

 فقط کتاب

 مرجع معتبر دانلود کتاب هاي تخصصی

Faghatketab.ir

2

Copyright © 2019 by McGraw-Hill Education. All rights reserved. Except as permitted under the United
States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by
any means, or stored in a database or retrieval system, without the prior written permission of the publisher,
with the exception that the program listings may be entered, stored, and executed in a computer system, but
they may not be reproduced for publication.

ISBN: 978-1-26-013510-7
MHID: 1-26-013510-1

The material in this eBook also appears in the print version of this title: ISBN: 978-1-26-013509-1, MHID:
1-26-013509-8.

eBook conversion by codeMantra
Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every
occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the
trademark owner, with no intention of infringement of the trademark. Where such designations appear in this
book, they have been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and sales
promotions or for use in corporate training programs. To contact a representative, please visit the Contact Us
page at www.mhprofessional.com.

All trademarks or copyrights mentioned herein are the possession of their respective owners and McGraw-
Hill Education makes no claim of ownership by the mention of products that contain these marks.

Information has been obtained by McGraw-Hill Education from sources believed to be reliable. However,
because of the possibility of human or mechanical error by our sources, McGraw-Hill Education, or others,
McGraw-Hill Education does not guarantee the accuracy, adequacy, or completeness of any information and
is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and to the work.
Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right
to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce,
modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the
work or any part of it without McGraw-Hill Education’s prior consent. You may use the work for your own
noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work
may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND ITS LICENSORS

3

http://www.mhprofessional.com

MAKE NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR
COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA
HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill Education
and its licensors do not warrant or guarantee that the functions contained in the work will meet your
requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill Education nor its
licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the
work or for any damages resulting therefrom. McGraw-Hill Education has no responsibility for the content of
any information accessed through the work. Under no circumstances shall McGraw-Hill Education and/or its
licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result
from the use of or inability to use the work, even if any of them has been advised of the possibility of such
damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause
arises in contract, tort or otherwise.

4

This book is dedicated to my wife, Amy, my biggest critic, who has put up with 20 years of geek speak and continues to
push me to be the best human being possible; to my family who continually supports me; and to the digital forensic

community who continually inspires me.

5

About the Author
Lee Reiber started his journey as a member of the Boise Police Department in Boise, Idaho, where he
conducted digital forensic investigations until 2009 after almost 15 years of service. During the last few years
at the police department, Lee’s training company, Mobile Forensics, Inc., became one of the most prominent
training companies in the United States for mobile forensics, training hundreds of students from law
enforcement, Fortune 500 companies, and academia. MFI specialized in instructing its students on how to
interpret and analyze mobile device data collected with multiple tools. It was Lee’s research that produced
discoveries in data formats, date and time configurations, and file system artifacts that are still used in training
today. Due to the reputation of MFI, based upon the company’s success in research, development, and
training in mobile device forensics, MFI became a part of a global software company in 2009. Lee was
promoted to Vice President of Mobile Forensics, and he created and developed the mobile forensic
curriculum and mobile forensic software solution, both of which are still a part of the company’s offerings. In
2015, Lee departed the company and became the COO of one of the most recognized mobile forensic
software companies in the world, specializing in deep data analysis of mobile device, cloud, IoT, and UAS
artifacts.

Lee has testified as an expert in mobile forensics in both criminal and civil cases during his 20-plus-year
career and consulted for both international and domestic companies requesting mobile forensic assistance,
mobile device collections, data analysis, and data interpretation. Due to his aptitude for deep analysis, Lee is
frequently called upon to assist in high-profile cases involving data from mobile devices when alien data is
encountered. Lee has written more than 50 articles on mobile forensics, has been featured in both national
and international magazines and print media, and has lectured around the world on mobile forensics and
cyber security. This book is a product of the 20 years spent staring at HEX and ignoring the push-button
philosophy.

About the Technical Reviewer
Michael Robinson is a senior cyber threat analyst and digital forensic examiner for a large international
company, where he specializes in mobile device forensics, computer forensics, and intrusion analysis. Prior to
this role, Michael was a senior digital forensic examiner for customers in the U.S. intelligence community,
where he performed computer and cell phone exploitation and analysis. Previously, Michael performed
computer forensic examinations in the FBI’s Investigative Analysis Unit, where he assisted special agents with
counterintelligence and criminal cases. Michael is the former CIO of the U.S. Department of Defense’s
Business Transformation Agency, where he oversaw all information technology and information assurance
operations for the agency, including overseeing all incident response and forensic investigations.

Michael was the Program Coordinator and an Adjunct Professor for Stevenson University’s Master of
Science in Cyber Forensics. At Stevenson, he was the recipient of the Rose Dawson Award for outstanding
adjunct faculty member of the year. He was also an adjunct professor in George Mason University’s Master of
Science in Computer Forensics. He taught courses in mobile device forensics, intrusion analysis, and cyber
warfare. He holds a Bachelor of Science in Chemical Engineering, a Master of Science in Information
Assurance, a Master of Science in Forensic Studies (concentrating on computer forensics), and a graduate
certificate in Applied Intelligence. Michael has presented at numerous national and international conferences,

6

including DEF CON, the DoD Cyber Crime Conference, U.S. Cyber Crime Conference, CEIC, InfoSec
World, and the BCISS Conference on Intelligence Analysis. He has authored more than a dozen journal
articles and a book on disaster recovery planning for nonprofit organizations.

7

Contents at a Glance

CHAPTER 1 Introduction to the World of Mobile Device Forensics

CHAPTER 2 Mobile Devices vs. Computer Devices in the World of Forensics

CHAPTER 3 New Era of Digital Devices: IoT, Infotainment, Wearables, and Drones

CHAPTER 4 Living in the Cloud: The Place to Hide and Store Mobile Data

CHAPTER 5 Collecting Mobile Devices, USB Drives, and Storage Media at the Scene

CHAPTER 6 Preparing, Protecting, and Seizing Digital Device Evidence

CHAPTER 7 Toolbox Forensics: Multiple-Tool Approach

CHAPTER 8 Mobile Forensic Tool Overview

CHAPTER 9 Preparing the Environment for Your First Collection

CHAPTER 10 Conducting a Collection of a Mobile Device: Considerations and Actions

CHAPTER 11 Analyzing SIM Cards

CHAPTER 12 Analyzing Feature Phone, BlackBerry, and Windows Phone Data

CHAPTER 13 Advanced iOS Analysis

CHAPTER 14 Querying SQLite and Taming the Forensic Snake

CHAPTER 15 Advanced Android Analysis

CHAPTER 16 Advanced Device Analysis: IoT, Wearables, and Drones

CHAPTER 17 Presenting the Data as a Mobile Forensics Expert

Index

8

Contents

Introduction

CHAPTER 1 Introduction to the World of Mobile Device Forensics

A Brief History of the Mobile Device

Martin Cooper

Size Evolution

Data Evolution

Storage Evolution

Mobile Device Data: The Relevance Today

Mobile Devices in the Media

The Overuse of the Word “Forensic”

Write Blockers and Mobile Devices

Mobile Device Technology and Mobile Forensics

From Data Transfer to Data Forensics

Processes and Procedures

Examination Awareness and Progression

Data Storage Points

Mobile Technology Terminology and Acronyms

Mobile Device

SIM and UICC

Media Storage Cards

Mobile Device Backups

Educational Resources

Phone Scoop

GSMArena

Forums

Preparing for Your Journey

Chapter Summary

CHAPTER 2 Mobile Devices vs. Computer Devices in the World of Forensics

Computer Forensics Defined

International Association of Computer Investigative Specialists (IACIS)

9

International Society of Forensic Computer Examiners (ISFCE)

Applying Forensic Processes and Procedures

Seizure

Collection

Analysis/Examination

Presentation

Approach to Mobile Device Forensics

NIST and Mobile Forensics

Process and Procedure

Standard Operating Procedure Document

Purpose and Scope

Definitions

Equipment/Materials

General Information

Procedure

References/Documents

Successful SOP Creation and Execution

Creation of a Workflow

Specialty Mobile Forensic Units

Forensic Software

Common Misconceptions

Seasoned Computer Forensics Examiners’ Misconceptions

First Responders’ Misconceptions

Chapter Summary

CHAPTER 3 New Era of Digital Devices: IoT, Infotainment, Wearables, and Drones

IoT Devices

Categories of Connected Devices

Common Consumer Types

Amazon Alexa

Google Home

Infotainment Systems

Obtaining Data from Vehicles

Wearables

Classification of Wearable Devices

10

Unmanned Aircraft Systems

Privacy

Crashes

Airspace

Restricted Areas

Smuggling

Obtaining Evidence from Drones

Chapter Summary

CHAPTER 4 Living in the Cloud: The Place to Hide and Store Mobile Data

Clouds and Mobile Devices

What Does This Mean to Investigators?

Accessing the Cloud

Date Ranges and Types of Records

Notifications

Security

Methods of Bypassing Cloud Services Security

Accessible Cloud Data

Cloud Tools

Oxygen Forensics Cloud Extractor

Cellebrite UFED Cloud Analyzer

Magnet AXIOM Cloud

Chapter Summary

CHAPTER 5 Collecting Mobile Devices, USB Drives, and Storage Media at the Scene

Lawful Device Seizure

Before the Data Seizure

Fourth Amendment Rights

The Supreme Court and Mobile Device Data Seizure

Warrantless Searches

Location to Be Searched: Physical Location

Location to Be Searched: Cloud Location

Location to Be Searched: Mobile Device

Location to Be Searched: User Cloud Store

Securing the Scene

11

Data Volatility at the Scene

Asking the Right Questions

Examining the Scene for Evidence

USB Drives

Chargers and USB Cables

SD Cards

SIM Cards

Older Mobile Devices

Personal Computers

Once You Find It, What’s Next?

Inventory and Location

Data Collection: Where and When

Chapter Summary

CHAPTER 6 Preparing, Protecting, and Seizing Digital Device Evidence

Before Seizure: Understanding Mobile Device Communication

Cellular Communication

Bluetooth Communication

Wi-Fi Communication

Near Field Communication

Understanding Mobile Device Security

Apple iOS Devices

Android Devices

Windows Mobile and Windows Phone

BlackBerry Devices

Photographing the Evidence at the Scene

Tagging and Marking Evidence

Documenting the Evidence at the Scene

Mobile Device

Mobile Device Accessories

SIM Cards

Memory Cards

Dealing with Power Issues: The Device State

Bagging Sensitive Evidence

Types of Bagging Equipment

12

Properly Bagging Mobile Device Evidence

Transporting Mobile Device Evidence

To Storage

To the Lab

Establishing Chain of Custody

Chapter Summary

CHAPTER 7 Toolbox Forensics: Multiple-Tool Approach

Choosing the Right Tools

Analyzing Several Devices Collectively

Verifying and Validating Software

Using Multiple Tools to Your Advantage

Dealing with Challenges

Overcoming Challenges by Verification and Validation

Overcoming Challenges for Single- and Multiple-Tool Examinations

Chapter Summary

CHAPTER 8 Mobile Forensic Tool Overview

Collection Types

Logical Collection

Physical Collection

Collection Pyramid

Collection Additions

Nontraditional Tools

Traditional Tool Matrix

Tools Available

Open Source Tools

Freeware Tools

Commercial Tools

Chapter Summary

CHAPTER 9 Preparing the Environment for Your First Collection

Creating the Ideal System

Processor (CPU)

RAM

Input/Output (I/O)

13

Storage

External Storage

Operating System

Device Drivers and Multiple-Tool Environments

Understanding Drivers

Finding Mobile Device Drivers

Installing Drivers

Cleaning the Computer System of Unused Drivers and Ports

Chapter Summary

CHAPTER 10 Conducting a Collection of a Mobile Device: Considerations and Actions

Initial Considerations

Isolating the Device

Device Collection Type: Logical or Physical

Initial Documentation

Device

Battery

UICC

Memory Card

JTAG, ISP, or Chip-Off

Mobile Device Isolation Methods

Methods, Appliances, and Techniques for Isolating a Device

Mobile Device Processing Workflow

Feature Phone Collections

BlackBerry Collections

Windows Mobile and Windows Phone Examinations

Apple iOS Connections and Collections

Android OS Connections and Collections

Chapter Summary

CHAPTER 11 Analyzing SIM Cards

Smart Card Overview: SIM and UICC

SIM Card Analysis

File System UICC Structure

Network Information Data Locations

14

ICCID

IMSI

LOCI

FPLMN

User Data Locations

SMS

Contacts

Fixed Dialing Numbers

Call Logs

Dialing Number

Chapter Summary

CHAPTER 12 Analyzing Feature Phone, BlackBerry, and Windows Phone Data

Avoiding Tool Hashing Inconsistencies

Iceberg Theory

Feature Phones

Feature Phone “Tip of the Iceberg Data”

Parsing a Feature Phone File System

BlackBerry Devices

BlackBerry “Tip of the Iceberg Data”

BlackBerry Database Breakdown

BlackBerry Data Formats and Data Types

BlackBerry 10 File System

Windows Phone

Windows Phone “Tip of the Iceberg Data”

Windows Phone File System

Chapter Summary

CHAPTER 13 Advanced iOS Analysis

The iOS File System

iOS “Tip of the Iceberg Data”

File System Structure

App Data

App Caches

Additional File System Locations

15

Group Shared Data

iOS Evidentiary File Types

SQLite Databases

Property Lists

Miscellaneous iOS Files

Chapter Summary

CHAPTER 14 Querying SQLite and Taming the Forensic Snake

Querying the SQLite Database

What Is a SQL Query?

Building a Simple SQL Query

Automating Query Building

Analysis with Python

Python Terminology

Using Python Scripts

Hashing a Directory of Files

Using Regular Expressions

Chapter Summary

CHAPTER 15 Advanced Android Analysis

Android Device Information

Partitions

The File System

Predominant Android File Types

Artifacts

“Tip of the Iceberg Data”

Additional File System Locations

/data Folder

File Interrogation

Scripts

Android App Files and Malware

Analysis Levels

Chapter Summary

CHAPTER 16 Advanced Device Analysis: IoT, Wearables, and Drones

“Tip of the Iceberg Data”

16

Smart Home Devices

Google Home

Alexa

Wearable Devices

Apple Watch

Fitbit

Unmanned Aircraft Systems

Mobile App: DJI GO

Physical Acquisition

Media Card

Cloud Services

Chapter Summary

CHAPTER 17 Presenting the Data as a Mobile Forensics Expert

Presenting the Data

The Importance of Taking Notes

The Audience

Format of the Examiner’s Presentation

Why Being Technical Is Not Always Best

What Data to Include in the Report

To Include or Not to Include

Becoming a Mobile Forensic Device Expert

Importance of a Complete Collection

Conforming to Current Expectations May Not Be the Best Approach

Additional Suggestions and Advice

Chapter Summary

Index

17

Introduction

Mobile Forensic Investigations: A Guide to Evidence Collection, Analysis, and Presentation, Second Edition, is a
comprehensive, how-to guide that leads investigators through the process of collecting mobile devices, cloud
sources, IoT devices, wearables, and UASs, then moves to analyzing the collected data and disseminating their
findings. This book was created from the many questions received during training courses, lectures, research,
and interviews over many years and a desire to impart the answers to new, seasoned, and advanced digital
forensic examiners.

Until now, no direction or guidance has been available to students and practitioners other than a few
manuscripts and many vendor-specific training courses. Unfortunately, examiners have been left to figure out
mobile forensic procedures and techniques for themselves, and often, at least in the digital forensic circles,
mobile forensics can still be referred to as the “Wild West” of digital forensics—just point and click. Now
with the world of IoT, wearables, vehicle systems, and drones, a new digital field has emerged, but the same
problems persist. By trusting only in automated tools, most examiners today do not fully understand the
methods and processes used, so this term often fits. It is the goal of this book to change this mentality and
move the examination of a mobile device into today’s required standards.

This book is intended not only to educate new students coming into the field or those looking for a career
in mobile forensics but also to inform examiners who have been conducting mobile forensics for years. It helps
both student and examiner understand what constitutes processes and procedures, how to formulate an
examination, how to identify the evidence, and how to collect the various devices, and it culminates with
advanced tools and methods the examiner can use to uncover data that most tools forget.

This book can be read from cover to cover, but it can also be used to consult individual chapters during an
examination. With the many tables and figures outlining mobile device file systems, targeted files, and digital
gold, the student and examiner can use Mobile Forensic Investigations: A Guide to Evidence Collection, Analysis,
and Presentation, Second Edition, for reference during many examinations.

The first two chapters help expose the reader to the world of mobile forensics and clearly define the
differences and similarities between mobile forensics and computer forensics. Chapters 3 and 4 bring in new
concepts with IoT devices, infotainment, wearables, UAS, and cloud stores—the new frontier. Chapters 5 and
6 outline the steps an examiner should take when coming into contact with mobile device evidence, including
how to handle the evidence, and include information on the types of mobile forensic tools and the multitool
approach. Chapters 7 through 10 begin the exploration into the first examination by setting up the collection
environment and defining what problems can be encountered, along with ways to fix them for both collections
and data analysis. Chapters 11 through 16 are all about the data. This includes determining what type of data
should be expected within the various mobile device file systems, IoT devices, wearables, UAS, and cloud
stores. More importantly these chapters speak to what type of data should be expected in a standard collection
versus an advanced collection and how to decipher and decode advanced data from iOS, Android, Windows
Mobile, and BlackBerry devices. Chapter 17 discusses how to present the data and how to become a mobile
forensic device expert. This chapter explains that without proper documentation detailing the process from

18

collection to analysis, the recovered evidence is often confusing and could be inadmissible.

A student or an examiner in mobile forensics must be prepared for tomorrow today. Mobile Forensic
Investigations: A Guide to Evidence Collection, Analysis, and Presentation, Second Edition, provides a tremendous
start.

19

I

1 Introduction to the World of Mobile Device
Forensics

n 2014, Cisco’s Visual Networking Index (VNI) Global Mobile Data Traffic Forecast Update indicated
that the number of mobile devices in use exceeded the world’s population. In February 2017, the same

study by Cisco revealed that “mobile devices and connections in 2016 grew to 8 billion.” In the mobile world,
wearables are the latest and most easily noticeable digital devices. Cisco reported that there were 325 million
wearable devices in use globally, with a subset (11 million) having a cellular connection as well. It should come
as no surprise that mobile device sales have outpaced PC sales three-to-one since 2003, as reported in a study
conducted by the National Institute of Standards and Technology (NIST). And between 2010 and 2016, the
ratio increased to almost five-to-one, as reported by MarketWatch in 2016.

Statistically, the examination of mobile device data should be proportionally similar to computer
examinations, but unfortunately, this is not the case. In actuality, computer evidence is still more prevalently
used in civil and criminal cases, but use of mobile device evidence is on the rise, though not at the rate of
induction of the actual devices. In fact, in each and every venue in which law enforcement has been surveyed,
participants have unequivocally stated that they receive more requests for the analysis of mobile device data
than for any other type of electronic evidence.

A common theme with mobile forensic experts in both law enforcement and enterprises is the
overwhelming inundation of electronic evidence from mobile devices, which is increasing at an alarming rate
—so much so that the groups I’ve surveyed from both law enforcement and corporate organizations indicate
that they’ve hired or assigned specialists who examine and collect only data from mobile devices. What is truly
alarming is the fact that most of these examiners also indicated that little consideration is given to the actual
content of the mobile device when a computer is also part of the electronic evidence scene. When an
American adult spends an average of 34 hours on the Internet using a mobile device, versus only 27 hours
using a PC (as reported in 2016 by Nielson, a global research company), shouldn’t a forensics examination
reflect that? This mentality is based primarily upon the limited amount of information available on correctly
processing, analyzing, and reporting on the data from a mobile device, whereas computer forensics has been
time-tested and is accepted by examiners and courts across the globe.

The proliferation of mobile devices will only increase with the world’s population growth and as the
population’s dependency on technology accelerates (see Figure 1-1). Now should be the time to accept and
understand that the information contained on a mobile device details, documents, and exposes the thoughts,
actions, and deeds of a user substantially more than any data stored on a personal computer.

20

FIGURE 1-1 There are currently more mobile devices on Earth than people.

With this unprecedented amount of electronic evidence comes the need for highly skilled mobile device
forensics investigators. This book is a comprehensive, how-to guide that leads investigators through the
process of collecting mobile devices, analyzing the data found, and disseminating their findings. This holistic
approach to mobile device forensics will not only feature the technical approach to data collection and
analysis, but it will also explore the legal aspects of mobile device forensics. It is widely known that today’s
digital forensics examinations have been “dumbed” down, with a heavy reliance placed on using tools to
extract and collect data. These methods have bred a systemic influx of “data collectors,” rather than mobile
device forensic examiners. This book attempts to counter this trend as it approaches and readies not only the
newest examiners, but seasoned digital experts as well, with skills and knowledge that surpass the simple “easy
button” approach.

The successful examination of digital evidence from a mobile device requires an intimate understanding of
the data, and not the medium that produced it. This fact is especially important when it comes to the
examination of the artifacts left behind by a mobile device. Often the unique aspects of mobile devices are
overlooked by examiners and students when encountering these small-scale digital devices, because their first
impressions are often clouded by the actual size of the device. It is a common belief that the small size of the
device implies that it contains only primitive and rudimentary data, and this equates to the belief that the
examination of the device should be consistent with its physical size. The size of today’s device has no bearing
on the storage, however, with most of today’s smart devices having a storage capacity far greater than that of
PCs less than ten years ago. In practice, many believe data forensics should be as easy as inserting a flash drive
and hitting the “find evidence” button. However, because of this tactic, most examiners, and quite honestly
the majority of examinations, fail at the critical part of the evidence life cycle—the dissemination of the facts.

21

In short, the size of today’s modern smart device is in no way an indication of its storage capacity. Moreover,
it is important to remember that although the physical device that holds the data may be different, the data
and artifacts produced by the underlying operating system are what the examiner must focus on.

An examiner who must testify to his or her findings will quickly realize that it is not acceptable to testify to
the fact that he or she pushed the “get evidence” button and then believe that the resulting
reasoning/explanation will suffice in court. An examiner must be ready to answer the question, “Where did
the phone book come from?” and not answer, “From the phone.” The true expert digital forensics witness will
be ready to give the location of the phone book’s contents as they relate to the phone’s file system and to
specify how the user data was not altered during the examination. Unfortunately, for most, this is a daunting
task because it takes additional training, for which many admit they have neither the time nor the resources.
By reading this book, understanding the principles discussed, and, most importantly, working through the
various scenarios, your experience as an examiner will have already surpassed the majority of the people
conducting mobile device examinations today.

The primary goal of this book is to suggest methods and procedures for the collection and analysis of
digital data from a mobile device so that your examination will stand up to the scrutiny of court. This book
also aims to dispel the mobile device size myth and to prove that today’s mobile devices contain more relevant
and transactional data than a personal computer 100 times its size. Armed with a full understanding of the
wealth of information available for discovery contained in this book, you will be prepared with not only the
knowledge of how to use mobile device forensics tools to conduct investigations but also with a holistic
understanding of how and what these tools are doing.

A Brief History of the Mobile Device
Welcome to the world of mobile device forensics. The examination of data is no different from the
examination of the words in any book or manuscript. To understand the words in a book, the reader must
have an understanding of the letters that form the words and the words themselves to form a thought or
sentence. Without this initial understanding, reading would not be possible. The same goes with
understanding a mobile device. To be a truly good forensic practitioner, the examiner must understand the
specimen. Before we begin a discussion of mobile forensics, let’s begin with a history of the evolution of
mobile devices themselves.

Mobile phones for cars and other vehicles preceded the handheld mobile phone and by all accounts were
initiated by Bell Labs in 1946 in St. Louis, Missouri. This book will focus on the handheld mobile device that
followed a little more than 26 years later.

Martin Cooper
In 1973, Martin Cooper from Motorola began developing a device that would enable a person to walk the
streets while making calls without the need for attached wires—a portable handheld mobile phone. On April
3, 1973, Cooper demonstrated the portable phone with a call to Joel Engle of Bell Labs, Motorola’s main
competitor, to let Engle know he was calling on a portable handheld phone from the streets of New York
City. The call was routed via a base station Motorola installed atop the Burlingame House into the AT&T

22

landline telephone system. Cooper had been working on the development of a radio phone for many years.
Ten years after he used this device to call his rival, it was brought to the mainstream market. This radio phone
employed the same technology used by the military to communicate on the battlefield.

Cooper developed the DynaTAC (DYNamic Adaptive Total Area Coverage) 8000x portable phone,
which enabled users to call another portable phone, landline, or radio phone. This device was approved by the
U.S. Federal Communications Commission (FCC) on September 21, 1983, and was offered commercially in
1984. It weighed 2.5 pounds, with the battery contributing the majority of the size and weight. The talk time
was approximately 20 minutes, and it took approximately 10 hours to charge the device between uses. This
first device was, by today’s standards, impractical due to its size and weight. Picture the 1980s TV show
Miami Vice and the main character played by Don Johnson, with white cotton pants and matching jacket,
with a large, angular phone and protruding black antenna—that was the DynaTAC 8000x.

The price tag of the device made it extremely impractical for widespread use against the prevalent pager or
beeper of the age. When mobile radio devices came to market, prices ranged from U.S. $2000 to $4000, and
they seldom worked outside of only a few major markets. The DynaTAC 8000x was priced at $3995.

Despite the introduction of the DynaTAC, car phones continued to be more popular, mainly because of
the large mobile phone price tag. By 1984, the car phone was a large device with a very heavy base and
typically a curly cord that ran to the handset. These devices had much better transmission and reception rates
because of the constant battery power that exceeded the current ranges of the DynaTAC. Car phones were
typically mounted and hardwired in vehicles and looked like a normal kitchen phone of the day. Users wanted
phones that were more portable, however, so manufacturers began making the devices capable of being
removed from the vehicle. The bag phone was born. (“Bag phone” was not the official name, but it stuck
simply because the device could be carried in a zippered bag.) Impractical and extremely heavy, this device was
not around for long. Who is to say what the impact of the electrical radiation might be?

Size Evolution
Shortly after the DynaTAC, cellular devices began to be manufactured in smaller form factors. In 1989, the
Motorola MicroTAC was released. This device was much smaller than the DynaTAC series but still large
and expensive enough that mainstream consumers were not buying. It was not until 1996 when the StarTAC
series entered the market that things changed. The first cell phone to make a sizable impact with consumers
was the full clamshell feature phone, which could be carried around in a pocket or small purse. The price point
for the Motorola StarTAC was $1000. Because these portable devices only made and received calls, the price
tag versus necessity was still out of reach for most consumers, however, so the progression away from the
landline to the cell phone was not immediate.

The price for the mobile device started to drop when the technology, components, competition, and
assembly became cheaper. In the mid- to late 1990s, there was a shift to make the smallest device possible, but
in the early 2000s, the size paradigm started to shift the other way. Today, consumers are speaking into
mobile devices the size of small laptops, conveniently termed “phablet,” for phone tablet. What has become
important is the type and amount of data that can be transmitted, as well as what components are inside.

Data Evolution

23

Cell phone users quickly saw the need to send messages that they could type into a QWERTY keyboard or
pound down the keys in a series of taps instead of speaking to someone. From this need, Short Message
Service (SMS) was born. Limited to 140 characters, SMS enabled users to express themselves via a short
sentence to other mobile device users. Today, 140 characters is still the limit. Concatenated SMS, or what
some call Protocol Data Unit (PDU) mode SMS, is more widely used and provides 160 characters by
changing from using 8 bits per character to 7. This was a significant advancement that moved the pager away
from the businessman’s belt loop and to the eventual demise of this type of communication service. The cell
phone soon advanced away from the simple walkie-talkie. Mobile device users next needed storage for these
text-based messages, and soon for pictures, videos, calendars, and e-mails as well—who would have foreseen
the application revolution?

The walkie-talkie, invented by Donald L. Hings, was first used as a portable field radio for pilots flying
around Canada. In 1937, when the first walkie-talkie was built, Hings referred to the device as a “two-
way radio,” and it has been used ever since.

Storage Evolution
Most of the original mobile phones did not contain a media type that would support the storage of data,
because most were engineered to use the space as a scratch pad to run the needed process, remove the process,
and move to the next process. Storage of nonvolatile data, or data that would continue to exist without
constant power, onto a device’s memory chip was not possible initially. This meant that any data that was
visible on the device would not be stored, and as soon as the device was shut down, all the data disappeared.
Because initially the mobile phone was used only to make and receive calls, this was not observed as a
limitation.

Because of this, no phone book storage or any other settings could be maintained. The first cell phones
were merely a block of circuitry that had the same combinations of buttons included on the well-known
landline. The functionality was the same—attempt to recall the number of a contact from memory and key in
the number (think about that—having to remember all of those phone numbers).When TDMA (Time
Division Multiple Access) devices in the United States began to transition to GSM (Global System for
Mobile Communications), which had already arrived in Europe, device information such as a phone book and
SMS could be stored onto the SIM (subscriber identity module). Storage areas for contacts, SMS, and last
numbers dialed had already been built into the SIM standards developed by the ETSI (European
Telecommunications Standards Institute), where this data could be written to and stored to the smart chip.

Since SIM cards were already storing phone data that was used in the authentication process, why not add
values that stored the contacts, SMS, and last numbers dialed? The SIM card was already being used in the
device as a “key” to the cellular network, assisting in the authentication of the device using stored values.
TDMA devices could store a set number of contacts that users could look up and select to be dialed, plus a
limited number of SMS (15–25 typically; that’s it!) that could be reread, even if the device was shut off. Other
carriers that did not have SIM cards started to develop devices that used nonvolatile memory so data could be
stored and saved even if the device was turned off completely or the battery was removed or drained. The

24

older feature phones used an acronym—NVM, for nonvolatile memory—to designate this type of data within
their file systems and prefix the file and/or folder name. This was where data was actually written to the phone
and the start to the recovery of a goldmine of data.

Volatile Memory and the Visor PDA

A great example of volatile memory and mobile devices is the Visor personal digital assistant (PDA).
With the technology of all PDAs at the time, most had a whopping 8MB of RAM and did not store
data for long if no power was supplied.

On to the story.

A Visor seized in a search warrant was brought in for examination. The power cradle had been left at
the scene, and it was a Friday, so the device was going to have to sit in the evidence locker until the
following Monday. Upon arriving back at the lab on Monday, the examiner tried to start the device, but
it was immediately apparent that the device had lost all power—it would not boot up. A power cradle
was located for the device at a local store and the device was charged. When there was significant power
to the device, the examination continued. To the dismay of the examiner, there was nothing on the
device—no user content anywhere. What was puzzling was the fact that a substantial amount of data had
existed on the device and was outlined and documented by the officers who seized it. Had someone
broken into the lab over the weekend and deleted the data from the device? Had the officer somehow
deleted the data or caused it to self-destruct?

The Visor documentation was consulted, as well as manufacturer’s documentation, which indicated
that PDAs drew constant power to keep the data on the devices populated. If the device was allowed to
be completely drained of power, the data would no longer be available. Because the data resided in the
device’s RAM, the data was volatile, and, as such, when power was lost, the data stored in RAM was also
lost. It was a hard lesson to learn but a great example of the limitations of volatile memory.

Moving forward, all devices had to have their power maintained, if possible, and most training courses on
mobile forensics began to preach this lesson as well. Instruction on the use of portable charging units
during transport as well as during storage began to be included in training courses and digital forensic
examination kits.

Mobile Device Data: The Relevance Today
Mobile devices have come a long way since their inception. Data contained on a mobile device can now be
compared to the written notes of a daily diary (often with pictures and videos), containing a company’s most
secure documents, our financial status, and, most importantly, our everyday habits, patterns, and routines. If a
picture of an individual were painted with the personal data recovered from a PC, the picture would be a
blurry representation with no clear edges. If, however, the data recovered from a mobile device were
examined, it would most likely paint a very personal, and potentially embarrassing, picture of the individual.

Mobile Devices in the Media

25

Every day, the world media reports cases solved using evidence from mobile devices or stories about how a
mobile device was involved in a crime—either a text message or chat was sent or received; a social media post
was sent or interpreted; or a voicemail was heard, recorded, or hacked. In January 2018, the Pew Research
Center reported that 95 percent of U.S. adults owned a cellular phone, which translates to about 309 million
cell phone users. It is no wonder that law enforcement digital examiners are looking to these devices as an
evidence treasure trove. Mobile device data is today’s equivalent to yesterday’s DNA evidence.

One day, a mobile device that shows up in the lab or in the field may hold data that has never been seen by
the world—the grassy knoll, the shot heard ’round the world, the missing plane’s last communication, and the
smoking gun. Quite simply, you can fill in the blank to determine what a mobile device might be involved in
when contemplating the events of today.

Digital data from a mobile device holds the key. To the forensic examiner, this data is critical in many
investigations. The sidebar “Mobile Devices on the Scene” details the relevance of data on a mobile device and
how its recovery is critical.

Mobile Devices on the Scene

In 2009, a fight was reported on a congested Bay Area Rapid Transit (BART) train platform. After
officers responded to the scene, an officer shot one of the subjects, who later died at a nearby hospital. At
the time, there were no news crews on the scene or closed-circuit television cameras in the area. What
was on the scene were multiple people with cell phones, who captured the event both in still and video
formats. These videos were uploaded and disseminated to media outlets and the Web. It is reported that
the raw video of the event was downloaded more than 500,000 times in a single week! Videos from the
cell phones taken from many different angles were critical to the case. The videos were irrefutable
evidence of the transpiring events—a police officer was subduing an individual at the train platform,
shots were fired, and the account of what happened was clear. The individual who was being subdued
was shot as onlookers watched. What is different about this case is that it was not a witness’s perception
of the event, but the actual event caught on video in real time. Six videos were known to exist prior to the
case and were subsequently used in the court cases. By all accounts, the videos from the mobile devices
were critical evidence used by both prosecutors and the defense during testimony at not just the criminal
trial but also the civil trial.

The stories of eyewitness accounts captured with a mobile device are endless. In a traditional
investigation, investigators would have to rely on an actual person recalling the event—which, as most
know, can be susceptible to many different perceptions, views, and beliefs. The always on, always ready,
and always filming video camera in today’s mobile device has revolutionized and forever changed what an
eyewitness is and will ever be.

The Overuse of the Word “Forensic”
NIST describes “forensic science” as “the application of science to the law.” Forensics can include the
scientific examination of fossils, a crime scene, metals, vehicles, postmortem bodies, and of course, digital data

26

in many different forms. Digital examiners get lost in this meaning and sometimes interpret forensic science
to indicate that a software application or a hardware device is forensically sound. But according to the NIST
definition, the use of the tools by the examiner in a way conforming to known scientific processes and
procedures is the forensic science, not the tool itself. A perfect example is the use of a write blocker when
processing digital data.

Write Blockers and Mobile Devices
NIST and its Computer Forensics Tool Testing Program specifically state that the central requirement of a
proper forensic procedure is that the examined original evidence must not be changed or modified in any way.
One of NIST’s listed requirements for a layered defense is to use a hard disk write-blocker tool to intercept
any inadvertent disk writes.

Many different kinds of write-blocking equipment have been created by many different companies. Any
mention of a specific unit here is not an endorsement of the tool; it simply indicates that the tool was
used in the case or test.

A write blocker is a software or hardware device that stops specific communication from a computer to a
mass storage device. Write blockers come in many different types. Software-based write blockers can use a
simple Windows Registry change; hardware units are sophisticated boxes that are coupled to the examination
computer via cables, with the device to be examined attached to the other side. Some allow a connection
directly to the pins located on the actual hard drive and then to the computer conducting the forensic analysis,
while others have USB connections to plug a removable USB hard drive or flash drive into an available port.

Hardware tools can be used to protect disk access through the interrupt 13 BIOS interface of a PC.
Because the mass storage device is attached to the hardware write blocker, all input and output (I/O)
commands sent from the PC are monitored. Any commands that could modify the hard drive are not passed
onto the hard drive, but intercepted by the write-blocking device. Software write-blocking tools also block the
writing to attached drives plugged into the USB drive, mounted drives, and by device classes, if needed. This
can be changed by editing the Registry of the Windows PC or using many of the available software tools.

Essentially, the write blocker acts as a traffic signal to data requests made by the computer. The computer
makes requests to receive data from the connected device, which are accepted and processed; if a request to
write data to the protected device on the other side of the write protector is made, these requests are stopped
and not allowed to reach the device. The write-blocking hardware or software tool is not considered
forensically sound, but the employment of the device and methods as part of the process is. To test this
theory, obtain any write-protecting hardware device and attach a mobile device; then follow along in the
upcoming sidebar, “Real-World Example: Testing the Theory,” in the next section.

Field Note: From Commercial Tool to Forensic Tool

This story was passed along to me when I first started training examiners in the mobile forensics world as
I began researching emerging software.

27

While I was training law enforcement officers in early 2007 on tools such as Cell Seizure and Data
Pilot, and free programs such as BitPim, Oxygen Nokia Phone Suite, and SIMCon, a student retold a
story of two people who worked at a nonprofit company who ventured into a cellular telco store and saw
a black box that was communicating with a phone and transferring the data to an SD card. They had
previously seen this device at a trade show for electronics and law enforcement and asked the company if
they could try it out. The nonprofit had trained law enforcement officers on digital forensic examinations
and conducted mobile device collection research, and the employees believed this tool might assist law
enforcement. But the nonprofit employees had been turned away, so they purchased the same unit that
they had seen used in the store.

This is how the store device worked: The customer’s old mobile phone data needed to be transferred
to the newly purchased mobile device. So the old phone was connected and the data was copied to an SD
card. The new phone was then connected and the data from the SD card was transferred to the new
phone. It later progressed to attaching one phone to the left and another to the right and moving the
data from one to the other. This enabled a user to come into the store with an old device and transfer
contacts, call logs, and anything else to the new phone. Law enforcement officers were interested in the
technology because they had been conducting data recovery from mobile devices, and the ease of use was
captivating. By word of mouth, more law enforcement officers started purchasing the data transfer
version as used in the store. Soon the device manufacturer realized the demand and interest, and using
new ideas from the officers, began to manufacture a new forensic model of the tool. This model was
nearly the same tool used by the telco to transfer data between phones, but now the device transferred
data from a device to a removable USB stick and the term forensic was assigned.

Shortly thereafter, many other companies began designing forensic versions of their data transfer
software. Companies such as Cellebrite, Compelson, Oxygen, and Susteen all migrated to the forensic
software business from their initial start in the phone data transfer market. It has been said that
Compelson began to manufacture MOBILedit Forensic based on its data transfer software MOBILedit
before any of the other companies produced similar software.

Mobile Device Technology and Mobile Forensics
Mobile device forensics is likely the most rapidly advancing discipline that digital forensics has ever seen or
ever will see, primarily because of the rapidly changing environment of the actual devices. Device operating
systems have become more advanced, and the storage capacity on the current devices is astronomical. Today’s
devices are mobile computing platforms, but accessing the data contained on these devices is much more
difficult than accessing data from any other digital device. Communication to these devices with software is
much different from communicating with other media containing digital data. Users must use tools
specifically designed for mobile devices, and they use many different software tools on one device. This brings
a new wrinkle in the examination process. A lot of seasoned digital forensic examiners are disappointed and
turned off by the limitations imposed by software to these mobile devices, believing that mobile devices should
behave like a computer’s hard drive. Also, many mobile device forensic software products have their roots in
the sync software world and not in the forensics world. This does not help their credibility with examiners

28

coming from the computer forensics lineage.

From Data Transfer to Data Forensics
Mobile sync software enables the user to add or delete items such as contacts and calendars from a mobile
device. This is extremely satisfying to the standard mobile device owner, because it allows the easy addition of
hundreds of contacts and contact details. No longer does the user have to key in every contact via the keypad;
now, with the assistance of PC software and a cable, this information can be quickly added to the device.

Adding and deleting user data would never be something a forensic examiner would desire, a fact that was
realized by companies developing sync/data transfer software. So these companies began to create models and
versions that were intended for the forensic examiner. The software and hardware were no different from the
sync software, with one exception: The write/transfer button or selection was not enabled. These devices and
applications simply allowed the data to be read from the device, not written to it. Sometimes the forensics
updates involved a removal of a button, and sometimes it was merely adding new instructions in the manual.
The underlying code base in the equipment or software was the same; only the implementation was different
—along with the manufacturer’s suggested retail price (MSRP).

Real-World Example: Testing the Theory

This research example was conducted while I was preparing for testimony on a mobile device case in
which a computer forensics expert was challenging the lack of usage of a write blocker when conducting
an examination of a mobile device.

Using a Tableau USB write blocker and a Motorola Razor V3 mobile device, I began the experiment.
The object of the research was to test my theory on write-protection devices and mobile devices. My
theory was that since a mobile device is not observed by a PC’s operating system as a mass storage device,
the Tableau USB write blocker would not stop writes targeting the mobile device. (Note that this is not a
limitation of the Tableau USB write-blocker product. This product, as well as all others, will operate the
same as outlined in this example.)

I plugged the mobile device into the USB port of the Tableau write-blocking device. I then plugged
the USB write blocker into a USB port located in the PC running Microsoft Windows.

The Tableau device immediately identified the device in the digital readout: “Motorola.” Using P2K
Commander, a free tool for browsing a Motorola PK device, the device’s file system was read into the
software. The entire device’s file system was available. With the options in P2K Commander, I created a
new folder within the device’s file system. Since a write protector was in place, it would seem plausible
that the folder would not be created. Unfortunately, however, the folder was created in the device’s file
system.

With the write-protector device still in place, I copied a file called WriteProtector.txt into the device
file system and into the folder that I had created. The file showed that it was successfully transferred. I
then shut down the software and collected data from the device using BitPim. The file system, as
expected, contained the folder and the file that I had previously moved onto the phone with P2K
Commander while the write protector was in place.

29

What did this mean for the write blocker used in this test? Did this mean that the write blocker did
not operate as it should? Did this mean the test was not forensically sound? Of course not, but you must
understand that these devices protect for writes only to mass storage devices, not devices viewed as
something else by the computer’s hardware. Because the Motorola was viewed as a modem, the
connected computer could write any data it wanted to the attached media because writes to the modem
were not halted.

As an examiner entering this field, you need to understand that the process you use to examine the
mobile device and comprehend what has changed on the device is what makes the examination forensic.
It is neither the software nor the hardware you use, but solely the process that you use during
examination that makes it truly forensic. This concept applies not just to mobile device examinations but
also to the examination of all digital data in today’s electronically driven world.

Processes and Procedures
If automated tools will be used in any forensic examination of digital data, examiners must have a set of
processes and procedures in place; using an automated tool without such direction could be a detriment to the
entire process. An understanding of the processes and procedures of mobile device forensics is required in this
age of mobile computing because of the many automated tools, variances among them, lack of complete
coverage, and diverse training levels. Ultimately, understanding the processes and the steps needed,
interpreting results, analyzing output, and documenting the data, all while maintaining case integrity, should
be the goals.

People use mobile devices every day to buy groceries, send birthday wishes, break up with a lover, transfer
millions of dollars, and unfortunately commit crimes. Gaining an intimate knowledge of how to collect
valuable data from these devices, uncover valuable data, and present the data will put you ahead of the rest.
Chapter 2 will discuss how to compile standard operating procedures for collecting the physical mobile devices
and accessing data on those devices. Your understanding of the device and the progression into the actual
digital investigation is critical for a successful outcome.

Examination Awareness and Progression
When mobile devices contained volatile data storage, the only examination of the mobile device consisted of
removing the SIM card and reading the information stored on it. This made for a quick examination of the
smart chip, and the device was seldom examined forensically. So essentially the first introduction anyone had
to the examination of a mobile device started at the SIM card. The first software for mobile device collection
also read the data from a SIM card. (In Chapter 8, you will be shown the various collection methods and
software used for SIM cards.) As mobile devices advanced in terms of how data was stored, the methods used
to collect the data from the internal memory, or nonvolatile area, did not progress in tandem.

The awareness of the data was there, but collecting it by means other than scrolling through the device and
documenting the information was extremely limited. The first examinations of data by law enforcement on a
Motorola StarTAC or Nokia 1610 Plus involved simply turning on the device after reading the data from the
SIM, scrolling through the menus, and writing by hand the calls made and received and the contact

30

information. This information was then transferred to a report, and the first mobile device examination was
out the door. This worked well because the devices held a limited number of calls and contacts, but imagine
using this process with a mobile device of today! Imagine documenting 5000 contacts into a spreadsheet by
hand, including all the associated e-mail addresses, phone numbers, and addresses, not to mention scrolling
through the selfies.

Cameras eventually began to play a role in the documentation of data for mobile devices. Important SMS
messages, images, or contacts could be documented using a webcam or digital camera. These images were
then placed into a report for review. Several companies built systems to enable the examiner to lay out the
evidence, document the size, and more.

Soon the examination progressed to using software as a few software applications became available. The
early mobile device software applications used in the examinations of cell phones were developed by engineers
to deal with their own personal mobile device problems—such as how a phone book could be saved, edited,
changed, modified, and exported without having to use the phone’s number pad to reenter information.

Software applications such as BitPim, initially developed by Roger Binns, is a perfect example. Binns
created an application that would enable him to transfer data, primarily his contacts, from an old phone to a
new phone. He explained that it had been extremely tedious to add contacts, get pictures, and move
information on and off an LG phone, so he decided to write an application to make it easier, and BitPim was
born. At first, BitPim enabled data to be written to and read from the cell phones supported, which was
forensically sound. At the time, Binns had not seen the need to allow only data to be read, but soon he was
contacted by a mobile forensic examiner and asked if he would allow users to turn off the ability to write data
to the phone. BitPim software was being used in Mobile Forensic, Inc., courses and primarily for law
enforcement officers, so Binns kindly accepted the reasoning and soon he added a Block Writing Anything
To The Phone checkbox to the settings, as shown in the following illustration. BitPim was limited mostly to
CDMA devices, but because protocols were based upon the Qualcomm chipset, some Samsung GSM devices
could be supported as well. GSM devices, however, were never officially supported by BitPim, and the
software’s last official build was on January 24, 2010.

More and more developers began to contribute, and more and more devices were added. More
applications from actual cell phone manufacturers such as Nokia and Samsung were developed for the transfer
of user contacts, SMS, and more. These proprietary software suites began to be used regularly by law
enforcement officers to perform extractions and collections so they did not have to go “commando style” on a
cell phone to get the information manually. Applications such as Paraben Cell Seizure, TULP2G, SIMCon,

31

and MOBILedit began to be used in training courses and forensic labs around the world. These applications
gathered data from mobile devices by using the same protocols reverse-engineered from tools such as Nokia
Suite and Samsung PC Suite. Today, as in the beginning, the same problem exists: not all mobile devices are
supported by a single solution. Now, bring in drones, IoT (Internet of Things) devices, wearables,
infotainment, and other mobile-to-mobile (M2M) devices, and the extraction and examination issues are only
exacerbated. There is not and will not be a single solution to extract and collect data from all digital mobile
devices, simply because there are too many kinds of devices, and new devices are being added and changed
continuously.

Using multiple tools to examine digital data from a mobile device should never be observed as poor
practice. Quite the opposite is true: using multiple tools enables not only verification of data, but more
importantly, it enables you to uncover additional data the initial tool either did not support or simply
missed.

Examiners in the beginning of the mobile forensic time line had two types of evidence to process: a SIM
card and the mobile device. Sometimes the only data that could be collected from a mobile device came from a
SIM card. There were, and still are, many variables to be considered: Did the actual device even have a
connection to communicate with the software? Did the device store data internally? More importantly, was
the device even supported? At this time, a new trend emerged: devices were now capable of holding data on a
removable card, known as a memory card. Yes, the first cards were not microSD cards, but large PCMIA
(Personal Computer Memory Card International Association) cards primarily used for PCs. These obviously
were very large, so transitioning to CompactFlash (CF) cards moved them from the PC to the camera and
into the many PDA devices for storage.

With the addition of removable media, mobile device forensics expanded to three pieces of evidence to
collect during any examination. CF cards are still available, but the Secure Digital (SD) cards are now most
prevalent in mobile devices. These small SD cards range in storage capacity, but the devices of today are no
longer limited to reading 128GB, 256GB, or even 400GB—some devices tout the ability to read 2TB cards!
Obviously, devices can contain multiple SD cards or SIM cards, but the primary items to be examined and
collected will remain the same: device, SIM, removable media, and sometimes a backup of the mobile device
that is located on another type of media, such as a PC. Today’s mobile devices primarily use the microSD card
as the de facto external storage medium.

With the ability to extract and decode data from the cloud, today’s examiner now has an additional
repository for mobile device evidence. In Chapter 4, the discussion turns to the storage of today’s devices and
another treasure trove of evidence. Digital devices for years have been storing data on servers located around
the globe. This fact is easily observable every time a user upgrades to a new mobile device. The user simply
downloads the app to the new device, signs in, and all his or her history magically appears within the app,
kindly planting the server’s data contents on the new device. Only recently have mobile device examiners had
easy access to these endpoint storage cabinets with automated software. So now add another evidence area the
savvy examiner must become familiar with.

32

To help you understand the multiple points of examination of a mobile device, let’s take a general look at
these data storage points and what information might be stored on each.

Data Storage Points
With multiple places to store data, mobile devices and cellular technologies, along with their forensic
examinations, have become more advanced as the years have progressed (see Figure 1-2).

FIGURE 1-2 The cellular generational time line represents the various transitions in technology related to
mobile devices from 1G to our current LTE-A, and soon 5G.

Mobile Technology Terminology and Acronyms
It is important that you understand the current terminology used in the industry before you read more about
using storage points for evidence. Acronyms are used throughout the book and also in most digital forensic
reference materials. Technological terms, reference documents, and government agencies all use acronyms,
and the following list includes the most prevalent terms in the industry. Some terms describe cellular network
functions and transmission techniques.

The following provides an overview, rather than a complete, detailed description. There are entire books
describing these transmission methods in great detail. This book is intended to expose these terms
generally, so, if needed, you can conduct further research on your own.

AMPS/NMT/TACS
In the 1980s, the Advanced Mobile Phone System (AMPS) was the analog standard used in the United
States, Nordic Mobile Telephone (NMT) was the analog standard in the Nordic countries, and Total Access
Communications Systems (TACS) was the analog standard in the United Kingdom. Analog transmissions

33

operated in the 800 MHz band between the frequencies of 824 MHz and 894 MHz in the United States, 450
MHz and 900 MHz in the Nordic countries, and in the 900 MHz range for Europe. The transmission and
the reception of the data ranged from 20 kHz to 50 kHz so transmissions did not collide. Obviously, with the
limited number of devices that could operate simultaneously, it was easy to listen to conversations on radio
devices tuned to the same frequency. This technology was later termed 1G, for first-generation, cell phone
transmission technology. AMPS expired February 18, 2008.

Governing bodies for mobile device transmission understood that additional data should be included in
the transmission, such as text messages, while also allowing for more mobile devices to use the same frequency
channel. For this reason, analog would need to transition to digital data. Mobile devices purchased for use that
were labeled single-band indicated that the device could use only a single cellular band. Because of the varying
frequency differences among countries, a device might not work in another country if the cellular band was
not the frequency band within which the device was capable of operating. Because of this limitation, device
manufacturers began to add hardware capabilities to allow for multiband frequency support, moving first to
dual-band, then tri-band, and eventually quad-band support.

TDMA/GSM/CDMA
Time Division Multiple Access (TDMA) and Code Division Multiple Access (CDMA) are 2G (second-
generation) technologies, and these devices entered the handheld wireless scene in the 1990s. The main
standards for 2G are GSM, Interim Standard 95 (IS-95) (CDMA), IS-136 (digital amps), and iDEN
(Integrated Digital Enhanced Network). The biggest change was from analog to digital with the advent of 2G
systems, along with digital encryption of the transmission. The first commercial 2G network on the GSM
network was first made available by Radiolinja, a Finnish operator.

2G also brought the ability to send data other than voice over the wireless network; SMS was born, with
the first text reportedly sent from a computer to a mobile device on December 3, 1992, from Neil Papworth to
his colleagues at Vodafone, that said, “MERRY CHRISTMAS.” 2G technologies slowly improved, and the
progression toward 3G was slow. 2.5G, or GPRS (General Packet Radio Service), improved network stability,
and 2.75G, or EDGE (Enhanced Data rates for GSM Evolution), improved the speed of transmission and
was a large leap from 2G technologies.

It used to be extremely easy to distinguish the various GSM or CDMA wireless companies simply by
looking under the device battery. If the device had a SIM card, the device was a GSM device; if it did not
have a SIM card, it was a CDMA device. In today’s world with multiple-band devices, it has become
common to see SIM card slots in CDMA devices.

UMTS/CDMA2000
Universal Mobile Telecommunications System (UMTS) and IS-2000 (CDMA2000) are the 3G, or third-
generation, cellular systems established by specifications outlined in IMT-2000 (International Mobile
Telecommunications), which introduced large gains with Internet access and video and data streaming in the
early 2000s. The Third Generation Partnership Project (3GPP) standardized UMTS, and 3GPP2 (Third

34

Generation Partnership Project 2) standardized CDMA2000. UMTS uses W-CDMA (wide-band CDMA)
for transmission and CDMA2000 using EV-DO (Evolution–Data Optimized). UMTS was used with GSM
devices in Europe, China, Japan, and most other areas of the world, while CDMA2000 and CDMA devices
were used primarily in North America and South Korea.

UMTS upgraded to HSDPA (High-Speed Downlink Packet Access) and was combined with HSUPA
(High-Speed Uplink Packet Access) to form HSPA (High-Speed Packet Access), which is still the most
widely deployed technology globally. What might be referred to as 3.5G is debated as HSPA+ and also LTE
(Long Term Evolution). LTE is often mentioned with regard to 4G technologies, but the data upload and
download rates do not meet the standards set forth by the ITU (International Telecommunication Union) to
call it 4G. The first commercial LTE networks were launched in Norway and Sweden in 2009.

LTE-Advanced
LTE-Advanced (LTE-A) is also defined by the ITU, and it is a true 4G system. LTE-A was standardized in
2010 by the 3GPP and is dependent not only on the infrastructure of the underlying cellular network but also
on the processors within the mobile devices.

IMT-2020 (5G) International Mobile Telecommunications (IMT) systems 2020 is also defined by the ITU,
and it is currently a theoretical 5G system. As of this writing, IMT-2020 is being debated and developed, and
is said to be a single unified standard for mobile communication and data. The current specifications from
ITU indicate a 20Gbps (gigabits per second) download capacity for a single cell as a minimum, with support
for one million connected devices per one square kilometer (0.39 square miles). Compared to the current LTE
download capacity of 1Gbps, the infrastructure and demand on the telecommunication companies around the
world will be significant. Features will include simultaneous wireless connections to a single device using a
new Wireless World Wide Web (WWWW). This type of wireless connection will significantly impact the
use of wearables and other IoT devices.

Mobile Device
The mobile device evolved from a simple handheld device to communicate via voice into a mobile computing
device capable of transmitting large amounts of data instantly. The movement in technologies and the air-side
of the network was never intended to create a clearer conversation, but to increase how much information one
could send or receive in the shortest amount of time.

A mobile device can contain many pieces of information, from contacts, SMS, and call logs in early
devices, to complex documents, applications, media, SMS, Multimedia Messaging Service (MMS), call logs,
e-mail, calendar, notes, and contacts in today’s devices, which are actually small computing devices. Built-in
applications, or apps, can store additional data types, communicate with the Internet, launch rockets, play
music, map a house, direct a vehicle to a destination, determine internal body vitals, and conduct bank
transactions. There is almost nothing that a person cannot do with these smart devices—including activities
that only ten years ago required devices thousands of times their size. Today’s current smart devices come with
standard apps, but a user can also install one of approximately seven million apps available on various mobile
phone app distribution points, which makes a “standard examination” of the contents of mobile devices a

35

nearly impossible exercise.

Mobile devices come in all shapes and sizes and have progressed from holding circuits to more than
256GB of storage space. What is most important for the mobile device forensic examiner is the underlying
operating system. Knowing the type of operating system will help you determine the course of action you
should take in the examination. Knowing this will also determine the actual software that you should use to
complete the collection. As you read through this book, you’ll learn more about these devices, and it will
become apparent that your examination should start with an understanding of various types of evidence.

SIM and UICC
Subscriber identity modules, or SIM cards, were developed to enable portability and, more importantly, to
store information to enable authentication on the cellular network. Authentication in this sense means that the
device can register and enable users to make and receive calls. With the SIM card acting as the key to the
network, a user can switch equipment by removing the small smart chip and inserting it in a different GSM
device. As SIM cards began to enable the storage of user data such as contacts, SIM removal also meant that
users could take their contacts with them to the new device. When a SIM card is inserted into the new device,
the user can access contacts and make and receive calls. Storage on the SIM card makes it easy to move from
one device to another. Along with contacts, SMS are also stored, as are the last numbers dialed.

All data types on a SIM card are not infinite, and the amount of data that can be stored is a static value
determined by GSM standards. As outlined in the initial documents by ETSI (European
Telecommunications Standards Institute) and later adopted by 3GPP, the “Technical Specification Group
Terminals Specification of the Subscriber Identity Module” outlines the type of data along with how many
records can be stored for each type of data. The SIM cards in today’s GSM and CDMA devices are called
UICCs (Universal Integrated Circuit Cards) and assist in the operation of the UMTS, HSPA, and LTE
systems. It can be said that the UICC will work on all mobile telecommunication networks.

Some say, incorrectly, that a SIM card is the same as a USIM (Universal Subscriber Identity Module)
card. Although technically SIM cards are physical cards that operate only on 2G GSM systems, a USIM is an
application on the UICC. The USIM application enables the mobile device to be identified on the UMTS,
HSPA, and LTE systems. UICCs also contain a SIM application that allows for backward-compatibility to
the 2G networks and may also contain another application called the CSIM (CDMA SIM), which allows
access to CDMA networks, and an application called ISIM (IP-multimedia Subsystem Subscriber Identity
Module). The ISIM allows for secure use of the Internet Protocol multimedia subsystem and is the backbone
of the LTE network. This means support for voice over IP (VoIP), SMS, and emergency calls without a
network can occur securely. One of the biggest advantages of the UICC is this ability to store multiple
applications on it.

Earlier CDMA SIM cards were called R-UIM (removable user identify module) cards and contained a
primitive version of the CSIM application and a SIM application for GSM.

Like the SIM, the UICC also allows for the storage of contacts, SMS, and other user histories. What has

36

not changed from the SIM to the UICC or USIM application is the ability to store more SMS messages or
more call detail data. The reason behind that has to do with the understanding that today’s devices default to
storing data to the handset, not the SIM card. Along with the velocity and volume of this data, this is not
likely to change. In Chapter 11, you can read about the actual structure and the evidence locations for specific
SIM and UICC data.

Media Storage Cards
SD cards were created in an effort to expand the available storage for mobile devices. SD cards are of four
different types: Standard-Capacity (SDSC), High-Capacity (SDHC), Extended-Capacity (SDXC), and a
newer type not used currently with mobile devices, called Input/Output (SDIO). These four types come in
three different form factors: the original, which measures 32-by-24 mm; the mini, which measures 21.5-by-
20.0 mm; and the micro, which measures 11-by-15 mm.

External micro-sized SD cards typically come with an adapter that enables the cards to be read using a
standard-size SD card reader. Important to remember is that most SD card full-size adapters have a
“lock” that disables writes to the SD card media. When processing these storage mediums, you must set
the card to locked to enable the write-protection feature built into the card.

Today, mobile device equipment often contains a slot to accommodate a small storage card that stores
saved images, videos, or other media, but can also store documents, applications, and more. Important to
remember is the fact that external media cards are another form of evidence. In the early years of mobile
devices, external media cards were sized at 256 to 512MB. The most prevalent type and form factor used in
today’s devices are the original and microSDHC cards. The SDHC standard, released in 2006, supports a
total capacity of 32GB, and the micro size is the most prevalent type of card with mobile devices. The SDXC,
released in 2009, supports up to 2TB of data by using Microsoft’s exFAT (Extended File Allocation Table)
file system, and some current mobile devices will support and recognize cards in the micro size up to 2TB.
However, the purchase of legitimate operational 400GB SDXC for a mobile device is now possible.

To help you understand just how much data can be stored in a gigabyte, let’s discuss what a gigabyte is. A
gigabyte is equivalent to a device’s ability to store 10,000 one-page documents in the Times New Roman
font, 12-point, single-spaced; 520,000 text messages; 1074 regular sized photos; and approximately 250
songs that are each four minutes in length. With the sheer volume of data that can be stored on media
smaller than a postage stamp, it becomes apparent that omitting this type of evidence from your mobile
forensic exam could be catastrophic.

Many new devices, especially those running the Android operating system, also have internal microSDHC
and SDXC cards soldered to the internal circuitry to add internal storage capacity. This is an inexpensive way
to expand the capacity of a device. Understanding and recognizing that a device has internal microSD storage
is very important during your digital exam. This internal storage is in the range of 4 to 64GB, which can hold

37

an astronomical amount of data. More devices today contain both internal and external microSD cards.
During a proper examination, if possible, you should collect and analyze both storage locations.

To determine whether a device contains both internal and external SD card components, research the
device before starting your examination. This information can be obtained from web sites discussed in the
coming chapters.

Mobile Device Backups
The last type of associated data for mobile devices is the backup that some devices create on media such as
PCs, Macs, and other operating systems. Today’s devices also use the Cloud to store backups. Devices such as
Apple iPhone and iPad and the new BlackBerry smart phones create backups that you can later analyze.
Apple iOS devices create a backup using the Apple iTunes software. You’ll find these backups in different
locations depending on the type of computer operating system and version.

For Windows computers, the backup default location for an Apple iOS device will depend on the
operating system version:

• Windows XP \Documents and Settings\<username>\Application Data\Apple
Computer\MobileSync\Backup\

• Windows Vista, Windows 7, 8, 10 \Users\<username>\AppData\Roaming\Apple
Computer\MobileSync\Backup\

• macOS ~/Library/Application Support/MobileSync/Backup/

These areas contain valuable data and can also contain multiple backups of the same device. For an iOS
device, the data that is typically backed up as outlined by Apple in the support wiki
(http://support.apple.com/en-us/HT4946) is listed here:

• Camera Roll photos, screenshots, images saved, and videos; for devices without a camera, Camera Roll is
called Saved Photos

• Contacts and Contact Favorites

• Calendar accounts and subscribed calendars

• Calendar events

• Safari bookmarks, cookies, history, offline data, and currently open pages

• Autofill for web pages

• Offline web app cache/database

• Notes

• Mail accounts (mail messages aren’t backed up)

• Microsoft Exchange account configurations

• Call history

• Messages (iMessage and carrier SMS or MMS pictures and videos)

38

http://support.apple.com/en-us/HT4946

• Voicemail token (not the voicemail password; the token is used for validation when connecting and is
restored only to a phone with the same phone number on the SIM card)

• Voice memos

• Network settings (saved Wi-Fi hotspots, VPN settings, and network preferences)

• Keychain (includes e-mail account passwords, Wi-Fi passwords, and passwords entered into web sites and
some apps—can be recovered in an iTunes backup only if the backup has been encrypted)

• App Store app data (except the app itself, its .tmp file, and Caches folder)

• App settings, preferences, and data, including documents

• In-app purchases

• Game Center account

• Wallpapers

• Location service preferences for apps and web sites you’ve allowed to use your location

• Home screen arrangement

• Installed profiles

• Map bookmarks, recent searches, and the current location displayed in Maps

• Activity and Health (can be recovered in an iTunes backup only if the backup has been encrypted)

• Paired Bluetooth devices (only if restored to the same phone that did the backup)

• Keyboard shortcuts and saved suggestion corrections

• Trusted hosts that have certificates that cannot be verified

• Web clips

Some items are not contained within an iTunes backup reported by Apple (https://support.apple.com/en-
us/HT204136), including the following:

• Content from iTunes and App Stores, or PDFs downloaded directly to iBooks

• Content synced from iTunes, such as imported MP3s or CDs, videos, books, and photos

• Photos already stored in the cloud, such as My Photo Stream, and iCloud Photo Library

• Touch ID settings

• Apple Pay information and settings

A series of files and folders are created for the iOS device backups at these storage positions. If the user
has elected to encrypt backups via the iTunes interface, the backups will not be readable unless the iTunes
password is known.

BlackBerry also creates backups using the BlackBerry Desktop Management software, or Link as it is
known today for some new BlackBerry devices. These backups are also located in a default location:

• Windows My Documents\BlackBerry\Backup

39

https://support.apple.com/en-us/HT204136

• Mac /Users/<name>/Documents/BlackBerry Backups

A user can always change the backup location using the BlackBerry Backup Software.

Depending on the version of BlackBerry software that was used to create the backup, the file will either
have an .ipd or a .bbb extension. Files with an .ipd extension will have been created with earlier versions of
BlackBerry Desktop Manager (versions up to 6), while .bbb files are created by BlackBerry Desktop Manager
version 7 and the new Link software. The .bbb files that are created by Link are fully encrypted, and known
BlackBerry user information must be used to decrypt the data.

Both iOS and BlackBerry backups contain very valuable data that you can analyze in commercial tools
such as Oxygen Forensic Detective and Analyst, MSAB XRY, and Cellebrite Physical Analyzer, along
with free tools such as iPhone Backup Browser and MagicBerry. The collection and analysis of backups
can assist your investigation if the device cannot be located or accessed, but examinations of the backups
are also a way to compare the data from the backup to the actual device for a historical perspective.

BlackBerry Enterprise Server (BES) technology was the first platform that allowed an enterprise to store
data from a mobile device in a central location on the company premises. This added great security to a
company’s critical and confidential data by enabling local storage of e-mail, documents, messages, event data,
and company materials. This information could be accessed by company enterprise security teams to ensure
compliance and gain visibility into the device if law enforcement requested data not stored on a device or data
that had been deleted. Security administers of the BES can also remotely unlock a device if it is under control
of the enterprise, which is also of great benefit to law enforcement. BES12 is an endpoint mobility
management (EMM) tool and can contain data that is not accessible on the physical device, so don’t overlook
this information while conducting an investigation of a BlackBerry device.

As mentioned, devices can also create backups in the Cloud. iOS devices use a service called iCloud, which
launched in October 2011, with almost 800 million users currently. The iCloud service enables the user to
store user data, applications, documents, pictures, and more on a server maintained and owned by Apple. This
information can be retrieved using tools such as Oxygen Forensics Detective Cloud Extractor or Elcomsoft’s
Phone Breaker with the user’s Apple ID and password.

For iCloud backups, a user can obtain most of the data from a standard iTunes backup with a few
exceptions. The following items, as indicated by Apple’s support site (https://support.apple.com/en-
us/HT204136), are not included in an iCloud backup:

—Data that’s already stored in iCloud, such as Contacts, Calendars, Notes, My Photo Stream, and
iCloud Photo Library

—Data stored in other cloud services, such as Gmail and Exchange mail

40

https://support.apple.com/en-us/HT204136

—Apple Pay information and settings

—Touch ID settings

—iCloud Music Library and App Store content (if it’s still available in the iTunes, App, or iBooks Store,
you can tap to re-download your already purchased content)

Because of many security concerns with unauthorized access to iCloud backups, Apple utilizes end-to-end
encryption as long as the device owner has turned on two-factor authentication. This security update has
added another hurdle for law enforcement when legally obtaining information stored using the iCloud service
and tools.

Storing backups on the Cloud has moved to Android to include Samsung Cloud, Google Cloud, Huawei
Cloud, OPPO Cloud, and many others with onboard applications downloadable from the Google Play Store;
BlackBerry has moved new devices to BlackBerry Protect. With many new devices moving to the Cloud,
investigators must be cognizant of these locations as well. These cloud services, as well as methods to extract
and analyze this data, will be covered in Chapter 4.

Educational Resources
You should always begin any investigation with research of the device to be examined. Knowing as much
information about a device as possible will ensure that you won’t miss internal and external components.
Knowing, for example, that a device has a built-in 64GB internal SD card is very good information to know
before you start an examination. Several resources online can assist you in identifying the many nuances of the
millions of devices available.

Phone Scoop
Phone Scoop (www.phonescoop.com/phones/finder.php) contains valuable information to assist in the
identification and research of the device to be examined. You can search by device model, make, or operating
system to see information such as the current operating system and version, processor, memory (both internal
and external), whether or not there is a SIM card, and the type, memory slots, and the FCC ID.

Phone Scoop has images of the device to help the investigator quickly identify the device visually and also
contains links to query the FCC database. Querying the FCC database provides detailed summaries of the
internal components, what the original equipment looks like, and where the label should be located and what
it should look like.

Phone Scoop stores information on devices for North America only. Using this resource will help you as
you research to gain a better understanding of the device, its features, and how to begin an examination.

GSMArena
GSMArena (www.gsmarena.com/search.php3) is much like Phone Scoop, but this site contains only GSM
devices and is primarily for devices outside of North America. GSMArena is an information repository for
reviews of the devices; phones searchable by model number, manufacturer name, and common name; and
mobile device specifics. Mobile phone manuals are available for most devices, along with all the specifications,
including but not limited to, size, memory, SIM type, operating system, hardware specs, USB port, and

41

http://www.phonescoop.com/phones/finder.php
http://www.gsmarena.com/search.php3

detailed images of the device.

Forums
Although Phone Scoop and GSMArena are valuable resources, obtaining information about what software
might have been used on a specific device, tricks that you should know, and processing ideas all come from
real experience. Forums are a way to connect with examiners and ask specific questions, search large databases
for a device to see what software works best with that particular device, and so much more. The key to gaining
experience and knowledge is by gathering as much intelligence prior to starting the actual examination of the
device.

Here is a list of several forums that are good sources for information.

Forums with Databases
This forum contains a database that you can query in search of a device and the software to use.

• Mobile Forensics Central (www.mobileforensicscentral.com/mfc/) Use Mobile Forensics Central by
searching its database to locate a phone report that lists the mobile device software and additional
information needed for processing. MFC is a free site but requires registration.

Technical Information Forums
Use these forums to ask and search for mobile forensic technical questions.

• Forensic Focus (www.forensicfocus.com/computer-forensics-forums) This forum is for general forensic
comments and questions based in Europe. This forum has a subforum for mobile forensics and contains
tips, tricks, software information, and more.

• Android Developers Forum (http://developer.android.com/index.html) In this forum you’ll find developer
information on the Android operating system; you can also obtain all drivers for Android devices and
download the Android Emulator along with prereleases of the Android operating system.

• XDA Developers Forum (www.xda-developers.com/) This site contains a forum along with development
resources for smart devices, primarily Windows and Android. In 2010, a sister site, iPhone-
Developers.com, was launched. The XDA name represents the first device, a Windows PDA, for which
the site was developed.

Preparing for Your Journey
Mobile device forensics is no different from any other technical discipline. All demand a respect of the details
along with an effort to understand every variable and contingency that you might encounter. There will be
many bumps in the road with respect to tools and devices and, more times than not, a mixture of both.
Working through each and every problem for a solution will arm you with knowledge that many others in
today’s mobile forensic world relegate to a tool.

Mobile devices will continue to be involved in the lives of nearly every human being on this Earth. They
will continue to be used in some way in crimes, conversations, transactions, meetings, and Internet access for

42

http://www.mobileforensicscentral.com/mfc/
http://www.forensicfocus.com/computer-forensics-forums
http://developer.android.com/index.html
http://www.xda-developers.com/
http://iPhone-Developers.com

years to come and beyond. Mobile device examinations are not like any other digital examination discipline.
To conduct thorough mobile device examinations, you need a constant appetite for research and training with
this rapidly evolving discipline. Be patient, but more importantly, question the tools, understand what is under
the hood, and prepare for anything!

Chapter Summary
Mobile device forensics is nothing like any discipline in the range of digital data examination because of the
many different types of media associated with the single device (SIM, device, SD card, the Cloud, and even
backups). Furthermore, the ways of acquiring the data from the devices are atypical to the standard digital
forensic exam. The standard device collection is not the “bit-by-bit” image you would expect in other
disciplines. Having a firm grasp on the basics will give you a strong foundation that will withstand the
staunchest critique and challenge. Without having an underlying foundation, your examination will surely
crumble under the scrutiny of an opponent.

43

M

2 Mobile Devices vs. Computer Devices in the World
of Forensics

obile device forensics is a very specialized, and at times frustrating, discipline, especially for a new
mobile forensic examiner crossing over to the discipline after years of service as a computer forensic

examiner. With typical file system formats and well-documented operating systems and system processes,
understanding a computer and its relevant artifacts is straightforward. With a legacy Nokia Series 40 (S40)
mobile device, however, with its S40 operating system and no official documentation outside of Nokia,
uncovering structure and artifacts may not be so straightforward. Mobile device storage media or internal flash
is similar to the solid state drives (SSDs) in today’s computers, but the file formats and, most importantly, the
way to access this data as an examiner is much different. Additionally, the ability to create and obtain a
physical image of a mobile device is much different from, and at times extremely more difficult than, creating
a physical image of a mass storage device or traditional hard drive.

When speaking about a physical image of a hard drive or mass storage device, most practitioners refer to
obtaining every bit and byte from the first sector (or start of the hard drive) to the last sector (or end of
the hard drive). Obtaining an exact copy of the media is the truest form for a computer forensic examiner.

Most seasoned computer forensic examiners struggle with the limitation of obtaining an exact, unaltered
form of a mobile device’s internal storage media. For this reason, many examiners say they will not conduct a
collection or an examination of a mobile device and cannot refer to it as a “forensic exam.” Some have even
refused to refer to this as “mobile device forensics,” instead calling it “mobile device collection or extraction.”
This mentality will last only so long, however, especially when an examiner conducting a mobile forensic exam
becomes an expert. As soon as an examiner is held to be an expert in the field, his or her testimony will be
weighed against the Daubert or Frye standard, depending upon the current jurisdiction.

Frye is based upon Frye v. United States, 293 F. 1013 (www.law.ufl.edu/_pdf/faculty/little/topic8.pdf),
which states that expert testimony must be based upon scientific methods that are sufficiently established
and accepted. Daubert is based upon Daubert v. Merrell Dow Pharmaceuticals, 509 U.S. 579
(https://supreme.justia.com/cases/federal/us/509/579/case.html), which states, among other things, that
scientific knowledge can be established if it can demonstrate that the conclusion is the product of sound
“scientific methodology” derived from the scientific method, and the decision as to scientific knowledge
laid out by Federal Rule of Evidence 702 will rest on the shoulders of the trial judge.

The world is quickly moving to mobility, and mobile devices are becoming more like small computers,
with no end in sight. Examiners must begin to understand that the forensic process is more important for the
examination of a mobile device than for traditional computer forensics, based upon the many differences and

44

http://www.law.ufl.edu/_pdf/faculty/little/topic8.pdf
https://supreme.justia.com/cases/federal/us/509/579/case.html

hurdles that currently exist with these devices.

The forensic process is important in the examination of a mobile device for several reasons. The greatest
impedance to the forensic process is overcoming and recognizing that write-protected devices are ineffective
in protecting the integrity of mobile device evidence. When corners are cut, training is insufficient, and a full
understanding of the process is relegated to pushing a button, case law and precedence are often set. If the
examiner has a concrete understanding of the process and follows it and understands the theory behind mobile
device communication via software, then the evidence recovered will stand up to challenge. The flip side is
uncovering a significant amount of useful information by not following or understanding the process and then
being informed in court that recovered data cannot be used. What could be worse is that the evidence is used
in the proceeding, but during the proceeding the validity is disputed because the practitioner used improper
collection methods or did not follow a formulated scientific process. This concept is difficult to accept for
examiners with many years in the computer forensic discipline.

Computer Forensics Defined
The examination of digital data from a computer’s storage medium, either the traditional hard drive or the
SSD, is a discipline familiar not only to law enforcement but also to enterprise and academia. In every
vocation, digital data from computers has been examined to verify, confirm, and attempt to determine users’
intentions by investigating their actions and history. Processes and procedures govern the way a computer
forensic examination and, more importantly, an examiner should proceed throughout the investigation. When
you understand how prominent organizations define computer forensics and know the minimum
requirements for a successful digital investigation, you can establish proper processes and procedures,
implement plans, and establish a structure to facilitate mobile forensics.

International Association of Computer Investigative Specialists (IACIS)
IACIS is an international volunteer-based nonprofit corporation that provides training and education in
forensic computer science and grants the Certified Forensic Computer Examiner (CFCE) certification. The
organization membership was originally limited to law enforcement but is now open to computer forensic
practitioners who qualify. The CFCE core competencies document describes computer forensics as the
acquisition, reconstruction, examination, and analysis of data stored on electronic media. To become certified,
the examiner must address seven competency areas in the CFCE program, obtain peer review, conduct
practical examinations, and pass a written examination. The seven areas are pre-examination and legal issues,
computer fundamentals, partitioning schemes, Windows file systems, data recovery, Windows artifacts, and
the presentation of findings.

International Society of Forensic Computer Examiners (ISFCE)
ISFCE is a private organization that conducts research and development of new and emerging technologies in
the science of computer forensics. ISFCE grants the Certified Computer Examiner (CCE) certification,
which also requires that core competencies be met in the certification process. These competencies include
ethics, law, software, hardware identification, networks, operating systems, seizure process, forensic
examination procedures, file systems, other media, media geometry, preparing media for imaging, forensic

45

boot disks, low-level analysis, processing issues, and practical examination skills. To be accepted into the CCE
testing process, a candidate must have completed at least one of three requirements: attended a CCE Boot
Camp from an authorized training outlet, possess at least 18 months of verifiable digital forensic work, or have
documented self-study in the field of digital forensics deemed appropriate by the CCE board. Once this
requirement is fulfilled, the candidate can apply to the CCE testing process and must pass both an online
written assessment and practical examinations.

Applying Forensic Processes and Procedures
Both IACIS and ISFCE follow similar processes and procedures in their competency requirements before a
candidate can become certified to examine computer digital evidence. The following sections cover specific
parts of both organizations’ competencies along with supplemental information obtained from the U.S.
Department of Justice (DOJ) on electronic evidence. By understanding the following areas of concentration as
outlined for computer forensics methods, you can formulate strategies to build the best approach for a mobile
forensic examination. Having a competent examination process that is repeatable and that subscribes to the
scientific method at the onset of the journey will help you create a firm foundation and reliable process. This
foundation and process must hold the weight of the facts when you testify to the results of any examination.
Many certifications in today’s mobile forensic community are from tool vendors. Having a tool-specific
vendor certification may be important for testimony that competency in the tools is vetted. However, having
an overall understanding, competence, and firm foundation in general and advanced mobile forensics is
essential, and this is seldom offered by a tool vendor.

Seizure
Any investigation into electronic evidence must start with the legal seizure of the device that is holding, was
holding, received, or transmitted the electronically stored information (ESI). The proper legal steps will be
determined by the situation. Is the ESI in a place that requires a search warrant to be obtained, that is
corporately owned, or that requires permission be given by the owner? If the seizure of the device and
subsequent data are tainted by questions on the legality of how the data was obtained, the information
collected will be dismissed in subsequent proceedings. You must exercise extreme care at the onset.

Collection
You must extract data from a digital device in a manner that enables you to show that the ESI did not change,
was not altered, and is the same as when it was collected. The collected data typically contains an electronic
fingerprint. If any data is changed, added, or removed from the collected data container, the electronic
fingerprint will change. The integrity of the collection of digital data and the validation and verification of the
software that collected the device are the responsibility of the person conducting the collection.

Analysis/Examination
Analyzing the data that has been collected from the seized device is often the most tedious part of an
examination. Looking into many gigabytes of information is labor intensive even with automated tools.
Because of the volume of data, typical digital examinations are predicated by the type of investigation the data

46

will be used to support. Using the DOJ’s “Electronic Crime Scene Investigation” document as a guide, the

examiner can steer the examination of digital evidence by the crime or incident being investigated. By using
this type of direction, an examiner’s time can be better used in the analysis of pertinent information on a case-
by-case basis. For example, the guide states that for crimes against persons, investigations and electronic data
examinations should focus on the recovery and analysis of images (pictures), Internet activity logs, legal
documents, and wills, along with any research the suspect conducted on the victim. The analysis and
examination of the digital data can take significant time, but if the examiner has a clear picture of what
information might be required for a particular investigation, the time can be minimized.

Presentation
Once the analysis is completed on the seized and collected data, the examiner must present the information,
typically via a written report. The presentation is the most important piece for those who will review and most
likely act on the information that has been recovered and analyzed. The presentation must outline the entire
process, including any problems encountered, from the seizure to the analysis. The analysis portion must be
clearly documented as to the request, the methodology, and findings. The examiner may have the most
difficulty at this stage because technical examiners often do not communicate well with nontechnical people.
The presentation stage defines the entire examination, however, since those who review the process will use
this information to determine the validity of the examination and its results.

Approach to Mobile Device Forensics
Using well-tested and clearly defined forensic procedures can be a great start to creating a process and
procedure for mobile device forensics. First, however, you need to understand several items that are at the
heart of the scientific debate over the validity of mobile forensics.

One of the major debates by seasoned computer forensic examiners has to do with the integrity of image
creation. Because a write-protect device cannot be used in the examination of a mobile device, the image
cannot be substantiated as a true representative of best evidence—or can it? Most computer forensic examiners
consider mobile device forensics nonscientific because of this single limitation. As discussed previously, a write
blocker stops writes to a mass storage device, thus maintaining the integrity of the device from which the
image is being created. The hardware device or software switch inhibits writes to ensure that data is not
overwritten and allows for a duplicate image of the storage device. Thus, the examiner can obtain a hash, or
mathematical fingerprint, of all the data on the device. Because a mobile device is not recognized as a mass
storage device and a write blocker cannot be used, some examiners believe the image must be labeled
unreliable. However, when you fully understand the nature of the software used to connect to and collect data
from the mobile device, you realize that the image can be reliably captured, even without involving a write-
protect device.

When plugged into a computer, mobile devices initiate a change in the computer’s operating system,
which recognizes that a mobile device has been plugged into the system. Furthermore, the mobile device also
makes changes to its operation to allow for communication with the computer. Mobile devices can be tethered
to a computer using several means: infrared (IR), Bluetooth, Wi-Fi, serial cable, and USB cable. Connection

47

with the device will always need a way to communicate, and this requires a driver—a conduit, command set,
or program for a particular device or device set that allows communication between the device and the
computer. In essence, a driver “bridges the gap” between the devices. Drivers are used not only for mobile
devices but also for any hardware attached to a computer system. If a driver is not installed properly,
communication cannot occur. Drivers are the primary “pain points” when it comes to processing a mobile
device. The correct driver must be installed correctly for communication to work while processing a mobile
device. The communication between a mobile device and a computer system could involve the transfer of data
to and from the device to the computer, creating an Internet hotspot, installation of applications, and many
other things.

The word communication is important. For the mobile device to be recognized and communicate with the
system via the driver, the mobile device typically must be powered on, and this fact brings up another point of
contention with computer forensic examiners. If the device is powered on, then it is possible that data is
constantly changing on the device from the cellular network or Wi-Fi network to which it is connected.
Would not the clock on the device continue to update along with various other running processes on the
mobile device? Invariably, the data is in constant flux, but ultimately it is the responsibility of the examiner to
determine what data has changed, if any. Isolation techniques will be covered in later chapters, but for now
you can assume that data will change on the device when it is powered on. This is an incredibly difficult
concept to comprehend for a computer forensic examiner coming into mobile forensics. Both IACIS and
ISFCE specifically state that nothing should change on a device during the collection process, and if it does,
the recovered data cannot possibly be used as best evidence.

In today’s modern world, however, we have software tools that recover volatile memory from a running
computer. Volatile memory, memory that goes away if a computer is powered off, includes Random Access
Memory (RAM). RAM can contain very valuable information such as passwords, keywords, media, and files,
along with many other great forensic items. Because RAM is volatile, if the computer is shut down, the data
would cease to exist, would be purged from the system, and recovery would be impossible. So before you could
collect this data, the computer must be live and powered on, and you would run a forensic application to
target the machine, capturing the volatile data.

This live technique is in fact much like mobile device data collection. Files are changed on the mobile
device just as the files on the computer change during a live collection. It is up to the examiner to understand
and comprehend what is taking place from start to finish, and most importantly, to ensure that no user data is
altered by the software during the collection.

Communication between the mobile device and mobile forensic software occurs via the driver connection
using the device’s protocols, and the communication must first be in the language (protocol) accepted by the
device. Different protocols are used for different devices, and sometimes multiple protocols are used,
depending upon the access needed to the device. Some devices must even have small applications installed via
their operating system onto their internal storage to collect the required data during the forensic examination.
When you consider the many different devices available to the consumer and the various protocols used, it is
apparent why some mobile devices cannot be examined using communication via a USB cable, serial cable,
Bluetooth, or Wi-Fi. It is important that the examiner develop a thorough understanding as to what

48

communication is occurring between the software and the mobile device so that he or she can maintain the
integrity of the image and the mobile device’s contents can be verified as best evidence and untainted during
the mobile forensic examination.

In 2008, NIST published a document entitled “Forensic Filtering of Cell Phone Protocols” (NISTIR
7516), which describes ways to use phone manager software tools believed to be non-forensic in forensic
examinations. The document describes a protocol filter that can be applied to the software to intercept
communication that poses a risk to the integrity of the investigation. The document, although dated, contains
valuable information as to how forensic tools of today combat the limitation imposed when a write-protection
feature cannot be used. The document explains that the underlying functionality of forensic mobile device
tools is based upon the same protocols used by the manufacturer’s phone management tools. Furthermore, the
forensic software tools inhibit or restrict the protocols used to issue commands or instructions that will read
data from the device, along with other functions that impose little risk to the integrity of the evidence. This is
done, as NIST explains, using a filter between the software and the device—much like how hardware and
software write blockers work.

Validating the mobile forensic software and verifying that it uses forensic filtering of common mobile
device protocols are the responsibility of the examiner. The ability to add, remove, or change records on a
mobile device during or after a collection and subsequent analysis of the device should not be available to the
examiner or in the software available today. Of course, as will be explained later, there are certain instances in
which writes do occur to the connected device. These writes are not indiscriminate to the device, but targeted
writes to temporary storage in the form of an application that assists with the extraction of the user data.

After the examiner collects the data from the mobile device, the analysis of the data, much like in
computer forensics, is the most time-consuming part of the process. At this phase, some examiners and
examinations falter. A lack of knowledge on the structure of a device’s internal file system, critical artifact
locations, system values, and critical file types means most examinations target the “lowest hanging fruit.”
WYSIWYG data typically satisfies the majority of examiners, not because of lack of motivation, but because
of a misunderstanding of the device’s storage areas and operating system characteristics. Know the device, its
capabilities, and its file system, and you can substantiate any challenge to the examination.

Unlike computer forensics examiners, those who conduct mobile device forensic investigations have no
globally recognized standards, as outlined earlier in the chapter. Simply put, as long as the data from the
mobile device is included in a report, there is no regard as to how that data was collected from the mobile
device. It is because of this “Wild West” approach that most computer forensic examiners see mobile device
forensics as mobile device extraction, which is inherently wrong if you understand what it really means to be
forensic. Mobile forensics do, indeed, have processes, like computer forensics, but typically they are seldom
adhered to by those conducting examinations.

This disparity is one of the main reasons the Mobile Forensic Certified Examiner (MFCE) curriculum
was created and formulated by the training company Mobile Forensic, Inc. (MFI). The MFCE requires that a
candidate receive training on mobile forensic practices or have verifiable work in mobile forensics to apply for
certification. If accepted, the candidate then undergoes six practical exercises and a written test to receive
certification. The MFCE has not been widely accepted, however, primarily due to its limited reach and

49

resources. For that reason, in late 2014, the MFCE was incorporated into the IACIS advanced mobile device

training as a certification process, where it will be maintained and governed by a board of examiners.

Most software vendors also provide training on the software that they develop and sell. This type of
training is important because the examiner must fully understand the tool to use it correctly during mobile
forensic examinations. Training also provides credibility when examiners testify in court. These vendors also
provide certification, which typically involves showing competence via written examinations, practical
experience, or both.

If you are unsure about whether to receive a mobile forensic certification on your overall understanding of
the process or based on a particular tool, my best recommendation is to work toward a cumulative
certification on overall processes and procedures.

As shown in Figure 2-1, the current approach to mobile forensics and the analysis of a mobile device is a
bit upside-down. The foundation shown in the figure is the tool, which is supporting the weight of the
procedure, process, and training. But having only a tool-based foundation in mobile forensics will never
support your conclusions. A foundation based on training, however, which represents the largest area of the
pyramid, along with a core centered on processes and procedures, will support a tool-based approach. To be
successful in the mobile forensic field, you will invert the current examination pyramid and rest your
knowledge foundation on what will support the approach covered throughout this book.

FIGURE 2-1 The backward approach to mobile forensics

Tool Understanding: Should It Be Painful?

When I first began in forensics, I attended several training courses. The most prominent other than my
two-week IACIS training course was Basic Data Recovery and Analysis (BDRA) conducted by the
National White Collar Crime Center (NW3C). In the week-long BDRA course, students started at the
hard drive disk level. We learned about disk geometry, how the aperture arm worked, how the platters
are configured, how the 30-pin ribbon cable worked, and the jumpers used to make one a master or a
slave. We also learned how to create an image of a 3.5-inch floppy drive containing possible evidence.
We then examined the image using a tool called a disk editor. The disk editor enabled students to
examine the information at the data level, which helped us identify files by the file header and the file

50

footer to determine the actual file type. The following screenshot shows what I was exposed to during the

initial training phase and using a disk editor to examine the data on digital media.

Using the disk editor, we were instructed to find a JPG by identifying its header and footer. We
would then take the first byte and move to the last byte, copying the data from the disk to its own file,
assigning it a .jpg extension. Clicking the file we just created, we immediately saw the product of our
labors—a picture of a cat. It was amazing, carving an image from a blob of hexadecimal data, to produce
an actual file! It was not until the last day of the course that we were allowed to use automated tools again
to carve the data from the floppy disk. What!? Automation? Why was this tool not given to us the first
day of the course? This would have saved a tremendous amount of time and shortened the five-day
course into two. I was beginning to think that the instructor was a masochist and was questioning his
intentions, but then the epiphany came.

The countless hours of explaining the architecture of the media, the structure of the file system, and
formation of files finally made sense to me. We, in simple terms, were the tool—first finding the header
of the file and carving from the header to the footer—just as an automated tool was doing. So when we
are requested during testimony to qualify what carving is and how a tool can find and extract the forensic
file data, we fully comprehend and can explain how this process takes place within a software solution.

The foundation of a mobile forensic exam should be a sound understanding of the operation and output of
any automated tool used. Organizations and academia have now changed the “computer forensic” label to
include digital forensics in an effort to cover small-scale devices such as mobile phones and tablets. As
discussed, there are inherent differences in the way information is obtained from a mobile device, but the
examination of the collected data should be complementary.

51

NIST and Mobile Forensics
In its executive summary on mobile forensics (NIST Special Publication 800-101 Revision 1, May 2014:
“Guidelines on Mobile Device Forensics”), NIST clearly explains that the digital forensic community faces
the biggest challenges when it comes to mobile devices and investigations. Mobile devices are constantly
changing to improve technologies, and investigative techniques must evolve with each new introduction. As
stated, the key to understanding and answering the questions of today’s investigator is having a firm
understanding of the mobile device’s software and hardware. A clear understanding of the limitations and the
functions of forensic tools is important, but a clear and documented process and procedure are paramount.

Process and Procedure
Every job or discipline requires a set of processes and procedures that clearly define what is expected of the
work and that aid in the workflow and ultimately a successful outcome. Procedures in forensics should never
comprise a mere list of items to accomplish, starting at A and ending at Z. Adhering to a list and simply
missing a step between A and Z would mean the entire process would fail. In forensics, and in technology
investigations in general, the process-and-procedure document should be used only as a guide. There will be
many different variables to consider, ranging from the actual physical device, to the type of software used, to
the type of investigation the mobile device evidence will support. Processes used for one device might not be
relevant to another or to a particular type of examination. What is important is that a clear set of procedures
for conducting a mobile forensic collection and examination be established prior to the first examination to be
used as a guide.

Even before a set of processes and procedures can be created, however, you must consider several
objections to the notion of a process in conducting mobile device collections and thorough examinations.
Following are two of the more prominent objections.

Lack of Time
To complicate the process further, examiners began to incorporate a four-letter word in forensics: T-I-M-E.
Time is the excuse that is typically used in the mobile forensic community when it comes to undergoing a full
examination of the extracted data from a mobile device. “We do not have enough time in our job to look at
every application or file system file.” The person conducting the collection has to move on to another case,
another device, or another responsibility. But conducting the examination with this attitude is a critical
deficiency in mobile device forensics, especially in the age of the smart phone, and can prove to be detrimental
and costly in the long run. A hasty examination of digital data is like reading the first and last chapters of a
book and then trying to write a review. The overall premise and how it might fit together could be garnered
from the pages read, but without reading the entire book, the opinion is based upon 20 percent of the overall
information contained therein. The examination is without substance. Although mission-critical data is often
needed in the shortest time possible, the examiner should never ignore an opportunity to examine every byte,
if given the chance.

The Importance of Time and Training

52

Back in the day when the first floppy drives were seized at an electronic crime scene, they were stored to
be analyzed later because they had something to do with a computer’s data—and the same goes for a
laptop, PC, or any other storage/processing device found at the scene. It was understood, and still is, that
these devices may contain data relevant to the case. First responders were not trained in the examination
of the data, so they collected and held the devices until the computer forensic examiner could conduct a
proper investigation. Floppy drives held a maximum of 1.44MB of data, and the devices of the day could
have contained only a 528MB hard drive for storage. Today’s mobile device on-board storage could be
16, 32, 64, and 128GB of data. They can be even extended to add 400GB of storage via removable media
cards! (To put this into perspective on sheer storage capacity, a single gigabyte can hold data from 711,
1.44MB floppy disks and the data from almost two of the 528MB hard drives.) First responders, patrol
officers, narcotics officers, and school resource officers are collecting and holding mobile devices every
day because they need actionable intelligence quickly, but they still consider a mobile device just a phone,
not a computer.

Collections by first responders should be supported, however, as long as the collections adhere to a
predefined and vetted process. The examination of the data must be conducted by a person who has both
the time and the training to peel the skin from the onion and peer into the many subcutaneous layers.

Simplicity of the Tool Equates to No Training Needed
Mobile forensic software and hardware tools have been designed and marketed to express to the purchaser
that little to no training is needed to conduct a mobile forensic examination. Simply push this button and out
comes the evidence; no need to add training or comprehend what is actually occurring when the button is
pushed. The inverse is true, however, because the simpler the tool, the more training the examiner will need in
order to testify about what is really occurring. Did the software on the device, once the button was pushed,
query a database to retrieve the contacts and SMS? If that is the case, what database did it query? If the
examiner can answer these questions, then using an automated tool for mobile device collections will stand up
to scrutiny.

Standard Operating Procedure Document
What should be a part of the mobile forensic process? Much like the computer forensic process, it must start
with a written document outlining the mission—a standard operating procedure (SOP) document. An SOP
covers not only the person or persons conducting the examination of data but also those who are collecting
and seizing the device or devices holding the digital data. The SOP should outline the process and procedures
to be followed, from the seizure to the reporting of the data.

When you’re starting a forensic lab or beginning to examine mobile devices, creating this document should
be your first step. SOP processes and procedures for mobile forensics are much like those for computer
forensics. The Scientific Working Group on Digital Evidence (SWGDE) maintains that a proper SOP (such
as its template, version 3.1) will assist you in maintaining the best practices for collecting, acquiring,
analyzing, and documenting data in digital forensic examinations. Using the outline, suggestions, and
information in the following sections, you can develop an SOP that will be specific to the enterprise, agency,

53

or company.

Purpose and Scope
A mobile device forensic SOP should outline the purpose and scope of each possible location at which a
mobile forensic device or collection could occur. The purpose explains why the section or SOP is being used
and identifies the goal of the SOP or section, and it should be detailed enough so that the reader will
recognize what the document or section will cover. Several purpose statements can exist in a single SOP, with
only one purpose statement per SOP section. The scope identifies who will be following this procedure and
what the procedure covers. The scope can also explain what will be needed or covered in the SOP or the
section. The scope should be very clear and identify areas that are and are not going to be covered or that are
outside the scope of the document. The writer of the SOP should not assume that the reader will understand
that something is or is not part of the document or procedure; this must be implicitly stated. Here are
examples of both purpose and scope for a mobile forensic off-site request.

Purpose: The purpose of this procedure is to seize, secure, and collect digital data from a mobile device at
an off-site location to maintain the integrity of the device and contents for further analysis and processing.

Scope: This SOP outlines the process and procedures to follow when you are conducting mobile forensic
assistance at an off-site location. This SOP is not a training document, but a set of procedures to follow at
an off-site location.

After listing the purpose and scope, the SOP will continue with the actual equipment, specific knowledge
data, and procedural items. Recommended areas to cover include definitions, materials and equipment,
general information, procedures, and references and related documents.

Definitions
The definitions paragraph should list and define all acronyms and technical words included in the procedural
part of the SOP. When creating an SOP, the writer must understand that the reader might not understand
the technology—for example, assuming the reader knows what WCDMA or UICC means could cause on-
site problems if these are unfamiliar terms. Defining any term that is related to the technology is
recommended. Here is a sample definitions paragraph that could be used for an on-site or lab SOP.

Definitions:

Mobile device: Portable devices that use network communication (cellular or Wi-Fi) and have digital
storage capabilities. Examples can include a cellular phone, tablet, or wearable.

Mobile device external media: Digital storage media. Examples include microSD cards and SD cards.

Mobile device internal media: Digital storage media that is part of the actual mobile device, typically
soldered to the internal components of the device and not removable.

Cloud mobile device data: Digital data that is stored on remote servers and accessed by the mobile device
transactionally.

54

Equipment/Materials
The equipment statement should include all the items that are needed to accomplish the listed procedure
successfully. This should cover every contingency and should be broad enough so that the reader will not have
to return to pick up additional items not listed in the SOP. An example of an equipment statement is listed
next.

Equipment: The equipment that will be needed includes the following items:

• Digital camera

• Sterilized portable USB hard drive

• Media card write-blocking tools

• Radiofrequency (RF) shielding device

• Mobile device collection tools

• Mobile device cables and SIM card readers

• Evidence packaging materials

General Information
Include general information to define limitations or background information regarding performing the duties
outlined in the SOP. Important limitations should be explained directly and clearly to the reader. In a mobile
forensic examination, limitations could include information regarding on-site and off-site seizures and
collections. This paragraph should set the stage for any contingency the reader may encounter. This area of
the SOP can often continue to grow because of constant change in both mobile device and software
technology. An example of a section outlining limitations on an off-site seizure of mobile device data is shown
here.

General Information – Limitations:

• If a mobile device has network access, data destruction can occur.

• If a mobile device is shut down or loses power, it may lock, essentially eliminating further access.

• If a mobile device is locked upon seizure, further access might not be possible unless a passcode is
obtained from the owner or computer with which the device was last synched.

• Some software tools do not collect all of the data on a device.

Procedure
In the procedure portion of the SOP, the reader is walked through the performance of the task. This should
include enough detail to enable the reader to perform the duty, but it should not be so detailed that the reader
feels compelled to perform each step for success. An SOP is not the exact process that must be used in every
instance, but a guide as to the best practices to conduct a mobile forensic examination from start to finish. For
example, the following procedure is too detailed to be used in every case:

Place the device into airplane mode by navigating to Settings > Tools > Network > Airplane mode.

55

Clearly, this would not work in every instance and would cause confusion. Simply stating, “Place the device
into Airplane mode,” would suffice. An example of a procedure you could use for an off-site response to a
mobile forensic scene is shown next.

General:

• The scene should be secure and safe for all individuals.

• Protect devices and the evidence contained on the devices.

• Identify the areas of the scene to be searched.

• Photograph the area and each potential item of evidentiary value.

Mobile Devices:

• Photograph the device and any data on the screen.

• Block the mobile device from receiving RF signals either by placing the device in airplane mode or using
an RF-shielding device.

• If the device cannot be shielded from RF, the device should be turned off.

• The device should be packaged and submitted for processing as soon as possible.

References/Documents
The final category included in an SOP will be references or related documents. The reference area should
include other SOPs that are related to the current SOP, such as the SOP for the “Collection of Mobile
Device Data On-Site” included within the SOP for the “Seizure of Mobile Device Evidence On-Site.” This
enables the reader to transition immediately to the SOP to learn how to handle an actual collection of the data
if needed. Also, any documents that might aid the reader in performing a task should be included, such as
published documents, web sites, or manuals.

Successful SOP Creation and Execution
For mobile forensic SOPs to be successful, they must be categorized in sections or modules according to
specific operations. The following sections discuss the recommended modules and content that should be
contained within a mobile forensics SOP document. You can add more specifics to these modules after
establishing a clear understanding of proper procedures for conducting the seizure, image creation, and
analysis. These processes are covered in depth in later chapters.

Mobile Forensic Seizure On-Site Procedures
This module should cover the procedures users will take when preparing for and arriving to a site or scene
where mobile devices and evidence relating to a mobile device will be encountered. This module should cover
equipment needed, scene safety, identification of a mobile device, SIM cards, external storage media (SD
cards and microSD cards), USB cables, manuals, location of passwords or PIN numbers for a mobile device,
and devices that may hold backups of mobile devices such as a computer or laptop. The proper methods to
inhibit a mobile device’s network connections, what to photograph, how to package a mobile device upon

56

removal from the site, and the transportation of mobile device evidence should also be included in this
module.

Mobile Forensic Image Collection On-Site Procedures
This module should cover the necessary procedures if a mobile device image is to be collected using mobile
forensic tools while the user is on the site or scene. Items covered should include, but are not limited to,
equipment needed to create a forensic image of a mobile device, SIM card, or removable media, and
procedures for proper isolation of a mobile device from network connections. Proper procedures for the
recovery of a mobile device image should include determining the type of mobile device and its functions,
determining the correct software for the type of device, and conducting an extraction and subsequently
verifying that the data extracted can be manually located on the device.

Mobile Forensic Image Collection at Lab Procedures
This module should cover the procedures users should take for forensically processing and analyzing a mobile
device in a lab setting. Included should be the steps required to complete the isolation of a mobile device,
depending upon the state in which the device was received, with specifications for how device information
should be obtained and how to gain a thorough understanding on the device capabilities prior to beginning
the extraction. It should include guidance on what to do if the device supports a SIM card and what software
will be needed to conduct a forensic examination of the SIM card. If a media card is also located, the
appropriate software should be used to create a forensic image of the media card and should be described here.
Any software that will be needed to complete an extraction of the mobile device should be identified. Once
the correct software for extraction has been determined, the process should be determined by the state of the
device. If the device is powered off, this procedure will instruct the lab examiners to begin with data from the
SIM and media cards and conclude with the mobile device. If the device is powered on, the reverse process
should occur: handset, media card, and then SIM. This information is covered extensively in the processing
section.

Mobile Forensic Image Collection from Cloud Procedures
This module should cover the procedures users should take for obtaining and analyzing the data from a
mobile device that is transactionally stored within a remote server (Cloud). Included should be the steps
required to obtain the necessary credentials, which could include a username/password combination or
security token. It should reference how to obtain the information legally from the Cloud and should include
why it is necessary to obtain the data remotely. Furthermore, the data extracted from a Cloud extraction
should be compared, if possible, to the data from the mobile device extraction. This way, a determination can
be made on the redundancy of the data, as well as unique properties from the off-device storage medium.

Creation of a Workflow
The creation of a workflow or flowchart can be of great benefit both to the first responder and forensic
examiner to guide them from the seizure to the examination of a mobile device. In 2007, MFI produced a
flowchart to assist in processing mobile devices when they come into the lab. During Mobile Forensics World

57

2008, this flowchart was introduced to students in the MFI Crash Course to Mobile Forensics class that was
held at the Chicago Police Department’s training facility in downtown Chicago. The workflow shown in
Figure 2-2 was outlined in 2008 and is still applicable with today’s mobile devices. In chapters to come,
additional steps will be added to the flowchart to help expand on different scenarios.

FIGURE 2-2 Processing a mobile device

Specialty Mobile Forensic Units
Mobile device forensics can be much more involved than traditional computer forensics. Successful mobile
device forensics can be a time-consuming process. Because of the many applications, files, logs, and constantly
changing technologies involved, a special unit or a specially trained individual should be in charge of
conducting mobile device investigations. With the proliferation of mobile devices and their involvement in
every aspect of today’s world, the challenge of finding someone who can juggle multiple disciplines could
encumber the ability to conduct a thorough examination.

Mobile Device Examination Priority

When I began working in forensics, I started with a foundation in computer forensics, with proper
training in both theory and application. Computers would arrive in the lab and would be categorized and
examined based upon procedures that had been established previously. I then moved into the
examination of mobile devices, and my world changed—not because I really enjoyed processing mobile
devices, but because the onslaught of mobile devices was like a broken faucet, releasing 100 gallons per

58

second, as devices began arriving from all over the state. With both computers and 20 to 25 mobile
devices per week to examine, I found it almost impossible to juggle both disciplines. To examine both
computers and mobile devices effectively and according to the required standards, something would have
to give, or the quality of the investigations would degrade. As the number of devices continued to
increase, the variety of software continued to change, and the time involved in a proper examination
increased, I decided to make mobile devices my priority and focus.

Forensic Software
The U.S. Computer Emergency Readiness Team (US-CERT) defines computer forensics as “the discipline
that combines elements of law and computer science to collect and analyze data from computer systems,
networks, wireless communications, and storage devices in a way that is admissible as evidence in a court of
law.” So mobile forensic software, to somewhat paraphrase US-CERT’s definition, would be software that is
used to collect and analyze data from a mobile device in a way that is admissible as evidence in a court of law.

A software application is a generic set of instructions for a computer. Software used by practitioners is
defined by two classes: system software and operational or application software. System software is used by the
computer system itself and does not involve the user; it is designed to accomplish specific tasks that keep the
computer or system running as expected—such as writing of data to a disk drive or displaying a graphic on a
computer screen. Application software facilitates tasks the user needs to perform his or her work—such as
word processing, image creation, and mobile forensic examinations. All mobile forensics tools are application
software. They are not magical things that conduct massive investigation feats with the click of a mouse or
that autonomously process a device and output a report. You must understand your application software and
interact with it in a way that is admissible in a court of law and to produce a product that can be used to
substantiate the entire investigation.

Many different types of mobile forensic software can be used for today’s examinations. Mobile forensic
software typically differs in functionality and complexity, but it also differs as to the types of devices that are
supported. With the many different types of mobile devices that vary not only by manufacturer but also by
communication protocols in use, no single mobile forensic software tool supports all mobile devices. What it
really comes down to is the type of examination, the goal of the examination, and how the produced evidence
might be later used.

Common Misconceptions
With mobile forensics and examiners, many misconceptions must be dealt with—not only when explaining
the produced work to the requestor but also when answering questions during testimony. Being prepared to
combat common misconceptions and head them off before they proliferate will be important to the ultimate
success of the examiner.

Seasoned Computer Forensics Examiners’ Misconceptions
Examiners who have been conducting only computer forensic exams for many years make up the largest group
that misunderstands the validity and value of the scientific examination of a mobile device. These examiners

59

have undergone training that dictates that they must obtain a full duplicate copy of the digital media using a
write blocker and ensure that the operating system obtaining the image did not perform any inadvertent writes
to the evidence. This produces a copy of the evidence that they later analyze, and they must be able to
conclude unequivocally that the data was not tampered with during the collection and analysis.

On mobile devices, writes do occur, simply because the devices are powered on during extraction, with the
simple change of the clock or other internal processes. Concurrently, the extraction takes place without a write
blocker, and because of this, a mobile device is not viewed as a mass storage device. Also, because a mobile
device cannot be imaged as a hard drive, computer forensic examiners have relegated mobile device forensics
as merely mobile device extraction.

To combat this misconception, the mobile device examiner must recognize that although data does change
on the device during the investigation, user data should never change or be altered by software. This can be
shown by locating the actual files from which the data was collected and by verifying the software’s results.
You must understand that the protocols to communicate with a mobile device limit the collection of the
device’s internal memory, and that proprietary hardware and software limitations imposed by the hardware
manufacturers make it difficult to capture a full image. What makes the examination forensic, however, is not
the software, but the process the examiner takes during the extraction and subsequent analysis of the data.

First Responders’ Misconceptions
Unfortunately, the majority of mobile device seizures and extractions are conducted by individuals who have
not received formal training on forensic processes, but who have received tool-specific training. Most
extractions take place at the scene or on-site. Because the majority of the training involves how to conduct the
collection of the mobile device, any deviation from the training course material typically means that the
mobile device forensic tool will fail. If first responders do not receive training on the software tool, the
percentage of failures of that particular device grows dramatically. This does not just have to do with a
software tool failing to connect to a particular device, but with the data that is collected. A common
misconception is that the software tool did not work if the data is not immediately presented to the user. This
is far from the truth, however. Since the majority of today’s tools use database files to store data and use
common file types, would it not behoove the user to analyze the data rather than the output? This is the
conundrum of today’s mobile device examiner.

Sometimes Data Is Not Where You Expect

I was assisting an officer with an investigation using a commercially available mobile forensic solution.
The officer was extremely frustrated because he had obtained an image of an Apple iPhone and was
unable to locate a specific text message from the device’s image. Because the device had been returned to
the owner, the officer was upset that this evidence was now gone. I asked to see the created image and
asked about the case.

The case was simple: a text message was sent to the person requesting some information about a
package. The officer pointed to the report and the interface showing the date and the time when it
should have been listed and said, “It is not there.” I was shown the initial report outlining the SMS and

60

MMS data and also was told it was not there. He complained, “The tool doesn’t work!”

I immediately asked if he had looked into the device file system to determine whether the message
was sent from a third-party application. He said that he looked only at the applications that had been
automatically parsed by the tool and did not see the message. I explained to him that many applications
are released every day, and it is possible that the application had not auto-parsed.

We navigated into the file system and found the Facebook Messenger app, which at the time was not
supported by the particular solution. Inside this application, we located the common SQLite database
and immediately located the data he had been looking for. The case was solved—not by a magical
application, but by following a process and understanding the underlying file system and file types that
made the difference. This was not a failure of the software, but a lack of process.

Chapter Summary
The principles of examination are no different between the disciplines of computer forensics and mobile
device forensics. To be successful in the discipline of mobile device forensics, the examiner must understand
that the process from seizure to analysis is no different from examining anything containing 0’s or 1’s—in
other words, the same process used for a computer forensic examination should be followed and conformed to
in mobile device forensic examination.

The user must seize the device legally, collect the device, and conform to common evidence best practices
to extract the best evidence image, verify the output and image, and conduct a thorough analysis of the
collected data. That information then has to be presented in a way that conforms to industry standards.

IACIS, ISFCE, and SWGDE contend that processes and procedures must be adhered to during the
complete evolution of a digital device examination. Furthermore, processes and procedures should be part of a
set of SOPs for all facets of the mobile forensic life cycle and location. These SOPs can be successful only if
the entire company, department, or agency fully supports them, from top to bottom. With successful
implementation of SOPs, along with complementary training, success can be guaranteed.

The many misconceptions of users—from seasoned examiners to first responders—can be circumvented
with training and knowledge regarding not only the small differences in mobile device forensics but also
regarding the similarities of successfully gathering and analyzing any digital data.

Now you understand the similarities of mobile forensics to computer forensics and the importance of the
SOP for mobile forensics. The next chapter will explain how to begin a mobile forensic examination correctly
by properly seizing evidence from the scene.

61

O

3 New Era of Digital Devices: IoT, Infotainment,
Wearables, and Drones

ur world is wired. We were inundated with cell phones, then smart phones, and now IoT (Internet of
Things) devices, infotainment devices, wearables, and drones. This chapter deals with a small set of

device categories within the Internet of Things. Although infotainment devices and wearables could be
categorized as IoT devices, because of their consumer functions and popularity, I’ll discuss them as separate
entities here. Many, including drone manufacturers, have argued that drones, or technically unmanned aircraft
systems (UASs), could also be lumped into the IoT category.

Today’s examiner faces a huge challenge with numerous devices more complicated than the smart phone.
Just when mobile phone examiners were making progress in the “Wild West” methodologies, IoT devices, in-
vehicle systems, wearables, and drones rode into town. Manufacturers of smart phones did not lay out their
file system formats, and even today there are only a few published books that intelligently cover processing
these devices. A limited number of articles have been written and research conducted regarding the devices
discussed in this chapter, and they have been done completely by research and development groups, without
assistance or documentation from any manufacture resource.

With these devices, it seems forensic examiners have returned to the Wild, Wild West. However, this
time, not only must the examiner work with more types of devices, but he or she faces many more obstacles in
the pursuit of forensic data—from finding the storage location, to gaining access to the controller, to
“speaking” to the device, to extracting the data, and, most importantly, to understanding the data format and
layout.

These hurdles are similar to those I faced when I started in the mobile forensic field, but I believe the
problems associated with this current field of devices surpasses those faced by mobile forensic pioneers in
the early days.

Research into these types of devices, their investigation, and their analysis should be a priority. Delving
and probing into the functionality of these devices and their relationship to investigations should drive this
prioritization. By prioritization, I’m referring to increased understanding how and if a connected device or
devices are or can be involved in the case or investigation that is underway.

As discussed in previous chapters, the methods we use to conduct a proper search for digital devices in a
crime scene have changed with today’s connected devices. In the triage of the crime scene, the investigator
must be cognizant of connected devices. With so many electronic possibilities—from refrigerators, doors,
windows, lights, thermostats, and televisions, to personal assistance devices (such as Alexa and Google
Home), wearables (such as Fitbit or Apple Watch), and other devices—one thing is clear: nothing in digital
forensics is absolute or routine. Today’s investigator must be familiar with a radically confusing “electronic
scene.” Moreover, it is ever important that the investigator triage based upon various conditions, including

62

involvement in the case, probability of extraction, and the likelihood of parsing/decoding the data. A simple
example could be determining whether or not to seize a refrigerator. If the fridge is simply an “intelligent”
refrigerator, or one that uses sensors to monitor the device and/or contents without network connectivity but
the investigation involves a cyber crime, a seizure would not make sense. However, if the fridge was a truly
connected device (an IoT device), seizing it as evidence could make sense if details from other sources such as
a router or gateway pointed to this device. Or consider a wearable device found at the scene of a violent crime
or a drone found at a residence known for drug trafficking. Today’s crime scene triage has become a daunting
task with the widespread use of these types of devices, not only for the fact of identifying them but also for
processing and exploring the data they contain.

This chapter introduces the various connected devices, provides examples of related devices, discusses how
they fit in the digital forensic investigation cycle, and shows how the investigation cycle might affect the
approach of the examiner if, and when, such a device comes into the forensic lab.

IoT Devices
An IoT device is an electronic device that has been embedded with technology to be controlled and to interact
over the Internet. Forbes magazine, back in 2014, said that anything that has an on and off switch to connect
to the Internet and/or to another device can be considered an IoT device. Much like mobile devices, the
number of IoT devices has exceeded the world’s population—and the number is increasing at a much faster
pace. In 2017, Gartner stated that there were currently 8.4 billion IoT devices in use globally; it also reported
that by 2020, the IoT set of devices that are available throughout the world will reach 20.4 billion.

Figure 3-1 shows, in simple terms, what an IoT device is and what makes this technology quite useful for
today’s connected world. The implications of the device’s digital footprint are limitless. Requests are made
from a remote or local device through the Internet, and data is returned to the device, often with
asynchronous communication between connected devices and/or remotely controlled devices. With both
inbound and outbound communications, the exposure of the device to the outside world is a given, and with
few security precautions available in many devices, cases involving unauthorized access will skyrocket.

63

FIGURE 3-1 Simple communication of various devices through an Internet gateway and back

Visit the Shodan web site to see just how many IP webcams and security cameras around the world have
been exploited and compromised.

A noticeable change to the device architecture for an IoT device from that of a mobile device is the
underlying operating system (OS) in most connected devices. In today’s mobile device operating systems for
both Androids and iOS, and even in the PC OS for Windows, there are limitations regarding the small
embedded devices in the IoT world. One big limitation is simply the size, or footprint, of the traditional OS.
Another issue with traditional OS and connected embedded systems is speed or timing of computations.
Embedded devices within a vehicle, such as an air bag or automatic braking, that report back to the onboard
computer and then to the manufacturer, or even data monitoring companies (such as OnStar), rely on timing
from action to results. If a crash is detected, the safety mechanisms must respond without delay. This is where
a traditional OS would be a detriment and a real-time OS is required. Enter the Real Time Operating System
(RTOS) format.

RTOS uses absolute time iterations to complete the processing of an event. RTOS is not new: it is used in
the firmware of Android baseband processors and feature phones, both old and new. Samsung’s proprietary
operating system is based on RTOS, as are devices from LG. (These feature phones are covered in Chapter
12, as are the file systems that are produced.) With today’s connected devices and their embedded systems, it
makes sense for manufacturers to utilize an RTOS because of its small footprint, low power requirement, and
lack of latency—and in the case of medical and safety equipment, RTOS is a necessity.

Categories of Connected Devices
Connected devices can be placed into several categories based primarily on their functionality and use—

64

primarily consumer, enterprise, and industrial devices. Most devices encountered by investigators will be

consumer-based devices, but in certain circumstances other types can be involved.

Consumer Devices
Consumer connected devices include stereos, televisions, appliances, thermostats, windows, doors, garage
doors, and lights—to name a few. Most consumer IoT devices generally have the added word “smart” to the
product name (smart TV, smart refrigerator, or smart thermostat, for example). With the availability of
consumer devices increasing around the world, from high-end electronic stores to the local big box store, the
likelihood an investigator will deal with “smart” devices grows every day. Consumer devices, much like all
other connected devices, come with an operating system, which could be a simple Android system, or RTOS,
Linux, Tizen, and many other variants. The OS in use is highly dependent on the size of the connected device
—for example, the OS on a wearable is drastically different from that of a smart TV.

Table 3-1 lists some of the operating systems found in smart TVs that could help direct an examination of
an embedded file system. Many of the operating systems listed are also found in appliances ranging from
refrigerators to interactive thermostats with full-featured access to the Internet, as well as third-party
applications.

TABLE 3-1 Common Smart TVs and Their Underlying Operating Systems

Various file system examples will be covered in Chapter 16 along with a discussion of worthwhile artifacts
within the systems of these devices.

Just because a device may have an OS does not necessarily make it a part of the IoT family. As mentioned,

65

and clearly referenced in the acronym, the IoT device must be connected to the Internet. Consumer devices
are generally connected via Wi-Fi, Bluetooth, and Ethernet. Most of these devices, for sheer portability and
range, use Wi-Fi to transmit and receive data and to communicate with other IoT devices; many use ZigBee
or Z-Wave as well. Connection information could be good artifacts to harvest in an investigation simply
because the device can leave identifying IDs such as media access control (MAC) addresses. The MAC
address is a unique electronic fingerprint that is assigned and embedded on the device when it’s manufactured.
Using this unique hardware number can lead the investigator to the connected device involved in a particular
event. A connected IoT garage door or thermostat will have a unique address if it is used to communicate via
a gateway to other connected devices or to the Internet. By understanding the gateway and control, you can
start your investigations involving IoT devices that have been compromised from a more informed position.

With access to the Internet, a smart TV becomes an all-in-one computer, whether the user is browsing the
Internet via the built-in web browser, using Facebook, viewing YouTube, talking on Skype, or even reading
messages sent from a mobile device. All of this information can be available on the connected smart device.
From Wi-Fi cameras to doorbells with video, data evidence of an event may be held within theses devices or
their storage containers. The examiner must be prepared to dig deep into their file systems, because
commercial tools do not currently support these types of device images and artifacts.

Enterprise Devices
Enterprise IoT devices offer connectivity from one device to another within the general enterprise sector.
Enterprise devices include VoIP telephones, videoconferencing equipment, IP-connected security cameras
(CCTV), smart HVAC systems, smart printers, and many other connected devices. With the proliferation of
devices connected at the enterprise, in addition to mobile devices, it is no surprise that hacking attempts are at
the forefront of business infiltration.

As with devices in consumer and industrial sectors, the security of an enterprise device is not the top
priority of most manufacturers. In 2016, an ethical hacker reported in darkreading.com about the ease of
hacking into such a device in the article “Common Enterprise IoT Devices Are Hackable in Under Three
Minutes” (www.darkreading.com/iot/common-enterprise-iot-devices-are-hackable-in-under-three-
minutes/d/d-id/1327300). This article may be several years old, but today’s IoT devices are still vulnerable to
attack with little difficulty due to the proliferation of devices within an enterprise. Enterprises can face security
issues if IoT devices are unchecked for installed security measures. These days, the weakest links in the
enterprise are consumer wearables (watches, sound devices, video devices, smart TV, and so on) that connect
to the network. Consumer-grade IoT devices often have lower standards for security, and as a result, the user
of the consumer wearable often inadvertently exposes the enterprise network.

From an infiltrated network creating zombies of IoT devices, to hackers unleashing attacks on external
targets or gaining access via a device to spy on, listen to, or destroy a network, today’s attack surfaces are
immense with the introduction of IoT devices. Currently, network infection can occur in under three minutes,
with a dwell time (compromise to discovery) of 101 days on average, according to FireEye’s report “M-Trends
2018” (www.fireeye.com/content/dam/collateral/en/mtrends-2018.pdf). This problem will likely increase
around the globe with the proliferation of IoT devices. Today’s response plan and investigator must be
educated to understand these enterprise-connected devices.

66

http://darkreading.com
http://www.darkreading.com/iot/common-enterprise-iot-devices-are-hackable-in-under-three-minutes/d/d-id/1327300
http://www.fireeye.com/content/dam/collateral/en/mtrends-2018.pdf

Industrial Devices
Industrial IoT devices, as a general definition, offer connectivity from a device to another device within the
transport, energy, and industrial sectors. Within the transport sector, both machinery and vehicles can offer
connected solutions, while the energy sector includes oil, gas, and water machinery as well as the power grid.
Industrial solutions can include machinery interconnected to larger machinery and monitoring equipment.
These examples do not represent the entire application for industrial IoT but easily paint a picture of the
possible investigation implications.

The connection, or rather infiltration or damage, to any of these sectors via compromised IoT devices can
have catastrophic effects on not only local populations but also globally. This possibility is why many of the
industrial applications claim to be “air-gapped.” An air-gapped device or series of devices is not directly
connected to an external network. The device essentially operates autonomously, without the possibility of
external infiltration, in theory. Of course, penetration is possible—remember Stuxnet, the worm introduced to
an air-gapped system using USB drives and new innovations such as LED data transmission interception?
What does all this have to do with IoT devices? Actually a lot, because a large number of devices in air-
gapped systems, especially those involved in coordinating maintenance needs, levels, and downed systems,
must be connected to external sources.

A perfect example of this is the maintenance of airplanes. The United States Title 14 of the Code of
Federal Regulations (14 CFR) part 91, § 91.1109 “Aircraft maintenance: Inspection program” and FAR
91.409 outline the requirements for mandatory inspections of aircraft. Within these requirements are sections
that outline classes of inspection that state that airlines must maintain an “airworthiness” certificate. The
minimum requirements are services every 12 months, 100 hours of service, and preflight checks. However,
U.S. airlines utilize different guidelines on maintenance to indicate that an inspection must be made every 12
months (1–2 weeks out of service), every 6 months (1–3 days out of service), and 500 hours (10 hours out of
service). Mentioned are the weeks, days, and hours out of service, which cost the airlines tens of thousands of
dollars every day. In an effort to respond to, or rather predict, such issues, IoT devices are used to detect
potential failure of parts before they actually fail. Sensors placed throughout the airplane machinery gather
information, and the data is analyzed constantly to create the maintenance schedule, as well as order parts and
the technician for the aircraft, all in an effort to predict the life cycle of each part. Are you ready to analyze
tampering in infiltration of such a system?

This book, of course, will not cover the triage of sensors or systems used in the aerospace industry, but
you can be sure that experts in these areas are needed in the event of disasters or civil litigation.

Common Consumer Types
The investigator will likely run into consumer-based IoT devices more often than those within the enterprise
or industrial sector. Two consumer-based devices are covered in this section: Amazon Alexa and Google
Home. The information covered includes an introduction to the device, the device’s value to an investigation,
what artifacts might be gleaned, and how well the device is supported by commercial or open source tool sets.

67

Chapter 16 will discuss details on file system artifacts, Cloud data, and advanced topics on both devices.

Amazon Alexa
On August 31, 2012, a patent was filed by Amazon for a device built as an artificial intelligence machine.
Alexa was born just two years later, but not as a device: Alexa is the assistant that is used in the Echo family of
devices (which includes Dot, Tap, Echo, Echo Plus, Spot, Look, and Show). Alexa will interact with built-in
functions to play music, order items from Amazon, provide news and weather information, set timers and
alarms, recite movie listings, update calendars, and more. Currently, Alexa can interact with other smart
devices within the connected home (lights, thermostats, and so on) via Alexa Voice Service (AVS).

Alexa does not stop there, however. Amazon enables Alexa to use a crowd-sourcing mentality to build
Alexa’s “skills,” the term used by Amazon to define what Alexa can do and how it can interact. Because there
are thousands of other IoT devices, and even companies, that want to be able to be reached, Amazon allows
these entities and devices to do so via Alexa. The Alexa Skills Kit is an API collection that facilitates the
building of Alexa’s vocabulary (skills), allowing the device to recognize thousands of additional terms to
provide thousands of additional functions. From placing orders to Starbucks, to contacting Uber, to answering
Jeopardy quizzes and question of the day, you can simply add skills and ask Alexa. The Amazon Echo Plus
also began to utilize ZigBee to communicate with other IoT devices along with the standard wireless
technologies, and now it can be considered an IoT hub as well.

Alexa needs user interaction to begin to use its skills base. This interaction is known as the “wake word.”
Alexa’s original wake word is “Alexa,” but with Amazon devices, the current wake words are Alexa, Echo,
Amazon, and Computer. Most devices, however, enable you to change the wake word within the Alexa app.
(The only exception to this is on the Tap. When a user utters a wake word, the device is set to listen to the
next request. This request could be “find a recipe for tri-tip,” “what is the score of the Washington Nationals
game?,” or even “what is the weather in Jamaica this week?”)

The interesting thing about Alexa is the “learning” that goes on behind the scenes, on the Amazon servers.
The learning side of these devices enables your requests to move from saying “Washington Nationals” to
simply saying “Nationals” on subsequent requests. The recording will stay on the server, and a user can keep
track of requests on his or her mobile device via the Alexa app. This information is stored in Settings |
History. Here, the user can see what is on the server and remove the information one item at a time. If all
items are to be purged, a user can use the app to clear the entire history all at once. The words stored on the
Amazon servers are used for targeted advertisements and to learn as much about the user as possible.

So if a wake word is used to start using the tool, wouldn’t that mean the device is always listening? The
answer to this is yes; the device is always listening, but Amazon insists that nothing is recorded to the servers
until the wake word is mentioned. In a patent filed by Amazon (US8798995B) and granted in 2014, and
again submitted in 2017 under US20170323645A1, some language is included that should cause anyone to
wonder whether the wake word really starts the recording process. Within both patents, Amazon specifically
says otherwise and mentions actively listening to conversations. Here’s an excerpt from the patent application:

While phone conversations are described in many of the examples herein, it should be understood that
there can be various situations in which voice data can be obtained. For example, a user might talk to a

68

friend about purchasing a mountain bike within an audio capture distance of that user’s home computer.
If the user has authorized the home computer to listen for, and analyze, voice content from the user, the
computer can obtain keywords from the conversation and automatically provide recommendations during
the conversation, such as by displaying one or more Web sites offering mountain bikes, performing a
search for mountain bikes, etc. If the user discusses an interest in a certain actor, the computer could
upload that information to a recommendations service. ...

In April 2018, several news outlets, from BBC to Wired, suggested that Amazon had filed a patent for a
“voice-sniffing” technology that would allow the device to listen to any conversation within its range and send
that data to Amazon servers. This use, of course, was denied by Amazon, but the company did indicate that
the patent was filed as a “forward-thinking” application. However, in May 2018, a user of the Echo product
contacted Amazon as well as media outlets to report that a private conversation she and her husband had
while in their house was, unbeknownst to them, sent to a contact in their phone book. Amazon admitted that
the technical issue was a bug, and the company said it would fix the problem as soon as possible. But this is
not the last time voice-sniffing will be in the news—or spoken about in the forensic lab.

Where Is Alexa Hiding the Data?
The devices that house Alexa are generally using approximately 256MB of RAM and 4GB of storage space.
Currently, no commercially available tools can access the device via noninvasive means (such as cable or
Bluetooth), nor are any tools available to process a raw file system that is acquired by invasive means (JTAG,
ISP, chip-off), but access to the valuable data is achievable. If a raw file system is obtained, the underlying OS
will be determined by the version of the hardware. Prior to the second-generation Echo Dot, the OS was
generic Linux, which then switched to pure Android and continues to run Android but has transitioned to the
forked version of Android, called Fire OS. Again, commercial tools are not currently extracting data directly
from the device or supporting the direct parsing of an imported file system.

Alexa, however, stores data within the user’s Amazon Cloud account and the Alexa app, as observed in
research, as well as documented in Digital Investigation 22 (2017) S15-S25, “Digital forensic approaches for
Amazon Alexa ecosystem.” Information such as account, searches, communication (calls/messages), Wi-Fi
(passwords), linked calendars, lists of skills, lists of third parties, user activity, devices using the service, and
the voice file (utterance and actual user’s voice) are stored on the Cloud. Information on the mobile device is
generally stored within SQLite databases and can include token information, user identification, and a web
cache. The web cache can contain valuable historical data to include URLs, searches, and more.

The information that can be obtained from this type of consumer IoT device is quite amazing and could
be used in many different types of investigations. In fact, in 2015, a case in Arkansas was in the spotlight and
hinged on Alexa data. After a murder occurred at a residence, the owner of the house was arrested.
Subsequently, digital devices at the residence were seized, which included an Amazon Echo. Police sought to
determine whether anything had been recorded on the device at the time of the crime. Via a warrant,
prosecutors requested that Amazon release the data, which Amazon refused to do, indicating that the request
was over-reaching. In 2017, the homeowner gave his consent to release the data from the device. Once
released, however, the data was not used in the case and the murder charge was eventually dismissed. The data

69

was not usable in this particular case, but as described, Amazon would not release the data even with a search
warrant, most likely because the supporting facts in the affidavit did not support “why” this data may be
relevant or “what” could be obtained.

Google Home
Google Home was released as a smart speaker in 2016, with Google Assistant added as the artificial
intelligence operator for the device. Google Assistant had been preceded by Google Now, which was the voice
search function within Android devices since 2012. The device, along with Google Assistant, enables the user
to play music, control other smart devices for home automation, set a calendar, make calls, read news, and
much more.

In 2017, two other devices in the Home series were released, the Home Mini and Home Max. All devices,
much like the Amazon Echo, respond to voice commands. The wake word (or hotword) for Google Home is
“Ok Google” or “Hey Google.” A difference in Google Home hardware versus, say, the Amazon Echo Plus is
the Amazon product’s distinction as an IoT hub. Google Home hardware is not considered a hub in that it
cannot relay data from one IoT device to another IoT device, primarily because it lacks a common, global
wireless protocol such as ZigBee or Z-Wave.

Similar to Alexa’s skills, the Google Assistant has “actions.” Actions are how Google Assistant’s
functionality can be extended. Utilizing an API via the Google Client Library, a developer can build a story
based upon what the user wants to do and the fulfillment of the action. Actions are available on the “Actions
on Google” page at https://assistant.google.com/explore. All actions are carried out within the Cloud, so the
voice request is recorded, sent to the Cloud and analyzed, and then returned to Google Assistant for a reply.
All requests, either by stock Assistant functions or a third party, are logged in the user’s Google account.

The Google Assistant and Alexa have many things in common, but one feature that can be of interest for
investigators is the number of supported voices. Google Assistant and its Home products were first to allow
the recognition of multiple individuals and deliver content based on the person speaking and/or making the
request. Alexa, however, made this functioning available only recently. Both devices record requests to their
servers, and investigators can play the recorded content to determine, by voice, who made the requests.

Google Home devices can be controlled and maintained by the Google Home app. Within the Home app
any device (such as Chromecast or Google Home) can be controlled and viewed. The activity for the device
can be viewed by selecting the device from More Settings | Devices, clicking the three dots in the upper-right
corner of the screen, and selecting My Activity. Also, data can be found under the user account at
myactivity.google.com.

Where Is Google Home Hiding the Data?
Like the Amazon Echo, Google Home devices do not have large storage disks or RAM; the Home device has
less storage. Google Home devices have built-in 256MB flash for storage and 512MB synchronous DRAM
(SDRAM). The operating system of the device is built on Chromecast, which happens to be based on
Android and is called Chrome OS. Currently, commercial tools cannot physically attach to the device to
extract data using regular means (such as USB or Bluetooth). Other invasive techniques are available to
include the removal of the flash module. However, as with the Echo, parsing of Google Home device data

70

https://assistant.google.com/explore
http://myactivity.google.com

will be manual because commercial tools do not support the file system artifacts.

Because of the format and functionality of the Google Home device, and much like the Amazon devices,
the data is almost completely Cloud-based. The Google Home app, as well as the Google Assistant app,
stores settings for the devices, but the data travels to the Cloud, is processed, and then returns to be delivered.
Clicking any of the settings for activity within the Google Home app, the user is sent to the
myactivity.google.com site, which is further evidence of the lack of persistent data within the app itself. An
investigation of the data that is recovered from the Cloud store under a user account is extremely verbose.
Items include location, with date and times, voice and audio transcribed and recorded, search history, and
third-party app usage (such as Spotify, Facebook, and so on) via Google Assistant. All this information is
displayed in the myactivity.google.com site for the user (Figure 3-2). Several commercial tools, including
Oxygen Forensic Detective and Cellebrite UFED Cloud Analyzer, support the extraction of the Google My
Activity.

FIGURE 3-2 A quick look at recorded details of a Google Home request that includes incredible data for an
investigator

Infotainment Systems
Infotainment devices built into today’s vehicles (in-car entertainment) are considered a subcategory of an IoT
device, by definition, with “extra features.” However, this inclusion speaks primarily to the user interaction
area. But what about the car’s performance or other systems that interact with the car’s manufacturer, other
components, or other vehicles? A clearer name, as it relates to data for an investigation, would be “in-vehicle-
information system.” In 2018, Gartner projected that more than 50 million automobiles were connected to the
Internet through these devices. Gartner also mentioned that in the United States and Europe alone, each
vehicle system produced more than 50GB of data per hour. In this section, these systems will be explained to
help the investigator understand how important they can be to a forensic investigation.

What can an examiner expect from device systems within a vehicle that is involved in an investigation?
From location data within built-in navigational systems, to the connected mobile devices, to what is or has
been occurring in and around the car during driving time and stopping time—data can be available. To be
more precise, vehicle forensics is an emerging technology in the digital forensic world that deals with vehicle
telematics, GPS data, and the onboard infotainment system. Obtaining diagnostic information such as a
check engine light, transmission, or other mechanical information is authorized by all vehicle manufacturers,
and one can simply take the vehicle to an authorized shop to decipher the transmission. Extracting data from
an infotainment system and/or telematics, however, is not an authorized service provided by the automotive
industry, nor do car manufacturers outline the methods required to obtain this information. With many

71

http://myactivity.google.com
http://myactivity.google.com

different vehicle models and vehicle manufacturers, this type of investigation can be extremely difficult. Much
like the investigations in the early days in mobile forensics, it involves a lot of hit and miss.

The investigation of a vehicle’s system can serve many different facets of an event or series of events. A
vehicle’s data can often fill in the blanks where a mobile device, CCTV, or other investigative tools lack a
certain time frame. Obtaining information from a vehicle can help identify whether a vehicle was at a
geographic location at a particular date and time, as well as the vehicle’s route of travel. Furthermore, using a
linked mobile device to an infotainment system in a vehicle can show a link between the two, and even
identify the number of occupants in the vehicle—not to mention contents of messages and other artifacts.
Think about determining a time line of travel, the stops made, and which doors were opened and closed; all of
this data, and more, can be recovered from the vehicles of today.

Obtaining Data from Vehicles
Like data from any other digital device, vehicle data must be obtained to process and decode into a format to
assist in an investigation. The on-board diagnostic (OBD) port can be used by investigators to recover
diagnostic and vehicle information, as can a USB, or investigators can remove the infotainment center if one
exists.

Both the OBD port and USB methods are considered noninvasive, since both can be connected to plugs
and cables supplied by commercially available tools. However, the removal of the infotainment console to
obtain a physical collection often requires the removal of the entire, or a portion of, the dashboard.

OBD-II
In 1988, the SAE (Society of Automotive Engineers) outlined and set a standard plug and diagnostic test
signals and further expanded the set in 1996 using OBD-II. The OBD port is used by vehicle maintenance
providers, diagnostic tools, forensic investigators, and even insurance companies. The OBD-II can hold
valuable information for crash investigations and has been used for many years.

The Verizon Hum has a great web site (www.hum.com/port) to help you find the location of the OBD-
II port in a car.

The OBD port can communicate with the electronic control unit (ECU) or engine/electronic control
module (ECM) to obtain information from sensors and other diagnostic controls that involve the vehicle’s
engine, powertrain, fluid levels, and so on. An addition on most vehicles with airbag support is the recording
of events by the ECU, which acts much like the black box of an airplane. Although the name event data
recorder (EDR) is often used, technically the EDR is a function of the ECU. The data often comprises the
short time before and after a crash, including impact area, airbag deployment, speed, and acceleration. Vehicle
manufacturers are not forthcoming on exactly what is stored on the ECU as it relates to crash diagnostics or
other vehicle data, but since 2010 all vehicle manufacturers are required to give access to this data via the
OBD-II port.

72

http://www.hum.com/port

CDR Vehicle Software used by crash reconstructionists provides a list of the currently supported vehicles
that can be referred to in the event the OBD-II port becomes part of an investigation
(www.boschdiagnostics.com/cdr/sites/cdr/files/CDR_v17.7_Vehicle_Coverage_List_R1_0_0.pdf).

There are many control modules, and each module may need to be interrogated to recover data. It may
seem that there is only one ECU in the vehicle and that it holds all of the data needed for an investigation.
But as Ben LeMere, CEO and cofounder of Berla Corporation, has explained during conversations, there are
many modules throughout the engine compartment that hold valuable data, and gaining an understanding of
what module holds the necessary data for the investigation at hand is paramount to the investigation.

USB Port
Access to data within the infotainment system of the vehicle can be obtained from the USB port, which is
generally located in the center console or glove compartment. The USB port typically is coded as the media
access to which the occupant can connect a mobile device to play music or perform other operations. This type
of extraction is noninvasive and would be classified as a logical extraction. A standard connection to this port
is not used (such as USB/USB), since the protocol will not be USB, but serial.

Tools such as Berla’s iVe have a USB-to-Ethernet adapter that connects to this port to conduct the
extraction of data. This type of extraction can obtain information such as Bluetooth and Wi-Fi of the
connected devices, contacts if synced to the system, calls and SMS messages if a device was connected, any
connected storage devices and/or media, the vehicle odometer reading, saved locations on the in-car
navigational system and track logs, and more. What can be extracted is highly dependent on the vehicle
manufacture. Extraction of this data often takes no more than 20 minutes, but as with mobile devices, if there
is a considerable amount of media, this could affect the time considerably.

Physical
For some vehicles, the only avenue of analysis outside of the OBD port will be the removal of the
infotainment system. This is an invasive and involved physical acquisition. It is invasive because the module
must be removed from the vehicle, often requiring that the dashboard be dismantled, and physical because the
circuit board is removed from the infotainment module and read by software. Once the board is removed, it is
connected to specialized hardware and software and current is provided, generally using an external power
supply for the extraction to commence. Recovered data is often quite verbose, as should be expected with this
type of extraction.

Data recovered can contain all the information of a logical extraction, but also information from vehicle
events. The events can include door openings and closings, gear shifting, parking light status, and time and
system updates. Having this type of information, along with the standard infotainment extractions (such as
SMS, Calls, Contacts, Bluetooth, Wi-Fi, and so on), can paint a much better collective picture of the event.

Currently the most utilized software in vehicle forensics is Berla iVe software. The hardware and software

73

http://www.boschdiagnostics.com/cdr/sites/cdr/files/CDR_v17.7_Vehicle_Coverage_List_R1_0_0.pdf

can conduct the extractions and process both logical methods (OBD and USB) and physical methods.

Wearables
The term “wearable” is used thought the IoT industry to describe a computational connectable device that
may be implanted in or worn on the body. Wearable technology is not new. In fact, the first wearable
computer was used not to improve fitness or health, but to predict gaming outcomes in roulette. Granted, the
device was not technically a member of the IoT world, simply because the Internet had not been invented in
1955.

In that year, Edward O. Thorp theorized that a wearable device could predict and inform a subject of the
outcome while playing roulette. Roulette is a gambling game in which a small ball is launched around a
circular wheel in one direction while the wheel is spun in the opposite direction. When the ball begins to slow
down, it drops through various “pockets,” or deflectors, before landing and stopping at a number. Thorp built
a pocket-sized computer that could fit within a person’s shoe. The wearable computer was activated by a
wearer by the use of the big toe. Codes (musical notes) were sent via radio signal to the person making the
bets at the other end of the roulette wheel. Differences in the sound would be used by the player to decide on
the bet. Thorp and Claude Shannon put the computer into use in 1961 in Las Vegas. In 1998, Thorp penned
a document describing this first wearable: “The Invention of the First Wearable Computer.”

Additional wearables continued to be manufactured, such as the large calculator watch popular in the
1980s, digital hearing aids, Bluetooth headsets for phone calls, and several other wearable computers. The
Nike+iPod Sport Kit was one of the first athletic tracking devices developed by Nike in 2006. This device has
a small transmitter placed in or on the wearer’s shoe, and a variety of information is transmitted to an available
device (such as an iPod touch, iPhone, or iPod nano). In 2008, the first-generation Fitbit devices came to the
market as the Fitbit Tracker, which measured distance, calories, duration, and floors climbed. Also, as an
addition to the activity tracker, a sleep function that measured sleep cycles was included. The data on the
device could be uploaded to the user’s account on the Fitbit servers.

The first smart watch, Pebble, hit the scene in 2012. What is interesting in the history of the Pebble is the
fact that it was brought to the world in a Kickstarter campaign and would be able to interact with both
Android and iOS devices, a first of its kind to bring the smart phone to a smart watch. The product was
short-lived, but the company and intellectual property were purchased by Fitbit in December 2016 for $40
million.

In 2012, Google released Google Glass, a form of glasses that included a camera and Internet access. The
operator could interact with the glasses with voice commands to capture video, images, and information from
the Web and specific apps. It soon became apparent, however, that society was not ready for the glasses
because of privacy concerns. Stories of businesses banning the devices and obvious limitations shut the door
on the device in 2015. However, in 2017 a better target was selected: the enterprise. Now factory workers can
receive instructions and more from the safety glasses they wear and send instantaneous feeds via video of their
work. Google Glass was reborn, but for the enterprise—and into IoT.

During the same time Google Glass was being marketed, the first Samsung smart watch was released. In
the race for the smart watch, the first Samsung Galaxy Gear was released in 2013, with 4GB of storage and

74

512MB of RAM. The device, as with the rest of the Gear series, enables the user to receive notifications from

apps, calls, messages, and alerts, as well as health apps. In 2015, Apple released a watch that helped make
wearable tech convenient and was developed with the intention of encouraging people to stare at their phones
less but still maintain connection for notifications. A wearable iPhone generation was born. The Apple Watch
enables users to interact with their iPhone and receive messages, calls, app alerts, and more, like the Samsung
Gear series. Both Apple and Samsung devices interact via Bluetooth to the device, but they also can interact
via Wi-Fi if the device is not within range. For both Samsung and Apple, new devices now also come with an
embedded Universal Integrated Circuit Card (UICC) that allows for interaction with the LTE system
without a device.

Gartner reported in 2017 that consumer wearables would grow at almost 17 percent worldwide annually.
In 2017 alone, 310 million wearable devices were in use, with the Apple Watch leading the way. This, to the
investigator in digital forensics, should sound some alarms. Once smart phones were the unknown, but now
the industry has to deal with smart wearables.

Adding another source of data to an investigation is often just another problem to tackle, but with the
number of users relying on data from their smart wearables, the investigator should take this evidence
seriously. Most commercial tools still only extract data from Cloud sources for parsing, with some parsing the
applications that support these wearables.

With the massive number of wearables that are available to the world, the impact to investigators will only
increase. Understanding the various types of wearables that are available, and their general capabilities, can
help shape the type of investigation that will be conducted.

Classification of Wearable Devices
Wearable smart devices can be classified into distinct areas that are generally based on the activity or job the
wearable performs for the individual user. From heath care, to fitness trackers, to wearable cameras, glasses,
and watches—there are many different types of devices and even more manufacturers.

Health Care Devices
The health care industry is utilizing wearables to help assist in remote monitoring of patients via surgically
implanted wearables or unobtrusive wearables. These medical devices relay data wirelessly to a base that then
transmits the data via the Internet to a collection point—typically the doctor’s office or clinic. Not only are the
devices used by doctors, but individuals also use them for self-monitoring. For example, under-the-skin
implanted devices can be worn to monitor cardiac arrhythmias. The wearable wirelessly sends data through a
hub to the cardiologist daily for several years. The use of wearable IoT devices in this industry has been quite
dramatic, and today’s investigators should be prepared to deal with them.

Fitness Tracking Devices
This wearable technology is based on the fitness industry. Forbes reported in 2017 that 59 percent of all
wearable sales involved a fitness tracker within a smart watch. Nike+, Fitbit, Samsung, Garmin, and Apple
wearables each have fitness tracking capabilities. With Fitbit leading the way in fitness tracking, Apple and
Samsung pivoted from providing only app notifications to adding heath and fitness information. Investigators

75

should be very cognizant of these devices during an investigation.

Cameras
You might not think of cameras as a wearable IoT device, but think about the proliferation of the GoPro
revolution. From sporting events, to hunting trips, to law enforcement, and even weddings—people are
wearing these portable cameras on their bodies. Many of these devices have internal storage, but many can and
do transmit data via Bluetooth or Wi-Fi to a terminal or smart phone and then directly to the Internet.
Google Glass is not only a camera but also has a built-in monitor to view messages, Internet feeds, and more.
Video data that is stored and transmitted by these devices should not be overlooked by the investigator.

Other Smart Wearables
From smart rings to clothing, the world is becoming a digital investigator’s dream (or nightmare). Wearable
jewelry—rings, bracelets, and even cufflinks—can be purchased and worn to track activity and alert the wearer
of calls and text messages. Because most of these devices offer minimal storage, evidence would be located on
the smart device in the form of a Bluetooth link to a connected device and possibly an associated app.

Smart clothing includes shirts, pants, headbands, and more. Because most wearables focus on health and
fitness, the smart clothing industry is 100 percent focused on this group. Companies such as Polar have always
offered heart rate bands, but they now offer simple compression shirts that not only monitor heart rate but
also track motion, duration, and GPS. This data is sent through a hub (typically an app on a watch or phone)
in real time to whomever the wearer would like to view the data. One of the most innovative pieces of
clothing is the Levi Commuter Trucker Jacket by Google’s Project Jacquard. This jacket enables the wearer to
answer phone calls, get directions, listen to music, and more, simply by swiping or double-tapping the cuff.
Most investigators will have the evidence on the mobile device or hub, but seeing a data-storing denim jacket
on the forensic lab table is not just for the future anymore—it is now.

Smart Watches
As mentioned, most smart watches focus on the wearer’s fitness activity, primarily because the industry is
providing products to supply that specific demand. However, the smart watch has many other functions—
paying for merchandise; notifying the user of calls; enabling the user to make calls, send texts, receive texts,
view application responses, and so much more. Typically, the smart watch interacts with a paired smart
phone, but newer devices from Samsung and Apple have LTE capabilities and do not need the associated
smart phone to operate independently since they have embedded UICCs. These devices will be the most
prevalent for the investigator in all the different types of wearable investigations. Three major types of smart
watches are on today’s market: Apple Watch, Fitbit, and Samsung Gear.

Apple Watch The Apple Watch was the first new product from Apple since the iPad in 2010. The device
was also the first new interface from Apple since the 2007 iPhone. The Apple Watch has since seen three
generations after the first classic Apple Watch (series 0). The first-generation watch, as well as the second and
third, all run a variant of iOS called watchOS, with the API kit called WatchKit. The current version of
watchOS 5 on the new fourth-generation Apple Watch is 4.3.1, based on iOS 12. The hardware contained

76

within the device is an S1, S2, or S3 processor (the number corresponds to the series), with 8GB of flash
storage, near field communication (NFC), Wi-Fi, an accelerometer, a gyroscope, a heart rate monitor, a
microphone, and a speaker. Newer devices from series 2 also include a built-in GPS and ambient light
sensors. Series 3 devices added a barometric altimeter and Siri voice feedback.

The Apple Watch enables a user to receive notification of fitness activities (such as distance, steps, calories,
and heart rate), outside temperatures, calendar, mail, maps, calls, messages, app notifications, and more. The
Apple Watch uses the same methods the iPhone does to back data up (iTunes or iCloud). The interesting
thing is that the device automatically backs up the data to the paired iPhone, so this information is found
within the device iTunes or iCloud backup. Many commercial tools miss this data in the parsing of the
iTunes or iCloud backup and simply report the health data.

Several interesting artifacts are contained in the Apple Watch backup. (Specific details and paths will be
covered in Chapter 16.) The following list, from Apple Support (https://support.apple.com/en-
us/HT204518), shows the items that are available in the backup:

• App-specific data (for built-in apps) and settings (for built-in and third-party apps) For example, maps,
distance, units, and settings for mail, calendar, stocks, and weather

• App layout on the home screen

• Clock face settings Includes current watch face, customizations, and order

• Dock settings Includes the order, whether user sorts by favorites or recent settings, and available apps

• General system settings Includes watch face, brightness, sound, and haptic settings

• Health and fitness data Includes history, achievements, workout, and activity calibration data from the
Apple Watch and user-entered data

• Notification settings

• Playlists, albums, and mixes These are synced to the Apple Watch and music settings

• Siri Voice Feedback Controls when Siri speaks

• Synced photo albums

• Time zone

Information that is not backed up includes Bluetooth pairing, credit cards used by Apple Pay on the
watch, and the passcode for the watch. However, the data that is synced between the paired device and Apple
Watch is retrievable from the watch backup that is contained in the paired device’s backup. Information
includes a synched address book, call logs, messages, Wi-Fi, MAC address, e-mail, voicemail, and any other
shared third-party apps.

When an Apple Watch is unpaired from the device, a backup of the device is automatically created and
the data on the watch is erased. If the device is out of range of the paired iPhone when unpaired, the data
will not be the most current in the backup.

A tool called iBus (S1, S2/S3) connector can attach to all Apple Watches and was manufactured to enable

77

https://support.apple.com/en-us/HT204518

the device to be restored using the diagnostic port under the band of the watch. This connector, coupled with
MFC software and a dongle, can read the details of the device, including iCloud account details. As with all
tools in the wild, it is incumbent on the investigator to test and validate all tools prior to using them on
evidence.

Fitbit Fitbit’s entry into the smart watch world was in 2015 with the Surge. This device enables the standard
watch capabilities but includes fitness functions such as steps, floors, heart rate, sleep monitor, and a built-in
GPS. Fitbit’s versions of smart watches progressed through the Blaze, Ionic, and now Versa, which added the
ability to receive basic notifications from the paired smart phone to include calls, messages, and calendar;
Fitbit has since added notifications from all supported apps in both the Ionic and Versa.

The Fitbit brand of smart watches has slimmer specifications than the Apple Watch with a max of 4GB of
storage on the Versa, but still supports Wi-Fi, Bluetooth, NFC (on some models), accelerometer, gyroscope,
altimeter, and a spO2 (saturation of oxygen in the blood) sensor. The Fitbit brand runs a proprietary
operating system called Fitbit OS. As discussed earlier, Fitbit purchased Pebble in 2016, and the Fitbit OS is
based upon the purchased IP.

How about the investigation of a Fitbit device? The device has already been used as a witness in several
cases. One prolific homicide case in 2015 involved a tale of a husband and an alleged struggle and home
burglary in Connecticut. The husband had alleged that the wife had struggled with intruders at the home
around Christmas, while he was tied up. However, the Fitbit that recorded the health and the steps taken by
the wearer painted a different picture of the events proffered by the husband. By recording almost 1300 steps
taken by the victim at the time of the crime, as well as health and activity readings contradicting the events as
explained by the husband, Fitbit became a new silent witness.

Fitbit users create an account, so the data is accessible online (Fitbit dashboard) and within the supported
device’s Fitbit app. The actual data on the Fitbit physical device is extremely limited because of the amount of
code space for the underlying OS, apps, and music. However, data is stored in the Fitbit Cloud as well as the
installed Fitbit app.

Data listed by Fitbit (https://help.fitbit.com/articles/en_US/Help_article/1133) that can be recovered from
the Fitbit cloud includes the following:

• Body Weight, BMI, body fat percentage

• Foods Any logged food and water

• Activities Device data such as steps, floors, calories burned, and more

• Sleep Time asleep and time in various forms of sleep

Data found within the application on the device is paired with the device and syncs every time the app is
opened. The data found within the app includes information listed previously, as well as any notifications that
might have been received on the device. (Artifacts and additional analysis of this data will be covered in
Chapter 16.)

Samsung Gear The Samsung Gear series of smart watches was first released in 2013. The devices have
progressed from the Gear, to the Gear 3, which is available as of this writing. All devices in the family have

78

https://help.fitbit.com/articles/en_US/Help_article/1133

4GB of storage like the Fitbit, but the operating system used by the Samsung devices are largely based on
their built-in operating system, Tizen. Tizen is an open source software like Android, and the interface of
devices running Tizen is like that of the Android. Samsung’s operating system is based on Linux, like
Android, and the device has a USB debugging mode much like Android devices. Some of the Samsung Gear
smart watches, such as the Samsung Gear Live, run on the Android Wear operating system. The devices have
Wi-Fi, Bluetooth, NFC, accelerometer, gyroscope, barometer, heart rate, GPS, and ambient light detector.

The Samsung support includes much of the same features as both the Apple Watch and Fitbit to include
health features from the S Health app, and also interfaces with the paired device to show notifications from
calls, messages, and any supported apps. The device is also able to utilize Samsung Pay to store and manage
credit cards using NFC.

The Samsung Gear devices utilize the Samsung Gear app for both iOS and Android, use Samsung Cloud
for backups as well as on the mobile device with which it is paired, and store data within the actual watch.
Accessing this data is often the biggest challenge for the investigator. The connection to the device running
Tizen is often hampered by either no USB connection on the actual watch or simply lack of support by any
commercial tool. Most commercial tools simply parse the app from the mobile device or extract the data from
the Cloud service. Note that there is a Backup & Restore setting within the mobile device Samsung Gear app.
The watch device can be backed up to a paired mobile phone, and the backup can be found in the mobile
device file system at data/data/com.samsung.android.hostmanager/files/backup/.

With Tizen on the device, the first step in attempting to access the device directly is to place it into USB
debugging. The watch can be placed into USB debugging by choosing Settings | About | Software Version
and tapping 7 to 10 times. If the device has a cradle that can be used to plug into a PC, the computer should
recognize the device if the current Samsung drivers are installed. However, if the device does not have
connection to the device, such as the Samsung Gear 3, an ad hoc Wi-Fi network is created by turning on the
Wi-Fi, connecting to the network access point, and on the computer finding the IP address of the device and
using this IP address when conducting the communication via the PC and Smart Development Bridge (SDB)
as outlined by Samsung in their development manual (https://developer.samsung.com/gear/develop/testing-
your-app-on-gear). SDB is similar, if not identical, to Android Debug Bridge (ADB), where an investigator
can pull data from the file system. Another similarity to the Android OS is the ability to obtain and the
manner of obtaining root on the Tizen device by using Samsung Odin. (A deeper examination of SDB and
the Samsung Gear file system will be covered in Chapter 16.)

Unmanned Aircraft Systems
This section will cover the proliferation of recreational drones and their impact on today’s digital incident
response. In the document “Drone Year in Review: 2017,” the Center for the Study of the Drone at Bard
College estimated that there were almost 900,000 hobby users of unmanned aircraft systems (UASs) in the
United States alone. This number continues to grow each day, as new UAS users hit the streets armed with
drones that can fly at great distances, record crystal-clear video, and even carry a payload. UASs are currently
regulated by the FAA, which has provided guidelines to local law enforcement on how to handle drone
incidents (www.faa.gov/uas/resources/law_enforcement/media/FAA_UAS-PO_LEA_Guidance.pdf).

79

https://developer.samsung.com/gear/develop/testing-your-app-on-gear
http://www.faa.gov/uas/resources/law_enforcement/media/FAA_UAS-PO_LEA_Guidance.pdf

Another document produced by Bard College, “Drone Incidents: A Survey of Legal Cases,” specifically speaks
to the legal issues of UASs, to include privacy, crashes, airspace, restricted areas, and smuggling. The
following sections will summarize the data and speak to the massive forthcoming law enforcement issues.

All UAS pilots who fly in the United States must register their crafts with the FAA and affix registration
numbers to the device. Furthermore, devices have a built-in geofencing mechanism that is set up to
disallow the UAS to enter into any airspace listed as restricted. The firmware of the device, replicated on
the controller, is updated continually to provide the most current no-fly areas. The FAA maintains a web
site (www.faa.gov/uas/where_to_fly/) for information on restrictions, no-drone zones, and a mobile app.
The pilot must affix the registration number on the device, and they can also disable the geofencing
capability of the drone.

Privacy
With the ability of the drone to be controlled by radio link, the device’s distance from the person controlling it
can be great. With every drone now equipped with a video camera that can live-feed the information back to
the flyer, many people—rightfully so—have privacy concerns. No federal laws cover the use of a drone and
privacy—only guidelines outlined by the FAA discuss the issue. The laws covering public concerns come
down to state and local governments.

It is easy to imagine how a drone could easily invade the privacy of a person or place. Many state and local
cases involve users flying a drone around businesses, in windows, and around homes. One documented case in
Utah in 2017 involved the seizure of a DJI Phantom device, where a couple was charged with voyeurism using
concealed or disguised electronic equipment. A person saw the drone hovering outside his bathroom and
followed it until it landed in a parking lot. The subject removed the drone’s SD card and read it via his
computer, saw images of multiple people in bathrooms and bedrooms, and took the card to the police. The
police located evidence on the card to identify a possible suspect from the video footage and later arrested the
couple (http://archive.sltrib.com/article.php?id=4946115&itype=CMSID).

Crashes
Drones can travel at speeds up to 75 mph and at altitudes greater than 1000 feet, and they have spinning
blades that can be made of hard plastic and even metal. Often, the pilot crashes the device into a building,
tree, or other structure and the device plummets to the ground and onto an unsuspecting person below. In a
case cited within the document by Bard College, a subject lost control of a drone and it crashed into a group
of people at a parade. A motion to dismiss the case upon grounds that law enforcement could not prove the
accused was operating the drone was made and is still under appeal as of this writing. This tactic is important
to remember, but there are many artifacts stored on the drone, in the Cloud, and on the SD card that can help
establish the owner and flyer.

Airspace
A UAS can fly at incredible heights, and the FAA has placed restrictions not only on altitude but also on

80

http://www.faa.gov/uas/where_to_fly/
http://archive.sltrib.com/article.php?id=4946115&itype=CMSID

proximity to airports. Aircraft pilots having to deal with birds is one thing, but they shouldn’t have to deal
with drones as well. The majority of cases cited involving airspace issues have to do with drones flying in and
around a scene in which first responders are involved. News crews use drones to film the action from a better
vantage point, and citizens use them to try to get a better view. Again, being able to identify the device owner
from the information located in the various storage locations is critically important.

Restricted Areas
Depending on the location and laws, a UAS will not be allowed to fly in some areas. Airports, as discussed,
are obviously no-UAS zones, but there are many other no-fly locations as well. From national parks, to
museums, sporting venues, concert venues, government buildings, government facilities/bases, and prisons—
each authority has different restrictions. The investigator must be familiar with the various regulations in the
area to asses the crime properly.

Smuggling
Within the United States and United Kingdom, the use of drones to smuggle contraband into prisons or over
borders has become a problem for law enforcement. What is quite interesting is that the FAA has not enacted
specific requirements for flights over prisons, and it comes down to the state to create such laws. Many drones
can carry a payload, and there are documented cases in which cell phones, tobacco, alcohol, and drugs have
been smuggled into prisons. In a 2016 case in Georgia, subjects actually made several drops with drones of cell
phones in a drug-smuggling conspiracy ring (www.justice.gov/usao-sdga/pr/16-defendants-indicted-federal-
drug-trafficking-charges).

Obtaining Evidence from Drones
As outlined in the various cases, subjects can affect every facet of law enforcement by nefariously utilizing
drones. With the availability of these devices at low prices, almost anyone can become a drone user, and
investigations of these types of devices is still in its infancy. However, many commercial tools now support the
processing of data from these devices. The drone evidence can be found on the device, the SD card, the
mobile device, the controller, and the Cloud service, depending upon the manufacturer and product. The
most prevalent family of drones produced for the public are from DJI and include the Phantom, Phantom 2,
Phantom 3, Phantom 4, Inspire, Mavic series, and Spark.

In most cases that are processed in drone investigations, the data simply comes from the SD card. In most
drones, an SD card is plugged into the device, and the card records the video/images and often log files. In the
case of DJI recreational drones, the log files are known as .dat files and contain valuable information that
includes altitude, direction of travel, speed, latitude/longitude, and additional device information.

The drone’s internal flash memory is accessible via only a few commercial products. Oxygen Forensics
Detective software enables the physical acquisition of the flash memory on the DJI family of drones. There is
a caveat, however: For physical acquisition, the device must be turned on. Research has found that having to
turn the device back on will reset the last logs from the device. The information on the device will contain
only the latest flight logs because of the acquisition of a new home location. If the device can remain turned
on and charged and isolated from any type of network, the acquisition will contain data not available if the

81

http://www.justice.gov/usao-sdga/pr/16-defendants-indicted-federal-drug-trafficking-charges

device has acquired a signal or been turned on from the initial contact. Another free method that is also
unobtrusive allows for the acquisition of the internal flash media.

Removing the chip and/or using Joint European Test Action Group (JTAG) methods will not have the
limitation imposed by a restart, and these are considered better methods for obtaining the information
from the drone’s internal flash memory.

The following guide will help the investigator gather information on all DJI devices, with only minor
changes:

1. Use an iOS device or Android with installed DJI Go app (Phantom 3/Inspire only).

2. Turn on the remote controller (RC) that belongs to the DJI drone (Phantom 3/Inspire only).

3. Have the latest DJI Assistant software installed on the Mac or PC.

4. Connect the iOS device or Android device to the Wi-Fi broadcast by the RC. The SSID is usually
located on the RC. The default password is 12341234 (Phantom 3/Inspire only).

5. Obtain a DJI Free account, and log in. Select the device name from the upper-left corner.

6. Launch DJI Assistant and log in with the user created in step 5.

7. Select Advanced mode and select Enter Flight Mode Data. (Phantom 3/Inspire only).

8. Connect the drone.

9. In DJI Assistant, select the device and enable SD card.

10. Use tools such as FTK Imager, Oxygen Forensic Detective, and Cellebrite to create a physical image of
the device.

(The data acquired using these methods and artifacts will be discussed in Chapter 16.)

With both Android and iOS devices, the DJI Go app holds a tremendous amount of user information,
including the device user registration e-mail address, user account information, device logs, media uploaded by
the user, and more. Most commercial tools will parse and decode the information from the DJI Go app. (This
application and the contents will be described in Chapter 16.)

DJI devices also transmit data from the DJI Go app to the DJI Cloud server. The DJI Cloud account
holds a tremendous amount of saved user data, shared data, and flight information. Having access to the DJI
Cloud can help the investigator if the drone or event associated controller device (RC controller, mobile
device) has not been located or has been damaged.

Many of the recreational drones that may come into the forensic lab follow the guidelines outlined in this
chapter: storage on the device, the Cloud, within the app, and on the external media. Data locations and
additional information will be covered in Chapter 16.

Chapter Summary
Today’s digital forensic investigators have their hands full with IoT devices, including devices that control
lights, refrigerators, home security, and temperature; wearables; and connected vehicles. The amount of data

82

that is gathered into Cloud-based services is unfathomable. Information that can be obtained from these
sources will undoubtedly assist in any investigation.

The Internet of Things does not necessarily deal only with items in the home, enterprise, or industry
sectors. The number of connected devices in the world has far exceeded imagination. We are a connected
society, and our need to consume and transmit digital data is insatiable. Not only do we need to be connected
using our smart devices, but we need to be connected using our watches, glasses, and even our clothing. Enter
the ability to soar to great heights to video, photograph, and simply pilot a UAS, and some people have
unfettered access to tools that can take a simple investigation into a digital device to a new level. The digital
investigator who was an expert only a few years ago has so much to learn today.

This chapter briefly outlined the tech that is available to the user and general ways to access the data. As
mentioned, Chapter 16 will cover specific locations and artifacts that can be examined to help solidify the
digital forensic investigation of these devices.

83

T

4 Living in the Cloud: The Place to Hide and Store
Mobile Data

he first thing to know about the mysterious Cloud is that it is really not that mysterious. Understanding
the Cloud comes down to understanding the simple concept of cloud computing. In a nutshell, the

Cloud is essentially a server, large or small, that is remotely accessed by another device—a computer or
terminal that sends information to and receives information from the remote server.

The first “cloud computing” scenario was created in the 1950s; it simply allowed access to large servers and
computers (mainframes) in data centers by dumb terminals on users’ desks, so that users and businesses did
not have to purchase complex computers for every employee. This progressed into using a single server in the
1970s, with multiple instances of an operating system and storage area using virtual machines instead. In this
scenario, an entire company could have an instance of a virtual computer running on a single remote server,
and even different types of operating systems. Quite honestly, this concept from the ’70s with server space to
run software, provide storage, and offer data reception and transmission is what we see today in everyday apps
like WhatsApp, Facebook, Line, Snapchat, and more. Data transmitted to the remote server (on the Cloud) is
stored and accessed by the app on the mobile device, as well as the data transmitted to the remote server from
the mobile device. Instead of cloud computing, this is often termed cloud services or cloud storage.

A recent document showed the data center storage capacity worldwide in 2018 was 1450 exabytes
(www.statista.com/statistics/638593/worldwide-data-center-storage-capacity-cloud-vs-traditional/). If you’re
not sure what an exabyte (EB) is, it’s large: an EB is 1 quintillion bytes, or a 1 followed by eighteen 0’s:
1,000,000,000,000,000,000. (To put that in perspective, Mars is 34 million miles away and Jupiter is 353
million miles away. That means a person could take 14,705,882,353 round trips to Mars from Earth, or
1,416,430,595 round trips to Jupiter, before they reached 1EB—let alone 1450EB!) A mind-blowing number
of 0’s and 1’s are stored in data farms around the world. The storage of third-party data from applications on a
mobile device is similar, and to save space, store data, and make the user experience better, the Cloud provides
the answer.

The problem posed by the Cloud to the investigator is simple: What legal grounds does the investigator
have to access the information from a cloud service? Chapter 5 discusses a legal argument that can be made
when discussing search warrants and who really owns data. Investigators must understand how relevant the
data from cloud services can be to their investigations. Moreover, they must comprehend the various
methodologies of collecting information from cloud services, the types of protection used, the accessible data,
and the tools available.

Clouds and Mobile Devices
Storage on a remote service is nothing new in the computing world. What brought the concept to the
forefront was not the 2014 movie Sex Tape or the 2018 movie In the Cloud, but the use of mobile devices. In
2008, Gartner predicted that the Cloud would be mainstream in two to five years in its hype cycle diagram,
posted by TechCrunch (https://tctechcrunch2011.files.wordpress.com/2008/08/gartner-hype-cycle1.jpg). As

84

http://www.statista.com/statistics/638593/worldwide-data-center-storage-capacity-cloud-vs-traditional/
https://tctechcrunch2011.files.wordpress.com/2008/08/gartner-hype-cycle1.jpg

people began to use more and more software and services via the Internet, the use of mobile devices has
brought this concept to the masses (sometimes without them even knowing it).

Most people understand how Dropbox, Google Docs, OneDrive, or any other file storage/saving service
operates in the Cloud. If a file can be stored off a local device and in the Cloud, it must be a cloud application
or service. But what about apps such as Chrome, Telegram, WhatsApp, Viber, and Messenger? Should these
be considered cloud applications, even if they do not offer storage services like Dropbox or Google Drive? Of
course, they should! Messaging apps store and offer their services via remote servers (aka the Cloud) to users.

If the discussion is about native mobile app or cloud mobile app, however, there is a difference between the
two, which comes down to development particulars. A native mobile app’s running environment is the mobile
device, while a cloud mobile app uses a cloud server as its environment. The native app does not have to
utilize a built-in browser to display the contents of the app, while the cloud-built app must rely on a built-in
browser to display the app by using HTML 5, JavaScript, Cascading Style Sheets version 3 (CSS3), and a
server-side code base. However, both types of app development styles can, and do, use the Cloud for user data
storage, computations, and other needs.

If you’re unsure about whether an app uses cloud services, here’s an easy test: If the app is installed to
another device, or even uninstalled from the device, when it’s reinstalled, are all the app data, settings, and
other user information still visible in the app? If so, the app is using the Cloud to store data. Furthermore, if a
login and password or other authentication is used to start the app, or if the user must log into a web-based
system, chances are the data is stored on the Cloud.

What Does This Mean to Investigators?
Once, investigators had to deal with data coming only from the physical mobile device. Data such as
messages, contacts, call logs, images, apps, and more was retrieved from the mobile device by following a
process and procedure (such as isolate, attach, extract, examine, report) to complete the task. Investigators had
what they needed to finish the investigation and close the case. Training teams from various companies taught
the in’s and out’s of processing the device in a forensic manner so that the information could later be used in
testimony.

In 2011, when Apple brought to market the ability to store a device backup in the Cloud via iCloud, the
world changed. Android, in an effort to keep up with security and Apple, released version 6.0, which forced
the device’s user data to be encrypted. Devices became more secure by increasing security with passwords,
biometrics, PINs, and so on, and app developers began to impose security on their apps, eliminating the
inclusion of the main app database from the backups. Since creating a backup of a mobile device for iOS via
iTunes protocols and Android via Android Debug Bridge (ADB) protocols was the primary way commercial
tools conducted an extraction, things became a little more difficult.

For Android, trying to obtain a complete physical extraction of the user data is futile if the device is fully
encrypted. Today, the importance of cloud data in mobile device examinations cannot be overlooked. A single
device can have multiple connections to various cloud sources simultaneously (Figure 4-1). Most apps on
today’s devices use cloud storage, as do the device manufacturers.

85

FIGURE 4-1 Smart phones today have many simultaneous connections to various cloud services.

As with all other methods discussed throughout this book, any investigation should be conducted in a
lawful way that abides by all state, local, federal, and international laws. Utilizing tools or methods for the
invasion of privacy, or accessing cloud services without legal paperwork or consent, is illegal.

Today’s digital investigators should not ignore the significance of the data stored in various cloud services.
Without cloud data, the information that can be gathered from traditional sources (such as mobile device,
flash media, or computer) is limited, inconclusive, or simply unobtainable.

No Device Needed
One of the immediate benefits when performing a cloud investigation is the fact a mobile device is not even
needed in many cases. All that is needed, other than legal authority, are authentication credentials to the
various cloud accounts. Think of the benefit the Cloud offers when a device has been damaged so badly that
no customary method can be used to extract data from the device. Also, if the device cannot be located, is lost,
or has been stolen, access to the cloud backup or apps is still available. How about if a device owner is missing,
lost, or kidnapped, with the mobile device in his or her possession but it’s disabled or out of power? By
extracting data via the cloud services of the user’s various accounts, investigators can obtain location
information or other data, which offers immediate benefit to the investigator—and the victim.

Encrypted or Locked Device
With devices from Apple, to the entire Android line of more than 25,000 devices, investigators can encounter
several problematic issues. The device can be locked, encrypted, or both. If an Apple device is locked with a
PIN, some current options using GrayKey devices can unlock the device, but with Apple’s insistence on
shutting down these methods, this advantage might be a short-lived win for investigators, as standard mobile

86

forensic methods will no longer work. With Android devices, investigators face the same conundrum: if the
device is locked with a PIN and a locked bootloader, or the device data is encrypted, traditional methods and
standard mobile forensic extraction may not work.

Access to the data within the Cloud, however, is still available and accessible by the investigator
independent of the status or configuration of the mobile device. Essentially, whether or not the device security
or encryption is enabled, investigators can extract data from the cloud services used by the mobile device,
third-party apps, or the actual device backup process.

Corroborate and Collaborate
Often in investigations, an examination offers two sides of a story. One side may be a person who is using a
mobile device to stalk, harass, intimidate, and bully another person; the other side is the person being stalked,
harassed, intimidated, and bullied by means other than a mobile device, such as via desktop Facebook or
desktop Messenger, who does not own a mobile device (yes, it can happen). By accessing the data from the
cloud services of both subjects, along with the mobile device data, the investigator can paint the entire picture.
Having the ability to extract information from cloud services for today’s investigations is critical.

Disposal of Evidence
Many investigations today involve the subject wiping the device in an effort to remove the “smoking gun” on
their mobile device. The devices of today, unlike devices of the past, do a good job of permanently removing
data from flash memory with a factory reset and new OS installation. However, as mentioned, third-party app
developers want their users to be able to reset their devices and subsequently persist their data. To the
investigator, this means that the data that was on the device at the time of the crime could possibly be located
in a backup on the cloud storage for the device and/or the app. Of course, accessing the cloud store and
services often takes the cooperation of the owner of the device or the cloud service provider. This limitation,
however, should not preclude the investigator from attempting to access this valuable data.

Additional Data
App cloud storage as well as cloud backups can contain additional data not available on a standard mobile
device extraction completed by an available commercial tool, including physical invasive acquisitions. As an
example, Apple iCloud backups can include three backups of a single device—the current backup and two
historical backups. Imagine a scenario in which a subject resets the device and the device is backed up to
iCloud, but unbeknownst to the subject, the backup performed the night before still is available to be
retrieved. Apple indicates that the backup is an incremental backup, but using commercial tools to extract
iCloud devices proves otherwise. Additionally, services such as Samsung Cloud, Dropbox, Google Services,
WhatsApp, and several other apps cache and store deleted records, including messages and pictures in the
cloud store, which is not synced or stored on the physical device. Conducting a robust extraction of the
physical device is a must, but what might be missing or additional to the data stored in the devices are
multiple cloud storage services.

Accessing the Cloud

87

Once the investigator decides to access the data from a cloud account and proper authority has been obtained,
several considerations remain. For example, the investigator must determine the appropriate date or date
range of the data, as well as the types of record he or she needs to investigate. The investigator must also
understand the security methods of the cloud account, which can be user driven, a cloud service set, or a
combination of both. These methods vary per service, app, and device at times. Finally, an investigator must
be aware of the notification settings of the cloud services being accessed.

Date Ranges and Types of Records
In most investigations, the event in question and under investigation occurred at a certain time and on a
certain date or range of dates. Having a tool in which the investigator can enter the range of appropriate dates
will enable the data to be within the scope of legal paperwork and limit the amount of data that is extracted.
Consider a WhatsApp cache of 300,000 messages, which would take about eight hours with most commercial
tools to download. Many services store a variety of records (such as images, videos, audio, documents, and
text). If the investigation is based upon a particular date range and involves only images, messages, or videos, a
tool can be used to select the appropriate date range and type of data. Using a date range or data type to limit
the number of records to be extracted can dramatically minimize extraction time and better serve the
investigation requirements.

Notifications
Accessing a cloud service as part of an investigation is not as straightforward as entering a few usernames and
passwords. Cloud services, particularly Google, can notify users of access to accounts that are deemed
suspicious, not from a recognized device or based on time elapsed. In 2008, Google began notifying its users
of IP variations in access to their accounts. If multiple devices are connected to a Google account in
Alexandria, Virginia, but an IP address is used in Frankfurt, Germany, the owner of the account is notified.
The owner can accept or deny this access. The device and operating system, along with the IP, are displayed
to the user via the Google account. Investigators must take notifications into consideration when using tools
to access the cloud account. If the investigator is attempting to access a subject’s account covertly as part of an
investigation, he or she must understand whether the subject will receive service notifications from the app.

Security
Cloud accounts can use various forms of security, such as authenticating via a username and password
combination, using tokens or biometrics, and data encryption. To access the data within the Cloud, the
investigator needs to offer authentication, and in some instances a second type of authentication in two-factor
authentication (2FA). The encryption of the data on the server that is extracted can often be decrypted with
the authentication method once the investigator identifies the type of encryption in use. The type of
authentication used by the cloud extraction tool will also determine whether a secondary authentication type is
required by the app.

Two-Factor Authentication
Two-factor authentication uses two types of authentication to “positively” identify the person requesting

88

access. It has become the de facto authentication type in many mobile apps. Google introduced 2FA in 2011,
and today the easiest form of 2FA with mobile devices involves receiving a Short Message Service (SMS) or
phone call to the phone on which the app is installed.

Multifactored authentication adds security to a user’s login by requesting additional information, which
can include the following:

• Something you know A password, PIN, or other knowledge-based question only the user would know.
This would be the simplest form of authentication and is often the easiest to bypass.

• Something you have Represents a physical item such as a fob, hardware token, RFID card, smart phone,
and so on. Think of a chipped credit card: the PIN is known to the user, and the card is in his or her hand.
The PIN must be entered along with the card and chip.

• Something you are Represents something that is integral to the person, such as biometric data—the
person’s iris, fingerprint, palm print, or retina, for example. This represents one of the most secure forms
of security when used in conjunction with something the user has.

Multifactor authentication can present problems with cloud extraction utilities, but there are ways to create
a backup if it is enabled. In fact, in 2018, a report in the Verge claimed that 90 percent of people using Google
services still did not use 2FA (www.theverge.com/2018/1/23/16922500/gmail-users-two-factor-
authentication-google), so perhaps lots of data can be extracted without a second form of security.

Username/Password
Username and password combinations make up the most common method of logging into app and cloud
services. Many commercial tools can be used to extract username and password information from the mobile
device (such as Apple Key Chain, Android Accounts.db, Android apps), and these can be used to access the
user’s cloud services. There are, however, disadvantages to using only a username and password to access user
data, including notification to the account owner, as well as triggering 2FA.

Authentication Token
When a user authenticates successfully to an app or cloud server, the service returns a token, which is used to
enable the user to access the service without having to enter his or her username and password again. A token
is like a pass, and it is used, for example, when you open your Gmail account and it logs you in without
requiring any interaction from you. Most tokens have an expiry set at the time of authentication, which varies
per app or cloud server. Some are good for a single session only, others for two weeks, some for 30 days, and
some forever if the user uses the app on the same mobile device.

Commercial tools enable not only the collection of usernames and passwords but also authentication
tokens used during the extraction process of a mobile device. The advantage to using the authentication token
rather than the username and password is that the account owner will not be notified of the access and 2FA is
bypassed.

Methods of Bypassing Cloud Services Security
An investigator can access a cloud account with built-in services by accessing the account directly. As in any

89

http://www.theverge.com/2018/1/23/16922500/gmail-users-two-factor-authentication-google

investigation, all processes and access to the mobile device, computers, and cloud storage must be backed by
legal documentation. Without the required legal documentation, any information that has been extracted will
be considered tainted and unusable in court. Discussed in the following sections are some methods the
investigator can use to obtain credentials to bypass the requirements of a username, password, and 2FA.

iCloud Bypass
Apple iCloud is used for the backup of both the Mac and associated devices such as an iPhone and iPad. The
devices that share iCloud are termed “trusted devices” and can receive a code for the 2FA requirement to
access the devices’ iCloud account. The investigator can also use a code generated on one of the trusted
devices to satisfy this requirement and start the extraction.

If the investigator chooses to send the code to the trusted device, the device must be online and not in an
isolated state. This must be documented by the investigator, because allowing the device on the network could
cause the device to receive data (such as iMessages, app updates, and so on), to remote wipe, or to perform
some other operation. There is perhaps a better way to get the code, however.

Apple allows the user of the device to obtain a code for the device either online or offline. To access this
setting on an unlocked, trusted iOS device, go to Settings | [UserName] and Passwords & Security. When the
phrase “Account Details Unavailable” is shown, select Get Verification Code. If the trusted iOS device is not
available, a trusted Mac in the ring of trust can also be used. On the Mac, click the Apple icon at the top left,
and then choose System Preferences | iCloud | Account Details. If the device is offline, select Get
Verification Code; if it’s online, select Security | Get Verification Code. This code can be used for the 2FA
request.

Google Bypass
Like Apple, Google can use several types of forms when 2FA is enabled. The Google account holder can
create app-specific passwords or use the Google Authenticator to bypass the 2FA requirement completely,
and a user can even create a set of one-time use codes. An investigator can also receive a SMS message onto
the device, which of course would mean the device has to be online—or, if using a UICC card, the
investigator can place the card in another unlocked mobile device or in one with the same service carrier.

Within the Google account (myaccount.google.com), go to Sign-in & Security | App Passwords (required
to enter password), and then under Select App, select Custom and then the device in Select Device. Tapping
Generate Code will create a unique password that you can use along with the username within the cloud
extraction application. This will bypass 2FA, even if it’s enabled. All changes within the account are logged to
include the event, date/time, and location.

Also, Google allows the use of one-time backup codes to be generated. Once a backup code is used,
however, it becomes inactive and cannot be used on subsequent extractions. To obtain backup codes from an
account, go to the Google account (myaccount.google.com), and then Sign-in & Security | 2-Step
Verification (required to enter password), and then Backup Codes and click Show Codes. Enter the code in
the cloud extraction tool when requested.

Google Authenticator is available for both iOS and Android devices. An investigator should determine
whether the app is installed on the device, which will indicate that the user has already set up Google

90

http://myaccount.google.com
http://myaccount.google.com

Authenticator in the 2-Step Verification area. If the app has been installed on the device, simply open the

app, and use the six-digit number in the cloud extraction application when it is requested.

Bypassing the security for cloud services often goes against the guidelines of device isolation in some
instances. Investigators may need to receive a text message or call on the device if multifactor security is in use.
In these cases, the investigator must document the steps that have been taken as well as any data that was
delivered to the device. Similarly, the investigator should document the process and procedure regarding how
a verification code or authentication code was used to bypass 2FA.

Accessible Cloud Data
The information an investigator can extract from a cloud store depends on the app data being extracted and
also the product that is used to conduct the extraction. Tools that extract data from cloud store rely on the
APIs that are used by the actual apps. To support online cloud storage, commercial tool companies rely on
research and development of the communication between the app and server as well as documented research
online. This is a slow process and is often hampered by app development teams that continue to change API
and data stores to combat the access. It is truly a cat-and-mouse game between the forensic tool developers
and the app development teams. Add 2FA to the mix, and access becomes even more difficult for the
examiner.

Again, what data is accessible in cloud store will be based upon the available cloud storage API that the
software extractor uses. Tools are continually updating the service to keep up with changes by app developers
and newly identified access points.

The next sections cover accessible data and extraction information from iCloud, WhatsApp, Fitbit,
Facebook, and Google My Activity.

iCloud
The accessible data for iCloud includes the following, as listed in Apple Support
(https://support.apple.com/en-us/HT207428):

• App data

• Apple Watch backups

• Call history

• Device settings

• HomeKit configuration

• Home screen and app organization

• iMessage, text (SMS), and MMS messages (11.4)

• Photos and videos on the iPhone, iPad, and iPod touch

• Purchase history from Apple services, such as music, movies, TV shows, apps, and books

• Ringtones

• Visual Voicemail password (requires the SIM card that was in use during backup)

91

https://support.apple.com/en-us/HT207428

Within the iCloud backup is app data, which is often extracted separately from the main iCloud backup,
typically because the data is encrypted by the third-party app and must be decrypted with another 2FA code.
For example, WhatsApp data within iCloud is extracted using the username and password for the iCloud
account, and then a verification code must be entered for the extraction. However, after a successful
extraction, the investigator will receive a call or SMS message to obtain another authentication code that must
be used to decrypt the data that was extracted.

Fitbit
Accessible data from the Fitbit cloud store includes the following:

• Activity logs (daily, lifetime, recent, favorite, goals)

• Body composition (fat, weight, goals)

• Device (devices, alarms)

• Food and water logging (meals, recent, custom)

• Friends

• Heart rate

• Sleep

• User information

• Subscriptions

• Dates and times of measurements

Many commercial tools can be used to obtain some of the information from the apps on the device with
few actually accessing the data from the Fitbit cloud service.

Facebook
Data that can be collected from the cloud accounts of Facebook users includes the following:

• Groups (participants, posts)

• Profile

• Friends

• Albums

• Time line

• Messages (attachments)

If a user authorizes Google to authenticate his or her Facebook account, the user’s Google credentials can
also be used to extract the data from the Cloud. Furthermore, any account connected to Facebook, such as
Instagram, Map My Run, or Endomondo, can also be accessed with the Facebook credentials to extract their
cloud data. The caveat to this type of login to a different cloud store is that only the data Facebook has
permission to access will be available to be extracted.

92

You can use another method to download all of the user’s data if access to their account is available. In
General Account Settings, choose Download A Copy Of Your Facebook Data. The output is more
tedious to wade through, but this is still a viable option.

Google My Activity
In 2016, Google launched My Activity. This cloud service captures a tremendous amount of data and can
provide a wealth of information for any investigation. My Activity can be disabled by the user. The data that
can be collected includes the following:

• Web searches

• Web sites visited

• Time line with GPS coordinates (any signed in device tracks via pictures, known location)

• Map data (routes, viewed area in map)

• Device information (calendar, contacts, battery level, music)

• Applications (Google Play)

• Call and Message information (if using Google FI or Google Voice service)

• Voice and audio

• Gboard (Google Keyboard) voice input (entire phrase from any app can be found as well as audio)

• Google Assistant (Google Home, app) stores entire phrase in activity as well as audio

• YouTube (searched, watched, comments)

• Preferences (news, orders, movies, books)

• Casts to Chromecast (what was viewed)

The cloud service, and the items listed here, are available with authentication of a Google account. The
Google Home device’s activity is also available within the Activity module, which was covered in Chapter 3
and will be further discussed in Chapter 16. The information that is stored within this cloud store is
unbelievably verbose and a complete treasure trove for investigators. Some investigators have utilized Google
Takeout to extract the user’s Google activity. Using this method should be conducted cautiously, however, as
the user is notified immediately of the collection of the data.

Cloud Tools
A variety of tools can be used by the investigator to extract cloud data. Like any other tool, each has its
particular pros and cons. Most of the competitive commercial mobile forensic tools provide cloud extractors
usually as additional tools that must be purchased in addition to the main tool. In this section, both
commercial tools and open source tools will be covered.

As a mobile phone investigator working with today’s devices, you need a clear understanding of the
capabilities in obtaining cloud data by each service. As mentioned, 2FA and even multifactored authentication
are not supported by all available tools, which could pose a limitation. Also, the breadth of coverage for the

93

cloud stores, and the type of data that is extracted from a cloud service, can pose particular issues.

In addition, it’s important to know whether the cloud extraction tool allows for a subset of the data, as well
specific data based on dates, to be extracted. Think of the importance of allowing an investigator to extract
only a subset of the data. Suppose, for example, that the scope of a search warrant dictates that only images
can be recovered from a cloud service. The ability of the investigator to select only images during extraction
should be a consideration when choosing a tool. Or perhaps an investigator must extract data based upon a
particular time period; this can also be critical when selecting a cloud tool. By setting date parameters for the
data within the cloud store, the investigator can accomplish a couple of things in a variety of use cases: this
would allow an investigator to receive and view only the data specified in a search warrant, and with large data
sets, an investigator could target the event time and extract and view only this data, saving valuable time.

The following sections are dedicated to discussions of various commercial tools from Oxygen Forensics,
Cellebrite, and Magnet Forensics. The information provided does not cover how to use the tools, but covers
their functionalities and some of their limitations.

Oxygen Forensics Cloud Extractor
The Oxygen Forensics Cloud Extractor is built into Oxygen Forensics Detective. The benefit of this solution
is that the cloud tool is built into the software—it’s not an additional product that must be purchased
separately. This enables the investigator to build cases not only from just the data on the mobile device and
removable media but also data from the cloud that is related to the examined mobile device.

Oxygen Forensics Cloud Extractor supports, at the time of writing, 54 different types of cloud services,
ranging from file storage, to messengers, drones, health apps, and social media. The main software, Oxygen
Forensics Detective, extracts usernames and passwords during the mobile device extraction from iOS and
Android devices that can later be used to attempt to validate the credentials to extract the cloud service data.
The investigator can export a credential package from Oxygen Forensics Detective to be used in the Cloud
Extractor on a computer that is online, or simply launch the Cloud Extractor from Oxygen Forensics
Detective with the credentials that have been extracted.

The various cloud services currently supported by Oxygen Forensics Cloud Extractor are listed in Table 4-
1.

TABLE 4-1 Currently Supported Cloud Services in Oxygen Forensics Cloud Extractor

94

Oxygen Forensics Cloud Extractor enables the investigator to use usernames/passwords and tokens to
validate the account. Also, if 2FA is enabled for supported cloud services, the investigator is notified and
several options are provided to the bypass the additional step. The steps are determined by the settings for the
cloud service. An SMS or a phone call, a validation code, backup codes, captcha, or even authenticator code
can be requested after the first validation of credentials. Each service can be different and can use two distinct
operations during the process: one to extract from the Cloud and another to decrypt the data.

Oxygen Forensics Cloud Extractor also enables the investigator to select the service subtype (such as
images, messages, videos, and so on) within the settings of each service after the credentials have been
validated. At this time, the investigator can enter a date range for all services or for individual services to
provide a focused extraction the court demands or that time allows.

Cellebrite UFED Cloud Analyzer
The UFED Cloud Analyzer is available from Cellebrite for purchase when used with its platform UFED
4PC. Cellebrite offers different types of licenses—one public, one for non-law enforcement (private
investigators), and a third for law enforcement only. Each can extract data from the Cloud, but each has

95

separate pricing and requirements.

The public version allows only publicly accessible data to be extracted from cloud services, while the
second tier, available to private investigators, includes the ability to obtain public data from cloud services, in
addition to a module in which mobile tokens can be used, as can usernames and passwords. The difference,
the extraction using usernames and passwords, is consent-based. The law enforcement version is sold only to
members of law enforcement, the military, and intelligence agencies and includes the ability to import
credential packages from their other solutions that contain usernames/passwords and tokens.

Cellebrite supports, at the time of this writing, more than 50 social media and cloud services. Like Oxygen
Forensics Cloud Extractor, the services range from the most popular messengers to mail clients. Table 4-2
represents the currently supported cloud services by Cellebrite.

TABLE 4-2 Currently Supported Cloud Services in UFED Cloud Analyzer

Magnet AXIOM Cloud
The cloud extraction product Magnet AXIOM Cloud is built into the AXIOM tool. Like the other solutions,
Magnet AXIOM Cloud supports the extraction of cloud data from various sources using username/password
combinations and/or tokens acquired from data acquisitions of mobile devices and computers. Also, if a
mobile device or computer does not contain the necessary information, the investigator can enter the needed
credentials manually to conduct an extraction of the cloud service.

96

AXIOM Cloud supports approximately 25 cloud artifacts in nine parent services to include Apple Box,
Dropbox, IMAP/POP, Facebook, Google, Instagram, Microsoft, and Twitter. Each service is broken down
into different subservices.

Magnet AXIOM Cloud also supports the extraction if multifactored authentication is being used. In
addition, username/passwords and/or tokens can be used to perform the extraction of the supported cloud
services, but tokens are not supported for all cloud services offered. One difference from the other tools is the
fact that if two-factor verification is enabled for Apple devices, Magnet is unable to obtain the backup.

The tool also enables the investigator to enter a date range for the cloud source. As mentioned, setting a
date range can be an important step, and Magnet AXIOM Cloud offers several range types: before a date,
after a date, and custom date ranges are available. An important difference from Oxygen Forensics Cloud
Extractor is that with some sources, such as iCloud backups and Google, the date range is ignored by Magnet
and all the data is acquired. This can be a problem with extraction of data that contains unopened e-mails or
other data not covered in a search warrant.

Magnet also supports the ability to select the types of data that will be extracted from the cloud service
(such as images, videos, docs, and so on). This is an important feature to allow for customization by the
investigator as well as to satisfy the scope of a search warrant. Table 4-3 lists the various cloud services that, as
of this writing, are supported in Magnet AXIOM Cloud.

TABLE 4-3 Currently Supported Cloud Services in Magnet AXIOM Cloud

Chapter Summary
Today’s investigations have transitioned to a new area: the Cloud. The many reasons for this transition
include locked devices, encryption, missing devices, or, most importantly, additional data not found on the
device. Another, often overlooked, reason for investigating cloud data is simply because the cloud server is the
only place an investigator might find data.

The access to the Cloud using commercial tools must follow a process much like any other type of
investigation. First, the investigator must have legal authority to conduct the cloud investigation. Second, the

97

scope of the legal authority should dictate both the type of data and the date range of the data that will be
collected. Third, with the various forms of authentication into cloud services, it is important that an
investigator understand the role of multifactored authentication as it relates to cloud services. Furthermore, in
instances such as WhatsApp, the data that is extracted from the cloud service can be completely encrypted and
secondary steps must be undertaken to decrypt the collected data. Finally, the way to bypass the multifactor
security of the Cloud varies per service. Google data access can be gained via the Google Authenticator,
backup codes, and specialized app passwords, while Apple can use verification codes on trusted devices. An
investigator should understand the various methods to bypass verification and should ensure that the tool used
will comply with requirements.

Although plenty of data is accessible in the various cloud services, much of it often goes unexamined.
Apple’s iCloud announced at version 11.4 that messages will be available for access, which is fantastic for
investigators. Also, Google services such as My Activity often provide unbelievable caches of data, and having
access to this data as an examiner can often complete an investigation. With information in Google My
Activity, such as locations, searches, voice, audio, and more, which are unavailable from any other source (such
as a mobile device or computer), examiners are sure to find the “smoking gun” evidence.

Many of today’s users are into health wearables, from the Fitbit to the Apple Watch, which includes
information such as heart rate, location, food intake, messaging, and other valuable data that is often available
only on the cloud service and not on the mobile device. By gathering the many artifacts from the Cloud and
the mobile device, the investigator can create a collective view of the user’s digital footprint.

Commercial tools continue to advance in features to combat the massive amounts of data being stored on
app cloud services. Tools such as Oxygen Forensics Detective, UFED Cloud Analyzer, and Magnet AXIOM
Cloud all have their pros and cons. It is up to the investigator to look at the features and support before
deciding on the type of cloud extractor to use. One of the most important aspects of any cloud extractor is
how multifactored authentication is handled and how data from mobile devices and their cloud services can be
examined within a single interface. Without these two features, an investigator can be dead in the water, with
many of the cloud services enabling multifactored authentication.

As any investigator should know, a tremendous amount of data can be stored on a mobile device, but even
more is in the Cloud. Chapter 16 will cover the locations and artifacts for many of the cloud services covered
here.

98

E

5 Collecting Mobile Devices, USB Drives, and
Storage Media at the Scene

very successful examination starts with a successful physical seizure of the devices that hold the data
and/or the repository (such as cloud storage). A physical seizure involves taking possession of the

container or containers in which the digital data is stored. This could be, but is not limited to, a server, cloud
storage, a computer desktop or laptop, a flash drive, a portable hard drive, and, of course, the mobile device
itself.

Lawful Device Seizure
A successful physical seizure of the device along with its contents can be a complicated endeavor. Because the
seizure process can be dictated by federal, state, and local laws pertaining to a person’s rights, if correct
procedures are not followed, your search may be deemed illegal. In general, this hinges on whether or not the
seizure and subsequent search were completed by a government agent, an official, or a private citizen. In the
United States, a person’s Fourth Amendment rights protect them from unreasonable searches and seizures by
a government agent, official, or private citizen who is acting on behalf of a government agent or official. That
means if a person is not acting on behalf of the government, using a wiretap or other electronic surveillance
and searching of mobile devices without a person’s consent are legal because searches and seizures by private
citizens are not covered by the Fourth Amendment. Of course, the private citizen is not immune from being
civilly sued for the invasion of privacy by the subject of the search.

On the other hand, a successful seizure for agents of the government must comply with federal, state, and
local laws governing the seizure of personal property from individuals. Any seizure of property must be
lawfully authorized prior to the acquisition of the device and the digital evidence. If the seizure or collection
occurs lawfully but the actual seizure occurs without lawful authorization, any data collected cannot be used in
court and will negate the seizure of the device or devices.

If the location to be searched has been lawfully authorized, the seizure of the device holding the data must
be secured. Establishing a chain of custody of not only the device but also the data is very important to the
entire digital investigation.

A chain of custody clearly details, in chronological order, every hand that the piece of evidence has been in
—from seizure to disposition. Typically referenced in criminal cases during introduction of physical
evidence, chain of custody can also play a large role in civil cases and should not be dismissed. The chain
of custody should be clearly documented in a report or form that defines the appropriate details.

When it comes to electronic evidence from a mobile device, there are two different chains of custody: one
for the physical device and another for the data collected from the device. If the device holding the
information is not properly seized and a chain of custody is not established at the onset, any information

99

gathered post collection becomes fruit of the poisonous tree—unusable. What does that mean to you as an
examiner? It means that any information gathered at the scene that might implicate guilt or innocence can be
dismissed at trial because the physical device that holds the digital gold was not properly seized.

For example, suppose a mobile device’s data is collected at the scene without probable cause, but the owner
of the device consented to your looking at the call records. You recover the collected data to a portable hard
drive, and it is subsequently examined by another forensic examiner, who uncovers a heinous plot that is
detailed in photographs and videos stored on the mobile device. The alleged suspect is apprehended and later
arrested based upon this new evidence. During trial, the digital evidence that was located on the digital device
is used, but it is determined that consent was not given by the owner to collect images and video digital data,
so the plot information cannot be used in the trial. The rest of the evidence is considered circumstantial, and
the case is subsequently dropped.

Lemons v. State, 298 S.W.3d 658 (Tex. Ct. App. - Tyler 2009) states that even if consent has been given
for call details on the mobile device, photos from the device cannot be observed and subsequently used
under the consent initially given.

In another example, suppose a corporate employee is fired for probable policy violations. The mobile
device issued to the employee is taken from him upon termination. The employee indicates that he stored
personal phone numbers on the device and the company has no right to look at the information. The
company does not comply and believes that since the device is owned by the company, it can examine the
information even if a formal policy is not in place indicating employees will agree to a search of the device
during their employment and upon leaving the company voluntarily or involuntarily. The company security
examiner finds data of a criminal nature on the device and summons law enforcement. The law enforcement
officer obtains the information and understands that the device is owned by the company; therefore, the
information on the device can be examined without a warrant. The law enforcement agency collects the data
from the mobile device and determines the employee has committed a crime and subsequently arrests him.
The information found on the mobile device is later used as prima facie evidence in an attempt to convict the
employee of a felony. As the trial progresses and the evidence of the device collection is introduced, it is
determined that personal contacts, short messages, and pictures were stored on the device. Subsequently, the
device was determined to be equal to a personal device, briefcase, or file cabinet that could not be searched
without a warrant, even if owned by a third party. The information was located by the company and turned
over to a law enforcement officer, who did not seek a search warrant based upon the device being owned by
the company, not the person in question; this was fruit of the poisonous tree and could not be used in the
trial. The case was later dismissed.

United States v. Finley, 477 F.3d 250 (5th Cir. 2007) stated that even though the cell phone was owned
by the company Finley worked for, personal data was stored on the device, and Finley had a reasonable
expectation of privacy for the data contained on the device.

100

Obtaining electronic data using forensic tools should not be the start of the investigation, but the
culmination of the successful seizure of the physical device. If the seizure of the physical container is not
properly conducted, the examination is inconsequential and worthless should evidence be needed at trial. A
proper procedure for mobile forensic examinations should include following a protocol that outlines the
seizure of mobile devices in a manner consistent with local, state, and federal laws.

Before the Data Seizure
Prior to the seizure of the physical device or devices, you need to answer several questions:

• If a search warrant has not been executed, has the device owner consented to the search?

• If a search warrant has been executed, is the device included on the original warrant?

• If the device is included on the warrant, are the contents of the device also defined?

• In a corporate situation, is the device owned by an individual or his or her employer?

• Is a corporate policy in place to allow collection and subsequent analysis?

• Could the device contain personal information?

Answering each of these questions is imperative to your successful seizure of the evidence at the scene.
Failure to secure answers to these basic questions could lead to the dismissal of evidence recovered at the
scene.

The creation of documentation regarding the seizure of the physical devices and other articles related to a
mobile device can be different for law enforcement and corporate investigations. What is consistent, no matter
whether it is a law enforcement, private examiner, or corporate investigation, is the fact that misinformation
typically comes from not asking the correct questions prior to the seizure of the data.

Fourth Amendment Rights
In the United States Constitution, the Fourth Amendment states the following:

The right of the people to be secure in their persons, houses, papers, and effects, against unreasonable
searches and seizures, shall not be violated, and no warrants shall issue, but upon probable cause,
supported by oath or affirmation, and particularly describing the place to be searched, and the persons or
things to be seized.

This amendment grants a “right to one’s privacy.” The government or its agents cannot examine a person’s
digital devices without a court order or search warrant issued by a judiciary arm of government. In other parts
of the world, privacy rights are also maintained that do not allow the government to obtain data from a digital
device without first complying. In South Africa, for example, a mobile device and its contents are subject to
search only after the agent receives a search warrant for the contents of the device, similar to the United
States. The United Kingdom also holds in Malone v. United Kingdom that numbers dialed by a subject are
“protected telephonic communications.” In that case, it would be interpreted that any other data that is stored
on the device would be protected as well.

101

The Supreme Court and Mobile Device Data Seizure
Two cases, Riley v. California and United States v. Wurie, lay the foundation for the change in the doctrine
long used when conducting a search of a mobile device.

In Riley v. California, a stop for a traffic violation led to Riley’s arrest for a weapons charge. Incident to
arrest, officers found a mobile phone in the arrestee’s pants pocket. The data was accessed, and a repeated
reference to a term known to be associated with a street gang was located on the device. Later, another law
enforcement officer examined the device’s contents in more detail and found media (images and videos) that
assisted in charging Riley with a shooting. Riley attempted to suppress all the information from the mobile
device on grounds that it was obtained without a warrant, but he was still convicted.

In United States v. Wurie, Wurie had been arrested and transported to the police station, where officers
removed a mobile device from the arrestee. The officers noticed that several incoming phone calls had arrived,
including one message that said “my house” on the screen. They accessed the device to reveal the phone
number for the contact “my house,” along with an image. The number was investigated, and officers
determined that this was the arrestee’s residence. A search warrant was then executed on that residence, where
officers located drugs, firearms, ammunition, and cash. When Wurie attempted to have this evidence
suppressed, he was denied, and eventually Wurie was convicted.

Ultimately, the Supreme Court of the United States (SCOTUS) decided in a historic vote that data on a
mobile device should be covered by the same protection outlined in the Fourth Amendment, overturning both
of the previous decisions. Furthermore, the opinion read by Chief Justice John Roberts clearly outlined in the
decision that law enforcement generally may not search digital information on a mobile device seized via
search incident to arrest without a warrant. The decision also stated that digital data from a mobile device
does not pose a risk to officer safety. The device itself can be altered into a weapon, but the data itself will not
cause harm—so a cursory examination of the physical device is permissible, but not an extraction. Also,
destruction of evidence by remote wiping and even encryption could be circumvented with available
techniques used by law enforcement, such as using signal isolation devices and disabling the locking
mechanism. The most important decision in summary is by Chief Justice Roberts:

Cell phones differ in both a quantitative and a qualitative sense from other objects that might be carried
on an arrestee’s person. Notably, modern cell phones have an immense storage capacity. Before cell
phones, a search of a person was limited by physical realities and generally constituted only a narrow
intrusion on privacy. But cell phones can store millions of pages of text, thousands of pictures, or
hundreds of videos. This has several interrelated privacy consequences. First, a cell phone collects in one
place many distinct types of information that reveal much more in combination than any isolated record.
Second, the phone’s capacity allows even just one type of information to convey far more than previously
possible. Third, data on the phone can date back for years. In addition, an element of pervasiveness
characterizes cell phones but not physical records. A decade ago officers might have occasionally
stumbled across a highly personal item such as a diary, but today many of the more than 90 percent of
American adults who own cell phones keep on their person a digital record of nearly every aspect of their
lives (pp. 17–21).

102

As clearly explained in the historic decision, a person’s rights against unlawful search and seizure by law
enforcement extends to a digital device, today’s diary. Before conducting a valid examination of a mobile
device, get a warrant.

Warrantless Searches
Searching electronic evidence, particularly mobile devices, by civilians who are not agents of the government
can occur without a warrant. Individuals may have an expectation of privacy regarding data on a mobile
device, but if that expectation is violated by an ordinary citizen, no Fourth Amendment violation has
occurred. Ordinary citizens can conduct a search of an electronic device, so long as they have not violated any
other laws in order to examine the device—such as breaking into a person’s house and taking a mobile device
and then conducting an examination. Ordinary citizens do not need the consent of the party to extract data
from a mobile device; this is referred to as the “private search doctrine.”

In United States v. Grimes, 244 F. 3d 375 (5th Cir. 2001), a private citizen searched a computer without
consent of the owner and recovered illegal pictures that were later turned over to the police. Because the
citizen was not acting as an agent of the government, the search was deemed valid and the recovery of the data
was not suppressed. For government actors and agents, however, this would not be the case. Likewise, if the
private citizen, prior to proceeding in the investigation, intends to turn the data over to law enforcement, they
are unequivocally considered agents of law enforcement and this would not be considered legal.

Warrantless searches of digital devices, particularly mobile devices, by law enforcement were typically
conducted using the “search incident to arrest” doctrine, as outlined in several cases. In 2014, SCOTUS
changed the way in which law enforcement and government addressed searches incident to arrest as they
pertain to mobile devices. The information in this section provides background to the case law used prior
to the SCOTUS decision to lay a foundation for the historic decision.

Three particular cases govern, to an extent, when officers can search property found in the possession of or
near an arrestee. Chimel v. California, 395 U.S. 752, states that search incident to arrest is limited to the
immediate control of the arrestee when an officer’s safety is a concern, along with preventing the destruction
of evidence. Another case, United States v. Robinson, 414 U.S. 218, used Chimel to explain that a search of a
pack of cigarettes found on the arrestee was valid because the risks identified in Chimel are always present in
custodial arrests, even when there is no concern for an officer’s safety or loss of evidence. The last case,
Arizona v. Gant, 556 U.S. 332, deals with the search of a vehicle, where the arrestee has access to the
passenger compartment or other places within the vehicle believed to hold evidence of the crime the person
had been arrested for. Using the case law outlined in Robinson, it would seem that law enforcement had
precedent to extend a search to a mobile device incident to a lawful arrest.

Again, the search incident to arrest clause avoided the need for a search warrant for a vehicle or the person
after an arrest of the individual is made. This was to secure the person for transport due to officer safety
concerns and remove all possible contraband from the arrestee’s possession (such as wallet, keys, weapons, and
mobile devices) to disallow access to these items that might harm the officer, the arrestee, or others who

103

might come into contact with the person under arrest prior to booking. Subsequently, search incident to arrest
also allowed the law enforcement officer to secure a vehicle if it was involved with the arrest. A search would
be performed in the “lunge area” of the vehicle to ensure that the arrestee had not stored any contraband there
during the initial contact and subsequent arrest.

Most statutes specify that if law enforcement comes into contact with any locked containers during a
search incident to arrest, a search warrant would be necessary to look into the container. Laptops and
briefcases typically fall into the search warrant clause, but initially mobile devices did not. Mobile devices,
because of their small footprint, were searched either manually or using an automated tool at the scene of the
arrest. In 2014, the SCOTUS cited this search and the reasons typically voiced to enable a mobile device
search were in violation of a person’s Fourth Amendment rights.

Another exception to the warrant has to do with consent. A law enforcement officer can stop and search,
under reasonable suspicion based on “specific and articulable facts,” a person for officer safety concerns, as
defined in Terry v. Ohio, 392 U.S. 1. If the officer located a mobile device on the person’s possession, the
officer could request consent from the person to look into the device only if several conditions are satisfied.
Consent is an interesting exception to the warrant for many reasons. If an arrestee has a reasonable
expectation of privacy for a mobile device and a government representative did not have a warrant to access
the data, the officer can request for consent. The person who is giving consent must have standing to give
consent, must be capable of giving consent, and must understand that the consent can be revoked at any time
during the search.

In United States v. Meador, 2008 WL 4922001 (E.D. Jan. 7, 2008), parental consent to search a mobile
device owned by their son, but under their account, could not be given. Also, the scope to which the consent
applies is important. This means that if a government agent requests to search a room and the mobile device is
in another room and is seized, the scope of the consent was exceeded (United States v. Zavala, 541 F .3d 562
(5th Cir. 2008). In another example, Smith v. State, 713 N.E.2d 338 (Ind. Ct. App. 1999), the government
agents requested to search a vehicle for several things but did not specify mobile devices. Several mobile
devices were seized and subsequently suppressed at trial because the seizure exceeded the scope of the consent.

Obtaining consent to search a mobile device can be extremely delicate, and you should approach it with
caution. When obtaining consent to search a mobile device, you must create a document that clearly details
ownership, explains what is to occur, lists the tools that will be used, and provides the outcome if illegal
information is recovered.

The last exception to a warrantless search is exigent circumstances, when there is not enough time to obtain
a warrant for fear of physical harm to the government agent or others, the escape of the suspect, or the
destruction of evidence. United States v. Parada, 289 F. Supp. 2d 1291 (D.Kan. 2003), indicated that because
a mobile device has limited storage, there is a possibility that the information contained on the mobile device
could be deleted or overwritten, so a search to retrieve the data was needed immediately to preserve the
evidence. To argue, training in today’s mobile forensic courses focus on maintaining the device in an isolated
state, so that network connections are not allowed. This action would negate this type of exigency in most
situations. In another case, United States v. Morales-Ortiz, 376 F. Supp. 2d 1131 (D. N.M 2004), it was also
argued that access had to be made to the address book under exigent circumstances, but unlike United States v.

104

Parada, which involved call logs, this search and seizure was not justified. (There are, of course, exigent

circumstances related to national security, but those instances are beyond the scope of this discussion.)

A somewhat murky area surrounds lost or abandoned property. If a subject leaves a mobile device in a
store’s restroom, for example, and the owner of the store turns it over to police, can officers search the device?
In People v. Schutter, 249 P.3d 1123 (2011), an iPhone was left in a gas station bathroom and subsequently
searched after the business owner gave the phone to police. Because Schutter returned to try to find the
device, it was never lost or abandoned, and the information the government agent recovered was suppressed.
In another case, State v. Dailey, 2010 WL 3836204 (Ohio Ct. App. 3 Dist, Oct. 4, 2010), a person caught
after shoplifting fled the scene, leaving behind a jacket. Inside the jacket was a mobile device, which was later
examined by government agents, who discovered an address book that was used to find the suspect. The
suspect was located, and the evidence was allowed into the trial since the suspect had abandoned his property
when he fled the store.

Always, the best course of action for a government seizure of data is to obtain a search warrant.
Warrantless searches, unless by a private citizen, should be undertaken with caution. If a warrantless search is
to occur, it must be clearly documented and outlined as to how consent was obtained or what necessitated the
exigency. Without that information, it is highly unlikely that the evidence obtained will be usable in a criminal
proceeding.

Location to Be Searched: Physical Location
When creating a legal document to search a physical place (residence, business, or site), the affiant, or officer
who signs an affidavit to obtain a warrant, must describe the physical place, the address, and what should be
searched for. This information is gathered after investigation and intimate knowledge based upon probable
cause that the items exist at this location and in the particular place defined. This process protects the person
and place to be searched from unnecessary searches and seizures—and, more importantly, the neighboring
homes immediately surrounding a residence to be searched.

When developing an affidavit for a search warrant at a residence, the affiant must explicitly define clearly,
but not be limited to, the color of the home; the type of home exterior construction (brick, wood paneling,
and so on); color of any accents (shutters, trim, windows); the address of the residence; any trees, toys, and
vehicles in the front of the residence; features unique to the target residence; and what is to be searched for
once at the location. Not including this amount of detail in the search warrant upon the execution could have
disastrous results.

Location to Be Searched: Cloud Location
What happens when the place to be searched is not a known physical location, but rather a server in another
country, or even several servers scattered around the globe? When creating a legal document to search a cloud
store, the affiant, or officer who signs an affidavit to obtain a warrant, must describe the company of record
and what should be searched for. This information is gathered after investigation based upon probable cause
that the items exist, are required, and are stored by the mentioned company. We should not think of the
location to be searched as the location of the mobile device, but the place of record for the company.

When developing an affidavit for the search of server location(s) utilized by the application company, the

105

affiant must define clearly that data from the mobile device can be stored in several server locations. Helping
to explain the storage methods of virtual cloud computing companies will be essential to understanding
jurisdiction. This is incredibly important to understand, because this is counter to the requirements of the
Fourth Amendment to “particularly describing the place to be searched.” Challenge of a company’s location
for storage services is, however, generally not an issue, because of the understanding that the customer’s data
can be spread across not only domestic boundaries, but international boundaries as well. Case law, as a result
of this web of storage, has by precedence used the company’s location of alleged crime as the jurisdiction, as
seen in United States v. Drew (2009). That case involved a cyberbully, Drew, who used MySpace as a means to
contact the victim. The victim committed suicide because of Drew’s cyberbullying. In this instance, the state
of California was used as the location, when Drew was a resident of Missouri. However, as indicated by Josiah
Dykstra in Seizing Electronic Evidence from Cloud Computing Environments, (IGI Global, 2013), the
jurisdiction was chosen because Drew violated the “site’s terms of service.” Dykstra further uses the SCOTUS
ruling in State v. Beddow (1992) to outline the location, which should be determined using a number of
factors to include the “site of the defendant’s act, the elements and nature of the crime, the locus of the effect
of the criminal conduce, and the suitability of each district for accurate fact finding.”

Location to Be Searched: Mobile Device
Describing the location to be searched when completing the affidavit to obtain a search warrant for a mobile
device should include ample detail. Simply identifying the device as a “Verizon, black, Android smart device”
could lead to questions as to what device the original search warrant was drafted to cover. When drafting
court paperwork to recover data from a mobile device, the affiant must specifically describe the place and
property to be searched. Prior to seizure and subsequent search of a mobile device, the place (the device) and
the property to be searched (data) should be defined. You must understand what should be at the scene and
how it might relate to the overall mobile device examination.

It is best to document, when available, the following information regarding the “place to be searched”:

• The mobile device manufacturer

• The mobile device model

• The mobile device serial number (not the device’s phone number; it can be changed easily to another
device)

• The color of the device

• The type of cover for the device—even if not unique

• The wallpaper visible on the device screen or lock screen wallpaper

• The presence of a camera on the front and/or on the back

• The presence of a headphone jack—top or bottom or side

• Description of any specific details unique to the device (scratches, broken screen, and so on)

The key is to be very specific, to define clearly to the reader and person conducting the seizure that there is
no doubt that the device described in the warrant is the device to be seized. Accomplishing this task with
precision in a warrant will lead to better results when challenged on the validity of the item to be searched.

106

Items to Seize
The second part of the warrant for the mobile device should include the items to seize, which can vary
immensely depending on the type of device that is being examined, but more importantly on the
circumstances of the seizure. The scope of the warrant will dictate exactly what can be searched for during the
examination. Scope is typically dictated by the type of event that constituted the search of the device as
described in the affidavit. For example, if the investigation deals with an embezzlement case, the mobile
device is collected forensically for images, but audio data might not be within the scope of the warrant if it was
not included when writing the affidavit. The same would be true if conducting a collection of a mobile device
for voicemails if the investigation was dealing with an image-related crime. Every circumstance, if articulated
correctly in an affidavit, should involve every piece of data to be collected from a mobile device.

One fact is crystal clear: data contained on a mobile device should cover the gamut of an individual’s
actions, regardless of the case. Mobile device data is relevant to each and every investigation in today’s
electronic investigations. The seizure of mobile device data ultimately comes down to the articulation and
understanding of today’s communication and its relevance to the investigation.

When specifying the data to be seized from a mobile device, follow these guidelines:

• Research the device and the data types that can be located on the device. Using sites such as
phonescoop.com and GSMArena.com can help you locate the user data types. Also, use the device
manufacturer’s site to ascertain the types of data that may be contained on the specific mobile device.

• Understand that today’s communication occurs via third-party apps, so all cases should involve seizure of
this information.

• Documenting everyday life, capturing business documents, or storing important notes is often done using
the device’s built-in camera or microphone. These images, including both video and audio, are saved to the
device and can also be uploaded or transmitted via the built-in media viewer, a third-party app, and even
near field communication (NFC). Generalizing this information to include not only transmission but also
reception of data is critical for every type of collection.

• Text messaging and multimedia messaging can transmit and receive notes, passwords, keys, company
information, threats, confessions, audio notes, images, videos, social media shares, and much more. Every
investigation should include a search of messaging.

• Personal information manager (PIM) data can include, but is not limited to, call logs, contacts, calendar,
and notes. Typically, mobile device users store reminders, monikers, and important dates in these areas,
which can constitute influential material for any investigation.

• Installed applications and “stock” applications, or apps, extend the use of the device to allow for access to
the Internet, remote servers, gaming, and more. Apps also allow for the transfer of money, images,
documents, audio, video, and much more. Understanding what is installed and what has been accessed is
very important during any mobile device collection.

• Including deleted data in all mobile device warrant applications should be substantiated by indicating the
type of data category (such as SMS, MMS, apps) and why this is needed. Today’s devices store data on
flash memory, and nonvolatile flash memory stores data even if it has been deleted by the user. Also,

107

http://phonescoop.com
http://GSMArena.com

applications used by smart devices use database files that can store data previously deleted by the user.

Today, far more text messages are sent than voice calls every day. According to Domo
(www.domo.com/learn/data-never-sleeps-5), in the year 2017, more than 913 million text messages were
sent every hour of every day worldwide, not including app-to-app messages.

Articulating why the data is needed from the device is also key to a successful examination, analysis, and
eventual presentation. In today’s world, everyday life is stored electronically on handheld devices; it could be
debated that search warrants could merely indicate “all data on the phone” and be unchallenged. This
mindset, however, will eventually lead to case law mandating that collections and examinations be governed by
a set of standards. If the standards are not met, the examination and collection cannot be used in a court
proceeding. On the other hand, articulating the reasoning for the collection and examination of the various
types and formats of data from mobile devices will do two things: the examination and analysis will have
meaning, and the focus of the investigation will be clearly defined to assist subsequent examinations.

The Federal Judicial Center (www.fjc.gov) and U.S. Department of Justice (www.justice.gov) web sites
provide sample search warrant applications for electronic evidence along with specific guidelines.

Location to Be Searched: User Cloud Store
Describing the location to be searched when completing the affidavit to obtain a search warrant for the cloud
store of the identified user should be specific and detailed. Generic reference to any and all app data from the
seized mobile device or identified cloud store will not be sufficient. When drafting court paperwork to recover
data from a mobile device, the affiant must specifically describe the place and property to be searched; this is
no different from data stored off the device. Prior to seizure and subsequent search of data from a cloud store,
the place (the cloud store) and the property to be searched (data) should be defined. You must carefully
explain what data should reside on the cloud store and how it will pertain to the investigation and the overall
mobile device examination.

A discussion often encountered in speaking to examiners around the globe is the question of who really
owns the data. Does the company that is maintaining the server space or the device user own the data?
Knowing who exactly owns the data can help in determining to whom the affidavit and subsequent search
warrant should be directed.

With all the service contracts and terms of service by third-party mobile applications using servers to store
a user’s data, it is quite clear that the user owns all rights to the data. For example, WhatsApp’s terms of
service at Section 5(B[ii]) clearly maintain that “To be clear: you retain all of your ownership rights in your
Status Submissions.” Furthermore, Google, under its terms of service, indicates under “Your Content in Our
Services” that “You retain ownership of any intellectual property rights that you hold in that content. In short,
what belongs to you stays yours.” Snap, Inc., one of the most widely used apps around the world, also
indicates in its terms that the user owns all rights to the content in section 3. Under “Rights You Grant Us” it

108

http://www.domo.com/learn/data-never-sleeps-5
http://www.fjc.gov
http://www.justice.gov

states, “Many of our Services let you create, upload, post, send, receive, and store content. When you do that,
you retain whatever ownership rights in that content you had to begin with. But you grant us a license to use
that content.” Most company information is specific to explain that its ownership extends only to the IP of its
product, the physical storage medium, and any supporting technology. It would seem, then, that a request for
cloud data could be granted by the owner of the data or by a court order served on the owner himself—not
necessarily the company hosting the data.

It is best to document, when available, the following information regarding the “place to be searched”:

• Application cloud store

• Unique credentials to access the cloud store

• Date(s) and time(s) of required data

Again, as with a physical device, you must be very specific to ensure that there is no doubt that the cloud store
described in the warrant is the correct store to be seized.

Items to Seize
The second part of the warrant for the cloud store should include the items to seize, which also can vary,
depending upon the underlying application that interacts with the storage cloud. As with a mobile device, the
scope of the warrant will dictate exactly what can be searched for during extraction and subsequent
examination. Remember, of course, that the requested items will be in direct relationship with the underlying
criminal charge. For example, if the investigation involves a homicide case and messages from the Kik
Messenger app, but data from Dropbox is extracted as well from a cloud store, the Dropbox files might not be
within the scope of the warrant if the Dropbox files were not included in the affidavit. Every circumstance, if
articulated correctly in an affidavit, should involve every piece of data to be collected from an app’s cloud store.

Cloud data should never be discounted. Every functional app on a mobile device uses some type of off-
device storage medium. Simply put, a mobile device holds a portion of the facts, and the cloud stores hold not
only duplicated data but also new and unique evidence. With frequent issues encountered with physical device
extraction data (such as encrypted, locked, or wiped devices), an examiner’s only evidence might be located in
the Cloud. If an examiner understands who owns the data, what data is required, and how to communicate
the data’s importance to the case, a successful outcome is likely. For any mobile device examination, seizing
cloud data ultimately comes down to understanding several facts.

When specifying the data to be seized from an app’s cloud store, follow these guidelines:

• Research the terms and conditions for the app. These are typically accessible on the company web site.

• Understand that digital data from almost all third-party apps resides on a cloud server.

• Cloud data is often not much different from what is stored on the physical device, to include but not
limited to text and multimedia messaging, notes, passwords, keys, audio notes, images, videos, social
media shares, and much more.

• Data on the Cloud will often include information that cannot be recovered from the actual physical device
for several reasons: the data is stored only in the Cloud, the data was deleted from the device, or the data

109

was not yet synced to the device.

Securing the Scene
No matter where the crime scene is located, it must be safe—and this goes for a law enforcement scene, a
corporate location, or an enterprise situation. The safety of the people at the location is paramount. Law
enforcement showing up at a location to conduct a routine collection of a mobile device could be very stressful
for the person or persons who own the mobile device. The data contained on a device is often compared to the
information written in a person’s diary—this information is typically considered private, and any seizure of the
information can be traumatic for the user. Ensure that the collection location is free from outside distractions,
including distractions from the owner of the digital device. Prior to requesting that any occupants leave the
premises, you must conduct a guided discussion about the mobile device and any other details that might
assist in the process. Sometimes securing the scene is as easy as locking the residence or location; in other
cases, you might need to request that the scene be monitored by security while the search is taking place.

Digital data on mobile devices is extremely volatile, and announcing the probability of arrival to conduct
an examination of a mobile device will typically lead to dismal results. With most of today’s devices, the user
can quickly wipe the device of data by navigating to a menu location or even sending a remote signal to the
device. It is imperative that you take steps immediately once the scene is secure to ensure that the device or
devices that are to be collected remain secure.

Data Volatility at the Scene
As discussed, a mobile device can be wiped of data either manually by the owner navigating to the appropriate
menu or remotely by using the device, manufacturer, or telco software. You must take several steps to ensure
that this does not occur. Simply removing the device from the possession of the user may ensure that data
cannot be manually removed, but what about remote access to the device on the scene?

Cellular transmissions occur via radio waves, and data transmissions can originate and terminate at the
device via the cellular signal or a Wi-Fi network. A remote wipe signal can be sent to the device via a cellular
signal. Inhibiting the reception of this signal can ensure that the device will not be remotely wiped, thus
protecting the data. Also, by inhibiting the cellular signal and Wi-Fi, you can ensure that the device cannot
receive additional transmissions such as calls, texts, and other data-related deliveries.

When a mobile device is located, you must isolate the device immediately. Figure 5-1 outlines isolation
steps that you should take for a mobile device, depending upon the type of device. By using this simple
flowchart, you can be sure to isolate the device by putting the device in airplane mode, if available, or, in the
case of a legacy mobile device, placing the device in a signal isolation bag.

110

FIGURE 5-1 Device isolation response on the scene when an examiner is not available

Newer devices using Bluetooth can also receive data from NFC devices.

Asking the Right Questions
The security of the scene and the mobile device is extremely important, but if the device is locked with a
passcode, the investigator at the scene should speak with the device owner, which may help to elicit
information that can assist with unlocking the device should the need arise.

The owner of the device can also paint a picture of daily usage, indicate what applications they may use on
a regular basis, and indicate how often they use text messaging, who they most often speak to, and how many
images the device can hold. Also, common apps have usernames and passwords to sync to the Cloud;
obtaining this information is often overlooked. These questions may seem ordinary, but they can be used to
direct the analysis of the information once it’s collected from the device.

If an owner states that they use an app such as Facebook Messenger, Snapchat, Twitter, or Kik Messenger
to communicate, you can begin by analyzing those apps before working with any others. Typically, users of
smart devices who are over the age of 20 use standard text messaging; younger users communicate more often
via third-party applications. Knowing the habits of the device owner can help you steer the examination later.

One of the most important reasons, but certainly not the only one, to have a conversation with the device
owner comes down to security. Device security can inhibit the collection of data from mobile devices and is
discussed in the following section, along with alternative possible data locations for mobile device data.

Any government agent or person acting as an agent must take caution during any questioning of a device

111

owner. If the person is in custody or not free to leave, he has the right not to incriminate himself under

the Fifth Amendment. The Fifth Amendment states that “a person shall not be compelled in any case to
be a witness against himself.” This could involve the person simply providing a password to access the
device to a government agent or an examiner acting as an agent. Prior to any questioning, if a subject is in
a custodial setting, he must be advised of his rights and consent must be in place. For cases not involving
a government agent or actor, the implications of self-incrimination do not apply.

Device Security
Mobile device security can be a real problem during collection of electronically stored data. Two types of
security can be enabled on a mobile device: user authentication device security and/or data security.

User authentication security mechanisms include passwords, personal identification numbers (PINs),
passcodes and passphrases, patterns, and biometrics. Each provides a different level of security for the device,
and sometimes multiple measures are used on a single device. Typically, legacy devices use a passcode
consisting of numbers, and if a SIM card is available a PIN and/or PIN unblocking key (PUK) can be used.
Smart phones can use locking devices ranging from passcodes to biometrics, depending on what the user has
set and the type of options available.

PINs and PUKs are numbers comprising up to eight digits, but typically four for a PIN and eight for a
PUK. A PIN locks a SIM card, and a PUK is used to unblock a SIM that has been PIN-locked. These
will be covered in Chapter 11 in more detail.

Data security could also pose difficulty to the examination. If the device and any storage areas (internal or
external) have been encrypted, the ability to recover that data could be limited. Most smart phones have a
feature that enables users to encrypt their data; this can be a separate code in the settings or the user
authentication code for device security. Starting at Android version 5.0 devices, for example, data encryption
is turned on by default to address user concerns over personal information availability should a device be lost.
iOS devices also encrypt their data by default and enable the user to force the device to produce an encrypted
backup, where a second password is needed to decrypt. Windows Phones were not capable of using Windows
Phone BitLocker encryption unless the device was a managed device under a Mobile Device Management
system at the enterprise level to allow for encryption. However, with Windows Phone 10, users are able to use
a function called Device Encryption that utilizes the BitLocker technology. BlackBerry devices enable users to
turn on encryption in the settings for both the device and the media card. A secondary passcode must be used
to decrypt an encrypted BlackBerry device to obtain usable data. With the release of BlackBerry 10, the
backup files are also encrypted by default.

Whenever possible, consider obtaining security keys from the device owner. If biometrics are used, the
device must be unlocked by the device owner at the location in which the device has been seized, if possible,
and all other security measures should be removed. If any other methods of security are used, the agent should
request the information and attempt to access it in the presence of the owner. This way, if the code is not
correct, the agent can obtain more information and make another attempt. This method may seem to be less

112

than ideal, but with current devices, this may be the only way to collect data from a device forensically. If the
agent receives the correct information to unlock the device and remove encryption, if possible, he or she
should make the setting permanent so that the device can be successfully examined at a later date if necessary.

Backups
Valuable information can also be located from backups of a mobile device. A smart device, such as an iOS
device, creates a backup of data from the device on a computer to which it has been connected, either using a
USB cable or via Wi-Fi as well as to iCloud. Other devices, such as a BlackBerry, a Windows Mobile phone,
and an Android, can also back up their data to a computer as well as to cloud stores. All of these operating
systems can also encrypt the information that has been backed up, which adds another level of difficulty when
collecting and analyzing the information. Request information on any devices that might have been backed up
if the backups are password protected. The collection and analysis of backups are covered in Chapter 12
(BlackBerry) and Chapter 13 (iOS).

Examining the Scene for Evidence
After gathering information from the occupants or the people at the scene, the agent should search the area
systematically. Searching can occur in a pattern, by working from the outside to the center of the location, by
using a back-and-forth search, or by dividing the location into several smaller portions. The key is to use a
method that will not duplicate the work of others or confuse the team conducting the search.

Prior to the search, take photographs of the area from all angles to allow for documentation. In addition,
create a sketch of the area to document dimensions and locations of various pieces of evidence. A sketch will
also help when you’re searching the various portions of the scene. Each search area of the overall scene should
be small enough that a single person can search quickly while a second person provides security and takes
photographs. When dealing with electronic storage devices, particularly mobile device evidence, the pieces can
be extremely small. Breaking down the search area into small, consumable portions will help searchers avoid
overlooking evidentiary items. On the other hand, if the area is too large, a small SIM card or microSD card
can easily be missed. The photographs and scene sketch of the area prior to the search can be used to compile
a more precise evidence map in the final documentation when creating the report of findings.

Many items related to a mobile device can be found at a scene. These are covered in the following sections.
These electronic storage devices and accessories are essential to your investigation’s overall success.

USB Drives
Removable USB drives, often known as flash drives or thumb drives, can contain up to 1 terabyte of storage
space (as of this writing). Serving as an inexpensive means of transferring data from one device to another,
these drives are often used to store images, documents, and even mobile device backups. A mobile device
typically does not have a USB connection that would allow direct output to the removable device, but a lot of
mobile tablets do provide the connection. Mobile devices do not have much storage on board, and using
removable media such as a USB drive can help expand that storage space. Also, data from a mobile device is
often sent to a remote location either by messaging, e-mail, or third-party applications and can then be saved
to the removable media. Any USB devices collected should be included in the mobile forensic examination.

113

Chargers and USB Cables
Often during examination of a mobile device, the power for the device becomes depleted. Obtaining the
power cable during the seizure of the device can help lower the cost associated with purchasing power cables
for every device examined. The search warrant should always indicate seizure of power cables to negate the
possibility of losing power once the device is back at the lab for examination.

USB cables are also typically included when the device is purchased and are likely part of the charging
unit. USB cables are needed to connect the device to a mobile forensic tool for collection of the mobile
device’s digital data. Some mobile device units have a unique cable, and if these are not obtained at the scene,
processing the device may be postponed until a cable can be located. Most mobile forensic software tools also
come with a cable kit, but some do not. If a kit is not part of the mobile forensic solution, a new cable must be
purchased for every device that will need to be processed. Make sure the mobile device USB cable is on any
search warrant or court paperwork.

SD Cards
Mobile devices do not have infinite storage capacities, so manufacturers have allowed for expandable storage
using microSD cards. These cards are extremely small, and locating them can be very difficult if they are not
installed in the mobile device. The cards can also be exchanged between different devices—for example, a
digital camera SD card adapter could contain a microSD card that was once used in a mobile device.
Examiners have reported finding microSD cards with mobile device images that were taken with a digital
camera, and vice versa. Because more and more digital devices are using some type of flash storage, you must
locate and seize all devices and media storage drives during the scene examination.

SIM Cards
Small SIM cards can be difficult to locate if they are outside of the mobile device. The portability of SIM
cards was one of the features that set GSM (Global Systems for Mobile Communications) devices apart from
CDMA (Code Division Multiple Access) phones, but this also means multiple SIM cards can be lying
around, possibly hidden, at the scene. Old SIM cards, and even SIM cards belonging to different devices, can
also be located and collected during the search.

Older Mobile Devices
Often during a search for a particular device, older devices are neglected. But older mobile devices can contain
critical data that may be relevant to the current case being investigated. When seizing an older device from the
scene, remember to grab the chargers and USB devices that match the old device.

Personal Computers
Computers can contain mobile device backups and information that can be used to unlock a locked device.
Apple devices that are backed up to a computer use a property list file that can help iTunes synch data without
the user entering the lock passcode. Using this file, the examiner can use forensic software to obtain a backup
without knowing the passcode of the device. This information will be covered in Chapter 13 in our analysis of
backups and Apple devices.

114

Conducting a forensic analysis of a computer can also yield passwords for the device, additional synched
data from third-party applications, media automatically synched, and documents and settings. Quite often, an
expert can use a word list created from a computer examination as a dictionary for passwords on a mobile
device. Any computers located at the scene should be further analyzed by forensic examiners for additional
information that may assist in the examination of any mobile devices located and later collected.

Once You Find It, What’s Next?
When searching a scene, excited searchers can forget all their training and work when they locate the specified
target item or items. A search should be directed, meticulous, and calculated to avoid this. After each
sectioned area has been thoroughly searched, the team can move to the next area. A forensic search is like an
archeological dig, where a 3000-year-old bone could be destroyed if people are moving too quickly. Getting
overly excited can often lead a person to miss a piece of evidence such as a small microSD card or SIM card in
the same area of the iPad or smart phone that was the primary focus of the search. When items are located to
be seized from the scene, follow a set plan for the actual collection; working without a plan can often lead to
improper collection and the dismissal of the artifact and possibly the case.

This phase of the search should involve a minimum of two people per team. One person collects the
physical artifacts while the other documents the seizure. When at least two people are involved in the exercise,
each can realistically monitor the other. This can alleviate any accusations of improprieties. It also enables
each individual to focus on his or her assignment. Focus is important when conducting a search and seizure of
evidence at any scene. If the people conducting the search are not focused on their assigned duties, things will
be missed.

Inventory and Location
The person responsible for documentation should photograph each area from multiple angles. (These
photographs are in addition to the overall scene pictures that were taken at the onset of the search.) Once an
artifact is located, the searching team must slow down the process to move to the documentation phase. The
person conducting the search should identify the location of the artifact without moving it and notify the
person in charge of documenting it, who photographs each item in its original position and from multiple
angles. If possible, the team should use measurement labels to assist if the area has to be reconstructed and to
indicate relational size. If the device is powered on, it is extremely important to photograph the screen that is
visible and to document whether incoming messages, calls, photographs, or other data arrived on the device.
With some devices, the first few lines of a message are visible and can offer immediate, actionable intelligence.
Because a lot of devices can be remotely wiped, documenting data on live mobile devices should be done
quickly. Older devices do not have the storage space available on today’s devices, so information on these
devices could be overwritten with an incoming message or call.

Once the device is seized and the following information is ascertained, the evidence should be placed into
an evidence container or RF-shielding material. Before packaging a piece of digital evidence, answer the
following questions:

• Will the device be analyzed at the scene?

115

• Does the device need latent processing?

• Are there biological concerns?

• Is the device security enabled, or has the security been disabled?

• Is power depletion of the device a factor?

Document all of these questions for later retrieval and to determine the way the digital device will be
packaged. If the device must stay powered on because of security concerns (such as locking, encryption, or
passwords) and power to the device is not a concern, place the device into a radio signal isolation bag and then
into an evidence bag to inhibit radio signals reaching the device. (Isolation techniques are discussed in depth
in Chapter 6.) If the device can be powered off, place it into a standard evidence bag. If the digital device has
any type of biological material that might be contacted during analysis, you’ll need to take additional steps
(described in Chapter 6).

Before packaging, consider whether fingerprints or other evidence should be obtained from the exterior of
the mobile device. If the device is powered on and has to remain on due to security locks, decide on the
necessity of immediate retrieval of the data on the device prior to transporting to a lab or a field recovery of
latent fingerprints. If the device is to be transported, place it in a radio signal isolation box or bag and then in
an evidence container.

For evidence located at the scene during the search, the individual documenting the collection of artifacts
should label each evidence container with the following information:

• Location found

• Evidence description

• State of device (on/off and locked/unlocked)

• Processing need (at scene/at lab)

• Owner name (if known)

• Case number

• Person collecting

• Chain of custody (person, date/time)

This detailed information is critical. With the appropriate data documented on each evidence container
ahead of time, the examiner can quickly determine what devices need to be collected at the scene. If the data
must be collected at the scene, the examiner can perform the extraction of data from the piece of evidence
while maintaining an unbroken chain of custody.

Establishing a chain of custody is one of the most important details regarding evidence collected at a
scene. This is extremely important in cases when the evidence is located at the scene by one person, who
hands that evidence to another, who then takes that device to the person who will conduct the device
extraction. As described, the chain of custody would be extremely difficult to maintain without
documentation. If documentation is not captured correctly, the entire process and the admissibly of the

116

evidence will undoubtedly be questioned.

Proper handling of digital evidence will be covered in greater detail in Chapter 6.

Data Collection: Where and When
Determining where to collect a mobile device’s electronically stored information and the duration of collecting
and completing the collection are typically dictated by the type of investigation that is underway. If possible,
collect the mobile device in an environment where distractions are at a minimum, safety is not of concern, and
time is sufficient. The collection of the data using forensically sound methods and techniques is just as
important as the physical collection of the evidence from the scene. Having the luxury of collecting data and
examining it in a lab setting is not always possible. More often, data collection, especially for law enforcement,
occurs at the scene. Collection circumstances can vary broadly, ranging from a device that locks if power is
depleted, to an owner who grants consent to search but will not allow the device to be removed from the
location, to the need for immediate actionable information.

If power is depleted or a device is turned off, security settings can render collection of the device data
impossible. If the possibility of the device locking will hamper the investigation and device collection, the
extraction should occur immediately at the scene.

Consent to search a device is often requested by law enforcement if the device is not part of the original
search warrant, the device is on the person under arrest, or the device is at the scene of a call for service. A
consent search is an exception to the search warrant rule, as explained earlier. If the person giving the consent
has proper authority and waives his or her rights, you can safely obtain information from a mobile device. The
person giving consent can also revoke the consent at any time, however, so it is imperative that the data be
collected at the scene.

In a corporate situation, a policy can be in place to allow a search of a personally owned mobile device at
the workplace without employee consent. Such a policy should be clear, much like the Texas Workforce
Commission policy that states the following: “Make it clear to the employee that the employer reserves the
right to search any devices, with storage or memory capabilities that they might bring to work and can make
copies of any files found therein.” For a corporately owned device, the employee doesn’t usually expect privacy,
and the company can collect the data whenever reasonable.

In either situation, the company will benefit by your searching a mobile device in the most effective way to
decrease the time the device will be out of service. Collect a personal device as quickly as possible to help
mitigate an employee’s emotional response, and collect a corporately owned device as soon as reasonably
possible.

At times, the device data is recovered and collected at the scene to be used immediately in the
investigation. For law enforcement, that could mean gathering contacts and SMS messages from a device to
locate stolen property that is due to arrive that same day. It could also mean the need to locate an accomplice
in a crime using the person’s contact list. For corporate mobile device collections, it could mean recovering
SMS messages of a threatening nature, sexual harassment allegations, or pictures of an incident that need to
be collected immediately to gain as much intelligence as possible at the onset of the investigation.

117

Whenever possible, however, the collection and subsequent examination and analysis should occur away
from the scene and in a controlled environment.

Chapter Summary
Creating a detailed plan on the location and seizure of the device is just as important as a detailed plan on the
collection and analysis of the data. Understand that privacy rights exist not only regarding a person’s place of
residence or workplace but also regarding the contents of a mobile device along with cloud storage. Recent
court decisions state that a mobile device is the equivalent of a person’s private history, and as such it should
be treated as a locked file cabinet. If, for example, a significant text message for a case is intertwined with a
year’s worth of unrelated personal data, and segregating that data is not possible, a search warrant for the
content of the device should be obtained. Understanding that in corporate situations, a person’s personal data
can be stored on the same device with company data makes retrieval of information even more difficult if
policies are not in place for collection. And so much more data can be stored off the device on servers located
around the world; careful consideration and understanding of ownership is paramount.

When you are conducting a search of the area, making sure to document the scene prior to seizure and
identifying where a particular piece of evidence is located will assist later when you complete your report.
While on the scene, be aware of items such as storage devices, computers, and media cards, because mobile
device data can be stored on each medium. Passwords and encryption may be enabled, so speak to the device
owner and look around the scene for any documents that might contain password bypass information. During
the search and seizure, clearly document every person who contacts the evidence to maintain a solid chain of
custody, no matter whether it is a law enforcement or a civil case. Finally, understanding that the examination
of the data cannot occur if the physical device or cloud store is accessed unlawfully will help guide the initial
state of the mobile device examination.

While you’re at the scene, all evidence, including the device, must be packaged correctly depending on
how and in what state it was located and what type of examination will take place. This information is covered
in the next chapter.

118

C

6 Preparing, Protecting, and Seizing Digital Device
Evidence

onducting a proper initial investigation is a vital part of any forensic examination. How the evidence is
prepared, seized, and then packaged after the proper seizure can be just as important, however. Data

can be easily destroyed by improperly preparing and packaging a device.

The old adage “don’t sweat the small stuff” does not apply to the investigation of digital devices—
particularly mobile devices. The small things are extremely important to the overall success of every
investigation. “Bagging and tagging” the device using the proper procedures is not the only concern; the state
of the device at the time of seizure and during property transportation and storage is also important. You must
also understand the ways in which a mobile device communicates and the types of security used with mobile
devices so that you can determine the most appropriate ways to protect the device before and after it is seized.

Data from a collected device can be suppressed during a trial, even after a proper seizure, if it was
improperly documented regarding the chain of custody. If investigators fail to package the electronic evidence
properly because they are in a hurry, they know the device data will be collected immediately, or if they are
unaware of the problems associated with an active or security-enabled network, their hard work is for naught
and the investigation can be inadmissible in a court procedure.

Finally, the way in which a device is transported from the scene to a lab or storage facility is also
important.

Before Seizure: Understanding Mobile Device
Communication
A mobile device is an active device—in other words, a mobile device is attached to several networks that can
allow outside communication to interfere with physical collection and subsequent extraction of data. A mobile
device can be connected to a cellular network, a Wi-Fi network, Bluetooth, or a near field communication
(NFC) device. How you deal with an active device can determine the success of the evidence collection. The
physical collection of the actual mobile device and any accessories can also determine the validity of the
introduced evidence if used in a legal proceeding.

In the early days of mobile device forensics, the cellular network was the only communication method
examiners typically had to eliminate when collecting a digital device. Today’s mobile devices communicate in
several ways. Eliminating the risk of contamination of important digital data can be extremely challenging.
Those involved in seizing mobile devices must understand how the devices communicate—not only with the
cellular network, but with other devices as well. Understanding device communication can help examiners
choose the appropriate forensic equipment for use in various scenarios in the lab and in the field, and it can
help inhibit a mobile device from all communication to avoid data loss and image integrity issues.

Cellular Communication
A mobile device uses radio frequency to transmit and receive cellular communication and data. Several factors

119

determine the radio frequency used by the mobile device and also affect the way an onsite team and an
examiner approach a device to eliminate the possibility that it will initiate or receive communication during or
after seizure. Determining factors include the type of device, the cellular telecommunication company, and the
allocated frequency band used by the country in which the mobile device is operating.

Chapter 1 discussed the cellular network and how radio waves travel along the air gap from the cellular
system’s mobile towers to the mobile device. Because the device transmits and receives information via the
cellular network, evidence collectors and examiners must use a signal isolation technique to inhibit the radio
waves from being received and transmitted by the device. These techniques can include switching the device
off, placing the device in airplane mode, wrapping the device in a material that blocks cellular signals, and
placing the device into a radio isolation box. Some forensic examiners use large radio isolation rooms
completely devoid of windows and lined with special copper wallpaper.

Radio isolation techniques use a principle Michael Faraday discovered in 1836 with the invention of a
Faraday cage. Faraday (1791–1867) was a scientist who discovered that electrically charged particles that
are approaching a metal object (in this case, aluminum or copper mesh) remain on the exterior of the
object. A Faraday cage shields items inside the cage from static electrical fields. All electrostatic charges
and electromagnetic radiation are distributed across the exterior of the cage, blocking electric charges and
radiation from entering the cage. Similar devices or bags can be used to block radio signals from reaching
a mobile device.

Device Frequencies
True 4G devices must use either Frequency Division Duplexing (FDD) or Time Division Duplexing (TDD)
Long Term Evolution (LTE). FDD LTE is used globally by more carriers, but TDD is gaining carriers in
countries such as China and the Middle East. Newer smart phones are beginning to use both frequencies for
communication. The LTE frequency bands extended to 44 with the addition of TDD LTE. Band 43 in the
LTE spectrum runs at 3600–3800 MHz, which is not covered by a lot of isolation bags and enclosures.

Tables 6-1 and 6-2 contain the various LTE-allocated frequency bands. Current frequency bands used by
true 4G LTE must be isolated by signal isolation techniques.

TABLE 6-1 FDD LTE Bands and Frequencies: Frequency Allocation Table

120

TABLE 6-2 TDD LTE Bands and Frequencies: Frequency Allocation Table

121

If a device can be powered off and security has not been enabled, the device should be placed into airplane
mode prior to powering it off. By doing this, the device can be powered on at the forensic lab without
concerns about isolation. Of course, if the device cannot be powered off, using portable isolation bags
rated for new cellular frequencies is highly recommended.

With the reality of 5G technologies, the range of the current spectrum is estimated at 3300–4200 MHz
and 4400–4990 MHz (the primary current bands are between 1 GHz and 6 GHz). On July 14, 2016, the
U.S. FCC indicated that approval for bands above the 24 GHz range would be available for use—a first for
any country in the world. This spectrum, as the FCC has confirmed, will operate at “fiber speeds” for Wi-Fi.
With a quick look at the outlined range, it is no wonder that the United States’ early commercial 2018
deployments in the range of 27.5 to 28.35 GHz and 37 to 40 GHz, plus Korea (26.5–29.5), Japan (27.5–
28.28), China (24.25–27.5 and 37.0–43.5), Sweden (26.5–27.5), and the European Union (24.25–27.5), have
raised eyebrows. This wireless spectrum for a mobile device is close to that of communication satellites, cable
and satellite companies, satellite radio, modern radar systems, and even approaching microwave
communication. The leap from 4G to 5G technology is astronomical for the industry of wireless
communication and data.

Bluetooth Communication
With Bluetooth technology, a user can move data between a mobile device and a computer and attach
headsets, headphones, and wireless speakers to a mobile device. In the SANS research paper “Dispelling

122

Common Bluetooth Misconceptions” (www.sans.edu/research/security-laboratory/article/Bluetooth), author

Joshua Wright points out that although organizations typically consider Bluetooth to be short-range
technology, class 1 devices can operate at ranges that are typical of a wireless network at 100 meters (328 feet).
Granted, to operate at that distance, a class 1 device would have to be at both ends of the communication.
Today’s mobile devices, including the most prevalent Android and iOS devices, operate as only class 2, at a
range of 10 meters (33 feet). You should understand, however, that the version of the Bluetooth device will
define its capabilities. Most new iOS devices, to include the Android Samsung 8 and Apple iPhone X, operate
using version 5. This version’s release in 2017 was to support the emergence of the IoT devices (version 4.2
actually supported IoT) to factor in the speed of data transfer, quadruple the range, and multiple devices.

Some companies employ Bluetooth Smart Beacons, which enable retailers to transmit location
information to smart devices. The location can then identify and target the device, sending location-specific
data immediately to the device to notify it of a retail sale and gather analytics regarding where in the store
most people are shopping. Once considered as just a way to transfer data to a device, Bluetooth can now
identify a smart device by using location-based technology.

Location-based technology actually originated from the first hacking, or “Bluejacking,” of a Bluetooth
device. Bluejacking involves sending messages and controls via Bluetooth to another Bluetooth-enabled
device. (Don’t confuse this with “Bluesnarfing,” in which access to information on the mobile device is
compromised and stolen from the device, or “Bluebugging,” which controls the device to become a
listening device.) All of the Bluetooth hacking techniques are limited by distance because most mobile
devices cannot be accessed from greater than 10 meters. With the use of directional amplified antennas,
however, some hackers have been able to penetrate Bluetooth device security at up to 1 mile—this is
referred to as “Bluesniping.” This technique can be especially troubling because a lot of vehicle
communication systems in today’s automobiles are class 1 Bluetooth devices.

Apple iOS devices, Androids, Windows Phones, BlackBerrys, and most modern mobile devices allow for
Bluetooth connections and maintain a list of devices that can connect with the device, their associated media
access control (MAC) address, and other available Bluetooth-enabled devices that were nearby but that did
not connect. These lists can be obtained using mobile forensic software to observe the connections made with
the device and those that were available and were not connected. These device Bluetooth profiles can be used
to assist in performing various functions, including transferring files to and from the device; communicating
hands-free; accessing Internet hotspots; using a mouse or keyboard with the mobile device; and sharing
messages, contacts, and calendar data with another device. All devices must have their Bluetooth enabled for a
connection to occur. Androids and Windows Phones must also have their Bluetooth visibility enabled and
available to Bluetooth-enabled devices. The device then must be paired to the other device to transmit and
receive data. The current Android SDK does not allow for unpaired connections. For iOS devices, the
connection to the device must be encrypted and a key must be shared between devices.

Wi-Fi Communication

123

http://www.sans.edu/research/security-laboratory/article/Bluetooth

Wi-Fi is a local area wireless technology (also called a wireless local area network, or WLAN) that enables a
device to be connected to an access point that is connected to the Internet and/or a local area network (LAN).
The first device reported to have Wi-Fi capabilities was the Calypso Wireless C1250i, demonstrated at the
2006 3GSM World Congress trade show in Barcelona. Most smart devices sold today can connect to a
WLAN.

A Wi-Fi connection uses a frequency band identified by the Institute of Electrical and Electronics
Engineers (IEEE) using the IEEE 802.11 media access control and physical layer specifications for WLAN
communication using the 2.4, 3.6, 5, 6, and 60 GHz frequency bands. A Wi-Fi network’s range is typically
limited, but as the frequency increases and obstructions decrease (outdoors), the range increases, with a
current maximum range of 250 meters (820 feet).

Mobile devices can also operate as a Wi-Fi hotspot using a cellular signal so that other WLAN-capable
devices can be wirelessly attached to the mobile device. Because of the various potential infiltration points, a
Wi-Fi–enabled mobile device must be removed from the WLAN as soon as possible at the scene.

Wi-Fi connections, like Bluetooth connections, are stored within a file maintained in mobile devices. This
allows for the device to connect immediately to known and authorized sites and devices.

Versions prior to iOS 5 maintained a list of all Wi-Fi connections that were available to the device—not
just those used by the device. This list was stored in the consolidated.db file in the device file system.
When accessed, it identified all the Wi-Fi connections along with their latitudes and longitudes, which
could be used to track the device, and the person using it, as it was moved to different locations. This
vulnerability was fixed, and the consolidated.db was moved to the operating system partition; however, it
came back with iOS 7 and still is visible in iOS 11, but with very limited available information.

Wi-Fi connections contain name and sometimes password information. Android devices are notorious for
storing each and every successful connection to the device, information that could lead to security issues if an
access point has been compromised. This is true not only for Android devices but also for most devices set to
connect automatically to an access point without notifying the user.

If a device is not properly isolated from a Wi-Fi signal during the initial seizure, the device could become
vulnerable to penetration. An individual with network knowledge can exploit the device by posing as a known
access point, creating an ad hoc network, and identifying the network with the same Service Set Identifier
(SSID) used for a legitimate access point. If the device is not disabled from connecting automatically, it can
connect with the rogue access point. Some devices, such as the iPhone, come preprogrammed with Wi-Fi
SSIDs and can be vulnerable to this attack. A perfect example is an iOS device from AT&T with the “attwifi”
hotspot preconfigured. A person posing as a valid AT&T Wi-Fi hotspot could penetrate the device and
possibly compromise the data before the device is even examined.

Near Field Communication
Today’s devices also can operate as NFC devices that transfer and receive data simply by being near another
NFC device or system set up to transmit and receive the signal. NFC is a short-range wireless technology that

124

enables mobile devices to connect by touching the devices together or bringing them within a few inches of
each other. NFC enables small amounts of data to be shared between an NFC tag and a mobile device or
between two mobile devices capable of communication by NFC.

An NFC tag is based upon the NFC Data Exchange Format (NDEF). Mobile devices that are capable of
NFC can make transactions, exchange content, and connect devices. NFC includes a lot of the components of
contactless card technology and can be used to control multiple instances of a contactless card (such as hotel
keys, work key cards, and so on).

Because NFC is close-proximity based, it is unlikely (though not impossible) that problems will occur
during the seizure of a mobile device if NFC is enabled on the device. Attack of an NFC-enabled device
would typically occur with another device using a relay system to capture data from the device and transfer it
to a proxy card or device that is emulating the actual mobile device and being read by the NFC receiving
device, such as a point-of-sale (POS) machine. The technique would enable the relay system to act as the
actual POS machine and capture data because the individual’s device “believes” that it is communicating with
the actual POS device. Software could also be installed on the mobile device to act as a relay system to a
fraudulent card emulator communicating with a reader device. Although NFC issues are highly unlikely when
you’re seizing a mobile device, you should consider isolating the device from the possibility of an NFC attack
by turning off NFC.

Something to consider in the mobile device forensic world is the ability to utilize NFC for credit card
purchases. Applications such as Samsung Pay and Apple Pay have become common payment methods used
around the world. These applications use security protocols (such as biometrics and passcodes), but artifacts
can be left behind.

Understanding Mobile Device Security
As mentioned in Chapter 5, a user can enable several types of security on a mobile device. Understanding
these can help you determine the appropriate course of action during and after collecting the device.

If a device is powered on without security enabled, you must collect the device at the scene in a forensic
manner to counter any security features that might engage if the power of the device is lost or if the device
becomes locked before it can be examined at a lab. After a quick collection, talk with the owner to determine
the type of security enabled and any ways to bypass it.

Prior to speaking to the device owner, you must have legal standing even to ask questions. If you are a
government agent or an actor, the device owner must understand his rights and accept that his testimony
could be used against him.

Remember that multiple security settings may be used, such as the device password or PIN, a subscriber
identity module (SIM) PIN, an encryption password, and a password for the device’s backup if backup
encryption is enabled. If you can conduct a quick forensic collection prior to the conversation with the owner
about the device’s security settings, there is a far better chance the owner will provide the correct information.
If the owner does not provide the security information or subsequently has given information that is later

125

determined to be false, the initial forensic collection at the scene will prove valuable. On the other hand, if you

obtain the correct information, the forensic examiner can further examine the device at the lab and compare
information to what was collected initially. This comparison can be used to show that information was not
altered during or after seizure.

Both scenarios—the owner disclosing or not disclosing information—are quite different from the same
scenarios in traditional computer examinations, although some drive encryption tools have made computer
collections just as challenging. Today, a lot of mobile device forensic collections must occur at the scene
because of data volatility and device security. Being prepared for an on-scene collection will help you combat a
tremendous number of problems associated with today’s device and data safeguards.

Request the information from the device owner, verify that the information is correct, collect the device
on scene if possible, and if the security of the device is not a concern or has been circumvented, power off
the device. If the security of the device is a concern for any reason, the device should be collected
forensically at the scene.

Most mobile devices encountered at a scene or forensic lab will be smart devices, but legacy phones can
also have security features, including passcode or PIN and/or a SIM PIN. Although the general guidelines
outlined here will suffice, the following sections discuss the various smart device security features by
manufacturer. Your ability to recognize the type of device and respond in an appropriate way will be
important for the follow-up collection.

Apple iOS Devices
Apple iOS device security depends upon the model, OS version, and user configuration settings. First-
generation iOS devices used only a simple passcode (a four-digit number) and a SIM PIN. These devices were
available only for Global Systems for Mobile Communications (GSM) markets until 2010, when an iOS
device capable of running on the Verizon network was released. Subsequent generations allowed for both
simple and complex passcodes along with a SIM PIN. With a complex password, the user could enter
numbers, letters, and symbols up to 37 characters, providing greater security against brute-force attacks.
(About 10,000 possible combinations could be guessed in about 13 minutes at a rate of 12 per second.) The
latest generation of iOS devices allows for simple (must be a minimum of six digits), complex, biometric
(fingerprint scanner) security, and facial recognition according to user settings.

If the passcode is entered incorrectly, a wait period will be required before a user is allowed to access the
device. Apple documentation indicates that the device will be disabled for one minute after six incorrect
entries and will be completely disabled after ten failed attempts, and the device will have to be restored and/or
unlocked via iTunes. Table 6-3 lists the waiting times in relation to failed attempts.

TABLE 6-3 Failed Attempt Consequences for iOS Devices (from support.Apple.com)

126

http://support.Apple.com

Apple has added a layer of security to enter a passcode/password even when Touch ID has been enabled
per their support (https://support.apple.com/en-us/HT204587), to include the following:

• When the device is restarted

• When you have not unlocked the device in the last 48 hours

• Five unsuccessful Touch ID attempts

What is also interesting is the fact the last point has led to a somewhat “kill switch” for users under
investigation by law enforcement. If a user believes he might be compelled to unlock the device with Touch
ID or even Facial ID, he can click five times to require a passcode/password, essentially locking the examiner
from the device by disabling the biometric security.

Recognizing the various screens that might be encountered can assist as you document, seize, and further
examine the device. Figure 6-1 shows the possible iOS screens when requesting a simple passcode and a
complex passcode. For a complex passcode that contains only numbers, the number pad will be available
instead of the iOS keyboard, along with the complex passcode text box for the numeric entry.

127

https://support.apple.com/en-us/HT204587

FIGURE 6-1 Simple (left) and complex (right) iOS passcode entry screens

Devices starting with iOS 4 added full disk encryption. This means that any unallocated space on the
device remains fully encrypted even if the password is known. Apple also enabled the user to encrypt backups
using an iTunes setting. When enabled, this sets a flag on the iOS device when synced to encrypt the data
stream as it leaves the device for backup. So even if the device was not protected by a user password, the data
that was collected would be encrypted if the iTunes password was not known. There is no visible setting on
the iOS to indicate whether the device has been set to encrypt the backup. To determine whether backup
encryption is enabled, you must launch the iTunes application on a computer, plug the iOS device into the
same computer, and examine the iTunes software device information screen. The information screen indicates
whether backup encryption is enabled. Some mobile forensic software, such as Oxygen Forensic Extractor,
will indicate whether backup encryption is enabled during connection and prompt for the password, as shown
in the next illustration. Some tools will even allow for a password attack.

128

The investigator should request the iTunes password from the user of the device at the time of the device
seizure when possible. If the user refuses to provide this information, some mobile forensic tools can be used
to bypass and recover limited user data as indicated earlier.

The iTunes backup password can be different from the device password or code.

In iOS 8.0, released in 2014, Apple changed the way device encryption worked to allow for greater
security. The iOS device can use the passcode of the device to encrypt the device so that Apple itself is unable
to recover the user data stored on the device if the passcode is not known. Prior to iOS 8, law enforcement
officers had been allowed to send locked iOS devices with proper court documents to Apple security analysts,
and if specific criteria were met, the officers would receive a disc image of the user partition for analysis. With
the changes in iOS 8, Apple no longer used the same methods and was unable to assist with these types of
recoveries.

Now, with iOS 11, the fact still remains: if an iOS is locked with any of the security measures described in
this section, the device password must be obtained from the user of the device before any type of forensic
collection can occur. Some exceptions have been brought to light, however, in the wake of the attack in San
Bernardino, California, in December 2015, when Apple refused to offer assistance to the United States
government to unlock an iPhone 5C.

After some time, a research company brought a solution to the government for approximately a million
dollars. The device was purportedly unlocked using a NAND mirroring technique, but the evidence was
dismissed. This technique involves removing the NAND chip, creating a clone, and running passcode
attempts—then repeating, essentially allowing unlimited passcode attempts on the clones.

Another alternative that has been used for bypassing iOS screen locks was the IP-Box. This hardware box,
with a software component, is used to flash an iOS device to allow for unlimited passcode attempts by
shutting down the device and attempts prior to the imposed restriction by the device. The device then can use
either a number dictionary or number sets. The change in iOS failed attempts was a direct result of the
success of the IP-Box with security passcodes. IP-Box still maintains it can unlock iOS 10x devices, but there
are great possibilities that the device could be wiped—not good for evidence and not recommended for
examinations. In 2018, however, Grayshift, a U.S. company, released a device and a method to obtain a raw
file system extraction using its tool GrayKey. This tool is currently available to law enforcement.

The examiner should document any type of security, if enabled, along with the device type and operating
system of the iOS device. This information should also include any known passwords at the time of seizure
for both the device and iTunes. Having this information will assist with collection at the forensic lab.

Android Devices
Android devices brought a new type of security to the mobile device: the pattern. The first release of the
Android OS allowed the use of a four-point pattern within the 3×3 grid, but newer devices allow the use of all
nine points. The increased number of points elevated the security for the pattern, but the use of a pattern is
still the lowest form of security for an Android device. With a nine-point pattern, about 50,000 restricted

129

(same dot only once) pattern combinations are possible; with a four-point restricted pattern, about 1400
combinations are possible. In fact, a “smudge attack” can typically reveal the pattern of the Android user if the
device is held at a 60-percent angle to a light source, as outlined in the article, “Smudge Attacks on
Smartphone Touch Screens,” published by the University of Pennsylvania
(www.usenix.org/legacy/event/woot10/tech/full_papers/Aviv.pdf).

A hash is stored in a key file within the Android file system. This file can be extracted and analyzed using
forensic tools to reveal the pattern used to secure the device. This will be discussed in Chapter 15.

Because of the various security vulnerabilities, more security options were added to later versions of the
Android OS. Android devices now allow the use of patterns; PINs; passcodes; passwords using letters,
numbers, and symbols; and biometrics. The user enables security in the device settings, and if the examiner
knows the type of security that is enabled, he or she can determine the viability of a bypass during a mobile
device collection. More than 12,000 different Android devices are available on the global market, and
identifying the exact type of security on these devices is difficult at best.

It is recommended that an examiner look at the device screen for clues as to the type of security in use. As
shown in Figure 6-2, a set of dots indicates a swipe pattern, and a dial pad with nine numbers indicates a PIN.
If a text cursor and keyboard are shown, a password or passphrase is required. If a fingerprint image is used,
the device will show a location for the finger press that will unlock the device. With devices containing built-
in fingerprint readers, the user is notified on the screen to “Use fingerprint or swipe screen to unlock.” Not
shown in the figure is a screen with an active camera, which indicates that facial recognition is required. All
biometric security features are backed up with another form of security—typically a PIN. If the device cannot
be unlocked by biometrics, a PIN can be used.

130

http://www.usenix.org/legacy/event/woot10/tech/full_papers/Aviv.pdf

131

FIGURE 6-2 Android devices showing (clockwise, from top left) a swipe pattern, numeric PIN, biometrics
(fingerprint), and passphrase

No matter what security is used, even if the device is locked, it can be accessed with mobile forensic tools if
the Android Debug Bridge (ADB) is enabled. However, ADB is typically not enabled by default. If it is
enabled on the device after it is seized, the device can be forensically analyzed even if the screen is locked.
(ADB will be covered in depth in Chapter 15.) When an Android device is seized, if access to the Settings
menu is available, the device should first be placed into airplane mode, and then the device ADB setting
should be enabled and applications turned off. These settings will depend on the version of Android. (Refer to
Table 15-1 in Chapter 15 for version information.)

Prior to Android 3.0, full disk encryption was not available. With version 4.0, encryption is included in the
system settings, and the user can choose settings to encrypt the contents of the mobile device along with data
on the external memory card. With Android 5.0, full disk encryption is turned on by default. Android 7 and
later versions now utilize file-based encryption. The difference now is that each file can have a different
encryption key, versus full disk where a single key is used. Device encryption will not inhibit the standard user
data collection of most mobile forensic tools should extraction be conducted logically. Physical collection,
however, could be impacted simply because the entire produced image still will be in the encrypted state upon
extraction. There are mobile forensic tools, such as Oxygen Forensic Detective, that incorporate passware to
combat this disk encryption problem.

However, all device profiles are not supported. Nevertheless, it is important that the device be properly placed
into ADB mode as soon as possible to at least allow for a robust logical extraction.

The type of security enabled, along with the Android device type and operating system, should be
documented. This information should also include any known passwords at the time of seizure.

Windows Mobile and Windows Phone
Windows devices have transitioned from simple PIN and strong alphanumeric passcodes in Windows Mobile
6.0 and 6.1 to passwords only in Windows Phone 7 and 8 devices. All devices can also use SIM PINs to block
calling features. The security password can be set by the user in the system settings of the Windows Phone 7
and 8. These devices are extremely difficult to examine without knowing the passcode or PIN. This
information should be obtained from the user if the device will be later examined. On July 11, 2017,
Microsoft stopped supporting Windows Phone 8.1 while moving all research and development to the
Windows 10 phone. Targeting corporate usage, these devices offered not only the security of the previous
devices, but now biometrics to include fingerprint, facial recognition, and iris scanning while incorporating
Windows Hello. Industry professionals in both the law enforcement and private sectors indicate they seldom
encounter a Windows Phone or Windows 10 phone for processing. This is indicative of the less than 1
percent market share for this Microsoft product.

BlackBerry Devices
BlackBerry devices have always been known for their security, which is not easily bypassed. BlackBerry devices
first used a simple PIN and a password or passphrase. Later versions could use a PIN, a passcode, or

132

passphrase, plus a password for data encryption. There is no known way to bypass BlackBerry device security
to collect the device’s data without the handset’s lock code when using forensic tools. A BlackBerry Enterprise
Server (BES) can reset the device passcode if the device is part of the BES and that setting has been enabled
previously. If the device also has a passcode set for data encryption, this must also be known. Gathering this
information from a device user is especially important when dealing with these types of devices.

BlackBerrys can create a backup of their data, which can also be protected by passcodes or PINs. If the
device password or PIN and encryption password are known, an unencrypted backup can be produced. If the
password or PIN is not entered for the handset lock, a backup cannot be initiated and the device’s data cannot
be recovered. BlackBerry 10 devices added another tier to the security of the file system backup. Even if a
device password is known and entered into the device, and even if the device is unlocked, the username and
password for the BlackBerry Link software must be entered. The BlackBerry Link software is the Research in
Motion (RIM) software used to update firmware and software and sync the mobile device with a computer. In
2015, BlackBerry released the first device (BlackBerry Priv) devoid of its proprietary OS that instead uses
Android 5.1.1. Currently, there have been only Android devices released by BlackBerry with the latest,
BlackBerry Motion, released in 2017 and running Android 7.1. The security utilized is similar, if not
identical, to what was described in the Android section previously. There are some serious forensic
implications imposed by the BlackBerry Android version that will be discussed in Chapter 15.

Photographing the Evidence at the Scene
Photographing a device prior to the physical collection can be as important as documenting what is found at
the scene. When a mobile device is located, and it has been determined that the device will be seized as
evidence, it should be photographed in place as it was found.

Before taking a photograph, assign an evidence number to the device and transfer that to an agency
evidence tag, which is placed next to the device to be photographed and seized. The photograph should
include the device along with the evidence number. The photographer should work around the device,
shooting at all angles and including as much detail as possible.

Photographing the device in place is important for many reasons. Without this information, questions as
to the validity of the extracted data could arise.

• A photograph provides a visual documentation of the device exactly as it was found, including the
condition of the device and its screen or keyboard, plus any noticeable scratches or other noticeable
anomalies indicative of use.

• Visually documenting this information will help to dispel potential accusations that the device was
destroyed or damaged by the person collecting it from the scene.

• Such documentation can also be used to determine whether the device has any evidentiary value.

• If the device is powered on, a screen saver or wallpaper might provide information of interest.

• The date and time that appears on screen is important information as well.

After the face of the device has been properly photographed, the device can be turned over so that the
opposite side can be photographed, again including the evidence tag number. The back side or battery side

133

should be photographed to document serial numbers, missing batteries, missing backs, and any damage. After
the device has been photographed, it can be placed properly in an evidence bag, as documented in the
following sections.

Tagging and Marking Evidence
Each piece of mobile device evidence has unique characteristics and requires specific handling procedures.
Mobile device evidence can be sensitive to changes in state, and you must take care when handling, tagging,
and marking the evidence. Protect the device and any other mobile-related artifacts by wearing gloves to avoid
adding fingerprints. Also, by maintaining the user’s finger smudge marks on the capacitive screen, you can
determine a passcode or phrase later to unlock a mobile device that uses a swipe or pattern for security.
Maintaining the integrity of the user’s marks on the device could be extremely important.

Before marking, tagging, and bagging memory cards, you must be grounded electrically to avoid sending
electrostatic discharges (ESDs) onto the card. Memory cards and SIM conductors are highly susceptible to
damage from ESD. A small static charge transferred from a person to an object can deliver from 3000 to
25,000 volts. A memory card’s flash and SIM conductors that operate in the range of 1.8 to 5.0 volts can be
corrupted and even destroyed by as little as 30 volts. Considering the high voltage that can be delivered in the
process of identifying and bagging memory and SIM cards, anyone collecting the artifacts must take proper
precautions.

When tagging and marking mobile device evidence, identify each piece with a unique number. The
numbering should include the current year, the department case number assigned to the current event, a
location number, and an article number. Maintaining this consistency when collecting evidence to be
examined later may seem like overkill, but if the same information is collected as part of the organizational
policy, this will be second nature. When an organization follows the same policy and procedure for tagging
and marking evidence, every person involved will understand the procedure if requested to assist or take over
the assignment. Also, days, months, or even years later, anyone examining the evidence will be able to refer to
the documentation for a clear understanding of the event and where the artifact was seized.

The evidence numbering system is straightforward. For example, suppose a mobile device was recovered in
a bedroom during an execution of a search warrant in 2018. The bedroom had been identified as room 2 of 5
and documented as such during the scene assessment. The departmental report number assigned to the event
is 555123. The tag and marking for the piece of evidence would look like this: 2018-555123-2-1. The final 1
indicates the number assigned to this piece of evidence. Using this format clearly defines all the appropriate
information about the evidence.

A tag or label should be affixed to every piece of evidence prior to it being placed into an evidence
container, which will contain the evidence number as previously described. If an artifact cannot be tagged or
labeled, it should be marked. The tag or label should indicate the following:

• Date and time

• Collector’s name/identifier (such as badge or employee number)

• Evidence number (year-case-location-artifact)

134

• Description of artifact following the appropriate guidelines

You may need to mark the evidence directly if the artifact is not large enough to affix a label or tag to. In
these instances, the following guidelines can help you ensure that these artifacts are properly documented:

• Mark the evidence location and number. In the example “2-34,” shown next, the 2 indicates location 2 and
34 is the artifact number. The marking should not cover any unique identifiers (such as the ICCID on a
card).

• If marking is made directly on the artifact, document why it was necessary to mark the evidence.

• If the artifact is placed into a container, affix the label or tag to the container.

Documenting the Evidence at the Scene
The documentation of the seizure of a mobile device and any related materials should be very clear and
interpretable by anyone in the chain of custody. It can be difficult to keep track of many small items, such as
SIM and memory cards, in an evidence bag if the evidence is placed loosely without regard into the bag
without accompanying documentation. Instead, every item seized should be documented on a prepared form
that includes not only descriptions of the evidence but also where each object was located on the scene.
Furthermore, each article must be described so that it will not be confused with another piece of evidence.

Describing evidence can be challenging, not only because of the volatility of the data and current status of
the device but also because certain types of mobile evidence often do not have discernible features. Detailing
any unique attributes will allow for successful identification and can be matched to the completed
property/evidence sheet that documents all artifacts seized from the location. Being able to match the item to
the property/evidence sheet will be helpful if an item is somehow separated from the evidence container.

The property/evidence sheet should list all items seized from the location for the particular case. The
minimum details that should be listed on the property/evidence sheet should include but not be limited to the
following:

• Item number This is a unique value assigned to the seized property.

135

• Quantity This will indicate the number of items for a single item type (for example, micro USB cables,
chargers, and so on).

• Property description This should include serial numbers, markings, and so on (including serial numbers,
markings, and so on).

• Owner

• Location found

Following are some suggestions for documenting various items of mobile device evidence.

Mobile Device
For a mobile device, the documentation should include, but not be limited to, the serial number, make,
model, color, size, condition, and the telecom company. The status of the device should also be indicated—
that is, whether it is powered on or off. If the device is powered on, does it use cellular service or Wi-Fi? If
there is a network connection of some type, it is critical that you quickly isolate the device from the network.
Also, take care in retrieving the serial number, since most device serial numbers are printed on a label in the
battery compartment area. Obtaining the serial number could involve removing a battery and powering off the
device, which in turn could lock the device.

If the device is already powered off, does it contain a SIM card or memory card? If cards are inserted,
document only that they are inserted into the device along with any discernible serial numbers. It is not
recommended that you remove the SIM or memory card from the device while at the scene unless you’re
conducting an on-scene collection.

Mobile Device Accessories
The documentation of all items associated with the mobile device can be important should an accessory be
needed to charge or connect the device to the hardware while conducting the forensic exam. Document the
number of power cables, USB cables, and cases that match the seized device. If the accessory is connected to
the device, photograph it prior to disconnecting, and label the connections. This is helpful if the connection
will need to be re-created at some point during a detailed exam. This can also help the examiner determine
which charger or cable is assigned to each device, especially when multiple devices of the same type are seized.

SIM Cards
Multiple SIM cards on the scene may not be inserted into the actual mobile device, but they could contain
valuable information and should be seized and documented along with the SIM card inserted into the device.
The location of each card should be indicated along with its integrated circuit card identifier (ICCID)
number, type (standard, micro, nano, as shown next), color, condition, and the name of the telecom.

136

The ICCID is the serial number of the SIM card, a unique number assigned to a single SIM card. Using
this number can help you positively identify the SIM. The ICCID is discussed in Chapter 11.

Memory Cards
Identifying and documenting a memory card can be difficult, because the serial numbers are typically not
located on the exterior of the card. Memory cards, like SIM cards, can contain an extremely large amount of
stored data and all should be collected, not only the cards installed within the mobile device. The location of
the card at the scene should be documented along with the size (512MB, 32GB, and so on), type, color,
condition, and brand, as shown next. Any numbering on the exterior should be documented. If multiple
identical memory cards are collected, each card should be labeled and marked appropriately so they can be
uniquely identifiable.

Dealing with Power Issues: The Device State
After you locate a mobile device, it’s critical that you determine whether the device is powered on or off and
whether or not the device is password protected. If the device is not locked and does not currently have
security enabled, it should be processed immediately by a trained examiner. If the device is powered on and
the password is known, do not attempt to enter the password to confirm while at the scene. In both instances,
the necessity of immediate processing ensures that information can be obtained prior to the device locking or
if the password is not known.

137

If the device is powered on but security is enabled and the owner will not unlock the device or the
password provided does not unlock the device, the device can be powered off and bagged. If the device is
powered off, leave it powered off and bag and tag the device as appropriate using an anti-static bag.

If the device will remain turned on, attach a portable power source to maintain a charge. Several portable
power sources enable the continuous charge of mobile devices for up to eight hours. The documentation
should indicate that the device is currently powered on and that a portable power source is being used. To
preserve the device integrity, you must isolate it by placing it in a shielding bag or by putting the device in
airplane mode.

The device should remain isolated from the cellular network using both airplane mode and a Faraday bag
(see the next section for information on bagging). Understanding the simple fact that the device is currently
powered on and system functions are already running will help to alleviate concerns that data is being changed
by navigating to airplane mode. If the device is powered on, you should recognize that data is constantly in
flux and the changing of a simple device function will not alter the user data, only system information.

Criticism for manipulating the device by pushing buttons or pressing the screen in an attempt to locate
airplane mode has been included in many documents and at conference meetings for years. However, the
practice of inhibiting the device by placing it in airplane mode using the device menu is now referenced as
proper procedure in materials from SANS to NIST.

Placing the device in airplane mode will deactivate the cellular signal, Wi-Fi, and Bluetooth connections.
(Wi-Fi can be manually enabled while in airplane mode.) The most popular devices and the locations and
methods required for placing the devices in airplane mode are listed next.

Apple iOS 7 and Later
Swipe up from the bottom of the iOS device screen depicted in the first illustration. This will expose the
submenu with an airplane icon in the upper-left corner, as shown in the second illustration. If the airplane
icon is not highlighted, tap it to enable airplane mode. A notification on the top of the screen will then
indicate that the device is in airplane mode.

138

In earlier iOS versions, you access airplane mode from the main page of the Settings application. To locate
the Settings application, tap the gears icon. An airplane mode toggle switch will be visible next to the label.
Switch the toggle to the OFF position.

Android
Android has changed the way that users locate and toggle airplane mode on and off with updates, depending
on the version of the operating system. If you’re unsure of the version, first press and briefly hold the power
button to bring up the power dialog. This dialog will show options for powering off the device, setting
airplane mode, and other selections, depending on the OS version (as shown). Tap Airplane Mode to isolate
the device from network connections. Newer Android OS devices are now similar to Apple devices regarding
access to airplane mode. The examiner can simply swipe down from the top of the device, even when it’s
locked, and select the airplane icon.

139

Windows Phone 7, 8, and 10
Place a Windows Phone (7, 8) into airplane mode similar to how it’s done on a laptop running Windows 8:

140

on the device Home screen, flick left, select Settings, and then tap Airplane Mode.

Place a Windows 10 phone into airplane mode by swiping down from the top of the device. In the Action
Center window, tap Airplane Mode.

Why Leave a Device Powered On?

With mobile devices in the personal digital assistant (PDA) era, a constant charge had to be maintained
or all the user information would be deleted from the device’s volatile memory. The flash memory used
in today’s mobile devices is nonvolatile—so why should a charge on a mobile device need to be
maintained when it is bagged for transport? In the years of volatile memory, all data was lost when a
charge was lost. But today’s mobile data may be lost for a different reason: If a security-enabled mobile
device is allowed to lose its charge, any security measures employed by the user could be enabled, making
access to data impossible. Maintaining a charge when a mobile device is powered on and possibly has
security enabled or if the device has been unlocked temporarily by the user can be important to
maintaining access to the data.

Bagging Sensitive Evidence
Place electronic devices into an evidence bag that is anti-static and protected from electrostatic discharge
(ESD). All other mobile device artifacts such as memory cards and SIM cards should be placed in separate
anti-static bags. These items should then be placed in appropriate evidence bags or containers specified by the
agency, company, or department policy.

Plastic evidence containers or bags should not be used to encase mobile device evidence that has been
packaged in anti-static bags. Cardboard or paper bags should be used instead, because sealed plastic containers
can allow for humidity and condensation to build up, which could damage mobile device evidence.

Both memory and SIM cards are also susceptible to damage from the oils and acids on a person’s skin.
When handling these artifacts, evidence collectors should wear appropriate gloves and avoid touching the gold
portions of memory cards or SIM cards.

Types of Bagging Equipment
When bagging mobile device evidence, you must place the artifacts in the appropriate type of evidence
container. Electronic evidence contains data that can be destroyed or corrupted by simple exposure to static
electricity, elemental factors (rain, snow, and so on), network transmission (cellular and Wi-Fi), and power
concerns. The type of container used should be appropriate to the circumstances.

Use electrostatic bags or anti-static bags during the seizure of mobile device evidence. Anti-static bags are
usually used for shipping computer parts and can protect the static-sensitive parts from ESD. There are
different types of electrostatic bags, and it is important that you understand the differences and when each
should be used.

Some bags simply dissipate electrons across the surface of the bag so the electrons do not build up. By not
allowing the electrons to build up, contact charging will not occur. Contact charging can occur if two

141

electrically charged pieces of matter rub against each other. With electronic equipment, this could pose
problems with ESD. Typically, the bags that help to dissipate the charge are pink in color but can also be
purchased in different colors such as blue or green. The bags should be labeled as anti-static.

Another type of bag protects from and stops an ESD, similar to how lightning rods on top of buildings
protect them from damage during electrical storms. These rods are used to stop an ESD from damaging a
structure by allowing current to travel safely to ground. A similar concept is used when ESD bags stop
electrical current from damaging circuits or flash memory. These bags typically are slightly opaque with a
mirrored or metal look because of an aluminum coating. They offer both an anti-static and ESD protection
and should be used to protect evidence from static shocks when someone is handling the evidence both on the
scene and in the lab.

Signal isolation bags, commonly referred to as Faraday bags, are also needed at the scene in case a device
needs to be shielded from cellular signals. Several studies have been conducted on the success rate of signal
isolation bags, and most show significant weaknesses in protecting a device from network signals. Most
weaknesses are related to the proximity of the mobile device to a cellular base station, however. The closer a
device is to a tower, the stronger the signal, and the more likely a signal will reach the mobile device even
when it’s inside the bag. Take care when using signal isolation bags, and test them prior to deployment and
use in the field.

Properly Bagging Mobile Device Evidence
Properly securing a mobile device will help to maintain the integrity of the follow-up examination and later
presentation of the facts. A mobile device contains various points of vulnerability or compromise. Most
modern mobile devices contain headphone jacks, memory card compartment covers, camera lenses, and toggle
switches. The state in which the device was found and seized should be maintained and documented. To
maintain the state in which the device was found, you must do several things during the bagging process.

All the various settings of the external switches, cameras, and any other exterior observations should be
documented and photographed. Then all evidentiary items should be protected using the following methods
before covering the items with evidence tape and marking the tape with the collector’s initials:

• Exterior switches Some mobile devices have exterior toggle switches that turn the sound on and off or up
or down. Cover these switches with evidence tape to maintain the position at the time of seizure. If a
device must be processed for latent fingerprints, document and photograph the position of these switches.

• USB port Cover any exterior ports with evidence tape.

• Headphone port Headphone jacks can be used to attach ear buds or a data reader for point of sale (POS)
scanners and other commerce tools. Cover this port with evidence tape.

• Camera lens Cover all lenses with tape to prevent them from capturing any pictures or video after device
seizure.

• Battery compartment Access to the battery area would allow access to the SIM card and memory card.
Cover the compartment with evidence tape.

Once you’ve taken steps to ensure the security of the mobile device, place it into the appropriate evidence

142

bag. Then mark the exterior of the evidence bag or containers with the following information, which is similar
to the information you placed onto the tags and/or labels on the actual piece of evidence:

• Case/incident identifier

• Item number

• Date

• Location of collection

• Item description

• Serial number

• Collector’s information (name and identifier)

• Where is the evidence going? (lab or storage)

• Comments (immediately process, phone on and charging, biohazard, and so on)

Affix the label to the outside of the evidence bag or container, and then seal it properly with evidence tape.
The collector should initial the evidence tape to ensure that any tampering will be obvious.

Transporting Mobile Device Evidence
The transportation of mobile device evidence can be just as important as proper seizure, bagging, and tagging
the artifacts. Be aware of the following when transporting mobile device evidence:

• Avoid placing evidence in an area that had previously transported materials that contained caustic liquids
or other wet materials.

• Mobile device evidence can be susceptible to shock and vibration, so be sure that the evidence is secured
prior to transport.

• Mobile device evidence can be damaged by electrostatic discharges and magnetic fields produced by
speakers, radios, and large electronics mounted using magnets. Electronic evidence should not be
transported or stored in close proximity to these devices. It should be transported either in an enclosure
designed to resist ESD and magnetic fields or stored in a location away from devices known to produce
electrostatic discharges.

• Extreme temperatures can damage mobile device evidence. Avoid prolonged exposure to extreme
temperatures.

Placing any mobile device evidence into the trunk of a patrol vehicle where the radio transmitter and
receiver are located can be disastrous. The police radio transmitter can create an electromagnetic field that
can destroy the contents of a mobile device.

To Storage
When transporting evidence to be stored for a prolonged period, notify the evidence custodian of any mobile
device evidence that might be susceptible to data loss or security measures. For any evidence that needs

143

immediate attention, instruct the evidence custodian to notify the responsible party who will conduct the

follow-up on the mobile device evidence.

A property/evidence sheet should have already been completed, listing all of the property that is being
transported. During the transfer of the evidence to the storage facility, all evidence containers should be
inventoried and matched with the proper property/evidence sheet.

The delivery should be documented, indicating the transportation of the evidence and any problems noted
upon inspection after arrival. The documentation should also include to whom the delivery was made, the
facility to which the evidence was delivered, the date and time of the delivery, and any other pertinent
information.

The mobile device evidence should be stored in the appropriate manner. Ensure that the evidence is not
exposed to extreme temperatures, humidity, ESD, and/or magnetic fields.

To the Lab
When mobile evidence must be immediately processed for trace evidence, latent evidence, and forensic digital
evidence, the articles will be delivered directly to a forensics lab. It is extremely important that any evidence
transported and released to the lab be documented, including details on the evidence transportation and any
problems encountered upon inspection after arrival. The person receiving the evidence, along with the time
and date and reason for the release of property, should be documented on the exterior of the evidence bag or
container, the property/evidence sheet, and any supplementary documentation.

Upon reception of evidence, laboratory staff should store it in an appropriate manner to ensure the
integrity of the articles.

Establishing Chain of Custody
As discussed in Chapter 5, the chain of custody document clearly details, in chronological order, every hand
that has been in contact with the piece of evidence, from the seizure to the disposition. Mobile device
evidence may have been handled by many different people, from the scene where the artifact was collected and
bagged, to the storage area, and to the lab, where the article is analyzed. Documenting this information can be
easily accomplished if procedures are in place at the onset.

Requiring all persons in contact with mobile device evidence to identify themselves on a chain of custody
form will make the documentation life cycle much more manageable and inherently invulnerable to later
challenge. Failing to document the chain of custody properly for each piece of mobile device evidence can
have devastating results if later that evidence is used as a critical piece of the investigation.

Using a simple chain of custody form on each piece of evidence packaging will help to satisfy this
prerequisite. Evidence cardboard boxes and bags that contain a preprinted chain of custody form are used by
many departments and agencies. If these types of evidence containers are unavailable, using the simple form
shown in Figure 6-3 can satisfy this requirement.

144

FIGURE 6-3 Sample chain of custody form

Chapter Summary
Before the collection of the data from mobile device evidence, all the appropriate physical artifacts from the
scene must be properly packaged, marked, tagged, and bagged. The mobile device, the device state, and device
security must be considered and clearly documented. Knowing whether or not the device will have to be
immediately examined and collected is determined by the current state of the device.

Outside environmental influences, including network communication, weather, magnetic fields, and
electrostatic discharges, must also be considered throughout the evidence life cycle. Improper handling or
transportation could lead to the destruction of evidence contained on mobile devices.

Before conducting a forensic collection of a mobile device and any accompanying artifacts, you must
correctly document the custody of the artifact. The process of evidence handling is often attacked during both
criminal and civil trials because of poor chain of custody documentation. For every piece of mobile device
evidence, a completed chain of custody form is required to ensure that every person who comes into contact
with the evidence is documented.

145

A
7 Toolbox Forensics: Multiple-Tool Approach

fter the mobile device evidence has been successfully seized, tagged, and packaged, the next steps
involve preserving, processing, and analyzing the data stored on the devices. As discussed in preceding

chapters, mobile forensics is different from computer forensics in many ways, and one significant difference
has to do with how the devices are processed during examination. With mobile device forensics, using only
one tool to process and analyze the evidence can be a detrimental task, although a computer forensics
examiner can sometimes get by with using only a single tool. This poses problems for a lot of mobile device
investigators for several reasons—in particular, the cost involved in using several software solutions. Mobile
device forensic software does not come cheap. Although open source solutions are available, one solution will
not provide all the tools necessary to accommodate every type of device, every type of operating system, or all
different types of stored user data. This is a limitation of all mobile forensic solutions because of one simple
fact: no one tool can process and analyze all mobile devices.

This chapter covers the various reasons you’ll need to use a multiple-tool approach to the examination and
analysis of a mobile device. To choose the best tools, you need to know not only what a tool is doing to the
extracted data but also what methods are used to validate the tool, the collection, and the process. As a
forensic examiner, you will encounter a variety of pitfalls, whether you are trying to use a single tool or
multiple tools. Your understanding and preparation for these challenges will help reduce criticism of either
approach and will help you improve your expertise in the mobile forensic field.

Preparing for the challenge of collecting digital data from a mobile device is based primarily on the
methods and tools that you use. Of course, most examiners are not capable of financially supporting each
forensic solution currently available on the market. With that in mind, you must be knowledgeable of what
your current software is capable of and its limitations. More importantly, you must research the available
software and purchase the most competent software that will handle the majority of devices you will
encounter. Research the types of devices, operating systems, and available and appropriate technologies;
armed with this information, you can make the right decision regarding the best tools to use.

Choosing the Right Tools
Your decision as to which tool to use in an examination can be affected by a variety of factors, including price,
ease of use, and, more often than not, using what “everyone else” uses. Each of these reasons has its own
merits. Studying a tool and using sound judgment can make your decision much easier.

Commercial mobile forensic tools are some of the most expensive software examination tools available.
Although their prices vary significantly, what is included in each is not necessarily related to the price—in
other words, the manufacturer’s suggested retail price does not correlate to what is actually included with the
solution. Commercial tool prices range from $500 to well over $20,000 for a single license for a single year.
These prices may then be reduced to approximately 30 to 40 percent for yearly updates. Keeping up with the
technology of mobile device forensics is costly, but with wise research on the tools for your mobile forensic
toolbox, you can justify the expensiveness of some tools. The astronomical prices of some software solutions

146

on the market are often attributed to the fact that these companies think the money they’ve invested in
research should be passed on to the consumer. Because of the pricing disparity and the variety of technologies
available, it is extremely important that you conduct diligent research on each tool prior to purchase.

If some examinations and collections will be conducted by first responders or persons who have not been
formally trained on forensic practices for the collection of digital evidence, it is important that you look at the
tool’s ease of use along with how it maintains forensic integrity. Does the tool enable those who are not
technologically savvy to perform the steps necessary to recover the required digital data from a mobile device?
Maintaining forensic integrity requires a tool that packages the collected data in a format that probably cannot
be tampered with or altered. This is typically completed by the software in the form of hashing. Hashing of
the overall data in its current form can help to fingerprint the data collected, but not all solutions hash the
data in the same way or in the same format.

In the National Software Reference Library (NSRL), NIST describes hashing as a mathematical
technique used to produce a unique signature of a file. Hashing a file involves a one-way computation
when the file has been compressed to a fixed length of 0’s and 1’s into a single string. A unique number is
created based upon the mathematical computation and is often referred to as the digital fingerprint of the
file. If even a single 0 or 1 is changed within the file, the entire digital fingerprint will change.

The way and format in which the software hashes data can be very important. If the software simply
hashes the extracted personal data (such as Short Message Service [SMS], contacts, or call logs) after it has
been extracted into a Microsoft Excel spreadsheet, it is doubtful that this hash can be verified using another
solution. If the secondary solution extracts the same data, but this solution hashes the file in which the data
actually exists, the hash could be entirely different. It would make sense that additional metadata would also
be in the overall file where the data had been extracted, which would create an entirely different hash.

Extracting the physical files, hashing them, and producing an overall hash value of the entire collection
contained in a single file would be the best method. With this method, all the collected data is contained
within a single file, and if any portion of the file is altered, the fact that the overall hash has changed could be
immediately identified. Also, to check the integrity of an individual file, the container could be opened and
each file’s hash could be rehashed to show that the file had not been tampered with since first being collected.
To verify the reliability of the collected data, each collection and subsequent analysis must be repeatable.
Having tools that will allow for the creation of digital fingerprints, or hashes, of the files and overall container
should be a priority when you choose a mobile forensic solution.

What types of mobile examinations are going to occur? Will you examine the actual collected device or the
backup, or both? These are important questions to consider when you’re selecting a mobile forensic solution,
especially if only backups are going to be analyzed. Choosing a software solution that covers the collection of
the mobile device when the target is always going to be a device backup obtained from a PC or network server
would be frivolous and unneeded. Understand the target of the examination when you’re making a
determination of the types of solutions to fill your mobile forensic toolbox.

You should also look for software solutions that include support of current technologies. Look for

147

solutions that offer the greatest support for not only the collection of data but also for superior analysis of the

underlying structures. Today’s devices contain storage databases and configuration files that are loaded with
digital information that is often overlooked by software solutions. Choose a tool that can not only collect but
also digest and analyze the critical files found within the newest smart devices.

Remember that different parts of the world use different types of devices, different parts of a geographic
region use different types of devices, and different areas of a company or agency use different types of devices.
Tailor your mobile solution toolbox to the devices and, more importantly, the types of devices that are
appropriate to your area. If a region deals with Nokia legacy devices exclusively or BlackBerry devices
exclusively, don’t choose a tool that specializes in iOS or Android devices. If you’re conducting examinations
in Europe, don’t purchase a tool that is most appropriate for Code Division Multiple Access (CDMA) mobile
devices, which are used primarily in the United States and in some Asian countries.

Consider the following facts as you determine the best tool to use in examinations of today’s mobile
devices:

• More than 58 percent of users globally in 2017 used a smart device.

• In North America in 2017, most forensic labs deal with Android and iOS devices in almost 96 percent of
their digital investigations.

Supporting global mobile device statistics should not influence your decision as to what type of mobile
forensic software you select if these statistics are not consistent with what you will deal with locally.

Using the multiple-tool approach can be limited at the analysis phase simply because various software
products do not allow for the analysis of another tool’s data. Make sure that the software you use to conduct
data analysis can import various types of mobile device data from multiple tools. The ability to import
multiple image types will allow for validation of the collected data and will also provide a complement to
another tool. This feature will help you uncover even more information that may have been missed by another
tool.

Finally, one thing that should not influence your decision for a competent mobile forensic solution is the
fact “everyone is using it.” Just because software is popular does not necessarily mean the software will be
useful to all examinations in all regions. Carefully consider and investigate all facets pertaining to a localized
tool set. Research the type of software and its features, interoperability, and forensic implications before
making a decision as to the software that you will use for mobile device examinations. Most companies allow
demonstration copies to be evaluated prior to the purchase of the software; this can be a good way to
determine whether the software is right for you before you purchase.

After you’ve gathered forensic tools, you must properly assess them and learn to use them before
conducting a live investigation. Learn about the software’s operating functions, features, and limitations.
Consider and seek out training on the software, which is often provided by competent companies. Without
undergoing training on the tools you will use, you may end up using them in less-than-optimal ways.
Moreover, because technology changes quickly, what was once a current method for conducting a collection
may no longer be valid.

148

Technology changes quickly. For example, “long ago” in mobile forensics, when Apple changed the
processor in its iOS devices from an A4 (S5L8930X) to an A5 (S5L8940) chip, it was no longer possible
to create a physical image of the iOS device. The exploit that had been used for devices with A4 and
older chips was not valid for new iOS devices containing the newer chips. This is still de facto in mobile
forensics of iOS devices today.

Analyzing Several Devices Collectively
When you’re dealing with many devices and collective evidence, keep in mind that some mobile forensic tools
do not allow the analysis of more than one device image or different types of media (such as computers and
mass storage devices) concurrently. In these instances, you may find it better to use a conventional computer
forensic solution for detailed analysis. This might not be the best conclusion, however, based upon some
available mobile forensic tools. Many mobile forensic tools such as Oxygen Forensic Detective, MSAB XRY,
and Cellebrite UFED 4PC can collectively analyze multiple mobile devices and mass storage devices, drones,
and cloud data in a single case.

Oxygen Forensic Detective can uniquely analyze data from all aforementioned stores across multiple cases
within a database. This type of feature analysis will enable you to examine all digital information and multiple
devices simultaneously, which provides a very big picture of the collected evidence. Using different types of
software (such as computer forensic), not just different types of mobile forensic software, can help you paint a
collective picture of the events. More and more mobile devices are becoming mini computers with extended
memory, storage, and capabilities. Also, more investigations of a single event will contain multiple pieces of
digital devices, so the ability to analyze all of the data collectively and in a single platform will provide digital
evidence synergy. Looking for a mobile forensic solution that offers a “big view” of collective data across
devices will offer fantastic results!

Collective Analysis: An Example

In 2010, investigators were zeroing in on a location they believed was the epicenter for a narcotics
trafficking operation. This location had been under surveillance for many months until the investigators
believed they had enough information to obtain a search warrant of the premises. Believing that
computers and other digital devices were on site, the investigators’ search warrant included information
regarding the collection of the devices and the forensic analysis of the data.

The day of the search arrived, and prior to the investigators’ arrival, two vehicles departed the
location. Information on the vehicles was sent to a neighboring jurisdiction, and while officers conducted
a traffic stop of the vehicles, investigators initiated and executed the search warrant at the location.

The officers who stopped the vehicles communicated with the occupants, who denied any
involvement with any persons at the location where the search was being conducted. A records check of
both occupants in the two vehicles indicated that they had outstanding warrants, and they were placed
under arrest. During the search of the subjects, officers discovered that both carried mobile devices.
These devices were searched incident to arrest at the scene (this occurred prior to the Riley v. California

149

Supreme Court decision, as discussed in Chapter 5) using a mobile forensic solution.

When officers viewed the informational report, it was quickly apparent that both suspects knew one
another, because the officers located contacts and SMS messages between the two suspects. In the report,
no information tied them to the search location, but they were seen leaving the area prior to the search
warrant execution. Lead investigators indicated that the subjects had been seen previously at the location,
but they were unsure of the subjects’ involvement in the narcotics operation.

Investigators arrived and conducted interviews of both vehicles’ occupants, who still denied knowing
anything about the location at which they were seen leaving. They were shown the report documenting
the communication between them that had been collected from the mobile devices. Both indicated that
they knew one another and worked together on several projects. At the conclusion of the interview, both
subjects were taken to jail for their outstanding warrants. One subject paid the bond on his warrant and
was out of jail within two hours.

Simultaneous to the arrests, investigators at the scene of the search warrant seized several computers
and flash drives, along with several types of narcotics paraphernalia and a small amount of controlled
substance. The lone occupant of the location, who was not listed on the actual lease agreement, was
taken into custody on possession of a controlled substance and booked into the local jail after an
unproductive interview.

The computers and flash drives were later examined by a computer forensic examiner who was
assigned to the case a week after the search warrant was issued. During the forensic examination of a
computer laptop, the examiner discovered several fraudulent identification documents, including driver’s
licenses, Social Security cards, and power bills. He also located a device backup of an iPhone with several
SMS messages indicating that the “product was completed and being shipped to the house,” “the
tracking number is 9102 6537 1256 4987 3098 12,” and “the explosives are also purchased.” In this
backup, the device ID was found along with a very large contact list.

Investigators contacted the U.S. Postal Service with the tracking number to determine the location
from which the package was sent. The delivery location was the same place at which the search warrant
was initiated, but the sender’s location was approximately 2500 miles and several states away.

When a second computer was analyzed, examiners located recipes for explosives, instructions for how
to make fraudulent documents, and images of a very sophisticated narcotics manufacturing system, along
with images of weapons. This information helped to substantiate the belief that the location was involved
in illegal activities, but investigators did not have the primary actors in this investigation—at least that’s
what they believed, considering the digital evidence the forensic examiner was currently reviewing.

The forensic examiner began to look into the property and noticed that no mobile devices were
collected from the scene. He had found a backup of an iPhone on the computer, so he contacted the lead
investigator. The investigator met with the forensic examiner and explained that two subjects had left the
scene and were stopped in another jurisdiction. Their mobile devices were examined at the scene, and
there was nothing to tie them to the location based upon the information in the report created by the
mobile forensic software—just the fact that the two subjects had communicated with each other. The
forensic examiner asked for a copy of the report.

150

After he reviewed the report, the examiner immediately recognized the device ID of the iPhone from
the backup analyzed on the computer and contacted the lead investigator. Luckily, the device was still in
jail property because the subject was still in custody and could not post bond due to the outstanding
warrant. The forensic examiner obtained a search warrant for the device based upon the information
obtained from the computer backup along with the information obtained in the initial collection of the
device after the traffic stop. What the examiner located after conducting a full forensic analysis of the
second collection with the computer data was amazing.

The actual iPhone contained several exterior images of a residence that also contained Exchangeable
Image Format (EXIF) data with GPS coordinates. These coordinates, when placed into Google Maps,
landed right on a house with an address that matched the shipping point identified earlier. Further
examination of the iPhone revealed several chat apps that contained information implicating the user of
the device in the creation of fraudulent documents found on the examined computers. The same chat app
implicated the second driver as a courier for narcotics, and an image of the courier was found on the
computer, indicating a fraudulent driver’s license had been created for him, plus PDF documents from
Dropbox that included ledger information on narcotics transactions.

Armed with this new information from the forensic examiner, the lead investigator and a tactical
team from the local law enforcement agency arrived at the site revealed in the pictures on the iPhone and
the tracking information from the computer. A seizure of the location was initiated, and what was found
inside the residence was a testament to the value of collectively analyzing data from all digital devices.
They had found not only the largest narcotics manufacturing plant in the state but also an intricate lab
for manufacturing explosives.

It was determined that the iPhone owner was the leader and actually the owner of both locations.
The second driver who had bonded out was not located, but an arrest warrant was issued based upon the
analysis of the iPhone and the corroborating data from the computers at the scene of the first search,
along with the device information obtained at the scene of the traffic stop.

If the digital investigator had not decided to look at the collective big picture, this case could have
easily been dismissed.

Verifying and Validating Software
After you have determined which software to purchase and received training to use it, but prior to your first
examination, you must verify and validate that the software performs as you expect. A lot of software vendors
will explain exactly how the software should perform, but ultimately it comes down to how the software
actually performs within the environment in which the examiner will be operating.

Verification and validation are often used synonymously in digital forensics, but they are two separate
processes used in different situations to test a software solution against a predefined set of knowns.
International Organization for Standardization (ISO) 9001:2015 outlines quality management system
standards and defines both verification and validation separately. In both definitions, objective evidence is used,
which ISO 9001:2015 defines as “data supporting the existence or verity of something.”

151

• Verification Confirmation, through the provision of objective evidence, that specified requirements have
been fulfilled.

• Validation Confirmation, through the provision of objective evidence, that the requirements for a specific
intended use or application have been fulfilled.

In other words, verification consists of determining, through testing and examining specific tasks or data,
whether the specified performance of a tool is met satisfactorily. Validation, on the other hand, involves
determining through testing that a tool, when used in a certain way, performs as intended.

Applying the concepts of verification and validation within the context of mobile forensic examinations is
similar. Verification typically can be performed using a single software solution and observing whether the
data that is reported matches what is stated in the guidelines and documents regarding the software.
Validation typically involves using multiple tools to show whether or not the initial tool has altered the
original evidence while performing a collection as defined by the software manufacturer.

Both verification and validation techniques, along with the results, can be used in other atypical ways.
Sometimes these techniques can be used to determine a difference in a control sample, which could indicate
compromise, while other methods might be used to determine data integrity compromise. Important to
understand is that reliance on what a product developer states should be the output is not as important as
what the examiner determines using a baseline. The only way to complete this task is by verification and
validation of the software solutions in the forensic toolbox.

These baselines should be performed using the same reference device(s) when the software is first installed
and configured and also after each major update.

Establishing Baselines
In science parlance, a baseline is a point, or a reference point, at which the experiment will be measured. Once
a baseline reference point is made, any and all other experiments can be measured against the baseline to
determine what changes have occurred. A baseline will shift only if it is created using a different medium,
which would create an entirely different reference point.

In mobile device forensics, the creation of a baseline will allow for the verification and validation of the
software. By having a reference point, the examiner can quickly identify any changes that have been made by
the software to the recoverable data from the mobile device, by the mobile device operating system, or even by
malicious infiltration of malware or unauthorized entities.

How the baseline is created will depend upon the desired result—verification of data changes or validation
of the software. If the desired result is to identify the various data that is collected from the baseline device
after changes in version, versus what the product literature indicates it will collect, a single method should be
used. If the desired outcome is to determine whether user data has been altered by a forensic tool or by hostile
programs or actors, another baseline should be used.

Creating a Baseline Image for Data Verification
When creating a baseline for data verification, your objective is to determine whether collected user data from
the mobile device has been altered between updates to a forensic software solution or if data has been added or

152

deleted by malicious, accidental, or hostile means. As indicated, baseline devices should be purchased and
populated with data and will be used only for verification of collected data from a mobile forensic solution. If
the objective of the baseline is to determine hostile, accidental, or malicious intent, the actual suspected device
will need to be collected to create the baseline. Both software verification and device integrity verification
should be covered. Pay specific attention to how a baseline is taken, compared, and examined for both types of
device verification.

“Hostile intent” could mean the installation of software to monitor the device, such as a rogue application
or service, and “malicious intent” could indicate the installation of an application intended to destroy data.

Software Verification Software verification involves examining the data of a prepopulated device with the
forensic software solution that will be used to perform mobile device examinations. Save the collected data in a
format that can be easily analyzed and compared side-by-side to a secondary extraction. This comparison
extraction should occur upon any minor and major updates to the forensic software used for examinations.
The simple comparison collection should consist of all of the current user data capabilities supported by the
software and should be a query of only the logical data contained on the device, not a physical collection.

A “logical collection,” in the context of a baseline, consists typically of only data that can be accessible by
simple communication techniques; a “physical collection” uses more advanced communication that yields
entire partitions from a device.

Once data has been prepopulated on the mobile device, the exemplar devices must not be altered after the
baseline is created and not until the comparison collection is completed. By using this method, the examiner
can determine whether changes have been made during the various updates to the forensic software to verify
that the data collected is consistent with data that is within the baseline and to identify any variations to the
output. Changes to software occur frequently, and using this method will assist the examiner in determining
quickly whether the software conforms to the expectations of a similar collection.

Changes or differences to the collected data can be attributed to the addition of new scoped data artifacts,
new capabilities, and alterations to data within an already scoped data set. An example of each of these
changes is described next, along with recommendations for each when encountered:

• New scoped data artifacts These artifacts are additions to already defined data. This could include the
addition of a status to an SMS message indicating a read or an unread message that was not indicated in
the previous version, the addition of a work phone number to the contacts table, or the read date in a
calendar entry. This should be documented and verified to ensure that the new addition is correct for the
exemplar device. If new scoped data artifacts are located, an entirely new baseline should be created after
the completion of the verification cycle.

• New capabilities These would include an entirely new set of data that was not in the previous release,
such as the addition of memos or user applications when the previous forensic software version did not

153

collect this app data. This addition should be documented, and each artifact in each category should be

analyzed to ensure that the data conforms to the expected values. A new baseline should be created after
the completion of the verification cycle.

• Alterations to data within an already scoped data set This alteration occurs to a value that existed
previously in an earlier release. Because the actual value of the data has changed, the examiner must
research whether the previous value provided by the software was incorrect or the release being evaluated is
incorrect. This change is the most important to document and to understand because it can have the
biggest impact on the software verification cycle. If you determine that the value was corrected in the
software from a previous release, make sure the software company has documented this on release notes. A
new baseline should be created using the new version after the verification process has been completed and
all changes documented. If the value in the software that is being verified had been correct in previous
versions and is now incorrect, immediately notify the software vendor of the inconsistencies. Then
document this information and do not create a new baseline.

The baseline comparison method can be tedious. Because of the manual process involved in determining
new capabilities and additional artifacts within each capability, it is important that you clearly document data
contained on the exemplar devices. To obtain the needed baseline information, you should first export the
logical data by data type. Then export each data type to a format that can allow for easy comparison by their
hash values. If the hash value of the files is the same, then there is no additional change in values or
capabilities. If the hash values do not match, this could indicate a change, and those files will have to be
manually inspected to determine the changes that have occurred. If a change has occurred, create a new
baseline, and the changes in the forensic software should be updated and verified in the release
documentation.

Verification Workflow Example Following is the workflow for the verification of software. The tools used in
this exercise are not the only tools available to accomplish this task. Mobile forensics tools such as Cellebrite
UFED Physical Analyzer, MSAB XRY, Magnet AXIOM, and Oxygen Forensic Detective can all export
collected data in various formats. The following procedure can be used with any of the mobile forensic tools
that will allow collected data to be individually exported into single files.

For this example, the tools used are Oxygen Forensic Detective and hashdeep. Using Oxygen Forensic
Detective, selected capabilities from the baseline image are exported into an Excel .xls file (see Figure 7-1).
(Note that Oxygen Forensic Detective will also be discussed in Chapter 8.) Hashdeep is a free program that
computes multiple types of hashes against a set of folders, files, and subfolders. It can also be used to compare
a known set of values in a text file against a set of files, folders, or subfolders when performing an audit.
Hashdeep was developed by Jesse Kornblum and can be downloaded from http://sourceforge.net. It is
maintained at https://github.com/jessek/hashdeep.

154

http://sourceforge.net
https://github.com/jessek/hashdeep

FIGURE 7-1 Oxygen Forensic Detective exports data into an Excel .xls file.

This exercise involves comparing a baseline created with a previous version of Oxygen Forensic Detective
with the current version of the software (10.1.0.54). This comparison uses the hashes created from exported
files in an effort to identify changes immediately within the files. If a change is encountered, we will
determine whether the change falls into the three categories discussed:

• New scoped data artifacts

• New capabilities

• Alterations to data within an already scoped data set

First, we export the data into a folder and, from the Windows command prompt, hash the contents using
hashdeep with the following instructions:

C:\md5deep>hashdeep64 -c md5,sha1,sha256 -b C:\BaseLine-TESTING*

The format for the command contains a call to the executable (hashdeep64), a flag (-c) to enable comma-
separated output, the hash formats, a flag (-b) to enable bare mode and show only filenames of hashed files,
and then the path to the folder with the files that will be hashed.

The result shows the hashdeep dialog, the result format, and the string used to invoke the application and
the hashes:

155

156

The result, including the hashdeep dialog, is then saved to the file baseLine-knowns.txt. This file can be
used to determine any differences in any image that will be obtained with the newer version of Oxygen
Forensic Detective so that the values can be compared to ascertain whether changes have been made to the
mobile device data’s output.

Using Oxygen Forensic Detective 10.1.0.54, we make another collection on the exemplar device when an
update is sent out to users. The capabilities are all exported to another .xls file (see Figure 7-2).

157

FIGURE 7-2 The second export of the same exemplar device after an acquisition with new version of
Oxygen Forensic Detective

From the Windows command prompt, we use hashdeep again to compare the hashes to show those that
match and those that do not match in the baseline hash file baseLine-knowns.txt. This command determines
whether any files are the same based upon hashes, by using the -m and -k flags. The -m flag specifies that
hashdeep should show only the files within the baseline that match the hashes that are within the file
identified with the -k flag. It returns no matches, which indicates that all the files are different between
releases of the forensic software:

C:\md5deep>hashdeep64 -m -k baseLine-knowns.txt

C:\BaseLine-TESTING*

To identify which files are different based upon the known file hashes, we run another command using the
-x and -k flags. The -x flag will identify which files within the baseline are different, and the -k flag
identifies the file of known values. If files are returned, they can then be manually compared to the known
files.

Several hash values have changed, and those files must be examined to determine the differences. This will
help us differentiate between the types of changes that have occurred between releases in order to verify the
forensic solution. The changes that are observed in Oxygen Forensic Detective has to do with new parsing
algorithms for the WebKit data, new search terms used by the examiner, and additional watch list terms.
Figure 7-3 shows several changes between versions of AccessData’s MPE+. The large difference was a direct
result of the manufacturer changing the application that queries an Android device. This information would
not be known if it were not for the verification of the software. The image in Figure 7-3 depicts an additional
column of data that indicates whether the SMS message has been seen or read, and also changes the format
from local time to UTC time, which are both listed in the Sent column.

158

FIGURE 7-3 Using Microsoft Excel, both .csv files from MPE+ 5.0 and 5.5.5 are compared, showing
various differences.

If any changes between the baseline and the secondary comparison image are detected, a new baseline
should be created. In this example, a new image was created with MPE+ 5.5.5, and the files are all hashed. A
subsequent extraction was completed with version 5.5.6 and the results compared using the steps previously
covered with hashdeep. Here is the process with the new version:

159

Using the -m switch this time identifies all files that match within the original data set and the new
version:

To confirm, we check to see if any files do not match by using the -x switch. This command does not
return any files:

The result indicates that the new baseline files in MPE+ 5.5.5 are identical to the secondary image created
with MPE+ 5.5.6. This proves that no changes were made to the extraction method and additional software
capabilities have not been added between releases.

Device Integrity Verification The baseline steps involved in the verification of the software differ from the
steps used for verification of changes to a device. The device integrity verification process does not determine
whether the forensic software has made a change, but whether the device has been compromised.

Many global companies rely on mobile devices to keep their employees in touch with one another, to allow
work to be completed remotely, and to keep production up—no matter where employees are located. An
employee who is constantly tethered to a mobile device can instantly access files, documents, e-mail, and any
other type of electronic data. With this mobility comes the price of data security, however. When you are
confronted with the possibility of device compromise, you can take steps to ensure that the compromise can be
recognized. You can create a baseline of the mobile device prior to its being deployed in an area where data
could be compromised and later examined. This verification can identify malicious applications, injection of
foreign data, and other types of espionage.

160

To complete this process, you must create a baseline of the device just prior to the journey. Of course, data
will change in the course of the deployment, simply because the user will be using the device. But by creating
a baseline for the device and its contents, you can quickly dissect information to determine whether anything
has been compromised on the device. Once the device is obtained, a physical data collection should be
completed. If a physical data collection cannot occur, for example, on a new iOS device, a full file system
collection along with application files should be obtained. The files are needed in this type of verification
because the addition or deletion of files that had previously existed or had not existed will be key to the
process.

Not all mobile forensic software can complete this process, but software such as Cellebrite UFED 4PC
and UFED Touch Ultimate, MSAB XRY, and Oxygen Forensic Detective can create an image that can
later be used to conduct a baseline analysis on most smart devices.

Once you have created a baseline for the device partition or file system, you must make an image of the
device data along with hashing and indexing all the files within the created baseline image. Indexing involves
categorizing, listing, filtering, and sometimes formatting the data to make it easy to search. Once all of the
files in the collected image have been hashed and indexed to create each file’s unique digital fingerprint, you
create a custom dictionary, a list that contains all the file metadata along with the hash of each file in the image.
Your forensic software should be able to create a dictionary containing all of the file hashes within the baseline
image. Then save this dictionary along with the device baseline image to sort the known files against unknown
files or alert files contained within the comparison device image once the device is back from the deployment.

This technique is typically used by companies that are operating in different countries and by military
employees or contractors. The following example information was culled from the employee travel policy of a
major gas company. This policy requires that the security team take a baseline of the contents of the device
and create an indexed list of the contents, which can be later compared to the contents of the device
immediately when the device is returned:

Immediately prior to the travel the mobile device designated to be used shall be forensically imaged by
the device security team. The image that is created of the mobile device will be indexed and stored. …
Upon return, the device will be immediately forensically imaged using the same technique used to create
the baseline. The baseline dictionary will be imported and any delta analyzed immediately. Should the
delta be identified as a security risk as defined in…the device should be removed from service and further
response from the designated security team will be elevated based upon the reported compromise.

In today’s world, entire company networks can be infiltrated with a simple rogue malicious app embedded
on a user’s mobile device. This technique should not be limited to travel policies, but can also be used to create
a baseline of a device upon distribution to employees. If an employee is terminated, accepts a job from a
competitor, or is subject to an investigation, the device data can immediately be compared to the baseline that
was created when the device was distributed at hiring.

Using the following process, a device’s integrity from a snapshot was examined to determine compromise,

161

data changes, and malfeasance.

First, the images were collected using a Cellebrite UFED Touch device and then examined in AccessData
Forensic Toolkit (FTK), as shown in Figure 7-4. FTK is a computer forensic product with built-in
functionality for comparing known values that enables the examiner to flag files that match and do not match
a known set of hashes.

FIGURE 7-4 A physical image of the device partitions for an Android are imported as evidence into FTK.

X-Ways Forensics software can also create a set of hashes that can be used against an image created and
exported by a mobile forensic tool. EnCase Forensic from Guidance Software can also allow for a set of
hashes to be exported and then added to a hash database within the product. EnScripts are also available
and can be used within EnCase to enable the examiner to export all files that either match or do not
match a known hash within the hash library.

Next, a complete file list was created that contains all of the file hash values, which can be stored in a file
and imported into a file database of known file hashes—in FTK, this is called the Known File Filter (KFF).
The KFF stored the file hashes and used them to discern the known files from the unknown files when a
second image of the device was created and imported into FTK. With this information, the examiner quickly
identified which files had been altered and immediately began the examination into the cause of the change to
the files.

After the baseline was created, the device was taken outside of the country for approximately three days,
where it was used on various networks. The following process was used to determine whether data was altered
while the device was out of the country.

1. A file list was created (by choosing File | Export File List Info, as shown in Figure 7-5) with the added
evidence using the function within FTK to export file list information. Once exported, it was saved to a
.csv file, which was modified to contain only the MD5, SHA-1, and SHA-256 columns.

162

FIGURE 7-5 Using FTK to export a file list to a .csv file

2. This created a listing of 52,456 file hashes. The hashes were exported and modified, and then the user
imported them into a file list to be used by FTK’s KFF. (This file list can also be used in other tools
such as EnCase and X-Ways Forensics.)

3. A secondary image of the same device was collected using the same software—in this case, Cellebrite
UFED Touch. The same partitions used to create the known hashes were used—the userdata partition
and the dbdata partition from a Samsung Fascinate. These partitions were again added as evidence into
the FTK case.

4. The evidence was processed. Once complete, using the Filter Manager, all files that were identified as
KFF Ignorable could be hidden. (KFF Ignorable equates to the files that are identical in hash from the
baseline list.) After the files were hidden, only the files that were altered or created sometime after
creating the baseline image were shown.

In this exercise, the baseline image contained 52,456 files, and all were hashed, creating a list that could be
used to narrow down the number of files that needed to be examined to 64. The 64 files were examined for
signs of malware or illegal access. The results were negative.

This technique can prove very valuable to a company’s security. Using a mobile forensic tool first to collect
the baseline image and then analyze with another tool that typically is used for computer forensics can be the
only options when performing a similar device integrity verification exercise. Mobile forensic tools currently
do not offer the examiner an option to filter user-defined values immediately, but computer forensic solutions
such as FTK, EnCase, and X-Ways do offer this useful baselining feature.

Validating a Mobile Forensic Tool Using a Baseline
To validate a mobile forensic tool, you must first recognize that a second mobile forensic tool will be needed
to perform this correctly. A single solution cannot be validated against itself, and if only a single solution is
being used to perform all of the mobile forensic duties, then using the verification processes outlined
previously will suffice.

To perform a proper validation of the software, you must employ a device that is used only as a mobile
device baseline exemplar. Using actual evidence to perform the testing could pose problems should the
software being validated fail testing. Having device exemplars of the most prevalent devices that are examined
in the region will be the best use of the validation principles.

The object of the validation is to determine whether the software is modifying the device data upon
extraction. It’s important to understand that data on a mobile device will invariably change because
communication continually interfaces with an active mobile device. By using one mobile device forensic

163

application to create the baseline, you can use another application to test for possible data corruption. Perform

these tests before using any mobile forensic software in an examination and also upon each major release
update.

As you know, a mobile device cannot be inhibited from being written to simply by employing a typical
write-protection device. Furthermore, mobile forensics software interfaces with the device via protocols
used to debug, back up, query, and manipulate the data on the device, changing the data in some way.
Also, because the device is powered on, working processes such as system maintenance, system clocks,
and other processes will continue to operate. It is important that you not get caught up in the changes to
the various system processes but focus on the user data and user applications on the device.

To perform the validation of the software, you must collect a physical or file system image. Simply
collecting the logical user data will not allow you to correlate and compare the two tools. You should also use
an intermediary tool, as described earlier in the verification of software data. This tool should allow for the
indexing, categorization, and hashing of each file in the mobile device partition or file system, similar to what
was discussed earlier in the chapter. Then you can use this information to create a baseline dictionary of files,
using their hashes, which existed on the mobile device at the time of collection. Next, you use the validated
tool on the exemplar mobile device to conduct a logical extraction, selecting all capabilities that are supported
for a forensic extraction. At the conclusion of the data collection on the mobile device, reacquire the mobile
device with the initial mobile forensic software and recollect physical or file system data. It is important that
you perform the same type of collection you used during the first extraction. You can compare this image to
the initial data collection by using the dictionary created with the baseline data collection. If data has been
added, deleted, or modified by the tool being validated, these files will be immediately identified upon
completion of the dictionary comparison.

You must examine each file that diverges from the baseline image. These will undoubtedly include system
files, which will commonly change because of the active state, and software protocols and changes the
examiner may have made to complete a data collection of the device (such as placing an Android device into
Android Debugging Bridge mode). Any files that contain user data should be scoured. The forensic software
should not alter content in files that contain user data, such as SMS, contacts, call logs, browsing history, user
applications, and so on.

If you determine that the mobile forensic software has modified a critical piece of user data, you must
further examine the file to determine if the integrity of the user data has been compromised. At times,
forensic software can alter a file’s metadata during the extraction, which could change the overall hash value,
but the data contained within the file has not been altered. If this is the case, although the user data has not
been compromised, you should have a clear understanding as to why the file metadata was changed. If at any
time you determine that the user data other than the metadata contained within the file has been altered,
notify the forensic software company and discontinue use of the software until it is updated to address the
problem.

164

Validation Workflow Example The following example shows a complete workflow using several products to
address this type of software validation. This workflow was completed using Cellebrite UFED Touch, FTK,
and Oxygen Forensic Detective.

1. Using the technique described earlier in the section “Device Integrity Verification,” we created an image
using a single forensic solution—in this case, Oxygen Forensic Detective. This was the baseline image—
a physical image or image that contains a device file system.

2. We created a hash list of the files using FTK, as outlined earlier.

3. Using the software to be validated (UFED Touch) and the same device on which the baseline was just
created, we conducted a full extraction of the device (this could be logically or physically or both).

4. After the collection was completed by the UFED Touch of the exemplar device, we performed another
collection using Oxygen Forensic Detective, as with the initial baseline in step 1.

5. We compared the files obtained from the collection by UFED Touch in step 4 to the hashes obtained in
step 2 in FTK.

6. We analyzed any files that were different as identified by the hash to determine whether they were a
system file or a file that contained user data, which could have been altered by the software being
validated. If any new files were identified that were not in the baseline image, we closely inspected the
files to identify whether they were collected from the device or added by the software. The software
should never add a file that was not extracted from the mobile device. If this occurs, the software should
not be used until verified by the vendor software developer.

In this example, the UFED Touch did not add files upon the extraction, but six files showed different
hash values. Inspection of the files showed they were system files, with no adverse changes to user data. This
test validated the UFED Touch.

Using Multiple Tools to Your Advantage
This chapter described the ways that you can use one software application to complement another for
verification and validation. Using multiple tools to perform this very important task is essential to ensure the
validity of each data collection event and of the overall investigation. Using multiple tools is not just for
verification and validation, however, but also for the actual analysis of data. This analysis typically cannot be
performed using a single solution for many of the reasons already discussed, and most in the industry agree
that there is no single solution that will perform every function an examiner will request or want.

The ultimate goal of any digital investigation should be to uncover and make visible all data available on
the device should that data be desired during an investigation. If the data exists on the device and it can be
recovered, that data should be presented in some way for further analysis. Simply using a single tool will not
suffice because of the inherent limitations known to exist in every mobile forensic solution. In many cases,
digital artifacts are easily seen in the data within the forensic tool, but the information cannot be visualized
into a report or clearly represented in a way that could be discernible to an average observer. Using a secondary
tool to support the analysis and display of the data in a form that can be evaluated and used to convey the
investigative message is the ultimate goal of any digital investigation. The actual case example described in the

165

sidebar shows the value in this type of collective tool analysis.

Case Study: Working the Case Using Multiple Tools

A law enforcement agency was involved in the investigation of a homicide that had occurred in a large
city—a male had been shot and killed at an unknown residence. The responding officers knew very little
since the deceased was found in a neighborhood park by a person walking his dog. A canvas of the area
did not assist in gathering leads to the crime, but investigators identified the deceased as a gang member
and began questioning known associates. After these people were questioned, limited additional
information was collected, which is typical in investigations of homicides when a gang member is
involved. Generally, people do not want to get involved for fear of being the next target. A break in the
case came when one person came forward and identified a possible witness to the crime. Investigators
interviewed the witness, who indicated that the homicide occurred because of an unpaid drug debt and
provided the name of one of the people allegedly involved.

Police responded to the potential suspect’s residence and began to interview the person they believed
was involved in the homicide two days prior. During the interview, the person revealed enough
information that he was taken into custody and transported to the detective annex to be further
interviewed. A mobile phone was also in the suspect’s possession, and this device was taken as evidence.
A search warrant for the device contents was compiled, issued, and served.

A device physical image was obtained using Cellebrite UFED. The mobile device data was further
analyzed in Cellebrite Physical Analyzer software, which revealed that the subject in custody was
involved in the homicide—but, more importantly, another subject was identified based upon text
messages that had been sent from the phone. No messages were received by that number on the subject’s
phone, however. Investigators were unable to locate a carrier associated with the phone number to which
the messages were sent, but they did have a name and possible address. Officers responded to the
location and took a second subject into custody. This person also had a smart device in his possession,
which was seized and ultimately examined after completing a search warrant for the contents based upon
probable cause to believe this person was involved in the homicide.

Officers examined the device and collected it with the same software used for the first device. What
was puzzling to the officers conducting the examination was the fact that the phone number that was
given to them by the first suspect and the one the message had been sent to was not the same phone
number for this device. Officers believed that the subject had another device or had purchased a new
device. Both of these theories were proved incorrect once they began examining the SMS messages,
however. They found that messages were listed with date and time information referencing the time
before, during, and after the date of the homicide. The text messages clearly indicated that the subject in
custody was the person receiving the messages, which was evident by the use of his name in the
conversation.

The mobile forensic examiners had multiple tools and subscribed to the multiple-tool approach. The
image of the second device was imported into Oxygen Forensic Analyst in an attempt to uncover
information not readily available in Physical Analyzer. Running simple search strings in Oxygen Forensic

166

Analyst for the text message they believed should be on the device as indicated by the original suspect,
they immediately found the message within an application, Google Voice. Inside the Google Voice
settings, they found the phone number that the first suspect was referencing and the number to which his
text message had been sent. It was starting to make sense. Using a Google Voice number, the suspect was
not just receiving voice calls but also was receiving and sending text messages. Using additional tools and
functions not in the Physical Analyzer, the examiners were able to rebuild the message from the device,
indicating the second person’s involvement in the homicide, along with two others; the location where
the victim had been killed; the motive of the crime; and geomapping evidence that placed the device in
the area at the time of the crime.

Had it not been for the usage of Oxygen Forensic Analyst to complement the Cellebrite Physical
Analyzer, the data that ultimately solved the case might not have been uncovered. The use of multiple
tools in this instance was priceless.

The use of a single solution to handle all mobile devices and contingencies is something that most software
vendors realize is not possible. Most practitioners also understand this and believe that more than one tool is
needed, as indicated in the case study. What can be clearly observed, however, is that very few examiners
actually use multiple tools.

Why is there no single solution that can cover every contingency? The many reasons involve too many
mobile devices, too many mobile applications, lack of a specific analysis feature, missing analysis of a specific
application, or lack of support for a specific file type. The reasons are many, the solutions are few, but what is
clear is that no single tool can rule them all. For this reason, the word that should be used in mobile forensics
is complementing. To complement one another is to “bring to perfection,” as described in one definition of the
verb. When you use a secondary tool to perform analysis of data that works differently from the imaging tool,
the solutions truly complement one another and the investigation profits.

As outlined in the actual law enforcement case, the use of multiple tools can be a game changer. Adhering
to the philosophy that a single tool is all that’s needed is a recipe for disaster.

Dealing with Challenges
Most challenges to the examination of a mobile device will not come from what was collected from the device,
but from how the data was collected. Also challenged will be the software used to collect the data. Questions
abound about whether the tool wrote data to the device, whether the tool deleted data from the device, and
whether the tool merged data from the previous collection into the current device’s data. Also, a lot of
challenges can come from questions about the inability of one tool to do one thing while another tool can
accomplish the task.

Understanding the many ways in which the processes described in this chapter can be challenged will help
you prepare for better examination techniques and for handling these common objections in court. What is
quite evident when observing most individuals conducting mobile forensic exams is the fact that few
examiners comprehend how important these challenges can be to their cases. Moreover, some current
examiners believe that multiple tools are only for validation of the tools and fail to recognize that using

167

multiple tools increases the chance of uncovering additional data from the device.

Overcoming challenges in verification and validation, along with the use of both single-tool and multiple-
tool examinations, will forever be challenged.

Overcoming Challenges by Verification and Validation
The reasoning for conducting verification and validation of mobile forensic software is simple: to overcome a
challenge before being challenged. Software is created by a software engineer who is a human being, and
human beings can make mistakes. Software code is developed to do one thing, but it sometimes does another.
Relying on what a software company has stated regarding how a tool should perform is not good practice. It’s
the responsibility of the examiner to maintain and test any software to be used in the forensic lab or in the
field to perform digital data collections and analysis from mobile devices.

When it comes to explaining the various reasons behind the verification and validation of tools in the lab,
an examiner must be prepared to support each challenge when presented. If an examiner cannot support the
reasoning behind tool verification and validation with credible data, the collection and analysis of a mobile
device should not be completed or even initiated.

There are various challenges to performing a proper baseline that mobile forensic tools can stifle. The
greatest challenge is typically regarding how the integrity of the device was compromised due to the intrusive
methods in the collection of the digital data from the device.

Some claim that mobile forensic software can change, alter, and modify data on the device. Mobile devices
typically have their data collected while they are powered on, so data can change even without software
interaction. When a device is powered on, its operating system is constantly changing its system files, just as a
computer does. The device will update directories and index files and will allocate memory and monitor the
system clock. This even occurs when the device is isolated 100 percent from all network sources.

When testing a forensic application by creating a baseline, you can show that no user data was altered in
the collection and subsequent analysis of the data. In baseline verification and validation testing of the
software used in the analysis, you can show that no user data was altered, changed, or modified. Based upon
the testing of the software and passing results, you can conclude that during the digital forensic investigation,
the software performed as described and did not alter, modify, or change the user data as represented in the
case.

Typical mobile device collections are conducted via a USB cable connected to a computer and to the
mobile device. Using device and manufacturer protocols that are unlike any other digital device collection
methods, communication occurs between the software and the device. Unorthodox methods such as using
protocols to initiate a data backup of the device, installing a small program and initiating the program to query
the device’s internal user data repositories, and placing a custom partition on a device to allow for the bypass
of security are a few methods used in mobile forensic software. These methods do not alter, modify, or change
the user data as determined by the baseline testing conducted using the mobile forensic software.

Overcoming Challenges for Single- and Multiple-Tool Examinations
Another, more personal, challenge can come in the form of an attack of the credibility of the examiner who
conducted the collection and examination. Any change from the expected results is said to be caused by a lack

168

of training of the examiner or the improper type of training received, along with the forensic tool used.

Training is necessary to mitigate challenges of the improper use of the forensic software or any device used
in the forensic examination of the mobile device. Being certified in the forensic software is not essential to
conduct an examination using it, but a certificate can show the examiner’s competence to perform collection
and analysis of the mobile device. Becoming well acquainted with all of the software that is currently in the
mobile forensic toolbox can occur only with proper research, usage, and ultimately training.

Single-Tool Challenges
In many instances, even if the examiner has more than one tool available, he or she will use a single tool from
the start to the finish of the examination. This tool will be used to collect the data from the mobile device,
create an image, analyze the data, and create a report. This scenario, more times than not, is the norm.
Sometimes an examiner has only one mobile forensic tool in his or her arsenal because of budget issues or for
other reasons. In any case, the challenge often cited is that data output cannot be verified using the same tool
that created the first forensic collection. This is primarily because an anomaly in the software’s collection of
data from a mobile device would, in theory, exist each time the collection was performed on an exemplar
device, showing no difference.

If the lab has multiple tools, then using a single solution from start to finish can be justified so long as the
verification and validation have occurred as outlined previously. What becomes critical when only a single
solution is available will be the validation, testing, and identification that no user data was altered over
subsequent extractions of a testing device. You must conduct the baseline testing as documented earlier and
cover the steps on baselining devices when device integrity is required.

If only a single tool is available for the collection and analysis of data, the examiner should be diligent in
every aspect of the examination. Verification of the data must typically be managed by visual verification on
the actual exemplar device during verification testing. Challenges to “missing” data that is recoverable with
another tool can also occur when using a single solution. When data is missed and consequently critical to the
opposing counsel, the examiner who was not able to recover this critical piece is often questioned as to why
this data was not disclosed, which questions the credibility of the examiner.

Dealing with this type of challenge involves simply explaining that all software is not created equally, with
some having very robust analysis features while others simply report on limited data. In this instance, the
software that was used has limited analysis features and does not support the recovery of the indicated
information; ergo, the data was not located.

Multiple-Tool Challenges
When you use multiple mobile forensic products for a single device collection, various challenges can involve
how the image was created, whether the integrity of the image was maintained, and whether changes were
made to the actual data within the case. To overcome these challenges, you can follow several key investigative
techniques.

To avoid problems with a challenge to the creation of the image and its integrity, use only one piece of
software to create the data image of the mobile device. It is extremely important that you make every effort to
extract the mobile device data only once from the evidentiary device. The more times that a device is hooked

169

up to a computer, queried, extracted, and accessed, the more likely corruption will eventually occur.

Sometimes collecting the digital data from a mobile device more than once is unavoidable—for example,
when the device data is extracted at a scene and then again at the forensic lab. In these cases, to avoid a
challenge, make sure you examine and compare the first extraction data to that of the second collection. If you
note a difference in the data collected, clearly document all of the changes and the reason the data has
changed. If proper procedures have been followed to isolate the device from network connections, the second
collection should not contain additional user personal information, but should this occur, provide additional
documentation stating how this information was written to the device. Such changes to data will undoubtedly
be used later to discredit the data on the device and examination.

Also, challenges can be made against the integrity of the evidence by using a secondary tool when the
secondary tool can import and analyze another tool’s created mobile device image. It becomes very important
that when you create an image with mobile device software, you also create an overall hash value of digital
data collected. Most mobile forensic software applications create an overall hash of the evidence image, but for
those that do not, the examiner should use a third-party tool that will create a hash value. Several free file hash
software applications are available online and can be downloaded to perform this task.

If you’re using an online software application, it is important that you create a text file that can be
associated with the image file that contains the hash value, the date the hash was created, the person who
hashed the file, and the software that was used to create the hash. With this information, if needed, a second
person can duplicate the steps to validate the image as well. Once the hash value is obtained, it will be used at
the conclusion of the examination to verify the integrity of the image after a secondary tool has been used to
analyze the primary tool image. Some software titles will actually verify the image’s hash upon import, and if it
is not identical from the hash obtained at the creation of the image, the user will be immediately notified.
Other applications, such as AccessData FTK Imager (Figure 7-6), can run a function to verify the integrity of
images created by AccessData products. This hash, as shown in Figure 7-7, can then be used to compare
against the image when requested at any time during the evidence life cycle.

FIGURE 7-6 Using AccessData FTK Imager, import the created image, right-click the device name, and
select Verify Drive/Image.

170

FIGURE 7-7 The image will be tested and hashed and compared to the hash that was created when the
image was made.

When using a secondary tool to analyze a primary tool’s image, make a copy of the actual evidence and
analyze the copy of the image using the secondary tool.

Challenges when using multiple tools can also arise when a feature that is used to analyze data runs
scripted code within the interface against the collected mobile device evidence. Scripted code could include
code written in Python, C#, EnScript, or others. By using these features, the examiner can interact directly
with the evidence; it is extremely important that you take steps to validate that changes are not being made to
the actual evidence.

To overcome this challenge, test each feature that can act upon evidence with user-generated scripts. To
test, create a simple rehash of the evidence containers after the use of the customized feature. If there is a
difference in the hash values before and after running a script, you must document and research the issue to
identify where the failure occurred and if the evidence was tainted. If the hashes match, as they should, after
running the custom scripts, you should also document this so that if you’re challenged, you can provide
specific information regarding the testing completed to verify the function and image integrity testing.

When conducting any type of analysis, all work should be done on a copy of the actual evidence file.
Evidence should not be used for testing or baselining purposes.

Chapter Summary
Data integrity is at the heart of a forensic examination. Maintaining confidence in the resulting output of a
mobile forensic collection is critical. To do this, the examiner must be confident in the mobile forensic tools
that are being used to perform the data collection and examination. By performing frequent verification and
validation techniques, the examiner can be confident that his or her examinations will hold up when
challenged. A great by-product of rigorous testing of the forensic tools in a lab will be tool knowledge.
Expanding the examiner’s knowledge of the tool from a traditional training curriculum or “I read the manual
and web site” track with intimate hands-on work will not only benefit in court, but also in work production.
Examinations of mobile data will be much more detailed and pointed, and will contain information that only
an examiner very knowledgeable with a product could produce. The more that a tool can be dissected, tested,

171

and used, the better the examiner will become at using the tool, and the actual investigation will reap the
benefits.

Although there are many benefits to using multiple tools for mobile device examinations, not everyone has
the luxury of using more than one tool. In these cases, you should ensure that the validation process is
conducted vigorously. By using a single tool, not only will the examinations be limited to a single set of
features and support, but the ability to verify and validate will be much more difficult. Using a single tool to
conduct mobile device investigations can be accomplished, but there will always be a bigger risk of a challenge
to the operation of the software and the examiner’s methods. Also, the location of additional data could be
jeopardized simply because the single tool does not support a feature, device, or data set. Selection of the
mobile forensic tool, if allowed to have only one solution, is critical.

There are great benefits to using multiple tools to collect and examine mobile devices; nevertheless, with
the use of multiple software applications comes risks. The many benefits range from verification and
validation, to wider spectrum of device support, to the recovery of additional data by using features and
controls of a secondary tool not supported by the primary tool. The risks come from the collection of the same
device with different tools, ways in which tools validate the data with hashes, the inability to determine
whether a tool altered the data, the integrity of the collected digital data, and the lack of correlation of the
data between software applications.

Without the examiner having a firm understanding of the tools in his or her toolbox, there will always be
risks. Overcoming any challenge to the collection and analysis of mobile device data comes in the form of
understanding the operation of the mobile forensic software in the digital forensic toolkit.

172

S
8 Mobile Forensic Tool Overview

electing a mobile forensic solution can be an extremely difficult task. Trying to understand the
capabilities of each tool can be confusing and at times cryptic. Although lots of mobile forensic software

vendors list the vast number of devices that their products can support, you must remember that even if a
product supports 18,000 devices, if it will not help with the single device that you need to collect, or the device
is supported but does not extract the data that could be critical to the case, it’s not the right tool for you.
Vendors in the mobile forensic marketplace use the term “profiles” to describe their support and generally
describe support for a “type” of device, loosely based on model. This enables the vendor to claim support for a
subsection of the model or profile, even though not all of the device carrier’s versions may be supported.

Quite honestly, the numbers game used by most mainstream vendors is just that—a game. The examiner
should be aware of these types of nuances when selecting a solution that claims to support a specific model of
device that will be examined. Most vendors post information online, where the examiner can go to determine
whether a device is supported. But what does it really mean when a vendor says the software handles the
“logical and physical collection” from an iPhone 7 running Apple iOS 11? Such information is often
misleading, especially because logical and physical collections might mean one thing to one examiner or
vendor and mean something entirely different to another.

In this chapter, several mobile device solutions are identified and the types of examinations are discussed—
but in a more granular way that departs from the traditional nuances of logical and physical collections. Open
source, freeware, and commercial tools all have benefits and limitations. Each piece of software covered here
comes from my personal experiences as well as community experiences, but as with everything, one person’s
experience can differ from another’s. Consideration of the level and type of examination required should be
one of the deciding factors in the type of mobile device tools you choose to use for the collection and
subsequent examination of recovered data. In some cases, the tool you use to collect a mobile device can be
entirely different from the tool you use to complete the analysis of the data.

Just as confusing is the tool progression—the decision to move into another category of examination for a
particular device or situation. Not all devices are supported with a simple connection via USB cable, and some
are not supported by any traditional methods. Some devices must be examined after the removal of the
memory chip, while others can be examined with a physical connection directly to the mobile device printed
circuit board (PCB).

Mobile device forensics in today’s world does not involve simply attaching a cable, clicking a Go button,
and waiting for completion. To conduct a thorough mobile device examination when it counts is to
comprehend the tool progression continuum, the risks involved, the training needed, and the tools available.

Collection Types
There is no more confusing discussion in mobile forensics than either listening to or speaking about a logical
and a physical collection of a mobile device. This is one of the most danced around issues in mobile device
forensics. What constitutes a logical collection and what constitutes a physical collection? If a file system was

173

recovered and happens to contain files and folders, is that a logical collection? If the file system contains
unallocated space, does it constitute a physical collection? To be honest, there is no clear definition for the
difference between logical and physical with regard to mobile device collections, and there are too many
variables involved. The following section discusses both terms, some historical data, and what today’s working
practitioner believes to be the definition.

Logical Collection
As defined in the 2007 publication, NIST SP 800-101, “Guidelines on Cell Phone Forensics,” a logical
acquisition implies a bit-by-bit copy of logical storage objects (such as directories and files) that reside on a
logical store (such as a file system partition). In 2013, the Scientific Working Group on Digital Evidence
(SWGDE) published the document “SWGDE Best Practices for Mobile Phone Forensics,” which removed
the bit-by-bit classification proposed by NIST and classified a logical collection in a different way. SWGDE
stated that a logical acquisition implies a copy of logical storage of objects (such as directories and files) that
reside on a logical store (such as a file system partition). In the 2013 publication “SWGDE Core
Competencies for Mobile Phone Forensics,” a logical examination is described as a process that provides
access to the user-accessible files. Moreover, SWGDE indicated that the logical analysis process will “not
generally provide access to deleted data.” In a 2014 revision (currently being updated), NIST SP 800-101R,
“Guidelines on Mobile Device Forensics,” described a logical acquisition as capturing a copy of logical storage
objects (such as directories and files) that reside on a logical store (such as a file system partition).

The definition is getting closer between both groups, most likely because of the personnel who are now
contributing both to the NIST and the SWGDE documentation.

Confusing, isn’t it? There appears to be a common theme of files and directories from a mobile device, and
honestly, the definitions have become better in describing the data available, but to a layperson reading this
information and ultimately applying it to his or her job, it is cloudy at best, and almost mystical. The
mysticism comes in the form of one of the terms used in SWEGDE’s logical definition: “generally.” It is
because of this “generality” that the word “logical” has lost some credibility. The problem arises because,
within a subset of devices such as iOS and Android devices, a logical file extraction can often contain deleted
data. Simply stating that a logical examination is capturing the logical storage objects (such as directories and
files) from the file system of a mobile device is too general and, quite honestly, in some situations inaccurate.
The terms “logical” and “physical” acquisition are throwbacks to computer forensics parlance, and they are
more often than not misinterpreted when it comes to mobile device forensics. Data that is not accessible to
the user, such as system files, application stores, and deleted data, can often be collected from a device in a
currently defined logical extraction. This would contradict some of the definitions mentioned.

A logical collection on its face should be interpreted as the extraction of user data from a mobile device
without the collection of a device’s file system. This data is extracted from the mobile device using proprietary
protocols and queries and displayed in the software user interface. An example of a logical collection as just
defined would be using a software tool on an Android device with an Android application package (APK) file.

174

Most forensic software applications use this method when conducting their version of a logical extraction. The
APK queries the Android device’s internal databases and returns the data to the software interface. The data is
then displayed in the software’s user interface. This method does not return a file system, but the data that is
represented by the contents of the files on the device. This distinction is important, because the currently
accepted definition makes an assumption that all logical collections and recovered data from a mobile device
by software are similar, so long as the device is supported logically. Because of this often-used generality in
describing a logical collection of a mobile device with a particular solution, a subcategory of a logical
extraction should be discussed—a file system collection. A file system collection bridges the gap between what
the mobile forensic community believes to be a logical extraction and a physical collection.

File System Collection
A file system collection contains much more information than the defined logical collection and should be
considered a step up from a logical collection. A file system contains the files and folders that the device uses
to populate applications, system configurations, and user configurations along with user storage areas. The
following sections define and explore different types of file system collections.

MSC, MTP, and PTP Mobile devices such as iOS, BlackBerry, Android, and Windows Phones can have
“points of storage,” which could mean that the mobile device file system collection must occur in multiple
places. A user storage area can be the location where images, videos, and audio are stored and accessible by the
user via a computer and a cable. Another user storage area can be an internal storage point that also stores
application data, system log files, and documents.

Mobile devices have long enabled users to transfer data to a PC using “USB Mode,” or the USB Mass
Storage Class (MSC). Legacy feature phones and devices, when removable media was added as a supported
feature, would allow the user to move media from the device to a PC much like transferring data from a flash
drive to a computer. In 2008, the Media Transfer Protocol (MTP) mode, originally part of the Microsoft
Framework, became a standard by the USB Implementers Forum (USB-IF) as a USB type. This mode is
recognizable when a device is plugged into a PC and is automatically mounted as a device, rather than a drive.
This access occurs via MTP, a subset of Picture Transfer Protocol (PTP), which adds some enhancements
and enables communication between the mobile device and the PC to copy, move, replace, and delete files
from and to the mobile device. The move away from MSC to MTP was made in most modern mobile devices
because if the device was in MSC mode, it could not store or communicate with the default storage point,
making the device useless during an MSC connection. The device could not access applications, take pictures,
or otherwise operate, so MTP mode was implemented, which enables the device to function even when
tethered to a PC. Furthermore, the use of MSC exposed an entire partition to the computer system that
would have to be properly formatted as FAT to mount and retrieve files. With the use of MTP, files can be
retrieved at the file level. In the instance of Android devices using MTP, the device is able to move, store, and
add a file without mounting a partition. Essentially, the device just acts as a file server to the client, and when
files are requested, they are available no matter what underlying OS formatting is in use.

The “media” in MTP should not be confused with traditional media such as images, videos, and audio. In
the MTP specifications outlined in Media Transfer Protocol v.1.1, the term “media” in Media Transfer

175

Protocol is used to identify any binary data and is not restricted to the audio/video formats to which it is
commonly applied. This clearly indicates that any file that is stored can be recovered using MTP. Mobile
devices running the Android system, Windows, BlackBerry, iOS, and feature phones of today allow for access
to a logical file system via MTP and PTP.

The difference between the operating system, at a basic level, regards the extent to which files can be
accesses and what types of files can be accessed in this manner. Apple iOS devices will allow access to the
media (pictures and videos only) area via a file explorer, such as Windows Explorer and the Finder, using
PTP. With an Android device, first by default in Honeycomb 3.0 and a standard in Ice Cream Sandwich 4.0
and later, the device can provide access to the internal storage area of the device, an external media card, or
both, using MTP. The accessible data includes application files, user documents, and media and system files.
A Windows Phone, like the Android, allows for the transfer of files from both the internal and external card
(if available) using MTP. Windows Phone data from both locations can contain documents, images, audio,
and video. BlackBerry devices starting at version 5.0 allow for MTP as well as MSC. If the BlackBerry is set
as a portable device, access to the internal and external card storage areas is available. These storage areas can
support multiple file types such as documents, audio, video, images, and system files. Access and recovery of
these files should not be overlooked in the examination of a mobile device.

Table 8-1 shows the types of data available on basic mobile devices using MTP and PTP.

TABLE 8-1 Mobile Device OSs and Data Accessible Using PTP and MTP

Figures 8-1, 8-2, and 8-3 show the various device types and how they are depicted within the desktop
operating system.

FIGURE 8-1 File system view of an iOS device connected as a PTP device—DCIM (Digital Camera Image)
folder is available

176

FIGURE 8-2 File system view of an Android device connected as a MTP device—notice the internal and
external file systems containing various files and folders

FIGURE 8-3 File system view of a Windows Phone connected as an MTP device

The files can be copied manually to an evidence location when the device is connected to the examination
computer. Although this is not generally recommended, it is advisable if the forensic software does not
support the collection of these files. To make these accessible to the computer, the device must be unlocked.

Internal System Collection and Display Some mobile device systems can also be accessed from a protocol
level to display a represented file system. Feature phones using propriety file systems can have their file
systems collected and displayed to show system files, user databases, media, user files, logs, user settings, and
more, as shown in Figure 8-4. These files are not directly accessible to the user via the device interface, and
inside of these file systems are artifacts that would not have been available without the use of specialized tools.
These files are the actual containers queried and parsed by the logical software and displayed in the software
interface. By having the actual file, you can conduct a more detailed analysis, which should be considered
much more valuable than what “logical” defines. Similarly, mobile devices, such as Apple iOS, Android, and
BlackBerry devices, also can have their underlying file systems collected to reveal application data, media, user
files, system files, logs, user settings, and device settings.

177

FIGURE 8-4 In a CDMA file system, many files and folders can contain additional evidence.

All three of the file system examples involve collections that can be lumped into the “logical collection”
bucket definition. Because this level of collection is not available to all software solutions that identify logical
support for the device, it makes sense to identify a secondary category or level for the tool used. For example, a
vendor may describe providing “logical support” for an iOS device when the support is actually a query and
return of the database content, which is then displayed via the user interface. In all actuality, an iOS device
contains numerous files, as depicted in Figure 8-5, such as property lists (plists) and SQLite databases that
contain user, system, and deleted data at the logical file system level, which is something that the vendor does
not support but claims to. This type of recoverable data at the logical level clearly extends the definition of
what is often described as a “logical extraction.” Chapters 13 and 14 are dedicated to the analysis of these
types of files, so you can clearly see that the term “logical” is often misrepresented by software vendors.

FIGURE 8-5 In an iOS device file system, many files not represented by a superficial logical collection will
be missed.

When possible, the examiner should make a collection of a device’s file system. The information contained
far exceeds any data that is collected on the surface. Collecting the “surface” logical data along with file system
recovery is what every examination should strive to accomplish. This type of collection should be referred to as
a file system collection, not simply a logical extraction.

Physical Collection
To some, a physical collection includes application data, system files, and other information that is not
available to the user via the handset. NIST SP 800-101 states that a “physical acquisition implies a bit-by-bit
copy of an entire physical store (e.g., a memory chip).” In 2013, “SWGDE Best Practices for Mobile Phone
Forensics 2.0” used a definition of a physical acquisition that was identical to that of NIST. In 2014, “Cell
Phone Forensics in a Correctional Setting: Guidebook” was released and published by the Department of
Justice, which described a physical analysis of a mobile device as a “digital forensic examination process that
involves reviewing the data on a digital device by pushing a boot loader into the digital device and dumping
the memory from it.” Then, in 2014, NIST SP 800-101R described a physical acquisition as “extracting and
recording a copy or image of a physical store (e.g., a memory chip).” Clearly, as with the definitions for logical
collection, practitioners and researches interpret the definition of physical collection in various ways. In some

178

instances, the definition is so vague that some software vendors are selling tools along with their own idea of
supporting mobile devices “physically.”

If the NIST and SWGDE literal definition implies that a bit-by-bit copy of a memory chip is used, then
software vendors providing “physical” support for legacy devices, or smart devices using a USB cable, are not
compliant. Providing a bit-by-bit copy of mobile device memory would entail an interaction with the actual
memory store using a tool that can read from block 1 to block n, where n represents the ending block of the
flash memory chip. Inherently, a mobile device, when interacting using a USB cable, will be able to scan and
collect data only in a way that is allowed at the operational level of the mobile device. In simple terms, a
mobile device will enable the examiner to extract what he or she wants and only if the software can
communicate in the way the device can understand. So a change is necessary in how an examiner should
approach a physical examination of a mobile device and then define what is taking place.

The physical collection of a mobile device’s data should imply that direct communication with a device’s
internal data storage is made to collect a representation of the data as it is stored on the actual device flash
memory. This data is a snapshot of the area of the flash memory store that is accessible using specialized tools
and methods. That being said, there are different levels of a physical collection that depend upon the type of
specialized tools that are used. In “Best Practices for Mobile Phone Forensics 2.0,” SWGDE defines these as
“non-invasive” and “invasive” physical collections, which are further explained in the following sections.

Non-Invasive Physical Collections
A non-invasive physical collection, according to SWGDE, “involves a process that provides physical
acquisition of a phone’s data without requiring opening the case of the phone.” With this technique, the
software must be able to communicate with the device to allow for a binary data “dump” of the device. In most
cases, a collection using non-invasive techniques and software will not yield a physical image as defined by
NIST (a bit-by-bit copy of the physical store). However, this method should yield a representation of the data
area targeted by the software’s communication in the format in which it is stored on the device. The data can
then be interpreted and displayed in the software as it was on the device, allowing for advanced analysis
techniques.

An example of a non-invasive method is attaching a flasher box to a device’s USB port or FBUS
connection and dumping the memory from predefined offsets known to contain user information. Another
non-invasive example would be collecting an Android device using tools such as Oxygen Forensic Analyst or
Detective, UFED, and XRY and selecting a physical option for a particular device that is not currently locked,
with Android Debugging enabled. All mentioned tools communicate with the device to obtain partition
information using the Android Debug Bridge (ADB), and they subsequently extract the returned partition
table and partitions without altering the device partitions or operating system structure, which should be
considered non-invasive.

Communication does not always necessitate the loading of a boot loader, as some literature indicates, but
elevated privileges to the device do need to be obtained by the software conducting the physical collection
(such as HEX dump or data dump).

179

These methods, however, target only what is visible by the communication method. Various partitions are
not enumerated by the Android device’s operating systems by design and are not accessed or extracted by the
forensic software. Again, the partitions that are available are extracted and in the format (file system) found
within the actual device, but it is not a bit-by-bit representation of the entire device memory store.

Invasive Physical Collections
An invasive process, according to SWGDE, provides physical acquisition of a phone’s data and requires
disassembly of the phone for access to the circuit board. For example, JTAG (Joint Test Action Group) or
ISP (In-System Programming) allows for communication with a mobile device using the device test access
points (TAPs). JTAG is not a direct read of the actual memory module (flash), but a method to communicate
with the device processor to access the NAND area of the device and obtain a binary file containing a
representation of the partitions on the device. ISP differs from JTAG in that the processor is bypassed and the
connection is made directly to the embedded Multi-Media Controller (eMMC) or embedded multi-chip
package (eMCP) flash memory. Again, if the software is interacting with the device microprocessor, the
microprocessor will dictate what memory stores are available and where to read from. The use of JTAG and
ISP is classified as invasive primarily because the direct interaction with the mobile device circuit board is
necessary when soldering to the TAPs or using specialized connections directly to the circuit board.

Usually, a device is still functional after a JTAG or ISP procedure.

Another example of an invasive process is the removal of the memory chip from the mobile device,
typically referred to as a “chip-off.” Chip-offs are destructive methods, however, and generally the mobile
device will not be functional after using this technique. A chip-off, however, will enable a direct read of the
memory chip using specialized hardware and software. The examiner can create a full binary file of the device
memory flash without limitations typically imposed by a device microprocessor. This physical collection
method would conform to a bit-by-bit representation of the entire device physical store and equates to a
traditional hard drive collection. The resultant data must also be interpreted by software and a represented file
system compiled from the binary file in order to conduct further analysis. As devices progress along with more
security-focused operating systems, the encryption of the device at the file system and file levels will hamper
JTAG, ISP, and chip-off examinations as well.

Collection Pyramid
A “collection pyramid” was developed by Sam Brothers of the U.S. Customs and Border Protection and
described in the SWGDE document “Best Practices for Mobile Phone Forensics 2.0” and also later published
in “Guidelines on Mobile Device Forensics.” This pyramid outlines a tool classification that can be used as a
practitioner’s approach when conducting mobile device examination; it is a departure from merely classifying a
tool as logical and/or physical. Using this approach, the examiner can outline the analysis methods without
identifying the differences between a logical and physical acquisition relative to the device or the data, but
relative to the actual type of analysis and extraction methods used.

180

This ideology traditionally caused confusion in the mobile forensic community. Because of the various
opinions as to what constitutes a logical examination versus a physical examination and the comparison to the
definition imposed by computer forensic examiners and governing bodies of forensic practitioners, the use of
multiple analysis methods is recommended. By describing methods of collection of a mobile device, an
examiner can predict the outcome of using the available forensic tools and also the training and expertise
required for each discipline.

The collection pyramid is visually represented as an analysis ranging from the most invasive and specialized
tool to the least invasive and least specialized tool (see Figure 8-6). The tip of the pyramid, or smallest
represented part, is the most specialized tool, and the largest and base of the pyramid is the least specialized.
These methods are numbered from 1 to 5, with 1 being least specialized and 5 the most specialized. The
following sections present the different levels listed by name, as provided by Brothers, with additional
information to explain better what each will offer to the examiner when conducting each level of analysis.

FIGURE 8-6 Tool classification pyramid (copyright Sam Brothers, 2015)

Level 1: Manual Extraction Manual extraction, or examination, involves capturing stored device information
either by photography or written documentation. Photographing the information would be much more
reliable in legal proceedings and therefore is the preferred method. Conducting a manual examination via the
“commando method” or by “thumb jockeying” the device involves manual manipulation of the device to locate
evidence stored inside. This method involves navigating the mobile device to the user stored areas and
photographing or writing down the content observed in the device’s viewing area. The first mobile
examinations were conducted using the manual examination method, but mobile devices at that time were not
capable of storing the amount of data that can be stored in today’s devices. Conducting a manual examination
of a smart device today is a considerable feat when prompted to document thousands of mobile device text
messages, videos, or images!

Manual extraction may be the most cost-effective, and sometimes the only available, option, but it can be
difficult at times and dangerous in others. If a mobile device is damaged or locked or data is stored in a foreign

181

language, the documentation can be difficult, if not impossible. Manual examinations of a mobile device can
be conducted by examiners without training and with only a digital camera, which involves more people in the
examination process. Manipulating the keys and navigating a foreign device could expose the possibilities of
unintentional data corruption at a later date, and there may be a complete disregard for the preservation of the
data. Tools for conducting manual examinations are further discussed in the “Tools Available” section later in
the chapter.

Level 2: Logical Analysis A logical extraction occurs using a built-in device transfer method (such as USB,
Wi-Fi, IrDA, or Bluetooth) used by the mobile device. A connection is made with the device using a data
transfer method, whereby the software can communicate using device protocols to extract data using
commands comprehended by the mobile device. The data is returned to the software, which can be further
analyzed and reported. This is the type of collection currently offered by most examiners as well as forensic
software vendors.

Level 3: HEX Dumping/JTAG/ISP This level of collection uploads specialized software into the volatile
memory of a mobile device. In doing so, it bypasses built-in security that would typically inhibit access to the
device’s internal memory store. However, devices that have chip-level encryption enabled will still pose
problems for examiners.

This method could be used when conducting an analysis of an iPhone 4. These devices do not allow
access to the internal protected stores that contain protected data (for example, Apple’s built-in e-mail
client) using any of the connection methods and communication described in a logical extraction.

A custom application or package is installed onto the device in an effort to act as the original application,
package, or ROM on the device that contained the security measure. Once this vulnerability has been patched
with the vendor’s own application or package, allowing access to the device that was inhibited by the device
file, the examiner can then access the files using commands and procedures used by the mobile device.
Typically, a raw file system, represented in the format used on the mobile device, is extracted.

A subsection of this portion of the pyramid also belongs to flasher boxes and JTAG methods. Both will be
described in the “Tools Available” section, but to help you understand their placement in this pyramid, they
are briefly described here.

By using the JTAG TAPs in a mobile device, the examiner has access to the flash memory. Using
specialized tools comprising hardware and software, the examiner uses software to communicate via hardware
to the microprocessor of the device that interfaces with the flash storage medium. The examiner accesses the
flash area, circumventing password security, to obtain partition information and user storage areas. Using
JTAG or ISP can be invasive because the device is disassembled and in some instances leads are directly
soldered to the TAPs on the circuit board, but in some instances preconfigured jigs can be used. The output
when using JTAG or ISP is a binary file of the selected partition or memory area.

The output produced by most flasher boxes is represented by what the hardware flashing device has been
configured to output. The output can be in an encrypted format, segmented, or altered (boot loader added to

182

start of image), or it can be a flat binary file. This is truly a hexadecimal representation of the data living on a
mobile device. Limitations to flasher boxes are numerous, ranging from proprietary output to flash area
memory constraints. Data output produced with the use of JTAG or ISP methods offers a better
representation of the data, with little interference with the digital data output—it is the preferred method, but
it can be more physically destructive to the mobile device. The decision to use these devices should be left to
examiners with appropriate training and an understanding of the various formats and implications of using the
tool and its invasive nature. This type of collection not only involves specialized hardware, but also specialized
training and skills.

Level 4: Chip-Off The chip-off examination involves the physical removal of the mobile device flash
memory. Using specialized tools and techniques, the examiner disassembles the device and removes the flash
memory from the circuit board. Once the flash module is removed intact, it is placed into a specialized
component to read memory modules. These memory module adapters are specific to the type of flash memory
and its configuration. A binary file is produced upon reading that must be interpreted by software that
specializes in the decoding and interpretation of this type of file. An examiner who should be conducting
these examinations should be well trained; otherwise, the evidence could be easily compromised. Needless to
say, a chip-off examination is invasive, and once the chip is removed from the device, the chip would need to
be reballed and then reinstalled into the device so it could operate as it had previously. This process is
extremely labor intensive and equally expensive. Generally, once a device has been disassembled at the chip
level, the device is inoperable.

During the removal process of the BGA chip, you must remove the tiny pads that allow for the flow of
input and output communication to the PCB; these must be reattached, which is called reballing.
Reballing involves affixing tiny solder beads to each pad on the memory chip. This is no easy feat, as
some flash memory chips have more than 200 pads! These beads, once affixed, are then reheated
(reworked) to allow them to become permanently attached to the flash memory, which will allow
communication with a chip programmer.

Level 5: Micro Read With this level of examination, the flash memory medium is read by an electron
microscope. This type of examination is not only considered theoretical, but it has never been conducted
publicly on mobile device evidence. The theory involves using an electron microscope to read and count
electrons that occupy a cell on a flash memory chip. If electrons are present, a 1 is represented; if no electrons
are present in the cell, a 0 is represented. This is often referred to as “gating.” After combining the binary data
manually, it can be translated into raw data and interpreted. An example of the work involved to translate the
information after reading from a flash chip is shown in this example:

01001101 01101111 01100010 01101001 01101100 01100101 00100000 01000100 01100101
01110110 01101001 01100011 01100101 00100000 01000110 01101111 01110010 01100101
01101110 01110011 01101001 01100011 01110011 00100000 01100110 01101111 01110010
00100000 01110100 01101111 01100100 01100001 01111001 01110011 00100000 01100101

183

01111000 01100001 01101101 01101001 01101110 01100101 01110010

What is incomprehensible would be the interpretation and decoding of more than 32GB of binary data
from a standard Android device using this technique. Most examiners will never experience this form of
examination and collection, but those who do this will probably not boast of their exploits, since this work
would likely involve matters of national security.

Collection Additions
Although the collection pyramid does capture a vision of classification based upon collection of digital data
from a mobile device with a tool, some additional considerations must be addressed and added to the
continuum. If classifying a tool and a collection, you must consider a few other methods and subsections
involved.

Descriptions of manual examinations using a specific tool or method should include a subset that describes
using imaging (such as a photograph or video) or not using imaging. Suggested additions include manual
extractions, manual with documentation, and manual with photography and documentation. There are
obvious differences between simply pushing buttons and writing down the contents versus pushing buttons
and then photographing the screen.

Pushing buttons on the device and writing down the contents displayed takes no tool training and is very
labor intensive; it should be classified separately from more thorough methods. Methods progressing up the
pyramid would involve manually pressing a device’s buttons and then photographing or creating a video of the
various screens of interest. By using video, the examiner is not only documenting the data on the screen but
also the procedure he or she used. This can help to dispel any allegations of improprieties that may have
occurred during the manual examination.

In the logical classification of the pyramid, a file system extraction should be included for defining a tool
and the mobile device analysis. Some tools do, in fact, perform a logical extraction, but they fail to support the
device file system and should be classified separately. A file system collection will contain data not accessible
by the user as well as data that has been deleted by the user, unlike a traditional logical query. Analyzing a
mobile device file system can be challenging and time consuming, and extensive examiner training is
necessary, which also should be considered in the tool and analysis continuum. Because of the enormous
amount of additional data that can be collected in a file system extraction, it is always the preferred method.
However, most collections by mobile forensic tools and examiners are logical without an attempt to collect the
file system because of a lack of understanding and expertise in the analysis of the resultant collected data.

SWGDE identifies a file system level of collection in “Best Practices for Mobile Phone Forensics 2.0.”

At the pyramid’s HEX Dumping and JTAG collections level, the term “boot loader” is identified as a
method that satisfies a higher level of tool collection and analysis. Because a boot loader is not always needed
to obtain a raw binary dump of a mobile device, a better classification should be used. A new tool and
collection pyramid can be created to indicate not only the types of tools that can offer the type of collection

184

required but also the level of complexity of each tool, as shown in Figure 8-7.

FIGURE 8-7 A clearer representation of both tools and analysis, including portions of SWGDE and the tool
classification pyramid

To understand these new categories, you need to understand boot loaders.

Boot Loaders
A boot loader is code that loads in a runtime environment or operating system. Boot loaders can be used in
nearly all digital devices that have an underlying operating system. With mobile devices, a boot loader can
change depending upon the hardware as well as the device’s service carrier. If the boot loader code becomes
corrupted, the device either cannot be started or will continue to restart over and over—this is referred to as a
“boot loop.”

The use of a boot loader to obtain a physical collection of a mobile device is classified in the “SWGDE
Best Practices for Mobile Phone Forensics 2.0” as a non-invasive physical classification. Considerable
operational differences are involved between using or not using a boot loader. Tool classification should be
further expanded to describe that not all collections of binary data from mobile devices will involve using a
boot loader, and in some instances, altering a device’s boot loader can have dire consequences.

To use a custom boot loader in mobile forensic software, the examiner places the device into a particular
mode—for iOS devices, this is called Device Firmware Update (DFU) mode; most Android devices use a
recovery, download, EDL (Emergency Download), or fast boot mode. This can occur operationally by the
software or hardware intervention, but the examiner typically places the device into this state with a
combination of key presses. Once the device is in the correct mode, the examiner selects the device make and
model, and the software then replaces the device boot loader, unlocks the boot loader, and in some instances

185

of Android replaces the ROM with a custom recovery ROM. The software then begins the process of calling

instruction code to complete the collection of the mobile device’s data store. The customized version of the
boot loader and/or recovery ROM loaded onto the device has been designed to allow full access to the device’s
memory store and additional settings relating to data transfer. With a customized version in place,
communication can occur with the software to obtain unadulterated access to the device.

Typically, on completion of the data collection, if the boot loader or ROM was exchanged, the original
boot loader or ROM is returned to the device. In many cases, the customized boot loader is installed in the
volatile area of the device’s memory and will be released upon restart of the device to remove it. The use of a
custom boot loader or ROM is specific to each device, and if the custom boot loader is used on another
device, corruption of the device boot process can occur and render the device useless. For this reason, a
classification for “physical non-invasive” should include a subset that describes tools and analysis if you are
using a custom boot loader; otherwise, these techniques should be classified as “physical invasive.”

Tools such as Cellebrite UFED Touch 2 use a modified USB cable to place a device into device mode
without requiring a keypress pattern.

Not all binary collections described as “physical non-invasive” have boot loaders or ROM altered to obtain
a hexadecimal dump of the memory store. Some techniques used in mobile forensic tools also allow physical
access to a device memory store by the addition of a code set not available in the device’s original codebase.
The action places a file or files into the temporary space of the device’s logical file system. This code then adds
commands that are not installed by default to be executed to elevate privileges on a mobile device. With
elevated privileges, the software can communicate with the mobile device and obtain access to areas of the
memory store that are typically inaccessible. Once these areas are accessed, the memory storage can be
recovered from the mobile device.

The classification “HEX/JTAG” and even “physical non-invasive” should include these possibilities and
not assume that this classification applies only to tools and collections that use a boot loader to access a device
memory store. This classification should indicate that the collection involves using customized techniques to
enable access to the mobile device memory store that are not accessible ordinarily, because some methods
might be non-invasive to the physical device but invasive to the internal operation. This classification would
apply to boot loaders, rooting software, customized files, and customized ROMs.

Nontraditional Tools
Other tools can be used in many investigations, but because of their limitations or other concerns, they are
considered “nontraditional” tools. Some tools are considered non-forensic, and others are extremely expensive.
Having a thorough understanding of how these tools can be used is important because these tools are often
discussed throughout the digital forensic community. Likewise, in some situations, nontraditional tools may
be the only means of recovering the data.

Manual Examination Tools

186

A manual examination of a mobile device can include photographing a mobile device’s onscreen digital
content using a tripod and a digital camera. The examiner will move from screen to screen, photographing the
various pieces of evidence. This technique can be accomplished without specialized training in digital data
recovery.

For a manual examination, use a digital video camera at the beginning of the work and allow it to run
continuously during the entire process. This entire work can be reviewed for court, final reporting, or
both. Stills from the video can be captured when needed for inclusion in a written report.

Some commercial products enable you to capture images of mobile device evidence. Using these tools, you
can immediately document images or video in associated software for later review and reporting. There are, of
course, limitations to the types of information that can be obtained using these tools, but little to no training
is needed to operate them.

The following solutions are similar and enable the examiner to obtain information from the mobile device
that may not be possible using traditional mobile forensic tools. Also, by using a manual solution, the
examiner can allow for the documentation of the manual manipulation of a mobile device prior to conducting
a traditional examination to show the actual device during testimony or presentation.

• Paraben Project-A-Phone ICD8000 and Paraben Project-A-Phone Flex These camera setups allow for
both HD video and 8-megapixel pictures. The ICD8000 uses a clamping mechanism that can
inadvertently press buttons on the side of the mobile device, including the power button on the right side
of most Android devices, and improper clamping could change settings or power off the device. The
Project-A-Flex does not use a vise but instead uses a mat on which the device can be placed to photograph
the evidence.

• Fernico ZRT3 This tool combines a camera and HD camera along with materials to hold the device and
cameras in place. The device connects directly with software installed onto a PC to capture the
photographs, and it uses technology such as Object Character Recognition (OCR) to translate images
containing text to searchable text within the report. The device includes a mat onto which evidence can be
placed to conduct the manual interrogation of the device.

• Teel Technologies Eclipse 3 Pro This tool is similar to the ZRT3 and combines a camera, mount, and
platform, with a software solution to capture and document the images collected during the manual
examination.

Flasher Boxes
A flasher box is a service tool that is typically used by mobile device technicians to fix a nonresponsive device,
add features, or unlock a device for unrestricted access with any carrier. The tool’s name is derived from the
action that the device is built to perform—it flashes a new version of the device firmware, ROM, OS, or
settings. The flasher box could also be used to add language packs and even to change the serial number of the
mobile device. The altering of a mobile device’s serial number (IMEI [International Mobile Station

187

Equipment Identity] for GSM and ESN/MEID [Electronic Serial Number/Mobile Equipment Identifier]
for CDMA) is illegal, however, and by changing the serial number, some devices can operate on a network
blacklisted by their original serial number. Device manufacturers do not endorse the use of these types of
hardware tools for these reasons.

These hardware devices were never designed for mobile forensics, but they are frequently used, and their
technologies were used to formulate a lot of the current mobile forensic product capabilities. Each flasher box
functions, programs, and repairs a specific device—sometimes a specific model of mobile device. Because of
the various differences in device hardware and programming, many hardware flashing tools are available to
fulfill this need. Not only are multiple boxes available, but these boxes come with multiple cables. Typically,
each mobile device must have its own specific cable, and hundreds of cables are available for these boxes.

Because the devices are developed to repair and alter a mobile device’s software, the software used to
control the flasher box can read and write to the attached device. Because of this ability, most examiners will
not use a flasher box to conduct a physical examination of a mobile device; in addition, there is little to no
documentation regarding how to use the hardware and software. This type of analysis should be classified as
invasive, and the examiner needs specialized training before using this technique.

A flasher box will communicate with the mobile device using serial and USB protocols to recover areas of
mapped memory. Memory offsets must be known if not identified by the software to recover the area where
user data is stored. The resultant output is a binary file that often must be manually parsed and interpreted to
locate evidence artifacts. In some cases, the data that is output is encrypted in a format known only to the
flasher software. In this way, the flasher box manufacturers hide methods and procedures from other flasher
box manufacturers. This limitation makes it difficult to examine the produced file. Table 8-2 represents some
of the common flasher boxes and a general idea of the device support.

TABLE 8-2 Common Flasher Boxes Used in Mobile Forensic Device Collections

JTAG

188

The Joint European Test Action Group (JETAG) was formed in 1985 in Europe as a standard for boundary-
scan testing. Boundary scanning in the context of mobile devices efficiently tests connections on the printed
circuit board in an effort to program or debug the device without needing physical access to the flash. In 1986,
members from North America joined, and the group became the Joint Test Action Group (JTAG).

Between 1986 and 1988, the group proposed and published a series of proposals to the IEEE Testability
Bus Standards Committee (P1149) with the final JTAG Version 2.0 being accepted. This standard (IEEE
Std. 1149.1) was accepted and published in February 1990 and has been updated several times with the
current specification identified as IEEE Std. 1149.1-2013. At its core, JTAG is the standardization of TAPs
and boundary-scanning architecture.

The word “JTAG” has a variety of meanings, from directly programming systems to debugging others,
from Xbox hacking to forensics. In the context of this book, JTAG is described as the process of setting
and reading values on the test pins accessible on the PCB of the mobile device. By using the TAPs,
communication can occur via the boundary-scan path, interfacing with the Boundary Scan Registers
(BSR) that interface with components on the PCB. These components can be programmed or read
without removing, independently reading, or programming each separately.

In order for communication to occur with components, IEEE Std. 1149.1 indicates at a minimum that
three input connection ports and one output connection port must be on a PCB. Furthermore, the TAP is a
multipurpose port that enables access to test support functions built into a component, and the standard
outlines that the TAP shall include TCK (Test Clock), TMS (Test Mode Select), TDI (Test Data In), and
TDO (Test Data Out) as connections. An optional input port, TRST (Test Reset), can also be used and is
covered in the IEEE document. A basic understanding of each TAP is outlined next in an effort to help you
visualize what is taking place when conducting a collection using JTAG, which is also represented in Figure
8-8.

FIGURE 8-8 A simplistic communication model from a software debugger/programmer to and from a
mobile device TAP group

• TCK (Test Clock) This port enables the synchronization of the internal state of the device between
components. Devices are made of many components that could be using different forms of timing. The

189

TCK maintains a standard across the components during a test.

• TMS (Test Mode Select) This port controls the TAP controller and relies on the TCK to determine the
state of the process.

• TDI (Test Data In) This port accepts the data from the software debugger/programmer and sends it to
the target.

• TDO (Test Data Out) This port accepts the data from the target and sends it to the
debugger/programmer software.

• TRST (Test Reset) This port is optional but can be used to reset the TAP.

The TAPs for mobile devices are not readily documented, and manufacturers are making it more difficult
to locate them on the device PCB. Some manufacturers, such as BlackBerry, have gone to massive lengths to
hide the TAPs or place them where any access destroys the device. Some software and hardware vendors do
have the devices that they support listed within their software showing the TAP locations, and some software
can determine the correct TAPs automatically.

JTAG hardware for mobile devices is just another type of flasher box, but the point of communication and
interaction is different from that of the typical box. The difference is the fact that serial communication occurs
to and from TAPs located on the mobile device PCB, unlike most flasher boxes that communicate using the
traditional USB connector pin-outs on the device.

Some flasher boxes used for Nokia models communicate using the Fast Bus (FBUS) or Meter-Bus (M-
Bus) connectors on the PCB, which are early forms of TAPs. These connections were exposed and
available under the battery, as shown in Figure 8-9.

190

FIGURE 8-9 FBUS connections on a Nokia 1280

JTAG hardware communications occur from the software to the hardware box through a cable or wire
attached to the TAPs on the mobile device PCB. The wires to the device TAPs must be in contact for
communication to occur. You must locate the TAPs and determine the type of test port in use. Because some
JTAG boxes do not auto-detect the port type, this process can be time consuming. To determine to correct
test port, you can use a secondary tool to scan the TAPs and identify TCK, TMS, TDI, TDO, and TRST.
One such tool, the JTAG Pin Finder from 100RandomTasks, enables the examiner to attach wiring from the
JTAG Pin Finder to the TAPs on the PCB and use associated scanning software to determine the correct
ports. Once the correct ports are identified, the wire can be attached to the JTAG hardware to conduct a
collection. Both the scanning of the port and subsequent collection involves soldering the wire to the
appropriate TAP, as shown in Figure 8-10. However, in some instances, special Molex connectors can be
used that snap directly onto a female Molex connector located on the mobile device PCB (Figure 8-11).
Using a Molex connection would mean there is no need to solder the wires directly to the TAPs on the device
PCB, which can be advantageous when attempting to determine the level of invasiveness that will be

191

acceptable.

FIGURE 8-10 JTAG Pin Finder for scanning JTAG TAPs

FIGURE 8-11 Molex connector attached to a Samsung S3 JTAG TAP

192

JTAG software undergoes communication with the mobile device, and the examiner identifies the type of
data to collect. When used correctly, the software can bypass all security of a mobile device and obtain entire
device images in the file system format that exists in the flash memory. The JTAG software does not interpret
the data to allow for a forensic analysis and the rebuilding of the file system, but several tools such as
Cellebrite Physical Analyzer, MSAB XRY, and Oxygen Forensic Detective can import and analyze such
images obtained from a JTAG collection.

Again, like using flasher software, JTAG hardware and software was developed to flash, alter, and repair a
mobile device. It was never the intention of the JTAG hardware and software designers to offer features that
would be used by mobile forensics examiners. Because of this, examiners must be properly trained in using
these tools. All associated JTAG software can destroy evidence if not used correctly in a controlled
environment, but when used properly, it can yield magnificent results. Table 8-3 lists several JTAG hardware
and software combinations with supported device information.

TABLE 8-3 Commonly Used JTAG Boxes in Mobile Device Collections

ISP
In-System Programing (ISP) is a method similar to JTAG, but as mentioned previously, using the ISP
technique will communicate directly with the flash memory and not through the processor. As with JTAG,
the TAPs will be utilized to connect to the PCB and then to a hardware device to conduct the
communication directly to the eMMC/eMCP and transfer the data to the software interface. The benefit of
using ISP rather than JTAG is there is no dependence on the processor of the device—only the flash memory.
Acquisition is not limited to only mobile devices but anything that is utilizing eMMC or eMCP flash
memory, if the TAPs can be located and accessed. The TAPs identified by flash manufacturer Kingston
Solutions, Inc., in the document “Embedded MultiMedia Card EMMC04G-M627-A01,” that can be
utilized for ISP are the CMD, DATA0, CLK, VCC, VCCQ, and GRD. Listed in Table 8-4 are some
hardware devices commonly used for ISP collection.

TABLE 8-4 Commonly Used ISP Boxes in Mobile Device Collections

193

Chip-Off
The removal of a device’s flash memory module and analyzing in a chip-off procedure is quite labor intensive
in both the removal of the actual embedded flash memory chip and reading of the stored data. Because of the
various differences between phone models and storage types, which could range from Thin Small Outline
Package (TSOP) to Fine-pitch Ball Grid Array (FBGA), the purchase of the equipment to read the
information from the embedded chips and the time investment required can be expensive. However,
conducting the imaging of the memory chip using this method is the closest to the bit-by-bit collection a
forensic examiner would expect and is similar to imaging a computer’s hard drive.

To perform a collection using the chip-off method requires that the examiner have specialized skills in
disassembly of mobile devices, repairing of mobile devices, desoldering and soldering of fine electrical
components, and forensic procedures. This technique is commonly referred to in electronics as “rework.”
Depending on the type of chip, TSOP or FBGA, the removal and preparation of the memory chip will
require different skills and time investment.

For TSOP chips, the pins that attach the chip to the PCB are exposed and can be easily removed by
heating the solder joints. BGA chips must be heated to the correct temperature to remove the solder joints
and adhesives and then be carefully removed from the PCB because their solder joints are not accessible along
the exterior, as are TSOP chips. Both chips must be removed with extreme caution, because they cannot be
reattached to the mobile device after removal. Upon successful removal, both TSOP and BGA chips must be
thoroughly cleaned, examined, and inspected. For BGA chips, once they have been examined, they must also
be reballed.

Once properly prepared, both TSOP and BGA chips can then be attached to the appropriate adapter and
read in the designated chip programmer.

TSOP chips are not as common as BGA chips in today’s devices and are used in mobile devices on
limited runs, prototypes, and smaller manufacturers. BGA chips allow for larger data capacities and faster
input and output (I/O).

A chip programmer tool will allow for the collection of the raw data from the memory chip. The
programmer itself can also be a detriment, much like a flasher box or JTAG box, because it can write to and
even erase a memory chip if it’s used incorrectly. Examiners must follow proper procedures when using such
equipment. Also, typically, more than one programmer should be available to an examiner because there are
many different types of embedded flash memory types with the many mobile devices, adding even more

194

complexity. In addition, prior to placement in the chip programmer, the memory chips are affixed to unique
adapters, and each of these can cost upwards of $1800! These adapters must be compatible with the memory
chip type—with the many differences in BGA-style chips, this can become extremely expensive.

Once the chip has been placed into the correct adapter and into the chip programmer, the examiner must
select the identical chip and model as printed on the memory chip to begin the reading process.

The exact chip manufacturer and chip module must be selected and supported by the chip programmer.
This step helps to identify unique preferences, algorithms, and settings that might be needed to perform a
collection.

The analysis of the file produced by reading the memory chip is often the most tedious part of the process.
Because a mobile device memory chip is based on flash memory (such as NOR or NAND) chips, the inherent
advantage of I/O when compared to a traditional spinning hard drive might be the biggest detriment to
forensic examination at the chip level. NOR flash memory is older technology that allows for high read
performance, but it does not allow for high capacities. NAND flash memory allows for both faster
programming and erases, but it can consume more power because of its higher functioning and complicated
I/O interface. To understand some of the problems that could be encountered, you need a better
understanding of flash storage.

How Flash Memory Works

Flash memory in NAND arrays is stored in a series of blocks, which are the smallest erasable entities on a
NAND memory chip. Within these blocks are pages, which are the smallest programmable entities on a
flash chip. Pages include sectors, or chunks. Pages contain a data area and an area for memory
management called the out-of-band (OOB) data. There is OOB data for each sector or chunk within
each page that can contain metadata specific to the page’s status (such as valid, invalid, or bad). The
OOB area can also contain metadata on the associated page and block and does not have to be
immediately following the sector (adjacent), but all can be at the end of the page (separate).

NAND memory chips do not last forever: their lifespans are measured according to the number of
erases that occur. Typically, the time it takes to reach the maximum number of erases that can occur
without memory chip failure far exceeds the lifetime of the mobile device. This measurement is very
important with regard to the way the data is often written to the flash memory. Data is written to a flash
cell as 1’s and 0’s: 1 represents empty and 0 represents full. So if data was written to a block, a 1 can be
replaced by a 0, but a 0 can never be changed to a 1 to alter the data. The entire block must be written to
another block, and the previous block is erased during another background process. This technique is a
function of the flash memory and is typically called “wear-leveling.”

Wear-leveling is a way for flash memory to ensure that areas of memory are not exceeding the
number of erases too quickly—in other words, it “evens out” the erases over the surface of the flash chip.
In turn, when a file is updated on the flash, because it is not possible to program the current page, it is
completely rewritten to another location (a page, pages, a block, or blocks). This location does not even

195

have to be in the same block or blocks. During this process, the OOB area is marked as active for the
new page and the old page is marked as inactive. Another flash mechanism, called “garbage collection,” is
a function of reclaiming entire blocks if the number of inactive pages exceeds a given threshold. If this
occurs, the entire active page or pages are written to a new block, and the entire old block is then erased
to allow for new data to be written and become available for new data. These processes in turn extend the
life of the flash memory.

Various types of traditional file systems (such as FAT, FAT32, VFAT, HFS+, EXT, EXT3, EXT4,
and NTFS) and actual flash file systems (such as JAFFS2, YAFFS, and UFS) can be observed in the data
from a chip-off collection. The difference between the two types is whether or not the file system needs a
transition layer or whether it uses a system of databases to manage flash memory. For traditional file
systems, there must be a Flash Translation Layer (FTL) that will operate as the interpreter for the file
system and allow it to act as a block file system and emulate a flash file system. Different FTL interfaces
use different specifications (such as MMC, eMMC, MSD, and ATA). As data is written to various areas
of the flash to conduct wear-leveling and other procedures, the FTL presents the information to the
traditional file system as though it had been written to a static location, so the traditional file system
operates normally. On the other hand, a flash file system handles all the wear-leveling and creates its own
data structures without the need of an FTL. These data structures are generally mounted into RAM and
will contain flash information such as bad blocks, block erases, and pointers to files for the mobile device.
This structure is written to the flash upon shutdown and then rewritten into RAM on startup.

When you put together the ways in which a NAND chip’s memory is constructed—the built-in structures,
wear-leveling, and garbage collection processes—and the ways other various file system types are constructed,
it is no wonder that reconstructing the data from a chip-off examination is so difficult. Data collected by a
chip-off examination can look disjointed and spread across the entire image. When this type of data,
commonly referred to as “non-contiguous” data, is used, it makes recovering the data extremely time intensive
on some mobile device file systems.

It’s important to recognize the way flash memory moves data on the chip surface to prolong the life of the
medium. With the function of traditional file systems and the flash translation layer, along with flash file
systems, the fact that data is often written multiple times across the medium provides more opportunities for
the examiner to recover forensic artifacts.

Traditional Tool Matrix
Table 8-5 indicates logical, file system, physical (non-invasive and invasive), and limited support features of
several forensic tools. Limited support means only a small number of devices (such as Android and iOS only).
For brevity, only the most popular tools currently in use are listed. NIST maintains a large list of forensic tools
on its web site, including most mobile device forensics tools on the market (www.nist.gov/itl/ssd/software-
quality-group/computer-forensics-tool-testing-program-cftt/cftt-technical).

TABLE 8-5 Traditional Mobile Device Forensic Tool Classification

196

http://www.nist.gov/itl/ssd/software-quality-group/computer-forensics-tool-testing-program-cftt/cftt-technical

Tools Available
A plethora of mobile forensic solutions are available today, from open source software, to freeware, to
commercial tools. As previously discussed, the tools used in the forensic laboratory and in the field are those
that can be used on the majority of devices observed in the area of operations. The tools discussed in the
following sections cover the majority of devices, have the most robust feature set, and complement one
another. These tools will provide the capability and versatility you need when you’re conducting mobile
forensic examinations.

Open Source Tools
Open source tools allow for the viewing, changing, altering, and sharing of the source code by anyone. Any
restrictions depend upon the licensing that accompanies the distribution. Most open source mobile device
forensic tools are geared toward smart devices, iOS, and Androids. BitPim and TULP2G, for example,
handle feature phones, but both tools are no longer being updated.

Let’s begin by discussing the actual usage and philosophy of open source tools. There has always been a rift
in the forensic community regarding the use of open source tools versus commercial and freeware (closed
source) tools. In 2003, Brian Carrier published “Open Source Digital Forensics Tools: The Legal Argument,”
which discusses the forensic community debate that is still ongoing today and hinges on the integrity and
reliability of the data and support for the software. There is no clear winner in this debate. Many examiners
believe strongly one way or the other and cannot be swayed no matter the argument. However, both types of
software can coexist in today’s mobile device forensic toolkit.

Using an open source tool for the collection of a mobile device can be of great benefit because the
collection of the device is 100-percent verifiable and transparent. That is difficult to say about a closed
software solution, which is often an Achilles heel for the examiner who has no idea how the tool extracted the
data from the mobile device—it just simply happened.

197

At times, the use of open source tools is advisable simply because the mobile device image creation can be
closely observed. Because device image creation is often challenged, having the source code to gather
specific intelligence as to what is “under the hood” can help you dispel any allegations to discredit the
image creation.

iOS Devices
iOS devices can be examined using several open source tools that work for both Windows and Linux as well.
These tools all use the Apple Backup service to initiate a local backup of the device, just as a user would if
using iTunes. Some tools also use additional Apple services during the collection of mobile device data. All of
the tools covered in this section allow access to the device without enabled security—that is, the passcode for
the handset as well as the iTunes password must be known, if enabled.

Inflatable Donkey This software is used to extract iCloud backups up to and including iOS 11. This
software does not parse and decode the software, but it downloads the specified databases contained in the
user’s iCloud account. These databases can then be viewed in many commercially available tools as well as
some freeware. As of November 2017, development of the code ceased, possibly (rumored so) because of
pressure by Apple on the availability and usage for nefarious purposes. The codebase is a fork of the iloot code
that many current commercial tools’ iCloud extraction is based on. The most current build is available on
GitHub (https://github.com/horrorho/InflatableDonkey).

The following features are supported for extraction:

• SMS/iMessage

• Call history

• Address book

• Notes

• Media (video/images)

• Voicemail

Santoku Santoku is a suite of tools used for mobile device forensic investigations, mobile malware analysis,
and mobile security assessment, all rolled into one interface using a Linux virtual machine (VM). Santoku has
not been updated since September 2014 and will not work well with newer devices for both iOS and Android.
However, there are tools within the kit that will offer assistance with mobile security testing and other app
analysis methods. Santoku can be added to a Mac partition to dual-boot, or to use the preferred method and
only suggested method for Windows, create a virtual machine.

The Santoku web site offers online documentation that walks an examiner through the installation of the
materials and setup for both Mac and Windows machines. Using the tool, however, requires a lot from the
examiner: to use most of the tools in the suite, the examiner must have knowledge of the Linux command
line. Because of the degree of user interaction required, use of this tool is not recommended for those not
familiar with command line–based programming. The suite of tools is compiled and all tools are installed,

198

https://github.com/horrorho/InflatableDonkey

which allows for easy setup and usage, but, as indicated, it can be intimidating.

Both iOS and Android device collections are supported in the Santoku interface. (Android collection is
discussed next.) For iOS devices, Santoku can collect, parse, and carve data. Collections occur via an iOS
backup, using an open source library called libimobiledevice, shown in Figure 8-12, and then use iPhone
Backup Analyzer to conduct the parsing of the iOS backup. iPhone Backup Analyzer is the previous version
of iPBA2.

FIGURE 8-12 Using the Santoku interface to start libimobiledevice to create an iOS backup

Additional tools for parsing device data also are installed on the virtual machine. Both Scalpel and The
Sleuth Kit are included (https://github.com/sleuthkit), which can be used to investigate the file system and
conduct data carving methods. Both tools are also command line tools but can allow for analysis of the file
system to locate files by type, create a timeline based on identified files, and check hashes of files against
known hash libraries and custom libraries.

Android
Many more open source tools are available for Android devices, probably because Android source code uses
some open source language and access to the Android development SDK is available online
(http://developer.android.com). Because of the variety of devices on which the Android OS operates and
variants of firmware on top of the various builds of the operating system, open source tools are sometimes
more reliable for the collection of the device data. Quick code changes and frequent releases, along with high
community involvement in addressing specific problems, also make open source tools popular. These frequent
updates and code modifications are necessitated by the openness of the Android device OS. If a carrier uses a
specific codebase or the device does not operate as the user wants, the user can change it! The “modding”
community for Android is larger than any other mobile device community, with a mission to make the phone
do what they want. This, in turn, offers open source developers looking to collect data, instead of change data,
an opportunity to use source code already produced in an entirely different way. The following sections cover
some of the tools that are used frequently in the forensic community.

Santoku As mentioned, Santoku is a Linux-configured VM and is a self-contained mobile forensic, mobile

199

https://github.com/sleuthkit
http://developer.android.com

security, and mobile malware suite of tools. For Android devices, many more options are built into the
application. For basic logical extractions, AFLogical Open Source Edition (OSE), developed by ViaForensics
(which changed to NowSecure in 2015), is included in the Santoku edition. This tool is not longer updated
and many scripts are outdated for extraction and parsing. I mention this tool simply for educational historical
purposes.

Also included in Santoku are developmental tools that can be used to obtain a non-invasive physical device
file system by using exploits such as Odin, Heimdall, and built-in fastboot methods. Note that these methods
are extremely risky when they’re used without proper training and guidance and can have catastrophic
consequences to the mobile device data and the device itself. Santoku also contains several tools that enable
the analysis of mobile device malware, including Androguard and Apktool to decompile Android application
files, along with versions of Wireshark that can assist with network analysis of Android applications during
dynamic malware analysis. Again, this virtual environment is not for examiners just starting out in mobile
forensics, because it requires that the user interact with command line utilities.

All the tools that have been compiled under the Santoku environments are available for native installation
and do not need to be run under the prebuilt environment. However, having the system already set up and
configured is a plus, especially since control of the built-in applications, device collection, and data analysis
often must be configured to run correctly.

Android Backup Toolkit The Android Backup Toolkit (https://sourceforge.net/projects/android-backup-
toolkit/) is a suite of tools, including some that were developed by Nikolay Elenkov, who contributed to
Santoku tools, for the backup and restoration of Android backup files.

Within the Android Backup Toolkit is the android-backup-extractor, which enables not only the
extraction of the Android device using ADB but also deflates the backup into a tar (tape archive) file. Once
the backup is converted to a tar file, the examiner can view and open the database files of applications and
other files using freely available database browsers and file viewers.

A second application within the toolkit is the no-adb-backup-lister. As you should be aware, an app
developer can place a flag ("FALSE") in the manifest file for the application. This indicates that the database
files will not be included when a backup is initiated. This information can be helpful in explaining why a tool
did not extract information from an installed application. WhatsApp and Facebook Messenger are prefect
examples of the developer using this flag.

A third tool bundled in the toolkit is android-timestamp-keeper. Unbeknownst to many examiners, and
tool developers as well, is the fact that MTP mode, when extracting files from the SD card (internal/external),
will alter the date/time of the files. Using the android-timestamp-keeper script will enable the modified time
of the mounted partition files to be backed up and restored correctly.

ANDROPHSY ANDROPHSY (https://github.com/scorelab/ANDROPHSY) is a tool set that runs on
Linux Ubuntu, much like Santoku, that utilizes several different dependencies including Java, Android SDK
with Eclipse, and MySQL.

This tool set was developed as a forensic tool that contains case and evidence management, mobile device
acquisition (logical and physical), analysis, and reporting. The software was first developed in 2015 and has

200

https://sourceforge.net/projects/android-backup-toolkit/
https://github.com/scorelab/ANDROPHSY

not been updated. It can provide logical extraction of current devices but does not provide exploits above
Android 4x, per the commitments on GitHub. This tool will enable logical extractions of current Android
devices, however, as long as the current version of ADB is obtained and utilized.

Take care when running these tools, because some run directly on the device and may cause undesirable
effects, especially if you’re processing evidence. It is important that examiners test and become familiar
with the underlying code within each of the modules.

BlackBerry: MagicBerry
MagicBerry is an open source tool (https://code.google.com/p/magicberry/) that allows for the parsing of both
IPD and BBB files, which are created for data backup using BlackBerry Desktop Manager software. Newer
backups that are produced by BlackBerry Link software are not supported by the MagicBerry code or any
open source tools. The MagicBerry compile program can be downloaded from the MagicBerry web site
(http://menastep.com/pages/magicberry.php). The software supports the parsing of the IPD and BBB file to
extract several types of user data, including SMS, contacts, call logs, service book, tasks, memos, calendar, and
media (images and audio). The information can then be extracted and exported in various formats. This
software was not created with the forensic examiner in mind, but it does enable the recovery and parsing for
presentation. The MagicBerry software has not been updated for several years, and with the change in format
along with encryption, this software appears to be at the end of its life.

Freeware Tools
Freeware is software that is essentially free to use, but the source code is often not available. Most freeware
code cannot be modified by the user, viewed by the community, or updated without the direct involvement of
the freeware project software development team. Some of the following tools do have open source
components, however.

iBackup Viewer
iBackup Viewer (www.imactools.com/iphonebackupviewer/) is a freeware tool that allows for data extraction
and offers some reporting capabilities. The free version does not support the decryption of encrypted backups,
though the company offers this in its paid version. iBackup Viewer supports devices up to and including iOS
11. The data that is parsed and shown in the interface includes the following:

• Contacts

• Call history

• SMS/iMessage

• Calendar

• Notes

• Voice memos

• Internet history (bookmarks, history)

201

https://code.google.com/p/magicberry/
http://menastep.com/pages/magicberry.php
http://www.imactools.com/iphonebackupviewer/

• Media (phones/videos)

• App data

• Filesystem view

• WhatsApp messages

iBackup Viewer also enables the decoding and viewing of the iOS property lists (binary and XML).

iFunbox
iFunbox (https://i-funbox.en.softonic.com/) is a freeware tool for iOS devices. Apple iTunes must be installed
on the device that is running iFunbox because the software uses Apple’s device services and device drivers to
communicate with the software. iFunbox enables access to the iOS device applications and media area for all
iOS devices, and with devices prior to iOS 8, it enables access to the raw file system. If an iOS 8 or later
device has been jailbroken, a raw file system is also available. This tool is especially useful for gathering the file
system data to be examined later using another forensic tool. iFunbox does not conduct any analysis of the
device contents; it simply enables the internal contents to be displayed and copied to a storage location
without the use of iTunes. iFunbox is also very useful if iTunes cannot recognize the device to conduct a
backup. This software is not a standard forensic tool and should be used only after testing and validating the
processes used by its communication. All iOS devices are supported, and access to the device and its file
system are available without a jailbreak. iFunbox’s last update was in March 2017, which enabled support for
the iOS 10 file system changes within the iTunes backup files.

Commercial Tools
A commercial tool is a closed source application that is available for purchase. Commercial tools covered in the
following sections contribute both to the collection and the analysis of mobile devices in a single solution. A
lot of commercial tools that can be used for mobile device forensics perform several tasks, although an
examiner might need to use a second tool to complete the analysis if a particular feature is not available. (This
was discussed earlier in the chapter as a basis for a multitool approach to mobile forensics.) An example would
be the collection and viewing of property lists from an iOS device. One tool may collect the files, including
plist files, but these files cannot be viewed within the application, so a second tool would have to be used for
that. The commercial tools discussed here can also be used generally as a single solution if multiple tools
cannot be purchased based upon the supported devices and feature set.

The tools discussed are those that I am well versed with and have personally relied upon for both
professional and research collections. The following information is not intended to outline how the tools
should be used, provide guidelines on collections using the tools, or describe specific instructions in the
analysis of mobile device data. These sections provide an overview of the tools, their features, and their
general use for mobile device forensics. Also, the devices are listed alphabetically, not in order of
preference. These tools will also be used throughout the processing, artifact finding, and analysis
discussions within this book.

202

https://i-funbox.en.softonic.com/

Cellebrite
Cellebrite (www.cellebrite.com/en/home/), located in Petah Tikva, Israel, produces several tools—UFED
4PC (Logical and Ultimate), UFED Touch 2 (Logical and Ultimate), and (Logical and Physical) Analyzer
software—for the collection and analysis of mobile devices. The UFED 4PC, UFED Touch 2, and Physical
Analyzer software perform differently depending upon the version that the examiner is using. If the examiner
is using the Logical version of both the UFED 4PC and Touch 2, the collection support is for UICC
(Universal Integrated Circuit Card), feature phones (GSM/CDMA), smart devices, and mass storage devices.
The collected data types are logical only, without file system support. If the examiner is using the Ultimate
version of the UFED 4PC or Touch 2, logical, logical file system, non-invasive, and invasive physical
collections are possible. Both the UFED 4PC and Touch 2 Ultimate solutions come with the Physical
Analyzer (PA) software, which is used to conduct the decoding and analysis of the collected data from either
tool.

The PA software enables importing and decoding of mobile device images from JTAG, chip-off, and GPS
devices, and it can decode and parse collected images created using the UFED 4PC and Touch 2 Ultimate.
PA software also includes visualization of timelines, link analysis, communication analysis, malware analysis,
and watch lists. PA can search globally using strings, text, proprietary device formats, regular expressions, and
many other data types across the entire device image and can conduct data carving across the device image to
uncover additional data from unallocated and logical file system areas. Custom scripting is via Python, and a
built-in shell and plug-in feature are available. PA also has integrated malware scanning using Bitdefender.

Malware analysis using one vendor’s product can be limited, because this type of signature analysis can be
easily duped by malware developers. It would be much more prudent to scan the evidence using several
types of malware-scanning software to maximize signature analysis.

MSAB
MSAB (www.msab.com) produces several mobile forensic products to include XRY and XAMN. The
company is based in Stockholm, Sweden, and develops mobile forensic software to include XRY, XAMN, and
XEC. XRY, the collection product, is sold as part of a modular suite, much like the tools from Cellebrite.
They types of extractions you will be able to perform are based upon what modules are included in your
version of XRY (Logical, Physical, or Cloud). MSAB takes it a step further, however, by including modules
within modules!

XRY is divided into two types of products: XRY Logical and XRY Physical, and these divided into other
modules. XRY Logical enables the user to conduct quick extractions (of iTunes backup, Android backup,
Android Agent) and is geared toward “pump-and-dump” examinations. The XRY Physical add-on to XRY
Logical enables the user to conduct password bypass of some Android devices, on-board memory chip reads,
and other advanced mobile forensic tasks. If a user wants to extract data from the Cloud or from Chinese
devices, for example, he or she would need to purchase the additional license.

XAMN is similar to Cellebrite Physical Analyzer and enables the user to look into the actual extraction

203

http://www.cellebrite.com/en/home/
http://www.msab.com

from XRY for analysis as well as get into the hex level of binary physical extractions. The product is also
divided into modules, called Spotlight, Elements, and Horizon, that are available via licensing.

XEC is the new module focused at centralized storage, control of extractions, administrator rights, and
control of workflow. XEC is not included with the purchase of XRY or XAMN and contains additional
modules: Director, Export, and Express. Each module in XEC is designed for the required workflow for
administration.

Oxygen Forensics, Inc.
Oxygen Forensics (www.oxygen-forensic.com/en/) is based in Alexandria, Virginia, and develops both
Oxygen Forensic Analyst (OFA) and Oxygen Forensic Detective (OFD). Both applications support the
collection of UICC and legacy CDMA/GSM devices along with smart devices. Logical, logical file system,
non-invasive, and invasive methods are supported.

Images from other tools such as the UFED series, Lantern, and XRY can be imported into both OFA and
OFD to analyze the information further. Analytics, password analysis, malware analysis, and mobile app
support are available within Oxygen Forensics software as well, making these applications good choices for
examiners gathering group intelligence. File carving as well as deleted data and file searching over multiple
images is also a supported feature.

Support of JTAG images from Android devices can be parsed for valuable user data within OFA along
with a powerful SQLite database viewer. Oxygen Forensic Detective also contains a tool (Oxygen Forensic
Cloud Extractor) to obtain information from cloud services to include Windows Phone, iOS, Android
devices, and today’s most popular apps such as WhatsApp, Dropbox, Twitter, Facebook, Instagram, and
many more. All data recovered from any mobile device via the Cloud or directly from the device can be
visually represented within a timeline, social graph, and aggregated view, along with a native user data view.
Oxygen Forensic Detective also supports today’s most popular recreational drones for extraction along with
decoding, parsing, and mapping.

Magnet Forensics
Magnet Forensics (www.magnetforensics.com), located in Quebec, Canada, is the newest company in the
mobile forensics world. The company focuses primarily on Internet artifact recovery and introduced Internet
Evidence Finder (IEF) as a supplemental tool for computer forensic examinations. The tool was designed for
computer examiners to find Internet evidence quickly—something that’s often lacking in regular computer
forensic tools such as FTK and EnCase. Banking on the explosion of mobile device forensic evidence, Magnet
first gave away a free extraction tool for mobile devices. The output produced from the tool was then analyzed
in IEF.

Recently, Magnet released a forensic tool called AXIOM. AXIOM is an upgrade from IEF, and allows for
the extraction and analysis of mobile device data from the most popular smart devices, plus the import of file
systems from other tools and binary images produced by invasive and non-invasive extractions (such as chip-
off, JTAG/ISP). AXIOM recently upgraded the product to include cloud data extraction from within the
interface. AXIOM enables the concurrent examination of data from computers, mobile devices, and the
Cloud within the interface.

204

http://www.oxygen-forensic.com/en/
http://www.magnetforensics.com

Chapter Summary
The mobile forensic examiner must have a critical understanding of the different types of collections and what
can be collected using each method, and at what level, for success. This becomes clear when considering the
multitude of tools that are available. Although tools may indicate the ability for logical collections of
thousands of devices, upon closer inspection they often do not support a logical file system collection. This
limitation can be a detriment when requested to unearth additional data from the mobile device that might be
contained only in the mobile device file system. Being prudent in what a mobile forensic tool can accomplish
and knowing its limitations before making a purchase or considering it for the toolbox are important.
Understand your mission and choose the appropriate tool to accomplish it, but also reflect on what might be
needed later—such as file system or partition collection. Remember that doing one collection at the onset of
the investigation is preferred instead of doing multiple collections because of tool limitations.

The tool classification outlined by NIST is only a guideline, and the recommendations outlined in this
chapter should be considered in the same way. Obtaining a device file system is paramount, and a subset of
logical examinations that enable obtaining a file system should be included. Additionally, HEX and JTAG
should be more clearly defined, as listed by SWGDE, in declaring non-invasive and invasive methods.
Furthermore, the terms “non-invasive” and “invasive,” as defined by SWGDE, should not describe only
physical methods, as collecting data by means of removal of the device coverings and internal components, but
they should also reflect the exchange and replacement of internal software ROMs. Performing a replacement
and exchange of a portion of the device operating system to circumvent security and permissions to gain a
physical binary image can be just as invasive as performing a chip-off, JTAG, or ISP procedure.

What is clear in the tool classification pyramid and in the text is the fact the progression up to the top of
the pyramid should be directly related both to the technical training and the knowledge needed to perform the
analysis. What is also apparent in the tool progression pyramid is the relational size of each level, which can
also visually represent the number of examiners conducting the specific types of examination. In addition, the
need for training as the examiner climbs to the top is also important. For an examiner to be successful at the
level of chip-off, for example, he or she must undergo a sufficient amount of training and have sufficient
knowledge in the area of device disassembly, flash memory physical architecture, flash memory internal
architecture, and digital file systems. Without a level of competency that matches the level of examination, the
examiner’s success rate will be unimpressive, while the possibility of catastrophe is increased.

Many tools can be used in a mobile forensic examination, and the use of multiple tools is a necessity. Tools
that can be verified and validated more easily include open source tools that enable the examiner to peer into
the actual code to verify what is happening while creating an image or parsing the data. The use of open
source tools has always been controversial, but usually the controversy is encouraged by commercial tool
vendors. As long as the tool can be verified and validated, be it open source, freeware, or closed source, it will
be usable in mobile device examinations and will stand up to court challenges. Use of commercial tools is a
necessity, however, because these tools cover more devices than typical open source tools. This is primarily due
to the concentration of the open source tool on a single operating system and sometimes a single device. This
is not due to a lack of understanding in the open source community, but due to a particular developer or group
concentrating on the device subset that they actually own! Development time costs money, and commercial

205

tools will cover more device profiles and file systems.

Several tools were discussed at the end of the chapter that will be used for further collections and analysis
throughout the book. These software applications are not the only tools available to the mobile examiner, as is
plainly evident in the tools table. These tools cover the largest number of devices with the most built-in
features, however. Obtaining a single mobile device solution set that can conduct collections, analysis of
internal and external data, and complete reporting is often the preferred solution.

Your understanding of the levels of examinations, along with the levels the tools will support, will help you
make the best decision as to which tools will best suit the examination at hand.

206

I

9 Preparing the Environment for Your First
Collection

f your collection and analysis environment is set up properly, you are far more likely to extract and analyze
forensic data successfully. If the environment is set up improperly, however, you can be confronted with

many problems throughout an examination. Perhaps, for example, the collection device or computer is
different from the analysis computer, and the optimal configurations on the two may be different as well. In a
poorly configured environment, software may be ineffective not only at connecting to the device but also at
extracting valuable data, leading to frustration.

Typically, software vendors include specifications on release notes or user guides that detail the computer
configurations required to run their software properly. Sometimes, however, vendors’ configurations are
unrealistic for a working environment in which several different types of software are stored on the computer,
and their minimum requirements are insufficient for running all the software. In addition, because forensic
software solutions often write critical data temporarily as well as permanently, you need to know the location
of this data, especially when you’re conducting sensitive investigations.

Device drivers are also critical to a mobile device examination, and when properly installed, they provide
the conduit to the device’s digital data store. The mobile device examiner is often responsible for setting up
the system at a scene location, so it’s important that he or she get to know the devices. What happens when a
driver is not installed properly? Obviously, communication to the device will not occur. But do all the drivers
have to be installed? Many devices can also mean many drivers, which can hinder the computing
environment’s performance, especially in the Windows environment.

For the many reasons covered in this chapter, examiners often create virtual machines to operate each type
of mobile forensic software in their toolboxes. This often eliminates the configuration problems that can be
associated with each piece of software. Both NowSecure (which is built on Santoku Linux) and Santoku are
Linux virtual machines that have been configured and fine-tuned to help eliminate some configuration
problems, but they cannot solve all problems. Subsequently, Santoku Community Edition, sponsored by
NowSecure, has not been updated since September 2014. In addition, some forensic software solutions cannot
be run in a virtual machine and must be installed in a traditional, statically installed operating system. Not
only do some mobile forensic solutions inhibit their software from running within a virtual machine, but
devices such as iOS do not work well with virtual machines because of driver issues. When an Apple iOS
device is plugged in, a driver installs, but when you’re conducting a non-invasive physical collection of the
device, additional drivers for Device Firmware Update (DFU) and iBoot must be installed on the fly. This
installation flow gets caught up when the device drivers first attempt to connect with the host operating
system before the virtualized system can take hold, often causing errors. Furthermore, additional drivers are
required for the acquisition of Android devices at the physical level, but drivers are also required during the
extraction process. For this reason, and others, some devices simply cannot be collected using a virtualized
environment.

207

Mobile forensic solutions that offer software installed on hardware, such as Cellebrite UFED Touch 2
and other embedded mobile forensic units, are not covered in this section, because these devices are self-
contained hardware units that come preconfigured with device drivers. Other solutions from Cellebrite
include the UFED 4PC and Physical Analyzer, which do require that device drivers be installed.

Creating the Ideal System
Computer specifications typically depend upon the analysis functions of the software that is installed on the
system. If a software solution contains features such as data carving, database processing, searching, or other
hardware-intensive functions, it would stand to reason that a more powerful computer solution should be
used. Some software applications that extract data from a mobile device have little or no analysis capabilities,
and a less powerful computer solution would be needed. The particular situation or mission will generally
dictate the type of hardware and software configuration that a mobile examiner should use.

Most software vendors list the minimum specifications required for the base operating system, but few
take into account the installation of other mobile solutions on the system. Experience has shown that the
minimum specs that are listed for many vendors are too low for today’s devices and, if used, can have negative
effects on the overall collection and analysis process—even without the installation of another mobile forensic
solution.

For example, consider the minimum specs listed for MSAB XRY Logical on its web site
(www.msab.com):

• Processor Intel dual-core processor 1.6 GHz dual-core (Recommended 2.0 GHz dual-core)

• RAM 4GB

• 2GB hard drive space for the application

• 500GB for the storage of data

• USB ports Minimum two ports

• Operating system Microsoft Windows 7 64-bit (recommended Windows 10 64-bit)

• Windows .NET 4.5

• Screen resolution of 1366 × 768

The software will function and run with these specifications, but other processes must take place during
the collection of the device, and with the low specs indicated here, operating system performance will be
affected and the process can become frustrating.

The following sections offer general recommendations for building a mobile forensic environment that will
efficiently run most mobile forensic software without issue. These are recommendations based upon a typical
install running three mobile forensic tools simultaneously. Each additional software solution installed on the
system will generally degrade the performance of the computer, so you should make adjustments as necessary.

208

http://www.msab.com

These recommendations are based upon multiple tools installed on the system per the guidelines outlined
in this chapter.

Processor (CPU)
The processor, or central processing unit (CPU), type is integral to the success of your forensic software. The
CPU runs the computations, functions, and I/O specified by the system, and its performance, measured in
gigahertz (GHz), depends on several factors. The higher the clock speed rate of the CPU, the more functions it
can perform each second. For example, a 3.4 GHz processor can perform 3,400,000,000 cycles per second,
which is obviously more computations than a 1.8 GHz processor that performs 1,800,000,000 cycles per
second. Although a higher clock speed rate means more cycles are performed, this should not be your only
consideration in choosing a comparable processor, especially when it includes multiple cores. A CPU can
contain multiple cores that enable simultaneous computations n times, where n equals the number of
processors. So a computer with more cycles per second (GHz) but with a single or dual core may handle less
information and run more slowly than a computer containing a processor with four cores and a slower clock
speed.

Another important consideration in processor selection is choosing a 64-bit (x64) versus a 32-bit (x86)
processor. A processor that is capable of x64 operations can handle twice as many bits (64) of information
with the same clock speed as an x86 processor. A computer with at least a dual core capable of 64-bit
processing should be the minimum recommended for mobile forensic software.

Even if the mobile forensic solution can run on a 64-bit machine, that doesn’t necessarily mean it
operates in 64-bit mode. Some solutions can run as a 64-bit solution but operate only in 32-bit mode. Be
sure to check the documentation to gauge your expectations regarding performance.

RAM
Random Access Memory (RAM) enables the processor to run computations on the flash memory rather than
on the actual storage disk of the computer. When the processor places data into a computer’s temporary
memory, faster input and output result, which means data analysis can be completed more quickly. RAM is
typically measured in gigabytes (GB) in today’s computers. Mobile forensic software running in a Windows
environment should have a minimum of 8GB of RAM, based on a single running instance of software at a
time. Anything less than 4GB of RAM will not corrupt or invalidate the device collection, but it can cause
software solutions to crash from out-of-memory exceptions.

By Microsoft’s recommendations, Windows requires at least 1GB of RAM to run on an x86 system and at
least 2GB to run on an x64 system, which gives the forensic software approximately 3GB of RAM to conduct
the collection, analysis, or reporting—or all these functions simultaneously. If Windows cannot access the
required RAM or is left with less than the required memory resources, the operating system will display the
familiar “Blue Screen Of Death” (BSOD). If a BSOD occurs during a collection or an analysis, the
information will be lost and the collection or analysis will most likely have to be redone.

Most software vendors in the mobile forensic field recommend that a minimum of 2GB of RAM should

209

be used, but with only 2GB of RAM, even a small device containing approximately 10,000 records will have
noticeable limitations. With most smart devices having hundreds of thousands of records that need to be
processed using RAM, less than 4GB of RAM is not recommended, hence having 8GB will be sufficient.

Input/Output (I/O)
A computer’s I/O throughput can also have a dramatic effect on the success and overall presentation of the
forensic software. I/O involves not only the physical USB hub that is part of the computer but also secondary
hubs attached to the computer. I/O is directed by the processor, and it’s important that you understand how
the controller and processor work together.

The USB controller and its USB hubs on a computer come in three types: 1.0, 2.0, and 3.0. USB 1.0 is the
slowest I/O and USB 3.0 is currently the fastest. USB 1.0 is seldom found in newer computers these days, but
many mobile devices communicate only at USB 1.0 speeds. It is recommended that at least three USB ports
be available in a forensic workstation, including at least one USB 3.0 port. Table 9-1 shows information
specifications from the USB Implementers Forum (www.usb.org).

TABLE 9-1 USB Speeds as Determined by USB-IF

Simply having a USB 3.0 port does not necessarily mean that information will flow at a higher rate from a
mobile device to the software during collection. The mobile device and the software conducting the collection
will govern the speed of connection and data transfer. As specified, most devices communicate using USB 1.0
protocols. USB 3.0 and USB 2.0 are backward-compatible, so the connection between device and computer is
not much different from that of USB 1.0 when the device is connected to one of these USB drivers. However,
the speed of data output from the device to the collection computer can be noticeable. Obviously, collection
speeds using USB 3.0 will be faster than those of USB 1.0 and 2.0, but if the device cannot output at a higher
rate, the speed of the computer’s USB hub will not matter. The speed is dictated by the device and software,
not the computer’s port.

Storage
Storage space and storage media are often underestimated by examiners seeking to collect and examine a
mobile device, perhaps because the physical size of the device is misleading as to the amount of actual storage
available and the number of computations and calculations completed by the mobile forensic solution. Today,
the most popular mobile smart device’s (iOS and Android) on-board storage averages 32GB. Most mobile

210

http://www.usb.org

forensic storage solutions need to be twice the size of the evidence when processing a single device because of
the storage of the collected image and any temporary storage used during examination, processing, and
analysis. You must consider portability, segregation of forensic tools, and I/O speed when choosing a storage
medium for the mobile forensic solution and device processing. The use of multiple hard drives for the
forensic analysis of mobile devices is not required, but it is often critical because of the many variables,
processing overhead, and growing size of today’s mobile devices. Apple iPad devices now come with up to
512GB of storage, and Android devices routinely carry 64GB SD cards and even up to 2TB cards, so having
additional storage available for these devices is necessary.

The operating system, utility software, and forensic software should be installed on a hard drive devoid of
any evidence or temporary data collected from a forensic tool. This drive should be used only to run the
computer and associated software. By segregating the entire OS and software to a single drive, you can clone
the drive and restore a pristine copy without compromising evidence or the integrity of the OS and software.
In this way, forensic software and other related software can be maintained, changes and updates to the
operating system or restores can be made without compromising evidence, and disk capacity does not shrink
due to saving evidence images, temporary files, or other files relating to the processing and analysis of mobile
devices. The operating system and software drive can be a traditional spinning hard drive (HDD) or solid-
state drive (SSD) with a minimum of 250GB of storage.

A secondary drive should be used to store all temporary data, both from the operating system and forensic
software. If using Windows, moving the location of the Windows pagefile
.sys file to another drive can also increase software performance. The Windows pagefile.sys file is used as a
virtual memory swap file when a computer’s RAM is exceeded and is often set to the same size as available
physical RAM installed to the computer. If the pagefile.sys file is moved to an external drive, the operating
system could crash if the drive is removed from the system, so moving the pagefile.sys file to an internal drive
is recommended if the move is warranted.

The location of pagefile.sys file differs between Windows 7, Windows 8, and Windows 10. The following
instructions show how to change the location of the pagefile.sys file for Windows 7, 8, and 10.

For Windows 7:

1. Press the Windows key.

2. Right-click Computer and then choose Properties.

3. Click Advanced System Settings.

4. On the Advanced tab, under Performance, click Settings.

5. In the Advanced tab’s Virtual Memory section, click Change.

6. Clear the Automatically Manage Paging File Size For All Drives checkbox.

7. Under Drive [Volume Label], click the drive where the page file should be stored.

8. Check the Automatically Manage Paging File Size For All Drives checkbox.

9. Click OK.

For Windows 8:

211

1. Press Windows key-X, and then choose System in the pop-up menu.

2. Click Advanced System Settings.

3. On the Advanced tab, under Performance, click Settings.

4. In the Advanced tab’s Virtual Memory section, click Change.

5. Clear the Automatically Manage Paging File Size For All Drives checkbox.

6. Under Drive [Volume Label], click the drive where the page file should be stored.

7. Check the Automatically Manage Paging File Size For All Drives checkbox.

8. Click OK.

For Windows 10:

1. Press Windows key-R, type SystemPropertiesAdvanced in the RUN box, and then press ENTER.

2. Click the Settings button in the Performance section.

3. In the Advanced tab’s Virtual Memory section, click Change.

4. Clear the Automatically Manage Paging File Size For All Drives checkbox.

5. Under Drive [Volume Label], click the drive where the page file should be stored.

6. Check the System Managed Size checkbox and select the button to enable the OS to decide the correct
size.

7. Click OK and restart the PC.

Moving the pagefile.sys file is not mandatory, and not moving the file will not adversely affect the
evidence you obtain during a mobile device collection and analysis. The recommendation to move the file
is based on storage and I/O speed when the file is stored on the same disk with the operating system and
forensic software.

The effect of temporary storage is not limited to the operating system, because it affects forensic software
as well. Most software solutions use temporary storage to conduct different transactions against the evidence
being examined to maintain a usable level of memory for the solution and the operating system. When the
transactions are completed by the software solution, the temporary data is supposed to be removed from the
disk by the software using that space, but this is not always the case.

Storing temporary data on a secondary drive enables the examiner to control the data, such as removing
and purging sensitive data (company intellectual property, financial records, criminal case evidence, or other
data), which is often part of the forensic examination. The drive should be dedicated to the temporary storage
of the data from the Windows temp folder and pagefile.sys along with any forensics tools. This area can be
sanitized after each forensic examination without compromising the operating system or installed applications
on another drive within the forensic workstation. Because this secondary drive will be used by both the
operating system and forensic software to store large amounts of data temporarily, a drive that is three times
the size of the largest device that will be processed is required. Also, an SSD drive, if possible, should be used,
which will provide a noticeable increase in both read and write speed during the collection and analysis of the

212

mobile device data, as analysis tools used by mobile forensic software require large amounts of temporary

storage to complete transactions.

A third drive should also be used for the storage of the evidence files from mobile devices either
temporarily, semi-temporarily, or permanently. This drive is used only for the files and images classified as
evidence: the original mobile device image, the output proprietary image from a mobile forensic solution if
applicable, any generated reports, exported native files, case notes, case folders, and anything else that will be
needed to complete a final report presentation and later archiving. This drive can be an external drive or
internal drive with an HDD or SSD configuration. The appropriate size of this disk depends on its intended
use: If it will temporarily house the evidence until the case is completed, the size is determined by the number
of cases that will be typically concurrently worked. If the drive will store all of the evidence permanently until
it can be deleted, a RAID solution can help protect against failing hard drives and data loss and allows for
more efficient I/O functions.

External Storage
External storage is not attached to the device that is conducting the collection, computation, and evidence. It
has two specific storage options: temporary and semi-permanent. Both are often required, but this is generally
determined by the type of software being used and its features.

Using an external device for temporary storage is usually needed when the tool exporting the collected data
sends it to an externally attached drive for later analysis, when the temporary data used by the device is later
removed by the tool when the tool has completed its work, or in both cases. Tools such as Cellebrite UFED
Touch specify that the examiner plug in a removable drive to complete the extraction, which then deposits the
collected image and data to the attached removable storage. UFED Classic, which has now reached its end of
life and is no longer sold (but still available on online outlets), was able to extract only to storage drives
formatted with a File Allocation Table (FAT) file system, which often led to a large number of files for high-
capacity devices because of the file size limitations for FAT-formatted devices. The UFED Touch and
UFED4PC and Oxygen Forensic Detective can perform writes to NTFS drives, which allows for large file
writes.

Both UFED Touch 2 and Oxygen Forensic Detective can also export the data to a network or mapped
drive if needed.

Once the data has been collected, it will be available at the location indicated by the examiner. Also, as
discussed, having a secondary drive to write temporary data to is advised, and a removable drive can be used
much like an internal drive. However, the I/O of a removable disk will be slower than that of an internal
drive, and when a removable drive is used as a temporary location, there are noticeable limitations.

Some examiners also use the removable drive to store temporary data and export collected image files.
Using this method is not advisable for obvious reasons, however, such as possible evidence contamination

213

or inadvertent deletion when the software solution decides to purge the temporary data.

External storage can also enable archiving. When an image of a mobile device is created, it should be
stored separately after a copy has been made. The copy image will then be analyzed. Typically, the storage of
any electronic evidence should be on RAID to ensure redundancy and safeguard the image should a hardware
malfunction occur with the external storage.

Operating System
Mobile forensic tools usually run on some version of Microsoft Windows. BlackBag BlackLight runs on
macOS, but BlackLight can also run on Windows.

Mac setup is not covered here because most examiners who use Macs for mobile device forensics use a
type of virtualization that runs Windows. For those using Macs for mobile forensics, the information in
this chapter can be used to set up the Windows virtualized environment, just as a user would on a system
running Windows.

Some forensics software still indicates that Windows XP is a supported operating system, but using
Windows XP is not recommended simply because newer devices and their associated drivers cannot run on
XP and this version of the operating system is no longer supported by Microsoft. Also, software built using
Microsoft .NET Framework versions later than 3.5 will not run on XP. Most mobile forensic software
supports Windows 7, 8, and 10, with a recommendation by most to run Windows 10 (Microsoft extended
support of Windows 7 will end in 2020). Experience conducting hundreds of examinations has shown that
Windows 10 is much more efficient at communicating with mobile devices and both setting up and then
removing drivers as necessary. Previous versions, such as Windows 7, did not remove device drivers from
allocated COM areas, and some mobile forensic software had difficulty with communication. However, some
device drivers, such as MediaTek, can be installed more easily in Windows 7 simply because of the driver
enforcement rules in version 7 versus the newer Windows operating systems.

As mentioned earlier, with today’s forensic processing and its demands on the operating system, if
possible, use a 64-bit version of Windows, as long as the forensic software will support it. This will allow for
more information to be processed and will address more memory than a 32-bit system.

Allowing automatic updates will also benefit the mobile device examiner; be sure to enable this within the
software as recommended. Prior to installing any mobile forensics software, you should install all Windows
updates and security patches.

Power functions can also cause difficulties while processing a mobile device. Most communication between
a mobile device and forensic software solutions occurs via the USB port and a cable. If the power to the USB
port is regulated by the operating system, the forensic solution cannot communicate properly and collection
cannot occur. The power to the USB ports for both desktops and laptops is regulated by default in Windows.
This enables Windows to turn off the USB ports when the OS believes that there is a need (such as during
inactivity, low battery, or hibernation). In theory, Windows should wake the USB ports when a device is

214

plugged in, but experience shows that this is not always the case, depending on the version of Windows
installed in the forensic environment.

Troubleshooting this problem within Windows is covered in the “Troubleshooting the Device
Connections” section later in the chapter.

Once the operating system has been updated and configured and all supporting software has been installed
(but before any forensic software is installed), you should create a restore point. This restore point will enable
the user to return to a baseline if needed. The following procedures show how to create a restore point in
Windows 7, 8, and 10.

For Windows 7:

1. Press the Windows key.

2. Right-click Computer, and choose Properties.

3. In the left pane, click System Protection.

4. Click the System Protection tab, and then click Create.

5. In the System Protection dialog, type a description, and then click Create.

For Windows 8:

1. Press Windows key-X, and then choose System in the pop-up menu.

2. Click Properties.

3. In the left pane, click System Protection.

4. Click the System Protection tab, and then click Create.

5. In the System Protection dialog, type a description, and then click Create and OK.

For Windows 10:

1. Press Windows key-X, and then choose System in the pop-up menu.

2. Click Properties.

3. In the left pane, click System Protection.

4. In the System Protection dialog, type a description, and then click Create and OK.

If possible, use software such as Symantec Ghost to return the forensic computer to a point in time
identical to when the image was created, which is unlike the Windows built-in Restore function. I
suggest that you create a ghost image after all software is installed but before the first examination. This
way, the machine can be brought back to a “clean” restore point after each examination to ensure a clean
version before each new collection.

215

Device Drivers and Multiple-Tool Environments
Using multiple tools is important to achieve success in the world of mobile forensic investigations, but there
can be consequences, particularly issues that occur with the unique drivers used by the various types of
software to communicate with different mobile devices. Software vendors, at times, develop their own mobile
device drivers that do not work with every piece of software that might also be installed on the system. As a
result, when a mobile device is plugged in and a software-specific device driver is installed, other software
solutions on the computer will be unable to communicate directly using a proprietary driver. This is
immediately evident when an error is returned by the software solution indicating that the software was
unable to communicate with the attached device. A quick check of the Windows Device Manager can identify
the driver and the manufacturer. If the driver is not the original equipment manufacturer (OEM) version of
the driver (for example, the equipment is Motorola but the driver is from and XRY or Cellebrite), you could
encounter problems with all other software titles that use the OEM driver to communicate with the mobile
device. Changing from the proprietary device driver to the proper OEM driver will typically solve the
problem.

Some examiners create independent virtual machines for each software product and then run all the virtual
machines on a single machine to combat a software-caused driver conflict. This enables all software to run
independently and conflict-free using software-specific drivers. This can be a good solution, albeit a more
advanced one, but unfortunately not all software will be able to run within a VM. To complicate matters,
some mobile devices, such as iOS devices, which disconnect frequently within the VM, attach to the host
operating system, which causes a collection failure.

The key to running a multitool environment, or even a single-tool environment, successfully is to
understand how to control driver problems.

Understanding Drivers
Mobile device drivers are the gateway that allows hardware or software to communicate with the mobile
device. If a device driver is not installed or is improperly installed, communication is generally impossible.
Device drivers are not unique to mobile devices; they are also used for printers, scanners, cameras,
motherboards, CD/DVD drives, USB controllers, monitors, and other computer peripherals and software.
Anything that is not a part of the original operating system code base will need a driver to interact properly
with the operating system. Device drivers are used in every operating system available and are undoubtedly
one of the most common problems encountered in mobile device forensics.

Device drivers are themselves software applications that enable an operating system or another application
to use hardware or other devices with common code and procedures to perform I/O. However, drivers are
hardware dependent and also specific to an operating system. This means that, for example, a driver developed
for Windows XP will generally not work if it’s installed in any other version of Windows, and a driver
developed for an LG device will not work with an HTC device.

A driver is like a switching station, where data from the operating system or application is interpreted
upon arrival and translated to communicate to the device by way of the device driver. The device sends data
back to the application and operating system as requested. A device driver allows a generic set of instructions

216

from the operating system or application to request to read data, perform functions, and send data

independent of knowing what device the software will be communicating with.

Here’s an example dealing with mobile device forensic tools. Many different mobile devices are supported
by a mobile forensic tool, but a single set of instructions is used to read data from a mobile device. Consider,
for example, processing an Android device logically, when there are more than 18,000 different Android
mobile phone devices on the market. How could a development team write specific code for each type of
hardware? It is possible, but this would be an enormous task! By using a device driver unique to the Android
hardware, the communication code is interpreted and translated to a format specific to the hardware
connected by the driver. By using the device driver, virtually all the data collected will use the same
communication code transmitted from the forensic solution for any Android device attached. The driver
allows the forensic software to “speak” to the device using a single set of commands to enable the support of
thousands of devices by way of the single driver.

Now that you have a basic understanding of what device drivers are and how they operate, your next
challenge is finding the correct driver for the mobile device that needs to be processed.

Finding Mobile Device Drivers
When a mobile device comes into the lab for processing and has not been pre-installed into the mobile
forensic solution, the examiner must locate and install the driver manually on the system before collection can
occur.

Some manufacturers, such as Cellebrite (UFED Touch), have pre-installed the device drivers directly to
the hardware device they ship, so generally device drivers are not needed.

There are times when trying to locate mobile device drivers is like trying to find a needle in a haystack.
Typically, mobile devices do not ship with a driver on a CD, as most other hardware devices (such as printers
and cameras) do, and sometimes drivers are not readily available on the manufacturers’ web sites. Nonexistent
or missing drivers are more common with older feature phones, but even some newer Android devices do not
have available drivers on the manufacturers’ sites. Often, missing or nonexistent drivers are encountered with
newer prepaid devices. In an effort to subsidize the cost of the device, manufacturers will allow the
communication port to be disabled. By disabling the port for connections to a personal computer, a company
can then offer additional services to transfer media or user data via online services, thus making additional
revenue on data transfer that would not be possible if the user could plug the device into a computer and do
the same thing. Because some of these drivers are needed and are not available on the manufacturer’s web site,
a hunt for the driver ensues.

Where does an examiner go to locate drivers if the solution does not have one? The answer is “it depends.”
It depends on several factors, ranging from the type of device, the manufacturer of the device, and the type of
connection required to transmit the data to the operating system. Table 9-2 is not exhaustive, but it contains
information on where to find drivers for the majority of devices encountered.

217

TABLE 9-2 Mobile Device Drivers for Device Manufacturers and Models

218

219

URLs in Table 9-2 continually change. It is entirely possible the URL will not be correct or will be
different from what has been documented at the time of publishing.

Installing Drivers
Once the examiner has located a driver, the next step will be installing it. Most of the drivers located on a
manufacturer’s web site include an installation program that makes it easy to install the device and then
register it on the operating system, which enables the OS to place it into the proper Windows driver location
so that when a device is plugged in, it is installed without user interaction. The method used by Windows
when searching for and installing a driver for a new device is outlined in Table 9-3.

TABLE 9-3 Windows Installation Path for Device Drivers (Microsoft Developers Network)

220

When a device is plugged into a Windows computer running Windows 7 or later, Windows will
automatically check the Microsoft Update Services, and if it cannot locate the driver, Windows will check the
driver store. If the driver is not located in the driver store, Windows will look to the default system location of
the INF (device information file) as specified in the registry
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion.

Other operating systems are not covered here simply because most forensic software operates with the
Windows OS, which subsequently experiences the most driver issues.

If the driver is located from the Windows Update query or from the default system location for INF files,
it is then moved (staged) to the driver store and installed from that location. The driver store, introduced in
Windows Vista, is a two-part process comprising staging and installation. To be installed, a driver must be
staged, which involves moving the INF file and all the files referenced in the INF file and then verifying and
validating the package. If all checks pass, the driver is copied into the store and installed without user
interaction. If the driver does not pass (for example, files are missing from INF, the user does not have correct
permissions, or the digital signature is not correct), the driver is not installed, and manual installation of the
driver must then be handled by the examiner.

Manually installing drivers for all versions of Windows involves locating the problem driver via the
Device Manager and then updating the device with the proper driver.

Windows Device Manager
All examiners should be familiar with the Windows Device Manager, an application within Windows that
enables the user to view and update device drivers on the system, check to see that the hardware is functioning
properly, and modify the hardware’s settings. How you navigate to the Device Manager depends upon the
version of Windows in use.

Only Windows 7, Windows 8, and Windows 10 are covered here because Microsoft no longer supports
Windows XP.

For Windows 7 using Control Panel:

221

1. Click Start, and then click Control Panel.

2. Click Hardware And Sound.

3. Click Device Manager.

For Windows 7 using the command line:

1. Click Start.

2. In the search box, type mmc devmgmt.msc.

3. Press ENTER.

For Windows 8 and 10 on the main Start screen:

1. Press Windows key-C, and then click Search in the pop-up menu.

2. Enter Device Manager in the search box.

3. Select Apps and then click Device Manager.

For Windows 8 and 10 on the desktop:

• Press Windows key-X, and then click Device Manager in the pop-up menu.

Once you access the Device Manager, you’ll quickly see any existing driver problems. Typically, the yellow
exclamation prompt or question mark makes it clear that there is a problem with the installed driver or that a
driver is not found. If a driver is not found for a device, the device will be installed in the Other Devices
section, as shown in Figure 9-1. If the driver is installed, Device Manager will identify whether a problem
exists with it. In both cases, you must install the correct driver before the forensic software can communicate
properly with the device. To diagnose the problem and determine what steps will be needed, the Device
Manager takes a closer look at what Windows indicates as the problem and the device as described by the
operating system.

FIGURE 9-1 If devices are not recognized or the driver cannot be found, they are located in the Other

222

Devices section of the Device Manager.

In the Device Manager, locate the device with the exclamation point or question mark—for mobile
devices, these are typically located under Ports, Modems, ADB, USB Controllers, and Portable Devices.
There are always exceptions, but the most important information will be listed in the properties for the
troubled device: Right-click the device and select Properties. A new dialog will open (Figure 9-2) with several
tabs and a description of the device that you selected. Directly in the center of the first page under Device
Status is the first clue to a problem or problems with the device. The displayed message will provide a short
description of the problem and the associated code: in the figure, the message “The drivers for this device are
not installed. (Code 28)” is displayed.

FIGURE 9-2 The Properties dialog for a device in the Device Manager details the device and associated
drivers.

Many codes can be listed here, but typically the codes displayed for a mobile device are Codes 10 and 28.
Table 9-4 shows a listing of all the codes used by Microsoft to describe problems in the Device Manager. This
is not an exhaustive list, but it includes the most prevalent device problems.

TABLE 9-4 Device Dialog for Each Device Describing the Status, Drivers, and Compatibility
(http://support.microsoft.com/KB/310123)

223

http://support.microsoft.com/KB/310123

224

225

Your next steps will be determined by the code and/or the description of the error listed in the Device
Manager. This could involve finding the correct driver package for the device and running an executable
program that installs the driver and reattaches the device. Or it might involve you manually installing the
driver when an installation package cannot be located. Whatever the course, becoming familiar with the
Device Manager in Windows should be one of your priorities.

226

Something that has always been suggested, but rarely implemented, is placing a shortcut to the Device
Manager on the desktop or taskbar of the analysis machine. By creating a shortcut, the examiner can
quickly navigate to the Device Manager if any issues need to be investigated during a mobile device
examination.

Identifying the Driver
If a problem exists with the driver and it is determined that the version of the driver is compatible with only a
certain operating system version (such as x86 or x64), then generally the device properties will indicate, “This
device cannot start. (Code 10),” but it will install. On the other hand, if a driver could not be located by the
operating system and the installed device does not have a driver, it will be listed under Other Devices in the
Device Manager with a message, “The drivers for this device are not installed. (Code 28).” In either situation,
to find the correct driver, you can determine the device information by consulting the device properties, but
this time using the Details tab.

The Details tab lists all the information about the device that is connected to the computer system. The
important sections and tags for determining the correct driver are Hardware IDs and Compatible IDs. Both
will help you locate a suitable driver for the attached device, and both contain valuable information in
determining exactly what device is attached to the computer. An example in Figure 9-3 shows a Hardware ID
with several lines that are important to the overall meaning; each will need to be broken down. Every USB
device has two codes that distinguish it from other USB devices: the Product ID (PID) and the Vendor ID
(VID).

FIGURE 9-3 The prolific cable properties table under the Details tab identifies the assigned PID and VID
for the device.

• PID (Product ID) This is an essential part of every driver and must be used. This indicates the type of
product or a family of products (such as modem, serial port, human interface device). The PID does not
have to be unique and can be anything that a vendor assigns.

• VID (Vendor ID) This is also an essential part of every driver and must be used. A VID must be granted
by the USB Implementers Forum, which assigns and maintains all VIDs as part of the compliance
program. Sometimes this may not be the vendor of the mobile device. The VID could identify the chip

227

vendor that is either embedded into the cable itself or the silicon chip embedded in the mobile device, but
a manufacturer has cooperated with the vendor and conformed to the driver specifications.

You can determine whether a driver is needed for a cable by plugging in the cable without the mobile
device attached. If a driver is installed, or a driver install is attempted but fails, then hardware is
embedded in the cable. The typical chips embedded into cables are Prolific or FTDI. If you do not see
drivers install when you plug in the cable, check the cable; it may be for charging only and not for data
transfer.

Once you’ve obtained this information, you can search both the VID and PID on the Internet to identify
the correct driver needed for the mobile device. When you locate the package, you must download and install
the INF and associated files manually.

Troubleshooting the Device Connections
At times, a device will not communicate with the forensic software, even when the correct driver has been
installed. This might be encountered in the following situations:

• Multiple tools accessing the same device are running concurrently.

• The computer is allowed to manage the power to the USB hub.

• The computer is using a USB hub with multiple devices attached.

• The mobile device does not have enough power.

When multiple software processes are accessing a device, the device will be able to respond only to one at a
time. I call this “COM envy”—if a communication port (COM) is open by one piece of software, it will not
be released until that software either completes the tasks or releases the device or the software and processes
are stopped and closed. Because of this limitation, another software solution cannot connect to the mobile
device. When collecting mobile device data, you must have only one software solution running while
initializing a connection and conducting an extraction.

Power management of USB hubs can also cause device connection problems, often disabling the
connection and causing a collection error. Windows 7, by default, turns power off to the USB hub when the
system senses that power needs to be managed. This is particularly noticeable with laptops that are not
plugged in because of their power management profiles. There are two ways to manage the power
management, but in all instances, the ability for Windows to manage the USB hubs should be disabled.

For Windows 7, 8, and 10:

This should be done for all USB root hub listings.

1. Click Start, or press Windows key-X for Windows 8.

2. In the search field, enter mmc devmgmt.msc.

3. Navigate to the Universal Serial Bus Controllers section at the bottom of the device listings.

228

4. Locate all USB Root Hub listings.

5. Right-click and select Properties.

6. Select Power Management.

7. Uncheck Allow The Computer To Turn Off Device To Save Power, and click OK.

A better way for both Windows 7, 8, and 10 will be to change the power settings via the power
management console:

1. Click Start, or press Windows key-X for Windows 8.

2. In the search field, enter edit power plan.

3. Click OK.

4. Click Change Advanced Power Settings.

5. Scroll to USB Settings.

6. Expand USB Selective Suspend Setting.

7. Switch both On Battery and Plugged In to Disabled, and click OK.

Power to a USB device can also be inhibited when the power is distributed across multiple devices
attached to a single external hub. When you’re processing mobile devices, if you use an external USB hub that
is attached to the processing computer, drivers may not be installed, and inconsistent connections can occur to
an attached mobile device. If possible, attach a mobile device directly to the computer when conducting the
mobile device collection, not through a USB hub.

Lastly, the power of the mobile device being examined can also cause problems with device driver
installation. If the mobile device does not have at least 50 percent power, when you attach it to the collection
computer, a failure to recognize and install the device driver is possible. During all collections, a mobile device
should have at least 50 percent power before you connect the mobile forensic solution and throughout the
entire extraction process.

Cleaning the Computer System of Unused Drivers and Ports
Windows, in an effort to be efficient, will cache all devices that have been attached to a Windows computer at
one time with its assigned COM port number. What is considered efficient by Windows can have dire effects
on mobile forensic software, however. This problem has been improved with the release of Windows 8, but
it’s still a problem. It boils down to phantom devices (or non-present devices)—hidden ports (devices) that are
not shown in the Device Manager because the actual device is no longer connected with Windows. By default,
users cannot see these hidden devices and will not even realize there is a problem. Even when an error is
encountered by the mobile forensic solution because of the presence of a phantom device, most examiners are
still unaware of the root of the problem.

The issue that arises with a phantom port and mobile forensic software is called port enumeration. Mobile
forensic software enumerates through each port number that is used, looking for an attached device, and it
will submit a challenge to the port to identify the device so communication can begin. When a computer
running Windows has been used for mobile forensics, many devices get plugged into the USB port. When a

229

device gets plugged into the computer and the driver is installed, a COM port is assigned to the device. When
the device is unplugged, the device information, including the COM it was attached to, is saved so that when
the device is plugged back into the same USB port, Windows will have already identified it and the same
COM number can be assigned. This all means a couple of things to the examiner: One, if the device is
plugged into any other USB port, it is assigned another COM number. Two, when any other device gets
plugged in, a new unique COM number is assigned to that new device even if it had been plugged in to the
same computer before. This means some computers can soon be operating with hundreds of assigned COM
numbers, which can cause forensic software to time out while looking through all of the COM ports for a
valid device.

Remove these phantom devices so problems do not arise when you’re attempting to connect to a mobile
device with a Windows-based forensic solution. You can manually remove the ports from the Windows
command line, invoking a Registry change, by navigating to the Device Manager to show hidden devices and
then removing each device by right-clicking and choosing Uninstall. They also can be removed with several
open source automated tools that are currently available, along with CPD PortScrubber and Micro
Systemation XRY, which include a port cleaner as part of their solutions.

Removing Non-Present Devices (Phantom Devices)
The manual method is covered here in an effort to help you understand what Windows is doing or what
process is undertaken by the automated tools when they remove the phantom devices.

For Windows 7:

1. Click Start.

2. Search for Command and select Command Prompt.

3. At the command prompt, type the following, and then press ENTER:

set devmgr_show_nonpresent_devices=1

4. Type the following command, and then press ENTER:

start devmgmt.msc

5. Choose View | Show Hidden Devices, as shown next:

6. Navigate to Ports, Modems, USB Controllers, ADB, and other device areas where mobile devices have
been installed.

7. Right-click any device that is “ghosted,” or faded, as shown in Figure 9-4, and select Uninstall.

230

FIGURE 9-4 Several devices are shown as phantom devices under Modems and Ports (here, for example,
Android Composite ADB Interface, Samsung Mobile USB Modem, LGE Mobile USB Modem).

8. Do not check the box to uninstall the driver unless the driver is causing a conflict.

9. When finished, close Device Manager.

10. Type exit and close the Command window.

For Windows 8:

1. Press Windows key-X.

2. Select Command Prompt.

3. At the command prompt, type the following, and then press ENTER:

set devmgr_show_nonpresent_devices=1

4. Type the following command, and then press ENTER:

start devmgmt.msc

5. Choose View | Show Hidden Devices.

6. Navigate to Ports, Modems, USB Controllers, ADB, and other device areas where mobile devices have
been installed.

7. Right-click any device that is “ghosted,” as shown in Figure 9-4, and select Uninstall.

8. Do not check the box to uninstall the driver unless the driver is causing a conflict.

9. When finished, close Device Manager.

10. Type exit and close the Command Prompt window.

For Windows 10:

1. Press Windows key.

2. Type Command Prompt and press ENTER.

3. At the command prompt, type the following, and then press ENTER:

231

set devmgr_show_nonpresent_devices=1

4. Type the following command, and then press ENTER:

start devmgmt.msc

5. Choose View | Show Hidden Devices.

6. Navigate to Ports, Modems, USB Controllers, ADB, and other device areas where mobile devices have
been installed.

7. Right-click any device that is “ghosted,” as shown in Figure 9-4, and select Uninstall.

8. Do not check the box to uninstall the driver unless the driver is causing a conflict.

9. When finished, close Device Manager.

10. Type exit and close the Command Prompt window.

Several automated tools are available to conduct this process simultaneously on multiple phantom devices,
and some are freely available. Phantom device removal applications are generally based upon the Microsoft
DevCon (https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/devcon) utility. DevCon, or
Device Console, is a command-line utility that lists the devices on a computer running Windows. The utility
can show phantom devices and remove them using several built-in commands and controls. By using the basic
functioning of the DevCon source code, GhostBuster
(http://ghostbuster.codeplex.com/releases/view/566397) enables the enumeration of phantom devices and aids
in their removal with a GUI. GhostBuster is available for both x86 and x64 Windows systems. Prior to
connecting a device to the forensic workstation, make sure that phantom devices are not consuming available
COM port numbers. CPD PortScrubber is available from CPD Forensics. This is a commercial tool, but it
works with Windows x86 and x64 systems up to and including Windows 10.

It is also recommended that you use the same USB port when conducting a mobile device collection. This
will ensure that the driver that was installed previously for the same device is not installed again. By using the
same port every time, Windows will already have reference to the device and will use the same driver that was
used successfully the previous time the device was attached to the computer. If another port is used, Windows
will search for the driver using the same process, depending upon the OS version, described in the section
“Installing Drivers,” and then install the driver to the device store.

Chapter Summary
How a computer system has been set up prior to installing mobile forensic software can ultimately determine
the success of the software solution. If the hardware, such as processors, RAM, and hard drives, is not set up
correctly, forensic collection and analysis will suffer no matter what type of software is running on the
computer system. You can consult the ideal specifications outlined on the vendor’s site and then follow the
guidelines listed in this chapter to ensure that the software solution will perform well.

Simply using the minimum specifications listed on a vendor’s site will generally not allow the software to
run at peak performance, typically because the vendor tests when only a single solution—their solution—is
running on the machine. A rule of thumb is to multiply the component capacities and requirements by two to
get an idea of the ideal size system that should efficiently run the vendor software, but also any other solution

232

https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/devcon
http://ghostbuster.codeplex.com/releases/view/566397

that may be used in a multitool environment. By multiplying the specifications by two and allowing for

additional software solutions, along with providing enough storage space for each solution’s temporary storage
and evidence storage, all solutions should operate well.

One of the most important, and often overlooked, problems with mobile device forensics is the device
driver. By first understanding how device drivers are used, the examiner can make reasonable decisions as to
whether the software solution simply does not support the device or the device is not installed correctly. Too
often, examiners blame the software solution for failing to work, when the problem is actually based on a
conflict between the operating system and the device. Because some device manufacturers update their device
drivers regularly, it is a good idea to check regularly with a manufacturer’s web site to make sure that the
current driver used by the forensic solution is the newest driver for the device. Using Table 9-2, the examiner
can at least have a starting point to identify the problem and then locate a device driver if communication to
the device and the software becomes an issue. By understanding that some devices do not have an OEM
driver and that each is identified by a PID and VID, an examiner can search for the driver using other
methods. This can help uncover drivers for devices that could not be previously located by simply searching a
device manufacturer’s site.

When troubleshooting, you may find communication problems between software and devices, faulty
drivers, software conflicts with other software, or an overabundance of COM ports. The examiner’s ability to
identify exactly where the problem lies takes a keen sense of understanding the different fault points. For
example, when drivers do not install correctly, the forensic solution will be unable to communicate with the
device. The examiner must be able to locate and update a driver manually. If multiple software solutions are
installed on the same machine, and one uses a custom-built driver for a mobile device while another uses the
OEM driver, an error will be caused in communication if the wrong driver is installed. Realizing this, the
examiner can switch to the compatible driver instead of dismissing the failure as a problem with the forensic
software. Lastly, COM ports are a way of life for communication to a connected mobile device. Clearing
COM port numbers that are not being used and using the same port for all mobile device connections will
substantially reduce the time Windows takes to install a driver and can also fix problems encountered by
software solutions that iterate over all COM ports whether the devices are present or not.

Troubleshooting expertise is an important step in becoming a mobile forensic expert and can be a common
practice when conducting hundreds of examinations using multiple forensic solutions. Understand a device
connection, the proper setup for forensic tools, and common pitfalls associated with drivers, and you can
minimize many of the frustrations involved in conducting mobile device forensic collections and examinations.

233

N

10 Conducting a Collection of a Mobile Device:
Considerations and Actions

ow that the environment has been set and you understand some of the problems that may result, let’s
get into the actual processing and collection of the mobile device. As covered previously, connecting to

the device to complete an extraction can be difficult at times, so starting with a clean system and arming
yourself with knowledge of troubleshooting problems can keep your frustrations to a minimum. Once a device
successfully connects, you’ll find that collecting the digital data from the mobile device will be one of the more
straightforward procedures in mobile forensics. Before we get into the connection and extraction of the digital
data, let’s look at some initial considerations.

As discussed in Chapters 2 and 5, the status of the device when it is received and how the request to
process the device is made will often steer the type of examination that will occur and all subsequent steps
thereafter. If the device is powered on when it comes to the lab or is located at the scene, the initial steps in
the examination as well as the workflow could be much different than they’d be if the device were powered
off.

The type of collection (such as logical or physical) of a mobile device is another important consideration.
The type of collection required is generally determined by the type of investigation underway, the time needed
or available, the device to be examined, the training and expertise of the examiner, and the tools available for
the job. No matter what type of collection is used, proper isolation and documentation of the device and its
components are necessary, because the processing order can be dictated by both. The type of mobile device
that is to be examined can also determine how the collection should be approached.

Feature phones, also referred to as legacy devices, add a different dimension regarding preparation before
the collection, but the actual extraction of the digital data from these types of devices is no different from that
of the latest smart device. The setup of these devices prior to device collection is also important to the overall
success of the digital data collection.

Alternative methods for collecting mobile device data are available for some devices such as BlackBerry,
Android, Windows Phone, and iOS, and these should also be considered if traditional collection methods do
not work or are unsuccessful; however, the initial preparation of the device prior to the data collection should
be no different.

Initial Considerations
Before beginning the collection phase on the mobile device, the examiner must reflect on the various aspects
of the collection, such as whether the examination will take place on the scene or in a lab. Additionally, the
state of the device is important. Most devices arrive at the lab powered off. Sometimes, while on scene, the
device is powered on and the examiner must immediately take steps to examine it.

In most instances, whatever the state of the device at the time of collection, it must be powered on to be

234

processed.

Prior to processing a mobile device of its digital contents, an examiner must consider other aspects of the
examination. From documenting the state of the device in written form and in photographic form, to
processing associated evidence, there are many nuances to a mobile device collection, and each must be
considered. Also, the type of examination (whether logical or physical, as discussed in Chapter 8), must be
considered. Conducting a physical collection outside the lab is not recommended, but it may be necessary
based on the situation. To determine the need for and urgency of a specific type of collection, the examiner
must consider how much time is available to complete the collection along with the type of data that is
expected by either the requester or examiner.

Adhering to a sound methodology for all mobile device encounters will help solidify the resultant data and
overall examination. The specifics are outlined in detail in the following sections of this chapter.

Isolating the Device
The examiner conducts the initial observation and subsequent processing according to the device state—
powered on or off, or even in pieces. Whether the device is brought to a lab or the examiner conducts an on-
scene examination, his or her first step should be to make sure that the device is isolated from any network
connections. Device access to a network (such as cellular, Wi-Fi, or Bluetooth) can corrupt and even destroy
the data.

If the device is powered on, it must be isolated immediately. Methods and appliances to isolate include but
are not limited to mesh, bags, boxes, tents, rooms, and even signal disrupters (illegal in the United States, with
exception of specific federal agencies). After the device is properly isolated, the examiner must be sure to keep
the device isolated during the entire examination process.

This section is not intended as a guide for the examiner in isolating the device; that information was
covered in Chapter 6 and is continued later in this chapter.

If the mobile device is powered off at the scene or when brought to the lab, the examination should
commence immediately using a systematic approach. The physical characteristics of the mobile device should
be documented, and all peripheral evidence (such as a Universal Integrated Circuit Card [UICC] or media
card) should be forensically collected.

It is good practice to keep a device in a signal isolated bag, even if it is powered off. Some devices can turn
power back on if an alarm has been set, which could lead to a connection to a network and possible data
loss or contamination.

Whether the device is powered on or off, the examiner must research to determine whether the device can
be examined physically using a non-invasive method, which could include both software and hardware
solutions. Armed with this information, along with the level of the examiner’s expertise, the current status of

235

the phone (on, off, or locked), and the software that will be used, the examiner can decide on the next step.

Device Collection Type: Logical or Physical
The status of the mobile device upon reception or discovery often determines whether the device should be
processed logically or physically. The type of examination is contingent on the device’s power status and
whether the device is locked, password protected, or disabled (disassembled or broken). Prior to conducting
the initial collection of the device, the examiner must consider operational speed, available tools, and his or
her level of expertise and training.

Not all mobile devices can be collected physically. An iPhone 5 to X, for example, cannot be collected
physically using non-invasive methods. The following suggestions are offered to the examiner with the
full understanding that each type of device encountered must be approached in a unique way.

In general, a physical collection should occur first to provide a representation of the overall data on the
mobile device and can validate a logical collection. During a physical examination, any information collected
can be used as a foundation for the data from a logical extraction. This foundation is extremely important,
because this is the information on which a logical collection will stand. With a physical collection, an
examiner can clearly show where the information “lived” when it was extracted during a logical collection.

If a physical collection is not achievable, a logical file system extraction can suffice.

By the examiner first obtaining the foundational information from a mobile device with a physical
collection, any information that subsequent tools or logical extractions produce can be directly compared to
the device file system. Comparing the data collected from a logical examination with the data from a physical
collection is powerful evidence, especially if data recovered corroborates or contradicts either collection.
Having this type of information is extremely powerful to an examination and to the overall outcome of the
investigation.

Conducting one type of collection before the other generally does not constitute a disaster or epic failure,
but in most situations, conducting one without the other can jeopardize the investigation. What will
determine the order of the collection type (physical or logical) are the circumstances dictated by the scene,
investigation, time allotted, or request.

Some examiners say that a physical collection should always precede a logical collection because of wear
leveling, which arranges flash data so that write/erase cycles are distributed evenly among all of the blocks
in the device. Simply reading data would not corrupt or overwrite existing data in a forensic examination,
however, so this theory should not be the sole basis for conducting a physical collection of a mobile device
prior to a logical collection.

236

Time Issues
Investigations that are not time sensitive or that have been submitted to a forensic lab should obtain a physical
collection prior to a logical collection, when possible. As mentioned, by conducting a physical collection first,
the examiner can rely on the underlying data to verify any information collected with the logical collection.

If an investigation depends on the examiner accessing the information quickly and in a format that can
allow immediate follow-up, a logical examination should be first. With a logical collection, the investigator
can immediately follow up on the information that is extracted from the device. A logical collection is also
beneficial if the device loses power or is powered off and a lock is enabled. This quick collection can also assist
if the device does not support a physical collection or if a physical collection is not possible for other reasons;
the extraction can occur later either when time allows or upon arriving at a location that can conduct a
physical collection safely and efficiently.

Device Power and Security Status
The power status of the mobile device should also be considered when determining whether to perform a
logical or a physical collection first.

The type of investigation should be the primary directive in determining the type of collection, and the
power status of the device should be secondary. If the investigation dictates immediate action, then
whether a device is powered on or off does not matter. If the device is already powered on, process it
logically first.

A physical collection should be attempted first if the mobile device is powered off when it is acquired. This
can be accomplished with many feature phones if the connection to the device is via a USB or FBUS cable.
These feature phones are often powered off while the device is placed into a special mode (such as flash,
download, or bootloader) and cannot connect to a network. Also, if a device is powered off and it is a GSM
(Global Systems for Mobile Communications) device containing a UICC, the card should be removed. When
the card is removed from an iOS, Android, or Windows Phone, the device will be isolated from the cellular
network and the examiner can attempt a physical collection using a USB and other non-invasive methods.
With devices such as a Samsung SPH-D710, for example, an examiner can conduct a non-invasive Joint Test
Action Group (JTAG) collection relatively easily with the device powered off. In this case, researching the
device and the various ways to complete a physical examination are important before the examination begins.
The physical collection should be a non-invasive physical technique, but the device can still be examined
logically later.

If the device is powered on and unlocked, it should be processed logically first, because if the device is
processed physically first and the device battery is removed or the device is turned off, the device can lock and
a logical examination could be difficult. After the logical collection, the mobile device can be powered off for a
physical collection and a locking mechanism will not be an issue.

A password-protected or locked device typically offers the examiner one initial collection method: physical.
During a physical collection of the device, the examiner can hopefully obtain the passcode to access the device

237

logically if required.

Sometimes a device may be collected physically but the passcode cannot be obtained to unlock the device
and conduct a logical collection. In these instances, a physical collection will suffice.

Device Damage
If a mobile device is damaged (such as by exposure to water, a broken USB connection, or a damaged
electrical system or circuit board), the device should first be examined physically using non-invasive methods
and then using invasive methods if needed. In some cases, the examiner has only one chance to obtain data
from the mobile device, and the only connection that can be made requires using an invasive technique.
Because a damaged mobile device is unlikely to be able to be examined both physically and logically, a physical
examination may be the only option. However, every attempt should be made to collect the device logically
after completing a physical collection.

Initial Documentation
The documentation stage, which should occur just prior to collection, enables the examiner to capture not
only the device details but also all associated materials. Having photographic evidence of the device, UICC,
battery, and media card not only enables the examiner to complete a detailed report, but it also helps when the
device has to be reassembled!

Photographs and documentation of the initial collection should detail every angle so that there is no
question as to which device a card or battery belongs with. In addition, when examining multiple pieces
of electronic evidence, never pile the UICC cards together; this helps avoid the tedious task of identifying
which UICC goes with which device later on.

Photo documentation should begin as soon as the evidence is received. The outside of each evidence
container should be clearly visible in each photograph. In addition, the chain of custody form should be clearly
visible, and if an evidence seal is used, it should also be photographed to show it has not been manipulated or
tampered with. When the evidence is removed from the evidence container, it should be photographed
immediately to include all pieces that are within the container; the associated case number should also be
clearly visible, as shown in Figure 10-1. The same procedure should be completed with each evidence
container prior to beginning the individual examination of the artifacts; the examiner should be sure to return
the evidence to each container after completing the documentation and examination. This will ensure that
evidence items from different containers do not commingle.

238

FIGURE 10-1 A Kindle Fire mobile device shown alongside the UICC card, both a part of Case# 15-225,
item K

Each container may contain multiple artifacts, but a single artifact (such as a mobile device or media card)
should be removed from one container at a time. Each item should be photo documented in great detail and
examined individually prior to the extraction of data from the device. During the collection phase, only one
piece of evidence should be out of the container at a time. This helps ensure that items that are not part of the
current case or extraction are not introduced to the evidence for the current case; this can easily occur if
multiple devices are lying around with loose UICC or memory cards.

The following sections offer descriptions and information regarding handling the various types of evidence
encountered during a mobile device exam and the proper ways of documenting each artifact. Order of
documentation depends upon the power status of the device, on or off, and typically defines the
documentation phase. A diagram showing the process for documenting mobile device evidence is shown in
Figure 10-2.

FIGURE 10-2 Using the device state as a cue to the documentation phase can help the examiner develop a
systematic approach while maintaining power to the device if needed.

239

Device
If the device is powered on and isolated from the network, documentation should include a clear image
depicting the device within the isolation environment; if the device is in airplane mode, the image can be
taken outside of an isolation environment. Also, a photograph should document the current display of the
device that clearly shows the device carrier, date, time, and desktop or main screen. Documenting the date and
time on the device is extremely important during the examination phase of the extracted data. This
information is often critical in an investigation; the owner of a collected mobile device can change its date and
time in an effort to throw off the examiner, for example, if this detail is critical to text messages, e-mails, or
device use. Without this information, the collected data from the mobile device can be extremely confusing.

Documenting the initial screen was especially important with early-model Nokia mobile devices that lost
the date and time and GMT (Greenwich Mean Time) offset when the battery was removed.
Documenting the screen would enable the examiner to reset the date and time if needed to the proper
time or use the offset information when converting dates that were extracted.

The back of the device and the USB connection should also be photographed to detail any imperfections,
damage, or obstructions. This can help to dispel any allegations that the device was damaged during the
examination process. Photographs should be taken of the device within its protective case, if applicable, and
then outside of the case, including images of the front, back, and sides. It is important that the sides of a
mobile device be photographed to show the location of a memory card slot. After a memory card slot is
located, the protective flap should be carefully moved to photograph whether a memory card is inserted or
not; the card should not be removed. With a device that is powered on, the collection phase of the
examination would start at the completion of the device documentation.

Some devices, such as those in the Apple family, show clear model numbers on the exterior rear of the
device. Be sure to document these numbers clearly.

If the device is powered off, the order of documentation is considerably different, with the exception of the
initial photographs of the exterior of the device. The first few photographs should be of the front, back, sides,
and USB connection with the case on (if applicable), and then with the case removed. These images will be
used to identify the device and also document the current state of the device. If the device has a battery
compartment, it should be opened and photographed. With the battery compartment exposed but the battery
not removed, the examiner should locate and photograph the memory card and UICC slot if visible.
Sometimes the memory card and UICC slot are under the battery, and the battery will have to be removed.
Removing the battery should expose the device serial numbers, device information, memory card, and UICC
if available (see Figure 10-3).

240

FIGURE 10-3 The serial numbers of the device should be clearly visible, along with the memory card still in
place.

Some devices, such as those in the Apple family, do not allow the battery to be accessed and do not have
memory cards.

Battery
If the device is powered on, the battery should not be photographed or accessed until after the device has been
successfully collected logically. If the device battery is accessed while powered on, the device may lose power,
and if security is enabled, the device may be locked. After a device that is powered on has been successfully
processed, the examiner can logically access the battery compartment to complete the documentation, as
described next when dealing with a device that is powered off.

If the device is powered off and the battery has been photographed in the device, the battery should be
removed and photographed. The front, back, and sides should be photographed, and any distortions to the
battery should be indicated. A failing battery should be documented, which is generally noticeable by a bulge
in the center of the battery (Figure 10-4).

241

FIGURE 10-4 A normal battery (front) and a bloated battery (back). The middle of the back battery is
distended and could explode, causing damage to the evidence and possibly the examiner.

“Thermal runaway” is a phenomenon caused by the battery failing to dissipate heat faster than it is
generated; the increased temperature of the battery distorts the plastic container, causing the battery to
appear bloated. This was clearly identified as the cause of the recall of the Galaxy Note 7 phones in 2016.

Prior to starting an examination of the mobile device with a damaged battery, the examiner should insert a
new battery into the device so that the damaged battery does not breach and subsequently damage the mobile
device.

UICC
If the device is powered on, the UICC should not be removed until after a logical collection has been completed
successfully. Access to most UICC cards is via the battery compartment, and removing the UICC card may
allow the device to lose power. If a device loses power, and if security was enabled, the device may lock and a
logical examination would not be possible. After a device has been processed logically, the examiner can follow
the process to document the UICC card for a device that is powered off.

Some devices can contain multiple UICC slots. If more than one UICC is located, all should be
documented as indicated in this section.

If the device is powered off, the UICC may be in various locations, depending upon the device family. For
iOS devices, the UICC slot is located on the top or side of the device. For most other devices, the UICC is in
the battery compartment. The UICC location should be photographed in place prior to removal. Once
removed, the UICC should be marked with the case number and evidence number if it has not been marked
already. This marking should not obstruct the serial numbers on the exterior of the card. The UICC should
also be photographed alongside the mobile device it was removed from; the UICC serial number, or the
ICCID (Integrated Circuit Card Identifier), should be clear in the photograph. This documentation can help
identify that the UICC is associated with the device if this detail is challenged later. Both sides of the UICC
should be photographed along with the case number and evidence number. The UICC can then be processed

242

with mobile forensic tools, and a forensic clone can be created, if needed.

Once processed, the UICC should be taped to the mobile device’s exterior, not reinserted into the device,
because this would enable the device to communicate with a cellular network if the device was somehow
powered on when repackaged. If a UICC must be inserted into the device, use the created forensic UICC
instead of the original card. By taping the original UICC to the device, the examiner can be sure that the card
will not be misplaced during the examination of other evidence and that it is matched with the device to
which it belongs. As outlined, mobile devices, wearables, and IoT devices may contain an internal UICC card,
and currently the information must be obtained with common commands via the interface since the physical
card cannot be removed.

Memory Card
If the device is powered on, the memory should not be removed until after a logical collection has occurred
successfully. Most mobile forensic tools will allow for the collection of data from these memory cards during
an extraction, so removing a card while the device is powered on could miss critical data.

Android devices containing external memory cards can corrupt the data on the memory card if it is
removed while the device is powered on and not unmounted first. If the device is powered on, unmount
the memory card prior to removal to avoid this issue.

Some memory cards are accessed via the battery compartment, and removing the memory card could cause
the device to lose power and lock. After a device has been processed logically, document the memory card in
the same way you would if the device were powered off.

If the device is powered off, the memory card location should be photographed prior to removing the card.
The memory card slot is on the top or side of the mobile device, under the battery, or in the battery
compartment. Once removed, the memory card should be marked with a case identifier and evidence number
and photographed alongside the device. The media card can then be physically collected separate from the
device and reinserted into the device when complete. If the device is going to be collected physically, the
memory card can remain inserted; that way, if a logical examination is also performed, the memory card will
be available.

Remember that all photographs should include the case number and evidence number assigned to the
article. Clearly photographing the progression of the collection will help for later documentation and also
dispel any allegations of evidence tampering, destruction of evidence, or other issues.

JTAG, ISP, or Chip-Off
If a mobile device examination will be at the level of a JTAG (Joint Test Action Group), ISP, or chip-off
examination, documenting the internal components is also important. For JTAG, ISP, and chip-off
examinations, prior to disassembly, the examiner should follow the previously outlined steps to photograph

243

the device and its components. Once the device is disassembled, the printed circuit board (PCB) should be
photographed prior to making any connections. Once connections have been made to the JTAG test access
ports (TAPs), a photograph should clearly document the connections to the ports. At the conclusion of the
collection and removal of the connections, the printed circuit board should again be photographed and then
again after the device is reassembled. For chip-off examinations, photographs of the memory chip should be
taken prior to removal, after removal, after reballing (if applicable), and during a read of the memory chip.

This amount of documentation may seem extreme, but showing the examination’s progression and clearly
showing that the chip in the device is the same chip that was collected can help immensely later if any
challenges occur.

Mobile Device Isolation Methods
The techniques or methods used for isolating the device are often dictated by the device type. Whatever
method or technique is employed; the isolation of the device must remain constant during the entire
collection if the device is powered on. If the device can be collected while powered off, it is still a good idea to
isolate the device if power is still available to it, because the device could be inadvertently powered on by the
examiner or the software.

Several different isolation methods and techniques are covered in this section, from manually changing the
device communication, to placing it in rooms devoid of radio waves. When selecting the type of isolation
method, the examiner must remember that various factors can interfere with the technique’s consistency and
coverage. As outlined in Chapter 6, different frequency ranges are used by the various technologies built into a
mobile device. The techniques used by the examiner should be tested on all frequencies encountered in the
course of the examination.

If a device is not properly isolated from the network, data loss can result, because cellular, Wi-Fi, and
Bluetooth networks offer conduits to the device’s internal file system—a mobile device can pair with an active
Bluetooth device in the examiner’s office, or it can authenticate on an open Wi-Fi guest network in the area.
Although the result may not be data loss, the integrity of the data will be changed with the addition of
information unrelated to the case. If the device accesses a cellular network or the Internet, a signal submitted
to the device can also remotely wipe all the information from the device, making any type of recovery next to
impossible. By following the simple steps and techniques covered in this section, an examiner should not have
to worry about these types of scenarios.

Chapter 6 covered the various communication methods that are used in today’s mobile devices: cellular,
Wi-Fi, Bluetooth, and near field communication (NFC) are used for both the reception and transmission of
data. These services should all be inhibited during the collection process when possible using one or more
techniques outlined.

Some solutions, including Cellebrite UFED Touch 2, UFED 4PC, MSAB XRY, and Oxygen Forensic

244

Detective, among others, include a function for extracting data from devices using Bluetooth technology.

If Bluetooth is inhibited, data transfer cannot occur from the device to the forensic solution. In these
cases, the device Bluetooth must be enabled.

Methods, Appliances, and Techniques for Isolating a Device
There are various ways to isolate a mobile device from the network, and their differences are many. Isolation
products range in cost from free to thousands of dollars. Some signal isolation products are portable; some are
not. Some products require practice to use; others do not. Before deciding upon the best appliance solution,
the examiner should vet it using real-world scenarios and testing, since many variables can affect even the
most expensive appliances. Also, in some cases, an appliance is not needed and a method or technique can be
used instead.

Before embarking on any isolation solution train, the examiner must test and retest the solution with live
mobile devices where most of the mobile device collections are going to take place. If all device collections are
conducted at a lab, testing is much easier. However, if the scene of mobile device collections is variable, the
examiner must ensure that the solution is suited to isolating the strongest signal that may be available at the
scene. What makes the selection of a signal isolation tool so difficult at times is that the installation of a new
cellular tower by a local carrier can render a signal isolation device unable to protect the device from unwanted
signals. The distance to the nearest tower can affect the usefulness of the solution, simply because the closer
the device is to the tower, the stronger and more concentrated the signal will be. Also, if an isolation solution
had been successfully tested with a third-generation (3G) device but the device to be examined is capable of
using a fourth-generation (4G) signal—and soon fifth-generation (5G)—the solution might not be rated to
block those signals, which ultimately can breach the supported barrier and reach the device. Many free apps
for iOS (available from the iTunes Store) and Android devices (on Google Play) can read the radiofrequency
(RF) signal strength in a particular area. Using these apps can help the examiner determine what course of
action to take and whether a particular appliance will be effective.

An app should be thoroughly tested prior to using it in an actual forensic environment, where real
evidence will be examined. Also, during testing, the app should be installed to a controlled device, not to
the device that is to be examined.

Sometimes, the easiest solution when deciding on a proper appliance is not to use an appliance at all.
Several chapters have mentioned placing a device into airplane mode, a technique that is the easiest to use and
at times the most difficult to convince examiners to use. It is easy because all modern mobile devices have an
airplane function, which inhibits all forms of communication, but it’s difficult for some examiners to embrace
because the device must be manipulated—that is, buttons are pushed and screens are accessed. Some
examiners believe doing this negatively impacts the device collection, but as mentioned in Chapter 6, placing a
device into airplane mode is described in NIST and SANS documents as a viable technique to isolate a device.

If airplane mode is not available or the protocol requires that the examiner manipulate the device as little
as possible, there could be another option. With GSM smart phones from Apple, Android, Windows Phone,

245

and BlackBerry, the examiner can remove the UICC card and still process the mobile device. Without the
UICC card, the device is effectively isolated from accessing the cellular network, but Bluetooth, NFC, and
Wi-Fi can still be available. More information on processing mobile devices without UICC cards will be
covered later in Chapter 11, but remember that the removal of a UICC card could mean the device must be
powered off and any security feature that is active could be enabled. Because CDMA (Code Division Multiple
Access) mobile devices operate primarily without a UICC, this method and approach will not work with those
devices.

If security is enabled, airplane mode can still be accessed for the smart devices outlined in Chapter 5.
Because security is already enabled, the device can simply be powered off, because turning off the device is
not going to lock the device further. The examiner should then research the locked device to determine
how to process it effectively.

If a device is powered on, the methods used to isolate it are similar no matter whether the device is GSM
or CDMA, but they depend on security. If the mobile device does not have security enabled, both CDMA
and GSM devices should be placed into a signal isolation appliance so that the examiner can visually see and
manipulate the device.

Once inside the isolation appliance, the examiner can place the device into airplane mode and then remove
the device from the appliance. Several available appliances will enable the examiner to see the device, push
buttons, navigate capacitive screens, and even photograph it. Table 10-1 lists two appliances that have been
used to process and interact with a mobile device in active investigations. Other isolation appliances that do
not have the ability to connect to a computer are not listed in the table, but they are typically less expensive.
At times, examiners have even used several wraps of aluminum foil or lined and unlined metal paint cans to
isolate a mobile device during transport or while awaiting collection.

TABLE 10-1 Appliances Used to Process and Interact with a Mobile Device in Active Investigations

A study, “A Field Test of Mobile Phone Shielding Devices,” was conducted in 2010 at Purdue University
that tested various RF-isolation appliances and mobile devices. The testing involved sending various
messages and content to mobile devices while they were inside an appliance. No appliance tested passed

246

at 100 percent signal blocking 100 percent of the time. Be aware of this when using any isolation
appliance. Although the study is almost a decade old, it still holds valuable information on the lack of
protection with some isolation techniques.

A signal isolation appliance enables the examiner to fix portable power, access external USB connections,
conform to capacitive screens on today’s mobile devices, and view the device through a transparent window.
The appliance can be connected directly to a power source and a computer and easily monitored. This
technique can be used when the examiner does not want to remove the device from the appliance or navigate
the device to locate airplane mode. When the examiner can keep the device in the same isolation appliance,
whether at the lab or on the scene, outside contamination by both radio signals and the various people who
come into contact with the mobile device can be minimized.

Signal isolation bags are made of interwoven metal fibers that degrade over time, leaving gaps where
signals can escape and enter. Because this degradation is not visible, it is important that you replace these
bags frequently and handle them with care.

Some techniques and methods are specific to the type of mobile device (that is, CMDA or GSM).
Because of these differences, each technology is discussed in a separate section.

CDMA Devices
CDMA devices can be isolated using appliance-based solutions (such as isolation bags and boxes) and airplane
mode if they are powered on, but some CDMA devices can also be processed without powering them on,
bypassing security. When connected with a USB cable that allows charging and data transfer, CDMA devices
—feature phones, in particular—often have enough power to be recognized by the computer. Once the device
is recognized, a driver is loaded, and the mobile device can be processed as if the device were powered on.

Carefully monitor the CDMA device when plugging the device into the computer, because some devices
will start a boot-up process.

If the CDMA feature phone is powered off, removing the battery and then plugging the device into the
computer with a charging cable seldom boots the device. However, when the battery is attached to the device
and then plugged in, the phone booting sequence would begin. For smart devices of today, the device cannot
receive enough power to allow the computer to recognize the device and load a driver, so this option is not
available.

GSM Devices
For GSM devices, creating a forensic subscriber identity module (SIM) clone can effectively isolate a device
from the cellular network. Because a feature/legacy CDMA device does not contain a card to access and
authenticate on a cellular network, this process will not pertain to these devices, only to GSM. Why not just

247

remove the UICC from the mobile device and in that way isolate the device? This would be the best course of

action, and it has already been established that removing the UICC in a smart device such as an Android,
Apple, BlackBerry, and Windows Phone still allows for the collection of the device’s data. However, this is
not always the case, especially with feature phones. By removing a UICC from a feature phone, forensic
software is unable to communicate with the majority of handsets, and examiners are forced to take isolation of
the mobile device seriously. Because the UICC must stay within the feature phone for a logical forensic
examination to be successful, the device must be isolated correctly. This is why a forensic SIM clone is
needed.

The term “forensic SIM clone” was coined in a paper I wrote in 2008, titled, “SIMs and Salsa,” which
outlined the vulnerabilities of U.S. cell carriers and showed how a forensic SIM could be created without
the original SIM card. Some of the content is used in this section to describe the process of creating a
forensic SIM.

In essence, the examiner will create a SIM card that will satisfy the mobile device’s need for specific files:
the IMSI (International Mobile Subscriber Identity) and the ICCID. Here’s an excerpt from my 2008 paper,
“SIMs and Salsa”:

The two files we will focus on in this document are the ICCID … and the IMSI…. We will be focusing
on these two important files because these files are needed to complete a Forensic SIM Clone™ and
effectively isolate the device from the cellular network. To further elaborate, some handsets only need the
IMSI, while some need only the ICCID and in some cases the device needs both the ICCID and IMSI.

Mobile Forensics, Inc. coined the term Forensic SIM Clone because the completion of this method
should not be considered in anyway a “clone” in the sense that the card is a duplicate of the original SIM.
If that were the case then we have not effectively isolated the clone from the network because if it is a
duplicate of the evidence all the network information still resides on the handset. If this network
information still resides on the cloned card we know that the cellular network can add, delete or change
data on the handset. Hence “Forensic” was added because all the network information is nonexistent.

The question asked by students and examiners alike is, “Why not just place a foreign SIM into the device
so the device has a SIM and the forensic software can then process the device logically? Just place a T-Mobile
SIM card into a T-Mobile phone, right?” Completing this type of process would result in dire consequences,
however, because the mobile device would reject the SIM card and undoubtedly purge data, as the expected
files (IMSI and/or ICCID) were not there. Most often, call logs would be deleted, but the deletion of images
and videos was also observed on early iDEN (Integrated Digital Enhanced Network) model devices. To create
a proper forensic SIM clone, the proper IMSI and ICCID must be obtained from the original SIM. If the
examiner does not have the original SIM card or the original SIM card is locked, proper paperwork would
have to be submitted to the carrier of record for the mobile device to obtain both the IMSI and ICCID. With
both the ICCID and IMSI, a forensic SIM could be created manually onto a GSM test card and inserted into

248

the mobile device. This, however, does not always work for the reasons outlined in another excerpt from
“SIMs and Salsa”:

What if the original SIM card is PIN locked? SIM card is gone? Damaged? For starters, if the SIM is
PIN locked you are limited by the inability of most logical software to process the device. Again, I say
logical, we will discuss physical software shortly. We know if the SIM PIN is locked, the ICCID is still
readable. This is due to the fact the ICCID does not need a security condition to be satisfied to be read.
Reading the ICCID is easy, but how about the IMSI? Well, the opposite is true for the IMSI. The
IMSI does have a security condition, the PIN. Unfortunately, if we do not have the PIN we cannot
satisfy the condition to read the IMSI. Without the IMSI we cannot in confidence create a Forensic
SIM Clone that the device will not think is foreign. So how do we obtain the IMSI?

There are three methods that can help with this dilemma.

• Send court order to cellular carrier

• Obtain the IMSI from physical memory

• Or create the IMSI yourself

I am sure you are aware of the first solution. By sending a valid court order to the carrier they can supply
the last IMSI utilized by the device and matches the ICCID you have supplied. The second way
mentioned involves using specialized hardware/software to obtain RAW data from the device and then
parse the data, recovering the last IMSI or last IMSIs of the SIM. The examiner can then manually type
this information into the MFI Forensic SIM Cloner application and create a Forensic SIM Clone. I am
sure you are wondering about the third situation, creating the IMSI yourself.

Here’s an elaboration on the first condition outlined in the document in reference to obtaining a valid
IMSI from the carrier: If a user contacts the carrier to obtain a new SIM card because the old card has been
lost, the information from the old SIM will be lost and the information (IMSI) returned will be incorrect for
the device. This would mean a failure in creating a forensic SIM clone, so obtaining information from a
carrier does not always mean obtaining the correct information to compile a forensic SIM manually.
Obtaining the IMSI from physical memory of a device was a better method, and once this was obtained, it
could be used to create a forensic SIM card and obtain access to the device.

To automate the process of both reading an original SIM and then writing to a test card, I created the
MFI Forensic SIM Cloner (which is no longer available). All major commercial mobile forensic solutions
now support the creation of forensic SIM cards when needed.

The creation of a forensic SIM card with today’s investigations is generally not needed simply because the
majority of devices that need to be processed and collected are smart devices. To reiterate, a smart device can
be forensically collected without a UICC card, unlike legacy feature phones of the past. However,
understanding how and why a forensic SIM should be created is critical, even if this technique is seldom

249

required in today’s examinations.

Mobile Device Processing Workflow
As you know, the examiner should follow a process for every mobile device examination. If proper isolation
techniques have been followed, the recommended methods for processing a mobile device depend on whether
the device is powered off or on. Several pieces of evidence can be collected from a mobile device, and each
must be treated as a single piece of evidence during the processing phase. Figure 10-5 represents the suggested
ordering of processing for various situations, and the following sections offer information on how to process
the device in various situations.

FIGURE 10-5 Mobile device evidence processing workflow

Device is powered on and unlocked Evidence processing should be conducted in this order:

1. Mobile device The mobile device should be processed logically, and when the examiner is satisfied with
the results, it should be processed physically, if possible.

2. UICC The smart card should be processed, obtaining the complete file system.

3. Memory card The memory card should be processed outside of the body of the mobile device and a
physical image created.

4. Cloud extraction Additional data is available that might not be part of the device collection, and every
attempt should be made to collect the cloud services associated with the device and owner.

Device is powered on and locked Evidence processing should be conducted in this order:

1. UICC The smart card should be processed, obtaining the complete file system.

2. Memory card The memory card should be processed outside of the body of the mobile device and a

250

physical image created.

3. Mobile device The mobile device should be processed, physically if possible. If a physical image is
obtained, obtaining security information for bypass from the physical image may be necessary to then
conduct a logical examination.

4. Cloud extraction Additional data is available that might not be part of the device collection, and every
attempt should be made to collect the cloud services associated with the device and owner.

Device is powered off Evidence processing should be conducted in this order:

1. UICC The smart card should be processed, obtaining the complete file system.

2. Memory card The memory card should be processed outside of the body of the mobile device and a
physical image created.

3. Mobile device The mobile device should be powered on and, if not locked, the mobile device should be
processed logically; when the examiner is satisfied with the results, it should be processed physically.

4. Cloud extraction Additional data is available that might not be part of the device collection, and every
attempt should be made to collect the cloud services associated with the device and owner.

Device was powered off but is now powered on and locked If the examiner turns on a mobile device and it is
locked, the UICC and memory card should have already been processed. The final processing would involve
the mobile device and cloud services:

1. Mobile device The mobile device should be processed, physically if possible. If a physical image is
obtained, obtaining security information for bypass from the physical image may be necessary to then
conduct a logical examination.

2. Cloud extraction Additional data is available that might not be part of the device collection, and every
attempt should be made to collect the cloud services associated with the device and owner.

Feature Phone Collections
Most collections of mobile devices today involve smart devices, but because feature phones are still available
and in use, these devices are also considered here. In general, a feature phone is a mobile device that contains
voice telephone calling, text messaging, and Internet features such as e-mail and web browsing, but it lacks the
independent apps available for a smart device. A feature phone typically uses a built-in keypad or a number
dialing pad, and the user must use a series of key presses to access alphabet characters. Feature phones do have
built-in applications, but they lack the ability either to install or upgrade apps. These devices generally have a
proprietary or embedded file system that does not allow outside developers to create applications, so they rely
on built-in apps that ship with the device.

This does not mean that there is no available data to be collected from a feature phone—in fact, quite the
contrary is true. As mentioned, these devices contain a file system, and within the file system are artifacts you
could expect on a smart phone, with Internet histories, GPS coordinates, and multimedia messages. The
difficulty is not in the collection, but in the decoding of the data. Because of the lack of documentation from
manufacturers (for obvious reasons), feature phone data repositories can be difficult to decipher and decode.

251

This book does not offer not an exhaustive list of feature phones, and some devices may support only the
extraction of a small subset of the proposed list. The type of data that can be extracted varies, and the
software that is used to complete the extraction should be consulted to see what data should be expected.

Connecting to a Feature Phone
The examiner should research to determine the best way to connect to a feature phone using available forensic
software. Connection can be via USB, Bluetooth, or IrDA (Infrared Data Association). If the device has been
isolated within an appliance, generally the only available connection method will be USB, so determining the
software capabilities could impact the isolation mechanism, technique, or appliance. Once the connection
method has been determined, the examiner should research whether or not the device must be placed into a
certain mode to conduct a transfer to a mobile forensic solution. For example, to connect to a Nokia 5300
device and many other Nokia feature phones, the device must be placed into Nokia Mode by navigating to the
appropriate menu on the device after a USB cable has been attached to the computer and to the phone. If the
device is not in the correct mode, forensic software solutions will not be able to connect and collect the user
data. The examiner should research data transfer methods and any specific settings by reviewing the model’s
user manual prior to beginning a collection. These manuals are easily located on the manufacturer’s site,
Phone Scoop (www.phonescoop.com), or GSMArena (www.GSMArena.com). Having a clear idea on how
the connection will be made before beginning will save the examiner time when and if problems are
encountered during the connection process.

Most connections to feature phones are made via a USB connector on the device. Feature phone USB
connections have never been regulated, so many different types of connectors have been used, which can make
connecting to the many devices difficult at times. All USB connections, however, communicate using specific
pins on the USB head connected to the pins on the exposed USB connection on the phone. If any of the pins
on either the cable or device are corroded, missing, or nonoperational, a connection cannot be made. The
examiner should carefully inspect both the cable pin connections and the connections on the device to ensure
a successful connection and data collection. If any debris is seen inside of the USB connection port, the
examiner can use a small wire brush to clear it away. After a successful connection to the computer using a
USB cable, the device is recognized and driver installation begins.

If a cable with a serial-to-USB converter (such as Prolific or FTDI) is used, the examiner cannot be sure
that a successful connection has been made to the device until a forensic software solution is used.
Because the installed driver is for the cable and not the device, the examiner may be required to reexamine
the device if the software cannot connect.

If a connection cannot be made and a driver does not load, the examiner can check the type of cable being
used (see Figure 10-6). Some USB cables are for charging only and do not allow data transfer. Because
specific pins are used to charge and others are used to transmit and receive data, a faulty cable may be a
charging cable that does not have the Tx (Transmit) and Rx (Receive) pins. The examiner can exchange the

252

http://www.phonescoop.com
http://www.GSMArena.com

cable with another cable that is known to be a data transfer cable.

FIGURE 10-6 The many different types of cables used for feature phones can make collecting data difficult
at times.

Device State Considerations
In order for a driver to install successfully and a solid connection to be made, the feature phone must be at
least 50 percent charged or be connected using a charging cable. A charging cable has an extra pin that allows
the device to receive power from the USB hub on the computer while connected. This is a good alternative if
the device does not have a 50 percent charge and time is critical.

If a device does not have enough power when it is connected to the mobile forensic solution and computer,
failure during processing may occur, such as the inability to recognize the device driver, a collection failure, or
a successful collection but incomplete data. A computer communicates with the mobile device through the
driver, and if the device does not have enough power to bridge the two devices, run system processes, and keep
the phone functioning, this communication will not occur. When power is not sufficient or available, the
driver either fails to load or ceases functioning at some point.

A failed collection is obvious to the examiner, because the software crashes or returns information
identifying that connection cannot be made to the device, with a suggestion to reconnect and try again.
Receiving this error during the collection can be frustrating, but it can be managed. Even if a device is not
sufficiently charged, some software will return the collected data as though a successful collection had been
achieved, but closer inspection will show that data is missing. This consequence can be devastating, because
the examiner believes that no error has occurred and considers the collection complete. In fact, NIST, as part
of its testing for mobile forensic software, disconnected a device that was being collected to determine
whether this effect could occur to the software. The resulting physical disconnection of the device was similar
to the behavior of a device that was 50 percent charged, and, as NIST noted, some software solutions will not
indicate to the user a failure has occurred.

253

Consequences of Insufficient Device Power

During a class, while students were using Paraben Device Seizure, we witnessed a phenomenon that
confirmed that battery condition and power really do matter for a successful collection. The mobile
devices all contained the same information to allow instruction to flow efficiently for the class, with 25
text messages and 30 contacts. The feature phones used in class were sometimes not fully charged, and
after a student reported that he acquired only 15 of the 25 text messages and 8 of the 30 contacts, I made
a closer inspection of the device. All 25 text messages could be manually located on the device as well as
the 30 contacts. The student reacquired the device, but this time, only 14 messages and 10 contacts were
extracted. The student stated that the device battery light was flashing and needed to be charged. Over
lunch, the device was charged, and upon returning, the student reacquired the device with Device Seizure
and all data was successfully extracted. This was not a limitation of the software, but a limitation imposed
by the battery power at the time of the extraction.

Collecting the Device Logically
If the feature phone is powered on and not locked, the examiner should first attempt a logical collection after
the device has been isolated. The device can be connected to the computer using the prescribed and supported
methods and placed into the proper mode if applicable. Next, the examiner can apply the solution of choice
for a logical collection.

A file system collection should always be attempted first if such a collection is not a part of the standard
capabilities supported by the software. Collecting a file system of a feature phone enables the examiner to
demonstrate unequivocally in documentation and testimony where data came from during the logical
collection of the phone. Too often, examiners simply allow the software to identify the data (such as contacts,
call logs, and Short Messaging Service [SMS]) without completely comprehending where the actual file that
contains this data “lives” within the device’s embedded file system. When a file system is extracted from a
feature phone, however, this is no longer a limitation, because the file is available for inspection, examination,
hashing, and documentation.

If a file system option is not available or has already been completed, the examiner can obtain a surface
collection of user data. This WYSIWYG extraction uses device protocols to query the device files, parse the
extracted information, and present the data to the examiner in the solution interface. This type of logical
collection can be compared to navigating the mobile device interface to locate the information and then using
the software to extract that same information into the forensic solution. Typical feature phone surface
collections include contacts, call logs, SMS, Multimedia Messaging Service (MMS), calendar, notes, and
media.

Having this information immediately available can help steer any additional follow-up and also help to
identify areas of interest to the examiner during a file system examination and after the device is collected
physically. The biggest benefit to conducting a logical collection as a first step with a feature phone is ease of
collection and support. Most feature phones that are not disabled by the carrier can be collected logically by
most mobile forensic solutions with a USB cable, and most surface data can be parsed. However, obtaining
the file system of a feature phone along with the surface data is recommended.

254

Associated Evidence (UICC and Memory Cards)
Feature phones also can contain a UICC and memory cards. As mentioned, each item should be treated as a
separate piece of evidence. Following the recommended guidelines on processing, the examiner should
examine the UICC and memory card first if the device is powered off and last if the device is powered on.
Collecting each card individually outside the body of the mobile device is important, because it will assist the
examiner in collecting much more information that can be used later in the investigation if needed.

UICC With feature phones, the UICC can contain much more evidence than would be found on a smart
device’s UICC and should not be ignored. Because of the limitations on the internal storage of a feature
phone, some valuable information is stored on the UICC, including text messages and contacts. This storage
setting can be controlled within the device by the phone’s user.

Most mobile forensic tools will allow some information to be read from the UICC from within the mobile
device during a standard logical collection. Unfortunately, this information is very limited. The examiner
should always collect the UICC outside of the body of the device, to enable the UICC and its complete file
system to be collected and later examined. When conducting a collection of a UICC, the examiner should
make sure that the forensic tool allows for a full file system collection of the card, not just the surface data.
With the file system, the examiner can verify and validate the data that has been parsed and displayed and
locate additional information, as outlined in Chapter 11.

Memory Card Generally, a memory card within a feature phone contains far less data than a memory card in
a smart device, but some newer Nokia feature phone devices contain a 32GB card. Typically, the smaller size
limitation has to do with the phone’s internal capacities to recognize larger memory cards. During a logical
examination, the memory card can be read by most forensic software while it is within the phone, so the card
should not be removed until this is complete. Once the memory card is removed, the examiner should also
physically read the card using a forensic tool that will allow for the creation of a forensic image of a mass
storage device. AccessData FTK Imager is a free alternative for creating a forensic image, along with paid
commercial tools from Guidance Software (EnCase), Oxygen (Oxygen Forensic Detective), Cellebrite
(Physical Analyzer), and several others.

When creating an image of a memory card using one of the mentioned tools, the examiner should be sure
to have a write-blocking mechanism or appliance in place. Doing so will disable the abilities of the
software to write to the evidence.

The creation of a physical image will allow for a deeper analysis of the memory card, which will include
unallocated space and file slack, which generally contains deleted data. This type of data is not recoverable
when the memory card is within the device and standard logical collection has taken place.

Collecting the Device Physically
If the feature phone has been powered off and is locked or disabled, or after completing a logical extraction of
the mobile device, the examiner should do a physical collection of the device. A physical collection of a feature

255

phone is critical and advisable in all situations if the device is supported for a simple reason: deleted data is
almost never available in a feature phone’s file system with a logical collection. If deleted data is required for a
case, a physical collection of a feature phone is necessary.

Cellebrite supports the most feature phones for both GSM and CDMA physically, with MSAB coming
in second because of its limited CDMA support. Unlike a smart phone, a feature phone’s physical image
includes only a small part of the device’s internal memory. With a feature phone’s memory measured in
megabytes, this does not yield a lot of additional data, but, when possible, a physical image should be
obtained.

When collecting a feature phone physically with a mobile forensic tool, the examiner should remove the
UICC and the memory card from the device prior to starting the acquisition. Methods for obtaining a
physical collection of feature phones were derived from the methods and code used by service tools, as
discussed in Chapter 8. Overheating has been known to occur during acquisition, which could damage the
UICC and memory card if they are inserted in the device at the time of the physical collection. Also, the
UICC and memory card are not needed, nor are they a part of the area the tool will read to obtain the internal
memory area.

If using other means, such as a flasher box, JTAG, or chip-off, the examiner should follow the procedures
described in Chapter 8. Prior to the examiner beginning the physical acquisition, it is critical that a logical
collection occur.

After a collection is completed, the examiner can analyze the information obtained in the physical
collection. This is a labor-intensive process, because a lot of forensic tools currently do not support the
decoding of the feature phone’s file system. Tools such as MSAB XRY and Cellebrite Physical Analyzer do
allow for the decoding of many feature phone file systems. These file systems can then be compared with the
logical extraction during the critical data analysis phase. File system and data analysis for feature phones are
covered in Chapter 12.

Archiving the Data
During each phase of the feature phone collection, all data collected from the logical collection, to the UICC
and memory card, to the physical acquisition of each image, along with all associated data, should be securely
stored on an evidence drive prior to the examiner beginning the analysis phase. This storage location should
use a unique name that pertains to the case or investigation. All subsequent analysis will be on a copy of the
data that was collected during the primary acquisition. By doing this, the examiner is never working on the
original data from any phase. By archiving data, the examiner can be assured that if the software or computer
malfunctions, the original evidence will still be available if a new examination of the data must occur.

BlackBerry Collections
BlackBerry devices were once prevalent in many examinations, but today, in my experience, they account for
less than 1 percent of investigations. BlackBerry devices were one of the most easily collected devices by
forensic software, but now they are one of the most difficult. Early BlackBerry devices’ content, backup, and
storage methods were documented and available to developers all the way up to version 7. Because of this level
of documentation, software vendors and open source engineers built tools to mimic BlackBerry desktop

256

software to create a local backup of the device and then parse the resultant files. This method drastically
changed with the release of BlackBerry 10, an operating system built from scratch. With this new file system,
along with the methods a version 10 device uses to create a backup, forensic tools have a difficult time
producing usable evidence. Today’s BlackBerry collections remain tedious, but since devices are using
Android, the analysis and decoding of the data have become more reasonable.

With the current market share of BlackBerry reported at the end of 2016 as 0.0 percent by Gartner,
commercial tool manufacturers have stopped development cycles on these devices. Forensic examiners
around the globe encounter no more than five devices a year per current surveys and polls conducted
during conventions and speaking spots of active examiners. However, information on all devices is
important for a well-rounded examiner.

Connecting to a BlackBerry Device
As with all mobile forensic solutions, the connection to a BlackBerry device requires a USB cable—either a
mini USB or micro USB connection. Like any other mobile device, the BlackBerry must be isolated using an
appropriate isolation method or appliance.

BlackBerry was the first reported smart device that could be remotely wiped using settings within the
phone. This was first reported on the forums at crackberry.com in 2008, when BlackBerry had not even
added the feature to its user guide. However, this feature was used by a criminal to wipe his BlackBerry
while it was being transported to be examined, and the story is often used in forensic training classes.

If a BlackBerry is powered on and locked, the examiner must know the password to access the device.
Also, if the BlackBerry has encryption turned on, a secondary password might be requested, which could be
different from the first. If either password is not known, the examiner will not be able to connect to the device
using a USB cable; however, connection to any other associated artifact (such as the UICC and memory card)
can still be attempted.

Device State Considerations
If possible, the examiner needs to know the BlackBerry access passwords, whether the device is controlled by a
BES (BlackBerry Enterprise Server) or the device is unlocked. By having both passwords (handset and
encryption), the examiner will be able to conduct a logical or physical collection. If the device is set up with a
BES, the administrator of the BES can disable or enable the password and encryption for the device, if
needed.

For BlackBerry 7 and older devices, the examiner will recognize that a device is locked by the padlock icon
that is displayed in the lower-right corner of the screen. If the device is also encrypted, another padlock will be
visible at the upper left. The device will have to be unlocked using the previous suggestions or by enabling the
info.mkf file on the memory card. This file is available only on the memory card at /BlackBerry/system/ if the

257

http://crackberry.com

device is locked and the card has been encrypted using either the BlackBerry Security Password or Device
Password mode. If this is the case, the examiner can use the Elcomsoft Phone Breaker tool to obtain the
password. This method will not uncover all passwords, however, especially if they are complex, unless a
dictionary has been compiled. The password, if obtained, can then be used to create a backup of the device.

On BlackBerry 10 devices, security is similar to that of prior versions with device passwords, device
encryption, and media card security and encryption. One difference, however, is that locked version 10 devices
cannot be accessed using the info.mkf memory card file. If a device is locked, the only way to bypass security
and obtain a forensic image is by obtaining the password, or the BES 10 admin can reset the password if
possible.

Collecting the Device Logically
If the device is powered on and the examiner has access to the device with disabled security, he or she can
perform a logical extraction using most mobile forensic software. This involves attaching a USB cable,
plugging the cable into the computer, and selecting the device to be collected. The software will perform a
backup of the device, similar to the backup functions in the BlackBerry Desktop software, and then parse out
the database files for supported user data files. The BlackBerry collection does not contain a typical file system
as you would expect, but a listing of all of the database files from the device. In a logical collection, it is
important that the software enables the examiner to access each of the database files, regardless of the
software’s ability to parse out the user information. In other words, the examiner should be able to examine
the complete set of files collected from the BlackBerry device to verify and validate the solution’s parsing
ability, as well as uncover additional data the solution might not be currently able to extract.

Current mobile forensic tools do not support the collection of a BlackBerry 10 device directly, but some
can produce a backup and then conduct an analysis. This method will be explained later in the section
“BlackBerry Collections.”

Much like a feature phone, if the BlackBerry also contains a UICC and memory card, the artifacts should
be removed and processed. However, because of the limitations also imposed on a physical collection by a
locked device, a physical collection should be attempted before an acquisition of the UICC and memory card
if the device is unlocked. If the device is locked or powered off and known to be locked, the UICC and
memory card can be processed first as described in the preceding section, making sure a physical collection of
the memory card takes place.

Collecting the Device Physically
The physical collection of a BlackBerry device using a USB connection is limited to a small number of devices
and even a smaller set of forensic tools. Cellebrite UFED Touch currently supports physical collection of 50
various CDMA and GSM devices, as indicated in its current supported devices list
(www.cellebrite.com/mobile-forensics/support/ufed-supported-devices), but the device password must also be
known. Currently, BlackBerry 10 devices are not supported for a physical collection by any tools via a USB

258

http://www.cellebrite.com/mobile-forensics/support/ufed-supported-devices

connection.

JTAG can be used on locked devices if the password is not known, but this technique is relegated to older
devices because BlackBerry has made the TAPs extremely difficult, if not impossible, to use. The only
alternative method would be an invasive physical examination. The chip-off method can be used on devices up
to but not including BlackBerry 10, and the created binary file can be examined and decoded using Cellebrite
Physical Analyzer or Oxygen Forensic Analyst. However, even when the chip-off method is used, examining
BlackBerry 10 devices is impossible because the data is encrypted at the chip level. So even with a successful
binary dump, the data could be unreadable and unusable.

Additional Collection Methods
Both free and commercial mobile forensic solutions use the same protocols used by the manufacturer’s
software, and at times using the software developed by the manufacturer can be beneficial. However, the
BlackBerry software up to version 7.x, BlackBerry Desktop Manager, also allows data to be restored and
synced to a connected device, so the examiner must be careful when using a software tool that can synchronize
data to a device being examined. BlackBerry 10 devices use BlackBerry Link software, which also allows the
device to be backed up and restored. Currently available tools cannot complete a backup of a BlackBerry 10
device independent of using the BlackBerry Link software. Furthermore, the output file that is created by the
software is encrypted and unable to be parsed by most currently available software, with two exceptions:
Oxygen Forensic Detective and Elcomsoft both support the ability to open BlackBerry backups from
BlackBerry 10 devices.

With new BlackBerry devices and the underlying Android operating system, the examiner can conduct a
backup of the data using the USB debugging bridge (also known as ADB) as well as the associated Google
account. These devices have a function that allows for the backup of the data for later restore if the device is
lost, stolen, or damaged (https://help.blackberry.com). The information that is backed up to the Google
account includes the following:

• Google Calendar settings

• Wi-Fi networks and passwords

• Home screen wallpapers

• Gmail settings

• Apps installed on Google Play

• Display settings

• Language and input settings

• Date and time settings

• Third-party app settings and data (varies by app)

To back up the information manually on a BlackBerry, tap the cog icon and then tap the Backup & Reset
button. A Google account must be configured.

BlackBerry Desktop Backup Software To create a backup of a BlackBerry device successfully using

259

https://help.blackberry.com

BlackBerry Desktop Manager software, the examiner must first install and properly configure the software,
which can be downloaded from http://us.blackberry.com/software/desktop.html. Both Mac and Windows are
supported. The examiner should make sure to disable automatic syncing upon connection and ensure that
automount is disabled on the forensic computer so the memory card is not altered by the operating system.
When the examiner sets up the device, My Computer’s Date And Time With My Device should be
unchecked, as shown in Figure 10-7. The BlackBerry can then be backed up.

FIGURE 10-7 Disable the synchronization feature before connecting the device.

BlackBerry IPD and BBB Backup Files An IPD (Inter@ctive Pager database) backup file is produced with
the BlackBerry Desktop software running on Windows machines up to version 7, and a BlackBerry Backup
(BBB) file is produced on the Mac versions of BlackBerry Desktop up to version 7 of the BlackBerry software.
The IPD is a single file that contains multiple other database files that make up the content on the BlackBerry
device. The Mac BBB file (up to version 7) is a compressed IPD file. At version 7.1, BlackBerry transitioned
to creating BBB files on both Mac and Windows machines using BlackBerry Desktop, and the BBB is still a
compressed file, but it now comprises .dat files. Each .dat file contains various data and data types. BlackBerry
Desktop is no longer updated by BlackBerry because the company is transitioning users to the BlackBerry
Link solution.

BlackBerry Link also creates a BBB file that differs from the Desktop BBB file. The difference is
encryption: The newer BBB file is fully encrypted independent of user interaction on the device or within the
Link software. This means that if a backup is going to be read within a forensic software solution, the
examiner must have a key piece of information: the BlackBerry Link password associated with the BlackBerry
user account. Technically, the examiner will need both the user account associated with the device and the
password, but current software, such as Oxygen Forensic Detective, which supports the analysis of BlackBerry
10 devices, reads the user ID from the manifest and requests only the associated password. What can cause
difficulty is the fact that the Link password is completely independent of the device password, so even if the
device password is known for the BlackBerry 10 device and it is unlocked, the collected backup might still not
be able to be examined if the Link password is unknown. The BlackBerry Link password must be used to
decrypt the files to enable the software solution to parse the available user data. Furthermore, the verification
of the BlackBerry ID by the BlackBerry server is used for BlackBerry Link and is necessary for the decryption

260

http://us.blackberry.com/software/desktop.html

of the backup-and-restore process. The software solution must be online for this process to be successful.

The BBB file that is produced is similar to the original BBB compressed file, but new BBB files contain a
manifest file and informational file that are not encrypted and can offer information about the device. This file
is needed by the current software solutions mentioned in previous sections along with the BlackBerry Link
password. Mobile forensic software from Oxygen Forensics allows the new BBB files to be decrypted and
analyzed with the correct BlackBerry account password for both live and backup collections.

With the introduction of the Android runtime to the BlackBerry device, the device is much more
accessible to recover without the use of the BlackBerry backup software.

Archiving the Data
Much like a feature phone collection, the BlackBerry data and UICC and memory card information should be
securely stored on an evidence drive prior to beginning the analysis phase. This storage location should have a
unique name that pertains to the case or investigation. All subsequent analysis will occur on a copy of the data
that was collected during the primary acquisition.

Even if the BlackBerry 10 device is currently encrypted, the examiner should create a backup if possible.
This will enable the examiner to perform an analysis at a later date if a password is eventually discovered
or additional techniques are introduced. Software solutions are always advancing with more options
available. Having the file at the onset, even if not currently usable, would enable it to be parsed with new
technology.

Windows Mobile and Windows Phone Examinations
Although the Windows Mobile operating system is no longer on the market and Microsoft has transitioned
to Windows Phone, Windows Mobile systems are still being used. Windows mobile devices, both Windows
Mobile and Windows Phone, differ regarding collection, the ability to access user data, and data layout.
Today, the Windows Phone holds a small portion of the smart device market share, but it continues to grow.
Undoubtedly, an examiner will be requested to complete an examination of a Windows Mobile or, more
likely, a Windows Phone at some point.

Windows smart phone devices were released in 2000 as a mobile solution based on Windows CE
(Compact Embedded) and saw exposure as Pocket PCs and the Windows smart phone based on CE 3.0.
Windows Mobile 2003 was running 3.0, and in 2004, Windows Mobile 5 was released and 6 followed, all
progressing on the CE architecture. The last available Windows Mobile version, 6.5, was released in 2009,
and Windows Phone 7 became available in 2010, which was not just a complete rebranding, but something
completely new.

At the release of the Windows Phone 7, users and examiners alike saw a complete change in the collection
and recovery of a Windows mobile device. Windows Phone 7 was not based on previous Windows Mobile
functions and accessibility, and as such it created problems for digital forensic examinations. In 2011,
Windows Phone 7.5 was released, and version 7.8 added some Windows Phone 8 capability, since 7.8 devices
could not be upgraded to Windows Phone 8 because of hardware limitations. In 2012, Windows Phone 8 was

261

released and in 2014 upgraded to version 8.1. The device was again rebranded as Windows 10 Mobile in 2015

as a way to unify with the PC operating system. What has been of benefit to mobile forensics examiners is
simply the market share of 0.01 percent by Windows devices, which means Windows devices aren’t involved
in most mobile forensic examinations. However, with the massive move to cloud services by most mobile
device apps and devices themselves, the data can often be recovered as long as the data was backed up to the
service.

Remember that a Windows device can also contain a UICC and memory card, so the correct procedure in
processing these pieces of evidence should be followed, depending upon the state of the mobile device.

Connecting to the Device
Communication with a Windows Mobile device and a Windows Phone both generally require a USB cable
and computer, but the way and conduit in which the communication occurs differ between the two devices.
Communication to the Windows Mobile device occurs using Active Sync or Windows Mobile Device Center
(WMDC) protocols. Both operate using a hardware abstraction layer, much like how iTunes operates with an
iOS device. Active Sync and WMDC are not capable of the same communication layer with a Windows
Phone device, so Microsoft Zune was released to accommodate that. However, the access to a Windows
Mobile device using Active Sync and WMDC is considerably more verbose than a connection to a Windows
Phone using Zune. In 2015 Microsoft released the Windows Phone Companion to act as a conduit to the
flagship Windows 10 operating system that supported Windows 10 Mobile devices, Android, and even iOS.
It has been rumored the software has been discontinued and a form of the Companion will be incorporated
into the Windows 10 OS.

When connecting either a Windows Mobile or Windows Phone device, the software must have
preinstalled drivers, or the examiner must install drivers for the device. Most forensic software that supports
Windows Mobile devices will either have Active Sync or WMDC installed as part of the driver package.
Connecting and then collecting with a Windows Mobile device, as mentioned, is similar to doing so on an
iOS device, in theory. The examiner will use the data syncing function built into the Windows Mobile device
architecture and operationalized via Active Sync or WMDC, install a file to the device or device SD card, and
initiate the card on the device. Connection and logical collection can occur only using an intermediary file,
also referred to as an agent. The agent, using the Active Sync or WMDC connection, transfers data to the
forensic software. The examiner must ensure that the loaded file does not overwrite inactive data.

Windows Phone logical collections using commercial and open source tools involve using the Zune
software, ActiveSync, WMDC, Windows Phone Companion, or a derivative.

Some commercial tools have harvested some of the functionality from the Zune software to bundle into
their driver packages, but these tools will not allow Zune to be installed along with the forensic software.
If a Windows Phone cannot be recognized, make sure the forensic software is not conflicting with Zune,
if it’s installed.

Collecting the Device Logically

262

If the device is powered on and unlocked, and after connection has been made to the Windows Mobile device
using Active Sync or WMDC, the agent recovery process will begin. Typical data recovered using mobile
forensic tools includes contacts, call logs, SMS, media, and other critical user information. On the other hand,
a Windows Phone will yield very little user type information with a logical collection. The information that is
collected in a logical extraction of a Windows Phone is limited to media and documents. Really, anything that
is accessible using a Windows Explorer instance will be collected in a logical collection using modern forensic
solutions.

If the device is locked with a password, the only option will be to conduct a physical collection of the
Windows Mobile or Windows Phone device.

With today’s Windows Phone 10 devices, a considerable amount of data can be collected from the user’s
cloud account to include SMS, app data, phone settings, and media (images/videos). To set a device to back
up to the account, the proper method, as outlined by Microsoft, is to tap the Windows key | Update &
Security | Backup and then select both settings and app data. Furthermore, if a manual backup is needed in
the case of a forensic examination, tap the Windows key | Update & Security | Backup | More Options |
Backup Up Now. To back up the messages on the device, tap Settings | System | Messages | Turn On Sync
Messages Between Devices. If media items (images/videos) are to be backed up, this will occur on One Drive,
which can be extracted via the cloud backup. To set this option on the device, tap OneDrive | Menu |
Settings | Camera Upload. Using this method will enable the collection of much more information than can
be obtained using the standard USB connection.

Collecting the Device Physically
Most Windows Mobile 8 device models can be collected physically using non-invasive methods. Cellebrite,
MSAB, and Paraben software include methods to recover a file system from a Windows Mobile device.
When the examiner is conducting a physical collection of a Windows Mobile device, Active Sync or WMDC
will be used to place an agent onto the device. The agent is then initiated and the recovered data is sent to the
forensic software.

Most of the forensic tools are based upon the work by Willem Jan Hengeveld and the open source Remote
API (RAPI) tools (www.xs4all.nl/~itsme/projects/xda/tools.html). RAPI is defined by the Microsoft
Developers Network as follows:

The Remote API (RAPI) library enables applications that run on a desktop to perform actions on a
remote Windows Mobile device. The functionality that RAPI provides includes the ability to manipulate
the file system on the remote device, including the creation and deletion of files and directories. RAPI
functions can be used to create and modify databases, either in the device’s object store or in mounted
database volumes. RAPI applications can also query and modify registry keys as well as launch
applications and invoke methods on the remote device. Although most RAPI functions are duplicates of
functions in the Windows Embedded CE API, a few new functions extend the API. Use these functions
to initialize the RAPI subsystem and enhance performance of the communication link by compressing
iterative operations into one RAPI call.

263

http://www.xs4all.nl/~itsme/projects/xda/tools.html

Using RAPI tools and other advanced tools and command utilities without properly understanding and
testing them is not advised.

The RAPI tools shown next enable the examiner not only to extract the database and system files but also
dump RAM and entire partitions from Windows Mobile devices with more than 30 different functions. Only
two of these functions are discussed in this section:

• itsutil.dll This file is copied to the connected device using Active Sync and is used as a helper library for
access to the Windows Mobile device. This file can be copied to various locations on the mobile device
and is set by using a Registry key on the examination computer.

HKEY_CURRENT_USER\software\itsutilsdevicedllpath ["\Storage Card\itsutils.dll"

This places the file onto the storage card of the connected mobile device. A log file is also created if set to
true, and its location can also be set in the Registry of the connected computer. When any item is executed
using the itsutil.dll, the examiner will be prompted to accept this function on the mobile device interface.

• pdocread This command can be used to make a copy of the partitions on the mobile device. Using this
command with a -l flag will list the known devices and the active handles on the device. This information
will be used by the examiner to identify the correct user partition to be selected and then extracted. Using a
-w flag when reading the selected partition will specify use of the standard disk API to perform the read.
The format and parameters of the command should look like this:

pdocread -[flag(s)] -[partition] [starting byte] [ending byte] <path and output

file name>

After obtaining a list of the partitions using pdocread -l, the examiner will see partitions identified as
disks with partitions, but more importantly for collection, with string handles. Using the partition name
(in hexadecimal) or handle number and total size of the partition (in hexadecimal), the examiner can then
extract the partition from the device. If the output produced by pdocread lists the partition of interest as
handle#3 73efe04a 60.98M (0x3cfc000), the command to create a binary image of this partition
looks like this:

pdocread -w -h0x73efe04a 0 0x3cfc000 D:WindowsMobile.bin

A binary file will then be output to the D: drive and can be analyzed by EnCase, FTK, Oxygen Forensic
Analyst and Detective, Physical Analyzer, or XACT.

On devices containing larger partitions, the standard disk output controlled by Windows can fail to
extract the complete disk size specified in the command.

Windows Mobile applications cannot run on a Windows Phone, so a different approach to obtaining a
physical image of the device is needed. Several methods for obtaining partition-level information from
Windows Phone 7 have been circulated, which are much like the earlier versions of rooting techniques for

264

Android. Still termed “rooting,” the level of sophistication and technical work involved with both Windows
Phone 7 and 8 devices to obtain root-level access is daunting for most examiners. For version 7 and 8 devices,
the examiner must have a device with an unlocked bootloader, and if the device is not unlocked, he or she
must perform necessary modifications to the device to unlock the bootloader. Once unlocked, another
application will be run to obtain permission and root the device. ChevonWP7 was frequently used with earlier
Windows Phone 7 devices but has since ceased to be developed or used because of the difficulty involved in
running it successfully.

With Windows Phone 7 and 8 devices, the most successful methods currently used to obtain a physical-
level collection involve invasive techniques. Both version 7 and 8 devices are supported by JTAG techniques
and chip-off. The collected image can then be examined in EnCase, FTK Imager, FTK, Oxygen Forensic
Detective, Physical Analyzer, or XACT.

Alternative Collection Methods
Windows Mobile devices are supported pretty extensively by all commercial tools. With coverage for both
logical- and physical-level collection, a commercial mobile forensic tool will often be the most reliable.
However, alternative applications are available for Windows Mobile devices.

PIM Backup (www.dotfred.net/) has been used in MFI mobile forensic training courses and offers a free
alternative to the logical recovery of valuable data from a Windows Mobile device. PIM Backup functions
much like the commercial forensic tools and uses Active Sync or WMDC to install an application to the
device over a connected USB cable. After the application is installed to the mobile device, it runs and the
selected data is exported into individual files (such as CSV, XML, or iCAL files).

Windows Phone 7 and 8 do allow for the creation of a backup using Zune, but the backups are encrypted,
and currently no tool can decrypt the backups. Some third-party tools also allow backups, but they also use the
Windows Phone backup service that creates the encrypted backup. Windows Phone 7 and 8 devices enable
the examiner to access files and folders that are stored on the internal memory and also the external card. Both
versions use external and internal storage areas much like the standard Windows operating system and use
these areas to store data that is directly related to the device operating system. If a memory card is removed, a
Windows Phone could become unstable, and sometimes the device will have to be reset. This creates a great
opportunity for the examiner to recover valuable information simply by moving the data from the memory
card into an evidence location. This data could include media types, documents, and other files.

Windows 10 Mobile devices are also supported by the majority of mainstream tools, but the type of data
that can be extracted is typically limited to the data that can be observed and extracted when the device is
plugged in and mounted as a portable device in the collection operating system (for example, documents,
media, or files on media card). However, with many tools now supporting the extraction of data from cloud
services, critical data such as SMS messages, application data, and settings are now accessible.

Archiving the Data
All data, including physical images, exported files, backups, and logical images, along with physical images of
memory cards and UICC information, should be copied to an evidence drive before the analysis phase. The
information needed for the analysis phase should then be copied to a temporary location. The storage location

265

http://www.dotfred.net/

should include a unique folder specific to the case and an internal folder that is specific to the device. Any
additional evidence recovered as part of the analysis should also be stored permanently at this location once
the case is completed.

As with BlackBerry devices, the current market share of Windows Mobile devices was reported in the
first quarter of 2017 as 0.15 percent by Gartner. Commercial tool manufacturers have stopped
development cycles on these devices, and forensic examiners will see even fewer Windows Phone devices
than BlackBerry devices. However, knowledge of all devices is important for a well-rounded examiner.

Apple iOS Connections and Collections
A collection of an Apple device by a forensics examiner can be an almost daily occurrence, because Apple
mobile devices are some of the most widely used devices globally. Connections to and collections of these
devices are rather straightforward processes. Apple allows the device to communicate with a computer using
its proprietary protocols via iTunes. iTunes enables communication to occur with the attached device, and a
user can update applications, media, device firmware, and more. Forensic software vendors use the same type
of communication methods used by Apple with iTunes. Forensic software vendors, third-party free utilities,
and open source tools use methods and services that have been exposed in Apple’s API, enabling the software
to simulate an iTunes communication session, but these tools also use methods that are not used in the iTunes
application.

Communication with the Apple device is generally straightforward for each forensic solution. What will
be the most confusing part for an examiner is understanding the logical versus physical support of an Apple
device.

Connecting to the Device
Connecting to an Apple device with most traditional mobile forensic solutions requires a USB cable. Apple
mobile devices up to and including the iPhone 4S and iPad 1 will use a standard iPhone 30-pin cable. When
the iPad 2 was released, Apple changed the USB cable to an 8-pin Lightning Cable, and now all Apple
devices use this cable for charging and syncing.

Many manufacturers have released less expensive cable products that violated Apple’s patent and
produced a non-OEM (non-Lightning Cable) cable. Most of these cables are recognized by the Apple
device when plugged in, but will not allow data transfer, or will cause failures during data transfer. For
these reasons, using the Apple Lightning Cable for connection to an Apple device is recommended.
More and more Lighting Cables are becoming available on the market that do not fail, however, and
allow for a quality extraction—at a lower price.

The cable connection is located at the bottom of the device. After the cable is plugged into the computer,
with iOS 7 and later devices, the examiner will see a prompt asking whether the computer should be trusted

266

(see Figure 10-8). This security feature enables the device to create a pairing record with the attached
computer if a pairing record has not already been established. (If the device has previously been connected to
the computer and is unlocked, this prompt will not be shown. The pairing record that is created upon
acceptance is discussed a bit later in this section.) Once the device is attached to the computer and the drivers
have been successfully installed, the device can be collected using a software solution of choice as long as the
iOS device and its OS version are supported by the solution.

FIGURE 10-8 The Trust Computer prompt must be accepted for successful data transfer.

If at any time the examiner chooses not to trust the computer, the device will have to be unplugged from
the computer and then reattached for the trust prompt to be displayed again. If the examiner does not indicate
that the computer can be trusted, the forensic software will be unable to collect the iOS device. If the prompt
to trust the computer does not display, either the device is running an iOS version earlier than 7 or the device
has already been deemed trustworthy. This is often the most encountered failure in the connection phase with
an iOS device.

Device State Considerations
If the device is unlocked and powered on or off, collection will not be a problem, no matter what the
operating system version. If the device is locked by a password and the password is known, the examiner
should attach the device to the computer that will complete the collection, unlock the device, and then accept
to trust the computer. Unlocking the device will create a trusted pairing relationship that will be used later
during the collection if the device locks. If at any time the device has to be reexamined, a password will not be
needed to complete a collection.

If the device is locked and running any version of iOS, the examiner can use the escrow keybag, also known
as the pairing record. The escrow keybag is created and used for user experience during an iOS device backup-
and-restore process. Where the escrow keybag for the iOS device is located depends on the type of computer
operating system being used for the examination:

• Windows %ProgramData%\Apple\Lockdown\

• macOS X /private/var/db/lockdown/

Within the lockdown folder is a property list (plist) that is identified using the device UDID (Unique
Device Identifier). Using these property lists will be covered in the discussion regarding locked devices in the

267

following section.

When a user plugs in an iOS device with a set passcode, he or she is asked to enter the passcode. The
device then creates an escrow keybag (pairing record) that contains the same keys that are used on the device,
along with a new generated key. The escrow key and the new key are split between the device and the
computer to which it is connected. With any reconnects to that same computer, a password does not have to
be entered into the device for processing. By using the escrow keybag, the software can bypass the lock and
process the mobile device. With iOS 7 and later versions, there is a caveat, however: if the device is rebooted
and then reconnected to the computer that contains the device escrow keybag, the device could request the
passcode to be re-entered, creating a new trusted relationship. Obtaining the lockdown folder from the
computer with which the iOS device was last synced can help to process a mobile device that is locked. Using
this folder and included property list files, the examiner can use mobile forensic software to use the file to
simulate a pairing relationship with the iOS device and conduct a logical collection. Without this pairing
record for today’s iOS devices, the examiner will be unable to connect and ultimately process any mobile
device data.

Collecting the Device Logically
All mobile forensic tools use Apple File Conduit (AFC) and forms of AFC along with Apple Services to
conduct a logical extraction of an iOS device, just like Apple’s own iTunes. iTunes must be installed on the
forensic computer for a logical collection to occur for most software solutions; however, some software
solutions that collect iOS devices do not require that iTunes be installed. All iOS logical collections are not
created equal, and it is imperative that the examiner understand and research the data that can be extracted
with the software solution that will be used. A software solution for an iOS device should be able to collect
more data than would be available in a standard iTunes collection.

Consulting the forensic software solution’s documentation will assist in determining whether iTunes
must be installed on the forensic computer prior to conducting a collection.

The connection and logical collection of an iOS device is the same for all devices, with some special
considerations. Typically, the examiner can connect the USB cable, connect to the computer or hardware
device with the collection software, and extract the data. The special considerations come in the form of an
iTunes password and encrypted backups. If the device to be examined has the backup encryption set, the
backup that is to be collected will not be readable. During the collection phase, the examiner must supply the
password for the iTunes backup in order to decrypt the iOS data after it is extracted from the device. Most
forensic software solutions offer the ability to decrypt the device backup from an iOS device. If the iTunes
password is not known, some data will still be available for collection if the device is not locked, such as media
and some application data.

A logical collection of an iOS device can include a significant amount of valuable data. Far too many

268

examiners believe that only a small amount of data is available in a logical iOS collection and neglect to
perform a collection. In Chapter 13, you’ll see why this is not the case.

An iOS device does not have an external media card, but it can contain a UICC, which should be removed
prior to the collection. Personal experience has shown little valuable user information on a UICC card from an
iOS device, but network information can be observed. However, the UICC should be collected and included
in the overall case file as evidence.

Collecting the Device Physically
Probably the most frequently asked question of software vendors, support staff, and training staff has to do
with the non-invasive physical collection of an iOS device. The question is always centered around the
collection of an iOS device version later than an iPhone 4S from those versed in the limitation, but from new
examiners it is more along the lines of questioning why a piece of software that specifically states it supports
the physical collection of iOS devices fails on anything above an iPhone 4S or iPad 1. This is not a limitation
of the software or the technology, but a limitation imposed by Apple in an effort to patch vulnerabilities.
Devices with an A5 or newer processor (as of today, an A12) will not support the vulnerabilities exposed by
today’s forensic software. The iPad 2 was the first device to use the A5, with the iPhone 4S soon following
and now the iPhone XS sporting the A12. The A4 and earlier processors can be exploited using the same
method by all forensic software vendors that currently support a physical collection of an iOS device.

An iOS device can run in normal mode, DFU (Device Firmware Update), or Recovery mode. The non-
invasive physical methods used by forensics tools use DFU or Recovery mode to obtain access to the device via
USB. If the device is not running in DFU or Recovery mode, the device typically boots up in normal mode
starting with the read-only bootROM as the first stage when powering on. This startup procedure in normal
mode is called the “chain of trust.” In the chain of trust, the device boots and walks through a series of security
checks using signatures for each level. Each level will then check the other level (for example, the LLB [Lower
Level Bootloader] checks the iBoot, iBoot checks the kernel), and if at any time a signature does not match,
the iOS device will stop the boot process.

When an examiner places a device into DFU or Recovery mode, the iOS device boot procedure changes to
involve second-level bootloaders, iBSS and iBEC. These are stripped-down versions of iBoot that allow for
the preparation of the device Restore Ramdisk, but in the case of a forensic collection, the iBSS bootstraps the
iBEC to deliver a custom RAM disk into the volatile memory of the iOS device. The custom RAM disk
allows access to the iOS device and the partitions (OS and UserData) that otherwise could not be accessed
when the iOS device is in normal mode. The forensic software will take advantage of the newly granted access
to the device’s file system and a non-invasive physical image of the device can be collected. Once the device is
rebooted after the collection, the custom RAM disk is removed, and the only trace that something has
occurred to the device would be the indication that it had been rebooted.

The HFS+ (Hierarchical File System Plus) file system contained within the physical image of the iOS
device can then be examined within the forensic software. As outlined in Table 10-2, the custom RAM disk
method is possibly with only a certain set of iOS devices. With the supported devices, Apple added a layer of
data encryption for unallocated areas of the user partition. With this layer of encryption, the data can be

269

collected, but the keybag used for the decryption of that area is unavailable. This occurred in device versions
later than and including iOS 4.

TABLE 10-2 Devices Capable of a Physical Collection Using the Customized RAM Disk Option

All other iOS devices not supported using the bootROM or iBoot exploit and RAM disk function (such
as iPhone 6+, 6, 5S, 7, 8, X, and newer versions of the X) can also have their internal file systems collected
with exposure to protected files not available in a logical file system (HFS+ and iOS 10.3 APFS) collection. In
this case, the device must be jailbroken using a userland exploit, which is completely software based, and
access is available only to the user area without access to the boot process. This means that the entire partition,
as in a bootROM or iBoot exploit, is not available for full extraction; only the internal file system can be
extracted. When an iOS device is jailbroken, most forensic software will obtain the new jailbroken verbose file
system using the standard logical collection methods, along with advanced protocols added in the jailbreak.
This collection, because of the now-jailbroken device, will allow access to files and folders otherwise not
available in a standard logical collection. These folders and files include Apple Mail, Safari, applications, the
protected data store, the cache, and many other files not accessible by other means.

The most common solutions used for iOS devices used to be Pangu (http://en.pangu.io/) and TaiG
(www.taig.com/en/). TaiG had offered an untethered solution for up to and including iOS 8.2, while Pangu
supports up to and including iOS 9.3. However, as the file system versions advanced, more and more
jailbreaks became available, with published exploits Meridian, Electra, and LiberiOS shown to be the most
utilized and popular. If using a tethered jailbreak, the examiner must plug the iOS device into a computer
every time it is booted so the iOS device can boot with the help of the jailbreak application. Most jailbreaking
tools use a tethered solution, but in today’s jailbreaking world, semi-tethered and semi-untethered jailbreaks
are available. The semi-tethered jailbreak operation is much like the tethered version described previously, but
more stable, and it enables the device to again be jailbroken upon reboot with the jailbreaking tool. With the
semi-untethered jailbreak, the device is not in the jailbroken stage upon reboot but can be re-jailbroken by the
user of a side-loaded app or even a web site.

Jailbreaking a mobile device was ruled not illegal by the Library of Congress in 2012
(www.copyright.gov/fedreg/2012/2012-26308_PI.pdf) and extended to tablets (such as an iPad) a few
months later. However, jailbreaking can void the warranty by Apple, so using third-party methods to
jailbreak a device should be used only in situations where warranted.

An examiner who understands the methods used to obtain physical access to an iOS device, either using

270

http://en.pangu.io/
http://www.taig.com/en/
http://www.copyright.gov/fedreg/2012/2012-26308_PI.pdf

bootROM exploits, iBoot exploits, or userland, can positively impact later testimony and documentation,
especially if the method is challenged.

Unlocking an iOS device and obtaining a raw file system using a tool such as GrayKey from Grayshift can
produce the same type of file system as a jailbroken phone, but can also acquire a snapshot of the device
memory as well. This information and artifacts are discussed in Chapter 13.

iTunes Collection
If performed correctly, an iTunes collection will yield much of the same information you would expect from a
collection with forensic software. However, an iTunes collection backup will contain many files that are
represented by a hash of the path of the actual file on the device. Although the collection process and the
connection of the device to the computer are no different from what has already been discussed with other
operating systems, the collected data’s format is much different from the others. The examination and analysis
of this data are covered in Chapter 13.

To create a backup successfully using iTunes, the examiner should first download and install the most
current version from Apple (www.apple.com/itunes/download/). After installing and launching the software,
and after iTunes is running, the examiner should navigate to Edit | Preferences and click the Devices icon on
the tool ribbon. On the Devices screen, the examiner should select the checkbox for Prevent iPods, iPhones,
And iPads From Syncing Automatically. The iOS device can then be connected.

iTunes displays the connected device. On the device information screen, the examiner must clear the
checkbox for Encrypt Backup. If this box is selected, the device has been set to encrypt the backup, and the
examiner, when unchecking the box, will have to enter the password for the iTunes backup that the device
owner used. If the password is not known, a backup can still be created, but the data that is produced will be
encrypted. An examiner should still create a backup, even if the backup password is not known, in case the
password is later available. Or the examiner could use software such as Elcomsoft Phone Password Breaker
(EPPB) or Oxygen Forensic Detective to retrieve the password. While still connected, the examiner should
right-click the connected device and select Backup. A backup will be created in the predefined default location
depending on the operating system:

• Mac ~/Library/Application Support/MobileSync/Backup/

• Windows Vista, Windows 7, Windows 8, and Windows 10 \Users\
(username)\AppData\Roaming\Apple Computer\MobileSync\Backup\

The backup password and the PIN/Password for entry to the phone are two separate security features.
This means they can be, and usually are, completely different passwords.

Note that many users are using the iCloud backup function for iOS devices versus the standard cable
connection to a PC or Mac using iTunes. However, the data backed up using a cable and iTunes contains
additional data not available in an iCloud backup. This information was covered in Chapter 4 and more
information will be available in Chapter 13.

271

http://www.apple.com/itunes/download/

First iOS Examination

In 2007, when no forensic tools were making collections of iOS devices, I was asked to complete a
forensic examination of a new type of phone—the iPhone. After doing some research, I learned that the
device created a backup using software called iTunes. After I installed iTunes and connected the device,
it immediately started to sync the information from the device into iTunes (and I learned a valuable
lesson: I must disable this option first!). When the collection was completed, I researched the backup
function and initiated a backup of the device onto the computer. When the backup was completed, I was
amazed at the amount of information that I could find within the backup file using AccessData FTK
software. I uncovered numerous text messages, photographs, and call logs that were needed for the case.
As many more iPhones came into the lab and there still was no solution out there for forensic examiners,
I wrote a white paper covering the way I completed my first iPhone collection. This document was later
used by both open source developers and commercial developers to create a solution to harness the way
iTunes completed a backup and then parse the user data. The initial document I published in 2007,
“iPhone Data Extraction,” is still available on the Internet at https://upslide.tips/iphone-data-extraction-
by-lee-reiber-this-document-will-give.html.

Archiving the Data
All data, including physical images, logical file systems, backups, pairing records, and UICC information,
should be copied to an evidence drive before the analysis phase begins. The appropriate information should
then be copied to a temporary location for the analysis phase of the investigation. The storage location should
be a unique folder specific to the case and an internal folder specific to the device. Any additional evidence
recovered as part of the analysis should also be stored permanently in this location after the case is completed.

Android OS Connections and Collections
With more than 18,000 different types of Android devices available to users around the world, it is no wonder
that connecting and collecting from these devices can be difficult at times. An Android logical collection is
much different from an iOS logical collection because the internal logical file system of an Android is not
available by default. Settings on the device must be enabled for proper communication, and these can vary
depending upon the device. Not only does it matter what type of Android device is being examined, but the
version of the operating system will also determine whether a connection and collection can occur. Other
considerations for Android collections include whether the device is powered on or off, locked or unlocked,
encrypted or not, and also whether or not security is enabled. A locked device with security enabled can
prevent the examiner from turning on settings needed to communicate with an Android device. All of these
facts must be considered before the examiner even connects the device to be collected.

The Android device can contain a UICC along with memory cards, and the processing order described in
the “UICC” and “Memory Card” sections earlier in the chapter should be followed. These sections cover the
connection of the mobile device.

An Android device should be collected with the memory card still inserted in the device to collect and
extract the media and file data that are located on the removable media. If the memory card is removed, actual

272

https://upslide.tips/iphone-data-extraction-by-lee-reiber-this-document-will-give.html

files that are on the external media will not be mapped to data that is contained on the mobile device’s internal
database.

Connecting to the Device
The Android Debug Bridge (ADB) is used to communicate with an Android device. The ADB.exe command
line tool is part of the Android Standard Development Kit and is used for testing and development of
Android apps and applications. This tool offers a computer a way to communicate with a connected Android
device. It comprises the client, a server, and a daemon. The client is the action or job initiated by the ADB
command. The server is the management portion that is running on the computer that manages the
communication between the client and the ADB daemon that is running on the Android device. The ADB
daemon is a background process that is running on the device conducting the command and control as given
by the client. ADB must be used for all communication to and from an Android device, whether it is a logical
or particular non-invasive physical collection. The Android device that is to be collected must have ADB
enabled, either manually by the examiner or programmatically by the software. Once ADB is enabled, the
proper ADB driver must also be installed and functioning on the examination computer for proper
communication.

The only driver that would need to be installed successfully to collect an Android device is the ADB
driver; all others are not significant.

Whether the examiner will need to set the Android manually into ADB will depend upon the operating
system. Outlined in Table 10-3 are the various ways of setting an Android device into ADB, depending upon
the operating system version. All ADB menus are located in the Developer options menu.

TABLE 10-3 Ways to Locate the ADB Functions Within Android Devices
(http://developer.android.com/tools/help/adb.html)

Up until Android 4.2, Developer Options was visible in the Settings menu. Android 4.2 and later
versions have hidden developer options, and to see the menu, the examiner must go to About Phone in
Settings and tap Build Number seven times. Developer Options will then be visible in the Settings menu.

273

http://developer.android.com/tools/help/adb.html

In addition, when conducting forensic collections, you need to set the device to allow unknown sources in
the Security settings on the Settings menu. Allowing unknown sources will enable the forensic software to
“sideload” a special package file, called an Android application package (APK), onto the device. Sideloading an
app means installing APK files that are not directly from the Google Play store. If the device will not allow
unknown sources, the forensic software will not be able to install the forensic package to collect logical data.

Another setting—more of a security feature—is the acceptance of an RSA key when the device is
connected to a computer (for devices running Android 4.2.2 and later). This must be accepted on the device,
not the computer to which the device is connected. This RSA key acceptance is similar to selecting to trust
the computer with an iOS device. By accepting the RSA key on the device, the examiner is stating that the
connected device is safe to connect with the computer.

Once all settings have been configured, the device can be connected to the mobile forensic software and
the collection can begin. Typically, the display and subsequent manual acceptance of RSA certificate will vary
depending on the software that is used. For example, with Oxygen Forensic Detective, the RSA certificate
screen will show upon communication with the device, after connection via USB cable.

Device State Considerations
If an Android device is unlocked and powered on, unlocked and powered off, or the security is enabled and
the password is known, the connection and collection will be typical and straightforward. There are instances,
however, when an unlocked Android device cannot be recognized by the software or even the forensic
computer or hardware. In such instances, it is important that the examiner determine whether the device’s
USB port is intended for charging only or whether data can actually be transferred to and from the device via
the port.

Here’s an easy way to determine this: After you plug the device into a computer, if a device can transfer
data, the device will be shown as a portable device within the computer’s device tree, and a menu will be
displayed on the mobile device screen with at least an option to turn on USB mode for the device. USB mode
will allow the device to move files on and off the media portion. If the device is capable of doing this, it can be
collected using ADB.

Android devices are predominantly collected using a USB cable connected to the computer running the
forensic solution. In some situations, however, the use of alternative connections may be warranted.

Locked and Hidden USB Connections

Many “burner” Android phones will not show an ADB driver as being installed in the computer’s Device
Manager, even if ADB has been enabled in the Developer Options menu. Here’s a perfect case in point:
While assisting an investigator with the examination of an LG VS908 Android device, I found that the
phone was not showing up to allow collection. The device was shown as a portable device and all the
folders and files could be browsed in Windows Explorer, but ADB was not available in the Device
Manager even when it was enabled in the Settings menu.

274

I had the investigator unplug and then plug in the device again from the computer several times to
check for a bad connection. Still, ADB could not be installed, but a menu was enabled every time the
device was plugged in. The menu presented three options: Charging Only, Media Sync, and Internet.
Knowing that the Media Sync option would allow access only to the media card, I had the investigator
select Internet. A submenu became available with Modem and Ethernet as choices. These options are
the tethering options for the device, and if either is selected, ADB will be available in the Device
Manager. Once he selected Modem, the investigator was able to process the device normally with his
forensic software.

The settings to inhibit data transfer are very common with inexpensive Android devices. I have found
submenu items on most of these devices that, when activated, will activate ADB that had been previously
been turned on in the Developer Options menu.

If the device is locked by a password and the password is not known, the device must be physically
collected, unlocked using software such as Cellebrite or Oxygen Forensic Detective, or JTAG/ISP/chip-off
used to access the data. As mentioned earlier, in order for data transfer to occur using USB, ADB must be
enabled. Android devices by default do not have ADB enabled, but an examiner should always plug the device
into the forensic solution, even if it’s locked, to see if ADB has been turned on. Users who frequently sideload
applications or hack Android devices will have ADB enabled, and when it is available, the device will still be
accessible if locked. However, if the device is locked and ADB is not enabled, logical access will not be
available and the examiner will be limited to non-invasive physical or invasive physical collections.

Collecting the Device Logically
Once ADB is enabled, a logical collection of an Android device can occur. Forensic software vendors all use a
customized APK file to collect this valuable user data. The examiner needs to understand firmly the method
and installation of a program onto an Android device to collect data. Because the forensic software is writing
to the evidence and altering the internal file system, a challenge could be raised that the evidence is no longer
valid. This, of course, is not true, but without an understanding of the forensic tool and how the process
works, an examiner may have a difficult time dealing with such a challenge.

An APK is a compressed file containing uncompiled code. This package contains files and folders that,
when compiled on the Android device upon installation, create a port for which the forensic software can
communicate and collect the user data from the mobile device. Each software vendor’s APK is different: some
extract user packages and Wi-Fi settings, while others do not; some remain installed on the device after
running, while others do not. What is important, other than what type of data will be extracted, is how the
APK is delivered, where it is delivered, and what happens to it once it has been installed and run. Typically,
the APK is pushed onto the Android device and placed into the system/tmp folder using ADB. The APK is
then installed and compiled onto the device and an instance is initiated, also via ADB.

Most forensic software solutions instances are not visible on the device during the collection, with the

275

exception of Oxygen Forensic Detective and Analyst, Compelson MOBILedit, and Cellebrite. These
programs display a splash screen on the device while the app is running, collecting data.

While running, the app will be sending data to the forensic software based upon queries to the supported
databases. This is an important concept for the examiner to understand, because a logical extraction of an
Android device will not include the actual database files where the queries were directed. In simpler terms, if
the SMS messages are collected from an Android device, the mmssms.db file is not extracted during a logical
collection—only the data from the SQLite database table is extracted. Because the Android protects the data
area of the file system, access to these database files is not available using SQL commands and is available only
if the FLAG to include in backup is not FALSE for an ADB backup, or with a physical collection and
elevated privileges, commonly referred to as root privileges. If database files, media files, or other files are
extracted in a logical collection agent extraction, they will be extracted from the internal and/or external
storage area using the Media Transfer Protocol (MTP).

Once the collection has completed, the forensic software will issue another command to the installed
application to uninstall the software. The software is then removed from the target device and the system/tmp
file will be cleaned and purged of any leftover data. If the examiner is unsure whether the forensic software
removed the installed APK, he or she can navigate to the applications area on the Android device. If an icon
for the forensic software APK is located, the app was not uninstalled and should be uninstalled manually.

Collecting the Device Physically
Collecting an Android device using non-invasive techniques requires root access to the device. Typically, if an
Android device is supported in a forensic software solution for physical collection using a USB connection,
two methods can be used, either automated rooting or custom ROM installation.

What Is Root Access?

On an Android device, there are levels of user access, much like on a Windows system with users and
administrators. Android, based on Linux, has many user IDs that are granted access to perform various
tasks on the device, such as run processes and control functions and calculations, but each type of user is
restricted to performing particular privileges only. All Linux systems also have a superuser with a user ID
of 0, called the root ID. This superuser can perform any task on the device, even if the file, folder, or
setting has been marked as read-only. The superuser can change the access to read and write, access the
area of the system that has been marked inaccessible, and more. This is called having “root access.” With
root access to an Android device, the examiner can access any part of the device without limitation. No
matter what method is used by a forensic software vendor, if access to the device is via a USB and a
physical image is obtained, that software solution “rooted” the mobile device.

Different root levels are available on a device. A shell root is the most desirable when you’re conducting
mobile forensics because this can obtain root access to the device. Upon reboot, after the extraction is

276

complete, the device will be back in the unrooted state. With a permanent root, on the other hand, a
reboot will not remove the root access. Some third-party rooting tools can also “unroot” a rooted tool, and
if available this should be attempted after the collection has completed. Leaving evidence in a rooted state
could introduce malware or other issues that would not be possible with a secured device.

Automated rooting procedures require an unlocked phone with ADB available and enabled; to perform
the rooting process manually, ADB also must be enabled and available. Forensic tools such as Oxygen
Forensic Detective, UFED Touch 2/4PC, Magnet AXIOM, and XRY have built-in functions that will
attempt to root the device when conducting a physical collection. If a tool is unable to root a device and no
other methods for physical access are available, however, some third-party applications can be used: dr.fone
from Wondershare supports devices from 2x to 5.1; KingoRoot for Android supports devices up to 4.2.2 and
includes unroot capabilities; and SRSRoot supports Android versions up to 4.2 and has an unroot option,
while One Click Root supports devices up to 6x for root as well as unroot. Other available tools also allow for
the rooting of devices up to 7x, but they come with caveats of unlocking the bootloader (OEM unlock), which
voids the warranty of the device.

If the device is locked, supported for physical collection, and ADB is disabled, the forensic software will
connect to the device typically by using fastboot, recovery, emergency download (EDL) mode, or download
mode. These modes are used to install customized ROM that enables ADB and grants access to the device
with root access. Once the collection is completed, the original ROM is returned.

It is extremely important that the specific ROM matches that of the evidence to be collected when using
a forensic solution with this type of physical method. Because of slight differences in the ROM for any
Android device, using another device’s ROM can cause disastrous results. This is primarily why this
method fits in the invasive physical collection method category.

JTAG/ISP can also be used and has become extremely popular for Android collections. There are many
different boxes and cables used in the mobile forensic community, but as with most everything else, no single
mobile forensics solution supports every mobile device encountered. JTAG/ISP software typically displays the
TAPs for the model to be collected in an image within the application. Following the image, the connection
to the JTAG hardware can be made either by soldering to the correct port and then matching to the
referenced port on the JTAG hardware, or connection can be made with other solutions such as Molex or jigs.
When the device is connected and the JTAG software has been configured, a binary image is created and can
then be imported into mobile forensic solutions such as Cellebrite Physical Analyzer, Oxygen Forensic
Detective, and MSAB XACT.

Alternative Collection Methods
As with other device types, Android mobile devices can be collected using other, more raw, collection
methods. If a physical collection is not available, these alternative methods can be used to gather information
from an Android device over and above what a standard logical collection can gather, including file system
and app data. These methods do not require having device root.

277

ADB Backup This function became available in Android 4.0 and enables a backup of individual apps or the
entire app catalog along with the application data, cache, and internal storage. This function can be initiated
using ADB.exe, available in the Android SDK in the /platform-tools/ folder. To use ADB Backup, the device
must be unlocked and USB debugging must be enabled. Once an app or apps are downloaded using ADB
Backup, the created file will be compressed and encrypted. To uncompress and decrypt the created file, the
examiner runs the file through Android Backup Extractor (http://sourceforge.net/projects/adbextractor/),
which will create a tarball file that can be examined using mobile forensic software capable of importing and
viewing these types of files. Use of ADB Backup involves using a command line instruction and device
interaction once ADB Backup is initiated on the mobile device.

ADB Backup does not allow for the backup of Digital Rights Management (DRM) protected
applications.

The parameters and flags needed to create an ADB Backup, along with a breakdown of each parameter,
are shown next:

adb backup [-f <file>] [-apk|-noapk] [-shared|-noshared] [-all] [-system|-nosystem]

[<packages…>]

• [-f <file>] Specifies the location where the backup will be stored.

• [-apk|-noapk] Specifies whether or not the app APK will be backed up. Backing up the APK could
allow for later scanning for malicious software. The -noapk flag is set by default.

• [-shared|-noshared] Specifies whether or not shared memory areas on the internal and external
storage media will be backed up. The -noshared flag is set by default.

• [-all] Specifies all applications on the device. When conducting a forensic backup of the device, use
the -all flag.

• [-system|-nosystem] Specifies whether or not ADB Backup includes system applications in the
backup. The -nosystem flag is set by default.

• [<packages…>] Specifies the app that will be backed up. If this is set, only the specified app will be
included (that is, com.android.provider.telephony).

Here are the command parameters and flags for ADB Backup to collect all applications and
internal/external media to a file called backup without system files at C:\Evidence:

adb backup -f C:\Evidence\backup.ab -all -nosystem -shared

If the examiner wants to extract all apps and memory contents of internal and external areas and their
APKs to scan for malicious applications, the command would look similar to this:

adb backup -f C:\Evidence\backup.ab -apk -all -system -shared

When the command is complete, the examiner will be prompted with the screen displayed in Figure 10-9.
Do not enter a password to encrypt the backup, and tap Back Up My Data. The duration of the process will

278

http://sourceforge.net/projects/adbextractor/

depend upon the amount of data that is being backed up. Once the process completes, the examiner will be
notified on the Android screen. The backup can then be extracted using the Android Backup Extractor and
examined in the software solution of choice.

FIGURE 10-9 Screen activated on a connected Android device when running the ADB backup command

Helium Helium, formally known as Carbon, is an app-based solution that uses the front end of ADB
Backup as well. To use Helium on a non-rooted device, install the application on the target device and on the
desktop. An examiner can create a backup of select applications or individual applications to the PC; by
default, the backup is saved to the SD card, but it can be added to Dropbox, Google Drive, and so on. As
with ADB, some applications are not available for backup. What is quite interesting with this solution
developed by Koushik “Koush” Dutta is the fact that the user simply connects the device and then untethers
the device after connection; all extraction occurs over Wi-Fi (https://www.clockworkmod.com/).

Windows Explorer
Android devices are recognized as portable devices by both Mac and Windows systems. If a forensic solution
is unable to extract the data from the internal or external memory areas, the examiner can copy the
information from the mobile device to the location where the evidence is to be saved. Because dates will
probably be altered using this method, it should be used only if there are no other alternatives.

Archiving the Data
All data, including physical images, logical file systems, backups, and UICC information, should be copied to
an evidence drive before the analysis phase. The information that is needed for analysis should be copied to a
temporary location. The storage location should have a unique folder specific to the case and an internal folder

279

https://www.clockworkmod.com/

specific to the device. Any additional evidence recovered as part of the analysis should also be stored
permanently in this location once the case is completed.

Chapter Summary
The collection of mobile device data is often the easiest part of mobile forensics, but only if device state,
drivers, and workflow are considered appropriately. Thoroughly documenting the device, UICC, and memory
cards is the first step, but the examiner must also determine what evidence should be processed first,
depending on whether the device is powered on or off.

Logical examinations are just as important as physical collections, and both types of collections should
always be attempted. Obtaining a logical collection first can usually help the examiner obtain valuable data in
case a physical collection is not supported, does not successfully complete, or disables the mobile device. The
device type (whether a feature phone, an Android, a BlackBerry, an iOS, or a Windows Phone) can also
determine the order of processing and workflow.

Often, mobile device forensic software will use functions and technology to conduct logical collections that
have been formulated from the device manufacturer’s own backup tools. Because of this, an examiner can use
the manufacturer’s software to create a backup as an alternative. It is important to understand, however, that
some settings might need to be adjusted to maintain a valid backup. Collection methods may not work or may
be unsuccessful, but the initial preparation of the device prior to collection of the digital data should be the
same, no matter what device is to be examined and what software is used.

By understanding the way forensic software communicates with a mobile device to obtain data, the
examiner can be prepared to face many challenges. The expert examiner should know how to determine that
an APK file is installed, that the Android device data is placed into a temporary area and later removed, that a
custom RAM disk is created in the iOS volatile memory and later removed upon restart, and that obtaining
root to an Android device changes security privileges and not the underlying user data.

280

P
11 Analyzing SIM Cards

revious chapters covered procedures, seizure, and collection of physical and digital evidence on a mobile
device. The next several chapters discuss the analysis of the data within the device files and folders. In

this chapter, you’ll learn about the subscriber identity module (SIM) card, once used only in GSM devices but
now found in CDMA devices, and the evidentiary data that may reside within the file system.

SIM cards contain information that can be used by an examiner to locate a device, identify contacts, and
see a user’s communications. The examiner will need to concentrate on the card’s file system—not an easy
task, especially because SIM cards often store data in a different format than mobile device file systems and in
various locations with different security levels. Nevertheless, the SIM card is well documented, which ensures
that the manufacturers and cellular communication companies have a clear set of instructions regarding how
to communicate within the GSM/UMTS network. The pertinent standards and documents are discussed
throughout this chapter and can be referenced often if the examiner’s case involves the analysis of a SIM card.

This chapter covers SIM and UICC (Universal Integrated Circuit Card) smart cards, the SIM file system,
and the various artifacts that may be used in any investigation. This chapter does not cover all of the files and
folders available on a SIM, because many of these are used strictly for network communication—hundreds of
files are contained on a single SIM, and covering them all within a single chapter is not possible. You can find
more information by consulting the materials mentioned throughout the chapter.

Smart Card Overview: SIM and UICC
The European Telecommunications Standards Institute (ETSI) defines smart cards as “micro-processor
equipped tokens, able to store and process a diverse range of data and applications”
(www.etsi.org/technologies-clusters/technologies/smart-cards). Many examiners use the terms “UICC” and
“SIM” interchangeably, though, strictly speaking, UICC (Universal Integrated Circuit Card) is the latest
generation of the SIM card. The UICC is the hardware portion of the smart card, while the SIM, USIM, and
others are software applications included on the card. Initially, a SIM was used only for GSM networks as the
key to the mobile device operating on a cellular network along with both the hardware (mobile device) and
software component.

UICCs now are used in most smart devices, including CDMA devices. UICC covers the gamut of
subscriber cards to include the removable user identity module (R-UIM) and CDMA2000 subscriber identity
module (CSIM) cards, also part of the CDMA devices that can be used globally.

All the applications on the UICC are defined by ETSI and adopted by the Third Generation Partnership
Project (3GPP). Applications (such as USIM, SIM, ISIM, and CSIM) contain information and help with
flow of information to the mobile device depending upon the network used. If HSPA (High-Speed Packet
Access), HSPA+, and LTE (Long-Term Evolution) networks are used in conjunction with the USIM, the
ISIM handles the high-speed packet access (HSPA). If a UMTS network is being used, the USIM
application will maintain control of communication and includes the data needed to help the device operate
on that network; if a 2G or Enhanced Data rates for Global Evolution (EDGE) connection is needed on a

281

http://www.etsi.org/technologies-clusters/technologies/smart-cards

GSM network, the SIM application would be used. A SIM card containing only a SIM application cannot
operate on a UMTS-only network, but a UICC with both the SIM and USIM application can operate on
either a GSM or UMTS system.

The physical size of a UICC is described in ETSI TS 102 221; version 14.2.0 references both ISO/IEC
7816-1 and ISO/IEC 7816-2 for acceptance. The most significant change to the UICC has been the size of
the smart card; Figure 11-1 shows the various size progressions of the card. The sizes are defined by ETSI as
1FF ID-1 UICC, 2FF Plug-in UICC, 3FF Mini-UICC, 4FF Nano-UICC, and M2M Form Factors
(MFF1/MFF2) (embedded UICC). The ID-1 UICC was never used in a mobile device because of its large
size (that of a credit card), but the Plug-in UICC is the most commonly referenced and was used in feature
phones and early smart devices until 2004. The Mini-UICC was then released and made its way into most
smart devices until the Nano-UICC was released in 2012 and adopted in newer iOS, Android, BlackBerry,
and Windows Phones. The MFF1/MFF2, or embedded UICC, is a SIM typically soldered directly to the
device’s PCB and used for machine-to-machine (M2M) applications. The benefits are many and include
longer life and ease of moving from one carrier to another because of over-the-air provisioning—not a change
of UICC. MFF2 are utilized in many automobile infotainment systems, point of service (POS) systems,
tablets, wearables, and IoT devices. ETSI has since released TS 103 383 outlining the eUICC (e-SIM)
concept and its current use in today’s businesses and devices. The eUICC should pose a unique problem with
traditional mobile forensic examinations. Subsequently, Apple has expressed the most interest in using
eUICCs within all of its products, from iPhones to iPads.

FIGURE 11-1 The evolution of SIM/UICC size

The actual microprocessor did not change between the SIM and Nano-UICC, but the shell that contains
the microprocessor has changed. There was a debate between ETSI and Apple on Apple’s ability to change
the size of the microprocessor, and Apple finally won. Most UICC cards that are used in today’s devices are
still the original size for feature phones, but the majority of smart devices use the Nano-UICC.

SIM Card Analysis
Mobile forensic software replicates commands used by the mobile device to communicate with the
applications on the UICC. The software can collect various data files using application protocol data unit
(APDU) commands. These commands communicate with the mobile device and the UICC to obtain and
store data by writing information to the UICC. A UICC is passive and does not initiate contact with the
mobile device to begin a transaction; instead, it stands by to listen for the APDU commands sent from the

282

mobile device. A mobile device, or the operating firmware on the mobile device, can request the device serial
number, the last SMS message, and even the last known location. By replicating APDU commands when
using mobile forensic software, the examiner can also request this information to be used for the investigation.

Before we move into the communication methods from the software solution to the UICC, you should
understand the physical characteristics of a UICC. The UICC comprises a microprocessor (CPU), RAM,
ROM for firmware, and Electrically Erasable Programmable ROM (EEPROM) for nonvolatile storage. The
UICC accepts communication via the I/O contact point (Figure 11-2) from the mobile device, but to operate
correctly, the UICC needs all points in contact with the mobile device terminal pins. The UICC surface is
contacted by the six or eight points along reciprocal contact points on the mobile device—most UICCs in
today’s devices have six or eight pins. Reading, querying, and writing to the UICC occurs at these contact
points (6 pin: VCC, GND, I/O, VPP, RST, and CLK / 8 pin: VCC, GND, I/O, VPP, RST, CLK,
SIM_PRESENCE, and GND).

FIGURE 11-2 UICC smart card contact points: communication to the chip occurs via the I/O contact,
which is the pathway to the UICC CPU.

As mentioned, the UICC is a passive part of the mobile device and must be contacted with APDU
commands for action to occur. An APDU command comprises two components: a command and a response,
as shown in Figure 11-3. The command is always initiated outside of the UICC (from forensic software or
mobile device firmware), and a response is always returned, even if a command is incorrect. The UICC’s
response can indicate that a command was successful, unsuccessful, successful with security problems that
must be addressed, or successful with a return of data.

FIGURE 11-3 APDU command and response structures

An APDU command first needs to navigate the SIM card file system using INS (instruction) commands
on the way to the appropriate file ID. During the navigation, if any security or permissions need to be
satisfied, they, too, will have to be entered as APDU commands. Security conditions for SIM cards are

283

referred to as ADM (Administrator) or CHV (Card Holder Verification). Once at the file ID, the APDU
command must send an instruction (INS) that will tell the SIM what is to occur at the file ID. The
instruction codes that can be used in an APDU are outlined in ETSI TS 102 221
(www.etsi.org/deliver/etsi_ts/102200_102299/102221/08.02.00_60/ts_102221v080200p.pdf). A file ID must
then be “selected” to include additional instructions. To “select” a file ID, the APDU command must include
A4 as the INS code. The ID for the file to be acted upon, if using the select INS, would then fill the Data
portion of the command structure shown in Figure 11-3. Whatever the length of the data portion in bytes,
this number will be added to the Le block of the command. A file ID is made up of 2 bytes, and its
specifications are outlined in ETSI TS 131 102 and 3GPP TS 31.102.

The commands that would be issued to a UICC to retrieve the integrated circuit card identifier (ICCID)
using a command APDU are shown in Figure 11-4. The first commands navigate to the ICCID via the file
system, identifying the file and then sending the instruction code to read the number of bytes located within
the record. The return command contains the ICCID indicating success. The ICCID is in a “reverse nibble”
format (each byte is flipped to create the actual value—for example, 21 80 48 would be 12 08 84). Response
codes are also listed within ETSI TS 102 221. This is the same process forensic software will use to read the
UICC ICCID. The reading of various portions of the UICC is covered later in the chapter in the section
“User Data Locations.”

FIGURE 11-4 APDU commands to navigate and read the ICCIC

File System UICC Structure
Obtaining the file system of all pieces of evidence is the goal of an examination, and it’s the same with
UICCs. Most information on the UICC is used for network communication and authentication, but the card
can also contain valuable user information. Most mobile forensic solutions can obtain a UICC file system,
with a few known exceptions—MOBILedit Forensic and Susteen Secure View obtain user data directly from
the UICC and import the information into the user interface. Some solutions even query the UICC through
the handset rather than via a secondary SIM card reader. This section will not cover these tools, but it will
include the artifacts that can be found within the file system and their formats.

The examiner will benefit from working through the UICC file system manually in the same way a
forensic solution would work automatically. Understanding the method in which an automated tool
obtains the data from these smart cards is an important feather in the mobile forensic examiner’s cap, and
it’s a necessity for an examiner who wants to be an expert in mobile forensics.

Understandably, today’s mobile devices contain little user information, simply because the data transmitted

284

http://www.etsi.org/deliver/etsi_ts/102200_102299/102221/08.02.00_60/ts_102221v080200p.pdf

and received with a smart phone far exceeds the limited storage capacity of the UICC. However, mobile

devices, including smart devices, can still store user data to the UICC that would otherwise be missed if the
smart card were not examined. It is critical that the examiner obtain a full file system collection from the
SIM/UICC, and I always recommended that the UICC card be collected and examined outside the body of
the device, no matter the device, for reasons that include but are not limited to network location, networks
accessed, subscriber information, SMS, contacts, and calls, to name a few. Some “fileIDs” that are discussed
later are not extracted because of their protection status. Each of these records can also contain information
that an automated tool either cannot parse or does not parse correctly, so manual inspection is sometimes
necessary.

The UICC file system is made up of several levels that contain four types of files: a Master File (MF) and
Dedicated Files (DF), which include Application Dedicated Files (ADF), and Elementary Files (EF). There
is only one Master File on the UICC, and it is analogous to the root folder of a computer file system. The file
ID of the MF is 3F00. There can be several DFs on the UICC (for example, GSM, DCS1800, TELECOM,
USIM, PHONEBOOK), and these are analogous to a directory on a computer and files that are identified
and described by ETSI TS 151 011 and 3GPP 51.011. The partitions on a SIM have always been described
in forensic circles as SIM, USIM, CSIM, and ISIM (LTE, HSDPA+), but in reality they are applications
that are used depending upon the type of network that is accessible.

SIM partitions are actually applications, and within the applications are various files that are referenced
by what is commonly referred to as “file IDs.”

If a CDMA system is available, the CSIM partition/application is used, but if a UMTS system is available
and preferred, the USIM partition/application is used. The UICC file system can be confusing, with several
layers within each application and folder system, some containing duplicated information. This information is
duplicated in the file system view but is actually written only once to the smart card, as is clearly observable
when using the UICC file ID system. The file ID system simply references the needed record within the
application. Because the UICC storage space is finite, a reference to this information must be made, and then,
within the application, a pointer to the file ID is made. As mentioned, file IDs for most UICC data are
defined and outlined within ETSI TS 131 102 and 3GPP TS 31.102. This does not mean that a file can be
on the UICC only if the file ID is defined and listed by ETSI, however. In fact, a file can be created on a
UICC that is specific to a particular carrier and used only by the carrier within its supported mobile devices.
This is another reason the examiner should make sure to do a file system collection of all UICCs encountered.

If a UICC contains multiple partitions/applications, it is important to examine each referenced area,
because a USIM application can contain additional phonebook entries over and above those in the SIM
application.

Network Information Data Locations

285

Many files reside on the UICC card, most of which are network related. Generally, most files within the file
system can be examined manually if needed. They contain information used by the mobile device to
communicate on the network in a format that makes sense only to the network of the carrier system engineer.
However, the examiner should be aware of several of these network-related files on the UICC when
conducting a mobile device examination because they often contain data that could be used in a mobile device
investigation.

Some files, such as the ciphering key (Ki), although important and necessary for the authentication process
and contained on all SIM cards, are unavailable to the forensic examiner using any forensic software.
Although some files are not available for examination, they should still be recognized and their existence
documented.

ICCID
The ICCID is analogous to the serial number of the UICC; it represents the unique number assigned to that
single UICC—that is, no other smart card on the cellular network uses the same unique number. Typically,
this number is located on the exterior of the smart card, but not always. The number can be a maximum of 20
digits. The ICCID must always be available to the mobile device without limitation, primarily because this
number will be used for the authentication process. This means that even if a UICC is locked with a PIN, the
ICCID can be ascertained, and the examiner can then use the ICCID to obtain the PIN unblocking key
(PUK) to change the PIN and access the UICC contents by sending the carrier of record the appropriate
court order.

The “authentication process” is involved in accepting the subscriber onto a cellular network so that calls,
data, and other transactions can occur. Without a successful authentication process, the mobile device will
be unable to use the cellular network. Emergency service calls are an exception, however.

Table 11-1 shows valuable information such as the size, number of bytes, file ID, and additional
information about the ICCID and its contents. Figure 11-5 shows the actual representation of the ICCID on
the exterior of the UICC, and Figure 11-6 shows the output of the ICCID using mobile forensic software.
The ICCID is stored in a reverse nibble format within the record found directly under the Master Files in
EF_ICCID. So when the examiner is decoding the ICCID, each byte must be reversed to interpret the
ICCID digits properly.

286

FIGURE 11-5 UICC exterior with a visible ICCID

FIGURE 11-6 Decoded ICCID

TABLE 11-1 TS 102 221 Information on the ICCID

The ICCID is made up of 10 bytes that comprise several values. The first two digits are the system code, a
constant value for mobile devices, 89, which represents ISO 7812, “Telecommunications Administers and
Private Operating Agencies.” The next two or three digits represent the country code for the UICC. For the
United States, the country code is 01. The next two or three digits represent the Issuer Identifier Number,
which for a mobile UICC is analogous to the first two digits on a credit card that identify the credit card
issuer (such as Visa or MasterCard), but for the UICC it would be T-Mobile, AT&T, Vodaphone, and so on.

To find other country codes, refer to https://en.wikipedia.org/wiki/Mobile_country_code or consult
international numbering plans at www.numberingplans.com.

The first three data groups cannot exceed seven digits. The remaining digits represent the UICC number
and are made up of the year and month of manufacturing, configuration specs, and the unique UICC number.
The final digit is referred to as the checksum digit.

Consider, for example, the ICCID number 89310170105113168601:

287

https://en.wikipedia.org/wiki/Mobile_country_code
http://www.numberingplans.com

IMSI
The International Mobile Subscriber Identity (IMSI) is the unique number that identifies the subscriber on
the cellular network. This number is used to find a subscriber across the network and deliver calls, data, and
other transactional information. Often, examiners think the phone number of the device is important to a
cellular network. But it is the IMSI, for both GSM and CDMA networks, that is needed for contact to be
made. This is an important file and should always be reported during the investigation. In fact, this record can
be used to subpoena the records of the subscriber.

The IMSI is a protected file, and as such, if the UICC is locked with a PIN it will be inaccessible. The
IMSI, under GSM/UMTS standards, will be 9 bytes, but the subscriber number can be a maximum of 15
digits. This is an interesting concept when the examiner recognizes that the total number of digits equals 18
when looking at the raw hexadecimal values under EF_IMSI in the UICC file system. The values are also
stored in reverse nibble, with the first byte as the length, which will always equal x08. The preceding bytes
compose the IMSI in reverse nibble, and in order to decode the digits, you must first reverse them; the first
digit, which will always be 9, should be dropped because it is not part of the IMSI value but is a placeholder
(that looks surprising when added to the length byte 89, indicating telecommunication like the ICCID).
Table 11-2 shows information on the IMSI and its contents.

TABLE 11-2 TS 151 011 Information on the IMSI

Much like the ICCID, the digits within the IMSI represent data to the examiner. The first 3 bytes are the
mobile country code (MCC), the next two digits are the mobile network code (MNC), and the remaining
digits are the subscriber identification number. The following shows the extracted IMSI using mobile forensic
software and the breakdown of the IMSI number. Consider, for example, the IMSI number
310260123456789:

LOCI
The location information (LOCI) is an elementary file under the DF_GSM (DF structure for GSM) that
identifies the geographic area where the device was last successfully powered off. The last portion of the sentence

288

is critical: The LOCI writes the last tower location to which the device was registered when a successful
power-off occurred so that the device can access the network quickly upon powering on. If the device’s battery
is removed, if it is not powered off correctly, or if the device is broken prior to powering off, this file may not
be available or may be incorrect. If, in fact, the LOCI file contains data, the examiner can use this key to
identify the geographic location by contacting the carrier of record with the key information. The LOCI
comprises the TMSI (temporary mobile subscriber identity), LAI (location area information), TMSI time,
and the location update status.

The TMSI, as indicated by its name, is a temporary random ID that is assigned via the VLR (visitor
locator register) to the subscriber; the actual IMSI is not sent out via the handset because of possible capture
and identification of the mobile subscriber, and the temporary IMSI changes when the device moves to a
different VLR. The LAI comprises the MCC (mobile country code), the MNC (mobile network code), and
the LAC (location area code). By consulting the web site www.mcc-mnc.com, the examiner can at least
identify the country and carrier to contact to obtain possible subscriber information. Table 11-3 shows the
identifiable information for the LOCI, and Figure 11-7 shows an example from an actual GSM device.

FIGURE 11-7 LOCI and interpreted information from a mobile forensic solution

TABLE 11-3 TS 151 011 Information on the LOCI

FPLMN
Forbidden Public Land Mobile Network (FPLMN) is an elementary file under DF_GSM that identifies
networks with which the device carrier does not have a valid agreement to access. In other words, a PLMN
(both MCC and MNC) will be written to the FPLMN if the network rejects the location update, because
PLMN is not allowed. This elementary file once had a limit of four records, but with the new UICC
specification, it can hold up to n records, depending upon the card manufacturer and carrier specifications.
When a record is added to the FPLMN elementary file, that record is placed after the last record; if there are
no additional slots, the first record is removed and the new record is added to the last available slot.

In terms of value for the examiner, the FPLMN identifies specific country codes along with the carrier of
record, which could also identify a geographic region in which the mobile device was being used or attempted

289

http://www.mcc-mnc.com

to access. If a user, for example, had stated that he was not in a certain country and admitted to having control

of the mobile device, but access was attempted to a forbidden network in the country the user denied being in,
an argument could be made that the user was indeed within the country. This information could be based
upon the evidence located within the FPLMN elementary file. Table 11-4 shows the technical information
regarding the FPLMN format.

TABLE 11-4 TS 151 011 Information on the FPLMN

User Data Locations
When examining the information from a mobile device UICC, forensic applications primarily focus upon
personal data that could be stored on the SIM. With the storage capacity of today’s mobile devices, the
storage of personal data to the UICC is not the norm. Mobile device settings default to storage to the
handset, and a user would have to change the storage location settings manually for the UICC to be used.
Because the capacity of a SIM is finite, as set by standards, along with the mass amount of personal data that
is transmitted and received by a mobile device, the storage of data that can be used for investigations is
limited. Previously, the portability of a UICC could enable users to take their SIM with them, complete with
their contacts and SMS messages, place the SIM into another GSM device, and be able to be up and running
with their personal information, subscriber information, and network details. With the movement to world
phones that cover the necessary cellular bands globally, there is no need to have multiple devices to cover a
particular cellular band using the singular UICC. Because the need for portability is no longer a necessity,
carriers and phone manufacturers alike no longer store data to the UICC by default. This does not dismiss the
importance of collecting the UICC content, however.

Mobile forensic tools concentrate on several areas to recover this personal data within the UICC, as listed
in the following section. The examiner should understand the location, format, and structure of these areas to
help validate the recovery of the automated mobile forensic software solution. Again, understanding how an
automated tool identifies, converts, and displays mobile device data will satisfy another step in your becoming
a mobile forensic expert.

SMS
The Short Message Service (SMS) is another elementary file located on the UICC. It contains several records
that define many aspects of the message and service. Either 3GPP TS 23.040 or ETSI 123 040 for UMTS
defines these records as messages that either originate from the mobile equipment (ME) or are received from
the subscriber’s network. The record length cannot be more than 176 bytes, with the first byte being a status

290

of the record and the remaining bytes making up the architecture of the message. Table 11-5 shows the file
information obtained from ETSI 123 040 with specific information on the format for EF_SMS files.

TABLE 11-5 TS 151 011 Information on the SMS

The status byte of the record, shown in Table 11-6, will tell the examiner several interesting facts. If the
status byte indicates “Unused” and content is still contained within bytes 2–176, the examiner should assume,
with great certainty, that the message has been deleted. The ME simply changes the status of the record and
does not remove the content. Since the status shows “Unused,” the record slot is available and thus can be
overwritten with a new message, but until that time the record is available to be recovered by the examiner.
The status byte can assist in an investigation if the SMS was alleged to have been sent, but did not have
service, or if it had been submitted but was rejected by the network and was never delivered. Using the status
byte, an examiner can make this determination.

TABLE 11-6 Message Status Byte from ETSI TS 131 102 V9.5.0 (2011-01)

It is important that the examiner understand that the recovery of “slack space,” or partial SMS messages,
from a SIM card is not possible because of the way a record is written to the card. When an SMS
message is submitted to be 281written to a SIM card and an open “unused” slot is identified, the 176-
byte record is then written to the SIM. It does not matter if the message occupied only 56 bytes; all 176

291

bytes will be written to the record, overwriting any record that had previously existed. When is SIM card

is written to, it is all or nothing.

Bytes 2–176 make up the content with a set length for the actual message content depending upon how
the data is formatted; this is often referred to as the Transport Protocol Data Unit (TPDU). The TPDU
contains a variety of data, depending upon whether the message was sent (SMS-SUBMIT) or received (SMS-
DELIVER). For an SMS-SUBMIT message, Table 11-7 shows the various types of data stored within the
TPDU. For an SMS-DELIVER message, the content differs slightly, as shown in Table 11-8. Each type of
content is covered in the following tables with specific comments and explanations for better understanding.

TABLE 11-7 -SUBMIT Structure from TS 100 901

TABLE 11-8 SMS-DELIVER Structure from TS 100 901

292

The breakdown, description, and decoding of the TPDU are covered in the following list:

• Length of SMSC (Short Message Service Center) information This is the number of octets (8 bits or 1
byte) that will be used to store the type of number and also the number of the service center. Typically,
SMS-SUBMIT messages have the value 00, which indicates the use of the service center number internal
to the mobile device. Not all handsets have this value, and if it is missing, it means the SMSC will be
obtained from the handset along with the TON/NPI and service center number.

• Type of number and numbering plan indicator (TON/NPI) This single octet indicates the type of
number that the preceding telephone number will represent. This byte is representative of the binary
number created, with the first bit always 1, and is combined with the TON, which is 3 bits, and the NPI,
which is 4 bits. Table 11-9 represents the various combinations and values for TON and NPI values. Once
the correct hexadecimal number is located, the number will be converted to a binary number that will be
used to decipher the type of number and number plan used in the message. For example, a common value
is x91, which, when converted to binary, is 1 001 0001 and will indicate that a plus sign (+) is attached to
the number in front of the country code. Using Table 11-7, the examiner would be able to confirm that
this number is an international number conforming to the ISDN/telephone numbering plan by dropping
the first MSB (always 1), decoding the following 3 bits for the TON and the remaining 4 bits for the NPI.

TABLE 11-9 Binary Representation of TON/NPI Key of SMS Messages

293

• Service center number This value is the representative number of the service center that was used to route
the SMS message. This value per ETSI TS 123 040 V12.2.0 (2014-10) is stored in semi-octets in binary-
coded decimal (BCD) format, as defined in GSM 44.008 and again in ETSI TS 124 008 V11.8.0 (2013-
10). This format is also reverse nibble. Often, the numbering does not complete an octet, so an F is added
to complete the octet.

• First octet of Short Message Transfer Protocol (SM-TP) This single byte indicates the type of message
from the six defined types in ETSI GSM 03.40. This hexadecimal byte should be converted to binary, and
the two least significant bits are used to determine the type of the SMS message. Table 11-10 lists the
various types of messages that are identified by the two least significant bits (1, 0) in the first octet of the
SM-TP message. These bits are referred to as the TP-MTI (message type indicator).

TABLE 11-10 Binary Representation of SM-TP Byte of SMS Messages, which Indicates the Message
Protocol Used

• Address length A single octet represents the length of the actual sender number. This byte will need to
be converted to decimal to obtain the number of nibbles that are represented by the telephone number.
Unlike the SMSC length, this value will not include the following byte that indicates the TON/NPI.

294

• Type of Number and Numbering Plan Indicator (TON/NPI) Table 11-9 can again be used to
determine the number plan type and type of number of the sender.

• Sender number The sender number is again in semi-octets or reverse nibble (BCD), as was the case with
the service center number.

• TP-Protocol-Identifier (TP-PID) This octet will identify the protocol that has been used for the
transmission of the message. For standard ME-to-SC communication, this value will most likely be 00 as
defined by ETSI TS 123 040 V12.2.0 (2014-10).

• TP-Data-Coding-Scheme (TP-DCS) This octet represents the coding that has been used to encode the
message. This value will assist the ME in decoding the format once received. As with all other values, this
octet, when converted to binary data, can be interpreted to determine the value. In Table 11-11, values are
given as represented in 3GPP 3G TS 23.038 V2.0.0 (1999-06). Most often, the value for the TP-DCS
will be 00 to indicate that the default 7-bit data code scheme will be used. However, in countries such as
China, Korea, Japan, and others that use characters outside the ASCII range, this value will be different,
because UCS2 will most likely be used. An example would be x04 in the TP-DCS section of the SIM
record. The x04 in binary would be 01 00, which indicates 8-bit data and class 0 message.

TABLE 11-11 Binary Representation of TP-DCS Byte of SMS Messages, which Indicates the Data Coding
Protocol Used

• TP-Service-Center-Time-Stamp (TP-SCTS) This value is represented by semi-octets and reverse
nibble (BCD) in the ordering of Year, Month, Day, Hour, Minute, Second, and Timezone. The
Timezone is the number of quarter hours from the local time to GMT time, and the most significant bit
of the first octet indicates whether the number is positive or negative GMT. The Timezone is significant
because if the ME has knowledge of the local time zone, the ME can display the received time in the local
format. The time zone and time are local to the sending entity, which is important for the examiner to
understand, especially when time and date are critical to the case.

• TP-User-Data-Length (TP-UDL) This integer value, represented in hexadecimal, is the length of data
that is contained within the message. This value is also determined by the TP-DCS, or data format,
discussed earlier. If the TP-DCS is the default, 7-bit is the length represented by septets (2 bytes), and 8-
bit and UCS2 are represented by octets (1 byte). After converting this number into a decimal value, the
examiner can identify the length of the message data immediately following as displayed in octets.

The message maximum length set by standards is 140 bytes. If the message is formatted using the 7-bit

295

GSM alphabet, the records shall not exceed 160 characters. However, if the message is formatted using 8-
bit, the record content shall not exceed 140 characters. To make matters more confusing, when you’re
examining SMS output and UCS2 coding (Unicode) is used in the message content, the message length
cannot exceed 70 characters using the 16-bit UCS2 alphabet format. All formats are documented in 3GPP
TS 23.038. The various coding formats for the message allow for the transmission and reception of
messages in multiple languages and also messages with more than the default 140 characters. The 7-bit or
the GSM alphabet as defined by 3GPP TS 23.038 is the default format and is mandatory for network
providers, but countries that use languages not supported by the extended ASCII table of the GSM
alphabet (China, Korea, Japan) use the UCS2 (16-bit) format. The ME will always default to the 7-bit
format, but as soon as a character is entered that is not part of the 7-bit GSM alphabet, the entire message
is re-encoded into UCS2.

• TP-User-Data (TP-UD) The user data portion of the SMS contains the message in 7-bit, 8-bit, or
UCS2 format as specified in the TP-DCS. This data is represented in forensic tools as hexadecimal values.

• TP-Message-Reference (TP-MR) The single octet is included in sent messages that indicate the integer
value of a message reference. This value will typically be x00 but can be a value from 0 to 255.

Both SMS-SUBMIT and SMS-DELIVER use a combination of the items outlined in this section and
others outlined in ETSI TS 123 040. Figure 11-8 shows an actual SMS-DELIVER message, and Table 11-
12 describes the values and decodes the data in the figure. These illustrations can assist the examiner in
locating key artifacts within the SMS message that are typically observed in a UICC file system extraction.

TABLE 11-12 Corresponding Values with Figure 11-8 with Decoded Data for Values Listed from an Actual
Message

296

FIGURE 11-8 Actual hexadecimal message from an SMS message

297

Notice that sometimes characters are within BCD values and must be interpreted as a 0, but in Table 11-
13, the extended BCD characters are identified. These can be seen within HEX values throughout SIM
records.

TABLE 11-13 Extended BCD Values

Contacts
Contacts on a UICC are referred to as Abbreviated Dialing Numbers (ADN). This elementary file is located
on a SIM application under DF_Telecom and can also be under DF_Phonebook on a USIM application.
Before the UMTS and USIM applications, the SIM contained only a single phonebook located under
DF_Telecom, where it still is today on the UICC. When the USIM application was added to the UICC, two
phonebooks were possible. For an examiner, this often led to problems when using a software solution that
was unable to obtain both the USIM and SIM applications’ stored data. This was typically nontransparent to
the examiner and often went unnoticed. Today, mobile forensic solutions support both application
phonebooks.

Often these phonebooks coexist and contain duplicate records, but it is entirely possible that the records
under DF_Phonebook on the USIM are unique and accessible only by reading the DF_Phonebook on the
USIM application. The phonebook located on the USIM application is under the DF_Phonebook, which is
under DF_Telecom. This is referred to as the global phonebook. Multiple phonebooks are available under the
DF_Telecom/DF_Phonebook and can be application-specific. This means that a single phonebook under
DF_Phonebook can be used by a single application on the mobile device up to 250 record entries. UICCs
with the DF_Phonebook can hold thousands of contact names and numbers, and this dedicated file should be
investigated. The contacts located under the USIM and SIM application under DF_Telecom/EF_ADN hold
a maximum of 250 records and are duplicated between applications (see Figure 11-9). Contacts can be located
in several places within a mobile device’s UICC, but the information that can be stored is much different from
what is observed within the contacts storage location of a smart phone (such as photos, addresses, and
usernames).

298

FIGURE 11-9 Both the USIM and SIM applications can hold ADN records; one EF_ADN will be
duplicated between the USIM and SIM.

Like other data on the UICC, the data within the ADN record is coded in a semi-octet (BCD) format
with the possibility of an alpha identifier, which is a name associated with the listed phone number. When an
alpha identifier is used, the format, as specified by standards in 3GPP TS 23.038, will be 7-bit GSM
alphabet, left justified, and all unused bytes will use FF or UCS2 format. The alpha identifier can be 0 to 242
bytes in length, and the rest of the record, to include the ADN length, TON/NPI, ADN, configuration
record, and extension record, must be 14 bytes.

Much like the SMS record, the ADN will be coded in BCD format, preceded by the length of the ADN
and the TON/NPI. The length is much like the SMS embedded address length discussed previously. Using
Table 11-9, the Type of Number and Numbering Plan Indicator (TON/NPI) can be determined by the
examiner before decoding the actual ADN that immediately follows. The ADN, as previously indicated, is
coded in semi-octets or BCD format just like the service center and sender number in the SMS records. The
balance of the ADN, if larger than 20 characters, will be written to an extension file under EF_EXT1 and is
indicated in the last byte of the ADN record. The preceding byte, called the configuration record or capability
record, can indicate whether additional configuration or capabilities are needed for the call and points to a
record in the EF_CCP1 file. The complete breakdown of an actual record in an EF_ADN record is shown in
Table 11-14.

TABLE 11-14 Abbreviated Dialing Number (EF_ADN) Are Contacts in Both the USIM and SIM
Applications

299

It is extremely important that the examiner understand the layout and limitations of storage within an
ADN record, because overflow of data could reside within another file that the forensic software quite
possibly will miss. It is also important to examine the UICC to locate data not recoverable or missed by
forensic software. For example, if a record from the EF_ADN is deleted, because EF_ADN does not employ
a status byte, the entire record is overwritten with FF when the record is deleted from the SIM. A deleted
contact is not recoverable. However, records in the DF_Phonebook do not have to be contiguous, and
noncontiguous records could indicate that the record was deleted before another contact could be added to the
phonebook. This could be valuable information for the investigation.

Fixed Dialing Numbers
A UICC contains a phonebook that can be set to allow only numbers within the EF_FDN to be dialed from
the mobile device. This phonebook, once activated, is protected by Card Holder Verification 2 (CHV 2),
often called PIN 2, which must be entered to access and edit information. By the user disabling the EF_IMSI
and EF_LOCI functions of the device for any other number, the mobile device cannot call any numbers other
than what is included in the fixed dialing list. Of course, emergency numbers can operate without a SIM
inserted into a mobile device, so this does not affect emergency services when dialing out. The EF_FDN is
located under DF_Telecom in both the SIM and USIM applications.

Companies, and often parents, can restrict a mobile device to allow only specific call-out numbers but still
receive incoming calls. At times, this is also used to store a phonebook that is protected by a layer of security.
This enables a user to conceal a set of names and numbers and, in essence, creates a secret phonebook. As an
investigator, being aware of the location of the EF_FDN is important, because no mobile forensic solutions
currently check the fixed dialing numbers elementary file.

The layout of the EF_FDN is exactly the same as that of the EF_ADN with one exception: if the record
exceeds the size allotted for the record, the overflow will be stored in EF_EXT2 instead of EF_EXT1 as with
EF_ADN records.

Call Logs
A UICC stores only the last numbers dialed (LND) and does not store incoming calls to the ME’s SIM
memory. Incoming calls would be stored on the device itself. The elementary file LND is located under
DF_Telecom in both the SIM and USIM application. The LND record is similar to the EF_ADN in the
storage capacity and data layout. The LND record can store an alpha identifier (name), a byte to identify the

300

length of the phone number, a byte for TON/NPI, the actual dialing number in BCD format, a

configuration/capability byte, and finally the extension byte.

The EF_LND has limited records, depending on the carrier, but typically no more than ten records can be
stored to the UICC. When a new call is made and all records are occupied, the first record is removed and all
records then shift up, with the new record taking the last position. Most of today’s mobile devices do not store
the call history directly to the mobile device, but it is important for an examiner to understand the format,
layout, and location of this valuable data should it be populated.

Dialing Number
The dialing number for the mobile device is not necessarily important to the mobile carrier; the carrier relies
on the EF_IMSI to identify the mobile user within the network, so a dialing number does not necessarily
need to be stored on a UICC. If during an examination the EF_MSISDN is not located on the UICC, this
does not indicate that the device was not used or is not in service. As described, the ability for a mobile device
to use the cellular network is not dependent on the MSISDN, and only a valid EF_IMSI is needed. However,
the EF_MSISDN is located under the DF_Telecom for both SIM and USIM applications on a UICC. The
EF_MSISDN can include several records within the file, depending upon the carrier. Multiple EF_MSISDN
records enable the user of the UICC to have a phone number for a business, personal use, fax, or other, with
only a single EF_IMSI. This enables the device to be associated to multiple dialing numbers depending on
which number was called.

The format structure for the EF_MSISDN and records is the same as that of the EF_ADN and should be
used if the records are to be decoded manually. Figure 11-10 shows the EF_MSISDN records and first record
of an actual UICC.

FIGURE 11-10 The MSISDN within the file system, its data, and decoded data

The UICC contains a large number of files that can be examined and verified (see Figure 11-11). It is just
a matter of how important the UICC file system might be to the examination.

301

FIGURE 11-11 File system view of a UICC card and the many folders available to the examiner

Chapter Summary
UICC cards in today’s devices might not contain a massive amount of user-related data, such as SMS,
contacts, or last numbers dialed. However, the UICC is always needed by a GSM/UMTS when operating on
a cellular network.

Even though a UICC is unable to hold data such as videos or other large files, it can hold hundreds of files
within the card’s file system and applications. Because the UICC must always be inserted into the device
while operating on the cellular network, some type of evidence can always be collected—it might be
information on last location, networks used, or the vital IMSI needed to crack a case. The UICC should never
be neglected in any investigation.

Remember that CDMA devices also must always use a UICC when operating on the GMS/UMTS
band.

The UICC data storage methods and structure are clearly documented by standards. This type of
documentation can be used to help the examiner understand how to interpret the information contained on
the UICC if the forensic software is unable to recover the data or the type of data is not supported.

This chapter introduced the examiner to the decoding of SMS, ADN, LND, IMSI, and ICCID, among
other key artifacts. This information will be critical when examining other file system data contained within
feature phones and today’s smart devices. A lot of the storage formats, such as 7-bit and reverse nibble, are
used throughout the industry, and understanding them will aid the examiner in other decoding exercises
within the book and also during actual mobile device investigations.

302

I

12 Analyzing Feature Phone, BlackBerry, and
Windows Phone Data

n the previous chapter, you were exposed to the advanced analysis of UICC data contained within the file
system, which is a small part of the bigger evidence picture. Collecting mobile devices ranging from the

feature phones to smart devices involves a connection using supported methods (USB, Bluetooth, JTAG, ISP,
chip-off), an understanding of supported capabilities of the forensic solution, and a procedure for handling the
collected digital evidence. What happens next with the data? Proper analysis of the mobile forensic evidence
can uncover information that often makes an ordinary case extraordinary.

Analyzing iOS and Android devices are covered in Chapters 13 and 15.

Feature phones are not as prevalent as they used to be, but they occasionally show up in forensic
examinations. Typically branded “dumb phones,” an inverse to a smart phone, the feature phone can contain
information over and above what is collected—or not collected—by a mobile forensic solution. Smart devices,
including BlackBerry, Windows Mobile, and Windows Phone devices, can hold the same type of data and
files that are stored on a personal computer, but the examination of these devices by most forensic solutions
typically captures only a small amount of information. In fact, most mobile forensic solutions currently used in
analysis collect and report only 10 percent of the data.

The traditionally collected mobile device information is referred to in this book as “tip of the iceberg data.”
This is generally not the fault of the forensic solution, but the examiner may be to blame because he or she
either does not understand that additional data can be accessed or does not have the time to look for it. Either
way, an enormous amount of data is missed. With such a wealth of information available within both the
logical file system and physical partitions, an examiner must be prepared to get his or her hands dirty.

This chapter is not for those looking for the “Easy” button, but for those who are looking for that needle
in the haystack or the smoking gun. This chapter will lead the examiner into the file system of the mobile
device, into the areas where the “tip of the iceberg data” has been collected, and beyond. If you’re averse to
getting your hands dirty with a little hexadecimal digging, this chapter, and mobile device forensics, might not
be for you.

Avoiding Tool Hashing Inconsistencies
One big reason for analyzing a device’s file system is to confirm or deny a mobile forensic solution’s reporting
of a hash value. Recall that a hash value is generated by running a mathematical algorithm generally upon a
binary file. This hash value can be used as the digital fingerprint for the file. If anything changes within the
file, the entire hash value will change, indicating a possible problem with an evidentiary file. Hashes in the
mobile forensic solution world can be confusing, however, especially when the same data is collected with two
separate software solutions and returns two different hash values. If the information and data are the same,

303

shouldn’t the hash values be the same no matter what software is used? In fact, the reality is quite the contrary.

When a mobile forensic solution extracts data from a mobile device, the data is parsed from the file and
displayed within the user interface. The examiner can run through the various user data types (such as SMS,
contacts, call logs, and MMS), previewing the data. The examiner then creates a report based upon the
selected user data. Generally, it is within this report that a hash value is assigned for each selected user data
type and prominently displayed alongside the collected data. If an examiner uses a different piece of mobile
forensic software to collect the same device, select the same user data types, and create a report, there is an
almost 100 percent certainty that if the software supports a hash value function, the hash from the user data
type will not match the hash returned by the previously used software. This is not because of corruption of the
data by the software solution, but it is determined by what the forensic software is actually hashing and
subsequently displaying in the report.

Mobile forensic solutions display a hash within the report dialog after hashing data that was extracted
from the actual file; this means that the solution is not extracting data from the original file. In other words, if
software A collects the contacts from a mobile device, the contacts are placed into a temporary (or permanent)
file and hashed. When software B is used, it also extracts the contacts, writes them to a temporary or
permanent file, and then hashes that file. Both software A and B extract the data from the contacts file,
transfer the data to their respective files intermediately, and then hash that file. Even if the same software
solution conducts the collection of the same mobile device twice, back to back, the hash value of the user data
types (SMS, MMS, contacts, call logs, and so on) will be different! This is the result of the software creating a
file on the analysis machine, filling it with the selected user data, and hashing that file. If only 1 bit is different
in the file, which could result from simple file type metadata (such as date, time, file type), the entire hash will
be different.

Understandably, the overall image hash can change upon each collection simply because of system file
changes on the device, but the hash of the user type files should never change.

The probability that the hash value will be the same for extracted user data from two extractions is
extremely low, and this is why the hash that is created by one software solution should never be used to
identify the data fingerprint unless the hash is also the file to which the data was parsed. If an examiner
understands that the hash value produced in the report is the hash of the created file (such as a .csv, Excel, or
text file) by the mobile forensic software and that any change to the file prior to presentation would change
the overall value and could indicate tampering, then the hash has evidentiary value. However, if the hash is
used to compare the same data and produced a hash from another software solution, or it is used to testify to
the fact that the produced hash is of the actual collected file and not simply the extracted file data, problems in
presentation and in court could be possible. This, of course, does not pertain to the hash value as reported by
the software if the actual physical file has been hashed—only when the hash of the data collected by the
software is used.

Hash inconsistencies of reported data in mobile forensic examinations are prevalent with multi-tool
collections, and, as such, the examiner should understand that advanced analysis techniques are necessary

304

when multiple tools are used. To circumvent any challenges, the examiner should understand what the hash
represents: the file or the extracted data. With this information, the examiner can easily communicate about
the method and data the software is representing with the digital fingerprint.

Multiple Tools Often Equal Multiple Hashes

Here’s an example of hash inconsistency with a collection conducted on a Motorola V3 device using both
Secure View and Cellebrite UFED Classic. This feature phone collection is a simple logical collection,
where user data such as SMS, contacts, images, calendar, and call logs are selected for extraction and a
report is immediately generated for all the collected data. Both solutions produce HTML reports and
display a hash of the captured information above each data type. The hash values for each data type from
both software solutions are then compared along with the content. This information is outlined in Table
12-1.

TABLE 12-1 List of Collected Data and Hashes from Two Mobile Forensic Solutions

Clearly, the number of each extracted data type matches between solutions, and when the content is
examined, all content is identical. What is evident, however, is that the hash values shown in the table are
not the same. The different hashes, collected with the same data, drive home the point that a solution’s
representation of the data by a hash can lead to problems when multiple tools are used on a single device.
Understanding why this occurs, as outlined in this section, will assist the examiner in explaining this
discrepancy. Individual files, such as images and videos, however, are correctly identified by hashes
between both solutions because both solutions hashed the actual file, not the temporary report file into
which it was embedded.

Iceberg Theory
The “iceberg theory” was actually coined by Ernest Hemingway to describe the “bones” of a great novel. The
great writer would give enough information (minimalistic writing style) in the written text to paint a picture
that would be filled with the thoughts, and beliefs of the reader, to create a more personal experience. This
would mean the reader would “fill in the detail” and become more involved in the novel. This is the format
that is used in many motion pictures that are adapted from books to not only adapt the movie to a long book,

305

but often backfire. How often have you pictured a character from a book, only to be disappointed by what
they look like in a movie?

Enter the iceberg theory of writing; the analogy to mobile forensics is not as theoretical.

An iceberg floats on water because the density of the ice (around 0.92 g/ml) is greater than that of the sea
water (1.03 g/ml). Ice is about 90 percent as dense as water, so only 10 percent of the ice is actually above the
water’s surface. This means that an iceberg’s total mass is 90 percent below the surface of the water! What
does an iceberg have to do with mobile device forensics? If we compare the total volume of data on a mobile
device versus what a mobile forensic tool actually parses and displays to an examiner, the displayed data is
what I call the “tip of the iceberg data.”

Mobile forensic solutions connect to a mobile device, enable the user to select the items to extract, and
then pull the data from the appropriate files. Once complete, the solution will display the collected
information and the examiner can then create a report. The information collected is displayed to the examiner
in a parsed format (in a report user interface), but it is actually less than 10 percent of the collected data that
the examiner would get if the mobile solution were capable of a file system or physical collection. This fact
alone leads credence to the “push-button forensic” aura that mobile forensics produces in digital forensic
circles and propagates the banter that mobile forensics should instead be called “mobile extraction.”

The iceberg theory, as it relates to a mobile forensic examination, is demonstrated in the statistics gathered
from an LG VX8300 feature phone and described in the sidebar, “Mobile Device–berg.”

Mobile Device–berg

In 2006, the LG VX8300 flip phone was the standard for Verizon cell phones in the United States. It
has since been discontinued, but the statistics produced during the testing of the iceberg theory can be
seen across all feature phones. First, the LG VX8300 had only 28MB of internal storage, which seems
unbelievable when you consider that today’s devices can have more than 512GB onboard! This value
represented the storage space for both the firmware of the device and any user data—which considering
today’s device numbers for internal storage is hard to fathom.

The collection of the LG VX8300 produced extracted contacts, call history, SMS, and media—all of
which were displayed in the user interface; these capabilities for extraction are generically supported
across mobile forensic solutions. The total size of this data was just over 11MB, with most of the space
occupied by 61 images and two videos taken with the cell phone. The file system containing the files and
folders had a total size of 20MB. The images, videos, and other collected user data occupied roughly 55
percent of the file system and were immediately viewable to the examiner. This was the “tip of the
iceberg data,” the WYSIWYG data commonly regarded as the only data available on the device—so the
mobile forensic software says. However, a closer look at the device file system revealed that there were
366 files within the file system, and 65 of those files were the files that produced the WYSIWYG data;
what is important to realize is that another 301 files within the file system could potentially hold data
that would be valuable to the investigation. This is the WYDSIWYN (what you don’t see is what you
need) data and the part of the examination that is often neglected. Out of the 366 files within the file
system, only 18 percent were interrogated and examined—quite lazy for an automated process. Within

306

this LG VX8300’s file system was the other 82 percent—a mixture of system data and user data. The
user data in the file system could be critical, as could the actual files the user data was pulled from during
the automated process. Consider, for example, the additional 112 image files that were carved from the
file system and unaccounted for in the “tip of the iceberg data” the automated tool collected and
displayed within the media view. Also, within the file system were the MMS files that were not
automatically parsed out by the mobile forensic solution. See Figure 12-1.

FIGURE 12-1 MMS folder containing some of the additional files unaccounted for in a “tip of the
iceberg data” examination

WYSIWYG (what you see is what you get) is a term coined back in the 1970s, when onscreen text in a
word processing program (Bravo) looked like what would be output to print. WYDSIWYN (what you
don’t see is what you need) is a term I used in a talk on mobile forensics in early 2013.

Each examination, whether it is on a feature phone or a smart device, should be performed by the
examiner in a way that extends outside of the automated exam in an attempt to uncover some of the
valuable information contained below the surface. This is critical to becoming an expert in mobile
forensics—living in the 90 percent below the surface of the mobile device–berg.

Feature Phones
As mentioned, feature phones, or legacy phones, are common even in today’s smart device world. Feature
phones come with stock apps installed with the firmware of the device, while smart devices can be updated to
allow the addition of apps from various online repositories without changing the underlying firmware of the
devices. This does not change the fact that a wealth of information can be found within a feature phone file
system. A feature phone contains an operating system and a file system, where user data is stored and is
retrievable if the examiner takes the time to investigate.

Culling through the file system of a feature phone can be tedious work, because it often represents
“uncharted territory.” In fact, sorting through the file system of the feature phone is like searching through
thousands of papers for the one sheet possibly containing the username and password. Because little
documentation exists regarding the format of data and file system structures and because of a lack of
conformity, a feature phone is often more difficult to examine than a smart device. As a result, some mobile

307

forensic examiners may rely on data that an automated tool will extract and present, neglecting the valuable
information available within the file system—but this is where the most important data is nested.

Feature phones will continue to be available to users around the world who value price over functionality,
and some simply believe they offer more security. Because of this, examiners should be prepared to examine
and analyze feature phones at a level that exceeds the data output by a forensic solution.

Feature Phone “Tip of the Iceberg Data”
User data collected automatically by a forensic tool is often the only information an examiner will present in a
case; the examiner relies on only this information for the investigation or examination. User data, in the
context of this discussion, is data that can be placed into the PIM (personal information manager) category,
such as contacts, call logs, SMS, MMS, calendar, and notes. PIM information does not encompass the
amount of data that could possibly be stored on a feature phone, but typically it is the only data collected by a
mobile forensic solution during many “routine” examinations. These data types are often separated into views
for easy navigation and reporting. The examiner should always consult the forensic tool documentation to
determine what data can be extracted and parsed.

When a mobile forensic solution presents data, it has already been pulled, parsed, and decoded from a file
or files contained within the device’s file system. Because the mobile forensic solution then creates a hash of
the parsed data, not of the actual file, a thorough examiner should locate the actual file from which the data
had been pulled within the device file system and manually examine and hash this data. This hash can then be
used to verify a mobile forensic tool’s interaction with the file to confirm or deny any allegation that the tool
changed the file during extraction and analysis. If the forensic tool does not hash the file in the file system, the
examiner can use free tools such as MD5summer (www.md5summer.org) or Bullzip MD5 Calculator
(www.bullzip.com/products/md5/info.php) to accomplish the hashing. The hash should then be documented
in the examiner’s report.

In the following sections, different types of formats for date and time, along with data layouts, will be
discussed. Using this information, the examiner can decode files that contain the user data parsed with
automated tools to help verify and validate what the automated tool is providing.

Not all file systems are accessible on feature phones. These methods apply only to devices from which a
file system can be extracted.

Parsing a Feature Phone File System
One of the most important features of any mobile forensic solution is the ability to acquire a feature phone’s
file system. Even a simple CDMA LG device with only 28MB of storage space can provide a wealth of
information should the examiner look into the file system outside of what an automated tool can pull.

Unfortunately, one of the most difficult and time-consuming jobs for an examiner is looking through each
and every file and folder for information that might pertain to the case or investigation. There are many
different embedded file systems (EFS) formats, and a lot of them are proprietary and specific to manufacturer
and carrier. However, CDMA feature phones often contain a similar directory structure because the internal

308

http://www.md5summer.org
http://www.bullzip.com/products/md5/info.php

components conform to the Binary Runtime Environment for Wireless (BREW) mobile platform (MP),

which is the most widely used application platform in CDMA devices. The BREW MP EFS is documented
on the BREW web site (https://developer.brewmp.com/resources/tech-guides/file-system-technology-
guide/high-level-architecture/brew-mp-file-system) and outlines the format for the major structures within
the EFS. Because Qualcomm chips can be used in both CDMA and GSM devices, understanding the major
structures of the BREW MP and what data can be located in these areas can be important in identifying
where to look for valuable data.

By comparing the LG file system in Figure 12-2 and the UTStarcom file system in Figure 12-3, you can
see that both conform to the BREW MP, and important folders can be readily observed. Accessing the
CDMA feature phone EFS is much easier than accessing a GSM device EFS, because BREW is an open
source format developed by Qualcomm. Because of the open API, developers often can obtain file system–
level access using the available documentation. GSM feature phones, however, are not as open.

FIGURE 12-2 The LG VX8300 file system contains many files and folders.

FIGURE 12-3 The UTStarcom feature phone file system also contains many files and folders.

Access to the GSM feature phone EFS is often accomplished only with non-invasive physical access;
however, some GSM devices from Nokia allow for file system dumping via common protocols. Figure 12-4
shows a Nokia GSM file system that was collected from the device and was not a decoded physical binary file.
If the GSM feature phone’s file system cannot be accessed without a non-invasive physical or an invasive
collection, the device should be “dumped” by mobile forensic tools (such as Cellebrite Touch 2 or MSAB

309

https://developer.brewmp.com/resources/tech-guides/file-system-technology-guide/high-level-architecture/brew-mp-file-system

XRY). Once collected, the binary file can then be decoded. The decoding process rebuilds the file system that
is specific to the mobile device “family,” the NOR/NAND chip, and underlying EFS, as shown in Figure 12-
5, with a Cellebrite decoding of a Samsung non-invasive physical collection.

FIGURE 12-4 Nokia GSM feature phone file system

EFS could be versions of TFS (Transactional File System) for Samsung, Paragon2000 (P2K) and
Paragon2005 (P2K05) for Motorola, Qualcomm for LG, or Nokia’s proprietary format. (Throughout this
book, all of these will be referred to as “EFS” because it is not the intention of this book to rebuild the file
system; we’re simply navigating and decoding various artifacts.) In the file system example shown in Figure
12-5, the EFS clearly shows an MMS folder with available data, but this was not automatically parsed by any
tool. The examiner would now be able to parse manually and locate valuable information once thought
nonexistent because it was not parsed by the mobile forensic tool.

FIGURE 12-5 File system from a binary file obtained with a non-invasive EFS extraction of a Samsung
feature phone

Because of the many different formats of data and file systems, it is difficult for any mobile forensic
solution to uncover all data important to an investigation. That is where the investigation into the device file
system, especially with the feature phone, is most beneficial. The key is to obtain the EFS, if possible, from
any feature phone that is to be examined.

310

Common Layout
Although no specific type of file system is always used within a feature phone, after the data is decoded and a
file system is visible within the forensic solution, the examiner can find data in some common locations.
Looking into these areas can be critical to obtaining additional information that possibly was not parsed
automatically by the tool—or it can help to verify that the tool correctly parsed the file. Table 12-2 lists
various folders and files that store information about the user or device that could assist in investigations.
Many additional files can also be investigated, and those listed are files I’ve used in various investigations.
Some of the files will be covered in greater detail in following sections.

TABLE 12-2 Various Locations of Critical Data in the EFS of Feature Phones

311

312

Remember that the mobile forensic solution must be able to recover the EFS in order to use the table.

File Metadata Cues
Because of the variety of manufacturers and models, all the different files in a feature phone cannot be
represented in a single table—unless the table were hundreds of pages long. Some feature phones include
more than 4000 different files, most of which are system files, but a tremendous number of these files can
hold the “smoking gun.” The examiner could search manually through many of the files, but a better approach
is to use search terms to locate files that might not be represented by the parsed data extracted by the mobile
forensic solution.

To be successful at locating data within the plethora of files in the feature phone file system, the examiner
must first understand how to search the files. By using standard text strings and regular expressions, the
examiner will be able to locate and examine additional files within the file system (see Figure 12-6, for
example). The examiner will not only benefit from the data recovered, but he or she will gain a better
understanding regarding how the mobile forensic solution navigates the feature phone file system. Table 12-3
represents some common search strings that can be used to locate various items within a feature phone file

313

system.

TABLE 12-3 Possible Search Terms for Various Artifacts on Feature Phones

FIGURE 12-6 Using Physical Analyzer to search manually for an MMS message; notice the searched-for
string “smil”.

Dates and Times
Dates and times are important for most investigations, and sometimes dates need to be either verified or
located. The problem that arises with dates and times within a feature phone are the many different formats
available. Depending upon the device, the manufacturer, and even the version of the EFS, the date and time

314

format could be different. Table 12-4 lists the most common date and time types for both GSM and CDMA
feature phones along with the epoch that is referenced.

TABLE 12-4 Common Epoch Dates

The epoch is the reference point from which a date and time will start to display.

After a record is located and the examiner manually decodes a date and time, the examiner can look to the
table and decide the format. After doing this repeatedly, the examiner will find that decoding becomes easier
and will recognize a pattern. Feature phones generally follow a pattern, with the date and time at an offset
either from the start of the file or from some point within the combined string if multiple records are in a
single file. Table 12-5 lists the various date and time formats used by both GSM and CDMA feature phones
based upon manufacturer. Most of the date and time formats, along with the epoch, are self-explanatory. The
“AOL format,” as coined by forensic expert Paul Sanderson, is represented by 4 bytes, much like UNIX.
Various tools such as DCode and MFI HEX Assistant can help the examiner decode these dates independent
of the forensic solution if an embedded HEX interpreter is not included.

TABLE 12-5 Various Date and Time Examples from Feature Phones

The LG/Samsung format needs a little more explanation, because the 4-byte values must be converted to a
binary number and separated into year, month, day, hour, and minutes:

315

Figure 12-7 shows an actual SMS within an LG CDMA phone inbox.dat file with two dates and times
outlined. In this particular example, the date and time for the SMS is in Qualcomm BREW format (April 27,
2007 15:04) and BCD format (April 27, 2007 15:03:33), and for this type of file, the date and time are always
12 bytes from the start of the file using 0-based numbering. Once a format and the offsets are established,
parsers can be built to locate and interpret many of these date and time formats. Cellebrite Physical Analyzer,
as well as FTK and Oxygen Forensic Detective, enable the user to search for various formats within the binary
files, often converting these formats on the fly. However, the examiner should be aware of the various formats
that can be used within a feature phone’s file system.

FIGURE 12-7 An LG file system file from an inbox file; notice two dates and times within a single file,
which is indicative of sent and received times for many feature phone files.

Armed with this information, the examiner can not only verify that the automated tool parsed the data
correctly, but when information is located that was not automatically parsed, the examiner can manually
decode and present the data. Cellebrite Physical Analyzer decodes many different types of data automatically
for the user (see Figure 12-8). However, like all other mobile forensic tools, not all items are located and
decoded automatically. Using either Physical Analyzer or Oxygen Forensic Detective, the examiner can
highlight the represented date and time and properly convert that information using a built-in converter. This
data can then be bookmarked and recorded for review.

316

FIGURE 12-8 Using Cellebrite Physical Analyzer, the examiner can search for a string in several formats.

Text Formats
Feature phone mobile data can be difficult to decode. The use of the 7-bit GSM alphabet or UCS-2 (2-byte
Universal Character Set, often referred to as PDU, or Protocol Data Unit), use of Unicode, and formatting of
phone numbers can cause confusion while deciphering data from feature phones. This also means that data in
the mobile device file system cannot always be searched by using a string search.

For SMS messages in the PDU format, the data could be encoded in hexadecimal values, so the examiner
must search using a converted string. The string can be converted with a tool such as MFI HEX Assistant, or
the mobile forensic solution can automatically convert the string if the feature is supported. Figure 12-9 shows
7-bit data located from a search using MFI HEX Assistant.

FIGURE 12-9 The search term is entered and 7-bit is selected, which yields a result within the HEX viewer.

317

Another problem often encountered occurs when search strings are encoded as Unicode. Some mobile
devices store the data as ASCII but in Unicode, meaning 2 bytes for every character. This means, then, that a
standard string search for “dog” would not return a result simply because in the file system, the value is “d.o.g.”
Because “dog” has a secondary value, here represented by the dot, but actually x00, the search misses the
characters. Tools such as Physical Analyzer and FTK enable the user to specify that the search should be in
text and Unicode format, which would successfully locate the example term “dog.”

For phone numbers, the examiner must remember that numbers can be in reverse nibble (see Figure 12-
10) or BCD format. This is also referred to as the “GSM phone number format” by several mobile forensic
tools. Tools such as Physical Analyzer enable the examiner to specify the format (GSM phone number) of the
data to be searched when entering the phone number into the search box. The number can then be searched
in the various formats simultaneously, yielding better results.

FIGURE 12-10 Numbers can be stored differently, so searching for numbers in various formats is important.

Understanding that text-based data within a feature phone is stored in various formats will help the
examiner achieve better success when conducting a search for specific communication. The examiner will be
able to convert the string into a format to search both PDU (7-bit) alphabet and standard ASCII strings.

Deleted Data
Deleted data is often the most sought-after artifact within a feature phone file system. Deleted data can be
located only if the EFS has been extracted. If only a surface (“tip of the data iceberg”) collection has occurred,
the examiner will be unable to conduct a search for deleted file artifacts.

Feature phone deleted data is typically located outside of the formatted file system, and searches must be
conducted on the formatted NAND/NOR binary file. If only a file system is available, the recovery of
deleted artifacts on a CDMA or GSM feature phone is unlikely. There are some exceptions, however,
such as the Motorola V3 CDMA series, in which the msging folder can store deleted messages, so
searching should always be attempted.

BlackBerry Devices

318

In most situations, forensic examination of a BlackBerry device will involve the examination of a backup
produced by either the forensic software or the associated BlackBerry desktop software.

With the BlackBerry market share and minimal exposure in the forensic examiner case load recently, the
information in this chapter is presented as a historical education.

If using a mobile forensic solution, the examiner should recognize that many files within a BlackBerry
backup are not automatically parsed by the solution. Mobile forensic tools will import the backup file and
parse out the relevant database files into the user interface, often ignoring other files, either because they are
not supported or because the data could not be decoded. At this point, the examiner should be competent
enough to dive into some of the additional files that are located within the backup file, if needed.

A pre-BlackBerry 10 (BB10) device produces a set of database files contained within a single IPD or BBB
file, and BB10 devices produce only a BBB file. The difference between the BBB files produced with the
BlackBerry desktop software and those of the new BlackBerry Link software is encryption. BlackBerry Link
software backups are fully encrypted with credentials independent of any device password. The IPD or BBB
file should not be interpreted as the EFS as it existed exactly on the NAND flash within the BlackBerry. If
the examiner is assessing the data at a physical level, the information found within the logical backup file
should be correlated to what is seen at the flash level. In making this comparison, the examiner can use the
logical backup as an aid in locating, and sometimes decoding, the information within the physical binary
image.

BlackBerry desktop software prior to version 7.1x produced IPD files for Windows-created backups, and
BBB files were produced in Mac backups. With version 7.1x, only BBB files were produced for both
Windows and Mac. The difference between the IPD and BBB files involves how the files are constructed. An
IPD file is a single file containing numerous tables, representing a resource field and its associated data. The
first version of BBB used by the Mac was a compressed zip file that contained an IPD file. Windows, starting
with version 7.1x, used BBB files when creating backups. The BBB file was still a compressed file, but the
internal resources were now independent files with a .dat extension, a PkgInfo file, and a manifest file (see
Figure 12-11). The PkgInfo file contained the version of the BlackBerry Backup Format, and the manifest file
contained a listing of all .dat files in their corresponding resource files (see Figure 12-12).

319

FIGURE 12-11 The first BBB file that existed outside of a Mac backup included a Databases folder with .dat
files containing the user databases.

FIGURE 12-12 The manifest file contained the number of records along with the type of data within the .dat
file.

BlackBerry devices can also contain a microSD card that includes data such as application files,
documents, media, and chat logs.

BlackBerry “Tip of the Iceberg Data”
Automated logical parsing of a BlackBerry device prior to BB10 typically recovers more information than is
recovered from feature phones, including e-mail. Following is a list of the “tip of the iceberg” data recovered
from pre-BB10 devices:

320

Oxygen Forensics and Cellebrite documentation suggest including social media and non-BBM chat
application support as typical collection items.

This information is a subset of the available information that exists within the IPD or BBB file produced
by a pre-BB10 device. Additional recoverable data is available within the BlackBerry database, but the heavy
lifting required to uncover this material often makes it impractical to do so. In general, the material located in
the additional databases is deemed of minimal value considering the hours it would take to look through all
the records.

The BlackBerry device first brought e-mail to the mobile device.

BlackBerry Database Breakdown
The standard IPD file contains many records that correspond to the IPD and the first edition BBB file from a
Mac backup. The BBB files produced with a Mac are compressed files containing an IPD file (Databases.ipd)
and, if the media card is part of the backup, a second file called emmc.zip. Table 12-6 represents the
information as detailed by BlackBerry in its Knowledge Base article KB03974
(http://support.blackberry.com/kb/articleDetail?ArticleNumber=000003974). Using this list of databases
located within the IPD and BBB, the examiner can manually investigate some of the databases that have been
automatically parsed and also those that have not.

TABLE 12-6 Typical Database Files Located Within a BlackBerry IPD Backup

321

http://support.blackberry.com/kb/articleDetail?ArticleNumber=000003974

322

323

324

325

326

Using Rubus software (now deprecated) from CCL Forensics (cclgroupltd.com) or AccessData FTK, the
examiner can deconstruct the IPD file (see Figure 12-13). Once this file is deconstructed, the examiner can
locate the proper database and decode the underlying data.

327

http://cclgroupltd.com

FIGURE 12-13 IPD deconstruction in CCL Rubus

For Windows-produced BBB files from BlackBerry Desktop version 7, all the databases listed in Table
12-6 do not exist. The BBB file contains the manifest file that lays out the information within the .dat files.
The manifest (Figure 12-14) contains the version of BBDM (dtmversion), the device PIN (SourceDevice
PIN), and the databases that have been backed up into the BBB file. Each database listed in the manifest
provides the number of records in the file (recordcount) along with the database name. Each .dat file is its
own IPD file, which is evident by the file header of each .dat file, Inter@ctive Pager Backup. If a mobile
forensic solution does not allow the automated ability to parse one or any of the included .dat files, these files
can be manually interrogated to obtain user information. It is important for the examiner to look to the
manifest file to determine the data that actually exists within the BBB file. In doing so, he or she has a
reasonable expectation of what will and will not be recoverable with the automated software.

FIGURE 12-14 The .dat file header from a BBB file indicating the typical IPD header information

BlackBerry Data Formats and Data Types
As discussed, manual exploration is sometimes necessary—for example, when an automated tool fails to
retrieve the necessary data or to verify the validity of the parsed information. Before embarking on a manual
exploration, the examiner must be familiar with the various formats BlackBerry uses within the IPD and BBB
files. Much like the rest of mobile device forensics, various formats are used throughout the device backups;
they are listed in Table 12-7 with information gathered from the BlackBerry Developers’ Journal, Mike
McDonough’s IPD Parse (https://sites.google.com/site/ipdparse/home), and Yogesh Khatri’s Forensic Blog
(www.swiftforensics.com). Table 12-7 will be further examined and used in the “Manual Decoding” section

328

https://sites.google.com/site/ipdparse/home
http://www.swiftforensics.com

next.

TABLE 12-7 Data Formats Used for Manual Interpretation Within a BlackBerry Backup File

Manual Decoding
BlackBerry uses little-endian decoding throughout the IPD and version 2 BBB files but uses two epoch dates.
The UNIX epoch of January 1, 1970, is used as the basis for most databases within the BlackBerry backup
image, with the exception of Calendar and Tasks, which use January 1, 1900, and e-mail and PIN messages,
which use 1996 as an epoch year. The date and time fields for BlackBerry IPD files are not well documented.
A few can be found, but most work comes in to recognizing the various formats and using a tool such as the
MFI HEX Assistant or DCode to convert the dates and times. As mentioned, there can be a lot of heavy
lifting involved.

Many more databases are contained within the IPD and BBB, but using the information in this section
can help the examiner in identifying information within many databases not listed.

329

A better explanation of the dates and times for the data within Table 12-7 is covered next, including data
types with specific information and guidance on locating the date and time, along with how to convert the
information.

Rubus (since deprecated) from CCL Forensics and the MFI HEX Assistant were used for this section for
IPD files, and FTK and the MFI HEX Assistant were used for v2 BBB files. After loading the IPD or
BBB file into the solution of choice, the examiner can view the raw backup.

• Phone call logs In Rubus, the second field and the first byte indicate the type (missed-02, outgoing-01,
incoming-00), and the fourth field is the date and time (see Figure 12-15). This is an 8-byte value that,
when read as a little-endian value to obtain a 64-bit integer value, can be assessed as milliseconds from
1970/1/1.

FIGURE 12-15 Call log date and time in the fourth field and converted with the MFI HEX Assistant

The value A3BE990A37010000 in LE (little-endian) is 000001370A99BEA3. If this is input into the
scientific calculator as HEX and then converted to decimal, the value is 1335912677027. This value can
then be plugged into www.fileformat.info/tip/java/date2millis.htm and, upon conversion, the date is
displayed (see Figure 12-16).

FIGURE 12-16 Use www.fileformat.info on the Web to convert the HEX value into a readable date.

• Phone history In Rubus, the third field is the date and time field and the fourth field is of the type
exactly like Phone Call Logs. The 8-byte value can be converted just like phone call logs.

330

http://www.fileformat.info/tip/java/date2millis.htm
http://www.fileformat.info

• SMS messages In Rubus, the field labeled 11 and the first byte will indicate the direction of the SMS
(incoming-01 and outgoing-00), and the field labeled 16 will be the 8-byte date and time in the same
format as described for phone call logs.

• Calendar In Rubus, the data is located in the field labeled 10 (see Figure 12-17). There are three dates in
the Calendar (Start, End, and Reminder), and all dates use 4 bytes that must be converted to little-endian
to obtain an integer. The integer will represent the number of minutes from 1900/1/1.

FIGURE 12-17 Calendar date and time format within field 10 using Rubus

• Messages E-mail messages were examined within Rubus, and because there are many fields of interest in
messages, they are compiled in Table 12-8.

TABLE 12-8 E-mail Messages Decoded Using Rubus

331

The date and time method for converting the dates is rather intensive. The date and time is a 4-byte value:
the first 2 bytes represent the date and the second 2 bytes represent the time. To convert this date and time
to a Julian date, the examiner must take the 2 bytes into little-endian order: 81 1E becomes 1E 81, and
this value must then be converted into a binary number. The binary number 0001111 0100 00001 must be
divided up into the most significant (on the left) 7 bits—0001111 represents the days from 1996, the next
4 bits, 0100, represent the month (1–12), and the final 5 bits represent the day (1–31).

The binary values will be converted to a decimal number to obtain the decoded date. The binary number,
as presented, would be 0001111 = 15 (1996 + 15 = 2011), 0100 = 4 (April), 00001 = 1 (1). The date for
this message is April 1, 2011.

The time is broken down in much the same manner. Here the time is 18 06, and switching to little-endian
would be 06 18 and the binary representation is 00000 110000 11000.

To decode the time, the examiner, starting at the MSB, will take 5 bits that represent the hour, the next 6
bits that represent the minutes, and the remaining 5 bits that represent the seconds. Converting the binary
to decimal and understanding the time is GMT time using a 24-hour clock, the time is converted to
0:48:24 hours.

• PIN messages In Rubus, PIN messages are decoded much like messages, described previously. The
significant fields are described in Table 12-9, with the only significant difference being the unsent PIN
message represented by EB 00. The date and time location and format are identical to those of messages
and can be followed to decode the values in field 0.

TABLE 12-9 PIN Message Significant Field with Type and Format

• BlackBerry Messenger message logs BlackBerry Messenger has evolved over the many years BlackBerry
has been in existence. BlackBerry OS up to BB10 enables the user to store chat logs on the device or
media card if the user selects this feature in settings, but this setting is not the default. For BB10 devices,

332

the user turns on or off the chat history function. BBM chat logs are not backed up into the IPD or v1 and
v2 BBB files. However, the BBM contact list for devices up to BBM v7 are backed up and available within
the IPD/BBB (BlackBerry KB18406), and its format is referenced in Table 12-8, as decoded within
Rubus. BBM 7x contacts and settings are synched using the BlackBerry ID and are not stored within a
backup file (BlackBerry KB20554).

If the user has enabled the option to save BBM message logs, the logs can be recovered in CSV within the
content store on the device or on the external media card. The folder containing the BBM data is identified
on the device and external card at <home>im\BlackBerry Messenger\<Users PIN>. Within the <history>
folder are several CSV files that are uniquely named by the PIN of the user they were communicating with.
There is also a <backup> folder that contains the BBM contact list (.con) and backups of the contact list based
upon a date (.bak). The chat history .csv file contains the BBM conversation in the following order: date,
sender PIN, receiver PIN, message. The date is formatted rather bizarrely, with the first eight most significant
digits representing the year, month, and day, and the remaining digits representing the milliseconds from
1970/1/1 and in GMT. This information is shown in Figure 12-18 as parsed using AccessData MPE+ and
the pythonScripter.

FIGURE 12-18 MPE+ and pythonScripter output from running the BBM parsing script against a backup
file produced by a BlackBerry device

One the best free Python scripting tools available is PyScripter
(https://sourceforge.net/projects/pyscripter/) if you are working only in Windows, with Eric Python IDE
(http://eric-ide.python-projects.org) coming in second, simply because it is a cross-platform tool, albeit a
full development environment.

If a BBM chat logging service has not been set by the user, the examiner must attempt to obtain either a
non-invasive or an invasive physical collection of the device. With a physical collection, the device’s internal
system can then be examined, and BBM chat is accessible even if the user has not enabled the logging
function from the bbm.db file. The data formats along with the data that was previously stored (device and
owner information, contacts [.con/.bak], and chat) within the IPD/BBB and contact database are now
contained within the bbm.db file. Within some BlackBerry backup files, another database, BBM

333

https://sourceforge.net/projects/pyscripter/
http://eric-ide.python-projects.org

Conversations, can be located and used to enhance the search ability by the BlackBerry device. This database
location and file \BBM Conversations\conversations.csv is not included in every backup, and the company
that developed BlackBerry Backup Extractor, Reincubate, can parse the .csv file that is formatted much like
the .csv backup file as previously discussed. This software is still available (www.blackberryconverter.com/),
but it will parse only the legacy IPD files.

BlackBerry 10 File System
With BB10, many things drastically changed, starting with the operating system, which changed from the
BlackBerry Mobile OS (Java MicroEdition-J2ME) to the QNX Neutrino platform. The QNX Neutrino
platform is designed to run on several servers concurrently, with only 100,000 lines of code, compared to a
single large program such as Linux (9 million lines) or Windows (70 million lines). This is said to improve the
operability and reliability of the BlackBerry platform. Table 12-10 outlines the application working areas and
repositories an examiner should be familiar with when conducting analysis of BB10 device apps.

TABLE 12-10 BB10 App Working Directory Locations (from
https://developer.blackberry.com/native/documentation/cascades/device_platform/data_access/file_system.html

334

http://www.blackberryconverter.com/
https://developer.blackberry.com/native/documentation/cascades/device_platform/data_access/file_system.html

The examination of the BB10 device can occur at different levels. Currently the backup that is produced
for the BlackBerry PlayBook is different from the backup from the other BB10 devices. The BBB file from

335

the BlackBerry PlayBook is a compressed file that can be opened with 7-Zip or WinZip, and it contains the
same two files (covered previously) included with the v2 BBB (manifest and PkgInfo) file, but it also includes
three new tar files, app.tar, media.tar, and settings.tar, that are unencrypted QNX files (see Figure 12-19). All
BB10 devices produced after the BlackBerry PlayBook produce the same BBB files with a few exceptions.
The associated tar files are now encrypted with the BlackBerry ID and password, and the manifest file
contains the BlackBerry ID associated with each archive type, located in the perimeter type for the archive (for
example, Application [app], Media [media], and Settings [settings]). The BlackBerry PlayBook files are
unencrypted QNX files, while the rest of the BB10 devices have encrypted QNX files. If the examiner knows
the Link password, both Elcomsoft and Oxygen Forensic Analyst enable the backup to be imported and
produce an export that contains call logs, applications, phonebook (contacts), messages, and a file system
containing the decrypted app, settings, and media folders.

FIGURE 12-19 BBB file from a BlackBerry PlayBook, with the Archive folder instead of the Database
folder, as with previous BBB files

For BlackBerry backups (OS 7 and earlier) that are encrypted, Elcomsoft also enables the bypass of the
password using a brute-force attack of plain text passwords.

Here’s another option: If the password is known or the device is not locked, the examiner can plug the
BB10 device into a computer and mount the device as a drive. The BB10 will show two drives: One drive will
provide access to the internal memory of the BB10 device and anything on the shared path, including books,
camera, documents, downloads, Dropbox, miscellaneous music, photos, print, videos, and voice. The other
mounted network drive will be the removable storage that will duplicate some of the same folders observed on
the mounted internal storage area, but these folders contain unique data. The external SD card should be
analyzed for any deleted files using a forensic solution and a built-in file carving utility. This acquisition is

336

conducted using the Media Transfer Protocol (MTP) and was outlined in earlier chapters. This area does not
contain PIM data—only files and folders used by applications to store and share data. To obtain PIM data,
the examiner must access the logical or physical file system of the BB10 device.

A limited amount of user information is automatically parsed from the backup, even if the examiner is
using a forensic solution that can obtain the logical file system or a physical binary image. This means that a
lot of manual work is required with IPD and BBB files, but the rewards are worth the effort. With BB10
devices, an incredible amount of information is available to the examiner. These file systems now contain apps
with a wealth of information within the SQLite databases. SQLite databases will be covered in Chapter 14,
but Table 12-11 represents great locations for finding valuable data within the BB10 device. (This table is not
an all-inclusive list, and some areas are not covered here because they were included in Table 12-10.) For date
and time artifacts, the time is stored in milliseconds, from 1970/1/1, as is the case with IPD and BBB files.

TABLE 12-11 Artifact Locations for BB10 File System Examinations

337

With a logical file system extraction, the examiner will find user data of value in the settings.tar file, as
observed in Figure 12-19. App storage data is located in /accounts/1000/appdata/ in the settings.tar file. In a
physical collection, the /accounts/1000/appdata folder is located under root, as shown in Figure 12-20. The
actual app code will be located in the app file in a logical extraction and in the app folder in a physical
collection. The examiner can scan the app code for malware or viruses if needed to verify that no malicious
apps were installed.

338

FIGURE 12-20 File system view of the BB10 device from within FTK

There are many similarities between the files found in a BB10 file system and files found in both iOS and
Android devices. Figure 12-21 shows a SQLite database, common to both iOS and Android. The
investigation into the file types is covered in greater detail in Chapter 14. As a matter of history of the
BlackBerry device and company is the fact that the company stopped manufacturing mobile devices and
outsourced the hardware in 2016. A year later, BlackBerry was using Android as the underlying OS
within the Priv, and then the KEYone device. Processing of a BlackBerry device has simply been
relegated to processing an Android device and its known file system.

FIGURE 12-21 Navigation into the file system to uncover SQLite databases within the sys.browser
application subfolders

Windows Phone
Windows Phones are used far less than both Android and iOS devices, but they do make their way into
mobile forensic labs across the globe once in a while. Mobile forensic solutions and an automated feature set
to obtain the PIM data are limited, if not nonexistent. To access these devices, the examiner must be able to
access the internal file system of the device beyond the MTP data that mobile forensic solutions currently
offer.

Windows Phone “Tip of the Iceberg Data”
When the Windows Phone 7 device is not locked, two logical file systems are available to the examiner—the

339

internal storage area and the external media, if inserted. Forensic tools use MTP to obtain the file system,
which is then brought into the mobile forensic solution. Some user files are stored on the media area,
including documents, images, video, and audio. Some PIM data, such as the phonebook, is supported, but if
the examiner is looking for messages, call logs, or other user data, access to a backup of a Windows Phone 7
or SkyDrive (now OneDrive) is necessary. However, when a file system is obtained, several Python scripts and
EnCase EnScript programs can be run against the Windows Phone file system to gather “tip of the iceberg
data.” Much like Windows Phone 7, 8, and 8.1, current solutions for Windows 10 Mobile will use MTP for
onboard data from the media area, and other data will need to be recovered from the user’s cloud account for
the Windows device. As covered in Chapter 10, data for the Windows 10 Mobile device is limited if access to
the file system cannot be made.

Windows Phone File System
A forensic examination of a Windows Phone should include the internal file system. Currently, to access
valuable user information, the examiner must obtain a physical image, either by non-invasive or invasive
methods. Most examiners use JTAG methods for the Windows Phone because JTAG offers a non-invasive
method of access to the device without requiring complete disassembly, and many Windows Phone models
are supported. A Windows Phone 7 device, depending on the OS version, can be collected with tools such as
TouchXperience and Una to obtain a file system–level extraction and registry dump. For Windows Phone 8
devices, most examiners rely on JTAG, but Cellebrite tools currently enable the examiner to ascertain a binary
image of select Windows Phone 8 devices as well.

After the images are obtained from the Windows Phone, the examination is much like the BlackBerry
examination—extremely labor intensive. Instead of a QNX EFS, the underlying file system is NTFS. For
computer forensic examiners, forensic tools that handle Windows Phone file systems more efficiently (such as
EnCase, FTK, or X-Ways) can be used.

Because Windows Phone 7 devices were discontinued and all support by Microsoft was stopped in
October 2014 in favor of Windows Phone 8 devices, limited references to Windows Phone 7 is made here,
but several tables list important areas for investigation. The file system and artifact locations are different from
those of the current Windows Phone 8 device file system, but they resemble those of the standard Windows
desktop file system. Most of the Windows Phone discussion here is devoted to the Windows Phone 8. In late
2015, Microsoft wanted to move to a “cross-platform” solution, in which data from computers and mobile
devices kept in constant synch; enter Windows 10 devices. Again, much like BlackBerry devices, the market
share and the likelihood that the examiner will encounter this device are almost nonexistent. As a result, most
commercial tools do not spend development cycles on supporting older Windows phones. That being said,
the Windows 10 device will be discussed minimally within the chapter.

Windows Phone 7
The Windows Phone 7 file system resembles the Windows desktop system, with locations for applications,
documents, and the operating system files, as outlined in Table 12-12.

TABLE 12-12 Evidence Folders in Root of Windows Phone 7 File System

340

Obtaining common user data from a Windows Phone 7 device can also be accomplished by navigating to
the device file system. Table 12-13 lists some common locations for various data, and some of the files, such
as store.vol, are used within the Windows Phone 8 device and are explained in detail in the following sections.

TABLE 12-13 Common Artifact Locations Within Windows Phone 7 Device

341

342

Most of the file types and formats carried over to the Windows Phone 8, but the path to the file(s)
changed. As outlined on the XDA forum (http://forum.xda-developers.com/showthread.php?t=1072796), the
store.vol file can be parsed, but the file must be renamed while it’s stored on the device because the device
operating system continuously has ownership of the file. If the device image is obtained via JTAG or another
physical collection, this, of course, would not be the case. The renaming of the store.vol, in an effort to collect
and examine data, would be necessary only if the examiner were connecting to the device live, via USB, and
navigating the file system with Explorer.

Additional information in the store.vol file and other files located within the Windows Phone 7 file system
is covered in greater detail in the next section.

Windows Phone 8
To help mitigate the deep dive into the Windows Phone 8 file system, Python scripts composed by Adrian
Leong are available (through GitHub at https://github.com/cheeky4n6monkey/4n6-scripts) to help the
examiner with the recovery of contacts, call logs, and SMS. These scripts can be run in PyScripter, Physical
Analyzer, and XRY, to name a few, but the examiner must understand that the scripts are written to be output
to a .csv file. If the mobile solution enables the running of Python scripts, the examiner must make sure that
the output conforms to the solution, since the output can always be tweaked to fit the examiner’s needs. Also,
EnCase has an EnScript that was created from Leong’s Python scripts at http://encase-forensic-
blog.guidancesoftware.com/2014/10/encase-and-python-automating-windows.html. Having a file system
accessible, as shown in Figure 12-22, will enable an examiner to utilize these powerful parsing scripts.

343

http://forum.xda-developers.com/showthread.php?t=1072796
https://github.com/cheeky4n6monkey/4n6-scripts
http://encase-forensic-blog.guidancesoftware.com/2014/10/encase-and-python-automating-windows.html

FIGURE 12-22 Internal file system of a Windows Phone 8 device displayed in FTK

Table 12-14 outlines the file layout of the Windows Phone 8 data drive, and Table 12-15 shows the
various evidence locations within the Windows Phone 8 file system. This is not an exhaustive list, but a
starting point for the advanced analysis of the Windows Phone 8 file system.

TABLE 12-14 Main File Layout for Windows Phone 8 Within the Data Partition

Windows Phone stores the majority of user data in an Extensible Storage Engine (ESE) database(s). ESE
is a sequential storage technology developed by Microsoft that is remarkably different from other storage
methods found on any of today’s mobile devices. These storage databases contain numerous tables similar to
other built-in databases with records and tables (see Figure 12-23). The database allows multiple pieces of
transactional data, seemingly unrelated, to be stored in a single repository. A perfect example within the
Windows Phone is the store.vol file. This file is located at
\Users\WPCOMMSSERVICES\APPDATA\Local\Unistore (see Figure 12-24) and holds transactional
data for contacts, messages, activity, conversations, appointments, and others. This method of data storage
makes locating key information easy, as long as the information can be viewed. Using applications such as
FTK and EnCase, the examiner can view the ESE files and the data contained within them.

344

FIGURE 12-23 ESE database structure with the root node on the top

FIGURE 12-24 The store.vol ESE contains a wealth of information for an examiner.

The data for installed apps is located in various subfolders and can be stored in SQLite databases, JSON,
XML, and other file types. App data on a Windows Phone can be stored in several locations in the device file
system, depending on the way the app was designed to store and share data. Two locations for data storage
reside at Users\DefApps\APPDATA\. Microsoft Phone built-in apps such as Facebook and Skype are
located in a subfolder at \APPDATA\Local, prefixed with Microsoft. Within the \APPDATA\Local folder
are also some of the app GUIDs that were located in the root Users\DefApps\APPDATA. Each of the
\APPDATA\Local apps includes a subfolder called AC (Application Cache), which contains certificate and
crypto key information for any of the apps found in the root of the User\DefApps\APPDATA folder and
identified with a GUID. However, some of the apps, such as the Microsoft apps, contain additional folders
that pertain to Internet usage. Microsoft added the ability for each app to have its own Internet artifacts,
which include its own cache, cookies, and history. These folders are called INetCache (Internet cache),
INetCookies (Internet cookies), and INetHistory (Internet history). These are extremely important, especially
the INetCache folder, which can store valuable chat messages when the application uses a web interface;
Windows Phone devices cache these conversations in this folder. Also within the app folder system is the
Local folder, which contains any data the app wants to persist across restarts, including databases files, settings
files, and more. This folder can be found in the app folders in both the DefApps\APPDATA\ and the
DefApps\APPDATA\Local folder and can contain valuable evidence.

Many of the app names are GUIDs—the unique identifiers for the product that are declared in the app’s
WMAppManifest.xml (shown in Figure 12-25). The name of the app can be matched with the GUID by

345

locating the WMAppManifest.xml file located in the \PROGRAMS\<Product GUID>\Install folder. The
GUID is much like the naming convention observed in an iTunes backup, and the examiner can obtain
additional information along with the actual working name of the application using that file path.

FIGURE 12-25 Applications have app manifest files that can reveal a lot about an installed application. This
example shows a manifest file from TextNow, a popular chatting app.

Another location in which apps may store data, but which is not recommended by Microsoft, is within the
\SharedData path. WhatsApp, for example, stores backup information within the
\SharedData\OEM\Public\WhatsApp\Backup path, and a complete backup of the messages and contacts can
be recovered from the SQLite database. Also within the \SharedData\Comms folder is both a messaging and
unistore folder, among other communication type apps. The unistore folder stores transient data from the
store.vol ESE database that is shared among other apps or device functions. The messaging folder contains
transient MMS files that are also available to other apps or device functions because of their location within
the \SharedData folder. The \SharedData folder can be a good source for evidentiary data, because data
deleted within an application can be retained in the \SharedData folder. Much like a Windows computer, the
Windows Phone also contains a registry. In Figure 12-26, the examiner has full access to the familiar
TypedURLs registry key within the Windows Phone Registry.

FIGURE 12-26 Even Windows Phone registry files are accessible.

An examiner must be prepared to analyze the Windows Phone file system in its entirety. Microsoft will
continue to advance the device operating system, so continual updating of the various locations of artifacts will
be necessary to recover the maximum amount of evidence. As with the BB10 device, an examiner must be
diligent and recognize that the examination of these devices is time consuming, but the results can be
fantastic.

Windows 10 Phone

346

As mentioned at the start of the Windows device section, I will not devote a lot of time to the Windows 10
device simply because of the current demand by examiners and the community support by tools. The update
to the Windows 10 Mobile OS occurred in early 2015 and was an update to the Lumia line to include the
635, 730, and 830. Currently, all modern versions of the Lumia line support Windows 10, and almost all
devices above 512MB will now support Windows 10 so long as they are moving from Windows 8 and 8.1.

The Microsoft Knowledge Base article (KB4090912), published in March 2018, outlines the current
update and build information along with information on previous builds. However, how about the underlying
file system? Information gathered on the layout of the file system shows that the main storage format is still
the ESE database like previous versions of the Windows Phone OS. More importantly, the artifact table for
Windows Phone 8/8.1 (Table 12-15) is still consistent for the Windows 10 device. The main storage point
for PIM data will reside in the store.vol ESE database. Getting at the data is still an issue.

TABLE 12-15 Compiled and Known Locations for Critical User Data Within a Windows Phone 8

347

348

If encryption has not been enabled on the device, the examiner can perform a chip-off and conduct
decoding and analysis using Oxygen Forensic Detective and Cellebrite. Manual examination and validation of
the ESE database files can be conducted using NirSoft ESEDatabaseView application
(www.nirsoft.net/utils/ese_database_view.html). However, the Windows 10 device can be rooted as long as
the device is unlocked and a complete raw file system exposed using tools from Windows Phone Internals
(https://wpinternals.net).

As with an Android device, the Windows Phone Internals site will allow users to obtain root access,
unlock bootloaders, and install custom ROMs. Note that the site creator and author state using the tools can
have adverse effects on the device, however, to include the BSOD (Blue Screen of Death) common to many
Microsoft products and the resetting of data. Use the tools with caution. Figure 12-27 shows the data
partition of a Windows 10 device running 10.0.14393.0.

FIGURE 12-27 Data partition in AccessData FTK Imager after raw extraction using Windows device
internals

One interesting change to the Windows 10 device versus previous versions is the addition of an “x,” which
is assumed to denote ten (10), to many of the internal filenames. The manifest files of previous apps within
Windows devices had been named WMAppManifest.xml and are now simply AppxManifest.xml files. This
naming convention of files and folders remains the only observed change to the artifacts as outlined earlier for

349

http://www.nirsoft.net/utils/ese_database_view.html
https://wpinternals.net

Windows Phone 8 devices. Again, with the limited number of Windows devices currently entering the
forensic lab, the next addition of this book will likely not include an update of these devices.

Chapter Summary
No longer can an examiner rely on “tip of the iceberg data” when conducting an investigation. Even feature
phones contain valuable data outside of the normal PIM data. Nevertheless, many examiners believe that data
collected using an automated tool includes all the available data, even if the entire file system is extracted!
After looking into the file system, however, most examiners learn that there is life outside of automation when
conducting mobile device collections. The examiner must not only recognize that additional data can be
recovered, but he or she must also be prepared to interpret the information as a software application would. By
understanding the various formats and locations, an examiner can determine whether a deeper analysis of the
mobile device file system should be considered. Armed with knowledge of the various formats of data for
feature phones, UICC, BlackBerry, and Windows Phone devices, the examiner will be prepared to conduct a
thorough file system examination.

BlackBerry 10 and Windows devices present new challenges to the mobile forensic community. The
collection of their file systems is extremely challenging, and when the internal files and folder structure have
never been documented, every examination becomes a research and development exercise. The information
contained in this chapter for BlackBerry and Windows devices will most likely be the last update of these two
dying mobile platforms and will not be included in the next version of the book. BlackBerry has already
stopped producing devices and changed its OS to Android, and Microsoft has hinted that its mobile platform
will remain but will technically be a mirror of the full desktop OS version. As always, the tables provided in
this chapter are starting points in an examiner’s journey to uncover even more information from these devices.

As an examiner continues to grow in understanding that the analysis of a mobile device file system is not
only for automated tools, the more discoveries within the BlackBerry and Windows file systems will be made,
even if the technology is not as prevalent as other mobile operating systems. Hopefully, by using the tables
and figures in this chapter, the examiner will be able to start off quickly, showing immediate results for any
investigation or case.

350

I
13 Advanced iOS Analysis

n 2017, the International Data Corporation (IDC) reported that although Android and iOS mobile
devices dominated the mobile market worldwide, it was the first year a decline (of 0.7 percent) in

shipments was observed. In 2018, Android consistently has been leading, with an 84.8 percent share, with
Apple at 15.1 percent (www.idc.com/promo/smartphone-market-share/os). That leaves little doubt that these
two types of devices also dominate the workload of most mobile device forensic examiners. This chapter deals
specifically with the examination of the iOS file system structure, which is available with a simple logical
extraction or via a backup import created with iTunes.

Automated tools can be used to extract a lot of “tip of the iceberg” iOS device data, which satisfies many
investigators. However, considering the total number of files that are available for examination on an iOS
device, the number of files analyzed and presented using an automated tool pales in comparison to the number
that can be viewed using a logical extraction. The problem lies with the examiner who believes in the “what
they see is what they get” theory, who is satisfied with a report created by clicking Print at the end of an
automated extraction. However, an iOS device is like no other smart device regarding how data is backed up,
and using a simple logical extraction will include more information, such as critical databases, settings, and
property lists in the backup—and this type of data is digital gold to the examiner.

Examining actual binary files from which the user data was parsed, along with additional files not
traversed by an automated tool, offers the examiner the opportunity to perform a deep analysis of the iOS
device’s file system. This can include hashing and comparisons, verification and validation, and manual
decoding and file carving—to name a few of the possibilities. By having the entire file system available, the
examiner can perform a thorough examination without needing to conduct a non-invasive or an invasive
physical extraction. This chapter outlines the critical file structures and formats that make up the meat of the
iOS file system. The goal of this chapter is to encourage the examiner to move away from wholeheartedly
trusting an automated tool to conducting an iOS mobile device examination.

With today’s iOS devices containing A5 and later chipsets, a non-jailbroken physical bit-by-bit collection
using a USB is impossible, so a logical file system collection is the only available method. Because of this
physical collection limitation, it is critical that the examiner conduct a logical file system extraction for all
iOS mobile devices. Some sources report that a physical collection can be obtained using tools such as
Elcomsoft iOS Forensic Toolkit, GrayKey by Grayshift, or Cellebrite’s professional services CAIS
program, but this is not entirely accurate. These tools cannot be used to perform a physical partition
collection as they can with A4 chipsets; they simply enable collecting a jailbroken device’s internal file
system. Once the device is in a state in which a raw file system can be collected, most commercial tools,
including UFED Touch 2, Oxygen Forensic Detective, and XRY, can collect the file system and artifacts.

This chapter will not discuss the hardware configurations for Apple devices, because many other
publications provide information regarding the hardware and internal software versions. By referring to the

351

http://www.idc.com/promo/smartphone-market-share/os

Apple Developer web site (https://developer.apple.com/), an examiner can consult the iOS Device
Compatibility Reference page to obtain critical information on the internal components and devices. Table
13-1 shows links to detailed technical specs for various iOS devices.

TABLE 13-1 Apple Support Technical Specification Links

This chapter will focus on how the examiner can identify the variety of evidence located within the iOS
file system, including data that can be used immediately in an investigation and information that will lend
credibility to the processes used by automated tools. This information will help the examiner better
understand how the extraction processes work and will provide information regarding documenting the
procedure if the information is needed in court proceedings. The examiner will gain a better working
understanding of the iOS device and a greater understanding of how to uncover and process the wealth of
information contained within the iOS device file system.

The iOS File System
Apple mobile devices share some of the OS X foundation, but they also use a different framework, which
means OS X applications will not run on iOS. Both are based on the UNIX file system, and although the
structures of the file systems are similar between iOS and OS X, there are differences in the way each stores
apps and user data. In an iOS mobile device, apps interact with the file system. The interactions are limited
(“sandboxed”) by design, so each has a container or a number of containers with specific roles (containers
include the App Bundle, App Storage, and iCloud Data, as shown in Figure 13-1). iOS and OS X devices
both use a type of hierarchical file system (HFS) prior to iOS 10.3 and High Sierra, respectively. An iOS
device uses HFSX/HFS+ (Mac OS Extended), and OS X computers use HFS+. Apple indicates that the only
difference between HFS+ and HFSX is that the latter contains case-sensitive filenames, which is commonly
observed in iOS devices. However, in March 2017, iOS 10.3 received the update to Apple File System
(APFS), and in September 2017, the macOS was also moved to APFS. Apple’s sandboxing remains
consistent, and Figure 13-1 is still relevant to the app layout, storage, and communication in APFS.

352

https://developer.apple.com/

FIGURE 13-1 The containers of the iOS sandbox

As a course on iOS history for devices prior to iOS 10.3, mobile forensic tools conducted non-invasive
physical collections of iPhone devices, and these solutions had to interpret the predicted binary HFS/HFSX
file system. Early on, the forensic tools could interpret HFS+ file systems, but when the forensic tools looked
for the telltale H+ around the 0x400 offset of the disk image, the process failed. Because the HFS/HFSX file
system contains HX (Figure 13-2), the examiner had to change the X to a + in order for common computer
forensic tools to mount the file system properly. The software would also have to negotiate and rebuild the file
system from the raw disk image. As a result, to display and mount the directory structure properly, the
solutions had to interpret the correct block size during collection and later decoding, which progresses in sizes
of 512 bytes (for example, 4096, 8192). If the block size was not interpreted, the directory structure could not
be properly formatted—which of course meant the examiner couldn’t work with the file system. With today’s
tools, however, this is no longer an issue, because they all interpret the file system correctly and structure and
display it properly to the examiner.

FIGURE 13-2 The HX marker is highlighted, indicating the HFS/HFSX format; the X had to be changed to
a + during the early years of examining iPhones.

Devices prior to those containing the A5 chip could undergo a non-invasive collection of the entire raw

353

disk. This collection would yield both the system and user partitions within the iOS device. These partitions
were much like the standard hard drive, with a directory structure, file slack, and unallocated areas. The
unallocated space, or free area, within the iOS partition was a gold mine for deleted media, including images
and videos. Granted, the videos had to be stitched back together because they were stored as separate image
files, but recovering data from the unallocated space was still a dream come true with iOS devices, as shown in
Figure 13-3.

FIGURE 13-3 An iPhone raw disk image with unencrypted unallocated space containing many deleted files

This all ended with iOS 5, however, when Apple changed the way data was encrypted on disk along with
data protection class keys and a file system key. With iOS 5, examiners and software developers alike were
required to obtain the keybag and keys to decrypt the extracted user partition at the file level based upon file
permissions to rebuild and ultimately analyze the extracted partition. Software vendors that had previously
supported a non-physical collection of iOS devices quickly created modified versions of Jean Sigwald’s code
(https://code.google.com/p/iphone-dataprotection) that was in the wild. Soon user data was again visible to
the examiner, but unfortunately the key needed for unallocated space was not available. As a result, when the
unallocated space was extracted, it remained encrypted. The files are encrypted at the file level, and without
having a valid file path and key and data protection key, the files cannot be decrypted.

Since then, new techniques have provided some benefits. For example, an article presented by Aaron
Burghardt and Adam J. Feldman in 2008 (www.dfrws.org/2008/proceedings/p76-burghardt.pdf) discussed
using the journal file within a macOS partition to locate and identify catalog file entries for deleted files, with
limited results. This technique was extended by Jean-Baptiste Bédrune and Jean Sigwald within the iphone-
dataprotection code on the google.com code repository using a Python script for iOS devices. As indicated by
Sigwald, and also from personal experience, the journal file is extremely small, and only a small number of files
can be recovered. To this day, this limitation means that the unallocated space is generally safe from an
examiner’s data carving tools.

354

https://code.google.com/p/iphone-dataprotection
http://www.dfrws.org/2008/proceedings/p76-burghardt.pdf
http://google.com

When devices containing the A5 chip (iPad 2 was first, followed by the iPhone 4S) first hit the market,
examiners realized they had a problem. Placing the devices into Device Firmware Update (DFU) mode still
worked, but every attempt to use the same function with an automated tool no longer allowed for a collection.
The iOS device, while still in DFU mode, did not accept the custom RAM disk, and examiners were blocked
from acquiring the iOS device using this non-invasive physical technique. Although devices without the
dreaded A5 chip were still being sold and updated, forensic software vendors continually had to explain to
their customers that a non-invasive approach was not possible unless the device was jailbroken. This dashed
the hopes and dreams of a lot of examiners, for now they thought all had been lost: the iOS device—the most
widely sold mobile device at that time—was inaccessible to a forensic examiner. This mentality stormed
through the community, and it is still a belief held by many examiners. However, this is not always the case,
even with the devices of today running iOS 11 and the A11 chip along with the new APFS.

It was in iOS 4 that Apple introduced a feature that enables the user to encrypt the backup produced by
iTunes within the application’s settings. This setting had to be initiated within iTunes by the user checking
the box to encrypt the iOS device backup and then entering a password for the backup and subsequent restore
of that device. (To date, Apple has not made it mandatory to set a backup password in iTunes.) This
password would be used to encrypt the backup, instead of using the hardware key of the iOS device. Using
this method, the iTunes backup password is stored within the iOS device keychain database, and the
BackupKeyBag is encrypted with the backup password and in the Manifest.plist. Because the BackupKeyBag
is accessible within the backup, it is possible to decrypt the backup without involving the iOS device itself.

The encryption of the backup processes poses a problem to the mobile forensic examiner on several fronts.
One, the encryption of the backup is not a setting that a user can set or disable on the actual iOS device, so an
examiner cannot turn off the encryption on the device itself. Two, this setting is not on by default, but if a
user checked the box and secured the backup with a password, the connected iOS device would then produce
an encrypted backup when the Apple Mobile Backup service was initiated. This second condition posed
another problem for the mobile forensic community when dealing with iOS devices. Because mobile forensic
tools used the Apple Mobile Backup service to initiate a backup to the forensic computer, an encrypted
backup was of no use. This roadblock was averted by Sigwald, who produced open source code that effectively
decrypted the backup with the known password, again putting mobile forensic solutions back in business—so
long as the examiner had the iTunes password that was used by the device owner. With that password, the
mobile forensic solution would decrypt the backup and analyze the user’s data. There was still a potential
problem, however: What if the examiner did not know the iTunes password or the owner would not give it
up? Commercial tools from Oxygen Forensics, Inc., Cellebrite, and Elcomsoft have the ability to “attack” the
BackupKeyBag that is used to encrypt the backup to uncover the password. Also, instructions on attacking the
Manifest.plist file using hashcat is available (http://irq5.io/2017/03/07/cracking-itunes-backup-passwords-
with-hashcat/) and is currently used by many forensic examiners around the world with great success. This
version of hashcat currently lists support for iTunes backups up to the current version, iOS 11x. In both the
commercial tools and open source solutions, once the password is discovered, it can be used to decrypt the
backup that was previously extracted.

355

http://irq5.io/2017/03/07/cracking-itunes-backup-passwords-with-hashcat/

As noted by Apple, additional data not typically contained in a standard backup is included in an
encrypted backup, including keychain, health data, and browsing history. Some commercial tools, such as
Oxygen Forensic Detective, will force a backup to be encrypted when it is determined to have not been
enabled by the device owner. This is a feature to uncover and include this valuable data to the forensic
tool.

The inability of the examiner to conduct a proper collection of an Apple device if backup encryption was
turned on was once a serious threat to forensic examinations, and still poses issues if proper tools are not
available. The Apple hacking community had the same problem, so they trudged on in an effort to discover
other methods of accessing an iOS device. Several groups began to publish open source tools that would allow
not only a backup of the iOS device using iTunes, but also using the Apple File Connection (AFC) protocol
used by iTunes to move files on and off and for device-level communication. Because iTunes is given access
only to specific portions of the device (jailed environment), AFC is limited to the media area only. However, a
jailbroken device, as the community discovered, can have all files available using the AFC protocol/backup
service. The service was altered and installed to a jailbroken device and AFC2 was born, which enabled access
to the complete file system of the iOS device.

This method was not observed by the forensic community as viable, however, because of the implications
often imposed by a jailbreak. But further research into the mobile device soon brought to light additional
services such as com.apple.mobile.house_arrest and com.apple.mobile.file_relay. These services, primarily the
file_relay service, had been developed by Apple as an internal testing mechanism for file transfer, but they had
been a part of libimobiledevice code since 2009. This was not just any file transfer, but the transfer of user
data–laden files, without the need for an iTunes connection. The type of data depends on the iOS version, but
an iTunes backup was not invoked, and since Apple Mobile Backup was not initiated, the backup encryption
was not triggered and any data transferred from the device would not be encrypted.

The house_arrest service enables access to the application folder and its contents. Mobile forensic solutions
jumped on this new ability and began to incorporate this feature into their products. Examiners could then
conduct a mobile device forensic exam on an iOS device even if the iTunes password was not known.
Examiners were able to extract personal information manager (PIM) data and app data from these devices in a
fully decrypted format. Mobile forensic vendors were back in business. Then, in 2015, an ex-employee of a
mobile forensic company “outed” Apple on this “security flaw” and published how forensic companies were
exploiting this “backdoor” and exposing customers’ personal data. This self-serving revelation of a function
already known by many researchers, and not new information by any stretch, effectively closed the door for
law enforcement, enterprise, and corporate investigators if the file_relay service was going to be used to
recover user data. Apple then released iOS 8, closing the door on the retrieval of PIM user data by any means
other than using the built-in Mobile Backup function and limited the additional services. All iOS devices
preceding OS version 8 still allow for connections to the house_arrest and file_relay services even if the iTunes
password is not known. (Note that this self-serving individual later went to work for Apple as a researcher,
most likely testing the capabilities of many of the forensic tools.)

356

A mobile forensic software solution must use the file_relay service to achieve a more robust file system
collection, and not all mobile forensic software has this ability. The examiner should check with the
software vendor before assuming that the software is capable of this function. UFED Physical Analyzer
and Oxygen Forensic Detective both support this feature.

The logical collection of an iOS device without access to the additional services still contains an
extraordinary amount of information. Examiners must be diligent in the recovery and discovery of the many
files available within the iOS file system, as shown in Figure 13-4.

FIGURE 13-4 iOS logical file system view of iOS 8 and 11; many files and folders are still available for an
examiner to analyze.

iOS “Tip of the Iceberg Data”
The type of data collected by mobile forensic solutions from an iOS device is comparable to that collected on
the majority of devices. There are, of course, small exceptions among solutions, but the collected data listed in
Table 13-2, if available on the device, is always a part of a mobile forensic collection, barring a locked device,
encrypted backup, or other impedance. The information in Table 13-2 can be used to identify the type of data
and where the physical files are located so that further investigation can be conducted within the extracted file

357

system when needed. Further investigation into the database files and other associated files can uncover
usernames, passwords, and even deleted data.

TABLE 13-2 “Tip of the Iceberg Data” Commonly Collected by Automated Tools

Table 13-2 contains only surface-level data; a wealth of additional data is contained within the file system.
The next section discusses the file system arrangement, with major file and folder locations in a typical iOS
file system.

With the introduction of iOS 8, devices that contained migrated data from iOS 7 have two database files
in two different locations: the call_history.db for iOS 7 is stored at private/var/wireless/CallHistory, and
CallHistory.storedata for iOS 8x is at mobile/Library/CallHistoryDB. Examiners should be aware that
some tools do not obtain both databases. The call_history.db can contain historical calls before migration
of the data and some duplicated calls also found in the iOS 8 CallHistory.storedata database. Because of

358

this, the examiner should complete a manual inspection of these databases.

File System Structure
An iOS file system obtained by both open source and commercial mobile forensic tools relies primarily on the
Apple Mobile Backup function. Because of this, the output by tools and interpretation of the file system are
similar across the board. The files and folders have changed from the introduction of iOS 10, as shown in
Figure 13-5. Commercial tools use the manifest.plist to obtain the file system structure and build the structure
and display within the file system view of the tool. Also, within the manifest.db file, which is a SQLite
database, the domain and path information can be obtained for the built-in apps for iOS devices. Note that
most tools do not show the “true” path as documented in the plist file. For example, the true path for a third-
party application would be /var/containers/Bundle/Application/, but commercial tools place the applications
in /var/mobile/Application within the file browser view. Development teams explain that this is due to the
legacy parsing across versions of iOS, and changing the path could break the way data is parsed.

FIGURE 13-5 The iOS Backup format was changed at iOS 10 to include a manifest.db and folders
containing the backed-up bundles.

This section represents the major “landmarks” that an examiner may see within the collected files and
folders, along with some additional folders that might be discovered if the file_relay and house_arrest
functions are used by the forensic software solution. This function was utilized prior to iOS 8 and has
resurfaced with the use of a jailbreak or tools such as Grayshift’s GrayKey device.

App Data
Figure 13-1 showed the sandbox concept and partitions. This storage method helps the examiner realize that
valuable app data is contained within the Documents, Library, and Temp folders within the App Storage area.
Table 13-3 outlines evidence locations based on the storage of user data and app data. These folders are stored
directly under the main application folder within the iOS device file system. The application folder for iOS is
located at /private/var/mobile/Applications, and the folder for iOS 8x is at
/private/var/mobile/Containers/Data/Application. This path is consistent up to iOS 11 as well, but as
discussed previously, a commercial tool will modify the true path to conform to parsers. Table 13-3 can help
steer the examiner to the most likely location for digital artifacts within the application folders. Note that the
application name within a raw iOS file system is a globally unique identifier (GUID), known as a BundleID,

359

and that the GUID can change upon application updates; the examiner should not rely on the GUID to
identify a specific application. Most mobile forensic software titles will translate the GUID to the bundle
identifier if the manifest is used and available.

TABLE 13-3 Major Landmarks Within the App File and Folder Structure Important for an Investigator

Apple development documentation insists that developers use the reverse DNS format for apps: the web
site extension (.com, .net, .tv, .info, .co.uk, and so on), followed by the web site name, ending with the
application name (such as com.oxygen.oxyagent). Tying an application to its bundle identifier is often as

360

easy as looking into the manifest property list in the backup that has been created.

The Documents folder within the app file system structure contains, as mentioned in Table 13-3, the user-
facing data, which is available to the user via the app. Here the examiner will find SQLite databases the app
developer used for persistence, along with folders containing stored files. The Documents folder and its
subdirectories store data that the user of the device can add, delete, and alter via the app. It can also contain
additional custom folders for the storage of images, configuration settings, and SQLite files. The storage file
for the app does not have to be a SQLite database and can be proprietary binary files whose format depends
on the app developer’s preference for storage, but the method must conform to the Apple SDK. The
Documents folder can also contain property lists, XML, text files, and more. Analysis of custom binary files,
text files, or property lists may involve building a custom parser, since most mobile forensic solutions cannot
account for every file type within an iOS system. The examiner should understand as well that there are
limitations with the folder availability, file availability, and file-level encryption—that is, this folder and
associated files are not always available.

In iOS 5 and earlier versions, the app developer was not allowed to exclude folders from the backup, but
this limitation was lifted in iOS 5.1 and has continued to the current iOS version (11). The app developer can
use NSURLIsExcludedFromBackup or kCFURLIsExcludedFromBackupKey file system properties to
exclude files or directories from backups. This can be extended to system-defined directories, but doing this is
not recommended by Apple. However, the examiner will recognize that some apps do not have a Documents
folder, or they may have the Documents folder but do not use SQLite databases or other user-defined data.
This would indicate that the app developer used the exclusion property, and reliance on the Caches folder will
be critical.

The /Library/Cookies folder contains the Cookies.binarycookies file that stores cookies for the particular
app; a similar folder is found in most app file systems. A cookie is used to identify the user on a particular web
site or web server. Cookies are of particular interest to the examiner because they can show that the user of the
iOS device accessed particular web sites using that app. The Cookies folder can also hold a second
Cookies.binarycookies file that is appended with a -corrupt flag. The -corrupt flag is rumored to be a
failed authentication or corrupted file and is marked as such, so a new file is created. The
Cookies.binarycookies file and the file marked -corrupt both can be decoded using some helpful Python
scripts.

A script from satishb3 (www.securitylearn.net) was used as the basis to create the code that follows to
operate with Python 3. It has been modified to decode, parse, and output to a file called CookieMonster.csv.
The examiner can view the decoded data within a text reader or spreadsheet application. To run the script, the
examiner can use any forensic solution that incorporates a Python scripting tool or an open source tool such as
PyScripter. The examiner must have Python 3 installed to run the script and will use Cookies.binarycookies as
the argument. Information and descriptions are incorporated throughout the following code.

We start by importing the needed Python modules that will be used in the script:

361

http://www.securitylearn.net

This will be the file the script will parse. The sys_argv, shown next, is the file following the name of the
script if the script is run from the command line or a system argument variable (for example,
mypythonprogram.py Cookies.binarycookies, where Cookies.binarycookies is the sys_argv).

This portion of the code will look at the header of the file for 'cook' to determine whether it is a valid
cookie file per this script:

Next, the script begins to read through the file to determine the number of pages (cookies) that will exist
in the binary file and reports them back to the script as a variable to be used later. Once the pages are
determined, the script will know how many cookies are within the file.

Next, the conversions of each page (cookie) occurs. The cookie name, creation date, expiry date, and
domain the cookie is from are all decoded and extracted from the binary page:

362

Dates listed are MAC times with an epoch of January 1, 2001, so an adjustment is made. The date
depends upon the application examined, so this value should be analyzed upon output.

363

The data from each page is systematically extracted, starting with the URL, then the name, the path, and
finally the actual cookie value:

The CookieMonster.csv file is created at the location shown in the following code listing. The information

364

is systematically written to the open file that loops until the final page (cookie) has been located and printed,
and the dates obtained are also added to the string. The file is then closed along with the
Cookies.binarycookies file.

Once the process completes, the examiner can retrieve the file from the location specified within the code;
here it is at C:\. This script output as shown in Figure 13-6 includes some valuable data for the examiner,
especially if web history is of interest in an investigation.

FIGURE 13-6 Output and review of the file created by running the script against the cookies file from
com.yelp.yelpiphone

The /Library/Preferences folder is included in just about all app directory structures and contains the
settings specific to the user and the app. The property list to examine is the plist file assigned to the bundle ID
(for example, com.google.Drive.plist and com.skype.skype.plist, as shown in Figure 13-7). This plist file will
often contain the user login name, last settings, last searches, date of last use, and other settings that could be
critical to an examination. Settings files for many of the apps are also located in the Caches folder. Note that
many of the property lists in the Preferences folders have been limited in the data to identify the user from
iOS 10 to the current iOS version (11x).

365

FIGURE 13-7 A plist file for com.skype.skype.plist showing critical information on last calls, last login, and
more

The examiner could also encounter the /Library/WebKit folder or SQLite databases with the .localstorage
extension. At iOS 8, changes began to surface and have continually advanced regarding how to store data
locally. Think of it this way: if an app has an “offline” mode or makes data available to the user when it is
offline, it needs storage. Mobile device apps, however, need a more efficient way to interact with the data. In
iOS 11x, four different types of storage are used: Web Storage (localstorage), Web SQL Database, Indexed
Database (IndexedDB), and File System. Data storage in previous versions was within the Caches folder,
using the Web Storage format and with Safari using the Web SQL Database format. All the different types of
client-side storage described so far use SQLite databases to store the transactional data, with the exception of
File System, which uses JavaScript Object Notation (JSON). In the current versions of iOS, the databases are
stored at /Library/WebKit/WebsiteData in folders IndexedDB, LocalStorage, and WebSQL, as shown in
Figure 13-8. However, the data within each folder is laid out differently than before, with different parent
databases.

FIGURE 13-8 Format under the WebKit folder within the iOS system, showing the respective folders that
house the data from web sites locally

Within the storage locations are a parent database and children files, folders, or both. The IndexedDB
folder’s parent is the IndexedDB.sqlite3 file that stores the path to the data stored offline by web sites visited
by the user. The IndexedDB.sqlite3 file is created and stored within each site’s folder. The LocalStorage
folder’s parent is the StorageTracker.db file that contains the name of the site as well as the path to the
.localstorage file associated to the web site. Each of the .localstorage files are also SQLite databases and
contain web site key-value pairs, and all are contained in the root of LocalStorage. The WebSQL folder

366

contains the familiar Databases.db file, which contains not only the path but also the username for the web
site. Within the WebSQL folder are the folders that contain the databases for the sites that are referenced in
the Databases.db file.

Overall, the files and folders in the WebKit folder use the WebKit framework, which enables an
application to use a built-in browser to display and store web content and settings. In doing this, the app will
often cache the entire database that is used for that particular instance or site visited using the app. If the app
uses an internal browser, or it is a browser type app, when the app launches the browser and navigates to a site
such as Facebook, for example, the app will cache the mobile web site’s browser settings and/or local data for
that site (see Figure 13-9). The site name is part of the filename along with the extension .localstorage. Full
web pages, searches, and other useful data can be located within the WebKit folder and respective files in the
IndexedDB, LocalStorage, and WebSQL folders. It has been shown within the iOS device that Safari will
utilize the WebSQL folder and the Databases.db file and associated web site referenced databases, while other
apps will use the LocalStorage folder and the .localstorage file. Both hold good data for the investigator, but
data in the WebSQL folder is considerably more robust because of additional tables and fields.

FIGURE 13-9 Chrome, a browser application, uses WebKit functionality to offer the user a built-in web
browser that caches data from each site within its directory structure.

The WebKit folder is still available within the main /private/var/mobile/Library folder for iOS, but it is
seldom populated because most applications use the WebKit folder within their app folder structure.

Installed Apps
An examiner may often be curious as to whether an app had been installed and later removed from an iOS
device. The Launch Services Daemon Identifiers file, com.apple.lsdidentifiers.plist, located at
private/var/db/lsd/, indicates applications that have been installed on the device and launched by the lsd
service and provides the actual vendor ID GUID assigned to the app(s). (Note that this vendor ID is not the
product GUID; that would be found in the manifest file or the /Library/Application folder.) By comparing
the list of apps in the com.apple.lsdidentifiers.plist to that in the Manifest.plist file and iOS file system, the
examiner can determine whether the app once existed and has since been removed. (This has been verified in
several tests in which an application has been installed, run, and subsequently deleted. Upon analyzing the
backup, the bundle ID was still visible within the com.apple.lsdidentifiers.plist file but was no longer
referenced within the file system or Manifest.plist.) The db folder and subsequent lsd folder is no longer
available within the iTunes backup on any device later than iOS 9. The lsd folder and property list are still
available within a raw file system extraction via jailbreak or the Grayshift GrayKey solution. However, several

367

files are of importance with installed apps.

The key-value store, or kvs.sqlitedb, is located at private/var/mobile/Library/com.apple.itunesstored/ and
within the downloaded-apps key is a binary plist. Extracting and displaying this property list will show all the
apps that have been downloaded to the device from the iTunes Store. Furthermore, the KnownAccounts key
in the same file lists all the names and e-mail addresses of users who have accessed the store. Within the same
directory as the kvs.sqlitedb is the itunesstored2.sqlitedb. This file holds date and time data of the third-party
apps on the device, which could be a great piece of evidence. Diving deeper into the apps, in the TCC.db file,
located at private/var/mobile/Library/TCC, the user can identify the permissions that have been granted to
the app, and using the clients.plist file from root/Library/Caches/location/ will identify the applications using
location services along with great date and time information.

App Caches
An app on the iOS device, like any other program, uses an area on disk to store volatile and temporary data.
As described earlier, app development dictates that data that should not be available to the user be stored in
the Library folder and its subdirectories. The Caches folder is one of those subdirectories in which the app
stores volatile data (such as web sites, media from web sites, and site-specific settings), and it is typically
visible within the application only during the session. The folder can include children files in the folder root,
but it can also store additional subfolders and files that are used by the app. The folders and files under the
Caches folder are up to the app developer to create; Apple does give some direction and guidance regarding
iCloud (https://developer.apple.com/icloud/documentation/data-storage/index.html)—but again, this is
ultimately determined by the developer. Some consistencies within the Caches folder can steer the examiner,
however, and within these files and folders is a wealth of information waiting to be recovered.

The Caches folder is located under the Library folder, which is a subfolder of the application main folder
(see Figure 13-10). (The examiner should not confuse this with the Caches folder found under
/private/var/mobile/Library.) Because the Caches folder is not contained within an iOS standard iTunes
backup, the mobile forensic solution must use the house_arrest and file_relay services for recovery and
collection to obtain a raw file system. Depending on the tool used, the bundle information is stored under the
mobile/Containers/Bundle/Application path, with the data for the apps, to include the Caches folder, within
the mobile/Containers/Data/Application folder. If the Caches folder is not visible after the extraction within
these areas, the examiner should consider attempting extraction with a secondary tool to ensure that this
important data is recovered.

FIGURE 13-10 The Caches folder expanded for com.tencent.xin

Within the Caches folder, an app can store many custom folders, but apps also have some commonalities,
as discussed in the following sections.

368

https://developer.apple.com/icloud/documentation/data-storage/index.html

Bundle ID Folder
A good place to start is to look for a folder named after the bundle ID (such as com.<company><app name>).
This does not necessarily have to be the same bundle ID that describes the app, but that is usually the case.
Additional folders can also be in a bundle ID format—these are apps within the app, used by the main app
and often advertising caches for images and other web details, analytics, and app crash details. The subfolder
of importance will typically be the one with the bundle ID that is consistent with that of the actual app. If the
bundle ID within the file browser of the mobile forensic tool is recognizable by its reverse-DNS format, this is
a standard iTunes backup format normally. If a GUID is found at the path
var/mobile/Containers/Bundle/Application/, that represents all the apps along with their code; at
var/mobile/Containers/Bundle/Data/Application is another GUID, which represents the raw iOS file system
as it is identified on the device. If the latter is observed, the following information on the Cache.db will
pertain to the investigation, since at iOS 9 the availability on a standard iTunes backup was removed.

If reviewing a raw file system from either a jailbroken device or a device obtained using a tool such as
GrayKey, the examiner needs to locate that bundle ID folder at
var/mobile/Containers/Bundle/Data/Application. Once at the GUID, navigate to the
Library/Caches/<Bundle ID> folder within. There, a Cache.db and sometimes an ApplicationCache.db will
be available. The Cache.db file can also be located in another subfolder within the parent folder and typically
contains five tables, with three of particular significance: cfurl_cache_response, cfurl_cache_blob_data, and
cfurl_cache_receiver_data (Figure 13-11). The Cache.db file represents the data that the app has received
from an outside source (such as the server or the Internet) and holds in cache for speed of loading if needed
again.

FIGURE 13-11 Cache.db expanded in Oxygen Forensic Detective’s SQLite Viewer

The cfurl_cache_response table contains the data that was requested and the response, including the URL
and the time of the request. The cfurl_cache_blob_data table contains BLOB (Binary Large Object) data with
the response from the server. The cfurl_cache_receiver_data table contains the received data from the server in
response to the server via the cfurl_cache_response table (Figure 13-12). Matching these tables can yield
information that is not stored anywhere else. It is important for the examiner to pay attention to the
isDataOnFs field within the cfurl_cache_receiver_data table. If the table contains a 1, the data is stored within
another folder on the iOS device within the Caches folder. A BLOB of 4096 bytes or larger will be stored
locally and assigned a GUID, and all other files will be stored within the database and represented by a 0. The
files and the locations that are cached locally are covered in the next section.

369

FIGURE 13-12 The Cache.db summary information shows that 24 records are still available in three tables
within the database, and there are 114 recovered records.

It is extremely important that the examiner remember that the Cache.db file will be in the root of the
bundle ID, but the structure may not conform to the schema described. App developers can, and many
do, create schemas that will suit their particular applications, especially if the app does not use external
servers or Internet resources.

The Caches folder also contains a subfolder used to store file data, including JPEGs, GIFs, PNGs,
HTML files, JSON files, and others. This folder, fsCachedData, is located under the bundle ID in the
Caches folder and is used to store files identified in the cfurl_cache_receiver_data table by a TRUE (1)
Boolean value in the isDataOnFs field. Kik Messenger, for example, a widely used chat app, prescribes storing
information locally, without a database, and this information is available in the fsCachedData folder. The files
contained in the folder are directly referenced in the cfurl_cache_receiver_data table within the Cache.db file,
as shown in Figure 13-13. The files within the Kik fsCachedData folder range from JPEG, to PNG, to JSON
files. If the examiner matches the information contained within this table against the cfurl_cache_response
table, he or she has all of the files that are referenced along with a timetable of the event, as shown in Figure
13-14. This can provide an incredible amount of information for any investigation when dealing with
applications that do not have a main database. In fact, this might be the only data that can be recovered!

FIGURE 13-13 The fsCachedData folder in Kik Messenger gives the investigator a folder full of GUID
named files that can be matched to the GUID within the cfurl_cache_receiver_data table.

370

FIGURE 13-14 When a SQL query is built to JOIN the cfurl_cache_response table and
cfurl_cache_receiver_data, the data can be matched to date/time information and paths.

The Caches folder is no longer available within an iTunes backup as has been documented here, and it is
available only within a raw file system extraction.

Additional Folders Under Caches
The examiner should be diligent in the examination of the files directly under the Caches folder, because a
wealth of information is available. In an iTunes backup, the following will be located under the
/WebKit/WebsiteData/WebSQL folder beneath the app folder and within the Applications folder. Database
files within the Caches and WebKit folders are generally located in the root of the bundle ID folder, and these
files are important to the examiner because many apps—most notably Google apps—store database files in
this location. One very important database to look for under the Safari app (com.apple.mobilesafari) is
Databases.db. This database contains a table with the name of the Gmail account and the size and path of the
database file, all located within the Caches and WebKit/WebsiteData/WebSQL folders (see Figure 13-15).

FIGURE 13-15 Gmail Databases.db file pointing to the location of associated databases that store the user’s
e-mail and other data

371

When the examiner locates these files, they can be correlated with the databases table and opened within a
SQLite database viewer. Granted, the data from Gmail is only a snippet of the e-mail, but often this is the
only information that is needed to assist in an investigation. This type of format clearly resembles the methods
used by WebKit, discussed earlier in the chapter. The Databases.db file points to the local storage of offline
cached e-mail.

Numerous custom folders could also be stored in the Caches folder on raw file systems and
Library/Application Support or Library folders in iTunes backup extractions, and those that appear
consistently are covered in this section. If an app is heavy into image display, either via online sources or
server, folders typically named Media, ImageCache, or another derivative of “image” are often visible. These
folders contain GUIDs that are referenced within a database within the main Caches folder. Most media has
been moved out of the Caches folder unless it is only temporary data that can be purged and is accessible only
with a raw file system, not iTunes backups. However, the media that is used, transmitted, and stored for apps
can be located under the Library folder most frequently in a folder called Media. Safari does like to store
thumbnails of the pages that are currently open, much like a snapshot, since data entered by the user is still
visible. This information is available on an iTunes backup at
/private/var/mobile/Applications/com.apple.mobilesafari/Library/Safari/Thumbnails/ and within a raw file
system extraction along with a large cache of temporary Internet browsing data.

Also within the Caches folder, and only available on a raw file system extraction, is a Snapshots folder that
contains another identical bundle ID equal to the main app bundle ID. Within this folder are the PNG files
that have been saved to represent the app in different perspectives when the app was moved to the
background. When an iOS app is minimized, it can be animated by first taking a screen capture of the
currently active screen, creating a PNG, and shrinking the PNG file. The iOS saves this PNG file to the
Snapshots folder.

A PNG file is created for each of the app’s orientations (such as landscape, vertical, and inverted) when the
app was minimized. Multiple PNG files can be found in this folder with an actual snapshot of data that might
not be recoverable anywhere else on the device. Examiners have recovered e-mail, text messages,
conversations, and more that the user had permanently deleted, but the snapshots remained, lending critical
evidence to a case.

Additional File System Locations
App files are important to every forensic examination, but settings files and additional database files will also
aid an examiner in analyzing an iOS device. These files are available within the file system using a standard
logical collection unless otherwise noted. How these files are viewed is determined by the file type. This
section discusses several main locations within the iOS file system that the examiner can quickly review for
information. Some of the folder locations shown in Table 13-4 have already been covered and are mentioned;
however, some of the paths contain several files and folders that are of significance to an examiner and are
covered in detail.

TABLE 13-4 iOS File System Parent Landmarks for Significant Evidentiary Files

372

Within the private/var/mobile/Library folder is not only the “tip of the iceberg data” contained within
databases, but other significant databases in which an examiner may locate additional information:

• /Library/Accounts/Accouts3.sqlite This folder has usernames of application accounts, including date
and time information.

• /Library/Caches This folder used to contain vast numbers of property lists and files that were cached by
Apple Services, and these may be available if advanced services such as file_relay can be run; with a
standard iTunes backup, the folder is not accessible with most forensic tools. If the device has been
jailbroken or accessed via other means, this folder will be available with cached data and should be
examined by the investigator.

• /Library/Calendar/Extras.db This folder contains current alarms and those that had been set but are no
longer used on the device.

• /Library/UserConfigurationProfiles/Truth.plist At iOS 9, the path changed from
/ConfigurationProfiles to /UserConfigurationProfiles. At iOS 10, and continued to the current version
(11x) other files, PublicEffectiveUserSettings.plist and EffictiveUserSettings.plist, were added and include
much the same data. Both file folders contain a key, forceEncrpytedBackup, that indicates whether the
backup will be encrypted when calling an iTunes backup. Also, at iOS 10 and current (11x) versions, these
files are found in

373

/private/var/mobile/Applications/systemgroup.com.apple.configurationprofiles/Library/ConfigurationProfiles/

• /Library/Keyboard/ This folder contains any keyboard that the device has been set to use and its
associated cache. The keyboard cache is identified as <language of keyboard>-dynamic-text.dat. This text
file includes everything the user has typed in areas identified as “text fields.” This recording takes place to
assist with the iOS device’s ability to auto-correct, which allows words to be suggested as the user types. If
an app has a field marked “secure,” the data that is typed into that field will not be populated in the
dynamic-text.dat file. Secure fields typically include passwords, credit card numbers, and other personal
data. Another file is the lexicon.dat file. This, much like the dynamic-text.dat, is created on a per-language
basis and each contains words that can be made from contacts, custom dictionary, and other sources. The
dynamic-text.dat and lexicon.dat file are no longer available to an examiner unless a raw file system is
recovered in a jailbreak or other methods. However, there are several CloudUserDictionary.sqlite files that
can be matched to the application that used text replacements and the programmed text replacement
phrases and words that are available in the iTunes backup files.

• /Library/Mail/Recents.db This database file contains recent e-mail and SMS addresses that include
name, e-mail address, and phone number along with the dates accessed and the last date accessed. This
database is a gold mine for an examiner because the file grows indefinitely, and if a user deletes a contact,
the information in Recents.db remains, regardless of the deletion.

• /Library/MobileBluetooth/com.apple.MobileBluetooth.ledevices.paired.db This database file is found
only within iOS versions 8 to iOS 10x and contains the devices that have been paired with the iOS device.
In iOS 11x, the location has changed to
/private/var/mobile/Applications/systemgroup.com.apple.bluetooth/Library/Database/.

• /Library/MobileBluetooth/com.apple.MobileBluetooth.ledevices.other.db This database file is found
only within iOS 11x devices and is quite interesting, because it shows the devices that are not paired but
have been in range.

• /Library/Maps/Bookmarks.plist This binary plist contains bookmarks the user has added to the internal
iOS mapping app. This file, for iOS 8, is located at /Containers/Application folder and is no longer stored
in the /Library/Maps location.

• /Library/Maps/GeoBookmarks.plist This property list for iOS 9 to the current version (11x) contains a
Key MSPBookMark that contains the bookmarks (Values) in hexadecimal representation that are easily
converted to ASCII to reveal searches.

• /Library/Maps/FailedSearches.mapsdata This proprietary file can be read as text to gather searches
conducted using the internal app for iOS or an app that uses the internal app. An example is Yelp: If Yelp
uses the internal iOS map, any searches in Yelp that failed to find a location could be stored here, as
shown in Figure 13-16. In iOS 8, this file is located within the /Containers/Application folder and is no
longer stored in the /Library/Maps location. In iOS 10 to the current version (11x), the path is
/private/var/mobile/Applications/com.apple.Maps/Library/ and is a binary plist file with embedded
hexadecimal data.

374

http:///private/var/mobile/Applications/systemgroup.com.apple.configurationprofiles/Library/ConfigurationProfiles/
http:///private/var/mobile/Applications/systemgroup.com.apple.bluetooth/Library/Database/

FIGURE 13-16 A search for “Heroes park” did not find the location and was deposited into the
FailedSearches file.

• /Library/Maps/History.mapsdata This proprietary file can be read as text to gather a history of routes
used within the internal iOS Maps app. This file also contains data from apps that use the Maps program
within the app. If a user used Yelp to locate a restaurant, for example, information about the restaurant,
the directions, and even reviews would be located within this file. In iOS 8, this file is located within the
/Containers/Application folder and is no longer stored in the /Library/Maps location. In iOS 10 to 11x,
the path is /private/var/mobile/Applications/com.apple.Maps/Library/ and is a binary plist file with
embedded hexadecimal data. The path
/private/var/mobile/Applications/com.apple.Maps/Library/GeoHistory.mapsdata is the location of the
SearchResults.mapsdata of older iOS versions.

• /Library/Maps/SearchResults.mapsdata This proprietary file lists the searches conducted within the
internal iOS Maps app and also any app that uses the Maps app within the app. This file for iOS 8 is
located within the /Containers/Application folder and is no longer stored in the /Library/Maps location.
This has been deprecated and is now GeoHistory.mapsdata. The path
/private/var/mobile/Applications/com.apple.Maps/Library/Pins.mapsdata is now available in the current
version of iOS and shows the locations in plist format that a pin was dropped by the user.

The Preferences folder contains many property list files. Only a small number have proved to hold valuable
information for many examiners and are listed here:

• /Library/Preferences/com.apple.conference.plist This property list identifies the FaceTime settings for
the device.

• /Library/Preferences/com.apple.identityservices.idstatuscache.plist This property list can also be a gold
mine of information for deleted messages in FaceTime, iMessage, or e-mail. Identity services confirm the
validity of a user’s credentials as it travels across the ESS (Enterprise Shared Services) of Apple. Within
this file are phone numbers and e-mail addresses along with a UNIX date of the lookup for clear
credentials. Content is not included, but simply having the metadata of the occurrence is enough.

• /Library/Preferences/com.apple.ids.service.com.apple.ess.plist This file holds the accounts capable of
authenticating on the Apple ESS and includes the AppleID, VettedAliases, Aliases, and LoginAs
information. This key contains phone numbers and e-mail addresses of the device user.

• /Library/Preferences/com.apple.ids.service.com.apple.madrid.plist This is the identity services property
list for iMessage. It contains e-mail addresses and phone numbers that have been used and are currently
being used to access the ESS, along with the user’s Apple ID.

• /Library/Preferences/com.apple.ids.service.com.apple.private.alloy.<SERVICENAME>.plist These
files contain the user login information and service information for the various apple apps and services (for

375

http:///Library/Preferences/com.apple.ids.service.com.apple.ess.plist
http:///Library/Preferences/com.apple.ids.service.com.apple.madrid.plist
http:///Library/Preferences/com.apple.ids.service.com.apple.private.alloy

example, FaceTime, iMessage, camera, and so on).

• /Library/Preferences/com.apple.imservice.FaceTime.plist This file identifies the credentials used for
FaceTime.

• /Library/Preferences/com.apple.imservice.iMessage.plist This file identifies the credentials used for
iMessage.

• /Library/Preferences/ com.apple.itunesstored.plist This file contains the date and time of updates to
each specific app on the device.

• /Library/Preferences/ com.apple.languageassetd.plist This file contains the dictionaries, and even
conversion dictionaries, that are set up on the device, including specialties, such as emojis.

• /Library/Preferences/com.apple.locationd.plist This file identifies the apps that have been accessed and
are currently using location-based services. This file is still available in the current version of iOS (11x),
but it does not identify the applications. The file discussed previously, Clients.plist, contains this valuable
information. This file is located at /private/var/root/Library/Caches/locationd/.

• /Library/Preferences/com.apple.madrid.plist This file can be used to determine whether the user has
ReadReceiptsEnabled set to on or off. When set to on, this indicates whether the receiver of the iMessage
has read the message or not.

• /Library/Preferences/com.apple.Maps.plist This file identifies the last map location searched for by
longitude and latitude and the date and time along with great data about the Apple maps. This was moved
to /private/var/mobile/Applications/com.apple.Maps/Library/Preferences/ at iOS 8 and is still located
here with release 11x. The MapsActivity Key and MapsActivityTimestamp Key are important artifacts.

• /Library/Preferences/com.apple.MobileBluetooth.devices.plist This file identifies the paired Bluetooth
devices along with the MAC address and the LastSeenTime, indicating when the device was last observed
by the iOS device. It was deprecated in iOS 9 and moved to Applications, as described earlier in the
chapter.

• /Library/Preferences/com.apple.MobileBluetooth.ledevices.plist This file is another Bluetooth listing of
identified Bluetooth Low Energy (BLE) devices that have been observed by the device. This settings file
can be used by third-party apps that use BLE functions and are not compatible with classic Bluetooth
protocols. A random MAC address is created, and a LastSeenTime indicates when the object was last
observed by the iOS device. It was deprecated in iOS 9 and moved to Applications, as described earlier in
the chapter.

• /Library/Preferences/com.apple.mobile.ldbackup.plist This file identifies the last backup date, if the
backup was encrypted, and also if backing up to iCloud is enabled.

• /Library/Preferences/com.apple.mobileipod.plist This file identifies the music and, more importantly,
the last media item played on the iOS device.

• /Library/Preferences/com.apple.mobilephone.plist This file identifies the last phone number that was
displayed on the dialer screen. This will be visible even if the phone call was not initiated or completed.

• /Library/Preferences/com.apple.mobilephone.settings.plist This file identifies the call-forwarding
number, if one is enabled, and other general settings. This was deprecated prior to iOS 8.

376

• /Library/Preferences/com.apple.mobilephone.speeddial.plist This file identifies favorites from the
contact list. This was deprecated prior to iOS 8.

• /Library/Preferences/com.apple.mt.<ACTION>.plist These files are unique to current devices (iOS
11x) and include Killed, lastLaunch, and LaunchDelay. Killed lists the apps that were cancelled or killed
while running, lastLaunch will give the date and time of the app’s last launch, and LaunchDelay will give
in seconds the delay in the application starting. The mt in the NDS naming appears to be representative to
the Apple URL pattern for its web site and the new devices: see www.apple.com.

• /Library/Preferences/com.apple.nanoweatherprefs.plist This file identifies the selected city and country,
along with the latitude and longitude, for the weather app.

• /Library/Preferences/com.apple.osanalytics.addaily.plist This file identifies the data usage, along with a
date, for each app on the device. This could be good evidence to show how much the app was being used
or if it was used on a certain day.

• /Library/Preferences/com.apple.preferences.datetime.plist This file identifies the preference of state and
country for the device date and time.

• /Library/Preferences/com.apple.preferences.network.plist This file identifies the state of the network—
for example, Wi-Fi was on or off.

• /Library/Preferences/com.apple.preferences.plist This file has some great information for the
investigator on installed keyboards, number of apps, iCloud username, and much more.

• /Library/Preferences/com.apple.TelephonyUtilities.plist This file has some great information for the
investigator on the apps that have access to the telephone. This would primarily the VOIP type apps such
as Messenger, Telegram, Skype, and so on. Also, this file holds the key lastKnownFaceTimeCallerID,
which can be extremely significant to your case.

• /Library/Preferences/com.apple.vehiclePolicy.DNDMode.plist This file can be used to see if the do not
disturb setting for vehicles was enabled and also other significant details.

• /Library/Preferences/com.apple.watchlistd.plist This file lists the Apple Watch along with descriptors.

• /Library/Preferences/UITextInputContextIdentifiers.plist This file holds numbers from FaceTime and
calls, as well as the keyboard that is used when interacting with these numbers (such as language and
keyboard type).

• /Library/SpringBoard/IconState.plist This property list lays out the icons and folders for the apps that
are currently displayed to the user on the iOS device. In Figure 13-17, a Social folder was created, and the
icons directly above are the apps contained within this folder. Several keys within the property list can be
important to the examiner. The key button bar at the top of the list identifies the apps that are located
along the bottom of the main screen and accessible from any page on the iOS device. The key listType
identifies a folder, and directly above is displayName, which identifies the name of the folder. The apps
contained in the folder are directly above the displayName, starting with [0] and identified by the array
number until reaching the displayName key.

377

http://www.apple.com

FIGURE 13-17 Within the IconState.plist are the folders the user has created.

• /Library/SpringBoard/LockBackgroundThumbnail.jpg This file is used as the image when the device is
locked.

• /Library/TCC/TCC.db This database file identifies the apps on the iOS device (such as microphone,
photos, Contacts, Calendar, and Twitter) and indicates to which services they have access. This can help
the examiner identify rogue apps that might be attempting to gain elevated privileges.

• /Library/Voicemail/voicemail.db This database file identifies the voicemail date, sender, duration, and
even when voicemail was deleted. Also within the /Library/Voicemail/ folder are the .amr files that
contain the actual messages that are identified by the rowid in the database. Voicemails that are deleted
can be recovered in this folder.

Photo Stream, SMS, and Maps all have separate plist files in the /Library/Preferences/ folder and are
prefixed by the com.apple.ids.service.com.apple file. These all contain information for proper
authentication to the ESS.

Within the private/var/mobile/Media folder are pictures and videos, but this folder also is a storage place
for additional files that may be of forensic significance:

• /Media/Recordings/Recordings.db This database file identifies voice recordings made with the iOS
device along with the date and duration of the recording. The recordings themselves are also stored in the
/Media/Recordings/ folder with an .m4a extension.

• /Media/PhotoData/Photos.sqlite Since the new advent of automatic photo categorization, this SQLite
file can show the matches, which can be mapped to the images in the media folder.

• /Media/PhotoData/CPLAssets This folder stores the full-size images and videos that originated from
iCloud.

• /Media/PhotoData/Metadata/PhotoData/CPLAssets The root folder contains images and additional
child folders with images (both full and thumbnails) that originated from iCloud and have been optimized.

• /Media/PhotoData/Metadata/PhotoCloudSharingData This folder contains albums that are shared.
The thumbnails for these are also located at
/Media/PhotoData/Thumbnails/V2/PhotoData/PhotoCloudSharingData.

• /Media/PhotoData/PhotoBulletins.plist This file is used to show albums that have been shared and

378

http://com.apple.ids.service.com.apple

accepted, which includes dates, times, and the recipient. This is great data if the subject is sharing illicit
images.

• /Media/PhotoData/Thumbnails This folder contains the thumbnail files of the images located in the
DCIM folder and also can contain pictures that have been deleted. Not many tools can interpret the .thmb
extension. These files are raw uncompressed images but can be viewed with an inexpensive application
called iThmb Converter (www.ithmbconverter.com/en/download/) or directly within Oxygen Forensic
Detective’s interface.

Within the private/var folder is a preferences subfolder that contains additional iOS preference and
network information. Here are some files that should be of interest to every examiner:

• /Preferences/SystemConfiguration/com.apple.network.identification.plist This property list contains
the IP addresses used and assigned to the iOS device when communicating on both the cellular WAN and
Wi-Fi. This file also lists the domain and IP addresses of the router, along with a timestamp of each event.
This file does not exist in iOS 8.3 to 11.x devices. However, in the same directory, com.apple.wifi.plist is
available

• /Preferences/SystemConfiguration/com.apple.wifi.plist This property list contains the Wi-Fi addresses
to which the iOS device has connected when auto-joined, plus the name of the access point, the MAC
address, and the type of security for the access point.

• /Preferences/SystemConfiguration/preferences.plist This property file lists various configuration
preferences for communication, but also identifies the device name under the HostName and
ComputerName keys.

Within the private/var/wireless folder is the CallHistory folder, where iOS 7 call data is located, but other
subfolders also contain information that can help to identify not only app usage but also the exchange and
substitution of subscriber information. This folder and subsequent database will exist only if the user has
upgraded from iOS 7, since it was deprecated and again is stored under the Library folder.

• /wireless/Databases/CellularUsage.db This database file contains a subscriber_info table within the
database that lists the subscriber ID (IMSI), the subscriber MDN (dialing number), and the last update
date. The update date is when that IMSI and MDN were last used. This table also contains all SIM cards
inserted and used within the device (see Figure 13-18). This is incredible information when attempting to
determine subscriber information.

FIGURE 13-18 The subscriber_info table in the CellularUsage.db shows that multiple SIM cards have been
used in this iOS device.

• /wireless/Databases/DataUsage.db This database file contains two significant tables within the database:

379

http://www.ithmbconverter.com/en/download/

LiveUsage and Process. These tables contain the app name (bundle name), the process associated with the
app, timestamps of usage, and the data coming in and out via the WAN. When these tables are put
together using the foreign key OPT, the SQL query shows the activity of the app and its process (see
Figure 13-19). This table can help the examiner determine whether a subject was using an app at the time
of an event.

FIGURE 13-19 Running a query on the DataUsage.db clearly shows critical information is available within
this database file.

• /wireless/Preferences/com.apple.commcenter.plist This property list identifies the ICCID along with
the phone number assigned to the device, LastKnownICCID, CarrierBundleName, and more.

• /wireless/Preferences/com.apple.commcenter.callservices.plist This property list identifies the
subscriber.id, last.account, and last.known.icloud.id. The last two keys are a hash of the actual account.

Group Shared Data
With the rush to bring a watch to market that has a workable interface Apple had to change the way the apps
communicated. With a sandbox approach to apps, as discussed earlier, apps cannot communicate with one
another to request or add data for obvious security reasons in a jailed device. So, typically, when an app is
launched, it may ask the user for permission to access the contacts, camera, or other built-in Apple processes.
The problem, however, lies in accessing data from other third-party applications with a device or Apple
Watch. Shared folders were formed and are found in the /private/var/Application/ folder and prefixed with a
group.<APP_DNS> format. This is another gold mine of data.

When a user downloads the Apple Watch app, and when setting up the watch, he or she can selectively
install apps or install all the apps immediately (Figure 13-20). This means that any app that is compatible
with Apple Watch will install, creating a shared relationship with the main app folder in the
/private/var/Application/ folder.

380

http:///wireless/Preferences/com.apple.commcenter.plist
http:///wireless/Preferences/com.apple.commcenter.callservices.plist

FIGURE 13-20 The Apple Watch application screen enables users to select apps to install on the watch,
enabling a shared relationship.

This is a data gold mine because of the development restrictions imposed by Apple on the sandboxing of
data from apps. However, to make this data available to the Apple Watch, or other IoT devices, to
communicate both by receiving data to the watch and sending replies to the watch, something happened.
Apps now began adding full databases and working directories to the group shared folders! The most
important part for the investigator to know is that the databases are not encrypted, and if the developer used
the option not to include the backup in the main app folder, it does not affect the database or other data in the
group shared area!

A perfect example is Kik Messenger. This messaging application is well known and used around the
world. Its main database is located at private/var/mobile/Application/com.kik.chat, but it’s currently available
in the file system for forensic tools only if a full raw file system capture by jailbreak or other methods was
conducted. This is because the developer elected not to include the database if a backup was called. However,
within the group.com.kit.chat folder under /private/var/mobile/Applications, that main database, kik.sqlite, is
clearly available to forensic tools, along with associated files (Figure 13-21).

FIGURE 13-21 From the shared storage under the group.com.kik.chat, the full database is available for

381

http://group.com.kit.chat
http://group.com.kik.chat

parsing.

It appears that many of the apps that have been “installed” to the Apple Watch hold a fully synched
database, as well as the associated files. Although some applications store only a property list (plist), this plist
holds a massive amount of data. For example, Gmail, has a plist file located at
private/var/mobile/Application/group.com.google.Gmail/Preferences that holds e-mail addresses sent and
received. This area should always be examined because many forensic tools are not currently pulling data from
these groups.

Using these locations, the examiner will be searching in the what you don’t see is what you need area. Expert
examiners will conduct this type of analysis and examination of mobile device data from an iOS device.
Treating an iOS device as a small computing platform by examining, researching, and testing each file and
location in an effort to uncover the meaning behind the data is a necessity.

iOS Evidentiary File Types
The examiner should understand the way data is stored and in what types of files it is stored. So far, this
chapter has dealt with the location of artifacts; it now shifts to discuss the types of files that are commonly
found within the iOS file system.

SQLite databases are the primary source of storage for apps and understandably a primary source of
evidence for the examiner. User data types such as SMS, MMS, Contacts, Call Logs, Calendars, Notes, and
Browser History, all discussed as “tip of the iceberg data,” come from SQLite databases. But just because an
automated tool pulls the information from the SQLite database does not necessarily mean that all the data has
been collected from that particular database. To add to that statement, all data may have been collected, but it
could be translated or decoded incorrectly. And what about the data contained within the many apps on the
iOS device? The examiner was exposed to the various database locations and also cache areas that hold
SQLite databases. These, too, will provide a wealth of information, so gaining an understanding of these files
is necessary.

Property list, or plist, files are also within the iOS file system; these are used to store app settings, device
settings, and user-specific settings. Next to SQLite databases, plist files are the second-most observed and
examined file for the mobile forensic examiner. The plist files come in two forms—binary and XML. Both file
types are covered in this section to help the examiner learn to interpret and view them using several different
tools.

Several other file types are not as prevalent within the iOS file system, but these will also be covered to
give the examiner an idea as to what is generally stored and what can be recovered to assist in an examination.
Gaining knowledge about what these files can yield to an examination will help the examiner understand how
these files store data and how to recover their hidden treasures.

SQLite Databases
According to SQLite.org, SQLite is the most widely deployed SQL database engine in the world. SQLite is
used not only in iOS devices but also in Android devices, Windows Phone, and BlackBerry 10 devices, and in
both Windows and Mac desktop applications. Many desktop applications use SQLite because of its simplistic

382

http://private/var/mobile/Application/group.com.google.Gmail/Preferences
http://SQLite.org

deployment and use, and this is the case within mobile apps as well. SQLite does not need a client-server

relationship like SQL, nor does it have to be installed. All tables, views, and other associated methods are
included in a single file within a compact library. SQLite is a public-domain software library that is well
documented and free for both commercial and private use.

The current build of SQLite, as of this writing, is 3.23.1. Because of its forensic implications, an examiner
should become familiar with the structure of this common file type. A surface-level explanation of the SQLite
file type is outlined here with the major structural pieces defined.

Many SQLite database browsers will enable the examiner to view the contents of a SQLite database, so
this section is not intended to inform the examiner on how to create a tool, decode, and visually display a
SQLite database. The intention is to help the examiner understand the structure and to “see” that data
will not be displayed within a SQLite database viewer if it is no longer referenced (that is, deleted). Many
SQLite documents and books cover the structure, ideology, and methods, and the examiner can
supplement the introduction and overview in this section by consulting those documents.

This section is intended to arm the forensic examiner with the information needed to recover valuable
“hidden” data from these files and to help the examiner understand why, where, and how this can be
accomplished. The recovery of data from the logical structure of tables and rows will be covered in Chapter
14.

A SQLite database is like a file that stores many records. SQLite.org defines the SQLite file as the “main
database file.” SQLite is transactional, which means that it stores data within a second file called a rollback
journal; in other words, if transactions on the database are not completed properly, they are able to be rolled
back. If a rollback journal is being used, the secondary file is created, associated, and in the same directory as
the database file and has the same name, with -journal appended. If the SQLite file is in write-ahead log
(WAL) mode, transactions will be stored in the associated WAL file (covered in detail in the next section). In
the main database file, the records are stored in pages. The page size is determined by the 2-byte big-endian
integer located at an offset 16 bytes from the start of the main database file. The page size is based on a power
of 2 and is between 512 and 65,536 bytes.

The first 100 bytes of the database file is the file header, which is divided up into fields: the first 16 bytes
contain SQLite format 3, followed by the 2 bytes for the page size at offset 16. These values in the header are
all stored in big-endian format. The maximum page number is 2,147,483,646 and the minimum is one 512-
byte page starting at page 1. The maximum database size could be around 140 terabytes if the maximum
number of pages each held the maximum number of bytes! Table 13-5 shows the database header formats
most critical to the examiner, which are visually represented in Figure 13-22.

TABLE 13-5 SQLite Database Header Details as Outlined on SQLite.org

383

http://SQLite.org
http://SQLite.org

FIGURE 13-22 The SQLite header can tell the examiner many things during a manual attempt to recover
information from various areas of the database file.

A SQLite database contains several types of pages, outlined in Table 13-6. B-tree parent pages within a
database point to their children, but the reverse relationship is not the same. Children can point to an
overflow page, which can then point to another overflow page, and so on, but children cannot point back to

384

their parent. Understanding the various table types can help the examiner identify the location and identity of
pages that may contain freefile pages, which could ultimately hold deleted data. Using the freefile list to
identify the location of the various freefile pages can help the examiner uncover substantial records not
otherwise collected by most mobile forensic tools.

TABLE 13-6 SQLite Page Types and Descriptions

The page header in the SQLite database file can be examined to assist in identifying the type of page, the
first free block on the page, the number of cells on the page, and much more information. The page header
comprises 8 bytes for leaf pages and 12 bytes for interior pages in big-endian format. The fields for the header
are outlined in Table 13-7. (Table 13-6 identifies the type of pages along with the first byte that identifies the
page type.)

TABLE 13-7 Page Header Format as Described in SQLite.org Documentation

385

http://SQLite.org

Using the file type along with the storage areas, the examiner can identify the contents within the page and
uncover data that might not be referenced by the database active index. This will be evident as the examiner
becomes more familiar with the freelist and free pages within the SQLite database.

The freelist is a list of the unused pages within a database (see Figure 13-23). However, if the offset 32
(number of freelist pages) 4-byte value is 0, then the freelist does not contain any unused pages within the
database. This freelist and the subsequent free pages can be important to an investigator. The free pages are
not active and are where the database stores the data that is no longer referenced within the SQLite table. An
examiner may understand this as deleted data. Information the user of the app has chosen to delete is removed
from the table references and moved to the free pages within the freelist area. Freelist pages can either be
trunk pages or leaf pages. The freelist file header, as dissected in Table 13-8, points to a trunk page, which can
then point to multiple leaf pages. When a SQLite page becomes inactive, it is added to the freelist and will
not be released to the database file system. When information is added to the database by the user, the
database will take free pages from the freelist to store the data, and the table becomes active and no longer
referenced in the freefile index. If the list is empty, the database will obtain new pages and then add them to
the database file.

TABLE 13-8 Freelist Header Breakdown to Assist When Locating Inactive Pages

386

FIGURE 13-23 The freelist is an index to trunk files that point to leaves where the data is stored.

The examiner should also understand both the auto-vacuum and the pointer map of the SQLite database.
Auto-vacuum is the ability of a SQLite database to stay small. Auto-vacuum is not the same as vacuum in
SQLite: Vacuum cleans the main database by copying the contents to a temporary file and then reloading the
file from the copy; this action removes deleted data (free pages) and completely cleans the database structure.
Auto-vacuum does not eliminate the free pages; it moves them. This is very crucial information to an
examiner regarding the recovery of deleted data from a SQLite database. However, to understand how the
database locates information within the table and moves information around, the examiner should also
understand the pointer map (ptrmap) pages.

The pointer map and pages are inserted into the SQLite database to assist with the efficiency of both the
auto- and incremental vacuum processes. The pointer map is not available within the SQLite database if the
auto-vacuum or incremental vacuum is not enabled. This can be determined by looking at offset 52: if this is
0, then auto-vacuum or incremental vacuum has not been set. When the database moves a page, the pointer is
updated. The pointer map is also a lookup table that can be used to find the parent of the child leaf—
something that is not contained within the actual child leaf. Within the pointer map, each pointer is made up
of 5 bytes that represent the type of page and the related parent. The pointers are in order starting at page 3
and progress to the number of pages. Each pointer represents one page within the database file. The size of
the pointer map in bytes can be obtained using the following formula:

(2 – number of pages) × 5 = number of bytes

The pointer map is confined to the page size outlined by the SQLite database, as identified by byte 16 in
the database header; any pointers that exceed page size/5 will be assigned to another pointer map page.

If an examiner had a database file with a page size of 1024 bytes per page, the total number of pages that
could be referenced within a pointer map page would be 1024/5 = 204 page references maximum.
Because the first and second pages are not counted (database header and pointer map), if a new page is
needed, a new pointer map page will be created and the new page (206) will be referenced.

387

To help you with decoding the pointer map, Table 13-9 outlines the significant bytes and defines the
meanings. The pointer map can be important to the examiner when attempting to identify the parent of a
deleted record when coupling the information obtained from the freelist and associated free pages.

TABLE 13-9 Pointer Map Records and How to Decode the 5-byte Record to Determine What Type of
Page Is Referenced (VV represents a variable HEX character)

Uncovering Inactive SQLite Data via Freelists
As mentioned, inactive data within a SQLite database can be recovered using the database header, the freelist,
and then the associated pages. In this section, the previously covered material will be put to the test to uncover
deleted data from an sms.db file from an iOS device. This technique can be used on any SQLite database the
examiner may encounter.

First, we open the SQLite database within FTK Imager and examine it within the HEX viewer. (FTK
Imager is a free tool from AccessData.) Figure 13-24 shows the database file, and highlighted is the size of
the page in bytes (4096), the freelist page number (1310), and the number of free pages available (6234).

388

FIGURE 13-24 The page size, the freelist page number, and the number of pages within the sms.db database
file from an iOS device

Next, we navigate to the freelist area. The formula subtracts 1 from the freelist page number from the
freelist (to take into account the database header that always holds the first page). The size of the page is then
multiplied by the bytes to obtain the offset within the sms.db for the freelist (see Figure 13-25):

FIGURE 13-25 The location of the freelist is obtained by using the Go To Offset in FTK Imager.

(1310 – 1) × 4096 = 5361664

As outlined in Table 13-8, the freelist’s first four bytes identify whether there is another freelist trunk. If
this value is equal to 0, then this is the last freelist or the last freelist trunk. In this example, the first four bytes
(x00 x00 x14 x38) equal integer 5176, indicating the page size of the next freelist trunk page:

(5176 – 1) × 4096 = 21196800

However, the first freelist should be examined.

The second set of bytes after the freelist trunk list pointer, starting at offset 4, indicates the number of
pages referenced within this freelist. This value (x00 x00 x00 x83) in the example equals integer 131,
indicating there are 131 pages within this freelist. The rest of the 4-byte values starting at offset 8 within the
freelist page represent the location of the leaf pages. These are the pages that represent the inactive data
within the database file.

In this example, navigating to the first listed leaf (x00 x00 x14 x27) with an integer value of 5159
represents the page within the database. Using the same formula, (5159 – 1) × 4096 = 21127168, and
navigating to this location, it is evident that the page contains text messages, particularly iMessages, and is
contained in a table leaf node page as indicated by the first byte (x0D) (see Figure 13-26). Some of the data is
repeated within the free pages, but this is extremely useful for any investigation. This information can be
collected, searched, and extracted now that the examiner can identify the pages from the freelist pages.

389

FIGURE 13-26 First free page leaf list in the freelist of the sms.db. This is a table leaf node as represented in
the first byte (x0D), and Table 13-7 can assist in obtaining additional page information.

Some of the data collected from the free pages could be void of metadata (such as phone numbers, dates,
and times). The next section will cover write-ahead logs, which can also hold significant data that often is not
accessible within the original database.

Journal Files and Write-Ahead Logs
SQLite databases use files somewhat like cache files, which operate in a way similar to journal and write-
ahead log files, but instead of writing changes to the main database, writing occurs to a separate file.
Beginning with SQLite version 3.7.0, the write-ahead log (WAL) file became supported as a new transaction
control mechanism. All data that has yet to be committed, both new data and altered data, is saved to the
WAL instead of directly to the main SQLite database if the main database is in WAL mode. What is also
extremely interesting about WAL files is that the database engine will reference an altered page within the
WAL and ignore that page in the main database until a checkpoint operation occurs.

A SQLite database can use either a journal file or a WAL file, but it cannot use both concurrently. A
WAL file will be used instead of a journal file if the SQLite database is operating in WAL mode. Both WAL
files and journal files must be located in the same folder as the main database file in order to operate properly.
If a WAL file is removed, or if a database is removed and subsequent queries are run against the database
without an associated WAL or journal file, a file will be created to support the database. The SQLite database
transactions will COMMIT when a WAL frame is written that contains a COMMIT marker. A WAL will
generally contain multiple transactions. When a COMMIT occurs, the information that is unique and has yet
to be written to the main database gets committed, and any data that is non-unique or inactive remains within
the WAL file. The WAL file can assist with corruption and failure of the main database, and if this occurs,
the WAL file can then rebuild the main database with the data contained within the WAL. As mentioned,
the WAL does not have to exist within the logical file system, and these files are not recovered with a
standard Apple Mobile Backup (such as iTunes). The recovery of these files is available only by using a mobile
solution capable of conducting a more advanced collection using the file_relay service or techniques to obtain a
physical collection.

The main database the WAL file supports can be easily recognized because it shares the database name.

390

The WAL file often is much larger than the database itself. In Figure 13-27, the Cache.db WAL file is

almost 600 times larger than the main database! Quite often, the WAL file contains duplicate data along with
unique data from the main database. This is primarily due to the main database leaving the WAL file even
upon issuing a checkpoint. The WAL file just continues to grow.

FIGURE 13-27 Often the WAL file is much larger than the main database, because it caches data from
many instances of the database runs with the frames.

The WAL file is not used just as a backup, but as a storage location for data prior to the data reaching the
main database. All changes to the database are recorded to the WAL file by use of frames, recordings of the
changed content from a single page within the main database file. Data is written back to the main database in
a checkpoint operation. During this operation, the data within the WAL file is not removed but is marked as
inactive and can be overwritten if a new frame or frames are introduced to the WAL.

The WAL file has a unique file header, as shown in Figure 13-28, along with unique frame headers with
the file itself. The mapping of each is outlined within Tables 13-10 and 13-11. Using this information can
help the examiner identify the size and characteristics of each page within the file. Like the main SQLite
database the WAL represents, the WAL header can describe much about the contents of the contained file,
and using the header map, the investigator can traverse the file to identify data that may have been committed
or that has not been committed to the main database file.

FIGURE 13-28 The header of a WAL file from a Cache.db file, with the magic number, file version, and
database page size. Also, the first frame is visible.

391

FIGURE 13-29 Traversing 4096 bytes as indicated in the header for the page size, the next frame is located
within the WAL.

TABLE 13-10 The WAL Header Format as Outlined on SQLite.org

TABLE 13-11 The Frame Header Format as Outlined by SQLite.org

392

http://SQLite.org
http://SQLite.org

To traverse the WAL, the examiner must first obtain the page size from the four bytes staring at offset 8.
Once the page size is obtained, the examiner should navigate to offset 32, which is the start of the first frame.
The examiner can then navigate using the following formula,

(P + 24 = F)

where P equals the page size and F is the resulting frame offset. The 24 is added to the solution to take into
account that the examiner will be starting from the beginning of the frame header. If the examiner starts at
the actual start of the page, the offset would be equal to the page size. Each page, with the exception of a root
table, will contain the page identifiers listed in Table 13-6. The root table is easily identified with the database
header SQLite format 3.

Committed data that still resides within the frames, as shown in Figure 13-28, can also be historical data
that was once removed by the user and is no longer listed in the main database. This is another place the
examiner should traverse when looking for information that may have not been added to the main database at
the time of the collection. In addition, data that has been removed from the main database but still resides in
the WAL file can be located. Using the information in the file header, additional pages can be located and the
contents of the entire WAL file can be mapped, as shown in Figure 13-29.

The WAL file cannot be viewed in a standard database viewer for various reasons, including the fact that
the WAL file does not have a SQLite file header at the correct offset, there are multiple SQLite headers, and
the file contains incomplete and sometimes unintelligible bytes for a database viewer. Also, if the WAL file
exists in a folder outside of a forensic solution’s reach—say, within a logical folder on a desktop computer with
its main database file—problems could immediately be recognized. The WAL file will vanish if any SQLite
statement is conducted on the main SQLite database, and the main database will grow! The growth results
from the addition of data from the WAL to the main database for records that are marked to be committed.
Because the WAL can support concurrent-write transactions, new log records and appended log records are
occurring. Because of this, the marked frame within the WAL is referenced only for a unique transaction so
that any newly appended data to the WAL that may also be occurring on another thread is ignored. The
problem arises when running a query on a main database with the WAL file available: A single transaction
referencing a single marked frame can omit other data within the WAL file, leaving the examiner believing

393

that all data within the WAL is now moved to the main database. This is not always the case, however,

because frames that are not marked to be committed could be discarded. Also, the WAL file can grow
exponentially, and because of this growth will be checkpointed. SQLite by default sets this threshold at 1000
pages, but this can be changed by the app designer using SQLite commands. Also, the WAL file uses a
Shared Memory file that is located within the same directory as the WAL file, with the same name as the
main database and the .shm extension. This file is used by the WAL file as an index. Because multiple
processes are accessing the database concurrently, the SHM file is used to keep track of these transactions.
The SHM file is joined to the WAL file, and when the WAL is created, the SHM is created; when the
WAL is deleted, the SHM is also deleted. The SHM file contains no persistent data and is not generally of
value to an investigation.

An examiner should make sure the solution that will be used to examine SQLite databases does not taint
the database with the contents from the WAL file so a pristine snapshot-in-time image of the main database
is maintained. However, the examiner must also conduct a secondary examination of the contents of the
WAL file and, if available, commit the contents to the database and then find the delta information from the
main database and subsequent query. The secondary examinations should always be on copies of the
evidentiary files obtained from the original evidence.

A perfect example of the changes that can occur with a database file can be observed in the following
figures. A Cache.db file was exported from the com.google.GooglePlus app within an iPhone 5 file system.
The Cache.db file was 4KB in size, and a table schema had not been created for the SQLite database. The
SQLite header was in place, but a table had not been built. Figure 13-30 shows what the database revealed in
a SQLite database view—nothing. Table Schema is empty, so there are no records.

FIGURE 13-30 A query of the Cache.db file from com.google.GooglePlus did not reveal any records.

The main database, Cache.db, as well as the Cache.wal file, were exported into a directory, and tables
became available (Figure 13-31). A query of several of the tables and their rows revealed two records, both of
which had BLOB data and user data, important to the examiner.

FIGURE 13-31 A query of the Cache.db file with the associated Cache.wal file revealed records that had not
been committed and are now visible.

The Cache.db file grew from 4KB to 52KB, but the original Cache.wal file within the forensic solution
indicated its size was 1248KB. Further investigation of the Cache.wal file using the methods outlined in

394

this section revealed that a single page had been created 11 times within the WAL file, contributing to
the size of the original.

The investigation of write-ahead logs can be just as important as examining the freelist and free pages
within the main database. These files can reveal information that is not readily available within any mobile
forensic solution. Some pages within the WAL file had not been added to the main database file, and some
pages that had been marked inactive (deleted), upon checkpoint, could be resolved to the main database and
also removed. The examination of the delta between these two files could be eye opening if done correctly.

Property Lists
Property lists, or plists, are used in macOS and iOS devices; the filenames have the .plist extension, although
the extension is not always used with files in the iOS system. Plist files store Apple configuration files and
settings, application configuration files and settings, storage of history events for apps, and information that is
to be stored temporarily. They are sometimes compared to the Registry within a Windows operating system.
Apple describes a plist as a structured data representation to store, organize, and access standard types of data.
Furthermore, data can be expressed within a plist, but only certain types of data can be within a plist:
containers and single values (often called standard types). Both containers and single values are assigned to a
key, which contains a value or values depending on whether the data is a container or a single value. A plist
container and single value are represented by the name of the key value in brackets, <KeyOrValueName>, and
ending with a closing bracket, </KeyOrValueName>. The only exception to this is the Boolean values that
contain only the closing bracket at the end of the value: <true/> or <false/>.

Collections within a plist are either a dictionary or an array. A dictionary (Figure 13-32) contains key-value
pairs. An entire single plist in actuality is a single dictionary and is often represented as the root node. The
value can be obtained outside of the plist by a reference to the dictionary and key that is assigned to the value.
An array (Figure 13-33) is a collection of values that are indexed and can be referenced to by a single key
outside of the plist with an associated index or ordinal value (that is, name [0], name [1], name [2]). Array
objects are contained within the single container and can be single values and dictionaries.

FIGURE 13-32 A dictionary contains values and keys and can also contain other dictionaries, arrays, or
single independent objects.

395

FIGURE 13-33 An array is identified by a key and can contain multiple dictionaries or other single
independent objects.

Both arrays and dictionaries can be contained within each other. An array can be a part of a dictionary and
dictionaries can be a part of an array. The examiner should understand that a collection and an array are not
independent storage methods, but methods that store a list of common data in different ways to be easily
referenced.

If order index matters to the values and a change to the order index will alter the results, an array should
be used. A dictionary can represent a list of items, where the addition or removal of data does not change
the overall value since ordering is not a concern.

Plist data also contains single values, or standard values. Single values can be independent or contained
within an array or dictionary. These values must be of the following types as defined by Apple: string
<string>, data <data>, date <date>, number <integer>, number <real>, or Boolean <true/> or
<false/>. This data can be found within arrays, dictionaries, and the root node. These values are always
referenced by a key-value pair unless they are contained within an array. If they are within an array, as shown
in Figure 13-34, the key is defined by the array, which then will have one or more values, each indexed. Tools
such as plist Editor Pro for Windows can make it easy to view a plist that contains many different types and
data (see Figure 13-35).

FIGURE 13-34 An example of an array holding several values all related and indexed to the RATES key

396

FIGURE 13-35 A list view showing the many standard values both within the root and in a dictionary using
the plist Editor Pro for Windows

Apple recommends the use of property lists for the storage of a small amount of persistent information. If
large objects are required to persist, however, property lists should not be used, and other alternatives,
such as SQLite databases or other archiving files, should be used instead.

Obtaining information from the plist files within an iOS system is often automated by mobile forensic
software, such as Cellebrite and Oxygen Forensic Detective, but the examiner should be extremely cautious
with the displayed results. Some tools do not display the binary data within the rendered natural view. The
examiner must view this data outside and independent of most forensic tools. To do that, he or she can use
the free Property List Editor for Macs, available from the Apple Developer site, and for Windows, the plist
Editor Pro is available from www.icopybot.com/. Both tools enable the examiner to navigate XML and binary
plist files obtained from an iOS device. Using these tools can help the examiner recover data more easily than
using some of the mobile forensic solutions currently available.

Property lists can be stored in three different formats: text XML, binary, or ASCII. ASCII format is
seldom seen because it was used in the OpenStep framework, which Apple’s Cocoa is derived from. With the
release of OS X, ASCII property lists became obsolete, likely because of their read-only format. The ASCII
property list storage method will not be covered in this chapter. Both text and binary property lists are covered
in the following sections.

Text XML
A text XML property list is readable within an application such as Notepad or TextEdit natively, without
conversion. As an examiner moves through an iOS file system, a text XML file is easily recognized by the
header viewable in a HEX editor, as shown in Figure 13-36. The term “XML property list” is often used to
describe the plist file, when in actuality XML is a storage format, not a type of plist. Note that a binary plist
does not use XML but can be easily converted to XML to show the converted binary representation of the
data in XML format!

FIGURE 13-36 The header of a text XML plist is easily recognized within a HEX editor.

Text XML property lists can be viewed and edited, and they are far more portable than a binary plist.
However, when only a small amount of data is stored, a text XML property list can be much better for reads

397

http://www.icopybot.com/

and writes. The inverse would be true: if the persistent data is required to be large, the text XML format
would not be the best choice. To the examiner, this means a text XML plist will contain generally <string>,
<integer>, <real>, <date>, and Boolean <true/> or <false/>. Data <data> values are generally not
used within a text XML property list. The examiner should look into the text XML file for app settings and,
most importantly, the device settings as listed in the “Additional File System Locations” section earlier in this
chapter.

Binary
Binary formatted property lists are the most prevalent type used within the iOS file system, and binary is now
the default format for preference files. This was not always the case, as earlier versions of iOS used the
standard text XML format. This change occurred primarily because of the need to store more <data> within
the Plist. Apple recommends using a binary property list format when data size is important. The size will
negatively affect performance and speed of reads and writes if this information is stored within a text-based
property list. The binary format of the property list has a common header, bplist00, which represents a binary
plist. An example of the header is shown in Figure 13-37 within the com.apple.wifi.plist.

FIGURE 13-37 Binary plist file header represented starting at offset 0

Although binary plist files are better suited to hold <data> for faster read and write speeds, data values for
binary plists are generally stored as Base64 values because most developers, including Apple developers, seem
to prefer using Base64 for its compactness and lack of “plain textedness,” which is better for security (through
obscurity). Some plists using Base64 encode small files, strings, and even XML and binary plists within a
<data> key of a property list!

Base64 is a function that enables binary data to be transferred over media, allowing only printable
characters. Base64’s need was generated when binary content was required to be attached to e-mails. Items
such as media and files are converted to Base64 and attached per the Internet Engineering Task Force RFC
4648 Standards track from October 2006. Base64 uses values from the US-ASCII characters table (26 [a–z],
26 [A–Z], 10 [0–9]), and to round out the extra two characters for an even 64, both + and / are included.
Often, the examiner will see an equal sign (=) also used within the Base64 value. This character is used for
padding purposes if there are fewer than 24 characters; if the number of bits in the input stream is not a
multiple of 24, padding is needed to make up the remaining bits. The extra character is not part of the
encoded data, per se, but to decode the Base64 value, the padding value (=) will be needed.

Some forensic tools such as FTK and EnCase will decode the Base64 values when they are located within

398

a plist file, but if the tool is unable to decode them, other online services and portable tools can assist with the

decoding (Figure 13-38).

FIGURE 13-38 Binary plist com.apple.wifi.plist encodes the SSID values as Base64, which are easily
decoded to show the string value.

Investigation and understanding of property lists and their role throughout the iOS device can be
profitable for the examiner, most importantly during the documentation and testimony phase.

Miscellaneous iOS Files
iOS supports not only SQLite databases and property lists but also uses other standard files types such as text,
XML, JSON, and some other proprietary files. Also, encryption has become available for individual files that
pose a problem to the investigation at the file level. Nevertheless, additional files should also be investigated
within an iOS file system.

Log Files
Log files within an iOS file system do not hold much user data, but they can lend an overview of the device
operation. Some of the files and their definitions are listed here:

• /diagnostics/device_info.txt This file is located just off the root of the device file system and contains
many items of interest about the device, including the phone number, serial number, phone type, the
mobile equipment identifier (MEID) or International Mobile Equipment Identity (IMEI), and many
more user-specific and phone-specific details. This folder is obtained only with a diagnostic collection
using advanced services. This file is not generally available on an iOS 8 device collection, and the folder
diagnostics are no longer observed for current devices in a raw file system or otherwise.

• private/Library/Logs/lockdown.log This text file shows all of the connections attempted and made to
pair with the iOS device. The examiner can use this to observe connections and pairing of the device along
with the dates. This file is located at private/var/logs in iOS 8 and current devices only in a raw file system
(jailbroken, or otherwise) at private/var/logs as well.

• private/Library/Logs/lockdown_service.log This interesting text file shows the services that are accessed
when the device is paired. The file shows the services that the mobile forensic solution would access on the
device. This information could be important to help an examiner understand how certain files where
obtained, while others were not. This file is located at private/var/logs in iOS 8 and available with a
jailbroken device and current devices only in a raw file system (jailbroken, or otherwise) at private/var/logs

399

as well.

JSON
The JSON (JavaScript Object Notation) format is an open standard and uses readable text to transmit data.
Much like a dictionary, JSON uses a key-value pair to store data. JSON can be used on any platform, which
makes it suitable for use within an iOS device. JSON is based on standards from RFC 7159 and is used in
apps within the iOS file system as a substitute for a SQLite database. Both Instagram and Facebook apps use
JSON: Instagram uses a JSON file to identify media and associated text, and Facebook embeds JSON strings
within fields in the main database file. Since JSON was developed for server-to-browser communication
without plug-ins, it makes sense that JSON is used in these applications. Note, too, that web servers such as
Google, Yahoo!, and Twitter also return JSON-formatted strings. Typically JSON will not hold media
streams, but it will include the string to a local or remote URL that can be called to display the media.

JSON files, like the property list, can contain numbers, strings, Boolean values, arrays, objects (such as a
dictionary of an unordered set of name-value pairs), and nulls. The object value, much like the dictionary
within a plist, is the most widely used type of variable within the JSON file. The object can hold any other
type of variable available in the JSON open source format and is being used more widely within apps in the
iOS file system.

To recognize the JSON format, the examiner should look for the use of the curly brackets, { and },
starting and ending the file; brackets, [and], enclosing data strings; and colons, :, separating names from
values. The following example is a return from a server when the weather for the state of Idaho in the United
States was requested:

400

If the data in the JSON is analyzed, the examiner will see several objects defined: cord, sys, weather, base,
main, wind, clouds, dt, id, name, and cod. Values are associated with each object, which can be strings, arrays,

401

numbers, other objects, and, of course, Boolean values. The file can be more easily read using a free viewer
called Notepad++ and a free JSON Viewer plug-in, as shown in Figures 13-39 and 13-40.

FIGURE 13-39 JSON file from the sample weather from the Idaho example when viewed in Notepad++

FIGURE 13-40 JSON file from Instagram’s fsCachedData folder decoded into a readable format in
Notepad++ with the JSON Viewer plug-in

JSON files can hold valuable information within iOS devices. An examiner should be familiar with the
location and subsequent analysis of these files.

Chapter Summary
The iOS file system contains thousands of files that are examined by automated tools. With the examiner’s
ability to obtain the file system of an iOS device using iTunes backups, many files are already available.
Special services such as file_relay and house_arrest enable some automated tools to obtain files and folders

402

that simple iTunes backups fail to provide. Apple has disabled the file_relay service in iOS 8 devices, so files
that could have been recovered in previous iOS versions are no longer available. With new methods of
extraction, such as during jailbreak or using tools such as GrayKey, a complete raw file system can be available.
If these choices are unavailable to the examiner, however, it doesn’t mean that the examiner should abandon
navigating and searching the file system.

Files such as SQLite databases contain valuable data, and free pages can be recovered with little effort.
Free page data includes data no longer referenced, often referred to as inactive pages, within an active
database. Within the freelist, an examiner can navigate the page and identify these inactive pages—often
recovering valuable deleted data. Often the default in SQLite version 3.7x database files, the write-ahead log
holds valuable data that enters the WAL file prior to entering the main database. Automated tools often miss
the most recent data in the main database, but this data is still within the WAL file. Using the knowledge and
suggestions in this chapter, the examiner can recover and display this information, leading to results far
superior to those most automated forensic tools provide. Because a WAL file can also contain frames that are
marked inactive, deleted data can also be recovered, often identified by automated tools as undeleted. Having
the skills to determine where the data actually resides within the main database or WAL file is critical to the
examiner.

iOS devices contain many other files, including property lists, or plist files, which are generally either text
XML or binary files. The plist files within an iOS device include great information detailing settings,
configurations, user data, and passwords. Many forensic tools support these files natively, but some do not.
The examiner should be sure to identify the support of plist files by the mobile forensic solution and whether
or not the viewer within the solution displays all of the information. Some tools will show that there is binary
data within a key, but they will not display this data, such as FTK. The examiner should use tools such as the
Property List Editor for Macs and plist Editor Pro for Windows to dive into the property lists from iOS
devices. Both of these tools enable the examiner to rummage through both text- and binary-based property
lists, showing binary data within keys and more. Many other text files and settings files can be found within
the file system of an iOS device that can show not only device information and diagnostics but also user
information that can be important for any investigation.

The examiner can use the tables within this chapter to help develop a course of action. Using the
information on file location and file types can help the examiner peel the many layers of the iOS onion,
exposing the many artifacts often overlooked by automated solutions.

403

C
14 Querying SQLite and Taming the Forensic Snake

hapter 13 covered the various files within the iOS file system, and Chapter 15 will deal with files within
the Android file system. This chapter introduces the methods for scraping, carving, infiltrating, and

exposing the maximum amount of data from iOS and Android mobile devices—or any device with which the
examiner has access to files and folders. With repetition, practice, and desire, an examiner can uncover,
dissect, and parse critical data that an automated tool can miss.

In this chapter, SQLite database parsing will be demystified to offer the examiner a better understanding
of how automated tools pull data from these files. It includes instructions on creating queries within apps that
may (or may not) be supported by an automated tool that may be missing critical data or data types. SQLite
database files are the primary source for today’s smart devices, including iOS, Android, Windows Phone, and
BlackBerry 10 devices. These files, along with their cache files, contain an enormous amount of evidence.
Because of the many devices supporting this file type, the treasure trove of information about SQLite
provided in this chapter can be helpful for the examiner involved in any smart device collections that involve
these files.

Thousands of files are contained within a smart device file system, and the examiner should by now
recognize that automated tools cannot support every file type, dissecting each file and displaying its contents.
Because of this impossibility, the examiner should be versed in how to obtain that information without having
to document the contents of the file manually by photographing the mobile device or printing the screen
containing the data. Instead, the examiner can automate the process by creating custom-built SQL queries or
custom-built code using Python, a free, open source scripting language that is making its way into many
forensic tools.

Python enables an examiner to build file parsers, file identifiers, file searchers, and much more, removing
the bottleneck that can be created by the process of software design, from implementation to release. An
examiner can now create, in as few as eight lines of code, support for a file type within an app that would have
taken a software company two months to release to the public.

Technological power must shift back to the examiner because of tech growth volatility. A software
company releases fixes and updates to apps that have been updated three times prior to the solution’s support
release. Essentially, a forensic solution’s release is built on a previous version of an app and as such can be
completely useless to the examiner. Given the tools and information, the examiner can supplement the
automated tools to fill the gap between solution release and app proliferation. This is how a mobile forensic
expert is born.

Querying the SQLite Database
Probably the most important skill for an examiner is his or her ability to analyze a SQLite database. Of
course, there are automated tools that will query and recover information from these file types, but what if the
data is not retrieved, is in an improper format, or the particular app database is not directly supported? With
the approximately 6.2 million available apps for iOS, Android, Windows Phone, and BlackBerry 10 devices,

404

an examiner needs to have advanced skills to open the associated SQLite databases, examine the contents, and
create queries to recover the needed data.

Many tools are available for both Windows and Mac devices that can enable an examiner to view the
contents of SQLite files and extract targeted information to produce data for any investigation. An examiner’s
reliance on an automated tool to recover app data consistently will be short lived, however—not because the
automated tools are not up to par, but because the forensic software companies are aiming their products at
moving targets. Apps can be updated weekly or monthly, so keeping up with the database schema changes,
data value formats, and addition of functionality is an almost impossible task. To combat that, the examiner
must be able to traverse the SQLite database and build queries to stay current with even the “zero-day” apps.

What Is a SQL Query?
SQLite, as mentioned earlier in the chapter, is a structured language and, as such, SQLite understands most
of the standard SQL queries and uses a few of its own. Communicating with a SQLite database is completed
by formulating a structured query using a properly formatted statement. Several types of queries can be used to
create, delete, and alter tables (these will not be covered in this book because they will not be needed for
forensic investigations). An examiner querying SQLite databases should be aware of several basic statements
shown in Table 14-1 that are often used “under the hood” of forensic software. Other statements not covered
in this book can be found at SQLite.org.

TABLE 14-1 SQL Syntax for the Investigation of App Data Within SQLite Databases

405

If an investigation of the SQLite database will occur outside of the forensic environment, the examiner
should use a compiled SQL browser because of communication requirements with the SQLite database.
Windows does not natively communicate with a SQLite database unless the SQLite engine is installed,
available, and used for communication; using a compiled application, either portable or installed, will be much
easier. (Alas, if the examiner wants to communicate at the command prompt with the database, that is also
easily done—but is not covered in this book—and the sqlite3 library is needed.)

Of course, prior to communicating with the SQLite database, the sqlite3 library
(www.sqlite.org/download.html) must be available or used by any software the examiner will use to
complete the navigation of the database. The most current and up-to-date open source browser for
SQLite databases is available without cost on the DB Browser for SQLite site (http://sqlitebrowser.org).
The examiner should become familiar with the DB Browser for SQLite and the exposed SQLite database
using this tool, which is supported by Windows, Mac, and Linux. This robust software will allow for
navigating, viewing, query building and saving, as well as exporting the executed query data. The
following section outlines the examination of a database file within DB Browser for SQLite in an effort
to convey the usefulness of the tool.

406

http://www.sqlite.org/download.html
http://sqlitebrowser.org

Looking into a database after being exposed to the interworking and file metadata, an examiner should be
able to understand the information displayed by the automated tool. As you examine the figures in this
chapter, you will see that the information identified within the DB Browser GUI includes the kind of
journaling used and the size of the page in bytes, as shown in the Edit Pragmas tab in Figure 14-1. If
necessary, the examiner could find this information manually, now armed with the knowledge of its location
in the database file.

FIGURE 14-1 The Edit Pragmas tab, where you can see and edit information about the database

While using a database viewer, the examiner can view tables and rows as a hierarchy and concentrate on
identifying the relationships between the tables as defined in the schema. SQLite databases within apps will
include some information in one table, more in another, and sometimes even more in a third. Being able to
locate these relationships is important to the examiner, and using a GUI to identify keys within a database can
assist when these tables need to be joined in an effort to merge the tables using their relationships. Keys define
the relationships within a database, and using a key within a query will enable the JOIN to be successful and
show all the related data. There are two types of keys: primary keys and foreign keys.

DB Browser for SQLite can alter, create, delete, add, and modify the SQLite database with features
included within the product. Before using it on an actual evidence file, examiners should work only on a
copy of the evidence file and learn about the feature set by reading the application documentation.

Primary keys are unique and singular, and only one can be assigned within a single table, although the
table is not required to have a primary key. The primary key is generally an integer primary key and can often
contain an empty column (NULL) if the table does not contain a ROWID (rowid). Most SQLite databases
will use ROWID (rowid) or a derivative of ROWID to indicate the primary key. Within a database viewer,
the primary key is often shown graphically as a key icon next to the table. The primary key is used by the
database to create tables and to make updates and other changes to the database to ensure that information is
not overwritten.

407

To maintain uniqueness, an examiner should look at the ROWID in iOS databases. A gap in the
ROWID indicates that a row has been deleted, because the ROWID is never duplicated, to maintain
uniqueness within the table.

Foreign keys, on the other hand, are references that show the relationship between tables. You can observe
this relationship when a value in the parent table is equal to a value in the associated child table. You can also
identify a foreign key within a SQLite database table if a column contains one or more NULL values, which
indicates that the column is a foreign key per SQLite standards (this will also be reported by database
viewers). The examiner will use the related values between existing parent and child tables to build JOINs
within a SQL query.

When constructing and viewing app databases, the examiner should pay special attention to foreign keys
by first checking the tables and verifying the relationships prior to creating a SQL query. This information is
available in the Database Structure tab, shown in Figure 14-2. Some keys may be related to other tables, and
on many occasions, a field (column) is not identified as a key but can be used as such to create stellar results.

FIGURE 14-2 Once the database is imported into the application, the Database Structure tab shows the
tables and keys associated with a column; these are important for joining tables.

BLOB (Binary Large Object) data is used in many SQLite databases to store binary data representing
large objects (such as images and files) not to exceed 65,535 bytes. Typically, the BLOB data will be displayed
as thumbnails of images, small video clips, or text. Having a tool to look at the BLOB data (Figure 14-3) can
be extremely important to the examiner, since most mobile forensic solutions do not resolve the BLOB data.
If binary files are too large to be stored efficiently within the database, they will be stored to disk and then
referenced within the BLOB data. The examiner should carefully examine BLOB data, because this might be
the only location with important images, videos, or text from the mobile device.

408

FIGURE 14-3 Looking into the table cfurl_cache_receiver_data, the examiner can click any record labeled
BLOB and the data will be exposed in a separate window, as shown with a video file that can be exported and
viewed within a native viewer.

Once an examiner has located the tables and significant columns within the table, any associated foreign
keys between tables and child tables should be ascertained. A SQL query should then be created outlining the
significant tables and their rows, the related table columns (foreign key), and either a reference or filter. The
SQL statement can then be executed on the database. The SQLite engine will parse the database based upon
the built statement and produce the results. As shown in Figure 14-4, the examiner can manually input, paste,
or load a saved SQL statement into the Execute SQL tab to execute the script.

FIGURE 14-4 Results of the executed SQL statement

Using a GUI to navigate a SQLite database, an examiner can uncover much more information than is
available by relying on a software engineer to decide what is important in a SQLite database. No automated
tool supports the many cache.db files within an iOS device, and as shown in Figure 14-4, a lot of additional
information gathered using a SQL query can assist any mobile forensic examination.

409

Building a Simple SQL Query
Building a query is not the most difficult thing to do, but some examiners believe it may not be the best use of
their time. For those examiners, there are automated tools that build SQL queries with just a few clicks of the
mouse. Others will appreciate some basic queries covered within this section to help them understand the
compilation and execution of a statement on a database.

The easiest queries can be formulated using some of the following examples. Note that data shown within
brackets (< >) are variables the examiner would fill in with a unique name from the database being examined.

The first query starts with a SELECT and asks the database to retrieve ALL (*) of the rows from a table the
examiner specifies after the FROM statement:

SELECT * FROM <TABLENAME>;

The next query asks for four columns within the table. The data from the four columns will be retrieved
and displayed:

SELECT <column1>,<column2>,<column3>,<column4> FROM <TABLENAME>;

The next query will obtain all the records from a single table, but will show the matching records only if
column 4 contains the string Lee. This query can help the examiner search for records with a column and
return only data that contains that record.

SELECT * FROM <TABLENAME> WHERE <column4> = 'Lee';

The next query will obtain records from two different tables within the same database and combine the
results. The statement requests the data from columns 1 and 2 in both table 1 and table 2 if the information in
column 3 of table 1 matches the information in column 4 in table 2. This statement is extremely powerful
since most apps will be using multiple tables.

Knowing how to build SQL queries will help the examiner not only in creating his or her own queries but
also in understanding how an automated tool uses queries to obtain information from a database.
Furthermore, an examiner can save the template SQL queries and simply change table names, column names,
and functions and reuse the queries on many apps within the iOS device and any other media where a SQLite
database is located.

There are some limitations, of course, to these examples. What if the data is stored in UNIX,
MICROSECONDS, WEBKIT, MILLISECONDS, MAC DATE, or other date formats? In such cases,
the SQL statement will probably be more complex, especially if the examiner is assigning formulas to rows—
but writing such a query is not impossible, and more about this is covered in the next section.

Once the examiner gets more comfortable building queries, he or she can build queries that extract
selected data from any SQLite database. Following are some examples of queries that can work with iOS
databases for two popular apps: WhatsApp and Kik Messenger.

410

The WhatsApp query will extract the messages, any attachment data information, and associated metadata
and match it with the username of the sender. This first query starts with the SELECT command and then the
<TABLENAME>.<COLUMNNAME> from the database FROM the <TABLENAME> and <TABLENAME> based upon the
primary keys of the SELECTED TABLES.

The next query for Kik Messenger will extract valuable message data, convert date and time information,
and match the associated data with the username of the sender. This query is similar to the preceding query,
but the datetime function converts the unixepoch date to a normalized date:

Automating Query Building
An examiner can manually build queries within many SQL database browsers. As mentioned, time is
sometimes against many examiners as they perform forensic examinations; they might not have the time to
learn, dive into, or formulate their own queries. These examiners tend to rely on automated tools to extract
data from SQLite databases or apps that come their way. There are just too many apps in the world today—
with no end in sight—to rely on commercial tools. For these examiners, and even those who feel comfortable
writing queries, there are automated query building tools available within many mobile forensic tools and in
standalone products.

For example, Oxygen Forensic Detective and Cellebrite Physical Analyzer include a SQL builder that
enables an examiner to build queries based upon the selection of the table and then the rows. Using a SQL

411

builder, the examiner can assign a data format (such as a String, Date/Time, Duration) and create a SQL
query without having to write a single line of SQL code.

Paul Sanderson, from Sanderson Forensics, created a tool called Forensic ToolKit for SQLite, which is
similar to both the Oxygen Forensic and Cellebrite tools. It also enables browsing, write-ahead-log reviewing,
and SQLite navigation. This tool can be used to verify information discussed within this chapter, such as
exploration of pages, frames, and byte-level information with a built-in HEX view.

A third tool that automates query building is SQLQuery Builder (Figure 14-5). Using this tool, the
examiner drags and drops, double-clicks, and joins tables by dragging the parent table to the child table to
form the relationship. Columns can be added to the query or entire tables by simply moving them into the
query build frame. There is no limit on the foreign keys that can be joined between multiple tables within a
single database, and, when completed, the SQL query can be executed and results reported.

FIGURE 14-5 A complex query between two tables with multiple rows using a foreign key can be completed
in a short time using automated query builders such as SQLQuery Builder.

These tools will assist the examiner who does not have the time to create his or her own queries, but they
also help the examiner gain a better understanding of what it takes to create a SQL query. These automated
query builders also help the examiner not to miss or misidentify data—or give up for lack of support by mobile
forensic solutions. In Figure 14-6, the results of the query of a database show what current mobile forensic
solutions do not offer: by using SQL queries, an examiner can recover any type of data from most SQLite
databases.

412

FIGURE 14-6 Results of a SQL query

The analysis of SQLite databases is critical during any mobile device examination. An examiner who
understands SQLite structures, the data they can hold, and the various types of data formats and hidden data
within free pages is a necessity for examining today’s smart devices. With so many apps available from the
iTunes Store and Google Play, having this knowledge and the ability to harvest these artifacts is essential for
any good examiner.

Analysis with Python
Mobile devices contain massive amounts of data, and as you know, mobile forensic solutions cannot extract
every app’s data or parse every file for its data. For an examiner to be successful and eliminate such obstacles,
he or she will have to think outside of the box, forget about the limitations imposed by a software solution,
and start thinking of ways to parse the information from these valuable files. A mobile forensic examiner
today must believe that in order to be prepared for tomorrow, you have to think about tomorrow today.

In the early days of mobile forensic examination, data on mobile device file systems was usually parsed
manually. Most early forensic examiner training focused on extracting data, manually locating the data,
converting it into a readable format, and finally making the data presentable for court. As device storage grew,
these tasks became extremely time consuming, often taking weeks for a first-generation iPhone. Forensic
solution providers struggled to release updates to their software to deal with the growing number of smart
devices. To make the best use of their limited time, examiners needed a way to automate the repetitive task of
manually parsing data that was not supported by mobile forensic solutions.

Enter Python, the most widely used scripting language in mobile forensics today. Using Python, examiners
can create individual “programs” to act upon a file, folder, image, or really anything stored on a mobile device.
Python scripts act as parsers to complete the task the examiner previously undertook manually.

Python was created in 1989 by Guido von Rossum, who also helped create the ABC language, a precursor
to Python. Python also has roots in the C programming language. It was targeted at nonprofessional
programmers with its ease of readability, many supported functions, modules, and cost. Python is 100 percent
free, and because of its many contributors, it has a large repository of modules for building powerful scripts

413

with little effort. Python is currently at version 3.4.x and 2.7.x, which are available on the www.python.org
web site. The most popular version of Python is still version 2.7, and most available scripts in the community
are written for that version. Version 2.7 does not contain many of the new modules introduced in Python 3,
however, which makes Python 2.7 and 3.x not cross-compatible; modules are version specific, and running a
2.7 script against a 3.x interpreter will fail. In the following section and all included examples, Python 3.x is
used.

If the examiner is looking to keep current with modules and support, using Python 3.x is recommended.
If a software solution has built-in Python support, such as in Cellebrite Physical Analyzer, it is important
to read the documentation to determine what version of Python the solution supports. Because Python
2.7 and 3.x are not 100 percent compatible, understanding the version of Python supported by the tool is
important.

Python can be used in forensics to recover volatile memory from mobile devices, recover files, decrypt files,
parse strings and dates from a file, recover passcodes from a binary image, pull exchangeable image file format
(EXIF) data from photos taken with the device camera, and so much more. The things a Python script can do
are limited only by the examiner’s imagination. If an examiner becomes familiar with the creation and
execution of a Python script, the limitation of forensic tools will be negligible and the script will be invaluable.

This section is not intended to teach every aspect of Python, but to introduce the concept of using scripts
to automate processes and supplement the mobile forensic solutions available. If you are looking for additional
information on learning Python, the www.python.org web site offers guides for both nonprogrammers and
programmers and is a wealth of information.

Python binaries can be downloaded from www.python.org/downloads. To use Python, the interpreter
must be installed prior to running a script. However, if scripts are being created to be used within a
forensic tool such as Physical Analyzer, the interpreter does not need to be installed. Both forensic
solutions have built-in interpreters and have installed their respective Python bundles.

Python Terminology
An examiner will hear many terms when getting involved with a programming language. These terms describe
actions and data types and are also important to know while creating statements within the code. Of course,
all terms used in Python cannot be included within this section, but terms that are commonly seen, heard, and
used are included here. These terms will be used throughout the section to create scripts that complete tasks
the examiner can immediately use in a mobile forensic examination.

Functionality Terms
Python’s syntax can explain the code in comments, load common libraries, and commence and end the
executed code. Common syntax that anyone conducting mobile forensic exams using Python should

414

http://www.python.org
http://www.python.org
http://www.python.org/downloads

understand are listed next.

Comments Python and any other programming language can become difficult to read, especially when the
code contains many lines. To help with readability, an author can annotate the code with comments to assist
with the interpretation. A statement is not processed by the interpreter as long as the comment annotation (#)
precedes the comment.

Expressions When values, variables, and operators are combined, an expression is formed.

Operators Symbols are used to represent some type of computation in an expression. Examples of operators
are addition (+) subtraction (−), multiplication (×), and division (/) operators.

Statements In Python or any other programming language, a statement is a unit of code that can be
executed. A statement can comprise a single word, multiple words, a single line, or many lines.

Variables All programming languages, including Python, use a name to represent a value. This value can be
assigned a name, and the name can be used to refer to the value throughout the script. In this example, x and
lastname are both variables: x holds the integer 11 and lastname holds the string 'Reiber'.

Values Values are the represented data within a variable and the data with which a script is working. Data is
represented by values, and values are represented as a type.

Data Types
The data type or value will tell Python how the data is to be handled and how expressions should be
evaluated. Python is different from some other popular programming languages, because the type of value or
variable does not have to be declared; Python just knows. In some languages, such as C#, a variable must be
declared and a type assigned prior to use, as shown in this C# example:

string lastname = 'Reiber';

The Python equivalent does not have to declare the type; the interpreter knows the value is a string because of
the quotation marks:

lastname = 'Reiber'

Python’s data types are listed here with some examples.

415

Boolean A Boolean value is either a true or false value. A Boolean is used to make a decision. The Python
interpreter evaluates a statement, determines the Boolean value of the statement, and then acts as instructed in
the code depending on whether the statement is true or false.

11==11

This is true (the == tests for equality).

11==1

This is false.

11!=11

This is false (the != tests for inequality).

11!=1

This is true.

String A string is text that contains characters—numbers, letters, spaces, and anything else as long as it is
surrounded by double ("string") or single ('string') quotation marks.

print ('Python can be good for forensics')

Integer Numbers without a decimal point are integers. Integers are recognized by Python in a statement
because they are not surrounded by quotation marks.

Float Numbers with a decimal point are integers. Floats are also recognized by Python in a statement
because they are not surrounded by quotation marks.

List Lists are represented to Python enclosed within brackets: []. A list is used in Python when ordering is
important and an index is needed to represent a store of data that can include any Python type. The index
within a list always starts at 0, so the first value in a list would be referenced by [0].

The result would be

'WindowsPhone'

Dictionary Much like lists, dictionaries store multiple types of data within a single listing, but instead of
using ordering by an index like a list, a dictionary uses a key-value pairing system. Dictionaries are represented
in Python using braces: { }. Each key can have only one value, but multiple keys can store the same value.
The key and value within a dictionary are separated using a colon (:), and values can be accessed with the key.

416

The result would be

'104 S Overland'

Additional Terms
Additionally, Python provides ways to create arguments, import common or created libraries, assign
parameters, and create functions to run methods within a single script, as listed next.

Argument An argument is the value (or values) that is passed to a function. The two types of arguments are
a keyword (kwargs) and positional argument (args). A keyword argument contains an identifier, whereas a
positional argument does not. In this example, firstname is an args and lastname is the kwargs:

Another argument commonly used within Python is a system-specific function/parameter, which allows
command-line arguments to be used with a Python script called sys.argv. To use sys.argv, the argv module
must be imported from the Python sys module into the script. Once this module is imported, the script can
assign a variable that will be used as the command-line argument. The first argv will always be the script name
and can be referenced as argv[0]; subsequent command line arguments then follow. Here’s an example:

The first line imports the module argv from the module sys, and the second line holds two variables, script
and directory; both are assigned the argv argument. The directory value can then be used in the script after the
value is obtained at the command line when the script is executed (that is, my_script.py
C:\Path\To\Directory).

Parameter A parameter value is contained within the parentheses of a function and defines which types of
arguments are accepted by the function.

Modules Modules are separate, precomposed scripts that can be imported by another script to use the
module’s function. Using modules expands the functions of a script without having to recode many lines since
they are already composed within the imported module.

import An import statement is generally accompanied by a value telling the Python interpreter what module
should be loaded into memory. This import statement imports the standard Python system module and OS

417

module, making that code available to the script that is being composed:

import sys

import os

def These three letters represent define and are often included within Python code to define a function. A
function is a block of reusable code that performs a single action and is often requested multiple times within a
Python script, where writing the code block over and over would be inefficient. A statement within the code
can call the defined function using the function name followed by parentheses. The parentheses often contain
a variable that represents an input parameter or argument. Using functions is highly recommended when
repetitive tasks are required. Here’s an example:

Here’s how to call the function and perform the creation of a directory if one does not exist:

The function create_and_check_path() is called, and the variable tmpDir is passed and used within the
function to see if this path exists and, if not, to create the path.

Python Rules
When creating a Python script, you must follow some rules, which enable the interpreter to make sense of the
script, understand what blocks of code work with others, and know how the script should progress. These
rules are based upon the Python Enhancement Proposals (PEPs) within the Python Developer’s Guide
(www.python.org/dev/). The information in this section does not cover every rule that is suggested in the
PEPs, but it represents the most frequent issues examiners might encounter when creating or running Python
scripts.

Indentation Python defines blocks of code using indentation—exactly four spaces should be used per
indention level. Indenting a statement line four spaces tells the interpreter that it belongs with the statement
immediately preceding it. Using indentation levels enables blocks of code to work either together or
independently, depending on the function the block of code is providing. Mixing tabs and spaces within a
script will often create interpreter errors; spaces are the preferred indentation method. Colons are also used to

418

http://www.python.org/dev/

declare that the following line will be the start of an indented block. Colons are not entirely needed within the

code to declare an indentation is coming, but their use is widely accepted to help with the readability of the
code, and if an editor uses syntax highlighting, it keys off the colon to identify syntax problems. Here’s an
example:

The preceding code shows the colon in the first line, which indicates the next line will be indented four
spaces. The second line is indented, which indicates that it is a part of the block started in the first line. This
line also has a colon, which indicates that the following line will be indented. The next line, x = 518, is
indented to indicate it is a part of the block immediately preceding if bar: and tells the interpreter the
statements at this level, which also includes y = 911, will be evaluated as part of the if bar: statement
block. The code continues with a dedent (the opposite of indent) and the else: statement. The dedent
indicates to the interpreter that this statement is at the same level of the if foo: statement and will be
evaluated along with the if foo: statement. If the else: statement is true, the following statement will be
evaluated because the interpreter recognizes the indent and associates x = 11 with the else: statement.

Line Length Python documentation recommends that a single line be limited to 79 characters.

Imports Python rules state that import statements will always be placed at the top of the file and on separate
lines, as shown earlier in the section “Additional Terms.”

String Quotes Python allows either double or single quotation marks, which should be mixed only when a
literal quote must be added to the string.

String Formatting Python allows two methods of formatting strings using placeholders instead of using the
variable within the string. This method is much like creating a template and filling the placeholders with
variable data assigned at runtime. This is often referred to as string interpolation. The variables are located at
the end of the statement, and the placement of the variables into the statement string is dictated by the
placement in the list. One method uses braces ({}), whereas the other method uses the percent sign (%). The
% is currently deprecated in Python 3.x, but because it is frequently used in Python 2.7x, it is important that
the examiner understand its use within a Python statement. The difference between the two methods is that if
the examiner uses the {} string formatting technique, he or she must use the .format() method within the
statement; if the examiner uses the % string formatting, the .format() method is not used.

The following would be used and observed in Python 2.7x and older versions:

419

The following example would be used and observed in Python in version 3.x:

When using this technique, if the placeholder contains an integer (such as {0} or{1}), the integer within
the braces identifies the variable that will be used at that position. If there is no integer, as in the example, the
placement in the string indicates the ordinal position within the list.

print A big change from 2.7x and 3.x versions of Python is the use of parentheses for print statements. To
print in Python 3.x, the examiner must enclose the information that is to be printed in parentheses. When
converting any 2.7 scripts to 3.x scripts, this change will be the most frequently encountered. An example of
the print statement is in the preceding string formatting example.

Using Python Scripts
As indicated earlier in the chapter, the examiner can use Python within every forensic examination to
complete various tasks that automated tools cannot do. Much like using SQL queries, Python scripts enable
an examiner to dive deeper within mobile device file systems, uncovering data and formatting that data into
readable output. Python scripts can be built to search for files; to search for strings; to carve data from binary
files and file systems; to pull out laser-focused data from files such as EXIF, IP addresses, or names; and even
to convert data into a readable format. As mentioned, Python scripting can enable an examiner to do just
about anything with the data; the only limitation will be imposed by the examiner’s imagination.

The following sections contain code examples that the examiner can use in forensic situations. These
scripts can be copied, modified, or used as is. Included within the code snippets are comments that explain the
code to aid in understanding or to enable the examiner to make adjustments when needed.

EXIF
Exchangeable image file format (EXIF) can be important for any investigation. Several tools, including
Physical Analyzer, XRY, and Oxygen Forensic Detective, will parse EXIF data from photographs and display
it and enable the reporting of such—but what if the examiner simply wants to extract the location information
from all the images within a directory without having to look at each one within a directory? A customized
script is the answer. Using the script located here and the directory to be searched as the argument, the
examiner can run this code as a Python file at the command line or within an interpreter against a directory
containing photos. The output data will contain the latitude and longitude along with the name of the file
from which it was obtained.

420

421

422

Searching for Files
Examiners may want to search through a file system within a mobile device and identify and output certain
files, or at least obtain their names and locations. This would be much like filtering the files by extension in an
effort to find important files quickly. Why not write a Python script?

The file extension is important; if the file extension is changed to hide the real file type, this script will
not locate the file. However, a simple MIME type script could easily be created with this script to
identify the file by its header, which would identify the file even if the user changed the extension.

423

Hashing a Directory of Files
As you’ll recall, obtaining hashes for files is important for verification, validation, and overall case success.
Many mobile forensic solutions provide hashes for media only and another for created reports. The examiner

424

can create a hashing script that will enable him or her to hash an entire file system and output that list of data

to a CSV. When access to a file system is available, examiners can process and list all files using this script:

425

426

Using Regular Expressions
Searching across a data set to locate strings and other values can often provide the “smoking gun”; however,
most mobile forensic tools do not enable searching across data sets, and if a tool does support searching, it can
be limited by what can be searched and how a search can be performed. By creating a Python script, the
examiner can create regular expressions for things like credit card numbers, Social Security numbers, name
formats, IP addresses, and more. These regular expressions can be controlled within the script to turn on and
off what regular expressions will be used. An examiner can also add to the list in the following example when
needed. Python is very versatile.

427

428

Chapter Summary
Building SQLite queries to supplement an automated tool’s poor support, or even lack of support, for
extracting information from an app is a necessity for today’s mobile device investigations. Today’s tools such
as Oxygen Forensic Detective SQL Viewer and Cellebrite’s SQL tool can build visual queries without your
knowing a line of SQL! However, queries can be built using many free tools as well, such as the SQLQuery
Builder and SQLite Toolkit, with little knowledge of SQLite structures and statement building as well. The
examiner must understand the SELECT command and various others, such as JOIN, ON, and WHERE, even
when using an automated query builder. This knowledge will help the examiner explain what the commercial
mobile forensic tools are doing when extracting information. Understanding what is “under the hood” will
help an examiner build superior queries that extract much more information, surpassing even the most
expensive mobile forensic solutions. The information in this chapter showed that data is available and within
the examiner’s grasp—just build a query and extract it!

SQLite queries cannot be built for files that are not SQLite files, but there are thousands of these types of
files within a mobile device. Armed with the power of Python, no file is safe from an examiner’s custom
Python scripts. Building Python scripts from scratch may seem intimidating, but the examiner can consult
many online resources to help with writing scripts. In this chapter, you were exposed to the surface-level
scripting needs and rules, along with terminology frequently used to build simple, quick, and effective scripts
for mobile device file interrogation. By using this information, an examiner gains the basic skills to complete
several tasks using Python. An examiner should be able to take an already built Python script and modify it as

429

needed to complete a specific task. In addition, an examiner should be able to create small scripts using the
various statements, variables, expressions, and operands in the Python language. The take-away is the
realization that these tools and methods enable an examiner to parse information from any file, any file
system, and any mobile device image using custom-built Python scripts. The sky is the limit, and the options
are unlimited for an examiner who has the desire and aptitude to learn.

430

A
15 Advanced Android Analysis

ndroid devices are the most widely used smart devices globally. In fact, on May 17, 2017, the CEO of
Google, Sudar Pichai, announced that more than 2 billion active Android devices were in use globally.

Some research firms have placed the market share as of August 2017 at almost 90 percent (87.7 percent stated
by DMR, a statistical company), though Google VP Dave Burke reported it was around 66 percent in all
actuality, after statistical companies put market share considerably higher. Consumers can purchase any of the
approximately 18,000 to 25,000 Android devices available, including smart phones and tablets. Luckily for the
mobile examiner, these devices all have similar file system structures.

This chapter is dedicated to the deconstruction and analysis of the many files stored within the Android
file system. As with a logical analysis of Android devices, in order for an examiner to perform an advanced
analysis, a file system must be available. Such an analysis can be accomplished using a backup of the device, a
noninvasive rooting technique, or acquisition via JTAG (Joint Test Action Group), ISP (In Service
Programming), or a chip-off procedure. An examiner can also obtain some app and file system files using the
Media Transfer Protocol (MTP) method discussed in Chapter 10, which will obtain the internal storage area
along with external media.

As with iOS devices, there is, of course, the “tip of the iceberg data,” but that information pales in
comparison to the app data, file system cache files, and user storage files that can be found intertwined within
the Android file system. Using SQLite queries and Python scripting, as discussed in Chapter 14, the examiner
can analyze artifacts that an automated tool is incapable of parsing. Deep analysis of the Android file system
should be attempted with each examination. This chapter lists common storage areas, such as Short Message
Service (SMS), contacts, Multimedia Messaging Service (MMS), and call logs, along with files that are found
within most Android file systems. Tables and lists of additional file locations are also revealed throughout the
chapter.

As discussed in Chapter 13 with regard to iOS advanced analysis, freefile lists and the write-ahead log
(WAL) are also present within an Android device, and this data will be extremely helpful during many
examinations. Android malware can also pose a significant problem for the Android operating system, and it
can infiltrate many of the apps from Google or any other Android app repository. An examiner must
investigate the possibility of malware within the apps on an Android device, which can add complexity to any
Android investigation.

The examination of an Android device should never be limited simply to obtaining a logical collection
using a mobile forensic solution’s application package (APK) file. Using the correct processes, procedures, and
methodologies can yield a monumental amount of investigatory data in any Android mobile forensic
examination.

Android Device Information
Android device manufacturers include LG, Samsung, Motorola, ZTE, and others, but it is the underlying file
system that is of importance to an examiner, not the manufacturer. The file system is formulated by the

431

Android OS and the version used by the actual device. One Android device might look like an apple, while
another looks like a banana—but the examiner should understand that the data under the hood, including the
file system look and feel, is almost identical in all of them—depending, of course, on the OS version. Granted,
an Android device’s firmware can make a difference—so Samsung might include some files that Motorola
does not, and LG might include some files not found in a ZTE device. The point is, one Android device
might look different from another on the outside, but the underlying file system on both is remarkably similar.
To be quite honest, the storage areas for actionable examiner data are relatively consistent over OS versions,
with security and low-level development updates being the main changes.

Examiners should refer to the device examination by operating system type instead of by simply stating
they are examining a Samsung Galaxy device. With more than 60 different Samsung Galaxy devices on the
market and available, referring to the operating system version, security patch, and model first will help
solidify the file system variations. It is possible the same Samsung Galaxy devices can be using two different
versions of the OS, depending on the carrier. Documenting the OS version can also assist the examiner when
analyzing another similar device, because often file system location and other data are the same.

To obtain many of the details (such as security patch and model number) described in this chapter, the
examiner or device owner will usually need to unlock the device to examine the settings. Most tools report
most of the data mentioned here, with the exception of the security patch version.

The particular methods used to obtain the information should not matter so long as a file system is
available. The location of data within the file system will be the same, whether an image is obtained from a
binary dump, backup, JTAG/ISP, or chip-off. The information in this chapter should be used as a map to
point the examiner toward the various pots of gold within the Android file system.

Partitions
When an examiner is completing a non-invasive or an invasive physical collection of an Android device, he or
she can find many partitions within the file system. Some practitioners state that there are six partitions, but
from personal experience, I know that there is too much variation among devices to estimate the number of
partitions an examiner may encounter—I have encountered four, eight, and even twelve partitions. The issue
with today’s devices, and encryption, will be the primary partition (userdata), and the mount point /data folder
will be fully encrypted.

Partitioning in Windows creates independent areas on disk, assigns a drive letter, decides where an
operating system can be loaded if active, and determines where files can be stored or designated as a program
directory. Android devices, however, do not use drive letters, but instead use mount points, directories under
the root directory (/) that contain the data from each partition. All partitions are within the internal storage of
the Android device but are logically separated (see Figure 15-1). The Android system sees partitions as
separate, independent media, even though they are mounted in a single logical location under root. This root
location is in fact a virtual pointer to the actual location of the data in flash media, and this is evident when
you look at a JTAG binary dump or chip-off, where many folders are located under root and contain various

432

file system files and folders.

FIGURE 15-1 A JTAG binary file, when imported into FTK Imager, will show as a logical file system under
the root folder.

Depending upon the Android’s operating system version, an examiner can encounter various options. For
example, prior to Honeycomb (version 3.0), the sdcard0 partition would be accessible within the partition
table and was often included in a collection by use of a symlink (symbolic link) to /mnt/sdcard, the mount
point for the media card. However, on device versions later than Gingerbread (version 2.3), the examiner may
see another “external media card” that may actually be the internal media card. Because some devices can
contain both internal and external media, an examiner should always examine both the sdcard and ext_sd
(sdcard2, sd, external_sd) partitions. In addition, some other partitions reside only within certain device
families. Table 15-1 shows the Android OS version numbers, release dates, and common names.

TABLE 15-1 Android Operating Systems

433

For example, Samsung Galaxy S Android devices have a data partition within their file systems called
dbdata. With the Samsung Galaxy series, the devices not only kept the legacy dbdata partition but also
conformed to the other Android operating systems and included a userdata partition. Samsung devices are the
only devices in which the user data is split between the dbdata and userdata partitions, which is observed
primarily in Samsung S Series Galaxy devices running Froyo and Gingerbread (2.2 and 2.3) versions of
Android. An examiner should know whether both of the partitions are available or the singular dbdata
partition is available. When data is split between these two partitions, the personal information manager
(PIM) data and “tip of the iceberg data,” along with their respective databases, are generally stored in the
dbdata partition, and app data, phone settings, and configurations are stored on the userdata partition. If the
examiner’s solution does not allow for simultaneous importing of both partitions, these locations will have to
be individually analyzed to recover valuable user data. The predominant version of Android remains 7.0 and
7.1 for devices, with the exception being the Pixel and Nexus series devices that are currently utilizing
Android 8. However, current Android devices (as of this writing, Android 9x) consistently store third-party
app data and PIM data within the /data folder (AKA userdata). The legacy dbdata partition has not been
observed since the Series S Samsung devices.

When examining an Android device, the examiner usually will be looking through the userdata partition,
found at /data/data for physical and /data for critical artifacts, but the cache partition often contains valuable
data as well. The various file system types, along with paths to various files, will be covered in the following
section. Table 15-2 shows various memory partitions and descriptions that might be encountered. Note that
this list is not all inclusive but represents partitions commonly encountered.

TABLE 15-2 Partitions Encountered Within an Android Mobile Device

434

The File System
The various Android file system types were referenced in Chapter 8 and range from the first Android devices
using YAFFS (Yet Another Flash File System) or YAFFS2, to Robust File System (RFS), to the EXT
(Extended File System) variants, and F2FS (Flash-Friendly File System) developed by Samsung.
Predominantly, EXT 4 is used as the underlying file system format for today’s Android devices. If the device
utilizes an internal or external media card, various File Allocation Table (FAT) file system formats could be
used. The newest SD card format was created by Samsung but released in Android O, called SDCardFS,
which is replacing FUSE (Filesystem in Userspace). This is something an examiner will not notice, but it
fixed a glaring forensic implication that few could explain: the change of a date on media if transferred to a
computer from the device, typically via MTP. The date and time was often altered, which could have serious
forensic implications. These various file systems are currently interpreted by most mobile forensic tools, with
the differences in file systems generally being the size of the storage blocks on the flash, journaling, read/write

435

speed, and minimum/maximum file sizes. The newer the device OS version, the larger the block size typically.

Today’s mobile forensic tools can distinguish and mount these file systems without a problem, displaying a file
system to the examiner that can be navigated and parsed. It was typical in the earlier years of Android analysis
for the examiner to use Linux tools and command line tools within Windows to format these file systems and
view them properly. That, fortunately, is no longer the case. What this means to the examiner is that the
examination and analysis can occur immediately, requiring little work to maintain or rebuild the Android file
system’s integrity—so the examiner can concentrate on the analysis.

The userdata partition contains not only the user data storage areas but also app information, app
configuration files, uncompiled app code, and virtual sandboxed–compiled code. With the exceptions
mentioned with the dbdata partition, on some Samsung S Android devices, the examiner will find a gold
mine of information within this area. Not only are user files and app data available, but the actual app code is
within the examiner’s reach. With the app code, an examiner can also look for malware instances—something
a standard logical collection and analysis cannot offer. The cache partition (Figure 15-2) can contain /backup,
/lost+found, and /recovery folders. The /backup folder often contains Android app packages with stored
temporary data and can yield good artifacts. The /lost+found folder will contain files that had been recovered
as a result of file-system corruption and should also be examined. Finally, the /recovery folder holds log files
listing the recovery operations of the mobile device.

FIGURE 15-2 The cache partition should be examined for possible evidence when this partition exists
within the Android device.

Android dbdata and userdata partitions extracted from a Samsung SCH-I500 running version 2.2.3 are
shown in Figures 15-3 and 15-4. There are obvious differences between the two partitions in the number of
folders and files stored. Within the userdata partition is the majority of user data within an Android file
system, including valuable app data and system configuration files; the dbdata partition contains valuable user
data in the lone /databases directory. The separation of user data between partitions is not typical, and
generally the examiner will concentrate on artifact hunting within the userdata partition and media storage
(such as sdcard, emmc, sd) partitions within the Android device output. Outlined in Table 15-3 are good
locations for an examiner to investigate when conducting an advanced analysis of an Android’s userdata file
system. The file system layouts for today’s devices up to Android 8.0 are similar, as discussed later in the
chapter.

FIGURE 15-3 The dbdata partition in some Samsung Android devices can contain valuable data within the

436

/databases folder.

FIGURE 15-4 The userdata (data) partition is much more robust and is found with the dbdata in
predominantly Samsung Galaxy S Androids, but in /data through the current OS (9x).

TABLE 15-3 Android Partitions Compiled to Show the Major Landmarks Within the userdata, dbdata,
sdcard, and emmc Partitions

437

438

Unallocated space can be observed within each Android partition and is accessible with physical collection.

439

This area typically is unstructured because software is unable to build a file view. Generally, an examiner must
use data carving tools to parse through the many blocks of data within this area. Many mobile forensic tools
contain some type of data carving tool, but any data carving conducted by a forensic tool should allow for
custom file type searching along with typical file types (such as jpeg, .html, .pdf, and .doc). FTK, EnCase,
Scalpel, Oxygen Forensic Detective, and Cellebrite Ultimate are recommended. The carving of unallocated
space, when available, should occur, because many images, videos, database files, text strings, and other
evidentiary files can be recovered from this space. (This luxury of unallocated space is not available for iOS, as
discussed in Chapter 13.) Of course, if the file system of an Android device has been encrypted, recovery is
much more difficult and sometimes impossible. In devices running Android 6x to Android 9x, encryption is
the default.

Devices up to Android 7 using full disk encryption (FDE) are based on dm-crypt, which works at the
block device layer and can encrypt the device and removable media. This is not a file-level encryption but a
full disk encryption, which differs from iOS encryption. FDE on an Android applies only to the user partition
(/data), not the entire system. This means that the system partition containing the OS is unencrypted, and
often the way in which decryption techniques exploit the OS is via the system partition. The encryption is
only as good as the password in place, since the algorithm is based on the complexity of the password or
phrase. At Android 5.0, new techniques for encryption were added that allowed only the used portions of the
data partition to be encrypted, helping with speed. Furthermore, added to Android 5.0 was the encrypt on
first boot feature, and an off-the-shelf device running Android 5.0 would encrypt by default on the first
bootup; these devices cannot be returned to an unencrypted state. This is different for devices that had been
upgraded to Android 5.0; these devices could, in fact, be returned to an unencrypted state if a factory reset was
performed. Some investigative methods exploit devices with unlocked bootloaders, replace the system OS
partition, and attempt to capture a user entering a password with a keylogger. Others, such as Passware, tested
versions up to Android 4.0, to brute-force the password or phrase and then use the information to decrypt the
user data.

The caveat to all of these tools is an unlocked bootloader, because using these methods on a locked
bootloader can lead to all data on the user partition being wiped.

Also, open source tools such as hashkill (now deprecated) can break the passcode or phrase in versions up
to Android 4.4, even when another encryption password is used along with the lock PIN or password.
Android Lollipop (5) changed the encryption to rely not only on the PIN or passcode but also a secondary
salt; thus, the currently available methods will not work. Android 5 devices came out of the box with
encryption turned on, but without a password, and using the randomly generated keys shipped with the
device, the user data via regular extraction such as ADB backup and logical agent is available when the device
is turned on. If the user does not enter a password, the device data will be still be accessible with forensic tools,
but physical extraction of the data can be hampered because of the encryption. At Android 7, file-level
encryption was implemented and made available, which obviously made decryption more difficult, because at
the file level a different decryption key could be implemented, which is much different from block-level or

440

entire device encryption. This is true for both Android 8 and 9. The decryption of these devices upon

obtaining a full physical extraction is where many commercial tools are devoting their research and
development.

A basic agent-type logical examination of the Android device does not allow access to the device file
system because the methods employed by software solutions simply use an installed APK file to run code to
query known databases. If the database has a permission level appropriate for communication with another
app, the data can be extracted. As mentioned, access to the internal and external media partitions is accessible
with MTP tools and will allow for the collection of this data and give the examiner a file system–like
experience—often containing many app media storage areas—but access to the /data area of the device at
critical databases is not available unless root access is granted. If an examiner must conduct an advanced
analysis of an Android device, the tool or method must either gain root (such as custom ROM, exploit, and so
on) access via JTAG/ISP or chip-off. Some access to app data can be obtained using the built-in backup
function (ADB Backup) within Android versions 4.x and later, but again this is only a portion of the data
from the Android user data partition, and as the operating systems have progressed, the amount of app data
has dwindled.

Predominant Android File Types
Android devices contain a multitude of file types, ranging from APK, DEX, LOG, SO, ASEC, DB, and
JSON, to XML and TXT files. Also included are WAL files and journal files for SQLite databases—
significantly more journal files than are found within the iOS file system when looking to older Android OS
devices. The types of files an examiner will use in artifact investigations will be SQLite and XML files. APK
and DEX files can be used for malware investigations, as discussed later in the chapter in the section “Android
App Files and Malware.”

SQLite databases contain significant information, and an investigator would be remiss if he or she did not
conduct a comprehensive analysis of these files. Android SQLite databases are no different from those of iOS
and can be examined in much the same way. SQLite databases contain tables and fields with user preferences,
data, and any persistent data the user and app needs stored for later use. Hundreds of thousands of apps are
available for installation on any Android device, and mobile forensic solutions cover only 0.014 percent of the
available applications currently available on the Google Play store. Of those supported apps, automatic parsing
of data is often flawed. Because apps can change upon each update, a mobile solution is often outdated at
release, so these solutions are always at a technological disadvantage. An examiner who can parse apps
manually will always have the upper hand on these advances. Figure 15-5 shows an example of parsed data
from a SQLite database. In this example, many tools parse the media store but fail to recognize the associated
thumbnails.

441

FIGURE 15-5 Collecting SQLite information manually parsed from apps that are not supported by any
automated tool is a necessity with Android devices, such as the MediaStore database from
com.android.providers.media.

XML (Extensible Markup Language) is used extensively within the Android file system for settings,
passwords, application protocols, network data sharing, and other preferences. The most significant XML
files are located in the shared_pref folder within the app folders (see Figure 15-6). XML is a file type that uses
<?xml version="1.0" encoding="utf-8"?> as a header, with a set of rules for encoding documents in
machine-readable form. As discussed in Chapter 14, XML can be cleanly parsed using Python scripts to
decode and display the key and values listed within the file.

FIGURE 15-6 XML files found within an app’s shared_pref folder can be used by an examiner to obtain
critical investigation data.

Other file types within the Android file system include text files, log files, APKs, and DEX files, as
discussed in the following sections.

442

Artifacts
Much like iOS, an Android device is full of digital gold if the file system is obtainable. Hundreds of SQLite
databases, XML files, text files, media files, and more are stored within the user data area of the device. A
logical extraction of an Android device still yields some great data, but the information has no “meat”—in
other words, the information displayed is simply a query of the appropriate database, and the data is rendered
to the examiner within the user interface. What about the files this data came from? These files contain
valuable fields that might not have been queried by the mobile forensic solution’s APK file but can be accessed
if the file is obtained. Also, deleted data within the database free pages can be recovered, as discussed in
Chapter 13 with iOS, along with the WAL files that are used. This “tip of the iceberg data” and its locations
are listed in Table 15-4 to assist the examiner in recovering the data that cannot be recovered with a logical
collection.

TABLE 15-4 Standard “Tip of the Iceberg” Android Data, with Database Locations for Additional Analysis
when Needed and Validation on Automated Parsing by Forensic Tools

443

444

445

Additional files such as system files, log files, and user settings within the Android file system are also
available and can reveal many things about the device, including the OS version, mobile device specifics, user
information, and other items pertinent to mobile devices use. By relying on a standard logical Android
collection, the examiner is limiting his or her examination to a very small percentage of the available data
within the mobile device.

“Tip of the Iceberg Data”
The mobile forensic solutions used by the examiner often collect significant data from an Android device.
This data is active data from the databases within the user data and typically includes data from contacts, call
logs, SMS, MMS, media, browser, Wi-Fi, and a few others. This is the “tip of the iceberg data,” with the
bulk of the information residing “underwater,” however—even more so than with iOS. Because an Android
logical extraction queries only the active data, the inactive or free page data or any other field not queried will
not be collected. At least with iOS, an examiner would have access to the database the mobile solution queried
to obtain the data presented in the user interface—but with Android, not so much.

Using advanced collection methods, however, the examiner can collect the entire file system, including
database files and others, for advanced analysis. Table 15-4 represents the typical data that is extracted using a
mobile solution’s APK file. Using the associated paths, the examiner can investigate the various database files
for additional information. Also, information logically obtained by the mobile forensic solution can be verified
and validated to ensure that dates and times are accurate, along with any missing fields from the reported data.
An examiner can pull additional information from these locations that the logical collection missed.

Additional File System Locations
A common mistake made by many examiners is to begin the investigation immediately by going to the app
area. Although the app area is a fruitful place and often mesmerizes even the most seasoned examiners, a
better idea is to venture into many other areas within the Android file system.

Device configuration files, installed application accounts and device accounts, user settings, device details,

446

and often password information can be gleaned from outside of the app data folder. Needless to say, the actual
APK file and the compiled DEX files can be obtained in a file system–level extraction. With the actual files,
static malware analysis of the code within the APK and DEX files often helps determine whether malicious
code is present. The following section will outline some of the more plentiful areas for gathering system
information. All of the root directory information and path data are located in Table 15-3 earlier in this
chapter.

Clipboard Information
The path /clipboard/ is generally found only within a Samsung Android device and contains various folders,
each identified with a unique number. Pure Android systems store clipboard data in RAM by the Clipboard
service. However, each folder holds a file called clip (see Figure 15-7). The clip file header holds a value,
android.sec.clipboard.list.ClipboardData<type of data>, and the end of the header is xptX (X
= a variable value that changes depending upon the clip file). If the <type of data> is text, the clipboard
content will be a text string; if it’s HTML, it’s a web page; if Bitmap, it’s an image file. If a bitmap is indicated
within the header, the image files will be in the same folder as the clip file. If text or HTML, the data
immediately follows the header. In current Samsung devices, in a secondary location,
android.samsung.clipboardsaveservice/f/, the examiner can find saved images to the clipboard.

FIGURE 15-7 A clip file along with the associated image files

Log Files
In Android devices, particularly Samsung devices, services report errors and then log these errors within the
log folder for exceptions within an app or device service. An examiner can find significant information in this
folder and associated text files within a physical extraction. However, in a logical ADB extraction, several
commercial tools will also include the files Dmesg.log, Dumpsys.log, and Logcat.log. Some text files of
interest are listed here:

• /log/CallDropInfoLog.txt Listing of failed calls along with the dates and times of the dropped calls. The
date is in the format YYYY.MM.DD HH:MM:SS.

447

• /log/CallNosvcInfoLog.txt Listing of calls that were attempted when the device did not have service.
The date is in the format YYYY.MM.DD HH:MM:SS.

• /log/dumpstate_app_error_x.txt.gz If more than one dumpstate file is within the folder, the x will be an
ordinal number. This file is a compressed folder created when an app crashes with an uncaught runtime
exception. Tools such as 7-Zip can be used to access dumpstate files. Android versions up to 4.4.2 can
contain significant user logins, settings, and more. The dumpstate file captures the state of the device at
the time of the app failure, often producing data that cannot be found anywhere else on the device.
Android 4.4.4 patched some of these vulnerabilities. The following illustration shows a log file produced
within an Android 2.3 Samsung SGH-I727 device. It clearly indicates an incoming message alert from a
phone number that was critical to an investigation, since the date and time were also logged.

• /log/dumpstate_app_anr_x.txt.gz If more than one dumpstate file is within the folder, the x will be an
ordinal number. This file is a compressed folder that is created when an app receives an App Not
Responding (ANR) event. A message to the user of the device is generated, indicating that the app is not
responding and the log will be created. This file can be opened with tools such as 7-Zip. By using regular
expressions formatted for e-mail, there is a possibility that data can be recovered. Android 4.4.4 patched
some of these vulnerabilities.

• /log/dumpstate_app_native_x.txt.gz If more than one dumpstate file is within the folder, the x will be an
ordinal number. This file is a compressed folder that is created when an app error occurs during a process.
This error does not cause an exception and subsequent crash, and the user is not notified because this
process is moved into the background services. This file can be opened with tools such as 7-Zip. By using
search terms such as contentView, contentText, and tickerText, an examiner can find relevant data within
some Samsung device log files. Android 4.4.4 patched some of these vulnerabilities.

• Dmesg.log This log will report health information about the device to include temperature, battery
operation, current, and more. This documentation log is created with the device system reports
information on the device.

• Dumpsys.log This log will report on application starts, current applications running, reboots, resets,
Bluetooth data to include MAC, BSSID, SSID address, and much more. This file can be used for the
investigation of a reset device or to get the application last used if there are no other details extracted by
the software.

• Logcat.log This file can capture application logs that are running on the device. For example, the syncing
of contacts to an automobile via Bluetooth can be identified within the logcat.log file, along with many
other interactions the system has with apps on the device.

System Configuration
Settings that persist over restarts on an Android device can be stored within the /property folder and can assist
an examiner in determining user and device settings. These files are all prefixed with persist and then the <data
description>.

448

• data/property/persist.radio.cdma.mdn This setting within a CDMA device, if available, will show the
device’s mobile dialing number (MDN), the device phone number.

• data/property/persist.service.adb.enable This setting indicates whether or not Android Debug Bridge
(ADB) is enabled on the device. This is a Boolean value; 0 is false and 1 is true. This will generally be 1 if
the device was collected using mobile forensic tools, so the state will not determine whether the user had
enabled ADB. However, if the examiner uses JTAG or chip-off techniques, this value will be indicative of
the user’s actions.

• data/property/persist.sys.country This setting indicates the country in which the device service is
registered, which may or may not indicate where the device was last or is currently located. This will be a
two-character representation such as US, KR, or UK.

• data/property/persist.sys.locale This setting indicates the language and country in which the device
service is registered, which may or may not indicate where the device was last or is currently located. This
will be a two-character representation such as US, KR, or UK.

• /property/persist.sys.language This setting indicates the language the device is currently set to display
and use, represented by two characters; these identify the culture code used by the device for letters,
numbers, signs, and so on. The file persist.sys.locale contains the language now.

• dataproperty/persist.sys.timezone This setting is the last system time zone update to the device. Since
most mobile devices update their time zone, this value will represent the last time zone location of the
device. This can be obtained via a cellular or Wi-Fi connection, so an examiner must be sure to isolate the
device because this value could update if the device connects to another network.

• data/property/persist.usb.config This value indicates what services will be enabled when the device is
plugged into a computer. Here are some examples:

• mtp Only MTP will be available.

• mtp, adb Both services will be active when the device is plugged in. This will be seen frequently if the
examiner is using mobile forensic tools that root the device, and a true value will generally be available
only with a JTAG or chip-off collection.

• /property/persist.mot.encrypt.mmc This Boolean value is present only in a Motorola Android and
indicates whether or not the external media card will be encrypted.

Usage and Logs
The /system folder contains a wealth of information for the examiner, including more settings and storage
files for Android system functions, account information, security information, and app listings.

• data/system/accounts.db This SQLite database lists all of the accounts that are used on the Android
device. The app username and password can be located in this file. As of version 2.3, the password value is
no longer plain text but a Base64-encrypted value. For an examiner, this can be valuable information for
identifying usernames for specific Android accounts.

• data/system/user/0/accounts.db This SQLite database lists all of the accounts that are used on the
Android device. The app username and password/token can often be located in this file. For an examiner,

449

this can be valuable information for identifying usernames for specific Android accounts.

• /system/dmappmgr.db This is a fantastic SQLite database (Figure 15-8) for an examiner to determine
apps that are frequently used and apps found on Samsung devices that had at one time been installed on
the device and are no longer there, including the last time the app was launched. For an examiner, being
able to determine app usage and services used can be critical to an investigation.

FIGURE 15-8 Actual dmappmgr.db from a Samsung Android device showing the 379 app records outlining
the app name, number of launches, and critical date and time information

• data/system/recent_images This folder contains the screenshots of the corresponding items (app) and
actions found within the recent_tasks folder. This could be a gold mine, almost a play-by-play of some
actions by the user on the phone, along with images of the actions.

• data/system/recent_tasks This folder contains XML files the contain the task ID as well as the activity
being utilized by the task, along with date and time information for the first activity time, the last activity
time, and the last time moved. This, together with the recent_images, is a great find for the investigation.

• /system/gesture.key This file contains the SHA-1 value of the device gesture lock if it was used. The
gesture.key file is a hash of the pattern in a byte array. Many online sources can be used to obtain the
gesture coordinates from the SHA-1 hash, but this is not really necessary for an analysis of the file system.
If the examiner wanted to examine the device powered on and navigate the user interface, he or she could
replace the gesture.key with a hash that has been generated in another Android device and use that file
instead of the original. The examiner can then enter the created gesture to unlock the device. This is
deprecated, and now the gatekeeper.pattern.key is used. The table lockscreen.password_salt is now in
/system/locksettings.db, with the added security of being device-specific.

• /system/packages.list This text file identifies the app location and the app that is currently on the
Android device.

450

• /system/packages.xml This XML file identifies the app location and the app that is currently on the
Android device, plus the app permissions.

• /system/password.key This file contains the salted SHA-1/MD5 calculation concatenated. The salt is
located in the settings.db secure table under the key lockscreen.password_salt within the
/data/com.android.providers.settings folder. If the examiner is looking at this file, access has already been
made, and accessing the device via the UI is probably unnecessary. If necessary, the examiner can use the
salt and the hash with a tool such as hashkill. This is deprecated, and now the gatekeeper.pattern.key is
used. The table lockscreen.password_salt is now in /system/locksettings.db, with the added security of
being device-specific.

• /system/SimCard.dat This text file lists the previous and current SIM operator, SIMSerialNumber,
PhoneNumber, CurrentSIMCountry, SIMOperator, SIMOperatorName, CurrentSIMSerialNumber, and
SimChangeTime, which is encoded in milliseconds. For an examiner, this can be a location to obtain the
SIM information of previous UICC cards inserted and the current UICC, even if the UICC is not in the
device at the time of collection. This information can be found at
/data/com.android.providers.telephony/databases/telephone.db with current devices.

• /system/sync/accounts.xml Android devices enable the user to sync all data across accounts. For an
examiner, this can create recoverable evidence, because the account usernames for apps are listed in this
file. The examiner can link the username to the associated app using the information found in the
accounts.xml file.

• /system/usagestats/usage - <date> These files can assist the examiner when looking for apps on a
particular date. The text file is named usage - <YYYYMMDD> and is a Unicode binary file.

• data/system/usagestats This folder has a subfolder, usually 0, which then contains other subfolders: daily,
monthly, weekly, and yearly. XML files within the folders include all the apps and details of each. The
details are similar to those found in the dmappmgr.db in Samsung devices described earlier.

Wi-Fi Information
Wi-Fi information can be critical for many investigations. The data located within the /misc/wifi folder is
recoverable and contains Wi-Fi and hotspot information. This data often shows the SSID and configuration
settings.

• /misc/wifi/networkHistory.txt This offers much more verbose connection information than what is
found in the wpa_supplicant.conf file on most devices, to include connection times (date/time) and
failures.

• /misc/wifi/wpa_supplicant.conf or /wifi/bcm_supp.conf With logical extractions using an APK, the Wi-
Fi information is collected, often without passwords. By navigating to the location within the file system,
the examiner can locate each Wi-Fi spot to which the device was connected, along with the SSID and
password. This information is stored within a dictionary and is readable in a text editor (see Figure 15-9).

451

FIGURE 15-9 Information from the wpa_supplicant.conf file is clearly readable within a text editor and
contains access point names and passwords.

• /misc/wifi/hostapd.conf If the device was set as a hotspot, the information in this file will identify the
SSID that was transmitted by the device and the hash of the password.

• /misc/wifi/softap.conf This contains the SSID of the hotspot and password configuration.

/data Folder
The primary source for examiner gold is the /data folder. This folder contains not only the stock Android apps
such as e-mail, contacts, call logs, SMS, and MMS but also device-specific apps that may be found only on
Samsung devices. This folder will also contain third-party apps and content. Unlike iOS, which has a distinct
folder for iOS stock apps and another for third-party apps, the Android does not make that distinction. All
apps and even some Android settings files are located within the /data folder. As referenced previously in
Table 15-4, some Samsung devices also use a dbdata partition to store this same data, and references within
this section will indicate this distinction. This section covers Android settings locations, stock Android apps,
some Samsung-specific databases, and third-party apps.

Like iOS, Android will prescribe the reverse-DNS naming scheme for the apps located in the /data folder
using the top-level domain (such as com, net, kr, org), the domain, and then the app name as the package
name (pkg). Some apps use subdomains as well. For example, Samsung uses com.sec to prefix its stock
applications (sec stands for Samsung Electrical Company).

The app folders have a hierarchy much like that of iOS. Android development API and SDK guidelines
direct developers on how an app should store data, but like iOS, an app can create folders and store data in
these folders if it must persist. Android does indicate that some folders must be used for certain
circumstances, and these folders and the other common folders are outlined in Table 15-5. Note that Android
development API information specifically outlines the protection of data during backups. This means that a
standard ADB backup of Android devices can be missing many third-party application databases. This is not
a limitation of the software or ADB, but is simply set by the app developer in the manifest during
development.

452

TABLE 15-5 App Folder Common Directories and Associated Content

Stock Android Folders
Android devices usually contain these folders within the /data folder. Android has two levels of locations that
store data—one level uses com.android.providers.<name of app> and the other uses com.android.<name of
app>. The com.android.providers apps use the android.providers class, which allows other apps to access the
content providers within the apps that are using this class. These apps are generally those with contacts,
images, calendar, and SMS. An examiner should recognize all of these items using this class since most of
them are artifacts that can be extracted using a logical collection. Because mobile forensic solutions use an
APK file to access the content stores within an Android device, the accessible data types must conform to the
classes allowed by Android. The standard com.android apps are stock Android apps that ship with the OS;
they do not generally allow com.android.provider type control and are infrequently used. A few stock
com.android apps contain data, such as com.android.browser, but typically these apps are void of user data.
However, most Android devices also use the /data/com.google.android<name of app> path in every device
encounter. Some of these locations will also be covered as a semi-default Android stock app with new devices.
The following stock Android folders are the places an examiner will likely uncover valuable data on each
Android investigation:

• /data/com.android.browser/databases/browser2.db This is the SQLite database of the built-in Android
browser that contains tables for bookmarks, history, and user searches. This area should be investigated
even if the mobile solution parses this data, because some columns are not reported by automated
solutions. This has been deprecated in many Android devices. The path
/data/com.android.browser.provider is still available in devices such as Samsung, but only with physical
collections. However, the Samsung default is Samsung Internet Browser and is collected with both
physical and logical collections at com.sec.android.app.sbrowser. On many Android devices the default

453

browser has been replaced by the Chrome browser located at

/data/com.android.chrome/app_chrome/Default/

• /dbdata/databases/com.android.browser/databases/browser.db Same as the previous entry, but this
location can be found within some Samsung devices, particularly the Samsung Galaxy S series. This has
been deprecated in newer Samsung Androids.

• /data/com.android.browser/databases/autofill.db This SQLite database stores user-saved information
such as name and address information to be filled into forms stored within the browser history. This has
been deprecated in many Android devices. The path /data/com.android.browser.provider/ path is still
available in devices such as Samsung, but only with physical collections.

• /data/com.android.browser/app-databases/Databases.db This SQLite database stores the app and path
information for apps using the Android web browser via WebKit functions. The mobile web app database
will be stored within the app-databases folder identified within the Databases.db and can be explored to
uncover use of that mobile web app. This has been deprecated in many Android devices. The path
/data/com.android.browser.provider/ path is still available in devices such as Samsung, but only with
physical collections.

• /dbdata/databases/com.android.browser/app-databases/Databases.db Same as the previous entry, but
this location can be found within some Samsung devices, particularly the Samsung Galaxy S series.

• /data/com.android.browser/app-geolocation/CachedGeoposition.db This SQLite database stores the
app geolocation information if the user enables this feature when asked within the browser. This is
typically seen within WebKit apps such as Yelp, Walmart, Google, and many others. This file will show
the date and time, in milliseconds, when the location was requested. This has been deprecated in many
Android devices. The path /data/com.android.browser.provider/ path is still available in devices such as
Samsung, but only with physical collections.

• /dbdata/databases/com.android.browser/app-geolocation/CachedGeoposition.db Same as the previous
entry, but this location can be found within some Samsung devices, particularly the Samsung Galaxy S
series.

• /data/com.android.chrome/app_chrome/Default/ In many Android devices, the Chrome browser is
installed by default. The main databases are located in this area and have been previously described:

• Cookies This SQLite database contains the Chrome cookies that give creation date, host, name, and
last access in milliseconds.

• History This SQLite database contains the downloads, URLs, and visits of the user. The urls table
contains the URL, number of visits, and last visited time.

• Login Data This SQLite database contains usernames, passwords/token, times used, and date
created.

• Top Sites This SQLite database contains the URL and thumbnails of web sites. This thumbnail data
can be converted to a JPEG and viewed, oftentimes obtaining user information of the visit.

• Web Data This SQLite database is often contained in many applications that can access web pages
within their application. These databases can contain credit card numbers, keyword searches, autofill

454

data, and server addresses. This file should not be overlooked in a forensic examination.

• /data/com.android.chrome/cache/Cache/ This location is full of web site page data containing IP
routing, URLs, search strings, and more. This is the temporary Internet location that should not be
overlooked.

• /data/com.android.email/databases/EmailProvider.db This SQLite database stores the built-in Android
e-mail client data for the user. The primary tables are Message, Attachment, and EmailAddressCache.
The secondary database located in this same folder is called EmailProviderBody.db, and it contains the
actual content of the entire e-mail message JOINed using the messageKey in the body table. Of course, if
a user uses another app for e-mail, these databases could hold limited information. This location is now
/data/com.android.email/db/EmailProvider.db.

• /data/com.android.email/cache/ This folder can store many files that were embedded into the sent e-
mails, including pictures, HTML banners, and much more. An examiner can find many artifacts in the
cache area that have been deleted from e-mail or other file locations on the device. This appears to be
deprecated in new Android devices.

• /data/com.android.mms/db/message_glance.db This database is of interest and is extracted in a regular
ADB backup and contains tables events, logs, and priority_sender. The table event lists phone numbers as
well as the date of the event. In the logs table the address, which can be a phone number or e-mail address,
is available, as are the direction of the contact (incoming/outgoing), how many events were made, and
whether an event was deleted. The priority_sender includes the phone numbers that are saved as favorites.
The content of the messages is not available.

• /data/com.android.phone/databases/ This folder can contain several SQLite databases, including
autoreject.db, callreminder.db, and rejectmessage.db, if the user has set them up to handle certain phone
tasks. These databases will not be created unless the user has set them up. The database names identify the
action and subsequent storage of that data. Autoreject stores numbers the user has identified to be rejected
when receiving a call, callreminder will notify the user of a call, and rejectmessage enables the user to send
a customized message on rejection of calls.

• /data/com.android.vending/databases/localappstate.db This database stores installed apps and the
installation date along with the username associated with the app. The path has changed to
/data/com.android.vending/db/.

• /data/com.android.vending/databases/suggestions.db This database stores search terms used by the
device user when searching for Android apps to purchase. The path has changed to
/data/com.android.vending/ and db or databases (depending on the device).

• /data/com.android.providers.download/databases/downloads.db Android devices have always controlled
the information that is downloaded from the Internet independently of the app using class
DownloadManager. Apps use this class when a file is downloaded to the device, and the information
related to the download is stored within this database. This includes downloaded e-mail attachments,
downloaded web content, and much more. If the file no longer exists on the mobile device, the metadata
can possibly still be recovered from this database to indicate that it was, in fact, downloaded to the device.
The path has changed to /data/com.android.providers.download/ and db or databases (depending on

455

device).

• dbdata/databases/com.android.providers.download/downloads.db Same as the previous entry, but this
location can be found within some Samsung devices, particularly the Samsung Galaxy S series.

• /data/com.android.providers.media/databases/external<variable>.db Android devices use another class
called MediaStore, which caches all media on the internal device and external media. The media can
include images, videos, audio, and even files. This database holds any data within the storage areas that
does not contain a file named .nomedia. If the .nomedia file is encountered, the MediaScanner will not
search that folder, and the information will not be cached in the external.db file. The <variable> listed in
the path can be seen in some Android devices—it is the actual serial number of the SD card that was
inserted. Some Android devices’ com.android.providers.media folder can contain multiple external.db files
because multiple external SD cards were inserted, and subsequently the MediaScanner scanned and
documented the data from each, storing the data in independent files. The external.db SQLite database
contains many tables, but the most important is the files table, which contains all the files that have been
scanned, including dates/times, paths, geolocation, size, and what app the file is associated with—to name
a few. An examiner can gather critical information on the files within the Android mobile device with
associated metadata. The path has changed to /data/com.android.providers.media/ and db or databases
(depending on device).

• /data/com.android.providers.media/databases/internal.db The internal.db file stores media paths to
Android built-in system needs. The information found in the internal.db is generally of no use to an
examiner because the information is system-based, not user-based, data. The path has changed to
/data/com.android.providers.media/ and db or databases (depending on device).

• /dbdata/databases/com.android.providers.media/ Same as the previous entry, but this location can be
found within some Samsung devices, particularly the Samsung Galaxy S series.

• /data/com.android.providers.settings/databases/settings.db The settings.db file is used by the device to
persist all of the user’s settings within a SQLite database. The tables of interest within the database are the
system and secure tables. The system table identifies the setup of the mobile device, including the location
of service prior to collection within the aw_daemin_service_key_city_name key and also whether the
device was in hands-free mode using the driving_mode_on key. Both of these keys can provide critical
information for an examiner, and the settings of the device at the time of collection can be found within
this database.

• /dbdata/databases/com.android.providers.settings/settings.db Same as the previous entry, but this
location can be found within some Samsung devices, particularly the Samsung Galaxy S series.

• /data/com.android.providers.telephony/optable.db This database is used to store the carriers on which
the mobile device has operated and lists the carrier name and the public land mobile network (PLMN)
identifier within the operator table.

• /data/com.android.providers.telephony/databases/telephony.db This database is used to store the
carriers on which the mobile device has operated and lists the carrier name and the PLMN identifier
within the operator table. This also lists the SIM or SIMs that have been used by the device in the siminfo
table. This provides the carrier name for each SIM that had been used.

456

• /data/com.android.providers.telephony/databases/mmssms.db This database stores all the MMS and
SMS messages. The MMS information is stored within the pdu table, and attachments and content can
be associated with the parts table. SMS uses the sms table, and several other significant tables reside
within this database, including words and words_content, which both store text-based data that can prove
valuable for an examiner. The words table is used by the sms and pdu tables to store searchable, indexed
data for a mobile device, and the words_content table is used by the pdu table to store indexed, searchable
text-based data for a mobile device. Because the pdu table uses both the words and words_content table,
some data can be duplicated, but it can be filtered by using the foreign key in both tables. If the MMS or
SMS session does not use a delete function, the information that is within the words and words_content
may remain and can be harvested by the examiner even if the original SMS or MMS is deleted. This
database is no longer backed up in a regular ADB backup, but can be extracted with a logical extraction
using an agent. However, with the logical extraction and agent, deleted records from the database or
journal/WAL file will not be recovered.

• /data/com.android.providers.telephony/app-parts/ This folder contains the attached files to MMS
messages and is referenced in the mmssms.db parts table.

• /dbdata/databases/com.android.providers.telephony/mmssms.db Same as the previous entry, but this
location is within some Samsung family devices, particularly the Samsung Galaxy S series.

Google Stock Apps
Because Google is Android and Android is Google, it should be no surprise to any examiner that most
Android devices are populated with stock apps from Google. The following outlines some of these
applications and where an examiner may find additional artifacts while examining the Android file system:

• /data/com.google.android.apps.docs/databases/DocList.db This database contains the list of files for
Google Drive (in table Entry143). In this database, the filename, modified date, owner account, and other
details are documented. Also, the table DocumentContent143 is the listing of files that are local and on
the device, which can be found using the filepath field. Within the path
/data/com.google.android.apps.docs/ are additional folders such as files/fileinternal/<GUID> that holds
the files referenced in the filepath field of the DocList.db.

• /data/com.google.android.apps.docs.editors<docs,sheets,slides>/databases/ This location will house the
database depending on the path of docs, sheets, and slides, and will contain information on created
documents in the Google Docs platform.

• /data/com.google.android.apps.maps/databases/gmm_myplaces.db This database contains saved places
or Google Maps favorites. The information is stored within the sync_item table and lists the latitude and
longitude, time stamp, and the sync_item as a BLOB file, which is the location name along with the
HTTP data to maps.google.com.

• /data/com.google.android.apps.maps/databases/gmm_strorage.db This database is the storage location
for the turn-by-turn instructions for each route entered in the Google Maps app. The information is
stored in the gmm_storage_table in the data field. The data field is BLOB data, and, when viewed, it gives
the examiner a view of the directions followed by the user to a destination—the location name along with

457

http://maps.google.com

the HTTP data to maps.google.com. Figure 15-10 shows BLOB data within the gmm_storage_table that

can assist an examiner when using mapping data in a case.

FIGURE 15-10 BLOB data within the gmm_storage_table

• /data/com.google.android.apps.maps/databases/search_history.db This database records the searched
locations within the Google Maps app, storing the latitude and longitude along with a time stamp. This
data is in the suggestions table in the SQLite database.

• /data/com.google.android.apps.maps/app_da_speech/ This folder stores the voice WAV files for the
directions given.

• /data/com.google.android.apps.maps/cache/http/ This folder stores cached data in the form of GUID
named files. Generally two related files with the same GUID are differentiated by a 0 or 1; 0-ending files
are the description of the associated file ending in 1. This can be helpful for an examiner, since some
street-view JPGs are stored in this location when a user requests that view of a location.

• /data/com.google.android.apps.maps/shared_prefs/settings_preferences.xml This XML file contains
values Google Maps is using. One key, current_account_name, lists the registered account name for
Google Maps. This information can be used to obtain court-ordered information on geolocation data
that’s not stored on the mobile device but might be stored on the user’s account.

• /data/com.google.android.apps.maps/databases/ue3.db This new database for Google Maps contains
the table userevent3_table that contains the account information, the field ue3 that contains BLOB data
with directional information, and a third field time stamp. This is much like the legacy
gmm_storage_table database.

• /data/com.google.android.maps/databases/mytracks.db This new database for Google Maps contains all
of the tracks, waypoints, and trackpoints. The trackpoints table contains date/time information, latitude
and longitude, speed, and elevation. The waypoints contain the pin description, address, name, latitude
and longitude, date/time of start and stop, and several other fields of interest.

458

http://maps.google.com
http:///data/com.google.android.apps.maps/cache/http/

• /data/com.google.android.apps.gm/databases/mailstore.<username>.db This Google app store is for
Gmail. Each mailbox is prefixed by mailstore and then the Gmail e-mail address. The SQLite database
contains several tables, including messages, attachments, and conversations. The messages table contains
the date and time information for e-mail messages, the subject, and a snippet of the e-mail message. The
conversation table is used to present the e-mail on the device visually to the user without showing all the
content—allowing for better app performance. Since content is stored on the Gmail server and only a
portion of the mail is available to an examiner in the file system, sometimes the only indication of mail, if
not in the messages table, is cached in the conversation table. Also found on Android devices with built-in
Gmail at /data/com.google.android.gm/databases/mailstore.<username>.db.

• /data/com.google.android.apps.gm/databases/suggestions.db This SQLite database is found throughout
apps within an Android and represents what a user searched for within the app itself using the search bar.
Also found on Android devices with built-in Gmail at
/data/com.google.android.gm/databases/suggestions.db.

• /data/com.google.android.apps.gm/cache/ This folder contains several folders representing the various
Gmail accounts within the /databases folder. In each folder are files cached from attachments and e-mail.
Also, a webViewCacheChromium folder stores temporary cache data to support web data browsing and e-
mail–embedded items using HTML pages. Also found on Android devices with built-in Gmail at
/data/com.google.android.gm/cache.<username>. Also, within the cache folder, the
webViewCacheChromium folder name has changed to org.chromium.android_webview.

• /data/com.google.android.apps.messaging/databases/bugle_db This SQLite file is the main Android
messenger database and contains conversations, messages, participants, and parts, among other tables.
Using the data from the messages table, parts table, and participants table, an examiner can easily uncover
messages that a commercial tool does not support.

• /data/com.google.android.apps.plus/databases/es0.db This SQLite file is the main Google+ database
and contains circles, all_photos, activities, activity_comments, and stories, among other tables. Also
contained with the /databases folder is the iu.upload.db file, which lists files uploaded to the user’s
Google+ account. Google+ is deprecated but data is still available here as well as databases within
/data/com.google.android.gms/.

• /data/com.google.android.apps.plus/cache/media/ This folder contains subfolders referenced by both
the es0.db and iu.upload.db files. Each folder has numerous media files. Using a data carver in this folder
system will yield many media items an examiner may need in an investigation. Google+ is deprecated but
data is still available as well as databases within /data/com.google.android.gms/.

• /data/com.google.android.apps.plus/shared_prefs/accounts.xml This XML file contains the account
information for the Google+ account. Google+ is deprecated but data is still available as well as databases
within /data/com.google.android.gms/.

• /data/com.google.android.gms/ Within this directory for the Google Play services are many databases
relating to Google apps that are using the Google Play service function. Databases include android_pay,
auto_complete_suggenstions.db, context_<Gmail account name>, fitness.db.<email of user>.com,
google_account_history, plus.db, pluscontacts.db, reminders.db, and many others.

459

• /data/com.google.android.googlequicksearchbox/databases/icingcorpora.db This SQLite file is used to
store indexed applications, contacts, e-mails, phone calls, and postal codes. Within the database, the tables
to view are applications, contacts, e-mails, phones, and postal codes. These tables list values that are most
prevalent for that type based upon the score field. The value ranges from 1 to n. The highest n-valued item
in the score column for each type will show first when the user begins to type into the Google Search box
within each category (such as contacts, call log, e-mail, application). The score is typically based upon
frequency of use per each category. An examiner can use this intelligence to determine most frequently
contacted and used data within the device.

• /data/com.google.android.googlequicksearchbox/cache/http/ Like all other HTTP folders within the
cache, GUIDs are stored in this location. This folder stores cached data in the form of GUID named files.
There are generally two related files with the same GUID differentiated by a 0 or 1; 0-ending files are the
description of the associated file ending in number 1. This information can be helpful for an examiner
because voice searches, Internet searches, and typed searches using the Google Quick Search box are
stored along with the data that was returned to the user (see Figure 15-11). The search, stored in the
GUID with an appended 0, contains date and time information for both the search and return of data
along with the content type description. Additionally, a folder under /cache/ could also be cronet. Cronet
is a network library and will, like the http folder, hold valuable cached user information.

FIGURE 15-11 The file in the search describes what was searched for with the associated result displayed.

• /dbdata/databases/com.google.android.googlequicksearchbox/qsb-history.db This SQLite file is found
in some Samsung Galaxy S series devices and contains the history of the searches used in the Google
Quick Search box. This database has been deprecated, but the table history contains the query used and
the date and time. Another database in the same directory, qsb-log.db, can be used to log web clicks used
in a search. This information is obtainable within the clicklog table.

• /data/com.google.android.gsf/databases/subscriberfeeds.db This app is the Google Services Framework,
and this SQLite database contains the Google accounts that are subscribed to, along with the user’s e-mail
address.

• /data/com.google.android.gsf/databases/talk.db This SQLite database contains the Google Talk
settings such as account and contacts within the app. Google Talk is deprecated and is now Google
Hangouts (see com.google.android.talk).

• /data/com.google.android.street/cache/ This folder contains streetview images from a Google Maps
instance. The images are all prefixed by tile_ and then ordered by a three-digit number. The examiner can

460

http:///data/com.google.android.googlequicksearchbox/cache/http/

use these tiles to obtain images that the user of the device accessed while using the streeview function in
Google Maps.

• /data/com.google.android.talk/databases/message_store.db This SQLite database contains the Google
Hangouts messages within the messages table.

• /data/com.google.android.talk/databases/babel.db This SQLite database is the conversation database
for active conversations, participant names, messages, and information about the Google Hangout event.
There can be multiple babel.db databases, and each database name will be followed by an integer starting
with 0 (such as babel0.db, babel1.db, babel3.db).

• /data/com.google.android.talk/shared_prefs/accounts.xml This Google Hangout XML file lists key
information to the Hangout owner and preferences for the account.

• /data/com.google.android.talk/shared_prefs/phone_verification.xml This Google Hangout XML file
lists the phone number associated with the account.

• /data/com.google.android.youtube/databases/history.db This SQLite database is used by the Google
YouTube app to store searches for videos along with the date and time of each search.

• /data/com.google.android.youtube/shared_prefs/youtube.xml This XML file identifies the account of
the YouTube user along with a history of downloads, last login, and other significant information of value
to an examiner.

Samsung Android Artifacts
With Samsung continuing to be the leader in the global smart device market, as reported by the IDC
(www.idc.com/prodserv/smartphone-market-share.jsp), an examiner should be familiar with the file system
artifacts that are specific to these Android devices. Following are app locations within the /data folder that an
examiner will see only within the Samsung device. Although the many preinstalled applications may annoy
some customers, many of these apps are used by many people.

• /data/com.samsung.android.providers.context/databases/ContextDB.db This SQLite database can help
an examiner determine whether an application was running or had been launched around the time of an
incident. The app’s internal services are exposed, showing the service that was launched as part of the app,
to identify messages, notifications, and conversations. By using the app_usage table and fields
package_name, class_name, and app_usage_last_access_time (in milliseconds), an examiner can gain
interesting intelligence for a time line. A similar location for the device can also be found at
/system/dmappmgr.db and the ApplicationControl table. In Figure 15-12, a parsed ContextDB.db file
using the SQLQuery Builder application shows a considerable amount of information that can quickly be
placed into a time line.

461

http://www.idc.com/prodserv/smartphone-market-share.jsp

FIGURE 15-12 A parsed ContextDB.db file using the SQLQuery Builder application

• /data/com.samsung.android.app.galaxyfinder/SFinderHistory.db This database is filled with searches
across the Samsung device when the user uses the built-in Samsung Finder app from the settings. This file
can be a gold mine, especially because the date added is a part of the database table history.

• /data/com.samsung.clipboardsaveservice/f/ This folder stores saved clips from the clipboard
(screenshots).

• /data/com.sec.android.app.clockpackage/worldclock.db This SQLite database contains all of the set
clocks the user has added to the clock app. The examiner can use the worldclock table within this database
to view any city that has been added to the wordclock view. New path and database name:
/data/com.sec.android.app.clockpackage/db/worldclock.

• /data/com.sec.android.app.clockpackage/alarm.db This SQLite database contains all of the set alarms
the user has added to the clock app. This table alarm contains the dates and times of alarm creation, the
alert times, and the names of the alarms. New path and database name:
/data/com.sec.android.app.clockpackage/db/.

• /data/com.sec.android.im/databases/taConvDB.db This SQLite database contains conversations and
messages tables that can be used to recover the user’s instant messages, as long as the user is using the
Samsung instant messaging platform.

• /data/com.sec.android.app.launcher/db/launcher.db This SQLite database contains installed
applications, and even applications that have been deleted in the appOrder table. Within the favorites
table the application name and also icons are stored.

• /data/com.sec.android.app.sbrowser/db/ This folder contains several databases rich with information.
The SBrowser.db contains the BOOKMARKS table, which displays the URL of visited pages. The
pintab.db contains the set bookmarks; typically, these are defaults added by Samsung. The weblogin.db

462

contains the username and web site information that belongs to the user within the fpauth table.

• /data/com.sec.android.app.sbrowser/db/r/app_sbrowser/Default/databases/Databases.db This file is
the directory listing for WebKit data. Also in the Default directory is the folder Local Storage, which
contains the .localstorage database files from web sites visited.

• /data/com.sec.android.provider.logsprovider/databases/logs.db This SQLite database is a gold mine of
information. This file stores information that has been displayed on the Samsung device, such as
notifications from e-mail, MMS, SMS, and calls. To detail the contents, the database file stores call logs,
message snippets (SMS/MMS), and e-mail snippets along with their associated metadata. If a message has
been deleted from the main SMS, call log, message, or e-mail, the data remains within this log.
Experience has shown that even if the user has reset the messages within the device, data can still be
recovered from logs.db. Table 15-6 lists some of the information available from this telltale Samsung
database with logtype and type coming from the logs table in logs.db.

TABLE 15-6 Logs.db from the Samsung Logging Function and Database Located at
com.sec.android.provider.logsprovider

• /data/com.sec.android.provider.smemo/databases/pen_memo.db This SQLite database stores data from
the Memo app, including voice, pictures, and text. The information is located in the table PenMemo

463

within several fields, including CreateDate, Date, Content, Text, Text_sub, Drawing, and Thumb.

• /data/com.sec.android.provider.downloads/databases/sisodownloads.db This SQLite database is
comparable to the com.android.providers.downloads database. This is a good database for an examiner to
investigate because media downloaded from web sites can be located here.

• /data/com.sec.android.socialhub/databases/UniboxProvider.db This SQLite database contains accounts
and messages tables that can be used to match accounts for social media, instant messaging, text
messaging, and e-mail notifications with the messages themselves. If the user has enabled this feature, this
database can contain current and historical data.

• /data/com.seven.Z7/databases/email.db This SQLite database contains more data from the social hub
addition to the Samsung line. It can store e-mail addresses, passwords, and e-mail content. Also,
associated accounts and their instant message data can be stored here.

Third-Party Apps
Unlike iOS devices, third-party applications are stored in the same /data folder along with all of the other
stock, phone, and often carrier apps. The third-party apps use the domain name format previously outlined.

There are more than 1.5 million Android apps available on the Google Play site, and documenting each
and every app naming convention would take hundreds of pages. An examiner should understand that the
layout of the folders within each app and the databases used to store the artifacts will be generally similar
to what is outlined in Table 15-5. App designers can build their own app folder structures, and one of the
difficult things for the automatic parsing of the apps within an Android, or any smart device, is that
folder structure and database naming can change with an app update.

Third-party apps generally store the temporary data within the /cache folder, which can also include
additional folders, such as webViewCacheChromium, which is now org.chromium.android_webview or
cronet_cache on current devices (cronet is the chromium network stack). This folder contains data that was
displayed to the user using the app. Files of interest will be prefixed with an f_ and then a number. The f
stands for files, and the files used by the web view in the app are listed. This naming convention is not
observed in newer Androids, with files being stored in another directory under /cache typically named files or
media. The /databases folder contains the databases for the app, along with another database called
webview.db that stores form information and user information to be used within a web view in the app. This
database can hold passwords, usernames, and other data important to an examiner. It should be noted that the
webview.db has become Web Data and stored in the app_webview folder under the root of the app folder.
Although Android development clearly encourages developers to use the correct controls of this class,
WebViewDatabase, this database still should be queried. Apps also use the shared_prefs folder within the app
structure, which contains XML files that outline the preferences for the app, including usernames and
passwords. Because some apps do not store data on the mobile device for security concerns, the app simply
uses a built-in browser to interface with a secure server, but often automated login information is located
within the shared_prefs folder. This location should also be examined when conducting an examination of

464

third-party apps.

Most Android apps use SQLite databases, and as outlined in Chapter 14, building a SQL query to support
an application, along with recovering free pages and WAL data, should be conducted on any app important to
the examination. Even in today’s most popular games, users can chat with one another, often adding to an
examiner’s investigation, as shown in Figure 15-13.

FIGURE 15-13 Here, /data/com.zynga.words/WordsFramework is queried for its internal messaging with
more than 100 messages returned.

File Interrogation
Every file mentioned in this chapter and any other file within the Android file system can be parsed to recover
every bit of data within the particular file. The attack surface within the Android is limitless for an examiner
with the right tools and, more importantly, the drive to succeed. The SQLite database queries along with
Python scripting can enable an examiner to interrogate most of the files within the Android file system. With
the primary files for storage being SQLite databases and the primary file type for settings and preferences
being XML, the examiner already has a leg up, since the parsing of both of these file types was covered
previously.

Android non-invasive or invasive physical recovery of the partitions also enables the examiner to carve the
unallocated space on both the cache and userdata partitions. The unallocated space within the Android device
can hold media files, SQLite databases, XML, HTML, deleted MMS media, and other settings that are no
longer active within the file system. Using a forensic tool to carve the unallocated space for these particular file
types should be attempted by the examiner prior to the conclusion of the examination. Hundreds and possibly
thousands of additional files can be recovered. In Figure 15-14, hundreds of images deleted from MMS along
with HTML files were recovered using data carving techniques with Oxygen Forensic Detective.

465

FIGURE 15-14 Many forensic tools support the data carving functionality.

SQLite, XML files, and any other files within the file system of an Android should be examined. Some
examples of parsing of files using Python parsing are covered next, with files that have been recovered from an
Android device. The creation of SQL queries for Android databases was covered in Chapter 14.

Scripts
Often an examiner will need to locate the operating system information from an Android device. This
information is often difficult to find within the different files of the file system. If the examiner’s mobile
forensic tool does not recover this information automatically, the examiner can create a simple script to run
against the file located in the userdata partition at /log/recovery_log.txt to search and list only the operating
system information:

An abbreviated output from running the script against recovery_log.txt displays the required operating
system information:

Because an Android device holds many XML files, running a script to parse these XML files to make
them more readable is often a necessity. This script will output the XML into a form that can be easily read
within an examiner’s report:

466

The output of this script for a common Android file for the built-in browser indicates last search times
and the web search engine located at /data/com.google.android.googlequicksearchbox/SearchSettings.xml.
The script could be further refined to translate the date and time information as well:

Applying scripting to an Android examination, along with building SQL queries, can have an enormous
impact on the outcome of an investigation. By using these types of techniques, an examiner will be sure to
uncover the maximum amount of data from these treasure troves.

Android App Files and Malware
Android apps are created and installed to a device in the form of an APK file. APK files are compressed
binary files containing DEX files, resource files (.arsc), uncompiled resources, and the AndroidManifest.xml
file. These files and folders make up the app much like a Windows MSI or Mac .dmg file. The APK is
installed to the device and stored in the /app folder within the Android file system for non-system apps;
system apps are stored in the system partition. If an app is installed to the sdcard partition, the contents are
generally encrypted and stored in a /sdcard/.android secure directory. The filenames have an asec extension
instead of apk. If the device has decrypted these apps from the SD card, they will be stored at /data/app-asec
and can be examined. The /dalvik-cache folder stores the installed app code for execution within the Dalvik
VM instance when the app is called to run.

The important aspect of these two areas for an examiner concerns malware. Malware on an Android
device is far more likely to occur than on any other smart device on the planet. Kaspersky Labs reports that
more than 97 percent of mobile malware they detected was from the Android platform. There are various

467

reasons for the malware infiltration on the mobile device, but it typically comes down to monetary gain for the
group infecting devices. From SMS for a service to ransomware, an Android device can be susceptible. An
examiner must be prepared for malware being involved on an Android device and understand the
consequences.

Computer forensic examiners are trained to scan computer digital repositories for known malicious
applications, viruses, keyloggers, and other similar files to disprove or prove malware added to, deleted from,
or modified the data being examined. Mobile device examiners do not show this same diligence, however,
which could possibly discredit any data that might be recovered from an Android device. Android malware is
already outpacing Windows for malware infections, and what took Windows 14 years to achieve with
infections, Android has overtaken in only 3. An examiner should be ready to complete an examination of
malware on a mobile device, particularly an Android device.

Cellebrite offers a malware scanner within its mobile forensic software that uses Bitdefender to locate
malware signatures. An examiner should realize, however, that a signature-based examination is the lowest
form of malware analysis, because a signature is based upon a known hash. This known hash is placed into a
blacklist and uploaded to a signature repository to be used against the app. Because an app can change daily
after being morphed into an illegitimate form of a legitimate app, or because a zero-day app can drop at any
moment, using signature-based analysis could miss valid malware. (This is not to say that the examiner should
not perform an analysis of an Android device with a signature-based tool. Anything is better than nothing,
and as long as the signatures are current, the analysis would be comparable to a computer’s virus/malware
scanner.) Malware companies base the signatures upon the DEX file within the /davlik-cache folder.
However, there are instances where malware has injected or patched a legitimate app’s DEX file within the
davlik-cache, thus evading malware signature-based analysis.

Malware installed on an Android device can cause problems for an examiner, most importantly during the
court testimony stage. Malware software can be used to gather information, disrupt service, connect to
premium services, and even enable remote access to a device. Malware to disrupt can cause the device to be
inoperable, cause redirects to web sites, install ransomware, and result in other problems. The following list
shows several types of malware and how they work:

• Ransomware After locking the device, the user is shown a screen indicating that illegal material has been
found on the device by the authorities and it will not be unlocked until a fine has been paid.

• Premium services These apps redirect phone and messaging services to a pay-per-use service to add
phone charges. They collect money for every message sent and charge it to the carrier and then to the
user’s account.

• Spyware Spyware can turn on and monitor microphones, cameras, messages, keystrokes, and other data
from a mobile device. This type of malware is often sold as a legitimate “monitoring” app. The
information gathered is sent from the device to a server under control of the criminal.

• Trojan This was the most prevalent type of malware at one time, with designers injecting malicious code
into legitimate apps. Google Play at the time failed to identify this malware, and many unsuspecting users
downloaded what they thought was the original app. For example, Svpeng, a Russian Trojan, affected
Androids by asking for credit card information each time the user visited Google Play. The data was then

468

sent directly to a server, and credit card details were sold. The Google Play store now uses “Bouncer” to
scan the app for malicious code or changes—eliminating some of the risk.

• Data miner This app steals data from the device, including contacts and phone information. Often, the
malware will steal contacts and extort money from the user—saying an image they have will be sent to all
of the user’s contacts. Also, phone details such as IMEIs are stolen to sell to others to clone onto
blacklisted handsets.

• Adware Messages from apps that should not be advising the user that “Your phone is slow,” “You have
been infected,” or “Your device is being tracked,” is a sign of adware, a prevalent malware type.

• Downloader This app directs users to additional downloads that appear to be content—such as PDF,
JPG, and so on—but are additional malware apps, often Trojans.

• Browser hijacker These apps use WebView and not the Android internal browser to redirect and incur
browser drive-by hacks, often infecting the device without the user even doing anything on the web page.

• Botnet Like computer systems, mobile devices are subject to malware packages that turn the device into a
zombie. The command and control (C&C) servers are connected, and the device becomes a part of a
network of devices that often distribute more malware.

Malware actions might include modifying the permissions for an Internet game to read the contacts, SMS,
or other phone details to transmit that data to another server, or using the details to send messages and even
clone the serial number to another device.

Analysis Levels
Three levels of malware analyses—permissions, static, and dynamic—are used to root out malware and
determine the legitimacy of the app and its intentions. Permissions is the first level of malware detection and
analysis. Static analysis is the second level of malware detection, and dynamic analysis is the third and top-
level analysis type.

Permissions Analysis
Android apps list permissions (Figure 15-15) that must be granted to the app to enable it to function as the
developer intended. The user typically sees these permissions prior to installing the APK file on the device,
and they can also be viewed by navigating to app settings. On devices running Android 6 and later, the app
will not ask for permission on install. The app must ask the user to grant permissions at runtime. The user can
accept or deny each permission one at a time if needed. Permissions for all APK files can also be viewed on
the Google Play Store. The permissions granted to an Android app can assist the examiner as to the app’s
intentions. Table 15-7 lists Android permissions and their descriptions, including ways in which malware can
affect the permission. Permissions are separated into NORMAL, SIGNATURE, and DANGEROUS.
Outlined in the table are those that could be dangerous and should be investigated.

TABLE 15-7 Android Dangerous Permissions and Descriptions
(https://developer.android.com/guide/topics/permissions/overview)

469

https://developer.android.com/guide/topics/permissions/overview

470

FIGURE 15-15 App permissions

471

Permissions for all apps on a device can also be examined within the /system/packages.list if this file can
be accessed.

An app cannot access parts of the mobile device or provider apps if permission has not been granted. Most
Android users do not understand the implications of accepting all permissions requested by the app and
choose to accept all—granting dangerous access to malicious apps. Obviously this is a security concern for the
user, but how about the examiner? As an examiner, these permissions should be investigated on apps that are
primary evidence within the investigation. An examiner should unequivocally explain the intentions of that
app, the expected outcome of using the app, and the evidence it produced. This perceptive investigation of the
app’s behavior will solidify the stance of the investigation and evidence recovered.

Static Analysis
Static analysis is a more in-depth analysis of any app that the examiner believes to be malware, based upon a
permission or signature alert. A static analysis enables an examiner to look into the app code in a controlled
environment—to look for “hooks” that might indicate malware, identify calls or posts to a third-party server,
or recognize other anomalies within the app. Several tools are available to assist an examiner in the static
analysis of Android apps; this type of examination is not automated and can be time consuming, but it is often
a necessity.

In 2012, as part of course development for a malware analysis course, I created content and a virtual
machine to enable students and attendees to analyze actual malware, both statically and dynamically. This
method is still viable and utilized. The virtual machine was created using Linux Ubuntu as the OS with
Eclipse, Wireshark, Androguard, and APKInspector installed. Eclipse was used for live active analysis
using logcat and threading; APKInspector was used for the disassembly and analysis of the APK and
DEX code; Androguard was used for disassembly of APK, ODEX, and DEX files; and Wireshark was
used for active communication protocols. The benefit of using these tools was easy: they all are open
source and freeware, and they allow for the investigation of malware within a virtual sandbox—the
Ubuntu VM. The course introduction was given to a group at a High Tech Crime Investigators
Association conference, which spawned several other virtual appliances for this type of analysis, using the
same setup and tools.

For static analysis, an examiner can use APKInspector, an appliance built with Python, to look for values
that would be typical for a malicious app, but some of these permissions can be found in legitimate apps, too.
The total number of hooks the examiner uncovers will determine the threat score of the identified app. Table
15-8 represents some of the more common requests found in malicious apps. Using APKInspector, the
examiner can search for these terms to determine whether the app is using processes and commands that
should not be a part of the app’s functioning.

TABLE 15-8 Common Commands Observed Within the Codebase of Malicious Applications

472

Before the examiner launches APKInspector, Python must be installed within the Linux instance. Then,
from the Ubuntu Linux terminal, the examiner types python StartQT.py from within the APKInspector
directory. The APKInspector UI will open, where the examiner can select to open an APK file by clicking the
open folder (blue folder with a plus sign). Using the interface SideView in conjunction with the MainView
(Figure 15-16), an examiner can view permissions, code, and calls made in and out, along with the DEX-
translated code information. The examiner can view the actual code to determine exactly how the app is

473

functioning, any classes used, and any malicious code calls if they have been identified. Sometimes the
examiner can find information that can be used to track the malware developer when comments (// This is
a comment) are included within the code. APKInspector is not an automated tool, but it can help an
examiner conduct a thorough static analysis of Android apps in an attempt to identify known malware hooks.
However, a dynamic analysis must also be run to understand the malware and any malicious intent
completely.

FIGURE 15-16 APKInspector can be a good static analysis tool that shows permissions, calls, and even
code.

Dynamic Analysis
Dynamic analysis of an Android app can also be accomplished within a Linux Ubuntu virtual machine using
an Android emulator and Wireshark, plus an emulator instance with Eclipse. Conducting a dynamic analysis
of an Android app enables the examiner to monitor the app as it is running within the Android emulator, to
watch the way the app works and monitor the output and input when the app is running certain processes.

Using Eclipse, the examiner can select the app within the interface and monitor the threads, as well as use
logcat to monitor the device and app functions. Eclipse can also be used to monitor and debug the app APK
while running in the instance of Eclipse, if needed. This can help an examiner monitor the suspected APK on
an emulated device and debug/monitor the APK files as well. This information can show HTTP attempts
and system communications. Eclipse can also be used to monitor an emulator that contains malicious APK
files (Figure 15-17). Using threads along with logcat, the examiner can view occurring changes in the system
in real time. A malicious browser can redirect the IMEI and phone number to a URL.

474

FIGURE 15-17 Monitoring malicious files in Eclipse

Before the examiner launches Eclipse, an instance of the Android emulator with the suspected Android
malware must be running. An instance can be started from the Ubuntu VM from the terminal by typing
emulator <Android Virtual Device (AVD)> or from the Eclipse instance, as long as the Android ADT plug-
in has been installed. If Eclipse and ADT are used, the emulator can be launched from the toolbar. Once
launched, the emulated device will be visible within the Eclipse instance. The examiner can launch the
suspected malware app on the emulated device and within Eclipse select the logcat tab. This will show the
communication with the device, the app, and any other system communication. The examiner can view any
outside requests, calls, and network attempts and save this information to a text file to be included in a report
if needed.

Be sure to set the Windows | Preferences | Android | LogCat | Maximum Number Of LogCat Messages
In Buffer to 0 to capture an unlimited number of lines, and then restart Eclipse. If this is not set, the
default is only 5000 lines.

Data from Wireshark can also be analyzed to determine whether any data was sent or received from an
outside source using TCP. If information is transferred or received, the examiner can determine whether this
data is reasonable and whether the data is being transmitted or received from the correct server for the app or
is going to a third-party location not specified by the app documentation. If the latter is the case, the examiner
should analyze exposure to the device along with any received information from the third-party server. This
analysis can often refute allegations that an app downloaded material automatically, without the user’s
knowledge, or that the app installed another unknown app that caused the evidence to appear on the device.
This analysis can also help to determine a security breach and what type of data was lost.

475

Conducting a dynamic analysis using Wireshark is a good alternative. This is a basic introduction to its
use; other resources are dedicated to using Wireshark with advanced methods that are not covered in this
section. An examiner should at least comprehend that there are methods for the dynamic analysis of
Android apps using Wireshark.

Before the examiner uses Wireshark, he or she should create a TCP dump file when launching an
emulator instance. This dump file will contain the recorded network traffic between the emulated device and
the outside network. While running a suspected app, the examiner can observe any anomalies with the app
and its communication with the network. These anomalies can include sending data, receiving data, and
connecting to unknown IP addresses and servers. The examiner can run the following command from the
terminal within the Linux virtual machine to start an instance of Wireshark’s TCP recording on an instance
of the Android emulator:

The app or apps can then be launched and the information can be examined to determine whether
TCP/HTTP traffic has malicious intent. A capture file is then created, and this file will be imported into
Wireshark and analyzed for any TCP or HTTP traffic.

Using advanced tools to combat the allegations of malware within an Android examination can be
complicated, as shown in Figure 15-18, but an examiner must be prepared to conduct this type of analysis
should these allegations be raised.

FIGURE 15-18 Advanced tools can produce complicated results.

Commercial tools from AppSec Labs and NowSecure also use a Linux Ubuntu VM and include various

476

tools, many of which have been discussed in this section. AppSec Labs’ AppUse VM includes a
dashboard that directs the examiner to certain functions within the VM and is used primarily for
penetration testing, but it can also be used to analyze malware from mobile devices.

Chapter Summary
By obtaining the file system from an Android device using ADB backup, non-invasive, or invasive physical
partition recovery techniques, an examiner can uncover artifacts that could prove critical to any investigation.
If partition information cannot be recovered, the examiner still has an opportunity to recover data from the
device’s internal or external media areas using MTP. App data, file settings, and persistent user data can be
recovered from this area as well. Not all is lost if the partition-level file system data is not available; many
users, and app developers, store data to the media area of the device, so as long as the device is unlocked or the
examiner can access the device by circumventing the security, data can still be recovered.

Automating the recovery of Android artifacts is a difficult proposition for any software development team.
Staying ahead of the ever-changing app and mobile device technology wave can be extremely difficult. When
an examiner uses techniques discussed in this chapter and the two previous chapters in conjunction with the
mobile forensic automated solution, a mind-boggling amount of data will be recovered. By using the scripting
and query principles, even on databases and files already parsed by an automated tool, the examiner can be
sure that recovered data is valid and properly recovered. The search for artifacts within an Android device
should extend far below the surface of the “iceberg” to uncover the many files discussed in this chapter—from
user settings to application data, this critical information is at the examiner’s fingertips.

In addition, “tip of the iceberg data,” such as SMS, MMS, call logs, and contacts, can be examined to
uncover additional information that the automated tool neglected to report using a standard logical collection.
By examining the SQLite databases, an examiner can look into the free pages, write-ahead logs, and the
databases themselves to bring missing data to the surface.

Malware is a problem with mobile device forensics, and the examiner, as part of normal procedures, should
be sure to scan and report any anomalies. This procedure comes from many years of court proceedings and
reports that malware, Trojans, or viruses can install applications, download inappropriate images and videos,
and modify the system somehow without the user’s knowledge. With a mobile device’s ability to extend itself
into the Internet and network, along with the massive onslaught of Android malware, this type of issue is
important to a court procedure. An examiner must take steps to scan the device’s contents when possible to
cover this critical examination gap within the current Android investigations.

477

A

16 Advanced Device Analysis: IoT, Wearables, and
Drones

s discussed in Chapter 3, the era of IoT and other connected devices is upon every investigator and
investigation. Like mobile devices, both iOS and Android, these devices and their associated apps can

hold valuable information for the examiner. Digital traces left by the billions of devices within the Internet of
Things, wearables, and drones could be the smoking guns in today’s investigations. The “Wild West” once
reserved for the examination of data from a mobile phone or a smart device is now the world of these
emerging devices. In Chapters 13 and 15, information hidden beneath the “tip of the iceberg data” was
discussed as a way to help uncover additional information from both iOS and Android devices. In this
chapter, we will discuss both “tip of the iceberg data” and additional information that will assist in the
investigation of these devices.

The limitations imposed by many of these emerging technologies results particularly from the support
offered by commercial tool vendors—or lack thereof. These limitations are not the result of a lack of
knowledge or research, but result from the sheer pace of deployment of these devices and our inability to keep
up. In addition, the lion’s share of data for many devices is stored within the Cloud. Although for many
commercial tools, cloud storage represents another hurdle, it is often the reluctance of examiners to attempt to
access this valuable data that keeps it hidden—and there is little case law or legal precedence regarding
accessing and extracting data from the Cloud.

Even with lawful access to the device or cloud stores, the information that is often examined or located
represents only a fraction of the data that is available to the examiner. This is not for a lack of trying, but
results from the examiner’s lack of support and ultimately lack of understanding of where to look. Now that
IoT, wearables, and drones are so mainstream and are found in many homes, on many wrists, in the skies, and
in vehicles, it is imperative that examiners understand not only what data is available, but where to look for it.

This chapter is not an exhaustive listing of the data, but more of a starting point to locations within the
Cloud and mobile device backups, application sources, and fringe devices such as drones. “Fringe” might be an
inaccurate descriptor, however, because the data contained inside these types of devices can be monumental to
a case, and is more often used in investigations. Nevertheless, they are “fringe” devices simply because of a lack
of documentation and commercial support for them—they are truly the Wild West in forensic examinations.

“Tip of the Iceberg Data”
The success of an investigation often comes down to the examiner’s ability to access the data on these types of
devices, but the examiner must also understand the format of the data and realize that not all automated
forensic tools are created equally. For example, many IoT devices, vehicle systems, wearables, and drones can
be accessed only using atypical connectors, or they may require invasive connections. Often, only “tip of the
iceberg data,” or the lowest-hanging fruit, will be available.

Unlike the data in iOS and Android devices (discussed in Chapters 13 and 15), however, which are
generally parsed and obtainable using most commercial tools, IoT, wearable, and drone devices are not easily

478

investigated. Although many of these devices’ file systems may resemble those of Android devices, or they
may be based on Android systems, commercial forensic tools often lack the “knowledge” of where this data is
located on the devices. Knowledge, or logic, in the development sense, rests completely on the shoulders of
investigators to code the correct path and then parse and extract the needed data. This data is then revealed to
the investigator within the interface of the application. Because many, if not all, of these devices are not
documented by manufacturers or on the Web, commercial forensic tool developers face plenty of research and
development tasks. Often, reliance on the digital forensic community is essential to assist in their continued
development to support more information about gathering evidence from these devices.

The following sections cover the information extracted from cloud stores and backups of various devices to
include Google Home, Alexa, Apple Watch, Fitbit, and unmanned aircraft systems (UASs), or drones. Note
that the information presented here is based on the devices mentioned, and it is not a global description for
every smart watch, smart home device, or drone. However, this information offers the investigator a starting
point in the investigation of these devices.

Smart Home Devices
Smart home devices have become popular around the globe, as more and more of these devices are made
available each day to consumers. The types of smart home devices available today include doorbells,
thermostats, and lighting—anything in the home capable of receiving an electrical current. The more the
investigator knows about the type of data that is available from these devices, even at the “tip of the iceberg,”
the better qualified he or she will be to form a collective forensic picture for the investigation. Crimes have
been solved and people have been exonerated with data gathered from smart home devices. Two devices and
systems, Google Home using Assistant and Amazon Echo using Alexa, are discussed in the following
sections.

Google Home
Access to “tip of the iceberg data” on a Google Home device is gained within the apps that access the device
via the Google Assistant (such as Chromecast and others), as well as within the Google Cloud account for the
device. The data available within these apps is extremely limited, however, because the apps are active web-
based applications, meaning the data is not accessible if the device is offline. In other words, the app data will
be available on the device only with a connection to the Google server. Without this connection, the data
available on the device is limited to usernames and other general account information. As you know, to
determine whether an app relies only on server data, forensic investigators would need to open the app with
the device isolated. And if the app is not populated with data, there is a good chance app data will need to be
retrieved from the app’s server. Furthermore, the Google Assistant and Google Home app data is generally
available only with a physical extraction of an iOS device and via root on an Android. A Standard iTunes
backup or ADB backup will not recover most of the valuable data.

The user needs a Google account to set up the Google Home device. Applications on the smart home
device will also need to use the associated Google account to communicate with the device. The smart home
device is visible via Bluetooth and Wi-Fi to any device that has paired with it and can play media over the

479

device. For example, data from the Chromecast app (which was replaced by the Google Home app, but the
Chromecast name was kept for the app bundle) in an Android device can be found within
com.google.android.apps.chromecast.app/sp/com.google.android.apps.chromecast.app_preferences.xml with
the following flags:

Imagine if, during the investigation, information was found within an app on a mobile device, but the
Google Home device was not located in the area. This definitely could mean more investigation would be
needed, especially if Assistant was not installed on the mobile device.

Commercial tools, as well as public APIs, can be used to extract data from Google Home cloud activity,
but few parse the data from the apps on the mobile devices. Apps such as Home are almost entirely active, so
the data is not accessible if the device is offline. Within the Android file system, the investigator can find the
Google Home app data at com.google.android.apps.chomecast.app and Assistant app data at
com.google.android.apps.googleassistant.app. Assistant data is also accessible via the My Activity cloud
account, as is Google Home data. Table 16-1 lists some information that can be recovered from files within
the Google Home application on the mobile device.

TABLE 16-1 Google Home App Contains Limited Data, But Can Assist with an Investigation

Information that can be obtained from both direct API communications with the Google Home device
and Google My Activity are immense, however. The API for Google Home is primarily exposed to handle
the creation of “actions” that can be used by the Google Home device. For cloud tools, the support for My
Activity (which tracks the user’s activity) is initiated with the Google Account, username/token, backup
passwords, Authenticator, or app-specific passwords. Both are discussed in the following sections.

Direct to Device
Using the Google API, the investigator can interrogate the device(s) as long as the IP address of the device is
known. The device’s IP address can be collected using one of several network scanning apps run from a mobile
device, the Google Home app, or the router. Note that access to the Wi-Fi network that is connected to the

480

devices is required for both identifying the Home device if using an app and during the interrogation of the
device. This type of access requires that the investigator weigh the pros and cons of access in this situation.
The information that can be extracted over TCP within the internal network is quite impressive, however, to
include but not be limited to the following:

• Device name

• Time zone

• Language

• MAC address

• Public encryption key

• All Bluetooth devices in the area

• Connected Wi-Fi

Once connected to the device, the investigator can retrieve the data using GET statements. (The opposite
command, POST, is one the investigator should not employ, for obvious reasons.) Using GET will allow for the
extraction of the data without adding data to the specific records requested. The data is returned in JavaScript
Object Notation (JSON) (see Chapters 12 and 13). To communicate and obtain the information from the
device, the investigator will need to use an interface that will allow for communication over TCP using GET
commands. Several REST web-based tools are available for this. In the following exercise, the Advanced
REST client (https://github.com/advanced-rest-client) is used. The commands covered here are all
undocumented calls by Google but are outlined by rithvikvibhu on Github
(https://rithvikvibhu.github.io/GHLocalApi).

The HTTP port that is currently used by Google Home is 8008. To access the device using the REST
utility, the investigator would use the following template:

GET http://<discoveredIP>:8008/setup/<file>

Table 16-2 lists some of the files and also the expected results from the data retrieval.

TABLE 16-2 Important Files Within the Google Home Device Retrieved Using HTTP

481

https://github.com/advanced-rest-client
https://rithvikvibhu.github.io/GHLocalApi

Google Home Cloud (My Activity)
The majority of Google Home device data will be stored in the user’s My Activity account. The information
stored in the user’s account will comprise the actions that the device performed based upon the user’s
suggestions. Both the Assistant subcategory and the Voice & Audio within My Activity can provide a gold
mine of Google Home user data. The Google Home device will capture any phrase the user spoke, as well as
the return data by the Home device. The actual voice is recorded and analyzed on the Google servers and the
voice is stored. So not only can an investigator see what the Google Home device transcribed, but he or she
can hear the actual recording used to make the transcription! This could be monumental to a case when a
subject denies being at a location, or when a subject utters the words to search for “closest store to buy duct
tape,” and his or her actual voice has been recorded.

The subsection in My Activity, Voice & Audio, is displayed in Figure 16-3 from an Oxygen Forensic
Cloud extraction, and the platform Google Home is identified. Also, the Assistant is a subsection that lists
usage of the Assistant app on both iOS and Android devices, as well as using Assistant with the Home device.
Figure 16-4 shows data collected from My Activity’s subsection Assistant.

482

FIGURE 16-1 Running a GET command on an active Google Home device to retrieve the contents of the
file eureka_info

FIGURE 16-2 Running a GET command on an active Google Home device to retrieve the contents of the
get_bonded file

483

FIGURE 16-3 Voice & Audio data extracted from Google My Activity that clearly displays the action and
the response

An investigation into the Google Home device, as well as the artifacts found both within the app and in
the Cloud service, can often uncover additional data for any investigation. From information regarding
searches a user has conducted using the Home device, to other connected devices that have been attached to
the Home device, to locations that are captured upon each request, this important data should not be
overlooked.

Alexa
Devices that access Alexa (such as Echo, Echo Dot, and so on) store data primarily in the Cloud. These
devices communicate with and to mobile phones via the Amazon Alexa app and control requests to play
music, integrate other IoT devices, and provide weather or other news updates. Again, much like other
devices, these devices use an API to communicate to and from the Alexa device over the user’s internal
network and then outbound to the Alexa Cloud. Communication from the Alexa Cloud to other IoT devices
can be used to control smart TVs, lights, thermostats, and more.

“Tip of the iceberg data” will be discussed in this section, as well as some additional artifacts. The API for
Alexa is not public, but this information is hosted at several documented sources, which will be covered in
detail. A mobile device app is generally used to set up the device and control many of the “skills” that define
the usage of the Alexa-powered device. Users of the Amazon brand of smart devices will need an Amazon
account to set up the device, and to access the data within the account or Cloud, investigators will need the
user’s credentials.

Investigators can use commercial tools as well as unpublished APIs to extract data from the Alexa Cloud,
but few tools parse the data from the apps on mobile devices. Currently, Magnet Forensics, Cellebrite,
Paraben, and Oxygen provide limited support for the apps on a mobile device. As mentioned, apps such as
Alexa are almost entirely active, and the data is not accessible if the device is offline. Some account data can be
useful for interrogation of the cloud service, but much of the user data is generally encrypted. Alexa, the app
bundle, and folders can be found at com.amazon.dee.app for Android and com.amazon.echo for iOS devices.
The folder is obtainable only in a physical collection of the Android device. The folder structure contains
multiple folders and files (Figure 16-5). Table 16-3 lists some information that can be recovered from the
Alexa application on the mobile device.

484

FIGURE 16-4 The Assistant section in Google My Activity holds data that is captured by Google Home.

TABLE 16-3 Alexa App Data from Within Both iOS and Android Devices

FIGURE 16-5 Folder structure of Alexa app within a Samsung SM-G900T running 5.11 Android

The data is primarily stored as JSON strings either in individual files or within the SQLite database. Some
of the information can be pertinent to a case, such as the account, cards, and endpoint strings. Brian Moran of
BriMor Labs has presented research on the recovery of contacts and messages as well as call history by
combining the endpoint URL in the configurations table of the arn:aws file and the Amazon ID string found
in map_data_storage_v2.db. If the investigator is authenticated in the Amazon account and runs a script, call
logs and messages can be retrieved. This is covered in the next section.

485

Direct to Amazon Cloud
As with the Google Home device, the data from the Cloud will be paramount to the overall investigation.
This information can be obtained using HTTP calls as well as by using many cloud extraction tools. Using
information that is obtained from the mobile app, to include the endpoint URL from the configurations table
and Amazon ID string, an investigator can query the account and recover additional information.

Using Burp Suite Professional and a trusted SSL certificate, Karl Fosaaen
(https://blog.netspi.com/speaking-to-a-city-of-amazon-echoes/) reported he was able to capture traffic from
an Alexa device. In doing so, he obtained the commsID; this can be used by all investigators, along with the
data from the mobile app, to create an HTTP call and recover additional data unavailable even from within
the web portal for Alexa (https://alexa.amazon.com), messages, and call log data. The only prerequisite for the
investigator is that he or she must know the Amazon login information and be signed into the account. The
user’s contacts, even if the contact does not use an Alexa-enabled device, are populated in the Alexa Cloud.
Calls and messaging, if they occurred via the Alexa app to other Amazon device users, are recoverable using
this method as well. The investigator need only run the following commands on an authenticated account.

To recover contact data, run the following:

The results, in Figure 16-9, are in Notepad++ with a JSON viewer and clearly show all contacts
information after running the contact script.

FIGURE 16-6 The eventsFile is a JSON file containing identifying information about the device.

FIGURE 16-7 The map_data_storage_v2.db SQLite file contains the account name as well as the Amazon
ID string.

486

https://blog.netspi.com/speaking-to-a-city-of-amazon-echoes/
https://alexa.amazon.com

FIGURE 16-8 File showing endpoint URL that, when combined with data from map_data_storage_v2.db,
investigators can use to obtain user calls, messages, and media

FIGURE 16-9 All contacts are shown in Notepad++ after running the contacts script.

For messaging and calls data, run the following:

You can think of conversations as “threads” between contacts. If an investigator wants to extract a single
conversation, the conversationId (shown in Figure 16-10) must be appended and used in the HTTP request,
as shown here:

FIGURE 16-10 Results shown in Notepad++ with JSON viewer of messages from the Alexa Cloud

487

This information was documented by Brian Moran and Karl Fosaaen and can be used by an investigator to
conduct live analysis of the Alexa Cloud, along with the following information on accessing additional data
using undocumented and documented APIs.

A list of HTTP requests is provided in Table 16-4 (obtained from
http://analyticphysics.com/Diversions/Accessing Amazon Echo Data with JavaScript.htm and
www.dfrws.org/sites/default/files/session-
files/paper_digital_forensic_approaches_for_amazon_alexa_ecosystem.pdf as a reference. As with the previous
HTTP commands, the investigator must have access to the device and be authenticated for the Amazon
account. The response returned will be in JSON format (see Figure 16-11). As with other responses, using a
tool such as Notepad++ with a JSON viewer will help to decode and format the data for easy investigation.

FIGURE 16-11 A query of the device information provides the name of the device, ID, customer ID, and
serial number.

TABLE 16-4 Listing of HTTP Request URLs and Data Returned

488

http://analyticphysics.com/Diversions/Accessing
http://JavaScript.htm
http://www.dfrws.org/sites/default/files/session-files/paper_digital_forensic_approaches_for_amazon_alexa_ecosystem.pdf

Cards are the voice instructions given to Alexa devices; the investigator can access these individually if they
are not included in the response. In addition, the audio files that are referred to within the JSON format are
stored and are retrievable from the Amazon servers. This audio data is stored indefinitely, unless the user
removes it. Amazon clearly states the following in the user’s account under Your Devices | Device Actions |
Manage Voice Recordings:

When you use your device, we keep the voice recordings associated with your account to learn your voice
and how you speak to improve the accuracy of the results provided to you and to improve our services.

This type of information can be critical to understand if your investigation involves the retrieval of voice
information from the Alexa device.

Currently, only two commercial cloud tools can access data from a user’s Alexa account: Oxygen Forensic
Cloud Extractor and Cellebrite Cloud Analyzer. The extraction techniques are built upon the data that has
been provided in this section as researched, with generally the same extracted data. Commercial tools also
need to have access to the username and password combination and/or token. The advantage of using a
commercial cloud tool will be the data formatting as well as the automated logic. However, the examiner’s
understanding of the information obtained from the Cloud by using the commands provided throughout the
section should prove valuable if testimony is required.

489

Wearable Devices
Wearables are everywhere—people wear mobile computing devices around their wrists, on their heads, and on
their bodies. With the Fitbit and Apple Watch almost mainstream, most users wear these devices on their
wrists. As with any other form of digital storage device, an investigator must consider what type of data can be
recovered. The technology of these devices continues to grow and will continue to advance. An investigator
must be prepared to look for these types of devices at the digital forensic scene and be prepared to look for
ways to extract the information from the associated mobile app, if applicable, directly from the device via
advanced methods, and from the device’s cloud service.

No longer are investigators simply dealing with a mobile device; our connected world demands the
investigator start thinking of these additional devices and their content. Failing to become educated on the
new possibilities of the wearable device, and its data, could result in an investigator missing data that could
likely close a case. In Chapter 3, we discussed some high-level data within the backups of the Apple Watch as
well as some data that could be lingering within the Fitbit. Like the data from smart home devices, much of
the information on these devices is stored within the Cloud.

This section covers the Apple Watch and the Fitbit. The “tip of the iceberg data” will be discussed as well
as information from the Cloud. With the number of wearables, particularly watches, on the rise, the
investigator should be prepared to delve into the file systems of these devices.

Apple Watch
Data for the Apple Watch is backed up within a standard iTunes backup as well as an iCloud backup. There
is, however, a caveat to this: if health and fitness information is to be backed up, then the backup must be
done via iCloud or the iTunes backup must be encrypted. Within an iTunes backup, the investigator should
look to the path \private\var\mobile\Library\DeviceRegistry for data that is backed up to the mobile device
and subsequently found in the iPhone backup (Figure 16-12). Also, the investigator can find current settings
for the device at \private\var\mobile\Library\DeviceRegistry.state.

FIGURE 16-12 File system location for the backup of the Apple Watch in a standard iTunes backup

Information that is shown on the watch is often simply a reference to the information within the stock app
databases. Examples of this are the AddressBook folder, located at
\private\var\mobile\Library\DeviceRegistry\<Device ID>\AddressBook; and within the ABSyncState table of
ABSABShadow.db SQLite guid field is a GUID that can be matched within the ABPerson table of
\private\var\mobile\Library\AddressBook\AddressBook.sqlitedb. The examiner can use a simple SQL
command to show the names accessible with the Apple Watch. The investigator can also find data at
additional locations within the Apple Watch backup file system, as discussed next.

490

Settings File
The main watch settings file is located at \private\var\mobile\Library\DeviceRegistry.state\history.plist. The
history.plist contains a history node with several keys that are made up of arrays. Each array first lists a
ClassName NRDeviceCollectionHistoryEntry with an associated date. The date is represented as an OS X
UNIX time and identifies the date and time of the backup snapshot. Each array under the history node will
have the ClassName NRDeviceCollectionHistoryEntry and its associated date of collection. Within each
array, if changes have been made, additional investigative values can include the following:

• Hardware model (hwModelStr)

• Pairing device ID (pairingID)

• Type of device (systemVersion)

• System build (systemBuildVersion)

• Location of the backup (localPairingDataStorePath

• Wi-Fi MAC address (WIFIMACAddress)

• Serial number (serialNumber>UUID)

• Preferred languages (preferredLanguages)

• Name of the operating system (systemName)

• If the device is paired (bluetoothPaired)

• Last active date (lastActiveDate) OS X Epoch UNIX

• Date device paired (pairedDate) OS X Epoch UNIX

• Version or product type (productType)

• IMEI, MEID, CSN (UUID is key)

• Name of device (deviceNameString)

Generally, the first collection history array will contain the majority of strings.

User Information
Within the iOS device’s backup that was paired with the Apple Watch the investigator can find valuable
information to assist with the case. This data can range from applications that have been installed on the
device to voicemails that have been delivered to the wearable. The information listed next includes some paths
within the device backup that can hold this critical data.

• \private\var\mobile\Library\DeviceRegistry\<DEVICE GUID>\NanoMail\registry.sqlite This file
contains many tables with GUIDS and paths of e-mail sent and received to the watch. Tables include
COMPOSED_MESSAGE, DELETED_MESSAGE, MAILBOX, and SYNCED_ACCOUNT.
Within the SYNCED_ACCOUNT table, the user ID as well as e-mail addresses can be located for the
account. Within the MAILBOX table, the investigator can match the user ID from the
SYNCED_ACCOUNT table to the correct e-mail path URL. Also within the MAILBOX table, the
SYNC_ENABLED field will indicate whether the mailbox was currently being synched (0 = no and 1 =

491

yes).

• \private\var\mobile\Library\DeviceRegistry\<DEVICE
GUID>\NanoPreferencesSync\NanoDomains\com.apple.Carousel This file is a property list that clearly
defines the applications that are installed on the Apple Watch. The FavoriteApplications node lists the
built-in Apple Watch applications, and the IconPositions node contains an embedded property list with
all installed apps in a series of arrays.

• \private\var\mobile\Library\DeviceRegistry\<DEVICE
GUID>\com.apple.tccd\WatchKitApplications This property list contains the version numbers of all the
third-party applications that are installed on the Apple Watch.

• \private\var\mobile\Library\DeviceRegistry\<DEVICE
GUID>\NanoPreferencesSync\NanoDomains\com.apple.mobilephone This property list contains the
path for voicemails with the key kVoicemailForReplicationKey. This key contains an embedded property
list with multiple arrays with a data key (NS.data). The data includes the phone numbers and also the path
to the voicemail within the iOS device file system. See Figure 16-13.

FIGURE 16-13 Data in the kVoicemailForReplicationKey showing the phone number and path to the
voicemail

• \private\var\mobile\Library\DeviceRegistry\<DEVICE
GUID>\NanoPreferencesSync\NanoDomains\com.apple.nanoprefsyncd This plist file lists all the
settings for the device that may help an investigator understand the following watch settings:

• Voice dialing enabled (allowVoiceDialing)

• Camera enabled (allowCamera)

• Whether backup can occur via iTunes (allowiTunes) or iCloud (allowCloudBackup) or both

• If chat is enabled (allowChat)

• If Find My Device is on (allowFindMyDevice)

• If a PIN is enabled (forcePIN)

Remember as discussed in Chapter 3 that the Apple Watch uses the shared area of many of the
applications that are added as applications and the default Apple apps. The shared area is denoted by group.
<Reverse DNS app bundle name>, as shown in Figure 16-14. Also, it is not necessary to have an Apple Watch

492

paired to the device to recover user information from health information.

FIGURE 16-14 Location for the sharing of application data between apps given permissions as well as Apple
Watch

Two database files should also be investigated:

• \private\var\mobile\Health\healthdb.sqlite This database contains several tables that can help an
investigator determine whether an Apple Watch was paired and authorized. Two tables, authorization and
source_devices, will list the devices, operating system versions, and dates and times of devices using the
health functions.

• \private\var\mobile\Health\healthdb_secure.sqlite This database file contains several tables with
additional settings and user information. The table key_value_secure contains the user’s birthdate
(birthdate), name (NameKey), sex (sex), and body composition (height, body_mass).

The data that is created during the use of the Apple Watch can be valuable to an investigation. Whether
this information assists the investigator in understanding what additional information is in an iTunes or
iCloud backup, where it is located, or what was installed on the Apple Watch, it can provide additional clues
or artifacts that may help in a forensic case.

Fitbit
Like the Apple Watch, the Fitbit device can be used to receive and send messages, receive alerts from
applications, and keep track of the user’s health. However, unlike the Apple Watch, the Fitbit’s primary
function is for health purposes; only recently has the device required an accompanying GPS-enabled device to
properly document location and activity. The Fitbit has an app for both iOS and Android and also stores data
in the Cloud; both can be sources of information. The app includes meaningful data such as account, health,
and location information, to name a few.

Accessing the data on the mobile device is difficult, as the Android or iOS device requires root or physical
access. In both iOS and Android operating systems, the data is not available with just a basic file system
backup, as is obtained using the Apple Mobile Sync or ADB backup protocols. The app was developed not to
back up that valuable investigative data, for obvious privacy concerns. What has been found, however, is that
data that is available is stored in SQLite databases and files compressed using gzip.

493

The file system (Figure 16-15) of the Fitbit app package is similar to that of many other Android apps and
can be viewed by using a reverse DNS name of com.fitbit.FitbitMobile with a cache folder, download folder,
files, no_backup, and shared_prefs. First, the application will be analyzed to see what type of “tip of the
iceberg data” can be uncovered, and then the investigation can move to the cloud resource, where additional
historical data may be hiding.

FIGURE 16-15 Text files in the httpcache folder contain valuable information to identify the data within the
associated data file.

com.fitbit.FitbitMobile
As mentioned, the folder structure for the app is similar to that of other Android apps that have been
referenced throughout the book. In this section, the data that is available will be exposed in an effort to help
the investigator gather intelligence when the Fitbit app is part of the investigation or when it may corroborate
other data recovered.

The first folder, app_companions, contains JavaScript companion files that have been shown to hold no
investigative data but that are important for the function of the running processes. Another folder,
app_MixpanelAPI.Images.DecideChecker, will generally be next in the folder structure; it contains an image
of the device that Fitbit has been set up to use.

The cache folder holds a tremendous amount of information, particularly the httpcache folder. This folder
is where synced data is stored, from the Fitbit to the Cloud and from Fitbit to the mobile device. The mobile
device then submits this data to the user’s account or receives it in the form of GET or PUT statements using
the Fitbit API. This data includes not only app settings but also health settings. The files in this folder
contain both text files and data files. Each data file has a unique filename with a 1 extension, and most have
an associated text file, with the same name, with a 0 extension. The text file identifies the content, path to the
data, and format of the associated data file.

Figure 16-16 shows the information that can be gleaned from the text file, indicating the path on the
server via the API. The content of the associated file is in JSON format and in a compressed gzip file. The file
was exported, and 7-Zip was used to uncompress it, while Notepad++ was used to format the JSON content.
As you can see from Figure 16-17, the user needs more sleep!

494

FIGURE 16-16 The data file is uncompressed and the JSON file viewed to locate valuable content.

FIGURE 16-17 Parsed JSON file for sleep records recovered

The database folder contains all of the SQLite databases that one would expect in a mobile app. These
databases are outlined with an overview of the data that can be obtained from each. This is not an exhaustive
list of all the databases in the Fitbit app, but more of a guideline of places to look for pertinent data.

• \data\data\com.fitbit.FitbitMobile\databases\activity_db This SQLite database will hold tables
ACTIVITY_ITEM, ACTIVITY_LOG_ENTRY, MOST_RECENT_ACTIVITY, and others. The
three mentioned tables are the most important because MOST_RECENT_ACTIVITY and
ACTIVITY_LOG_ENTRY contain date and time information.

• \data\data\com.fitbit.FitbitMobile\databases\com.fitbit.FitbitMobile.devmetrics This file reports on
the setup, particularly the setup of the device the app is running on, the Wi-Fi SSID, and TimeZone
offset from GMT within the STORED_FSC_EVENT table.

• \data\data\com.fitbit.FitbitMobile\databases\coreux.db This SQLite file represents the built-in
notifications for the Fitbit.

• \data\data\com.fitbit.FitbitMobile\databases\exercise_db This file records the exercises of the wearer.
The data that is contained in EXERCISE_SESSION and EXERCISE_EVENT can be used when
looking for event times, since date and times are logged in these tables.

• \data\data\com.fitbit.FitbitMobile\databases\fitbit-db This is the main SQLite database that contains
the user information in the table PROFILE. This table contains the FULL_NAME,
TIME_CREATED, TIME_UPDATED, DATE_OF_BIRTH (Epoch UNIX (ms), HEIGHT,
GENDER, TIME_ZONE, and many others. Also in this database are several other tables, including
ALARMS and DEVICE, which outlines date and time information of the last sync and the type of the
device.

• \data\data\com.fitbit.FitbitMobile\databases\heart_rate_db This file reports on the daily average in the
HEART_RATE_DAILY_SUMMARY table and can be JOINed with table HEART_RATE_ZONE

495

to show the high and low values for the dates and times in the first table. This information can be
important, especially when working cases to determine time of death when a user is wearing the Fitbit.

• \data\data\com.fitbit.FitbitMobile\databases\sleep The Fitbit tracks the user’s sleep patterns. Within
this database, the information on sleep patterns include dates and times, durations, and types of sleep.

• \data\data\com.fitbit.FitbitMobile\files\User\<USERID>\companion_data\platform.db The Fitbit has
several built-in apps, but the user can also add apps to the device, referred to as companions. Using this
database, an investigator can uncover what apps are installed on the device. Within the companion table of
the database is a listing of the apps along with the installation path, date modified, and the app name.

As discussed, an investigator can find data within the Fitbit app to help during an investigation, but the
device must be collected at a physical level to expose the verbose information described earlier. However, the
data that is sitting on the mobile device is often duplicated within the user’s Fitbit cloud account. The
following section will describe collecting this type of information.

Fitbit Cloud
Like all the other IoT devices mentioned in this chapter, data for the Fitbit device is often just a username
and password away. This mobile device communicates with the cloud sever using the Fitbit API. This is how
commercial tools are able to collect and extract the information. However, the account will need to be
authenticated by the investigator to extract the information successfully. Some tools, such as Cellebrite Cloud
Analyzer, do not necessarily support Fitbit, but they do allow for the capture of the information from the
front-facing user dashboard. Currently no commercial tools support the Fitbit Cloud. The method to
obtaining the information from the Fitbit Cloud is very similar to obtaining Alexa Cloud data with the use of
GET calls in a secure HTTPS instance. What is quite interesting is that Fitbit appears to have secured the
extraction of this process with the utilization of a token process that differs from the authentication process of
the Alexa Cloud. The information that can be received includes, but is not limited to, the following:

• Profile

• Friends

• Location and GPS

• Weight

• Device information and settings

• Sleep

• Food and water logs

• Activity and exercise

• Heart rate

The API information can be located at https://dev.fitbit.com, which an investigator can build on if a
collection from the Fitbit cloud source is necessary. As mentioned, manually collecting this information is
tedious and should be considered an advanced technique. However, the steps will be clearly documented here.

First, the investigator must visit the web page https://dev.fitbit.com/build/reference/web-

496

https://dev.fitbit.com
https://dev.fitbit.com/build/reference/web-api/oauth2/#obtaining-consent

api/oauth2/#obtaining-consent and create an account. This page documents the steps in obtaining an access
token (OAuth2.0) that will allow the use of a secondary page to run API calls and retrieve data from the user’s
account.

The user ID from the Fitbit app will be needed for this process. The user ID can easily be located in the
file tree at \data\data\com.fitbit.FitbitMobile\files\User\<USERID>. When creating the app, the investigator
should elect READ-ONLY. This will allow only GET commands and not POST commands, helping to keep
the integrity of the data within the user’s cloud store.

Once the testing app is created using this ID, the investigator selects all options for data on the Fitbit
permissions screen. An OAuth 2.0 token will be granted to the investigator, who can move to the next stage
using the online Fitbit testing tool at https://dev.fitbit.com/build/reference/web-api/explore/#/.

This online tool will allow for the query of data from the Fitbit server with the USERID that can be used
to create the testing app and OAuth2.0. The investigator must be logged into https://dev.fitbit.com to utilize
the functions and receive a JSON return. Several API calls are provided on the page, including profile, friends,
location and GPS, weight, device information and settings, sleep, food and water logs, activity and exercise,
and heart rate. For example, all API calls are prefixed with https://api.fitbit.com/1/user/<USERID> and then
the data requested to extract.

Recall that the httpcache folder contains numerous text files that identify a data file obtaining data from
the server. In the text file, the URL will contain a hyphen (-) instead of the USERID. This hyphen indicates
that the data will come from the currently logged in user. These URLs can be used to query data from the
server to obtain the data viewed on the mobile device. When using the Fitbit development page, the
investigator will also use a hyphen (-) since he or she is logged in and using the target USERID.

Table 16-5 lists some of the commands and the expected results.

TABLE 16-5 GET Commands Using the Fitbit API to Retrieve User Information

497

https://dev.fitbit.com/build/reference/web-api/explore/#/
https://dev.fitbit.com
https://api.fitbit.com/1/user/

498

FIGURE 16-18 User activity for the Fitbit user

Currently, the API GET commands listed enable commercial tools to extract data from the user cloud
service. As mentioned, the Fitbit service does contain authentication hurdles that an investigator must
overcome if the data is going to be extracted. However, like the Apple Watch data, the Fitbit data that can be
obtained can bolster any digital forensic investigation.

Unmanned Aircraft Systems
In Chapter 3, drones were discussed along with their impact on several types of investigations. Drones are
used to deliver prison contraband and drugs, to stalk victims, and to support terrorist efforts. These devices are
easily available to anyone who wants to become a UAS pilot.

When the word drone is brought up in conversation, some people immediately picture the military drone,
soaring above the earth on a secret mission. This chapter does not discuss the data within those types of
drones, but focuses on data that can be collected from recreational drones that can be purchased from any
electronics reseller. These devices have become a real problem for law enforcement, and tools have been
developed to thwart the flying of these devices in restricted areas. However, continued illegal operations and
activities will not cease even with certain countermeasures in place. An investigator must be prepared to tackle
these devices if a drone is encountered in the lab.

This section will cover “tip of the iceberg data” to help an investigator establish a starting point when
dealing with drones, particularly drones created by Dà-Jiāng Innovations (DJI). Because DJI is one of the
largest and most prolific drone manufacturers, an investigator is more likely to encounter these recreational
drones in an investigation than others. Data from these devices can be obtained from several locations,
including the controller, the mobile app, the actual drone, the associated media card, and the associated cloud
storage. An investigator will have to tackle several different angles, because the data from each is often unique.
It is important that the investigator have a general understanding of the types of data that can be stored in the
various locations. In the following sections, each area will be discussed and an outline of the data from each
will be listed.

Mobile App: DJI GO
DJI uses its own mobile app, in two versions: DJI GO 4 and DJI GO. DJI GO 4 serves the Phantom 4 and
newer devices, while DJI GO is used for devices that preceded the Phantom 4 series. Other apps specific to
the DJI drone can also be accessed in an investigation. The non-DJI brands that may be located on a mobile
device can include the following:

• Litchi Mavic Pro, Phantom 3 and 4, Inspire 1 and 2, Spark

• Airmap Mavic Pro, Phantom 3 and 4, Inspire 1 and 2, Spark

• UgCS for DJI Mavic Pro, Phantom 3 and 4, Inspire 1 and 2, Matrice

This section covers the DJI GO 4.0 in an effort to inform the investigator on the type of data that can be
recovered from within the application. DJI GO contains a similar structure, and the examples discussed here

499

can also be utilized. Both iOS and Android devices can be used as controllers using the DJI GO application.
In an investigation, information such as flight logs, images, videos, account information, and flight
information may provide critical data. Figure 16-19 shows the file system view of the com.dji.go app
(com.dji.pilot for DJI GO app) that can be recovered from a standard iTunes backup extraction. An Android
device will contain comparative data, and root access to the device is generally needed to recover the amount
of records available in the iOS app. The Android app package is dji.go.v4, and some of the path information
to data is covered next.

FIGURE 16-19 DJI GO 4 app file structure from an iOS device

The recoverable data that can help with an investigation is found throughout the folder structure. Some
notable locations are shown in the following list. This information is by no means an exhaustive list, but these
locations hold user data relative to the drone and its flight.

• \private\var\mobile\Applications\com.dji.go\Documents\.LocalCache\agps\agps_info\agps This file
contains a binary plist file that contains a key, time_since_1970, that is a UNIX date for the time the app
was launched and obtained a signal. This file also contains location keys, lat and lng. If location services
are not provided to the app, the lat and lng will be set to 0.

• \private\var\mobile\Applications\com.dji.go\Documents\.mediaLibrary\djifile\ This folder contains
file names by GUID. These are plist files that contain the metadata for the image files found in the
.mediaLibrary.Cache Screennail and Thumbnail folders. Metadata includes the device used to produce the
image as well as the created time.

• \private\var\mobile\Applications\com.dji.go\Documents\.mediaLibrary.Cache\ This path contains two
folders, Screennail and Thumbnail. These folders contain the full images and thumbnails cached to the
app either because the SD card was not used for storage, was default to the app, or was not inserted. All
filenames are GUIDs, and the associated metadata can be found under the matching GUID in the djifile
folder.

• \private\var\mobile\Applications\com.dji.go\Documents\videoCache\ This folder contains MP4 files
of flights as well as the associated thumbnails stored to the app from the device. The filenames are the date
and time of the recording (YYYY-MM-DD-HH-MM-SS).

• \private\var\mobile\Applications\com.dji.go\Documents\.3F88AF223C2B1FBA25A35BF02935F356 The
JSON file will be named with the registered user’s e-mail.

• \private\var\mobile\Applications\com.dji.go\Library\Preferences\com.dji.go.plist This property list file
contains keys and values that identify milestones for the device. Values such as the total flight time,

500

maximum height, user e-mail address, date user ID created, flight records with date/time, along with the
country in which the flight took place.

• \private\var\mobile\Applications\com.dji.go\Documents\FlightLogs This folder contains flight log .dat
files that are prefixed with a date YYYY-MM-DD. This .dat file is a formatted text file that contains take-
off dates, home point recorded date with altitude, and obstacles avoided with date and time.

• private\var\mobile\Applications\com.dji.go\Documents\FlightRecords This folder contains a file
prefixed with DJIFlightRecord_<Date> with a .txt extension. This encrypted file contains the data records
for the flight(s). The data contained within the text file includes the device and serial numbers along with
GPS location, time, speed (meters per second), number of satellites used, altitude (barometric pressure and
displays in meters above sea level), direction, power, and movement (meters per second) along the X, Y,
and Z axes. The X axis is front to back, Y is side to side, and Z is up and down. This information can help
the examiner determine flight path at a granular level. Note that the air pressure is set initially on preflight
and helps with hovering and auto-landing. Some commercial tools such as Oxygen Forensic Detective
parse and display this data for investigations (Figure 16-20). Also, the encrypted text files can be uploaded
to online services such as www.phantomhelp.com/LogViewer/Upload/, which will also parse the
information.

FIGURE 16-20 Flight information displayed in Oxygen Forensic Detective

Some versions of the app also have a folder called MCDatFlightRecords that contains a .DAT file that
can be found on the SD card in the drone if inserted. This file contains fewer reading points than are in the
associated encrypted text file, and it is not compressed or encrypted. The smaller file does not change the
validity of the GPS data; it shows data generally every second of the drone flight.

From the DJI SDK documentation (https://developer.dji.com/mobile-
sdk/documentation/introduction/flightController_concepts.html) the X, Y, Z concepts are described as
“aircraft translation in positive X, Y, and Z is therefore defined in the Body Coordinate System as
forward, right and downward translation respectively. Aircraft rotation is also described with these same
axes using the coordinate right hand rule to define the direction of positive rotation. When describing
rotational movement, the X, Y, and Z axes are renamed Roll, Pitch, and Yaw.”

501

http://www.phantomhelp.com/LogViewer/Upload/
https://developer.dji.com/mobile-sdk/documentation/introduction/flightController_concepts.html

For Android device apps and the dji.go.v4 app in a physical collection, the information and path to some
important data are found within the media path \data\media\0\DJI\dji.go.v4\. This location contains several
folders that hold the cached imagery files as well as the log files for flights.

• \data\media\0\DJI\dji.go.v4\CACHE_IMAGE This folder contains thumbnail images. Since most
Android devices can have SD cards, the main images will be stored on the external media.

• \data\media\0\DJI\dji.go.v4\DJI_RECORD This folder contains MP4 files of flights as well as a
matching .info file that lists the metadata for the video to include GPS information, device type, and date
and time.

• \data\media\0\DJI\dji.go.v4\FlightRecord This folder contains the encrypted .txt flight logs.

• \data\media\0\DJI\dji.go.v4\LOG\MAP This folder contains log files with a date and time. Many of
the log files will contain a value addHomeMarker, which provides the GPS coordinates and can be
valuable to the investigation.

• \data\data\dji.go.v4\databases\dji.db This SQLite database contains all of the devices and their serial
numbers and the user’s registered e-mail.

By using multiple files from the app that controls the drone, an investigator can gain good information on
the flights for the drone along with imagery captured and account information. Because multiple apps can be
used to control and capture the data from the drone, not just the manufacturer app, the investigator must be
aware of the currently available apps. The flight logs that can be extracted from the associated app can also be
parsed online as well as using commercial tools supporting the data format.

Physical Acquisition
Drones capture information and store the data to non-volatile flash media. Like mobile devices, the drone’s
data can be captured physically by invasive and non-invasive methods. Invasive methods include the removal
of the chip from the device and reading in the associated reader/programmer; non-invasive physical collection
includes obtaining root access via USB or another method and copying the user/system data. The chip-off
procedure can yield a pristine copy of the data that had been recorded during flight(s). Because the device does
not have to be powered on to receive GPS coordinates, several different flights and multiple registered home
locations can be recovered. To perform the non-invasive physical collection, the device needs to be powered
on, and this can cause the device to obtain a GPS lock. DJI protocol will then zero-out .txt and .dat files from
the device. Note that the .txt files that had been logged to the mobile com.dji.pilot application can still
remain, however. While the chip-off procedure does have advantages, the investigator should understand the
circumstances of the case. Removal of the chip is destructive, and the drone will be inoperable; a non-invasive
physical collection will not destroy the drone.

The data observable in a chip-off extraction—at the time of writing this manuscript, the entire blackbox
folder—contains only incremented flight data as compared to the robust flight data, .dat files, and associated
vision folder in the USB physical collection described in the following section (see Figure 16-21). This could
result from a change in firmware between the time of chip-off extraction to the current USB extraction, which
was approximately four months. An investigator can use the following non-invasive landmark sections for the

502

investigation of a chip-off since the paths have been shown to be almost identical.

FIGURE 16-21 Primary folders in chip-off extraction are not observed, versus a USB physical collection.

Non-invasive physical collection offers many benefits, being a non-destructive means of extraction using a
USB cable and Android root exploit. DJI, and many drone manufacturers, continue to upgrade the firmware
on the devices in an effort to update the no-fly zones and to conform to changing legal requirements on
recreational flying. However, the Android operating system that is still being utilized, often 4x, allows for the
extraction of the user data with admin privileges. Note that DJI controllers run almost a duplicated OS
version along with the firmware. This also allows for the physical extraction of the data from the device, using
the same methods currently employed only (at the time of writing) within Oxygen Forensic Detective.

The user data folder structure is almost identical to that of the invasive chip-off technique, with the only
limitation being that some files are zeroed out by the startup and acquisition of a location fix. Some working
in the community of drone examiners advise that data is not available using extraction via USB and only via
chip-off, but it seems that DJI devices simply increment the flight data file upon a new flight and remove the
old data because of limited space on the 4GB onboard flash. Often the drone investigation comes to the lab
without a mobile device or controller, and the drone will be the only evidence collected, so it is imperative that

503

the examiner understand where some of the information can be located in an extraction with a USB.

• \amt\amt\wifi.config This file contains the SSID of the drone as well as the passcode in clear text.

• \amt\amt\BT\BT_Address.txt This file displays the Bluetooth address of the device.

• \amt\amt\nfz\nfx.db This SQLite file contains all of the current latitude and longitude information for
the no-fly zone that is often replicated in the mobile app. The table airmap_geofence_polygons outlines
the country number as well as the radius for the geofence. As an investigator, this information can assist
when dealing with no-fly zones to determine whether the device had the proper information about the
restricted area.

• \amt\amt\npi_test\sn_dut This text file contains the serial number of the drone.

• \blackbox\blackbox Much like the blackbox on an airplane, drones have a controller box that records
information from all aspects of the device to .bb files. Information from the camera, the network, the
controller, the flight system (vision), and all other running processes are stored in these folders. Generally,
files are zeroed out by the DJI system with all containing a latest file that shows the last file that was being
used to record flight data and calibrations.

• \blackbox\blackbox\flyctrl This folder contains all of the .DAT files of the logged flights and the
contents described in the previous mobile app section. The files are prefixed with the date with
FLY<n>.DAT and the number is incremented. These flight files are encrypted, but they can be decrypted
in most commercial tools.

• userdata\data\misc\wifi\hostapd.conf This file contains the Wi-Fi SSID as well as the country this Wi-
Fi was obtained in, and the password is in clear text.

• userdata\data\misc\wifi\wpa_supplicant.conf This file contains the Wi-Fi SSID, and the password is in
clear text.

The information that can be obtained from a physical extraction can help to supplement data recovered
from the mobile device that had been used to control the drone. Also, if the mobile device is not available,
important data, including flight logs, Wi-Fi, country where the flight took place, and user data, is recoverable.
Remember that avoiding the acquisition of signals (Wi-Fi, Bluetooth, GPS) is important if the recovery takes
place via the USB port. Likewise, recall of the DJI drones will zero-out files included in the blackbox as well
as flight records. However, I have been able to recover multiple flights both from the mobile device (more
probable) and drone device.

Media Card
Media cards, generally miniSD cards, are used by the drone to store flight logs as well as imagery. An SD card
does not have to be inserted into the drone to function. If an SD card is not inserted, the data is stored
directly to the mobile device that has been paired with the drone. If the drone is using a radio control (RC)
controller independently, the data will be stored to the drone’s internal flash. This section discusses the data
structure an investigator should expect to see on an SD card.

The file system on the SD card is formatted as FAT and can be read in tools such as FTK Imager, Oxygen
Forensic Detective, Cellebrite UFED4PC, and Magnet AXIOM. As with acquiring data from removable

504

media, the investigator should take all precautions when creating a forensic image of the card (photograph,
write block, image, and work on copy). Once the image is created, the folder structure is similar to what
would be expected from a digital camera. However, in the root of the file system are the drone’s .DAT files.
The .DAT files utilize encryption that differs from that of the internal .TXT files or mobile device .DAT
files, but the data is consistent between files. These files can be brought into many commercial tools such as
Oxygen Forensic Detective, Cellebrite UFED4PC, and MSAB XRY. The data is then overlaid on a map to
produce a flight path and route.

Two additional folders are created on the SD card: the DCIM folder and MISC folder. The DCIM folder
contains the images and videos captured by the drone’s camera. The drone captures and stores EXIF metadata
for both videos and images, which can then be used to identify location—a fantastic piece of evidence for the
investigation. The following illustration shows the skyline in Singapore taken with a DJI Spark. A great piece
of evidence, the SD card and UAS were seized in another country. Within the MISC folder is a secondary
folder, THM, which will contain the thumbnails of the files found in the DCIM folder. The prefix of the
THM file will correspond to the media file within the media folder.

Data on the SD card should not be overlooked, because it will contain information that may not be found
within the mobile device app or even within the drone itself.

Cloud Services
Drone storage, like storage on many other devices, has moved to the Cloud. The information transitions from
the mobile device, as a controller, and into the appropriate cloud service. This storage location can provide a
treasure trove of flights, account information, and imagery. The user must subscribe to this service and is not
obligated to sign up to use the Cloud for the drone to be operational. However, as an investigator, the
knowledge of another source of data is paramount, especially if the drone, controller, or both are not available.

Users of DJI devices have the opportunity to sign up to use the DJI Cloud via the DJI GO app, where
they can store their profile, device info, media, and flight logs. Users can also upload the information to
SkyPixel to share their videos with the community. The uploading of the data is not automatic for the user.

505

The user must set up the account and elect to sync the logs to the Cloud. Currently, Oxygen Forensic Cloud
Extractor is the only commercial tool that can extract profile, devices, media, flight logs, username, password,
and token. Look for the following in the extraction; these files are relative only to the extracted data with the
Oxygen Forensic Cloud Extractor.

• \cloud.dji.data\<UserEmail>\DroneFlights.json This JSON file contains the general flight data for a
single event for each device by serial number. The serial number of the drone is listed, along with
longitude and latitude, total distance, flight time, and a date and time.

• \cloud.dji.data\<UserEmail>\Main.db This SQLite database is a gold mine of user data and drone data.
Within the database are three tables: account_info, dbver, and drones_info. In account_info, the
investigator will find the e-mail address, password, token, username, date signed up, and physical address
(if entered). Within the table dbver is an integer indicating the database version. Table drones_info
contains anything and everything pertaining to each drone using the account. This information includes
but is not limited to serial number, the countries the devices has flown in, the drone type and name, and
totals on flight time, distance, speeds (m/s), and altitudes (m). All are the maximum numbers from all
flights, but also shown are the dates the maximum was recorded.

• \cloud.dji.data\<UserEmail>\Avatars\account.jpg This is the image file the user uploaded to the DJI
Cloud account.

• \cloud.dji.data\<UserEmail>\RawLogs\DJIFlightRecord<Date>.txt These text files contain flight data
much like the records found on the mobile device controller and the onboard flash for the drone. These
text files use a form of encryption that differs from that of the mobile device and onboard flash, and they
are supported by tools such as Oxygen Forensic Detective. What is extremely important to understand is
the fact that logs in the cloud can include every flight the user has taken, along with images. This data is
not zeroed out like the onboard flash or mobile app, making this repository extremely important and
valuable to the investigation. Figure 16-22 shows flight paths from DJI cloud extraction.

FIGURE 16-22 Flight paths produced with data from DJI cloud extraction overlaid in Oxygen Forensic
Maps

The information that can be obtained from the drone’s user storage cloud service cannot only complement
the data that has been extracted from the device but also can open the door to additional data that could not

506

be recovered or is not accessible from the controller, mobile app, and even the drone. The information within
cloud services should never be discounted.

Chapter Summary
From IoT devices in the home, to wearable devices, to recreational drones available in any electronics store,
today’s investigator must be prepared to handle this emerging trend and the extraction of data from these
state-of-the-art devices. Some may want to use the word “threats” instead of “trends,” but that is not an
accurate statement. These devices can simplify the lives of users, help to notify people of health problems, and
protect the public safety. However, as with any device, some users will push the limits, or rather use the limits,
to satisfy a nefarious purpose to their gain. IoT forensics is not much different from the infancy stages of
mobile device forensics. At that time, classes were being taught on how to take pictures of the data on the
device in an effort to document the information, or in utilizing tools that sync software, since there were no
“forensic” tools back then. This is where digital investigations of IoT devices must rise above the days of Wild
West forensics. Nevertheless, the industry—and both commercial software and forensics examiners—is not
there yet.

The collection of data from these device types is all but simple point-and-click. Acquiring data from these
devices can be extremely time consuming, if not frustrating. As indicated throughout the chapter, extracting
the information can involve several methods as well as several locations in which the data may reside (such as
mobile device, Cloud, controller). Autonomous extraction and parsing of IoT devices to include wearables,
vehicles, and drones is in the infancy stages of development by commercial tools. It will be up to the
investigators and examiners to work through the weeds to develop strategies to attack these new data
repositories.

IoT devices such as the Amazon Echo series using Alexa and Google Home will only grow in popularity.
There have already been documented cases of this data being used, or rather attempted to be used, in civil and
criminal cases. With most, if not the majority, of the available home smart speakers, TVs, and other
connected devices, the data is available within a cloud service dedicated to a user. If this was not the case, the
user would not be able to log in using a mobile device to check the status of the contents of the refrigerator or
to access the front door. It is simply a matter of investigation and observation.

With wearable devices, data is also available within the Cloud, and within the produced backup in the case
of the Apple Watch. Because this is such a new frontier, however, the extraction of devices such as the Fitbit
is tedious work, since currently a lot of manual work is involved using the published API. With wearables,
from clothes to eyewear, the data is available—it just comes down to the location of the repository, the
method used to access data, and ultimately making sense of the output. Sounds easy. Unfortunately, as
outlined in this chapter, it will continue to be a lot of work for the foreseeable future.

The number of drones available to anyone in the world continues to grow daily. Coupled with easy
availability and a plethora of features, the use of these once recreational devices has shifted to assist in devious
behaviors. Stalking, terrorism, drug delivery, prison contraband delivery, border crossing, and national security
breaches have been attributed to alternative use of drones. The astonishing fact through investigation indicates
that the interrogation of these devices by digital investigators is almost non-existent outside of military

507

investigations. With the number of recreational drones in use anticipated to reach more 450,000 devices by
2022 and 300,000 commercial drones by 2022, as reported by the Federal Aviation Administration, it is a
certainty that these devices will be in every investigator’s lab.

The data presented in this chapter has been grown from research, communication with industry experts,
and a lot of work. Simply said, there is not a lot of documentation on this type of data collection anywhere in
the world, and within this chapter, some information has never been documented and discovered until now.
To those experts mentioned in the chapter: thank you for your diligence and hard work. To all investigators:
follow-up with your documentation to gain a better understanding, rather than relying solely on what was
presented in this chapter.

To sum up the information discussed in this chapter, there is an unbelievable wave of data and data
sources that are coming and that are currently here. Whether you are a seasoned digital forensic guru or a
green investigator, the data collected from these devices will be invaluable in painting a total picture of our
digital world. Be prepared.

508

M
17 Presenting the Data as a Mobile Forensics Expert

aking a case after collecting a significant amount of data from a mobile device examination is only as
good as the documentation. If the entire process, from seizure to data analysis, is not properly

documented or explained in a way that’s appropriate for the audience, then a comprehensive and proper exam
is often pointless.

Documentation is an examiner’s most important tool, especially when many different exhibits, methods, or
custodians are involved. Without proper documentation, an examiner will be relying on memory or only the
extracted and analyzed data. Recalling details from even a day prior is often difficult for most, let alone
recalling every detail from the start of a process that may have taken weeks or even months to complete. An
examiner must take detailed notes during the entire process. Notetaking at the onset and throughout the
entire process is mandatory.

Before beginning the formal documentation process, an examiner should be aware of who will be reading
the documentation. Often, if the evidence seems too complex or technical, the intended audience will not
comprehend the message, and if they cannot comprehend the message, the examiner’s work will be pointless,
no matter how significant the data. An examiner often neglects the technicality of what he or she has
accomplished and regurgitates this technical journey in the documentation, without considering the audience.
When the documentation presentation is too technical and is too difficult for the readers or listeners, the
information provided may be dismissed. The examiner must find a way to express the details of the
examination in a format and using terms that help the audience understand the gravity of the evidence.

An examiner should also be mindful of the data that should be a part of the completed report. Some
examiners simply dump all the information into a document, place the information on a storage device, and
hand it over to the requester/audience. But this often creates additional work for the requester/audience,
because the examiner has confused details of the examination with what was actually requested. The
documentation should be concise and to the point, but an examiner should always be able to elaborate, if
requested, with additional information.

The journey to becoming a mobile forensic expert is long, and it is often misconstrued as gathering
certifications, awards, and endorsements. But this is not the true path. Becoming a mobile forensic expert
comes from a desire to find the truth within the data. In finding this truth, the examiner must follow
processes and procedures, constantly research new technologies, meticulously document the process, and,
most important, understand and supplement what the automated solutions are doing to recover mobile device
data. The road to becoming an expert is paved with examiners who think mastering mobile forensic tools and
achieving certifications are all it takes to get there. By this point, however, every examiner reading this book
should recognize that this statement could not be further from the truth.

There is a difference between an expert in the field and an expert who has been qualified as an expert. The
examiner should recognize the distinction between individuals who classify themselves as experts in the field
by experience and accolades and those who give qualified expert testimony. One is not better than the other,
but the examiner must understand the difference. One aspect of being a qualified expert witness requires that

509

the following criteria be met and decided upon by the court—and no one else. In the Federal Rules of

Evidence, “Rule 702. Testimony by Expert Witnesses” (www.law.cornell.edu/rules/fre/rule_702), specifically
states that expert opinions may be admissible if

(a) the expert’s scientific, technical, or other specialized knowledge will help the trier of fact to
understand the evidence or to determine a fact in issue;

(b) the testimony is based on sufficient facts or data;

(c) the testimony is the product of reliable principles and methods; and

(d) the expert has reliably applied the principles and methods to the facts of the case.

Even if Rule 702 is not followed, most U.S. states and many nations adhere to this philosophy, with
similar requirements. Courts require that the witness be competent on the subject and know the underlying
methods and procedures used in the examination and relied upon as a basis on the opinion.

Presenting the Data
When presenting the data, an examiner must consider several factors that are generally based on the audience
or individual requesting the work. The format should be established at the onset of the examination so that
the examiner can tailor the examination to meet the requirements of the requestor. Determining the
presentation format up front saves the examiner time and resources. Failing to comprehend how the data
should be formatted from the beginning can result in the examiner following the wrong path, which can result
in an exorbitant amount of time and sometimes money to remedy.

An examiner should also understand the target of the examination at the start. The investigation of the
mobile device data should provide insight into the investigation, with not only the “tip of the iceberg data” but
also a massive amount of relevant data located within the device file system. An examiner should be able to
target specific apps for investigation according to the requirements of the investigation, but he or she should
also not dismiss any other relevant data uncovered during the investigation.

The relevance of the collected data is determined by the presentation of what data was collected and how.
For example, merely stating that a message was sent from Google Voice to another device that received it via
an SMS is often not enough—the data should correlate the sent message in the Google Voice app with the
data from the receiving device’s SMS message container, relating the date/time, time zone, content, and user
ID to the relevant factors of the investigation. Furthermore, the examiner must detail and document SMS
messages, which can be sent from third-party apps to other mobile devices. Using apps for messaging instead
of the carrier SMS conduit occurs frequently. Consequently, the sender using Google Voice can hamper a
mobile solution’s ability to recover a message from the standard SMS messaging because it was sent from a
third-party app. Moreover, since third-party data messaging content is not kept, stored, or cached at the telco
server, it is important that the examiner document when content was recovered on the device. Including this
type of information within the presentation documentation is critical, especially for data that is significant to
the outcome of the case. Outlining the importance of the data as it pertains to the overall case, using common
language and including lots of information, is critical.

Unfortunately, however, use of the many available mobile forensic solutions can lead to confusion when it

510

http://www.law.cornell.edu/rules/fre/rule_702

comes to documentation—not only because of the number of varying reporting formats but also because of
several different aspects of the documentation. An examiner may complete the processing of the mobile
device, select to output the data into a report format, and move on to the next piece of mobile forensic
software. The data is processed in the secondary software, or the device is collected again and another report is
generated. This secondary report may contain additional data that the first solution did not contain, but it
may also duplicate data included in the first software’s report. The problem is not in the employment of
multiple tools within an examination, but the improper presentation of this material.

No matter whether one or multiple tools are used in a mobile forensic investigation, one report should
outline the complete seizure, collection, and analysis, and any reports created by the mobile forensic tools
should be used to supplement the main document, because they often do not contain enough detail or
commentary.

I can recall several instances when a Cellebrite report comprising thousands of pages was entered as
evidence. Legal teams pored over the pages, searching for germane data, with absolutely no idea how the
information was obtained, where it was obtained from, or what the data actually meant to the investigation.
This issue is not limited to Cellebrite, because practically all mobile forensic solutions ordinarily output
generated data compiled by the automated methods that place no value on the process by which it was
collected or the requirements of the overall case—that is left up to the examiner. Unfortunately, many
examiners do not add information to the solution’s automatically created report. But without including
important details in the presentation, the audience may find it difficult or impossible to comprehend the
meaning behind the data hidden within the many pages. An expert is not defined by the number of pages
generated by an automated tool, but by the explanation of the content that is presented with the supporting tool’s
output.

The Importance of Taking Notes
The entire process, from seizure to analysis, should be documented in chronological order in the examiner’s
notes. The date and time of each function should accompany any details of the event, along with all
observations. Using these detailed notes, an examiner can paint a picture of the event precisely how it
occurred. An examiner may attempt to recall the entire event during the final documentation phase, but in
doing this, he or she may leave out many forgotten but valuable details.

Guessing and filling in the blanks of an examination is never the right choice. By documenting every detail
at every step, the examiner will be sure to include even the minutest detail in the final report. Suppose, for
example, that an examiner “always” places a device in airplane mode as soon as a device is seized, and he never
documents this process because it’s always the same. He always writes the report and adds this detail at the
end of the examination. However, on this particular case, he’s not entirely sure he remembered to place the
device in airplane mode because he was interrupted by an important phone call just as he collected the device.
Still, because he believes he always follows the same procedures, he writes the report assuming that he
followed his usual routine. Another examiner is called to validate the findings of the first examiner and
happens to look into the settings file. She determines that the mobile device was not put in airplane mode at
the time of seizure. The entire first examination is discredited and may be deemed unusable.

Instead of guessing, the examiner can create a Chronology log. This log is a detailed grid similar to Table

511

17-1, which can be filled out to include the various tasks with clear details for later recall. This is similar to a
log of the events, and it will help the examiner immensely when recalling each task and resolution when later
writing a report.

TABLE 17-1 Sample Examiner’s Notes Table Used to Document Every Detail of the Investigation, from
Reception to Reporting

When completing any notes of the event, the examiner must understand that any documentation produced
as part of the investigation is discoverable. In other words, the examiner’s notes can be requested as part of the
proceedings if he or she was not acting as a consulting expert based upon Federal Rule of Evidence 502 and
Federal Rule of Civil Procedures 26(b)(A). If the examiner is acting as a consulting expert and will not be
testifying but is advising counsel, his or her notes are a work product and protected under attorney-client
privilege, understanding that these drafts are legal advice and the attorney rendered legal advice based on the
draft. With that being said, the information contained within the examiner’s notes should be free from
generalizations and opinions and should simply state the facts. The only facts that should be included in the
examiner’s notes are the procedures taken and the outcomes of completing the procedures. Listing opinions,

512

comments, or even doodles in the margin could result in considerable hurdles during the court proceedings,
particularly if the court requests these documents. The notes should be used for an examiner’s recollection of
the entire process, and they serve as a guide as the examiner creates the final presentation of evidence.

The Audience
The audience is any person or group of people who will be exposed to the investigational report created by the
examiner. The audience could be the examiner’s supervisor, human resources, a company CEO, an attorney, a
jury, a judge, or any other entity coming into contact with this compiled information. Knowing the audience
of the produced documentation can help guide the examiner during the final documentation phase. The
presentation of the materials should be compiled in a form that caters to each group or individual person
mentioned, but it should also contain information as it relates to the specific audience that requested the
report. For example, a report created for the CEO of a company may contain sensitive information that is not
appropriate for an employee of the company. This does not mean the examiner should permanently omit data,
but he or she should be selective in providing the information needed and requested for particular audience
members. When the examiner creates reports using automated tools, this can be difficult unless some sort of
filtering is available. This is an important reason why an automated report should supplement the main
documentation: the primary document will contain information specific to the request, outlining the details of
the collection and analysis of the scoped data, and the supplemental solution report can be used in a redacted
form. Of course, if the requesting party wants to see the information originally omitted, that would not be a
problem, because a full collection would have already been completed and a more verbose report created.

A full collection should always be completed unless a full collection exceeds the scope of the request or
warrant. In those limited cases, only a portion of the information will be available, as outlined by the
requestor or warrant. If additional information is requested outside of scope, an examiner should follow
proper procedures in obtaining the right to gather this additional information from the device.

Knowing the audience and creating a pointed report that details the information specific to the audience
will resonate more than producing a generic solution report containing all data. Having regard for the viewer
and targeting the report based upon his or her request will often mean little follow-up work by the examiner.
By giving the audience member the data that was specifically requested, in a form detailing the examination,
analysis, and findings, the examiner will satisfy the requirements set forth by the audience. Delivering a 1000-
page report that requires the reader to decipher technical details can result in many questions and more work
for an examiner after the fact. If an examiner bases the presentation on the audience, outlining and detailing
the data to fit the request, he or she is sure to meet the needs of the request.

Format of the Examiner’s Presentation
In addition to knowing who the report’s audience is, an examiner should know the type of format that is
required for the report. The format can be dictated by the working standard operating procedure (SOP) by
the company or agency sponsoring the collection and analysis. Most automated tools’ reporting systems

513

output reports as Microsoft Word documents, PDFs, HTML documents, CSV documents, and sometimes
XML. Because the output produced by these tools will be used to supplement the main document, the format
of this report often is not as important to the audience as the main document’s format. However, if the
audience has requested the solutions output in a format such as CSV or XML for specific reasons, such as to
import it into intelligence software such as i2 Analyst’s Notebook, the type of supplemental documents
provided does significantly matter. This formatting information should be discussed and settled prior to
beginning the collection and analysis of the mobile device evidence.

The main document may be created in a word processor such as Microsoft Word or Apple’s Pages and
then saved and printed as a PDF. Some agencies and companies have internal word processing applications
specific to their business; these are completely acceptable to use since most will output to a PDF. A PDF is
important for final documentation, because the content within the PDF remains read-only. Of course, if the
company or agency format is different based upon an SOP, the SOP should be followed so long as the final
output cannot be modified. Some agencies and companies use HTML for their reporting to organize and
display their findings. This method can be used as well, but a main report should always be included as a
PDF, and the HTML format should be used for navigation purposes only.

It used to be common practice to use HTML with an auto-run function, but because modern operating
systems allow this function to be disabled, using this methodology is not advised.

Whatever the format of the completed report and supplemental data, the examiner should organize the
information using the following guidelines:

• All information should be placed on storage media (such as CD, DVD, flash drive).

• The information should be categorized within a README file in the root of the storage media that
outlines the contents. An example is shown here:

• If the examiner will be using HTML pages, the main index.html and associated files should be placed into
a separate folder named HTML Report and listed in the README.txt file with instructions on its
operation.

• If the examiner has placed media files within the evidence folder, the audience might need special software
to view the material (such as .mov, .mp4, .qcp files). The viewing software should be included in a folder

514

http://index.html

called MISC Software and its use and need described in the README.txt file.

When the information is organized by the examiner, the audience is less likely to request an explanation or
require assistance from the examiner when viewing the results. Making information clear and concise will save
the examiner from unnecessary requests, saving time for both the audience and the examiner. If documents are
produced as a hard copy, all pages should be initialed by the examiner to ensure the integrity of the
documented data.

Why Being Technical Is Not Always Best
When documenting the process, procedures, and analysis, the examiner should remember to write in a way
that the audience will understand. Often, a forensic examiner will create a document that contains
information that only another examiner will understand, but this defeats the purpose of the report. An
examiner should think in terms of customer satisfaction when creating the main document and any
supplementary documents; all should be written and compiled so that a person with absolutely no forensic
background or technical experience can visualize and comprehend the contents.

If the client requests that the examiner create a PowerPoint presentation to explain his or her report, this
is a clue that the information contained in the report does not paint an understandable picture of the
procedure and data.

Examiners must understand that the report’s audience may have an entirely different perspective regarding
the data. Using jargon and acronyms known only to mobile forensic examiners can confuse and frustrate a
reader who is not versed in these terms. A report can be quickly dismissed if it is simply a well-written
document that only the examiner understands. The most frequently requested change clients make when
receiving an examiner’s final report is to explain the technical jargon used in the document. Some examiners
go the opposite route, “dumbing down” the content. This has the same effect on readers, who realize the
author is “talking down” to them. The examiner is challenged to find middle ground to discuss technical
aspects, procedures, analyses, and conclusions in simple terms, but not so simple as to demean the readers.

An examiner may find that using analogies can help in documenting the technical aspects of the device
analysis. By using everyday, real-life examples, an examiner can describe a technical procedure within the
document or during testimony by comparing the information to something more familiar. For example, if the
examiner includes information about unallocated space, he or she might compare it to a shelf in the public
library. The user goes to the catalog system, looks up a book by the author or title, and is directed to a shelf
where the book is located. However, not all books are referenced in the catalog system—perhaps they have
been removed to discard—yet they still exist on a shelf somewhere in the library. The books may still be read,
and they still physically exist, but they cannot be found using the catalog. Unallocated space is like the shelf
where the discarded books are stored, and the information stored here is similar to the discarded books. This
storage space contains deleted files, file remnants, and empty space. Because the files within the unallocated
space are not referenced within a file table (catalog), an examiner must search to find each file within this
space.

515

“Tech speak” is best left to conversations with other forensic examiners, but sometimes technical terms and
concepts must be included in a forensics report. In this case, the document should contain a list of terms used
in the document and simple definitions. The definitions should explain each concept in an appropriate way so
that the audience will understand. An examiner can then reuse a definition document for each examination as
needed.

By creating a nontechnical document that caters to the intended audience, describes the processes and
procedures, and supports the conclusion based upon the evidence, additional explanations to the content are
seldom needed. An examiner should strive to produce a concise, detailed document that can stand on its own
without additional explanation or commentary.

What Data to Include in the Report
The content of an investigatory report should be consistent and structured so that the examiner can use a
similar format for each mobile device investigation report. When an examiner creates a report using
boilerplate language and format, he or she can use the same configuration for each examination, with
adjustments as appropriate. Creating a well-functioning document starts with a well-formed outline. The
examiner can use the outline during the examination and analysis phase to help with documenting the
appropriate details and focus on the particular requirements of the outline, which often results in a more
detailed report.

The information contained within this section is only a recommendation. An examiner can add, remove,
or modify these suggestions to fit his or her own needs. Some critical items should always be included in
investigatory reports, and these are noted within the context.

What Right Do You Have?
The initial information in the report should indicate not only how the examiner received the mobile device
and conducted subsequent analysis but also what right the examiner has to collect and analyze its contents. If a
search warrant had been obtained to search the device contents, the examiner must indicate this. If an
examination does not require a search warrant (for example, consent is given to search, a private investigator is
searching, the device is enterprise owned, or the examination is part of a contract), these details must be
included in the report to describe why this search and analysis could be legally conducted. Failing to describe
the examiner’s right to conduct an investigation into mobile device data commonly results in additional
questions and concerns from the intended audience.

Documentation that describes the legality of the examination should be included in the Supplemental
Documents folder. The text within the rights section of the final presentation will distinctly outline the
contents of the supplemental documents and will refer to the location in case the audience needs more detail.
Also, the chain of custody form for all exhibits should be included in this folder and should also be
documented within the main document. By including this information in the overall presentation, the
examiner lays the foundation for the validity of the entire mobile device collection and data analysis. This
section should be a mandatory part of all documentation.

516

The Five W’s
Who, what, when, where, and why are known as the “Five W’s” and are important in all types of writing
efforts. Most notably, law enforcement practitioners use these to develop questions to answer when creating
reports and also while handling investigations. The answers to these questions should appear at the beginning
of the mobile device examination report to set the stage for the processing section of the piece.

The content in the initial portion of the document should clearly introduce the Five W’s, setting up the
rest of the content and the examination process. By outlining this information first, the examiner helps the
audience better understand the rest of the document and supporting materials. When the examiner quickly
dives into “This is what I found,” readers may be overcome with information overload. Setting the stage for
the readers and slowly outlining the necessary materials will give them context for the upcoming content. This
section should be a mandatory part of the documentation.

The who question is not necessarily “Who dunnit” for an examiner, but a statement of who requested the
mobile device processing—often this is the primary investigator, but it may be the person performing the
examination. When a request comes from the primary investigator, the examiner should document not only
the name of the individual but also the information surrounding the request. If an investigator has requested
that the examiner process “a Samsung SGH-i535 mobile device for documents sent from Bob Kelly to Major
Tom sometime between April 1st and April 5th, containing classified materials,” this information should be
included as part of the what, when, and where questions. In addition, the who may be other persons involved
in the case: “Mary Todd, the plaintiff, allowed her iPhone 8 to be examined as part of an investigation
surrounding an internal workplace complaint. Ms. Todd stated she had received threatening messages on June
1st, 2017, from Mr. Roger Dokken, her supervisor.” The what and when along with where can also be satisfied
within this statement. Of course, an examiner should elaborate on each point, making sure every detail is
outlined within the processing document completed by the subject who requested the mobile device
examination.

The why question should explain to the audience the reasons the examiner has been tasked with the
collection and examination of the mobile device. Furthermore, it should describe what this particular request
for processing has to do with the overall case.

With mobile devices today, just “dumping” a phone, hoping to find something, is like trying to find a
needle in a haystack. Massive amounts of data are stored within mobile devices as well as within the Cloud,
and an examiner must have a clearly defined objective prior to starting the examination. This objective is the
why portion of the document.

Tools Used
The next section of the report should outline the tools used throughout the process, including software used
to isolate, collect, analyze, view, and report data. The information can be in table form (see Table 17-2) and
should include the company that produced the software, a link to the software, the version number used in the
analysis, and a comment section. By listing this information within the main documentation, an examiner can
duplicate the entire process if necessary.

TABLE 17-2 Example Table Listing Software Used During the Examination Process

517

Examples Using the Five W’s

Suppose a mobile device was seized in a drug case and another device was seized in a case involving a
workplace harassment complaint.

In the drug case, the why is often defined in the search warrant affidavit that describes how this
device was used to communicate via text messages, pictures of drugs, and documents or ledgers stored on
the device and used in the sale and purchase of drugs. With this information, the examiner can formulate
a plan for the examination and then document this plan within the why portion of the report:

Detective Ryan indicated the mobile device examined was used to communicate using text messaging and
an app known as SnapChat with customers. Detective Ryan also has reason to believe the subject used the
mobile device to store and compile records of sales and purchases of drugs using a mobile app and has used the
built-in camera to take pictures of drugs and drug paraphernalia as well as receive pictures of drugs.

In a workplace complaint, examining the why portion is similar, with the content again derived from
the complaint document. If the document alleges that an employee received messages and photographs
of a harassing nature from another employee, the examiner should be able to articulate the why using this
content and an understanding of what types of data will be examined:

Human Resources Director Smith received a complaint from employee Amy Christine, who received nude
photographs from another employee, Dale Dummy, along with inappropriate messages in Facebook
Messenger, Google Voice, and Tinder in violation of company polices. Ms. Christine relinquished her
company-owned mobile device to Director Smith for the examination and recovery of any information
involving the complaint.

Usually, two experts are consulted in a trial—one will validate the findings of the other. By listing the
specific details for each hardware and software title, along with version numbers, a second examiner can set up
the same environment used in the original analysis. Another reason for including the software titles and
version numbers is to assist the initial examiner. By being able to recall the software used in the examination
and the version number, the examiner can resolve problems if current software versions do not provide the

518

same results at a later date. Using the software version, the second examiner can install the exact version that
was used for the initial examination to ensure a proper verification and validation platform. This may seem
like overkill, but with the constant updates to mobile forensic software, there are bound to be changes that
could affect an evidence image. Examiners should maintain all the versions of the software, if possible.

Maintaining all versions of the software is not mandatory, because storing many versions can be difficult
and expensive. However, most software vendors provide a repository where examiners can download past
versions, so maintaining the storage site is unnecessary. An examiner should become familiar with these
locations for all software that will be part of his or her mobile forensic toolbox and know how to obtain
old versions when needed.

Isolation Methods
As part of the main report, the examiner should include how the device was isolated from the cellular and data
networks, when it was received, and when it was examined. As covered in several chapters in this book,
isolating a mobile device from outside networks is mandatory and should be done as soon as possible.
Allowing a mobile device to remain connected can have devastating effects on the data within the device,
ranging from altering the file metadata to deleting the entire file system.

When conducting a mobile device collection, the examiner is essentially working with a snapshot of the
device data—a picture of the device from a time period leading up to the device’s seizure, which in most
occasions is right around the time of the event. If a device connects to a network, the probability of data
contamination is great and the entire time line, frozen in time by isolation, could be spoiled. The
documentation must include this valuable information.

At the Scene If the examiner seized the mobile device at the scene, the documentation of the isolation
technique will be straightforward. The examiner must make sure to include the steps taken at the scene to
isolate the device and the state the device was in, along with date and time information when the device was
isolated.

At the Lab If the mobile device was seized by someone other than the examiner, the examiner must indicate
the state the device was in when he or she received it. This includes whether the device was powered on or off,
inside a Faraday bag, powered on and in airplane mode, or, in some cases, powered on with no form of
isolation.

If the examiner is receiving the device either directly from the field or from a property room, he or she
must ensure that clear documentation has been received from the person who seized the device from the
location. This information should indicate how the device was isolated (airplane mode, isolation bag), how the
device was packaged at the site (Faraday box, bag, or container), and the date and time of the isolation.
Sometimes this information is difficult to obtain, so the examiner must be diligent and contact the person
who seized and isolated the device if this information has not been documented. If it has been documented,
the examiner can refer to the report created by the person who isolated the device, which should be placed
into the Supplemental Documents folder.

519

If a device is brought to the examiner powered on and not isolated, the examiner must immediately take
steps to isolate the device using his or her standard operating procedure.

Whatever the case, the examiner must outline the details, indicating the removal of the device from the
network, how it remained isolated from the network during the examination, and if it was not isolated, the
circumstances as to why the device was not isolated. An examiner failing to include this information will often
have to explain away the possibility of contaminated data, altered file dates, or other anomalies within the
device file system.

Collection Methods
As covered in Chapter 10, examiners can use various collection methods to obtain data from a mobile device,
ranging from an invasive chip-off to photographing the mobile device screen. Whatever the technique used,
the examiner must outline in detail the way in which the data was collected.

If an invasive chip-off physical collection, JTAG collection, or ISP collection occurred, the examiner must
document the reasons behind such a technical collection. Typically, these methods are used because gaining
access to the mobile device using any other means was impossible—perhaps because the device was password
protected, because the device had been destroyed by chemical or mechanical means, or because no mobile
forensic solution supported the collection of the device’s internal file system.

In most cases, a mobile device will be tethered to a personal computer with a cable during the examination.
This cable is the conduit between the software and the mobile device. Mobile devices communicate using
protocols and commands that have been outlined throughout the book for both logical and physical
collections. The commands used by mobile forensic software and other collection solutions travel via the
attached cable, negotiating a backup of the device’s internal memory stores or files. This backup can occur
either via these commands or after the installation of an application to the mobile device, such as an APK in
Android. Of course, communication can occur via other means such as Bluetooth, but the documentation is
generally the same; communication to the device using commands causes the device to deliver the requested
data to a location specified by the mobile forensic solution.

In all cases, data changes occur within the mobile device, but the examiner must provide a detailed
explanation of any system data changes that occurred within the internal store that was not user data. The
examiner should be prepared to explain how this is known in case this information is challenged. The
explanation of verification and validation does not need to be a part of the final documentation, but it should
be a part of the examiner’s notes and knowledge base, since this information will surely be brought up in a
trial.

An examiner must be confident in detailing the collection methods within the documentation because
credibility of the process will often be tested. If an examiner has not documented the details of why an
invasive method was or was not employed, why one software solution collected and displayed a piece of data
that another did not, he or she may have to answer to the report audience. This information should be
mandatory in the final documentation.

520

Collected Data
As you know, an examiner should not simply rely on the output from the mobile solution to document the
collected data. The examiner must detail the main information within the body of the final document and
there refer to the report or reports created by the tool. The audience does not want or need to delve into the
thousands of contacts and SMS messages; they need a clear and concise view of the requested data, not a data
dump they have to sort through.

The collected data portion of the report should include images and clearly defined, measurable details. If,
for example, the UFED Touch 2 was used to complete a physical collection of a Samsung Fascinate SCH-
I500 and the userdata.rfs and dbdata.rfs partitions were collected, the report should specify the time of the
collection, the size of the binary files, and the overall hash of both binary files within the main body. If
possible, and if the tool supports this information, the examiner should list the total number of files in the
partition’s file system. This information can be valuable when describing the massive amount of data within a
mobile device to the audience.

When possible, the examiner should detail the information that was extracted via the automated tool,
indicating the number of items that were contained in each user data container and the pertinent information
that was recovered for each. If possible, the examiner should include the file from which this data was
recovered along with an overall hash of that file. This can ensure that another examiner can duplicate the
results using the same file, even if he or she has to use another tool to complete the analysis.

Here’s an example of a statement that can be used when describing call history records:

500 Call History records were collected from the mobile device. The call history database was located within the
file system at \data\com.sec.provider.logsprovider\logs.db. A MD5 hash of the file was obtained:
c7da421a8de57e813f947b713f676405. Of the 500 records, 212 calls were made to the mobile number of Ms.
Smith and there were no incoming calls from Ms. Smith’s mobile number between the dates of June 1, 2015, and
June 4, 2015. Of the 212 calls, 15 calls showed a duration of 5 minutes or less, with the balance indicating 1
minute or less.

The examiner should detail this information for all collected data from a mobile solution as well as
information manually collected using advanced methods such as SQL queries or scripting.

When an examiner must use advanced methods, these methods do not need to be explained in detail
within the document, but the collected data should include context. Context will help to set the stage for the
audience on the process that was taken and the reason why the automated tool was unable to locate all of the
important data. This data is often at the center of the audience’s attention because the automated tool “didn’t
find it.” As you know, an automated tool not finding app data is a regular occurrence, primarily because of the
plethora of available apps (more than 5 million in iOS or Android alone). This goes for free file parsing for
deleted data from SQLite databases, file carving, and string searching. When using this type of analysis, the
examiner should include a section of the report dedicated to outlining this material, apart from what the
automated tools collected. This is particularly important when the collected information is relevant to the case
requirements and outline.

The collected data portion of the document should reflect all the collected areas that contain valuable data,

521

as requested or as part of the overall data picture. Also, a brief narrative should describe any collected data
containers that are void of significant data:

Out of the 525 contacts located on the mobile device, the name Ms. Smith, her phone number, e-mail address, or
other identifying information was not located.

If an examiner neglects to include information indicating that something was not located, this missing
data is often questioned. Why did the examiner not indicate there was no information? What is the examiner
trying to avoid? What other information might be left out? These are all valid questions. This section should
be mandatory for the final report.

Tools That Collected and Analyzed the Data Usually, the examiner uses more than one tool to collect and
examine the data: one tool is used to collect the device image, while other tools are used to parse and dissect
the data. The document should distinctly outline the tools used to complete the collection of the image and
ensuing analysis. This information should be documented in the collected data section in each area where
multiple tools were used. Within the collected data section, examiners can add multiple subsections defined by
the tool used, and any data that was analyzed is listed in each subsection. This is often the best method,
because the information can be easily followed by both the audience and the examiner creating the report.

In the tools section, the examiner can list any discrepancies in the data parsed when using multiple tools.
One tool may parse additional fields from a SQLite database that another tool did not, providing a different
set of results. When this occurs, this information should be part of the documentation. Again, when this
information is not documented, the examiner’s report can lead to serious questions on the use of the
additional tools. As an examiner who has completed and reviewed hundreds of mobile device examinations
and their data, I know that this will happen more often than not. Commonly, the differences in the data result
from the queries the tools are using to collect the data from a SQLite database. By outlining this information
in the report, an examiner will generally quell any potential challenges. This section should be mandatory for
the final report, even if a single tool was used for collection and analysis.

What Does the Data Mean?
The final section of the main report will outline the key points of the case, what was requested, and the
information that was located that supports the case. This summary area includes the opinions of the examiner
based upon the facts of the case. This section should be supported by the collected data area and should not
include any data not already mentioned. The conclusion area of the report should show the audience what the
collected data means. Data from a mobile device is fact; it is a snapshot of information from the device’s
internal store. This data can be confusing if an examiner does not provide a conclusion in the report.

Sometimes the data found within a mobile device does not include the particular information that was
requested, or it may include information that contradicts the original hypothesis. This information should be
emphasized in this section. An examiner should also use this section to educate the audience on the
differences between the types of data collected. The examiner should be prepared to explain the multiple types
of digital data to the audience—data on its own and in the context of the examination focus.

This section of the report is often the most powerful one, because it provides the big picture, an

522

interpretation of the data collected. Whether multiple devices were collected or data was collected from a
single event, including a collective interpretation of the data is recommended, if not mandatory.

Data on Its Own Reports are often spit out by automated tools as single investigations, and this data is
interpreted as a singular event, which looks much different from data collectively analyzed. When a mobile
device is the only piece of evidence requested and collected, the data is specific to that device only. Mobile
devices are seldom used independently, however, and are instead used for communication either directly, with
another mobile device, or via an intermediary medium such as a server.

Collective Interpretation Seldom is only a single device involved in a mobile device investigation. The
examiner usually creates a report detailing the data collectively. An examiner should create subsections within
the overall report that define the individually collected data elements, showing where the data was collected
and what data was collected from each piece of evidence as an individual exhibit. This enables the audience to
see the data collected from multiple sources, such as mobile devices, cloud stores, computers, servers, and flash
media, individually. This is important, particularly if one piece of evidence contains unique information not
found in the other evidence.

The conclusion should contain the examiner’s collective analysis of all the data contained within each
device as it relates to the others. The examiner should show relationships among the collected data based on
time lines, conversations, and any other artifacts that show collective association.

To Include or Not to Include
Examiners should know what information will be distributed, what will not be distributed, and what will be
archived. The documentation should present a list of the included materials to introduce the audience to the
contents. This information can be in a README.txt file included with the distributed media. The reader can
use this information to identify and refer to the material within the main report. Usually, the materials the
examiner includes with the report are governed by the SOP developed by the examiner’s sponsoring agency or
company.

Some items should not be distributed in the completed report—that is, items that do not provide value to
the audience. However, this information should always be available if requested. No materials should be
removed or deleted from the case until directed to do so by the SOP or other authority. Following are some
basic suggestions on what to include and what not to include.

Include Media, Documentation, and Screenshots
All media extracted from the mobile device that is part of the case should always be included in the evidence
folder within the distributed media. Any pictures, video, and audio taken of the evidence by the examiner or
subjects seizing the data do not need to be included. (See the upcoming section “Do Not Include Forensic
Evidence Images.”)

References to screenshots of software or the analysis can also be made, though the actual screenshots
themselves need not be included in the main report. Because screenshots are created during the investigation,
either during the collection of document settings or during the analysis of document settings and data,
references to the screenshots should be included on the distributed media. The screenshot files should be

523

clearly named and referenced in the main report. The actual screenshot files should be placed in the
Supplemental Documents folder in a subfolder named Screenshots. The reader can then reference this
material, if needed, to support the text in the main report.

Written documentation outlining the process should be included in the case report, clearly indicating the
existence of the media. However, media files such as notes do not need to be included unless requested. (See
the upcoming section “Do Not Include Examiner Notes.”) These files should be saved and archived so that
they can be produced if needed.

Include References
It is often important to include reference material for the audience, such as common mobile device terms and
acronyms with understandable descriptions, infographics showing the number of mobile devices collected,
graphics showing the way a mobile device communicates with a network, and breakdowns of data as
appropriate. A picture may convey the message better than text. This, of course, will be directed by the type of
investigation the examiner is conducting.

For common mobile forensic terms, the examiner should compile a list to be included within every report.
As mentioned, the examiner should always strive to avoid technical jargon. This information should be
included in the Supplemental Documents folder and referred to within the main report text, if needed.

When imagery or details such as infographics or created images outlining the decoding of an artifact are
included, the image should be referenced to support a written description within the main documentation.
The actual image should not be a part of the main report. This information should be contained with the
Supplemental Documents folder.

Do Not Include Examiner Notes
Notes compiled by the examiner, such as the formatted note template discussed earlier, should be used by the
examiner to compile the final report and to support any challenges to the reception, condition, and handling
of the evidence. Unless the notes are required or requested, they can be left out of the main report. However,
all notes and material used to compile the final report should be archived, along with the data and the final
submitted report. Each page of written material compiled by the examiner should contain a signature with a
date. This security precaution can assist both the examiner and audience if the authenticity of the documents
is challenged.

Do Not Include Forensic Evidence Images
The examiner should not include the actual forensic images of collected devices used during the investigation
and subsequent analysis in the main report. Forensic images are used for collecting intelligence, not for
explaining or detailing the evidence recovered. Instead, the original forensic images should be archived with
all other data and documents compiled and created for the case. The images will be maintained as outlined in
the agency or company SOP.

The forensic images, however, can be requested by the audience if it is determined that the evidence will
be examined by a second examiner. At that time, the forensic images should be copied and placed in their own
storage media and given to the appropriate persons.

524

In some cases, if data contained within the image includes criminal images (such as child pornography) or
sensitive company information, the images are generally not released for obvious reasons. In such cases, the
audience requesting the images often views the information at a designated location; this maintains the
legality and sensitivity of the evidence, since distributing or making copies of this evidence could technically
be a crime. The original examiner should inform the reader of the sensitive content to avoid questions as to
why the forensic images cannot be disclosed.

On December 1, 2017, two new Federal Rules of Evidence were added to FRE 902: Rule 902(13):
Certified Records Generated by an Electronic Process or System and Rule 902(14): Certified Data Copied
from an Electronic Device, Storage Medium, or File. Rule 902(14) pertains the most to the forensic
examination and production. FRE 902 lists the evidence that is self-authenticating and outlines the items that
do not need additional authentication to be admitted into evidence. These rules were added because of the
large amounts of electronically stored information (ESI) used in trials today. Bringing in experts to testify as
to how a forensic tool works to extract data, or to authenticate the text message existing on the telco’s server,
or to explain how a page on a Facebook account is extracted and produced is, in fact, valid, but doing so
proved to be overly time-consuming for the courts, and the cost of hiring these experts (if one could even be
found) was difficult to gauge.

The most important rule to the mobile forensic examiner conducting the extraction is FRE 902(14):

Data copied from an electronic device, storage medium, or file, if authenticated by a process of digital
identification, as shown by a certification of a qualified person that complies with the certification
requirements of Rule 902(11) or (12). The proponent also must meet the notice requirements of Rule
902(11).

In other words, if the process can be authenticated by a hash that can be verified as consistent, and the person
who conducted the extraction and hashing is competent in using the tool and processing and has certified the
results, the data can be admitted as evidence without additional authentication from another party.

Becoming a Mobile Forensic Device Expert
This book is devoted to the examiner’s journey to becoming a mobile forensic expert. Becoming a mobile
forensic expert has nothing to do with certifications received for performance on aptitude tests, subjective
practical exams, or other written tests. The word journey best describes how becoming an expert should feel.

Unfortunately, a lot of individuals who are starting out in the field of mobile forensics would rather it be a
called a sprint. Most look for certifications as a quick way to find a career and believe that a certification will
somehow propel them into becoming an expert. It is this belief that has cast a shadow on a field that is
growing at breakneck speed, where the number of examiners considered experts has flatlined.

The word certification has been mentioned throughout the book. Certifications currently come in two main
flavors: vendor-created and tool-based. A vendor-created certification “certifies” that the examiner knows how
to use the vendor’s product; this is not the same as being an expert in mobile forensics. A tool-based
certification indicates that the examiner has completed the necessary steps to use the vendor’s product; it may
simply be a label to attach to a name on a calling card.

525

Currently, mobile forensics lacks a general certification, which would expose an examiner to processes and
procedures, various tools, a variety of methods, and a core set of proficiencies. This should be changing soon,
however, with the addition of a general mobile device certification board at the International Association of
Computer Investigative Specialists (IACIS). However, an examiner does not become an expert in the field
merely by getting certified—it takes a lot of hard work.

A mobile forensic expert is an examiner who never relies completely on an automated tool or process. This
examiner resists the temptation to click the “Easy” button in search of the truth within an ever-growing
amount of data. The expert examiner is never satisfied but will fine-tune the examination processes and
procedures whenever possible. The mobile forensic expert will spend countless hours exploring in an effort to
uncover massive amounts of data, including never-before-found artifacts.

The ability to locate data using manual techniques does not, on its own, define a mobile forensic expert,
but it is part of the equation. Once the expert examiner locates this data, he or she will research and test to
arrive at a conclusion as to why this data is written to the device’s storage area. Furthermore, the expert will
seek to comprehend the processes that took place or that needed to occur for this type of evidence to be
written to the device’s storage. Then the examiner can determine what this data might mean to the
investigation—by looking at the totality of the evidence, not just a located artifact.

The road to becoming an expert is full of switchbacks and curves, and examiners must navigate
undocumented terrain. Experts do not wait for the instructions; they often write the instructions themselves.
One of the most critical aspects of the investigational process is peer review. When instructions, procedures,
and methods are created and tested, the examiner should allow for the review of the process and artifacts. This
critical stage will not only maintain the processes’ integrity but will also help processes continue to improve.
Changes are needed to maintain the most up-to-date and relevant procedures consistently in the ever-
changing mobile device environment.

In 1990, psychologist Anders Ericsson determined that 10,000 hours of repetition was the secret to
becoming an expert. However, how the 10,000 hours are spent matters. To become an expert means to
practice, conform, and evolve to refine the discipline, constantly updating and improving the methods. For a
mobile forensic examiner, this includes not only collections but also research, documentation, and testimony
of findings.

The legal world often describes a forensic expert as an individual who provides an opinion more
knowledgeable than that of a typical layperson, based upon specialized knowledge or training. The expert’s
opinion is deemed more valuable because it is based upon scientific, technical, and specialized training,
education, or experience.

Obtaining testimonial experience of the findings of an examiner’s mobile device investigation is also
extremely important. Whether it be simply explaining the findings to a council, board, magistrate, judge,
grand jury, or state or federal juries, providing testimony is critical. This type of practice is essential for an
examiner on his or her journey to becoming an expert in the field. Providing testimony will help an examiner
discern the value of meticulous research and conscientious documentation—either good or bad. During
testimony, the examiner will be expected to support any opinion with facts presented in his or her written
documentation, as well as evidence uncovered. If an examiner cannot support his or her examination with

526

insight into the data’s existence within the mobile device by documentation or testimony, the data is difficult,
if not impossible, to use in a case.

By investigating the mobile device, formulating the documentation, and grasping the principles outlined in
this book, the examiner will have the best chance of success. The more an examiner is able to testify to the
findings uncovered in a mobile device examination, the better the testimony will be, and the better the
examinations of the data will become.

Importance of a Complete Collection
A complete collection is one of the most important considerations for a mobile forensic examiner. A complete
collection of a mobile device contains a file system, not just an outputted report with data pulled from the
mobile device. Of course, in some situations, an examiner will be unable to produce a collection that includes
a file system because of limitations of the mobile device or supported software. However, if the mobile device
can be collected to include a file system, which is possible with the majority of today’s devices, there is no
excuse not to include a file system in each collection.

Unfortunately, mobile forensic examiners often need to collect as much information as possible in the least
amount of time. As a result, software vendors often highlight their product’s collection speed over other
features. But this speed can also result in a partial collection or a partial parsing of the data. Some examiners
contend that there is not enough time to complete a collection that includes the file system, but an expert
examiner’s logical iOS collection must include the entire file system. An expert is not the examiner who merely
pushes a button to extract data from the mobile device.

Full Examination Importance

In the early years of training federal, state, and local law enforcement officers, while explaining the
necessity of understanding where the data came from when conducting a collection using the UFED
Classic forensic solution, many instructors used the following real-life story to convey the importance of
credibility:

The officer who took the stand had performed the collection of an LG VX6100 legacy telephone.
The officer was called to testify about the call logs and text messages that had been recovered from the
mobile device and were being used as evidence in the trial. He was asked for his credentials and training,
along with his number of years of service. The evidence was then presented to the jury. The officer
testified that the call logs and text messages were extracted from the mobile device using a UFED device.
The prosecutor had the officer explain how the UFED device is attached to the mobile device and how
data is extracted to a flash drive. The drive is then inserted into another computer where the report can
be viewed. The report was also presented as evidence. The prosecutor did not have further questions.

The officer was then cross-examined by the defense counsel, who again asked about the evidence.
The officer again explained that the information was obtained from the mobile device using UFED
Classic, which extracted the data to the attached flash drive. He was then asked if any other data was
collected from the phone. The officer replied that there were contacts and some pictures. The officer
explained that all this information was in the report created automatically by the UFED. The word

527

“automatically” perked up the defense counsel, who said this:

“So…. Can you explain ‘automatically’ to me?”

The officer then stated, “The data is pulled from the phone by the UFED unit automatically after I
put in the make, model, and the items I want to extract.”

“OK, that makes sense,” the attorney said. “But, where does the data come from?”

“From the phone,” the officer added.

“Yes, I understand it comes from the phone, but where in the phone? Is there a file that the text
messages, contacts, or pictures come from?”

The officer responded, “It came from the phone, I pushed the button on the UFED and the data
came out.”

The attorney finally asked, “So, the data in the report is automatically produced by the UFED after it
magically connects to the device to obtain the data, and you have no idea if there are actual files on the
device?”

The prosecutor then objected, saying that “the officer is not the manufacturer of the UFED and
should not have to testify to how it works.” The objection was sustained, but then the defense called its
own expert, who had also obtained the mobile device file system. He showed the changes made to the
device and pointed out the actual files that contained the call logs and SMS messages. At that point, the
credibility of the first officer’s testimony was significantly challenged.

This true story is from many years ago, but similar stories are still typical during mobile forensic
testimony. By completing a full and complete collection of a device, understanding the methodology,
process, and procedures, an examiner can overcome such challenges.

Conforming to Current Expectations May Not Be the Best Approach
Based upon misconceptions of the process and procedures along with the methods of collection, mobile
forensics has sometimes been compared to magic. Many software vendors early on believed that ease of use,
limited access to device file systems, immediate reporting, and a simple output was what the mobile forensics
community needed. The tool would be so easy to use that little or no training would be required. This
backward approach to mobile forensics continues to be the current expectation for examinations across the
globe.

This book was written to inform the mobile forensic examiner that by conforming to this type of collection
expectation, an examiner becomes a person who simply presses a few buttons and smiles when the data
materializes on the screen. This type of collection shows zero regard for how that information was obtained,
where it was obtained, and whether or not additional information was collected by the tool. This conforming
attitude among examiners will continue unless more examiners seek to become experts in the field of mobile
forensics.

Today’s mobile forensic examiners must realize that thousands of files are available within a mobile
device’s file system, and these are often viewable using free open source tools. These files and file systems
represent digital gold to the examiner who knows what to look for. An examiner today should be digging into
these areas, creating automated scripts, researching the various file types, and discovering new methods.

528

Mobile forensics expert examiners are pioneers who know that the forensic processing of a mobile device and
all the associated data should include the application of the methods and theories expressed in this book,
instead of conforming to conventional mobile device collection processes.

Additional Suggestions and Advice
This book has provided solid techniques and approaches to mobile device forensics, plus real-life examples
from the author’s many years of being a practitioner in the field. It has offered suggestions on how to make
mobile device collection and analysis a process that can be duplicated when needed.

An examiner should never look for a faster way to perform a collection or complete the parsing and
analysis of the collected data. Instead, an examiner should look for the best methods and means that will cost
the least amount of time in explaining what was done, or not done, during the examination. Once a report of
the examination has been distributed, a good measure of the work can be indicated by the questions that
follow. If an examiner shortcuts the examination, the odds are good that he or she will face multiple
challenges and questions by the readers and audience.

The following sections provide some additional suggestions for the examiner who seeks to become an
expert in the field of mobile forensics.

Constant Research and Testing
An examiner must stay up-to-date with the rapidly changing technology, continuous updating of mobile
device software, and massive influx of mobile forensic solutions and features. The diverse and ever-changing
mobile device landscape creates a challenge to the dedicated mobile device forensic examiner.

Apple sales surpassed those of Samsung in 2016 but fell behind in 2017 when the Samsung Galaxy 8 was
released. In 2017, Samsung again maintained that 1 million devices were being sold each day, and Google
reported in 2015, and again confirmed in 2017, that there were more Internet searches completed using
mobile devices than personal computers. Moore’s law suggests that technological growth doubles every 18
months, but at times the exponential growth of mobile device technology exceeds this estimate. This is
compelling information, but unfortunately mobile forensic examiners and software solutions are having a
difficult time keeping up. An examiner must take it upon himself or herself to research continually the various
devices coming to market, the newest file systems, and the trending apps that will surely make their way onto
the next mobile device submitted for analysis. An examiner who relies on forensic solutions alone will only be
as good as the tool that he or she is using. By staying in pace with the technology, an examiner will be
adapting, practicing, and gaining more time toward the 10,000 hours needed to be an expert in the field.

More Mobile Forensics Information
Compiled in Table 17-3 are web sites where an examiner can find an abundance of information to assist on
the road to becoming an expert examiner.

TABLE 17-3 Web Sites with Helpful Information for the Examiner

529

Chapter Summary

530

The path to becoming a mobile forensic expert is an arduous one that does not depend on quick solutions. An
expert is defined by his or her successful presentation of abundant facts, knowledge and training within this
specialized field, and constant need for growth within the discipline.

The examiner presents his or her discoveries in a fact-filled document to a predetermined audience—
ranging from a single individual to a judge and jury. A skilled examiner prepares the final document to suit a
multitude of readers by creating a report that is structured to introduce the reader to the investigation’s five
W’s, present the process workflow, and then define the conclusion reached based upon the evidence. As this
chapter explains, an automated report generated by a forensic solution does not provide the big picture. The
automated report can contain exceptional data, but it provides no context. A reader needs context to see the
big picture of the captured data, and the final document created by the examiner provides this context.

Collecting valuable data from a mobile device and creating a tremendous final document doesn’t make an
examiner an expert by any means. Becoming an expert in any field requires that an individual constantly adapt
to the changing environment, to seek new ways to solve problems, practice the craft, redirect the course if
needed, and become immersed in ideas to improve the discipline. Becoming an expert is not about becoming
better than someone else, but involves challenging yourself to become the best you can be. The only way to
accomplish such a lofty goal in mobile forensics is to be vigilant in training, research, and testing of new
methodologies and ideas. An expert is not made with a certification document, but through hard work and
dedication.

The road to becoming an expert in the field of mobile device forensics will be long and often filled with
potholes. However, along the way, the examiner will meet many other great examiners and practitioners, and
those meetings and conversations will show the examiner the benefits of hard work and perseverance.

531

Index

Please note that index links point to page beginnings from the print edition. Locations are approximate in e-readers,
and you may need to page down one or more times after clicking a link to get to the indexed material.

2G technologies, 15–16

A
Abbreviated Dialing Numbers (ADN), 286–287

AccessData Forensic Toolkit (FTK), 145–146, 148, 317, 320

AccessData FTK Imager, 154

accessories, documenting evidence, 120

acronyms, 14–17

Active Sync, 249, 250

ADB Backup, 265–267

adware, 463

agents, 249

air-gapped devices, 50

airplane maintenance, 50

Alexa

cards, 485

direct to Amazon Cloud, 481–486

overview, 51–53, 480–481

Alexa Skills Kit, 51

Alexa Voice Service (AVS), 51

Amazon Alexa. See Alexa

AMPS (Advanced Mobile Phone System), 15

analysis, 28

Androguard, 467

Android application package (APK), 261, 262–263

Android Backup Extractor, 265, 267

Android Backup Toolkit, 185–186

Android Debug Bridge (ADB), 69, 114, 165, 260, 262

Android Developers Forum, 23

Android devices

ADB Backup, 265–267

app files and malware, 462–463

532

app folder common directories and associated content, 446

archiving the data, 267

artifacts, 436–439

bootloaders, 434

clipboard information, 440

collecting the device logically, 262–263

collecting the device physically, 263–265

collection, 259–260

connecting to, 260–261

dangerous permissions and descriptions, 465–466

data folder, 446–459

dbdata partition, 430–431

device state considerations, 261–262

file interrogation, 459–461

file system, 429–435

file system locations, 439–445

file types, 435–436

full disk encryption (FDE), 434

Google stock apps, 451–455

hashkill, 434

Helium, 267

locked and hidden USB connections, 263

log files, 440–441

malware, 462–471

MediaScanner, 449

MediaStore class, 449

mount points, 426–427

open source tools, 184–186

operating systems, 428

overview, 425–426

partitions, 426–429, 432–433

power issues, 122–123

Samsung Android artifacts, 455

scripts, 460–461

security, 113–116

SQLite database, 435

stock Android folders, 447–450

system configuration, 442

533

third-party apps, 458–459

“tip of the iceberg” data, 437–459

usage and logs, 442–444

userdata partition, 430–431

Wi-Fi information, 444–445

Windows Explorer, 267

ANDROPHSY, 186

anti-static bags, 125

APK files, 462

and malware, 468

APKInspector, 467, 469

Apple File Conduit (AFC), 255

Apple File Connection (AFC) protocol, 347

Apple File System (APFS), 343

Apple iOS devices

archiving the data, 259

backups, 19–22

Bundle ID folder, 360–362

Cache.db file, 360–361

Caches folder, 359–364

collecting the device logically, 255–256

collecting the device physically, 256–258

collection, 253, 259

connecting to, 253–254

cookies, 352–356

creating a physical image of, 132

Databases.db file, 362–363

device state considerations, 254–255

evidentiary file types, 374

general information, 341–342

grouping shared data, 372–374

installed apps, 358–359

iOS file system, 342–348

JavaScript Object Notation (JSON) files, 393–396

key-value store (kvs.sqlitedb), 359

Launch Services Daemon Identifiers file, 358–359

Library folder, 364–369

Lightning Cable, 253

534

log files, 393

Media folder, 370

open source tools, 183–184

patent landmarks for significant evidentiary files, 365

power issues, 122

preferences, 356, 367–369, 371

property list (plist), 374, 387–392

security, 110–113

Snapshots folder, 364

SQLite databases, 374, 375–387

“tip of the iceberg” data, 348–349

WebKit folder, 356–358

WebSQL folder, 358

wireless folder, 371–372

Apple Mobile Backup service, 346

Apple support, technical specification links, 342

Apple Watch

general information, 58, 60–61, 372–374, 487

Settings file, 487–488

user information, 488–490

application protocol data unit (APDU) commands, 271–272

AppSec Labs, 471

AppUse VM, 471

Arizona v. Gant, 88

arrays, 388–389

authentication, 17, 274

token, 73

two-factor authentication (2FA), 72

username and password, 72–73

automated rooting, 263–264

auto-vacuum, 379

AXIOM Cloud. See Magnet AXIOM

B
BackupKeyBag, 346

backups

general information, 19–22

iCloud, 71

535

securing the scene, 97

bagging evidence, 124–126

Base64, 391–392

baselines, establishing, 136

battery, photographing, 228–229

BB10. See BlackBerry 10 file system

BBM chat, 323–324

BBM Conversations, 324

Bédrune, Baptiste, 344

Bell Labs, 3, 4

Berla Corporation, iVe, 56

binary property lists, 391–392

Binary Runtime Environment for Wireless (BREW), 297

Binns, Roger, 12

Bitdefender, 188, 462

BitLocker, 97

BitPim, 9, 11, 12–13

BlackBerry 10 file system, 324–330

BlackBerry Backup (BBB), 247–248

BlackBerry Developers’ Journal, 319

BlackBerry devices

archiving the data, 248

backing up using BlackBerry Desktop Manager, 246–247

backups, 19, 21–22

BBB (BlackBerry Backup) files, 247–248, 309–310, 317–318

BlackBerry Messenger message logs, 323

calendar, 321

collecting the device logically, 245

collecting the device physically, 245–246

collection, 243–248

connecting to, 244

data formats and data types, 319–324

database files, 311–318

device state considerations, 244–245

e-mail messages, 321–322

encryption, 97

general information, 291, 309–310, 323–324

IPD (Inter@ctive Pager database) backup file, 247

536

MagicBerry, 186

manual decoding, 319–324

phone call logs, 320–321

phone history, 321

PIN messages, 323

security, 116

SMS messages, 321

“tip of the iceberg” data, 310–311

BlackBerry Enterprise Server (BES), 21–22, 116, 244

BlackBerry Link software, 116, 247–248

BlackBerry Mobile OS, 324

BlackBerry Playbook, 324–326

BlackBerry Protect, 22

Blacklight, 200

BLOB data, 404

blocks, 180

Blue Screen of Death (BSOD), 196, 339

Bluebugging, 107

Bluejacking, 107

Bluesniping, 107

Bluetooth, 107–108

Bluetooth Smart Beacons, 107

boot loops, 170

bootloaders, 170–172, 434

Botnet, 463

BREW MP EFS, 297

Brothers, Sam, 166

browser hijackers, 463

Bullzip MD5 Calculator, 296

BundleID, 352

Bundle ID folder, 360–362

Burghardt, Aaron, 344

Burke, Dave, 425

Burp Suite Professional, 482

C
call logs, 288

cameras, wearable, 59

537

capability record, 287

Card Holder Verification 2 (CHV 2), 288

Carrier, Brian, 182

CDMA (Code Division Multiple Access), 15–16

isolating CDMA devices, 234

CDR Vehicle Software, 56

Cell Seizure, 9, 13

Cellebrite, 9

Cellebrite CAIS program, 342

Cellebrite Cloud Analyzer, accessing data from a user’s Alexa account, 485–486

Cellebrite Logical Analyzer, 188

Cellebrite Physical Analyzer, 149–150, 188, 243, 305–307, 308

SQL builder, 407

Cellebrite UFED 4PC, 144, 188, 199

automated rooting, 264

Cellebrite UFED Classic, 199, 293

Cellebrite UFED Cloud Analyzer, 79

extraction of Google My Activity, 54

Cellebrite UFED Touch, 145, 148, 199

Cellebrite UFED Touch 2, 171, 188

automated rooting, 264

Cellebrite UFED Touch Ultimate, 144

cellular communication, 104–107

certification, 524

Certified Computer Examiner (CCE) certification, 27

Certified Forensic Computer Examiner (CFCE) certification, 26–27

CF cards, 14

chain of custody, 84, 101, 127–128

chargers, examining for evidence, 98

checkpoint operations, 384

checksum digit, 276

Chimel v. California, 87–88

chip programmer tool, 179–180

chip-offs, 165, 168, 178–181

documenting, 230

and unmanned aircraft systems, 500–502

Chrome OS, 53

Chromecast, 53, 475

538

Chronology log, 510

Cisco, 1

clipboard information, 440

clock speed rate, 195

Cloud

accessible Cloud data, 74–77

accessing, 71–77

authentication token, 73

bypassing Cloud security services, 73–74

date ranges, 71

and mobile devices, 68–71

notifications, 71–72

overview, 67–68

searching user cloud store, 92–94

tools for data extraction, 77–80

two-factor authentication (2FA), 72

types of records, 71

username and password, 72–73

Cloud Extractor. See Oxygen Forensic Detective Cloud Extractor

cloud mobile app, vs. native mobile app, 68

Cloud services, 504–505

collection, 28

Android devices, 259–267

Apple iOS devices, 253–259

BlackBerry devices, 243–248

complete collection, 525–527

conforming to current expectations, 527

creating the ideal system, 194–201

device damage, 225

device power and security status, 224–225

documenting the collection methods, 518–519

feature phones, 238–243

initial considerations, 222–225

initial documentation, 225–231

isolating the device, 222–223, 231–236

iTunes, 258

logical or physical collection, 223–225

mobile forensic image collection at lab procedures, 39

539

mobile forensic image collection from cloud procedures, 39

mobile forensic image collection on-site procedures, 38–39

time issues, 224

Windows Mobile and Windows Phone, 248–253

workflow, 236–238

See also specific devices

collection pyramid, 166–167

collection additions, 169–172

Level 1: manual extraction, 167

Level 2: logical analysis, 167

Level 3: HEX dumping/JTAG/ISP, 167–168

Level 4: chip-offs, 168

Level 5: micro read, 169

collection systems

file system collection, 159–163

logical collection, 137, 158–163

physical collection, 164–166

collective analysis, 132–135

commercial tools, 187–190

communication, 29, 30

CompactFlash cards. See CF cards

Compelson, 9

complete collection, 525–527

configuration record, 287

consent to search, 88

constitutional rights

Fifth Amendment, 96

Fourth Amendment, 85–94

consumer devices

Amazon Alexa, 51–53

Google Home, 53–54

Internet of Things, 48–49

contacts, 286–287

containers, 388

cookies, 352–356

Cooper, Martin, 4

cores, 195

CPD PortScrubber, 216, 219

540

CPU, 195

cronet, 454, 458

custom dictionaries, 144

custom ROM installation, 263

D
Dà-Jiāng Innovations (DJI), 497

See also DJI devices

data carving, 460

data collection, 101–102

data collectors, 2

data miners, 463

Data Pilot, 9

data seizure

questions to answer before, 85

Supreme Court rulings, 86–87

data transfer

from commercial tool to forensic tool, 9

to data forensics, 10

data volatility, at the scene, 94–95

Daubert standard, 25–26

Daubert v. Merrell Dow Pharmaceuticals, 26

dbdata partition, 430–431

Department of Justice, 92

“Cell Phone Forensics in a Correctional Setting: A Guidebook,” 164

“Electronic Crime Scene Investigation,” 28

DevCon, 219

device connections, troubleshooting, 214–215

device drivers, 29

cleaning out unused drivers, 215–219

finding mobile device drivers, 203, 204–206

identifying the driver, 213–214

installing, 203–215

and multiple-tool approach, 201–202

overview, 202–203

Device Encryption, 97

Device Firmware Update (DFU), 171

device frequencies, 104–107

541

Device Manager. See Windows Device Manager

device security, 96–97

device seizure, 83–85

DFU (Device Firmware Update), 256

dialing number, 288–289

dictionaries, 388–389

digital fingerprints, 130

disk editors, 32–33

disposal of evidence, 70

DJI devices, 63, 64–65

DJI GO mobile app, 497–500

documentation, 507–508

audience for, 511–512, 513–514

of collected data, 519–521

of collection methods, 518–519

Five W’s, 515–517

format of the examiner’s presentation, 512–513

interpretation of data, 521–522

of isolation methods, 517–518

items to exclude, 523–524

items to include, 522–523

making technical aspects understandable, 513–514

note-taking, 509–511

presenting data, 508–509

right of examination, 514–515

of tools used, 516–517, 520–521

documenting evidence, 119–121, 225–226

JTAG, ISP, or chip-offs, 230

memory cards, 230

photographing the battery, 228–229

photographing the device, 226–228

UICC cards, 229–230

Domo, 92

downloaders, 463

dr.fone, 264

drivers. See device drivers

drones. See unmanned aircraft systems

Dropbox, 71

542

Dykstra, Josiah, 90

DynaTAC 8000x, 4

E
Echo devices, 51–53

Eclipse, 467–470

educational resources, 22–24

EFS, 297–300

Elcomsoft iOS Forensic Toolkit, 342

Elcomsoft Phone Password Breaker (EPPB), 258

electronic control unit (ECU), 55–56

electrostatic bags, 125

electrostatic discharges (ESDs), 117

protecting from, 124–125

Elenkov, Nikolay, 185

embedded file systems (EFS) formats. See EFS

embedded multi-chip package (eMCP), 165

embedded Multi-Media Controller (eMMC), 165

encrypted devices, 70

endpoint mobility management (EMM), 22

Engle, Joel, 4

enterprise devices, 49

epochs, 304

Eric Python IDE, 323

Ericsson, Anders, 525

escrow keybag, 254, 255

ESE (Extensible Storage Engine), 333–337

ESI (electronically stored information), 27–28

ETSI (European Telecommunications Standards Institute), 6

European Telecommunications Standards Institute (ETSI), 269, 270

evidence

bagging, 124–126

chain of custody, 84, 101, 127–128

corroborating via Cloud data, 70

disposal of, 70

documenting at the scene, 119–121

Federal Rules of Evidence, 508, 511, 524

numbering system, 118

543

photographing at the scene, 117

tagging and marking, 117–119

transporting mobile device evidence, 126–127

examination, 28

priority, 40–41

examination awareness and progression, 12–14

examining the scene, 97–99

Exchangeable Image Format (EXIF), 134

exigent circumstances, 89

expert witnesses

becoming a mobile forensic device expert, 524–529

vs. experts in the field, 508

staying up to date, 528

web sites to assist expert examiners, 528–529

EXT (Extended File System), 429

external storage, 199–200

eyewitness accounts, 7–8

F
F2FS (Flash-Friendly File System), 429

Facebook, accessible data, 76

Facial ID, 111

Faraday, Michael, 104

Faraday bags, 121

Faraday cages, 104

FDD LTE, bands and frequencies, 104–106

feature phones

archiving the data, 243

associated evidence (UICC and memory cards), 242

collecting the device logically, 241–242

collecting the device physically, 243

collection, 238–243

connecting to, 239

dates and times, 303–307

deleted data, 309

device state considerations, 239–240

file metadata cues, 302–303

general information, 221, 291, 296

544

locations of critical data in the EFS of, 300–302

parsing file systems, 297–309

text formats, 307–308

“tip of the iceberg” data, 296

Federal Judicial Center, 92

Federal Rules of Evidence, 508, 511, 524

Feldman, Adam J., 344

Fernico ZRT3, 172

“Field Test of Mobile Phone Shielding Devices,” 233

Fifth Amendment rights, 96

File Allocation Table (FAT), 429

file system collection, 159

feature phones, 241

internal system collection and display, 162–163

Mass Storage Class (MSC), 159–162

Media Transfer Protocol (MTP), 159–162

Picture Transfer Protocol (PTP), 159–162

file systems

Android, 429–435

BlackBerry 10, 324–330

feature phones, 297–309

HFS/HFSX file system, 343

iOS, 342–358

Windows Phones, 331–340

Fine-pitch Ball Grid Array (FBGA), 179

Fitbit, 57, 59, 61

accessible data, 75

com.fitbit.FitbitMobile, 491–493

Fitbit Cloud, 494–496

GET commands using the Fitbit API to retrieve user information, 495

overview, 490–491

fitness tracking devices, 59

fixed dialing numbers, 288

flash memory, 180–181

Flash Translation Layer (FTL), 181

flasher boxes, 173, 174, 175

flowchart. See workflow

Forbes magazine, on IoT devices, 46

545

foreign keys, 402, 403

Forensic Focus, 23

forensic science, defined, 8

forensic SIM clones, 234–236

Forensic Toolkit for SQLite, 407

forums, 23–24

Fosaaen, Karl, 482, 483

Fourth Amendment rights, 85–94

See also seizure

FPLMN (Forbidden Public Land Mobile Network), 277–278

frames, 383

freelists, 378–382

freeware tools, 186–187

frequencies, 104–107

Frye standard, 25–26

Frye v. United States, 26

FTK. See AccessData Forensic Toolkit (FTK)

FTK Imager, 380, 381, 427

full disk encryption (FDE), 434

FUSE (Filesystem in Userspace), 429

G
garbage collection, 181

Gartner, 54

GhostBuster, 219

global phonebook, 286

globally unique identifiers. See GUIDs

Google

notifications, 71–72

stock apps in Android devices, 451–455

terms of service, 93

Google API, 475–477

Google Assistant, 53–54, 474–475

Google Cloud, 22, 474–475

bypassing security services, 74

Google Glass, 57–58, 59

Google Home

direct interrogation of the device, 475–477

546

Google Home Cloud (My Activity), 477–480

important files retrieved using HTTP, 477

overview, 53–54, 474–475

Google My Activity, 475, 477–480

accessible data, 76–77

Google Services, 71

Google Voice, 508–509

GrayKey, 70, 113, 258, 342

Grayshift, 113

GSM (Global System for Mobile Communications), 5

isolating GSM devices, 234–236

GSMArena, 23, 91, 239

GUIDs, 337, 352, 453

H
hash, 29

hashdeep, 138–140

hashing

avoiding tool hashing inconsistencies, 292–293

defined, 130

hashing a directory of files with Python, 419–421

hashkill, 434

health care devices, 58

Helium, 267

Hemingway, Ernest, 294

Hengeveld, Willem Jan, 250

HEX Assistant, 307, 320

HEX dumping, 167–168

HFS+ (Hierarchical File System Plus), 256–257

HFS/HFSX file system, 343

Hings, Donald L., 5

hostile intent, 136

HSDPA (High-Speed Downlink Packet Access), 16

HSUPA (High-Speed Uplink Packet Access), 16

Huawei Cloud, 22

I
iBackup Viewer, 187

547

ICCID. See integrated circuit card identifier (ICCID)

iceberg theory, 294–295

iCloud

accessible data, 75

backups, 22, 71

bypassing security services, 73

See also Cloud

iFunbox, 187

IMT-2020, 16–17

industrial devices, 49–50

Inflatable Donkey, 183

infotainment systems, 54–57

integrated circuit card identifier (ICCID), 272, 274–276

International Association of Computer Investigative Specialists (IACIS), 26–27

certification, 524

International Data Corporation (IDC), 341

International Mobile Subscriber Identity (IMSI), 276–277

International Society of Forensic Computer Examiners (ISFCE), 27

Internet Evidence Finder (IEF), 190

Internet of Things (IoT) devices

consumer devices, 48–49

enterprise devices, 49

industrial devices, 49–50

overview, 46–47, 473

Real Time Operating System (RTOS), 47

smart home devices, 474–486

“tip of the iceberg” data, 474

unmanned aircraft systems, 496–505

wearable devices, 486–496

interpretation of data, 521–522

invasive physical collection, 165–166

I/O (input/output), 196

iOS devices. See Apple iOS devices

iOS file system, 342–350

app data, 350–358

IoT. See Internet of Things (IoT) devices

IP-Box, 113

IPD (Inter@ctive Pager database), 247

548

IPD Parse, 319

IS-2000 (CDMA2000), 16

ISIM (IP-multimedia Subsystem Subscriber Identity Module), 18

isolating the device, 231–236

documenting the isolation methods, 517–518

ISP (In-System Programming), 165, 167–168, 178

Android collections, 265

documenting, 230

itsutil.dll, 251

ITU (International Telecommunications Union), 16

iTunes

backups, 21

collection, 258

password, 113

J
jailbreaking, 257–258

JavaScript Object Notation (JSON), 357, 393–396, 476

Joint European Test Action Group (JETAG), 65

Joint Test Action Group (JTAG), 165, 167–168, 173–178

Android collections, 265

documenting, 230

JTAG. See Joint Test Action Group (JTAG)

K
Kapersky Labs, 462

Khatri, Yogesh, Forensic Blog, 319

Kik Messenger, 362, 373

SQL queries, 406–407

KingoRoot, 264

Known File Filter (KFF), 145–146

Kornblum, Jesse, 139

L
LAC (location area code), 277

LAI (location area information), 277

last numbers dialed (LND), 288

legacy devices. See feature phones

549

LeMere, Ben, 56

Lemons vs. State, 84

Leong, Adrian, 333

location information. See LOCI

LOCI, 277

locked devices, 70

logical analysis, 167

logical collection, 137, 158–163, 223–225

See also specific devices

LTE, 16

LTE-Advanced (LTE-A), 16–17

M
macOS, backups, 20

MagicBerry, 186

Magnet AXIOM, 80, 190

automated rooting, 264

Magnet Forensics, 190

malicious intent, 136

Malone v. United Kingdom, 86

malware

and Android app files, 462–463

common commands within the codebase of, 468

malware analysis, 188, 463

dynamic analysis, 467–471

permissions analysis, 464–466

static analysis, 466–467

manual extraction, 167

MarketWatch, 1

marking evidence, 117–119

Mass Storage Class (MSC), 159–162

MCC (mobile country code), 277

McDonough, Mike, 319

MD5summer, 296

media storage cards, 18–19

Media Transfer Protocol (MTP), 159–162, 263, 327, 425

memory cards

documenting, 230

550

documenting evidence, 120–121

and feature phones, 242

and unmanned aircraft systems, 503–504

Micro Systemation XRY, 216

microSD cards, 14

MicroTAC, 4

miniSD cards, 503

See also SD cards

misconceptions, 41–43

MMS (Multimedia Messaging Service), 17

MNC (mobile network code), 277

mobile device collection or extraction, 25

mobile device communication

Bluetooth communication, 107–108

cellular communication, 104–107

near field communication (NFC), 109

overview, 103–104

Wi-Fi communication, 108–109

mobile device drivers, 203, 204–206

mobile device forensics

approach to, 28–35

and NIST (National Institute of Standards and Technology), 33

overview, 1–3

processes and procedures, 11–12, 27–28

use of mobile device evidence, 1

mobile devices, 17

data evolution, 5

documenting evidence, 119–120

examining older devices for evidence, 99

history of, 3–6

in the media, 7

and population growth, 2

on the scene, 7–8

size evolution, 4–5

storage evolution, 5–6

studies on, 1

Mobile Forensic Certified Examiner (MFCE), 31

mobile forensic device expert

551

becoming, 524–529

See also expert witnesses

Mobile Forensics Central, 23

Mobile Forensics, Inc., 235

HEX Assistant, 307, 320

SIM Cloner, 236

MOBILedit, 9, 13, 273

Moran, Brian, 480–481, 483

Motorola, 4

mount points, 426–427

MSAB XAMN, 189

MSAB XEC, 189

MSAB XRY, 144, 189, 243

automated rooting, 264

minimum specs, 194

multimedia messaging, 92

multiple-tool approach, 129, 131

analyzing several devices collectively, 132–135

case study, 149–150

challenges, 153–155

and device drivers, 201–219

and multiple hashes, 293

overcoming challenges by verification and validation, 151–152

using to your advantage, 148–150

My Activity. See Google My Activity

N
NAND memory, 180–181

National Software Reference Library (NSRL), 130

National White Collar Crime Center (NW3C), Basic Data Recovery and Analysis (BDRA), 32

native mobile app, vs. cloud mobile app, 68

near field communication (NFC), 109

NFC Data Exchange Format (NDEF), 109

NIST (National Institute of Standards and Technology), 130

Computer Forensics Tool Testing Program, 8

“Forensic Filtering of Cell Phone Protocols,” 30

“Guidelines on Cell Phone Forensics,” 158

“Guidelines on Mobile Device Forensics,” 158

552

and mobile forensics, 33

study on sales of mobile devices, 1

NMT (Nordic Mobile Telephone), 15

Nokia Suite, 13

non-invasive physical collection, 164–165

nonvolatile data, 5

note-taking, 509–511

NowSecure, 193, 471

numbering plan indicator (NPI), 281, 283

O
OAuth 2.0, 494

OFA. See Oxygen Forensic Analyst

OFD. See Oxygen Forensic Detective

on-board diagnostics

OBD-II, 55–56

USB ports, 56

One Click Root, 264

OneDrive, 330

open source tools, 182–186

operating systems, 200–201

Android, 428

OPPO Cloud, 22

out-of-band (OOB) data, 180

Oxygen Forensic Analyst, 150, 189

Oxygen Forensic Detective, 144, 189, 199, 258

accessing data from a user’s Alexa account, 485–486

automated rooting, 264

and collective analysis, 132

SQL builder, 407

validation workflow example, 148

verification workflow example, 138–143

Oxygen Forensic Detective Cloud Extractor, 22, 77–78, 189

extraction from drones, 65, 504–505

extraction of Google My Activity, 54

Oxygen Forensic Extractor, 111–112

Oxygen Forensics, Inc., 189

Oxygen Nokia Phone Suite, 9

553

http://phonescoop.com

P
P2K Commander, 11

pagefile.sys file, 197–198

pages, 180

pairing record, 254

Pangu, 257

Papworth, Neil, 16

Paraben Device Seizure, 241

Paraben Project-A-Phone Flex, 172

Paraben Project-A-Phone ICD8000, 172

partitions, 426–429, 432–433

PCMIA (Personal Computer Memory Card International Association), 14

pdocread, 251

Pebble, 57

People v. Schutter, 89

permanent root, 264

personal computers, examining for evidence, 99

personal digital assistants (PDAs), 6, 124

personal information manager (PIM), 92

Pew Research Center, 7

phantom devices, removing, 216–219

Phone Breaker, 22

Phone Scoop, 22–23, 239

phonebook, 286–288

phonescoop.com, 91

See also Phone Scoop

photo documentation, 225–231

photographing evidence at the scene, 117

physical collection, 164–166, 223–225

See also specific devices

physical extraction of vehicle data, 56–57

Pichai, Sudar, 425

Picture Transfer Protocol (PTP), 159–162

PIM Backup, 252

PIN 2, 288

PIN unblocking keys (PUKs), 96, 274

PINs, 96

554

plist. See property list (plist)

port enumeration, 216

ports, cleaning out unused ports, 215–219

power issues, 121–124, 224–225

consequences of insufficient device power, 241

premium services, 463

presentation, 28

presentation of evidence. See documentation

primary keys, 402–403

prioritization, 45–46

privacy issues. See Fourth Amendment rights

private search doctrine, 87

See also searches

procedures

mobile forensic image collection at lab procedures, 39

mobile forensic image collection from cloud procedures, 39

mobile forensic image collection on-site procedures, 38–39

processor, 195

Product ID (PID), 214

property list (plist), 387–390

binary, 391–392

text XML, 390–391

Protocol Data Unit (PDU), 5

PyScripter, 323, 333

Python

arguments, 412–413

Boolean data type, 411

colons, 414

comments, 410

data types, 411–412

defined, 413

dictionary data type, 412

downloading binaries, 410

exchangeable image file format (EXIF), 416–418

expressions, 410

float data type, 412

functions, 413–414

hashing a directory of files, 419–421

555

import statements, 413, 415

indentation, 414

integer data type, 412

line length, 415

list data type, 412

modules, 413

operators, 410

overview, 399, 408–409

parameters, 413

print statements, 415

rules, 414–415

scripting tools, 323

searching for files, 418–419

statements, 410

string data type, 411

string formatting, 415

string quotes, 415

terminology, 410–414

using Python scripts, 415–419

using regular expressions, 422–423

values, 411

variables, 410–411

pythonScripter, 323–324

Q
QNX Neutrino, 324

R
RAM, 29, 195–196

random access memory. See RAM

ransomware, 463

Real Time Operating System. See RTOS

reballing, 168

Remote API (RAPI), 250–251

REST, 476

restore points, 201

Riley v. California, 86, 133

Roberts, John (Chief Justice), 86–87

556

Robust File System (RFS), 429

rollback journal, 375

root access, 263–264

root privileges, 263

rooting, 252

ROWID, 402–403

RTOS, 47

Rubus software, 317, 320, 322–323

S
Samsung Android artifacts, 455

Samsung Cloud, 22, 71

Samsung Galaxy devices, 426, 427–428

Samsung Gear, 58, 61–62

Samsung PC Suite, 13

sandboxing, 343, 372–374

Sanderson, Paul, 305, 407

Santoku, 183–184, 185, 193

Santoku Community Edition, 193

Scalpel, 184

Scientific Working Group on Digital Evidence (SWGDE), 35

“SWGDE Best Practices for Mobile Phone Forensics,” 158

“SWGDE Best Practices for Mobile Phone Forensics 2.0,” 164, 166, 170, 171

“SWGDE Core Competencies for Mobile Phone Forensics,” 158

SD cards, 14, 18–19, 503–504

examining for evidence, 98

SDCardFS, 429

searches

after locating evidence, 99–101

Cloud location to be searched, 90

consent, 88

data collection, 101–102

examining the scene for evidence, 97–99

exigent circumstances, 89

inventory and location, 100–101

mobile device to be searched, 90–92

physical location to be searched, 89

private search doctrine, 87

557

securing the scene, 94–97

user cloud store, 92–94

warrantless, 87–89

See also seizure

Secure Digital cards. See SD cards

security

Android devices, 113–116

Apple iOS devices, 110–113

BlackBerry devices, 116

bypassing Cloud security services, 73–74

device security, 96–97

overview, 109–110

Windows Mobile and Windows Phone, 116

Seizing Electronic Evidence from Cloud Computing Environments (Dykstra), 90

seizure, 27–28

inventory and location, 100–101

items to seize, 91–92, 93–94

lawful device seizure, 83–85

mobile forensic seizure on-site procedures, 35

securing the scene, 94–97

warrantless searches, 87–89

See also searches

service center number, 282

Shannon, Claude, 57

shell root, 264

Short Message Transfer Protocol (SM-TP), 282

sideloading, 261

signal isolation, 233–234

Sigwald, Jean, 344

SIM (subscriber identity module), 5–6

SIM cards, 6, 12, 13–14, 17–18, 269–271

analysis, 271–272

documenting evidence, 120

examining for evidence, 99

SIM PIN, 110

SIMCon, 9, 13

“SIMs and Salsa,” 234–235

single values, 388, 389

558

SkyDrive, 330

slack space, 279

Sleuth Kit, The, 184

smart cards

overview, 269–271

See also SIM cards; UICCs (Universal Integrated Circuit Cards)

smart home devices

Alexa, 480–486

general information, 474

Google Home, 474–480

smart TVs

and operating systems, 48

See also Internet of Things (IoT) devices

smart watches, 57, 58, 59–62

See also Apple Watch; Fitbit

smart wearables. See wearables

Smith v. State, 88

SMS (Short Message Service), 5, 17, 279–285

SMSC (Short Message Service Center), 281

smudge attacks, 114

Snap, Inc., terms of service, 93

software, 41

SOP document. See standard operating procedure (SOP) document

specialty mobile forensic units, 40

spyware, 463

SQL syntax, 401

SQLite, 400

SQLite database, 399, 400–405, 435

in Apple iOS devices, 374, 375–387

automating query building, 407–408

auto-vacuum, 379

BLOB data, 404

building a simple SQL query, 405–407

foreign keys, 402, 403

freelists, 378–379

header details, 376

journal files and write-ahead logs, 383–387

page header format, 378

559

page types and descriptions, 377

pointer map, 379–380

primary keys, 402–403

rollback journal, 375

uncovering inactive SQLite data via freelists, 380–382

vacuum, 379

sqlite3 library, 401

SQLQueryBuilder, 407–408

SRSRoot, 264

standard operating procedure (SOP) document, 35–40

StarTAC, 4–5

State v. Beddow, 90

State v. Dailey, 89

storage, 197–199

external, 199–200

surface collection, 241

Susteen, 9

Secure View, 273, 293

symlink, 427

sync software, 10

T
Tableau USB write blocker, 10–11

TACS (Total Access Communications Systems), 15

tagging evidence, 117–119

TaiG, 257

TAPs. See test access points (TAPs)

TCK (Test Clock), 174

TDD LTE, bands and frequencies, 104, 106

TDI (Test Data In), 175

TDMA (Time Division Multiple Access), 5, 15–16

TDO (Test Data Out), 175

technical information forums, 23–24

Teel Technologies Eclipse 3 Pro, 173

terminology, 14–17

terms of service, 93

Terry v. Ohio, 88

test access points (TAPs), 165, 174–178

560

text messaging, 92

text XML property lists, 390–391

Thin Small Outline Package (TSOP), 179

third-party apps, 458–459

Thorp, Edward O., 57

time, 34–35

Tizen, 62

TMS (Test Mode Select), 175

TMSI (temporary mobile subscriber identity), 277

tool-based certification, 524

tools

choosing the right tools, 130–132

commercial tools, 187–190

for data extraction, 77–80

documenting the tools used, 516–517, 520–521

freeware tools, 186–187

manual examination tools, 172–173

multiple-tool approach, 129

multiple-tool challenges, 153–155

open source tools, 182–186

single-tool challenges, 152–153

traditional tool matrix, 181–182

See also specific tools

Touch ID, 111

TP-Data-Coding-Scheme (TP-DCS), 283

TP-Message-Reference (TP-MR), 284

TP-Protocol-Identifier (TP-PID), 283

TP-Service-Center-Time-Stamp (TP-SCTS), 283

TP-User-Data (TP-UD), 284

TP-User-Data-Length (TP-UDL), 283–284

training, 34–35

Transport Protocol Data Unit (TPDU), 280–284

transporting mobile device evidence, 126–127

triage, 46

Trojans, 463

troubleshooting, device connections, 214–215

TRST (Test Reset), 175

TULP2G, 13

561

two-factor authentication (2FA), 72

type of number (TON), 281, 283

U
UAS. See unmanned aircraft system

Ubuntu VM, 467, 470, 471

UDID (Unique Device Identifier), 255

UFED Cloud Analyzer. See Cellebrite UFED Cloud Analyzer

UICCs (Universal Integrated Circuit Cards)

call logs, 288

contacts, 286–287

dialing number, 288–289

documenting, 229–230

and feature phones, 242

file system structure, 273–274

fixed dialing numbers, 288

network information data locations, 274–278

overview, 18, 269–271

SIM card analysis, 271–272

user data locations, 278–289

See also SIM cards

UMTS (Universal Mobile Telecommunications System), 16

United States v. Drew, 90

United States v. Finley, 85

United States v. Grimes, 87

United States v. Meador, 88

United States v. Morales-Ortiz, 89

United States v. Parada, 89

United States v. Robinson, 87–88

United States v. Wurie, 86–87

United States v. Zavala, 88

Universal Integrated Circuit Card (UICC), 58

unmanned aircraft system

air space, 64

Cloud services, 504–505

crashes, 63

DJI GO mobile app, 497–500

media storage cards, 503–504

562

obtaining evidence from, 64–65

overview, 62–63, 496–497

physical acquisition, 500–503

privacy issues, 63

restricted areas, 64

smuggling, 64

U.S. Computer Emergency Readiness Team (US-CERT), 41

USB cables, examining for evidence, 98

USB controller, 196

USB drives, examining for evidence, 98

USB hubs, 196

USB speeds, 196

userdata partition, 430–431

USIM (Universal Subscriber Identity Module), 18

V
validation

establishing baselines, 136

overcoming challenges by, 151–152

overview, 135–136

using a baseline, 147–148

vehicles, obtaining data from, 55–57

Vendor ID (VID), 214

vendor-created certification, 524

verification

device integrity verification, 143–146

establishing baselines, 136

overcoming challenges by, 151–152

overview, 135–136

software verification, 136–138

workflow example, 138–143

video, eyewitness accounts, 7–8

Visor PDA, 6

Visual Networking Index (VNI), Global Mobile Data Traffic Forecast Update, 1

voice-sniffing technology, 52

volatile memory, 6, 29

Von Rossum, Guido, 409

563

W
walkie-talkies, 5

warrantless searches, 87–89

wearables

Apple Watch, 58, 60–61, 372–374, 487–490

cameras, 59

Fitbit, 490–496

fitness tracking devices, 59

health care devices, 58

overview, 57–58, 486–487

smart clothing, 59

smart jewelry, 59

smart watches, 59–62

wear-leveling, 180–181

web sites to assist expert examiners, 528–529

WhatsApp, 71, 337

SQL queries, 406

terms of service, 93

Wi-Fi, 108–109

and Android devices, 444–445

Windows, backups, 19–20

Windows Device Manager, 207–213

Windows Explorer, 267

Windows Mobile, 291

alternative collection methods, 252

archiving the data, 253

collecting the device logically, 250

collecting the device physically, 250–252

collection, 248–249

connecting to, 249–250

security, 116

Windows Mobile Device Center (WMDC), 249, 250

Windows Phones, 291

alternative collection methods, 252

archiving the data, 253

collecting the device logically, 250

collecting the device physically, 250–252

564

collection, 248–249

connecting to, 249–250

encryption, 97

file system, 331–340

general information, 330

power issues, 124

security, 116

“tip of the iceberg” data, 330–331

Windows Phone 7, 331–333

Windows Phone 8, 333–338

Windows Phone 10, 339–340

wiping data, preventing, 94–95

Wireless World Wide Web (WWWW), 17

Wireshark, 467, 470

workflow, creation of, 39–40

Wright, Joshua, 107

write blockers, 8–9, 10–11

write-ahead logs (WAL), 383–387

WYSIWYG, 295

X
XDA Developers Forum, 24

XML (Extensible Markup Language), 436

Y
YAFFS (Yet Another Flash File System), 429

YAFFS2, 429

Z
Zune, 249, 252

565

	Title Page
	Copyright Page
	Dedication
	About the Author
	Contents at a Glance
	Contents
	Introduction
	Chapter 1 Introduction to the World of Mobile Device Forensics
	A Brief History of the Mobile Device
	Martin Cooper
	Size Evolution
	Data Evolution
	Storage Evolution

	Mobile Device Data: The Relevance Today
	Mobile Devices in the Media

	The Overuse of the Word “Forensic”
	Write Blockers and Mobile Devices

	Mobile Device Technology and Mobile Forensics
	From Data Transfer to Data Forensics
	Processes and Procedures

	Examination Awareness and Progression
	Data Storage Points
	Mobile Technology Terminology and Acronyms
	Mobile Device
	SIM and UICC
	Media Storage Cards
	Mobile Device Backups

	Educational Resources
	Phone Scoop
	GSMArena
	Forums

	Preparing for Your Journey
	Chapter Summary

	Chapter 2 Mobile Devices vs. Computer Devices in the World of Forensics
	Computer Forensics Defined
	International Association of Computer Investigative Specialists (IACIS)
	International Society of Forensic Computer Examiners (ISFCE)

	Applying Forensic Processes and Procedures
	Seizure
	Collection
	Analysis/Examination
	Presentation

	Approach to Mobile Device Forensics
	NIST and Mobile Forensics
	Process and Procedure

	Standard Operating Procedure Document
	Purpose and Scope
	Definitions
	Equipment/Materials
	General Information
	Procedure
	References/Documents
	Successful SOP Creation and Execution
	Creation of a Workflow

	Specialty Mobile Forensic Units
	Forensic Software
	Common Misconceptions
	Seasoned Computer Forensics Examiners’ Misconceptions
	First Responders’ Misconceptions

	Chapter Summary

	Chapter 3 New Era of Digital Devices: IoT, Infotainment, Wearables, and Drones
	IoT Devices
	Categories of Connected Devices

	Common Consumer Types
	Amazon Alexa
	Google Home

	Infotainment Systems
	Obtaining Data from Vehicles

	Wearables
	Classification of Wearable Devices

	Unmanned Aircraft Systems
	Privacy
	Crashes
	Airspace
	Restricted Areas
	Smuggling
	Obtaining Evidence from Drones

	Chapter Summary

	Chapter 4 Living in the Cloud: The Place to Hide and Store Mobile Data
	Clouds and Mobile Devices
	What Does This Mean to Investigators?

	Accessing the Cloud
	Date Ranges and Types of Records
	Notifications
	Security
	Methods of Bypassing Cloud Services Security
	Accessible Cloud Data

	Cloud Tools
	Oxygen Forensics Cloud Extractor
	Cellebrite UFED Cloud Analyzer
	Magnet AXIOM Cloud

	Chapter Summary

	Chapter 5 Collecting Mobile Devices, USB Drives, and Storage Media at the Scene
	Lawful Device Seizure
	Before the Data Seizure

	Fourth Amendment Rights
	The Supreme Court and Mobile Device Data Seizure
	Warrantless Searches
	Location to Be Searched: Physical Location
	Location to Be Searched: Cloud Location
	Location to Be Searched: Mobile Device
	Location to Be Searched: User Cloud Store

	Securing the Scene
	Data Volatility at the Scene
	Asking the Right Questions

	Examining the Scene for Evidence
	USB Drives
	Chargers and USB Cables
	SD Cards
	SIM Cards
	Older Mobile Devices
	Personal Computers

	Once You Find It, What’s Next?
	Inventory and Location

	Data Collection: Where and When
	Chapter Summary

	Chapter 6 Preparing, Protecting, and Seizing Digital Device Evidence
	Before Seizure: Understanding Mobile Device Communication
	Cellular Communication
	Bluetooth Communication
	Wi-Fi Communication
	Near Field Communication

	Understanding Mobile Device Security
	Apple iOS Devices
	Android Devices
	Windows Mobile and Windows Phone
	BlackBerry Devices

	Photographing the Evidence at the Scene
	Tagging and Marking Evidence
	Documenting the Evidence at the Scene
	Mobile Device
	Mobile Device Accessories
	SIM Cards
	Memory Cards

	Dealing with Power Issues: The Device State
	Bagging Sensitive Evidence
	Types of Bagging Equipment
	Properly Bagging Mobile Device Evidence

	Transporting Mobile Device Evidence
	To Storage
	To the Lab

	Establishing Chain of Custody
	Chapter Summary

	Chapter 7 Toolbox Forensics: Multiple-Tool Approach
	Choosing the Right Tools
	Analyzing Several Devices Collectively
	Verifying and Validating Software
	Using Multiple Tools to Your Advantage

	Dealing with Challenges
	Overcoming Challenges by Verification and Validation
	Overcoming Challenges for Single- and Multiple-Tool Examinations

	Chapter Summary

	Chapter 8 Mobile Forensic Tool Overview
	Collection Types
	Logical Collection
	Physical Collection

	Collection Pyramid
	Collection Additions
	Nontraditional Tools

	Traditional Tool Matrix
	Tools Available
	Open Source Tools
	Freeware Tools
	Commercial Tools

	Chapter Summary

	Chapter 9 Preparing the Environment for Your First Collection
	Creating the Ideal System
	Processor (CPU)
	RAM
	Input/Output (I/O)
	Storage
	External Storage
	Operating System

	Device Drivers and Multiple-Tool Environments
	Understanding Drivers
	Finding Mobile Device Drivers
	Installing Drivers
	Cleaning the Computer System of Unused Drivers and Ports

	Chapter Summary

	Chapter 10 Conducting a Collection of a Mobile Device: Considerations and Actions
	Initial Considerations
	Isolating the Device
	Device Collection Type: Logical or Physical

	Initial Documentation
	Device
	Battery
	UICC
	Memory Card
	JTAG, ISP, or Chip-Off

	Mobile Device Isolation Methods
	Methods, Appliances, and Techniques for Isolating a Device

	Mobile Device Processing Workflow
	Feature Phone Collections
	BlackBerry Collections
	Windows Mobile and Windows Phone Examinations
	Apple iOS Connections and Collections
	Android OS Connections and Collections

	Chapter Summary

	Chapter 11 Analyzing SIM Cards
	Smart Card Overview: SIM and UICC
	SIM Card Analysis
	File System UICC Structure

	Network Information Data Locations
	ICCID
	IMSI
	LOCI
	FPLMN

	User Data Locations
	SMS
	Contacts
	Fixed Dialing Numbers
	Call Logs
	Dialing Number

	Chapter Summary

	Chapter 12 Analyzing Feature Phone, BlackBerry, and Windows Phone Data
	Avoiding Tool Hashing Inconsistencies
	Iceberg Theory
	Feature Phones
	Feature Phone “Tip of the Iceberg Data”
	Parsing a Feature Phone File System

	BlackBerry Devices
	BlackBerry “Tip of the Iceberg Data”
	BlackBerry Database Breakdown
	BlackBerry Data Formats and Data Types
	BlackBerry 10 File System

	Windows Phone
	Windows Phone “Tip of the Iceberg Data”
	Windows Phone File System

	Chapter Summary

	Chapter 13 Advanced iOS Analysis
	The iOS File System
	iOS “Tip of the Iceberg Data”
	File System Structure
	App Data
	App Caches
	Additional File System Locations
	Group Shared Data

	iOS Evidentiary File Types
	SQLite Databases
	Property Lists
	Miscellaneous iOS Files

	Chapter Summary

	Chapter 14 Querying SQLite and Taming the Forensic Snake
	Querying the SQLite Database
	What Is a SQL Query?
	Building a Simple SQL Query
	Automating Query Building

	Analysis with Python
	Python Terminology
	Using Python Scripts
	Hashing a Directory of Files
	Using Regular Expressions

	Chapter Summary

	Chapter 15 Advanced Android Analysis
	Android Device Information
	Partitions
	The File System

	Predominant Android File Types
	Artifacts
	“Tip of the Iceberg Data”
	Additional File System Locations
	/data Folder

	File Interrogation
	Scripts

	Android App Files and Malware
	Analysis Levels

	Chapter Summary

	Chapter 16 Advanced Device Analysis: IoT, Wearables, and Drones
	“Tip of the Iceberg Data”
	Smart Home Devices
	Google Home
	Alexa

	Wearable Devices
	Apple Watch
	Fitbit

	Unmanned Aircraft Systems
	Mobile App: DJI GO
	Physical Acquisition
	Media Card
	Cloud Services

	Chapter Summary

	Chapter 17 Presenting the Data as a Mobile Forensics Expert
	Presenting the Data
	The Importance of Taking Notes
	The Audience
	Format of the Examiner’s Presentation
	Why Being Technical Is Not Always Best
	What Data to Include in the Report
	To Include or Not to Include

	Becoming a Mobile Forensic Device Expert
	Importance of a Complete Collection
	Conforming to Current Expectations May Not Be the Best Approach
	Additional Suggestions and Advice

	Chapter Summary

	Index

