to be working as expected.

In order to do this, we'll add a set of if/e1se statements inside of the callback.
This will let us check certain properties to determine whether or not this call, the
one to our URL in the app.js, should be considered a success or a failure. For
example, if the response code is a 404, we might want to consider that a failure
and we'll want to do something other than trying to print the address, latitude and
longitude. If everything went well though, this is a perfectly reasonable thing to
do.

There are two types of errors that we'll worry about in this section. That will be:

e The machine errors, things like being unable to connect to a network, these
are usually will show up in the error object, and

e The errors coming from the other server, the Google server, this could be
something like an invalid address

In order to get started, let's take a look at what can happen when we pass a bad
data to the Google API.

Checking error in Google API
request

To view what actually comes back in a call like the previous example, where we
have an invalid address, we'll head over to the browser and pull up the URL we
used in the app.js file:

<« C | [https://maps.googleapis.com/maps/api/geccode/fjson?address=1301 lombard street philadelphia
googl

We will remove the address we used earlier from the browser history, and type in
o000, hit enter:

@ @ ﬁ https:/fmaps.googleapis.com, X
&« C | & Secure | https://maps.googleapis.com/maps/api/geocode/json?address=000000
{

results: [],

status: "ZERO_RESULTS"
}

We get our results arrive but those are no results, and we have the status, the
status says zero_resuLts, and this is the kind of information that's really important
to track down. We can use the status text value to determine whether or not the
request was successful. If we pass in a real zip code like 19147, which is
philadelphia, We'll get our results back, and as shown in the following image, the
status Will get set equal to ok:

- iresults: [
-{
- address_components: [
=
long_name: "13147",
short_name: "19147",
- types: [
"postal code”
1

'
e

long name: "Philadelphia”,
short_name: "Philadelphia®™,
- types: [
"locality”,
"political”

|
e e

long_name: "Philadelphia County”,
short_name: "Philadelphia County”,
- types: [
"administrative_area_lewel 2",
"political”

|
e o ol

long name: "Pennsylwvania”,
short_name: "PA",
- types: [
"administrative_area_level 17,
"political”

We can use this status to determine that things went well. Between these status
property and the error object, which we have inside of our app, we can determine
what exactly to do inside of the callback.

Adding the If statement for
callback errors

The first thing we'll do is add an ir statement as shown below, checking if the
error object exists:
request({
url: “https://maps.googleapis.com/maps/api/geocode/json?address=${encodedAddress}",
json: true

}, (error, response, body) => {
if (error) {

}

This will run the code inside of our code block if the error object exists, if it
doesn't fine, we'll move on into the next e1se if statement, if there is any.

If there is an error, all we'll do is add a console.109 and a message to the screen,
something like unable to connect to Google servers.

if (error) {
console.log('Unable to connect Google servers.');

}

This will let the user know that we were unable to connect to the user servers,
not that something went wrong