
www.apress.com

de Sousa Antonio
Pro React

Pro
React

Build complex front-end applications
in a composable way with React
—
Cássio de Sousa Antonio

Pro React

B O O K S F O R P R O F E S S I O N A L S B Y P R O F E S S I O N A L S®

This book teaches you how to successfully structure increasingly complex front-end applications
and interfaces. You’ll explore the React library in depth, as well as detailing additional tools and
libraries in the React ecosystem, enabling you to create complete, complex applications.

You will learn how to use React completely, and learn best practices for creating interfaces in
a composable way. You will also cover additional tools and libraries in the React ecosystem
(such as React Router and Flux architecture). Each topic is covered clearly and concisely and is
packed with the details you need to learn to be truly eff ective. The most important features
are given no-nonsense, in-depth treatment, and every chapter details common problems and
how to avoid them.

If you already have experience creating front-end apps using jQuery or perhaps other JavaScript
frameworks, but need to solve the increasingly common problem of structuring complex front-
end applications, then this book is for you. Start working with React like a pro - add Pro React
to your library today.

Shelve in:
Web Development/JavaScript

User level:
Intermediate

SOURCE CODE ONLINE9 781484 212615

53999
ISBN 978-1-4842-1261-5

Pro React

Cássio de Sousa Antonio

Pro React

Copyright © 2015 by Cássio de Sousa Antonio

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1261-5

ISBN-13 (electronic): 978-1-4842-1260-8

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Louise Corrigan
Technical Reviewer: Jack Franklin and Tyler Merry
Editorial Board: Steve Anglin, Louise Corrigan, Jim DeWolf, Jonathan Gennick, Robert Hutchinson,

Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie, Jeff Olson, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Melissa Maldonado
Copy Editor: Mary Behr
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springer.com. Apress Media, LLC is a California LLC and the
sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

To my wife, Mel, for all the support, inspiration, and love.
You make it all worthwhile.

v

Contents at a Glance

About the Author�� xiii

About the Technical Reviewers��xv

Acknowledgments��xvii

Introduction���xix

■■Chapter 1: Getting Started�� 1

■■Chapter 2: Inside the DOM Abstraction�� 25

■■Chapter 3: Architecting Applications with Components��������������������������������������� 51

■■Chapter 4: Sophisticated Interactions�� 91

■■Chapter 5: Routing�� 131

■■Chapter 6: Architecting React Applications with Flux�� 167

■■Chapter 7: Performance Tuning�� 243

■■Chapter 8: Isomorphic React Applications��� 257

■■Chapter 9: Testing React Components�� 281

Index�� 293

vii

Contents

About the Author�� xiii

About the Technical Reviewers��xv

Acknowledgments��xvii

Introduction���xix

■■Chapter 1: Getting Started�� 1

Before You Get Started�� 1

Node.js and npm�� 1

JavaScript ES6��� 1

Defining React��� 2

React’s Benefits�� 2

Reactive Rendering is Simple�� 2

Component-Oriented Development Using Pure JavaScript��� 3

Flexible Abstraction of the Document Model��� 3

Building Your First React App�� 4

React Development Workflow�� 4

Creating Your First Component�� 8

Saving a little typing�� 9

Dynamic Values��� 9

Composing Components��� 9

Props��� 10

Presenting the Kanban Board App��� 11

Defining Component Hierarchy�� 13

viii

■ Contents

The Importance of Props��� 13

Building the Components�� 13

Introducing State��� 21

Kanban App: Togglable Cards�� 21

Summary��� 23

■■Chapter 2: Inside the DOM Abstraction�� 25

Events in React�� 25

DOM Event Listeners��� 25

Kanban App: Managing the DOM Event��� 26

Digging Deeper in JSX��� 27

JSX vs. HTML��� 28

Differences Between JSX and HTML��� 28

JSX Quirks��� 29

Kanban App: Indicating Whether a Card Is Open or Closed��� 32

Blank Space��� 33

Comments in JSX�� 33

Rendering Dynamic HTML��� 34

Kanban App: Rendering Markdown��� 34

React Without JSX��� 36

React Elements in Plain JavaScript��� 37

Element Factories�� 37

Custom Factories��� 38

Inline Styling�� 38

Defining Inline Styles��� 38

Kanban App: Card Color via Inline Styling�� 39

Working With Forms�� 41

Controlled Components��� 41

Special Cases�� 43

Uncontrolled Components��� 43

Kanban App: Creating a Task Form�� 45

ix

■ Contents

Virtual DOM Under the Hood�� 45

Keys��� 46

Kanban App: Keys�� 46

Refs��� 48

Summary��� 49

■■Chapter 3: Architecting Applications with Components��������������������������������������� 51

Prop Validation�� 51

Default Prop Values��� 52

Built-in propType Validators��� 53

Kanban App: Defining Prop Types�� 54

Custom PropType Validators�� 55

Component Composition Strategies and Best Practices��� 57

Stateful and Pure Components�� 57

Which Components Should Be Stateful?��� 57

Data Flow and Component Communication�� 61

Component Lifecycle��� 65

Lifecycle Phases and Methods�� 65

Lifecycle Functions in Practice: Data Fetching�� 67

A Brief Talk About Immutability��� 69

Immutability in Plain JavaScript�� 70

Nested Objects�� 71

React Immutability Helper��� 73

Kanban App: Adding (a Little) Complexity�� 76

Summary��� 89

■■Chapter 4: Sophisticated Interactions�� 91

Animation in React�� 91

CSS Transition and Animation 101��� 91

React CSSTransitionGroup��� 97

x

■ Contents

Drag and Drop��� 103

React DnD Implementation Overview�� 103

A React DnD Sample Implementation�� 103

Kanban App: Animations and Drag-and-Drop Support�� 115

Card Toggle Animation��� 115

Card Dragging�� 117

Summary��� 130

■■Chapter 5: Routing�� 131

Implementing Routing the “Naive” Way�� 131

React Router�� 135

Index Route�� 138

Routes with Parameters�� 140

Setting Active Links��� 144

Passing Props�� 145

Decoupling the UI from the URL�� 147

Changing Routes Programmatically�� 149

Histories�� 152

Kanban App: Routing��� 153

Summary��� 166

■■Chapter 6: Architecting React Applications with Flux�� 167

What Is Flux?��� 167

Stores�� 168

Actions��� 168

Dispatcher��� 169

The Unrealistic, Minimal Flux App��� 170

The Bank Account Application��� 170

Flux Utils�� 178

Flux Utils Stores��� 178

Container Component Higher Order Function�� 180

xi

■ Contents

Asynchronous Flux�� 182

waitFor: Coordinating Store Update Order��� 182

Asynchronous Data Fetching��� 184

AirCheap Application��� 185

Setup: Project Organization and Basic Files�� 185

Creating the API Helper and ActionCreators for Fetching Airports��� 187

AirportStore��� 189

App Component��� 190

Finishing the AirCheap application: Loading Tickets��� 195

Evolving Your Async Data Fetching Implementation��� 205

AppDispatcher’s dispatchAsync�� 205

Kanban App: Moving to a Flux Architecture��� 207

Refactor: Creating Flux Basic Structure and Moving Files�� 208

Moving the Data Fetching to the Flux Architecture��� 212

Implementing the FetchCards Action, API Method Call,
and Store Callback�� 214

Moving All Card and Task Manipulations to the Flux Architecture��� 216

Preparing for the Functionality Migration�� 217

Components��� 225

Removing All Component State��� 232

Summary��� 241

■■Chapter 7: Performance Tuning�� 243

How the Reconciliation Process Works��� 243

Batching�� 243

Sub-Tree Rendering��� 244

React Perf�� 244

The Performance Test Application��� 245

Installing and Using ReactPerf�� 248

shouldComponentUpdate�� 252

shallowCompare Add-on��� 254

Summary��� 255

xii

■ Contents

■■Chapter 8: Isomorphic React Applications��� 257

Node.js and Express�� 257

Node.js and Express “Hello World”�� 257

Isomorphic React Basics��� 262

Creating the Project Structure��� 262

Rendering React Components on the Server��� 266

Mounting React on the Client�� 269

Routing�� 272

Setting Up Internal Routes��� 273

Dynamic Data Fetching�� 274

Rendering Routes�� 276

Summary��� 280

■■Chapter 9: Testing React Components�� 281

Jest��� 281

React Test Utilities��� 283

Rendering a Component for Testing�� 283

Transversing and Finding Children�� 286

Simulating Events�� 287

Shallow Rendering�� 288

Summary��� 292

Index�� 293

xiii

About the Author

Cássio de Souza Antonio started programming 20 years ago with a
Sinclair Spectrum and has since built a career as software engineer and
technical manager in Brazil and USA. He has developed and contributed
to projects for major brands such as Microsoft, Coca-Cola, Unilever, and
HSBC, among others. His startup was acquired in late 2014. Currently
Cássio works as a consultant. You can follow him on Twitter
(@cassiozen).

xv

About the Technical Reviewers

Jack Franklin is a speaker, author, and technical writer who spends most of his time writing or talking
about JavaScript. He works as a Developer Evangelist at Pusher and is a keen open source contributor.
He’s a big fan of React and writes extensively on JavaScript at www.javascriptplayground.com. He can be
found tweeting as @Jack_Franklin.

Tyler Merry is a UX Technologist for Universal Mind, where his focus is on bridging the gap between idea
and implementation. Tyler approaches all problems through the filter of experimentation. He believes
that the fastest and most accurate solution is working provocatively through multiple experiments and
informal testing.

Through past work experiences with Coca-Cola, Sony, Pfizer, P&G, Ford, and Vail Resorts, he has
learned the value of accuracy and communication. His work with early startups helped to reinforce the value
of iteration, speed, and efficiency.

When not keeping up-to-date on web and UX trends, Tyler spends his time on his less-than-four-wheeled
vehicles (bicycle, motorcycle, unicycle), or learning whatever skill catches his fancy for the day, like knitting,
photography, or juggling.

www.javascriptplayground.com

xvii

Acknowledgments

I’d like to thank my parents, Sergio and Dete, for giving me freedom, independence, and love.
And a special thanks to the editorial staff at Apress for believing in this project, and for all the guidance

and patience.

xix

Introduction

React is an open source library for creating composable interfaces, and it is maintained by Facebook. Since
its initial public release, the library has experienced a fast adoption rate and a vibrant community has
sprung up around it.

The book will cover the library in detail and will discuss best practices for creating interfaces in a
composable way. The React library itself is small, so the book will also cover additional tools and libraries
in the React ecosystem (such as React Router and the Flux architecture) to provide the reader with enough
knowledge to create complete applications.

Each topic is covered clearly and concisely, and is packed with the details you need to learn to be truly
effective. The most important features are given a no-nonsense, in-depth treatment, and chapters include
common problems and details on how to avoid them.

An Overview of This Book
Chapter 1 packs a lot of information to get you up and running with a basic React configuration and an
overall understanding of how user interfaces are structured in React.

Chapter 2 gets deeper into JSX (React’s JavaScript language extension used to declare the component
markup together with JavaScript). It also examines how to take advantage of React’s event system and virtual
DOM implementation.

Chapter 3 deals with how to create complete applications by using components. You will learn about
data flow in React applications and get to know components in depth (nesting components, exposing an
API, props, and state).

Chapter 4 is about creating a rich experience for the end user. You will learn how to implement
animations (with the help of React’s add-on CSSTransitionGroup) and drag-and-drop (using an external
library called React DnD).

Chapter 5 is all about routing. You will learn how to manage the URI and set application end points
using one of the most-used libraries in the React community, the React Router.

Chapter 6 presents the Flux architecture. You will learn the architecture in detail, which problems it
solves, and how to integrate it within a React application.

Chapter 7 is about performance tuning. Here, you will learn how to measure your application’s
performance. You will then understand how to optimize your code to obtain better performance for your
application.

Chapter 8 covers isomorphic (or universal) React applications (or, how to render React on the server).
This technique allows for a better perceived performance, search engine optimization, and graceful
degradation (when the app works even if the local JavaScript is disabled).

Finally, Chapter 9 covers testing. You will learn how components can be tested using React’s Test Utils.
You will also learn about Jest, the testing framework made by Facebook that is the preferred way to test React
projects.

http://dx.doi.org/10.1007/978-1-4842-1260-8_1
http://dx.doi.org/10.1007/978-1-4842-1260-8_2
http://dx.doi.org/10.1007/978-1-4842-1260-8_3
http://dx.doi.org/10.1007/978-1-4842-1260-8_4
http://dx.doi.org/10.1007/978-1-4842-1260-8_5
http://dx.doi.org/10.1007/978-1-4842-1260-8_6
http://dx.doi.org/10.1007/978-1-4842-1260-8_7
http://dx.doi.org/10.1007/978-1-4842-1260-8_8
http://dx.doi.org/10.1007/978-1-4842-1260-8_9

xx

■ Introduction

Who This Book Is For
The content in this book is intended for intermediate level JavaScript developers, programmers that already
have experience creating front-end apps using some jQuery or maybe even some Backbone/Angular, and
who need better tools and knowledge to solve the increasingly common problem of structuring complex
front-end applications.

Source Code
The code for the examples shown in this book is available online in the Source Code section of the Apress
web site. Visit www.apress.com, click Source Code, and look for this book’s title. You can also download the
source code from this book’s home page. In addition, all the sample code and some practical extras are
available on GitHub (pro-react.github.io).

Contacting the Author
Thank you for buying this book. I hope you enjoy reading it and that you find it a valuable resource. I welcome
your personal feedback, questions, and comments regarding this book’s content and source code. You can
contact me at proreactbook@gmail.com.

Good luck! I am looking forward to your React applications!

www.apress.com
http://proreactbook@gmail.com

1

Chapter 1

Getting Started

React is an open-source project created by Facebook. It offers a novel approach towards building user
interfaces in JavaScript. Since its initial public release, the library has experienced a fast adoption rate and
has created a vibrant community around it.

Over the course of the book, you will learn everything you need to know to get the benefits of React in
your projects. since React is only concerned about rendering the UI and makes no assumptions about the
rest of your technology stack, this book will you walk through the routing and application architectures that
fit in the library’s patterns.

In this chapter, we will go through a few topics at a high level so you can start building applications as
quickly as possible. The topics we’ll cover include the following:

•	 A complete definition of React and an overview of its benefits

•	 How to use JSX, a JavaScript syntax extension used in React for expressing UI

•	 How to create React components, complete with props and state

Before You Get Started
React fits in the modern JavaScript development ecosystem. To code along with the examples in this book,
you will need to have Node.js and npm installed. You should also be familiar with functional JavaScript
paradigms as well as some of the language’s newest features, such as arrow functions and classes.

Node.js and npm
JavaScript was born to run on the browser, but Node.js makes it possible to run JavaScript programs on
your local computer and on a server through its open source command line tool. Together with npm (Node
Package Manager), Node.js has become invaluable for local development of JavaScript-heavy applications,
allowing a developer to create scripts for running tasks (such as copying and moving files or starting a local
development server, for example) and to automatically download dependencies.

If you don’t have Node.js installed, take your time to install it now by downloading the installer for
Windows, Mac or Linux at https://nodejs.org/.

JavaScript ES6
JavaScript is a live language that has been evolving over the years. Recently the community agreed on a set of
improvements for the language. Some of the most recent browsers have already implemented such features,
and the React community makes extensive use of them (arrow functions, classes, and the spread operator, to

https://nodejs.org/

Chapter 1 ■ Getting Started

2

name a few). React also encourages the use of functional patterns in JavaScript, so it’s important that you’re
familiar with how functions and context works in the language and that you understand methods such as
map, reduce, and assign. If you are a little hazy on some of these details, online appendixes on these subjects
are provided on the Apress website (www.apress.com/) and on the book’s GitHub page
(http://pro-react.github.io/).

Defining React
To get a clear understanding of what exactly React is, I like to define it as this:

React is an engine for building composable user interfaces using JavaScript and (optionally) XML.
Let’s break down this statement to analyze each part:

React is an engine: React’s site defines it as a library, but I like to use the term
“engine” because it helps convey one of React’s core strengths: its approach to
reactive UI rendering. This approach separates state (all the internal data that
defines the application at a given point in time) from the UI presented to the user.
With React, you declare how state is represented as visual elements of the DOM
and from then on the DOM is automatically updated to reflect state changes.

The term “engine” was first used to describe React by Justin Deal because it
reminded him of the similarity between reactive rendering and the way game
engines work (https://zapier.com/engineering/react-js-tutorial-guide-
gotchas/).

for creating composable user interfaces: Reducing the complexity of creating
and maintaining user interfaces is at the heart of React. It embraces the concept
of breaking the UI into components, self-contained concern-specific building
blocks, which are easy to reuse, extend, and maintain.

using JavaScript and (optionally) XML: React is a pure JavaScript library that
can be used on the browser, the server, and mobile devices. As you will see in this
chapter, it has an optional syntax that allows you to use XML to describe your UI.
As strange as it may look at first, it turns out that XML is great for describing user
interfaces: it’s declarative, it’s easy to spot the relationship between elements,
and it’s easy to visualize the overall structure of your UI.

React’s Benefits
There are a lot of JavaScript MVC frameworks out there. So why did Facebook build React and why would
you want to use it? In the next three sections, we’ll explore some of its benefits in order to answer this
question.

Reactive Rendering is Simple
In the early days of web development, way before the concept of single page applications, for every
interaction the user performed on a page (like hitting a button), a whole new page was sent from the server,
even if this new page was only a slightly different version of the page the user was on. That made for a
terrible experience from the point of view of the user, but for the developer it was very easy to plan what
exactly the user would see at a given interaction or a given point.

http://www.apress.com/
http://pro-react.github.io/
https://zapier.com/engineering/react-js-tutorial-guide-gotchas/
https://zapier.com/engineering/react-js-tutorial-guide-gotchas/

Chapter 1 ■ Getting Started

3

Single page applications are constantly fetching new data and transforming parts of the DOM as the
user interacts. As interfaces grow more complex, it gets more and more complicated to examine the current
state of the application and make the necessary punctual changes on the DOM to update it.

One technique used by many JavaScript frameworks (especially before React appeared) to tackle this
increasing complexity and keep the interface in sync with state is data binding, but this approach comes
with disadvantages in maintainability, scalability, and performance.

Reactive rendering is easier to use than traditional data binding. It lets us write in a declarative way how
components should look and behave. And when the data changes, React conceptually renders the whole
interface again.

Since its not viable for performance reasons to actually trash and re-render the entire interface every time
state data changes, React uses an in-memory, lightweight representation of the DOM called “virtual DOM.”

Manipulating the in-memory representation of the DOM is faster and more efficient than manipulating
the real DOM. When the state of the application changes (as the result of an user interaction or data fetching,
for example) React quickly compares the current state of the UI with the desired state and computes the
minimal set of real DOM mutations to achieve it. This makes React very fast and efficient. React apps can
easily run at 60fps, even on mobile devices.

Component-Oriented Development Using Pure JavaScript
In a React application, everything is made of components, which are self-contained, concern-specific
building blocks. Developing applications using components allows a “divide and conquer” approach where
no particular part needs to be especially complex. They are kept small and because they can be combined,
it’s easy to create complex and more feature-rich components made of smaller components.

React components are written in plain JavaScript, instead of template languages or the HTML directives
traditionally used for web application UIs. This is for a good reason: templates can be limiting because they
dictate the full set of abstractions that you are allowed to use to build your UI. React’s use of a full-featured
programming language to render views is a big advantage to the ability to build abstractions.

Additionally, by being self-contained and using a unifying markup with its corresponding view logic,
React components lead to a separation of concerns. In the early days of the Web, different languages were
created to force a separation of concerns: HTML for content structure, CSS for styling, and JavaScript for
behavior. This separation worked very well when it was introduced because the pervading style of web page
at the time was a static presentation. But now that interfaces are magnitudes more interactive and complex,
display logic and markup have inevitably become tied together; the separation between markup, styling, and
JavaScript turned into just a separation of technologies, not a separation of concerns.

React assumes that display logic and markup are highly cohesive; they both show the UI and encourage
the separation of concerns by creating discrete, well-encapsulated, and reusable components for each concern.

Flexible Abstraction of the Document Model
React has its own lightweight representation of the UI that abstracts away the underlying document model.
The most notable advantage of this approach is that it enables the use of the same principles to render HTML
for the Web as well as native iOS and Android views. This abstraction also leads to other interesting points:

•	 Events behave in a consistent, standards-compliant way in all browsers and devices,
automatically using delegation.

•	 React components can be rendered on the server for SEO and perceived
performance.

Chapter 1 ■ Getting Started

4

Building Your First React App
You now know that components are the building block of React UIs, but what do they look like? How do you
create one? At the bare minimum, a React component is simply a JavaScript class with a render method that
returns a description of the component’s UI, like so:

class Hello extends React.Component {
 render() {
 return (
 <h1>Hello World</h1>
)
 }
}

You probably noticed the HTML tags in the middle of the JavaScript code. As mentioned, React has a
syntax extension to JavaScript called JSX that lets us write XML (and consequently HTML) inline with code.

JSX is optional but it has been widely accepted as the standard way of defining UIs in React components
because of its declarative syntax, expressiveness, and the fact that it gets converted to plain JavaScript
function calls, means that it doesn’t alter the language semantics.

We will get in more detail about JSX in the next chapter, but the important thing to consider now is
that React requires a “transformation” step (or transpilation, if you will) where JSX gets transformed into
JavaScript.

In the modern JavaScript development ecosystem, there are a lot of tools that can handle this step. Let’s
take a moment to discuss how to set up a development workflow for React projects.

React Development Workflow
Long gone are the days where we could write all JavaScript in a single file, manually download one or two
JavaScript libraries, and glue everything together one a page. And while it’s certainly possible to download
or even copy and paste the React library as a minified JavaScript file and start running components
immediately, transforming JSX at runtime, nobody does this, except for small demos and prototypes.

In even the most basic scenarios, we want a development workflow that allow us to do the following:

•	 Write JSX and transform it into regular JavaScript on the fly

•	 Write code in a module pattern

•	 Manage dependencies

•	 Bundle JavaScript files and use source maps for debugging

With this in mind, the basic project structure for a React project contains the following:

	 1.	 A source folder, to contain all your JavaScript modules.

	 2.	 An index.html file. In React applications, the HTML page tends to be almost
empty. It is responsible only for loading the application’s JavaScript and
providing a div (or any other element, actually) that is used by React to render
the application’s components into.

Chapter 1 ■ Getting Started

5

	 3.	 A package.json file. The package.json is a standard npm manifest file
that holds various information about the project, such a name, description,
information about the author, etc. It lets the developer specify dependencies
(that can get automatically downloaded and installed) and define script tasks.

	 4.	 A module packager or build tool, which will be used for JSX transformation and
module/dependency bundling. The usage of modules helps organize JavaScript
code by splitting it into multiple files, each one declaring its own dependencies.
The module bundler then automatically packs everything together in the correct
load order. There are a lot of tools that handle this intermediary step, including
Grunt, Gulp, and Brunch, among others. You can easily find recipes for React in
any of those tools, but in general, the React community has adopted webpack as
the preferred tool for this job. At its core, webpack is a module bundler, but it can
also put the source code through loaders that can transform and compile it.

Figure 1-1 shows the mentioned files and folders structure. 

Figure 1-1.  Minimum React project files and folders structure

■■ Tip  You will find an appendix entirely dedicated to setting up a React project using webpack in the online
materials for this book. The appendix covers webpack in detail and shows how to set up advanced options such
as hot reloading React components. The online appendixes are available at Apress site (www.apress.com) and
at this book's GitHub page (pro-react.github.io).

Getting Started Quickly
To keep focus on learning the React library, a React app boilerplate pack is provided with this book.
Download it from apress.com or from the direct GitHub page at https://github.com/pro-react/react-
app-boilerplate. The boilerplate project comes with all the basic files and configurations needed to start
developing immediately. After downloading it, all you have to do is install the dependencies and run the
development server to test the project in the browser. To automatically install all the dependencies, open the
terminal or command prompt and run npm install. To run the development server, simply type npm start.

You’re ready to go. Feel free to skip the next topic and go straight to building your first React component.

http://www.apress.com/
https://github.com/pro-react/react-app-boilerplate
https://github.com/pro-react/react-app-boilerplate

Chapter 1 ■ Getting Started

6

Or, Do It Yourself
If you want to get your hands dirty, you can manually create the basic project structure in five steps.
Since the focus of this book is on the React library, we won’t get into many details or look into optional
configurations for now, but you can read more about them in the online appendixes or look the source files
for the React app boilerplate project. Both can be downloaded from the Apress website (www.apress.com/)
or from this book’s GitHub page (http://pro-react.github.io/).

	 1.	 Start by creating the source folder (common names are source or app). This
folder will only contain JavaScript modules. Static assets that don’t go through
the module bundler (which includes index.html, images and, for now, CSS files)
will be saved in the root folder.

	 2.	 In the root folder of your project, create the index.html file. It should look like
Listing 1-1.

Listing 1-1.  Simple HTML Page That Loads the Bundled JavaScript and Provides a Root Div in
Which to Render React Components

<!DOCTYPE html>
<html>
 <head>
 <title>First React Component</title>
 </head>
 <body>
 <div id="root"></div>
 <script type="text/javascript" src="bundle.js"></script>
 </body>
</html>

	 3.	 Create the package.json file by running npm init on the terminal or command
prompt and following the instructions. You will use npm for dependency
management (downloading and installing all required libraries). Your project’s
dependencies include React, the Babel compiler for JSX transforming (loader
and core), and webpack (including the webpack dev server). Edit your package.
json file so it looks like Listing 1-2 and then run npm install.

Listing 1-2.  Dependencies on a Sample package.json

{
 "name": "your-app-name",
 "version": "X.X.X",
 "description": "Your app description",
 "author": "You",
 "devDependencies": {
 "babel-core": "^5.8.*",
 "babel-loader": "^5.3.*",
 "webpack": "^1.12.*",
 "webpack-dev-server": "^1.10.*"
 },
 "dependencies": {
 "react": "^0.13.*"
 }
}

http://www.apress.com/
http://pro-react.github.io/

Chapter 1 ■ Getting Started

7

	 4.	 Moving on, you need to configure webpack, your module bundler of choice.
Listing 1-3 shows the configuration file. Let’s walk through it. First, the entry key
points to the main application module.

Listing 1-3.  The webpack.config.js File

module.exports = {
 entry: [
 './source/App.js'
],
 output: {
 path: __dirname,
 filename: "bundle.js"
 },
 module: {
 loaders: [{
 test: /\.jsx?$/,
 loader: 'babel'
 }]
 }
};

The next key, output, tells webpack where to save the single JavaScript file containing all the modules
packed in the correct order.

Finally, in the the module loaders section, you pass all .js files through Babel, the JavaScript compiler
that transforms all JSX into plain JavaScript code. Bear in mind that Babel does more than that, though; it
allows the usage of modern JavaScript syntax such as arrow functions and classes.

	 5.	 Now it’s time for the finishing touches. The project structure is done. The
necessary command to start a local server (which will be needed to test in the
browser) is ’node_modules/.bin/webpack-dev-server’, but to avoid having to
to type this long command in every time, you can edit the package.json you
created in step 3 and turn this long command into a task, as shown in Listing 1-4.

Listing 1-4.  Adding the Start Script to package.json

{
 "name": "your-app-name",
 "version": "X.X.X",
 "description": "Your app description",
 "author": "You",
 "scripts": {
 "start": "node_modules/.bin/webpack-dev-server --progress"
 },
 "devDependencies": {
 "babel-core": "^5.8.*",
 "babel-loader": "^5.3.*",
 "webpack": "^1.12.*",
 "webpack-dev-server": "^1.10.*"
 },
 "dependencies": {
 "react": "^0.13.*"
 }
}

Chapter 1 ■ Getting Started

8

With this set up, the next time you want to run the local development server, simply type npm start.

Creating Your First Component
With a basic project structure in place that manages dependencies, provides a module system, and
transforms JSX for you, you can now recreate the Hello World component and render it on the page. You
will keep the same code for the component, but add an import statement to make sure the React library gets
included in the bundled JavaScript.

import React from 'react';
 
class Hello extends React.Component {
 render() {
 return (
 <h1>Hello World</h1>
);
 }
}

Next, you will use React.render to display your component on the page, as shown here and in Figure 1-2:

React.render(<Hello />, document.getElementById('root')); 

Figure 1-2.  Your first component rendered in the browser

■■ Tip  While it’s possible to render directly into a document body, it’s usually a good idea to render into a
child element (usually a div). Many libraries and even browser extensions attach nodes to the document body,
and since React needs to fully manage the DOM tree under its control, this can cause unpredictable issues.

Chapter 1 ■ Getting Started

9

Saving a little typing
A commom technique used by many developers to save a little typing is to use destructuring assignemt
in the module import, in order to have direct access to the modules internal functions and classes. In our
previous example, we could use it to avoid typing “React.Component”:

import React, { Component } from 'react';
 
class Hello extends Component {
 render() {
 return (
 <h1>Hello World</h1>
);
 }
}

It surely does not have a really big impact in this example, but the cumulative impact in bigger projects
justifies its usage.

■■ Note  Destructuring assignment is part of the specification for the next version of javascript. This and other
future version topics that can already be used in React are covered in the online Appendix C.

Dynamic Values
In JSX, values written between curly braces ({}) are evaluated as a JavaScript expression and rendered in the
markup. If you want to render a value from a local variable, for example, you could do this:

import React, { Component } from 'react';
 
class Hello extends Component {
 render() {
 var place = "World";
 return (
 <h1>Hello {place}</h1>
);
 }
}
 
React.render(<Hello />, document.getElementById("root"));

Composing Components
React favors the creation of simple reusable components that are nested and combined to create complex
UIs. Now that you’ve seen the basic structure of a React component, let’s make sense of how they can be
composed together.

Chapter 1 ■ Getting Started

10

Props
A key factor to make components reusable and composable is the ability to configure them, and React
provides properties (or props, in short) for doing so. Props are the mechanism used in React for passing data
from parent to child components. They can’t be changed from inside the child component; props are passed
and “owned” by the parent.

In JSX, props are provided as tag attributes much like in HTML. As an example, let’s build a simple
grocery list composed of two components, the parent GroceryList component and the child GroceryItem
component:

import React, { Component } from 'react';
 
// Parent Component
class GroceryList extends Component {
 render() {
 return (

 <ListItem quantity="1" name="Bread" />
 <ListItem quantity="6" name="Eggs" />
 <ListItem quantity="2" name="Milk" />

);
 }
}
 
// Child Component
class ListItem extends Component {
 render() {
 return (

 {this.props.quantity}× {this.props.name}

);
 }
}
 
React.render(<GroceryList />,document.getElementById("root"));

Besides using named props, it’s also possible to reference the content between the opening and closing
tags using props.children:

import React, { Component } from 'react';
 
// Parent Component
class GroceryList extends Component {
 render() {
 return (

 <ListItem quantity="1">Bread</ListItem>
 <ListItem quantity="6">Eggs</ListItem>
 <ListItem quantity="2">Milk</ListItem>

Chapter 1 ■ Getting Started

11

);
 }
}
 
// Child Component
class ListItem extends Component {
 render() {
 return (

 {this.props.quantity}× {this.props.children}

);
 }
}
 
React.render(<GroceryList />, document.getElementById('root'));

Presenting the Kanban Board App
Throughout this book you’re going to build several small components and sample code for each topic.
You’re also going to build one complete application, a Kanban-style project management tool.

In a Kanban board, project activities correspond to cards (Figure 1-3). Cards are assembled into lists
according to their status and are supposed to progress from one list to the next, mirroring the flow of a
feature from idea to implementation.

Figure 1-3.  A sample Kanban board

Chapter 1 ■ Getting Started

12

There are many Kanban-style project management apps available online. Trello.com is a prominent
example, although your project will be simpler. Your final project will look like Figure 1-4 and the data model
the Kanban app will consume is shown in Listing 1-5. 

Figure 1-4.  The Kanban app you’ll build in the next chapters

Listing 1-5.  The Kanban App Data Model

[
 { id:1,
 title: "Card one title",
 description: "Card detailed description.",
 status: "todo",
 tasks: [
 {id: 1, name:"Task one", done:true},
 {id: 2, name:"Task two", done:false},
 {id: 3, name:"Task three", done:false}
]
 },
 { id:2,
 title: "Card Two title",
 description: "Card detailed description",
 status: "in-progress",
 tasks: []
 },
 { id:3,
 title: "Card Three title",
 description: "Card detailed description",
 status: "done",
 tasks: []
 },
];

Chapter 1 ■ Getting Started

13

Defining Component Hierarchy
The first thing to understand is how to break the interface into nested components. Here are three things to
consider.

	 1.	 Remember that components should be small and have a single concern. In other
words, a component should ideally only do one thing. If it ends up growing, it
should be broken into smaller subcomponents.

	 2.	 Analyse the project’s wireframes and layout because they give many clues about
component hierarchy.

	 3.	 Look at your data model. Interfaces and data models tend to adhere to the
same information architecture, which means the work of separating your UI
into components is often trivial. Just break it up into components that represent
exactly one piece of your data model.

If you apply these concepts to the Kanban app, you will come to the composition shown in Figure 1-5.

Figure 1-5.  The hierarchy of components in the Kanban App

The Importance of Props
Props are of key importance in component composition. They are the mechanism used in React for passing
data from parent to child components. Props can’t be changed from inside the component; they are passed
and “owned” by the parent.

Building the Components
Having figured out the interface hierarchy, it’s time to build the components. There are two main
approaches to building the components: top-down or bottom-up. That is, you can either start with building
the components higher up in the hierarchy (such as the App component) or with the ones lower in it (like
the CheckList component). To get an insight of all the props being passed down and how they are used in
child components, you will start building your Kanban components from top-down.

Chapter 1 ■ Getting Started

14

Additionaly, to keep the project organized and to make it easy to maintain and implement new features,
you’re going to keep each component in its own JavaScript file.

App Module (App.js)
You will keep the app.js file really simple for now. It will only contain the data and it will only render a
KanbanBoard component. In this first iteration of your Kanban app, the data will be hard-coded on a local
variable, but in future chapters you will fetch it from an API. See Listing 1-6.

Listing 1-6.  A Simple app.js File

import React from 'react';
import KanbanBoard from './KanbanBoard';
 
let cardsList = [
 {
 id: 1,
 title: "Read the Book",
 description: "I should read the whole book",
 status: "in-progress",
 tasks: []
 },
 {
 id: 2,
 title: "Write some code",
 description: "Code along with the samples in the book",
 status: "todo",
 tasks: [
 {
 id: 1,
 name: "ContactList Example",
 done: true
 },
 {
 id: 2,
 name: "Kanban Example",
 done: false
 },
 {
 id: 3,
 name: "My own experiments",
 done: false
 }
]
 },
];
 
React.render(<KanbanBoard cards={cardsList} />, document.getElementById('root'));

Chapter 1 ■ Getting Started

15

KanbanBoard Component (KanbanBoard.js)
The KanbanBoard component will receive the data as props and will be responsible for filtering the status to
create three list components: “To Do,” “In Progress,” and “Done”. See Listing 1-7.

■■ Note  As stated in the beginning of this chapter, React’s components are written in plain JavaScript.
They don’t have the loops on branching helpers that you may find on template libraries such as Mustache, for
example, but that’s not bad news since you have a full-featured programming language at your fingertips. In the
next components, you will use filter and map functions to work with data from the cards array. 

Listing 1-7.  The KanbanBoard Component

import React, { Component } from 'react';
import List from './List';
 
class KanbanBoard extends Component {
render(){
 return (
 <div className="app">
 
 <List id='todo' title="To Do" cards={
 this.props.cards.filter((card) => card.status === "todo")
 } />
 
 <List id='in-progress' title="In Progress" cards={
 this.props.cards.filter((card) => card.status === "in-progress")
 } />
 
 <List id='done' title='Done' cards={
 this.props.cards.filter((card) => card.status === "done")
 } />
 
 </div>
);
 }
}
export default KanbanBoard;

List Component (List.js)
The List component will just display the list’s name and render all the card components within it. Notice
that you will map the cards array received via props and pass individual information such as the title and
description down to the card component, also as props. See Listing 1-8.

Chapter 1 ■ Getting Started

16

Listing 1-8.  The List Component

import React, { Component } from 'react';
import Card from './Card';
 
class List extends Component {
 render() {
 var cards = this.props.cards.map((card) => {
 return <Card id={card.id}
 title={card.title}
 description={card.description}
 tasks={card.tasks} />
 });
 
 return (
 <div className="list">
 <h1>{this.props.title}</h1>
 {cards}
 </div>
);
 }
}
 
export default List;

Card Component (Card.js)
The Card is the component with which the user will interact most. Each card has a title, a description and a
checklist, as shown in Figure 1-6 and Listing 1-9. 

Figure 1-6.  The Kanban app’s card

Chapter 1 ■ Getting Started

17

Listing 1-9.  The Card Component 

import React, { Component } from 'react';
import CheckList from './CheckList';
 
class Card extends Component {
 render() {
 return (
 <div className="card">
 <div className="card__title">{this.props.title}</div>
 <div className="card__details">
 {this.props.description}
 <CheckList cardId={this.props.id} tasks={this.props.tasks} />
 </div>
 </div>
);
 }
}
 
export default Card;

Notice the use of the className attribute within the Card component. Since JSX is JavaScript, identifiers
such as class are discouraged as XML attribute names, hence the use of className. This subject will be
further discussed in the next chapter.

Checklist Component (CheckList.js)
Finally, there is the component that makes the bottom part of the card, the checklist. Notice that you’re still
missing the form to create new tasks; you will work on this later. See Listing 1-10.

Listing 1-10.  The Checklist Component

import React, { Component } from 'react';
 
class CheckList extends Component {
 render() {
 let tasks = this.props.tasks.map((task) => (
 <li className="checklist__task">
 <input type="checkbox" defaultChecked={task.done} />
 {task.name}

));
 

Chapter 1 ■ Getting Started

18

 return (
 <div className="checklist">
 {tasks}
 </div>
);
 }
}
  
export default CheckList;

Finishing Touches
The React components are done. To make things look pretty, now let’s write some CSS to style the interface
(see Listing 1-11). Don’t forget to create an HTML file to load the JavaScript and CSS files, and a div for React
to render into (an example is shown in Listing 1-12).

Listing 1-11.  CSS File

*{
 box-sizing: border-box;
}
 
html,body,#app {
 height:100%;
 margin: 0;
 padding: 0;
}
 
body {
 background: #eee;
 font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
}
 
h1{
 font-weight: 200;
 color: #3b414c;
 font-size: 20px;
}
 
ul {
 list-style-type: none;
 padding: 0;
 margin: 0;
}
 
.app {
 white-space: nowrap;
 height:100%;
}

Chapter 1 ■ Getting Started

19

 
.list {
 position: relative;
 display: inline-block;
 vertical-align: top;
 white-space: normal;
 height: 100%;
 width: 33%;
 padding: 0 20px;
 overflow: auto;
}
 
.list:not(:last-child):after{
 content: "";
 position: absolute;
 top: 0;
 right: 0;
 width: 1px;
 height: 99%;
 background: linear-gradient(to bottom, #eee 0%, #ccc 50%, #eee 100%) fixed;
}
 
.card {
 position: relative;
 z-index: 1;
 background: #fff;
 width: 100%;
 padding: 10px 10px 10px 15px;
 margin: 0 0 10px 0;
 overflow: auto;
 border: 1px solid #e5e5df;
 border-radius: 3px;
 box-shadow: 0 1px 0 rgba(0, 0, 0, 0.25);
}
 
.card__title {
 font-weight: bold;
 border-bottom: solid 5px transparent;
}
 
.card__title:before {
 display: inline-block;
 width: 1em;
 content: '';
}
 
.card__title--is-open:before {
 content: '';
}
 

Chapter 1 ■ Getting Started

20

.checklist__task:first-child {
 margin-top: 10px;
 padding-top: 10px;
 border-top: dashed 1px #ddd;
}
 
.checklist__task--remove:after{
 display: inline-block;
 color: #d66;
 content: "+";
}

Listing 1-12.  HTML File

<!DOCTYPE html>
<html>
<head>
 <title>Kanban App</title>
 <link rel="stylesheet" href="style.css">
</head>
<body>
 <div id="root"></div>
 <script type="text/javascript" src="bundle.js"></script>
</body>
</html>

If you followed along, you should see something similar to Figure 1-7.

Figure 1-7.  The composed components interface

Chapter 1 ■ Getting Started

21

Introducing State
So far you’ve seen that props are received by the component and are immutable. This leads to static
components. If you want to add behavior and interactions, a component needs to have mutable data to
represent its state. React’s components can have mutable data inside this.state. Note that this.state is
private to the component and can be changed by calling this.setState().

Now comes an important aspect of React’s components: when the state is updated, the component
triggers the reactive rendering, and the component itself and its children will be re-rendered. As mentioned,
this happens very quickly due to React’s use of a virtual DOM.

Kanban App: Togglable Cards
To illustrate state in components, let’s add a new functionality to your Kanban app. You’re going to make the
cards toggle. Users will be able to show or hide details about the card.

It’s possible to set a new state at any time, but if you want the component to have an initial state, you
can set it on the class constructor. Currently, the Card component doesn’t have a constructor, only a render
method. Let’s add a constructor function to define a new key called showDetails in the component’s state
(note that the import/export statements and the contents of the render method were omitted for brevity).
See Listing 1-13.

Listing 1-13.  Togglable Cards

class Card extends Component {
 constructor() {
 super(...arguments);
 this.state = {
 showDetails: false
 };
 }
 
 render() {
 return (...);
 }
}

In this sequence, you change the JSX in the render method to only render the card’s details if the state
property showDetails is true. To make this, you declare a local variable called cardDetails, and only assign
actual data if the current state showDetails is true. On the return statement, you simply return the value of
this variable (which will be empty if showDetails is false). See Listing 1-14.

Listing 1-14.  The render method of the Card Component

render() {
 let cardDetails;
 if (this.state.showDetails) {
 cardDetails = (
 <div className="card__details">
 {this.props.description}
 <CheckList cardId={this.props.id} tasks={this.props.tasks} />
 </div>
);
 };
 

Chapter 1 ■ Getting Started

22

 return (
 <div className="card">
 <div className="card__title">{this.props.title}</div>
 {cardDetails}
 </div>
);
}

To finish, Let’s add a click event handler to change the internal state. Use the JavaScript ! (not) operator
to toggle the Boolean property showDetails (if it’s currently true, it will became false and vice-versa), as
shown in Listing 1-15.

Listing 1-15.  Click Event Handler

render() {
 let cardDetails;
 if (this.state.showDetails) {
 cardDetails = (
 <div className="card__details">
 {this.props.description}
 <CheckList cardId={this.props.id} tasks={this.props.tasks} />
 </div>
);
 };
 
 return (
 <div className="card">
 <div className="card__title" onClick={
 ()=>this.setState({showDetails: !this.state.showDetails})
 }>{this.props.title}</div>
 {cardDetails}
 </div>
);
}

When running the example on the browser, all contacts will start closed and can be toggled on click
(Figure 1-8).

Chapter 1 ■ Getting Started

23

Summary
This chapter explored what React is and what benefits it brings to the universe of web development
(primarily a very performant, declarative approach to structure your application user interface into
components). You also created your first components and witnessed all the basic concepts of React’s
components: the render method, JSX, props, and state.

Figure 1-8.  Togglable Kanban Cards

25

Chapter 2

Inside the DOM Abstraction

In the previous chapter, you saw that React abstracts away the DOM, providing a simpler programming
model, better performance, and the possibility to render components on the server and even power native
mobile apps.

This chapter will cover JSX, the JavaScript language extension used to describe the UI.

Events in React
React implements a synthetic event system that brings consistency and high performance to React
applications and interfaces.

It achieves consistency by normalizing events so that they have the same properties across different
browsers and platforms.

It achieves high performance by automatically using event delegation. React doesn't actually attach
event handlers to the nodes themselves. Instead, a single event listener is attached to the root of the
document; when an event is fired, React maps it to the appropriate component element. React also
automatically removes the event listeners when a component unmounts.

DOM Event Listeners
HTML has always provided a beautiful and easy-to-understand event handling API for tag attributes:
onclick, onfocus, etc. The problem with this API (and the reason why it is not used in professional projects)
is that it’s full of undesirable side effects: it pollutes the global scope, it’s hard to track in the context of a big
HTML file, it can be slow, and it can lead to memory leaks, just to name a few issues.

JSX makes use of a similarly easy-to-use and understand API but removes the undesired side effects
from the HTML counterpart. Callback functions are scoped to the component (which, as you’ve seen, is
responsible for just one part of the UI and tends to contain small markup), and it’s smart enough to use
event delegation and auto manage unmounting. Notice, however, that there are some minor differences
in contrast with the original HTML implementation. In React, the properties are camel cased (“onClick”
instead of “onclick”). Built to be consistent across browsers and devices, it implements a subset of all the
variations found in different versions of different browsers. Tables 2-1 through 2-4 show the available events.

Chapter 2 ■ Inside the DOM Abstraction

26

Table 2-1.  Touch and Mouse Events

onTouchStart onTouchMove onTouchEnd onTouchCancel

onClick onDoubleClick onMouseDown onMouseUp onMouseOver

onMouseMove onMouseEnter onMouseLeave onMouseOut onContextMenu

onDrag onDragEnter onDragLeave onDragExit onDragStart

onDragEnd onDragOver onDrop

Table 2-4.  Other Events

onScroll onWheel onCopy onCut onPaste

Table 2-2.  Keyboard Events

onKeyDown onKeyUp onKeyPress

Table 2-3.  Focus and Form Events

onFocus onBlur

onChange onInput onSubmit

Kanban App: Managing the DOM Event
In the last iteration of the Kanban app, you added the following inline function (using the fat arrow =>)
inside the onClick event handler:

<div className="card__title" onClick={
 ()=>this.setState({showDetails: !this.state.showDetails})
}>

This is practical but not very flexible. Let’s change this implementation to use a new method called
toggleDetails inside the class to handle the event:

class Card extends Component {
 constructor() {
 super(...arguments);
 this.state = {
 showDetails: false
 };
 }
 
 toggleDetails() {
 this.setState({showDetails: !this.state.showDetails});
 }
 

Chapter 2 ■ Inside the DOM Abstraction

27

 render() {
 let cardDetails;
 if (this.state.showDetails) {
 cardDetails = (
 <div className="card__details">
 {this.props.description}
 <CheckList cardId={this.props.id} tasks={this.props.tasks} />
 </div>
);
 }
 
 return (
 <div className="card">
 <div className="card__title" onClick={this.toggleDetails.bind(this)}>
 {this.props.title}
 </div>
 {cardDetails}
 </div>
)
 }
}

■■ Note  Earlier React versions (specifically prior to the use of ES6 classes) had a built-in “magic” feature that
bound all methods to this automatically. Since this could be confusing for JavaScript developers that are not
used to this feature in other classes, it was removed. In the current versions, the developer has to explicitly bind
the function to context. This can be done in different ways, the simplest one being to simply use .bind(this)
to generate a bound function. Bind and other functional JavaScript methods are discussed in Appendix B.

Digging Deeper in JSX
JSX is React’s optional extension to the JavaScript syntax used for writing declarative XML-style syntax inside
JavaScript code.

For web projects, React’s JSX provides a set of XML tags that are similar to HTML, but there are other
use cases in which another set of XML tags are used to describe the user interface (such as React with SVG,
React Canvas, and React Native).

When transpiled (converted to plain JavaScript, so the browser or server can interpret the code), the
XML is transformed into a function call to the React Library.

This

<h1>Hello World</h1>

becomes

React.createElement("h1", null, "Hello World");

Chapter 2 ■ Inside the DOM Abstraction

28

The use of JSX is optional. However, embracing it has the following benefits:

•	 XML is great for representing UIs in element trees with attributes.

•	 It’s more concise and easier to visualize the structure of your application.

•	 It’s plain JavaScript. It doesn't alter the language semantics.

JSX vs. HTML
For web usage, JSX looks like HTML, but it’s not an exact implementation of the HTML specification. React’s
creators went so far to make JSX similar enough to HTML so it could be used to describe web interfaces
properly, but without losing sight of the fact that it should also conform to JavaScript style and syntax.

Differences Between JSX and HTML
There are three important aspects you should be aware of when writing HTML syntax with JSX:

	 1.	 Tag attributes are camel cased.

	 2.	 All elements must be balanced.

	 3.	 The attribute names are based on the DOM API, not on the HTML language specs.

Let’s review them now.

Tag Attributes Are Camel Cased
For example, in HTML, the input tag can have an optional maxlength attribute:

<input type="text" maxlength="30" />

In JSX, the attribute is written as maxLength (note the uppercase “L”):

return <input type="text" maxLength="30" />

All Elements Must be Balanced
Since JSX is XML, all elements must be balanced. Tags such as
 and , which don’t have ending tags,
need to be self-closed. So, instead of
, use
 and instead of , use .

Attribute Names are Based on the DOM API
This can be confusing, but it is actually very easy. When interacting with the DOM API, tag attributes may
have different names than those you use in HTML. One of such example is class and className.

For example, given this regular HTML

<div id="box" class="some-class"></div>

Chapter 2 ■ Inside the DOM Abstraction

29

if you want to manipulate the DOM and change its class name using plain JavaScript, you would do
something like

document.getElementById("box").className="some-other-class"

As far as JavaScript is concerned, that attribute is called className, not class. Since JSX is just a syntax
extension to JavaScript, it conforms to the attribute names as defined in the DOM. That same div should be
expressed in JSX as

return <div id="box" className="some-class"></div>

JSX Quirks
JSX can be tricky sometimes. This section groups small techniques, tips, and strategies to deal with common
problems you may face when building components with JSX.

Single Root Node
React components can only render a single root node. To understand the reasons for this limitation, let’s
look at this sample return from a render function:

return(
 <h1>Hello World</h1>
)

It is transformed into a single statement:

return React.createElement("h1", null, "Hello World");

On the other hand, the following code isn’t valid:

return (
 <h1>Hello World</h1>
 <h2>Have a nice day</h2>
)

To be clear, this is not a JSX limitation, but rather a JavaScript characteristic: a return statement
can only return a single value, and in the previous code we were trying to return two statements (two calls to
React.createElement). The alternative is very simple: as you would do in plain JavaScript, wrap all return
values in a root object.

return (
 <div>
 <h1>Hello World</h1>
 <h2>Have a nice day</h2>
 </div>
)

Chapter 2 ■ Inside the DOM Abstraction

30

This works perfectly because it would be transformed into

return React.createElement("div", null,
 React.createElement("h1", null, "Hello World"),
 React.createElement("h2", null, " Have a nice day"),
)

thus returning a single value, and done via valid JavaScript.

Conditional Clauses
If statements doesn’t fit well in JSX, but what may be seen as a JSX limitation is actually a consequence of
the fact that JSX is just plain JavaScript. To better explain, let’s start by reviewing how JSX gets transformed
into plain JavaScript.

JSX like

return (
 <div className="salutation">Hello JSX</div>
)

gets transformed into JavaScript like

return (
 React.createElement("div", {className: "salutation"}, "Hello JSX");
)

However, if you try to write an if clause in the middle of the JSX, like

<div className={if (condition) { "salutation" }}>Hello JSX</div>

it would be transformed into an invalid JavaScript expression, as shown here and in Figure 2-1:

React.createElement("div", {className: if (condition) { "salutation"}}, "Hello JSX");

Figure 2-1.  Syntax error when trying to use an if expression inside JSX

What Are the Alternatives?
Although not being possible to use an “if” statement inside JSX, there are alternatives to render content
conditionally, including using ternary expressions and assigning conditionally to a variable (null and
undefined values are treated by React and outputs nothing when escaped in JSX).

Chapter 2 ■ Inside the DOM Abstraction

31

Use Ternary Expressions

If you have a very simple expression, you can use the ternary form:

render() {
 return (
 <div className={condition ? "salutation" : ""}>
 Hello JSX
 </div>
)
}

This will be transformed into a valid JS:

React.createElement("div", {className: condition ? "salutation" : ""}, "Hello JSX");

The ternary form also works for conditionally rendering entire nodes:

<div>
 {condition ?
 Hello JSX
 : null}
</div>

Move the Condition Out

If a ternary expression isn’t robust enough for your case, the alternative is to not use conditionals in the
middle of JSX. Simply move the conditional’s clauses outside (as you did in Chapter 2 for hiding or showing
the ContactItem details).

Instead of

render() {
 return (
 <div className={if (condition) { "salutation" }}>
 Hello JSX
 </div>
)
}

move the conditional outside of JSX, like

render() {
 let className;
 if(condition){
 className = "salutation";
 }
 return (
 <div className={className}>Hello JSX</div>
)
}

React knows how to handle undefined values and won’t even create a class attribute in the div tag if the
condition is false.

http://dx.doi.org/10.1007/978-1-4842-1260-8_2

Chapter 2 ■ Inside the DOM Abstraction

32

Kanban App: Indicating Whether a Card Is Open or Closed
In the first chapter, you used this technique of moving the condition out for toggling the Card details. Let’s
also use the ternary form to add a className conditionally to the Card Title (some of the original code is
omitted for brevity). The results are shown in Figure 2-2.

class Card extends Component {
 constructor() { ... }
 toggleDetails() { ... }
 
 render() {
 let cardDetails;
 if (this.state.showDetails) {
 cardDetails = (
 <div className="card__details">
 {this.props.description}
 <CheckList cardId={this.props.id} tasks={this.props.tasks} />
 </div>
);
 }
 
 return (
 <div className="card">
 <div className={
 this.state.showDetails? "card__title card__title--is-open" : "card__title"
 } onClick={this.toggleDetails.bind(this)}>
 {this.props.title}
 </div>
 {cardDetails}
 </div>
)
 }
}

Figure 2-2.  Conditional class

Chapter 2 ■ Inside the DOM Abstraction

33

Blank Space
This is a very small and quick tip: in HTML, browsers usually render a space between elements in multiple
lines. React’s JSX will only render a space if you specifically tell it to do so. For example, the following JSX will
render as shown in Figure 2-3.

return (
 Google
 Facebook
)

Figure 2-3.  JSX doesn’t produce a space between lines

Figure 2-4.  Using an expression to render a space

To explicitly insert a space, you can use an expression with an empty string {" "}:

return(
 Google{" "}
 Facebook
)

This renders the desired output, as shown in Figure 2-4.

Comments in JSX
Another quirk derived from the fact that JSX isn’t HTML is the lack of support for HTML comments
(e.g. <!-- comment -->). Although traditional HTML tag comments are not supported, since JSX is made of
JavaScript expressions, it’s possible to use regular JS comments. You just need to be careful to put {} around
the comments when you are within the child section of a tag.

let content = (
 <Nav>
 {/* child comment, put {} around */}
 <Person
 /* multi
 line
 comment */
 name={window.isLoggedIn ? window.name : ''} // end of line comment
 />
 </Nav>
);

http://google.com
http://facebook.com
http://google.com
http://facebook.com

Chapter 2 ■ Inside the DOM Abstraction

34

Rendering Dynamic HTML
React has built-in XSS attack protection, which means that by default it won’t allow HTML tags to be
generated dynamically and attached to JSX. This is generally good, but in some specific cases you might want
to generate HTML on the fly. One example would be rendering data in markdown format to the interface.

■■ Note  Markdown is a format that allows you to write using an easy-to-read, easy-to-write plain text format.
For example, surrounding text with double asterisks will make it strong (bold).

React provides the dangerouslySetInnerHTML property to skip XSS protection and render anything directly.

Kanban App: Rendering Markdown
Let’s see this in action by enabling markdown on the Kanban app Card’s description. You will start by
changing the card descriptions on your data model to include some markdown formatting.

let cardsList = [
 {
 id:1,
 title: "Read the Book",
 description: "I should read the **whole** book",
 status: "in-progress",
 tasks: []
 },
 {
 id:2,
 title: "Write some code",
 description: �"Code along with the samples in the book. The complete source can be found 

at [github](https://github.com/pro-react)",
 status: "todo",
 tasks: [
 {id: 1, name:"ContactList Example", done:true},
 {id: 2, name:"Kanban Example", done:false},
 {id: 3, name:"My own experiments", done:false}
]
 },
];

You will need a JavaScript library to convert the markdown used in the card descriptions to HTML.
There are many open source libraries available. In this example, you’re going to use one called marked
(https://github.com/chjj/marked).

If you’re following along with this book’s examples and using a module system, import the library on
your package.json and install it (both can be done with the single command npm install --save marked).
Don’t forget to import the marked module on the beginning of your file.

https://github.com/pro-react
https://github.com/chjj/marked

Chapter 2 ■ Inside the DOM Abstraction

35

Using the marked module, your code will look like this:

import React, { Component } from 'react';
import CheckList from './CheckList';
import marked from 'marked';

Then, you’re going to use the function marked() provided by the library to convert the markdown to
HTML (I have omitted some code not pertinent to this example for brevity):

class Card extends Component {
 constructor() {...}
 toggleDetails() {...}
 
 render() {
 let cardDetails;
 if (this.state.showDetails) {
 cardDetails = (
 <div className="card__details">
 {marked(this.props.description)}
 <CheckList cardId={this.props.id} tasks={this.props.tasks} />
 </div>
);
 }
 
 return (
 <div className="card">
 <div className={
 this.state.showDetails? "card__title card__title--is-open" : "card__title"
 } onClick={this.toggleDetails.bind(this)>
 {this.props.title}
 </div>
 {cardDetails}
 </div>
)
 }
}

But as expected, React by default won’t allow any HTML tags to be rendered inside your JSX so the
output will look like Figure 2-5.

Chapter 2 ■ Inside the DOM Abstraction

36

Using dangerouslySetInnerHTML, you can achieve the desired final result, as shown here and in
Figure 2-6:

cardDetails = (
 <div className="card__details">

 <CheckList cardId={this.props.id} tasks={this.props.tasks} />
 </div>
);

Figure 2-6.  React rendering dynamically generated HTML with dangerouslySetInnerHTML

Figure 2-5.  React escaping HTML by default

React Without JSX
JSX brings a concise and familiar syntax for describing UIs as tree structures. It does so by enabling the use
of XML inside JavaScript code without altering the semantics of JavaScript. React was designed with JSX in
mind; however, it's absolutely possible to use React without JSX. Although you’ll continue using JSX for all
the examples in this book, this section will briefly explore how to work with React without JSX.

Chapter 2 ■ Inside the DOM Abstraction

37

React Elements in Plain JavaScript
You can create React elements in plain JavaScript using React.createElement, which takes a tag name or
component, a properties object, and variable number of optional child arguments.

let child1 = React.createElement('li', null, 'First Text Content');
let child2 = React.createElement('li', null, 'Second Text Content');
let root = React.createElement('ul', { className: 'my-list' }, child1, child2);
React.render(root, document.getElementById('example'));

Element Factories
For convenience, React provides short-hand factory functions under React.DOM for common HTML tags.
Let’s put this together with a more advanced example:

React.DOM.form({className:"commentForm"},
 React.DOM.input({type:"text", placeholder:"Name"}),
 React.DOM.input({type:"text", placeholder:"Comment"}),
 React.DOM.input({type:"submit", value:"Post"})
)

The above is equivalent to the following JSX:

<form className="commentForm">
 <input type="text" placeholder="Name" />
 <input type="text" placeholder="Comment" />
 <input type="submit" value="Post" />
</form>

Using destructuring assignment, it’s possible to tidy things up for a more concise syntax:

import React, { Component } from 'react';
import {render} from 'react-dom';
 
let {
 form,
 input
} = React.DOM;
 
class CommentForm extends Component {
 render(){
 return form({className:"commentForm"},
 input({type:"text", placeholder:"Name"}),
 input({type:"text", placeholder:"Comment"}),
 input({type:"submit", value:"Post"})
)
 }
}

Chapter 2 ■ Inside the DOM Abstraction

38

Custom Factories
It’s also possible to create factories for custom components, like so:

let Factory = React.createFactory(ComponentClass);
...
let root = Factory({ custom: 'prop' });
render(root, document.getElementById('example'));

Inline Styling
By authoring React components using JSX, you're combining UI definition (content markup) and interaction
(JavaScript) in the same file. As discussed, the separation of concerns in this scenario comes from discrete,
well-encapsulated, and reusable components for each concern. But there's another important factor to user
interfaces besides content and interaction: styling.

React provides the capacity to write inline styles using JavaScript. At first, the idea to write styles in
JavaScript can seem a little strange, but it can provide some benefits over traditional CSS:

•	 Scoped styles without selectors

•	 Avoids specificity conflicts

•	 Source order independence

Note that JavaScript is highly expressive and so by using it you automatically gain variables, functions,
and full range of control flow constructs.

Defining Inline Styles
In React’s components, inline styles are specified as a JavaScript object. Style names are camel cased in order
to be consistent with DOM properties (e.g. node.style.backgroundImage). Additionally, it’s not necessary to
specify pixel units - React automatically appends the correct unit behind the scenes. The following example
shows an example of inline styling in React:

import React, { Component } from 'react';
import {render} from 'react-dom';
 
class Hello extends Component {
 render() {
 let divStyle = {
 width: 100,
 height: 30,
 padding: 5,
 backgroundColor: '#ee9900'
 
 };
 return <div style={divStyle}>Hello World</div>
 }
}

Chapter 2 ■ Inside the DOM Abstraction

39

Kanban App: Card Color via Inline Styling
While it's possible to completely ditch CSS in favor of inline styling using JavaScript, generally an hybrid
approach is more appropriate, where CSS (or CSS preprocessors such as Sass or Less) is used for major style
definitions and inline styling inside React components is used for dynamic, state-based appearance.

In the next steps, you’re going to add custom color to mark a card.

	 1.	 Add color to your data model. First, let’s change the CardsList array to insert
the colors:

let cardsList = [
 {
 id:1,
 title: "Read the Book",
 description: "I should read the book",
 color: '#BD8D31',
 status: "in-progress",
 tasks: []
 },
 {
 id:2,
 title: "Write some code",
 description: "Code along with the samples ... at [github](https://github.com/pro-react)",
 color: '#3A7E28',
 status: "todo",
 tasks: [
 {id: 1, name:"ContactList Example", done:true},
 {id: 2, name:"Kanban Example", done:false},
 {id: 3, name:"My own experiments", done:false}
]
 },
];

	 2.	 Pass the color as props to the Card component. The Card’s parent component
is the List component. Currently, the List component passes three attributes as
props to the Card component: title, description, and tasks. You need to add
color as another attribute:

class List extends Component {
 render() {
 let cards = this.props.cards.map((card) => {
 return <Card id={card.id}
 title={card.title}
 description={card.description}
 color={card.color}
 tasks={card.tasks} />
 });
 
 return (
 ...
)
 }
}

https://github.com/pro-react

Chapter 2 ■ Inside the DOM Abstraction

40

	 3.	 Create a div with inline style in the Card component. Finally, you need to
create an object containing all the style rules and the div that will use the style
object inline:

class Card extends Component {
 constructor() {...}
 toggleDetails() {...}
 
 render() {
 let cardDetails;
 if (this.state.showDetails) {...}
 
 let sideColor = {
 position: 'absolute',
 zIndex: -1,
 top: 0,
 bottom: 0,
 left: 0,
 width: 7,
 backgroundColor: this.props.color
 };
 
 return (
 <div className="card">
 <div style={sideColor}/>
 <div className={
 this.state.showDetails? "card__title card__title--is-open" : "card__title"
 } onClick={this.toggleDetails.bind(this)}>
 {this.props.title}
 </div>
 {cardDetails}
 </div>
)
 }
}

Figure 2-7 shows the rendered result.

Figure 2-7.  Inline styles for dynamic card colors

Chapter 2 ■ Inside the DOM Abstraction

41

Working With Forms
In React, a component’s internal state is kept to minimum because every time the state changes, the
component is rendered again. The purpose of this is to have an accurate representation of the component
state in your JavaScript code and let React keep the interface in sync.

For this reason, form components such as <input>, <textarea>, and <option> differ from their HTML
counterparts because they can be mutated via user interactions.

React provides two ways of handling forms as components and lets you choose based on your app
characteristics or personal preference. The two available ways to handle a form field are as a controlled
component or an uncontrolled component.

Controlled Components
A form component with a value or checked prop is called a controlled component. In a controlled
component, the value rendered inside the element will always reflect the value of the prop. By default the
user won’t be able to change it.

That’s the case for your Kanban cards checklist. If you try clicking one of the task’s checkboxes, it won’t
change. They are reflecting the value hardcoded in your cardsList array and will only change if you change
the array itself.

Before heading back to the Kanban project, though, let’s see another example. Start with a Search
component that contains an input field:

import React, { Component } from 'react';
import {render} from 'react-dom';
 
class Search extends Component {
 render() {
 return (
 <div>
 Search Term: <input type="search" value="React" />
 </div>
)
 }
}
 
render(<Search />, document.body);

This will render a form field displaying an immutable value of “React.” Any user input will have no effect
on the rendered element because React has declared the value to be ”React,” as shown in Figure 2-8.

Figure 2-8.  The form element

Chapter 2 ■ Inside the DOM Abstraction

42

To be able to make this value change, you need to handle it as a component state. This way, any changes
to the state value will be reflected in the interface.

class Search extends Component {
 constructor() {
 super();
 this.state = {
 searchTerm: "React"
 };
 }
 
 render() {
 return (
 <div>
 Search Term:
 <input type="search" value={this.state.searchTerm} />
 </div>
)
 }
}

You could even give the end user the ability to update the state value using the onChange event.

class Search extends Component {
 constructor() {
 super();
 this.state = {
 searchTerm: "React"
 };
 }
 
 handleChange(event) {
 this.setState({searchTerm: event.target.value});
 }
 
 render() {
 return (
 <div>
 Search Term:
 <input type="search" value={this.state.searchTerm}
 onChange={this.handleChange.bind(this)} />
 </div>
)
 }
}

Chapter 2 ■ Inside the DOM Abstraction

43

This may look like a convoluted way to deal with forms, but it has the following advantages:

•	 It stays true to the React way of handling components. The state is kept out of the
interface, and is entirely managed in your JavaScript code.

•	 This pattern makes it easy to implement interfaces that respond to or validate user
interactions. For example, you could very easily limit the user input to 50 characters:

this.setState({searchTerm: event.target.value.substr(0, 50)});

Special Cases
There are a few special cases to remember when creating controlled form components: TextArea and Select.

TextArea
In HTML, the value of <textarea> is usually set using its children:

<textarea>This is the description.</textarea>

For HTML, this easily allows developers to supply multiline values. However, since React is JavaScript,
you do not have string limitations (you use \n if you want newlines, for example). To keep consistent across
other form elements, React uses the value prop to set <textarea> values:

<textarea value="This is a description." />

Select
In HTML, you set the selected option using the “selected” attribute on the option tag. In React, in order to
make components easier to manipulate, the following format is adopted instead:

<select value="B">
 <option value="A">Mobile</option>
 <option value="B">Work</option>
 <option value="C">Home</option>
</select>

Uncontrolled Components
Controlled components adhere to React’s principles and have their advantages. While uncontrolled
components are an anti-pattern for how most other components are constructed in React, sometimes you
don’t need to oversee the user input field by field.

This is especially true in longer forms, where you want to let the user fill in the fields and then process
everything when the user is done.

Chapter 2 ■ Inside the DOM Abstraction

44

Any input that does not supply a value is an uncontrolled component, and the value of the rendered
element will reflect the user's input. For example,

return (
 <form>
 <div className="formGroup">
 Name: <input name="name" type="text" />
 </div>
 <div className="formGroup">
 E-mail: <input name="email" type="mail" />
 </div>
 <button type="submit">Submit</button>
 </form>
)

will render two input fields that start off with an empty value. Any user input will be immediately reflected by
the rendered elements.

■■ Tip  If you want to set up an initial value for an uncontrolled form component, use the defaultValue prop
instead of value.

It’s still possible to handle uncontrolled component forms using onSubmit, like so:

handleSubmit(event) {
 console.log("Submitted values are: ",
 event.target.name.value,
 event.target.email.value);
 event.preventDefault();
}
 
render() {
 return (
 <form onSubmit={this.handleSubmit}>
 <div className="formGroup">
 Name: <input name="name" type="text" />
 </div>
 <div className="formGroup">
 E-mail: <input name="email" type="mail" />
 </div>
 <button type="submit">Submit</button>
 </form>
)
}

Chapter 2 ■ Inside the DOM Abstraction

45

Kanban App: Creating a Task Form
Regarding your Kanban app, you already have controlled components: the tasks checkboxes. Let’s add an
uncontrolled component this time: a text field to include new tasks.

class CheckList extends Component {
 render(){
 let tasks = this.props.tasks.map((task) => (...);
 return (
 <div className="checklist">
 {tasks}
 <input type="text"
 className="checklist--add-task"
 placeholder="Type then hit Enter to add a task" />
 </div>
)
 }
}

Since you didn’t specify a value prop, the user can freely write inside the text field. In the next chapter,
you will wire the form fields in the checklist to add and mark tasks as done.

To finish, let’s add some CSS to style the form element:

.checklist--add-task {
 border: 1px dashed #bbb;
 width: 100%;
 padding: 10px;
 margin-top: 5px;
 border-radius: 3px;
}

Virtual DOM Under the Hood
As you’ve seen so far, one of React's key design decisions is to make the API seem like it re-renders the whole
app on every update. DOM manipulation is a slow task for a variety of reasons, so in order to make this possible
in a performant way, React implements a virtual DOM. Instead of updating the actual DOM every time the
application state changes, React simply creates virtual tree that looks like the DOM state that you want. Then it
figures out how to make the DOM look like this efficiently without recreating all of the DOM nodes.

This process of finding the minimum number of changes that must be made in order to make the virtual
DOM tree and the actual DOM tree identical is called reconciliation, and in general it is a very complex and
extremely expensive operation. Even after many iterations and optimizations, this remains a very difficult
and time-consuming problem. To make this tractable, React makes a few assumptions about how typical
applications work that allow for a much faster algorithm in practical use cases. Some assumptions include:

•	 When comparing nodes in the DOM tree, if the nodes are of different types (say,
changing a div to a span), React is going to treat them as two different sub-trees,
throw away the first one, and build/insert the second one.

•	 The same logic is used for custom components. If they are not of the same type,
React is not going to even try to match what they render. It is just going to remove the
first one from the DOM and insert the second one.

Chapter 2 ■ Inside the DOM Abstraction

46

•	 If the nodes are of the same type, there are two possible ways React will handle this:

•	 If it’s a DOM element (such as changing <div id="before" /> to <div
id="after" />), React will only change attributes and styles (without replacing
the element tree).

•	 If it’s a custom component (such as changing <Contact details={false} /> to
<Contact details={true} />), React will not replace the component. Instead,
it will send the new properties to the current mounted component. This will end
up triggering a new render() on the component, and the process will reinitiate
with the new result.

Keys
Although React’s Virtual DOM and differing algorithms are very smart, in order to be fast, React makes some
assumptions and takes a naive approach in some cases. Lists of repeating items are especially tricky to handle.
To understand why, let’s start with an example. Listings 2-1 and 2-2 represent a previous and current render.

Listing 2-1.  Example List

Orange Banana

Listing 2-2.  Example List After New Render

Apple Orange

The difference between the two lists seems pretty obvious, but which is the best approach to transform
one list into the other? Adding a new item (Apple) to the beginning of the list and deleting the last one
(Banana) is a possible operation, but changing the last item’s name and position is also a possibility. In
bigger lists, different possibilities arise and each of them can possibly cause side effects. Considering that
nodes can be inserted, deleted, substituted, and moved, it is pretty hard to determine best approaches for all
possible cases with an algorithm.

For this reason, React introduced the key attribute. Keys are unique identifiers that allow for fast lookups
between trees for finding insertions, deletions, substitutions, and moves. Every time you create components
in a loop, it’s a good idea to provide a key for each child in order to help the React Library match and avoid
performance bottlenecks.

Kanban App: Keys
Your previous Kanban app example is already warning about child elements without keys in the browser
console (see Figure 2-9).

Chapter 2 ■ Inside the DOM Abstraction

47

The key prop can contain any value that is unique and constant. Your card’s data contains an ID for
each card. Let’s use it as the key prop in the List component:

class List extends Component {
 render() {
 let cards = this.props.cards.map((card) => {
 return <Card key={card.id}
 id={card.id}
 title={card.title}
 description={card.description}
 color={card.color}
 tasks={card.tasks} />
 });
 
 return (
 <div className="list">
 <h1>{this.props.title}</h1>
 {cards}
 </div>
)
 }
}

Figure 2-9.  A React warning about missing key props on the List and Checklist components

Chapter 2 ■ Inside the DOM Abstraction

48

You also have an array in Checklist. Let’s add a key there, too:

class CheckList extends Component {
 render(){
 let tasks = this.props.tasks.map((task) => (
 <li key={task.id} className="checklist__task">
 <input type="checkbox" defaultChecked={task.done} />
 {task.name}{' '}

));
 return (...);
 }
}

Refs
In the React way of working, when rendering a component, you're always dealing with the virtual DOM. If
you change a component's state or send new props to a child, for example, they are reactively rendered to
the virtual DOM. React will then update the actual DOM after the reconciliation phase.

This means that as developers you're never touching the real DOM. In some cases, though, you may
find yourself wanting to "reach out" for the actual DOM markup rendered by a component. Think twice
before manipulating the actual DOM because in almost every case there's a clearer way to structure your
code within the React model. However, for the few cases where it still might be necessary or beneficial, React
provides an escape hatch known as refs.

Refs can be used as a string prop on any component, like so:

<input ref="myInput" />

The referenced DOM markup can then be accessed via this.refs, like so:

let input = this.refs.myInput;
let inputValue = input.value;
let inputRect = input.getBoundingClientRect();

In this book, we will use refs very sparingly because there are few circumstances where they are really
necessary. As an example, let’s create a component consisting of only a text input and a button that, when
clicked, focuses the text input:

class FocusText extends Component {
 handleClick() {
 // Explicitly focus the text input using the raw DOM API.
 this.refs.myTextInput.focus();
 }
 render() {
 // The ref attribute adds a reference to the component to
 // this.refs when the component is mounted.

Chapter 2 ■ Inside the DOM Abstraction

49

 return (
 <div>
 <input type="text" ref="myTextInput" />
 <input
 type="button"
 value="Focus the text input"
 onClick={this.handleClick.bind(this)}
 />
 </div>
);
 }
}

Summary
In this chapter, you examined the details about React's DOM abstraction and the techniques the library
uses to achieve fast performance, like event delegation and its diff and reconciliation characteristics
(including the need for key props). You also learned about JSX in depth (and how React can be used without
JSX, if desired), inline styles, and forms.

51

Chapter 3

Architecting Applications with
Components

The previous chapters provided an overview of React. You saw that React is all about bringing a component-
based architecture to interface building. You understood the evolutionary approach of bringing HTML
together with JavaScript to describe components and achieve separation of concerns not by separating
technologies or languages, but by having discreet, isolated, reusable, and composable components.

This chapter will cover how to structure a complex user interface made of nested components. You will
see the importance of exposing a component API through propTypes, understand how data flows in a React
application, and explore techniques on how to compose components.

Prop Validation
When creating components, remember that they can be composed into bigger components and reused
(in the same project, in other projects, by other developers). Therefore, it is a good practice to make explicit
in your components which props can be used, which ones are required, and which types of values they
accept. This can be done by declaring propTypes. propTypes help document your components, which
benefits future development in two ways.

	 1.	 You can easily open up a component and check which props are required and
what type they should be.

	 2.	 When things get messed up, React will give you an error message in the console, saying
which props are wrong/missing and the render method that caused the problem.

propTypes are defined as a class constructor property. For example, given this Greeter React component

import React, { Component } from 'react';
import { render } from 'react-dom';
 
class Greeter extends Component {
 render() {
 return (
 <h1>{this.props.salutation}</h1>
)
 }
}
 
render(<Greeter salutation="Hello World" />, document.getElementById('root'));

Chapter 3 ■ Architecting Applications with Components

52

the salutation prop needs to be a string and is required (you can’t render unless a salutation is provided).
To achieve this, you have to define the propTypes as a class constructor property, like this:

import React, { Component, PropTypes } from 'react';
import { render } from 'react-dom';
 
class Greeter extends Component {
 render() {
 return (
 <h1>{this.props.salutation}</h1>
)
 }
}
Greeter.propTypes = {
 salutation: PropTypes.string.isRequired
}
 
render(<Greeter salutation="Hello World" />, document.getElementById('root'));

If the requirements of the propTypes are not met when the component is instantiated, a console.warn
will be logged. For example, if you try to render a Greeter component without any props

React.render(<Greeter />, document.getElementById('root'));

the warning will be

Warning: Failed propType: Required prop `salutation` was not specified in `Greeter`.

For optional props, simple leave the .isRequired off, in which case the prop type will only be checked
by React if a value is provided.

Default Prop Values
You can also provide a default prop value in case none is provided. The syntax is similar: define a
defaultProps object as a constructor property.

You could, for example, leave the prop salutation optional (by removing the isRequired) and give it a
default value of “Hello World”:

class Greeter extends Component {
 render() {
 return (
 <h1>{this.props.salutation}</h1>
)
 }
}
 
Greeter.propTypes = {
 salutation: PropTypes.string
}

Chapter 3 ■ Architecting Applications with Components

53

Greeter.defaultProps = {
 salutation: "Hello World"
}
 
render(<Greeter />, document.getElementById('root'));

Now, if no salutation prop is provided, your component will render a default “Hello World”. If a
salutation is provided, though, it needs to be of type string.

As said earlier, you are not required to use propTypes in your application, but they provide a good way
to describe the API of your component, and it is a good practice to always declare them.

Built-in propType Validators
React propTypes export a range of validators that can be used to make sure the data you receive is valid.
By default, all of the propTypes in Tables 3-1 through 3-3 are optional, but you can chain with isRequired to
make sure a warning is shown if the prop isn’t provided.

Table 3-1.  JavaScript Primitives PropTypes

Validator Description

PropTypes.array Prop must be an array.

PropTypes.bool Prop must be a Boolean value (true/false).

PropTypes.func Prop must be a function.

PropTypes.number Prop must be a number (or a value that can be parsed into a number).

PropTypes.object Prop must be an object.

PropTypes.string Prop must be a string.

Table 3-2.  Combined Primitives PropTypes

Validator Description

PropTypes.oneOfType An object that could be one of many types, such as

PropTypes.oneOfType([
 PropTypes.string,
 PropTypes.number,
 PropTypes.instanceOf(Message)
])

PropTypes.arrayOf Prop must be an array of a certain type, such as

PropTypes.arrayOf(PropTypes.number)

PropTypes.objectOf Prop must be an object with property values of a certain type, such as

PropTypes.objectOf(PropTypes.number)

PropTypes.shape Prop must be an object taking on a particular shape. It needs the same set of
properties, such as

PropTypes.shape({
 color: PropTypes.string,
 fontSize: PropTypes.number
})

Chapter 3 ■ Architecting Applications with Components

54

Kanban App: Defining Prop Types
The correct approach is to declare a component’s propTypes as soon as you create the component itself,
but given that you just learned about them and their importance, let’s review all of the Kanban App’s
components and declare its propTypes (as shown in Listings 3-1 to 3-4).

Listing 3-1.  PropTypes for the KanbanBoard Component

import React, { Component, PropTypes } from 'react';
import List from './List';
 
class KanbanBoard extends Component {
 render() {...}
};
KanbanBoard.propTypes = {
 cards: PropTypes.arrayOf(PropTypes.object)
};
 
export default KanbanBoard;

Listing 3-2.  PropTypes for the List Component

import React, { Component, PropTypes } from 'react';
import Card from './Card';
 
class List extends Component {
 render() {...}
};
List.propTypes = {
 title: PropTypes.string.isRequired,
 cards: PropTypes.arrayOf(PropTypes.object)
};
 
export default List;

Table 3-3.  Special PropTypes

Validator Description

PropTypes.node Prop can be of any value that can be rendered: numbers, strings, elements,
or an array.

PropTypes.element Prop must be a React element.

PropTypes.instanceOf Prop must be instance of a given class (this uses JS’s instanceof operator.),
such as PropTypes.instanceOf(Message).

PropTypes.oneOf Ensure that your prop is limited to specific values by treating it as an enum,
like PropTypes.oneOf(['News', 'Photos']).

Chapter 3 ■ Architecting Applications with Components

55

Listing 3-3.  PropTypes for the Card Component

import React, { Component, PropTypes } from 'react';
import marked from 'marked';
import CheckList from './CheckList';
 
class Card extends Component {
 constructor() {...}
 toggleDetails() {...}
 render() {...}
};
Card.propTypes = {
 id: PropTypes.number,
 title: PropTypes.string,
 description: PropTypes.string,
 color: PropTypes.string,
 tasks: PropTypes.arrayOf(PropTypes.object)
};
 
export default Card;

Listing 3-4.  PropTypes for the Checklist Component

import React, { Component, PropTypes } from 'react';
 
class CheckList extends Component {
 render() {...}
};
CheckList.propTypes = {
 cardId: PropTypes.number,
 tasks: PropTypes.arrayOf(PropTypes.object)
};
 
 
export default CheckList;

Custom PropType Validators
As mentioned, React offers a great suite of built-in propType validators that cover pretty much every basic
use case, but there may still be some scenarios where one might need a more specific validator.

Validators are basically just functions that receive a list of properties, the name of the property to check,
and the name of the component. The function must then return either nothing (if the tested prop was valid)
or an instance of an Error suitable for the invalid prop.

Kanban App: Defining a Custom PropType Validator
In your Kanban app, the Card component has a title, a description, and other properties. By way of an
example, you’re going to write a validator that will warn if the card title is longer than 80 characters. The code
is shown in Listing 3-5, and a sample card failing the custom propType validator is represented in Figure 3-1.

Chapter 3 ■ Architecting Applications with Components

56

Listing 3-5.  Custom PropType Validator on the Card Component

import React, { Component, PropTypes } from 'react';
import marked from 'marked';
import CheckList from './CheckList';
 
let titlePropType = (props, propName, componentName) => {
 if (props[propName]) {
 let value = props[propName];
 if (typeof value !== 'string' || value.length > 80) {
 return new Error(
 `${propName} in ${componentName} is longer than 80 characters`
);
 }
 }
}
 
class Card extends Component {
 constructor() {...}
 toggleDetails() {...}
 render() {...}
}
Card.propTypes = {
 id: PropTypes.number,
 title: titlePropType,
 description: PropTypes.string,
 color: PropTypes.string,
 tasks: PropTypes.arrayOf(PropTypes.object)
};
 
export default Card; 

■■ Note I n this sample code, you use the new JavaScript ES6 syntax for string interpolation. You can learn
more about this and other ES6 language features used throughout this book in the online Appendix C.

Figure 3-1.  A new card failing the custom propType validation

Chapter 3 ■ Architecting Applications with Components

57

Component Composition Strategies and Best Practices
This section will cover strategies and best practices for creating React applications by composing
components. You will discuss how to achieve state management, data fetching, and control over user
interactions in a structured and organized way.

Stateful and Pure Components
So far you’ve seen that components can have data as props and state.

•	 Props are a component’s configuration. They are received from above and
immutable as far as the component receiving them is concerned.

•	 State starts with a default value defined in the component’s constructor and then
suffers from mutations in time (mostly generated from user events). A component
manages its own state internally, and every time the state changes, the component is
rendered again.

In React’s components, state is optional. In fact, in most React applications the components are split
into two types: those that manage state (stateful components) and those that don’t have internal state and
just deal with the display of data (pure components).

The goal of pure components is to write them so they only accept props and are responsible for
rendering those props into a view. This makes it easier to reuse and test those components.

However, sometimes you need to respond to user input, a server request, or the passage of time. For
this, you use state. Stateful components usually are higher on the component hierarchy and wrap one or
more stateful or pure components.

It’s a good practice to keep most of an app’s components stateless. Having your application’s state
scattered across multiple components makes it harder to track. It also reduces predictability because the way
your application works becomes less transparent. There’s also the potential to introduce some very hard-to-
untangle situations in your code.

Which Components Should Be Stateful?
Recognizing which components should own state is often the most challenging part for React newcomers to
understand. When in doubt, follow this four-step checklist. For each piece of state in your application,

•	 Identify every component that renders something based on that state.

•	 Find a common owner component (a single component above all the components
that need the state in the hierarchy).

•	 Either the common owner or another component higher up in the hierarchy should
own the state.

•	 If you can’t find a component where it makes sense to own the state, create a new
component simply to hold the state and add it somewhere in the hierarchy above the
common owner component.

Chapter 3 ■ Architecting Applications with Components

58

To illustrate this concept, let’s build a very simple contact app, as shown in Figure 3-2.

The component hierarchy is

•	 ContactsApp: The main component

•	 SearchBar: Shows an input field so the user can filter the contacts

•	 ContactList: Loops through data, creating a series of ContactItems

•	 ContactItem: Displays the contact data

In the code, the contact list data is stored in a global variable. In a real app, the data would probably be
fetched remotely, but for the sake of simplicity, it will be hard-coded on this example. Listing 3-6 shows the
complete code including the ContactsApp, SearchBar, ContactList, and ContactItem components (as well as
their propTypes).

Listing 3-6.  ContacsApp Code

import React, { Component, PropTypes } from 'react';
import { render } from 'react-dom';
 
// Main component. Renders a SearchBar and a ContactList
class ContactsApp extends Component {
 render(){
 return(
 <div>
 <SearchBar />
 <ContactList contacts={this.props.contacts} />
 </div>
)
 }
}
ContactsApp.propTypes = {
 contacts: PropTypes.arrayOf(PropTypes.object)
}
 

Figure 3-2.  The sample contacts app with search

Chapter 3 ■ Architecting Applications with Components

59

class SearchBar extends Component {
 render(){
 return <input type="search" placeholder="search" />
 }
}
 
class ContactList extends Component {
 render(){
 return(

 {this.props.contacts.map(
 (contact) => <ContactItem key={contact.email}
 name={contact.name}
 email={contact.email} />
)}

)
 }
}
ContactList.propTypes = {
 contacts: PropTypes.arrayOf(PropTypes.object)
}
 
class ContactItem extends Component {
 render() {
 return {this.props.name} - {this.props.email}
 }
}
ContactItem.propTypes = {
 name: PropTypes.string.isRequired,
 email: PropTypes.string.isRequired,
}
 
let contacts = [
 { name: "Cassio Zen", email: "cassiozen@gmail.com" },
 { name: "Dan Abramov", email: "gaearon@somewhere.com" },
 { name: "Pete Hunt", email: "floydophone@somewhere.com" },
 { name: "Paul O’Shannessy", email: "zpao@somewhere.com" },
 { name: "Ryan Florence", email: "rpflorence@somewhere.com" },
 { name: "Sebastian Markbage", email: "sebmarkbage@here.com" },
]
 
render(<ContactsApp contacts={contacts} />, document.getElementById('root'));

At this moment, all of your application’s components are pure; they only render data received via props.
However, you need to add the filter behavior to your app, and you will need to store mutable state to achieve
that. Let’s run through the checklist to figure out where state in this application should live.

ContactList needs to filter the contacts based on state, and SearchBar needs to display the search text.
The common owner component is ContactsApp.

Chapter 3 ■ Architecting Applications with Components

60

It conceptually makes sense for the filter text to live as a state in ContactsApp. The ContactsApp in turn
will pass the filter text down as props. The SearchBar component will use it as value for the input field and
the ContactList will use it to filter the contacts. Let’s implement this component by component (as shown
in Listings 3-7 through 3-9). In Listing 3-8, the SearchBar component will receive the filterText as a prop
and set the input field value to this prop. The input field now is a controlled form component (as seen
in Chapter 2). In Listing 3-9, the ContactList component also receives filterText as a prop and filters the
contacts to show based on its value.

Listing 3-7.  Updated Stateful ContactsApp Component

class ContactsApp extends Component {
 constructor(){
 super();
 this.state={
 filterText: ''
 };
 }
 render(){
 return(
 <div>
 <SearchBar filterText={this.state.filterText} />
 <ContactList contacts={this.props.contacts}
 filterText={this.state.filterText}/>
 </div>
)
 }
}
ContactsApp.propTypes = {...}

Listing 3-8.  The SearchBar Component

class SearchBar extends Component {
 render(){
 return <input type="search" placeholder="search"
 value={this.props.filterText} />
 }
}
// Don't forget to add the new propType requirements
SearchBar.propTypes = {
 filterText: PropTypes.string.isRequired
}

Listing 3-9.  The ContactList Component

class ContactList extends Component {
 render(){
 let filteredContacts = this.props.contacts.filter(
 (contact) => contact.name.indexOf(this.props.filterText) !== -1
);

http://dx.doi.org/10.1007/978-1-4842-1260-8_2

Chapter 3 ■ Architecting Applications with Components

61

 return(

 {filteredContacts.map(
 (contact) => <ContactItem key={contact.email}
 name={contact.name}
 email={contact.email} />
)}

)
 }
}

Now your application has only one stateful component on the top of the hierarchy and three pure
components that display data received via props. The ContactList component filters the data to show based
on the filterText prop (you can try right now by changing the ContactsApp’s filterText state on the
code), but the user can’t type anything on the search field because it can’t change its state from inside the
SearchBar component; the state is owned by the parent component.

In the next section, you will learn how child (pure) components can communicate back to parent
(stateful) components.

Data Flow and Component Communication
In a React application, data flows down in the hierarchy of components: React makes this data flow explicit
to make it easy to understand how your program works.

In non-trivial apps, though, nested child components need to communicate with the parent
component. One method to achieve this is through callbacks passed by parent components as props.

Let’s use the ContactApp example to illustrate this. State belongs to the topmost ContactApp
component and is passed down as props to SearchBar and ContactList.

You want to make sure that whenever the user changes the search form, you update the state to reflect
the user input. Since components should only update their own state, ContactApp will pass a callback to
SearchBar that will fire whenever the state should be updated. You can use the onChange event on the inputs
to be notified of it. On the ContactsApp, you create a local function to change the filterText state and pass this
function down as a prop to the searchBar (Listing 3-10).

Listing 3-10.  Creating a local function

class ContactsApp extends Component {
 constructor(){...}
 
 handleUserInput(searchTerm){
 this.setState({filterText:searchTerm})
 }
 
 render(){
 return(
 <div>
 <SearchBar filterText={this.state.filterText}
 onUserInput={this.handleUserInput.bind(this)} />

Chapter 3 ■ Architecting Applications with Components

62

 <ContactList contacts={this.props.contacts}
 filterText={this.state.filterText}/>
 </div>
)
 }
}
ContactsApp.propTypes = {
 contacts: PropTypes.arrayOf(PropTypes.object)
}

The SearchBar component receives the callback as a prop and calls on the onChange event of the input
field (Listing 3-11).

Listing 3-11.  Receiving the callback and calling in the onChange

class SearchBar extends Component {
 handleChange(event){
 this.props.onUserInput(event.target.value)
 }
  
 render(){
 return <input type="search"
 placeholder="search"
 value={this.props.filterText}
 onChange={this.handleChange.bind(this)} />
 }
}
SearchBar.propTypes = {
 onUserInput: PropTypes.func.isRequired,
 filterText: PropTypes.string.isRequired
}

The search in action and the complete code are shown in Figure 3-3 and Listing 3-12.

Listing 3-12.  The Complete Contact App Code

import React, { Component, PropTypes } from 'react';
import { render } from 'react-dom';
 
// Main (stateful) component.
// Renders a SearchBar and a ContactList
// Passes down filterText state and handleUserInput callback as props

Figure 3-3.  The Contacts app’s filter in action

Chapter 3 ■ Architecting Applications with Components

63

class ContactsApp extends Component {
 constructor(){
 super();
 this.state={
 filterText: ''
 };
 }
 
 handleUserInput(searchTerm){
 this.setState({filterText:searchTerm})
 }
 
 render(){
 return(
 <div>
 <SearchBar filterText={this.state.filterText}
 onUserInput={this.handleUserInput.bind(this)} />
 <ContactList contacts={this.props.contacts}
 filterText={this.state.filterText}/>
 </div>
)
 }
}
ContactsApp.propTypes = {
 contacts: PropTypes.arrayOf(PropTypes.object)
}
 
 
// Pure component that receives 2 props from the parent
// filterText (string) and onUserInput (callback function)
class SearchBar extends Component {
 handleChange(event){
 this.props.onUserInput(event.target.value)
 }
  
 render(){
 return <input type="search"
 placeholder="search"
 value={this.props.filterText}
 onChange={this.handleChange.bind(this)} />
 }
}
SearchBar.propTypes = {
 onUserInput: PropTypes.func.isRequired,
 filterText: PropTypes.string.isRequired
}
 
// Pure component that receives both contacts and filterText as props
// The component is responsible for actualy filtering the
// contacts before displaying them.

Chapter 3 ■ Architecting Applications with Components

64

// It's considered a pure component because given the same
// contacts and filterText props the output will always be the same.
class ContactList extends Component {
 render(){
 let filteredContacts = this.props.contacts.filter(
 (contact) => contact.name.indexOf(this.props.filterText) !== -1
);
 return(

 {filteredContacts.map(
 (contact) => <ContactItem key={contact.email}
 name={contact.name}
 email={contact.email} />
)}

)
 }
}
ContactList.propTypes = {
 contacts: PropTypes.arrayOf(PropTypes.object),
 filterText: PropTypes.string.isRequired
}
 
class ContactItem extends Component {
 render() {
 return {this.props.name} - {this.props.email}
 }
}
ContactItem.propTypes = {
 name: PropTypes.string.isRequired,
 email: PropTypes.string.isRequired
}
 
let contacts = [
 { name: "Cassio Zen", email: "cassiozen@gmail.com" },
 { name: "Dan Abramov", email: "gaearon@somewhere.com" },
 { name: "Pete Hunt", email: "floydophone@somewhere.com" },
 { name: "Paul O’Shannessy", email: "zpao@somewhere.com" },
 { name: "Ryan Florence", email: "rpflorence@somewhere.com" },
 { name: "Sebastian Markbage", email: "sebmarkbage@here.com" },
]
 
render(<ContactsApp contacts={contacts} />, document.getElementById('root'));

Chapter 3 ■ Architecting Applications with Components

65

Component Lifecycle
When creating React components, it’s possible to declare methods that will be automatically called in certain
occasions throughout the lifecycle of the component. Understanding the role that each component lifecycle
method plays and the order in which they are invoked will enable you to perform certain actions when a
component is created or destroyed. It also gives you the opportunity to react to props or state changes accordingly.

Moreover, an implicit knowledge about the lifecycle methods is also necessary for performance
optimizations (covered in Chapter 7) and to organize your components in a Flux architecture (covered in
Chapter 6).

Lifecycle Phases and Methods
To get a clear idea of the lifecycle, you need to differentiate between the initial component creation phase,
state and props changes, triggered updates, and the component’s unmouting phase. Figures 3-4 to 3-7
demonstrate which methods are called on each phase.

Figure 3-4.  Lifecycle methods invoked on the mounting cycle

Figure 3-5.  Lifecycle method invoked on the unmounting cycle

http://dx.doi.org/10.1007/978-1-4842-1260-8_7
http://dx.doi.org/10.1007/978-1-4842-1260-8_6

Chapter 3 ■ Architecting Applications with Components

66

Figure 3-6.  Lifecycle methods invoked when the props of a component change

Figure 3-7.  Lifecycle methods invoked when the component’s state change

Chapter 3 ■ Architecting Applications with Components

67

Lifecycle Functions in Practice: Data Fetching
To illustrate the usage of lifecycle methods in practice, imagine you want to change your last Contacts
application to fetch the contacts data remotely. Data fetching is not really a React subject; it’s just plain
JavaScript, but the important aspect to notice is that you do have to fetch the data on a specific lifecycle of
the component, the componentDidMount lifecycle method.

Since this chapter is about strategies and good practices for component composition, it is also
worth noting that you should avoid adding data fetching logic to a component that already has other
responsibilities. A good practice, instead, is to create a new stateful component whose single responsibility
is communicating with the remote API, and passing data and callbacks down as props. Some people call this
type of component a container component.

You will use the idea of a container component in your Contacts app, so instead of adding the
data-fetching logic to the existing ContactsApp component, you will create a new component called
ContactsAppContainer on top of it. The old ContactsApp won’t be changed in any way. It will continue to
receive data via props.

■■ Note I n this sample code, you use the new window.fetch function, which is an easier way to make web
requests and handle responses than using XMLHttpRequest. At the time of this writing, only Chrome and Firefox
support this new standard, so install and import the whatwg-fetch polyfill from npm. (Polyfill is browser fallback
that allows specific functionality to work in browsers that do not have the support for that functionality built in.)

npm install --save whatwg-fetch

Let’s start by moving the hard-coded data to a json file (the json file must be in the public or static
folder, so it will be served by the development server), as shown in Figure 3-8. Your project folder structure
may vary; the important thing to notice is that the file is in the public or static folder that will be served by
the web server.

Chapter 3 ■ Architecting Applications with Components

68

The new ContactsAppContainer component is shown in Listing 3-13. No other components were
changed, except that instead of rendering ContactsApp you now render ContactsAppContainer to the
document (as shown in the last lines of the listing).

Listing 3-13.  The New ContactsAppContainer

import React, { Component, PropTypes } from 'react';
import { render } from 'react-dom';
import 'whatwg-fetch';
 
class ContactsAppContainer extends Component {
 constructor(){
 super();
 this.state={
 contacts: []
 };
 }
 
 componentDidMount(){
 fetch('./contacts.json')
 .then((response) => response.json())
 .then((responseData) => {
 this.setState({contacts: responseData});
 })

Figure 3-8.  The new contacts.json file

Chapter 3 ■ Architecting Applications with Components

69

 .catch((error) => {
 console.log('Error fetching and parsing data', error);
 });
 }
 
 render(){
 return (
 <ContactsApp contacts={this.state.contacts} />
);
 }
}
 
// No changes in any of the components bellow
class ContactsApp extends Component {
 constructor(){...}
 handleUserInput(searchTerm){...}
 render(){...}
}
ContactsApp.propTypes = {...}
 
class SearchBar extends Component {
 handleChange(event){...}
 render(){...}
}
SearchBar.propTypes = {...}
 
class ContactList extends Component {
 render(){...}
}
ContactList.propTypes = {...}
 
class ContactItem extends Component {
 render() {...}
}
ContactItem.propTypes = {...}
 
// You now render ContactAppContainer, instead of ContactsApp
render(<ContactsAppContainer />, document.getElementById('root'));

That’s all for remote data fetching. If you reload the Contacts app in the browser, it will look like nothing
has changed, but underneath it is now loading the contacts data from an external source.

A Brief Talk About Immutability
React provides a setState method to make changes to the component internal state. Be careful to always
use the setState method to update the state of your component’s UI and never manipulate this.state
directly. As a rule of thumb, treat this.state as if it were immutable.

There are different reasons for this. For one, by manipulating this.state directly you are circumventing
React’s state management, which not only works against the React paradigm but can also be potentially
dangerous because calling setState() afterwards may replace the mutation you made. Furthermore,
manipulating this.state directly minimizes the possibilities for future performance improvements in the
application.

Chapter 3 ■ Architecting Applications with Components

70

You will learn about performance improvements in later chapters but in many cases it deals with object
comparison and checking weather a JavaScript object has changed or not. As it turns out, this is a pretty
expensive operation in JavaScript that can generate a lot of overhead, but there’s a simpler and faster way:
if any time an object is changed it’s replaced instead edited in place, then the check is orders of magnitude
faster (because you can simply compare object references, such as object1 === object2).

That’s the basic idea of immutability. Instead of changing an object, replace it.

Immutability in Plain JavaScript
The main idea behind immutability is just to replace the object instead of changing it, and while this is
absolutely possible in plain JavaScript, it’s not the norm. If you’re not careful, you may unintentionally
mutate objects directly instead of replacing them. For example, let’s say you have this stateful component
that displays data about a voucher for an airline travel (the render method is omitted in this example
because you are only investigating the component’s state):

import React, { Component } from 'react';
import { render } from 'react-dom';
 
class Voucher extends Component {
 constructor() {
 super(...arguments)
 this.state = {
 passengers:[
 'Simmon, Robert A.',
 'Taylor, Kathleen R.'
],
 ticket:{
 company: 'Dalta',
 flightNo: '0990',
 departure: {
 airport: 'LAS',
 time: '2016-08-21T10:00:00.000Z'
 },
 arrival: {
 airport: 'MIA',
 time: '2016-08-21T14:41:10.000Z'
 },
 codeshare: [
 {company:'GL', flightNo:'9840'},
 {company:'TM', flightNo:'5010'}
]
 }
 }
 }
 
 render() {...}
}

Chapter 3 ■ Architecting Applications with Components

71

Now, suppose you want to add a passenger to the passengers array. If you’re not careful, you may
unintentionally mutate the component state directly. For example,

let updatedPassengers = this.state.passengers;
updatedPassengers.push('Mitchell, Vincent M.');
this.setState({passengers:updatedPassengers});

The problem in this sample code, as you may have guessed, is that in JavaScript, objects and arrays are
passed by reference. This means that when you say updatedPassengers=this.state.passengers you’re
not making a copy of the array; you are just creating a new reference to the same array that is in the current
component’s state. Furthermore, by using the array method push, you end up mutating its state directly.

To create actual array copies in JavaScript, you need to use non-destructive methods, that is, methods
that will return an array with the desired mutations instead of actually changing the original one. map,
filter, and concat are just a few examples of non-destructive array methods. Let’s reapproach the earlier
problem of adding a new passenger to the array, this time using the Array’s concat method:

// updatedPassengers is a new array, returned from concat
let updatedPassengers = this.state.passengers.concat('Mitchell, Vincent M.');
this.setState({passengers:updatedPassengers});

There are also alternatives for generating new objects with mutations in JavaScript, like using
Object.assign. Object.assign works by merging all properties of all given objects to the target object:

Object.assign(target, source_1, ..., source_n)

It first copies all enumerable properties of source 1 to the target, then those of source_2, etc. For
example, to change the flightNo on the ticket state key, you could do this:

// updatedTicket is a new object with the original properties of this.state.ticket
// merged with the new flightNo.
let updatedTicket = Object.assign({}, this.state.ticket, {flightNo:'1010'});
this.setState({ticket:updatedTicket});

■■ Note A t the time of this writing, only Chrome and Firefox supported the new method Object.assign, but
the good news is that Babel (the ES6 compiler you’re using together with Webpack) already provides the polyfill
for other browsers. All you need to do is install with 'npm install --save babel-polyfill' and import it
with import 'babel-polyfill'.

Nested Objects
Although an array’s non-destructive methods and Object.assign will do the job on most cases, it gets really
tricky if your state contains nested objects or arrays. This is because of a characteristic of the JavaScript
language: objects and arrays are passed by reference, and neither the array’s non-destructive methods nor
Object.assign make deep copies. In practice, this means the the nested objects and arrays in your newly
returned object will only be references to the same objects and arrays on the old object.

Chapter 3 ■ Architecting Applications with Components

72

Let’s see this in practice, given the ticket object you were working on:

let originalTicket={
 company: 'Dalta',
 flightNo: '0990',
 departure: {
 airport: 'LAS',
 time: '2016-08-21T10:00:00.000Z'
 },
 arrival: {
 airport: 'MIA',
 time: '2016-08-21T14:41:10.000Z'
 },
 codeshare: [
 {company:'GL', flightNo:'9840'},
 {company:'TM', flightNo:'5010'}
]
}

If you create a ticket object with the Object.assign, like

let newTicket = Object.assign({}, originalTicket, {flightNo '5690'}}

You will end up with two objects in memory, as shown in Figure 3-9.

However, given the default JavaScript behavior of passing arrays and objects by reference, the departure
and arrival objects on newTicket aren’t separate copies; they’re references to the same originalTicket
object. If you try to change the arrival object on newTicket, for example,

newTicket.arrival.airport="MCO"

Figure 3-10 shows both object representations now.

Figure 3-9.  Note that originalTicket and newTicket have different flightNo properties

Chapter 3 ■ Architecting Applications with Components

73

Again, this has nothing to do with React; it’s just the default JavaScript behavior, but this default
behavior can and will impact React if you want to mutate a component state with nested objects. You
could try making a deep clone of the original object, but this isn’t a good option because it is expensive in
performance and even impossible to do in some cases. The good news is that there is a simple solution:
the React add-ons package provides a utility function (called immutability helper) that helps update more
complex and nested models.

React Immutability Helper
React’s add-on package provides an immutability helper called update. The update function works on
regular JavaScript objects and arrays and helps manipulates these objects as if they were immutable: instead
of actually changing the object, it always return a new, mutated object.

To begin with, you’ll need to install and require the library:

npm install –save react-addons-update

Then, in your javascript file, import is using

import update from 'react-addons-update';

The update method accepts two parameters. The first one is the object or array that you want to update.
The second parameter is an object that describes WHERE the mutation should take place and WHAT kind of
mutation you want to make. So, given this simple object:

let student = {name:'John Caster', grades:['A','C','B']}

to create a copy of this object with a new, updated grade, the syntax for update is

let newStudent = update(student, {grades:{$push: ['A']}})

The object {grades:{$push: ['A']}} informs, from left to right, that the update function should

	 1.	 Locate the key grades (“where” the mutation will take place).

	 2.	 Push a new value to the array (“what” kind of mutation should happen).

Figure 3-10.  originalTicket and newTicket arrival keys references the same object

Chapter 3 ■ Architecting Applications with Components

74

If you want to completely change the array, you use the command $set instead of $push:

let newStudent = update(student, {grades:{$set: ['A','A','B']}})

There’s no limit to the amount of nesting you can do. Let’s head back to your voucher ticket object, where
you were having trouble creating a new object with a different arrival information. The original object was

let originalTicket={
 company: 'Dalta',
 flightNo: '0990',
 departure: {
 airport: 'LAS',
 time: '2016-08-21T10:00:00.000Z'
 },
 arrival: {
 airport: 'MIA',
 time: '2016-08-21T14:41:10.000Z'
 },
 codeshare: [
 {company:'GL', flightNo:'9840'},
 {company:'TM', flightNo:'5010'}
]
}

The information you want to change (airport) is nested three levels deep. In React’s update addon, all
you need to do is keep nesting objects with their names on the objects that describe the mutation:

let newTicket = update(originalTicket, {
 arrival: {
 airport: {$set: 'MCO'}
 }
 });

Now only the new Ticket has the arrival airport set to “MCO”. The original ticket maintains the original
arrival airport, as shown in Figure 3-11.

Figure 3-11.  originalTicket and newTicket now don’t share the same arrival nested object

Chapter 3 ■ Architecting Applications with Components

75

Array Indexes
It’s also possible to use array indexes to find WHERE a mutation should happen. For example, if you want to
mutate the first codeshare object (the array elopement at index 0),

let newTicket = update(originalTicket,{
 codeshare: {
 0: { $set: {company:'AZ', flightNo:'7320'} }
 }
 });

Figure 3-12 shows the different objects with the newTicket array mutated.

Available Commands
The available commands to determinate “what” kind of mutation should happen are shown in Table 3-4.

Figure 3-12.  Changes by array index using React’s immutability helpers

Table 3-4.  React Immutability Helper Commands

Command Description

$push Similar to Array’s push, it adds one or more elements to the end of an array. Example:

let initialArray = [1, 2, 3];
let newArray = update(initialArray, {$push: [4]});
// => [1, 2, 3, 4]

$unshift Similar to Array’s unshift, it adds one or more elements to the beginning of an array. Example:

let initialArray = [1, 2, 3];
let newArray = update(initialArray, {$unshift: [0]});
// => [0,1, 2, 3]

(continued)

Chapter 3 ■ Architecting Applications with Components

76

Kanban App: Adding (a Little) Complexity
To put all the new knowledge about components composition and state management in practice, you will
connect the Kanban App Connect to an external API. You will fetch all the application’s data from the server
and manipulate tasks (delete, create, and toggle).

Fetching the Initial Cards from the External API
You will start by creating a new component at the top of your hierarchy. This container component will be
used for data fetching/persistence. Create a new file named KanbanBoardContainer.js with a basic React
component structure (as shown in Listing 3-14).

Listing 3-14.  The New KanbanBoardContainer.js

import React, { Component } from 'react';
import KanbanBoard from './KanbanBoard';
 
class KanbanBoardContainer extends Component {
 constructor(){
 super(...arguments);
 this.state = {
 cards:[],
 };
 }
 

Command Description

$splice Similar to Array’s splice, it changes the content of an array by removing and/or adding new
elements. The main syntactical difference here is that you should provide an array of arrays as
a parameter, each individual array containing the splice parameters to operate on the array.
Example:

let initial Array = [1, 2, 'a'];
let newArray = update(initialArray, {$splice: [[2,1,3,4]]});
// => [1, 2, 3, 4]

$set Replace the target entirely.

$merge Merge the keys of the given object with the target. Example:

let ob. = {a: 5, b: 3};
let newObj = update(obj, {$merge: {b: 6, c: 7}});
// => {a: 5, b: 6, c: 7}

$apply Pass in the current value to the given function and update it with the new returned value.
Example:

let obj = {a: 5, b: 3};
let newObj = update(obj, {b: {$apply: (value) => value*2 }});
// => {a: 5, b: 6}

Table 3-4.  (continued)

Chapter 3 ■ Architecting Applications with Components

77

 render() {
 return <KanbanBoard cards={cards} />
 }
}
 
export default KanbanBoardContainer;

In the sequence, you fetch the data from the Kanban API Server. As you did earlier in this chapter, you
use the new window.fetch function available on the latest generation of browsers. To make sure your app
will run on other browsers as well, install the fetch polyfill from npm and save it as a dependency of the
project:

npm install --save whatwg-fetch

For convenience, an online API for testing is provided at http://kanbanapi.pro-ract.com.
If you prefer to run locally, you can download the Kanban API Server from www.apress.com or from the

book’s github page at https://github.com/pro-react.
The only difference between the online API at kanbanapi.pro-react.com and the API Server is that to

use the former you need to pass an authorization header (so the server can uniquely identify you and serve
your own cards and tasks). The authorization can be any string that uniquely identifies your app or yourself
(such a generic combination of characters or your e-mail address, for example). In both cases, a standard set
of cards and tasks are already available on your first use so you can start testing immediately.

■■ Note T he online Kanban rest API at kanbanapi.pro-react.com is provided for educational purposes only.
As such, stored information will be reset after 24 hours of inactivity.

Also, please be careful about storing sensitive information on the kanbanapi.pro-react.com server. Although
the server employs standard security measures, it is by definition not private.

The online API’s terms of use statement is available at http://kanbanapi.pro-react.com/terms.

Let’s start fetching the initial data for the application on the KanbanBoardContainer component, as
shown in Listing 3-15. Note that you also add custom headers to the fetch command to make sure the server
will respond properly.

Listing 3-15.  Fetching Data Code

import React, { Component } from 'react';
import KanbanBoard from './KanbanBoard';
import 'whatwg-fetch';
 
// If you're running the server locally, the URL will be, by default, localhost:3000
// Also, the local server doesn't need an authorization header.
const API_URL = 'http://kanbanapi.pro-react.com';
const API_HEADERS = {
 'Content-Type': 'application/json',
 Authorization: 'any-string-you-like'// The Authorization is not needed for local server
};
 

http://kanbanapi.pro-ract.com/
http://www.apress.com/
https://github.com/pro-react
http://kanbanapi.pro-react.com/terms

Chapter 3 ■ Architecting Applications with Components

78

class KanbanBoardContainer extends Component {
 constructor(){
 super(...arguments);
 this.state = {
 cards: []
 };
 }
 
 componentDidMount(){
 fetch(API_URL+'/cards', {headers: API_HEADERS})
 .then((response) => response.json())
 .then((responseData) => {
 this.setState({cards: responseData});
 })
 .catch((error) => {
 console.log('Error fetching and parsing data', error);
 });
 }
 
 render() {
 return <KanbanBoard cards={this.state.cards} />
 }
}
 
export default KanbanBoardContainer;

You create a new container component that fetches data remotely and passes to its corresponding
pure component. All you need to do now is change the original App.js file to render the new
KanbanBoardContainer, instead of rendering KanbanBoard directly:

import React from 'react';
import {render} from 'react-dom';
import KanbanBoardContainer from './KanbanBoardContainer';
 
render(<KanbanBoardContainer />, document.getElementById('root'));

If you test right now, it will look like nothing happened at all. The difference is that the Kanban app is
live, so the data is no longer hard-coded.

Wiring Up the Task Callbacks as Props
Now let’s create three functions to manipulate the tasks: addTask, deleteTask, and toggleTask. Since tasks
belong to a card, all functions need to receive the cardId as a parameter. The addTask will receive the new
task text, while both deleteTask and toggleTask should receive the taskId and the taskIndex (the position
inside the card’s array of tasks). You will pass the three functions down the whole hierarchy of components
as props.

As a small trick to save a little typing, instead of creating one prop to pass each new function, you
create a single object that references the three functions and pass it as a single prop. The code is shown in
Listing 3-16.

Chapter 3 ■ Architecting Applications with Components

79

Listing 3-16.  The New Methods for Manipulating Tasks

class KanbanBoardContainer extends Component {
 constructor(){...}
 componentDidMount(){...}
 
 addTask(cardId, taskName){
 
 }
 
 deleteTask(cardId, taskId, taskIndex){
 
 }
 
 toggleTask(cardId, taskId, taskIndex){
 
 }
 
 render() {
 return (
 <KanbanBoard cards={this.state.cards}
 taskCallbacks={{
 toggle: this.toggleTask.bind(this),
 delete: this.deleteTask.bind(this),
 add: this.addTask.bind(this) }} />
)
 }
}

Now there’s some repetitive work to be done: all the components between the top of the hierarchy
and the CheckList component (that is, the KanbanBoard, List and Card components) must receive the
taskCallbacks prop from its parent and pass it along as a prop to its children. Despite looking like a
repetitive task, this will make very clear how the communication is flowing from component to component.
Listings 3-17, 3-18, and 3-19 show the updated code for those three components.

Listing 3-17.  KanbanBoard Component Receiving and Passing the taskCallbacks Prop

class KanbanBoard extends Component {
 render() {
 return (
 <div className="app">
 
 <List title="To Do" taskCallbacks={this.props.taskCallbacks} cards={
 this.props.cards.filter((card) => card.status === "todo")
 } />
 
 <List title="In Progress" taskCallbacks={this.props.taskCallbacks} cards={
 this.props.cards.filter((card) => card.status == "in-progress")
 } />
 

Chapter 3 ■ Architecting Applications with Components

80

 <List title="Done" taskCallbacks={this.props.taskCallbacks} cards={
 this.props.cards.filter((card) => card.status == "done")
 } />
 
 </div>
)
 }
}
KanbanBoard.propTypes = {
 cards: PropTypes.arrayOf(PropTypes.object),
 taskCallbacks: PropTypes.object
}

Listing 3-18.  List Component Receiving and Passing the taskCallbacks Prop

class List extends Component {
 render() {
 
 let cards = this.props.cards.map((card) => {
 return <Card key={card.id} taskCallbacks={this.props.taskCallbacks} {...card} />
 });
 
 return (...)
 }
}
List.propTypes = {
 title: PropTypes.string.isRequired,
 cards: PropTypes.arrayOf(PropTypes.object),
 taskCallbacks: PropTypes.object,
}

In Listing 3-18, it’s worth noticing the use of the spread operator to reduce some typing when passing
props to the Card component. To learn more about the spread operator, reference the online appendixes.

Listing 3-19.  Card Component Receiving and Passing the taskCallbacks Prop

class Card extends Component {
 constructor() {...}
 toggleDetails() {...}
 render() {
 let cardDetails;
 if (this.state.showDetails) {
 cardDetails = (
 <div className="card__details">

 <CheckList cardId={this.props.id}
 tasks={this.props.tasks}
 taskCallbacks={this.props.taskCallbacks} />
 </div>
);
 }
 

Chapter 3 ■ Architecting Applications with Components

81

 let sideColor = {...}
 return (...)
 }
}
Card.propTypes = {
 id: PropTypes.number,
 title: titlePropType,
 description: PropTypes.string,
 color: PropTypes.string,
 tasks: PropTypes.array,
 taskCallbacks: PropTypes.object,
}

Finally, when in the Checklist component, you make use of taskCallbacks.taskCallbacks.delete
and taskCallbacks.toggle, which can be directly associated with element event handlers:

class CheckList extends Component {
 render() {
 let tasks = this.props.tasks.map((task, taskIndex) => (
 <li key={task.id} className="checklist__task">
 <input type="checkbox" checked={task.done} onChange={
 this.props.taskCallbacks.toggle.bind(null, this.props.cardId, task.id, taskIndex)
 } />
 {task.name}{' '}
 <a href="#" className="checklist__task--remove" onClick={
 this.props.taskCallbacks.delete.bind(null, this.props.cardId, task.id, taskIndex)
 } />

));
 
 return (...);
 }
}

To add a new task, however, you do some pre-processing inside the component before invoking the
taskCallbacks.add callback. You do so for two reasons: to check if the user pressed the Enter key, and to
clear the input field after invoking the callback function:

class CheckList extends Component {
 checkInputKeyPress(evt){
 if(evt.key === 'Enter'){
 this.props.taskCallbacks.add(this.props.cardId, evt.target.value);
 evt.target.value = '';
 }
 }
 

Chapter 3 ■ Architecting Applications with Components

82

 render() {
 let tasks = this.props.tasks.map((task, taskIndex) => (...));
 
 return (
 <div className="checklist">
 {tasks}
 <input type="text"
 className="checklist--add-task"
 placeholder="Type then hit Enter to add a task"
 onKeyPress={this.checkInputKeyPress.bind(this)} />
 </div>
)
 }
}

The complete code for the CheckList component is shown in Listing 3-20.

Listing 3-20.  The Complete CheckList Component Wired Up to Invoke All Task Callbacks

import React, { Component, PropTypes } from 'react';
 
class CheckList extends Component {
 checkInputKeyPress(evt){
 if(evt.key === 'Enter'){
 this.props.taskCallbacks.add(this.props.cardId, evt.target.value)
 evt.target.value = '';
 }
 }
 
 render() {
 let tasks = this.props.tasks.map((task, taskIndex) => (
 <li key={task.id} className="checklist__task">
 <input type="checkbox" checked={task.done} onChange={
 this.props.taskCallbacks.toggle.bind(null, this.props.cardId, task.id, taskIndex)
 } />
 {task.name}{' '}
 <a href="#" className="checklist__task--remove" onClick={
 this.props.taskCallbacks.delete.bind(null, this.props.cardId, task.id, taskIndex)
 } />

));
 
 return (
 <div className="checklist">
 {tasks}
 <input type="text"
 className="checklist--add-task"
 placeholder="Type then hit Enter to add a task"
 onKeyPress={this.checkInputKeyPress.bind(this)} />
 </div>
)
 }
}

Chapter 3 ■ Architecting Applications with Components

83

CheckList.propTypes = {
 cardId: PropTypes.number,
 taskCallbacks: PropTypes.object,
 tasks: PropTypes.array
};
export default CheckList;

Manipulating Tasks
In this last part, you make the actual manipulations of the tasks in the KanbanAppContainer state and persist
all changes on the server through the API. In all three methods (deleteTask, toggleTask, and addTask), you
need to make sure not to manipulate the current state directly, so you will use React’s immutability helpers.
Don’t forget to install them using npm install --save react-addons-update.

There is one problem, though: since you filtered the cards in the KanbanList component, you don’t have
access to their original indexes anymore (and their indexes will be required to use the immutability helpers).
So you can use the new findIndex() array method that runs a testing function on each element and returns
the index of the element that satisfies the testing function.

■■ Note A t the time of this writing, only Chrome and Firefox supported the new methods
array.prototype.find and array.prototype.findIndex, so make sure to install babel-polyfill:

npm install --save babel-polyfill

Then, in your file, import it using:

import 'babel-polyfill'

Let’s start coding the methods, beginning with the deleteTask method. You start by finding the index
of the card you want by its ID. Then you create a new mutated object without the deleted task using the
immutability helpers. Finally, you setState for the mutated object and use Fetch to inform the server of the
change.

deleteTask(cardId, taskId, taskIndex){
 // Find the index of the card
 let cardIndex = this.state.cards.findIndex((card)=>card.id == cardId);
  
 // Create a new object without the task
 let nextState = update(this.state.cards, {
 [cardIndex]: {
 tasks: {$splice: [[taskIndex,1]] }
 }
 });
 
 // set the component state to the mutated object
 this.setState({cards:nextState});
 

https://www.npmjs.com/package/babel-polyfill

Chapter 3 ■ Architecting Applications with Components

84

 // Call the API to remove the task on the server
 fetch(`${API_URL}/cards/${cardId}/tasks/${taskId}`, {
 method: 'delete',
 headers: API_HEADERS
 });
 }

Toggling a task will happen in a similar fashion, but instead of splicing the array, you walk the object
hierarchy up to the done property of the task and directly manipulate its value using a function:

toggleTask(cardId, taskId, taskIndex){
 // Find the index of the card
 let cardIndex = this.state.cards.findIndex((card)=>card.id == cardId);
 // Save a reference to the task's 'done' value
 let newDoneValue;
 // Using the $apply command, you will change the done value to its opposite
 let nextState = update(this.state.cards, {
 [cardIndex]: {
 tasks: {
 [taskIndex]: {
 done: { $apply: (done) => {
 newDoneValue = !done
 return newDoneValue;
 }
 }
 }
 }
 }
 });
 
 // set the component state to the mutated object
 this.setState({cards:nextState});
 
 // Call the API to toggle the task on the server
 fetch(`${API_URL}/cards/${cardId}/tasks/${taskId}`, {
 method: 'put',
 headers: API_HEADERS,
 body: JSON.stringify({done:newDoneValue})
 });
 }

As you may imagine, adding a new task works in a similar way. The only thing to notice is that since all
tasks need an ID, you must generate a temporary ID for the task until it’s persisted to the server and it returns
the definitive ID. Then you must update the task ID. The temporary ID can be as simple as the current time
in milliseconds:

addTask(cardId, taskName){
 // Find the index of the card
 let cardIndex = this.state.cards.findIndex((card)=>card.id == cardId);
  
 // Create a new task with the given name and a temporary ID
 let newTask = {id:Date.now(), name:taskName, done:false};
  

Chapter 3 ■ Architecting Applications with Components

85

 // Create a new object and push the new task to the array of tasks
 let nextState = update(this.state.cards, {
 [cardIndex]: {
 tasks: {$push: [newTask] }
 }
 });
 
 // set the component state to the mutated object
 this.setState({cards:nextState});
  
 // Call the API to add the task on the server
 fetch(`${API_URL}/cards/${cardId}/tasks`, {
 method: 'post',
 headers: API_HEADERS,
 body: JSON.stringify(newTask)
 })
 .then((response) => response.json())
 .then((responseData) => {
 // When the server returns the definitive ID
 // used for the new Task on the server, update it on React
 newTask.id=responseData.id
 this.setState({cards:nextState});
 });
 }

Basic Optimistic Updates Rollback
You may have notice that you’ve made all the changes in the UI optimistically, that is, without actually
waiting for the server to respond if the changes were saved. Being optimistic is important for perceived
performance: when users interact with an online app, they don’t want to wait for things to happen. They
don’t care that their tasks need to be stored in a remote database. Everything should appear to happen
instantly. But what happens if the server fails? You need to make some new tries, revert back the UI changes,
notify the user, and so on. . .

Optimistic updating and rollback is not a trivial task and can unfold in many outcomes, but it’s easy to
cover the basic rollback scenario right now because of a side effect of working with immutable structures:
you can keep a reference to the old state and revert it back in case of problems.

For all three task callbacks, the code will be the same. First, keep a reference to the original state of the
component:

// Keep a reference to the original state prior to the mutations
// in case you need to revert the optimistic changes in the UI
let prevState = this.state;

In the sequence, use setState to revert back to the original state if the fetch command fails OR if the
server response status was not ok:

fetch(..., {...})
.then((response) => {
 if(!response.ok){
 // Throw an error if server response wasn't 'ok'
 // so you can revert back the optimistic changes

Chapter 3 ■ Architecting Applications with Components

86

 // made to the UI.
 throw new Error("Server response wasn't OK")
 }
})
.catch((error) => {
 console.error("Fetch error:",error)
 this.setState(prevState);
});

To test, you can simply shut down the local API server (or disconnect from the Internet if you are using
the online API) and try to make any changes to the tasks.

The complete for the KanbanAppContainer component is shown in Listing 3-21.

Listing 3-21.  The Complete KanbanBoardContainer Code with the Task Manipulation Methods

import React, { Component } from 'react';
import update from 'react-addons-update';
import KanbanBoard from './KanbanBoard';
// Polyfills
import 'babel-polyfill';
import 'whatwg-fetch';
 
const API_URL = 'http://kanbanapi.pro-react.com';
const API_HEADERS = {
 'Content-Type': 'application/json',
 Authorization: 'any-string-you-like'// The Authorization is not needed for local server
};
 
class KanbanBoardContainer extends Component {
 constructor(){
 super(...arguments);
 this.state = {
 cards:[],
 };
 }
 
 componentDidMount(){
 fetch(`${API_URL}/cards`, {headers:API_HEADERS})
 .then((response) => response.json())
 .then((responseData) => {
 this.setState({
 cards: responseData
 })
 
 window.state = this.state;
 });
 }
 
 addTask(cardId, taskName){
 // Keep a reference to the original state prior to the mutations
 // in case you need to revert the optimistic changes in the UI
 let prevState = this.state;
 

Chapter 3 ■ Architecting Applications with Components

87

 // Find the index of the card
 let cardIndex = this.state.cards.findIndex((card)=>card.id == cardId);
 
 // Create a new task with the given name and a temporary ID
 let newTask = {id:Date.now(), name:taskName, done:false};
 // Create a new object and push the new task to the array of tasks
 let nextState = update(this.state.cards, {
 [cardIndex]: {
 tasks: {$push: [newTask] }
 }
 });
 
 // set the component state to the mutated object
 this.setState({cards:nextState});
 
 // Call the API to add the task on the server
 fetch(`${API_URL}/cards/${cardId}/tasks`, {
 method: 'post',
 headers: API_HEADERS,
 body: JSON.stringify(newTask)
 })
 .then((response) => {
 if(response.ok){
 return response.json()
 } else {
 // Throw an error if server response wasn't 'ok'
 // so you can revert back the optimistic changes
 // made to the UI.
 throw new Error("Server response wasn't OK")
 }
 })
 .then((responseData) => {
 // When the server returns the definitive ID
 // used for the new Task on the server, update it on React
 newTask.id=responseData.id
 this.setState({cards:nextState});
 })
 .catch((error) => {
 this.setState(prevState);
 });
 }
 
 deleteTask(cardId, taskId, taskIndex){
 // Find the index of the card
 let cardIndex = this.state.cards.findIndex((card)=>card.id == cardId);
 
 // Keep a reference to the original state prior to the mutations
 // in case you need to revert the optimistic changes in the UI
 let prevState = this.state;
 

Chapter 3 ■ Architecting Applications with Components

88

 // Create a new object without the task
 let nextState = update(this.state.cards, {
 [cardIndex]: {
 tasks: {$splice: [[taskIndex,1]] }
 }
 });
 
 // set the component state to the mutated object
 this.setState({cards:nextState});
 
 // Call the API to remove the task on the server
 fetch(`${API_URL}/cards/${cardId}/tasks/${taskId}`, {
 method: 'delete',
 headers: API_HEADERS
 })
 .then((response) => {
 if(!response.ok){
 // Throw an error if server response wasn't 'ok'
 // so you can revert back the optimistic changes
 // made to the UI.
 throw new Error("Server response wasn't OK")
 }
 })
 .catch((error) => {
 console.error("Fetch error:",error)
 this.setState(prevState);
 });
 }
 
 toggleTask(cardId, taskId, taskIndex){
 // Keep a reference to the original state prior to the mutations
 // in case you need to revert the optimistic changes in the UI
 let prevState = this.state;
  
 // Find the index of the card
 let cardIndex = this.state.cards.findIndex((card)=>card.id == cardId);
 // Save a reference to the task's 'done' value
 let newDoneValue;
 // Using the $apply command, you will change the done value to its opposite,
 let nextState = update(
 this.state.cards, {
 [cardIndex]: {
 tasks: {
 [taskIndex]: {
 done: { $apply: (done) => {
 newDoneValue = !done
 return newDoneValue;
 }
 }
 }
 }
 }
 });
 

Chapter 3 ■ Architecting Applications with Components

89

 // set the component state to the mutated object
 this.setState({cards:nextState});
 
 // Call the API to toggle the task on the server
 fetch(`${API_URL}/cards/${cardId}/tasks/${taskId}`, {
 method: 'put',
 headers: API_HEADERS,
 body: JSON.stringify({done:newDoneValue})
 })
 .then((response) => {
 if(!response.ok){
 // Throw an error if server response wasn't 'ok'
 // so you can revert back the optimistic changes
 // made to the UI.
 throw new Error("Server response wasn't OK")
 }
 })
 .catch((error) => {
 console.error("Fetch error:",error)
 this.setState(prevState);
 });
 }
 
 render() {
 return (
 <KanbanBoard cards={this.state.cards} taskCallbacks={{
 toggle: this.toggleTask.bind(this),
 delete: this.deleteTask.bind(this),
 add: this.addTask.bind(this) }} />
)
 }
}
 
export default KanbanBoardContainer;

Summary
In this chapter, you studied how to structure complex UIs in React. You learned that in a React application,
data always flows in a single direction, from parent to child components. For communication, a parent
component can pass a callback function down as props so child components can report back.

You also saw that components can be much easier to reuse and reason about if you divide them into two
categories: stateful components (which manipulate internal state) and pure components (which don’t have
an internal state and only display data received via props). It’s a good practice to structure your application
so that it has fewer stateful components (usually on the top levels of your application component hierarchy)
and more pure components.

Finally, you saw why it’s important to treat the component state as immutable, always using
this.setState to make changes on it (and you learned how to use React’s immutable helpers to generate
mutated, shallow copies of this.state).

91

Chapter 4

Sophisticated Interactions

Having the correct expected functionality, fast load times, and a great perceived performance is not
enough for an application by today’s standards. The interface must also be refined, smooth, and include
sophisticated interactions such as animated elements and drag-and-drop interactions.

Animation in React
React provides a default way of dealing with animations with its high level ReactCSSTransitionGroup
(part of the add-ons module). The ReactCSSTransitionGroup is not full stack animation library. It doesn’t
feature value interpolation, timeline management, or chaining, for example, but it does facilitate the
integration of CSS transitioning with React by allowing you to trigger CSS transitions and animations when
components are added or removed from the DOM. CSS transitions and animations are standard browser
mechanisms that provide a way to interpolate from one CSS style configuration to another.

In the next two sections, you will take an overall look on how CSS animation works and how to use
ReactCSSTransitionGroup to perform component animations.

CSS Transition and Animation 101
To use ReactCSSTransitionGroup, you need to be familiar with setting up CSS transitions and animations,
and you need to know how to trigger them with JavaScript. Let’s briefly cover this subject before moving to
integration with React components. If you already understand CSS transitions, feel free to skip straight to the
React-specific content in the next section.

There are two categories of animations in CSS: CSS transitions and CSS keyframe animations.

•	 CSS transitions are animations made by interpolating values between two distinct
states, a start state and an end state.

•	 CSS keyframe animations allow for more complex animations with control over
intermediary steps besides start and end using keyframes.

CSS Transitions
CSS transitions provide a way to animate (or interpolate, to be more precise) the transition between CSS
properties. For example, if you change the color of an element from grey to red, usually the change is
instantaneous. With CSS transitions enabled, changes occur smoothly over a given period of time.

Chapter 4 ■ Sophisticated Interactions

92

CSS transitions are controlled with the transition property. It tells the browser that the properties
within that selector should have their values interpolated over time, creating an animated effect. The
transition property accepts up to four attributes:

•	 The element property name to animate (such as color or width). If omitted,
all properties that can be animated will transition.

•	 Duration of the animation.

•	 Optional timing function to control the acceleration curve (such as ease-in
and ease-out).

•	 Optional delay before the animation starts.

Let’s create a button-shaped HTML link that that changes the background color when the mouse is over
it. In Listing 4-1, notice the presence of the .button and .button:hover selectors, which contain different
values for the properties background-color and box-shadow, as well as the transition attribute defining the
duration of the animation. Figure 4-1 illustrates the process of the button animating to the hovered state.

Listing 4-1.  CSS Transition Attribute

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Hover Transition</title>
 <style media="screen">
 a{
 font-family: Helvetica, Arial, sans-serif;
 text-decoration: none;
 color:#ffffff;
 }
 
 .button{
 padding: 0.75rem 1rem;
 border-radius: 0.3rem;
 box-shadow: 0;
 background-color: #bbbbbb;
 }
 
 .button:hover{
 background-color: #ee2222;
 box-shadow: 0 4px #990000;
 transition: 0.5s;
 }
 </style>
 </head>
 <body>
 Hover Me! </div>
 </body>
</html>

Chapter 4 ■ Sophisticated Interactions

93

Note About Prefixes

As of the time of writing, some WebKit-based browsers still required the use of a prefix on the name of the
properties of both kinds of animations, keyframes and transitions. Until they adopt the standard version,
you’ll want to include both unprefixed and prefixed versions in your code.

For example, for the hover button you should include

.button:hover{
 background-color: #ee2222;
 box-shadow: 0 4px #990000;
 webkit-transition: 0.5s;
 transition: 0.5s;
}

For simplicity, the examples in this book are unprefixed.

Keyframe Animations
Transition-based animations only provide control over two points of the animation: the beginning state and
the final state. All the intermediary steps are interpolated by the browser. Another method of creating CSS
animations is the keyframe property, which gives you more specific control over the intermediate steps of
the animation sequence than you get when letting the browser handle everything automatically.

To use keyframes, you specify your animation steps in a separate block of CSS, with a @keyframes rule
and a name, such as:

@keyframes pulsing-heart {
 0% { transform: none; }
 50% { transform: scale(1.4); }
 100% { transform: none; }
}

The block above is a set of keyframes named pulsing-heart. It defines three keyframes: one at the
very beginning of the animation (represented by 0%), one at the middle of the animation (50%), and one at
the end.

Figure 4-1.  A representation of what the hover animation looks like

Chapter 4 ■ Sophisticated Interactions

94

A keyframes definition can be later referenced in any style definition through the animation property.
The animation property accepts the name of the set of keyframes, the animation duration, and other
optional configurations (such as repetitions). As an example, let’s create a simple heart that pulses when the
mouse is over it.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Pulsing Heart</title>
 <style media="screen">
 body{
 text-align: center;
 }
 @keyframes pulsing-heart {
 0% { transform: none; }
 50% { transform: scale(1.4); }
 100% { transform: none; }
 }
 
 .heart {
 font-size: 10rem;
 color: #FF0000;
 }
 
 .heart:hover {
 animation: pulsing-heart .5s infinite;
 transform-origin: center;
 }
 </style>
 </head>
 <body>
 <div>
 <div class="heart">♥ </div>
 </div>
 </body>
</html>

Programmatically Starting CSS Transitions and Animations
Since the pseudo selectors only cover the most basic interaction scenarios, you will want to use JavaScript to
have more flexibility over when to trigger the CSS transitions and animations. This is usually done through
class swapping: you create two separate classes for the same element, containing different property values
between them. The HTML element starts using just one of these classes, and via JavaScript you dynamically
remove the old class reference and add a new one, which will trigger the CSS animated transition.

Let’s try this out with a very basic sketch of a side menu that is triggered by a “hamburger” menu on the
page header, as shown in Figure 4-2.

Chapter 4 ■ Sophisticated Interactions

95

You will start with a CSS class that defines the basic sidebar styling:

/* Sidebar default style */
.sidebar{
 background-color:#eee;
 box-shadow: 1px 0 3px #888888;
 position:absolute;
 width: 15rem;
 height: 100%;
}

Next, let’s create two classes with the same properties and different values. While the first class
(.sidebar-transition) sets the sidebar opacity to 0 (transparent) and positions it off the screen boundaries,
the .sidebar-transition-active sets the opacity to 1 (visible) and positions the sidebar inside the screen
bounds. Notice that the sidebar-transition-active class also defines the transition property for an
animated transition of 0.5 seconds.

.sidebar-transition{
 opacity: 0;
 left: -15rem;
}
 

Figure 4-2.  Project with sidebar opened on button click

Chapter 4 ■ Sophisticated Interactions

96

.sidebar-transition-active{
 opacity: 1;
 left: 0;
 transition: ease-in-out 0.5s;
}

In the HTML code, the sidebar is declared only with the .sidebar-transition class, not the
.sidebar-transition–active one (so it starts off as hidden):

<div class='sidebar sidebar-transition'>

 Some content
 Content B
 ...
 Concent X

</div>

You won’t use React or any other library here. To trigger this bare-bones example, you will use an inline
JavaScript code hacked together with HTML, which is not exactly an example of good practices, but it’s just a
prototype to demonstrate the concept. What the JavaScript code does is add the .sidebar-transition–active
class to the sidebar when the menu button is clicked. The sample code is shown in Listing 4-2.

Listing 4-2.  Dynamicly Adding a CSS Class to Trigger a CSS Transition

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Hacked together sidebar Transition</title>
 <style media="screen">
 /* the sidebar will have a list of contents. Let's style them too */
 ul {
 list-style-type: none;
 padding: 0;
 }
 li{
 padding: 15px;
 border-bottom: solid 1px #eee;
 background-color: #ddd;
 }
 .sidebar{
 background-color:#eee;
 box-shadow: 1px 0 3px #888888;
 position:absolute;
 width: 15rem;
 height: 100%;
 }
 .sidebar-transition{
 opacity: 0;
 left: -15rem;
 }

Chapter 4 ■ Sophisticated Interactions

97

 .sidebar-transition-active{
 opacity: 1;
 left: 0;
 transition: 0.5s;
 }
 </style>
 </head>
 <body>
 <header>
 <button onclick="
 document.querySelector('.sidebar').classList.add('sidebar-transition-active');
 "> ☰ </button>
 <!-- ☰ is the HTML Entity for the ☰ utf-8 symbol (aka "Hamburger Menu") -->
 </header>
 <div class='sidebar sidebar-transition'>

 ...

 </div>
 </body>
</html>

React CSSTransitionGroup
ReactCSSTransitionGroup is a simple element that wraps all of the components you are interested in
animating, and triggers CSS animations and transitions at specific moments related to the component’s
lifecycle, such as mounting and unmounting. It is provided as an add-on, so be sure to install it using npm
install --save react-addons-css-transition-group.

React Animation Example: Shopping List
As an example, let’s create a basic animated shopping list where you can add and remove items.

Basic Application Setup

To begin, create a new React project (you can use this book’s app boilerplate, found at https://github.com/
pro-react/react-app-boilerplate) and edit the main JavaScript file to create the AnimatedShoppingList
base structure, as shown in Listing 4-3.

Listing 4-3.  AnimatedShoppingList Component

import React, { Component } from 'react';
import { render } from 'react-dom';
import ReactCSSTransitionGroup from 'react-addons-css-transition-group';
 
class AnimatedShoppingList extends Component {
 constructor(){
 super(...arguments);
 

https://github.com/pro-react/react-app-boilerplate
https://github.com/pro-react/react-app-boilerplate

Chapter 4 ■ Sophisticated Interactions

98

 // Create an "items" state pre-populated with some shopping items
 this.state={
 items: [
 {id:1, name: 'Milk'},
 {id:2, name: 'Yogurt'},
 {id:3, name: 'Orange Juice'},
]
 }
 }
 
 // Called when the user changes the input field
 handleChange(evt) {
 if(evt.key === 'Enter'){
 // Create a new item and set the current time as it's id
 let newItem = {id:Date.now(), name:evt.target.value}
 // Create a new array with the previous items plus the value the user typed
 let newItems = this.state.items.concat(newItem);
 // Clear the text field
 evt.target.value='';
 // Set the new state
 this.setState({items: newItems});
 }
 
 }
  
 // Called when the user Clicks on a shopping item
 handleRemove(i) {
 // Create a new array without the clicked item
 var newItems = this.state.items;
 newItems.splice(i, 1);
 // Set the new state
 this.setState({items: newItems});
 }
 
 render(){
 let shoppingItems = this.state.items.map((item, i) => (
 <div key={item.id}
 className="item"
 onClick={this.handleRemove.bind(this, i)}>
 {item.name}
 </div>
));
 
 return(
 <div>
 {shoppingItems}
 <�input type="text" value={this.state.newItem} onKeyDown={this.handleChange.bind(this)}/>
 </div>
);
 }
};
 
render(<AnimatedShoppingList />, document.getElementById('root'));

Chapter 4 ■ Sophisticated Interactions

99

Some things to notice in this component are

•	 Clicking on a shopping list item will remove that item.

•	 The user can create new items by typing in the text field and pressing the Enter key.

•	 Each shopping item has an ID (you’re even generating a new ID for every new item
based on a timestamp). IDs are used as item keys. You must provide the key attribute
for all children of ReactCSSTransitionGroup, even when only rendering a single item
because this is how React will determine which children have entered, left, or stayed.

Let’s throw in some CSS rules for basic styling. For now, this CSS won’t contain any transition rules, but
they will be added in the next step.

input {
 padding: 5px;
 width: 120px;
 margin-top:10px;
}
 
.item {
 background-color: #efefef;
 cursor: pointer;
 display: block;
 margin-bottom: 1px;
 padding: 8px 12px;
 width: 120px;
}

Adding the ReactCSSTransitionGroup Element

The component is already working, and it’s possible to add and remove shopping items. Now let’s animate
the entering and leaving of items.

The ReactCSSTransitionGroup element must be inserted around the children elements that you want to
animate. It accepts three props: transitionName (which will be mapped to CSS class names containing the
actual animation definition), transitionEnterTimeout, and transitionLeaveTimeout (with the animation’s
duration in milliseconds).

In your Shopping List example, you will insert the ReactCSSTransitionGroup around the shoppingItems
variable in the render method. You will call the transition name “Example” and set an enter and leave
duration of 300 ms:

return(
 <div>
 <ReactCSSTransitionGroup transitionName="example"
 transitionEnterTimeout={300}
 transitionLeaveTimeout={300}>
 {shoppingItems}
 </ReactCSSTransitionGroup>
 <input type="text" value={this.state.newItem} onKeyDown={this.handleChange.bind(this)}/>
 </div>
);

https://facebook.github.io/react/docs/multiple-components.html#dynamic-children

Chapter 4 ■ Sophisticated Interactions

100

From this point on, every time a new item is added to the state, React will render the item with the
additional className of example-enter. Immediately after, in the next browser tick, React will also attach
the className example-enter-active: because of the nature of CSS transitions; it needs a starting class
with the default style properties, and the animation is triggered when a second class with different properties
and a transition rule is added to the element. Finally, after the time defined in transitionEnterTimeout
prop expires, both classes will be removed.

Let’s add both example-enter and example-enter-active classes to your CSS. For this project, you will
transition the translateX property (making the item come from the left side of the screen):

.example-enter {
 opacity: 0;
 transform: translateX(-250px);
}
.example-enter.example-enter-active {
 opacity: 1;
 transform: translateX(0);
 transition: 0.3s;
}

Figure 4-3 illustrates the new item’s animation.

The same mechanism applies for removing elements from the DOM. Before removing a shopping
item, React will add an example-leave className followed by example-leave-active. When the defined
LeaveTimeout expires, React will finally remove the element from the DOM. To complete your example, try
adding this CSS:

.example-leave {
 opacity: 1;
 transform: translateX(0);
}
 

Figure 4-3.  Animating the new item

Chapter 4 ■ Sophisticated Interactions

101

.example-leave.example-leave-active {
 opacity: 0;
 transform: translateX(250px);
 transition: 0.3s;
}

Animate Initial Mounting

When testing this sample code, you may realize that the animation is performed for adding and
removing elements, but the initial hard-coded items don’t appear with a transition in the beginning.
ReactCSSTransitionGroup provides the optional prop transitionAppear to add an extra transition
phase at the initial mount of the component. There is generally no transition phase at the initial mount
because the default value of transitionAppear is false. The following is an example that passes the prop
transitionAppear with the value true:

<ReactCSSTransitionGroup transitionName="example"
 transitionEnterTimeout={300}
 transitionLeaveTimeout={300}
 transitionAppear={true}
 transitionAppearTimeout={300}>
 {shoppingItems}
</ReactCSSTransitionGroup>

You also need to provide extra CSS classes to control the appearing transitions:

.example-appear {
 opacity: 0;
 transform: translateX(-250px);
}
.example-appear.example-appear-active {
 opacity: 1;
 transform: translateX(0);
 transition: .5s;
}

Now your application starts transitioning the initial elements. Listing 4-4 shows the final source code for
the animated shopping list application.

Listing 4-4.  The Final Source Code for the AnimatedShoppingList App

import React, { Component } from 'react';
import { render } from 'react-dom';
import ReactCSSTransitionGroup from 'react-addons-css-transition-group';
 
class AnimatedShoppingList extends Component {
 constructor(){
 super(...arguments);
 

Chapter 4 ■ Sophisticated Interactions

102

 // Create an "items" state pre-populated with some shopping items
 this.state={
 items: [
 {id:1, name: 'Milk'},
 {id:2, name: 'Yogurt'},
 {id:3, name: 'Orange Juice'},
]
 }
 }
 
 // Called when the user changes the input field
 handleChange(evt) {
 if(evt.key === 'Enter'){
 // Create a new item and set the current time as it's id
 let newItem = {id:Date.now(), name:evt.target.value}
 // Create a new array with the previous items plus the value the user typed
 let newItems = this.state.items.concat(newItem);
 // Clear the text field
 evt.target.value='';
 // Set the new state
 this.setState({items: newItems});
 }
 
 }
 
 // Called when the user Clicks on a shopping item
 handleRemove(i) {
 // Create a new array without the clicked item
 var newItems = this.state.items;
 newItems.splice(i, 1);
 // Set the new state
 this.setState({items: newItems});
 }
 
 render(){
 let shoppingItems = this.state.items.map((item, i) => (
 <div key={item.id} className="item"
 onClick={this.handleRemove.bind(this, i)}>
 {item.name}
 </div>
));
 
 return(
 <div>
 <ReactCSSTransitionGroup transitionName="example"
 transitionEnterTimeout={300}
 transitionLeaveTimeout={300}
 transitionAppear={true}
 transitionAppearTimeout={300}>
 {shoppingItems}
 </ReactCSSTransitionGroup>

Chapter 4 ■ Sophisticated Interactions

103

 �<input type="text" value={this.state.newItem} onKeyDown={this.handleChange.
bind(this)}/>

 </div>
);
 }
};
 
render(<AnimatedShoppingList />, document.getElementById('root'));

Drag and Drop
Drag-and-drop is a very common feature in sophisticated user interfaces. It is when you “grab” an object and
drag it to a different location. Developing drag-and-drop interactions can be tricky. Until very recently there
wasn’t a standard API on browsers. Even in modern browsers (where a standard HTML5 drag-and-drop
API is available), the API has inconsistencies across vendors and doesn’t work on mobile devices. For these
reasons, you will use React DnD, a drag-and-drop library that lets us work in a “React way” (not touching
the DOM, embracing unidirectional data flow, defining source and drop target logic as pure data, among
other benefits). Under the hood, React DnD plugs into the available API (such as the default HTML5 API for
desktop browsers), and manages inconsistencies, quirks, and hides implementation details.

■■ Note  Being an external library, to use React DnD you need to install and declare it as a dependency with
npm. The examples in this book use React DND 2 with an HTML5 backend, installed via npm install –-save
react-dnd@2.x.x react-dnd-html5-backend@1.x.x.

React DnD Implementation Overview
The implementation of drag-and-drop behavior in your React application through the React DnD library
is done using higher-order components. Higher-order components are JavaScript functions that accept a
component as a parameter and return an enhanced version of that component, with added functionality.

The React DnD library provides three higher-order components that must be used on different
components of your application: DragSource, DropTarget, and DragDropContext.

The DragSource returns an enhanced version of the given component with the added behavior of being
a “draggable” element; the DropTarget returns an enhanced component with the ability to handle elements
being dragged into it; and DragDropContext wraps the parent component where the drag-and-drop interaction
occurs, setting up the shared DnD state behind the scenes (it is also is the simplest to implement).

The React DnD library also supports the use of JavaScript decorators as an alternative to higher-
order components. JavaScript decorators are still in the experimental stage and are not part of ES 2015
specifications, so the examples in this book use higher-order components.

A React DnD Sample Implementation
Let’s work on an example to see how all these parts connect together. In this example, you’ll make a snack
shop-themed app, with a lot of different circles representing the snacks that can be dragged into the
shopping cart area. Figure 4-4 shows the end result.

Chapter 4 ■ Sophisticated Interactions

104

The app will be composed of three components besides the main App component: a draggable Snack
(which will be enhanced by the DragSource higher-order component), ShoppingCard (which will be
enhanced by the DropTarget higher-order component), and a Container component, which will contain
both the ShoppingCart and various Snacks and will be enhanced by the DragDropContext higher-order
component to orchestrate the drag-and-drop workings between Snacks and the Shopping Cart.

Since the DragDropContext is the easiest part of React DnD to implement, let’s start your application
top-down, beginning with the App component, followed by the Container, Snack, and ShoppingCart.

The App component is straightforward: it just imports and renders the container’s HOC. Listing 4-5
shows the source code.

Listing 4-5.  The Main App Component

import React, { Component } from 'react';
import {render} from 'react-dom';
import Container from './Container'
 
class App extends Component {
 render(){
 return (
 <Container />
);
 }
}
 
render(<App />, document.getElementById('root'));

The Container
Next, let’s create the Container component, where all the drag-and-drop interaction will happen. You are
going to render some Snack components with different name props and a ShoppingCart component below
them. Listing 4-6 shows the source code.

Figure 4-4.  The Snack Drag’nDrop

Chapter 4 ■ Sophisticated Interactions

105

Listing 4-6.  The Container.js File

import React, { Component } from 'react';
import ShoppingCart from './ShoppingCart';
import Snack from './Snack';
import { DragDropContext } from 'react-dnd';
import HTML5Backend from 'react-dnd-html5-backend';
 
class Container extends Component {
 render() {
 return (
 <div>
 <Snack name='Chips'/>
 <Snack name='Cupcake'/>
 <Snack name='Donut'/>
 <Snack name='Doritos'/>
 <Snack name='Popcorn'/>
 <ShoppingCart/>
 </div>
);
 }
}
export default DragDropContext(HTML5Backend)(Container);

Pay special attention to the fact that the module isn’t exporting your Container component but a
higher-order component based on the Container with all the drag-and-drop state and functions injected
into it. Also notice that you imported and used the HTML5 back end to React DnD. As mentioned, the React
Drag’nDrop supports different back ends.

DragSource and DropTarget Higher Order Components
Next, you create the Snack and ShoppingCart components, which are enhanced by the dragSource and the
dropTarget wrappers, respectively. Both dragSource and dropTarget require some boilerplate setup that
needs further explanation. To create higher-order components using any of them, you need to provide three
parameters: a type, a spec, and a collecting function.

Type

It’s the name of the component. In a complex UI, it is possible to have multiple types of drag sources
interacting with multiple types of drop targets, so it is important that each one of them is uniquely identified.

Spec Object

The spec object describes how the enhanced component “reacts” to the drag and drop events. A spec is
a plain JavaScript object with functions that are called when a drag-and-drop interaction occurs, such as
beginDrag and endDrag (in the case of a DragSource) and canDrag and onDrop (in the case of a DropTarget
component).

Chapter 4 ■ Sophisticated Interactions

106

Collecting Function

The collecting function certainly looks complicated, but it is actually simple. To get some context, in Chapter
3 you learned that React components pass information to each other through props. The same happens with
React DnD: both dragSource and dropTarget wrappers will inject props into the given component.

Instead of directly injecting all possible props into your component, though, reactDnD uses the
collecting function to give you the control over how and which props will get injected. This gives you a lot of
power, including the ability to preprocess the props before they get injected, change their names, and so on.

When a drag-and-drop interaction occurs, the React DnD library will invoke the collecting function
defined in your component, passing two parameters: a connector and a monitor.

The connector must be mapped to a prop that will be used in the render function of your component to
delimit a part of your component’s DOM. For dragSource components, this part of the DOM will be used to
represent your component while it’s being dragged. For dropTarget components, this delimited part of the
DOM will be used as a drop area.

The monitor lets you map props to the Drag’nDrop state. Bear with me; a drag-and-drop is inherently a
stateful operation. (It can be in progress or idle. If it is in progress, there is a current type and a current item.
If the user is dragging, it could possibly be over a drop target, etc.) Using the monitor you can create props
such as isDragging or canDrop, for example, which are useful for rendering different things based on their
value (such as rendering the element with a different text or CSS attribute when it’s being dragged.)

ShoppingCart Component
Let’s see how this works in practice. Start with the basic skeleton for the ShoppingCart component, without
the dropTarget wrapper. Listing 4-7 shows the source code.

Listing 4-7.  The Basic Skeleton for the ShoppingCart Component

import React, { PropTypes, Component } from 'react';
import { DropTarget } from 'react-dnd';
 
class ShoppingCart extends Component {
 render() {
 
 const style = {
 backgroundColor: '#FFFFFF'
 };
 
 return (
 <div className='shopping-cart' style={style}>
 Drag here to order!
 </div>
);
 
 }
}

As you can see, it’s basically a render function that returns a div. It also contains an inline CSS style
with the backgroundColor attribute set to white.

In the sequence, let’s implement a spec object. Remember, the spec object describes how the drop
target reacts to drag and drop events. You will only respond to the drop event (called when a dragSource is
dropped). Listing 4-8 shows the updated component, with some code omitted for brevity.

http://dx.doi.org/10.1007/978-1-4842-1260-8_3

Chapter 4 ■ Sophisticated Interactions

107

Listing 4-8.  Spec Object Implementation on the ShoppingCart Component

import React, { PropTypes, Component } from 'react';
import { DropTarget } from 'react-dnd';
 
// ShoppingCart DND Spec
// "A plain object implementing the drop target specification"
//
// - DropTarget Methods (All optional)
// - drop: Called when a compatible item is dropped.
// - hover: Called when an item is hovered over the component.
// - canDrop: Use it to specify whether the drop target is able to accept
// the item.
const ShoppingCartSpec = {
 drop() {
 return { name: 'ShoppingCart' };
 }
};
 
class ShoppingCart extends Component {
 render() {...}
}

In this example, you’re just returning a string when the drop event happens. This returned text will be
used later, in the Snack component.

Next, you will implement the collect function, which lets you map the React DnD connector and
state to the component’s props. You will inject three props into your component: connectDropTarget
(the required connector), isOver, and canDrop.

The collect function alone will look like this:

// ShoppingCart DropTarget - collect
//
// - connect: An instance of DropTargetConnector.
// You use it to assign the drop target role to a DOM node.
//
// - monitor: An instance of DropTargetMonitor.
// You use it to connect state from the React DnD to props.
// Available functions to get state include canDrop(), isOver() and didDrop()
 
let collect = (connect, monitor) => {
 return {
 connectDropTarget: connect.dropTarget(),
 isOver: monitor.isOver(),
 canDrop: monitor.canDrop()
 };
}

Notice that the prop names you’ve created happen to have the same or similar names as the
methods from connect and monitor, but they could really be anything (e.g draggingSomethingOverMe:
monitor.isOver())

Chapter 4 ■ Sophisticated Interactions

108

All these props will be used in the render function. The connectDropTarget prop should return which
part of this component’s DOM is the target area for draggable objects. To make things simple, you will make
the whole div target.

The isOver and canDrop props are used to display a different text and a different background color
when the user is dragging an element over the shopping cart. The updated render function looks like this:

render() {
 const { canDrop, isOver, connectDropTarget } = this.props;
 const isActive = canDrop && isOver;
 
 let backgroundColor = '#FFFFFF';
 if (isActive) {
 backgroundColor = '#F7F7BD';
 } else if (canDrop) {
 backgroundColor = '#F7F7F7';
 }
 
 const style = {
 backgroundColor: backgroundColor
 };
 
 return connectDropTarget(
 <div className='shopping-cart' style={style}>
 {isActive ?
 'Hummmm, snack!' :
 'Drag here to order!'
 }
 </div>
);
}

A few things to notice in the updated render method:

•	 You are using destructuring assignment as a shortcut to canDrop, isOver,
and connectDropTarget props (so you can later type only canDrop instead
of this.props.canDrop).

•	 The background color varies based on whether the user is dragging something and if
it’s dragging it over the Shopping Cart.

•	 The text also varies; by default it displays “’Drag here to order!”, but when the user
drags an item over the Shopping cart, it will display “Hummmm, snack!”.

•	 Instead of returning the div as before, you’re wrapping the div in
connectDropTarget.

To finish, all you have left to do is export the higher-order component using the DropTarget wrapper.
Also, since you’re injecting props in the component, let’s take the opportunity to declare propTypes.
Listing 4-9 shows the complete source code for the ShoppingCart component.

Chapter 4 ■ Sophisticated Interactions

109

Listing 4-9.  The Complete Source Code for the Shopping Card Higher-Order Drop Target Component

import React, { PropTypes, Component } from 'react';
import { DropTarget } from 'react-dnd';
 
// ShoppingCart DND Spec
// "A plain object implementing the drop target specification"
//
// - DropTarget Methods (All optional)
// - drop: Called when a compatible item is dropped.
// - hover: Called when an item is hovered over the component.
// - canDrop: Use it to specify whether the drop target is able to accept
// the item.
const ShoppingCartSpec = {
 drop() {
 return { name: 'ShoppingCart' };
 }
};
 
// ShoppingCart DropTarget - collect
// "The collecting function.
//
// - connect: An instance of DropTargetConnector.
// You use it to assign the drop target role to a DOM node.
//
// - monitor: An instance of DropTargetMonitor.
// You use it to connect state from the React DnD to props.
// Available functions to get state include canDrop(), isOver() and didDrop()
let collect = (connect, monitor) => {
 return {
 connectDropTarget: connect.dropTarget(),
 isOver: monitor.isOver(),
 canDrop: monitor.canDrop()
 };
}
 
class ShoppingCart extends Component {
 render() {
 const { canDrop, isOver, connectDropTarget } = this.props;
 const isActive = canDrop && isOver;
 
 let backgroundColor = '#FFFFFF';
 if (isActive) {
 backgroundColor = '#F7F7BD';
 } else if (canDrop) {
 backgroundColor = '#F7F7F7';
 }
 
 const style = {
 backgroundColor: backgroundColor
 };
 

Chapter 4 ■ Sophisticated Interactions

110

 return connectDropTarget(
 <div className='shopping-cart' style={style}>
 {isActive ?
 'Hummmm, snack!' :
 'Drag here to order!'
 }
 </div>
);
 }
}
 
ShoppingCart.propTypes = {
 connectDropTarget: PropTypes.func.isRequired,
 isOver: PropTypes.bool.isRequired,
 canDrop: PropTypes.bool.isRequired
}
 
export default DropTarget("snack", ShoppingCartSpec, collect)(ShoppingCart);

Notice that that the type parameter for the DropTarget higher-order wrapper refers to the type of drag
sources that can be dragged to this component (in your case, ‘snack’).

Snack Component
Next, let’s implement the Snack component. The process is similar to what you’ve done to the ShoppingCart
component. Listing 4-10 shows the basic component skeleton.

Listing 4-10.  The Basic Structure of the Snack Component

import React, { Component, PropTypes } from 'react';
import { DragSource } from 'react-dnd';
 
class Snack extends Component {
 render() {
 const { name } = this.props;
 
 const style = {
 opacity: 1
 };
 
 return (
 <div className='snack' style={style}>
 {name}
 </div>
)
 }
}
Snack.propTypes = {
 name: PropTypes.string.isRequired
};

Chapter 4 ■ Sophisticated Interactions

111

At its basic form, the Snack component accepts a name prop and renders it inside a div tag. It also
contains an inline style that currently sets the opacity to 1.

Next, let’s implement the spec object. You respond to the beginDrag and endDrag events. In beginDrag
you return a string (just like you did in the ShoppingCart drop event). In endDrag, you finally do something
about both returned values. You take the returned string from the element you dragged, the returned string
from the element where you dropped, and log both to the console. Listing 4-11 shows the updated Snack
component with the spec object.

Listing 4-11.  Spec Object Implementation on the Snack Component

import React, { Component, PropTypes } from 'react';
import { DragSource } from 'react-dnd';
 
// snack Drag'nDrop spec
//
// - Required: beginDrag
// - Optional: endDrag
// - Optional: canDrag
// - Optional: isDragging
const snackSpec = {
 beginDrag(props) {
 return {
 name: props.name
 };
 },
 
 endDrag(props, monitor) {
 const dragItem = monitor.getItem();
 const dropResult = monitor.getDropResult();
 
 if (dropResult) {
 console.log(`You dropped ${dragItem.name} into ${dropResult.name}`);
 }
 }
};
 
class Snack extends Component {
 render() {...}
}
Snack.propTypes = {...}

For the last step in the Snack component, let’s implement the collecting function, where you will
connect the DOM node to be dragged and map the DnD state to component’s props. And since you’re
connecting DnD state with your component’s props, you will take the opportunity to do two other things:
declare the additional propTypes and use the prop isDragging inside an inline style rule to make the
element opacity change when it’s being dragged. To finish, you will export the higher-order component
using the dragSource wrapper. Listing 4-12 shows the complete source code.

Chapter 4 ■ Sophisticated Interactions

112

Listing 4-12.  The Complete Source Code for the Snack Component

import React, { Component, PropTypes } from 'react';
import { DragSource } from 'react-dnd';
 
// snack Drag'nDrop spec
//
// - Required: beginDrag
// - Optional: endDrag
// - Optional: canDrag
// - Optional: isDragging
const snackSpec = {
 beginDrag(props) {
 return {
 name: props.name
 };
 },
 
 endDrag(props, monitor) {
 const dragItem = monitor.getItem();
 const dropResult = monitor.getDropResult();
 
 if (dropResult) {
 console.log(`You dropped ${dragItem.name} into ${dropResult.name}`);
 }
 }
};
 
// Snack DragSource collect collecting function.
// - connect: An instance of DragSourceConnector.
// You use it to assign the drag source role to a DOM node.
//
// - monitor: An instance of DragSourceMonitor.
// You use it to connect state from the React DnD to your component’s properties.
// Available functions to get state include canDrag(), isDragging(), getItemType(),
// getItem(), didDrop() etc.
let collect = (connect, monitor) => {
 return {
 connectDragSource: connect.dragSource(),
 isDragging: monitor.isDragging()
 };
}
 
class Snack extends Component {
 render() {
 const { name, isDragging, connectDragSource } = this.props;
 const opacity = isDragging ? 0.4 : 1;
 
 const style = {
 opacity: opacity
 };
 

Chapter 4 ■ Sophisticated Interactions

113

 return (
 connectDragSource(
 <div className='snack' style={style}>
 {name}
 </div>
)
);
 }
}
 
Snack.propTypes = {
 connectDragSource: PropTypes.func.isRequired,
 isDragging: PropTypes.bool.isRequired,
 name: PropTypes.string.isRequired
};
 
export default DragSource('snack', snackSpec, collect)(Snack);

Styling
To conclude, all you need to do is throw in some styling, as shown in Listing 4-13.

Listing 4-13.  The Project’s Stylesheet

body {
 font: 16px/1 sans-serif;
}
#root {
 height: 100%;
}
h1 {
 font-weight: 200;
 color: #3b414c;
 font-size: 20px;
}
.app {
 white-space: nowrap;
 height: 100%;
}
 
.snack {
 display: inline-block;
 padding: .5em;
 margin: 0 1em 1em 0.25em;
 border: 4px solid #d9d9d9;
 background: #f7f7f7;
 height: 5rem;
 width: 5rem;
 border-radius: 5rem;
 cursor: pointer;

Chapter 4 ■ Sophisticated Interactions

114

 line-height: 5em;
 text-align: center;
 color: #333;
}
.shopping-cart {
 border: 5px dashed #d9d9d9;
 border-radius: 10px;
 padding: 5rem 2rem;
 text-align: center;
}

If you test on the browser, you’ll see that your sample code is already working and it’s possible to drag
snacks to the shopping cart. As always, the complete source code for this sample implementation is available
from the www.apress.com site as well as from this book’s github page (https://github.com/pro-react).

Refactor: Using Constants
Despite already working on the browser, there is one necessary adjustment before considering the example
concluded: both dragSource and dropTarget require a type parameter that is used to uniquely identify
the draggable component. So far, you’ve simply typed the same string (“snack”) on both the Snack and
ShoppingCart components, but manually typing an identifier across different files when it absolutely needs
to be the same exact string is an error-prone task.

The best approach in cases like this is to create a separate JavaScript file for defining constant, read-only
values that can be referenced anywhere in the application. This is a good practice not only for React DnD,
but for any case where you need a unique identifier that can be used in different JavaScript modules and
components across your application.

So, let’s create a constants.js file. It will be a JavaScript module that exports an object with the SNACK
constant. Listing 4-14 shows the source code.

Listing 4-14.  The Contants JavaScript File

export default {
 SNACK: 'snack'
};

In the sequence, let’s edit the Snack and ShoppingCart components to import and reference this
constant instead of having a hard-coded “snack” string. Listing 4-15 shows the updated ShoppingCart
component. Listing 4-16 shows the updated Snack component.

Listing 4-15.  The Updated ShoppingCart Component Passing a Constant as DropTarget’s Type

import React, { PropTypes, Component } from 'react';
import { DropTarget } from 'react-dnd';
import constants from './constants';
 
const ShoppingCartSpec = {...};
let collect = (connect, monitor) => {...};
class ShoppingCart extends Component {...};
ShoppingCart.propTypes = {...};
 
export default DropTarget(constants.SNACK, ShoppingCartSpec, collect)(ShoppingCart);

http://www.apress.com/
https://github.com/pro-react)

Chapter 4 ■ Sophisticated Interactions

115

Listing 4-16.  The Updated Snack Component Passing a Constant as DragSource’s Type

import React, { Component, PropTypes } from 'react';
import { DragSource } from 'react-dnd';
import constants from './constants';
 
const snackSpec = {...};
let collect = (connect, monitor) => {...};
class Snack extends Component {...};
Snack.propTypes = {...};
 
export default DragSource(constants.SNACK, snackSpec, collect)(Snack);

Kanban App: Animations and Drag-and-Drop Support
Let’s go back to the Kanban app you’ve been developing throughout the book to add animations and
drag-and-drop capability. You will add a simple transition for opening and closing cards, and the ability to
move a card between lists by dragging and dropping it.

Card Toggle Animation
To animate the card toggling when showing/hiding details, you will use the React CssTransitionGroup
add-on, so let’s begin by installing it on the Kanban project via npm install --save react-addons-css-
transition-group.

Next, in the card component, you will import ReactCSSTransitionGroup and add the wrapper around the
cardDetails. In the stylesheet, you’ll create a CSS transition to change the max-height property. Listing 4-17
shows the Card components (with the changes highlighted). Listing 4-18 shows the added CSS styles.

Listing 4-17.  The Card Component with a CSSTransitionGroup for Details

import React, { Component, PropTypes } from 'react';
import ReactCSSTransitionGroup from 'react-addons-css-transition-group';
import marked from 'marked'
import CheckList from './CheckList';
 
let titlePropType = (props, propName, componentName) => {
 if (props[propName]) {
 let value = props[propName];
 if (typeof value !== 'string' || value.length > 80) {
 return new Error(
 `${propName} in ${componentName} is longer than 80 characters`
);
 }
 }
}
 
class Card extends Component {
 constructor() {
 super(...arguments);
 this.state = {
 showDetails: false
 };
 }
 

Chapter 4 ■ Sophisticated Interactions

116

 toggleDetails() {
 this.setState({showDetails: !this.state.showDetails});
 }
 
 render() {
 let cardDetails;
 if (this.state.showDetails) {
 cardDetails = (
 <div className="card__details">

 <CheckList taskCallbacks={this.props.taskCallbacks}
 tasks={this.props.tasks} cardId={this.props.id} />
 </div>
);
 }
 
 let sideColor = {
 position: 'absolute',
 zIndex: -1,
 top: 0,
 bottom: 0,
 left: 0,
 width: 7,
 backgroundColor: this.props.color
 };
 
 return (
 
 <div className="card">
 
 <div style={sideColor}/>
 <div className={
 this.state.showDetails? "card__title card__title--is-open" : "card__title"
 } onClick={this.toggleDetails.bind(this)}>
 
 {this.props.title}
 </div>
 <ReactCSSTransitionGroup transitionName="toggle"
 transitionEnterTimeout={250}
 transitionLeaveTimeout={250} >
 {cardDetails}
 </ ReactCSSTransitionGroup>
 </div>
 
);
 }
}

Chapter 4 ■ Sophisticated Interactions

117

Card.propTypes = {
 id: PropTypes.number,
 title: titlePropType,
 description: PropTypes.string,
 color: PropTypes.string,
 tasks: PropTypes.array,
 taskCallbacks: PropTypes.object,
}
 
export default Card;

Listing 4-18.  The Added CSS Styles for Transitioning the max-height Property

.toggle-enter {
 max-height: 0;
 overflow: hidden;
}
 
.toggle-enter.toggle-enter-active {
 max-height: 300px;
 overflow: hidden;
 transition: max-height .25s ease-in;
}
 
.toggle-leave {
 max-height: 300px;
 overflow: hidden;
}
 
.toggle-leave.toggle-leave-active {
 max-height: 0;
 overflow: hidden;
 transition: max-height .25s ease-out;
}

Card Dragging
Finally, you will implement the card drag-and-drop, but differently from what you’ve done so far. Here
you’re also going to make the cards sortable, so not only will you be able to drag a card across lists, but you’ll
also be able to switch the card position with the other cards. You start by installing React DND 2 and its
HTML5 back end:

npm install --save react-dnd@2.x.x react-dnd-html5-backend@1.x.x

Next, you create two new methods inside the KanbanAppContainer component, one to update the Card
status (the list in which the Card is in) and another one to update the Card position. Both methods are along
the lines of the task methods and callbacks you did before: receive the Card Id; find the Card’s index; use the
immutability helpers to update the state information, and, finally, set the state (you won’t persist anything
on the server yet). Listing 4-19 shows updated KanbanBoardContainer.

Chapter 4 ■ Sophisticated Interactions

118

Listing 4-19.  The Updated KanbanBoardContainer Component, with the Added updateCardStatus and
updateCardPosition Methods

import React, { Component } from 'react';
import KanbanBoard from './KanbanBoard';
import update from 'react-addons-update';
// Polyfills
import 'whatwg-fetch';
import 'babel-polyfill';
const API_URL...
const API_HEADERS...
 
class KanbanBoardContainer extends Component {
 constructor(){...}
 componentDidMount(){...}
 
 addTask(cardId, taskName){...}
 deleteTask(cardId, taskId, taskIndex){...}
 toggleTask(cardId, taskId, taskIndex){...}
 
 updateCardStatus(cardId, listId){
 // Find the index of the card
 let cardIndex = this.state.cards.findIndex((card)=>card.id == cardId);
 // Get the current card
 let card = this.state.cards[cardIndex]
 // Only proceed if hovering over a different list
 if(card.status !== listId){
 // set the component state to the mutated object
 this.setState(update(this.state, {
 cards: {
 [cardIndex]: {
 status: { $set: listId }
 }
 }
 }));
 }
 }
 
 updateCardPosition (cardId , afterId) {
 // Only proceed if hovering over a different card
 if(cardId !== afterId) {
 // Find the index of the card
 let cardIndex = this.state.cards.findIndex((card)=>card.id == cardId);
 // Get the current card
 let card = this.state.cards[cardIndex]
 // Find the index of the card the user is hovering over
 let afterIndex = this.state.cards.findIndex((card)=>card.id == afterId);
 // Use splice to remove the card and reinsert it a the new index

Chapter 4 ■ Sophisticated Interactions

119

 this.setState(update(this.state, {
 cards: {
 $splice: [
 [cardIndex, 1],
 [afterIndex, 0, card]
]
 }
 }));
 }
 }
 
 render() {
 return (
 <KanbanBoard cards={this.state.cards}
 taskCallbacks={{
 toggle: this.toggleTask.bind(this),
 delete: this.deleteTask.bind(this),
 add: this.addTask.bind(this)
 }}
 cardCallbacks={{
 updateStatus: this.updateCardStatus.bind(this),
 updatePosition: this.updateCardPosition.bind(this)
 }}
 />
)
 }
}
export default KanbanBoardContainer;

Also notice in this code that an object cardCallbacks with references to the new methods is being
passed to the KanbanBoard component. The new cardCallbacks function is invoked by both the list
component (when you drag the card to a different list) and by the Card itself (when you make the sorting
functionality later), so you must edit all the components in the middle of the hierarchy to receive and pass
along this prop. These components are the KanbanBoard and the List. Listings 4-20 and 4-21 show the
updated code for each.

Listing 4-20.  The Kanban Component Receiving the cardCallbacks Props and Passing It to List

class KanbanBoard extends Component {
 render() {
 return (
 <div className="app">
 
 <List id='todo' title="To Do" taskCallbacks={this.props.taskCallbacks}
 cardCallbacks={this.props.cardCallbacks}
 cards={ this.props.cards.filter((card) => card.status === "todo") }
 />
 
 <List id='in-progress' title="In Progress" taskCallbacks={this.props.taskCallbacks}
 cardCallbacks={this.props.cardCallbacks}
 cards={ this.props.cards.filter((card) => card.status == "in-progress") }
 />
 

Chapter 4 ■ Sophisticated Interactions

120

 <List id='done' title='Done' taskCallbacks={this.props.taskCallbacks}
 cardCallbacks={this.props.cardCallbacks}
 cards={ this.props.cards.filter((card) => card.status == "done") }
 />
 </div>
);
 }
}
KanbanBoard.propTypes = {
 cards: PropTypes.arrayOf(PropTypes.object),
 taskCallbacks: PropTypes.object,
 cardCallbacks: PropTypes.object
};
 
export default KanbanBoard;

Listing 4-21.  The List Component Receiving the cardCallbacks Props and Passing It to Card

class List extends Component {
 render() {
 let cards = this.props.cards.map((card) => {
 return <Card key={card.id}
 taskCallbacks={this.props.taskCallbacks}
 cardCallbacks={this.props.cardCallbacks} {...card} />
 });
 
 return (...);
 }
}
List.propTypes = {
 id: PropTypes.string.isRequired,
 title: PropTypes.string.isRequired,
 cards: PropTypes.arrayOf(React.PropTypes.object),
 taskCallbacks: PropTypes.object,
 cardCallbacks: PropTypes.object
};
 
export default List;

To finish all the preparations for the drag-and-drop, let’s create a constants.js file and declare the
CARD type, as shown in Listing 4-22.

Listing 4-22.  A Constants File to Hold the Type of CARD

export default {
 CARD: 'card'
};

Dragging Across Lists
Now you need to use React DnD’s higher-order components to set up a drag source, a drop target, and a
drag-and-drop context. The DragSource will be the card component, the DropTarget will be the List, and the
context will be the KanbanBoard.

Chapter 4 ■ Sophisticated Interactions

121

Starting with the Card component, you will set it as a DragSource. It will be very similar to the sample
drag-and-drop implementation you did earlier on this chapter, but you won’t implement the endDrag
method in the cardSpec because you want the card to be able to change lists while you are still dragging, just
by hovering over a new list. Listing 4-23 shows the code.

Listing 4-23.  The Card Component as a DragSource, Only Implementing the Require beginDrag Method
on the Spec

import React, { Component, PropTypes } from 'react';
import ReactCSSTransitionGroup from 'react-addons-css-transition-group';
import marked from 'marked';
import CheckList from './CheckList';
import { DragSource } from 'react-dnd';
import constants from './constants';
 
let titlePropType = (props, propName, componentName) => {...}
 
const cardDragSpec = {
 beginDrag(props) {
 return {
 id: props.id
 };
 }
}
 
let collectDrag = (connect, monitor) => {
 return {
 connectDragSource: connect.dragSource()
 };
}
 
class Card extends Component {
 constructor() {...}
 toggleDetails() {...}
 
 render() {
 const { connectDragSource } = this.props;
 
 let cardDetails;
 if (this.state.showDetails) {...}
 
 let sideColor = {...}
 
 return connectDragSource(
 <div className="card">
 <div style={sideColor}/>
 <div className={...} onClick={this.toggleDetails.bind(this)}>
 {this.props.title}
 </div>

Chapter 4 ■ Sophisticated Interactions

122

 <ReactCSSTransitionGroup transitionName="toggle">
 {cardDetails}
 </ ReactCSSTransitionGroup>
 </div>
);
 }
}
Card.propTypes = {
 id: PropTypes.number,
 title: titlePropType,
 description: PropTypes.string,
 color: PropTypes.string,
 tasks: PropTypes.array,
 taskCallbacks: PropTypes.object,
 cardCallbacks: PropTypes.object,
 connectDragSource: PropTypes.func.isRequired
};
 
export default DragSource(constants.CARD, cardDragSpec, collectDrag)(Card);

Next, let’s make the List a DropTarget. You will use a hover method on the list spec to call the card
callback to update its status as soon as it is hovering over the list; the feedback to the user will be immediate.
Listing 4-24 shows the implementation.

Listing 4-24.  The List Component as a DropTarget

import React, { Component, PropTypes } from 'react';
import { DropTarget } from 'react-dnd';
import Card from './Card';
import constants from './constants';
 
const listTargetSpec = {
 hover(props, monitor) {
 const draggedId = monitor.getItem().id;
 props.cardCallbacks.updateStatus(draggedId, props.id)
 }
};
 
function collect(connect, monitor) {
 return {
 connectDropTarget: connect.dropTarget()
 };
}
 
class List extends Component {
 render() {
 const { connectDropTarget } = this.props;
 
 let cards = this.props.cards.map((card) => {
 return <Card key={card.id} taskCallbacks={this.props.taskCallbacks}
 cardCallbacks={this.props.cardCallbacks} {...card} />
 });
 

Chapter 4 ■ Sophisticated Interactions

123

 return connectDropTarget(
 <div className="list">
 <h1>{this.props.title}</h1>
 {cards}
 </div>
);
 }
}
List.propTypes = {
 id: PropTypes.string.isRequired,
 title: PropTypes.string.isRequired,
 cards: PropTypes.arrayOf(React.PropTypes.object),
 taskCallbacks: PropTypes.object,
 cardCallbacks: PropTypes.object,
 connectDropTarget: PropTypes.func.isRequired
}
 
export default DropTarget(constants.CARD, listTargetSpec, collect)(List);

The last piece missing is to get a common parent component of both Card and List to use as the
drag-and-drop context. You will use the KanbanBoard component, as shown in Listing 4-25.

Listing 4-25.  Setting the KanbanBoard Component as the Drag-and-Drop Context

import React, { Component, PropTypes } from 'react';
import { DragDropContext } from 'react-dnd';
import HTML5Backend from 'react-dnd-html5-backend';
import List from './List';
 
class KanbanBoard extends Component {
 render() {
 return (...)
 }
}
KanbanBoard.propTypes = {...}
 
export default DragDropContext(HTML5Backend)(KanbanBoard);

If you test now, you can drag a card across the lists and it gets updated immediately. Let’s move on to
implement the sorting.

Card Sorting
The key to implement item sorting using React DnD is to make the element both a DragSource and a
DropTarget. This way, when the user starts dragging one element, you can use the hover handler to detect
over which other element he is hovering and change positions with it.

Your Card component is already a DragSource. Let’s turn it into a DropTarget as well by adding different
spec property and collect function for when it’s acting like a drop target. In the Card’s dropSpec, you will
use the hover function (just like you did on the List) to detect when another card is hovering over. In this
case, you will invoke the updatePosition callback to switch the position between the two cards. Finally,
you will also use the DropTarget higher order component to export the Card as a DropTarget appropriately.

Chapter 4 ■ Sophisticated Interactions

124

Listing 4-26 shows the updated Card component. Notice the addition of a cardDropSpec, a CollectDrop
function, the call to connectDropTarget and the exporting with the DropTarget higher order function.

Listing 4-26.  The Card Component as a DropTarget

import React, { Component, PropTypes } from 'react';
import ReactCSSTransitionGroup from 'react-addons-css-transition-group';
import marked from 'marked';
import { DragSource, DropTarget } from 'react-dnd';
import constants from './constants';
import CheckList from './CheckList';
 
let titlePropType = (props, propName, componentName) => {...}
 
const cardDragSpec = {
 beginDrag(props) {
 return {
 id: props.id
 };
 },
};
 
const cardDropSpec = {
 hover(props, monitor) {
 const draggedId = monitor.getItem().id;
 props.cardCallbacks.updatePosition(draggedId, props.id);
 }
}
 
let collectDrag = (connect, monitor) => {
 return {
 connectDragSource: connect.dragSource()
 };
}
 
let collectDrop = (connect, monitor) => {
 return {
 connectDropTarget: connect.dropTarget(),
 };
}
 
class Card extends Component {
 constructor() {...}
 toggleDetails() {...}
 
 render() {
 const { connectDragSource, connectDropTarget } = this.props;
 
 let cardDetails;
 if (this.state.showDetails) {...}
 
 let sideColor = {...}
 

Chapter 4 ■ Sophisticated Interactions

125

 return connectDropTarget(connectDragSource(
 <div className='card'>
 <div style={sideColor}/>
 <div className="card__edit"></div>
 <div className={...} onClick={this.toggleDetails.bind(this)}>
 {this.props.title}
 </div>
 <ReactCSSTransitionGroup transitionName="toggle">
 {cardDetails}
 </ ReactCSSTransitionGroup>
 </div>
));
 }
}
Card.propTypes = {
 id: PropTypes.number,
 title: titlePropType,
 description: PropTypes.string,
 color: PropTypes.string,
 tasks: PropTypes.array,
 taskCallbacks: PropTypes.object,
 cardCallbacks: PropTypes.object,
 connectDragSource: PropTypes.func.isRequired,
 connectDropTarget: PropTypes.func.isRequired
};
 
const dragHighOrderCard = DragSource(constants.CARD, cardDragSpec, collectDrag)(Card);
const dragDropHighOrderCard = DropTarget(constants.CARD, cardDropSpec, 
 collectDrop)(dragHighOrderCard);
export default dragDropHighOrderCard

Voila! You can now drag a card across lists and move between other cards. The only thing you didn’t do
is persist the changes to the server. If you try moving cards around and refreshing, it will revert back to the
original positions.

Throttle Callbacks
There are a lot of callbacks being fired as the user drags a card. Hovering the card on top of other cards
successively invokes updatePosition callback, while hovering different lists successively invokes
updateStatus.

Calling the card callbacks dozens of times per second like this has the potential to be a drag on
performance, and for this reason you need to implement a throttling function. A throttling function receives
two parameters, the original function you want to have throttled and wait. It returns a throttled version of
the passed function that, when invoked repeatedly, will only actually call the original function at most once
per every wait milliseconds. The throttling function you will implement is also smart enough to invoke the
original function immediately if the calling arguments change.

To keep your project organized, you create the throttling function in a new JavaScript file called
utils.js, shown in Listing 4-27.

Chapter 4 ■ Sophisticated Interactions

126

Listing 4-27.  The Throttling Function Inside utils.js JavaScript Module

export const throttle = (func, wait) => {
 let context, args, prevArgs, argsChanged, result;
 let previous = 0;
 return function() {
 let now, remaining;
 if(wait){
 now = Date.now();
 remaining = wait - (now - previous);
 }
 context = this;
 args = arguments;
 argsChanged = JSON.stringify(args) != JSON.stringify(prevArgs);
 prevArgs = {...args};
 if (argsChanged || wait && (remaining <= 0 || remaining > wait)) {
 if(wait){
 previous = now;
 }
 result = func.apply(context, args);
 context = args = null;
 }
 return result;
 };
};

Next, let’s edit the KanbanBoardContainer to create throttled versions of both updateCardPosition
and updateCardStatus. First, import the throttle utility function, AND then use it in the
KanbanBoardContainer’s constructor to create throttled versions of updateCardPosition and
updateCardStatus. Finally, update the cardCallbacks object in the render method to hand the throttled
versions to the Kanban component. Listing 4-28 shows the updated KanbanBoardContainer source code.

Listing 4-28.  Throttling the updateCartStatus and updateCardPosition Methods

import React, { Component } from 'react';
import update from 'react-addons-update';
import {throttle} from './utils';
import KanbanBoard from './KanbanBoard';
// Polyfills
import 'whatwg-fetch';
import 'babel-polyfill';
 
const API_URL = '...';
const API_HEADERS = {...};
 
class KanbanBoardContainer extends Component {
 constructor(){
 super(...arguments);
 this.state = {
 cards:[],
 };
 

Chapter 4 ■ Sophisticated Interactions

127

 // Only call updateCardStatus when arguments change
 this.updateCardStatus = throttle(this.updateCardStatus.bind(this));
 // Call updateCardPosition at max every 500ms (or when arguments change)
 this.updateCardPosition = throttle(this.updateCardPosition.bind(this),500);
 }
 
 componentDidMount(){...}
 addTask(cardId, taskName){...}
 deleteTask(cardId, taskId, taskIndex){...}
 toggleTask(cardId, taskId, taskIndex){...}
 updateCardStatus(cardId, listId) {...}
 updateCardPosition(cardId , afterId){...}
 
 render() { return (
 <KanbanBoard cards={this.state.cards}
 taskCallbacks={{
 toggle: this.toggleTask.bind(this),
 delete: this.deleteTask.bind(this),
 add: this.addTask.bind(this) }}
 cardCallbacks={{
 updateStatus: this.updateCardStatus,
 updatePosition: this.updateCardPosition
 }} />
)
 }
}

export default KanbanBoardContainer;

If you try again, everything should be working as before, except that now you have prevented some
performance issues from occurring.

In the next topic, you will persist the card updates on the server.

Persist the New Card’s Positions and Status
The first thing that might come to mind when thinking about persisting the new Card’s state is to do it inside
the updateCardStatus and updateCardPosition methods in the KanbanBoardContainer component. The
problem here is that while the user is still dragging the Card, it may hover over a lot of different other cards
and lists before settling on a final destination. If you try to persist on these methods, you will keep calling the
server repeatedly during this process, which is bad not only for the obvious performance reasons, but also
because it makes difficult to perform a rollback on the interface in case of a server error.

What you’ll do instead is register the original card id and status when the user starts dragging it, and
then only call the server when the user stops dragging. If the operation fails, you can revert back to the
original card status you saved.

To do this, in the KanbanBoardContainer component you create a new method called
persistCardDrag. In this new method you use the fetch function to call the Kanban API with both the new
status and position of the card. If the fetch fails, you revert the UI back to the original card status. You also
make the persistCardDrag method available inside the cardCallbacks object (so it can be called from the
Card component). Listing 4-29 shows the updated KanbanBoardContainer.

Chapter 4 ■ Sophisticated Interactions

128

Listing 4-29.  KanbanBoardContainer with the prepareCardMove and persistCardMove Methods

import React, { Component } from 'react';
import update from 'react-addons-update';
import {throttle} from './utils';
import KanbanBoard from './KanbanBoard';
// Polyfills
import 'whatwg-fetch';
import 'babel-polyfill';
 
const API_URL...
const API_HEADERS...
 
class KanbanBoardContainer extends Component {
 constructor(){...}
 
 componentDidMount(){...}
 
 addTask(cardId, taskName){...}
 deleteTask(cardId, taskId, taskIndex){...}
 toggleTask(cardId, taskId, taskIndex){...}
 
 updateCardPosition (cardId , afterId) {...}
 updateCardStatus(cardId, listId){...}
 
 persistCardDrag (cardId, status) {
 // Find the index of the card
 let cardIndex = this.state.cards.findIndex((card)=>card.id == cardId);
 // Get the current card
 let card = this.state.cards[cardIndex]
 
 fetch(`${API_URL}/cards/${cardId}`, {
 method: 'put',
 headers: API_HEADERS,
 body: JSON.stringify({status: card.status, row_order_position: cardIndex})
 })
 .then((response) => {
 if(!response.ok){
 // Throw an error if server response wasn't 'ok'
 // so you can revert back the optimistic changes
 // made to the UI.
 throw new Error("Server response wasn't OK")
 }
 })
 .catch((error) => {
 console.error("Fetch error:",error);
 this.setState(
 update(this.state, {

Chapter 4 ■ Sophisticated Interactions

129

 cards: {
 [cardIndex]: {
 status: { $set: status }
 }
 }
 })
);
 });
 }
 
 render() {
 return (
 <KanbanBoard cards={this.state.cards}
 taskCallbacks={{
 toggle: this.toggleTask.bind(this),
 delete: this.deleteTask.bind(this),
 add: this.addTask.bind(this)
 }}
 cardCallbacks={{
 updateStatus: this.updateCardStatus,
 updatePosition: this.updateCardPosition,
 persistCardDrag: this.persistCardDrag.bind(this)
 }}
 />
)
 }
}
 
export default KanbanBoardContainer;

Next, all you have to do is use the Card’s cardDragSpec to call the persistDrag callback when the user
stops dragging. Listing 4-30 shows the updated Card component.

Listing 4-30.  The Updated Card Component Calling prepareMove and persistMove

import React, { Component, PropTypes } from 'react';
import ReactCSSTransitionGroup from 'react-addons-css-transition-group';
import marked from 'marked';
import { DragSource, DropTarget } from 'react-dnd';
import constants from './constants';
import CheckList from './CheckList';
 
let titlePropType = (props, propName, componentName) => {...}
 
const cardDragSpec = {
 beginDrag(props) {
 return {
 id: props.id,
 status: props.status
 };
 },

Chapter 4 ■ Sophisticated Interactions

130

 endDrag(props) {
 props.cardCallbacks.persistCardDrag(props.id, props.status);
 }
}
 
const cardDropSpec = {...}
 
let collectDrag = (connect, monitor) => {...}
 
let collectDrop = (connect, monitor) => {...}
 
class Card extends Component {
 constructor() {...}
 toggleDetails() {...}
 render() {...}
}
Card.propTypes = {...}
 
let dragHighOrderCard = DragSource(constants.CARD, cardDragSpec, collectDrag)(Card);
let dragDropHighOrderCard = DropTarget(constants.CARD, cardDropSpec, collectDrop)
(dragHighOrderCard);
export default dragDropHighOrderCard

Summary
In this chapter, you saw how to implement a modern, smooth, and sophisticated user interface using CSS
animations (with the help of React’s add-on CSSTransitionGroup) as well as drag and drop using an external
library called React DnD.

131

Chapter 5

Routing

The URL is an important strength that the Web has over native apps. It was born as simple pointer to a
document on a server, but in web applications the best way to think of it is as the representation of the
application’s current state. By looking at the URL the user can understand the part of the application where
he currently is, but he can also copy it for later use or pass it along.

Implementing Routing the “Naive” Way
To understand how basic routing works as well as the complications that quickly arise in scenarios a little
bigger than basic, non-nested navigation, let’s begin by implementing a simple component that, depending
on the current URL, renders a different child component. You’ll create an application that will use the
GitHub API to return the list of repositories for the pro React user. Besides this “repositories” section, the
application will also have a home page and an About section. Let’s focus on the main component and the
routing code, shown in Listing 5-1.

Listing 5-1.  A Component That Renders Child Components Based on the URL

import React, { Component } from 'react';
import { render } from 'react-dom';
 
import About from './About';
import Home from './Home';
import Repos from './Repos';
 
class App extends Component {
 constructor(){
 super(...arguments);
 this.state= {
 route: window.location.hash.substr(1)
 };
 }
 

Chapter 5 ■ Routing

132

 componentDidMount() {
 window.addEventListener('hashchange', () => {
 this.setState({
 route: window.location.hash.substr(1)
 });
 });
 }
 
 render() {...}
}
 
render(<App />, document.getElementById('root'));

The code is pretty straightforward. On the component constructor, you get the current hash location of
the URL and assign it to the route state. For simplicity purposes, you will not be dealing with HTML5 URL
History API for now. Then, when the component mounts, you add an event listener, so every time the URL
changes the route state will be updated and the component will render again. Speaking of rendering, all you
need to do in the render method is use the appropriate component based on the current route, as shown in
Listing 5-2.

Listing 5-2.  The render Method Rendering Different Components Based on the Current Route State

render() {
 var Child;
 switch (this.state.route) {
 case '/about': Child = About; break;
 case '/repos': Child = Repos; break;
 default: Child = Home;
 }
 
 return (
 <div>
 <header>App</header>
 <menu>

 About
 Repos

 </menu>
 <Child/>
 </div>
)
}

In this simple example, all child components that represent internal navigation pages have this same
structure (but with different headings), as shown in Listings 5-3 through 5-5.

Chapter 5 ■ Routing

133

Listing 5-3.  The Home Component

import React, { Component } from 'react';
 
class Home extends Component {
 render() {
 return (
 <h1>HOME</h1>
);
 }
}
 
export default Home;

Listing 5-4.  The About Component

import React, { Component } from 'react';
 
class About extends Component {
 render() {
 return (
 <h1>ABOUT</h1>
);
 }
}
 
export default About;

 Listing 5-5.  The Repos Component

import React, { Component } from 'react';
 
class Repos extends Component {
 render() {
 return (
 <h1>Github Repos</h1>
);
 }
}
 
export default Repos;

The routing system already works, and if you throw in some styling, it can look like Figure 5-1. The
sample CSS used in this case is shown in Listing 5-6.

Chapter 5 ■ Routing

134

Listing 5-6.  CSS for the Example Routing

body {
 margin: 0;
 font: 16px/1 sans-serif;
}
menu ul{
 margin: 0;
 padding: 0;
}
menu li {
 display: inline-block;
 padding: 5px;
}
a.active {
 color: #444;
 font-weight: bold;
 text-decoration: none;
}
header {
 padding: 10px;
 background-color: #333;
 color: #ccc;
 font-size: 20px;
 font-weight: bold;
}
menu {
 background-color: #ccc;
 padding: 5px;
 margin-top: 0;
 margin-bottom: 10px;
}

Figure 5-1.  Sample routing

Chapter 5 ■ Routing

135

Although it works for this sample scenario case, there are at least two concerns with this approach, one
more conceptual and one more practical:

•	 In this sample implementation, URL maintenance has taken center stage: instead of
automatically updating the URL while the application state flows programmatically,
you’re directly listening and manipulating the URL to get the app to a different state.

•	 The routing code can grow exponentially in complexity in non-trivial scenarios.
Imagine for example that inside the Repos page you can see a list of repos for the
pro React user on GitHub, with internal routes for repository details, something like
/repos/repo_id (as illustrated in Figure 5-2).

Figure 5-2.  Illustrating nested routes

•	 You’d have to make your URL parsing a lot more intelligently, and end up with a
lot of code to figure out which branch of nested components to be rendered at any
given URL.

For scenarios more complex than a single-level, basic routing, the recommended approach is to use
the React Router library. Nested URLs and nested component hierarchy are at the heart of React Router’s
declarative API, and despite not being part of the React core, it’s well regarded by the React community as
the standard library for the matter.

React Router
React Router is the most popular solution for adding routing to a React application. It keeps the UI in sync
with the URL by having components associated with routes (at any nesting level). When the user changes
the URL, components get unmounted and mounted automatically. Another advantage of the React Router
library is that it provides mechanisms so that you can control the flow of your application without different
entry points depending whether the user entered a state programmatically or by hitting a new URL: the code
that runs in any case is the same.

Since React Router is an external library, it must be installed with npm (along with the History library,
which is a React Router peer dependency). To install version 1 of both libraries, use npm install --save
react-router@1.x.x history@1.x.x.

http://mailto:react-router@1.x.x/

Chapter 5 ■ Routing

136

React Router provides three components to get started:

•	 Router and Route: Used to declaratively map routes to your application’s
screen hierarchy.

•	 Link: Used to create a fully accessible anchor tag with the proper href. Of course this
isn’t the only way to navigate the project, but usually it’s the main form the end user
will interact with.

Let’s change the first example from a “naive” implementation to using React Router. Once installed,
begin by making the appropriate imports on your App component, as show in Listing 5-7.

Listing 5-7.  Importing the React Router Components

import React, { Component } from 'react';
import { render } from 'react-dom';
 
// first we import some components
import { Router, Route, Link } from 'react-router';
 
import About from './About';
import Home from './Home';
import Repos from './Repos';
 
class App extends Component {...}

Inside the class, you can get rid of the constructor and componentDidMount methods that you used to
manage URL parsing and event listening; this will be automatically taken of care now. Inside the render
method, you can also get rid of the switch statement; the React Router will automatically set the children
props to whichever is the appropriate component based on the current route. Notice, also, that you need
to replace <a> tags for <Link> components to generate the suitable navigation links. Listing 5-8 shows the
updated App component’s class.

Listing 5-8.  Updated App Component Class

class App extends Component {
 render() {
 return (
 <div>
 <header>App</header>
 <menu>

 <Link to="/about">About</Link>
 <Link to="/repos">Repos</Link>

 </menu>
 {this.props.children}
 </div>
);
 }
}

Chapter 5 ■ Routing

137

Finally, you need to declare your routes. You do this at the end of the file. Instead of rendering the App
component to the DOM, you pass the Router component with some routes to React DOM render method, as
shown in Listing 5-9.

Listing 5-9.  The Updated Render

render((
 <Router>
 <Route path="/" component={App}>
 <Route path="about" component={About}/>
 <Route path="repos" component={Repos}/>
 </Route>
 </Router>
), document.getElementById('root'));

The complete code for the App.js file is shown in Listing 5-10.

Listing 5-10.  The Complete Code with React Router

import React, { Component } from 'react';
import { render } from 'react-dom';
 
import { Router, Route, Link } from 'react-router';
 
import About from './About';
import Repos from './Repos';
import Home from './Home';
 
class App extends Component {
 render() {
 return (
 <div>
 <header>App</header>
 <menu>

 <Link to="/about">About</Link>
 <Link to="/repos">Repos</Link>

 </menu>
 {this.props.children}
 </div>
);
 }
}
 
render((
 <Router>
 <Route path="/" component={App}>
 <Route path="about" component={About}/>
 <Route path="repos" component={Repos}/>
 </Route>
 </Router>
), document.getElementById('root'));

Chapter 5 ■ Routing

138

■■ Tip  Named Components: Usually a route has a single component, which is made available through this.props.
children on the parent component. It’s also possible to declare one or more named components when setting the
route. In this case, the components will be made available to their parent by name on props.children. Example:

React.render((

 <Router>
 <Route path="/" component={App}>
 <Route path="groups" components={{content: Groups, sidebar: GroupsSidebar}}/>
 <Route path="users" components={{content: Users, sidebar: UsersSidebar}}/>
 </Route>
 </Router>
), element);

Then, in the component:

render() {

 return (
 <div>
 {this.props.children.sidebar}-{this.props.children.content}
 </div>
);
}

Index Route
If you test right now, you will see that everything works as expected. But there is a difference from the
original implementation. You’re not showing the Home component in any route anymore. If you hit the
server on the “/” route, it renders the App component without any children, as shown in Figure 5-3.

Figure 5-3.  Home route renders the App component with no children

Chapter 5 ■ Routing

139

The first thing that may come to mind is to simply add a new Home route the router, but which path are
you going to use?

<Router>
 <Route path="/" component={App}>
 <Route path="???" component={Home}/>
 <Route path="about" component={About}/>
 <Route path="repos" component={Repos}/>
 </Route>
</Router>

Instead, you can use an <IndexRoute> for this. Just import the additional component and use it to
configure the index route, as shown here and in Figure 5-4.

import React, { Component } from 'react';
import { render } from 'react-dom';
 
import { Router, Route, IndexRoute, Link } from 'react-router';
 
import About from './About';
import Repos from './Repos';
import Home from './Home';
 
class App extends Component {...}
 
render((
 <Router>
 <Route path="/" component={App}>
 <IndexRoute component={Home}/>
 <Route path="about" component={About} />
 <Route path="repos" component={Repos} />
 </Route>
 </Router>
), document.getElementById('root'));

Figure 5-4.  If no route is provided, the home component is rendered

Chapter 5 ■ Routing

140

Routes with Parameters
Now that you have an implementation on par with your original “naive” routing, let’s expand on it to actually
fetch data from the GitHub API in the Repos component. You won’t do anything new here: you will create a
local state for the repositories and fetch the API from the componentDidMount lifecycle method, as you did in
earlier examples. Listing 5-11 shows the Repo component with the additional fetching.

■■ Note  In this sample code, you use the new window.fetch function, as you did in earlier examples of
this book. Since older browsers don’t have support for the new standard, make sure to install and require the
whatwg-fetch polyfill from npm.

npm install --save whatwg-fetch

Listing 5-11.  Repos Component Fetching from the GitHub API

import React, { Component } from 'react';
 
import 'whatwg-fetch';
 
class Repos extends Component {
 constructor(){
 super(...arguments);
 this.state = {
 repositories: []
 };
 }
  
 componentDidMount(){
 fetch('https://api.github.com/users/pro-react/repos')
 .then((response) => response.json())
 .then((responseData) => {
 this.setState({repositories:responseData});
 });
 }
  
 render() {
 let repos = this.state.repositories.map((repo) => (
 <li key={repo.id}>{repo.name}
));
 return (
 <div>
 <h1>Github Repos</h1>

 {repos}

 </div>
);
 }
}
 
export default Repos;  

https://api.github.com/users/pro-react/repos

Chapter 5 ■ Routing

141

■■ Note  The GitHub API is limited to 60 requests per hour for unregistered users. To learn more about GitHub
API, visit https://developer.github.com/v3/.

If you test the application, you will see a list of repositories when navigating to the Repo component.
Next, you will create a new route where you can show specific repository details. The idea is to get the URL to
look something like /repos/details/repo_name.

You need to create a new RepoDetails component and update the routes in the App.js file, but before
you do all that, let’s edit the Repos component to add links to repositories list and to load the RepoDetails as
a nested child. The updated code is shown in Listing 5-12 (code parts that didn’t change were omitted
for brevity).

Listing 5-12.  Adding Link Components for Repositories List and Rendering the Nested RepoDetails
Component

import React, { Component } from 'react';
import 'whatwg-fetch';
import { Link } from 'react-router';
 
class Repos extends Component {
 constructor(){...}
 
 componentDidMount(){...}
 
 render() {
 let repos = this.state.repositories.map((repo) => (
 <li key={repo.id}>
 <Link to={"/repos/details/"+repo.name}>{repo.name}</Link>

));
 return (
 <div>
 <h1>Github Repos</h1>

 {repos}

 {this.props.children}
 </div>
);
 }
}
 
export default Repos;

https://developer.github.com/v3/

Chapter 5 ■ Routing

142

In the sequence, let’s create the RepoDetails component. There are two things to notice in this code:

•	 The React Router will inject the repo_name parameter in the component’s properties.
You can use this value to fetch the GitHub API and get the project’s details.

•	 In all previous examples of this book, you always fetched data in the
componentDidMount lifecycle method. In the RepoDetails case, you need to
implement the fetch in an additional lifecycle method: componentWillReceiveProps.
This is necessary because the component may keep receiving new parameters
as the user clicks in different repositories after it is mounted. In this case, the
componentDidMount won’t be called again. Instead, componentWillReceiveProps
will be invoked.

Listing 5-13 shows the complete code for RepoDetails component.

Listing 5-13.  The RepoDetails Component

import React, { Component } from 'react';
import 'whatwg-fetch';
 
class RepoDetails extends Component {
 constructor(){
 super(...arguments);
 this.state={
 repository:{}
 };
 }
 
 fetchData(repo_name){
 fetch('https://api.github.com/repos/pro-react/'+repo_name)
 .then((response) => response.json())
 .then((responseData) => {
 this.setState({repository:responseData});
 });
 }
 
 componentDidMount(){
 // The Router injects the key "repo_name" inside the params prop
 let repo_name = this.props.params.repo_name;
 this.fetchData(repo_name)
 }
 
 componentWillReceiveProps(nextProps){
 // The Router injects the key "repo_name" inside the params prop
 let repo_name = nextProps.params.repo_name;
 this.fetchData(repo_name)
 }
 
 render() {
 let stars = [];
 for (var i = 0; i < this.state.repository.stargazers_count; i++) {
 stars.push('');
 }

https://api.github.com/repos/pro-react/'+repo_name

Chapter 5 ■ Routing

143

 return (
 <div>
 <h2>{this.state.repository.name}</h2>
 <p>{this.state.repository.description}</p>
 {stars}
 </div>
);
 }
}
 
export default RepoDetails;

To finish your implementation of the nested Repo details route, you need to update the main App.js
file. You import the new component and update the Router component implementing the details route as a
child of the repos route, declaring the named parameter of repo_name, as shown in Listing 5-14.

Listing 5-14.  The Updated App.js

import React, { Component } from 'react';
import { render } from 'react-dom';
import { Router, Route, IndexRoute, Link } from 'react-router';
import Home from './Home';
import About from './About';
import Repos from './Repos';
import RepoDetails from './RepoDetails';
 
class App extends Component {...}
 
render((
 <Router>
 <Route path="/" component={App}>
 <IndexRoute component={Home}/>
 <Route path="about" component={About}/>
 <Route path="repos" component={Repos}>
 {/* Add the route, nested where we want the UI to nest */}
 <Route path="details/:repo_name" component={RepoDetails} />
 </Route>
 </Route>
 </Router>
), document.getElementById('root'));

When declaring a dynamic segment inside a route (such as :repo_name), React Router will inject any
data that is in that part of the URL into a parameter attribute inside the component props.

Chapter 5 ■ Routing

144

If you followed along, you should be seeing something like Figure 5-5.

Setting Active Links
The Link component has nice additional touch: it accepts an optional prop called activeClassName. If
this prop is set, it will automatically add this class name to active links. Let’s add this prop to your App
component, as shown in Listing 5-15.

Listing 5-15.  The App Component’s Links with activeClassName

class App extends Component {
 render() {
 return (
 <div>
 <header>App</header>
 <menu>

 <Link to="/about" activeClassName="active">About</Link>
 <Link to="/repos" activeClassName="active">Repos</Link>

 </menu>

Figure 5-5.  Nested routes inside the Repos component

Chapter 5 ■ Routing

145

 {this.props.children}
 </div>
);
 }
}

Passing Props
There’s a big problem with your implementation so far: you doing an unnecessary fetch. The GitHub API already
provides all the repositories details when you first fetch https://api.github.com/users/pro-react/repos.
You could pass all the data about the repositories down as props to render on the repoDetails component.
There are two ways of passing props in React Router: by specifying props on the route configuration object or
by injecting props on a clone of the children. The first one is more idiomatic, but it won’t solve all problems.
The further looks a little “hacky” but does allow for more flexibility.

Props on the Route Configuration
The <Route> component is just a declarative way to configure a route; it is not rendered as a regular
React component. When active, it renders the specified component instead. The <Route path="about"
component={About} /> element, for example, renders the About component when the route is active. What’s
interesting to notice is that besides rendering the specified component, the React Router injects all the Route
properties inside the component’s props, which means that any additional props you define in the route will
be accessible by the component.

To illustrate, let’s make the About component receive its title as props from the route. First, you add an
arbitrary “title” prop to the about route:

React.render((
 <Router>
 <Route path="/" component={App}>
 <IndexRoute component={Home}/>
 <Route path="about" component={About} title="About Us" />
 <Route path="repos" component={Repos}>
 <Route path="details/:repo_name" component={RepoDetails} />
 </Route>
 </Route>
 </Router>
), document.getElementById('root'));

Next, in the About component, you access the route configuration from this.props.route:

import React, { Component } from 'react';
 
class About extends Component {
 render() {
 return (
 <h1>{this.props.route.title}</h1>
);
 }
}
 
export default About;

https://api.github.com/users/pro-react/repos

Chapter 5 ■ Routing

146

Cloning and Injecting Props on Children
Another approach, especially useful for dynamic props, is to clone the child component that gets injected as
props by React Router, which gives you the opportunity to pass additional props in the process.

That’s exactly the case for the GitHub Repos project you’ve been building. You want to pass the
repositories’ data you fetched in the Repo component to the RepoDetails component, but as you already
know, the React Router will automatically create the RepoDetails component and inject it into the Repo’s
props.children, which doesn’t give you any chance to manipulate its props.

Inside the Repo component, instead of simply rendering this.props.children provided by the router, you
clone it and inject additional props (the list of repositories), as shown in Listing 5-16.

Listing 5-16.  The Updated Repos Component Using React.cloneElement to Pass Additional Props to the
Children Provided by the Router

class Repos extends Component {
 constructor(){...}
 componentDidMount(){...}
 
 render() {
 let repos = this.state.repositories.map((repo) => (
 <li key={repo.id}>
 <Link to={"/repos/details/"+repo.name}>{repo.name}</Link>

));
 
 let child = this.props.children && React.cloneElement(this.props.children,
 { repositories: this.state.repositories }
);
 
 return (
 <div>
 <h1>Github Repos</h1>

 {repos}

 {child}
 </div>
);
 }
}

Now the RepoDetails will be treated as a pure component. It won’t have internal state, it’ll just receive
and display props. You remove the constructor, componentWillReceiveProps, componentDidMount, and
fetchData methods, and change the render method to find the repository based on the URL parameter.
Listing 5-17 shows the updated RepoDetails.js.

Chapter 5 ■ Routing

147

■■ Note  As mentioned, Array.prototype.find is a new method not supported on older browsers. Make
sure to install the polyfills from Babel with npm install --save babel-polyfill and import it on the
JavaScript module with import 'babel-polyfill'.

Listing 5-17.  The Updated RepoDetails.js File

import React, { Component } from 'react';
import 'babel-polyfill';
 
class RepoDetails extends Component {
 
 renderRepository() {
 �let repository = this.props.repositories.find((repo)=>repo.name === this.props.params.

repo_name);
 let stars = [];
 for (var i = 0; i < repository.stargazers_count; i++) {
 stars.push('');
 }
 return(
 <div>
 <h2>{repository.name}</h2>
 <p>{repository.description}</p>
 {stars}
 </div>
);
 }
 
 render() {
 if(this.props.repositories.length > 0){
 return this.renderRepository();
 } else {
 return <h4>Loading...</h4>;
 }
 }
}
 
export default RepoDetails;

Decoupling the UI from the URL
While the details route works pretty well, you ended up with a URL segment that is a bit too long:
/repos/details/:repo_name. It would be nice if you could change the URL segment to the smaller and
singular form of /repo/:repo_name, but still render the RepoDetails component nested inside App  Repos.
In React Router, it is possible to do this kind of setup using an absolute path in the route definition.

Chapter 5 ■ Routing

148

So, instead of

render((
 <Router>
 <Route path="/" component={App}>
 <IndexRoute component={Home}/>
 <Route path="about" component={About} />
 <Route path="repos" component={Repos}>
 <Route path="details/:repo_name" component={RepoDetails} />
 </Route>
 </Route>
 </Router>
), document.getElementById('root'));

you use an absolute path, like

render((
 <Router>
 <Route path="/" component={App}>
 <IndexRoute component={Home}/>
 <Route path="about" component={About} />
 <Route path="repos" component={Repos}>
 <Route path="/repo/:repo_name" component={RepoDetails} />
 </Route>
 </Route>
 </Router>
), document.getElementById('root'));
 

Of course, you also need to update the links on the Repo component to reflect the new URL, as show in
Listing 5-18.

Listing 5-18.  The Updated Link on the Repo Component

class Repos extends Component {
 constructor(){...}
 componentDidMount(){...}
 
 render() {
 let repos = this.state.repositories.map((repo) => (
 <li key={repo.id}><Link to={"/repo/"+repo.name}>{repo.name}</Link>
));
 
 let child = this.props.children && React.cloneElement(...);
 
 return (...);
 }
}
 
export default Repos;

Chapter 5 ■ Routing

149

The new URLs are shown in Figure 5-6.

Figure 5-6.  The UI keeps nested hierarchy, but with custom decoupled routes

Table 5-1.  History Methods

Method Description

pushState The basic history navigation method transitions to a new URL. You can optionally pass a
parameters object. Example:

history.pushState(null, '/users/123')
history.pushState({showGrades: true}, '/users/123')

replaceState Has the same syntax as pushState, but it replaces the current URL with a new one.
It’s analogous to a redirect, because it replaces the URL without affecting the length of
the history.

goBack Go back one entry in the navigation history.

goForward Go forward one entry in the navigation history.

Go Go forward or backward in the history by n or -n

createHref Makes a URL, using the router’s config.

Changing Routes Programmatically
The Link component you used earlier provides a nice way for the end user to transition between routes, but
sometimes you need to be able to do it programmatically from inside your components. You might want to
automatically go back or redirect the user to a different route under certain circumstances.

For this purpose, React Router automatically injects its history object into all components that it
mounts. The history object is responsible for managing the browser’s history stack, and provides the
methods for navigation shown in Table 5-1.

Chapter 5 ■ Routing

150

To illustrate, let’s create a new Server Error route. From the Repos component you redirect to this
new route if the fetch method can’t connect to the API. Listings 5-19 and 5-20 show the new ServerError
component and the updated routes in the App.js, respectively.

Listing 5-19.  The ServerError Component with Some Inline Styling

import React, { Component } from 'react';
 
const styles={
 root:{
 textAlign:'center'
 },
 alert:{
 fontSize:80,
 fontWeight: 'bold',
 color:'#e9ab2d'
 }
};
 
class ServerError extends Component {
 render() {
 return (
 <div style={styles.root}>
 <div style={styles.alert}>⚠ </div>
 {/* ⚠ is the html entity code for the warning character: ⚠ */}
 <h1>Ops, we have a problem</h1>
 <p>Sorry, we could't access the repositories. Please try again in a few moments.</p>
 </div>
);
 }
}
 
export default ServerError;

Listing 5-20.  The Updated Import and Route Definition on App.js

import React, { Component } from 'react';
import { render } from 'react-dom';
import { Router, Route, Link, IndexRoute } from 'react-router';
 
import About from './About';
import Repos from './Repos';
import RepoDetails from './RepoDetails';
import Home from './Home';
import ServerError from './ServerError';
 
class App extends Component {...}
 
render((
 <Router>
 <Route path="/" component={App}>
 <IndexRoute component={Home}/>

Chapter 5 ■ Routing

151

 <Route path="about" component={About} />
 <Route path="repos" component={Repos}>
 <Route path="/repo/:repo_name" component={RepoDetails} />
 </Route>
 <Route path="error" component={ServerError} />
 </Route>
 </Router>
), document.getElementById('root'));

Back to the Repos component, you use the pushState method inside the fetch’s catch statement, as
shown in Listing 5-21.

Listing 5-21.  The Updated Repos Component Using pushState to Redirect to Error Page

import React, { Component } from 'react';
import { Link } from 'react-router';
import 'whatwg-fetch';
 
class Repos extends Component {
 constructor(){...}
 componentDidMount(){
 fetch('https://api.github.com/users/pro-react/repos')
 .then((response) => {
 if(response.ok){
 return response.json();
 } else {
 throw new Error("Server response wasn't OK");
 }
 })
 .then((responseData) => {
 this.setState({repositories:responseData});
 })
 .catch((error) => {
 this.props.history.pushState(null,'/error');
 });
 }
 
 render() {...}
}
 
export default Repos;

When trying to access the /repos route after the GitHub API limit has expired, the component changes
the route to the error route, as shown in Figure 5-7.

https://api.github.com/users/pro-react/repos

Chapter 5 ■ Routing

152

Of course, you don’t have to exceed the GitHub’s API rate limit to test this. Simply disconnect the
Internet and try accessing the repos route. The fetch will retry three times and fail.

Histories
React Router is built on top of the History library (remember that when you installed the React Router
using npm, you also installed History). Its purpose is to abstract URL and session management, providing
a common API for manipulating the history stack and the URL across different browsers, testing
environments, and platforms.

The History library has different possible setups. By default, React Router uses the hash history setup,
which uses the hash (#) portion of the URL creating routes that look like example.com/#/path.

The hash history is the default setup because it works on older browsers (Internet Explorer 8 and 9) and
doesn’t require any server configuration. If your application doesn’t need to run on legacy browsers and you
have the possibility to configure your server, the ideal approach is to use the browser history setup, which
creates real URLs that look like example.com/path.

■■ Note  Server Configuration: The browser history setup can generate real looking URLs without reloading
the page. But what happens if the user refreshes or bookmarks on a deep nested URL? These URLs are
dynamically generated at the browser; they do not correspond to real paths on the server, and since any URL
will always hit the server on the first request, it will likely return a Page Not Found error.

To work with browser history setup, you need to make rewrite configurations on your server, so when the user hits
/some-path on the browser, the server will serve index page from where React Router will render the right view.

The Webpack dev server has the historyApiFallback option to always render the index page for unknown
paths (and if you are using this book's boilerplate app, this configuration is already in place). Node.js and all
common web servers such as Apache and Nginx have such configurations. Please refer to the React Router’s
documentation and your server's documentation.

Figure 5-7.  Route redirection from inside the component

Chapter 5 ■ Routing

153

To implement the browser history setup, you need to import the createBrowserHistory method from
the History library. You can then invoke it, passing the generated browser history configuration as the history
prop of the Router component. Let’s implement it in your sample application, as shown in Listing 5-22.

Listing 5-22.  The Updated App.js Using the BrowserHistory Setup

import React, { Component } from 'react';
import { render } from 'react-dom';
 
import { Router, Route, IndexRoute, Link } from 'react-router';
import createBrowserHistory from 'history/lib/createBrowserHistory';
 
import About from './About';
import Repos from './Repos';
import RepoDetails from './RepoDetails';
import Home from './Home';
import ServerError from './ServerError';
 
 class App extends Component {...}
 
render((
 <Router history={createBrowserHistory()}>
 <Route path="/" component={App}>
 <IndexRoute component={Home}/>
 <Route path="about" component={About} />
 <Route path="repos" component={Repos}>
 <Route path="/repo/:repo_name" component={RepoDetails} />
 </Route>
 <Route path="error" component={ServerError} />
 </Route>
 </Router>
), document.getElementById('root'));

Kanban App: Routing
So far, the Kanban application has been very effective as an exercise, but it’s not yet very useful on its own
because you can’t edit or create new cards. Let’s implement these two features using routes. The /new route
will show a form to create a new card, whereas the /edit/:card_id route will show a form with the card’s
current properties so the user can edit it. Both NewCard and EditCard will be new components, and since
both share much of the same characteristics (like the complete card form), you will also create a CardForm
component that will be used by both and retain all the shared UI.

Since you’re going to implement code in lots of different files, let’s review everything that needs to be done:

•	 Starting bottom up, let’s create the CardForm component.

•	 Next, you create the NewCard and EditCard components.

•	 In the sequence, you edit the App.js to set up the new routes.

•	 In the KanbanBoardContainer class, you create methods for creating and editing
cards. You pass these methods as props to the NewCard and EditCard components.

Chapter 5 ■ Routing

154

Before you start, make sure to install React Router and History: npm install --save react-router@1.x.x
history@1.x.x.

CardForm Component
As mentioned, since the NewCard and EditCard components share much of the same UI, you will create the
CardForm component and use it in both components. It will contain a form (that needs to be flexible enough
to be used blank or pre-filled with existing card values.) and an overlay. The form will appear as a modal on
top of the Kanban board, and the overlay will be used behind the modal to “darken” everything behind it.
Figure 5-8 shows the desired effect.

Figure 5-8.  Form and overlay

The CardForm component will be a pure component. It won’t have state. Both NewCard or EditCard
components need to provide the following props to the CardForm:

•	 An object (let’s call it a draft card) containing the card values to display on the form.
In the case of EditCard, this object will contain the values of the card being edited. In
the case of NewCard, this object will contain blank/default values for a new card.

•	 The label of the Submit button.

•	 Functions to handle form field change and form submit.

•	 A function to handle the modal closing (when the user clicks outside the modal).

Listing 5-23 shows the CardForm component source code.

Listing 5-23.  The CardForm Component Source Code

import React, {Component, PropTypes} from 'react';
 
class CardForm extends Component {
 

Chapter 5 ■ Routing

155

 handleChange(field, e){
 this.props.handleChange(field, e.target.value);
 }
 
 handleClose(e){
 e.preventDefault();
 this.props.handleClose();
 }
 
 render(){
 return (
 <div>
 <div className="card big">
 <form onSubmit={this.props.handleSubmit.bind(this)}>
 <input type='text'
 value={this.props.draftCard.title}
 onChange={this.handleChange.bind(this,'title')}
 placeholder="Title"
 required={true}
 autoFocus={true} />
 <textarea value={this.props.draftCard.description}
 onChange={this.handleChange.bind(this,'description')}
 placeholder="Description"
 required={true} />
 <label htmlFor="status">Status</label>
 <select id="status"
 value={this.props.draftCard.status}
 onChange={this.handleChange.bind(this,'status')}>
 <option value="todo">To Do</option>
 <option value="in-progress">In Progress</option>
 <option value="done">Done</option>
 </select>

 <label htmlFor="color">Color</label>
 <input id="color"
 value={this.props.draftCard.color}
 onChange={this.handleChange.bind(this,'color')}
 type="color"
 defaultValue="#ff0000" />
 
 <div className='actions'>
 <button type="submit">{this.props.buttonLabel}</button>
 </div>
 </form>
 </div>
 <div className="overlay" onClick={this.handleClose.bind(this)}>
 </div>
 </div>
);
 }
}
 

Chapter 5 ■ Routing

156

CardForm.propTypes = {
 buttonLabel: PropTypes.string.isRequired,
 draftCard: PropTypes.shape({
 title: PropTypes.string,
 description: PropTypes.string,
 status: PropTypes.string,
 color: PropTypes.string
 }).isRequired,
 handleChange: PropTypes.func.isRequired,
 handleSubmit: PropTypes.func.isRequired,
 handleClose: PropTypes.func.isRequired,
}
 
export default CardForm;

Next, in order to create the results shown in Figure 5-8, you need to add some additional styling for the
form and overlay. Listing 5-24 shows the additional styles.

Listing 5-24.  Aditional CSS Styling

.overlay {
 position: absolute;
 width: 100%;
 height: 100%;
 top: 0; left: 0; bottom: 0; right: 0;
 z-index: 2;
 background-color: rgba(0, 0, 0, 0.6);
}
 
.card.big {
 position: absolute;
 width: 450px;
 height: 200px;
 margin: auto;
 padding: 15px;
 top: 0; left: 0; bottom: 100px; right: 0;
 z-index: 3;
}
 
.card.big input[type=text], textarea {
 width : 100%;
 margin: 3px 0;
 font-size: 13px;
 border: none;
}
 
.card.big input[type=text] {
 font-size: 20px;
 font-weight: bold;

Chapter 5 ■ Routing

157

}
 
.card.big input[type=text]:focus,
.card.big textarea:focus {
 outline: dashed thin #999;
 outline-offset: 2px;
}
 
.card.big label {
 margin: 3px 0 7px 3px;
 color: #a7a7a7;
 display: inline-block;
 width: 60px;
}
 
.actions {
 margin-top: 10px;
 text-align: right;
}
 
.card.big button {
 font-size:14px;
 padding: 8px;
}

NewCard and EditCard Components
Let’s move on to the NewCard end EditCard components. They have a lot in common: both will hold the
draft card state, render the CardForm, and provide it with callbacks to manipulate that state and persist the
new/edited card.

Starting with the NewCard component, Listing 5-25 shows its source code.

Listing 5-25.  The Final Code for the NewCard.js Component

import React,{Component, PropTypes} from 'react';
import CardForm from './CardForm'
 
class NewCard extends Component{
 
 componentWillMount(){
 this.setState({
 id: Date.now(),
 title:'',
 description:'',
 status:'todo',
 color:'#c9c9c9',
 tasks:[]
 });
 }
 

Chapter 5 ■ Routing

158

 handleChange(field, value){
 this.setState({[field]: value});
 }
 
 handleSubmit(e){
 e.preventDefault();
 this.props.cardCallbacks.addCard(this.state);
 this.props.history.pushState(null,'/');
 }
 
 handleClose(e){
 this.props.history.pushState(null,'/');
 }
 
 render(){
 return (
 <CardForm draftCard={this.state}
 buttonLabel="Create Card"
 handleChange={this.handleChange.bind(this)}
 handleSubmit={this.handleSubmit.bind(this)}
 handleClose={this.handleClose.bind(this)} />
);
 }
}
 
NewCard.propTypes = {
 cardCallbacks: PropTypes.object,
};
  
export default NewCard;
 

There are a few things to notice in the code above:

•	 When the component mounts, it sets the component state to an empty draft card
with some default values and a temporary ID (based on the current date). The values
of this draft card will be presented in the CardForm, and for every change you update
the state.

•	 When the user submits the form, you save the new card by invoking the
cardCallbacks.addCard that came down as props from the KanbanBoardContainer.

That’s all for the NewCard component. Let’s move to the EditCard, which will be similar except for the
fact that the EditCard expects to receive a card_id querystring parameter from the route. With the card id
you can filter the card information and set the draft card in its state with the values from the card the user
wants to edit, as shown in Listing 5-26.

Chapter 5 ■ Routing

159

Listing 5-26.  The Complete Code for the EditCard.js Component

import React,{Component, PropTypes} from 'react';
import CardForm from './CardForm';
 
class EditCard extends Component{
 
 componentWillMount(){
 let card = this.props.cards.find((card)=>card.id == this.props.params.card_id);
 this.setState({...card});
 }
 
 handleChange(field, value){
 this.setState({[field]: value});
 }
 
 handleSubmit(e){
 e.preventDefault();
 this.props.cardCallbacks.updateCard(this.state);
 this.props.history.pushState(null,'/');
 }
 
 handleClose(e){
 this.props.history.pushState(null,'/');
 }
 
 render(){
 return (
 <CardForm draftCard={this.state}
 buttonLabel="Edit Card"
 handleChange={this.handleChange.bind(this)}
 handleSubmit={this.handleSubmit.bind(this)}
 handleClose={this.handleClose.bind(this)} />
)
 }
}
 
EditCard.propTypes = {
 cardCallbacks: PropTypes.object,
}
  
export default EditCard;

Setting Up the Routes
Let’s skip the KanbanBoardContainer for a minute to set up the routes on the App.js file. This will help you
better comprehend how you will modify the KanbanBoardContainer later. You will create three routes: an
index route that leads to the Kanban board, a new route associated with the NewCard component, and an
edit/:card_id route associated with the EditCard component. It’s also important to note that both the new
and the edit routes will be nested inside the Kanban. That’s so you can see the Kanban board and the cards
behind the form; you don’t want the form to be a completely isolated section. Listing 5-27 shows the App.js
with the routing.

Chapter 5 ■ Routing

160

Listing 5-27.  The Routes on App.js

import React from 'react';
import { render } from 'react-dom';
import { Router, Route } from 'react-router';
import createBrowserHistory from 'history/lib/createBrowserHistory';
import KanbanBoardContainer from './KanbanBoardContainer';
import KanbanBoard from './KanbanBoard';
import EditCard from './EditCard';
import NewCard from './NewCard';
 
render((
 <Router history={createBrowserHistory()}>
 <Route component={KanbanBoardContainer}>
 <Route path="/" component={KanbanBoard}>
 <Route path="new" component={NewCard} />
 <Route path="edit/:card_id" component={EditCard} />
 </Route>
 </Route>
 </Router>
), document.getElementById('root'));

Creating the Callbacks and Rendering the Children on KanbanBoardContainer
The first thing you do in the KanbanBoardContainer component is create the two methods for creating and
updating cards. They will be very similar to the analogous methods for tasks. Listing 5-28 shows the addCard
method and Listing 5-29 shows the updateCard.

Listing 5-28.  The addCard Method Inside the KanbanBoardContainer

addCard(card){
 // Keep a reference to the original state prior to the mutations
 // in case we need to revert the optimistic changes in the UI
 let prevState = this.state;
 
 // Add a temporary ID to the card
 if(card.id===null){
 let card = Object.assign({}, card, {id:Date.now()});
 }
 
 // Create a new object and push the new card to the array of cards
 let nextState = update(this.state.cards, { $push: [card] });
 
 // set the component state to the mutated object
 this.setState({cards:nextState});
 
 // Call the API to add the card on the server
 fetch(`${API_URL}/cards`, {
 method: 'post',
 headers: API_HEADERS,
 body: JSON.stringify(card)
 })

Chapter 5 ■ Routing

161

 .then((response) => {
 if(response.ok){
 return response.json()
 } else {
 // Throw an error if server response wasn't 'ok'
 // so we can revert back the optimistic changes
 // made to the UI.
 throw new Error("Server response wasn't OK")
 }
 })
 .then((responseData) => {
 // When the server returns the definitive ID
 // used for the new Card on the server, update it on React
 card.id=responseData.id
 this.setState({cards:nextState});
 })
 .catch((error) => {
 this.setState(prevState);
 });
}

Listing 5-29.  The updateCard Method Inside the KanbanBoardContainer

updateCard(card){
 // Keep a reference to the original state prior to the mutations
 // in case we need to revert the optimistic changes in the UI
 let prevState = this.state;
 
 // Find the index of the card
 let cardIndex = this.state.cards.findIndex((c)=>c.id == card.id);
 
 // Using the $set command, we will change the whole card
 let nextState = update(
 this.state.cards, {
 [cardIndex]: { $set: card }
 });
 // set the component state to the mutated object
 this.setState({cards:nextState});
 
 // Call the API to update the card on the server
 fetch(`${API_URL}/cards/${card.id}`, {
 method: 'put',
 headers: API_HEADERS,
 body: JSON.stringify(card)
 })
 .then((response) => {
 if(!response.ok){
 // Throw an error if server response wasn't 'ok'
 // so we can revert back the optimistic changes
 // made to the UI.
 throw new Error("Server response wasn't OK")
 }

Chapter 5 ■ Routing

162

 })
 .catch((error) => {
 console.error("Fetch error:",error)
 this.setState(prevState);
 });
}

Finally, you need to update the render method. You don’t get to render the KanbanBoard manually; it
will be injected by the router. The problem is that there’s no way to add new props to a component that the
router passes as children, but the alternative is actually pretty simple. As you saw earlier, you will clone the
props.children injected by the router and add the new props, as shown in Listing 5-30.

Listing 5-30.  Cloning the Child to Insert the Cards List and Callbacks as Props

render() {
 let kanbanBoard = this.props.children && React.cloneElement(this.props.children, {
 cards: this.state.cards,
 taskCallbacks:{
 toggle: this.toggleTask.bind(this),
 delete: this.deleteTask.bind(this),
 add: this.addTask.bind(this)
 },
 cardCallbacks:{
 addCard: this.addCard.bind(this),
 updateCard: this.updateCard.bind(this),
 updateStatus: this.updateCardStatus.bind(this),
 updatePosition: throttle(this.updateCardPosition.bind(this),500),
 persistMove: this.persistCardMove.bind(this)
 }
 });
 
 return kanbanBoard;
}

Rendering the Card Forms in the KanbanBoard
In the routes you configured earlier in the App.js file, the NewCard and EditCard components are children
of KanbanBoard. When the user points to the routes /new or /edit, the router will inject the corresponding
component as a children prop in the KanbanBoard. You need now to edit the KanbanBoard to clone the
children props (to insert new props such as the list of cards and card callbacks) and render it. It is pretty much
the same thing you just did for the KanbanBoardContainer. Listing 5-31 shows the new render function.

Listing 5-31.  Rendering NewCard and EditCard in KanbanBoard Component

render() {
 let cardModal=this.props.children && React.cloneElement(this.props.children, {
 cards: this.props.cards,
 cardCallbacks: this.props.cardCallbacks
 });
 

Chapter 5 ■ Routing

163

 return (
 <div className="app">
 <List ... />
 <List ... />
 <List ... />
 
 {cardModal}
 
 </div>
)
}

Finishing Touches: Transitioning
Your application is all wired up and is already working. If you manually input the /new route or the /
edit/:card_id (with a valid card id, of course), everything will work as expected, but that’s not very practical,
so let’s finish by making handling transitions to the routes, starting with the new route.

You will create a new link (using the Link component) inside the KanbanBoard component, pointing to
new. See Listing 5-32.

Listing 5-32.  Link to New Route on KanbanBoard Component

import React, { Component, PropTypes } from 'react';
import { DragDropContext } from 'react-dnd';
import HTML5Backend from 'react-dnd-html5-backend';
import List from './List';
import { Link } from 'react-router';
 
class KanbanBoard extends Component {
 render() {
 let cardModal=this.props.children && React.cloneElement(this.props.children, {
 cards: this.props.cards,
 cardCallbacks: this.props.cardCallbacks
 });
 
 return (
 <div className="app">
 <Link to='/new' className="float-button">+</Link>
 
 <List ... />
 <List ... />
 <List ... />
 
 {cardModal}
 
 </div>
)
 }
}
KanbanBoard.propTypes = {...}
 
export default DragDropContext(HTML5Backend)(KanbanBoard);

Chapter 5 ■ Routing

164

You also add some styling on the link. It will be a round button absolutely positioned on the bottom
right side of the screen, as shown in Listing 5-33 and Figure 5-9.

Listing 5-33.  CSS Styling for the Button

.float-button {
 position: absolute;
 height: 56px;
 width: 56px;
 z-index: 2;
 right: 20px;
 bottom: 20px;
 background: #D43A2F;
 color: white;
 border-radius: 100%;
 font-size: 34px;
 text-align: center;
 text-decoration: none;
 line-height: 50px;
 box-shadow: 0 5px 10px rgba(0, 0, 0, 0.5);
}

Figure 5-9.  The add card button

Finally, let’s also add a Link component to the card. Similar to the New button, you will style it so it
doesn’t appear as a plain link. In the case of the card, you even use some CSS tricks to only show the edit link
when the user is hovering over the card. Listing 5-34 shows the code for the Card component, Listing 5-35
shows the additional styling for this element, and Figure 5-10 shows the final result.

Chapter 5 ■ Routing

165

Listing 5-34.  Link Component on the Card

import React, { Component, PropTypes } from 'react';
import ReactCSSTransitionGroup from 'react-addons-css-transition-group';
import marked from 'marked';
import { DragSource, DropTarget } from 'react-dnd';
import constants from './constants';
import CheckList from './CheckList';
import {Link} from 'react-router';
 
let titlePropType = (props, propName, componentName) => {...};
const cardDragSpec = {...};
const cardDropSpec = {...};
let collectDrag = (connect, monitor) => {...};
let collectDrop = (connect, monitor) => {...};
 
class Card extends Component {
 constructor() {...}
 toggleDetails() {...}
 render() {
 const { connectDragSource, connectDropTarget } = this.props;
 
 let cardDetails;
 if (this.state.showDetails) {...};
 let sideColor = {...};
 
 return connectDropTarget(connectDragSource(
 <div className="card">
 <div style={sideColor}/>
 <div className="card__edit"><Link to={'/edit/'+this.props.id}>✎</Link></div>

Figure 5-10.  The Edit button on the Card component

Chapter 5 ■ Routing

166

 {/* ✎ is the HTML entity for the utf-8 pencil character (✎) */}
 <div className={...} onClick={...}>
 {this.props.title}
 </div>
 <ReactCSSTransitionGroup transitionName="toggle"
 transitionEnterTimeout={250}
 transitionLeaveTimeout={250} >
 {cardDetails}
 </ ReactCSSTransitionGroup>
 </div>
));
 }
}
Card.propTypes = {...};
 
const dragHighOrderCard = DragSource(constants.CARD, cardDragSpec, collectDrag)(Card);
const dragDropHighOrderCard = DropTarget(constants.CARD, cardDropSpec, collectDrop)
(dragHighOrderCard);
 
export default dragDropHighOrderCard

Listing 5-35.  Additional CSS Styles for the Card Edit Link

.card__edit{
 position: absolute;
 top:10px;
 right: 10px;
 opacity: 0;
 transition: opacity .25s ease-in;
}
.card:hover .card__edit{
 opacity: 1;
}
.card__edit a{
 text-decoration: none;
 color: #999;
 font-size: 17px;
}

Summary
This chapter discussed routing. You started by manually implementing a basic routing and understanding
the complexities that can arise with nested routing. Next, you learned how to use one of the most used
libraries in the React community, the React Router. You saw how to set up nested routes and a default home
route, how to pass parameters through the route to a component, and how to directly pass properties from a
component to its children. You then learned how make transitions via code using the History object.

Your applications (specially the Kanban app) have become larger and more feature rich since their
first iterations and are starting to feel growing pains. In the next chapter, you’re going to study Flux, an
application architecture that complements React and will help you better organize your projects.

167

Chapter 6

Architecting React Applications
with Flux

As you saw earlier, one core philosophy of React is that data flows in a single direction, from parent to child
components as props. When a parent component needs its children to reach back, it can pass callback
functions down as props as well.

This one-way data flow leads to clear, explicit, and easy-to-follow code. You can trace a React
application from start to finish and see what code is executed on changes.

But while this architectural pattern has many advantages, it also brings some challenges. React
applications usually grow to have many nesting levels where top components act as containers and many
pure components are like leafs on an interface tree. With state living on the top levels the hierarchy, you end
up creating callbacks that needs to get passed down as props, sometimes many levels deep in a repetitive
and error-prone task.

Ryan Florence, React Router co-author and prominent community member, uses an analogy to
describe the act of passing data and callbacks as props many levels deep: drilling your application. If you
have many nested components, you have a lot of drill work going on, and if you want to refactor (move some
components around), you must do a whole lot of drilling all over again.

Let me be clear here: using nested React components is a great way to structure UIs. It reduces
complexity and leads to separation of concerns, and to code that is easier to extend and maintain. And
since React is built around the concept of reactive rendering, for every change on the component’s state or
props, React updates the DOM (using its virtual DOM implementation to calculate the minimum necessary
mutations). You get a very simple mindset for developing and great performance for free.

What we’re trying to address here is, given the fact that you want to have nested components, how
do you bring data and, most importantly, the callbacks to manipulate that data closer to each of these
components when the applications grow? That’s exactly where Flux comes in.

What Is Flux?
Flux is an architectural guideline for building web applications. It was created by Facebook, and while it’s not
part of React, nor was it built exclusively for React, it pairs exceptionally well with the library.

The main point of Flux is to allow an uni-directional data flow in your application. It is composed of
basically three pieces: actions, stores, and a dispatcher. Let’s take a look at these three pieces.

Chapter 6 ■ Architecting React Applications with Flux

168

Stores
As mentioned, one of the main points you are trying to address is how to bring data closer to each of the
application’s components. Our ideal view of the world looks like Figure 6-1. Data is completely separated
from the component, but you want the component to be notified when data changes so it can re-render.

Figure 6-1.  An ideal view of the world

Figure 6-2.  Views re-render themselves

That’s exactly what stores do. Stores hold all the application state (including data and even UI state) and
dispatch events when the state has changed. Views (React components) subscribe to the stores that contain
the data they needs and when the data changes, re-render themselves, as shown in Figure 6-2.

One important characteristic of stores is that they are closed black boxes; they expose public getters
to access data, but nobody can insert, update, or change their data in any way, not the views nor any of the
other Flux pieces. Only the store itself can mutate its own data.

If you know the MVC paradigm, stores do bear resemblance with models, but again the main difference
is that stores only have getters; nobody can set a value on a store.

But if no other part of the application can change the data in a store, what in the system causes stores to
update their state? The answer is Actions.

Actions
Actions are loosely defined as “things that happen in your app.” They are created by almost any part of the
application, basically from user interactions (such as clicking on a button, leaving a comment, requesting
search results, and so on…), but also as results of AJAX requests, timers, web socket events, etc.

Every action contains a type (its unique name) and an option payload. When dispatched, actions reach
the stores, and that’s how a store knows it needs to update its own data. See Figure 6-3.

Chapter 6 ■ Architecting React Applications with Flux

169

Actually, that’s pretty much all that is to Flux: React components create actions (say, after user types a
name in a text field); that action reach the stores; stores that are interested in that particular action update
their own data and dispatch change events; finally, the view responds to that store’s event by re-rendering
with the latest data. But there’s a missing piece in this diagram, the dispatcher.

Dispatcher
The dispatcher is responsible for coordinating the relaying of the actions to the stores and ensuring that the
stores’ action handlers are executed in the correct order. See Figure 6-4.

Figure 6-3.  Store updates its own data

Chapter 6 ■ Architecting React Applications with Flux

170

Despite being an essential piece of Flux architecture, you don’t have to think too much about
dispatchers. All you need to do is to create an instance to use; the rest is handled by the given dispatcher
implementation.

The Unrealistic, Minimal Flux App
When used in complex applications, Flux helps keep the code easier to read, maintain, and grow. It certainly
reduces complexity, and as a consequence in many cases it also reduces the number of lines of code in
the project (although that’s not an appropriate metric for code complexity). But no such thing will happen
in your first sample project, where the use of Flux will actually increase the amount of code necessary to
build it. This is because the purpose of this first example is to help you grasp all of the elements in a Flux
application. Flux can be tricky to newcomers, so you will start on a very basic project, with almost no UI
(or practical use, for that matter) but one that designed to make explicit and well-defined use of all of the
elements in a Flux + React application. In the next section, you will move to complete, real-world examples.

The Bank Account Application
The analogy of using a bank account to describe Flux’s actions and stores was first made by Jeremy Morrell
in his presentation “Those who forget the past are doomed to debug it” (https://speakerdeck.com/
jmorrell/jsconf-uy-flux-those-who-forget-the-past-dot-dot-dot-1), and is used here with his
permission.

A bank account is defined by two things: a transaction and a balance. With every transaction, you
update the balance, as shown in Tables 6-1 and 6-2.

Figure 6-4.  Dispatcher workflow

https://www.facebook.com/jeremy.morrell
https://speakerdeck.com/jmorrell/jsconf-uy-flux-those-who-forget-the-past-dot-dot-dot-1)
https://speakerdeck.com/jmorrell/jsconf-uy-flux-those-who-forget-the-past-dot-dot-dot-1)

Chapter 6 ■ Architecting React Applications with Flux

171

These transactions are how you interact with your bank; they modify the state of your account.
You will recreate this process in a Flux application. In Flux terms, the transactions on the left are

your actions, and the balance on the right is a value that you will track in a store. Your sample application
structure will include

•	 A constants.js file (since all actions should have uniquely identifiable names
across the app, you will store these names as constants).

•	 The standard AppDispatcher.js.

•	 BankActions.js, which will contain three action creators: CreateAccount,
depositIntoAccount, and WithdrawFromAccount. We call the methods “action
creators” because the actions are really just objects. The methods that create and
dispatch these actions, for lack of a better name, are called the action creators.

•	 BankBalanceStore.js, which will keep track of the user’s balance.

•	 Finally, the App.js file, which contains the single UI component you will use in this
project.

Start by creating a new project and installing the Flux library with npm (npm install --save flux).
The next sections will walk through each file in the project.

The Application’s Constants
Let’s get started by defining the constants file. You need three constants to uniquely identify your actions
across the app for creating an account, depositing in the account, and withdrawing from the account.
Listing 6-1 shows the code.

Listing 6-1.  The constants.js File

export default {
 CREATED_ACCOUNT: 'created account',
 WITHDREW_FROM_ACCOUNT: 'withdrew from account',
 DEPOSITED_INTO_ACCOUNT: 'deposited into account'
};

Table 6-1.  The First Transaction Initiates the Balance

Transaction Amount Balance

Create Account $0 $0

Table 6-2.  With Every Transaction, You Update the Balance

Transaction Amount Balance

Create Account $0 $0

Deposit $200 $200

Withdrawal ($50) $150

Deposit $100 $250

$250

Chapter 6 ■ Architecting React Applications with Flux

172

The Dispatcher
Next, let’s define your application dispatcher. As said earlier, you don’t have to think too much about it. For
all that matters, your AppDispatcher file could be as simple as just instantiating a Flux dispatcher.

import {Dispatcher} from 'flux';
export default new Dispatcher();

However, you do have the opportunity to extend the standard dispatcher in your application, and
one thing that will help you better comprehend the dispatcher role is making it log every action that gets
dispatched, as shown in Listing 6-2.

Listing 6-2.  The AppDispatcher.js Extending the Standard Flux Dispatcher to Log Every Dispatch

import {Dispatcher} from 'flux';
 
class AppDispatcher extends Dispatcher{
 dispatch(action = {}) {
 console.log("Dispatched", action);
 super.dispatch(action);
 }
}
 
export default new AppDispatcher();

Action Creators
Moving on in your fake banking application, let’s define some functions that will generate actions in the
application. Remember, an action in the context of a Flux application is just an object that contains a type
and optional data payload. For lack of a better term, we call the functions that define and dispatch actions as
action creators. You create a single JavaScript file with three action creators (creating an account, depositing,
and withdrawing), as shown in Listing 6-3.

Listing 6-3.  The BankActions.js File

import AppDispatcher from './AppDispatcher';
import bankConstants from './constants';
 
let BankActions = {
 
 /**
 * Create an account with an empty value
 */
 createAccount() {
 AppDispatcher.dispatch({
 type: bankConstants.CREATED_ACCOUNT,
 ammount: 0
 });
 },
 

Chapter 6 ■ Architecting React Applications with Flux

173

 /**
 * @param {number} ammount to whithdraw
 */
 depositIntoAccount(ammount) {
 AppDispatcher.dispatch({
 type: bankConstants.DEPOSITED_INTO_ACCOUNT,
 ammount: ammount
 });
 },
 
 /**
 * @param {number} ammount to whithdraw
 */
 withdrawFromAccount(ammount) {
 AppDispatcher.dispatch({
 type: bankConstants.WITHDREW_FROM_ACCOUNT,
 ammount: ammount
 });
 }
 
};
 
export default BankActions;

Store
In the sequence, let’s define your BankBalanceStore file. In a Flux application, the store owns state and
registers itself with the dispatcher. Every time an action gets dispatched, all the stores are invoked and can
decide if they care for that specific action; if one cares, it changes its internal state and emits an event so that
the views can get notified that the store has changed.

To emit events, you need an event emitter package from npm. Node.js that has a default event emitter,
but it is not supported on browsers. There are many different packages in npm that reimplement a node’s
event system on the browser; even Facebook has an open source one, which is a simple implementation that
prioritizes speed and simplicity. Let’s use it: npm install --save fbemitter

Starting with a basic skeleton for your BankAccountStore, you create an event emitter instance and
provide an addListener method to subscribe to the store change event. You also import the application
dispatcher and register the store, providing a callback that is invoked for every dispatched action. The code
is shown in Listing 6-4.

Listing 6-4.  Basic plain-js-object Store

import {EventEmitter} from 'fbemitter';
import AppDispatcher from './AppDispatcher';
import bankConstants from './constants';
 
const CHANGE_EVENT = 'change';
let __emitter = new EventEmitter();
 
let BankBalanceStore = {
 

https://www.npmjs.com/package/fbemitter

Chapter 6 ■ Architecting React Applications with Flux

174

 addListener: (callback) => {
 return __emitter.addListener(CHANGE_EVENT, callback);
 },
 
};
 
BankBalanceStore.dispatchToken = AppDispatcher.register((action) => {
 switch (action.type) {
 }
 
});
 
export default BankBalanceStore;

Notice in the code that you invoked the dispatcher’s register method, passing a callback function. This
function is called every time a dispatch occurs, and you have the opportunity to decide whether the store
does something when certain action types are dispatched.

Additionally, the dispatcher’s register method returns a dispatch token: an identifier that can be used
to coordinate the store’s update order, which you will see later on this chapter.

In the sequence, you need to do two more things: create a variable to store the account balance (as well as
a getter method to access its value) and make the actual switch statements to respond to the actions CREATE_
ACCOUNT, DEPOSIT_INTO_ACCOUNT, and WITHDRAW_FROM_ACCOUNT. Notice that you need to manually emit a change
event after changing the internal value of the account balance. The complete code is shown in Listing 6-5.

Listing 6-5.  The Complete Code for the BankBalanceStore.js

import {EventEmitter} from 'fbemitter';
import AppDispatcher from './AppDispatcher';
import bankConstants from './constants';
 
const CHANGE_EVENT = 'change';
let __emitter = new EventEmitter();
let balance = 0;
 
let BankBalanceStore = {
 
 getState() {
 return balance;
 },
 
 addListener(callback) {
 return __emitter.addListener(CHANGE_EVENT, callback);
 }
 
};
 
BankBalanceStore.dispatchToken = AppDispatcher.register((action) => {
 switch (action.type) {
 case bankConstants.CREATED_ACCOUNT:
 balance = 0;
 __emitter.emit(CHANGE_EVENT);
 break;
 

Chapter 6 ■ Architecting React Applications with Flux

175

 case bankConstants.DEPOSITED_INTO_ACCOUNT:
 balance = balance + action.ammount;
 __emitter.emit(CHANGE_EVENT);
 break;
 
 case bankConstants.WITHDREW_FROM_ACCOUNT:
 balance = balance - action.ammount;
 __emitter.emit(CHANGE_EVENT);
 break;
 }
 
});
 
export default BankBalanceStore;

UI Components
Finally, you need some UI. Your App.js file will import both the store and the actions. It will display the
balance that is controlled by the store and call the action creators when the user clicks the withdraw or
deposit buttons.

Let’s approach this in parts, starting with the store. As shown in Listing 6-6, in the class constructor you
define the local state containing a balance key. The value for this key comes from the BankBalanceStore
(BankBalanceStore.getState()). In the sequence, you use the lifecycle methods componentDidMount and
componentWillUnmount to manage listening for changes in the BankBalanceStore. Whenever the store
changes, the handleStoreChange method is called and the component’s state gets updated (and, as you
already know, as the state changes, the component will re-render itself).

Listing 6-6.  Partial Code for the App Component Getting Its State from BankBalanceStore

import React, { Component } from 'react';
import { render } from 'react-dom';
import BankBalanceStore from './BankBalanceStore';
import BankActions from './BankActions';
  
class App extends Component {
 constructor(){
 super(...arguments);
 BankActions.createAccount();
 this.state = {
 balance: BankBalanceStore.getState()
 }
 }
 
 componentDidMount() {
 this.storeSubscription = BankBalanceStore.addListener(;
 data => this.handleStoreChange (data));
 }
 

Chapter 6 ■ Architecting React Applications with Flux

176

 componentWillUnmount() {
 this.storeSubscription.remove();
 }
 
 handleStoreChange(){
 this.setState({balance: BankBalanceStore.getState()});
 }
}

In the sequence, let’s implement the render function. It takes a text field and two buttons (withdraw
and deposit). You also have two local methods to handle the click of those buttons. The methods simply
call the action creators and clear the text field. The complete code for App.js is shown in Listing 6-7, and a
complementary CSS file for basic styling is shown in Listing 6-8.

Listing 6-7.  The Complete App Component

import React, { Component } from 'react';
import { render } from 'react-dom';
import BankBalanceStore from './BankBalanceStore';
import BankActions from './BankActions';
 
class App extends Component {
 constructor(){
 super(...arguments);
 BankActions.createAccount();
 this.state = {
 balance: BankBalanceStore.getState()
 }
 }
 componentDidMount() {
 this.storeSubscription = BankBalanceStore.addListener(;
 data => this.handleStoreChange(data));
 }
 
 componentWillUnmount() {
 this.storeSubscription.remove();
 }
 
 handleStoreChange(){
 this.setState({balance: BankBalanceStore.getState()});
 }
 
 deposit() {
 BankActions.depositIntoAccount(Number(this.refs.ammount.value));
 this.refs.ammount.value = '';
 
 }
 
 withdraw() {
 BankActions.withdrawFromAccount(Number(this.refs.ammount.value));
 this.refs.ammount.value = '';
 }
 

Chapter 6 ■ Architecting React Applications with Flux

177

 render(){
 return (
 <div>
 <header>FluxTrust Bank</header>
 <h1>Your balance is ${(this.state.balance).toFixed(2)}</h1>
 <div className="atm">
 <input type="text" placeholder="Enter Ammount" ref="ammount" />

 <button onClick={this.withdraw.bind(this)}>Withdraw</button>
 <button onClick={this.deposit.bind(this)}>Deposit</button>
 </div>
 </div>
 
);
 }
}
render(<App />, document.getElementById('root'));

Listing 6-8.  Basic Styling for the Fake Banking Application

body {
 margin: 0;
 font: 16px/1 sans-serif;
 background-color: #318435;
 color: #fff;
 text-align: center;
}
header{
 width:100%;
 padding: 15px;
 text-align: center;
 background-color: #000;
}
h1{
 font-size: 18px;
}
h2{
 font-size: 16px;
}
.atm{
 width: 200px;
 height: 100px;
 border-radius: 10px;
 background-color: #000;
 text-align: center;
 margin: 10px auto 0 auto;
 padding: 20px;
}
.atm input{
 font-size:25px;
 width: 180px
}

Chapter 6 ■ Architecting React Applications with Flux

178

.atm button{
 margin: 5px;
 padding: 20px;
}

If you are following along, now’s a good time to try the withdraw and deposit operations. Make sure you
have the browser console open so you can see the all the actions logged by the dispatcher, as shown in Figure 6-5.

Figure 6-5.  The fake banking app with actions logged

Flux Utils
Since version 2.1, the Flux library includes base classes for defining stores, as well as a higher order function
to use with a container component so it can update its state automatically when relevant stores change.
These utilities are valuable because they help reduce the boilerplate in your application.

Flux Utils Stores
The Flux Utils package provides three base classes to implement stores: Store, ReduceStore, and MapStore.

•	 Store is the simplest one. It is just a small wrapper around a basic store. It helps in
coping with boilerplate code but doesn’t introduce any concepts or new functionalities.

•	 ReduceStore is a very special kind of store. Its name comes from the fact that it uses
reducing functions to modify its internal state. Reducer is a function that calculates
a new state given the previous state and an action, similar to how Array.prototype.
reduce works. The state in a ReduceStore must necessarily be treated as immutable,
so be careful to only store immutable structures or any of the following:

•	 Single primitive values (a string, Boolean value, or a number)

•	 An array or primitive values, as in [1,2,3,4]

•	 An object of primitive values, as in {name:’cassio’, age:35}

•	 An object with nested objects that will be manipulated using React immutable
helpers

•	 MapStore is a variation of ReduceStore with additional helper methods to store key
value pairs instead of a single value.

Chapter 6 ■ Architecting React Applications with Flux

179

Another neat characteristic of ReduceStore (and consequentially MapStore) is that you don’t need to
manually emit change events: the state is compared before and after each dispatch and changes are emitted
automatically.

Let’s use the BankBalanceStore from the previous example to exemplify the Flux Util base stores. For
comparison purposes, you will first take a look at how the exact same result can be achieved using Flux Util’s
Store. In the sequence, you will make a much slimmer version using ReduceStore.

Starting with the base Store, the implementation is actually almost identical to your current
BankBalanceStore, with two main differences:

•	 You don’t need to create your own instance of an event emitter.

•	 You don’t need to manually register the store with the dispatcher; instead, you create
an instance of the store passing the dispatcher as an argument.

This results in a file slightly leaner than your original one, as shown in Listing 6-9.

Listing 6-9.  A BankBalanceStore Version Extending Flux Util’s Base Store Class

import AppDispatcher from './AppDispatcher';
import {Store} from 'flux/utils';
import bankConstants from './constants';
 
let balance = 0;
 
class BankBalanceStore extends Store {
 getState() {
 return __balance;
 }
 
 __onDispatch(action) {
 switch (action.type) {
 case bankConstants.CREATED_ACCOUNT:
 balance = 0;
 this.__emitChange();
 break;
 
 case bankConstants.DEPOSITED_INTO_ACCOUNT:
 balance = balance + action.ammount;
 this.__emitChange();
 break;
 
 case bankConstants.WITHDREW_FROM_ACCOUNT:
 balance = balance - action.ammount;
 this.__emitChange();
 break;
 }
 }
}
 
export default new BankBalanceStore(AppDispatcher);

Chapter 6 ■ Architecting React Applications with Flux

180

But the implementation really shines using ReduceStore instead of using the regular Store. Besides being
cleaner, its functional roots coupled with the use of an immutable data structure allows for a more declarative
programming (just like React) and impacts positively in many other areas (like testing, for example).

Let’s make yet another implementation of your BankBalanceStore, this time using ReduceStore.
To extend ReduceStore, your class needs to implement two methods: getInitialState and reduce. In
getInitialState you define the initial state of your store, and in reduce you modify this state as result of
actions. A default getState method is already defined, so you don’t need to override unless you don’t want
to treat the ReduceStore state as immutable (which defeats the purpose of using a ReduceStore in the first
place, so for practical purposes you will always treat as immutable).

Listing 6-10 shows the complete code for the BankBalanceStore extending ReduceStore. Notice that
there’s no need to emit change events; they are automatically dispatched for you.

Listing 6-10.  BankBalanceStore Extending ReduceStore

import AppDispatcher from './AppDispatcher';
import bankConstants from './constants';
import {ReduceStore} from 'flux/utils';
 
class BankBalanceStore extends ReduceStore {
 getInitialState() {
 return 0;
 }
 
 reduce(state, action){
 switch (action.type) {
 
 case bankConstants.CREATED_ACCOUNT:
 return 0;
 
 case bankConstants.DEPOSITED_INTO_ACCOUNT:
 return state + action.ammount;
 
 case bankConstants.WITHDREW_FROM_ACCOUNT:
 return state - action.ammount;
 
 default:
 return state;
 }
 }
}
 
export default new BankBalanceStore(AppDispatcher);

Container Component Higher Order Function
You learned about container components in Chapter 3. They are used to separate business logic non-related
to UI rendering (such as data fetching) from its corresponding sub-component. By default, containers are
pure, meaning they will not re-render when their state does not change.

http://dx.doi.org/10.1007/978-1-4842-1260-8_3

Chapter 6 ■ Architecting React Applications with Flux

181

■■ Tip O ne note of caution: to use the Flux Util’s higher order function, the container component cannot
access any props. This is both for performance reasons, and to ensure that containers are reusable and that
props do not have to be threaded throughout a component tree.

Let’s see this in practice. You will change the app component to automatically subscribe to the
BankAccountStore and update its state whenever it changes. You start by removing what won’t be
needed anymore: you won’t need to declare the component’s initial state on the constructor. The
componentDidMount and componentWillUnmount lifecycle methods can also be removed because the
higher order component will take care of subscribing to and unsubscribing from the stores for you. For
the same reason, you get rid of the handleStoreChange method. To use this higher order function, your
container component must implement two class methods: calculateState (which maps store state to local
component’s state) and getStores (which returns an array with all the stores the component listens to).
Mind that the container higher order function only works with stores that extend Flux Util’s Stores. Listing
6-11 shows the updated App.js component, which is now 15% smaller than the original.

Listing 6-11.  The App Component Using the Flux Util’s Container Higher Order Function

import React, { Component } from 'react';
import { render } from 'react-dom';
import {Container} from 'flux/utils';
import BankBalanceStore from './BankBalanceStore';
import BankActions from './BankActions';
 
class App extends Component {
 constructor(){
 super(...arguments);
 BankActions.createAccount();
 }
 
 deposit() {
 BankActions.depositIntoAccount(Number(this.refs.ammount.value));
 this.refs.ammount.value = '';
 
 }
 
 withdraw() {
 BankActions.withdrawFromAccount(Number(this.refs.ammount.value));
 this.refs.ammount.value = '';
 }
 
 render(){
 return (
 <div>
 <header>FluxTrust Bank</header>
 <h1>Your balance is ${(this.state.balance).toFixed(2)}</h1>
 <div className="atm">
 <input type="text" placeholder="Enter Ammount" ref="ammount" />

Chapter 6 ■ Architecting React Applications with Flux

182

 <button onClick={this.withdraw.bind(this)}>Withdraw</button>
 <button onClick={this.deposit.bind(this)}>Deposit</button>
 </div>
 </div>
 
);
 }
}
App.getStores = () => ([BankBalanceStore]);
App.calculateState = (prevState) => ({balance: BankBalanceStore.getState()});
 
const AppContainer = Container.create(App);
 
render(<AppContainer />, document.getElementById('root'));

Asynchronous Flux
In any decently complex JavaScript web application, you’ll likely need to deal with asynchronicity. This can
come in basically two forms: from coordinating update order between stores to asynchronous data fetching.

waitFor: Coordinating Store Update Order
In big Flux projects dealing with multiple stores, you may come to a situation where one store depends
on data from another store. The Flux dispatcher provides a method called waitFor() to manage this kind
of dependency; it makes the store wait for the callbacks from the specified stores to be invoked before
continuing execution.

Using your fake bank application, let’s say you have a rewards program that is based on the user’s
current balance. You could create a new BankRewardsStore to handle the current user’s tier on the program,
and since the program is solely based on the user balance, for every operation the BankRewardsStore must
wait for the BankBalanceStore to finish updating, and then update itself accordingly. Listing 6-12 shows the
finished BankRewardsStore.

Listing 6-12.  The BankRewards Store

import AppDispatcher from './AppDispatcher';
import BankBalanceStore from './BankBalanceStore'
import bankConstants from './constants';
import {ReduceStore} from 'flux/utils';
 
class BankRewardsStore extends ReduceStore {
 getInitialState() {
 return 'Basic';
 }
 reduce(state, action){
 this.getDispatcher().waitFor([
 BankBalanceStore.getDispatchToken()
]);
  

Chapter 6 ■ Architecting React Applications with Flux

183

 if (action.type === bankConstants.DEPOSITED_INTO_ACCOUNT ||
 action.type === bankConstants.WITHDREW_FROM_ACCOUNT) {
 let balance = BankBalanceStore.getState();
 if (balance < 5000)
 return 'Basic';
 else if (balance < 10000)
 return 'Silver';
 else if (balance < 50000)
 return 'Gold';
 else
 return 'Platinum';
 }
 return state;
 }
}
export default new BankRewardsStore(AppDispatcher);

The BankRewardsStore responds to both DEPOSIT_INTO_ACCOUNT and WITHDRAW_FROM_ACCOUNT action
types in the same way: by getting the current balance and simply assigning a tier depending on the balance
amount (Basic tier for a balance amount lower than $5,000; Silver tier for a balance amount between $5,000
and $10,000; Gold tier between $10,000 and $50,000; and Platinum tier for a balance amount bigger than
$50,000).

Now you can subscribe to this store on your main component and show the user’s current tier on the
Rewards program. Listing 6-13 shows the updated App.js and Figure 6-6 shows the how the application
looks with the update.

Listing 6-13.  The Updated App.js Subscribing to the BankRewardsStore

import React, { Component } from 'react';
import { render } from 'react-dom';
import {Container} from 'flux/utils';
import BankBalanceStore from './BankBalanceStore';
import BankRewardsStore from './BankRewardsStore';
import BankActions from './BankActions';
 
class App extends Component {
 constructor(){
 super(...arguments);
 BankActions.createAccount();
 }
 
 deposit() {
 BankActions.depositIntoAccount(Number(this.refs.ammount.value));
 this.refs.ammount.value = '';
 }
 
 withdraw() {
 BankActions.withdrawFromAccount(Number(this.refs.ammount.value));
 this.refs.ammount.value = '';
 }
 

Chapter 6 ■ Architecting React Applications with Flux

184

 render(){
 return (
 <div>
 <header>FluxTrust Bank</header>
 <h1>Your balance is ${(this.state.balance).toFixed(2)}</h1>
 <h2>Your Points Rewards Tier is {this.state.rewardsTier}</h2>
 <div className="atm">
 <input type="text" placeholder="Enter Ammount" ref="ammount" />

 <button onClick={this.withdraw.bind(this)}>Withdraw</button>
 <button onClick={this.deposit.bind(this)}>Deposit</button>
 </div>
 </div>
 
);
 }
}
App.getStores = () => ([BankBalanceStore, BankRewardsStore]);
App.calculateState = (prevState) => ({
 balance: BankBalanceStore.getState(),
 rewardsTier: BankRewardsStore.getState()
});
 
const AppContainer = Container.create(App);
 
render(<AppContainer />, document.getElementById('root'));

Figure 6-6.  The updated fake bank account with a fake rewards program

Asynchronous Data Fetching
As you’ve seen so far, general usage within Flux is straightforward, but the one thing that is not exactly
intuitive is where to handle asynchronous requests. Where should you fetch data? How do you make the
response go through the Flux data flow?

Although the library does not enforce a specific place to make fetch operations, a best practice that
emerged from the community is to create a separate module to wrap all your requests and API calls (a file
such as APIutils.js). The API utils can be called from anywhere, but they always make the async requests
and then talk to the action creators to dispatch actions (so any store can choose to act on them).

Chapter 6 ■ Architecting React Applications with Flux

185

Remember that when you call an asynchronous API, there are two crucial moments in time: the
moment you start the call, and the moment when you receive an answer (or a timeout). For that reason, the
API utility module will always dispatch at least three different kinds of actions: an action informing the stores
that the request began, an action informing the stores that the request finished successfully, and an action
informing the stores that the request failed.

Having a separate module wrapping the communication with the API and dispatching different actions
in time offers many advantages because it isolates the rest of the system from the asynchronous execution.
As soon as the actions get dispatched, the code is executed in a synchronous fashion from the point of view
of the stores and the components, and this makes it easier to reason about them.

Let’s exemplify this by creating a new application: a site for airline tickets.

AirCheap Application
The application will fetch a list of airports as soon as it loads, and when the user fills the origin and
destination airports, the application will talk to an API to fetch airline ticket prices. Figure 6-7 shows the
working application.

Figure 6-7.  The AirCheap tickets app

Setup: Project Organization and Basic Files
To start the project in an organized way, you’re going to create folders for Flux-related files (action creators,
stores, and an API folder for API utility modules) and a folder for React components. The initial project
structure will look like Figure 6-8.

Chapter 6 ■ Architecting React Applications with Flux

186

Let’s start creating the project files, beginning with the AppDispatcher. Remember, the AppDispatcher
can be simply an instance of the Flux dispatcher, as shown in Listing 6-14. Some developers prefer to create
a dispatchers folder, but since a Flux application will always have a single dispatcher, you will just save the
AppDispatcher.js file in the root level of the app folder.

Listing 6-14.  Simplest AppDispatcher.js Form

import {Dispatcher} from 'flux';
export default new Dispatcher();

Of course, you could extend the dispatcher functionality. If you want to log all dispatcher actions, for
example, just overwrite the dispatch method as you did in the Fake Bank account app.

Next, let’s create your constants.js file. When developing an application in a real-world scenario, you
would probably start the constants.js file with just a few constants and increase them as needed, but in
your case you already know beforehand all the constants you want to use:

•	 FETCH_AIRPORTS to name the action you dispatch as the application starts to fetch
all the airports. And since this is an async operation, you also create the FETCH_
AIRPORTS_SUCCESS and FETCH_AIRPORTS_ERROR constants to represent the success
and error on the operation.

•	 CHOOSE_AIRPORT to name a synchronous action of the user selection an airport (as
both origin OR destination).

•	 The FETCH_TICKETS constant to name the action that you dispatch when both
an origin and a destination are selected. This is an asynchronous data fetching
operation, so you also need constants to represent success and, eventually, an error
on the fetch operation: FETCH_TICKETS_SUCCESS and FETCH_TICKETS_ERROR.

Listing 6-15 shows the final constants.js file.

Figure 6-8.  The app folder structure for the AirCheap project

Chapter 6 ■ Architecting React Applications with Flux

187

Listing 6-15.  The constants.js File

export default {
 FETCH_AIRPORTS: 'fetch airports',
 FETCH_AIRPORTS_SUCCESS: 'fetch airports success',
 FETCH_AIRPORTS_ERROR: 'fetch airports error',
 CHOOSE_AIRPORT: 'choose airport',
 FETCH_TICKETS: 'fetch tickets',
 FETCH_TICKETS_SUCCESS: 'fetch tickets success',
 FETCH_TICKETS_ERROR: 'fetch tickets error'
};

Creating the API Helper and ActionCreators for Fetching Airports
Let’s create an API helper to deal with the airport and ticket fetching. As discussed earlier, creating a
segregated helper module to interact with the API will help keep the actions clean and minimal. For the sake
of simplicity, in the case of this sample application, the API helper method will load a static json file in your
public folder containing a list of the biggest airports in the world instead of using an actual remote API.
You can download the airports.json file and the other public assets for this project from the Apress site
(www.apress.com) or from this book’s GitHub page (http://pro-react.github.io). In any case,
a trimmed down version of the airports.json file is shown in Listing 6-16.

Listing 6-16.  A Trimmed Down Version of the public/airports.json File

[
 { "code": "ATL", "city": "Atlanta GA", "country": "US" },
 { "code": "LHR", "city": "London", "country": "GB" },
 { "code": "JFK", "city": "New York NY", "country": "US" },
 { "code": "ORD", "city": "Chicago IL", "country": "US" },
 { "code": "HND", "city": "Tokyo", "country": "JP" },
 { "code": "LAX", "city": "Los Angeles CA", "country": "US" },
 { "code": "CDG", "city": "Paris", "country": "FR" },
 { "code": "FRA", "city": "Frankfurt", "country": "DE" },
 { "code": "MAD", "city": "Madrid", "country": "ES" },
 { "code": "SFO", "city": "San Francisco CA", "country": "US" },
 { "code": "GRU", "city": "São Paulo", "country": "BR" },
 { "code": "DME", "city": "Moscow", "country": "RU" }
]

In sequence, let’s create the api/AirCheapAPI.js file. It contains a function called fetchAirports that
loads the airports from the remote json file and calls the actioncreators to dispatch a success or error action.
Listing 6-17 shows a first draft of the file.

Listing 6-17.  First Attempt at api/AirCheapAPI.js File

import 'whatwg-fetch';
 
let AirCheapAPI = {
 fetchAirports() {
 fetch('airports.json')
 .then((response) => response.json())
 .then((responseData) =>{

www.apress.com
http://pro-react.github.io

Chapter 6 ■ Architecting React Applications with Flux

188

 // Call the AirportActionCreators success action with the parsed data
 })
 .catch((error) => {
 // Call the AirportActionCreators error action with the error object
 });
 }
};
 
export default AirCheapAPI;

■■ Note A s in earlier examples, you’re using the native fetch function to load the json file and importing the
whatwg-fetch npm module that provides support for fetch in older browsers. Don’t forget to install it with npm
install --save whatwg-fetch.

When the API module is called, it will fetch the remote data and success or errors actions itself
by talking to the action creators. You don’t have the AirportActionCreators yet, but assuming it will
contain fetchAirportsSuccess and fetchAirportsError functions, you can complete the AirCheapAPI
implementation, as shown in Listing 6-18.

Listing 6-18.  The Complete api/AirCheapAPI.js Dispatching Success and/or Error Actions

import 'whatwg-fetch';
import AirportActionCreators from '../actions/AirportActionCreators';
 
 
let AirCheapAPI = {
 fetchAirports() {
 fetch('airports.json')
 .then((response) => {
 return response.json()
 })
 .then((responseData) =>{
 // Call the AirportActionCreators success action with the parsed data
 AirportActionCreators.fetchAirportsSuccess(responseData);
 })
 .catch((error) => {
 // Call the AirportActionCreators error action with the error object
 AirportActionCreators.fetchAirportsError(error);
 });
 }
};
 
export default AirCheapAPI;

Moving to the AirportActionCreators, remember that actions are like messages that get dispatched
through all stores: they just communicate what happened to the app. There is no place for business
logic or computations on an action. With this knowledge, developing an ActionCreator module is pretty
straightforward. Listing 6-19 shows the AirportActionCreators file.

Chapter 6 ■ Architecting React Applications with Flux

189

Listing 6-19.  The actions/AirportActionCreators.js File

import AppDispatcher from '../AppDispatcher';
import constants from '../constants';
import AirCheapAPI from '../api/AirCheapAPI';
 
let AirportActionCreators = {
  
 fetchAirports() {
 AirCheapAPI.fetchAirports();
 AppDispatcher.dispatch({
 type: constants.FETCH_AIRPORTS,
 });
 },
 
 fetchAirportsSuccess(response) {
 AppDispatcher.dispatch({
 type: constants.FETCH_AIRPORTS_SUCCESS,
 payload: {response}
 });
 },
 
 fetchAirportsError(error) {
 AppDispatcher.dispatch({
 type: constants.FETCH_AIRPORTS_ERROR,
 payload: {error}
 });
 }
 
};
 
export default AirportActionCreators;

AirportStore
The airport store could act on all the possible dispatched actions. It could act on fetchAirports to set a
variable indicating that it is currently loading. It could act on fetchAirportsError to set a variable with an
appropriate error message and, obviously, it could act on fetchAirportsSuccess to set its internal state to
the list of fetched airports.

Let’s get started by doing the absolutely minimum: you create the AirportStore.js, inheriting from
ReduceStore. Its state will contain the list of airports, starting as an empty array and getting populated as the
store acts on fetchAirportsSuccess action. Listing 6-20 shows the complete source code.

Listing 6-20.  The actions/AirportStore.js Source File

import AppDispatcher from '../AppDispatcher';
import constants from '../constants';
import {ReduceStore} from 'flux/utils';
 
class AirportStore extends ReduceStore {
 getInitialState() {
 return [];
 }

Chapter 6 ■ Architecting React Applications with Flux

190

 reduce(state, action){
 switch (action.type) {
 
 case constants.FETCH_AIRPORTS_SUCCESS:
 return action.payload.response;
 
 default:
 return state;
 }
 }
}
export default new AirportStore(AppDispatcher);

App Component
Next, let’s implement the interface for the AirCheap Application. The user will interact with the application
by filling two text fields (Origin and Destination), and to make things easier for the user, you implement an
auto-suggest feature that suggests airports as the user types, as shown in Figure 6-9.

Figure 6-9.  Component with auto suggestions

There are many auto-suggestion libraries available (as a quick search on npmjs.com reveals). In this
example, you use react-auto-suggest, so be sure to install it using NPM (npm install –save react-auto-
suggest).

You start by creating a basic structure for your App component. It uses the Flux Util’s Container
(to listen for store changes and map the stores state to the local component state) and invokes the
AirportActionCreator on the lifecycle method componentDidMount to trigger the async loading of the
airports. Listing 6-21 shows the basic structure of App.js.

https://www.npmjs.com/package/react-auto-suggest
https://www.npmjs.com/package/react-auto-suggest
https://www.npmjs.com/package/react-auto-suggest

Chapter 6 ■ Architecting React Applications with Flux

191

Listing 6-21.  The Basic app.js Component Structure

import React, { Component } from 'react';
import { render } from 'react-dom';
import {Container} from 'flux/utils';
import Autosuggest from 'react-autosuggest';
import AirportStore from './stores/AirportStore';
import AirportActionCreators from './actions/AirportActionCreators';
 
class App extends Component {
 componentDidMount(){
 AirportActionCreators.fetchAirports();
 }
 
 render() {
 return (
 <div>
 <header>
 <div className="header-brand">

 <p>Check discount ticket prices and pay using your AirCheap points</p>
 </div>
 <div className="header-route">
 <Autosuggest id='origin'
 inputAttributes={{placeholder:'From'}} />
 
 <Autosuggest id='destination'
 inputAttributes={{placeholder:'To'}} />
 </div>
 
 </header>
 </div>
);
 }
}
 
App.getStores = () => ([AirportStore]);
App.calculateState = (prevState) => ({
 airports: AirportStore.getState()
});
 
const AppContainer = Container.create(App);
render(<AppContainer />, document.getElementById('root'));

If you run this application now, the react-auto-suggest library will throw an error. It expects a
suggestions function to be passed as props. This function gets called every time the user changes the
input value of the text field and should return a list of suggestions to be displayed. The function is shown in
Listing 6-22.

Chapter 6 ■ Architecting React Applications with Flux

192

Listing 6-22.  The getSuggestions Function

 getSuggestions(input, callback) {
 const escapedInput = input.trim().toLowerCase();
 const airportMatchRegex = new RegExp('\\b' + escapedInput, 'i');
 const suggestions = this.state.airports
 .filter(airport => airportMatchRegex.test(airport.city))
 .sort((airport1, airport2) => {
 airport1.city.toLowerCase().indexOf(escapedInput) - ;
 airport2.city.toLowerCase().indexOf(escapedInput)
 })
 .slice(0, 7)
 .map(airport => `${airport.city} - ${airport.country} (${airport.code})`);
 callback(null, suggestions);
 }

The function receives two parameters: the text inputted by the user and a callback function to call with
the suggestions.

In the first lines of the function, you clean up the user input by removing trailing spaces and
transforming everything to lowercase. In the following line, you create a regular expression with the escaped
user input. This regular expression is then used to filter the list of airports (based on the city name).

Besides filtering the airports, you do three other transformations. You sort the airports so that the
occurrences where the word is matched at the beginning appear first, you limit the results to a maximum of
seven, and you map the output to a specific format of “city name – country initials (airport code).”

The updated code for the App component with the suggestion function passed as props to the
Autosuggest components is shown in Listing 6-23. A matching CSS file with the application style is shown in
Listing 6-24.

Listing 6-23.  The App Component with Working Airport Suggestions Field

import React, { Component } from 'react';
import { render } from 'react-dom';
import {Container} from 'flux/utils';
import Autosuggest from 'react-autosuggest';
import AirportStore from './stores/AirportStore';
import AirportActionCreators from './actions/AirportActionCreators';
 
class App extends Component {
 getSuggestions(input, callback) {
 const escapedInput = input.trim().toLowerCase();
 const airportMatchRegex = new RegExp('\\b' + escapedInput, 'i');
 const suggestions = this.state.airports
 .filter(airport => airportMatchRegex.test(airport.city))
 .sort((airport1, airport2) => {
 return airport1.city.toLowerCase().indexOf(escapedInput) - ;
 airport2.city.toLowerCase().indexOf(escapedInput)
 })
 .slice(0, 7)
 .map(airport => `${airport.city} - ${airport.country} (${airport.code})`);
 callback(null, suggestions);
 }
 

Chapter 6 ■ Architecting React Applications with Flux

193

 componentDidMount(){
 AirportActionCreators.fetchAirports();
 }
 
 render() {
 return (
 <div>
 <header>
 <div className="header-brand">

 <p>Check discount ticket prices and pay using your AirCheap points</p>
 </div>
 <div className="header-route">
 <Autosuggest id='origin'
 suggestions={this.getSuggestions.bind(this)}
 inputAttributes={{placeholder:'From'}} />
 
 <Autosuggest id='destination'
 suggestions={this.getSuggestions.bind(this)}
 inputAttributes={{placeholder:'To'}} />
 </div>
 
 </header>
 </div>
);
 }
}
 
App.getStores = () => ([AirportStore]);
App.calculateState = (prevState) => ({
 airports: AirportStore.getState()
});
 
const AppContainer = Container.create(App);
 
render(<AppContainer />, document.getElementById('root'));

Listing 6-24.  The AirCheap Application Style Sheet

* {
 box-sizing: border-box;
}
body {
 margin: 0;
 font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
}
header {
 padding-top: 10px;
 border-bottom: 1px solid #ccc;
 border-top: 4px solid #08516E;
 height: 115px;
 background-color: #f6f6f6;
}

Chapter 6 ■ Architecting React Applications with Flux

194

p {
 margin:0;
 font-size: 10px;
}
.header-brand {
 text-align: center;
}
.header-route {
 margin-top: 10px;
 margin-left: calc(50% - 205px)
}
 
.react-autosuggest {
 position: relative;
 float: left;
 margin-right: 5px;
}
.react-autosuggest input {
 width: 200px;
 height: 30px;
 padding: 14px 10px;
 font-size: 13px;
 border: 1px solid #aaaaaa;
 border-radius: 4px;
}
.react-autosuggest input[aria-expanded="true"] {
 border-bottom-left-radius: 0;
 border-bottom-right-radius: 0;
}
.react-autosuggest input:focus {
 outline: none;
}
.react-autosuggest__suggestions {
 position: absolute;
 top: 29px;
 width: 200px;
 margin: 0;
 padding: 0;
 list-style-type: none;
 border: 1px solid #aaaaaa;
 background-color: #fff;
 font-size: 13px;
 border-bottom-left-radius: 4px;
 border-bottom-right-radius: 4px;
 z-index: 2;
}
.react-autosuggest__suggestions-section-suggestions {
 margin: 0;
 padding: 0;
 list-style-type: none;
}

Chapter 6 ■ Architecting React Applications with Flux

195

.react-autosuggest__suggestion {
 cursor: pointer;
 padding: 10px 10px;
}
.react-autosuggest__suggestion--focused {
 background-color: #ddd;
}
.ticket {
 padding: 20px 10px;
 background-color: #fafafa;
 margin: 5px;
 border: 1px solid #e5e5df;
 border-radius: 3px;
 box-shadow: 0 1px 0 rgba(0, 0, 0, 0.25);
}
.ticket span {
 display: inline-block;
}
.ticket-company {
 font-weight: bold;
 font-style: italic;
 width: 13%;
}
.ticket-location {
 text-align: center;
 width: 29%;
}
.ticket-separator {
 text-align: center;
 width: 6%;
}
.ticket-connection {
 text-align: center;
 width: 10%;
}
.ticket-points {
 width: 13%;
 text-align: right;
}

If you test the application right now, you should see the autosuggest fields in action: just start typing
a few letters. But the application is not finished. After choosing an origin and a destination, nothing else
happens. In the next section, let’s start implementing the ticket loading.

Finishing the AirCheap application: Loading Tickets
You’re fetching the airport data asynchronously as soon as the app component mounts, but there’s one
more fetch to be done: you need to fetch the actual ticket list when the user chooses the desired origin and
destination.

Chapter 6 ■ Architecting React Applications with Flux

196

The process is very similar to what you did for fetching airports. You put all the code that handles the
actual data fetching in an API helper module. You create action creators to signal the data-fetching steps
(loading initiated, loaded data successfully, or error in loading) and make a new store to keep the loaded
tickets in its state. The App component is connected to the store and shows the loaded tickets data.

API Helper
For the sake of simplicity, instead of using a real API to return a list of flights and tickets, you load them from
a static json file (flights.json). Obviously this means that whichever airports the user chooses, the loaded
tickets will always be the same, but since your focus is on learning the Flux architecture, this will suffice. The
flights.json file is shown in Listing 6-25, showing available flight tickets for a trip from São Paulo (GRU) to
New York (JFK).

Listing 6-25.  The flights.json File

[
 {
 "id": "fc704c16fd79",
 "company": "US Airlines",
 "points": 25000,
 "duration": 590,
 "segment": [
 {
 "duration": 590,
 "departureTime": "2016-10-10T21:30-03:00",
 "arrivalTime": "2016-10-11T06:20-04:00",
 "origin": "GRU",
 "destination": "JFK"
 }
]
 },
 {
 "id": "3fe21e46fd78",
 "company": "Dalta",
 "points": 20000,
 "duration": 862,
 "segment": [
 {
 "duration": 635,
 "departureTime": "2016-10-16T20:25-03:00",
 "arrivalTime": "2016-10-17T06:00-04:00",
 "origin": "GRU",
 "destination": "YYZ",
 "connectionDuration": 125
 },
 {
 "duration": 102,
 "departureTime": "2016-10-17T08:05-04:00",
 "arrivalTime": "2016-10-17T09:47-04:00",

Chapter 6 ■ Architecting React Applications with Flux

197

 "origin": "YYZ",
 "destination": "JFK"
 }
]
 },
 {
 "id": "8bf2b3d7be09",
 "company": "Aviana",
 "points": 17000,
 "duration": 1050,
 "segment": [
 {
 "duration": 515,
 "departureTime": "2016-10-10T21:25-03:00",
 "arrivalTime": "2016-10-11T05:00-04:00",
 "origin": "GRU",
 "destination": "MIA",
 "connectionDuration": 145
 },
 {
 "duration": 192,
 "departureTime": "2016-10-11T07:25-04:00",
 "arrivalTime": "2016-10-11T10:37-04:00",
 "origin": "MIA",
 "destination": "YYZ",
 "connectionDuration": 98
 },
 {
 "duration": 100,
 "departureTime": "2016-10-11T12:15-04:00",
 "arrivalTime": "2016-10-11T13:55-04:00",
 "origin": "YYZ",
 "destination": "JFK"
 }
]
 }
]

Next, let’s edit the AirCheapApi.js module to add methods to fetch the json file and dispatch
the corresponding actions. As you did when you first created the AirCheapAPI file, you again assume
that you will later implement some methods in the AirportActionCreators (fetchTicketsSuccess and
fetchTicketsError). Listing 6-26 shows the updated file.

Listing 6-26.  The Updated AirCheapAPI.js File to Fetch Tickets

import 'whatwg-fetch';
import AirportActionCreators from '../actions/AirportActionCreators';
 
let AirCheapAPI = {
 fetchAirports() {
 fetch('airports.json')

Chapter 6 ■ Architecting React Applications with Flux

198

 .then((response) => response.json())
 .then((responseData) =>{
 AirportActionCreators.fetchAirportsSuccess(responseData);
 })
 .catch((error) => {
 AirportActionCreators.fetchAirportsError(error);
 });
 },
 
 fetchTickets(origin, destination) {
 fetch('flights.json')
 .then((response) => response.json())
 .then((responseData) => {
 AirportActionCreators.fetchTicketsSuccess(responseData);
 })
 .catch((error) => {
 AirportActionCreators.fetchTicketsError(error);
 });
 }
};
 
export default AirCheapAPI;

ActionCreators
Moving on, let’s edit the AirportActionCreators.js file. Of course you need to add the three necessary
action creators for ticket fetching, but let’s start implementing another one, the chooseAirport action creator.

You provide the user with two auto-suggestion fields in the interface for selecting origin and destination
airports, but so far nothing happens when the user chooses an airport. The chooseAirport action creator
will be used for this purpose: it is invoked when either airport (origin or destination) is selected. Listing 6-27
shows the updated AirportActionCreators.

Listing 6-27.  Adding Action Creators for Ticket Fetching

import AppDispatcher from '../AppDispatcher';
import constants from '../constants'
import AirCheapAPI from '../api/AirCheapApi';
 
let AirportActionCreators = {
 
 fetchAirports() {...},
 fetchAirportsSuccess(response) {...},
 fetchAirportsError(error) {...},
 
 chooseAirport(target, code) {
 AppDispatcher.dispatch({
 type: constants.CHOOSE_AIRPORT,
 target,
 code
 });
 },
 

Chapter 6 ■ Architecting React Applications with Flux

199

 fetchTickets() {
 AirCheapAPI.fetchTickets();
 AppDispatcher.dispatch({
 type: constants.FETCH_TICKETS,
 });
 },
 
 fetchTicketsSuccess(response) {
 AppDispatcher.dispatch({
 type: constants.FETCH_TICKETS_SUCCESS,
 payload: {response}
 });
 },
 
 fetchTicketsError(error) {
 AppDispatcher.dispatch({
 type: constants.FETCH_TICKETS_ERROR,
 payload: {error}
 });
 }
};
 
export default AirportActionCreators;

Stores
You next create two stores. The first store, RouteStore, holds the user selected origin and destination airports.
The second store, TicketStore, holds the list of airline tickets that will be fetched when both airports are selected.

Let’s start with the RouteStore. It inherits from MapStore, which allows it to hold multiple key-value
pairs. There are only two possible keys, origin and destination, and the store responds to the CHOOSE_
AIRPORT action type to update the value of one of these keys with an airport code. Listing 6-28 shows the
complete source code.

Listing 6-28.  Complete Source Code for the stores/RouteStore.js File

import AppDispatcher from '../AppDispatcher';
import constants from '../constants';
import {MapStore} from 'flux/utils';
 
class RouteStore extends MapStore {
 reduce(state, action){
 switch (action.type) {
 case constants.CHOOSE_AIRPORT:
 // action.target can be either “origin” or “destination”
 // action.code contains the selected airport code
 return state.set(action.target, action.code);
 default:
 return state;
 }
 }
}
export default new RouteStore(AppDispatcher);

Chapter 6 ■ Architecting React Applications with Flux

200

The TicketStore is very similar to the AirportStore. It inherits from ReduceStore and updates its state
when the FETCH_TICKETS_SUCCESS action is dispatched. Listing 6-29 shows the complete source.

Listing 6-29.  Source Code for the stores/TicketStore.js File

import AppDispatcher from '../AppDispatcher';
import AirportActions from '../actions/AirportActionCreators';
import constants from '../constants';
import RouteStore from './RouteStore';
import {ReduceStore} from 'flux/utils';
 
class TicketStore extends ReduceStore {
 getInitialState() {
 return [];
 }
 reduce(state, action){
 switch (action.type) {
 case constants.FETCH_TICKETS:
 return [];
 case constants.FETCH_TICKETS_SUCCESS:
 return action.payload.response;
 default:
 return state;
 }
 }
}
export default new TicketStore(AppDispatcher);

Notice that the TicketStore also responds to the FETCH_TICKETS action by resetting its state to an empty
array. This way, every time you try to fetch different tickets, the interface can be immediately updated to
clear any previous tickets that may exist.

Interface Components
Let’s begin your work on the interface by creating a new component, the TicketItem.js. It receives the
component info as a prop and displays a single ticket row. The component’s code is shown in Listing 6-30.

Listing 6-30.  The components/TicketItem.js Component

import React, { Component, PropTypes } from 'react';
 
// Default data configuration
const dateConfig = {
 weekday: "short",
 year: "numeric",
 month: "short",
 day: "numeric",
 hour: "2-digit",
 minute: "2-digit"
};
 

Chapter 6 ■ Architecting React Applications with Flux

201

class TicketItem extends Component {
 render() {
 let {ticket} = this.props;
 let departureTime = new Date(ticket.segment[0].departureTime) ;
 .toLocaleDateString("en-US",dateConfig);
 let arrivalTime = new Date(ticket.segment[ticket.segment.length-1].arrivalTime) ;
 .toLocaleDateString("en-US",dateConfig);
 
 let stops;
 if(ticket.segment.length === 2){
 stops = '1 stop';
 } else if(ticket.segment.length-1 > 1) {
 stops = ticket.segment.length-1 + ' stops';
 }
 
 return(
 <div className='ticket'>
 {ticket.company}

 {ticket.segment[0].origin}{' '}
 <small>{departureTime}</small>

 {ticket.segment[ticket.segment.length-1].destination}{' '}
 <small>{arrivalTime}</small>

 {stops}

 <button>{ticket.points} points</button>

 </div>
);
 }
}
TicketItem.propTypes = {
 ticket: PropTypes.shape({
 id: PropTypes.string,
 company: PropTypes.string,
 points: PropTypes.number,
 duration: PropTypes.number,
 segment: PropTypes.array
 }),
};
 
export default TicketItem;

Chapter 6 ■ Architecting React Applications with Flux

202

In the sequence, let’s update the main App component. There are a few things you need to do:

•	 Make the component listen to updates from the new stores (RouteStore and
TicketStore) and calculate its state using both store states. To do this, edit the static
methods getStores and calculateState:

App.getStores = () => ([AirportStore,RouteStore,TicketStore]);
App.calculateState = (prevState) => ({
 airports: AirportStore.getState(),
 origin: RouteStore.get('origin'),
 destination: RouteStore.get('destination'),
 tickets: TicketStore.getState()
});

•	 Invoke the chooseAirport action creator when the user chooses an origin
or destination airport. To do this, you pass a callback to the AutoSuggest’s
onSuggestionSelected prop. You could have two different callbacks (one for the
origin field and other for the destination field), but using JavaScript’s bind function
you can have just one callback function and pass a different parameter for each field:

<Autosuggest id='origin'
 suggestions={this.getSuggestions.bind(this)}
 onSuggestionSelected={this.handleSelect.bind(this,'origin')}
 value={this.state.origin}
 inputAttributes={{placeholder:'From'}} />
<Autosuggest id='destination'
 suggestions={this.getSuggestions.bind(this)}
 onSuggestionSelected={this.handleSelect.bind(this,'destination')}
 value={this.state.destination}
 inputAttributes={{placeholder:'To'}} />

The handleSelect function uses a regular expression to separate the airport code
from the string and invokes the chooseAirport action creator:

handleSelect(target, suggestion, event){
 const airportCodeRegex = /\(([^)]+)\)/;
 let airportCode = airportCodeRegex.exec(suggestion)[1];
 AirportActionCreators.chooseAirport(target, airportCode);
}

•	 Invoke the fetchTickets action creator when the user chooses both an origin and
a destination aiport. You can do this on the componentWillUpdate lifecycle method;
every time the user selects an airport, you invoke the chooseAirport action creator,
and as a consequence the RouteStore dispatches a change event, and the App
component will be updated. You check for two things before invoking the action
creator: if both origin and destination were chosen and if either one has changed
since the last update (so you only fetch once):

componentWillUpdate(nextProps, nextState){
 let originAndDestinationSelected = ;
 nextState.origin && nextState.destination;
 let selectionHasChangedSinceLastUpdate = ;

Chapter 6 ■ Architecting React Applications with Flux

203

 nextState.origin !== this.state.origin ||
 nextState.destination !== this.state.destination;
 if(originAndDestinationSelected && selectionHasChangedSinceLastUpdate){
 AirportActionCreators.fetchTickets(nextState.origin, ;
 nextState.destination);
 }
}

•	 Finally, import and implement the Ticket Item component you just created to show
the loaded tickets:

render() {
 let ticketList = this.state.tickets.map((ticket)=>(
 <TicketItem key={ticket.id} ticket={ticket} />
));
 return (
 <div>
 <header>
 <div className="header-brand">...</div>
 <div className="header-route">
 <Autosuggest id='origin' ... />
 <Autosuggest id='destination' ... />
 </div>
 </header>
 <div>
 {ticketList}
 </div>
 
 </div>
);
 }

Listing 6-31 shows the complete updated App component with all the mentioned changes.

Listing 6-31.  The Updated App Component

import React, { Component } from 'react';
import { render } from 'react-dom';
import ReactDOM from 'react-dom';
import {Container} from 'flux/utils';
import Autosuggest from 'react-autosuggest';
import AirportStore from './stores/AirportStore';
import RouteStore from './stores/RouteStore';
import TicketStore from './stores/TicketStore';
import TicketItem from './components/TicketItem';
import AirportActionCreators from './actions/AirportActionCreators';
 
class App extends Component {
 getSuggestions(input, callback) {
 const escapedInput = input.trim().toLowerCase();
 const airportMatchRegex = new RegExp('\\b' + escapedInput, 'i');
 const suggestions = this.state.airports

Chapter 6 ■ Architecting React Applications with Flux

204

 .filter(airport => airportMatchRegex.test(airport.city))
 .sort((airport1, airport2) => {
 return airport1.city.toLowerCase().indexOf(escapedInput) - ;
 airport2.city.toLowerCase().indexOf(escapedInput)
 })
 .slice(0, 7)
 .map(airport => `${airport.city} - ${airport.country} (${airport.code})`);
 callback(null, suggestions);
 }
 
 handleSelect(target, suggestion, event){
 const airportCodeRegex = /\(([^)]+)\)/;
 let airportCode = airportCodeRegex.exec(suggestion)[1];
 AirportActionCreators.chooseAirport(target, airportCode);
 }
 
 componentDidMount(){
 AirportActionCreators.fetchAirports();
 }
 
 componentWillUpdate(nextProps, nextState){
 let originAndDestinationSelected = nextState.origin && nextState.destination;
 let selectionHasChangedSinceLastUpdate = nextState.origin !== this.state.origin ||
 nextState.destination !== this.state.
destination;
 if(originAndDestinationSelected && selectionHasChangedSinceLastUpdate){
 AirportActionCreators.fetchTickets(nextState.origin, nextState.destination);
 }
 }
 
 render() {
 let ticketList = this.state.tickets.map((ticket)=>(
 <TicketItem key={ticket.id} ticket={ticket} />
));
 return (
 <div>
 <header>
 <div className="header-brand">

 <p>Check discount ticket prices and pay using your AirCheap points</p>
 </div>
 <div className="header-route">
 <Autosuggest id='origin'
 suggestions={this.getSuggestions.bind(this)}
 onSuggestionSelected={this.handleSelect.bind(this,'origin')}
 value={this.state.origin}
 inputAttributes={{placeholder:'From'}} />
 
 <Autosuggest id='destination'
 suggestions={this.getSuggestions.bind(this)}
 onSuggestionSelected={this.handleSelect.bind(this,'destination')}

Chapter 6 ■ Architecting React Applications with Flux

205

 value={this.state.destination}
 inputAttributes={{placeholder:'To'}} />
 </div>
 
 </header>
 <div>
 {ticketList}
 </div>
 </div>
);
 }
}
 
App.getStores = () => ([AirportStore, RouteStore,TicketStore]);
App.calculateState = (prevState) => ({
 airports: AirportStore.getState(),
 origin: RouteStore.get('origin'),
 destination: RouteStore.get('destination'),
 tickets: TicketStore.getState()
});
 
const AppContainer = Container.create(App);
 
render(<AppContainer />, document.getElementById('root'));

If you test now, the application should be working and loading tickets after the origin and destinations
are selected.

Evolving Your Async Data Fetching Implementation
You saw that the best approach for asynchronous API communication within Flux is to encapsulate all
API specific code in an API helper module. You invoke the API helper module through an action, and all
remote data loaded asynchronously by the API helper module enters the system through an action. This
is an elegant solution that follows the Flux principles of single direction data flow and isolates the rest
of the system (stores and components) from async code. But it’s possible to further evolve this model to
remove some boilerplate and decouple the API Helper module from the action creators. You achieve this by
implementing a new method in the AppDispatcher: dispatch sync.

AppDispatcher’s dispatchAsync
The Flux’s dispatcher contains just a few public methods, and generally the most used one is dispatch. As
you already know, the dispatch method is used to dispatch an action through all the registered stores.

As you saw in the earlier topics about asynchronous API (and in the sample AirCheap application), for
every async operation there are three actions (async operation request, success, and failure). The generic
dispatchAsync method expects a promise as a parameter, and the constants represent all steps of the async
operation (request, success, failure) and automatically dispatch them based on the promise resolution.

Listing 6-32 shows the updated AppDispatcher with the dispatchAsync method implementation.
Notice that you are using the Babel polyfill to make sure the Object.assign works on legacy browsers (make
sure to install it using npm install --save babel-polyfill).

Chapter 6 ■ Architecting React Applications with Flux

206

Listing 6-32.  AppDispatcher with dispatchAsync

import {Dispatcher} from 'flux';
import 'babel-polyfill';
 
 
class AppDispatcher extends Dispatcher{
 dispatch(action = {}) {
 console.log("Dispatched", action.type);
 super.dispatch(action);
 }
 
 /**
 * Dispatches three actions for an async operation represented by promise.
 */
 dispatchAsync(promise, types, payload){
 const { request, success, failure } = types;
 this.dispatch({ type: request, payload: Object.assign({}, payload) });
 promise.then(
 response => this.dispatch({
 type: success,
 payload: Object.assign({}, payload, { response })
 }),
 error => this.dispatch({
 type: failure,
 payload: Object.assign({}, payload, { error })
 })
);
 }
}
 
export default new AppDispatcher();

With this method, you can save a lot of typing in the ActionCreators, since instead of creating three
methods for each async operation you can create only one. As an example, Listing 6-33 shows the updated
AirportActionCreators file.

Listing 6-33.  The Updated (and 50% Smaller) AirportActionCreators.js

import AppDispatcher from '../AppDispatcher';
import constants from '../constants'
import AirCheapAPI from '../api/AirCheapApi';
 
let AirportActionCreators = {
  
 fetchAirports(origin, destination) {
 AppDispatcher.dispatchAsync(AirCheapAPI.fetchAirports(), {
 request: constants.FETCH_AIRPORTS,
 success: constants.FETCH_AIRPORTS_SUCCESS,
 failure: constants.FETCH_AIRPORTS_ERROR
 });
 },
 

Chapter 6 ■ Architecting React Applications with Flux

207

 chooseAirport(target, code) {
 AppDispatcher.dispatch({
 type: constants.CHOOSE_AIRPORT,
 target: target,
 code: code
 });
 },
  
 fetchTickets(origin, destination) {
 AppDispatcher.dispatchAsync(AirCheapAPI.fetchTickets(origin, destination), {
 request: constants.FETCH_TICKETS,
 success: constants.FETCH_TICKETS_SUCCESS,
 failure: constants.FETCH_TICKETS_ERROR
 });
 }
  
};
 
export default AirportActionCreators;

In the API helper module, not only do you reduce boilerplate, but you also decouple it from the action
creators since the API Helper does not need to directly call the success or failure methods. All it has to do is
return a promise. Listing 6-34 shows the updated AirCheapApi.js file, returning the promise created by the
fetch operation and chained to the JSON parsing operation.

Listing 6-34.  The Updated AirCheapApi.js File

import 'whatwg-fetch';
 
let AirCheapAPI = {
 fetchAirports() {
 return fetch('airports.json')
 .then((response) => response.json());
 },
 
 fetchTickets(origin, destination) {
 return fetch('flights.json')
 .then((response) => response.json());
 }
};
 
export default AirCheapAPI;

Kanban App: Moving to a Flux Architecture
You’ve been working on the Kanban App project since the beginning of this book, and in every chapter
you’ve incrementally added new functionality to it. This chapter, however, will be different. Flux isn’t a
requisite to bring new functionality to a React project, as you’ve seen throughout this chapter. Flux is an
application architecture that helps make data changes in an app easier to reason about. In converting your
Kanban App to a Flux architecture you’re not adding features; you’re making it more predictable and easier
to reason about (and in this sense it certainly helps with adding new functionality in the future).

Chapter 6 ■ Architecting React Applications with Flux

208

Refactor: Creating Flux Basic Structure and Moving Files
To get started, make sure to install flux in the project using npm: npm install --save flux. Next, let’s
create folders for Flux’s files and move all your components (with the exception of the App.js file) to a
components folder. The constants and utils files can also remain in the root of the app folder. Figure 6-10
shows the new folder structure.

Figure 6-10.  The new folder structure for the Kanban app

Chapter 6 ■ Architecting React Applications with Flux

209

Fixing Imports
Obviously, you need to update the import statement in your components to reflect the new folder structure.
Fortunately, the imports are all relative, so you don’t need to update every single component. The only
affected components are

•	 App.js (where you need to correct all the imported component’s paths)

•	 KanbanBoardContainer.js (where you need to update only the utils import)

•	 Card.js and List.js (where you need to fix the import of the constants.js module)

Listings 6-35 through 6-38 shows the aforementioned files with updated imports.

Listing 6-35.  Updated Imports in App.js

import React from 'react';
import { render } from 'react-dom';
import { Router, Route } from 'react-router';
import createBrowserHistory from 'history/lib/createBrowserHistory';
import KanbanBoardContainer from './components/KanbanBoardContainer';
import KanbanBoard from './components/KanbanBoard';
import EditCard from './components/EditCard';
import NewCard from './components/NewCard';
 
render(...);

Listing 6-36.  Updated Utils Imports in KanbanBoardContainer Component

import React, { Component } from 'react';
import update from 'react-addons-update';
import KanbanBoard from './KanbanBoard';
 
import {throttle} from '../utils';
 
import 'babel-polyfill'
import 'whatwg-fetch';
 
const API_URL = 'http://kanbanapi.pro-react.com';
const API_HEADERS = {...};
 
class KanbanBoardContainer extends Component {
 constructor(){...}
 componentDidMount(){...}
 addCard(card){...}
 updateCard(card){...}
 updateCardStatus(cardId, listId){...}
 updateCardPosition (cardId , afterId) {...}
 persistCardDrag(cardId, status){...}
 addTask(cardId, taskName){...}
 deleteTask(cardId, taskId, taskIndex){...}
 toggleTask(cardId, taskId, taskIndex){...}
 render() {...}
}
 
export default KanbanBoardContainer;

Chapter 6 ■ Architecting React Applications with Flux

210

Listing 6-37.  Updated Import on the Card Component

import React, { Component, PropTypes } from 'react';
import ReactCSSTransitionGroup from 'react-addons-css-transition-group';
import marked from 'marked';
import { DragSource, DropTarget } from 'react-dnd';
import constants from '../constants';
import CheckList from './CheckList';
import {Link} from 'react-router';
  
let titlePropType = (props, propName, componentName) => {...}
const cardDragSpec = {...}
const cardDropSpec = {...}
let collectDrag = (connect, monitor) => {...}
let collectDrop = (connect, monitor) => {...}
 
class Card extends Component {...}
Card.propTypes = {...}
 
const dragHighOrderCard = ...
const dragDropHighOrderCard = ...
 
export default dragDropHighOrderCard

Listing 6-38.  Updated Import in the List Component

import React, { Component, PropTypes } from 'react';
import { DropTarget } from 'react-dnd';
import Card from './Card';
import constants from '../constants';
 
const listTargetSpec = {...};
function collect(connect, monitor) {...}
 
class List extends Component {...}
List.propTypes = {...}
 
export default DropTarget(CARD, listTargetSpec, collect)(List);

Adding Flux Basic Files
Flux is all about actions, stores, and a dispatcher (plus an API helper to handle API async requests). Let’s add
five new files in the project to cover these:

•	 An AppDispatcher.js

•	 A store: CardStore.js, inside the stores folder

•	 Actions: CardActionCreators.js and TaskActionCreators.js inside the actions
folder

•	 Finally, a KanbanApi.js helper module inside the api folder

Chapter 6 ■ Architecting React Applications with Flux

211

You extend the base Flux dispacher with the DispatchAsync method you used earlier. As for the
CardStore.js, CardActionCreators.js, TaskActionCreators.js, and KanbanAPi.js files, you begin with
a basic skeleton for each and enhance them in the following sections. Listings 6-39 through 6-43 show the
source for all these files, starting with the AppDispatcher.

Listing 6-39.  The AppDispatcher

import {Dispatcher} from 'flux';
import 'babel-polyfill';
 
class AppDispatcher extends Dispatcher{
 /**
 * Dispatches three actions for an async operation represented by promise.
 */
 dispatchAsync(promise, types, payload){
 const { request, success, failure } = types;
 this.dispatch({ type: request, payload: Object.assign({}, payload) });
 promise.then(
 response => this.dispatch({
 type: success,
 payload: Object.assign({}, payload, { response })
 }),
 error => this.dispatch({
 type: failure,
 payload: Object.assign({}, payload, { error })
 })
);
 }
}
 
export default new AppDispatcher();

For the CardStore, you extend Flux’s ReduceStore.

Listing 6-40.  The stores/CardStore.js File Basic Structure

import AppDispatcher from '../AppDispatcher';
import constants from '../constants';
import {ReduceStore} from 'flux/utils';
 
class CardStore extends ReduceStore {
 getInitialState() {
 return [];
 }
 
 reduce(state, action){
 switch (action.type) {
 default:
 return state;
 }
 }
}
export default new CardStore(AppDispatcher);

Chapter 6 ■ Architecting React Applications with Flux

212

The CardActionCreators and TaskActionCreators start as plain JavaScript objects, but you import the
modules that will be used later.

Listing 6-41.  The actions/CardActionCreators.js File Basic Structure

import AppDispatcher from '../AppDispatcher';
import constants from '../constants';
import KanbanAPI from '../api/KanbanApi';
 
let CardActionCreators = {
  
};
 
export default CardActionCreators;

Listing 6-42.  The actions/TaskActionCreators.js File Basic Structure

import AppDispatcher from '../AppDispatcher';
import constants from '../constants';
import KanbanAPI from '../api/KanbanApi';
 
let TaskActionCreators = {
  
};
 
export default TaskActionCreators;

The same goes for the KanbanApi: it also starts as just a plain JavaScript object with the import
statements for the modules that will be used later.

Listing 6-43.  The api/KanbanApi.js File Basic Structure

import 'whatwg-fetch';
import 'babel-polyfill';
 
let KanbanAPI = {
 
};
 
export default KanbanAPI;

Moving the Data Fetching to the Flux Architecture
Your project structure is now ready to use Flux, and the first piece of code you’re going to port to the
new architecture is the initial data fetching. Currently, all API communication (including the initial data
fetching) is done in the KanbanBoardContainer, and the cards are kept in the component’s state. In the Flux
architecture, the KanbanBoardContainer and child components such as the Card component will just fire
actions; the API communication will be done by the API helper module and the cards will be kept in the
CardStore.

Chapter 6 ■ Architecting React Applications with Flux

213

Editing the KanbanBoardContainer
Since you’re tackling only the initial data fetching for now, you need to make the following changes to the
KanbanBoardContainer:

•	 Import the CardStore and CardActionCreator modules.

•	 Make the KanbanBoardContainer listen to change events in the CardStore and map
its state to the CardStore state (you can do this manually or using the Flux library
Container higher order function). In the process, you remove the local state declared
in the class constructor.

•	 In the ComponentDidMount lifecycle method, instead of directly fetching data, you call
an action creator to dispatch an action. This action will trigger a series of effects. The
API helper will fetch the remote data, the CardStore will update itself with the new
data and dispatch a change event, and finally the KanbanBoardContainer will have
its state updated and will trigger a re-render.

The updated KanbanBoardContainer code is shown in Listing 6-44.

Listing 6-44.  The Updated KanbanBoardContainer

import React, { Component } from 'react';
import update from 'react-addons-update';
import KanbanBoard from './KanbanBoard';
import {throttle} from '../utils';
 
import {Container} from 'flux/utils';
import CardActionCreators from '../actions/CardActionCreators';
import CardStore from '../stores/CardStore';
 
// Polyfills
import 'babel-polyfill';
import 'whatwg-fetch';
 
const API_URL=' http://kanbanapi.pro-react.com'
const API_HEADERS = {...}
 
class KanbanBoardContainer extends Component {
 constructor{
 super(...arguments);
 this.updateCardStatus = throttle(this.updateCardStatus.bind(this));
 this.updateCardPosition = throttle(this.updateCardPosition.bind(this),500);
 }
 
 componentDidMount(){
 CardActionCreators.fetchCards();
 }
 
 addCard(card){...}
 updateCard(card){...}
 updateCardStatus(cardId, listId){...}

Chapter 6 ■ Architecting React Applications with Flux

214

 updateCardPosition (cardId , afterId){...}
 persistCardDrag(cardId, status){...}
 addTask(cardId, taskName){...}
 deleteTask(cardId, taskId, taskIndex){...}
 toggleTask(cardId, taskId, taskIndex){...}
 
 render() {...}
}
 
KanbanBoardContainer.getStores = () => ([CardStore]);
KanbanBoardContainer.calculateState = (prevState) => ({
 cards: CardStore.getState()
});
 
export default Container.create(KanbanBoardContainer);

The end objective is to remove the eight methods that deal with card and task manipulations from the
KanbanBoardContainer, but for now let’s just stick to the plan and only deal with the initial data fetching.

Implementing the FetchCards Action, API Method Call,
and Store Callback
So far you’ve worked on two different Flux projects (Flux Bank and Air Cheap), so the process should
be familiar: you need to define an action creator that, when invoked, will call the API Helper, receive a
JavaScript promise, and dispatch different actions along the process (init of the fetching process, success or
failure). The CardStore will respond to the success action and populate its state with the loaded cards.

FetchCards Constants and Action Creator
As you know, every action needs a constant to identify it. You already have a constants file. Let’s add three
new constants: FETCH_CARDS, FETCH_CARDS_SUCCESS, and FETCH_CARDS_ERROR (as shown in Listing 6-45).

Listing 6-45.  Updated constants.js Source Code

 export default {
 CARD: 'card',
 FETCH_CARDS: 'fetch cards',
 FETCH_CARDS_SUCCESS: 'fetch cards success',
 FETCH_CARDS_SUCCESS: 'fetch cards error',
};

In the sequence, let’s create the fetchCards method in the CardActionCreators. You use the
AppDispatcher’s DispatchAsync method to make things leaner. Listing 6-46 shows the implemented
method.

Chapter 6 ■ Architecting React Applications with Flux

215

Listing 6-46.  The fetchCards Method Implementation on CardActionCreators

import AppDispatcher from '../AppDispatcher';
import constants from '../constants';
import KanbanAPI from '../api/KanbanApi';
 
let CardActionCreators = {
 fetchCards() {
 AppDispatcher.dispatchAsync(KanbanAPI.fetchCards(), {
 request: constants.FETCH_CARDS,
 success: constants.FETCH_CARDS_SUCCESS,
 failure: constants.FETCH_CARDS_ERROR
 });
 }
};
 
export default CardActionCreators;

Notice that you assume in the code that the KanbanAPI module has a fetchCards method. Let’s
implement it in the next section.

fetchCards API Method
After the actionCreator (with the corresponding constants), let’s move to the kanbanApi. You basically copy
the configuration and the fetch method that were used in the KanbanBoardContainer, but in this case, you
simply return the fetch promise (instead of manipulating the card’s state; this part is now responsibility of
the store), as show in Listing 6-47.

Listing 6-47.  The KanbanApi Source Code with the fetchCards Method

import 'whatwg-fetch';
import 'babel-polyfill';
 
const API_URL = 'http://kanbanapi.pro-react.com';
const API_HEADERS = {
 'Content-Type': 'application/json',
 Authorization: 'any-string-you-like'
}
 
let KanbanAPI = {
 fetchCards() {
 return fetch(`${API_URL}/cards`, {headers:API_HEADERS})
 .then((response) => response.json())
 }
};
 
export default KanbanAPI;

Chapter 6 ■ Architecting React Applications with Flux

216

CardStore: Responding to FETCH_CARDS_SUCCESS
Finally, let’s update the reduce method in the CardStore to respond to the FETCH_CARD_SUCCESS and update
its state with the loaded cards, as shown in Listing 6-48.

Listing 6-48.  The Updated Reduce Method in the CardStore

import AppDispatcher from '../AppDispatcher';
import constants from '../constants';
import {ReduceStore} from 'flux/utils';
 
class CardStore extends ReduceStore {
 getInitialState() {
 return [];
 }
 
 reduce(state, action){
 switch (action.type) {
 case constants.FETCH_CARDS_SUCCESS:
 return action.payload.response;
  
 default:
 return state;
 }
 }
}
export default new CardStore(AppDispatcher);

Since the KanbanBoardContainer is already listening to CardStore’s changes, your task is complete. If
you test now, you should see the cards normally.

Moving All Card and Task Manipulations to the Flux Architecture
In the previous section, you removed the initial data fetching code from the KanbanBoardContainer, but
the component still has eight other methods that manipulate cards and tasks. These methods are currently
passed down as props through all the component hierarchy and are invoked from the List, Card, and Task
components. You created these methods yourself throughout the book, but let’s take a brief recap: Table 6-3
lists these methods and what they do.

Chapter 6 ■ Architecting React Applications with Flux

217

Table 6-3.  Data Manipulation Methods Currently in KanbanBoardContainer Component

Method Description

addCard Receives an object with card properties as parameters; creates a new card.

updateCard Receives an object with the updated card properties; updates the properties
of the given card. In the refactor, it receives two properties: the original card
properties and the changed card properties.

updateCardPosition Receives the current card id and the card id with which the current card will
switch positions. Called during the card drag-and-drop. Switches the positions
of the given cards.

updateCardStatus Receives the current card Id and the new status Id. Called during the card drag-
and-drop. Updates the card status.

persistCardDrag Receives an object containing a given card’s ID and the new card status. Called
after a card’s drag-and-drop. Persists the new card’s position and status on the
server.

addTask Receives a card Id and a task name; creates a new task for a given card. In the
refactor, you will pass an entire Task object instead of just the task name.

deleteTask Receives a card Id, a task id, and the task index; deletes the task. In the refactor,
you pass the entire card object instead of just the id.

toggleTask Receives a card id, a task id, and the task index; toggles the task “done” property.
In the refactor, you pass the entire card object instead of just the id.

Make all these changes at once. You first replicate all the method functionalities of the Flux architecture
(action creators, KanbanApi, and CardStore). Only then do you update the KanbanBoardContainer and all
the affected components in the hierarchy (KanbanBoard, List, Card, and Checklist components).

Preparing for the Functionality Migration
Before getting your hands on the action creators, API module, or store, let’s do some preparation. You
declare all the necessary constants in the constants file. Listing 6-49 shows the updated constants.js file.

Listing 6-49.  Necessary Constants Declarations in the constants.js

export default {
 CARD: 'card',
 
 FETCH_CARDS: 'fetch cards',
 FETCH_CARDS_SUCCESS: 'fetch cards success',
 FETCH_CARDS_ERROR: 'fetch cards error',
 
 CREATE_CARD: 'create card',
 CREATE_CARD_SUCCESS: 'create card success',
 CREATE_CARD_ERROR: 'create card error',
 
 UPDATE_CARD: 'update card',
 UPDATE_CARD_SUCCESS: 'update card success',
 UPDATE_CARD_ERROR: 'update card error',
 

Chapter 6 ■ Architecting React Applications with Flux

218

 UPDATE_CARD_STATUS: 'update card status',
 
 UPDATE_CARD_POSITION: 'update card position',
 
 PERSIST_CARD_DRAG: 'persist card drag',
 PERSIST_CARD_DRAG_SUCCESS: 'persist card drag success',
 PERSIST_CARD_DRAG_ERROR: 'persist card drag error',
 
 CREATE_TASK: 'create task',
 CREATE_TASK_SUCCESS: 'create task success',
 CREATE_TASK_ERROR: 'create task error',
 
 DELETE_TASK: 'delete task',
 DELETE_TASK_SUCCESS: 'delete task success',
 DELETE_TASK_ERROR: 'delete task error',
 
 TOGGLE_TASK: 'toggle task',
 TOGGLE_TASK_SUCCESS: 'toggle task success',
 TOGGLE_TASK_ERROR: 'toggle task error'
};

Action Creators
In sequence, let’s implement all the Card and Task manipulation actions. Notice that in the
CardActionCreators module you’re importing and using the throttle utility function. Listing 6-50 shows the
CardActionCreators.js file and Listing 6-51 shows the updated TaskActionCreators.js file.

Listing 6-50.  CardActionCreators.js

import AppDispatcher from '../AppDispatcher';
import constants from '../constants';
import KanbanAPI from '../api/KanbanApi';
import {throttle} from '../utils';
import CardStore from '../stores/CardStore';
 
let CardActionCreators = {
 
 fetchCards() {
 AppDispatcher.dispatchAsync(KanbanAPI.fetchCards(), {
 request: constants.FETCH_CARDS,
 success: constants.FETCH_CARDS_SUCCESS,
 failure: constants.FETCH_CARDS_ERROR
 });
 },
 
 addCard(card) {
 AppDispatcher.dispatchAsync(KanbanAPI.addCard(card), {
 request: constants.CREATE_CARD,
 success: constants.CREATE_CARD_SUCCESS,
 failure: constants.CREATE_CARD_ERROR
 }, {card});
 },
 

Chapter 6 ■ Architecting React Applications with Flux

219

 updateCard(card, draftCard) {
 AppDispatcher.dispatchAsync(KanbanAPI.updateCard(card, draftCard), {
 request: constants.UPDATE_CARD,
 success: constants.UPDATE_CARD_SUCCESS,
 failure: constants.UPDATE_CARD_ERROR
 }, {card, draftCard});
 },
 
 updateCardStatus: throttle((cardId, listId) => {
 AppDispatcher.dispatch({
 type: constants.UPDATE_CARD_STATUS,
 payload: {cardId, listId}
 });
 }),
 
 updateCardPosition: throttle((cardId , afterId) => {
 AppDispatcher.dispatch({
 type: constants.UPDATE_CARD_POSITION,
 payload: {cardId , afterId}
 });
 },500),
 
 persistCardDrag(cardProps) {
 let card = CardStore.getCard(cardProps.id)
 let cardIndex = CardStore.getCardIndex(cardProps.id)
 AppDispatcher.dispatchAsync(KanbanAPI.persistCardDrag(card.id, card.status, cardIndex), {
 request: constants.PERSIST_CARD_DRAG,
 success: constants.PERSIST_CARD_DRAG_SUCCESS,
 failure: constants.PERSIST_CARD_DRAG_ERROR
 }, {cardProps});
 }
};
 
export default CardActionCreators;

Listing 6-51.  TaskActionCreators.js

import AppDispatcher from '../AppDispatcher';
import constants from '../constants'
import KanbanAPI from '../api/KanbanApi';
 
let TaskActionCreators = {
 addTask(cardId, task) {
 AppDispatcher.dispatchAsync(KanbanAPI.addTask(cardId, task), {
 request: constants.CREATE_TASK,
 success: constants.CREATE_TASK_SUCCESS,
 failure: constants.CREATE_TASK_ERROR
 }, {cardId, task});
 },
 
 deleteTask(cardId, task, taskIndex) {

Chapter 6 ■ Architecting React Applications with Flux

220

 AppDispatcher.dispatchAsync(KanbanAPI.deleteTask(cardId, task), {
 request: constants.DELETE_TASK,
 success: constants.DELETE_TASK_SUCCESS,
 failure: constants.DELETE_TASK_ERROR
 }, {cardId, task, taskIndex});
 },
 
 toggleTask(cardId, task, taskIndex) {
 AppDispatcher.dispatchAsync(KanbanAPI.toggleTask(cardId, task), {
 request: constants.TOGGLE_TASK,
 success: constants.TOGGLE_TASK_SUCCESS,
 failure: constants.TOGGLE_TASK_ERROR
 }, {cardId, task, taskIndex});
 }
};
 
export default TaskActionCreators;

KanbanApi
Following with your migration to the Flux architecture, let’s update the KanbanApi module, as shown in
Listing 6-52.

Listing 6-52.  The Updated KanbanApi

import 'whatwg-fetch';
import 'babel-polyfill';
 
const API_URL = 'http://kanbanapi.pro-react.com';
const API_HEADERS = {
 'Content-Type': 'application/json',
 Authorization: 'any-string-you-like'
}
 
let KanbanAPI = {
 fetchCards() {
 return fetch(`${API_URL}/cards`, {headers:API_HEADERS})
 .then((response) => response.json())
 },
 
 addCard(card) {
 return fetch(`${API_URL}/cards`, {
 method: 'post',
 headers: API_HEADERS,
 body: JSON.stringify(card)
 })
 .then((response) => response.json())
 },
 
 updateCard(card, draftCard) {

Chapter 6 ■ Architecting React Applications with Flux

221

 return fetch(`${API_URL}/cards/${card.id}`, {
 method: 'put',
 headers: API_HEADERS,
 body: JSON.stringify(draftCard)
 })
 },
 
 persistCardDrag(cardId, status, index) {
 return fetch(`${API_URL}/cards/${cardId}`, {
 method: 'put',
 headers: API_HEADERS,
 body: JSON.stringify({status, row_order_position: index})
 })
 },
 
 addTask(cardId, task) {
 return fetch(`${API_URL}/cards/${cardId}/tasks`, {
 method: 'post',
 headers: API_HEADERS,
 body: JSON.stringify(task)
 })
 .then((response) => response.json())
 },
 
 deleteTask(cardId, task) {
 return fetch(`${API_URL}/cards/${cardId}/tasks/${task.id}`, {
 method: 'delete',
 headers: API_HEADERS
 })
 },
 
 toggleTask(cardId, task) {
 return fetch(`${API_URL}/cards/${cardId}/tasks/${task.id}`, {
 method: 'put',
 headers: API_HEADERS,
 body: JSON.stringify({done:!task.done})
 })
 }
};
 
export default KanbanAPI;

CardStore
The final piece in this process is the updated CardStore (shown in Listing 6-53). Notice that besides
responding to all the actions to manipulate its state, you also created the helper methods: getCard and
getCardIndex.

Chapter 6 ■ Architecting React Applications with Flux

222

Listing 6-53.  Updated Card Store

import AppDispatcher from '../AppDispatcher';
import constants from '../constants';
import {ReduceStore} from 'flux/utils';
import update from 'react-addons-update';
import 'babel-polyfill';
 
class CardStore extends ReduceStore {
 getInitialState() {
 return [];
 }
 
 getCard(id) {
 return this._state.find((card)=>card.id == id);
 }
 
 getCardIndex(id) {
 return this._state.findIndex((card)=>card.id == id);
 }
 
 reduce(state, action){
 let cardIndex, taskIndex;
 
 switch (action.type) {
 case constants.FETCH_CARDS_SUCCESS:
 return action.payload.response;
 
 /*
 * Card Creation
 */
 case constants.CREATE_CARD:
 return update(this.getState(), {$push: [action.payload.card] })
 
 case constants.CREATE_CARD_SUCCESS:
 cardIndex = this.getCardIndex(action.payload.card.id);
 return update(this.getState(), {
 [cardIndex]: {
 id: { $set: action.payload.response.id }
 }
 });
 
 case constants.CREATE_CARD_ERROR:
 cardIndex = this.getCardIndex(action.payload.card.id);
 return update(this.getState(), { $splice:[[cardIndex, 1]]});
  
 /*
 * Card Update
 */
 case constants.UPDATE_CARD:
 cardIndex = this.getCardIndex(action.payload.card.id);

Chapter 6 ■ Architecting React Applications with Flux

223

 return update(this.getState(), {
 [cardIndex]: {
 $set: action.payload.draftCard
 }
 });
 
 case constants.UPDATE_CARD_ERROR:
 cardIndex = this.getCardIndex(action.payload.card.id);
 return update(this.getState(), {
 [cardIndex]: {
 $set: action.payload.card
 }
 });
  
 /*
 * Card Drag'n Drop
 */
 case constants.UPDATE_CARD_POSITION:
 if(action.payload.cardId !== action.payload.afterId) {
 cardIndex = this.getCardIndex(action.payload.cardId);
 let card = this.getState()[cardIndex]
 let afterIndex = this.getCardIndex(action.payload.afterId);
 return update(this.getState(), {
 $splice: [
 [cardIndex, 1],
 [afterIndex, 0, card]
]
 });
 }
 
 case constants.UPDATE_CARD_STATUS:
 cardIndex = this.getCardIndex(action.payload.cardId);
 return update(this.getState(), {
 [cardIndex]: {
 status: { $set: action.payload.listId }
 }
 });
 
 case constants.PERSIST_CARD_DRAG_ERROR:
 cardIndex = this.getCardIndex(action.payload.cardProps.id);
 return update(this.getState(), {
 [cardIndex]: {
 status: { $set: action.payload.cardProps.status }
 }
 });
  
 /*
 * Task Creation
 */
 case constants.CREATE_TASK:
 cardIndex = this.getCardIndex(action.payload.cardId);

Chapter 6 ■ Architecting React Applications with Flux

224

 return update(this.getState(), {
 [cardIndex]: {
 tasks: {$push: [action.payload.task] }
 }
 });
 
 case constants.CREATE_TASK_SUCCESS:
 cardIndex = this.getCardIndex(action.payload.cardId);
 taskIndex = this.getState()[cardIndex].tasks.findIndex((task)=>(
 task.id == action.payload.task.id
));
 return update(this.getState(), {
 [cardIndex]: {
 tasks: {
 [taskIndex]: {
 id: { $set: action.payload.response.id }
 }
 }
 }
 });
 
 case constants.CREATE_TASK_ERROR:
 let cardIndex = this.getCardIndex(action.payload.cardId);
 let taskIndex = this.getState()[cardIndex].tasks.findIndex((task)=>(
 task.id == action.payload.task.id
));
 return update(this.getState(), {
 [cardIndex]: {
 tasks: {
 $splice:[[taskIndex, 1]]
 }
 }
 });
  
 /*
 * Task Deletion
 */
 case constants.DELETE_TASK:
 cardIndex = this.getCardIndex(action.payload.cardId);
 return update(this.getState(), {
 [cardIndex]: {
 tasks: {$splice: [[action.payload.taskIndex,1]] }
 }
 });
 
 case constants.DELETE_TASK_ERROR:
 cardIndex = this.getCardIndex(action.payload.cardId);
 return update(this.getState(), {
 [cardIndex]: {
 tasks: {$splice: [[action.payload.taskIndex, 0, action.payload.task]] }
 }
 });
  

Chapter 6 ■ Architecting React Applications with Flux

225

 /*
 * Task Toggling
 */
 case constants.TOGGLE_TASK:
 cardIndex = this.getCardIndex(action.payload.cardId);
 return update(this.getState(), {
 [cardIndex]: {
 tasks: {
 [action.payload.taskIndex]: { done: { $apply: (done) => !done }}
 }
 }
 });
 
 case constants.TOGGLE_TASK_ERROR:
 cardIndex = this.getCardIndex(action.payload.cardId);
 return update(this.getState(), {
 [cardIndex]: {
 tasks: {
 [action.payload.taskIndex]: { done: { $apply: (done) => !done }}
 }
 }
 });
 
 default:
 return state;
 }
 }
}
export default new CardStore(AppDispatcher);

Components
Heading back to the components, let’s remove all the data manipulation methods from the
KanbanBoardContainer component. Observe that all these methods are grouped into two objects
(taskActions and cardActions) and passed as props through the KanbanBoard, List, Card and CheckList
components. You must remove these methods from the KanbanBoardContainer, and change the proptypes
and render methods of all the mentioned components. And since you also won’t pass the cards as props to
the NewCard and EditCart components, you need to edit them as well.

KanbanBoardContainer
Let’s tackle one file at a time. Listing 6-54 shows the updated code for the KanbanBoardContainer, without
the constructor and data manipulation methods, but with updated render method (without passing the
methods as props).

Chapter 6 ■ Architecting React Applications with Flux

226

Listing 6-54.  The Updated KanbanBoardContainer Component

import React, { Component } from 'react';
import {Container} from 'flux/utils';
import KanbanBoard from './KanbanBoard';
import CardActionCreators from '../actions/CardActionCreators';
import CardStore from '../stores/CardStore';
 
class KanbanBoardContainer extends Component {
 componentDidMount(){
 CardActionCreators.fetchCards();
 }
 
 render() {
 let kanbanBoard=this.props.children && React.cloneElement(this.props.children, {
 cards: this.state.cards,
 });
 
 return kanbanBoard;
 }
}
 
KanbanBoardContainer.getStores = () => ([CardStore]);
KanbanBoardContainer.calculateState = (prevState) => ({
 cards: CardStore.getState()
});
 
export default Container.create(KanbanBoardContainer);

KanbanBoard
Next in the hierarchy is the KanbanBoard component. You don’t need to pass the taskCallbacks and
cardCallbacks objects down to the Lists, and you also don’t need to clone the children prop that is provided
by the React Router. You cloned the component to inject props into it, but in the Flux architecture they won’t
be necessary. Listing 6-55 shows the updated KanbanBoard component.

Listing 6-55.  The Updated KanbanBoard Component

import React, { Component, PropTypes } from 'react';
import { DragDropContext } from 'react-dnd';
import HTML5Backend from 'react-dnd-html5-backend';
import { Link } from 'react-router';
import List from './List';
 
class KanbanBoard extends Component {
 render() {
 return (
 <div className="app">
 <Link to='/new' className="float-button">+</Link>
 

Chapter 6 ■ Architecting React Applications with Flux

227

 <List id='todo' title="To Do" cards={
 this.props.cards.filter((card) => card.status === "todo")
 } />
 
 <List id='in-progress' title="In Progress" cards={
 this.props.cards.filter((card) => card.status == "in-progress")
 } />
 
 <List id='done' title='Done' cards={
 this.props.cards.filter((card) => card.status == "done")
 } />
 
 {this.props.children}
 </div>
)
 }
}
KanbanBoard.propTypes = {
 cards: PropTypes.arrayOf(PropTypes.object)
}
 
export default DragDropContext(HTML5Backend)(KanbanBoard);

 List
Moving on, the next component in the hierarchy is the List component. You keep removing the
taskCallbacks and cardCallbacks, but in this file you’ll also update the hover method in the listTargetSpec
object; it used to invoke cardCallbacks.updateStatus, but now it’s going to invoke the updateCardStatus
action creator. Listing 6-56 shows the updated source code.

Listing 6-56.  The Updated List Component

import React, { Component, PropTypes } from 'react';
import { DropTarget } from 'react-dnd';
import Card from './Card';
import constants from '../constants';
import CardActionCreators from '../actions/CardActionCreators';
 
const listTargetSpec = {
 hover(props, monitor) {
 const dragged = monitor.getItem();
 CardActionCreators.updateCardStatus(dragged.id, props.id);
 }
};
 
function collect(connect, monitor) {
 return {
 connectDropTarget: connect.dropTarget()
 };
}
 

Chapter 6 ■ Architecting React Applications with Flux

228

class List extends Component {
 render() {
 const { connectDropTarget } = this.props;
 
 let cards = this.props.cards.map((card) => {
 return <Card key={card.id} {…card} />
 });
 
 return connectDropTarget(
 <div className="list">
 <h1>{this.props.title}</h1>
 {cards}
 </div>
);
 }
}
List.propTypes = {
 id: PropTypes.string.isRequired,
 title: PropTypes.string.isRequired,
 cards: PropTypes.arrayOf(React.PropTypes.object),
 connectDropTarget: PropTypes.func.isRequired
}
 
export default DropTarget(constants.CARD, listTargetSpec, collect)(List);

Card
It’s time to update the Card component. The same premise is valid here: you remove any reference to
CardCallbacks and TaskCallbacks as well as change any calls to those props to action creator calls. The
updated card component is shown in Listing 6-57.

Listing 6-57.  The Updated Card Component

import React, { Component, PropTypes } from 'react';
import ReactCSSTransitionGroup from 'react-addons-css-transition-group';
import marked from 'marked';
import { DragSource, DropTarget } from 'react-dnd';
import constants from '../constants';
import CheckList from './CheckList';
import {Link} from 'react-router';
import CardActionCreators from '../actions/CardActionCreators';
 
let titlePropType = (props, propName, componentName) => {...}
 
const cardDragSpec = {
 beginDrag(props) {
 return {
 id: props.id,
 status: props.status
 };
 },

Chapter 6 ■ Architecting React Applications with Flux

229

 endDrag(props) {
 CardActionCreators.persistCardDrag(props);
 }
};
 
const cardDropSpec = {
 hover(props, monitor) {
 const draggedId = monitor.getItem().id;
 if(props.id !== draggedId){
 CardActionCreators.updateCardPosition(draggedId, props.id);
 }
 }
}
 
let collectDrag = (connect, monitor) => {...}
let collectDrop = (connect, monitor) => {...}
 
class Card extends Component {...}
Card.propTypes = {
 id: PropTypes.number,
 title: titlePropType,
 description: PropTypes.string,
 color: PropTypes.string,
 tasks: PropTypes.array,
 status: PropTypes.string,
 connectDragSource: PropTypes.func.isRequired,
 connectDropTarget: PropTypes.func.isRequired
}
 
const dragHighOrderCard = DragSource(constants.CARD, cardDragSpec, collectDrag)(Card);
const dragDropHighOrderCard = DropTarget(constants.CARD, cardDropSpec, collectDrop)
(dragHighOrderCard);
export default dragDropHighOrderCard

CheckList
In the Checklist component, let’s get rid of any TaskCallback calls and insert TaskActionCreator calls. Listing
6-58 shows the updated code.

Listing 6-58.  Updated CheckList Component

import React, { Component, PropTypes } from 'react';
import TaskActionCreators from '../actions/TaskActionCreators';
 
class CheckList extends Component {
 checkInputKeyPress(evt){
 if(evt.key === 'Enter'){
 let newTask = {id:Date.now(), name:evt.target.value, done:false};
 TaskActionCreators.addTask(this.props.cardId, newTask);
 evt.target.value = '';
 }
 }
 

Chapter 6 ■ Architecting React Applications with Flux

230

 render() {
 let tasks = this.props.tasks.map((task, taskIndex) => (
 <li key={task.id} className="checklist__task">
 <input type="checkbox"
 checked={task.done}
 onChange={
 �TaskActionCreators.toggleTask.bind(null, this.props.cardId, task, taskIndex)
 } />
 {task.name}{' '}
 <a href="#"
 className="checklist__task--remove"
 onClick={
 TaskActionCreators.deleteTask.bind(null, this.props.cardId, task, taskIndex)
 } />

));
 
 return (
 <div className="checklist">
 {tasks}
 <input type="text"
 className="checklist--add-task"
 placeholder="Type then hit Enter to add a task"
 onKeyPress={this.checkInputKeyPress.bind(this)} />
 </div>
);
 }
 
}
CheckList.propTypes = {
 cardId: PropTypes.number,
 tasks: PropTypes.arrayOf(PropTypes.object)
}
 
export default CheckList;

NewCard and EditCard
Finally, let’s update both the NewCard and EditCard components. In both, you substitute the callback that was
passed as props to action creator calls. In the EditCard, you go even further: since the component won’t have the
cards array as props anymore, it will talk directly to the CardStore to retrieve the selected card details. Listing 6-59
shows the updated NewCard component and Listing 6-60 shows the updated EditCard component.

Listing 6-59.  The Updated NewCard.js

import React,{Component, PropTypes} from 'react';
import CardForm from './CardForm';
import CardActionCreators from '../actions/CardActionCreators';
 
class NewCard extends Component {
 componentWillMount(){...}
 handleChange(field, value){...}
 

Chapter 6 ■ Architecting React Applications with Flux

231

 handleSubmit(e){
 e.preventDefault();
 CardActionCreators.addCard(this.state);
 this.props.history.pushState(null,'/');
 }
 handleClose(e){
 this.props.history.pushState(null,'/');
 }
 
 render(){...}
}
NewCard.propTypes = {...};
 
export default NewCard;

Listing 6-60.  The Updated EditCard.js

import React,{Component, PropTypes} from 'react';
import CardForm from './CardForm';
import CardStore from '../stores/CardStore';
import CardActionCreators from '../actions/CardActionCreators';
import 'babel-polyfill'
 
class EditCard extends Component{
 componentWillMount(){
 let card = CardStore.getCard(parseInt(this.props.params.card_id));
 this.setState(Object.assign({},card));
 }
 
 handleChange(field, value){...}
 
 handleSubmit(e){
 e.preventDefault();
 CardActionCreators.updateCard(CardStore.getCard(parseInt(this.props.params.card_id)),
 this.state);
 this.props.history.pushState(null,'/');
 }
 
 handleClose(e){...}
 
 render(){...}
}
 
EditCard.propTypes = {...};
 
export default EditCard;

Chapter 6 ■ Architecting React Applications with Flux

232

Removing All Component State
Ideally, you should avoid using and manipulating component state when using Flux. All the component
state (even UI-related state) should be kept in stores. This is a good practice and a desirable target when
writing Flux applications, but there’s nothing inherently wrong in having stateful components with limited,
small, UI-related data.

That’s precisely the case for the Kanban App so far. You’ve converted pretty much everything to the Flux
architecture, but some components still have local state. The Card component holds a showDetails local
state, and the EditCard and NewCard components also have local state for the draft card being manipulated.
As we said, this isn’t wrong, but for the sake of having a complete Flux port, let’s move all those local states to
stores and keep the components leaner.

Show/Hide Card Details
Let’s start with the showDetails in the Card component. You won’t persist this data on the server, but you will
use the existing CardStore to keep this value. The CardStore sets its state with the loaded cards data from the
Kanban API. You need to add the ShowProperties key for each card, but for simplicity you’re not going to do
it in the initial data fetch. Instead, you will assume a default value for the cards in which this property hasn’t
been set yet, and only set this property when the user switches the visibility of the card details. In plain
English, if there’s no showDetails property in the card, you assume that the details will show. When the user
closes the card details for the first time, you then create this property on the desired card and set its value to
false.

Card Component

Starting with the Card component, you will

•	 Get rid of the constructor (since you don’t need to set an initial state).

•	 Call an actionCreator when the user tries to toggle the details visibility.

•	 Change all references from this.state.showDetails to this.props.showDetails.

•	 Make sure to show the details only if the property exists (by checking if it is explicitly
set to false).

Listing 6-61 shows the updated Card Component.

Listing 6-61.  Updated Card Component Without Local State

import React, { Component, PropTypes } from 'react';
import ReactCSSTransitionGroup from 'react-addons-css-transition-group';
import marked from 'marked'
import { DragSource, DropTarget } from 'react-dnd';
import constants from '../constants';
import CheckList from './CheckList';
import {Link} from 'react-router';
import CardActionCreators from '../actions/CardActionCreators';
 
let titlePropType = (props, propName, componentName) => {...};
const cardDragSpec = {...};
const cardDropSpec = {...};
let collectDrag = (connect, monitor) => {...};
let collectDrop = (connect, monitor) => {...};
 

Chapter 6 ■ Architecting React Applications with Flux

233

class Card extends Component {
 
 toggleDetails() {
 CardActionCreators.toggleCardDetails(this.props.id);
 }
 
 render() {
 const { isDragging, connectDragSource, connectDropTarget } = this.props;
 
 let cardDetails;
 if (this.props.showDetails !== false) {
 cardDetails = (...);
 }
 
 let sideColor = {...};
 
 return connectDropTarget(connectDragSource(
 <div className="card" >
 <div style={sideColor}/>
 <div className="card__edit"><Link to={'/edit/'+this.props.id}> </Link></div>
 <div className={
 �this.props.showDetails !== false? "card__title card__title--is-open" :

"card__title"
 } onClick={this.toggleDetails.bind(this)}>
 {this.props.title}
 </div>
 <ReactCSSTransitionGroup transitionName="toggle"
 transitionEnterTimeout={250}
 transitionLeaveTimeout={250}>
 {cardDetails}
 </ ReactCSSTransitionGroup>
 </div>
));
 }
}
Card.propTypes = {...};
 
const dragHighOrderCard = DragSource(CARD, cardDragSpec, collectDrag)(Card);
const dragDropHighOrderCard = DropTarget(CARD, cardDropSpec, collectDrop)
(dragHighOrderCard);
export default dragDropHighOrderCard

Constant and Action Creator

Next, you implement the toggleCardDetails action creator. You need a constant to identify this action, so add
a new TOGGLE_CARD_DETAILS to the constants.js file, as show in Listing 6-62.

Chapter 6 ■ Architecting React Applications with Flux

234

Listing 6-62.  Partial View of the constants.js File with the Addition of the TOGGLE_CARD_DETAILS

export default {
 CARD: 'card',
 
 FETCH_CARDS: 'fetch cards',
 FETCH_CARDS_SUCCESS: 'fetch cards success',
 FETCH_CARDS_ERROR: 'fetch cards error',
  
 ...
 
 TOGGLE_CARD_DETAILS: 'toggle card details',
  
 ...
  
 TOGGLE_TASK: 'toggle task',
 TOGGLE_TASK_SUCCESS: 'toggle task success',
 TOGGLE_TASK_ERROR: 'toggle task error',
};

In the sequence, let’s edit the CardActionCreator file, as shown in Listing 6-63.

Listing 6-63.  Updated CardActionCreator with toggleCardDetails Method

import AppDispatcher from '../AppDispatcher';
import constants from '../constants';
import KanbanAPI from '../api/KanbanApi';
import {throttle} from '../utils';
import CardStore from '../stores/CardStore';
 
let CardActionCreators = {
 
 fetchCards() {...},
 
 toggleCardDetails(cardId) {
 AppDispatcher.dispatch({
 type: constants.TOGGLE_CARD_DETAILS,
 payload: {cardId}
 });
 },
 
 addCard(card) {...},
 
 updateCard(card, draftCard) {...},
 
 updateCardStatus: throttle((cardId, currListId, nextListId) => {...}),
 
 updateCardPosition: throttle((cardId , afterId) => {...},500),
 
 persistCardDrag(cardProps) {...}
};
 
export default CardActionCreators;

Chapter 6 ■ Architecting React Applications with Flux

235

CardStore

Finally, let’s update the CardStore. Notice that you check if the showDetails value explicitly equals to false
(a test that will fail is the property hasn’t been set yet). Listing 6-64 shows the updated file.

Listing 6-64.  The Updated CardStore

import AppDispatcher from '../AppDispatcher';
import constants from '../constants';
import {ReduceStore} from 'flux/utils';
import update from 'react-addons-update';
import 'babel-polyfill'
 
class CardStore extends ReduceStore {
 getInitialState() {...}
 getCard(id) {...}
 getCardIndex(id) {...}
 
 reduce(state, action){
 let cardIndex, taskIndex;
 
 switch (action.type) {
 case constants.FETCH_CARDS_SUCCESS:
 ...
 
 /*
 * Card Creation
 */
 case constants.CREATE_CARD:
 ...
 case constants.CREATE_CARD_SUCCESS:
 ...
 case constants.CREATE_CARD_ERROR:
 ...
 
 /*
 * Card Status Toggle
 */
 case constants.TOGGLE_CARD_DETAILS:
 cardIndex = this.getCardIndex(action.payload.cardId);
 return update(this.getState(), {
 [cardIndex]: {
 showDetails: { $apply: (currentValue) => (currentValue !== false)? false : true }
 }
 });
 

Chapter 6 ■ Architecting React Applications with Flux

236

 /*
 * Card Update
 */
 case constants.UPDATE_CARD:
 ...
 case constants.UPDATE_CARD_ERROR:
 ...
 
 /*
 * Card Drag'n Drop
 */
 case constants.UPDATE_CARD_POSITION:
 ...
 case constants.UPDATE_CARD_STATUS:
 ...
 case constants.PERSIST_CARD_DRAG_ERROR:
 ...
 
 /*
 * Task Creation
 */
 case constants.CREATE_TASK:
 ...
 case constants.CREATE_TASK_SUCCESS:
 ...
 case constants.CREATE_TASK_ERROR:
 ...
 
 /*
 * Task Deletion
 */
 case constants.DELETE_TASK:
 ...
 case constants.DELETE_TASK_ERROR:
 ...
 
 /*
 * Task Toggling
 */
 case constants.TOGGLE_TASK:
 ...
 case constants.TOGGLE_TASK_ERROR:
 ...
 
 default:
 return state;
 }
 }
}
export default new CardStore(AppDispatcher);

Chapter 6 ■ Architecting React Applications with Flux

237

Edit and New Card Components
The last few components that still have local state are the EditCard and NewCard. In their case, though, the
local state is more complex than a single property. It holds a complete card structure. For this reason, you
create a completely new store, the DraftStore, that will hold Card information that is being edited.

DraftStore

The DraftStore responds to two actions: CREATE_DRAFT and UPDATE_DRAFT. When the CREATE_DRAFT
action is dispatched, the DraftStore updates its internal state to either an empty card object (in the case of
a new card) or a copy of an existing card object (in the case of a card edit). This draft card is supplied to a
controlled form and an UPDATE_DRAFT action is dispatched for every change.

Let’s take a look at the DraftStore source code (as shown in Listing 6-65) before moving to the rest of the
implementation.

Listing 6-65.  The New DraftStore Source Code

import AppDispatcher from '../AppDispatcher';
import constants from '../constants';
import {ReduceStore} from 'flux/utils';
import update from 'react-addons-update';
 
let defaultDraft = () => {
 return {
 id: Date.now(),
 title:'',
 description:'',
 status:'todo',
 color:'#c9c9c9',
 tasks:[]
 }
};
 
class DraftStore extends ReduceStore {
 getInitialState() {
 return {};
 }
 
 reduce(state, action){
 switch (action.type) {
 case constants.CREATE_DRAFT:
 if(action.payload.card){
 return update(this.getState(), {
 $set: action.payload.card
 });
 } else {
 return defaultDraft();
 }
 

Chapter 6 ■ Architecting React Applications with Flux

238

 case constants.UPDATE_DRAFT:
 return update(this.getState(), {
 [action.payload.field]: {
 $set: action.payload.value
 }
 });
 
 default:
 return state;
 }
 }
}
 
export default new DraftStore(AppDispatcher);

There are a few things worth noticing in the code. First, you have a function called defaultDraft that
returns a default, clear card object with a temporary ID.

Also, in the switch statement in the reduce method, when responding to the CREATE_DRAFT action, you
check if a card object was passed as payload. This is the case where an existing card is being edited; the card
properties are then copied and set as the store state. If no card is passed as parameter (which is the case
when the user is creating a new card), the defaultDraft method is invoked to create a default empty card
that is set as the store state.

The UPDATE_DRAFT action passes two payloads: the field that the user edited, and its new value. In this
case, the new value is set in the corresponing property of the draft card in the store’s state.

Constants and ActionCreators

There is nothing especially notable here. Just add the new constants and declare the new action creators, as
show in Listings 6-66 and 6-67, respectively.

Listing 6-66.  Partial Source Code for the Updated constants.js File with CREATE_DRAFT and UPDATE_DRAFT
Constants

export default {
 CARD: 'card',
 
 FETCH_CARDS: 'fetch cards',
 FETCH_CARDS_SUCCESS: 'fetch cards success',
 FETCH_CARDS_ERROR: 'fetch cards error',
  
 ...
 
 CREATE_DRAFT: 'create draft',
 UPDATE_DRAFT: 'update draft',
  
 ...
  
 TOGGLE_TASK: 'toggle task',
 TOGGLE_TASK_SUCCESS: 'toggle task success',
 TOGGLE_TASK_ERROR: 'toggle task error',
};

Chapter 6 ■ Architecting React Applications with Flux

239

Listing 6-67.  Updated CardActionCreators.js

import AppDispatcher from '../AppDispatcher';
import constants from '../constants';
import KanbanAPI from '../api/KanbanApi';
import {throttle} from '../utils';
import CardStore from '../stores/CardStore';
 
let CardActionCreators = {
 
 fetchCards() {...},
 toggleCardDetails(cardId) {...},
 addCard(card) {...},
 updateCard(card, draftCard) {...},
 updateCardStatus: throttle((cardId, currListId, nextListId) => {...}),
 updateCardPosition: throttle((cardId , afterId) => {...},500),
 persistCardDrag(cardProps) {...},
 
 createDraft(card) {
 AppDispatcher.dispatch({
 type: constants.CREATE_DRAFT,
 payload: {card}
 });
 },
 
 updateDraft(field, value) {
 AppDispatcher.dispatch({
 type: constants.UPDATE_DRAFT,
 payload: {field, value}
 });
 }
};
 
export default CardActionCreators;

EditCard and NewCard Components

To finish removing local state from your components, let’s update the EditCard and NewCard files. You
remove the constructor method and substitute any local state manipulation for action creator calls.
Additionally, both components use the Flux library Container higher order function to listen to the
DraftStore changes and map its state. Listings 6-68 and 6-69 show the updated code.

Listing 6-68.  Updated EditCard Component

import React,{Component} from 'react';
import CardForm from './CardForm';
import CardStore from '../stores/CardStore';
import DraftStore from '../stores/DraftStore';
import {Container} from 'flux/utils';
import CardActionCreators from '../actions/CardActionCreators';
 

Chapter 6 ■ Architecting React Applications with Flux

240

class EditCard extends Component{
 
 handleChange(field, value){
 CardActionCreators.updateDraft(field, value);
 }
 
 handleSubmit(e){
 e.preventDefault();
 CardActionCreators.updateCard(
 CardStore.getCard(this.props.params.card_id),this.state.draft
);
 this.props.history.pushState(null,'/');
 }
 
 handleClose(e){
 this.props.history.pushState(null,'/');
 }
 
 componentDidMount(){
 setTimeout(()=>{
 CardActionCreators.createDraft(CardStore.getCard(this.props.params.card_id))
 }, 0);
 }
 
 render(){
 return (
 <CardForm draftCard={this.state.draft}
 buttonLabel="Edit Card"
 handleChange={this.handleChange.bind(this)}
 handleSubmit={this.handleSubmit.bind(this)}
 handleClose={this.handleClose.bind(this)} />
)
 }
}
 
EditCard.getStores = () => ([DraftStore]);
EditCard.calculateState = (prevState) => ({
 draft: DraftStore.getState()
});
 
export default Container.create(EditCard);

Listing 6-69.  Updated NewCard Component

import React,{Component} from 'react';
import CardForm from './CardForm';
import DraftStore from '../stores/DraftStore';
import {Container} from 'flux/utils';
import CardActionCreators from '../actions/CardActionCreators';
 
class NewCard extends Component{
 handleChange(field, value){

Chapter 6 ■ Architecting React Applications with Flux

241

 CardActionCreators.updateDraft(field, value);
 }
 
 handleSubmit(e){
 e.preventDefault();
 CardActionCreators.addCard(this.state.draft);
 this.props.history.pushState(null,'/');
 }
 
 handleClose(e){
 this.props.history.pushState(null,'/');
 }
 
 componentDidMount(){
 setTimeout(()=>CardActionCreators.createDraft(), 0)
 }
 
 render(){
 return (
 <CardForm draftCard={this.state.draft}
 buttonLabel="Create Card"
 handleChange={this.handleChange.bind(this)}
 handleSubmit={this.handleSubmit.bind(this)}
 handleClose={this.handleClose.bind(this)} />
)
 }
}
 
NewCard.getStores = () => ([DraftStore]);
NewCard.calculateState = (prevState) => ({
 draft: DraftStore.getState()
});
 
export default Container.create(NewCard);

It certainly was a big refactor in your project, but the end result is a clearer, more organized, and
predictable code base. As usual, the complete source code is available at the Apress site (www.apress.com)
and on this book’s GitHub page (pro-react.github.io).

Summary
In this chapter, you learned what Flux is and which problems it solves. You saw how to integrate Flux in a
React application and how to architect complex applications including async API communication.

http://www.apress.com/

243

Chapter 7

Performance Tuning

React was designed from the ground up with performance in mind. It uses several clever techniques to
minimize the number of costly DOM operations required to update the UI, but it also provides tools and
methods to fine-tune the performance when required.

In this chapter, you will learn how React’s reconciliation process works, how to identify performance
bottlenecks with React Perf, and how to use the shouldComponentUpdate lifecycle method in your
components to short-circuit the re-rendering process for performance improvements.

How the Reconciliation Process Works
Whenever you change the state of a React component, it triggers the reactive re-rendering process. React
will construct a new virtual DOM representing your application’s state UI and perform a diff with the current
virtual DOM to work out what DOM elements should be mutated, added, or removed. This process is called
reconciliation.

Batching
In React, whenever you call setState on a component, instead of updating it immediately React will only
mark it as “dirty” (Figure 7-1 illustrates this process). That is, changes to your component’s state won’t take
effect immediately; React uses an event loop to render changes in batch.

Figure 7-1.  Whenever you call setState on a component, React will only mark it as "dirty."

Chapter 7 ■ Performance Tuning

244

An event loop is a JavaScript process that keeps on running indefinitely, constantly distributing data
around, checking for all the event handlers and lifecycle methods that need to be invoked. By batching the
reconciliation process, the DOM is updated only once per event loop, which is key to building a performant
application.

Sub-Tree Rendering
When the event loop ends, React re-renders the dirty components as well as their children. All the nested
components, even if they didn’t change, will have their render method called, as shown in Figure 7-2.

This may sound inefficient, but in practice it is actually very fast because React is not touching the
actual DOM. All this happens in the in-memory virtual DOM, and JavaScript has become extremely fast in
processing this kind of operation on modern browsers.

However, React provides a way to fine-tune this process and prevent sub-trees from re-rendering: the
lifecycle method called shouldComponentUpdate. Before re-rendering a child component, React will always
invoke its shouldComponentUpdate method. By default, shouldComponentUpdate always returns true, but if
you reimplement it and return false, React will skip re-rendering for this component and its children.

Be aware that React is usually quite fast out of the box and this is only needed on occasional
circumstances. Using shouldComponentUpdate needlessly is the definition of premature optimization,
which is a bad practice that not only wastes time but adds code complexity and more surface area for bugs
to appear, especially ones that are hard to debug. Instead of blindly applying shouldComponentUpdate
to an application’s components, the best approach is to profile your application to detect if and where
performance adjustments are necessary.

React Perf
ReactPerf is a profiling tool that gives an overview about an app’s overall performance and helps discover
optimization opportunities where shouldComponentUpdate lifecycle hooks should be implemented. The Perf
object is available as a React add-on and can be used with React in development mode only. You should not
include this bundle when building your app for production.

Figure 7-2.  At the end of the event loop, dirty component trees are re-rendered to the virtual DOM

Chapter 7 ■ Performance Tuning

245

■■ Tip  While the React Perf add-on provides valuable insight, it still can’t detect every single optimization
opportunity in your application. Use it along with the Browser’s developer tools besides testing and debugging
the application yourself.

The Performance Test Application
To experiment with ReactPerf and later implement shouldComponentUpdate, you will create a simple React
application that displays a clock. It will contain three components: the main App component, a Clock
component, and a Digit component.

Starting bottom-up, the Digit component will receive a numeric value as a property, check if it is less
than 10 (to add a trailing zero character) and render it. Listing 7-1 shows the complete code.

Listing 7-1.  Digit.js source Code

import React, { Component, PropTypes } from 'react';
 
class Digit extends Component {
 render() {
 let digitStyle={
 display:'inline-block',
 fontSize: 20,
 padding: 10,
 margin: 5,
 background: '#eeeeee'
 };
 

Table 7-1.  React Perf Methods

Validator Description

Perf.start() and Perf.stop() Start/stop the measurement. The React operations in between are
recorded for analyses below.

Perf.printInclusive() Prints the overall time taken.

Perf.printExclusive() “Exclusive” times don’t include the time taken to mount the
components: processing props, calling componentWillMount and
componentDidMount, etc.

Perf.printWasted() “Wasted” time is spent on components that didn’t actually render
anything; in other words, the render stayed the same, so the DOM
wasn’t touched.

The ReactPerf API is very simple. You invoke two methods: Perf.start() when you want to begin
measuring the application and Perf.stop() to finish measuring. The ReactPerf module also provides three
methods to display the relevant data in a nicely formatted table on the browser console after taking the
measurements; see Table 7-1.

Chapter 7 ■ Performance Tuning

246

 let displayValue;
 if(this.props.value < 10){
 displayValue = '0' + this.props.value;
 } else {
 displayValue = this.props.value;
 }
 
 return (
 <div style={digitStyle}>{displayValue}</div>
);
 }
}
 
Digit.propTypes = {
 value: PropTypes.number.isRequired
}
 
export default Digit;

In sequence, let’s create the Clock component. It will receive three properties (hours, minutes, and
seconds) and render three Digit components, one for each. Listing 7-2 shows the Clock.js code.

Listing 7-2.  The Clock.js Code

import React, { Component, PropTypes } from 'react'
import Digit from './Digit';
 
class Clock extends Component {
 render() {
 return(
 <div>
 <Digit value={this.props.hours} />{' : '}
 <Digit value={this.props.minutes} />{' : '}
 <Digit value={this.props.seconds} />
 </div>
);
 }
}
 
Clock.propTypes = {
 hours: PropTypes.number.isRequired,
 minutes: PropTypes.number.isRequired,
 seconds: PropTypes.number.isRequired
}
 
export default Clock;

Finally, let’s work on the App component implementation. It will be a stateful component and have a
getTime method that returns an object containing individual properties for hour, minutes, seconds, and
milliseconds. This method will be used on both the constructor function (to initialize the component
state) and on the componentDidMount lifecycle method (to set the application state to an updated value
repeatedly). In the render function, you display a Clock component. Listing 7-3 shows the complete code.

Chapter 7 ■ Performance Tuning

247

Listing 7-3.  The App Component

import React, { Component } from 'react';
import { render } from 'react-dom';
import Clock from './Clock';
 
class App extends Component {
 constructor(){
 super(...arguments);
 this.state = this.getTime();
 }
 
 componentDidMount(){
 setInterval(()=>{
 this.setState(this.getTime());
 },500);
 }
 
 getTime(){
 let now = new Date();
 return {
 hours: now.getHours(),
 minutes: now.getMinutes(),
 seconds: now.getSeconds()
 };
 }
 
 render(){
 return (
 <div>
 <Clock hours={this.state.hours}
 minutes={this.state.minutes}
 seconds={this.state.seconds} />
 </div>
);
 }
}
 
render(<App />, document.getElementById("root"));

Chapter 7 ■ Performance Tuning

248

When testing the application, you should see something like Figure 7-3.

Installing and Using ReactPerf
Now that your sample application is done, let’s install ReactPerf and profile it to look for performance
optimization opportunities. The ReactPerf is provided as an add-on, so make sure to install it using npm
install --save react-addons-perf before continuing.

Next, let’s import the Perf module into your App component. You will start measuring the performance
just before the app render, and stop measuring right after it. Then you will invoke printInclusive (to
present a list of all the rendered components instances and time taken) and printWasted (to present
component instances that were rendered without any changes). The updated code is shown in Listing 7-4.

Listing 7-4.  Using ReactPerf to Profile the Performance Test Application

import React, { Component } from 'react';
import { render } from 'react-dom';
import Perf from 'react-addons-perf';
import Clock from './Clock';
  
class App extends Component {...}
 
Perf.start();
render(<App />, document.getElementById("root"));
Perf.stop();
Perf.printInclusive();
Perf.printWasted();

Testing the application on the browser now outputs the information shown in Figure 7-4 to the console.
In Figure 7-4, the lines marked with the number 1 denote the printInclusive output. It shows that your

application has

•	 A single App instance

•	 A single Clock instance, nested inside the App component

•	 Three Digit instances, nested inside the Clock component

Figure 7-3.  The performance test application

Chapter 7 ■ Performance Tuning

249

The console lines marked with the number 1 also shows the initialization and rendering time of each
component in the tree index and the total application time.

The lines marked with the number 2 indicate the output from the printWasted method call. It contains
an empty array because the method didn’t find any wasted time at all.

But there is a problem with the measurements you took: by stopping the profiling immediately after
the first render, you didn’t analyze any state changes. You simply took a snapshot of the initial state of the
application. To fix that, you will use a timer to measure the application for a little over a second before
outputting any results. Listing 7-5 shows the updated code and Figure 7-5 shows the new output in the
browser console.

Listing 7-5.  Profiling for Over a Second Before Showing Results

import React, { Component } from 'react';
import { render } from 'react-dom';
import Clock from './Clock';
import Perf from 'react-addons-perf';
 
class App extends Component {...}
Perf.start()
render(<App />, document.getElementById("root"));
setTimeout(()=>{
 Perf.stop();
 Perf.printWasted();
},1500)

Figure 7-4.  React Perf output

Chapter 7 ■ Performance Tuning

250

Also, notice in the code above that you only kept the printWasted output.
Notice that now the ReactPerf detected two unnecessary renders of the Digit component. What

happened here? To understand, let’s recap the steps that happened.

•	 You started the test when the clock was marking 11:07:35.

•	 During the profiling, the state changed and triggered a re-render of the clock
component to display the value of the time as 11:07:36

•	 The Clock, in turn, rendered all three digits, even the ones that didn’t change.

The two instances that the ReactPerf detected were the re-render of the hour and the minute digits;
because their value didn’t change, they were needlessly updated.

Notice, however, that these components were only updated in the virtual DOM. Due to React’s diffing
process, they never mutating the real DOM. Furthermore, the amount of “wasted” time rendering the
two digit components was less than two milliseconds, which can be considered negligible and has no
performance impact. There is absolutely no reason to implement shouldComponentUpdate here.

Forcing an Impact on Performance
Let’s make a few changes in the app to purposely create a performance problem: you’re going to add a tenth of
seconds field to your Clock component, update the App component every tenth of a second, and, to make sure
it has an impact on performance, render 200 clocks on screen. Listing 7-6 shows the updated App component
and Listing 7-7 shows the updated Clock component. The Digit component does not need any update.

Listing 7-6.  Updated App Running Every Tenths-of-a-Second and Rendering 200 Clocks

import React, { Component } from 'react';
import { render } from 'react-dom';
import Clock from './Clock';
import Perf from 'react-addons-perf';
 
class App extends Component {
 constructor(){...}
 
 componentDidMount(){
 setInterval(()=>{
 this.setState(this.getTime());
 },10);
 }
 

Figure 7-5.  The output from printWasted after a little more than a second of measurement

Chapter 7 ■ Performance Tuning

251

 getTime(){
 let now = new Date();
 return {
 hours: now.getHours(),
 minutes: now.getMinutes(),
 seconds: now.getSeconds(),
 tenths: parseInt(now.getMilliseconds()/10),
 };
 }
 
 render(){
 let clocks=[];
 for (var i = 0; i < 200; i++) {
 clocks.push(<Clock hours={this.state.hours} minutes={this.state.minutes}
seconds={this.state.seconds} tenths={this.state.tenths} />)
 }
 
 return (
 <div>
 {clocks}
 </div>
);
 }
}
 
Perf.start()
render(<App />, document.getElementById("root"));
setTimeout(()=>{
 Perf.stop();
 Perf.printWasted();
},2000)

Listing 7-7.  The Updated Clock Component

import React, { Component, PropTypes } from 'react'
import Digit from './Digit';
 
class Clock extends Component {
 render() {
 return(
 <div>
 <Digit value={this.props.hours} />{' : '}
 <Digit value={this.props.minutes} />{' : '}
 <Digit value={this.props.seconds} />{' . '}
 <Digit value={this.props.tenths} />
 </div>
);
 }
}
 

Chapter 7 ■ Performance Tuning

252

Clock.propTypes = {
 hours: PropTypes.number.isRequired,
 minutes: PropTypes.number.isRequired,
 seconds: PropTypes.number.isRequired,
 tenths: PropTypes.number.isRequired
}
 
export default Clock;

Now, when running in the browser you will notice that the app performance is sluggish. That was
purposeful, but if you are on a fast machine and are not observing any difference, feel free to increase
the loop count. The ReactPerf measurements confirm it: there’s now a lot of time wasted by computing
Digit components whose render didn’t change. As shown in Figure 7-6, you now have a very noticeable
performance hit of more than 0.6 seconds. Just for reference, the FPS meter is also displayed; currently the
application is running at 15 fps.

Figure 7-6.  ReactPerf shows you’re now spending 609 ms computing unchanged Digit components

shouldComponentUpdate
React provides the shouldComponentUpdate lifecycle method, which is triggered before the rerendering
process starts and provides the possibility of not computing a render tree entirely. The method receives
nextProps and nextState as arguments, and you should return either true or false to tell React if the
component needs to be re-rendered. It defaults to true, but if you return false, the component is considered
clean, and therefore no diffing or rendering is performed.

In the Clock application, all you have to do when implementing shouldComponentUpdate on the Digit
component is a straight comparison between the new and old values that come in as props, as shown in
Listing 7-8.

Chapter 7 ■ Performance Tuning

253

Listing 7-8.  shouldComponentUpdate Implementation on the Digit Component

import React, { Component, PropTypes } from 'react'
 
class Digit extends Component {
 
 shouldComponentUpdate(nextProps, nextState) {
 // Don’t trigger a re-render unless the digit value has changed
 return nextProps.value !== this.props.value;
 }
 
 render() {...}
}
 
Digit.propTypes = {...}
 
export default Digit;

As you can see in Figure 7-7, React Perf now outputs an empty array as wasted rendering instances. The
performance impact is immediately perceivable in the browser (to prove this, the FPS meter is shown again;
now the application runs twice as fast as before).

Figure 7-7.  The Clock application after implementing shouldComponentUpdate on the Digit component

React will invoke the shouldComponentUpdate function pretty often, so keep in mind that the any tests
and comparisons you may want to implement need to be really fast or it will defeat the purpose of improving
the app performance.

Comparing single values (as you did in the earlier example) is really fast, so it works, but trying to
compare values deeply nested inside objects is a very expensive operation, and it won’t work.

That’s when using immutable values pays of; it makes tracking changes and comparing entire objects
cheap, fast, and reliable.

In Chapter 3, you studied React’s immutability helpers. They help to make mutations on JavaScript
objects, but instead of changing the value inside an object directly, they always return an entirely new object
with the mutated value. This means that a shallow compare between the old and the new objects is enough
to determine if there’s a change, even if the changed value is deeply nested inside.

http://dx.doi.org/10.1007/978-1-4842-1260-8_3

Chapter 7 ■ Performance Tuning

254

■■ Tip  While React immutability helpers provide a nice mechanism to deal with default JavaScript data
structures (that aren't immutable) in immutable way, you might want to consider using a library that provides
true immutable collections for JavaScript. Using immutable data structures not only leads to better performance
optimizations in React, but also helps you achieve better data consistency and improved code quality.

There are many different libraries that provide Immutable collections for JavaScript, including Facebook's own
Immutable-js.

Immutable-js implements highly efficient immutable data structures such as Lists, Maps, Sets, and others. More
information about Immutable-js is available on the library's site at https://facebook.github.io/immutable-js/.

shallowCompare Add-on
React provides an add-on called shallowCompare to be used with shouldComponentUpdate. It shallow
compares both the props and state of the object and returns if they have changed.

The shallowCompare add-on is not a silver bullet, but it does helps achieve a performance boost if your
app fits these criteria:

•	 The component where you want to apply the shallow compare is “pure” (in other
words, it renders the same result given the same props and state).

•	 You are using immutable values or React’s immutability helper to manipulate state.

Kanban App: Implementing shouldComponentUpdate with the
shallowCompare Add-on
The Kanban application has a pretty good performance overall, but there’s a moment where it can get a little
sluggish: when dragging cards around. That’s because every time you change a card’s position or list, all
the cards get rerendered. To fix this, let’s implement the shouldComponentUpdate lifecycle method with the
shallowCompare add-on on the Card component.

To get started, install react-addons-shallow-compare from npm:

npm install --save react-addons-shallow-compare

Next, edit the Card component to import shallowCompare and implement shouldComponentUpdate, as
shown in Listing 7-9.

Listing 7-9.  shouldComponentUpdate Implementation on the Card Component

import React, { Component, PropTypes } from 'react';
import ReactCSSTransitionGroup from 'react-addons-css-transition-group';
import marked from 'marked';
import { DragSource, DropTarget } from 'react-dnd';
import constants from '../constants';
import CheckList from './CheckList';
import {Link} from 'react-router';
import CardsActionCreators from '../actions/CardsActionCreators';
 

https://facebook.github.io/immutable-js/

Chapter 7 ■ Performance Tuning

255

import shallowCompare from 'react-addons-shallow-compare';
 
let titlePropType = (props, propName, componentName) => {...};
const cardDragSpec = {...};
const cardDropSpec = {...};
let collectDrag = (connect, monitor) => {...};
let collectDrop = (connect, monitor) => {...};
 
class Card extends Component {
 toggleDetails() {...}
 
 shouldComponentUpdate(nextProps, nextState) {
 return shallowCompare(this, nextProps, nextState)
 }
 
 render() {...}
};
Card.propTypes = {...};
 
const dragHighOrderCard = DragSource(constants.CARD, cardDragSpec, collectDrag)(Card);
const dragDropHighOrderCard = DropTarget(constants.CARD, cardDropSpec, collectDrop)
(dragHighOrderCard);
export default dragDropHighOrderCard;

Summary
In this chapter, you got a better understanding of the assumptions that were made in order to make the
React’s reconciliation algorithm fast. You saw that while it’s fast enough in the vast majority of use cases, it
is possible to manually improve a component’s performance by implementing the shouldComponentUpdate
lifecycle method to prevent it (and its entire UI sub-tree) from rerendering.

257

Chapter 8

Isomorphic React Applications

To put it simply, a single page application is merely an empty HTML body that uses JavaScript to bring the
page to life. While there are lots of benefits to this approach, there is also one visible downside: by the time
the browser is able to download and run the application’s JavaScript (and ask the server for the initial data),
users will experience a flash of blank page before seeing any content.

Isomorphic JavaScript applications (also called universal JavaScript applications) are applications
whose code is (entirely or partially) shared between client and the server. By running the application’s
JavaScript on the server, the page can get prepopulated before being sent to the browser, so the user can
immediately see the content even before the JavaScript runs on the browser. When the local JavaScript
runs, it will take over further navigation, giving the user the snappy interaction expected of a single page
application with the quick first load of server-rendered pages.

In this approach, not only do users get a better experience because the application loads and renders
faster, but other benefits arise as side effects: you get progressive enhancement for free (the app doesn’t stop
working completely when JS fails) along with better accessibility and search engine indexability.

Node.js and Express
In order to run and prepopulate React applications on the server, you will use Node.js and Express. You’ve
been using Node.js and Node’s package manager (npm) since the first chapter of this book. As you’ve seen
before, Node.js is a JavaScript runtime that allows the execution of JavaScript applications outside the
browser. Although it became an important tool for local development/package management of client-side
JavaScript projects, it really shines as a server-side solution for JavaScript, and in particular, in building
network programs such as web servers, making it similar to PHP and Python.

Express is a Node.js web application server framework, designed for building single-page, multi-page,
and hybrid web applications. It is so commonly used that it’s considered the de facto standard server
framework for Node.js.

The next section provides a quick introduction to Express and won’t cover anything related to React.
If you are already familiar with Express, feel free to skip this section.

Node.js and Express “Hello World”
It is beyond the scope of this book to cover Node.js and Express, but to get familiarized with the basic setup
before moving forward with universal React applications, let’s build a plain Node.js and Express “Hello
World” application. Starting with a blank, new folder, you will create a package.json project file (using npm
init -y command to accept all defaults) and a server.js file.

Next, let’s install the project’s dependencies: the Express framework and Babel (the compiler that lets
you use the latest features of JavaScript). To install Express using npm, use the command npm install
--save express.

Chapter 8 ■ Isomorphic React Applications

258

The Babel installation is a little more complex. Out of the box, the babel-core package doesn’t do
anything. In order to actually do anything to your code you need to enable plug-ins (or combination of plug-
ins, called presets). In this example, you will use the ES6 preset: npm install --save babel-core babel-
preset-es2015.

Finally, you also want to install the babel-cli package, which can be used to compile files from the
command line. To install the Babel compiler command line globally, use the command npm install
--global babel-cli.

Configuring Babel
Note that Babel needs to be configured on a project basis in order to work. The easiest way to configure
Babel is to create a .babelrc file on the root folder of your project. In your case, the configuration includes
simply setting the ES6 preset on this project. Listing 8-1 shows the final .babelrc configuration file.

Listing 8-1.  The .babelrc Configuration File

{
 "presets": ["es2015"]
}

Creating the Express Server
Create a new server.js file so you can start coding your server-side application. At this point, the project
structure should look like Figure 8-1.

Figure 8-1.  Bare-bones Node.js and Express project

In the server.js file you require Express and you create an instance of the Express server. By
convention, you typically use an “app” constant to point to the express.Server, like so:

import express from 'express';
const app = express();

In the sequence, you can set up one or more routes for your application. A route consists of a path
(string or regexp), a callback function, and an HTTP method. The callback function accepts two parameters:
request and response. The request object contains information about the HTTP request that raised the
event (including query string, parameters, body, HTTP headers, etc.). In response to the request, you use the
response object to send back the desired HTTP response to the client browser.

Chapter 8 ■ Isomorphic React Applications

259

Your Hello World example calls app.get(), which represents the HTTP GET method, with the path “/”,
followed by the callback function that uses the response object to send a string back to the browser:

app.get('/', (request, response) => {
 response.send('<html><body><p>Hello World!</p></body></html>');
});

Finally, you can make the server start listening to a given port. In the following code, you call listen(),
specifying port 3000 and a callback method that will be invoked while the server is running:

app.listen(3000, ()=>{
 console.log('Express app listening on port 3000');
});

The complete source code for the server.js file is shown in Listing 8-2.

Listing 8-2.  Source Code for the server.js File

import express from 'express';
const app = express();
 
app.get('/', (request, response) => {
 response.send('<html><body><p>Hello World!</p></body></html>');
});
 
app.listen(3000, ()=>{
 console.log('Express app listening on port 3000');
});

Running the Server
To start the server in debug mode (to see the logs generated by Express), type the following command on
the terminal:

DEBUG=express:* babel-node server.js

With the server running, you can point your browser to localhost:3000. The results should be similar to
Figure 8-2.

Chapter 8 ■ Isomorphic React Applications

260

To make things easier and save some typing, you can pass this command as the start script on
package.json file. This way the next time you want to start the server locally you only need to type
npm start. Listing 8-3 shows the updated package.json.

Listing 8-3.  The Updated package.json

{
 "name": "helloexpress",
 "version": "0.0.1",
 "description": "Hello world sample application in Node.js + Express",
 "scripts": {
 "start": "DEBUG=express:* babel-node server.js"
 },
 "author": "Cássio Zen",
 "license": "ISC",
 "dependencies": {
 "babel": "^5.8.29",
 "express": "^4.13.3"
 }
}

Figure 8-2.  Running the Node.js and Express server and testing on the browser

Chapter 8 ■ Isomorphic React Applications

261

Using Templates
Sending string responses using response.send is a quick way to get started with Express, but for any realistic
job it can became cumbersome to format all responses this way and deliver complete HTML structures.
Express supports the use of templates for this reason. A template is HTML markup, enhanced with tags that
will either insert variables or run programming logic. Express supports a variety of template formats. For this
example you will use a template format called EJS.

First, make sure to install EJS as a dependency of the application with npm install --global ejs.
Next, you need to configure your application to use EJS templates. This can be done using the set method:

app.set('view engine', 'ejs');

By default, template files must be saved in a views folder. Create a new views folder with an index.ejs
template file, as shown in Figure 8-3.

Figure 8-3.  Template folder and index.ejs template file

To instruct your application to render a template instead of sending a string, you use the response.
render method, passing the template name and an object that will be accessible from inside the template to
display dynamic values. Listing 8-4 shows the complete index.js source code with all the updates you made
to use templates and render server.js. Listing 8-5 shows the index.ejs source code.

Listing 8-4.  The Updated server.js Rendering a Template

import express from 'express';
const app = express();
 
app.set('view engine', 'ejs');
 
app.get('/', (request, response) => {
 response.render('index',{message:'Hello World'});
});
 
app.listen(3000, ()=>{
 console.log('Express app listening on port 3000');
});

Chapter 8 ■ Isomorphic React Applications

262

Listing 8-5.  The views/index.ejs Template File

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Express Template</title>
 </head>
 <body>
 <h1><%= message %></h1>
 </body>
</html>

Serving Static Assets
Express comes with built-in middleware to serve static content. The express.static() middleware takes
one argument that refers to the root directory from which the static assets are to be served. To serve static
files from a public folder, for example, just add the following line to the server code:

app.use(express.static(__dirname + '/public'));

Isomorphic React Basics
Now that you’re familiar with Express, let’s move on to render an actual React component on the server.
React and the React-DOM package offer built-in support for rendering components in the server through the
ReactDOMServer.renderToString method. It renders a given component and generates annotated markup
to be sent to the browser. On the browser, React can pick up the annotated markup and only attach event
handlers, allowing you to have a very performant first-load experience.

Creating the Project Structure
An isomorphic React project structure has different requirements than those of a client-side–only
application. For this reason, instead of using the React App Boilerplate app you’ve been using so far as the
base for new projects, you will create a project structure from scratch in this case.

Starting in a new folder, the first thing to do is to create a package.json project file. You can create one
quickly by running npm init -y. The project structure will contain two folders at the root level: a public
folder (for static assets that will be served to the browser) and an app folder (where you will save React
components and other project files that will be shared by both client and server). Inside the app folder you
create a components folder to keep your project organized.

The project starts with three files: server.js, index.ejs, and browser.js. The server.js file will
contain server-side JavaScript code (where you will set up an Express server and render the components).
The browser.js file will contain client-side JavaScript code. The index.ejs file will contain the basic
HTML page structure that will be sent to the browser. Figure 8-4 shows the project structure files and folders.

Chapter 8 ■ Isomorphic React Applications

263

The Contacts App Files
In this project, you will use an example similar to one from Chapter 3, a contactList component with a search
bar. The project files won’t be identical, though; you will create a simplified component hierarchy to focus
on the server-side rendering and receive the array of contacts through a prop named initialData. The
component hierarchy will contain

•	 ContactsApp: The main component

•	 SearchBar: Shows an input field so user can filter the contacts

•	 ContactList : Loops through data creating a series of ContactItems

Figure 8-5 shows the desired output.

Figure 8-4.  The project structure

Figure 8-5.  The Contacts app

http://dx.doi.org/10.1007/978-1-4842-1260-8_3

Chapter 8 ■ Isomorphic React Applications

264

In total, the React project has four files, three components and an external JSON file containing the
contacts list. You create all the component files in the components folder; the source code is shown in
Listings 8-6 through 8-8). The json file will be saved in the public folder, and its content is shown in Figure 8-6.

The ContactList component receives an array of contacts and the filterText. It filters the contacts and
loops through the array, rendering each contact’s information (Listing 8-6).

Listing 8-6.  app/components/ContactList.js

import React, {Component, PropTypes} from 'react';
 
class ContactList extends Component {
 render(){
 var filteredContacts = this.props.contacts.filter(
 (contact) => contact.name.indexOf(this.props.filterText) !== -1
);
 return(

 {filteredContacts.map(
 (contact) => <li key={contact.email}>{contact.name} - {contact.email}
)}

)
 }
}
ContactList.propTypes = {
 contacts: PropTypes.arrayOf(PropTypes.object),
 filterText: PropTypes.string.isRequired
}
 
export default ContactList;

The SearchBar component renders a controlled form component to the user and calls a callback on
every change. The value inputted by the user is used to filter the contact list (Listing 8-7).

Listing 8-7.  app/component/SearchBar.js

import React, {Component, PropTypes} from 'react';
 
class SearchBar extends Component {
 handleChange(event){
 this.props.onUserInput(event.target.value)
 }
 
 render(){
 return <input type="search"
 placeholder="search"
 value={this.props.filterText}
 onChange={this.handleChange.bind(this)} />
 }
}

Chapter 8 ■ Isomorphic React Applications

265

SearchBar.propTypes = {
 onUserInput: PropTypes.func.isRequired,
 filterText: PropTypes.string.isRequired
}
 
export default SearchBar;

The ContactApp renders the ContactList and SearchBar components. It receives the initial contact list
through the initialData prop, and attributes this prop value to its own state (Listing 8-8).

Listing 8-8.  app/components/ContactsApp.js

import React, {Component, PropTypes} from 'react';
import ContactList from './ContactList';
import SearchBar from './SearchBar';
 
class ContactsApp extends Component {
 constructor(){
 super(...arguments);
 this.state = {
 contacts: this.props.initialData || [],
 filterText: ''
 }
 }
 
 handleUserInput(searchTerm){
 this.setState({filterText:searchTerm})
 }
 
 render(){
 return(
 <div>
 <SearchBar filterText={this.state.filterText}
 onUserInput={this.handleUserInput.bind(this)} />
 <ContactList contacts={this.state.contacts}
 filterText={this.state.filterText}/>
 </div>
)
 }
};
 
ContactsApp.propTypes = {
 initialData: PropTypes.any
};
 
export default ContactsApp;

Finally, Figure 8-6 shows the contacts.json file in the application’s root folder.

Chapter 8 ■ Isomorphic React Applications

266

Figure 8-6.  The contacts.json file in the root folder of the project structure

Rendering React Components on the Server
With the app structure and the sample components ready, you can now write the server script. To start, install
all the dependencies for server-side development: the Express server, the EJS template format, and the React
packages. To install all at once, use the command npm install --save express ejs react react-dom.

You also need to install Babel, so use the ES6 syntax and JSX. To install the latest Babel version with
support for ES6 and JSX as well as its peer dependency (webpack), use npm install --save webpack
babel-core babel-loader babel-preset-es2015 babel-preset-react.

Finally, you need to install the babel compiler command line. For convenience, you can install it
globally using the command npm install --global babel-cli.

Chapter 8 ■ Isomorphic React Applications

267

Babel Configuration
Babel needs to be configured on a project basis in order to work. The easiest way to configure Babel is to
create a .babelrc file on the root folder of your project. In your case, the configuration includes simply
setting the ES6 preset on this project. Listing 8-9 shows the final .babelrc configuration file.

Listing 8-9.  The .babelrc Configuration File

{
 "presets": ["es2015","react"]
}

Express App
The template file is pretty straightforward: just the basic HTML tags with a root div where the dynamic
content will be inserted. Listing 8-10 shows the source code.

Listing 8-10.  The index.ejs Template File

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Isomorphic React</title>
 </head>
 <body>
 <div id="root"><%- content %></div>
 </body>
</html>

Next, in the server.js JavaScript file you set up an Express server with the following considerations:

•	 The Express server will be configured to

•	 Use EJS as template format and look for the template files in the root folder.

•	 Serve static assets from the public folder.

•	 Your ContactApp components need a list of contacts. This list could come from a
database or an API server, but for simplicity purposes you will load from the json file
you saved in the public folder.

The server code is shown in Listing 8-11.

Listing 8-11.  The Basic Express App with a Contact List

import express from 'express';
import contacts from './public/contacts.json';
 
const app = express();
 
app.set('views', './')
app.set('view engine', 'ejs');
app.use(express.static(__dirname + '/public'));
 

Chapter 8 ■ Isomorphic React Applications

268

app.get('/', (request, response) => {
 response.render('index',{
 content: 'Hello'
 });
});
 
app.listen(3000, ()=>{
 console.log('Express app listening on port 3000');
});

Everything is wired up and working. You can test right now, but the result is just a “hello” string on the
browser. To start the server, use node_modules/.bin/babel-node server.js.

Rendering React Components
Now comes the interesting part: rendering the React component on the server. There are a few things to
consider here:

•	 As mentioned, you will use a react-dom method called renderToString to generate
annotated markup from the component and send to the browser.

•	 You won’t use JSX on the Express server. As mentioned in Chapter 2, to instantiate
React components outside JSX, you need to wrap the component in a factory before
calling it.

Listing 8-12 shows the updated server code.

Listing 8-12.  The Express Application Rendering a React Component

import fs from 'fs';
import express from 'express';
import React from 'react';
import { renderToString } from 'react-dom/server';
import ContactsApp from './app/components/ContactsApp';
 
const app = express();
app.set('views', './')
app.set('view engine', 'ejs');
app.use(express.static(__dirname + '/public'));
 
const contacts = JSON.parse(fs.readFileSync(__dirname + '/public/contacts.json', 'utf8'));
 
const ContactsAppFactory = React.createFactory(ContactsApp);
 
app.get('/', (request, response) => {
 let componentInstance = ContactsAppFactory({initialData:contacts});
 response.render('index',{
 content: renderToString(componentInstance)
 });
});
 

http://dx.doi.org/10.1007/978-1-4842-1260-8_2

Chapter 8 ■ Isomorphic React Applications

269

app.listen(3000, ()=>{
 console.log('Express app listening on port 3000');
});

If you run the server and test on the browser, you will see that the component was rendered correctly
and that the generated HTML contains all the necessary annotations the client-side React will need to
mount the component on the browser. Your result should look like Figure 8-7.

Figure 8-7.  Server-side rendered React component

Notice, however, that right now there is no interactivity in the browser. The component is static and
is not filtering the contacts. This happens because you didn’t create or send any JavaScript to run on the
browser; you only created server-side JavaScript. The browser is simply receiving and showing an HTML
page with no dynamic content so far.

Mounting React on the Client
You are creating an isomorphic project setup that allows you to use the same component code to render
both on the server and the client, but you’re not done just yet because you only rendered on the server so
far. You need to provide a JavaScript file to the browser to make React mount on top of the prerendered
components and hook up event listeners.

Chapter 8 ■ Isomorphic React Applications

270

Client-side Setup
You already have an empty JavaScript file (browser.js) for the purpose of generating the client-side
JavaScript, but this file needs to be compiled and packed before being sent to the browser.

In all the examples of this book you used webpack with Babel to do this process, and it won’t be
different now. Create a webpack configuration file in the root folder. It will be very simple since you’re not
going to use advanced features such as the webpack’s development server, just basic setup to pack the
browser.js file and output a bundle.js file in the public folder, as shown in Listing 8-13.

Listing 8-13.  The webpack.config.js File

module.exports = {
 entry: [
 './browser.js'
],
 output: {
 path: './public',
 filename: "bundle.js"
 },
 module: {
 loaders: [{
 test: /\.jsx?$/,
 loader: 'babel'
 }]
 }
};

With this configuration in place, you can run webpack –p to generate the client-side bundled JavaScript file.

Passing the Component’s initialData
Now that you have a configuration file in place to compile and pack the browser.js file into a bundle.js file
on the public folder, you need to update your template file to load this client-bundled JavaScript file.

That’s not the only update you need on the template file, though. Mounting React on top of a server-
rendered component is different from every other client render in that you need to provide the exact same
props that were used to render the component on the server; otherwise React will be forced to rerender the
entire DOM (React will give you a warning for this). What is needed is a mechanism for passing the same props
used on the server render to the client. You can achieve this by creating a script tag in the HTML template and
just dumping all the props inside. The client JavaScript can then parse and use the exact same props.

In plain English, you need two script tags in the template file: one contains the initial data needed
by the React components (all the data and props), and the other is used to load the client JavaScript.
Listing 8-14 shows the updated index.ejs file.

Listing 8-14.  The Updated index.ejs Template File with Two Script Tags

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Isomorphic React</title>
 </head>

Chapter 8 ■ Isomorphic React Applications

271

 <body>
 <div id="root"><%- content %></div>
  
 <script id="initial-data" type="application/json">
 <%- reactInitialData %>
 </script>
 <script type="text/JavaScript" src="bundle.js"></script>
 </body>
</html>

Listing 8-15 shows the server.js with the updated render call, passing the array of contacts that will be
needed by the client side script to instantiate the ContactsApp component locally.

Listing 8-15.  The Updated server.js File Populating the Context Script Tag with a JSON-Formatted List
of Contacts

import fs from 'fs';
import express from 'express';
import React from 'react';
import { renderToString } from 'react-dom/server'
import ContactsApp from './app/components/ContactsApp'
 
const app = express();
app.set('views', './')
app.set('view engine', 'ejs');
app.use(express.static(__dirname + '/public'));
 
const contacts = JSON.parse(fs.readFileSync(__dirname + '/public/contacts.json', 'utf8'));
 
const ContactsAppFactory = React.createFactory(ContactsApp);
 
app.get('/', (request, response) => {
 let componentInstance = ContactsAppFactory({contacts:contacts});
 response.render('index',{
 reactInitialData: JSON.stringify(contacts),
 content: renderToString(componentInstance)
 });
});
 
app.listen(3000, ()=>{
 console.log('Express app listening on port 3000');
});

browser.js
The browser.js file is analogous to the server.js file: you import the desired components and render it.
You even need to pass the exact same props that were passed to the component when it was rendered on the
server. If you pass different props, the client-side React won’t be able to “mount” on top of the prerendered
component, assign event listeners, and assume interactivity. Fortunately, the server is passing the props it
used inside a script tag with an id of initialData; the client-side JavaScript can parse and use them.
Listing 8-16 shows the complete source.

Chapter 8 ■ Isomorphic React Applications

272

Listing 8-16.  The browser.js File

import React from 'react';
import { render } from 'react-dom';
import ContactsApp from './app/components/ContactsApp';
 
let initialData = document.getElementById('initial-data').textContent;
if(initialData.length>0){
 initialData = JSON.parse(initialData);
}
 
render(<ContactsApp initialData={initialData} />, document.getElementById('root'));

To avoid any errors in circumstances where no initialData is needed, notice that you are checking if
the initial data script tag contains any content before parsing it.

Before running the server to test, make sure to compile and pack the browser.js to public/bundle.js
using the command webpack -p. See Figure 8-8.

Figure 8-8.  React on client-side mounting a server-prerendered component

Routing
React Router is the de facto routing solution for React applications, and since it’s 1.0 release it supports
server rendering out of the box. The routing setup in the server, though, is a little bit different than in a client
because, besides matching routes to components, you also want to send 500 responses for errors and 30x
responses for redirects.

To facilitate these needs, you drop one level lower than the <Router> API with

•	 Match to match the routes to a location without rendering

•	 RoutingContext for synchronous rendering of route components

https://github.com/rackt/react-router/blob/master/docs/API.md#Router
https://github.com/rackt/react-router/blob/master/docs/API.md#matchlocation-cb

Chapter 8 ■ Isomorphic React Applications

273

Setting Up Internal Routes
You will continue working on the ContactsApp example, but now you’re going to implement a new route
called Home. Start by installing the React Router. Be aware that the examples in this book are using React
Router 1.0.0. You also need to install its dependency history. Make sure to install both using npm install
--save react-router history.

Next, set up your routes file. Since the routes are going to be shared between the client and the server,
you save it in the app folder. Initially, you set up three routes: a new parent App route, a new Home index
route, and a route called Contacts to show your existing ContactsApp. Listing 8-17 shows the source code.

Listing 8-17.  The app/routes.js

import React from 'react';
import { Route, IndexRoute } from 'react-router'
import App from './components/App'
import Home from './components/Home'
import ContactsApp from './components/ContactsApp'
  
export default (
 <Route path="/" component={App}>
 <IndexRoute component={Home} />
 <Route path="contacts" component={ContactsApp} />
 </Route>
);

In this route, you’re assuming you have two new components: App and Home. Let’s create both in the
app/components folder, as shown in Listings 8-18 and 8-19.

Listing 8-18.  The app/components/app File

import React, {Component} from 'react';
import { Link } from 'react-router'
 
class App extends Component {
 render(){
 return(
 <div>
 <nav>
 <Link to='/'>Home</Link>{' '}
 <Link to='/contacts'>Contacts</Link>
 </nav>
 <div>
 {this.props.children}
 </div>
 </div>
)
 }
};
 
export default App;

Chapter 8 ■ Isomorphic React Applications

274

Listing 8-19.  The app/components/home File

import React, {Component} from 'react';
 
class Home extends Component {
 render(){
 return <h1>Home</h1>;
 }
};
 
export default Home;

Dynamic Data Fetching
Until now, your project only contained a single entry point: the ContactsApp component. Every time you
loaded your application in the browser, the server prefetched the contacts list and sent a prepopulated
component to the browser. In an application with multiple routes, the server needs to detect which data is
needed by the component that maps the current route. It doesn’t make sense, for example, to always load
the contacts list if the user is at the Home route. On the other hand, if the user starts navigating at the Home
and goes to the Contact route, the component won’t be prepopulated, so it needs to be able to fetch data
from the server as needed.

In other words, you need an approach that allows

•	 Data prefetching on the server only for the component that maps to the current route

•	 Data fetching on the client in case the user navigates to a different route where data
is needed but wasn’t prefetched

While there isn’t a single correct way of declaring a component’s data fetching needs in a way that
can be fulfilled both on the server and on the client, a popular approach is to create a static method on the
component’s class to declare the data needed by that component. The static method is accessible even when
the component is not instantiated, which is crucial for prefetching.

To exemplify, let’s change the way your sample isomorphic application handles data fetching. The
ContactsApp is the only component that needs data, so you declare a static method to fetch remote data.
If the user enters the application on the Contacts route, the server will then run this method and pass the
results as props to the component. If the user enters the application through any other route and later
navigates to the Contacts route, the browser will run this method to fetch data on demand.

To start, you install the isomorphic-fetch npm package. It’s a clever package that uses Node’s default
fetch on the server and implements a polyfill for the browser: npm install --save isomorphic-fetch.

Next, let’s update the ContactsApp component to create the static requestInitialData method.
You also implement the componentDidMount lifecycle method that is only called on the browser

to check if whether the initialData was provided by the server or not (in which case it invokes the
requestInitialData method to fetch the initial data now). Listing 8-20 shows the updated code.

Listing 8-20.  The Updated Component

import React, {Component, PropTypes} from 'react';
import fetch from 'isomorphic-fetch';
import ContactList from './ContactList';
import SearchBar from './SearchBar';
 

Chapter 8 ■ Isomorphic React Applications

275

class ContactsApp extends Component {
 constructor(){
 super(...arguments);
 this.state = {
 contacts: this.props.initialData || [],
 filterText: ''
 }
 }
 
 componentDidMount(){
 if (!this.props.initialData) {
 ContactsApp.requestInitialData().then(contacts => {
 this.setState({ contacts });
 });
 }
 }
 
 handleUserInput(searchTerm){
 this.setState({filterText:searchTerm})
 }
 
 render(){
 return(
 <div>
 <SearchBar filterText={this.state.filterText}
 onUserInput={this.handleUserInput.bind(this)} />
 <ContactList contacts={this.props.initialData}
 filterText={this.state.filterText}/>
 </div>
)
 }
};
 
ContactsApp.propTypes = {
 initialData: PropTypes.any
};
 
ContactsApp.requestInitialData = () => {
 return fetch('http://localhost:3000/contacts.json')
 .then((response) => response.json());
};
  
export default ContactsApp;

Chapter 8 ■ Isomorphic React Applications

276

Rendering Routes
Now you’re going to make big changes in both server.js and browser.js to render the routes on both
client and server.

Rendering Routes on the Server
Starting with server.js, you make the changes in steps. The first step is to change the “get” entry point from
“/” to “*” so all routes will invoke the callback. You also configure the error, not found, and redirect routes.
For existing routes, you render the appropriate component. Listing 8-21 shows these changes.

Listing 8-21.  First Step of Updates to server.js

import fs from 'fs';
import express from 'express';
import React from 'react';
import { renderToString } from 'react-dom/server';
import { match, RoutingContext } from 'react-router';
import routes from './app/routes';
 
const app = express();
 
app.set('views', './');
app.set('view engine', 'ejs');
app.use(express.static(__dirname + '/public'));
 
const contacts = JSON.parse(fs.readFileSync(__dirname + '/public/contacts.json', 'utf8'));
 
let renderRoute = (response, renderProps) => {
 // The actual rendering will be moved here
};
 
app.get('*', (request, response) => {
 match({ routes, location: request.url }, (error, redirectLocation, renderProps) => {
 if (error) {
 response.status(500).send(error.message);
 } else if (redirectLocation) {
 response.redirect(302, redirectLocation.pathname + redirectLocation.search);
 } else if (renderProps) {
 renderRoute(response, renderProps);
 } else {
 response.status(404).send('Not found');
 }
 });
});
 
app.listen(3000, ()=>{...});

Chapter 8 ■ Isomorphic React Applications

277

A few additional things to notice on this code:

•	 The ContactsApp import and factory were removed (since this will be managed by
the router now).

•	 For better organization, you move the response.render method outside the routing
and to a new function called renderRoute (which you implement in the next step).

In the next step, let’s reimplement the component rendering. React Router provides an object called
RoutingContext with the hierarchy of all the components that must be rendered for the current route. It’s
possible to pass the RoutingContext directly to React’s renderToString to generate the markup for all the
components, but this won’t work in your case because you also need to prefetch data and pass it as props to
the components that implement the requestInitialData static method.

What you do, instead, is loop through all the components inside RoutingContext to check if any of them
implements requestInitialData. If you find a component that does, you prefetch the data and pass it as
props to the internal component by overriding the function used in the RoutingContext to instantiate the
internal components. Listing 8-22 shows the updated code.

Listing 8-22.  The Second Step of Updates to server.js

import ...;
 
const app = express();
app.set(...)
app.set(...);
app.use(...);
const contacts = JSON.parse(...);
 
// Helper function: Loop through all components in the renderProps object
// and returns a new object with the desired key
let getPropsFromRoute = ({routes}, componentProps) => {
 let props = {};
 let lastRoute = routes[routes.length - 1];
 routes.reduceRight((prevRoute, currRoute) => {
 componentProps.forEach(componentProp => {
 if (!props[componentProp] && currRoute.component[componentProp]) {
 props[componentProp] = currRoute.component[componentProp];
 }
 });
 }, lastRoute);
 return props;
};
 
let renderRoute = (response, renderProps) => {
 // Loop through renderProps object looking for 'requestInitialData'
 let routeProps = getPropsFromRoute(renderProps, ['requestInitialData']);
 if (routeProps.requestInitialData) {
 // If one of the components implements 'requestInitialData', invoke it.
 routeProps.requestInitialData().then((data)=>{
 // Ovewrite the react-router create element function
 // and pass the pre-fetched data as initialData props

Chapter 8 ■ Isomorphic React Applications

278

 let handleCreateElement = (Component, props) =>(
 <Component initialData={data} {...props} />
);
 // Render the template with RoutingContext and loaded data.
 response.render('index',{
 reactInitialData: JSON.stringify(data),
 content: renderToString(
 <RoutingContext createElement={handleCreateElement} {...renderProps} />
)
 });
 });
 } else {
 // No components in this route implements 'requestInitialData'.
 // Simply render the template with RoutingContext and no initialData.
 response.render('index',{
 reactInitialData: null,
 content: renderToString(<RoutingContext {...renderProps} />)
 });
 }
};
 
app.get('*', (request, response) => {...});
app.listen(3000, ()=>{...});

The complete source code for the updated server.js file is shown in Listing 8-23.

Listing 8-23.  The Complete Updated Source Code for the server.js File

import fs from 'fs';
import express from 'express';
import React from 'react';
import { renderToString } from 'react-dom/server';
import { match, RoutingContext } from 'react-router';
import routes from './app/routes';
const app = express();
 
app.set('views', './')
app.set('view engine', 'ejs');
app.use(express.static(__dirname + '/public'));
 
const contacts = JSON.parse(fs.readFileSync(__dirname + '/public/contacts.json', 'utf8'));
 
let getPropsFromRoute = ({routes}, componentProps) => {
 let props = {};
 let lastRoute = routes[routes.length - 1];
 routes.reduceRight((prevRoute, currRoute) => {
 componentProps.forEach(componentProp => {
 if (!props[componentProp] && currRoute.component[componentProp]) {
 props[componentProp] = currRoute.component[componentProp];
 }
 });
 }, lastRoute);
 

Chapter 8 ■ Isomorphic React Applications

279

 return props;
};
 
let renderRoute = (response, renderProps) => {
 let routeProps = getPropsFromRoute(renderProps, ['requestInitialData']);
 if (routeProps.requestInitialData) {
 routeProps.requestInitialData().then((data)=>{
 let handleCreateElement = (Component, props) =>(
 <Component initialData={data} {...props} />
);
 response.render('index',{
 reactInitialData: JSON.stringify(data),
 content: renderToString(
 <RoutingContext createElement={handleCreateElement} {...renderProps} />
)
 });
 });
 } else {
 response.render('index',{
 reactInitialData: null,
 content: renderToString(<RoutingContext {...renderProps} />)
 });
 }
};
 
app.get('*', (request, response) => {
 match({ routes, location: request.url }, (error, redirectLocation, renderProps) => {
 if (error) {
 response.status(500).send(error.message);
 } else if (redirectLocation) {
 response.redirect(302, redirectLocation.pathname + redirectLocation.search);
 } else if (renderProps) {
 renderRoute(response, renderProps);
 } else {
 response.status(404).send('Not found');
 }
 });
});
 
app.listen(3000, ()=>{
 console.log('Express app listening on port 3000');
});

Chapter 8 ■ Isomorphic React Applications

280

Rendering routes on the Browser
Next, you need to make similar adjustments to the browser.js client file: render a route and check if there is
initialData, passing it as props to the correct component. Again you rely on React Router’s createElement
prop to override the default function used to instantiate React elements to pass the initialData as props for
the component that implements requestInitialData static methods. Listing 8-24 shows the updated code.

Listing 8-24.  The Updated browser.js Code

import React from 'react';
import { render } from 'react-dom';
import { Router } from 'react-router';
import { createHistory } from 'history';
import routes from './app/routes';
 
let handleCreateElement = (Component, props) => {
 if(Component.hasOwnProperty('requestInitialData')){
 let initialData = document.getElementById('initial-data').textContent;
 if(initialData.length>0){
 initialData = JSON.parse(initialData);
 }
 return <Component initialData={initialData} {...props} />;
 } else {
 return <Component {...props} />;
 }
}
 
render((
 <Router history={createHistory()} createElement={handleCreateElement}>{routes}</Router>
), document.getElementById('root'))

If you test right now starting on the Home route (“/”), you will notice that the contact app will fetch data
from the browser when you navigate to its route. However, if you access the application directly into the
/contacts route, the server will prefetch the contacts data and send a populated component to the browser.

Summary
In this chapter, you learned about the benefits of isomorphic applications, which includes a better perceived
performance, search engine optimization, and graceful degradation (the app works even if the local
JavaScript is disabled). You now know how to render React components on the server and how to “mount”
on the browser prerendered react components.

281

Chapter 9

Testing React Components

As our applications grow more complex and we continue to add new features, we need to verify that our new
implementations haven’t introduced bugs to our existing functionalities. Automated testing provides a living
documentation of expected behaviors and allows us to develop with more confidence, knowing that any
problems will be immediately apparent.

In this chapter, we will introduce Jest (React’s preferred testing framework) and TestUtils, a set of
methods that makes it easy to test React components in any common JavaScript testing framework.

Jest
Jest is React’s recommended testing framework. It is based on the popular Jasmine framework and adds a
few helpful features:

•	 It runs your tests with a fake DOM implementation (so that your tests can run on the
command line).

•	 It has support for JSX out of the box. 

Jest Test Project Structure
To use Jest on a project, only two things are necessary: a test task configured in the package.json file and a
__tests__ folder that is the default location for Jest test files. To illustrate, let’s create a new folder and set up
this structure.

In a new folder, create a package.json project file (npm init -y) and install Jest and babel-jest
(npm install –save-dev jest-cli babel-jest).

Next, edit the package.json file to set up the test task using Jest and babel-jest. Listing 9-1 shows the
updated file.

Listing 9-1.  Package.json File with Test Task Configured to Use babel-jest

{
 "name": "testsample",
 "version": "0.0.1",
 "description": "",
 "main": "index.js",
 "author": "",
 "license": "ISC",

http://jasmine.github.io/
http://facebook.github.io/jsx/

Chapter 9 ■ Testing React Components

282

 "devDependencies": {
 "babel-jest": "^5.3.0",
 "jest-cli": "^0.6.1"
 },
 "scripts": {
 "test": "jest"
 },
 "jest": {
 "scriptPreprocessor": "<rootDir>/node_modules/babel-jest"
 }
}

It is worth noticing in Listing 9-1 the usage of the <rootDir> config param. It points to the root directory
that Jest should scan for tests and modules within. When used inside the package.json, the value for this
config param defaults to the directory of the package.json.

Finally, create a __tests__ folder (notice the double underscore characters at the beginning and end)
to complete the basic structure.

Getting Started
Before moving to React, let’s set up a Jest test environment using a plain JavaScript object. Consider a scenario
where you want to test the following sum.js file in the root folder of the project (as shown in Listing 9-2).

Listing 9-2.  sum.js

let sum = (value1, value2) => (
 value1 + value2
)
 
export default sum;

In the __tests__ folder, create a sum-test.js file, as shown in Listing 9-3.

Listing 9-3.  sum-test.js

jest.autoMockOff();
 
describe('sum', function() {
 it('adds 1 + 2 to equal 3', function() {
 var sum = require('../sum');
 expect(sum(1, 2)).toBe(3);
 });
});

Now you can run the tests using the test task you set up in the earlier section (npm test). The output is
shown in Figure 9-1.

Chapter 9 ■ Testing React Components

283

■■ Note  In the first line of your test file, notice that you disabled Jest’s auto-mocking (with jest.autoMockOff).

Automatic mocking allows the isolation of a module from its dependencies. The intention is to be able to test
only a unit of code in isolation without relying on the implementation details of its dependencies.

However, not all code can be tested without relying on its dependencies (especially in existing code bases
where code wasn’t generated with testing in mind). In these cases, a better strategy is to disable auto-mocking
and explicitly set mock on for some specific modules.

React Test Utilities
React comes with a suite of built-in test utilities that facilitates the process of testing components. The test
utilities are provided as a separated add-on package on npm. Install it using npm install --save-dev
react-addons-test-utils.

Rendering a Component for Testing
The most-used React test utilities method is renderIntoDocument. As the name suggests, it renders a
component into a detached DOM node; this allows you to make assertions about the generated DOM
without inserting the actual component in the page. In the most basic form, you can do something like this:

let component = TestUtils.renderIntoDocument(<MyComponent />);

You can then use findDOMNode() to access the raw DOM element and test its values.

Example Using renderIntoDocument and Jest
To exemplify, let’s create a new project using the default structure you saw in the “Jest Test Project Structure”
section. Create a CheckboxWithLabel component in the root folder and a CheckboxWithLabel_test.js file
in the __tests__ folder. Figure 9-2 shows the project structure.

Figure 9-1.  Test passed

Chapter 9 ■ Testing React Components

284

Next, update the package.json file to include the jest test task configuration. It will be a little different
from the previous version because you will include a React-specific configuration. Listing 9-4 shows the
updated package.json.

Listing 9-4.  Package.json File with Test Task Configured to Use babel-jest and Test React Applications

{
 "name": "testing-react",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "keywords": [],
 "author": "",
 "license": "ISC",
 "devDependencies": {
 "babel-jest": "^5.3.0",
 "jest-cli": "^0.6.1",
 "react": "^0.14.1",
 "react-addons-test-utils": "^0.14.1",
 "react-dom": "^0.14.1"
 },
 "scripts": {
 "test": "jest"
 },
 "jest": {
 "scriptPreprocessor": "<rootDir>/node_modules/babel-jest",
 "unmockedModulePathPatterns": [
 "<rootDir>/node_modules/react",
 "<rootDir>/node_modules/react-dom",
 "<rootDir>/node_modules/react-addons-test-utils",
 "<rootDir>/node_modules/fbjs"
]
 }
}

Figure 9-2.  React project structure with tests

Chapter 9 ■ Testing React Components

285

The React component is pretty straightforward: you implement a simple checkbox that swaps between
two labels, as shown in Listing 9-5.

Listing 9-5.  CheckboxWithLabel.js

import React, {Component} from 'react';
 
class CheckboxWithLabel extends Component {
 
 constructor() {
 super(…arguments);
 this.state = {isChecked: false};
 this.onChange = this.onChange.bind(this);
 }
 
 onChange() {
 this.setState({isChecked: !this.state.isChecked});
 }
 
 render() {
 return (
 <label>
 <input type="checkbox"
 checked={this.state.isChecked}
 onChange={this.onChange} />
 {this.state.isChecked ? this.props.labelOn : this.props.labelOff}
 </label>
);
 }
}
 
export default CheckboxWithLabel;

In the test code, you start by using React's TestUtils renderIntoDocument to get a detached DOM node
with your component. Immediately after that you use ReactDOM.findDOMNode() to access the raw DOM
element from your component. Finally, you make an assertion, expecting that the component label starts
with the “off” label. Listing 9-6 shows the test file.

Lisitng 9-6.  CheckboxWithLabel_test.js

jest.autoMockOff();
 
import React from 'react';
import ReactDOM from 'react-dom';
import TestUtils from 'react-addons-test-utils';
 
const CheckboxWithLabel = require('../CheckboxWithLabel');
 
describe('CheckboxWithLabel', () => {
 

http://facebook.github.io/react/docs/test-utils.html#_blank

Chapter 9 ■ Testing React Components

286

 // Render a checkbox with label in the document
 var checkbox = TestUtils.renderIntoDocument(
 <CheckboxWithLabel labelOn="On" labelOff="Off" />
);
 
 var checkboxNode = ReactDOM.findDOMNode(checkbox);
 
 it('defaults to Off label', () => {
 // Verify that it's Off by default
 expect(checkboxNode.textContent).toEqual('Off');
 });
 
});

Running the npm test, your test passes. Notice that we were only able to write our tests using ES6
syntax because we’ve using babel-jest (included as a dependency in the package.json project file), as shown
in Figure 9-3.

Figure 9-3.  Test result

Table 9-1.  Utility Functions for Transversing and Finding Children in the Component’s Rendered Tree

Function Description

scryRenderedDOMComponentsWithClass Finds all instances of components in the rendered tree that are
DOM components with the class name matching className.

findRenderedDOMComponentWithClass Like scryRenderedDOMComponentsWithClass() but expects
there to be one result, and returns that one result, or throws an
exception if there is any other number of matches besides one.

scryRenderedDOMComponentsWithTag Finds all instances of components in the rendered tree that are
DOM components with the tag name matching tagName.

findRenderedDOMComponentWithTag Like scryRenderedDOMComponentsWithTag() but expects there to
be one result, and returns that one result, or throws an exception if
there is any other number of matches besides one.

scryRenderedComponentsWithType Finds all instances of components with type equal to componentClass.

findRenderedComponentWithType Same as scryRenderedComponentsWithType() but expects there
to be one result and returns that one result, or throws an exception
if there is any other number of matches besides one.

Transversing and Finding Children
Having a component rendered into a DOM node is the first step in testing React components, but in most
cases you will want to transverse the component’s rendered tree to find and make assertions on specific
children. React’s TestUtils provide six functions for this purpose, as shown in Table 9-1.

Chapter 9 ■ Testing React Components

287

Let’s add a new test to your sample project to exemplify the use of the find utilities. Use the
findRenderedDOMComponentWithTag function to get the input element and verify that it is not checked by
default. Listing 9-7 shows the updated source code.

Listing 9-7.  The Updated Source Code for CheckboxWithLabel_test.js

jest.autoMockOff();
 
import React from 'react';
import ReactDOM from 'react-dom';
import TestUtils from 'react-addons-test-utils';
 
const CheckboxWithLabel = require('../CheckboxWithLabel');
 
describe('CheckboxWithLabel', () => {
 
 // Render a checkbox with label in the document
 var checkbox = TestUtils.renderIntoDocument(
 <CheckboxWithLabel labelOn="On" labelOff="Off" />
);
 
 var checkboxNode = ReactDOM.findDOMNode(checkbox);
 
 it('defaults to Off label', () => {
 // Verify that it's Off by default
 expect(checkboxNode.textContent).toEqual('Off');
 });
 
 it('defaults to unchecked', () => {
 // Verify that the checkbox input field isn't checked by default
 let checkboxElement = TestUtils.findRenderedDOMComponentWithTag(checkbox, 'input');
 expect(checkboxElement.checked).toBe(false);
 });
});

Simulating Events
One of the most useful utilities in React’s TestUtils is the Simulate function, which lets you trigger user
events like mouse clicks, for example. Let’s add a new test to your previous project, simulating a click to
change the CheckboxWithLabel text. Listing 9-8 shows the updated test file.

Listing 9-8.  The Updated Source Code for CheckboxWithLabel_test.js

jest.autoMockOff();
 
import React from 'react';
import ReactDOM from 'react-dom';
import TestUtils from 'react-addons-test-utils';
 
const CheckboxWithLabel = require('../CheckboxWithLabel');
 

Chapter 9 ■ Testing React Components

288

describe('CheckboxWithLabel', () => {
 
 // Render a checkbox with label in the document
 var checkbox = TestUtils.renderIntoDocument(
 <CheckboxWithLabel labelOn="On" labelOff="Off" />
);
 
 var checkboxNode = ReactDOM.findDOMNode(checkbox);
 
 it('defaults to Off label', () => {
 // Verify that it's Off by default
 expect(checkboxNode.textContent).toEqual('Off');
 });
 
 it('defaults to unchecked', () => {
 // Verify that the checkbox input field isn't checked by default
 let checkboxElement = TestUtils.findRenderedDOMComponentWithTag(checkbox, 'input');
 expect(checkboxElement.checked).toBe(false);
 });
 
 it('changes the label after click', () => {
 // Simulate a click and verify that it is now On
 TestUtils.Simulate.change(
 TestUtils.findRenderedDOMComponentWithTag(checkbox, 'input')
);
 expect(checkboxNode.textContent).toEqual('On');
 });
});

Shallow Rendering
Shallow rendering is a new feature introduced in React 0.13 that lets us output a component’s virtual tree
without generating a DOM node. This way we can inspect how the component would be built, but without
actually rendering it. The advantages of this approach over using renderIntoDocument includes removing
the need for a DOM in the test environment (which is consequentially much faster), and the fact that is
allows us to test React components in true isolation from other component classes. It does this by allowing
us to test the return value of a component's render method, without instantiating any subcomponents.

In its current state, shallow rendering is still an experimental feature, but it is starting to gain traction
and will be the recommended way to test components in the future.

Basic Usage
Using shallow rendering is straightforward. You begin by creating an instance of the shallow renderer
and then use it to render a component and grab the output. Listing 9-9 shows a sample implementation,
assuming you're testing a component called <MyComponent />.

Chapter 9 ■ Testing React Components

289

Listing 9-9.  Basic shallowRenderer Usage

import React from 'react';
import TestUtils from 'react-addons-test-utils';
 
const CheckboxWithLabel = require('./MyComponent);
 
const shallowRenderer = TestUtils.createRenderer();
 
shallowRenderer.render(<MyComponent className="MyComponent">Hello</MyComponent>);
const component = shallowRenderer.getRenderOutput();

This gives you an object that represents the React component and looks roughly like Listing 9-10 (with
some properties omitted for brevity).

Listing 9-10.  Shallow Render Outputted Object

{
 "type": "div",
 "props": {
 "className": "MyComponent",
 "children": {
 "type": "h1",
 "props": {
 "children": "Hello "
 }
 }
 }
}

You can now create tests that make assertions on this component representation:

expect(component.props.className).toEqual('MyComponent');

When you looked at the structure of the object returned from the shallow renderer, you may have
noticed the children property. This will contain any text, DOM elements, or other React components that
might make up the component being tested.

To exemplify, start rewriting the tests in your previous example to use shallow rendering. Remove the
old test cases and start creating a new one to check if the checkboxes default to unchecked with the label
“Off.” Listing 9-11 shows the updated source code.

Listing 9-11.  The CheckboxWithLabel_test File Now Using react-shallow-testutils

jest.autoMockOff();
 
import React from 'react';
import ReactDOM from 'react-dom';
import TestUtils from 'react-addons-test-utils';
 
const shallowRenderer = TestUtils.createRenderer();
const CheckboxWithLabel = require('../CheckboxWithLabel');
 

Chapter 9 ■ Testing React Components

290

describe('CheckboxWithLabel', () => {
 
 shallowRenderer.render(<CheckboxWithLabel labelOn="On" labelOff="Off" />);
 const checkbox = shallowRenderer.getRenderOutput();
 
 it('defaults to unchecked and Off label', () => {
 // Verify that it's Off by default
 const inputField = checkbox.props.children[0];
 const textNode = checkbox.props.children[1];
 expect(inputField.props.checked).toBe(false);
 expect(textNode).toEqual('Off');
 });
 
});

This works fine for simple components but it can feel quite brittle to traverse heavily nested objects and
select array elements this way.

React Shallow Test Utils
As mentioned, shallow rendering is still in the early stages of development and is lacking some functionality
in React 0.13 and 0.14. (including the ability to return a mounted instance of the component and support for
TestUtils’s transversing and finding functions). Much of this will be available by default in React 0.15, but for
now you can install a npm package called react-shallow-testutils to get access to these functions. Install it
with npm install --save-dev react-shallow-testutils.

The first great capability provided by the react-shallow-testutils package is the ability to access not only
the object representing the component, but also the mounted component.

Let’s use the instance to rewrite the previous test. Instead of manually referencing the array of elements,
create the expected render method output in the test and then compare that with your component.
Listing 9-12 shows the updated test.

Listing 9-12.  An Alternative Approach for the Same Test

jest.autoMockOff();
 
import React from 'react';
import ReactDOM from 'react-dom';
import TestUtils from 'react-addons-test-utils';
import ShallowTestUtils from 'react-shallow-testutils';
 
const shallowRenderer = TestUtils.createRenderer();
const CheckboxWithLabel = require('../CheckboxWithLabel');
 
describe('CheckboxWithLabel', () => {
 
 // Render a checkbox with label in the document
 shallowRenderer.render(<CheckboxWithLabel labelOn="On" labelOff="Off" />);
 
 const checkbox = shallowRenderer.getRenderOutput();
 const component = ShallowTestUtils.getMountedInstance(shallowRenderer);
 

Chapter 9 ■ Testing React Components

291

 it('defaults to unchecked and Off label', () => {
 const expectedChildren = [
 <input type="checkbox" checked={false} onChange={component.onChange} />,
 "Off"
];
 expect(checkbox.props.children).toEqual(expectedChildren);
 });
 
});

You may have noticed the previous example referred to an onChange method:
onChange={component.onChange}.

Here you use the component mounted instance that react-shallow-testutils provided for you to ensure
that you are testing against the same function that your React component uses.

If you want to call a mountedInstance method that will end changing the component state, make sure
to call shallowRenderer.getRenderOutput again to get the updated render. For example, let’s implement a
new test in your example project calling the component’s onChange. Listing 9-13 shows the updated file.

Listing 9-13.  Calling a Method on the Mounted Component

jest.autoMockOff();
 
import React from 'react';
import ReactDOM from 'react-dom';
import TestUtils from 'react-addons-test-utils';
import ShallowTestUtils from 'react-shallow-testutils';
 
const shallowRenderer = TestUtils.createRenderer();
const CheckboxWithLabel = require('../CheckboxWithLabel');
 
describe('CheckboxWithLabel', () => {
 
 // Render a checkbox with label in the document
 shallowRenderer.render(<CheckboxWithLabel labelOn="On" labelOff="Off" />);
 
 let checkbox = shallowRenderer.getRenderOutput();
 const component = ShallowTestUtils.getMountedInstance(shallowRenderer);
 
 it('defaults to unchecked and Off label', () => {
 const expectedChildren = [
 <input type="checkbox" checked={false} onChange={component.onChange} />,
 "Off"
];
 expect(checkbox.props.children).toEqual(expectedChildren);
 });
  
 it('changes the label after click', () => {
 component.onChange();
 checkbox = shallowRenderer.getRenderOutput();
 expect(checkbox.props.children[1]).toEqual('On');
 });
});

Chapter 9 ■ Testing React Components

292

If you run the tests again with npm test, the result will look like Figure 9-4.

Figure 9-4.  Two tests passed

Summary
In this chapter, you saw how React components can be tested using React's Test Utils. You can either
generate the component DOM tree into a detached DOM node (using renderIntoDocument) or use shallow
rendering to output a component’s virtual tree without actually rendering it. After having a representation of
the component, you can use any testing framework to make assertions about the component's props, nodes,
etc. You also learned about Jest, the testing framework made by Facebook that is the preferred way to test
React projects.

293

�       � A, B
AirCheap application

actions/AirportActionCreators.js file, 189
AirCheap tickets app, 185
airport store, 189
api/AirCheapAPI.js, 188
api/AirCheapAPI.js file, 187
app component

auto suggestions, 190
basic app.js, 191
getSuggestions function, 192
style sheet, 193–195
working airport suggestions

field, 192
AppDispatcher.js form, 186
app folder structure, 186
constants.js file, 187
loading tickets

actionCreators, 198
components/TicketItem.js

component, 200–201
flights.json file, 196
stores, 199–200
updated AirCheapAPI.js file, 197
updated app component, 203–205

public/airports.json file, 187

�       � C
Collecting function, 106
Complex user interface

component composition strategy
ContacsApp Code, 58–59
Contact App Code, 62, 64
Contact app’s filter, 62
contact app with search, 58
ContactList Component, 60
data flow, 61
local function, 61–62

onChange event, callback, 62
SearchBar component, 60
stateful and pure components, 57

component lifecycle
component change, 66
data fetching, 67
mounting cycle, 65
unmounting cycle, 65

immutability
helper. Update function
nested objects, 71
plain JavaScript, 70–71

Kanban App
authorization, 77
checklist component, 81
complete KanbanBoardContainer

code, 86–89
fetching data code, 77
KanbanBoardContainer, 78
KanbanBoardContainer

component, 77
KanbanBoardContainer.js, 76–77
original state, 85
setState, 85
taskCallbacks Prop, 79–81
task manipulation, 79, 83

Kanbn App
checklist component, 82–83
task manipulation, 79

Prop validation
card component, 55–56
checklist component, 55
combined primitives, 53
default prop value, 52–53
JavaScript primitives, 53
KanbanBoard Component, 54
list component, 54
propTypes, 51–52
special propTypes, 54

ContactsAppContainer, 68

Index

■ index

294

�       � D, E
deleteTask method, 83
Drag and Drop (DnD)

card dragging
across lists, 120
cardCallbacks Props, 119–120
card sorting, 123, 125
CARD type, 120
KanbanAppContainer component, 117–119
KanbanBoardContainer, 128–129
persistCardDrag method, 127
prepareMove and persistMove, 129
throttle callbacks, 125–126

card toggle animation, 115
implementation overview, 103
“React way”, 103
sample implementation

Container component, 104–105
higher-order components, 105
Main App Component, 104
refactor, 114
ShoppingCart component.

ShoppingCart component
Snack, 104
Snack component. Snack component
styling, 113–114

DragSource, 121
DropTarget, 122

�       � F
Flux

actions, 168
AirCheap application. AirCheap application
async data fetching

AirportActionCreators.js, 206
AppDispatcher’s dispatchAsync, 205
updated AirCheapApi.js file, 207

asynchronous
BankRewards Store, 182
data fetching, 184
updated fake bank account, 184

bank account application
action creators, 172–173
AppDispatcher.js, 172
constants.js file, 171
first transaction, 171
store, 173–175
UI components, 175
update balance, 171

dispatcher, 169–170
Flux Utils package

BankBalanceStore Extending
ReduceStore, 180

BankBalanceStore Version, 179

container component, 180
MapStore, 178
ReduceStore, 178
Store, 178

Kanban App. Kanban App
stores, 168

�       � G
GroceryItem component, 10

�       � H
HTTP GET method, 259

�       � I
Inline styling

Card Color, 39
definition, 38

Isomorphic JavaScript applications
definition, 257
Node.js and Express

babelrc Configuration File, 258
HTTP GET method, 259
json project file, 257
project structure, 258
server running, 260
source code, 259
template files, 261
updated package.json, 260

static assets, 262
Isomorphic React Basics

project structure, 263
ContactList component, 264–265
Contacts app, 263
contacts.json file, 266
SearchBar component, 264–265

React mounting
browser.js file, 271
client-side setup, 270
component’s initialData, 270

rendering components
babelrc Configuration File, 267
code implementation, 268
Express App, 267
server-side React, 269

�       � J
JavaScript, 2
JavaScript language extension (JSX)

blank space, 33
conditional clauses, 30–31
dynamic HTML, 34
HTML comments, 33

■ Index

295

single root node, 29
ternary expressions, 31
uses, 28
vs. HTML, 28
XML tags, 27

Jest
features, 281
output, 282
project structure, 281
sum.js file, 282
sum-test.js file, 282

�       � K, L
Kanban app

addCard method, 160
additional CSS styles, 166
CardForm component, 154
CSS styling, 164
edit button, 165
link component, 165
NewCard end EditCard components, 157
rendering NewCard and EditCard, 162
setting Up, 159
transitioning, 163
updateCard method, 161

Kanban App
Card Color, 39
Click Event Handler, 22
components

card, 228–229
Checklist component, 229–230
KanbanBoardContainer, 225
list, 227–228
NewCard and EditCard, 230
updated KanbanBoard

Component, 226–227
conditional class, 32
data fetching

CardActionCreators.js, 218
CardStore, 216
data manipulation methods, 217
fetchCards API method, 215
FetchCards constants and action

creator, 214
functionality migration, 217
KanbanBoardContainer, 213
TaskActionCreators.js, 219
updated Card Store, 222–224
Updated KanbanApi, 220

key props, 47
markdown formatting, 34
refactor

basic files, 210
fixing imports, 209

removing component state
CardActionCreators.js, 239
constants.js file, 234
DraftStore, 237–238
show/hide card details, 232
updated Card Component, 232
updated CardStore, 235–236
updated EditCard component, 239
updated NewCard component, 240–241

render method, Card Components, 21
task form, 45
Togglable Cards, 21

Kanban Board App, 11
KanbanBoard Component (KanbanBoard.js), 15

�       � M
Max-height property, 117

�       � N, O
Node.js, 1
Node Package Manager (NPM), 1

�       � P, Q
Performance tuning

ReactPerf. ReactPerf
reconciliation process

batching, 243
sub-tree rendering, 244

shouldComponentUpdate
card component, 254
clock application, 253
digit component, 253
shallowCompare, 254
shallowCompare Add-on, 254

�       � R
React

App Module (App.js), 14
benefits

component-oriented development, 3
document model, abstraction, 3
single page applications, 3
virtual DOM, 3

Card Component (Card.js), 16
Checklist Component (CheckList.js), 17
component hierarchy, 13
CSS files, 18
definition, 2
DOM Event Listeners

Focus and Form Events, 26
Kanban app, 26

■ index

296

Keyboard Events, 26
Touch and Mouse Events, 26

forms
controlled component, 41
Select, 43
tasks checkboxes, 45
TextArea, 43
uncontrolled components, 43

HTML File, 20
Inline styling. Inline styling
JSX, 4
JSX. JavaScript language extension (JSX)
Kanban Board App, 11
List Component (List.js), 15
plain JavaScript

child arguments, 37
custom factories, 38
element factories, 37

props, 10, 13
react development workflow

dynamic values, 9
Hello World component, 8
index.html file, 6
package.json file, 6
project structure, 4
React app, 5
React.Component, 9
React library, 6
webpack, 5
webpack.config.js File, 7

virtual DOM
assumptions, 45
key props, 47
key attribute, 46
Refs, 48

React Perf
app component, 247
Clock.js code, 246
Digit.js source code, 245
installation

output, 249
performance test application, 248
profiling, 249
updated app running, 250
updated clock component, 251

methods, 245
Perf.start(), 245
Perf.stop(), 245

React Perf methods, 245
React test utilities method

babel-jest, 286
CheckboxWithLabel.js file, 285
CheckboxWithLabel_test.js file, 285
Component, 283

Package.json file, 284
project structure, 283
shallow rendering

test utils, 290
Usage, 288

simulating events, 287
test result, 286
transversing and finding children, 286

requestInitialData method, 274
Routing

child components, 131
CSS, 134
dynamic data fetching, 274
home component, 133
internal routes, 273
nested routes, 135
React Router

adding link components, 141
changing routes, 149
cloning and injecting props, 146
decoupling UI, 147
definition, 135
GitHub API, 140
histories, 152
importing components, 136
index route, 138
Kanban app. Kanban app
named components, 138
RepoDetails component, 142–143
route configuration, 145
setting active links, 144–145
updated app component class, 136
Updated App.js, 143
updated render, 137
updated RepoDetails.js file, 147

rendering routes
browser.js file, 280
server.js file, 276

render method, 132

�       � S
setState method, 69
Shipping list

Adding the ReactCSSTransitionGroup
Element, 99, 101

AnimatedShoppingList component, 97–98
animate initial mounting

final source code, 101–102
transitionAppear property, 101
transition control, 101

ShoppingCart component
basic skeleton, 106
collect function, 107
complete source code, 108–109

React (cont.)

■ Index

297

inline CSS style, 106
isOver and canDrop props, 108
isOver and canDrop props, 108
updated render method, 108
Spec Object Implementation, 107

Snack component
basic structure, 110
complete source code, 112–113
spec object implementation, 111
spec collecting function, 111
spec object implementation, 111

Sophisticated interactions
CSS transitions and animations

attribute, 92
control, transition property, 92
flexibility, 94
“hamburger” menu, 94
hover animation, 92–93
keyframe property, 93
keyframe property, 94
prefixes, 93
sample code, trigger, 96–97
setup, 91

sidebar-transition-active class, 95
sidebar-transition-active class, 96

ReactCSSTransitionGroup
add-on, 97
shopping list. Shopping list

React DnD. Drag and Drop (DnD)

�       � T
Throttling function, 126

�       � U, V, W, X, Y, Z
Universal JavaScript applications.

Isomorphic JavaScript applications
Update function

array indexes, 75
arrival information, 74
available commands, 75
JavaScript objects and

arrays, 73
originalTicket and newTicket, 74
parameters, 73

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Getting Started
	 Before You Get Started
	 Node.js and npm
	 JavaScript ES6

	 Defining React
	 React’s Benefits
	 Reactive Rendering is Simple
	 Component-Oriented Development Using Pure JavaScript
	 Flexible Abstraction of the Document Model

	 Building Your First React App
	 React Development Workflow
	Getting Started Quickly
	Or, Do It Yourself

	 Creating Your First Component
	 Saving a little typing
	 Dynamic Values

	 Composing Components
	 Props
	 Presenting the Kanban Board App
	 Defining Component Hierarchy
	 The Importance of Props
	 Building the Components
	App Module (App.js)
	KanbanBoard Component (KanbanBoard.js)
	List Component (List.js)
	 Card Component (Card.js)
	 Checklist Component (CheckList.js)
	Finishing Touches

	 Introducing State
	 Kanban App: Togglable Cards

	 Summary

	Chapter 2: Inside the DOM Abstraction
	 Events in React
	 DOM Event Listeners
	 Kanban App: Managing the DOM Event

	 Digging Deeper in JSX
	 JSX vs. HTML
	 Differences Between JSX and HTML
	Tag Attributes Are Camel Cased
	All Elements Must be Balanced
	Attribute Names are Based on the DOM API

	 JSX Quirks
	Single Root Node
	 Conditional Clauses
	What Are the Alternatives?
	Use Ternary Expressions
	 Move the Condition Out

	 Kanban App: Indicating Whether a Card Is Open or Closed
	 Blank Space
	 Comments in JSX
	 Rendering Dynamic HTML
	 Kanban App: Rendering Markdown

	 React Without JSX
	 React Elements in Plain JavaScript
	 Element Factories
	 Custom Factories

	 Inline Styling
	 Defining Inline Styles
	 Kanban App: Card Color via Inline Styling

	 Working With Forms
	 Controlled Components
	 Special Cases
	TextArea
	 Select

	 Uncontrolled Components
	 Kanban App: Creating a Task Form

	 Virtual DOM Under the Hood
	 Keys
	 Kanban App: Keys
	 Refs

	 Summary

	Chapter 3: Architecting Applications with Components
	 Prop Validation
	 Default Prop Values
	 Built-in propType Validators
	 Kanban App: Defining Prop Types
	 Custom PropType Validators
	Kanban App: Defining a Custom PropType Validator

	 Component Composition Strategies and Best Practices
	 Stateful and Pure Components
	 Which Components Should Be Stateful?
	 Data Flow and Component Communication

	 Component Lifecycle
	 Lifecycle Phases and Methods
	 Lifecycle Functions in Practice: Data Fetching

	 A Brief Talk About Immutability
	 Immutability in Plain JavaScript
	 Nested Objects
	 React Immutability Helper
	Array Indexes
	Available Commands

	 Kanban App: Adding (a Little) Complexity
	Fetching the Initial Cards from the External API
	Wiring Up the Task Callbacks as Props
	 Manipulating Tasks
	Basic Optimistic Updates Rollback

	 Summary

	Chapter 4: Sophisticated Interactions
	 Animation in React
	 CSS Transition and Animation 101
	CSS Transitions
	Note About Prefixes

	Keyframe Animations
	Programmatically Starting CSS Transitions and Animations

	 React CSSTransitionGroup
	React Animation Example: Shopping List
	Basic Application Setup
	Adding the ReactCSSTransitionGroup Element
	Animate Initial Mounting

	 Drag and Drop
	 React DnD Implementation Overview
	The implementation of drag-and-drop behavior in your React application through the React DnD library is done using higher-o...

	 A React DnD Sample Implementation
	The Container
	DragSource and DropTarget Higher Order Components
	Type
	Spec Object
	 Collecting Function

	ShoppingCart Component
	Snack Component
	Styling
	Refactor: Using Constants

	 Kanban App: Animations and Drag-and-Drop Support
	 Card Toggle Animation
	 Card Dragging
	Dragging Across Lists
	Card Sorting
	Throttle Callbacks
	Persist the New Card’s Positions and Status

	 Summary

	Chapter 5: Routing
	 Implementing Routing the “Naive” Way
	 React Router
	 Index Route
	 Routes with Parameters
	 Setting Active Links
	 Passing Props
	Props on the Route Configuration
	 Cloning and Injecting Props on Children

	 Decoupling the UI from the URL
	 Changing Routes Programmatically
	 Histories
	 Kanban App: Routing
	CardForm Component
	NewCard and EditCard Components
	 Setting Up the Routes
	Creating the Callbacks and Rendering the Children on KanbanBoardContainer
	Rendering the Card Forms in the KanbanBoard
	Finishing Touches: Transitioning

	 Summary

	Chapter 6: Architecting React Applications with Flux
	 What Is Flux?
	 Stores
	 Actions
	 Dispatcher

	 The Unrealistic, Minimal Flux App
	 The Bank Account Application
	The Application’s Constants
	The Dispatcher
	Action Creators
	 Store
	 UI Components

	 Flux Utils
	 Flux Utils Stores
	 Container Component Higher Order Function

	 Asynchronous Flux
	 waitFor: Coordinating Store Update Order
	 Asynchronous Data Fetching

	 AirCheap Application
	 Setup: Project Organization and Basic Files
	 Creating the API Helper and ActionCreators for Fetching Airports
	 AirportStore
	 App Component
	 Finishing the AirCheap application: Loading Tickets
	API Helper
	 ActionCreators
	 Stores
	Interface Components

	 Evolving Your Async Data Fetching Implementation
	 AppDispatcher’s dispatchAsync

	 Kanban App: Moving to a Flux Architecture
	 Refactor: Creating Flux Basic Structure and Moving Files
	 Fixing Imports
	Adding Flux Basic Files

	 Moving the Data Fetching to the Flux Architecture
	Editing the KanbanBoardContainer

	 Implementing the FetchCards Action, API Method Call, and Store Callback
	FetchCards Constants and Action Creator
	 fetchCards API Method
	 CardStore: Responding to FETCH_CARDS_SUCCESS

	 Moving All Card and Task Manipulations to the Flux Architecture
	 Preparing for the Functionality Migration
	Action Creators
	KanbanApi
	CardStore

	 Components
	KanbanBoardContainer
	KanbanBoard
	 List
	 Card
	CheckList
	 NewCard and EditCard

	 Removing All Component State
	Show/Hide Card Details
	Card Component
	Constant and Action Creator
	CardStore

	Edit and New Card Components
	DraftStore
	Constants and ActionCreators
	EditCard and NewCard Components

	 Summary

	Chapter 7: Performance Tuning
	 How the Reconciliation Process Works
	 Batching
	 Sub-Tree Rendering

	 React Perf
	 The Performance Test Application
	 Installing and Using ReactPerf
	Forcing an Impact on Performance

	 shouldComponentUpdate
	 shallowCompare Add-on
	Kanban App: Implementing shouldComponentUpdate with the shallowCompare Add-on

	 Summary

	Chapter 8: Isomorphic React Applications
	 Node.js and Express
	 Node.js and Express “Hello World”
	Configuring Babel
	Creating the Express Server
	Running the Server
	 Using Templates
	Serving Static Assets

	 Isomorphic React Basics
	 Creating the Project Structure
	The Contacts App Files

	 Rendering React Components on the Server
	Babel Configuration
	 Express App
	Rendering React Components

	 Mounting React on the Client
	 Client-side Setup
	 Passing the Component’s initialData
	browser.js

	 Routing
	 Setting Up Internal Routes
	 Dynamic Data Fetching
	 Rendering Routes
	Rendering Routes on the Server
	 Rendering routes on the Browser

	 Summary

	Chapter 9: Testing React Components
	 Jest
	Jest Test Project Structure
	Getting Started

	 React Test Utilities
	 Rendering a Component for Testing
	Example Using renderIntoDocument and Jest

	 Transversing and Finding Children
	 Simulating Events
	 Shallow Rendering
	Basic Usage
	 React Shallow Test Utils

	 Summary

	Index

