

IT	Revolution	Press,	LLC
25	NW	23rd	Pl,	Suite	6314

Portland,	OR	97210
Copyright	©	2016	by	Gene	Kim,	Jez	Humble,	Patrick	Debois,	and	John	Willis	All	rights	reserved,	for

information	about	permission	to	reproduce	selections	from	this	book,	write	to	Permissions,	IT	Revolution
Press,	LLC,	25	NW	23rd	Pl,	Suite	6314,	Portland,	OR	97210

First	Edition
Printed	in	the	United	States	of	America	10	9	8	7	6	5	4	3	2	1

Cover	design	by	Strauber	Design	Studio	Cover	illustration	by	eboy

Book	design	by	Mammoth	Collective

Ebook	design	by	Digital	Bindery
Print	ISBN:	978-1942788003

Ebook–EPUB	ISBN:	978-1-942788-07-2
Ebook–Kindle	ISBN:	978-1-942788-08-9

Library	of	Congress	Control	Number:	2016951904
Publisher’s	note	to	readers:	Many	of	the	ideas,	quotations,	and	paraphrases	attributed	to	different	thinkers

and	industry	leaders	herein	are	excerpted	from	informal	conversations,	correspondence,	interviews,
conference	roundtables,	and	other	forms	of	oral	communication	that	took	place	over	the	last	six	years
during	the	development	and	writing	of	this	book.	Although	the	authors	and	publisher	have	made	every

effort	to	ensure	that	the	information	in	this	book	was	correct	at	press	time,	the	authors	and	publisher	do	not
assume	and	hereby	disclaim	any	liability	to	any	party	for	any	loss,	damage,	or	disruption	caused	by	errors

or	omissions,	whether	such	errors	or	omissions	result	from	negligence,	accident,	or	any	other	cause.
The	author	of	the	18F	case	study	on	page	325	has	dedicated	the	work	to	the	public	domain	by	waiving	all	of
his	or	her	rights	to	the	work	worldwide	under	copyright	law,	including	all	related	and	neighboring	rights,	to

the	extent	allowed	by	law.	You	can	copy,	modify,	distribute,	and	perform	case	study	18F,	even	for
commercial	purposes,	all	without	asking	permission.

For	information	about	special	discounts	for	bulk	purchases	or	for	information	on	booking	authors	for	an
event,	please	visit	ITRevolution.com.

THE	DEVOPS	HANDBOOK

http://www.digitalbindery.com/

Preface

Aha!
The	journey	to	complete	The	DevOps	Handbook	has	been	a	long	one—it	started
with	weekly	working	Skype	calls	between	the	co-authors	in	February	of	2011,
with	the	vision	of	creating	a	prescriptive	guide	that	would	serve	as	a	companion
to	the	as-yet	unfinished	book	The	Phoenix	Project:	A	Novel	About	IT,	DevOps,
and	Helping	Your	Business	Win.

More	than	five	years	later,	with	over	two	thousand	hours	of	work,	The	DevOps
Handbook	is	finally	here.	Completing	this	book	has	been	an	extremely	long
process,	although	one	that	has	been	highly	rewarding	and	full	of	incredible
learning,	with	a	scope	that	is	much	broader	than	we	originally	envisioned.
Throughout	the	project,	all	the	co-authors	shared	a	belief	that	DevOps	is
genuinely	important,	formed	in	a	personal	“aha”	moment	much	earlier	in	each	of
our	professional	careers,	which	I	suspect	many	of	our	readers	will	resonate	with.

Gene	Kim
I’ve	had	the	privilege	of	studying	high-performing	technology	organizations
since	1999,	and	one	of	the	earliest	findings	was	that	boundary-spanning
between	the	different	functional	groups	of	IT	Operations,	Information
Security,	and	Development	was	critical	to	success.	But	I	still	remember	the
first	time	I	saw	the	magnitude	of	the	downward	spiral	that	would	result	when
these	functions	worked	toward	opposing	goals.

It	was	2006,	and	I	had	the	opportunity	to	spend	a	week	with	the	group	who
managed	the	outsourced	IT	Operations	of	a	large	airline	reservation	service.
They	described	the	downstream	consequences	of	their	large,	annual	software
releases:	each	release	would	cause	immense	chaos	and	disruption	for	the
outsourcer,	as	well	as	customers;	there	would	be	SLA	(service	level
agreement)	penalties,	because	of	the	customer-impacting	outages;	there
would	be	layoffs	of	the	most	talented	and	experienced	staff,	because	of	the
resulting	profit	shortfalls;	there	would	be	much	unplanned	work	and
firefighting	so	that	the	remaining	staff	couldn’t	work	on	the	ever-growing
service	request	backlogs	coming	from	customers;	the	contract	would	be	held
together	by	the	heroics	of	middle	management;	and	everyone	felt	that	the
contract	would	be	doomed	to	be	put	out	for	re-bid	in	three	years.

The	sense	of	hopelessness	and	futility	that	resulted	created	for	me	the
beginnings	of	a	moral	crusade.	Development	seemed	to	always	be	viewed	as
strategic,	but	IT	Operations	was	viewed	as	tactical,	often	delegated	away	or
outsourced	entirely,	only	to	return	in	five	years	in	worse	shape	than	it	was
first	handed	over.

For	many	years,	many	of	us	knew	that	there	must	be	a	better	way.	I
remember	seeing	the	talks	coming	out	of	the	2009	Velocity	Conference,
describing	amazing	outcomes	enabled	by	architecture,	technical	practices,
and	cultural	norms	that	we	now	know	as	DevOps.	I	was	so	excited,	because
it	clearly	pointed	to	the	better	way	that	we	had	all	been	searching	for.	And
helping	spread	that	word	was	one	of	my	personal	motivations	to	co-author
The	Phoenix	Project.	You	can	imagine	how	incredibly	rewarding	it	was	to
see	the	broader	community	react	to	that	book,	describing	how	it	helped	them
achieve	their	own	“aha”	moments.

Jez	Humble

My	DevOps	“aha”	moment	was	at	a	start-up	in	2000—my	first	job	after
graduating.	For	some	time,	I	was	one	of	two	technical	staff.	I	did	everything:
networking,	programming,	support,	systems	administration.	We	deployed
software	to	production	by	FTP	directly	from	our	workstations.

Then	in	2004	I	got	a	job	at	ThoughtWorks,	a	consultancy	where	my	first	gig
was	working	on	a	project	involving	about	seventy	people.	I	was	on	a	team	of
eight	engineers	whose	full-time	job	was	to	deploy	our	software	into	a
production-like	environment.	In	the	beginning,	it	was	really	stressful.	But
over	a	few	months	we	went	from	manual	deployments	that	took	two	weeks
to	an	automated	deployment	that	took	one	hour,	where	we	could	roll	forward
and	back	in	milliseconds	using	the	blue-green	deployment	pattern	during
normal	business	hours.

That	project	inspired	a	lot	of	the	ideas	in	both	the	Continuous	Delivery
(Addison-Wesley,	2000)	book	and	this	one.	A	lot	of	what	drives	me	and
others	working	in	this	space	is	the	knowledge	that,	whatever	your
constraints,	we	can	always	do	better,	and	the	desire	to	help	people	on	their
journey.

Patrick	Debois
For	me,	it	was	a	collection	of	moments.	In	2007	I	was	working	on	a	data
center	migration	project	with	some	Agile	teams.	I	was	jealous	that	they	had
such	high	productivity—able	to	get	so	much	done	in	so	little	time.

For	my	next	assignment,	I	started	experimenting	with	Kanban	in	Operations
and	saw	how	the	dynamic	of	the	team	changed.	Later,	at	the	Agile	Toronto
2008	conference	I	presented	my	IEEE	paper	on	this,	but	I	felt	it	didn’t
resonate	widely	in	the	Agile	community.	We	started	an	Agile	system
administration	group,	but	I	overlooked	the	human	side	of	things.

After	seeing	the	2009	Velocity	Conference	presentation	“10	Deploys	per
Day”	by	John	Allspaw	and	Paul	Hammond,	I	was	convinced	others	were
thinking	in	a	similar	way.	So	I	decided	to	organize	the	first	DevOpsDays,
accidently	coining	the	term	DevOps.

The	energy	at	the	event	was	unique	and	contagious.	When	people	started	to
thank	me	because	it	changed	their	life	for	the	better,	I	understood	the	impact.
I	haven’t	stopped	promoting	DevOps	since.

John	Willis
In	2008,	I	had	just	sold	a	consulting	business	that	focused	on	large-scale,
legacy	IT	operations	practices	around	configuration	management	and
monitoring	(Tivoli)	when	I	first	met	Luke	Kanies	(the	founder	of	Puppet
Labs).	Luke	was	giving	a	presentation	on	Puppet	at	an	O’Reilly	open	source
conference	on	configuration	management	(CM).

At	first	I	was	just	hanging	out	at	the	back	of	the	room	killing	time	and
thinking,	“What	could	this	twenty-year-old	tell	me	about	configuration
management?”	After	all,	I	had	literally	been	working	my	entire	life	at	some
of	the	largest	enterprises	in	the	world,	helping	them	architect	CM	and	other
operations	management	solutions.	However,	about	five	minutes	into	his
session,	I	moved	up	to	the	first	row	and	realized	everything	I	had	been	doing
for	the	last	twenty	years	was	wrong.	Luke	was	describing	what	I	now	call
second	generation	CM.

After	his	session	I	had	an	opportunity	to	sit	down	and	have	coffee	with	him.	I
was	totally	sold	on	what	we	now	call	infrastructure	as	code.	However,	while
we	met	for	coffee,	Luke	started	going	even	further,	explaining	his	ideas.	He
started	telling	me	he	believed	that	operations	was	going	to	have	to	start
behaving	like	software	developers.	They	were	going	to	have	to	keep	their

configurations	in	source	control	and	adopt	CI/CD	delivery	patterns	for	their
workflow.	Being	the	old	IT	Operations	person	at	the	time,	I	think	I	replied	to
him	with	something	like,	“That	idea	is	going	to	sink	like	Led	Zeppelin	with
Ops	folk.”	(I	was	clearly	wrong.)

Then	about	a	year	later	in	2009	at	another	O’Reilly	conference,	Velocity,	I
saw	Andrew	Clay	Shafer	give	a	presentation	on	Agile	Infrastructure.	In	his
presentation,	Andrew	showed	this	iconic	picture	of	a	wall	between
developers	and	operations	with	a	metaphorical	depiction	of	work	being
thrown	over	the	wall.	He	coined	this	“the	wall	of	confusion.”	The	ideas	he
expressed	in	that	presentation	codified	what	Luke	was	trying	to	tell	me	a
year	earlier.	That	was	the	light	bulb	for	me.	Later	that	year,	I	was	the	only
American	invited	to	the	original	DevOpsDays	in	Ghent.	By	the	time	that
event	was	over,	this	thing	we	call	DevOps	was	clearly	in	my	blood.

Clearly,	the	co-authors	of	this	book	all	came	to	a	similar	epiphany,	even	if	they
came	there	from	very	different	directions.	But	there	is	now	an	overwhelming
weight	of	evidence	that	the	problems	described	above	happen	almost
everywhere,	and	that	the	solutions	associated	with	DevOps	are	nearly
universally	applicable.

The	goal	of	writing	this	book	is	to	describe	how	to	replicate	the	DevOps
transformations	we’ve	been	a	part	of	or	have	observed,	as	well	as	dispel	many	of
the	myths	of	why	DevOps	won’t	work	in	certain	situations.	Below	are	some	of
the	most	common	myths	we	hear	about	DevOps.

Myth—DevOps	is	Only	for	Startups:	While	DevOps	practices	have	been
pioneered	by	the	web-scale,	Internet	“unicorn”	companies	such	as	Google,
Amazon,	Netflix,	and	Etsy,	each	of	these	organizations	has,	at	some	point	in
their	history,	risked	going	out	of	business	because	of	the	problems	associated
with	more	traditional	“horse”	organizations:	highly	dangerous	code	releases	that

were	prone	to	catastrophic	failure,	inability	to	release	features	fast	enough	to
beat	the	competition,	compliance	concerns,	an	inability	to	scale,	high	levels	of
distrust	between	Development	and	Operations,	and	so	forth.

However,	each	of	these	organizations	was	able	to	transform	their	architecture,
technical	practices,	and	culture	to	create	the	amazing	outcomes	that	we	associate
with	DevOps.	As	Dr.	Branden	Williams,	an	information	security	executive,
quipped,	“Let	there	be	no	more	talk	of	DevOps	unicorns	or	horses	but	only
thoroughbreds	and	horses	heading	to	the	glue	factory.”

Myth—DevOps	Replaces	Agile:	DevOps	principles	and	practices	are	compatible
with	Agile,	with	many	observing	that	DevOps	is	a	logical	continuation	of	the
Agile	journey	that	started	in	2001.	Agile	often	serves	as	an	effective	enabler	of
DevOps,	because	of	its	focus	on	small	teams	continually	delivering	high	quality
code	to	customers.

Many	DevOps	practices	emerge	if	we	continue	to	manage	our	work	beyond	the
goal	of	“potentially	shippable	code”	at	the	end	of	each	iteration,	extending	it	to
having	our	code	always	in	a	deployable	state,	with	developers	checking	into
trunk	daily,	and	that	we	demonstrate	our	features	in	production-like
environments.

Myth—DevOps	is	incompatible	with	ITIL:	Many	view	DevOps	as	a	backlash	to
ITIL	or	ITSM	(IT	Service	Management),	which	was	originally	published	in
1989.	ITIL	has	broadly	influenced	multiple	generations	of	Ops	practitioners,
including	one	of	the	co-authors,	and	is	an	ever-evolving	library	of	practices
intended	to	codify	the	processes	and	practices	that	underpin	world-class	IT
Operations,	spanning	service	strategy,	design,	and	support.

DevOps	practices	can	be	made	compatible	with	ITIL	process.	However,	to
support	the	shorter	lead	times	and	higher	deployment	frequencies	associated

with	DevOps,	many	areas	of	the	ITIL	processes	become	fully	automated,	solving
many	problems	associated	with	the	configuration	and	release	management
processes	(e.g.,	keeping	the	configuration	management	database	and	definitive
software	libraries	up	to	date).	And	because	DevOps	requires	fast	detection	and
recovery	when	service	incidents	occur,	the	ITIL	disciplines	of	service	design,
incident,	and	problem	management	remain	as	relevant	as	ever.

Myth—DevOps	is	Incompatible	with	Information	Security	and	Compliance:	The
absence	of	traditional	controls	(e.g.,	segregation	of	duty,	change	approval
processes,	manual	security	reviews	at	the	end	of	the	project)	may	dismay
information	security	and	compliance	professionals.

However,	that	doesn’t	mean	that	DevOps	organizations	don’t	have	effective
controls.	Instead	of	security	and	compliance	activities	only	being	performed	at
the	end	of	the	project,	controls	are	integrated	into	every	stage	of	daily	work	in
the	software	development	life	cycle,	resulting	in	better	quality,	security,	and
compliance	outcomes.

Myth—DevOps	Means	Eliminating	IT	Operations,	or	“NoOps”:	Many
misinterpret	DevOps	as	the	complete	elimination	of	the	IT	Operations	function.
However,	this	is	rarely	the	case.	While	the	nature	of	IT	Operations	work	may
change,	it	remains	as	important	as	ever.	IT	Operations	collaborates	far	earlier	in
the	software	life	cycle	with	Development,	who	continues	to	work	with	IT
Operations	long	after	the	code	has	been	deployed	into	production.

Instead	of	IT	Operations	doing	manual	work	that	comes	from	work	tickets,	it
enables	developer	productivity	through	APIs	and	self-serviced	platforms	that
create	environments,	test	and	deploy	code,	monitor	and	display	production
telemetry,	and	so	forth.	By	doing	this,	IT	Operations	become	more	like
Development	(as	do	QA	and	Infosec),	engaged	in	product	development,	where

the	product	is	the	platform	that	developers	use	to	safely,	quickly,	and	securely
test,	deploy,	and	run	their	IT	services	in	production.

Myth—DevOps	is	Just	“Infrastructure	as	Code”	or	Automation:	While	many	of
the	DevOps	patterns	shown	in	this	book	require	automation,	DevOps	also
requires	cultural	norms	and	an	architecture	that	allows	for	the	shared	goals	to	be
achieved	throughout	the	IT	value	stream.	This	goes	far	beyond	just	automation.
As	Christopher	Little,	a	technology	executive	and	one	of	the	earliest	chroniclers
of	DevOps,	wrote,	“DevOps	isn’t	about	automation,	just	as	astronomy	isn’t
about	telescopes.”

Myth—DevOps	is	Only	for	Open	Source	Software:	Although	many	DevOps
success	stories	take	place	in	organizations	using	software	such	as	the	LAMP
stack	(Linux,	Apache,	MySQL,	PHP),	achieving	DevOps	outcomes	is
independent	of	the	technology	being	used.	Successes	have	been	achieved	with
applications	written	in	Microsoft.NET,	COBOL,	and	mainframe	assembly	code,
as	well	as	with	SAP	and	even	embedded	systems	(e.g.,	HP	LaserJet	firmware).

SPREADING	THE	AHA!	MOMENT

Each	of	the	authors	has	been	inspired	by	the	amazing	innovations	happening	in
the	DevOps	community	and	the	outcomes	they	are	creating:	they	are	creating
safe	systems	of	work,	and	enabling	small	teams	to	quickly	and	independently
develop	and	validate	code	that	can	be	safely	deployed	to	customers.	Given	our
belief	that	DevOps	is	a	manifestation	of	creating	dynamic,	learning
organizations	that	continually	reinforce	high-trust	cultural	norms,	it	is	inevitable
that	these	organizations	will	continue	to	innovate	and	win	in	the	marketplace.

It	is	our	sincere	hope	that	The	DevOps	Handbook	will	serve	as	a	valuable
resource	for	many	people	in	different	ways:	a	guide	for	planning	and	executing

DevOps	transformations,	a	set	of	case	studies	to	research	and	learn	from,	a
chronicle	of	the	history	of	DevOps,	a	means	to	create	a	coalition	that	spans
Product	Owners,	Architecture,	Development,	QA,	IT	Operations,	and
Information	Security	to	achieve	common	goals,	a	way	to	get	the	highest	levels	of
leadership	support	for	DevOps	initiatives,	as	well	as	a	moral	imperative	to
change	the	way	we	manage	technology	organizations	to	enable	better
effectiveness	and	efficiency,	as	well	as	enabling	a	happier	and	more	humane
work	environment,	helping	everyone	become	lifelong	learners—this	not	only
helps	everyone	achieve	their	highest	goals	as	human	beings,	but	also	helps	their
organizations	win.

Foreword

In	the	past,	many	fields	of	engineering	have	experienced	a	sort	of	notable
evolution,	continually	“leveling-up”	its	understanding	of	its	own	work.	While
there	are	university	curriculums	and	professional	support	organizations	situated
within	specific	disciplines	of	engineering	(civil,	mechanical,	electrical,	nuclear,
etc.),	the	fact	is,	modern	society	needs	all	forms	of	engineering	to	recognize	the
benefits	of	and	work	in	a	multidisciplinary	way.

Think	about	the	design	of	a	high-performance	vehicle.	Where	does	the	work	of	a
mechanical	engineer	end	and	the	work	of	an	electrical	engineer	begin?	Where
(and	how,	and	when)	should	someone	with	domain	knowledge	of	aerodynamics
(who	certainly	would	have	well-formed	opinions	on	the	shape,	size,	and
placement	of	windows)	collaborate	with	an	expert	in	passenger	ergonomics?
What	about	the	chemical	influences	of	fuel	mixture	and	oil	on	the	materials	of
the	engine	and	transmission	over	the	lifetime	of	the	vehicle?	There	are	other
questions	we	can	ask	about	the	design	of	an	automobile,	but	the	end	result	is	the
same:	success	in	modern	technical	endeavors	absolutely	requires	multiple
perspectives	and	expertise	to	collaborate.

In	order	for	a	field	or	discipline	to	progress	and	mature,	it	needs	to	reach	a	point
where	it	can	thoughtfully	reflect	on	its	origins,	seek	out	a	diverse	set	of
perspectives	on	those	reflections,	and	place	that	synthesis	into	a	context	that	is
useful	for	how	the	community	pictures	the	future.

This	book	represents	such	a	synthesis	and	should	be	seen	as	a	seminal	collection
of	perspectives	on	the	(I	will	argue,	still	emerging	and	quickly	evolving)	field	of
software	engineering	and	operations.

No	matter	what	industry	you	are	in,	or	what	product	or	service	your	organization
provides,	this	way	of	thinking	is	paramount	and	necessary	for	survival	for	every
business	and	technology	leader.

—John	Allspaw,	CTO,	Etsy

Brooklyn,	NY,	August	2016

Imagine	a	World	Where	Dev	and
Ops	Become	DevOps

An	Introduction	to	The	DevOps	Handbook
Imagine	a	world	where	product	owners,	Development,	QA,	IT	Operations,	and
Infosec	work	together,	not	only	to	help	each	other,	but	also	to	ensure	that	the
overall	organization	succeeds.	By	working	toward	a	common	goal,	they	enable
the	fast	flow	of	planned	work	into	production	(e.g.,	performing	tens,	hundreds,
or	even	thousands	of	code	deploys	per	day),	while	achieving	world-class
stability,	reliability,	availability,	and	security.

In	this	world,	cross-functional	teams	rigorously	test	their	hypotheses	of	which
features	will	most	delight	users	and	advance	the	organizational	goals.	They	care
not	just	about	implementing	user	features,	but	also	actively	ensure	their	work
flows	smoothly	and	frequently	through	the	entire	value	stream	without	causing
chaos	and	disruption	to	IT	Operations	or	any	other	internal	or	external	customer.

Simultaneously,	QA,	IT	Operations,	and	Infosec	are	always	working	on	ways	to
reduce	friction	for	the	team,	creating	the	work	systems	that	enable	developers	to
be	more	productive	and	get	better	outcomes.	By	adding	the	expertise	of	QA,	IT
Operations,	and	Infosec	into	delivery	teams	and	automated	self-service	tools	and
platforms,	teams	are	able	to	use	that	expertise	in	their	daily	work	without	being
dependent	on	other	teams.

This	enables	organizations	to	create	a	safe	system	of	work,	where	small	teams
are	able	to	quickly	and	independently	develop,	test,	and	deploy	code	and	value
quickly,	safely,	securely,	and	reliably	to	customers.	This	allows	organizations	to

maximize	developer	productivity,	enable	organizational	learning,	create	high
employee	satisfaction,	and	win	in	the	marketplace.

These	are	the	outcomes	that	result	from	DevOps.	For	most	of	us,	this	is	not	the
world	we	live	in.	More	often	than	not,	the	system	we	work	in	is	broken,	resulting
in	extremely	poor	outcomes	that	fall	well	short	of	our	true	potential.	In	our
world,	Development	and	IT	Operations	are	adversaries;	testing	and	Infosec
activities	happen	only	at	the	end	of	a	project,	too	late	to	correct	any	problems
found;	and	almost	any	critical	activity	requires	too	much	manual	effort	and	too
many	handoffs,	leaving	us	to	always	be	waiting.	Not	only	does	this	contribute	to
extremely	long	lead	times	to	get	anything	done,	but	the	quality	of	our	work,
especially	production	deployments,	is	also	problematic	and	chaotic,	resulting	in
negative	impacts	to	our	customers	and	our	business.

As	a	result,	we	fall	far	short	of	our	goals,	and	the	whole	organization	is
dissatisfied	with	the	performance	of	IT,	resulting	in	budget	reductions	and
frustrated,	unhappy	employees	who	feel	powerless	to	change	the	process	and	its
outcomes.†	The	solution?	We	need	to	change	how	we	work;	DevOps	shows	us
the	best	way	forward.

To	better	understand	the	potential	of	the	DevOps	revolution,	let	us	look	at	the
Manufacturing	Revolution	of	the	1980s.	By	adopting	Lean	principles	and
practices,	manufacturing	organizations	dramatically	improved	plant	productivity,
customer	lead	times,	product	quality,	and	customer	satisfaction,	enabling	them	to
win	in	the	marketplace.

Before	the	revolution,	average	manufacturing	plant	order	lead	times	were	six
weeks,	with	fewer	than	70%	of	orders	being	shipped	on	time.	By	2005,	with	the
widespread	implementation	of	Lean	practices,	average	product	lead	times	had
dropped	to	less	than	three	weeks,	and	more	than	95%	of	orders	were	being

shipped	on	time.	Organizations	that	did	not	implement	Lean	practices	lost
market	share,	and	many	went	out	of	business	entirely.

Similarly,	the	bar	has	been	raised	for	delivering	technology	products	and
services—what	was	good	enough	in	previous	decades	is	not	good	enough	now.
For	each	of	the	last	four	decades,	the	cost	and	time	required	to	develop	and
deploy	strategic	business	capabilities	and	features	has	dropped	by	orders	of
magnitude.	During	the	1970s	and	1980s,	most	new	features	required	one	to	five
years	to	develop	and	deploy,	often	costing	tens	of	millions	of	dollars.

By	the	2000’s,	because	of	advances	in	technology	and	the	adoption	of	Agile
principles	and	practices,	the	time	required	to	develop	new	functionality	had
dropped	to	weeks	or	months,	but	deploying	into	production	would	still	require
weeks	or	months,	often	with	catastrophic	outcomes.

And	by	2010,	with	the	introduction	of	DevOps	and	the	neverending
commoditization	of	hardware,	software,	and	now	the	cloud,	features	(and	even
entire	startup	companies)	could	be	created	in	weeks,	quickly	being	deployed	into
production	in	just	hours	or	minutes—for	these	organizations,	deployment	finally
became	routine	and	low	risk.	These	organizations	are	able	to	perform
experiments	to	test	business	ideas,	discovering	which	ideas	create	the	most	value
for	customers	and	the	organization	as	a	whole,	which	are	then	further	developed
into	features	that	can	be	rapidly	and	safely	deployed	into	production.

Table	1.	The	ever	accelerating	trend	toward	faster,	cheaper,	low-risk	delivery	of
software

(Source:	Adrian	Cockcroft,	“Velocity	and	Volume	(or	Speed	Wins),”	presentation	at
FlowCon,	San	Francisco,	CA,	November	2013.)

Today,	organizations	adopting	DevOps	principles	and	practices	often	deploy
changes	hundreds	or	even	thousands	of	times	per	day.	In	an	age	where
competitive	advantage	requires	fast	time	to	market	and	relentless
experimentation,	organizations	that	are	unable	to	replicate	these	outcomes	are
destined	to	lose	in	the	marketplace	to	more	nimble	competitors	and	could
potentially	go	out	of	business	entirely,	much	like	the	manufacturing
organizations	that	did	not	adopt	Lean	principles.

These	days,	regardless	of	what	industry	we	are	competing	in,	the	way	we	acquire
customers	and	deliver	value	to	them	is	dependent	on	the	technology	value
stream.	Put	even	more	succinctly,	as	Jeffrey	Immelt,	CEO	of	General	Electric,
stated,	“Every	industry	and	company	that	is	not	bringing	software	to	the	core	of
their	business	will	be	disrupted.”	Or	as	Jeffrey	Snover,	Technical	Fellow	at

Microsoft,	said,	“In	previous	economic	eras,	businesses	created	value	by	moving
atoms.	Now	they	create	value	by	moving	bits.”

It’s	difficult	to	overstate	the	enormity	of	this	problem—it	affects	every
organization,	independent	of	the	industry	we	operate	in,	the	size	of	our
organization,	whether	we	are	profit	or	non-profit.	Now	more	than	ever,	how
technology	work	is	managed	and	performed	predicts	whether	our	organizations
will	win	in	the	marketplace,	or	even	survive.	In	many	cases,	we	will	need	to
adopt	principles	and	practices	that	look	very	different	from	those	that	have
successfully	guided	us	over	the	past	decades.	See	Appendix	1.

Now	that	we	have	established	the	urgency	of	the	problem	that	DevOps	solves,
let	us	take	some	time	to	explore	in	more	detail	the	symptomatology	of	the
problem,	why	it	occurs,	and	why,	without	dramatic	intervention,	the	problem
worsens	over	time.

THE	PROBLEM:	SOMETHING	IN	YOUR
ORGANIZATION	MUST	NEED	IMPROVEMENT
(OR	YOU	WOULDN’T	BE	READING	THIS	BOOK)

Most	organizations	are	not	able	to	deploy	production	changes	in	minutes	or
hours,	instead	requiring	weeks	or	months.	Nor	are	they	able	to	deploy	hundreds
or	thousands	of	changes	into	production	per	day;	instead,	they	struggle	to	deploy
monthly	or	even	quarterly.	Nor	are	production	deployments	routine,	instead
involving	outages	and	chronic	firefighting	and	heroics.

In	an	age	where	competitive	advantage	requires	fast	time	to	market,	high	service
levels,	and	relentless	experimentation,	these	organizations	are	at	a	significant
competitive	disadvantage.	This	is	in	large	part	due	to	their	inability	to	resolve	a
core,	chronic	conflict	within	their	technology	organization.

THE	CORE,	CHRONIC	CONFLICT
In	almost	every	IT	organization,	there	is	an	inherent	conflict	between
Development	and	IT	Operations	which	creates	a	downward	spiral,	resulting	in
ever-slower	time	to	market	for	new	products	and	features,	reduced	quality,
increased	outages,	and,	worst	of	all,	an	ever-increasing	amount	of	technical	debt.

The	term	“technical	debt”	was	first	coined	by	Ward	Cunningham.	Analogous	to
financial	debt,	technical	debt	describes	how	decisions	we	make	lead	to	problems
that	get	increasingly	more	difficult	to	fix	over	time,	continually	reducing	our
available	options	in	the	future—even	when	taken	on	judiciously,	we	still	incur
interest.

One	factor	that	contributes	to	this	is	the	often	competing	goals	of	Development
and	IT	Operations.	IT	organizations	are	responsible	for	many	things.	Among
them	are	the	two	following	goals,	which	must	be	pursued	simultaneously:

Respond	to	the	rapidly	changing	competitive	landscape

Provide	stable,	reliable,	and	secure	service	to	the	customer

Frequently,	Development	will	take	responsibility	for	responding	to	changes	in
the	market,	deploying	features	and	changes	into	production	as	quickly	as
possible.	IT	Operations	will	take	responsibility	for	providing	customers	with	IT
service	that	is	stable,	reliable,	and	secure,	making	it	difficult	or	even	impossible
for	anyone	to	introduce	production	changes	that	could	jeopardize	production.
Configured	this	way,	Development	and	IT	Operations	have	diametrically
opposed	goals	and	incentives.

Dr.	Eliyahu	M.	Goldratt,	one	of	the	founders	of	the	manufacturing	management
movement,	called	these	types	of	configuration	“the	core,	chronic	conflict”—

when	organizational	measurements	and	incentives	across	different	silos	prevent
the	achievement	of	global,	organizational	goals.‡

This	conflict	creates	a	downward	spiral	so	powerful	it	prevents	the	achievement
of	desired	business	outcomes,	both	inside	and	outside	the	IT	organization.	These
chronic	conflicts	often	put	technology	workers	into	situations	that	lead	to	poor
software	and	service	quality,	and	bad	customer	outcomes,	as	well	as	a	daily	need
for	workarounds,	firefighting,	and	heroics,	whether	in	Product	Management,
Development,	QA,	IT	Operations,	or	Information	Security.	See	Appendix	2.

DOWNWARD	SPIRAL	IN	THREE	ACTS
The	downward	spiral	in	IT	has	three	acts	that	are	likely	familiar	to	most	IT
practitioners.

The	first	act	begins	in	IT	Operations,	where	our	goal	is	to	keep	applications	and
infrastructure	running	so	that	our	organization	can	deliver	value	to	customers.	In
our	daily	work,	many	of	our	problems	are	due	to	applications	and	infrastructure
that	are	complex,	poorly	documented,	and	incredibly	fragile.	This	is	the
technical	debt	and	daily	workarounds	that	we	live	with	constantly,	always
promising	that	we’ll	fix	the	mess	when	we	have	a	little	more	time.	But	that	time
never	comes.

Alarmingly,	our	most	fragile	artifacts	support	either	our	most	important	revenue-
generating	systems	or	our	most	critical	projects.	In	other	words,	the	systems
most	prone	to	failure	are	also	our	most	important	and	are	at	the	epicenter	of	our
most	urgent	changes.	When	these	changes	fail,	they	jeopardize	our	most
important	organizational	promises,	such	as	availability	to	customers,	revenue
goals,	security	of	customer	data,	accurate	financial	reporting,	and	so	forth.

The	second	act	begins	when	somebody	has	to	compensate	for	the	latest	broken
promise—it	could	be	a	product	manager	promising	a	bigger,	bolder	feature	to

dazzle	customers	with	or	a	business	executive	setting	an	even	larger	revenue
target.	Then,	oblivious	to	what	technology	can	or	can’t	do,	or	what	factors	led	to
missing	our	earlier	commitment,	they	commit	the	technology	organization	to
deliver	upon	this	new	promise.

As	a	result,	Development	is	tasked	with	another	urgent	project	that	inevitably
requires	solving	new	technical	challenges	and	cutting	corners	to	meet	the
promised	release	date,	further	adding	to	our	technical	debt—made,	of	course,
with	the	promise	that	we’ll	fix	any	resulting	problems	when	we	have	a	little
more	time.

This	sets	the	stage	for	the	third	and	final	act,	where	everything	becomes	just	a
little	more	difficult,	bit	by	bit—everybody	gets	a	little	busier,	work	takes	a	little
more	time,	communications	become	a	little	slower,	and	work	queues	get	a	little
longer.	Our	work	becomes	more	tightly-coupled,	smaller	actions	cause	bigger
failures,	and	we	become	more	fearful	and	less	tolerant	of	making	changes.	Work
requires	more	communication,	coordination,	and	approvals;	teams	must	wait	just
a	little	longer	for	their	dependent	work	to	get	done;	and	our	quality	keeps	getting
worse.	The	wheels	begin	grinding	slower	and	require	more	effort	to	keep
turning.	See	Appendix	3.

Although	it’s	difficult	to	see	in	the	moment,	the	downward	spiral	is	obvious
when	one	takes	a	step	back.	We	notice	that	production	code	deployments	are
taking	ever-longer	to	complete,	moving	from	minutes	to	hours	to	days	to	weeks.
And	worse,	the	deployment	outcomes	have	become	even	more	problematic,	that
resulting	in	an	ever-increasing	number	of	customer-impacting	outages	that
require	more	heroics	and	firefighting	in	Operations,	further	depriving	them	of
their	ability	to	pay	down	technical	debt.

As	a	result,	our	product	delivery	cycles	continue	to	move	slower	and	slower,
fewer	projects	are	undertaken,	and	those	that	are,	are	less	ambitious.

Furthermore,	the	feedback	on	everyone’s	work	becomes	slower	and	weaker,
especially	the	feedback	signals	from	our	customers.	And,	regardless	of	what	we
try,	things	seem	to	get	worse—we	are	no	longer	able	to	respond	quickly	to	our
changing	competitive	landscape,	nor	are	we	able	to	provide	stable,	reliable
service	to	our	customers.	As	a	result,	we	ultimately	lose	in	the	marketplace.

Time	and	time	again,	we	learn	that	when	IT	fails,	the	entire	organization	fails.
As	Steven	J.	Spear	noted	in	his	book	The	High-Velocity	Edge,	whether	the
damages	“unfold	slowly	like	a	wasting	disease”	or	rapidly	“like	a	fiery
crash...the	destruction	can	be	just	as	complete.”

WHY	DOES	THIS	DOWNWARD	SPIRAL	HAPPEN
EVERYWHERE?
For	over	a	decade,	the	authors	of	this	book	have	observed	this	destructive	spiral
occur	in	countless	organizations	of	all	types	and	sizes.	We	understand	better	than
ever	why	this	downward	spiral	occurs	and	why	it	requires	DevOps	principles	to
mitigate.	First,	as	described	earlier,	every	IT	organization	has	two	opposing
goals,	and	second,	every	company	is	a	technology	company,	whether	they	know
it	or	not.

As	Christopher	Little,	a	software	executive	and	one	of	the	earliest	chroniclers	of
DevOps,	said,	“Every	company	is	a	technology	company,	regardless	of	what
business	they	think	they’re	in.	A	bank	is	just	an	IT	company	with	a	banking
license.”§

To	convince	ourselves	that	this	is	the	case,	consider	that	the	vast	majority	of
capital	projects	have	some	reliance	upon	IT.	As	the	saying	goes,	“It	is	virtually
impossible	to	make	any	business	decision	that	doesn’t	result	in	at	least	one	IT
change.”

In	the	business	and	finance	context,	projects	are	critical	because	they	serve	as	the
primary	mechanism	for	change	inside	organizations.	Projects	are	typically	what
management	needs	to	approve,	budget	for,	and	be	held	accountable	for;
therefore,	they	are	the	mechanism	that	achieve	the	goals	and	aspirations	of	the
organization,	whether	it	is	to	grow	or	even	shrink.¶

Projects	are	typically	funded	through	capital	spending	(i.e.,	factories,	equipment,
and	major	projects,	and	expenditures	are	capitalized	when	payback	is	expected
to	take	years),	of	which	50%	is	now	technology	related.	This	is	even	true	in	“low
tech”	industry	verticals	with	the	lowest	historical	spending	on	technology,	such
as	energy,	metal,	resource	extraction,	automotive,	and	construction.	In	other
words,	business	leaders	are	far	more	reliant	upon	the	effective	management	of	IT
in	order	to	achieve	their	goals	than	they	think.**

THE	COSTS:	HUMAN	AND	ECONOMIC
When	people	are	trapped	in	this	downward	spiral	for	years,	especially	those	who
are	downstream	of	Development,	they	often	feel	stuck	in	a	system	that	pre-
ordains	failure	and	leaves	them	powerless	to	change	the	outcomes.	This
powerlessness	is	often	followed	by	burnout,	with	the	associated	feelings	of
fatigue,	cynicism,	and	even	hopelessness	and	despair.

Many	psychologists	assert	that	creating	systems	that	cause	feelings	of
powerlessness	is	one	of	the	most	damaging	things	we	can	do	to	fellow	human
beings—we	deprive	other	people	of	their	ability	to	control	their	own	outcomes
and	even	create	a	culture	where	people	are	afraid	to	do	the	right	thing	because	of
fear	of	punishment,	failure,	or	jeopardizing	their	livelihood.	This	can	create	the
conditions	of	learned	helplessness,	where	people	become	unwilling	or	unable	to
act	in	a	way	that	avoids	the	same	problem	in	the	future.

For	our	employees,	it	means	long	hours,	working	on	weekends,	and	a	decreased
quality	of	life,	not	just	for	the	employee,	but	for	everyone	who	depends	on	them,
including	family	and	friends.	It	is	not	surprising	that	when	this	occurs,	we	lose
our	best	people	(except	for	those	that	feel	like	they	can’t	leave,	because	of	a
sense	of	duty	or	obligation).

In	addition	to	the	human	suffering	that	comes	with	the	current	way	of	working,
the	opportunity	cost	of	the	value	that	we	could	be	creating	is	staggering—the
authors	believe	that	we	are	missing	out	on	approximately	$2.6	trillion	of	value
creation	per	year,	which	is,	at	the	time	of	this	writing,	equivalent	to	the	annual
economic	output	of	France,	the	sixth-largest	economy	in	the	world.

Consider	the	following	calculation—both	IDC	and	Gartner	estimated	that	in
2011,	approximately	5%	of	the	worldwide	gross	domestic	product($3.1	trillion)
was	spent	on	IT	(hardware,	services,	and	telecom).	If	we	estimate	that	50%	of
that	$3.1	trillion	was	spent	on	operating	costs	and	maintaining	existing	systems,
and	that	one-third	of	that	50%	was	spent	on	urgent	and	unplanned	work	or
rework,	approximately	$520	billion	was	wasted.

If	adopting	DevOps	could	enable	us,	through	better	management	and	increased
operational	excellence,	to	halve	that	waste	and	redeploy	that	human	potential
into	something	that’s	five	times	the	value	(a	modest	proposal),	we	could	create
$2.6	trillion	of	value	per	year.

THE	ETHICS	OF	DEVOPS:	THERE	IS	A	BETTER
WAY

In	the	previous	sections,	we	described	the	problems	and	the	negative
consequences	of	the	status	quo	due	to	the	core,	chronic	conflict,	from	the
inability	to	achieve	organizational	goals,	to	the	damage	we	inflict	on	fellow

human	beings.	By	solving	these	problems,	DevOps	astonishingly	enables	us	to
simultaneously	improve	organizational	performance,	achieve	the	goals	of	all	the
various	functional	technology	roles	(e.g.,	Development,	QA,	IT	Operations,
Infosec),	and	improve	the	human	condition.

This	exciting	and	rare	combination	may	explain	why	DevOps	has	generated	so
much	excitement	and	enthusiasm	in	so	many	in	such	a	short	time,	including
technology	leaders,	engineers,	and	much	of	the	software	ecosystem	we	reside	in.

BREAKING	THE	DOWNWARD	SPIRAL	WITH	DEVOPS
Ideally,	small	teams	of	developers	independently	implement	their	features,
validate	their	correctness	in	production-like	environments,	and	have	their	code
deployed	into	production	quickly,	safely	and	securely.	Code	deployments	are
routine	and	predictable.	Instead	of	starting	deployments	at	midnight	on	Friday
and	spending	all	weekend	working	to	complete	them,	deployments	occur
throughout	the	business	day	when	everyone	is	already	in	the	office	and	without
our	customers	even	noticing—except	when	they	see	new	features	and	bug	fixes
that	delight	them.	And,	by	deploying	code	in	the	middle	of	the	workday,	for	the
first	time	in	decades	IT	Operations	is	working	during	normal	business	hours	like
everyone	else.

By	creating	fast	feedback	loops	at	every	step	of	the	process,	everyone	can
immediately	see	the	effects	of	their	actions.	Whenever	changes	are	committed
into	version	control,	fast	automated	tests	are	run	in	production-like
environments,	giving	continual	assurance	that	the	code	and	environments
operate	as	designed	and	are	always	in	a	secure	and	deployable	state.

Automated	testing	helps	developers	discover	their	mistakes	quickly	(usually
within	minutes),	which	enables	faster	fixes	as	well	as	genuine	learning—
learning	that	is	impossible	when	mistakes	are	discovered	six	months	later	during

integration	testing,	when	memories	and	the	link	between	cause	and	effect	have
long	faded.	Instead	of	accruing	technical	debt,	problems	are	fixed	as	they	are
found,	mobilizing	the	entire	organization	if	needed,	because	global	goals
outweigh	local	goals.

Pervasive	production	telemetry	in	both	our	code	and	production	environments
ensure	that	problems	are	detected	and	corrected	quickly,	confirming	that
everything	is	working	as	intended	and	customers	are	getting	value	from	the
software	we	create.

In	this	scenario,	everyone	feels	productive—the	architecture	allows	small	teams
to	work	safely	and	architecturally	decoupled	from	the	work	of	other	teams	who
use	self-service	platforms	that	leverage	the	collective	experience	of	Operations
and	Information	Security.	Instead	of	everyone	waiting	all	the	time,	with	large
amounts	of	late,	urgent	rework,	teams	work	independently	and	productively	in
small	batches,	quickly	and	frequently	delivering	new	value	to	customers.

Even	high-profile	product	and	feature	releases	become	routine	by	using	dark
launch	techniques.	Long	before	the	launch	date,	we	put	all	the	required	code	for
the	feature	into	production,	invisible	to	everyone	except	internal	employees	and
small	cohorts	of	real	users,	allowing	us	to	test	and	evolve	the	feature	until	it
achieves	the	desired	business	goal.

And,	instead	of	firefighting	for	days	or	weeks	to	make	the	new	functionality
work,	we	merely	change	a	feature	toggle	or	configuration	setting.	This	small
change	makes	the	new	feature	visible	to	ever-larger	segments	of	customers,
automatically	rolling	back	if	something	goes	wrong.	As	a	result,	our	releases	are
controlled,	predictable,	reversible,	and	low	stress.

It’s	not	just	feature	releases	that	are	calmer—all	sorts	of	problems	are	being
found	and	fixed	early,	when	they	are	smaller,	cheaper,	and	easier	to	correct.

With	every	fix,	we	also	generate	organizational	learnings,	enabling	us	to	prevent
the	problem	from	recurring	and	enabling	us	to	detect	and	correct	similar
problems	faster	in	the	future.

Furthermore,	everyone	is	constantly	learning,	fostering	a	hypothesis-driven
culture	where	the	scientific	method	is	used	to	ensure	nothing	is	taken	for	granted
—we	do	nothing	without	measuring	and	treating	product	development	and
process	improvement	as	experiments.

Because	we	value	everyone’s	time,	we	don’t	spend	years	building	features	that
our	customers	don’t	want,	deploying	code	that	doesn’t	work,	or	fixing	something
that	isn’t	actually	the	cause	of	our	problem.

Because	we	care	about	achieving	goals,	we	create	long-term	teams	that	are
responsible	for	meeting	them.	Instead	of	project	teams	where	developers	are
reassigned	and	shuffled	around	after	each	release,	never	receiving	feedback	on
their	work,	we	keep	teams	intact	so	they	can	keep	iterating	and	improving,	using
those	learnings	to	better	achieve	their	goals.	This	is	equally	true	for	the	product
teams	who	are	solving	problems	for	our	external	customers,	as	well	as	our
internal	platform	teams	who	are	helping	other	teams	be	more	productive,	safe,
and	secure.

Instead	of	a	culture	of	fear,	we	have	a	high-trust,	collaborative	culture,	where
people	are	rewarded	for	taking	risks.	They	are	able	to	fearlessly	talk	about
problems	as	opposed	to	hiding	them	or	putting	them	on	the	backburner—after
all,	we	must	see	problems	in	order	to	solve	them.

And,	because	everyone	fully	owns	the	quality	of	their	work,	everyone	builds
automated	testing	into	their	daily	work	and	uses	peer	reviews	to	gain	confidence
that	problems	are	addressed	long	before	they	can	impact	a	customer.	These
processes	mitigate	risk,	as	opposed	to	approvals	from	distant	authorities,

allowing	us	to	deliver	value	quickly,	reliably,	and	securely—even	proving	to
skeptical	auditors	that	we	have	an	effective	system	of	internal	controls.

And	when	something	does	go	wrong,	we	conduct	blameless	post-mortems,	not	to
punish	anyone,	but	to	better	understand	what	caused	the	accident	and	how	to
prevent	it.	This	ritual	reinforces	our	culture	of	learning.	We	also	hold	internal
technology	conferences	to	elevate	our	skills	and	ensure	that	everyone	is	always
teaching	and	learning.

Because	we	care	about	quality,	we	even	inject	faults	into	our	production
environment	so	we	can	learn	how	our	system	fails	in	a	planned	manner.	We
conduct	planned	exercises	to	practice	large-scale	failures,	randomly	kill
processes	and	compute	servers	in	production,	and	inject	network	latencies	and
other	nefarious	acts	to	ensure	we	grow	ever	more	resilient.	By	doing	this,	we
enable	better	resilience,	as	well	as	organizational	learning	and	improvement.

In	this	world,	everyone	has	ownership	in	their	work,	regardless	of	their	role	in
the	technology	organization	They	have	confidence	that	their	work	matters	and	is
meaningfully	contributing	to	organizational	goals,	proven	by	their	low-stress
work	environment	and	their	organization’s	success	in	the	marketplace.	Their
proof	is	that	the	organization	is	indeed	winning	in	the	marketplace.

THE	BUSINESS	VALUE	OF	DEVOPS
We	have	decisive	evidence	of	the	business	value	of	DevOps.	From	2013	through
2016,	as	part	of	Puppet	Labs’	State	Of	DevOps	Report,	to	which	authors	Jez
Humble	and	Gene	Kim	contributed,	we	collected	data	from	over	twenty-five
thousand	technology	professionals,	with	the	goal	of	better	understanding	the
health	and	habits	of	organizations	at	all	stages	of	DevOps	adoption.

The	first	surprise	this	data	revealed	was	how	much	high-performing
organizations	using	DevOps	practices	were	outperforming	their	non–high

performing	peers	in	the	following	areas:

Throughput	metrics

Code	and	change	deployments	(thirty	times	more	frequent)

Code	and	change	deployment	lead	time	(two	hundred	times	faster)

Reliability	metrics

Production	deployments	(sixty	times	higher	change	success	rate)

Mean	time	to	restore	service	(168	times	faster)

Organizational	performance	metrics

Productivity,	market	share,	and	profitability	goals	(two	times	more	likely	to
exceed)

Market	capitalization	growth	(50%	higher	over	three	years)

In	other	words,	high	performers	were	both	more	agile	and	more	reliable,
providing	empirical	evidence	that	DevOps	enables	us	to	break	the	core,	chronic
conflict.	High	performers	deployed	code	thirty	times	more	frequently,	and	the
time	required	to	go	from	“code	committed”	to	“successfully	running	in
production”	was	two	hundred	times	faster—high	performers	had	lead	times
measured	in	minutes	or	hours,	while	low	performers	had	lead	times	measured	in
weeks,	months,	or	even	quarters.

Furthermore,	high	performers	were	twice	as	likely	to	exceed	profitability,	market
share,	and	productivity	goals.	And,	for	those	organizations	that	provided	a	stock
ticker	symbol,	we	found	that	high	performers	had	50%	higher	market
capitalization	growth	over	three	years.	They	also	had	higher	employee	job

satisfaction,	lower	rates	of	employee	burnout,	and	their	employees	were	2.2
times	more	likely	to	recommend	their	organization	to	friends	as	a	great	place	to
work.††	High	performers	also	had	better	information	security	outcomes.	By
integrating	security	objectives	into	all	stages	of	the	development	and	operations
processes,	they	spent	50%	less	time	remediating	security	issues.

DEVOPS	HELPS	SCALE	DEVELOPER	PRODUCTIVITY
When	we	increase	the	number	of	developers,	individual	developer	productivity
often	significantly	decreases	due	to	communication,	integration,	and	testing
overhead.	This	is	highlighted	in	the	famous	book	by	Frederick	Brook,	The
Mythical	Man-Month,	where	he	explains	that	when	projects	are	late,	adding
more	developers	not	only	decreases	individual	developer	productivity	but	also
decreases	overall	productivity.

On	the	other	hand,	DevOps	shows	us	that	when	we	have	the	right	architecture,
the	right	technical	practices,	and	the	right	cultural	norms,	small	teams	of
developers	are	able	to	quickly,	safely,	and	independently	develop,	integrate,	test,
and	deploy	changes	into	production.	As	Randy	Shoup,	formerly	a	director	of
engineering	at	Google,	observed,	large	organizations	using	DevOps	“have
thousands	of	developers,	but	their	architecture	and	practices	enable	small	teams
to	still	be	incredibly	productive,	as	if	they	were	a	startup.”

The	2015	State	of	DevOps	Report	examined	not	only	“deploys	per	day”	but	also
“deploys	per	day	per	developer.”	We	hypothesized	that	high	performers	would
be	able	to	scale	their	number	of	deployments	as	team	sizes	grew.

Figure	1.	Deployments/day	vs.	number	of	developers	(Source:	Puppet	Labs,	2015

State	Of	DevOps	Report.)‡‡

Indeed,	this	is	what	we	found.	Figure	1	shows	that	in	low	performers,	deploys
per	day	per	developer	go	down	as	team	size	increases,	stays	constant	for	medium
performers,	and	increases	linearly	for	high	performers.

In	other	words,	organizations	adopting	DevOps	are	able	to	linearly	increase	the
number	of	deploys	per	day	as	they	increase	their	number	of	developers,	just	as
Google,	Amazon,	and	Netflix	have	done.§§

THE	UNIVERSALITY	OF	THE	SOLUTION
One	of	the	most	influential	books	in	the	Lean	manufacturing	movement	is	The
Goal:	A	Process	of	Ongoing	Improvement	written	by	Dr.	Eliyahu	M.	Goldratt	in
1984.	It	influenced	an	entire	generation	of	professional	plant	managers	around
the	world.	It	was	a	novel	about	a	plant	manager	who	had	to	fix	his	cost	and
product	due	date	issues	in	ninety	days,	otherwise	his	plant	would	be	shut	down.

Later	in	his	career,	Dr.	Goldratt	described	the	letters	he	received	in	response	to
The	Goal.	These	letters	would	typically	read,	“You	have	obviously	been	hiding

in	our	factory,	because	you’ve	described	my	life	[as	a	plant	manager]	exactly…”
Most	importantly,	these	letters	showed	people	were	able	to	replicate	the
breakthroughs	in	performance	that	were	described	in	the	book	in	their	own	work
environments.

The	Phoenix	Project:	A	Novel	About	IT,	DevOps,	and	Helping	Your	Business
Win,	written	by	Gene	Kim,	Kevin	Behr,	and	George	Spafford	in	2013,	was
closely	modeled	after	The	Goal.	It	is	a	novel	that	follows	an	IT	leader	who	faces
all	the	typical	problems	that	are	endemic	in	IT	organizations:	an	over-budget,
behind-schedule	project	that	must	get	to	market	in	order	for	the	company	to
survive.	He	experiences	catastrophic	deployments;	problems	with	availability,
security,	and	compliance;	and	so	forth.	Ultimately,	he	and	his	team	use	DevOps
principles	and	practices	to	overcome	those	challenges,	helping	their	organization
win	in	the	marketplace.	In	addition,	the	novel	shows	how	DevOps	practices
improved	the	workplace	environment	for	the	team,	creating	lower	stress	and
higher	satisfaction	because	of	greater	practitioner	involvement	throughout	the
process.

As	with	The	Goal,	there	is	tremendous	evidence	of	the	universality	of	the
problems	and	solutions	described	in	The	Phoenix	Project.	Consider	some	of	the
statements	found	in	the	Amazon	reviews:	“I	find	myself	relating	to	the
characters	in	The	Phoenix	Project...I’ve	probably	met	most	of	them	over	the
course	of	my	career,”	“If	you	have	ever	worked	in	any	aspect	of	IT,	DevOps,	or
Infosec	you	will	definitely	be	able	to	relate	to	this	book,”	or	“There’s	not	a
character	in	The	Phoenix	Project	that	I	don’t	identify	with	myself	or	someone	I
know	in	real	life…	not	to	mention	the	problems	faced	and	overcome	by	those
characters.”

In	the	remainder	of	this	book,	we	will	describe	how	to	replicate	the
transformation	described	in	The	Phoenix	Project,	as	well	provide	many	case

studies	of	how	other	organizations	have	used	DevOps	principles	and	practices	to
replicate	those	outcomes.

THE	DEVOPS	HANDBOOK:	AN	ESSENTIAL
GUIDE

The	purpose	of	the	DevOps	Handbook	is	to	give	you	the	theory,	principles,	and
practices	you	need	to	successfully	start	your	DevOps	initiative	and	achieve	your
desired	outcomes.	This	guidance	is	based	on	decades	of	sound	management
theory,	study	of	high-performing	technology	organizations,	work	we	have	done
helping	organizations	transform,	and	research	that	validates	the	effectiveness	of
the	prescribed	DevOps	practices.	As	well	as	interviews	with	relevant	subject
matter	experts	and	analyses	of	nearly	one	hundred	case	studies	presented	at	the
DevOps	Enterprise	Summit.

Broken	into	six	parts,	this	book	covers	DevOps	theories	and	principles	using	the
Three	Ways,	a	specific	view	of	the	underpinning	theory	originally	introduced	in
The	Phoenix	Project.	The	DevOps	Handbook	is	for	everyone	who	performs	or
influences	work	in	the	technology	value	stream	(which	typically	includes
Product	Management,	Development,	QA,	IT	Operations,	and	Information
Security),	as	well	as	for	business	and	marketing	leadership,	where	most
technology	initiatives	originate.

The	reader	is	not	expected	to	have	extensive	knowledge	of	any	of	these	domains,
or	of	DevOps,	Agile,	ITIL,	Lean,	or	process	improvement.	Each	of	these	topics
is	introduced	and	explained	in	the	book	as	it	becomes	necessary.

Our	intent	is	to	create	a	working	knowledge	of	the	critical	concepts	in	each	of
these	domains,	both	to	serve	as	a	primer	and	to	introduce	the	language	necessary

to	help	practitioners	work	with	all	their	peers	across	the	entire	IT	value	stream,
and	to	frame	shared	goals.

This	book	will	be	of	value	to	business	leaders	and	stakeholders	who	are
increasingly	reliant	upon	the	technology	organization	for	the	achievement	of
their	goals.

Furthermore,	this	book	is	intended	for	readers	whose	organizations	might	not	be
experiencing	all	the	problems	described	in	the	book	(e.g.,	long	deployment	lead
times	or	painful	deployments).	Even	readers	in	this	fortunate	position	will
benefit	from	understanding	DevOps	principles,	especially	those	relating	to
shared	goals,	feedback,	and	continual	learning.

In	Part	I,	we	present	a	brief	history	of	DevOps	and	introduce	the	underpinning
theory	and	key	themes	from	relevant	bodies	of	knowledge	that	span	over
decades.	We	then	present	the	high	level	principles	of	the	Three	Ways:	Flow,
Feedback,	and	Continual	Learning	and	Experimentaion.

Part	II	describes	how	and	where	to	start,	and	presents	concepts	such	as	value
streams,	organizational	design	principles	and	patterns,	organizational	adoption
patterns,	and	case	studies.

Part	III	describes	how	to	accelerate	Flow	by	building	the	foundations	of	our
deployment	pipeline:	enabling	fast	and	effective	automated	testing,	continuous
integration,	continuous	delivery,	and	architecting	for	low-risk	releases.

Part	IV	discusses	how	to	accelerate	and	amplify	Feedback	by	creating	effective
production	telemetry	to	see	and	solve	problems,	better	anticipate	problems	and
achieve	goals,	enable	feedback	so	that	Dev	and	Ops	can	safely	deploy	changes,
integrate	A/B	testing	into	our	daily	work,	and	create	review	and	coordination
processes	to	increase	the	quality	of	our	work.

Part	V	describes	how	we	accelerate	Continual	Learning	by	establishing	a	just
culture,	converting	local	discoveries	into	global	improvements,	and	properly
reserving	time	to	create	organizational	learning	and	improvements.

Finally,	in	Part	VI	we	describe	how	to	properly	integrate	security	and
compliance	into	our	daily	work,	by	integrating	preventative	security	controls
into	shared	source	code	repositories	and	services,	integrating	security	into	our
deployment	pipeline,	enhancing	telemetry	to	better	enable	detection	and
recovery,	protecting	the	deployment	pipeline,	and	achieving	change	management
objectives.

By	codifying	these	practices,	we	hope	to	accelerate	the	adoption	of	DevOps
practices,	increase	the	success	of	DevOps	initiatives,	and	lower	the	activation
energy	required	for	DevOps	transformations.

†	This	is	just	a	small	sample	of	the	problems	found	in	typical	IT	organizations.

‡	In	the	manufacturing	realm,	a	similar	core,	chronic	conflict	existed:	the	need	to	simultaneously	ensure	on-time	shipments	to
customers	and	control	costs.	How	this	core,	chronic	conflict	was	broken	is	described	in	Appendix	2.

§	In	2013,	the	European	bank	HSBC	employed	more	software	developers	than	Google.

¶	For	now,	let	us	suspend	the	discussion	of	whether	software	should	be	funded	as	a	“project”	or	a	“product.”	This	is	discussed	later	in
the	book.

**	For	instance,	Dr.	Vernon	Richardson	and	his	colleagues	published	this	astonishing	finding.	They	studied	the	10-K	SEC	filings	of
184	public	corporations	and	divided	them	into	three	groups:	A)	firms	with	material	weaknesses	with	IT-related	deficiencies,	B)
firms	with	material	weaknesses	with	no	IT-related	deficiencies,	and	C)	“clean	firms”	with	no	material	weaknesses.	Firms	in	Group
A	saw	eight	times	higher	CEO	turnover	than	Group	C,	and	there	was	four	times	higher	CFO	turnover	in	Group	A	than	in	Group	C.
Clearly,	IT	may	matter	far	more	than	we	typically	think.

††	As	measured	by	employee	Net	Promoter	Score	(eNPS).	This	is	a	significant	finding,	as	research	has	shown	that	“companies	with
highly	engaged	workers	grew	revenues	two	and	a	half	times	as	much	as	those	with	low	engagement	levels.	And	[publicly	traded]
stocks	of	companies	with	a	high-trust	work	environment	outperformed	market	indexes	by	a	factor	of	three	from	1997	through
2011.”

‡‡	Only	organizations	that	are	deploying	at	least	once	per	day	are	shown.

§§	Another	more	extreme	example	is	Amazon.	In	2011,	Amazon	was	performing	approximately	seven	thousand	deploys	per	day.	By
2015,	they	were	performing	130,000	deploys	per	day.

Part	I

Introduction
In	Part	I	of	The	DevOps	Handbook,	we	will	explore	how	the	convergence	of
several	important	movements	in	management	and	technology	set	the	stage	for
the	DevOps	movement.	We	describe	value	streams,	how	DevOps	is	the	result	of
applying	Lean	principles	to	the	technology	value	stream,	and	the	Three	Ways:
Flow,	Feedback,	and	Continual	Learning	and	Experimentation.

Primary	focuses	within	these	chapters	include:

The	principles	of	Flow,	which	accelerate	the	delivery	of	work	from
Development	to	Operations	to	our	customers

The	principles	of	Feedback,	which	enable	us	to	create	ever	safer	systems	of
work

The	principles	of	Continual	Learning	and	Experimentation	foster	a	high-trust
culture	and	a	scientific	approach	to	organizational	improvement	risk-taking
as	part	of	our	daily	work

A	BRIEF	HISTORY

DevOps	and	its	resulting	technical,	architectural,	and	cultural	practices	represent
a	convergence	of	many	philosophical	and	management	movements.	While	many
organizations	have	developed	these	principles	independently,	understanding	that
DevOps	resulted	from	a	broad	stroke	of	movements,	a	phenomenon	described	by

John	Willis	(one	of	the	co-authors	of	this	book)	as	the	“convergence	of
DevOps,”	shows	an	amazing	progression	of	thinking	and	improbable
connections.	There	are	decades	of	lessons	learned	from	manufacturing,	high
reliability	organization,	high-trust	management	models,	and	others	that	have
brought	us	to	the	DevOps	practices	we	know	today.

DevOps	is	the	outcome	of	applying	the	most	trusted	principles	from	the	domain
of	physical	manufacturing	and	leadership	to	the	IT	value	stream.	DevOps	relies
on	bodies	of	knowledge	from	Lean,	Theory	of	Constraints,	the	Toyota
Production	System,	resilience	engineering,	learning	organizations,	safety	culture,
human	factors,	and	many	others.	Other	valuable	contexts	that	DevOps	draws
from	include	high-trust	management	cultures,	servant	leadership,	and
organizational	change	management.	The	result	is	world-class	quality,	reliability,
stability,	and	security	at	ever	lower	cost	and	effort;	and	accelerated	flow	and
reliability	throughout	the	technology	value	stream,	including	Product
Management,	Development,	QA,	IT	Operations,	and	Infosec.

While	the	foundation	of	DevOps	can	be	seen	as	being	derived	from	Lean,	the
Theory	of	Constraints,	and	the	Toyota	Kata	movement,	many	also	view	DevOps
as	the	logical	continuation	of	the	Agile	software	journey	that	began	in	2001.

THE	LEAN	MOVEMENT
Techniques	such	as	Value	Stream	Mapping,	Kanban	Boards,	and	Total
Productive	Maintenance	were	codified	for	the	Toyota	Production	System	in	the
1980s.	In	1997,	the	Lean	Enterprise	Institute	started	researching	applications	of
Lean	to	other	value	streams,	such	as	the	service	industry	and	healthcare.

Two	of	Lean’s	major	tenets	include	the	deeply	held	belief	that	manufacturing
lead	time	required	to	convert	raw	materials	into	finished	goods	was	the	best

predictor	of	quality,	customer	satisfaction,	and	employee	happiness,	and	that	one
of	the	best	predictors	of	short	lead	times	was	small	batch	sizes	of	work.

Lean	principles	focus	on	how	to	create	value	for	the	customer	through	systems
thinking	by	creating	constancy	of	purpose,	embracing	scientific	thinking,
creating	flow	and	pull	(versus	push),	assuring	quality	at	the	source,	leading	with
humility,	and	respecting	every	individual.

THE	AGILE	MANIFESTO
The	Agile	Manifesto	was	created	in	2001	by	seventeen	of	the	leading	thinkers	in
software	development.	They	wanted	to	create	a	lightweight	set	of	values	and
principles	against	heavyweight	software	development	processes	such	as
waterfall	development,	and	methodologies	such	as	the	Rational	Unified	Process.

One	key	principle	was	to	“deliver	working	software	frequently,	from	a	couple	of
weeks	to	a	couple	of	months,	with	a	preference	to	the	shorter	timescale,”
emphasizing	the	desire	for	small	batch	sizes,	incremental	releases	instead	of
large,	waterfall	releases.	Other	principles	emphasized	the	need	for	small,	self-
motivated	teams,	working	in	a	high-trust	management	model.

Agile	is	credited	for	dramatically	increasing	the	productivity	of	many
development	organizations.	And	interestingly,	many	of	the	key	moments	in
DevOps	history	also	occurred	within	the	Agile	community	or	at	Agile
conferences,	as	described	below.

AGILE	INFRASTRUCTURE	AND	VELOCITY	MOVEMENT
At	the	2008	Agile	conference	in	Toronto,	Canada,	Patrick	Debois	and	Andrew
Schafer	held	a	“birds	of	a	feather”	session	on	applying	Agile	principles	to
infrastructure	as	opposed	to	application	code.	Although	they	were	the	only

people	who	showed	up,	they	rapidly	gained	a	following	of	like-minded	thinkers,
including	co-author	John	Willis.

Later,	at	the	2009	Velocity	conference,	John	Allspaw	and	Paul	Hammond	gave
the	seminal	“10	Deploys	per	Day:	Dev	and	Ops	Cooperation	at	Flickr”
presentation,	where	they	described	how	they	created	shared	goals	between	Dev
and	Ops	and	used	continuous	integration	practices	to	make	deployment	part	of
everyone’s	daily	work.	According	to	first	hand	accounts,	everyone	attending	the
presentation	immediately	knew	they	were	in	the	presence	of	something	profound
and	of	historic	significance.

Patrick	Debois	was	not	there,	but	was	so	excited	by	Allspaw	and	Hammond’s
idea	that	he	created	the	first	DevOpsDays	in	Ghent,	Belgium,	(where	he	lived)	in
2009.	There	the	term	“DevOps”	was	coined.

THE	CONTINUOUS	DELIVERY	MOVEMENT
Building	upon	the	development	discipline	of	continuous	build,	test,	and
integration,	Jez	Humble	and	David	Farley	extended	the	concept	to	continuous
delivery,	which	defined	the	role	of	a	“deployment	pipeline”	to	ensure	that	code
and	infrastructure	are	always	in	a	deployable	state,	and	that	all	code	checked	in
to	trunk	can	be	safely	deployed	into	production.	This	idea	was	first	presented	at
the	2006	Agile	conference,	and	was	also	independently	developed	in	2009	by
Tim	Fitz	in	a	blog	post	on	his	website	titled	“Continuous	Deployment.”¶¶

TOYOTA	KATA
In	2009,	Mike	Rother	wrote	Toyota	Kata:	Managing	People	for	Improvement,
Adaptiveness	and	Superior	Results,	which	framed	his	twenty-year	journey	to
understand	and	codify	the	Toyota	Production	System.	He	had	been	one	of	the
graduate	students	who	flew	with	GM	executives	to	visit	Toyota	plants	and
helped	develop	the	Lean	toolkit,	but	he	was	puzzled	when	none	of	the	companies

adopting	these	practices	replicated	the	level	of	performance	observed	at	the
Toyota	plants.

He	concluded	that	the	Lean	community	missed	the	most	important	practice	of
all,	which	he	called	the	improvement	kata.	He	explains	that	every	organization
has	work	routines,	and	the	improvement	kata	requires	creating	structure	for	the
daily,	habitual	practice	of	improvement	work,	because	daily	practice	is	what
improves	outcomes.	The	constant	cycle	of	establishing	desired	future	states,
setting	weekly	target	outcomes,	and	the	continual	improvement	of	daily	work	is
what	guided	improvement	at	Toyota.

The	above	describes	the	history	of	DevOps	and	relevant	movements	that	it	draws
upon.	Throughout	the	rest	of	Part	I,	we	look	at	value	streams,	how	Lean
principles	can	be	applied	to	the	technology	value	stream,	and	the	Three	Ways	of
Flow,	Feedback,	and	Continual	Learning	and	Experimentation.

¶¶	DevOps	also	extends	and	builds	upon	the	practices	of	infrastructure	as	code,	which	was	pioneered	by	Dr.	Mark	Burgess,	Luke
Kanies,	and	Adam	Jacob.	In	infrastructure	as	code,	the	work	of	Operations	is	automated	and	treated	like	application	code,	so	that
modern	development	practices	can	be	applied	to	the	entire	development	stream.	This	further	enabled	fast	deployment	flow,
including	continuous	integration	(pioneered	by	Grady	Booch	and	integrated	as	one	of	the	key	12	practices	of	Extreme
Programming),	continuous	delivery	(pioneered	by	Jez	Humble	and	David	Farley),	and	continuous	deployment	(pioneered	by	Etsy,
Wealthfront,	and	Eric	Ries’s	work	at	IMVU).

1 Agile,	Continuous
Delivery,	and	the
Three	Ways

In	this	chapter,	an	introduction	to	the	underpinning	theory	of	Lean
Manufacturing	is	presented,	as	well	as	the	Three	Ways,	the	principles	from
which	all	of	the	observed	DevOps	behaviors	can	be	derived.

Our	focus	here	is	primarily	on	theory	and	principles,	describing	many	decades	of
lessons	learned	from	manufacturing,	high-reliability	organizations,	high-trust
management	models,	and	others,	from	which	DevOps	practices	have	been
derived.	The	resulting	concrete	principles	and	patterns,	and	their	practical
application	to	the	technology	value	stream,	are	presented	in	the	remaining
chapters	of	the	book.

THE	MANUFACTURING	VALUE	STREAM

One	of	the	fundamental	concepts	in	Lean	is	the	value	stream.	We	will	define	it
first	in	the	context	of	manufacturing	and	then	extrapolate	how	it	applies	to
DevOps	and	the	technology	value	stream.

Karen	Martin	and	Mike	Osterling	define	value	stream	in	their	book	Value
Stream	Mapping:	How	to	Visualize	Work	and	Align	Leadership	for
Organizational	Transformation	as	“the	sequence	of	activities	an	organization

undertakes	to	deliver	upon	a	customer	request,”	or	“the	sequence	of	activities
required	to	design,	produce,	and	deliver	a	good	or	service	to	a	customer,
including	the	dual	flows	of	information	and	material.”

In	manufacturing	operations,	the	value	stream	is	often	easy	to	see	and	observe:	it
starts	when	a	customer	order	is	received	and	the	raw	materials	are	released	onto
the	plant	floor.	To	enable	fast	and	predictable	lead	times	in	any	value	stream,
there	is	usually	a	relentless	focus	on	creating	a	smooth	and	even	flow	of	work,
using	techniques	such	as	small	batch	sizes,	reducing	work	in	process	(WIP),
preventing	rework	to	ensure	we	don’t	pass	defects	to	downstream	work	centers,
and	constantly	optimizing	our	system	toward	our	global	goals.

THE	TECHNOLOGY	VALUE	STREAM

The	same	principles	and	patterns	that	enable	the	fast	flow	of	work	in	physical
processes	are	equally	applicable	to	technology	work	(and,	for	that	matter,	for	all
knowledge	work).	In	DevOps,	we	typically	define	our	technology	value	stream
as	the	process	required	to	convert	a	business	hypothesis	into	a	technology-
enabled	service	that	delivers	value	to	the	customer.

The	input	to	our	process	is	the	formulation	of	a	business	objective,	concept,	idea,
or	hypothesis,	and	starts	when	we	accept	the	work	in	Development,	adding	it	to
our	committed	backlog	of	work.

From	there,	Development	teams	that	follow	a	typical	Agile	or	iterative	process
will	likely	transform	that	idea	into	user	stories	and	some	sort	of	feature
specification,	which	is	then	implemented	in	code	into	the	application	or	service
being	built.	The	code	is	then	checked	in	to	the	version	control	repository,	where
each	change	is	integrated	and	tested	with	the	rest	of	the	software	system.

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 .	 	

Defining Lead Time vs Processing Time

every part of our value stream.†††
This method succeeds when we work in small batches and build quality into
simultaneously with design/development, enabling fast flow and high quality.
feature branches), our goal is to have testing and operations happening
stream (such as when we have a large batch waterfall process or long-lived
design/development value stream and then through the test/operations value
Instead of large batches of work being processed sequentially through the

and predictable lead times, near zero defects).
with the goal of achieving work outputs with minimized variability (e.g., short
It requires creativity and expertise, and strives to be predictable and mechanistic,
of work, which includes Testing and Operations, is akin to Lean Manufacturing.
again, resulting in high variability of process times. In contrast, the second phase
requiring high degrees of creativity and work that may never be performed
Product Development and is highly variable and highly uncertain, often
The first phase of work that includes Design and Development is akin to Lean

customer and generating useful feedback and telemetry.
that change is successfully running in production, providing value to the
Operations, and Infosec) checks a change into version control and ends when
engineer*** in our value stream (which includes Development, QA, IT
subset of the value stream described above. This value stream begins when any
For the remainder of this book, our attention will be on deployment lead time, a

FOCUS ON DEPLOYMENT LEAD TIME

outages, service impairments, or security or compliance failures.
can also be performed without causing chaos and disruptions such as service
must ensure that we are not only delivering fast flow, but that our deployments
Because value is created only when our services are running in production, we

Defining	Lead	Time	vs.	Processing	Time
In	the	Lean	community,	lead	time	is	one	of	two	measures	commonly	used	to
measure	performance	in	value	streams,	with	the	other	being	processing	time
(sometimes	known	as	touch	time	or	task	time).‡‡‡

Whereas	the	lead	time	clock	starts	when	the	request	is	made	and	ends	when	it	is
fulfilled,	the	process	time	clock	starts	only	when	we	begin	work	on	the	customer
request—specifically,	it	omits	the	time	that	the	work	is	in	queue,	waiting	to	be
processed	(figure	2).

Figure	2.	Lead	time	vs.	process	time	of	a	deployment	operation

Because	lead	time	is	what	the	customer	experiences,	we	typically	focus	our
process	improvement	attention	there	instead	of	on	process	time.	However,	the
proportion	of	process	time	to	lead	time	serves	as	an	important	measure	of
efficiency—achieving	fast	flow	and	short	lead	times	almost	always	requires
reducing	the	time	our	work	is	waiting	in	queues.

The	Common	Scenario:	Deployment	Lead	Times	Requiring
Months
In	business	as	usual,	we	often	find	ourselves	in	situations	where	our	deployment
lead	times	require	months.	This	is	especially	common	in	large,	complex
organizations	that	are	working	with	tightly-coupled,	monolithic	applications,

often	with	scarce	integration	test	environments,	long	test	and	production
environment	lead	times,	high	reliance	on	manual	testing,	and	multiple	required
approval	processes.When	this	occurs,	our	value	stream	may	look	like	figure	3:

Figure	3:	A	technology	value	stream	with	a	deployment	lead	time	of	three	months
(Source:	Damon	Edwards,	“DevOps	Kaizen,”	2015.)

When	we	have	long	deployment	lead	times,	heroics	are	required	at	almost	every
stage	of	the	value	stream.	We	may	discover	that	nothing	works	at	the	end	of	the
project	when	we	merge	all	the	development	team’s	changes	together,	resulting	in
code	that	no	longer	builds	correctly	or	passes	any	of	our	tests.	Fixing	each
problem	requires	days	or	weeks	of	investigation	to	determine	who	broke	the
code	and	how	it	can	be	fixed,	and	still	results	in	poor	customer	outcomes.

Our	DevOps	Ideal:	Deployment	Lead	Times	of	Minutes
In	the	DevOps	ideal,	developers	receive	fast,	constant	feedback	on	their	work,
which	enables	them	to	quickly	and	independently	implement,	integrate,	and
validate	their	code,	and	have	the	code	deployed	into	the	production	environment
(either	by	deploying	the	code	themselves	or	by	others).

We	achieve	this	by	continually	checking	small	code	changes	into	our	version
control	repository,	performing	automated	and	exploratory	testing	against	it,	and
deploying	it	into	production.	This	enables	us	to	have	a	high	degree	of	confidence
that	our	changes	will	operate	as	designed	in	production	and	that	any	problems
can	be	quickly	detected	and	corrected.

This	is	most	easily	achieved	when	we	have	architecture	that	is	modular,	well
encapsulated,	and	loosely-coupled	so	that	small	teams	are	able	to	work	with	high

degrees	of	autonomy,	with	failures	being	small	and	contained,	and	without
causing	global	disruptions.

In	this	scenario,	our	deployment	lead	time	is	measured	in	minutes,	or,	in	the
worst	case,	hours.	Our	resulting	value	stream	map	should	look	something	like
figure	4:

Figure	4:	A	technology	value	stream	with	a	lead	time	of	minutes

OBSERVING	“%C/A”	AS	A	MEASURE	OF	REWORK
In	addition	to	lead	times	and	process	times,	the	third	key	metric	in	the
technology	value	stream	is	percent	complete	and	accurate	(%C/A).	This	metric
reflects	the	quality	of	the	output	of	each	step	in	our	value	stream.	Karen	Martin
and	Mike	Osterling	state	that	“the	%C/A	can	be	obtained	by	asking	downstream
customers	what	percentage	of	the	time	they	receive	work	that	is	‘usable	as	is,’
meaning	that	they	can	do	their	work	without	having	to	correct	the	information
that	was	provided,	add	missing	information	that	should	have	been	supplied,	or
clarify	information	that	should	have	and	could	have	been	clearer.”

THE	THREE	WAYS:	THE	PRINCIPLES
UNDERPINNING	DEVOPS

The	Phoenix	Project	presents	the	Three	Ways	as	the	set	of	underpinning
principles	from	which	all	the	observed	DevOps	behaviors	and	patterns	are

derived	(figure	5).

The	First	Way	enables	fast	left-to-right	flow	of	work	from	Development	to
Operations	to	the	customer.	In	order	to	maximize	flow,	we	need	to	make	work
visible,	reduce	our	batch	sizes	and	intervals	of	work,	build	in	quality	by
preventing	defects	from	being	passed	to	downstream	work	centers,	and
constantly	optimize	for	the	global	goals.

Figure	5:	The	Three	Ways	(Source:	Gene	Kim,	“The	Three	Ways:	The	Principles
Underpinning	DevOps,”	IT	Revolution	Press	blog,	accessed	August	9,	2016,
http://itrevolution.com/the-three-ways-principles-underpinning-devops/.)

By	speeding	up	flow	through	the	technology	value	stream,	we	reduce	the	lead
time	required	to	fulfill	internal	or	customer	requests,	especially	the	time	required
to	deploy	code	into	the	production	environment.	By	doing	this,	we	increase	the

http://itrevolution.com/the-three-ways-principles-underpinning-devops/

quality	of	work	as	well	as	our	throughput,	and	boost	our	ability	to	out-
experiment	the	competition.

The	resulting	practices	include	continuous	build,	integration,	test,	and
deployment	processes;	creating	environments	on	demand;	limiting	work	in
process	(WIP);	and	building	systems	and	organizations	that	are	safe	to	change.

The	Second	Way	enables	the	fast	and	constant	flow	of	feedback	from	right	to
left	at	all	stages	of	our	value	stream.	It	requires	that	we	amplify	feedback	to
prevent	problems	from	happening	again,	or	enable	faster	detection	and	recovery.
By	doing	this,	we	create	quality	at	the	source	and	generate	or	embed	knowledge
where	it	is	needed—this	allows	us	to	create	ever-safer	systems	of	work	where
problems	are	found	and	fixed	long	before	a	catastrophic	failure	occurs.

By	seeing	problems	as	they	occur	and	swarming	them	until	effective
countermeasures	are	in	place,	we	continually	shorten	and	amplify	our	feedback
loops,	a	core	tenet	of	virtually	all	modern	process	improvement	methodologies.
This	maximizes	the	opportunities	for	our	organization	to	learn	and	improve.

The	Third	Way	enables	the	creation	of	a	generative,	high-trust	culture	that
supports	a	dynamic,	disciplined,	and	scientific	approach	to	experimentation	and
risk-taking,	facilitating	the	creation	of	organizational	learning,	both	from	our
successes	and	failures.	Furthermore,	by	continually	shortening	and	amplifying
our	feedback	loops,	we	create	ever-safer	systems	of	work	and	are	better	able	to
take	risks	and	perform	experiments	that	help	us	learn	faster	than	our	competition
and	win	in	the	marketplace.

As	part	of	the	Third	Way,	we	also	design	our	system	of	work	so	that	we	can
multiply	the	effects	of	new	knowledge,	transforming	local	discoveries	into
global	improvements.	Regardless	of	where	someone	performs	work,	they	do	so
with	the	cumulative	and	collective	experience	of	everyone	in	the	organization.

CONCLUSION

In	this	chapter,	we	described	the	concepts	of	value	streams,	lead	time	as	one	of
the	key	measures	of	the	effectiveness	for	both	manufacturing	and	technology
value	streams,	and	the	high-level	concepts	behind	each	of	the	Three	Ways,	the
principles	that	underpin	DevOps.

In	the	following	chapters,	the	principles	for	each	of	the	Three	Ways	are
described	in	greater	detail.	The	first	of	these	principles	is	Flow,	which	is	focused
on	how	we	create	the	fast	flow	of	work	in	any	value	stream,	whether	it’s	in
manufacturing	or	technology	work.	The	practices	that	enable	fast	flow	are
described	in	Part	III.

***	Going	forward,	engineer	refers	to	anyone	working	in	our	value	stream,	not	just	developers.

†††	In	fact,	with	techniques	such	as	test-driven	development,	testing	occurs	even	before	the	first	line	of	code	is	written.

‡‡‡	In	this	book,	the	term	process	time	will	be	favored	for	the	same	reason	Karen	Martin	and	Mike	Osterling	cite:	“To	minimize
confusion,	we	avoid	using	the	term	cycle	time	as	it	has	several	definitions	synonymous	with	processing	time	and	pace	or	frequency
of	output,	to	name	a	few.”

2 The	First	Way:

The	Principles	of
Flow

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	

MAKE OUR WORK VISIBLE

Lean principles were applied to the manufacturing value stream.
on how we do this in the technology value stream can be gleaned from how the
into production and to increase the reliability and quality of those services. Clues
Our goal is to decrease the amount of time required for changes to be deployed

and able to out-experiment the competition.
requests, further increasing the quality of our work while making us more agile
stream, we reduce the lead time required to fulfill internal and external customer
downstream work centers. By speeding up the flow through the technology value
of work, and by building quality in, preventing defects from being passed to
We increase flow by making work visible, by reducing batch sizes and intervals

find/fix ratios, or Ops availability measures.
goal instead of local goals, such as Development feature completion rates, test
Operations, to deliver value to customers quickly. We optimize for this global
First Way requires the fast and smooth flow of work from Development to
Operations, the functional areas between our business and our customers. The
In the technology value stream, work typically flows from Development to

MAKE	OUR	WORK	VISIBLE

A	significant	difference	between	technology	and	manufacturing	value	streams	is
that	our	work	is	invisible.	Unlike	physical	processes,	in	the	technology	value
stream	we	cannot	easily	see	where	flow	is	being	impeded	or	when	work	is	piling
up	in	front	of	constrained	work	centers.	Transferring	work	between	work	centers
is	usually	highly	visible	and	slow	because	inventory	must	be	physically	moved.

However,	in	technology	work	the	move	can	be	done	with	a	click	of	a	button,
such	as	by	re-assigning	a	work	ticket	to	another	team.	Because	it	is	so	easy,
work	can	bounce	between	teams	endlessly	due	to	incomplete	information,	or
work	can	be	passed	onto	downstream	work	centers	with	problems	that	remain
completely	invisible	until	we	are	late	delivering	what	we	promised	to	the
customer	or	our	application	fails	in	the	production	environment.

To	help	us	see	where	work	is	flowing	well	and	where	work	is	queued	or	stalled,
we	need	to	make	our	work	as	visible	as	possible.	One	of	the	best	methods	of
doing	this	is	using	visual	work	boards,	such	as	kanban	boards	or	sprint	planning
boards,	where	we	can	represent	work	on	physical	or	electronic	cards.	Work
originates	on	the	left	(often	being	pulled	from	a	backlog),	is	pulled	from	work
center	to	work	center	(represented	in	columns),	and	finishes	when	it	reaches	the
right	side	of	the	board,	usually	in	a	column	labeled	“done”	or	“in	production.”

Figure	6:	An	example	kanban	board,	spanning	Requirements,	Dev,	Test,	Staging,	and
In	Production	(Source:	David	J.	Andersen	and	Dominica	DeGrandis,	Kanban	for

ITOps,	training	materials	for	workshop,	2012.)

Not	only	does	our	work	become	visible,	we	can	also	manage	our	work	so	that	it
flows	from	left	to	right	as	quickly	as	possible.	Furthermore,	we	can	measure	lead
time	from	when	a	card	is	placed	on	the	board	to	when	it	is	moved	into	the
“Done”	column.

Ideally,	our	kanban	board	will	span	the	entire	value	stream,	defining	work	as
completed	only	when	it	reaches	the	right	side	of	the	board	(figure	6).	Work	is	not
done	when	Development	completes	the	implementation	of	a	feature—	rather,	it
is	only	done	when	our	application	is	running	successfully	in	production,
delivering	value	to	the	customer.

By	putting	all	work	for	each	work	center	in	queues	and	making	it	visible,	all
stakeholders	can	more	easily	prioritize	work	in	the	context	of	global	goals.
Doing	this	enables	each	work	center	to	single-task	on	the	highest	priority	work
until	it	is	completed,	increasing	throughput.

LIMIT	WORK	IN	PROCESS	(WIP)

In	manufacturing,	daily	work	is	typically	dictated	by	a	production	schedule	that
is	generated	regularly	(e.g.,	daily,	weekly),	establishing	which	jobs	must	be	run
based	on	customer	orders,	order	due	dates,	parts	available,	and	so	forth.

In	technology,	our	work	is	usually	far	more	dynamic—this	is	especially	the	case
in	shared	services,	where	teams	must	satisfy	the	demands	of	many	different
stakeholders.	As	a	result,	daily	work	becomes	dominated	by	the	priority	du	jour,
often	with	requests	for	urgent	work	coming	in	through	every	communication
mechanism	possible,	including	ticketing	systems,	outage	calls,	emails,	phone
calls,	chat	rooms,	and	management	escalations.

Disruptions	in	manufacturing	are	also	highly	visible	and	costly,	often	requiring
breaking	the	current	job	and	scrapping	any	incomplete	work	in	process	to	start
the	new	job.	This	high	level	of	effort	discourages	frequent	disruptions.

However,	interrupting	technology	workers	is	easy,	because	the	consequences	are
invisible	to	almost	everyone,	even	though	the	negative	impact	to	productivity
may	be	far	greater	than	in	manufacturing.	For	instance,	an	engineer	assigned	to
multiple	projects	must	switch	between	tasks,	incurring	all	the	costs	of	having	to
re-establish	context,	as	well	as	cognitive	rules	and	goals.

Studies	have	shown	that	the	time	to	complete	even	simple	tasks,	such	as	sorting
geometric	shapes,	significantly	degrades	when	multitasking.	Of	course,	because
our	work	in	the	technology	value	stream	is	far	more	cognitively	complex	than
sorting	geometric	shapes,	the	effects	of	multitasking	on	process	time	is	much
worse.

We	can	limit	multitasking	when	we	use	a	kanban	board	to	manage	our	work,
such	as	by	codifying	and	enforcing	WIP	(work	in	progress)	limits	for	each

column	or	work	center	that	puts	an	upper	limit	on	the	number	of	cards	that	can
be	in	a	column.

For	example,	we	may	set	a	WIP	limit	of	three	cards	for	testing.	When	there	are
already	three	cards	in	the	test	lane,	no	new	cards	can	be	added	to	the	lane	unless
a	card	is	completed	or	removed	from	the	“in	work”	column	and	put	back	into
queue	(i.e.,	putting	the	card	back	to	the	column	to	the	left).	Nothing	can	can	be
worked	on	until	it	is	represented	first	in	a	work	card,	reinforcing	that	all	work
must	be	made	visible.

Dominica	DeGrandis,	one	of	the	leading	experts	on	using	kanbans	in	DevOps
value	streams,	notes	that	“controlling	queue	size	[WIP]	is	an	extremely	powerful
management	tool,	as	it	is	one	of	the	few	leading	indicators	of	lead	time—with
most	work	items,	we	don’t	know	how	long	it	will	take	until	it’s	actually
completed.”

Limiting	WIP	also	makes	it	easier	to	see	problems	that	prevent	the	completion	of
work.†	For	instance,	when	we	limit	WIP,	we	find	that	we	may	have	nothing	to
do	because	we	are	waiting	on	someone	else.	Although	it	may	be	tempting	to	start
new	work	(i.e.,	“It’s	better	to	be	doing	something	than	nothing”),	a	far	better
action	would	be	to	find	out	what	is	causing	the	delay	and	help	fix	that	problem.
Bad	multitasking	often	occurs	when	people	are	assigned	to	multiple	projects,
resulting	in	many	prioritization	problems.

In	other	words,	as	David	J.	Andersen,	author	of	Kanban:	Successful
Evolutionary	Change	for	Your	Technology	Business,	quipped,	“Stop	starting.
Start	finishing.”

REDUCE	BATCH	SIZES

Another	key	component	to	creating	smooth	and	fast	flow	is	performing	work	in
small	batch	sizes.	Prior	to	the	Lean	manufacturing	revolution,	it	was	common
practice	to	manufacture	in	large	batch	sizes	(or	lot	sizes),	especially	for
operations	where	job	setup	or	switching	between	jobs	was	time-consuming	or
costly.	For	example,	producing	large	car	body	panels	requires	setting	large	and
heavy	dies	onto	metal	stamping	machines,	a	process	that	could	take	days.	When
changeover	cost	is	so	expensive,	we	would	often	stamp	as	many	panels	at	a	time
as	possible,	creating	large	batches	in	order	to	reduce	the	number	of	changeovers.

However,	large	batch	sizes	result	in	skyrocketing	levels	of	WIP	and	high	levels
of	variability	in	flow	that	cascade	through	the	entire	manufacturing	plant.	The
result	is	long	lead	times	and	poor	quality—if	a	problem	is	found	in	one	body
panel,	the	entire	batch	has	to	be	scrapped.

One	of	the	key	lessons	in	Lean	is	that	in	order	to	shrink	lead	times	and	increase
quality,	we	must	strive	to	continually	shrink	batch	sizes.	The	theoretical	lower
limit	for	batch	size	is	single-piece	flow,	where	each	operation	is	performed	one
unit	at	a	time.‡

The	dramatic	differences	between	large	and	small	batch	sizes	can	be	seen	in	the
simple	newsletter	mailing	simulation	described	in	Lean	Thinking:	Banish	Waste
and	Create	Wealth	in	Your	Corporation	by	James	P.	Womack	and	Daniel	T.
Jones.

Suppose	in	our	own	example	we	have	ten	brochures	to	send	and	mailing	each
brochure	requires	four	steps:	fold	the	paper,	insert	the	paper	into	the	envelope,
seal	the	envelope,	and	stamp	the	envelope.

The	large	batch	strategy	(i.e.,	“mass	production”)	would	be	to	sequentially
perform	one	operation	on	each	of	the	ten	brochures.	In	other	words,	we	would

first	fold	all	ten	sheets	of	paper,	then	insert	each	of	them	into	envelopes,	then
seal	all	ten	envelopes,	and	then	stamp	them.

On	the	other	hand,	in	the	small	batch	strategy	(i.e.,	“single-piece	flow”),	all	the
steps	required	to	complete	each	brochure	are	performed	sequentially	before
starting	on	the	next	brochure.	In	other	words,	we	fold	one	sheet	of	paper,	insert	it
into	the	envelope,	seal	it,	and	stamp	it—only	then	do	we	start	the	process	over
with	the	next	sheet	of	paper.

The	difference	between	using	large	and	small	batch	sizes	is	dramatic	(see	figure
7).	Suppose	each	of	the	four	operations	takes	ten	seconds	for	each	of	the	ten
envelopes.	With	the	large	batch	size	strategy,	the	first	completed	and	stamped
envelope	is	produced	only	after	310	seconds.

Worse,	suppose	we	discover	during	the	envelope	sealing	operation	that	we	made
an	error	in	the	first	step	of	folding—in	this	case,	the	earliest	we	would	discover
the	error	is	at	two	hundred	seconds,	and	we	have	to	refold	and	reinsert	all	ten
brochures	in	our	batch	again.

Figure	7:	Simulation	of	“envelope	game”	(fold,	insert,	seal,	and	stamp	the	envelope)

(Source:	Stefan	Luyten,	“Single	Piece	Flow:	Why	mass	production	isn’t	the	most
efficient	way	of	doing	‘stuff’,”	Medium.com,	August	8,	2014,

https://medium.com/@stefanluyten/single-piece-flow-5d2c2bec845b#.9o7sn74ns.)

http://medium.com/@stefanluyten/single-piece-flow-5d2c2bec845b#.9o7sn74ns

In	contrast,	in	the	small	batch	strategy	the	first	completed	stamped	envelope	is
produced	in	only	forty	seconds,	eight	times	faster	than	the	large	batch	strategy.
And,	if	we	made	an	error	in	the	first	step,	we	only	have	to	redo	the	one	brochure
in	our	batch.	Small	batch	sizes	result	in	less	WIP,	faster	lead	times,	faster
detection	of	errors,	and	less	rework.

The	negative	outcomes	associated	with	large	batch	sizes	are	just	as	relevant	to
the	technology	value	stream	as	in	manufacturing.	Consider	when	we	have	an
annual	schedule	for	software	releases,	where	an	entire	year’s	worth	of	code	that
Development	has	worked	on	is	released	to	production	deployment.

Like	in	manufacturing,	this	large	batch	release	creates	sudden,	high	levels	of
WIP	and	massive	disruptions	to	all	downstream	work	centers,	resulting	in	poor
flow	and	poor	quality	outcomes.	This	validates	our	common	experience	that	the
larger	the	change	going	into	production,	the	more	difficult	the	production	errors
are	to	diagnose	and	fix,	and	the	longer	they	take	to	remediate.

In	a	post	on	Startup	Lessons	Learned,	Eric	Ries	states,	“The	batch	size	is	the	unit
at	which	work-products	move	between	stages	in	a	development	[or	DevOps]
process.	For	software,	the	easiest	batch	to	see	is	code.	Every	time	an	engineer
checks	in	code,	they	are	batching	up	a	certain	amount	of	work.	There	are	many
techniques	for	controlling	these	batches,	ranging	from	the	tiny	batches	needed
for	continuous	deployment	to	more	traditional	branch-based	development,	where
all	of	the	code	from	multiple	developers	working	for	weeks	or	months	is	batched
up	and	integrated	together.”

The	equivalent	to	single	piece	flow	in	the	technology	value	stream	is	realized
with	continuous	deployment,	where	each	change	committed	to	version	control	is
integrated,	tested,	and	deployed	into	production.	The	practices	that	enable	this
are	described	in	Part	IV.

REDUCE	THE	NUMBER	OF	HANDOFFS

In	the	technology	value	stream,	whenever	we	have	long	deployment	lead	times
measured	in	months,	it	is	often	because	there	are	hundreds	(or	even	thousands)
of	operations	required	to	move	our	code	from	version	control	into	the	production
environment.	To	transmit	code	through	the	value	stream	requires	multiple
departments	to	work	on	a	variety	of	tasks,	including	functional	testing,
integration	testing,	environment	creation,	server	administration,	storage
administration,	networking,	load	balancing,	and	information	security.

Each	time	the	work	passes	from	team	to	team,	we	require	all	sorts	of
communication:	requesting,	specifying,	signaling,	coordinating,	and	often
prioritizing,	scheduling,	deconflicting,	testing,	and	verifying.	This	may	require
using	different	ticketing	or	project	management	systems;	writing	technical
specification	documents;	communicating	via	meetings,	emails,	or	phone	calls;
and	using	file	system	shares,	FTP	servers,	and	Wiki	pages.

Each	of	these	steps	is	a	potential	queue	where	work	will	wait	when	we	rely	on
resources	that	are	shared	between	different	value	streams	(e.g.,	centralized
operations).	The	lead	times	for	these	requests	are	often	so	long	that	there	is
constant	escalation	to	have	work	performed	within	the	needed	timelines.

Even	under	the	best	circumstances,	some	knowledge	is	inevitably	lost	with	each
handoff.	With	enough	handoffs,	the	work	can	completely	lose	the	context	of	the
problem	being	solved	or	the	organizational	goal	being	supported.	For	instance,	a
server	administrator	may	see	a	newly	created	ticket	requesting	that	user	accounts
be	created,	without	knowing	what	application	or	service	it’s	for,	why	it	needs	to
be	created,	what	all	the	dependencies	are,	or	whether	it’s	actually	recurring
work.

To	mitigate	these	types	of	problems,	we	strive	to	reduce	the	number	of	handoffs,
either	by	automating	significant	portions	of	the	work	or	by	reorganizing	teams	so
they	can	deliver	value	to	the	customer	themselves,	instead	of	having	to	be
constantly	dependent	on	others.	As	a	result,	we	increase	flow	by	reducing	the
amount	of	time	that	our	work	spends	waiting	in	queue,	as	well	as	the	amount	of
non–value-added	time.	See	Appendix	4.

CONTINUALLY	IDENTIFY	AND	ELEVATE	OUR
CONSTRAINTS

To	reduce	lead	times	and	increase	throughput,	we	need	to	continually	identify
our	system’s	constraints	and	improve	its	work	capacity.	In	Beyond	the	Goal,	Dr.
Goldratt	states,	“In	any	value	stream,	there	is	always	a	direction	of	flow,	and
there	is	always	one	and	only	constraint;	any	improvement	not	made	at	that
constraint	is	an	illusion.”	If	we	improve	a	work	center	that	is	positioned	before
the	constraint,	work	will	merely	pile	up	at	the	bottleneck	even	faster,	waiting	for
work	to	be	performed	by	the	bottlenecked	work	center.

On	the	other	hand,	if	we	improve	a	work	center	positioned	after	the	bottleneck,	it
remains	starved,	waiting	for	work	to	clear	the	bottleneck.	As	a	solution,	Dr.
Goldratt	defined	the	“five	focusing	steps”:

Identify	the	system’s	constraint.

Decide	how	to	exploit	the	system’s	constraint.

Subordinate	everything	else	to	the	above	decisions.

Elevate	the	system’s	constraint.

If	in	the	previous	steps	a	constraint	has	been	broken,	go	back	to	step	one,	but

do	not	allow	inertia	to	cause	a	system	constraint.

In	typical	DevOps	transformations,	as	we	progress	from	deployment	lead	times
measured	in	months	or	quarters	to	lead	times	measured	in	minutes,	the	constraint
usually	follows	this	progression:

Environment	creation:	We	cannot	achieve	deployments	on-demand	if	we
always	have	to	wait	weeks	or	months	for	production	or	test	environments.
The	countermeasure	is	to	create	environments	that	are	on	demand	and
completely	self-serviced,	so	that	they	are	always	available	when	we	need
them.

Code	deployment:	We	cannot	achieve	deployments	on	demand	if	each	of
our	production	code	deployments	take	weeks	or	months	to	perform	(i.e.,	each
deployment	requires	1,300	manual,	error-prone	steps,	involving	up	to	three
hundred	engineers).	The	countermeasure	is	to	automate	our	deployments	as
much	as	possible,	with	the	goal	of	being	completely	automated	so	they	can
be	done	self-service	by	any	developer.

Test	setup	and	run:	We	cannot	achieve	deployments	on	demand	if	every
code	deployment	requires	two	weeks	to	set	up	our	test	environments	and	data
sets,	and	another	four	weeks	to	manually	execute	all	our	regression	tests.	The
countermeasure	is	to	automate	our	tests	so	we	can	execute	deployments
safely	and	to	parallelize	them	so	the	test	rate	can	keep	up	with	our	code
development	rate.

Overly	tight	architecture:	We	cannot	achieve	deployments	on	demand	if
overly	tight	architecture	means	that	every	time	we	want	to	make	a	code
change	we	have	to	send	our	engineers	to	scores	of	committee	meetings	in
order	to	get	permission	to	make	our	changes.	Our	countermeasure	is	to	create
more	loosely-coupled	architecture	so	that	changes	can	be	made	safely	and

with	more	autonomy,	increasing	developer	productivity.

After	all	these	constraints	have	been	broken,	our	constraint	will	likely	be
Development	or	the	product	owners.	Because	our	goal	is	to	enable	small	teams
of	developers	to	independently	develop,	test,	and	deploy	value	to	customers
quickly	and	reliably,	this	is	where	we	want	our	constraint	to	be.	High
performers,	regardless	of	whether	an	engineer	is	in	Development,	QA,	Ops,	or
Infosec,	state	that	their	goal	is	to	help	maximize	developer	productivity.

When	the	constraint	is	here,	we	are	limited	only	by	the	number	of	good	business
hypotheses	we	create	and	our	ability	to	develop	the	code	necessary	to	test	these
hypotheses	with	real	customers.

The	progression	of	constraints	listed	above	are	generalizations	of	typical
transformations—techniques	to	identify	the	constraint	in	actual	value	streams,
such	as	through	value	stream	mapping	and	measurements,	are	described	later	in
this	book.

ELIMINATE	HARDSHIPS	AND	WASTE	IN	THE
VALUE	STREAM

Shigeo	Shingo,	one	of	the	pioneers	of	the	Toyota	Production	System,	believed
that	waste	constituted	the	largest	threat	to	business	viability—the	commonly
used	definition	in	Lean	is	“the	use	of	any	material	or	resource	beyond	what	the
customer	requires	and	is	willing	to	pay	for.”	He	defined	seven	major	types	of
manufacturing	waste:	inventory,	overproduction,	extra	processing,
transportation,	waiting,	motion,	and	defects.

More	modern	interpretations	of	Lean	have	noted	that	“eliminating	waste”	can
have	a	demeaning	and	dehumanizing	context;	instead,	the	goal	is	reframed	to

reduce	hardship	and	drudgery	in	our	daily	work	through	continual	learning	in
order	to	achieve	the	organization’s	goals.	For	the	remainder	of	this	book,	the
term	waste	will	imply	this	more	modern	definition,	as	it	more	closely	matches
the	DevOps	ideals	and	desired	outcomes.

In	the	book	Implementing	Lean	Software	Development:	From	Concept	to	Cash,
Mary	and	Tom	Poppendieck	describe	waste	and	hardship	in	the	software
development	stream	as	anything	that	causes	delay	for	the	customer,	such	as
activities	that	can	be	bypassed	without	affecting	the	result.

The	following	categories	of	waste	and	hardship	come	from	Implementing	Lean
Software	Development	unless	otherwise	noted:

Partially	done	work:	This	includes	any	work	in	the	value	stream	that	has
not	been	completed	(e.g.,	requirement	documents	or	change	orders	not	yet
reviewed)	and	work	that	is	sitting	in	queue	(e.g.,	waiting	for	QA	review	or
server	admin	ticket).	Partially	done	work	becomes	obsolete	and	loses	value
as	time	progresses.

Extra	processes:	Any	additional	work	that	is	being	performed	in	a	process
that	does	not	add	value	to	the	customer.	This	may	include	documentation	not
used	in	a	downstream	work	center,	or	reviews	or	approvals	that	do	not	add
value	to	the	output.	Extra	processes	add	effort	and	increase	lead	times.

Extra	features:	Features	built	into	the	service	that	are	not	needed	by	the
organization	or	the	customer	(e.g.,	“gold	plating”).	Extra	features	add
complexity	and	effort	to	testing	and	managing	functionality.

Task	switching:	When	people	are	assigned	to	multiple	projects	and	value
streams,	requiring	them	to	context	switch	and	manage	dependencies	between
work,	adding	additional	effort	and	time	into	the	value	stream.

Waiting:	Any	delays	between	work	requiring	resources	to	wait	until	they	can
complete	the	current	work.	Delays	increase	cycle	time	and	prevent	the
customer	from	getting	value.

Motion:	The	amount	of	effort	to	move	information	or	materials	from	one
work	center	to	another.	Motion	waste	can	be	created	when	people	who	need
to	communicate	frequently	are	not	colocated.	Handoffs	also	create	motion
waste	and	often	require	additional	communication	to	resolve	ambiguities.

Defects:	Incorrect,	missing,	or	unclear	information,	materials,	or	products
create	waste,	as	effort	is	needed	to	resolve	these	issues.	The	longer	the	time
between	defect	creation	and	defect	detection,	the	more	difficult	it	is	to
resolve	the	defect.

Nonstandard	or	manual	work:	Reliance	on	nonstandard	or	manual	work
from	others,	such	as	using	non-rebuilding	servers,	test	environments,	and
configurations.	Ideally,	any	dependencies	on	Operations	should	be
automated,	self-serviced,	and	available	on	demand.

Heroics:	In	order	for	an	organization	to	achieve	goals,	individuals	and	teams
are	put	in	a	position	where	they	must	perform	unreasonable	acts,	which	may
even	become	a	part	of	their	daily	work	(e.g.,	nightly	2:00	a.m.	problems	in
production,	creating	hundreds	of	work	tickets	as	part	of	every	software
release).§

Our	goal	is	to	make	these	wastes	and	hardships—anywhere	heroics	become
necessary—visible,	and	to	systematically	do	what	is	needed	to	alleviate	or
eliminate	these	burdens	and	hardships	to	achieve	our	goal	of	fast	flow.

CONCLUSION

Improving	flow	through	the	technology	value	stream	is	essential	to	achieving
DevOps	outcomes.	We	do	this	by	making	work	visible,	limiting	WIP,	reducing
batch	sizes	and	the	number	of	handoffs,	continually	identifying	and	evaluating
our	constraints,	and	eliminating	hardships	in	our	daily	work.

The	specific	practices	that	enable	fast	flow	in	the	DevOps	value	stream	are
presented	in	Part	IV.	In	the	next	chapter,	we	present	The	Second	Way:	The
Principles	of	Feedback.

†	Taiichi	Ohno	compared	enforcing	WIP	limits	to	draining	water	from	the	river	of	inventory	in	order	to	reveal	all	the	problems	that
obstruct	fast	flow.

‡	Also	known	as	“batch	size	of	one”	or	“1x1	flow,”	terms	that	refer	to	batch	size	and	a	WIP	limit	of	one.

§	Although	heroics	is	not	included	in	the	Poppendieck	categories	of	waste,	it	is	included	here	because	of	how	often	it	occurs,	especially
in	Operation	shared	services.

3 The	Second	Way:

The	Principles	of
Feedback

While	the	First	Way	describes	the	principles	that	enable	the	fast	flow	of	work
from	left	to	right,	the	Second	Way	describes	the	principles	that	enable	the
reciprocal	fast	and	constant	feedback	from	right	to	left	at	all	stages	of	the	value
stream.	Our	goal	is	to	create	an	ever	safer	and	more	resilient	system	of	work.

This	is	especially	important	when	working	in	complex	systems,	when	the	earliest
opportunity	to	detect	and	correct	errors	is	typically	when	a	catastrophic	event	is
underway,	such	as	a	manufacturing	worker	being	hurt	on	the	job	or	a	nuclear
reactor	meltdown	in	progress.

In	technology,	our	work	happens	almost	entirely	within	complex	systems	with	a
high	risk	of	catastrophic	consequences.	As	in	manufacturing,	we	often	discover
problems	only	when	large	failures	are	underway,	such	as	a	massive	production
outage	or	a	security	breach	resulting	in	the	theft	of	customer	data.

We	make	our	system	of	work	safer	by	creating	fast,	frequent,	high	quality
information	flow	throughout	our	value	stream	and	our	organization,	which
includes	feedback	and	feedforward	loops.	This	allows	us	to	detect	and	remediate
problems	while	they	are	smaller,	cheaper,	and	easier	to	fix;	avert	problems
before	they	cause	catastrophe;	and	create	organizational	learning	that	we

integrate	into	future	work.	When	failures	and	accidents	occur,	we	treat	them	as
opportunities	for	learning,	as	opposed	to	a	cause	for	punishment	and	blame.	To
achieve	all	of	the	above,	let	us	first	explore	the	nature	of	complex	systems	and
how	they	can	be	made	safer.

WORKING	SAFELY	WITHIN	COMPLEX	SYSTEMS

One	of	the	defining	characteristics	of	a	complex	system	is	that	it	defies	any
single	person’s	ability	to	see	the	system	as	a	whole	and	understand	how	all	the
pieces	fit	together.	Complex	systems	typically	have	a	high	degree	of
interconnectedness	of	tightly-coupled	components,	and	system-level	behavior
cannot	be	explained	merely	in	terms	of	the	behavior	of	the	system	components.

Dr.	Charles	Perrow	studied	the	Three	Mile	Island	crisis	and	observed	that	it	was
impossible	for	anyone	to	understand	how	the	reactor	would	behave	in	all
circumstances	and	how	it	might	fail.	When	a	problem	was	underway	in	one
component,	it	was	difficult	to	isolate	from	the	other	components,	quickly
flowing	through	the	paths	of	least	resistance	in	unpredictable	ways.

Dr.	Sidney	Dekker,	who	also	codified	some	of	the	key	elements	of	safety
culture,	observed	another	characteristic	of	complex	systems:	doing	the	same
thing	twice	will	not	predictably	or	necessarily	lead	to	the	same	result.	It	is	this
characteristic	that	makes	static	checklists	and	best	practices,	while	valuable,
insufficient	to	prevent	catastrophes	from	occurring.	See	Appendix	5.

Therefore,	because	failure	is	inherent	and	inevitable	in	complex	systems,	we
must	design	a	safe	system	of	work,	whether	in	manufacturing	or	technology,
where	we	can	perform	work	without	fear,	confident	that	any	errors	will	be
detected	quickly,	long	before	they	cause	catastrophic	outcomes,	such	as	worker
injury,	product	defects,	or	negative	customer	impact.

After	he	decoded	the	causal	mechanism	behind	the	Toyota	Product	System	as
part	of	his	doctoral	thesis	at	Harvard	Business	School,	Dr.	Steven	Spear	stated
that	designing	perfectly	safe	systems	is	likely	beyond	our	abilities,	but	we	can
make	it	safer	to	work	in	complex	systems	when	the	four	following	conditions	are
met:†

Complex	work	is	managed	so	that	problems	in	design	and	operations	are
revealed

Problems	are	swarmed	and	solved,	resulting	in	quick	construction	of	new
knowledge

New	local	knowledge	is	exploited	globally	throughout	the	organization

Leaders	create	other	leaders	who	continually	grow	these	types	of	capabilities

Each	of	these	capabilities	are	required	to	work	safely	in	a	complex	system.	In	the
next	sections,	the	first	two	capabilities	and	their	importance	are	described,	as
well	as	how	they	have	been	created	in	other	domains	and	what	practices	enable
them	in	the	technology	value	stream.	(The	third	and	fourth	capabilities	are
described	in	chapter	4.)

SEE	PROBLEMS	AS	THEY	OCCUR

In	a	safe	system	of	work,	we	must	constantly	test	our	design	and	operating
assumptions.	Our	goal	is	to	increase	information	flow	in	our	system	from	as
many	areas	as	possible,	sooner,	faster,	cheaper,	and	with	as	much	clarity
between	cause	and	effect	as	possible.	The	more	assumptions	we	can	invalidate,
the	faster	we	can	find	and	fix	problems,	increasing	our	resilience,	agility,	and
ability	to	learn	and	innovate.

We	do	this	by	creating	feedback	and	feedforward	loops	into	our	system	of	work.
Dr.	Peter	Senge	in	his	book	The	Fifth	Discipline:	The	Art	&	Practice	of	the
Learning	Organization	described	feedback	loops	as	a	critical	part	of	learning
organizations	and	systems	thinking.	Feedback	and	feedforward	loops	cause
components	within	a	system	to	reinforce	or	counteract	each	other.

In	manufacturing,	the	absence	of	effective	feedback	often	contribute	to	major
quality	and	safety	problems.	In	one	well-documented	case	at	the	General	Motors
Fremont	manufacturing	plant,	there	were	no	effective	procedures	in	place	to
detect	problems	during	the	assembly	process,	nor	were	there	explicit	procedures
on	what	to	do	when	problems	were	found.	As	a	result,	there	were	instances	of
engines	being	put	in	backward,	cars	missing	steering	wheels	or	tires,	and	cars
even	having	to	be	towed	off	the	assembly	line	because	they	wouldn’t	start.

In	contrast,	in	high-performing	manufacturing	operations	there	is	fast,	frequent,
and	high	quality	information	flow	throughout	the	entire	value	stream—every
work	operation	is	measured	and	monitored,	and	any	defects	or	significant
deviations	are	quickly	found	and	acted	upon.	These	are	the	foundation	of	what
enables	quality,	safety,	and	continual	learning	and	improvement.

In	the	technology	value	stream,	we	often	get	poor	outcomes	because	of	the
absence	of	fast	feedback.	For	instance,	in	a	waterfall	software	project,	we	may
develop	code	for	an	entire	year	and	get	no	feedback	on	quality	until	we	begin	the
testing	phase—or	worse,	when	we	release	our	software	to	customers.	When
feedback	is	this	delayed	and	infrequent,	it	is	too	slow	to	enable	us	to	prevent
undesirable	outcomes.

In	contrast,	our	goal	is	to	create	fast	feedback	and	fastforward	loops	wherever
work	is	performed,	at	all	stages	of	the	technology	value	stream,	encompassing
Product	Management,	Development,	QA,	Infosec,	and	Operations.	This	includes
the	creation	of	automated	build,	integration,	and	test	processes,	so	that	we	can

immediately	detect	when	a	change	has	been	introduced	that	takes	us	out	of	a
correctly	functioning	and	deployable	state.

We	also	create	pervasive	telemetry	so	we	can	see	how	all	our	system
components	are	operating	in	the	production	environment,	so	that	we	can	quickly
detect	when	they	are	not	operating	as	expected.	Telemetry	also	allows	us	to
measure	whether	we	are	achieving	our	intended	goals	and,	ideally,	is	radiated	to
the	entire	value	stream	so	we	can	see	how	our	actions	affect	other	portions	of	the
system	as	a	whole.

Feedback	loops	not	only	enable	quick	detection	and	recovery	of	problems,	but
they	also	inform	us	on	how	to	prevent	these	problems	from	occurring	again	in
the	future.	Doing	this	increases	the	quality	and	safety	of	our	system	of	work,	and
creates	organizational	learning.

As	Elisabeth	Hendrickson,	VP	of	Engineering	at	Pivotal	Software,	Inc.	and
author	of	Explore	It!:	Reduce	Risk	and	Increase	Confidence	with	Exploratory
Testing,	said,	“When	I	headed	up	quality	engineering,	I	described	my	job	as
‘creating	feedback	cycles.’	Feedback	is	critical	because	it	is	what	allows	us	to
steer.	We	must	constantly	validate	between	customer	needs,	our	intentions	and
our	implementations.	Testing	is	merely	one	sort	of	feedback.”

SWARM	AND	SOLVE	PROBLEMS	TO	BUILD	NEW
KNOWLEDGE

Obviously,	it	is	not	sufficient	to	merely	detect	when	the	unexpected	occurs.
When	problems	occur,	we	must	swarm	them,	mobilizing	whoever	is	required	to
solve	the	problem.

According	to	Dr.	Spear,	the	goal	of	swarming	is	to	contain	problems	before	they
have	a	chance	to	spread,	and	to	diagnose	and	treat	the	problem	so	that	it	cannot
recur.	“In	doing	so,”	he	says,	“they	build	ever-deeper	knowledge	about	how	to
manage	the	systems	for	doing	our	work,	converting	inevitable	up-front
ignorance	into	knowledge.”

The	paragon	of	this	principle	is	the	Toyota	Andon	cord.	In	da	Toyota
manufacturing	plant,	above	every	work	center	is	a	cord	that	every	worker	and
manager	is	trained	to	pull	when	something	goes	wrong;	for	example,	when	a	part
is	defective,	when	a	required	part	is	not	available,	or	even	when	work	takes
longer	than	documented.‡

When	the	Andon	cord	is	pulled,	the	team	leader	is	alerted	and	immediately
works	to	resolve	the	problem.	If	the	problem	cannot	be	resolved	within	a
specified	time	(e.g.,	fifty-five	seconds),	the	production	line	is	halted	so	that	the
entire	organization	can	be	mobilized	to	assist	with	problem	resolution	until	a
successful	countermeasure	has	been	developed.

Instead	of	working	around	the	problem	or	scheduling	a	fix	“when	we	have	more
time,”	we	swarm	to	fix	it	immediately—this	is	nearly	the	opposite	of	the
behavior	at	the	GM	Fremont	plant	described	earlier.	Swarming	is	necessary	for
the	following	reasons:

It	prevents	the	problem	from	progressing	downstream,	where	the	cost	and
effort	to	repair	it	increases	exponentially	and	technical	debt	is	allowed	to
accumulate.

It	prevents	the	work	center	from	starting	new	work,	which	will	likely
introduce	new	errors	into	the	system.

If	the	problem	is	not	addressed,	the	work	center	could	potentially	have	the
same	problem	in	the	next	operation	(e.g.,	fifty-five	seconds	later),	requiring

more	fixes	and	work.	See	Appendix	6.

This	practice	of	swarming	seems	contrary	to	common	management	practice,	as
we	are	deliberately	allowing	a	local	problem	to	disrupt	operations	globally.
However,	swarming	enables	learning.	It	prevents	the	loss	of	critical	information
due	to	fading	memories	or	changing	circumstances.	This	is	especially	critical	in
complex	systems,	where	many	problems	occur	because	of	some	unexpected,
idiosyncratic	interaction	of	people,	processes,	products,	places,	and
circumstances—as	time	passes,	it	becomes	impossible	to	reconstruct	exactly
what	was	going	on	when	the	problem	occurred.

As	Dr.	Spear	notes,	swarming	is	part	of	the	“disciplined	cycle	of	real-time
problem	recognition,	diagnosis,...and	treatment	(countermeasures	or	corrective
measures	in	manufacturing	vernacular).	It	[is]	the	discipline	of	the	Shewhart
cycle—plan,	do,	check,	act—popularized	by	W.	Edwards	Deming,	but
accelerated	to	warp	speed.”

It	is	only	through	the	swarming	of	ever	smaller	problems	discovered	ever	earlier
in	the	life	cycle	that	we	can	deflect	problems	before	a	catastrophe	occurs.	In
other	words,	when	the	nuclear	reactor	melts	down,	it	is	already	too	late	to	avert
worst	outcomes.

To	enable	fast	feedback	in	the	technology	value	stream,	we	must	create	the
equivalent	of	an	Andon	cord	and	the	related	swarming	response.	This	requires
that	we	also	create	the	culture	that	makes	it	safe,	and	even	encouraged,	to	pull
the	Andon	cord	when	something	goes	wrong,	whether	it	is	when	a	production
incident	occurs	or	when	errors	occur	earlier	in	the	value	stream,	such	as	when
someone	introduces	a	change	that	breaks	our	continuous	build	or	test	processes.

When	conditions	trigger	an	Andon	cord	pull,	we	swarm	to	solve	the	problem	and
prevent	the	introduction	of	new	work	until	the	issue	has	been	resolved.§	This

provides	fast	feedback	for	everyone	in	the	value	stream	(especially	the	person
who	caused	the	system	to	fail),	enables	us	to	quickly	isolate	and	diagnose	the
problem,	and	prevents	further	complicating	factors	that	can	obscure	cause	and
effect.

Preventing	the	introduction	of	new	work	enables	continuous	integration	and
deployment,	which	is	single-piece	flow	in	the	technology	value	stream.	All
changes	that	pass	our	continuous	build	and	integration	tests	are	deployed	into
production,	and	any	changes	that	cause	any	tests	to	fail	trigger	our	Andon	cord
and	are	swarmed	until	resolved.

KEEP	PUSHING	QUALITY	CLOSER	TO	THE
SOURCE

We	may	inadvertently	perpetuate	unsafe	systems	of	work	due	to	the	way	we
respond	to	accidents	and	incidents.	In	complex	systems,	adding	more	inspection
steps	and	approval	processes	actually	increases	the	likelihood	of	future	failures.
The	effectiveness	of	approval	processes	decreases	as	we	push	decision-making
further	away	from	where	the	work	is	performed.	Doing	so	not	only	lowers	the
quality	of	decisions	but	also	increases	our	cycle	time,	thus	decreasing	the
strength	of	the	feedback	between	cause	and	effect,	and	reducing	our	ability	to
learn	from	successes	and	failures.¶

This	can	be	seen	even	in	smaller	and	less	complex	systems.	When	top-down,
bureaucratic	command	and	control	systems	become	ineffective,	it	is	usually
because	the	variance	between	“who	should	do	something”	and	“who	is	actually
doing	something”	is	too	large,	due	to	insufficient	clarity	and	timeliness.

Examples	of	ineffective	quality	controls	include:

Requiring	another	team	to	complete	tedious,	error-prone,	and	manual	tasks
that	could	be	easily	automated	and	run	as	needed	by	the	team	who	needs	the
work	performed

Requiring	approvals	from	busy	people	who	are	distant	from	the	work,	forcing
them	to	make	decisions	without	an	adequate	knowledge	of	the	work	or	the
potential	implications,	or	to	merely	rubber	stamp	their	approvals

Creating	large	volumes	of	documentation	of	questionable	detail	which
become	obsolete	shortly	after	they	are	written

Pushing	large	batches	of	work	to	teams	and	special	committees	for	approval
and	processing	and	then	waiting	for	responses

Instead,	we	need	everyone	in	our	value	stream	to	find	and	fix	problems	in	their
area	of	control	as	part	of	our	daily	work.	By	doing	this,	we	push	quality	and
safety	responsibilities	and	decision-making	to	where	the	work	is	performed,
instead	of	relying	on	approvals	from	distant	executives.

We	use	peer	reviews	of	our	proposed	changes	to	gain	whatever	assurance	is
needed	that	our	changes	will	operate	as	designed.	We	automate	as	much	of	the
quality	checking	typically	performed	by	a	QA	or	Information	Security
department	as	possible.	Instead	of	developers	needing	to	request	or	schedule	a
test	to	be	run,	these	tests	can	be	performed	on	demand,	enabling	developers	to
quickly	test	their	own	code	and	even	deploy	those	changes	into	production
themselves.

By	doing	this,	we	truly	make	quality	everyone’s	responsibility	as	opposed	to	it
being	the	sole	responsibility	of	a	separate	department.	Information	security	is	not
just	Information	Security’s	job,	just	as	availability	isn’t	merely	the	job	of
Operations.

Having	developers	share	responsibility	for	the	quality	of	the	systems	they	build
not	only	improves	outcomes	but	also	accelerates	learning.	This	is	especially
important	for	developers	as	they	are	typically	the	team	that	is	furthest	removed
from	the	customer.	Gary	Gruver	observes,	“It’s	impossible	for	a	developer	to
learn	anything	when	someone	yells	at	them	for	something	they	broke	six	months
ago—that’s	why	we	need	to	provide	feedback	to	everyone	as	quickly	as
possible,	in	minutes,	not	months.”

ENABLE	OPTIMIZING	FOR	DOWNSTREAM
WORK	CENTERS

In	the	1980s,	Designing	for	Manufacturability	principles	sought	to	design	parts
and	processes	so	that	finished	goods	could	be	created	with	the	lowest	cost,
highest	quality,	and	fastest	flow.	Examples	include	designing	parts	that	are
wildly	asymmetrical	to	prevent	them	from	being	put	on	backwards,	and
designing	screw	fasteners	so	that	they	are	impossible	to	over-tighten.

This	was	a	departure	from	how	design	was	typically	done,	which	focused	on	the
external	customers	but	overlooked	internal	stakeholders,	such	as	the	people
performing	the	manufacturing.

Lean	defines	two	types	of	customers	that	we	must	design	for:	the	external
customer	(who	most	likely	pays	for	the	service	we	are	delivering)	and	the
internal	customer	(who	receives	and	processes	the	work	immediately	after	us).
According	to	Lean,	our	most	important	customer	is	our	next	step	downstream.
Optimizing	our	work	for	them	requires	that	we	have	empathy	for	their	problems
in	order	to	better	identify	the	design	problems	that	prevent	fast	and	smooth	flow.

In	the	technology	value	stream,	we	optimize	for	downstream	work	centers	by
designing	for	operations,	where	operational	non-functional	requirements	(e.g.,

architecture,	performance,	stability,	testability,	configurability,	and	security)	are
prioritized	as	highly	as	user	features.

By	doing	this,	we	create	quality	at	the	source,	likely	resulting	in	a	set	of	codified
non-functional	requirements	that	we	can	proactively	integrate	into	every	service
we	build.

CONCLUSION

Creating	fast	feedback	is	critical	to	achieving	quality,	reliability,	and	safety	in
the	technology	value	stream.	We	do	this	by	seeing	problems	as	they	occur,
swarming	and	solving	problems	to	build	new	knowledge,	pushing	quality	closer
to	the	source,	and	continually	optimizing	for	downstream	work	centers.

The	specific	practices	that	enable	fast	flow	in	the	DevOps	value	stream	are
presented	in	Part	IV.	In	the	next	chapter,	we	present	the	Third	Way:	The
Principles	of	Feedback

†	Dr.	Spear	extended	his	work	to	explain	the	long-lasting	successes	of	other	organizations,	such	as	the	Toyota	supplier	network,	Alcoa,
and	the	US	Navy’s	Nuclear	Power	Propulsion	Program.

‡	In	some	of	its	plants,	Toyota	has	moved	to	using	an	Andon	button.

§	Astonishingly,	when	the	number	of	Andon	cord	pulls	drop,	plant	managers	will	actually	decrease	the	tolerances	to	get	an	increase	in
the	number	of	Andon	cord	pulls	in	order	to	continue	to	enable	more	learnings	and	improvements	and	to	detect	ever-weaker	failure
signals.

¶	In	the	1700s,	the	British	government	engaged	in	a	spectacular	example	of	top-down,	bureaucratic	command	and	control,	which
proved	remarkably	ineffective.	At	the	time,	Georgia	was	still	a	colony,	and	despite	the	fact	that	the	British	government	was	three
thousand	miles	away	and	lacked	firsthand	knowledge	of	local	land	chemistry,	rockiness,	topography,	accessibility	to	water,	and
other	conditions,	it	tried	to	plan	Georgia’s	entire	agricultural	economy.	The	results	of	the	attempt	were	dismal	and	left	Georgia	with
the	lowest	levels	of	prosperity	and	population	in	the	thirteen	colonies.

4 The	Third	Way:

The	Principles	of
Continual	Learning

and	Experimentation

While	the	First	Way	addresses	work	flow	from	left	to	right	and	the	Second	Way
addresses	the	reciprocal	fast	and	constant	feedback	from	right	to	left,	the	Third
Way	focuses	on	creating	a	culture	of	continual	learning	and	experimentation.
These	are	the	principles	that	enable	constant	creation	of	individual	knowledge,
which	is	then	turned	into	team	and	organizational	knowledge.

In	manufacturing	operations	with	systemic	quality	and	safety	problems,	work	is
typically	rigidly	defined	and	enforced.	For	instance,	in	the	GM	Fremont	plant
described	in	the	previous	chapter,	workers	had	little	ability	to	integrate
improvements	and	learnings	into	their	daily	work,	with	suggestions	for
improvement	“apt	to	meet	a	brick	wall	of	indifference.”

In	these	environments,	there	is	also	often	a	culture	of	fear	and	low	trust,	where
workers	who	make	mistakes	are	punished,	and	those	who	make	suggestions	or
point	out	problems	are	viewed	as	whistle-blowers	and	troublemakers.	When	this
occurs,	leadership	is	actively	suppressing,	even	punishing,	learning	and
improvement,	perpetuating	quality	and	safety	problems.

In	contrast,	high-performing	manufacturing	operations	require	and	actively
promote	learning—instead	of	work	being	rigidly	defined,	the	system	of	work	is
dynamic,	with	line	workers	performing	experiments	in	their	daily	work	to
generate	new	improvements,	enabled	by	rigorous	standardization	of	work
procedures	and	documentation	of	the	results.

In	the	technology	value	stream,	our	goal	is	to	create	a	high-trust	culture,
reinforcing	that	we	are	all	lifelong	learners	who	must	take	risks	in	our	daily
work.	By	applying	a	scientific	approach	to	both	process	improvement	and
product	development,	we	learn	from	our	successes	and	failures,	identifying
which	ideas	don’t	work	and	reinforcing	those	that	do.	Moreover,	any	local
learnings	are	rapidly	turned	into	global	improvements,	so	that	new	techniques
and	practices	can	be	used	by	the	entire	organization.

We	reserve	time	for	the	improvement	of	daily	work	and	to	further	accelerate	and
ensure	learning.	We	consistently	introduce	stress	into	our	systems	to	force
continual	improvement.	We	even	simulate	and	inject	failures	in	our	production
services	under	controlled	conditions	to	increase	our	resilience.

By	creating	this	continual	and	dynamic	system	of	learning,	we	enable	teams	to
rapidly	and	automatically	adapt	to	an	ever-changing	environment,	which
ultimately	helps	us	win	in	the	marketplace.

ENABLING	ORGANIZATIONAL	LEARNING	AND	A
SAFETY	CULTURE

When	we	work	within	a	complex	system,	by	definition	it	is	impossible	for	us	to
perfectly	predict	all	the	outcomes	for	any	action	we	take.	This	is	what
contributes	to	unexpected,	or	even	catastrophic,	outcomes	and	accidents	in	our
daily	work,	even	when	we	take	precautions	and	work	carefully.

When	these	accidents	affect	our	customers,	we	seek	to	understand	why	it
happened.	The	root	cause	is	often	deemed	to	be	human	error,	and	the	all	too
common	management	response	is	to	“name,	blame,	and	shame”	the	person	who
caused	the	problem.†	And,	either	subtly	or	explicitly,	management	hints	that	the
person	guilty	of	committing	the	error	will	be	punished.	They	then	create	more
processes	and	approvals	to	prevent	the	error	from	happening	again.

Dr.	Sidney	Dekker,	who	codified	some	of	the	key	elements	of	safety	culture	and
coined	the	term	just	culture,	wrote,	“Responses	to	incidents	and	accidents	that
are	seen	as	unjust	can	impede	safety	investigations,	promote	fear	rather	than
mindfulness	in	people	who	do	safety-critical	work,	make	organizations	more
bureaucratic	rather	than	more	careful,	and	cultivate	professional	secrecy,
evasion,	and	self-protection.”

These	issues	are	especially	problematic	in	the	technology	value	stream—our
work	is	almost	always	performed	within	a	complex	system,	and	how
management	chooses	to	react	to	failures	and	accidents	leads	to	a	culture	of	fear,
which	then	makes	it	unlikely	that	problems	and	failure	signals	are	ever	reported.
The	result	is	that	problems	remain	hidden	until	a	catastrophe	occurs.

Dr.	Ron	Westrum	was	one	of	the	first	to	observe	the	importance	of
organizational	culture	on	safety	and	performance.	He	observed	that	in	healthcare
organizations,	the	presence	of	“generative”	cultures	was	one	of	the	top	predictors
of	patient	safety.	Dr.	Westrum	defined	three	types	of	culture:

Pathological	organizations	are	characterized	by	large	amounts	of	fear	and
threat.	People	often	hoard	information,	withhold	it	for	political	reasons,	or
distort	it	to	make	themselves	look	better.	Failure	is	often	hidden.

Bureaucratic	organizations	are	characterized	by	rules	and	processes,	often	to
help	individual	departments	maintain	their	“turf.”	Failure	is	processed

through	a	system	of	judgment,	resulting	in	either	punishment	or	justice	and
mercy.

Generative	organizations	are	characterized	by	actively	seeking	and	sharing
information	to	better	enable	the	organization	to	achieve	its	mission.
Responsibilities	are	shared	throughout	the	value	stream,	and	failure	results	in
reflection	and	genuine	inquiry.

Figure	8:	The	Westrum	organizational	typology	model:	how	organizations	process
information	(Source:	Ron	Westrum,	“A	typology	of	organisation	culture,”	BMJ

Quality	&	Safety	13,	no.	2	(2004),	doi:10.1136/qshc.2003.009522.)

Just	as	Dr.	Westrum	found	in	healthcare	organizations,	a	high-trust,	generative
culture	also	predicted	IT	and	organizational	performance	in	technology	value
streams.

In	the	technology	value	stream,	we	establish	the	foundations	of	a	generative
culture	by	striving	to	create	a	safe	system	of	work.	When	accidents	and	failures
occur,	instead	of	looking	for	human	error,	we	look	for	how	we	can	redesign	the
system	to	prevent	the	accident	from	happening	again.

For	instance,	we	may	conduct	a	blameless	post-mortem	after	every	incident	to
gain	the	best	understanding	of	how	the	accident	occurred	and	agree	upon	what
the	best	countermeasures	are	to	improve	the	system,	ideally	preventing	the
problem	from	occurring	again	and	enabling	faster	detection	and	recovery.

By	doing	this,	we	create	organizational	learning.	As	Bethany	Macri,	an	engineer
at	Etsy	who	led	the	creation	of	the	Morgue	tool	to	help	with	recording	of	post-
mortems,	stated,	“By	removing	blame,	you	remove	fear;	by	removing	fear,	you
enable	honesty;	and	honesty	enables	prevention.”

Dr.	Spear	observes	that	the	result	of	removing	blame	and	putting	organizational
learning	in	its	place	is	that	“organizations	become	ever	more	self-diagnosing	and
self-improving,	skilled	at	detecting	problems	[and]	solving	them.”

Many	of	these	attributes	were	also	described	by	Dr.	Senge	as	attributes	of
learning	organizations.	In	The	Fifth	Discipline,	he	wrote	that	these
characteristics	help	customers,	ensure	quality,	create	competitive	advantage	and
an	energized	and	committed	workforce,	and	uncover	the	truth.

INSTITUTIONALIZE	THE	IMPROVEMENT	OF
DAILY	WORK

Teams	are	often	not	able	or	not	willing	to	improve	the	processes	they	operate
within.	The	result	is	not	only	that	they	continue	to	suffer	from	their	current
problems,	but	their	suffering	also	grows	worse	over	time.	Mike	Rother	observed
in	Toyota	Kata	that	in	the	absence	of	improvements,	processes	don’t	stay	the
same—due	to	chaos	and	entropy,	processes	actually	degrade	over	time.

In	the	technology	value	stream,	when	we	avoid	fixing	our	problems,	relying	on
daily	workarounds,	our	problems	and	technical	debt	accumulates	until	all	we	are

doing	is	performing	workarounds,	trying	to	avoid	disaster,	with	no	cycles
leftover	for	doing	productive	work.	This	is	why	Mike	Orzen,	author	of	Lean	IT,
observed,	“Even	more	important	than	daily	work	is	the	improvement	of	daily
work.”

We	improve	daily	work	by	explicitly	reserving	time	to	pay	down	technical	debt,
fix	defects,	and	refactor	and	improve	problematic	areas	of	our	code	and
environments—we	do	this	by	reserving	cycles	in	each	development	interval,	or
by	scheduling	kaizen	blitzes,	which	are	periods	when	engineers	self-organize
into	teams	to	work	on	fixing	any	problem	they	want.

The	result	of	these	practices	is	that	everyone	finds	and	fixes	problems	in	their
area	of	control,	all	the	time,	as	part	of	their	daily	work.	When	we	finally	fix	the
daily	problems	that	we’ve	worked	around	for	months	(or	years),	we	can
eradicate	from	our	system	the	less	obvious	problems.	By	detecting	and
responding	to	these	ever-weaker	failure	signals,	we	fix	problems	when	it	is	not
only	easier	and	cheaper	but	also	when	the	consequences	are	smaller.

Consider	the	following	example	that	improved	workplace	safety	at	Alcoa,	an
aluminum	manufacturer	with	$7.8	billion	in	revenue	in	1987.	Aluminum
manufacturing	requires	extremely	high	heat,	high	pressures,	and	corrosive
chemicals.	In	1987,	Alcoa	had	a	frightening	safety	record,	with	2%	of	the	ninety
thousand	employee	workforce	being	injured	each	year—that’s	seven	injuries	per
day.	When	Paul	O’Neill	started	as	CEO,	his	first	goal	was	to	have	zero	injuries
to	employees,	contractors,	and	visitors.

O’Neill	wanted	to	be	notified	within	twenty-four	hours	of	anyone	being	injured
on	the	job—not	to	punish,	but	to	ensure	and	promote	that	learnings	were	being
generated	and	incorporated	to	create	a	safer	workplace.	Over	the	course	of	ten
years,	Alcoa	reduced	their	injury	rate	by	95%.

The	reduction	in	injury	rates	allowed	Alcoa	to	focus	on	smaller	problems	and
weaker	failure	signals—instead	of	notifying	O’Neill	only	when	injuries
occurred,	they	started	reporting	any	close	calls	as	well.‡	By	doing	this,	they
improved	workplace	safety	over	the	subsequent	twenty	years	and	have	one	of	the
most	enviable	safety	records	in	the	industry.

As	Dr.	Spear	writes,	“Alcoans	gradually	stopped	working	around	the	difficulties,
inconveniences,	and	impediments	they	experienced.	Coping,	fire	fighting,	and
making	do	were	gradually	replaced	throughout	the	organization	by	a	dynamic	of
identifying	opportunities	for	process	and	product	improvement.	As	those
opportunities	were	identified	and	the	problems	were	investigated,	the	pockets	of
ignorance	that	they	reflected	were	converted	into	nuggets	of	knowledge.”	This
helped	give	the	company	a	greater	competitive	advantage	in	the	market.

Similarly,	in	the	technology	value	stream,	as	we	make	our	system	of	work	safer,
we	find	and	fix	problems	from	ever	weaker	failure	signals.	For	example,	we	may
initially	perform	blameless	post-mortems	only	for	customer-impacting	incidents.
Over	time,	we	may	perform	them	for	lesser	team-impacting	incidents	and	near
misses	as	well.

TRANSFORM	LOCAL	DISCOVERIES	INTO
GLOBAL	IMPROVEMENTS

When	new	learnings	are	discovered	locally,	there	must	also	be	some	mechanism
to	enable	the	rest	of	the	organization	to	use	and	benefit	from	that	knowledge.	In
other	words,	when	teams	or	individuals	have	experiences	that	create	expertise,
our	goal	is	to	convert	that	tacit	knowledge	(i.e.,	knowledge	that	is	difficult	to
transfer	to	another	person	by	means	of	writing	it	down	or	verbalizing)	into
explicit,	codified	knowledge,	which	becomes	someone	else’s	expertise	through
practice.

This	ensures	that	when	anyone	else	does	similar	work,	they	do	so	with	the
cumulative	and	collective	experience	of	everyone	in	the	organization	who	has
ever	done	the	same	work.	A	remarkable	example	of	turning	local	knowledge	into
global	knowledge	is	the	US	Navy’s	Nuclear	Power	Propulsion	Program	(also
known	as	“NR”	for	“Naval	Reactors”),	which	has	over	5,700	reactor-years	of
operation	without	a	single	reactor-related	casualty	or	escape	of	radiation.

The	NR	is	known	for	their	intense	commitment	to	scripted	procedures	and
standardized	work,	and	the	need	for	incident	reports	for	any	departure	from
procedure	or	normal	operations	to	accumulate	learnings,	no	matter	how	minor
the	failure	signal—they	constantly	update	procedures	and	system	designs	based
on	these	learnings.

The	result	is	that	when	a	new	crew	sets	out	to	sea	on	their	first	deployment,	they
and	their	officers	benefit	from	the	collective	knowledge	of	5,700	accident-free
reactor-years.	Equally	impressive	is	that	their	own	experiences	at	sea	will	be
added	to	this	collective	knowledge,	helping	future	crews	safely	achieve	their
own	missions.

In	the	technology	value	stream,	we	must	create	similar	mechanisms	to	create
global	knowledge,	such	as	making	all	our	blameless	post-mortem	reports
searchable	by	teams	trying	to	solve	similar	problems,	and	by	creating	shared
source	code	repositories	that	span	the	entire	organization,	where	shared	code,
libraries,	and	configurations	that	embody	the	best	collective	knowledge	of	the
entire	organization	can	be	easily	utilized.	All	these	mechanisms	help	convert
individual	expertise	into	artifacts	that	the	rest	of	the	organization	can	use.

INJECT	RESILIENCE	PATTERNS	INTO	OUR
DAILY	WORK

Lower-performing	manufacturing	organizations	buffer	themselves	from
disruptions	in	many	ways—in	other	words,	they	bulk	up	or	add	flab.	For
instance,	to	reduce	the	risk	of	a	work	center	being	idle	(due	to	inventory	arriving
late,	inventory	that	had	to	be	scrapped,	etc.),	managers	may	choose	to	stockpile
more	inventory	at	each	work	center.	However,	that	inventory	buffer	also
increases	WIP,	which	has	all	sorts	of	undesired	outcomes,	as	previously
discussed.

Similarly,	to	reduce	the	risk	of	a	work	center	going	down	due	to	machinery
failure,	managers	may	increase	capacity	by	buying	more	capital	equipment,
hiring	more	people,	or	even	increasing	floor	space.	All	these	options	increase
costs.

In	contrast,	high	performers	achieve	the	same	results	(or	better)	by	improving
daily	operations,	continually	introducing	tension	to	elevate	performance,	as	well
as	engineering	more	resilience	into	their	system.

Consider	a	typical	experiment	at	one	of	Aisin	Seiki	Global’s	mattress	factories,
one	of	Toyota’s	top	suppliers.	Suppose	they	had	two	production	lines,	each
capable	of	producing	one	hundred	units	per	day.	On	slow	days,	they	would	send
all	production	onto	one	line,	experimenting	with	ways	to	increase	capacity	and
identify	vulnerabilities	in	their	process,	knowing	that	if	overloading	the	line
caused	it	to	fail,	they	could	send	all	production	to	the	second	line.

By	relentless	and	constant	experimentation	in	their	daily	work,	they	were	able	to
continually	increase	capacity,	often	without	adding	any	new	equipment	or	hiring
more	people.	The	emergent	pattern	that	results	from	these	types	of	improvement
rituals	not	only	improves	performance	but	also	improves	resilience,	because	the
organization	is	always	in	a	state	of	tension	and	change.	This	process	of	applying
stress	to	increase	resilience	was	named	antifragility	by	author	and	risk	analyst
Nassim	Nicholas	Taleb.

In	the	technology	value	stream,	we	can	introduce	the	same	type	of	tension	into
our	systems	by	seeking	to	always	reduce	deployment	lead	times,	increase	test
coverage,	decrease	test	execution	times,	and	even	by	re-architecting	if	necessary
to	increase	developer	productivity	or	increase	reliability.

We	may	also	perform	Game	Day	exercises,	where	we	rehearse	large	scale
failures,	such	as	turning	off	entire	data	centers.	Or	we	may	inject	ever-larger
scale	faults	into	the	production	environment	(such	as	the	famous	Netflix	“Chaos
Monkey,”	which	randomly	kills	processes	and	compute	servers	in	production)	to
ensure	that	we’re	as	resilient	as	we	want	to	be.

LEADERS	REINFORCE	A	LEARNING	CULTURE

Traditionally,	leaders	were	expected	to	be	responsible	for	setting	objectives,
allocating	resources	for	achieving	those	objectives,	and	establishing	the	right
combination	of	incentives.	Leaders	also	establish	the	emotional	tone	for	the
organizations	they	lead.	In	other	words,	leaders	lead	by	“making	all	the	right
decisions.”

However,	there	is	significant	evidence	that	shows	greatness	is	not	achieved	by
leaders	making	all	the	right	decisions—instead,	the	leader’s	role	is	to	create	the
conditions	so	their	team	can	discover	greatness	in	their	daily	work.	In	other
words,	creating	greatness	requires	both	leaders	and	workers,	each	of	whom	are
mutually	dependent	upon	each	other.

Jim	Womack,	author	of	Gemba	Walks,	described	the	complementary	working
relationship	and	mutual	respect	that	must	occur	between	leaders	and	frontline
workers.	According	to	Womack,	this	relationship	is	necessary	because	neither
can	solve	problems	alone—leaders	are	not	close	enough	to	the	work,	which	is
required	to	solve	any	problem,	and	frontline	workers	do	not	have	the	broader

organizational	context	or	the	authority	to	make	changes	outside	of	their	area	of
work.§

Leaders	must	elevate	the	value	of	learning	and	disciplined	problem	solving.
Mike	Rother	formalized	these	methods	in	what	he	calls	the	coaching	kata.	The
result	is	one	that	mirrors	the	scientific	method,	where	we	explicitly	state	our
True	North	goals,	such	as	“sustain	zero	accidents”	in	the	case	of	Alcoa,	or
“double	throughput	within	a	year”	in	the	case	of	Aisin.

These	strategic	goals	then	inform	the	creation	of	iterative,	shorter	term	goals,
which	are	cascaded	and	then	executed	by	establishing	target	conditions	at	the
value	stream	or	work	center	level	(e.g.,	“reduce	lead	time	by	10%	within	the
next	two	weeks”).

These	target	conditions	frame	the	scientific	experiment:	we	explicitly	state	the
problem	we	are	seeking	to	solve,	our	hypothesis	of	how	our	proposed
countermeasure	will	solve	it,	our	methods	for	testing	that	hypothesis,	our
interpretation	of	the	results,	and	our	use	of	learnings	to	inform	the	next	iteration.

The	leader	helps	coach	the	person	conducting	the	experiment	with	questions	that
may	include:

What	was	your	last	step	and	what	happened?

What	did	you	learn?

What	is	your	condition	now?

What	is	your	next	target	condition?

What	obstacle	are	you	working	on	now?

What	is	your	next	step?

What	is	your	expected	outcome?

When	can	we	check?

This	problem-solving	approach	in	which	leaders	help	workers	see	and	solve
problems	in	their	daily	work	is	at	the	core	of	the	Toyota	Production	System,	of
learning	organizations,	the	Improvement	Kata,	and	high-reliability	organizations.
Mike	Rother	observes	that	he	sees	Toyota	“as	an	organization	defined	primarily
by	the	unique	behavior	routines	it	continually	teaches	to	all	its	members.”

In	the	technology	value	stream,	this	scientific	approach	and	iterative	method
guides	all	of	our	internal	improvement	processes,	but	also	how	we	perform
experiments	to	ensure	that	the	products	we	build	actually	help	our	internal	and
external	customers	achieve	their	goals.

CONCLUSION

The	principles	of	the	Third	Way	address	the	need	for	valuing	organizational
learning,	enabling	high	trust	and	boundary-spanning	between	functions,
accepting	that	failures	will	always	occur	in	complex	systems,	and	making	it
acceptable	to	talk	about	problems	so	we	can	create	a	safe	system	of	work.	It	also
requires	institutionalizing	the	improvement	of	daily	work,	converting	local
learnings	into	global	learnings	that	can	be	used	by	the	entire	organization,	as
well	as	continually	injecting	tension	into	our	daily	work.

Although	fostering	a	culture	of	continual	learning	and	experimentation	is	the
principle	of	the	Third	Way,	it	is	also	interwoven	into	the	First	and	Second	Ways.
In	other	words,	improving	flow	and	feedback	requires	an	iterative	and	scientific
approach	that	includes	framing	of	a	target	condition,	stating	a	hypothesis	of	what

will	help	us	get	there,	designing	and	conducting	experiments,	and	evaluating	the
results.

The	results	are	not	only	better	performance	but	also	increased	resilience,	higher
job	satisfaction,	and	improved	organization	adaptability.

PART	I	CONCLUSION

In	Part	I	of	The	DevOps	Handbook	we	looked	back	at	several	movements	in
history	that	helped	lead	to	the	development	of	DevOps.	We	also	looked	at	the
three	main	principles	that	form	the	foundation	for	successful	DevOps
organizations:	the	principles	of	Flow,	Feedback,	and	Continual	Learning	and
Experimentation.	In	Part	II,	we	will	begin	to	look	at	how	to	start	a	DevOps
movement	in	your	organization.

†	The	“name,	blame,	shame”	pattern	is	part	of	the	Bad	Apple	Theory	criticized	by	Dr.	Sydney	Dekker	and	extensively	discussed	in	his
book	The	Field	Guide	to	Understanding	Human	Error.

‡	It	is	astonishing,	instructional,	and	truly	moving	to	see	the	level	of	conviction	and	passion	that	Paul	O’Neill	has	about	the	moral
responsibility	leaders	have	to	create	workplace	safety.

§	Leaders	are	responsible	for	the	design	and	operation	of	processes	at	a	higher	level	of	aggregation	where	others	have	less	perspective
and	authority.

Part	II

Introduction
How	do	we	decide	where	to	start	a	DevOps	transformation	in	our	organization?
Who	needs	to	be	involved?	How	should	we	organize	our	teams,	protect	their
work	capacity,	and	maximize	their	chances	of	succeess?	These	are	the	questions
we	aim	to	answer	in	Part	II	of	The	DevOps	Handbook.

In	the	following	chapters	we	will	walk	through	the	process	of	initiating	a
DevOps	transformation.	We	begin	by	evaluating	the	value	streams	in	our
organization,	locating	a	good	place	to	start,	and	forming	a	strategy	to	create	a
dedicated	transformation	team	with	specific	improvement	goals	and	eventual
expansion.	For	each	value	stream	being	transformed,	we	identify	the	work	being
performed	and	then	look	at	organizational	design	strategies	and	organizational
archetypes	that	best	support	the	transformation	goals.

Primary	focuses	in	these	chapters	include:

Selecting	which	value	streams	to	start	with

Understanding	the	work	being	done	in	our	candidate	value	streams

Designing	our	organization	and	architecture	with	Conway’s	Law	in	mind

Enabling	market-oriented	outcomes	through	more	effective	collaboration
between	functions	throughout	the	value	stream

Protecting	and	enabling	our	teams

Beginning	any	transformation	is	full	of	uncertainty—we	are	charting	a	journey
to	an	ideal	end	state,	but	where	virtually	all	the	intermediate	steps	are	unknown.
These	next	chapters	are	intended	to	provide	a	thought	process	to	guide	our
decisions,	provide	actionable	steps	we	can	take,	and	illustrate	case	studies	as
examples.

5
'

Selecting	Which
Value	Stream	to
Start	With

Choosing	a	value	stream	for	DevOps	transformation	deserves	careful
consideration.	Not	only	does	the	value	stream	we	choose	dictate	the	difficulty	of
our	transformation,	but	it	also	dictates	who	will	be	involved	in	the
transformation.	It	will	affect	how	we	need	to	organize	into	teams	and	how	we
can	best	enable	the	teams	and	individuals	in	them.

Another	challenge	was	noted	by	Michael	Rembetsy,	who	helped	lead	the
DevOps	transformation	as	the	Director	of	Operations	at	Etsy	in	2009.	He
observed,	“We	must	pick	our	transformation	projects	carefully—when	we’re	in
trouble,	we	don’t	get	very	many	shots.	Therefore,	we	must	carefully	pick	and
then	protect	those	improvement	projects	that	will	most	improve	the	state	of	our
organization.”

Let	us	examine	how	the	Nordstrom	team	started	their	DevOps	transformation
initiative	in	2013,	which	Courtney	Kissler,	their	VP	of	E-Commerce	and	Store
Technologies,	described	at	the	DevOps	Enterprise	Summit	in	2014	and	2015.

Founded	in	1901,	Nordstrom	is	a	leading	fashion	retailer	that	is	focused	on
delivering	the	best	possible	shopping	experience	to	their	customers.	In	2015,
Nordstrom	had	annual	revenue	of	$13.5	billion.

The	stage	for	Nordstrom’s	DevOps	journey	was	likely	set	in	2011	during	one	of
their	annual	board	of	directors	meetings.	That	year,	one	of	the	strategic	topics
discussed	was	the	need	for	online	revenue	growth.	They	studied	the	plight	of
Blockbusters,	Borders,	and	Barnes	&	Nobles,	which	demonstrated	the	dire
consequences	when	traditional	retailers	were	late	creating	competitive	e-
commerce	capabilities—these	organizations	were	clearly	at	risk	of	losing	their
position	in	the	marketplace	or	even	going	out	of	business	entirely.†

At	that	time,	Courtney	Kissler	was	the	senior	director	of	Systems	Delivery	and
Selling	Technology,	responsible	for	a	significant	portion	of	the	technology
organization,	including	their	in-store	systems	and	online	e-commerce	site.	As
Kissler	described,	“In	2011,	the	Nordstrom	technology	organization	was	very
much	optimized	for	cost—we	had	outsourced	many	of	our	technology	functions,
we	had	an	annual	planning	cycle	with	large	batch,	‘waterfall’	software	releases.
Even	though	we	had	a	97%	success	rate	of	hitting	our	schedule,	budget,	and
scope	goals,	we	were	ill-equipped	to	achieve	what	the	five-year	business	strategy
required	from	us,	as	Nordstrom	started	optimizing	for	speed	instead	of	merely
optimizing	for	cost.”

Kissler	and	the	Nordstrom	technology	management	team	had	to	decide	where	to
start	their	initial	transformation	efforts.	They	didn’t	want	to	cause	upheaval	in
the	whole	system.	Instead,	they	wanted	to	focus	on	very	specific	areas	of	the
business	so	that	they	could	experiment	and	learn.	Their	goal	was	to	demonstrate
early	wins,	which	would	give	everyone	confidence	that	these	improvements
could	be	replicated	in	other	areas	of	the	organization.	How	exactly	that	would	be
achieved	was	still	unknown.

They	focused	on	three	areas:	the	customer	mobile	application,	their	in-store
restaurant	systems,	and	their	digital	properties.	Each	of	these	areas	had	business
goals	that	weren’t	being	met;	thus,	they	were	more	receptive	to	considering	a
different	way	of	working.	The	stories	of	the	first	two	are	described	below.

The	Nordstrom	mobile	application	had	experienced	an	inauspicious	start.	As
Kissler	said,	“Our	customers	were	extremely	frustrated	with	the	product,	and	we
had	uniformly	negative	reviews	when	we	launched	it	in	the	App	Store.	Worse,
the	existing	structure	and	processes	(aka	“the	system”)	had	designed	their
processes	so	that	they	could	only	release	updates	twice	per	year.”	In	other	words,
any	fixes	to	the	application	would	have	to	wait	months	to	reach	the	customer.

Their	first	goal	was	to	enable	faster	or	on-demand	releases,	providing	faster
iteration	and	the	ability	to	respond	to	customer	feedback.	They	created	a
dedicated	product	team	that	was	solely	dedicated	to	supporting	the	mobile
application,	with	the	goal	of	enabling	that	team	to	be	able	to	independently
implement,	test,	and	deliver	value	to	the	customer.	By	doing	this,	they	would	no
longer	have	to	depend	on	and	coordinate	with	scores	of	other	teams	inside
Nordstrom.	Furthermore,	they	moved	from	planning	once	per	year	to	a
continuous	planning	process.	The	result	was	a	single	prioritized	backlog	of	work
for	the	mobile	app	based	on	customer	need—gone	were	all	the	conflicting
priorities	when	the	team	had	to	support	multiple	products.

Over	the	following	year,	they	eliminated	testing	as	a	separate	phase	of	work,
instead	integrating	it	into	everyone’s	daily	work.‡	They	doubled	the	features
being	delivered	per	month	and	halved	the	number	of	defects—creating	a
successful	outcome.

Their	second	area	of	focus	was	the	systems	supporting	their	in-store	Café	Bistro
restaurants.	Unlike	the	mobile	app	value	stream	where	the	business	need	was	to
reduce	time	to	market	and	increase	feature	throughput,	the	business	need	here
was	to	decrease	cost	and	increase	quality.	In	2013,	Nordstrom	had	completed
eleven	“restaurant	re-concepts”	which	required	changes	to	the	in-store
applications,	causing	a	number	of	customer-impacting	incidents.	Disturbingly,

they	had	planned	forty-four	more	of	these	re-concepts	for	2014—four	times	as
many	as	in	the	previous	year.

As	Kissler	stated,	“One	of	our	business	leaders	suggested	that	we	triple	our	team
size	to	handle	these	new	demands,	but	I	proposed	that	we	had	to	stop	throwing
more	bodies	at	the	problem	and	instead	improve	the	way	we	worked.”

They	were	able	to	identify	problematic	areas,	such	as	in	their	work	intake	and
deployment	processes,	which	is	where	they	focused	their	improvement	efforts.
They	were	able	to	reduce	code	deployment	lead	times	by	60%	and	reduce	the
number	of	production	incidents	60%	to	90%.

These	successes	gave	the	teams	confidence	that	DevOps	principles	and	practices
were	applicable	to	a	wide	variety	of	value	streams.	Kissler	was	promoted	to	VP
of	E-Commerce	and	Store	Technologies	in	2014.

In	2015,	Kissler	said	that	in	order	for	the	selling	or	customer-facing	technology
organization	to	enable	the	business	to	meet	their	goals,	“…we	needed	to	increase
productivity	in	all	our	technology	value	streams,	not	just	in	a	few.	At	the
management	level,	we	created	an	across-the-board	mandate	to	reduce	cycle
times	by	20%	for	all	customer-facing	services.”

She	continued,	“This	is	an	audacious	challenge.	We	have	many	problems	in	our
current	state—process	and	cycle	times	are	not	consistently	measured	across
teams,	nor	are	they	visible.	Our	first	target	condition	requires	us	to	help	all	our
teams	measure,	make	it	visible,	and	perform	experiments	to	start	reducing	their
process	times,	iteration	by	iteration.”

Kissler	concluded,	“From	a	high	level	perspective,	we	believe	that	techniques
such	as	value	stream	mapping,	reducing	our	batch	sizes	toward	single-piece
flow,	as	well	as	using	continuous	delivery	and	microservices	will	get	us	to	our
desired	state.	However,	while	we	are	still	learning,	we	are	confident	that	we	are

heading	in	the	right	direction,	and	everyone	knows	that	this	effort	has	support
from	the	highest	levels	of	management.”

In	this	chapter,	various	models	are	presented	that	will	enable	us	to	replicate	the
thought	processes	that	the	Nordstrom	team	used	to	decide	which	value	streams
to	start	with.	We	will	evaluate	our	candidate	value	streams	in	many	ways,
including	whether	they	are	a	greenfield	or	brownfield	service,	a	system	of
engagement	or	a	system	of	record.	We	will	also	estimate	the	risk/reward	balance
of	transforming	and	assess	the	likely	level	of	resistance	we	may	get	from	the
teams	we	would	work	with.

GREENFIELD	VS.	BROWNFIELD	SERVICES

We	often	categorize	our	software	services	or	products	as	either	greenfield	or
brownfield.	These	terms	were	originally	used	for	urban	planning	and	building
projects.	Greenfield	development	is	when	we	build	on	undeveloped	land.
Brownfield	development	is	when	we	build	on	land	that	was	previously	used	for
industrial	purposes,	potentially	contaminated	with	hazardous	waste	or	pollution.
In	urban	development,	many	factors	can	make	greenfield	projects	simpler	than
brownfield	projects—there	are	no	existing	structures	that	need	to	be	demolished
nor	are	there	toxic	materials	that	need	to	be	removed.

In	technology,	a	greenfield	project	is	a	new	software	project	or	initiative,	likely
in	the	early	stages	of	planning	or	implementation,	where	we	build	our
applications	and	infrastructure	anew,	with	few	constraints.	Starting	with	a
greenfield	software	project	can	be	easier,	especially	if	the	project	is	already
funded	and	a	team	is	either	being	created	or	is	already	in	place.	Furthermore,
because	we	are	starting	from	scratch,	we	can	worry	less	about	existing	code
bases,	processes,	and	teams.

Greenfield	DevOps	projects	are	often	pilots	to	demonstrate	feasibility	of	public
or	private	clouds,	piloting	deployment	automation,	and	similar	tools.	An
example	of	a	greenfield	DevOps	project	is	the	Hosted	LabVIEW	product	in	2009
at	National	Instruments,	a	thirty-year-old	organization	with	five	thousand
employees	and	$1	billion	in	annual	revenue.	To	bring	this	product	to	market
quickly,	a	new	team	was	created	and	allowed	to	operate	outside	of	the	existing
IT	processes	and	explore	the	use	of	public	clouds.	The	initial	team	included	an
applications	architect,	a	systems	architect,	two	developers,	a	system	automation
developer,	an	operations	lead,	and	two	offshore	operations	staff.	By	using
DevOps	practices,	they	were	able	to	deliver	Hosted	LabVIEW	to	market	in	half
the	time	of	their	normal	product	introductions.

On	the	other	end	of	the	spectrum	are	brownfield	DevOps	projects,	these	are
existing	products	or	services	that	are	already	serving	customers	and	have
potentially	been	in	operation	for	years	or	even	decades.	Brownfield	projects
often	come	with	significant	amounts	of	technical	debt,	such	as	having	no	test
automation	or	running	on	unsupported	platforms.	In	the	Nordstrom	example
presented	earlier	in	this	chapter,	both	the	in-store	restaurant	systems	and	e-
commerce	systems	were	brownfield	projects.

Although	many	believe	that	DevOps	is	primarily	for	greenfield	projects,	DevOps
has	been	used	to	successfully	transform	brownfield	projects	of	all	sorts.	In	fact,
over	60%	of	the	transformation	stories	shared	at	the	DevOps	Enterprise	Summit
in	2014	were	for	brownfield	projects.	In	these	cases,	there	was	a	large
performance	gap	between	what	the	customer	needed	and	what	the	organization
was	currently	delivering,	and	the	DevOps	transformations	created	tremendous
business	benefit.

Indeed,	one	of	the	findings	in	the	2015	State	of	DevOps	Report	validated	that	the
age	of	the	application	was	not	a	significant	predictor	of	performance;	instead,

what	predicted	performance	was	whether	the	application	was	architected	(or
could	be	re-architected)	for	testability	and	deployability.

Teams	supporting	brownfield	projects	may	be	very	receptive	to	experimenting
with	DevOps,	particularly	when	there	is	a	widespread	belief	that	traditional
methods	are	insufficient	to	achieve	their	goals—and	especially	if	there	is	a
strong	sense	of	urgency	around	the	need	for	improvement.§

When	transforming	brownfield	projects,	we	may	face	significant	impediments
and	problems,	especially	when	no	automated	testing	exists	or	when	there	is	a
tightly-coupled	architecture	that	prevents	small	teams	from	developing,	testing,
and	deploying	code	independently.	How	we	overcome	these	issues	are	discussed
throughout	this	book.

Examples	of	successful	brownfield	transformations	include:

CSG	(2013):	In	2013,	CSG	International	had	$747	million	in	revenue	and
over	3,500	employees,	enabling	over	ninety	thousand	customer	service
agents	to	provide	billing	operations	and	customer	care	to	over	fifty	million
video,	voice,	and	data	customers,	executing	over	six	billion	transactions,	and
printing	and	mailing	over	seventy	million	paper	bill	statements	every	month.
Their	initial	scope	of	improvement	was	bill	printing,	one	of	their	primary
businesses,	and	involved	a	COBOL	mainframe	application	and	the	twenty
surrounding	technology	platforms.	As	part	of	their	transformation,	they
started	performing	daily	deployments	into	a	production-like	environment,
and	doubled	the	frequency	of	customer	releases	from	twice	annually	to	four
times	annually.	As	a	result,	they	significantly	increased	the	reliability	of	the
application	and	reduced	code	deployment	lead	times	from	two	weeks	to	less
than	one	day.

Etsy	(2009):	In	2009,	Etsy	had	thirty-five	employees	and	was	generating	$87

million	in	revenue,	but	after	they	“barely	survived	the	holiday	retail	season,”
they	started	transforming	virtually	every	aspect	of	how	the	organization
worked,	eventually	turning	the	company	into	one	of	the	most	admired
DevOps	organizations	and	set	the	stage	for	a	successful	2015	IPO.

CONSIDER	BOTH	SYSTEMS	OF	RECORD	AND
SYSTEMS	OF	ENGAGEMENT

The	Gartner	research	firm	has	recently	popularized	the	notion	of	bimodal	IT,
referring	to	the	wide	spectrum	of	services	that	typical	enterprises	support.	Within
bimodal	IT	there	are	systems	of	record,	the	ERP-like	systems	that	run	our
business	(e.g.,	MRP,	HR,	financial	reporting	systems),	where	the	correctness	of
the	transactions	and	data	are	paramount;	and	systems	of	engagement,	which	are
customer-facing	or	employee-facing	systems,	such	as	e-commerce	systems	and
productivity	applications.

Systems	of	record	typically	have	a	slower	pace	of	change	and	often	have
regulatory	and	compliance	requirements	(e.g.,	SOX).	Gartner	calls	these	types	of
systems	“Type	1,”	where	the	organization	focuses	on	“doing	it	right.”

Systems	of	engagement	typically	have	a	much	higher	pace	of	change	to	support
rapid	feedback	loops	that	enable	them	to	conduct	experimentation	to	discover
how	to	best	meet	customer	needs.	Gartner	calls	these	types	of	systems	“Type	2,”
where	the	organization	focuses	on	“doing	it	fast.”

It	may	be	convenient	to	divide	up	our	systems	into	these	categories;	however,	we
know	that	the	core,	chronic	conflict	between	“doing	it	right”	and	“doing	it	fast”
can	be	broken	with	DevOps.	The	data	from	Puppet	Labs’	State	of	DevOps
Reports—following	the	lessons	of	Lean	manufacturing—shows	that	high-

performing	organizations	are	able	to	simultaneously	deliver	higher	levels	of
throughput	and	reliability.

Furthermore,	because	of	how	interdependent	our	systems	are,	our	ability	to	make
changes	to	any	of	these	systems	is	limited	by	the	system	that	is	most	difficult	to
safely	change,	which	is	almost	always	a	system	of	record.

Scott	Prugh,	VP	of	Product	Development	at	CSG,	observed,	“We’ve	adopted	a
philosophy	that	rejects	bimodal	IT,	because	every	one	of	our	customers	deserve
speed	and	quality.	This	means	that	we	need	technical	excellence,	whether	the
team	is	supporting	a	30	year	old	mainframe	application,	a	Java	application,	or	a
mobile	application.”

Consequently,	when	we	improve	brownfield	systems,	we	should	not	only	strive
to	reduce	their	complexity	and	improve	their	reliability	and	stability,	we	should
also	make	them	faster,	safer,	and	easier	to	change.	Even	when	new	functionality
is	added	just	to	greenfield	systems	of	engagement,	they	often	cause	reliability
problems	in	the	brownfield	systems	of	record	they	rely	on.	By	making	these
downstream	systems	safer	to	change,	we	help	the	entire	organization	more
quickly	and	safely	achieve	its	goals.

START	WITH	THE	MOST	SYMPATHETIC	AND
INNOVATIVE	GROUPS

Within	every	organization,	there	will	be	teams	and	individuals	with	a	wide	range
of	attitudes	toward	the	adoption	of	new	ideas.	Geoffrey	A.	Moore	first	depicted
this	spectrum	in	the	form	of	the	technology	adoption	life	cycle	in	Crossing	The
Chasm,	where	the	chasm	represents	the	classic	difficulty	of	reaching	groups
beyond	the	innovators	and	early	adopters	(see	figure	9).

In	other	words,	new	ideas	are	often	quickly	embraced	by	innovators	and	early
adopters,	while	others	with	more	conservative	attitudes	resist	them	(the	early
majority,	late	majority,	and	laggards).	Our	goal	is	to	find	those	teams	that
already	believe	in	the	need	for	DevOps	principles	and	practices,	and	who
possess	a	desire	and	demonstrated	ability	to	innovate	and	improve	their	own
processes.	Ideally,	these	groups	will	be	enthusiastic	supporters	of	the	DevOps
journey.

Figure	9:	The	Technology	Adoption	Curve	(Source:	Moore	and	McKenna,	Crossing
The	Chasm,	15.)

Especially	in	the	early	stages,	we	will	not	spend	much	time	trying	to	convert	the
more	conservative	groups.	Instead,	we	will	focus	our	energy	on	creating
successes	with	less	risk-averse	groups	and	build	out	our	base	from	there	(a
process	that	is	discussed	further	in	the	next	section).	Even	if	we	have	the	highest
levels	of	executive	sponsorship,	we	will	avoid	the	big	bang	approach	(i.e.,
starting	everywhere	all	at	once),	choosing	instead	to	focus	our	efforts	in	a	few
areas	of	the	organization,	ensuring	that	those	initiatives	are	successful,	and
expanding	from	there.¶

EXPANDING	DEVOPS	ACROSS	OUR
ORGANIZATION

Regardless	of	how	we	scope	our	initial	effort,	we	must	demonstrate	early	wins
and	broadcast	our	successes.	We	do	this	by	breaking	up	our	larger	improvement
goals	into	small,	incremental	steps.	This	not	only	creates	our	improvements
faster,	it	also	enables	us	to	discover	when	we	have	made	the	wrong	choice	of
value	stream—by	detecting	our	errors	early,	we	can	quickly	back	up	and	try
again,	making	different	decisions	armed	with	our	new	learnings.

As	we	generate	successes,	we	earn	the	right	to	expand	the	scope	of	our	DevOps
initiative.	We	want	to	follow	a	safe	sequence	that	methodically	grows	our	levels
of	credibility,	influence,	and	support.	The	following	list,	adapted	from	a	course
taught	by	Dr.	Roberto	Fernandez,	a	William	F.	Pounds	Professor	in	Management
at	MIT,	describes	the	ideal	phases	used	by	change	agents	to	build	and	expand
their	coalition	and	base	of	support:

1.	 Find	Innovators	and	Early	Adopters:	In	the	beginning,	we	focus	our
efforts	on	teams	who	actually	want	to	help—these	are	our	kindred	spirits	and
fellow	travelers	who	are	the	first	to	volunteer	to	start	the	DevOps	journey.	In
the	ideal,	these	are	also	people	who	are	respected	and	have	a	high	degree	of
influence	over	the	rest	of	the	organization,	giving	our	initiative	more
credibility.

2.	 Build	Critical	Mass	and	Silent	Majority:	In	the	next	phase,	we	seek	to
expand	DevOps	practices	to	more	teams	and	value	streams	with	the	goal	of
creating	a	stable	base	of	support.	By	working	with	teams	who	are	receptive	to
our	ideas,	even	if	they	are	not	the	most	visible	or	influential	groups,	we
expand	our	coalition	who	are	generating	more	successes,	creating	a
“bandwagon	effect”	that	further	increases	our	influence.	We	specifically

bypass	dangerous	political	battles	that	could	jeopardize	our	initiative.

3.	 Identify	the	Holdouts:	The	“holdouts”	are	the	high	profile,	influential
detractors	who	are	most	likely	to	resist	(and	maybe	even	sabotage)	our
efforts.	In	general,	we	tackle	this	group	only	after	we	have	achieved	a	silent
majority,	when	we	have	established	enough	successes	to	successfully	protect
our	initiative.

Expanding	DevOps	across	an	organization	is	no	small	task.	It	can	create	risk	to
individuals,	departments,	and	the	organization	as	a	whole.	But	as	Ron	van
Kemenade,	CIO	of	ING,	who	helped	transform	the	organization	into	one	of	the
most	admired	technology	organizations,	said,	“Leading	change	requires	courage,
especially	in	corporate	environments	where	people	are	scared	and	fight	you.	But
if	you	start	small,	you	really	have	nothing	to	fear.	Any	leader	needs	to	be	brave
enough	to	allocate	teams	to	do	some	calculated	risk-taking.”

CONCLUSION

Peter	Drucker,	a	leader	in	the	development	of	management	education,	observed
that	“little	fish	learn	to	be	big	fish	in	little	ponds.”	By	choosing	carefully	where
and	how	to	start,	we	are	able	to	experiment	and	learn	in	areas	of	our	organization
that	create	value	without	jeopardizing	the	rest	of	the	organization.	By	doing	this,
we	build	our	base	of	support,	earn	the	right	to	expand	the	use	of	DevOps	in	our
organization,	and	gain	the	recognition	and	gratitude	of	an	ever-larger
constituency.

†	These	organizations	were	sometimes	known	as	the	“Killer	B’s	that	are	Dying.”

‡	The	practice	of	relying	on	a	stabilization	phase	or	hardening	phase	at	the	end	of	a	project	often	has	very	poor	outcomes,	because	it
means	problems	are	not	being	found	and	fixed	as	part	of	daily	work	and	are	left	unaddressed,	potentially	snowballing	into	larger
issues.

§	That	the	services	that	have	the	largest	potential	business	benefit	are	brownfield	systems	shouldn’t	be	surprising.	After	all,	these	are
the	systems	that	are	most	relied	upon	and	have	the	largest	number	of	existing	customers	or	highest	amount	of	revenue	depending

upon	them.

¶	Big	bang,	top-down	transformations	are	possible,	such	as	the	Agile	transformation	at	PayPal	in	2012	that	was	led	by	their	vice
president	of	technology,	Kirsten	Wolberg.	However,	as	with	any	sustainable	and	successful	transformation,	this	required	the	highest
level	of	management	support	and	a	relentless,	sustained	focus	on	driving	the	necessary	outcomes.

6
Understanding	the
Work	in	Our	Value
Stream,	Making	it
Visible,	and
Expanding	it	Across

the	Organization

Once	we	have	identified	a	value	stream	to	which	we	want	to	apply	DevOps
principles	and	patterns,	our	next	step	is	to	gain	a	sufficient	understanding	of	how
value	is	delivered	to	the	customer:	what	work	is	performed	and	by	whom,	and
what	steps	can	we	take	to	improve	flow.

In	the	previous	chapter,	we	learned	about	the	DevOps	transformation	led	by
Courtney	Kissler	and	the	team	at	Nordstrom.	Over	the	years,	they	have	learned
that	one	of	the	most	efficient	ways	to	start	improving	any	value	stream	is	to
conduct	a	workshop	with	all	the	major	stakeholders	and	perform	a	value	stream
mapping	exercise—a	process	(described	later	in	this	chapter)	designed	to	help
capture	all	the	steps	required	to	create	value.

Kissler’s	favorite	example	of	the	valuable	and	unexpected	insights	that	can	come
from	value	stream	mapping	is	when	they	tried	to	improve	the	long	lead	times
associated	with	requests	going	through	the	Cosmetics	Business	Office
application,	a	COBOL	mainframe	application	that	supported	all	the	floor	and
department	managers	of	their	in-store	beauty	and	cosmetic	departments.

This	application	allowed	department	managers	to	register	new	salespeople	for
various	product	lines	carried	in	their	stores,	so	that	they	could	track	sales
commissions,	enable	vendor	rebates,	and	so	forth.

Kissler	explained:

I	knew	this	particular	mainframe	application	well—earlier	in	my	career,	I
supported	this	technology	team,	so	I	know	firsthand	that	for	nearly	a	decade,
during	each	annual	planning	cycle,	we	would	debate	about	how	we	needed	to
get	this	application	off	the	mainframe.	Of	course,	like	in	most	organizations,
even	when	there	was	full	management	support,	we	never	seemed	to	get
around	to	migrating	it.

My	team	wanted	to	conduct	a	value	stream	mapping	exercise	to	determine
whether	the	COBOL	application	really	was	the	problem,	or	maybe	there	was
a	larger	problem	that	we	needed	to	address.	They	conducted	a	workshop	that
assembled	everyone	with	any	accountability	for	delivering	value	to	our
internal	customers,	including	our	business	partners,	the	mainframe	team,	the
shared	service	teams,	and	so	forth.

What	they	discovered	was	that	when	department	managers	were	submitting
the	‘product	line	assignment’	request	form,	we	were	asking	them	for	an
employee	number,	which	they	didn’t	have—so	they	would	either	leave	it
blank	or	put	in	something	like	‘I	don’t	know.’	Worse,	in	order	to	fill	out	the
form,	department	managers	would	have	to	inconveniently	leave	the	store
floor	in	order	to	use	a	PC	in	the	back	office.	The	end	result	was	all	this
wasted	time,	with	work	bouncing	back	and	forth	in	the	process.

During	the	workshop,	the	participants	conducted	several	experiments,	including
deleting	the	employee	number	field	in	the	form	and	letting	another	department
get	that	information	in	a	downstream	step.	These	experiments,	conducted	with

the	help	of	department	managers,	showed	a	four-day	reduction	in	processing
time.	The	team	later	replaced	the	PC	application	with	an	iPad	application,	which
allowed	managers	to	submit	the	necessary	information	without	leaving	the	store
floor,	and	the	processing	time	was	further	reduced	to	seconds.

She	said	proudly,	“With	those	amazing	improvements,	all	the	demands	to	get
this	application	off	the	mainframe	disappeared.	Furthermore,	other	business
leaders	took	notice	and	started	coming	to	us	with	a	whole	list	of	further
experiments	they	wanted	to	conduct	with	us	in	their	own	organizations.
Everyone	in	the	business	and	technology	teams	were	excited	by	the	outcome
because	they	solved	a	real	business	problem,	and,	most	importantly,	they	learned
something	in	the	process.”

In	the	remainder	of	this	chapter,	we	will	go	through	the	following	steps:
identifying	all	the	teams	required	to	create	customer	value,	creating	a	value
stream	map	to	make	visible	all	the	required	work,	and	using	it	to	guide	the	teams
in	how	to	better	and	more	quickly	create	value.	By	doing	this,	we	can	replicate
the	amazing	outcomes	described	in	this	Nordstrom	example.

IDENTIFYING	THE	TEAMS	SUPPORTING	OUR
VALUE	STREAM

As	this	Nordstrom	example	demonstrates,	in	value	streams	of	any	complexity,
no	one	person	knows	all	the	work	that	must	be	performed	in	order	to	create
value	for	the	customer—especially	since	the	required	work	must	be	performed
by	many	different	teams,	often	far	removed	from	each	other	on	the	organization
charts,	geographically,	or	by	incentives.

As	a	result,	after	we	select	a	candidate	application	or	service	for	our	DevOps
initiative,	we	must	identify	all	the	members	of	the	value	stream	who	are

responsible	for	working	together	to	create	value	for	the	customers	being	served.
In	general,	this	includes:

Product	owner:	the	internal	voice	of	the	business	that	defines	the	next	set	of
functionality	in	the	service

Development:	the	team	responsible	for	developing	application	functionality
in	the	service

QA:	the	team	responsible	for	ensuring	that	feedback	loops	exist	to	ensure	the
service	functions	as	desired

Operations:	the	team	often	responsible	for	maintaining	the	production
environment	and	helping	ensure	that	required	service	levels	are	met

Infosec:	the	team	responsible	for	securing	systems	and	data

Release	managers:	the	people	responsible	for	managing	and	coordinating
the	production	deployment	and	release	processes

Technology	executives	or	value	stream	manager:	in	Lean	literature,
someone	who	is	responsible	for	“ensuring	that	the	value	stream	meets	or
exceeds	the	customer	[and	organizational]	requirements	for	the	overall	value
stream,	from	start	to	finish”

CREATE	A	VALUE	STREAM	MAP	TO	SEE	THE
WORK

After	we	identify	our	value	stream	members,	our	next	step	is	to	gain	a	concrete
understanding	of	how	work	is	performed,	documented	in	the	form	of	a	value
stream	map.	In	our	value	stream,	work	likely	begins	with	the	product	owner,	in

the	form	of	a	customer	request	or	the	formulation	of	a	business	hypothesis.	Some
time	later,	this	work	is	accepted	by	Development,	where	features	are
implemented	in	code	and	checked	in	to	our	version	control	repository.	Builds	are
then	integrated,	tested	in	a	production-like	environment,	and	finally	deployed
into	production,	where	they	(ideally)	create	value	for	our	customer.

In	many	traditional	organizations,	this	value	stream	will	consist	of	hundreds,	if
not	thousands,	of	steps,	requiring	work	from	hundreds	of	people.	Because
documenting	any	value	stream	map	this	complex	likely	requires	multiple	days,
we	may	conduct	a	multi-day	workshop,	where	we	assemble	all	the	key
constituents	and	remove	them	from	the	distractions	of	their	daily	work.

Our	goal	is	not	to	document	every	step	and	associated	minutiae,	but	to
sufficiently	understand	the	areas	in	our	value	stream	that	are	jeopardizing	our
goals	of	fast	flow,	short	lead	times,	and	reliable	customer	outcomes.	Ideally,	we
have	assembled	those	people	with	the	authority	to	change	their	portion	of	the
value	stream.†

Damon	Edwards,	co-host	of	DevOps	Café	podcast,	observed,	“In	my	experience,
these	types	of	value	stream	mapping	exercises	are	always	an	eye-opener.	Often,
it	is	the	first	time	when	people	see	how	much	work	and	heroics	are	required	to
deliver	value	to	the	customer.	For	Operations,	it	may	be	the	first	time	that	they
see	the	consequences	that	result	when	developers	don’t	have	access	to	correctly
configured	environments,	which	contributes	to	even	more	crazy	work	during
code	deployments.	For	Development,	it	may	be	the	first	time	they	see	all	the
heroics	that	are	required	by	Test	and	Operations	in	order	to	deploy	their	code
into	production,	long	after	they	flag	a	feature	as	‘completed.’”

Using	the	full	breadth	of	knowledge	brought	by	the	teams	engaged	in	the	value
stream,	we	should	focus	our	investigation	and	scrutiny	on	the	following	areas:

Places	where	work	must	wait	weeks	or	even	months,	such	as	getting
production-like	environments,	change	approval	processes,	or	security	review
processes

Places	where	significant	rework	is	generated	or	received

Our	first	pass	of	documenting	our	value	stream	should	only	consist	of	high-level
process	blocks.	Typically,	even	for	complex	value	streams,	groups	can	create	a
diagram	with	five	to	fifteen	process	blocks	within	a	few	hours.	Each	process
block	should	include	the	lead	time	and	process	time	for	a	work	item	to	be
processed,	as	well	as	the	%C/A	as	measured	by	the	downstream	consumers	of
the	output.‡

Figure	10:	An	example	of	a	value	stream	map	
(Source:	Humble,	Molesky,	and	O’Reilly,	Lean	Enterprise,	139.)

We	use	the	metrics	from	our	value	stream	map	to	guide	our	improvement	efforts.
In	the	Nordstrom	example,	they	focused	on	the	low	%C/A	rates	on	the	request
form	submitted	by	department	managers	due	to	the	absence	of	employee

numbers.	In	other	cases,	it	may	be	long	lead	times	or	low	%C/A	rates	when
delivering	correctly	configured	test	environments	to	Development	teams,	or	it
might	be	the	long	lead	times	required	to	execute	and	pass	regression	testing
before	each	software	release.

Once	we	identify	the	metric	we	want	to	improve,	we	should	perform	the	next
level	of	observations	and	measurements	to	better	understand	the	problem	and
then	construct	an	idealized,	future	value	stream	map,	which	serves	as	a	target
condition	to	achieve	by	some	date	(e.g.,	usually	three	to	twelve	months).

Leadership	helps	define	this	future	state	and	then	guides	and	enables	the	team	to
brainstorm	hypotheses	and	countermeasures	to	achieve	the	desired	improvement
to	that	state,	perform	experiments	to	test	those	hypotheses,	and	interpret	the
results	to	determine	whether	the	hypotheses	were	correct.	The	teams	keep
repeating	and	iterating,	using	any	new	learnings	to	inform	the	next	experiments.

CREATING	A	DEDICATED	TRANSFORMATION
TEAM

One	of	the	inherent	challenges	with	initiatives	such	as	DevOps	transformations
is	that	they	are	inevitably	in	conflict	with	ongoing	business	operations.	Part	of
this	is	a	natural	outcome	of	how	successful	businesses	evolve.	An	organization
that	has	been	successful	for	any	extended	period	of	time	(years,	decades,	or	even
centuries)	has	created	mechanisms	to	perpetuate	the	practices	that	made	them
successful,	such	as	product	development,	order	administration,	and	supply	chain
operations.

Many	techniques	are	used	to	perpetuate	and	protect	how	current	processes
operate,	such	as	specialization,	focus	on	efficiency	and	repeatability,
bureaucracies	that	enforce	approval	processes,	and	controls	to	protect	against

variance.	In	particular,	bureaucracies	are	incredibly	resilient	and	are	designed	to
survive	adverse	conditions—one	can	remove	half	the	bureaucrats,	and	the
process	will	still	survive.

While	this	is	good	for	preserving	status	quo,	we	often	need	to	change	how	we
work	to	adapt	to	changing	conditions	in	the	marketplace.	Doing	this	requires
disruption	and	innovation,	which	puts	us	at	odds	with	groups	who	are	currently
responsible	for	daily	operations	and	the	internal	bureaucracies,	and	who	will
almost	always	win.

In	their	book	The	Other	Side	of	Innovation:	Solving	the	Execution	Challenge,
Dr.	Vijay	Govindarajan	and	Dr.	Chris	Trimble,	both	faculty	members	of
Dartmouth	College’s	Tuck	School	of	Business,	described	their	studies	of	how
disruptive	innovation	is	achieved	despite	these	powerful	forces	of	daily
operations.	They	documented	how	customer-driven	auto	insurance	products
were	successfully	developed	and	marketed	at	Allstate,	how	the	profitable	digital
publishing	business	was	created	at	the	Wall	Street	Journal,	the	development	of
the	break	through	trail-running	shoe	at	Timberland,	and	the	development	of	the
first	electric	car	at	BMW.

Based	on	their	research,	Dr.	Govindarajan	and	Dr.	Trimble	assert	that
organizations	need	to	create	a	dedicated	transformation	team	that	is	able	to
operate	outside	of	the	rest	of	the	organization	that	is	responsible	for	daily
operations	(which	they	call	the	“dedicated	team”	and	“performance	engine”
respectively).

First	and	foremost,	we	will	hold	this	dedicated	team	accountable	for	achieving	a
clearly	defined,	measurable,	system-level	result	(e.g.,	reduce	the	deployment
lead	time	from	“code	committed	into	version	control	to	successfully	running	in
production”	by	50%).	In	order	to	execute	such	an	initiative,	we	do	the	following:

Assign	members	of	the	dedicated	team	to	be	solely	allocated	to	the	DevOps
transformation	efforts	(as	opposed	to	“maintain	all	your	current
responsibilities,	but	spend	20%	of	your	time	on	this	new	DevOps	thing.”).

Select	team	members	who	are	generalists,	who	have	skills	across	a	wide
variety	of	domains.

Select	team	members	who	have	longstanding	and	mutually	respectful
relationships	with	the	rest	of	the	organization.

Create	a	separate	physical	space	for	the	dedicated	team,	if	possible,	to
maximize	communication	flow	within	the	team,	and	creating	some	isolation
from	the	rest	of	the	organization.

If	possible,	we	will	free	the	transformation	team	from	many	of	the	rules	and
policies	that	restrict	the	rest	of	the	organization,	as	National	Instruments	did,
described	in	the	previous	chapter.	After	all,	established	processes	are	a	form	of
institutional	memory—we	need	the	dedicated	team	to	create	the	new	processes
and	learnings	required	to	generate	our	desired	outcomes,	creating	new
institutional	memory.

Creating	a	dedicated	team	is	not	only	good	for	the	team,	but	also	good	for	the
performance	engine.	By	creating	a	separate	team,	we	create	the	space	for	them	to
experiment	with	new	practices,	protecting	the	rest	of	the	organization	from	the
potential	disruptions	and	distractions	associated	with	it.

AGREE	ON	A	SHARED	GOAL
One	of	the	most	important	parts	of	any	improvement	initiative	is	to	define	a
measurable	goal	with	a	clearly	defined	deadline,	between	six	months	and	two
years	in	the	future.	It	should	require	considerable	effort	but	still	be	achievable.

And	achievement	of	the	goal	should	create	obvious	value	for	the	organization	as
a	whole	and	to	our	customers.

These	goals	and	the	time	frame	should	be	agreed	upon	by	the	executives	and
known	to	everyone	in	the	organization.	We	also	want	to	limit	the	number	of
these	types	of	initiatives	going	on	simultaneously	to	prevent	us	from	overly
taxing	the	organizational	change	management	capacity	of	leaders	and	the
organization.	Examples	of	improvement	goals	might	include:

Reduce	the	percentage	of	the	budget	spent	on	product	support	and	unplanned
work	by	50%.

Ensure	lead	time	from	code	check-in	to	production	release	is	one	week	or
less	for	95%	of	changes.

Ensure	releases	can	always	be	performed	during	normal	business	hours	with
zero	downtime.

Integrate	all	the	required	information	security	controls	into	the	deployment
pipeline	to	pass	all	required	compliance	requirements.

Once	the	high-level	goal	is	made	clear,	teams	should	decide	on	a	regular	cadence
to	drive	the	improvement	work.	Like	product	development	work,	we	want
transformation	work	to	be	done	in	an	iterative,	incremental	manner.	A	typical
iteration	will	be	in	the	range	of	two	to	four	weeks.	For	each	iteration,	the	teams
should	agree	on	a	small	set	of	goals	that	generate	value	and	makes	some
progress	toward	the	long-term	goal.	At	the	end	of	each	iteration,	teams	should
review	their	progress	and	set	new	goals	for	the	next	iteration.

KEEP	OUR	IMPROVEMENT	PLANNING	HORIZONS	SHORT

In	any	DevOps	transformation	project,	we	need	to	keep	our	planning	horizons
short,	just	as	if	we	were	in	a	startup	doing	product	or	customer	development.	Our
initiative	should	strive	to	generate	measurable	improvements	or	actionable	data
within	weeks	(or,	in	the	worst	case,	months).

By	keeping	our	planning	horizons	and	iteration	intervals	short,	we	achieve	the
following:

Flexibility	and	the	ability	to	reprioritize	and	replan	quickly

Decrease	the	delay	between	work	expended	and	improvement	realized,
which	strengthens	our	feedback	loop,	making	it	more	likely	to	reinforce
desired	behaviors—when	improvement	initiatives	are	successful,	it
encourages	more	investment

Faster	learning	generated	from	the	first	iteration,	meaning	faster	integration
of	our	learnings	into	the	next	iteration

Reduction	in	activation	energy	to	get	improvements

Quicker	realization	of	improvements	that	make	meaningful	differences	in	our
daily	work

Less	risk	that	our	project	is	killed	before	we	can	generate	any	demonstrable
outcomes

RESERVE	20%	OF	CYCLES	FOR	NON-FUNCTIONAL
REQUIREMENTS	AND	REDUCING	TECHNICAL	DEBT
A	problem	common	to	any	process	improvement	effort	is	how	to	properly
prioritize	it—after	all,	organizations	that	need	it	most	are	those	that	have	the
least	amount	of	time	to	spend	on	improvement.	This	is	especially	true	in
technology	organizations	because	of	technical	debt.

Organizations	that	struggle	with	financial	debt	only	make	interest	payments	and
never	reduce	the	loan	principal,	and	may	eventually	find	themselves	in	situations
where	they	can	no	longer	service	the	interest	payments.	Similarly,	organizations
that	don’t	pay	down	technical	debt	can	find	themselves	so	burdened	with	daily
workarounds	for	problems	left	unfixed	that	they	can	no	longer	complete	any	new
work.	In	other	words,	they	are	now	only	making	the	interest	payment	on	their
technical	debt.

We	will	actively	manage	this	technical	debt	by	ensuring	that	we	invest	at	least
20%	of	all	Development	and	Operations	cycles	on	refactoring,	investing	in
automation	work	and	architecture	and	non-functional	requirements	(NFRs,
sometimes	referred	to	as	the	“ilities”),	such	as	maintainability,	manageability,
scalability,	reliability,	testability,	deployability,	and	security.

Figure	11:	Invest	20%	of	cycles	on	those	that	create	positive,	user-invisible	value	
(Source:	“Machine	Learning	and	Technical	Debt	with	D.	Sculley,”	Software

Engineering	Daily	podcast,	November	17,	2015,
http://softwareengineeringdaily.com/2015/11/17/machine-learning-and-technical-

debt-with-d-sculley/.)

After	the	near-death	experience	of	eBay	in	the	late	1990s,	Marty	Cagan,	author
of	Inspired:	How	To	Create	Products	Customers	Love,	the	seminal	book	on
product	design	and	management,	codified	the	following	lesson:

http://softwareengineeringdaily.com/2015/11/17/machine-learning-and-technical-debt-with-d-sculley/

The	deal	[between	product	owners	and]	engineering	goes	like	this:	Product
management	takes	20%	of	the	team’s	capacity	right	off	the	top	and	gives	this
to	engineering	to	spend	as	they	see	fit.	They	might	use	it	to	rewrite,	re-
architect,	or	refactor	problematic	parts	of	the	code	base...whatever	they
believe	is	necessary	to	avoid	ever	having	to	come	to	the	team	and	say,	‘we
need	to	stop	and	rewrite	[all	our	code].’	If	you’re	in	really	bad	shape	today,
you	might	need	to	make	this	30%	or	even	more	of	the	resources.	However,	I
get	nervous	when	I	find	teams	that	think	they	can	get	away	with	much	less
than	20%.

Cagan	notes	that	when	organizations	do	not	pay	their	“20%	tax,”	technical	debt
will	increase	to	the	point	where	an	organization	inevitably	spends	all	of	its
cycles	paying	down	technical	debt.	At	some	point,	the	services	become	so	fragile
that	feature	delivery	grinds	to	a	halt	because	all	the	engineers	are	working	on
reliability	issues	or	working	around	problems.

By	dedicating	20%	of	our	cycles	so	that	Dev	and	Ops	can	create	lasting
countermeasures	to	the	problems	we	encounter	in	our	daily	work,	we	ensure	that
technical	debt	doesn’t	impede	our	ability	to	quickly	and	safely	develop	and
operate	our	services	in	production.	Elevating	added	pressure	of	technical	debt
from	workers	can	also	reduce	levels	of	burnout.

Case	Study	
Operation	InVersion	at	LinkedIn	(2011)

LinkedIn’s	Operation	InVersion	presents	an	interesting	case	study
that	illustrates	the	need	to	pay	down	technical	debt	as	a	part	of
daily	work.	Six	months	after	their	successful	IPO	in	2011,	LinkedIn
continued	to	struggle	with	problematic	deployments	that	became	so
painful	that	they	launched	Operation	InVersion,	where	they	stopped

all	feature	development	for	two	months	in	order	to	overhaul	their
computing	environments,	deployments,	and	architecture.

LinkedIn	was	created	in	2003	to	help	users	“connect	to	your
network	for	better	job	opportunities.”	By	the	end	of	their	first	week	of
operation,	they	had	2,700	members.	One	year	later,	they	had	over
one	million	members,	and	have	grown	exponentially	since	then.	By
November	2015,	LinkedIn	had	over	350	million	members,	who
generate	tens	of	thousands	of	requests	per	second,	resulting	in
millions	of	queries	per	second	on	the	LinkedIn	back-end	systems.

From	the	beginning,	LinkedIn	primarily	ran	on	their	homegrown	Leo
application,	a	monolithic	Java	application	that	served	every	page
through	servlets	and	managed	JDBC	connections	to	various	back-
end	Oracle	databases.	However,	to	keep	up	with	growing	traffic	in
their	early	years,	two	critical	services	were	decoupled	from	Leo:	the
first	handled	queries	around	the	member	connection	graph	entirely
in-memory,	and	the	second	was	member	search,	which	layered
over	the	first.

By	2010,	most	new	development	was	occurring	in	new	services,
with	nearly	one	hundred	services	running	outside	of	Leo.	The
problem	was	that	Leo	was	only	being	deployed	once	every	two
weeks.

Josh	Clemm,	a	senior	engineering	manager	at	LinkedIn,	explained
that	by	2010,	the	company	was	having	significant	problems	with
Leo.	Despite	vertically	scaling	Leo	by	adding	memory	and	CPUs,
“Leo	was	often	going	down	in	production,	it	was	difficult	to
troubleshoot	and	recover,	and	difficult	to	release	new	code….It	was

clear	we	needed	to	‘Kill	Leo’	and	break	it	up	into	many	small
functional	and	stateless	services.”

In	2013,	journalist	Ashlee	Vance	of	Bloomberg	described	how
“when	LinkedIn	would	try	to	add	a	bunch	of	new	things	at	once,	the
site	would	crumble	into	a	broken	mess,	requiring	engineers	to	work
long	into	the	night	and	fix	the	problems.”	By	Fall	2011,	late	nights
were	no	longer	a	rite	of	passage	or	a	bonding	activity,	because	the
problems	had	become	intolerable.	Some	of	LinkedIn’s	top
engineers,	including	Kevin	Scott,	who	had	joined	as	the	LinkedIn
VP	of	Engineering	three	months	before	their	initial	public	offering,
decided	to	completely	stop	engineering	work	on	new	features	and
dedicate	the	whole	department	to	fixing	the	site’s	core
infrastructure.	They	called	the	effort	Operation	InVersion.

Scott	launched	Operation	InVersion	as	a	way	to	“inject	the
beginnings	of	a	cultural	manifesto	into	his	team’s	engineering
culture.	There	would	be	no	new	feature	development	until
LinkedIn’s	computing	architecture	was	revamped—it’s	what	the
business	and	his	team	needed.”

Scott	described	one	downside:	“You	go	public,	have	all	the	world
looking	at	you,	and	then	we	tell	management	that	we’re	not	going	to
deliver	anything	new	while	all	of	engineering	works	on	this
[InVersion]	project	for	the	next	two	months.	It	was	a	scary	thing.”

However,	Vance	described	the	massively	positive	results	of
Operation	InVersion.	“LinkedIn	created	a	whole	suite	of	software
and	tools	to	help	it	develop	code	for	the	site.	Instead	of	waiting
weeks	for	their	new	features	to	make	their	way	onto	LinkedIn’s
main	site,	engineers	could	develop	a	new	service,	have	a	series	of

automated	systems	examine	the	code	for	any	bugs	and	issues	the
service	might	have	interacting	with	existing	features,	and	launch	it
right	to	the	live	LinkedIn	site...LinkedIn’s	engineering	corps	[now]
performs	major	upgrades	to	the	site	three	times	a	day.”	By	creating
a	safer	system	of	work,	the	value	they	created	included	fewer	late
night	cram	sessions,	with	more	time	to	develop	new,	innovative
features.

As	Josh	Clemm	described	in	his	article	on	scaling	at	LinkedIn,
“Scaling	can	be	measured	across	many	dimensions,	including
organizational….	[Operation	InVersion]	allowed	the	entire
engineering	organization	to	focus	on	improving	tooling	and
deployment,	infrastructure,	and	developer	productivity.	It	was
successful	in	enabling	the	engineering	agility	we	need	to	build	the
scalable	new	products	we	have	today….[In]	2010,	we	already	had
over	150	separate	services.	Today,	we	have	over	750	services.”

Kevin	Scott	stated,	“Your	job	as	an	engineer	and	your	purpose	as	a
technology	team	is	to	help	your	company	win.	If	you	lead	a	team	of
engineers,	it’s	better	to	take	a	CEO’s	perspective.	Your	job	is	to
figure	out	what	it	is	that	your	company,	your	business,	your
marketplace,	your	competitive	environment	needs.	Apply	that	to
your	engineering	team	in	order	for	your	company	to	win.”

By	allowing	LinkedIn	to	pay	down	nearly	a	decade	of	technical	debt,
Project	InVersion	enabled	stability	and	safety,	while	setting	the	next
stage	of	growth	for	the	company.	However,	it	required	two	months
of	total	focus	on	non-functional	requirements,	at	the	expense	of	all
the	promised	features	made	to	the	public	markets	during	an	IPO.
By	finding	and	fixing	problems	as	part	of	our	daily	work,	we	manage
our	technical	debt	so	that	we	avoid	these	“near	death”	experiences.

INCREASE	THE	VISIBILITY	OF	WORK
In	order	to	be	able	to	know	if	we	are	making	progress	toward	our	goal,	it’s
essential	that	everyone	in	the	organization	knows	the	current	state	of	work.
There	are	many	ways	to	make	the	current	state	visible,	but	what’s	most
important	is	that	the	information	we	display	is	up	to	date,	and	that	we	constantly
revise	what	we	measure	to	make	sure	it’s	helping	us	understand	progress	toward
our	current	target	conditions.

The	following	section	discusses	patterns	that	can	help	create	visibility	and
alignment	across	teams	and	functions.

USE	TOOLS	TO	REINFORCE	DESIRED
BEHAVIOR

As	Christopher	Little,	a	software	executive	and	one	of	the	earliest	chroniclers	of
DevOps,	observed,	“Anthropologists	describe	tools	as	a	cultural	artifact.	Any
discussion	of	culture	after	the	invention	of	fire	must	also	be	about	tools.”
Similarly,	in	the	DevOps	value	stream,	we	use	tools	to	reinforce	our	culture	and
accelerate	desired	behavior	changes.

One	goal	is	that	our	tooling	reinforces	that	Development	and	Operations	not	only
have	shared	goals,	but	have	a	common	backlog	of	work,	ideally	stored	in	a
common	work	system	and	using	a	shared	vocabulary,	so	that	work	can	be
prioritized	globally.

By	doing	this,	Development	and	Operations	may	end	up	creating	a	shared	work
queue,	instead	of	each	silo	using	a	different	one	(e.g.,	Development	uses	JIRA
while	Operations	uses	ServiceNow).	A	significant	benefit	of	this	is	that	when
production	incidents	are	shown	in	the	same	work	systems	as	development	work,

it	will	be	obvious	when	ongoing	incidents	should	halt	other	work,	especially
when	we	have	a	kanban	board.

Another	benefit	of	having	Development	and	Operations	using	a	shared	tool	is	a
unified	backlog,	where	everyone	prioritizes	improvement	projects	from	a	global
perspective,	selecting	work	that	has	the	highest	value	to	the	organization	or	most
reduces	technical	debt.	As	we	identify	technical	debt,	we	add	it	to	our	prioritized
backlog	if	we	can’t	address	it	immediately.	For	issues	that	remain	unaddressed,
we	can	use	our	“20%	time	for	non-functional	requirements”	to	fix	the	top	items
from	our	backlog.

Other	technologies	that	reinforce	shared	goals	are	chat	rooms,	such	as	IRC
channels,	HipChat,	Campfire,	Slack,	Flowdock,	and	OpenFire.	Chat	rooms	allow
the	fast	sharing	of	information	(as	opposed	to	filling	out	forms	that	are	processed
through	predefined	workflows),	the	ability	to	invite	other	people	as	needed,	and
history	logs	that	are	automatically	recorded	for	posterity	and	can	be	analyzed
during	post-mortem	sessions.

An	amazing	dynamic	is	created	when	we	have	a	mechanism	that	allows	any
team	member	to	quickly	help	other	team	members,	or	even	people	outside	their
team—the	time	required	to	get	information	or	needed	work	can	go	from	days	to
minutes.	In	addition,	because	everything	is	being	recorded,	we	may	not	need	to
ask	someone	else	for	help	in	the	future—we	simply	search	for	it.

However,	the	rapid	communication	environment	facilitated	by	chat	rooms	can
also	be	a	drawback.	As	Ryan	Martens,	the	founder	and	CTO	of	Rally	Software,
observes,	“In	a	chat	room,	if	someone	doesn’t	get	an	answer	in	a	couple	of
minutes,	it’s	totally	accepted	and	expected	that	you	can	bug	them	again	until
they	get	what	they	need.”

The	expectations	of	immediate	response	can,	of	course,	lead	to	undesired
outcomes.	A	constant	barrage	of	interruptions	and	questions	can	prevent	people
from	getting	necessary	work	done.	As	a	result,	teams	may	decide	that	certain
types	of	requests	should	go	through	more	structured	and	asynchronous	tools.

CONCLUSION

In	this	chapter,	we	identified	all	the	teams	supporting	our	value	stream	and
captured	in	a	value	stream	map	what	work	is	required	in	order	to	deliver	value	to
the	customer.	The	value	stream	map	provides	the	basis	for	understanding	our
current	state,	including	our	lead	time	and	%C/A	metrics	for	problematic	areas,
and	informs	how	we	set	a	future	state.

This	enables	dedicated	transformation	teams	to	rapidly	iterate	and	experiment	to
improve	performance.	We	also	make	sure	that	we	allocate	a	sufficient	amount	of
time	for	improvement,	fixing	known	problems	and	architectural	issues,	including
our	non-functional	requirements.	The	case	studies	from	Nordstrom	and	LinkedIn
demonstrate	how	dramatic	improvements	can	be	made	in	lead	times	and	quality
when	we	find	problems	in	our	value	stream	and	pay	down	technical	debt.

†	Which	makes	it	all	the	more	important	that	we	limit	the	level	of	detail	being	collected—everyone’s	time	is	valuable	and	scarce.

‡	Conversely,	there	are	many	examples	of	using	tools	in	a	way	that	guarantees	no	behavior	changes	occur.	For	instance,	an
organization	commits	to	an	agile	planning	tool	but	then	configures	it	for	a	waterfall	process,	which	merely	maintains	status	quo.

7 How	to	Design	Our
Organization	and
Architecture	with
Conway’s	Law	in

Mind

In	the	previous	chapters,	we	identified	a	value	stream	to	start	our	DevOps
transformation	and	established	shared	goals	and	practices	to	enable	a	dedicated
transformation	team	to	improve	how	we	deliver	value	to	the	customer.

In	this	chapter,	we	will	start	thinking	about	how	to	organize	ourselves	to	best
achieve	our	value	stream	goals.	After	all,	how	we	organize	our	teams	affects
how	we	perform	our	work.	Dr.	Melvin	Conway	performed	a	famous	experiment
in	1968	with	a	contract	research	organization	that	had	eight	people	who	were
commissioned	to	produce	a	COBOL	and	an	ALGOL	compiler.	He	observed,
“After	some	initial	estimates	of	difficulty	and	time,	five	people	were	assigned	to
the	COBOL	job	and	three	to	the	ALGOL	job.	The	resulting	COBOL	compiler
ran	in	five	phases,	the	ALGOL	compiler	ran	in	three.”

These	observations	led	to	what	is	now	known	as	Conway’s	Law,	which	states
that	“organizations	which	design	systems...are	constrained	to	produce	designs
which	are	copies	of	the	communication	structures	of	these	organizations….The
larger	an	organization	is,	the	less	flexibility	it	has	and	the	more	pronounced	the
phenomenon.”	Eric	S.	Raymond,	author	of	the	book	The	Cathedral	and	the
Bazaar:	Musings	on	Linux	and	Open	Source	by	an	Accidental	Revolutionary,

crafted	a	simplified	(and	now,	more	famous)	version	of	Conway’s	Law	in	his
Jargon	File:	“The	organization	of	the	software	and	the	organization	of	the
software	team	will	be	congruent;	commonly	stated	as	‘if	you	have	four	groups
working	on	a	compiler,	you’ll	get	a	4-pass	compiler.’”

In	other	words,	how	we	organize	our	teams	has	a	powerful	effect	on	the	software
we	produce,	as	well	as	our	resulting	architectural	and	production	outcomes.	In
order	to	get	fast	flow	of	work	from	Development	into	Operations,	with	high
quality	and	great	customer	outcomes,	we	must	organize	our	teams	and	our	work
so	that	Conway’s	Law	works	to	our	advantage.	Done	poorly,	Conway’s	Law	will
prevent	teams	from	working	safely	and	independently;	instead,	they	will	be
tightly-coupled	together,	all	waiting	on	each	other	for	work	to	be	done,	with
even	small	changes	creating	potentially	global,	catastrophic	consequences.

An	example	of	how	Conway’s	Law	can	either	impede	or	reinforce	our	goals	can
be	seen	in	a	technology	that	was	developed	at	Etsy	called	Sprouter.	Etsy’s
DevOps	journey	began	in	2009,	and	is	one	of	the	most	admired	DevOps
organizations,	with	2014	revenue	of	nearly	$200	million	and	a	successful	IPO	in
2015.

Originally	developed	in	2007,	Sprouter	connected	people,	processes,	and
technology	in	ways	that	created	many	undesired	outcomes.	Sprouter,	shorthand
for	“stored	procedure	router,”	was	originally	designed	to	help	make	life	easier
for	the	developers	and	database	teams.	As	Ross	Snyder,	a	senior	engineer	at
Etsy,	said	during	his	presentation	at	Surge	2011,	“Sprouter	was	designed	to
allow	the	Dev	teams	to	write	PHP	code	in	the	application,	the	DBAs	to	write
SQL	inside	Postgres,	with	Sprouter	helping	them	meet	in	the	middle.”

Sprouter	resided	between	their	front-end	PHP	application	and	the	Postgres
database,	centralizing	access	to	the	database	and	hiding	the	database
implementation	from	the	application	layer.	The	problem	was	that	adding	any

changes	to	business	logic	resulted	in	significant	friction	between	developers	and
the	database	teams.	As	Snyder	observed,	“For	nearly	any	new	site	functionality,
Sprouter	required	that	the	DBAs	write	a	new	stored	procedure.	As	a	result,	every
time	developers	wanted	to	add	new	functionality,	they	would	need	something
from	the	DBAs,	which	often	required	them	to	wade	through	a	ton	of
bureaucracy.”	In	other	words,	developers	creating	new	functionality	had	a
dependency	on	the	DBA	team,	which	needed	to	be	prioritized,	communicated,
and	coordinated,	resulting	in	work	sitting	in	queues,	meetings,	longer	lead	times,
and	so	forth.	This	is	because	Sprouter	created	a	tight	coupling	between	the
development	and	database	teams,	preventing	developers	from	being	able	to
independently	develop,	test,	and	deploy	their	code	into	production.

Also,	the	database	stored	procedures	were	tightly-coupled	to	Sprouter—any	time
a	stored	procedure	was	changed,	it	required	changes	to	Sprouter	too.	The	result
was	that	Sprouter	became	an	ever-larger	single	point	of	failure.	Snyder	explained
that	everything	was	so	tightly-coupled	and	required	such	a	high	level	of
synchronization	as	a	result,	that	almost	every	deployment	caused	a	mini-outage.

Both	the	problems	associated	with	Sprouter	and	their	eventual	solution	can	be
explained	by	Conway’s	Law.	Etsy	initially	had	two	teams,	the	developers	and
the	DBAs,	who	were	each	responsible	for	two	layers	of	the	service,	the
application	logic	layer	and	stored	procedure	layer.	Two	teams	working	on	two
layers,	as	Conway’s	Law	predicts.	Sprouter	was	intended	to	make	life	easier	for
both	teams,	but	it	didn’t	work	as	expected—when	business	rules	changed,
instead	of	changing	only	two	layers,	they	now	needed	to	make	changes	to	three
layers	(in	the	application,	in	the	stored	procedures,	and	now	in	Sprouter).	The
resulting	challenges	of	coordinating	and	prioritizing	work	across	three	teams
significantly	increased	lead	times	and	caused	reliability	problems.

In	the	spring	of	2009,	as	part	of	what	Snyder	called	“the	great	Etsy	cultural
transformation,”	Chad	Dickerson	joined	as	their	new	CTO.	Dickerson	put	into

motion	many	things,	including	a	massive	investment	into	site	stability,	having
developers	perform	their	own	deployments	into	production,	as	well	as	beginning
a	two-year	journey	to	eliminate	Sprouter.

To	do	this,	the	team	decided	to	move	all	the	business	logic	from	the	database
layer	into	the	application	layer,	removing	the	need	for	Sprouter.	They	created	a
small	team	that	wrote	a	PHP	Object	Relational	Mapping	(ORM)	layer,†	enabling
the	front-end	developers	to	make	calls	directly	to	the	database	and	reducing	the
number	of	teams	required	to	change	business	logic	from	three	teams	down	to
one	team.

As	Snyder	described,	“We	started	using	the	ORM	for	any	new	areas	of	the	site
and	migrated	small	parts	of	our	site	from	Sprouter	to	the	ORM	over	time.	It	took
us	two	years	to	migrate	the	entire	site	off	of	Sprouter.	And	even	though	we	all
grumbled	about	Sprouter	the	entire	time,	it	remained	in	production	throughout.”

By	eliminating	Sprouter,	they	also	eliminated	the	problems	associated	with
multiple	teams	needing	to	coordinate	for	business	logic	changes,	decreased	the
number	of	handoffs,	and	significantly	increased	the	speed	and	success	of
production	deployments,	improving	site	stability.	Furthermore,	because	small
teams	could	independently	develop	and	deploy	their	code	without	requiring
another	team	to	make	changes	in	other	areas	of	the	system,	developer
productivity	increased.

Sprouter	was	finally	removed	from	production	and	Etsy’s	version	control
repositories	in	early	2001.	As	Snyder	said,	“Wow,	it	felt	good.”‡

As	Snyder	and	Etsy	experienced,	how	we	design	our	organization	dictates	how
work	is	performed,	and,	therefore,	the	outcomes	we	achieve.	Throughout	the	rest
of	this	chapter	we	will	explore	how	Conway’s	Law	can	negatively	impact	the

performance	of	our	value	stream,	and,	more	importantly,	how	we	organize	our
teams	to	use	Conway’s	Law	to	our	advantage.

ORGANIZATIONAL	ARCHETYPES

In	the	field	of	decision	sciences,	there	are	three	primary	types	of	organizational
structures	that	inform	how	we	design	our	DevOps	value	streams	with	Conway’s
Law	in	mind:	functional,	matrix,	and	market.	They	are	defined	by	Dr.	Roberto
Fernandez	as	follows:

Functional-oriented	organizations	optimize	for	expertise,	division	of	labor,	or
reducing	cost.	These	organizations	centralize	expertise,	which	helps	enable
career	growth	and	skill	development,	and	often	have	tall	hierarchical
organizational	structures.	This	has	been	the	prevailing	method	of
organization	for	Operations	(i.e.,	server	admins,	network	admins,	database
admins,	and	so	forth	are	all	organized	into	separate	groups).

Matrix-oriented	organizations	attempt	to	combine	functional	and	market
orientation.	However,	as	many	who	work	in	or	manage	matrix	organizations
observe,	matrix	organizations	often	result	in	complicated	organizational
structures,	such	as	individual	contributors	reporting	to	two	managers	or	more,
and	sometimes	achieving	neither	of	the	goals	of	functional	or	market
orientation.

Market-oriented	organizations	optimize	for	responding	quickly	to	customer
needs.	These	organizations	tend	to	be	flat,	composed	of	multiple,	cross-
functional	disciplines	(e.g.,	marketing,	engineering,	etc.),	which	often	lead	to
potential	redundancies	across	the	organization.	This	is	how	many	prominent
organizations	adopting	DevOps	operate—in	extreme	examples,	such	as	at
Amazon	or	Netflix,	each	service	team	is	simultaneously	responsible	for

feature	delivery	and	service	support.§

With	these	three	categories	of	organizations	in	mind,	let’s	explore	further	how
an	overly	functional	orientation,	especially	in	Operations,	can	cause	undesired
outcomes	in	the	technology	value	stream,	as	Conway’s	Law	would	predict.

PROBLEMS	OFTEN	CAUSED	BY	OVERLY
FUNCTIONAL	ORIENTATION	(“OPTIMIZING	FOR
COST”)

In	traditional	IT	Operations	organizations,	we	often	use	functional	orientation	to
organize	our	teams	by	their	specialties.	We	put	the	database	administrators	in
one	group,	the	network	administrators	in	another,	the	server	administrators	in	a
third,	and	so	forth.	One	of	the	most	visible	consequences	of	this	is	long	lead
times,	especially	for	complex	activities	like	large	deployments	where	we	must
open	up	tickets	with	multiple	groups	and	coordinate	work	handoffs,	resulting	in
our	work	waiting	in	long	queues	at	every	step.

Compounding	the	issue,	the	person	performing	the	work	often	has	little	visibility
or	understanding	of	how	their	work	relates	to	any	value	stream	goals	(e.g.,	“I’m
just	configuring	servers	because	someone	told	me	to.”).	This	places	workers	in	a
creativity	and	motivation	vacuum.

The	problem	is	exacerbated	when	each	Operations	functional	area	has	to	serve
multiple	value	streams	(i.e.,	multiple	Development	teams)	who	all	compete	for
their	scarce	cycles.	In	order	for	Development	teams	to	get	their	work	done	in	a
timely	manner,	we	often	have	to	escalate	issues	to	a	manager	or	director,	and
eventually	to	someone	(usually	an	executive)	who	can	finally	prioritize	the	work
against	the	global	organizational	goals	instead	of	the	functional	silo	goals.	This
decision	must	then	get	cascaded	down	into	each	of	the	functional	areas	to	change

the	local	priorities,	and	this,	in	turn,	slows	down	other	teams.	When	every	team
expedites	their	work,	the	net	result	is	that	every	project	ends	up	moving	at	the
same	slow	crawl.

In	addition	to	long	queues	and	long	lead	times,	this	situation	results	in	poor
handoffs,	large	amounts	of	re-work,	quality	issues,	bottlenecks,	and	delays.	This
gridlock	impedes	the	achievement	of	important	organizational	goals,	which	often
far	outweigh	the	desire	to	reduce	costs.¶

Similarly,	functional	orientation	can	also	be	found	with	centralized	QA	and
Infosec	functions,	which	may	have	worked	fine	(or	at	least,	well	enough)	when
performing	less	frequent	software	releases.	However,	as	we	increase	the	number
of	Development	teams	and	their	deployment	and	release	frequencies,	most
functionally-oriented	organizations	will	have	difficulty	keeping	up	and
delivering	satisfactory	outcomes,	especially	when	their	work	is	being	performed
manually.	Now	we’ll	study	how	market	oriented	organizations	work.

ENABLE	MARKET-ORIENTED	TEAMS
(“OPTIMIZING	FOR	SPEED”)

Broadly	speaking,	to	achieve	DevOps	outcomes,	we	need	to	reduce	the	effects	of
functional	orientation	(“optimizing	for	cost”)	and	enable	market	orientation
(“optimizing	for	speed”)	so	we	can	have	many	small	teams	working	safely	and
independently,	quickly	delivering	value	to	the	customer.

Taken	to	the	extreme,	market-oriented	teams	are	responsible	not	only	for	feature
development,	but	also	for	testing,	securing,	deploying,	and	supporting	their
service	in	production,	from	idea	conception	to	retirement.	These	teams	are
designed	to	be	cross-functional	and	independent—able	to	design	and	run	user
experiments,	build	and	deliver	new	features,	deploy	and	run	their	service	in

production,	and	fix	any	defects	without	manual	dependencies	on	other	teams,
thus	enabling	them	to	move	faster.	This	model	has	been	adopted	by	Amazon	and
Netflix	and	is	touted	by	Amazon	as	one	of	the	primary	reasons	behind	their
ability	to	move	fast	even	as	they	grow.

To	achieve	market	orientation,	we	won’t	do	a	large,	top-down	reorganization,
which	often	creates	large	amounts	of	disruption,	fear,	and	paralysis.	Instead,	we
will	embed	the	functional	engineers	and	skills	(e.g.,	Ops,	QA,	Infosec)	into	each
service	team,	or	provide	their	capabilities	to	teams	through	automated	self-
service	platforms	that	provide	production-like	environments,	initiate	automated
tests,	or	perform	deployments.

This	enables	each	service	team	to	independently	deliver	value	to	the	customer
without	having	to	open	tickets	with	other	groups,	such	as	IT	Operations,	QA,	or
Infosec.**

MAKING	FUNCTIONAL	ORIENTATION	WORK

Having	just	recommended	market-orientated	teams,	it	is	worth	pointing	out	that
it	is	possible	to	create	effective,	high-velocity	organizations	with	functional
orientation.	Cross-functional	and	market-oriented	teams	are	one	way	to	achieve
fast	flow	and	reliability,	but	they	are	not	the	only	path.	We	can	also	achieve	our
desired	DevOps	outcomes	through	functional	orientation,	as	long	as	everyone	in
the	value	stream	views	customer	and	organizational	outcomes	as	a	shared	goal,
regardless	of	where	they	reside	in	the	organization.

Figure	12:	Functional	vs.	market	orientation

Left:	Functional	orientation:	all	work	flows	through	centralized	IT	Operations;	Right:
Market	orientation:	all	product	teams	can	deploy	their	loosely-coupled	components

self-service	into	production.	(Source:	Humble,	Molesky,	and	O’Reilly,	Lean
Enterprise,	Kindle	edition,	4523	&	4592.)

For	example,	high	performance	with	a	functional-oriented	and	centralized
Operations	group	is	possible,	as	long	as	service	teams	get	what	they	need	from
Operations	reliably	and	quickly	(ideally	on	demand)	and	vice-versa.	Many	of	the
most	admired	DevOps	organizations	retain	functional	orientation	of	Operations,
including	Etsy,	Google,	and	GitHub.

What	these	organizations	have	in	common	is	a	high-trust	culture	that	enables	all
departments	to	work	together	effectively,	where	all	work	is	transparently
prioritized	and	there	is	sufficient	slack	in	the	system	to	allow	high-priority	work
to	be	completed	quickly.	This	is,	in	part,	enabled	by	automated	self-service
platforms	that	build	quality	into	the	products	everyone	is	building.

In	the	Lean	manufacturing	movement	of	the	1980s,	many	researchers	were
puzzled	by	Toyota’s	functional	orientation,	which	was	at	odds	with	the	best
practice	of	having	cross-functional,	market-oriented	teams.	They	were	so
puzzled	it	was	called	“the	second	Toyota	paradox.”

As	Mike	Rother	wrote	in	Toyota	Kata,	“As	tempting	as	it	seems,	one	cannot
reorganize	your	way	to	continuous	improvement	and	adaptiveness.	What	is
decisive	is	not	the	form	of	the	organization,	but	how	people	act	and	react.	The
roots	of	Toyota’s	success	lie	not	in	its	organizational	structures,	but	in
developing	capability	and	habits	in	its	people.	It	surprises	many	people,	in	fact,
to	find	that	Toyota	is	largely	organized	in	a	traditional,	functional-department
style.”	It	is	this	development	of	habits	and	capabilities	in	people	and	the
workforce	that	are	the	focus	of	our	next	sections.

TESTING,	OPERATIONS,	AND	SECURITY	AS
EVERYONE’S	JOB,	EVERY	DAY

In	high-performing	organizations,	everyone	within	the	team	shares	a	common
goal—quality,	availability,	and	security	aren’t	the	responsibility	of	individual
departments,	but	are	a	part	of	everyone’s	job,	every	day.

This	means	that	the	most	urgent	problem	of	the	day	may	be	working	on	or
deploying	a	customer	feature	or	fixing	a	Severity	1	production	incident.
Alternatively,	the	day	may	require	reviewing	a	fellow	engineer’s	change,
applying	emergency	security	patches	to	production	servers,	or	making
improvements	so	that	fellow	engineers	are	more	productive.

Reflecting	on	shared	goals	between	Development	and	Operations,	Jody	Mulkey,
CTO	at	Ticketmaster,	said,	“For	almost	25	years,	I	used	an	American	football
metaphor	to	describe	Dev	and	Ops.	You	know,	Ops	is	defense,	who	keeps	the
other	team	from	scoring,	and	Dev	is	offense,	trying	to	score	goals.	And	one	day,
I	realized	how	flawed	this	metaphor	was,	because	they	never	all	play	on	the	field
at	the	same	time.	They’re	not	actually	on	the	same	team!”

He	continued,	“The	analogy	I	use	now	is	that	Ops	are	the	offensive	linemen,	and
Dev	are	the	‘skill’	positions	(like	the	quarterback	and	wide	receivers)	whose	job
it	is	to	move	the	ball	down	the	field—the	job	of	Ops	is	to	help	make	sure	Dev
has	enough	time	to	properly	execute	the	plays.”

A	striking	example	of	how	shared	pain	can	reinforce	shared	goals	is	when
Facebook	was	undergoing	enormous	growth	in	2009.	They	were	experiencing
significant	problems	related	to	code	deployments—while	not	all	issues	caused
customer-impacting	issues,	there	was	chronic	firefighting	and	long	hours.	Pedro
Canahuati,	their	director	of	production	engineering,	described	a	meeting	full	of
Ops	engineers	where	someone	asked	that	all	people	not	working	on	an	incident
close	their	laptops,	and	no	one	could.

One	of	the	most	significant	things	they	did	to	help	change	the	outcomes	of
deployments	was	to	have	all	Facebook	engineers,	engineering	managers,	and
architects	rotate	through	on-call	duty	for	the	services	they	built.	By	doing	this,
everyone	who	worked	on	the	service	experienced	visceral	feedback	on	the
upstream	architectural	and	coding	decisions	they	made,	which	made	an
enormous	positive	impact	on	the	downstream	outcomes.

ENABLE	EVERY	TEAM	MEMBER	TO	BE	A
GENERALIST

In	extreme	cases	of	a	functionally-oriented	Operations	organization,	we	have
departments	of	specialists,	such	as	network	administrators,	storage
administrators,	and	so	forth.	When	departments	over-specialize,	it	causes
siloization,	which	Dr.	Spear	describes	as	when	departments	“operate	more	like
sovereign	states.”	Any	complex	operational	activity	then	requires	multiple
handoffs	and	queues	between	the	different	areas	of	the	infrastructure,	leading	to

longer	lead	times	(e.g.,	because	every	network	change	must	be	made	by
someone	in	the	networking	department).

Because	we	rely	upon	an	ever	increasing	number	of	technologies,	we	must	have
engineers	who	have	specialized	and	achieved	mastery	in	the	technology	areas	we
need.	However,	we	don’t	want	to	create	specialists	who	are	“frozen	in	time,”
only	understanding	and	able	to	contribute	to	that	one	area	of	the	value	stream.

One	countermeasure	is	to	enable	and	encourage	every	team	member	to	be	a
generalist.	We	do	this	by	providing	opportunities	for	engineers	to	learn	all	the
skills	necessary	to	build	and	run	the	systems	they	are	responsible	for,	and
regularly	rotating	people	through	different	roles.	The	term	full	stack	engineer	is
now	commonly	used	(sometimes	as	a	rich	source	of	parody)	to	describe
generalists	who	are	familiar—at	least	have	a	general	level	of	understanding—
with	the	entire	application	stack	(e.g.,	application	code,	databases,	operating
systems,	networking,	cloud).

Table	2:	Specialists	vs.	Generalists	vs.	“E-shaped”	Staff	(experience,	expertise,
exploration,	and	execution)

(Source:	Scott	Prugh,	“Continuous	Delivery,”	ScaledAgileFramework.com,	February
14,	2013,	http://scaledagileframework.com/continuous-delivery/.)

Scott	Prugh	writes	that	CSG	International	has	undergone	a	transformation	that
brings	most	resources	required	to	build	and	run	the	product	onto	one	team,
including	analysis,	architecture,	development,	test,	and	operations.	“By	cross-
training	and	growing	engineering	skills,	generalists	can	do	orders	of	magnitude
more	work	than	their	specialist	counterparts,	and	it	also	improves	our	overall
flow	of	work	by	removing	queues	and	wait	time.”	This	approach	is	at	odds	with
traditional	hiring	practices,	but,	as	Prugh	explains,	it	is	well	worth	it.
“Traditional	managers	will	often	object	to	hiring	engineers	with	generalist	skill
sets,	arguing	that	they	are	more	expensive	and	that	‘I	can	hire	two	server
administrators	for	every	multi-skilled	operations	engineer.’”	However,	the
business	benefits	of	enabling	faster	flow	are	overwhelming.	Furthermore,	as
Prugh	notes,	“[I]nvesting	in	cross	training	is	the	right	thing	for	[employees’]
career	growth,	and	makes	everyone’s	work	more	fun.”

http://scaledagileframework.com/continuous-delivery/

When	we	value	people	merely	for	their	existing	skills	or	performance	in	their
current	role	rather	than	for	their	ability	to	acquire	and	deploy	new	skills,	we
(often	inadvertently)	reinforce	what	Dr.	Carol	Dweck	describes	as	the	fixed
mindset,	where	people	view	their	intelligence	and	abilities	as	static	“givens”	that
can’t	be	changed	in	meaningful	ways.

Instead,	we	want	to	encourage	learning,	help	people	overcome	learning	anxiety,
help	ensure	that	people	have	relevant	skills	and	a	defined	career	road	map,	and
so	forth.	By	doing	this,	we	help	foster	a	growth	mindset	in	our	engineers—after
all,	a	learning	organization	requires	people	who	are	willing	to	learn.	By
encouraging	everyone	to	learn,	as	well	as	providing	training	and	support,	we
create	the	most	sustainable	and	least	expensive	way	to	create	greatness	in	our
teams—by	investing	in	the	development	of	the	people	we	already	have.

As	Jason	Cox,	Director	of	Systems	Engineering	at	Disney,	described,	“Inside	of
Operations,	we	had	to	change	our	hiring	practices.	We	looked	for	people	who
had	‘curiosity,	courage,	and	candor,’	who	were	not	only	capable	of	being
generalists	but	also	renegades...We	want	to	promote	positive	disruption	so	our
business	doesn’t	get	stuck	and	can	move	into	the	future.”	As	we’ll	see	in	the	next
section,	how	we	fund	our	teams	also	affects	our	outcomes.

FUND	NOT	PROJECTS,	BUT	SERVICES	AND
PRODUCTS

Another	way	to	enable	high-performing	outcomes	is	to	create	stable	service
teams	with	ongoing	funding	to	execute	their	own	strategy	and	road	map	of
initiatives.	These	teams	have	the	dedicated	engineers	needed	to	deliver	on
concrete	commitments	made	to	internal	and	external	customers,	such	as	features,
stories,	and	tasks.

Contrast	this	to	the	more	traditional	model	where	Development	and	Test	teams
are	assigned	to	a	“project”	and	then	reassigned	to	another	project	as	soon	as	the
project	is	completed	and	funding	runs	out.	This	leads	to	all	sorts	of	undesired
outcomes,	including	developers	being	unable	to	see	the	long-term	consequences
of	decisions	they	make	(a	form	of	feedback)	and	a	funding	model	that	only
values	and	pays	for	the	earliest	stages	of	the	software	life	cycle—which,
tragically,	is	also	the	least	expensive	part	for	successful	products	or	services.††

Our	goal	with	a	product-based	funding	model	is	to	value	the	achievement	of
organizational	and	customer	outcomes,	such	as	revenue,	customer	lifetime	value,
or	customer	adoption	rate,	ideally	with	the	minimum	of	output	(e.g.,	amount	of
effort	or	time,	lines	of	code).	Contrast	this	to	how	projects	are	typically
measured,	such	as	whether	it	was	completed	within	the	promised	budget,	time,
and	scope.

DESIGN	TEAM	BOUNDARIES	IN	ACCORDANCE
WITH	CONWAY’S	LAW

As	organizations	grow,	one	of	the	largest	challenges	is	maintaining	effective
communication	and	coordination	between	people	and	teams.	All	too	often,	when
people	and	teams	reside	on	a	different	floor,	in	a	different	building,	or	in	a
different	time	zone,	creating	and	maintaining	a	shared	understanding	and	mutual
trust	becomes	more	difficult,	impeding	effective	collaboration.	Collaboration	is
also	impeded	when	the	primary	communication	mechanisms	are	work	tickets
and	change	requests,	or	worse,	when	teams	are	separated	by	contractual
boundaries,	such	as	when	work	is	performed	by	an	outsourced	team.

As	we	saw	in	the	Etsy	Sprouter	example	at	the	beginning	of	this	chapter,	the	way
we	organize	teams	can	create	poor	outcomes,	a	side	effect	of	Conway’s	Law.
These	include	splitting	teams	by	function	(e.g.,	by	putting	developers	and	testers

in	different	locations	or	by	outsourcing	testers	entirely)	or	by	architectural	layer
(e.g.,	application,	database).

These	configurations	require	significant	communication	and	coordination
between	teams,	but	still	results	in	a	high	amount	of	rework,	disagreements	over
specifications,	poor	handoffs,	and	people	sitting	idle	waiting	for	somebody	else.

Ideally,	our	software	architecture	should	enable	small	teams	to	be	independently
productive,	sufficiently	decoupled	from	each	other	so	that	work	can	be	done
without	excessive	or	unnecessary	communication	and	coordination.

CREATE	LOOSELY-COUPLED	ARCHITECTURES
TO	ENABLE	DEVELOPER	PRODUCTIVITY	AND
SAFETY

When	we	have	a	tightly-coupled	architecture,	small	changes	can	result	in	large
scale	failures.	As	a	result,	anyone	working	in	one	part	of	the	system	must
constantly	coordinate	with	anyone	else	working	in	another	part	of	the	system
they	may	affect,	including	navigating	complex	and	bureaucratic	change
management	processes.

Furthermore,	to	test	that	the	entire	system	works	together	requires	integrating
changes	with	the	changes	from	hundreds,	or	even	thousands,	of	other	developers,
which	may,	in	turn,	have	dependencies	on	tens,	hundreds,	or	thousands	of
interconnected	systems.	Testing	is	done	in	scarce	integration	test	environments,
which	often	require	weeks	to	obtain	and	configure.	The	result	is	not	only	long
lead	times	for	changes	(typically	measured	in	weeks	or	months)	but	also	low
developer	productivity	and	poor	deployment	outcomes.

In	contrast,	when	we	have	an	architecture	that	enables	small	teams	of	developers
to	independently	implement,	test,	and	deploy	code	into	production	safely	and
quickly,	we	can	increase	and	maintain	developer	productivity	and	improve
deployment	outcomes.	These	characteristics	can	be	found	in	service-oriented
architectures	(SOAs)	first	described	in	the	1990s,	in	which	services	are
independently	testable	and	deployable.	A	key	feature	of	SOAs	is	that	they’re
composed	of	loosely-coupled	services	with	bounded	contexts.‡‡

Having	architecture	that	is	loosely-coupled	means	that	services	can	update	in
production	independently,	without	having	to	update	other	services.	Services
must	be	decoupled	from	other	services	and,	just	as	important,	from	shared
databases	(although	they	can	share	a	database	service,	provided	they	don’t	have
any	common	schemas).

Bounded	contexts	are	described	in	the	book	Domain	Driven	Design	by	Eric	J.
Evans.	The	idea	is	that	developers	should	be	able	to	understand	and	update	the
code	of	a	service	without	knowing	anything	about	the	internals	of	its	peer
services.	Services	interact	with	their	peers	strictly	through	APIs	and	thus	don’t
share	data	structures,	database	schemata,	or	other	internal	representations	of
objects.	Bounded	contexts	ensure	that	services	are	compartmentalized	and	have
well-defined	interfaces,	which	also	enables	easier	testing.

Randy	Shoup,	former	Engineering	Director	for	Google	App	Engine,	observed
that	“organizations	with	these	types	of	service-oriented	architectures,	such	as
Google	and	Amazon,	have	incredible	flexibility	and	scalability.	These
organizations	have	tens	of	thousands	of	developers	where	small	teams	can	still
be	incredibly	productive.”

KEEP	TEAM	SIZES	SMALL	(THE	“TWO-PIZZA	TEAM”	RULE)

Conway’s	Law	helps	us	design	our	team	boundaries	in	the	context	of	desired
communication	patterns,	but	it	also	encourages	us	to	keep	our	team	sizes	small,
reducing	the	amount	of	inter-team	communication	and	encouraging	us	to	keep
the	scope	of	each	team’s	domain	small	and	bounded.

As	part	of	its	transformation	initiative	away	from	a	monolithic	code	base	in
2002,	Amazon	used	the	two-pizza	rule	to	keep	team	sizes	small—a	team	only	as
large	as	can	be	fed	with	two	pizzas—usually	about	five	to	ten	people.

This	limit	on	size	has	four	important	effects:

1.	 It	ensures	the	team	has	a	clear,	shared	understanding	of	the	system	they	are
working	on.	As	teams	get	larger,	the	amount	of	communication	required	for
everybody	to	know	what’s	going	on	scales	in	a	combinatorial	fashion.

2.	 It	limits	the	growth	rate	of	the	product	or	service	being	worked	on.	By
limiting	the	size	of	the	team,	we	limit	the	rate	at	which	their	system	can
evolve.	This	also	helps	to	ensure	the	team	maintains	a	shared	understanding
of	the	system.

3.	 It	decentralizes	power	and	enables	autonomy.	Each	two-pizza	team	(2PT)	is
as	autonomous	as	possible.	The	team’s	lead,	working	with	the	executive
team,	decides	on	the	key	business	metric	that	the	team	is	responsible	for,
known	as	the	fitness	function,	which	becomes	the	overall	evaluation	criteria
for	the	team’s	experiments.	The	team	is	then	able	to	act	autonomously	to
maximize	that	metric.§§

4.	 Leading	a	2PT	is	a	way	for	employees	to	gain	some	leadership	experience	in
an	environment	where	failure	does	not	have	catastrophic	consequences.	An
essential	element	of	Amazon’s	strategy	was	the	link	between	the
organizational	structure	of	a	2PT	and	the	architectural	approach	of	a	service-
oriented	architecture.

Amazon	CTO	Werner	Vogels	explained	the	advantages	of	this	structure	to	Larry
Dignan	of	Baseline	in	2005.	Dignan	writes:

“Small	teams	are	fast...and	don’t	get	bogged	down	in	so-called
administrivia….Each	group	assigned	to	a	particular	business	is	completely
responsible	for	it….The	team	scopes	the	fix,	designs	it,	builds	it,	implements
it	and	monitors	its	ongoing	use.	This	way,	technology	programmers	and
architects	get	direct	feedback	from	the	business	people	who	use	their	code	or
applications—in	regular	meetings	and	informal	conversations.”

Another	example	of	how	architecture	can	profoundly	improve	productivity	is	the
API	Enablement	program	at	Target,	Inc.

Case	Study	
API	Enablement	at	Target	(2015)

Target	is	the	sixth-largest	retailer	in	the	US	and	spends	over	$1
billion	on	technology	annually.	Heather	Mickman,	a	director	of
development	for	Target,	described	the	beginnings	of	their	DevOps
journey:	“In	the	bad	old	days,	it	used	to	take	ten	different	teams	to
provision	a	server	at	Target,	and	when	things	broke,	we	tended	to
stop	making	changes	to	prevent	further	issues,	which	of	course
makes	everything	worse.”

The	hardships	associated	with	getting	environments	and	performing
deployments	created	significant	difficulties	for	development	teams,
as	did	getting	access	to	data	they	needed.	As	Mickman	described:

The	problem	was	that	much	of	our	core	data,	such	as
information	on	inventory,	pricing,	and	stores,	was	locked	up	in

legacy	systems	and	mainframes.	We	often	had	multiple
sources	of	truths	of	data,	especially	between	e-commerce	and
our	physical	stores,	which	were	owned	by	different	teams,
with	different	data	structures	and	different	priorities....The
result	was	that	if	a	new	development	team	wanted	to	build
something	for	our	guests,	it	would	take	three	to	six	months	to
build	the	integrations	to	get	the	data	they	needed.	Worse,	it
would	take	another	three	to	six	months	to	do	the	manual
testing	to	make	sure	they	didn’t	break	anything	critical,
because	of	how	many	custom	point-to-point	integrations	we
had	in	a	very	tightly-coupled	system.	Having	to	manage	the
interactions	with	the	twenty	to	thirty	different	teams,	along	with
all	their	dependencies,	required	lots	of	project	managers,
because	of	all	the	coordination	and	handoffs.	It	meant	that
development	was	spending	all	their	time	waiting	in	queues,
instead	of	delivering	results	and	getting	stuff	done.

This	long	lead	time	for	retrieving	and	creating	data	in	their	systems
of	record	was	jeopardizing	important	business	goals,	such	as
integrating	the	supply	chain	operations	of	Target’s	physical	stores
and	their	e-commerce	site,	which	now	required	getting	inventory	to
stores	and	customer	homes.	This	pushed	the	Target	supply	chain
well	beyond	what	it	was	designed	for,	which	was	merely	to	facilitate
the	movement	of	goods	from	vendors	to	distribution	centers	and
stores.

In	an	attempt	to	solve	the	data	problem,	in	2012	Mickman	led	the
API	Enablement	team	to	enable	development	teams	to	“deliver	new
capabilities	in	days	instead	of	months.”	They	wanted	any
engineering	team	inside	of	Target	to	be	able	to	get	and	store	the

data	they	needed,	such	as	information	on	their	products	or	their
stores,	including	operating	hours,	location,	whether	there	was	as
Starbucks	on-site,	and	so	forth.

Time	constraints	played	a	large	role	in	team	selection.	Mickman
explained	that:

Because	our	team	also	needed	to	deliver	capabilities	in	days,
not	months,	I	needed	a	team	who	could	do	the	work,	not	give
it	to	contractors—we	wanted	people	with	kickass	engineering
skills,	not	people	who	knew	how	to	manage	contracts.	And	to
make	sure	our	work	wasn’t	sitting	in	queue,	we	needed	to
own	the	entire	stack,	which	meant	that	we	took	over	the	Ops
requirements	as	well....We	brought	in	many	new	tools	to
support	continuous	integration	and	continuous	delivery.	And
because	we	knew	that	if	we	succeeded,	we	would	have	to
scale	with	extremely	high	growth,	we	brought	in	new	tools
such	as	the	Cassandra	database	and	Kafka	message	broker.
When	we	asked	for	permission,	we	were	told	no,	but	we	did	it
anyway,	because	we	knew	we	needed	it.

In	the	following	two	years,	the	API	Enablement	team	enabled	fifty-
three	new	business	capabilities,	including	Ship	to	Store	and	Gift
Registry,	as	well	as	their	integrations	with	Instacart	and	Pinterest.
As	Mickman	described,	“Working	with	Pinterest	suddenly	became
very	easy,	because	we	just	provided	them	our	APIs.”

In	2014,	the	API	Enablement	team	served	over	1.5	billion	API	calls
per	month.	By	2015,	this	had	grown	to	seventeen	billion	calls	per
month	spanning	ninety	different	APIs.	To	support	this	capability,
they	routinely	performed	eighty	deployments	per	week.

These	changes	have	created	major	business	benefits	for	Target—
digital	sales	increased	42%	during	the	2014	holiday	season	and
increased	another	32%	in	Q2.	During	the	Black	Friday	weekend	of
2015,	over	280k	in-store	pickup	orders	were	created.	By	2015,	their
goal	is	to	enable	450	of	their	1,800	stores	to	be	able	to	fulfill	e-
commerce	orders,	up	from	one	hundred.

“The	API	Enablement	team	shows	what	a	team	of	passionate
change	agents	can	do,”	Mickman	says.	“And	it	help	set	us	up	for
the	next	stage,	which	is	to	expand	DevOps	across	the	entire
technology	organization.”

CONCLUSION

Through	the	Etsy	and	Target	case	studies,	we	can	see	how	architecture	and
organizational	design	can	dramatically	improve	our	outcomes.	Done	incorrectly,
Conway’s	Law	will	ensure	that	the	organization	creates	poor	outcomes,
preventing	safety	and	agility.	Done	well,	the	organization	enables	developers	to
safely	and	independently	develop,	test,	and	deploy	value	to	the	customer.

†	Among	many	things,	an	ORM	abstracts	a	database,	enabling	developers	to	do	queries	and	data	manipulation	as	if	they	were	merely
another	object	in	the	programming	language.	Popular	ORMs	include	Hibernate	for	Java,	SQLAlchemy	for	Python,	and
ActiveRecord	for	Ruby	on	Rails.

‡	Sprouter	was	one	of	many	technologies	used	in	development	and	production	that	Etsy	eliminated	as	part	of	their	transformation.

§	However,	as	will	be	explained	later,	equally	prominent	organizations	such	as	Etsy	and	GitHub	have	functional	orientation.

¶	Adrian	Cockcroft	remarked,	“For	companies	who	are	now	coming	off	of	five-year	IT	outsourcing	contracts,	it’s	like	they’ve	been
frozen	in	time,	during	one	of	the	most	disruptive	times	in	technology.”	In	other	words,	IT	outsourcing	is	a	tactic	used	to	control
costs	through	contractually-enforced	stasis,	with	firm	fixed	prices	that	schedule	annual	cost	reductions.	However,	it	often	results	in
organizations	being	unable	to	respond	to	changing	business	and	technology	needs.

**	For	the	remainder	of	this	books,	we	will	use	service	teams	interchangeably	with	feature	teams,	product	teams,	development	teams,
and	delivery	teams.	The	intent	is	to	specify	the	team	primarily	developing,	testing,	and	securing	the	code	so	that	value	is	delivered
to	the	customer.

††	As	John	Lauderbach,	currently	VP	of	Information	Technology	at	Roche	Bros.	Supermarkets,	quipped,	“Every	new	application	is
like	a	free	puppy.	It’s	not	the	upfront	capital	cost	that	kills	you…It’s	the	ongoing	maintenance	and	support.”

‡‡	These	properties	are	also	found	in	“microservices,”	which	build	upon	the	principles	of	SOA.	One	popular	set	of	patterns	for	modern
web	architecture	based	on	these	principles	is	the	“12-factor	app.”

§§	In	the	Netflix	culture,	one	of	the	seven	key	values	is	“highly	aligned,	loosely-coupled.”

8
How	to	Get	Great
Outcomes	by
Integrating
Operations	into	the
Daily	Work	of

Development

Our	goal	is	to	enable	market-oriented	outcomes	where	many	small	teams	can
quickly	and	independently	deliver	value	to	the	customer.	This	can	be	a	challenge
to	achieve	when	Operations	is	centralized	and	functionally-oriented,	having	to
serve	the	needs	of	many	different	development	teams	with	potentially	wildly
different	needs.	The	result	can	often	be	long	lead	times	for	needed	Ops	work,
constant	reprioritization	and	escalation,	and	poor	deployment	outcomes.

We	can	create	more	market-oriented	outcomes	by	better	integrating	Ops
capabilities	into	Dev	teams,	making	both	more	efficient	and	productive.	In	this
chapter,	we’ll	explore	many	ways	to	achieve	this,	both	at	the	organizational	level
and	through	daily	rituals.	By	doing	this,	Ops	can	significantly	improve	the
productivity	of	Dev	teams	throughout	the	entire	organization,	as	well	as	enable
better	collaboration	and	organizational	outcomes.

At	Big	Fish	Games,	which	develops	and	supports	hundreds	of	mobile	and
thousands	of	PC	games	and	had	more	than	$266	million	in	revenue	in	2013,	VP
of	IT	Operations	Paul	Farrall	was	in	charge	of	the	centralized	Operations

organization.	He	was	responsible	for	supporting	many	different	business	units
that	had	a	great	deal	of	autonomy.

Each	of	these	business	units	had	dedicated	development	teams	who	often	chose
wildly	different	technologies.	When	these	groups	wanted	to	deploy	new
functionality,	they	would	have	to	compete	for	a	common	pool	of	scarce	Ops
resources.	Furthermore,	everyone	was	struggling	with	unreliable	Test	and
Integration	environments,	as	well	as	extremely	cumbersome	release	processes.

Farrall	thought	the	best	way	to	solve	this	problem	was	by	embedding	Ops
expertise	into	Development	teams.	He	observed,	“When	Dev	teams	had
problems	with	testing	or	deployment,	they	needed	more	than	just	technology	or
environments.	What	they	also	needed	was	help	and	coaching.	At	first,	we
embedded	Ops	engineers	and	architects	into	each	of	the	Dev	teams,	but	there
simply	weren’t	enough	Ops	engineers	to	cover	that	many	teams.	We	were	able	to
help	more	teams	with	what	we	called	an	Ops	liaison	model	and	with	fewer
people.”

Farrall	defined	two	types	of	Ops	liaisons:	the	business	relationship	manager	and
the	dedicated	release	engineer.	The	business	relationship	managers	worked	with
product	management,	line-of-business	owners,	project	management,	Dev
management,	and	developers.	They	became	intimately	familiar	with	product
group	business	drivers	and	product	road	maps,	acted	as	advocates	for	product
owners	inside	of	Operations,	and	helped	their	product	teams	navigate	the
Operations	landscape	to	prioritize	and	streamline	work	requests.

Similarly,	the	dedicated	release	engineer	became	intimately	familiar	with	the
product’s	Development	and	QA	issues,	and	helped	them	get	what	they	needed
from	the	Ops	organization	to	achieve	their	goals.	They	were	familiar	with	the
typical	Dev	and	QA	requests	for	Ops,	and	would	often	execute	the	needed	work
themselves.	As	needed,	they	would	also	pull	in	dedicated	technical	Ops

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	
	

DEVELOPER PRODUCTIVITY
CREATE SHARED SERVICES TO INCREASE

used in their daily work, including daily standups, planning, and retrospectives.
Lastly, we describe how Ops engineers can integrate into the Dev team rituals

possible.
Assign Ops liaisons to the service teams when embedding Ops is not

Embed Ops engineers into the service teams.

be productive.
Create self-service capabilities to enable developers in the service teams to

market-oriented teams. We can employ the three following broad strategies:
Operations team was able to achieve the outcomes typically associated with
The DevOps transformation at Big Fish Games shows how a centralized

Dev and Product teams without adding new headcount.”
“The Ops liaison model allowed us to embed IT Operations expertise into the
velocity were noticeably improved as a result of the changes. He concludes,
Farrall notes that both working relationships with Operations and code release

throughput.
surprises discovered mid-project and ultimately increasing the overall project
the teams prioritize around his global Ops constraints, reducing the number of
become more productive and achieve their team goals. Furthermore, he helped
By doing this, Farrall was able to help Dev teams across the organization

building.
determine which self-service tools the entire Operations group should prioritize
engineers (e.g., DBAs, Infosec, storage engineers, network engineers), and help

DEVELOPER	PRODUCTIVITY

One	way	to	enable	market-oriented	outcomes	is	for	Operations	to	create	a	set	of
centralized	platforms	and	tooling	services	that	any	Dev	team	can	use	to	become
more	productive,	such	as	getting	production-like	environments,	deployment
pipelines,	automated	testing	tools,	production	telemetry	dashboards,	and	so
forth.†	By	doing	this,	we	enable	Dev	teams	to	spend	more	time	building
functionality	for	their	customer,	as	opposed	to	obtaining	all	the	infrastructure
required	to	deliver	and	support	that	feature	in	production.

All	the	platforms	and	services	we	provide	should	(ideally)	be	automated	and
available	on	demand,	without	requiring	a	developer	to	open	up	a	ticket	and	wait
for	someone	to	manually	perform	work.	This	ensures	that	Operations	doesn’t
become	a	bottleneck	for	their	customers	(e.g.,	“We	received	your	work	request,
and	it	will	take	six	weeks	to	manually	configure	those	test	environments.”).‡

By	doing	this,	we	enable	the	product	teams	to	get	what	they	need,	when	they
need	it,	as	well	as	reduce	the	need	for	communications	and	coordination.	As
Damon	Edwards	observed,	“Without	these	self-service	Operations	platforms,	the
cloud	is	just	Expensive	Hosting	2.0.”

In	almost	all	cases,	we	will	not	mandate	that	internal	teams	use	these	platforms
and	services—these	platform	teams	will	have	to	win	over	and	satisfy	their
internal	customers,	sometimes	even	competing	with	external	vendors.	By
creating	this	effective	internal	marketplace	of	capabilities,	we	help	ensure	that
the	platforms	and	services	we	create	are	the	easiest	and	most	appealing	choice
available	(the	path	of	least	resistance).

For	instance,	we	may	create	a	platform	that	provides	a	shared	version	control
repository	with	pre-blessed	security	libraries,	a	deployment	pipeline	that
automatically	runs	code	quality	and	security	scanning	tools,	which	deploys	our
applications	into	known,	good	environments	that	already	have	production

monitoring	tools	installed	on	them.	Ideally,	we	make	life	so	much	easier	for	Dev
teams	that	they	will	overwhelmingly	decide	that	using	our	platform	is	the
easiest,	safest,	and	most	secure	means	to	get	their	applications	into	production.

We	build	into	these	platforms	the	cumulative	and	collective	experience	of
everyone	in	the	organization,	including	QA,	Operations,	and	Infosec,	which
helps	to	create	an	ever	safer	system	of	work.	This	increases	developer
productivity	and	makes	it	easy	for	product	teams	to	leverage	common	processes,
such	as	performing	automated	testing	and	satisfying	security	and	compliance
requirements.

Creating	and	maintaining	these	platforms	and	tools	is	real	product	development
—the	customers	of	our	platform	aren’t	our	external	customer	but	our	internal
Dev	teams.	Like	creating	any	great	product,	creating	great	platforms	that
everyone	loves	doesn’t	happen	by	accident.	An	internal	platform	team	with	poor
customer	focus	will	likely	create	tools	that	everyone	will	hate	and	quickly
abandon	for	other	alternatives,	whether	for	another	internal	platform	team	or	an
external	vendor.

Dianne	Marsh,	Director	of	Engineering	Tools	at	Netflix,	states	that	her	team’s
charter	is	to	“support	our	engineering	teams’	innovation	and	velocity.	We	don’t
build,	bake,	or	deploy	anything	for	these	teams,	nor	do	we	manage	their
configurations.	Instead,	we	build	tools	to	enable	self-service.	It’s	okay	for	people
to	be	dependent	on	our	tools,	but	it’s	important	that	they	don’t	become
dependent	on	us.”

Often,	these	platform	teams	provide	other	services	to	help	their	customers	learn
their	technology,	migrate	off	of	other	technologies,	and	even	provide	coaching
and	consulting	to	help	elevate	the	state	of	the	practice	inside	the	organization.
These	shared	services	also	facilitate	standardization,	which	enable	engineers	to
quickly	become	productive,	even	if	they	switch	between	teams.	For	instance,	if

every	product	team	chooses	a	different	toolchain,	engineers	may	have	to	learn	an
entirely	new	set	of	technologies	to	do	their	work,	putting	the	team	goals	ahead	of
the	global	goals.

In	organizations	where	teams	can	only	use	approved	tools,	we	can	start	by
removing	this	requirement	for	a	few	teams,	such	as	the	transformation	team,	so
that	we	can	experiment	and	discover	what	capabilities	make	those	teams	more
productive.

Internal	shared	services	teams	should	continually	look	for	internal	toolchains
that	are	widely	being	adopted	in	the	organization,	deciding	which	ones	make
sense	to	be	supported	centrally	and	made	available	to	everyone.	In	general,
taking	something	that’s	already	working	somewhere	and	expanding	its	usage	is
far	more	likely	to	succeed	than	building	these	capabilities	from	scratch.§

EMBED	OPS	ENGINEERS	INTO	OUR	SERVICE
TEAMS

Another	way	we	can	enable	more	market-oriented	outcomes	is	by	enabling
product	teams	to	become	more	self-sufficient	by	embedding	Operations
engineers	within	them,	thus	reducing	their	reliance	on	centralized	Operations.
These	product	teams	may	also	be	completely	responsible	for	service	delivery
and	service	support.

By	embedding	Operations	engineers	into	the	Dev	teams,	their	priorities	are
driven	almost	entirely	by	the	goals	of	the	product	teams	they	are	embedded	in—
as	opposed	to	Ops	focusing	inwardly	on	solving	their	own	problems.	As	a	result,
Ops	engineers	become	more	closely	connected	to	their	internal	and	external
customers.	Furthermore,	the	product	teams	often	have	the	budget	to	fund	the
hiring	of	these	Ops	engineers,	although	interviewing	and	hiring	decisions	will

likely	still	be	done	from	the	centralized	Operations	group,	to	ensure	consistency
and	quality	of	staff.

Jason	Cox	said,	“In	many	parts	of	Disney	we	have	embedded	Ops	(system
engineers)	inside	the	product	teams	in	our	business	units,	along	with	inside
Development,	Test,	and	even	Information	Security.	It	has	totally	changed	the
dynamics	of	how	we	work.	As	Operations	Engineers,	we	create	the	tools	and
capabilities	that	transform	the	way	people	work,	and	even	the	way	they	think.	In
traditional	Ops,	we	merely	drove	the	train	that	someone	else	built.	But	in	modern
Operations	Engineering,	we	not	only	help	build	the	train,	but	also	the	bridges
that	the	trains	roll	on.”

For	new	large	Development	projects,	we	may	initially	embed	Ops	engineers	into
those	teams.	Their	work	may	include	helping	decide	what	to	build	and	how	to
build	it,	influencing	the	product	architecture,	helping	influence	internal	and
external	technology	choices,	helping	create	new	capabilities	in	our	internal
platforms,	and	maybe	even	generating	new	operational	capabilities.	After	the
product	is	released	to	production,	embedded	Ops	engineers	may	help	with	the
production	responsibilities	of	the	Dev	team.

They	will	take	part	in	all	of	the	Dev	team	rituals,	such	as	planning	meetings,
daily	standups,	and	demonstrations	where	the	team	shows	off	new	features	and
decides	which	ones	to	ship.	As	the	need	for	Ops	knowledge	and	capabilities
decreases,	Ops	engineers	may	transition	to	different	projects	or	engagements,
following	the	general	pattern	that	the	composition	within	product	teams	changes
throughout	its	life	cycle.

This	paradigm	has	another	important	advantage:	pairing	Dev	and	Ops	engineers
together	is	an	extremely	efficient	way	to	cross-train	operations	knowledge	and
expertise	into	a	service	team.	It	can	also	have	the	powerful	benefit	of

transforming	operations	knowledge	into	automated	code	that	can	be	far	more
reliable	and	widely	reused.

ASSIGN	AN	OPS	LIAISON	TO	EACH	SERVICE
TEAM

For	a	variety	of	reasons,	such	as	cost	and	scarcity,	we	may	be	unable	to	embed
Ops	engineers	into	every	product	team.	However,	we	can	get	many	of	the	same
benefits	by	assigning	a	designated	liaison	for	each	product	team.

At	Etsy,	this	model	is	called	“designated	Ops.”	Their	centralized	Operations
group	continues	to	manage	all	the	environments—not	just	production
environments	but	also	pre-production	environments—to	help	ensure	they	remain
consistent.	The	designated	Ops	engineer	is	responsible	for	understanding:

What	the	new	product	functionality	is	and	why	we’re	building	it

How	it	works	as	it	pertains	to	operability,	scalability,	and	observability
(diagramming	is	strongly	encouraged)

How	to	monitor	and	collect	metrics	to	ensure	the	progress,	success,	or	failure
of	the	functionality

Any	departures	from	previous	architectures	and	patterns,	and	the
justifications	for	them

Any	extra	needs	for	infrastructure	and	how	usage	will	affect	infrastructure
capacity

Feature	launch	plans

Furthermore,	just	like	in	the	embedded	Ops	model,	this	liaison	attends	the	team
standups,	integrating	their	needs	into	the	Operations	road	map	and	performing
any	needed	tasks.	We	rely	on	these	liaisons	to	escalate	any	resource	contention
or	prioritization	issue.	By	doing	this,	we	identify	any	resource	or	time	conflicts
that	should	be	evaluated	and	prioritized	in	the	context	of	wider	organizational
goals.

Assigning	Ops	liaisons	allows	us	to	support	more	product	teams	than	the
embedded	Ops	model.	Our	goal	is	to	ensure	that	Ops	is	not	a	constraint	for	the
product	teams.	If	we	find	that	Ops	liaisons	are	stretched	too	thin,	preventing	the
product	teams	from	achieving	their	goals,	then	we	will	likely	need	to	either
reduce	the	number	of	teams	each	liaison	supports	or	temporarily	embed	an	Ops
engineer	into	specific	teams.

INTEGRATE	OPS	INTO	DEV	RITUALS

When	Ops	engineers	are	embedded	or	assigned	as	liaisons	into	our	product
teams,	we	can	integrate	them	into	our	Dev	team	rituals.	In	this	section,	our	goal
is	to	help	Ops	engineers	and	other	non-developers	better	understand	the	existing
Development	culture	and	proactively	integrate	them	into	all	aspects	of	planning
and	daily	work.	As	a	result,	Operations	is	better	able	to	plan	and	radiate	any
needed	knowledge	into	the	product	teams,	influencing	work	long	before	it	gets
into	production.	The	following	sections	describe	some	of	the	standard	rituals
used	by	Development	teams	using	agile	methods	and	how	we	would	integrate
Ops	engineers	into	them.	By	no	means	are	agile	practices	a	prerequisite	for	this
step—as	Ops	engineers,	our	goal	is	to	discover	what	rituals	the	product	teams
follow,	integrate	into	them,	and	add	value	to	them.¶

As	Ernest	Mueller	observed,	“I	believe	DevOps	works	a	lot	better	if	Operations
teams	adopt	the	same	agile	rituals	that	Dev	teams	have	used—we’ve	had

fantastic	successes	solving	many	problems	associated	with	Ops	pain	points,	as
well	as	integrating	better	with	Dev	teams.”

INVITE	OPS	TO	OUR	DEV	STANDUPS
One	of	the	Dev	rituals	popularized	by	Scrum	is	the	daily	standup,	a	quick
meeting	where	everyone	on	the	team	gets	together	and	presents	to	each	other
three	things:	what	was	done	yesterday,	what	is	going	to	be	done	today,	and	what
is	preventing	you	from	getting	your	work	done.**

The	purpose	of	this	ceremony	is	to	radiate	information	throughout	the	team	and
to	understand	the	work	that	is	being	done	and	is	going	to	be	done.	By	having
team	members	present	this	information	to	each	other,	we	learn	about	any	tasks
that	are	experiencing	roadblocks	and	discover	ways	to	help	each	other	move	our
work	toward	completion.	Furthermore,	by	having	managers	present,	we	can
quickly	resolve	prioritization	and	resource	conflicts.

A	common	problem	is	that	this	information	is	compartmentalized	within	the
Development	team.	By	having	Ops	engineers	attend,	Operations	can	gain	an
awareness	of	the	Development	team’s	activities,	enabling	better	planning	and
preparation—for	instance,	if	we	discover	that	the	product	team	is	planning	a	big
feature	rollout	in	two	weeks,	we	can	ensure	that	the	right	people	and	resources
are	available	to	support	the	rollout.	Alternatively,	we	may	highlight	areas	where
closer	interaction	or	more	preparation	is	needed	(e.g.,	creating	more	monitoring
checks	or	automation	scripts).	By	doing	this,	we	create	the	conditions	where
Operations	can	help	solve	our	current	team	problems	(e.g.,	improving
performance	by	tuning	the	database,	instead	of	optimizing	code)	or	future
problems	before	they	turn	into	a	crisis	(e.g.,	creating	more	integration	test
environments	to	enable	performance	testing).

INVITE	OPS	TO	OUR	DEV	RETROSPECTIVES

Another	widespread	agile	ritual	is	the	retrospective.	At	the	end	of	each
development	interval,	the	team	discusses	what	was	successful,	what	could	be
improved,	and	how	to	incorporate	the	successes	and	improvements	in	future
iterations	or	projects.	The	team	comes	up	with	ideas	to	make	things	better	and
reviews	experiments	from	the	previous	iteration.	This	is	one	of	the	primary
mechanisms	where	organizational	learning	and	the	development	of
countermeasures	occurs,	with	resulting	work	implemented	immediately	or	added
to	the	team’s	backlog.

Having	Ops	engineers	attend	our	project	team	retrospectives	means	they	can	also
benefit	from	any	new	learnings.	Furthermore,	when	there	is	a	deployment	or
release	in	that	interval,	Operations	should	present	the	outcomes	and	any	resulting
learnings,	creating	feedback	into	the	product	team.	By	doing	this,	we	can
improve	how	future	work	is	planned	and	performed,	improving	our	outcomes.
Examples	of	feedback	that	Operations	can	bring	to	a	retrospective	include:

“Two	weeks	ago,	we	found	a	monitoring	blind-spot	and	agreed	on	how	to	fix
it.	It	worked.	We	had	an	incident	last	Tuesday,	and	we	were	able	to	quickly
detect	and	correct	it	before	any	customers	were	impacted.”

“Last	week’s	deployment	was	one	of	the	most	difficult	and	lengthy	we’ve
had	in	over	a	year.	Here	are	some	ideas	on	how	it	can	be	improved.”

“The	promotion	campaign	we	did	last	week	was	far	more	difficult	than	we
thought	it	would	be,	and	we	should	probably	not	make	an	offer	like	that
again.	Here	are	some	ideas	on	other	offers	we	can	make	to	achieve	our
goals.”

“During	the	last	deployment,	the	biggest	problem	we	had	was	our	firewall
rules	are	now	thousands	of	lines	long,	making	it	extremely	difficult	and	risky
to	change.	We	need	to	re-architect	how	we	prevent	unauthorized	network

traffic.”

Feedback	from	Operations	helps	our	product	teams	better	see	and	understand	the
downstream	impact	of	decisions	they	make.	When	there	are	negative	outcomes,
we	can	make	the	changes	necessary	to	prevent	them	in	the	future.	Operations
feedback	will	also	likely	identify	more	problems	and	defects	that	should	be	fixed
—it	may	even	uncover	larger	architectural	issues	that	need	to	be	addressed.

The	additional	work	identified	during	project	team	retrospectives	falls	into	the
broad	category	of	improvement	work,	such	as	fixing	defects,	refactoring,	and
automating	manual	work.	Product	managers	and	project	managers	may	want	to
defer	or	deprioritize	improvement	work	in	favor	of	customer	features.

However,	we	must	remind	everyone	that	improvement	of	daily	work	is	more
important	than	daily	work	itself,	and	that	all	teams	must	have	dedicated	capacity
for	this	(e.g.,	reserving	20%	of	all	cycles	for	improvement	work,	scheduling	one
day	per	week	or	one	week	per	month,	etc.).	Without	doing	this,	the	productivity
of	the	team	will	almost	certainly	grind	to	a	halt	under	the	weight	of	its	own
technical	and	process	debt.

MAKE	RELEVANT	OPS	WORK	VISIBLE	ON	SHARED
KANBAN	BOARDS
Often,	Development	teams	will	make	their	work	visible	on	a	project	board	or
kanban	board.	It’s	far	less	common,	however,	for	work	boards	to	show	the
relevant	Operations	work	that	must	be	performed	in	order	for	the	application	to
run	successfully	in	production,	where	customer	value	is	actually	created.	As	a
result,	we	are	not	aware	of	necessary	Operations	work	until	it	becomes	an	urgent
crisis,	jeopardizing	deadlines	or	creating	a	production	outage.

Because	Operations	is	part	of	the	product	value	stream,	we	should	put	the
Operations	work	that	is	relevant	to	product	delivery	on	the	shared	kanban	board.

This	enables	us	to	more	clearly	see	all	the	work	required	to	move	our	code	into
production,	as	well	as	keep	track	of	all	Operations	work	required	to	support	the
product.	Furthermore,	it	enables	us	to	see	where	Ops	work	is	blocked	and	where
work	needs	escalation,	highlighting	areas	where	we	may	need	improvement.

Kanban	boards	are	an	ideal	tool	to	create	visibility,	and	visibility	is	a	key
component	in	properly	recognizing	and	integrating	Ops	work	into	all	the
relevant	value	streams.	When	we	do	this	well,	we	achieve	market-oriented
outcomes,	regardless	of	how	we’ve	drawn	our	organization	charts.

CONCLUSION

Throughout	this	chapter,	we	explored	ways	to	integrate	Operations	into	the	daily
work	of	Development,	and	looked	at	how	to	make	our	work	more	visible	to
Operations.	To	accomplish	this,	we	explored	three	broad	strategies,	including
creating	self-service	capabilities	to	enable	developers	in	service	teams	to	be
productive,	embedding	Ops	engineers	into	the	service	teams,	and	assigning	Ops
liaisons	to	the	service	teams	when	embedding	Ops	engineers	was	not	possible.
Lastly,	we	described	how	Ops	engineers	can	integrate	with	the	Dev	team
through	inclusion	in	their	daily	work,	including	daily	standups,	planning,	and
retrospectives.

PART	II	CONCLUSION

In	Part	II:	Where	to	Start,	we	explored	a	variety	of	ways	to	think	about	DevOps
transformations,	including	how	to	choose	where	to	start,	relevant	aspects	of
architecture	and	organizational	design,	and	how	to	organize	our	teams.	We	also
explored	how	to	integrate	Ops	into	all	aspects	of	Dev	planning	and	daily	work.

In	Part	III:	The	First	Way,	The	Technical	Practices	of	Flow,	we	will	now	start	to
explore	how	to	implement	the	specific	technical	practices	to	realize	the
principles	of	flow,	which	enable	the	fast	flow	of	work	from	Development	to
Operations	without	causing	chaos	and	disruption	downstream.

†	The	terms	platform,	shared	service,	and	toolchain	will	be	used	interchangeably	in	this	book.

‡	Ernest	Mueller	observed,	“At	Bazaarvoice,	the	agreement	was	that	these	platform	teams	that	make	tools	accept	requirements,	but	not
work	from	other	teams.”

§	After	all,	designing	a	system	upfront	for	re-use	is	a	common	and	expensive	failure	mode	of	many	enterprise	architectures.

¶	However,	if	we	discover	that	the	entire	Development	organization	merely	sits	at	their	desks	all	day	without	ever	talking	to	each	other,
we	may	have	to	find	a	different	way	to	engage	them,	such	as	buying	them	lunch,	starting	a	book	club,	taking	turns	doing	“lunch	and
learn”	presentations,	or	having	conversations	to	discover	what	everyone’s	biggest	problems	are,	so	that	we	can	figure	out	how	we
can	make	their	lives	better.

**	Scrum	is	an	agile	development	methodology,	described	as	“a	flexible,	holistic	product	development	strategy	where	a	development
team	works	as	a	unit	to	reach	a	common	goal.”	It	was	first	fully	described	by	Ken	Schwaber	and	Mike	Beedle	in	the	book	Agile
Software	Development	with	Scrum.	In	this	book,	we	use	the	term	“agile	development”	or	“iterative	development”	to	encompass	the
various	techniques	used	by	special	methodologies	such	as	Agile	and	Scrum.

Part	III

Introduction
In	Part	III,	our	goal	is	to	create	the	technical	practices	and	architecture	required
to	enable	and	sustain	the	fast	flow	of	work	from	Development	into	Operations
without	causing	chaos	and	disruption	to	the	production	environment	or	our
customers.	This	means	we	need	to	reduce	the	risk	associated	with	deploying	and
releasing	changes	into	production.	We	will	do	this	by	implementing	a	set	of
technical	practices	known	as	continuous	delivery.

Continuous	delivery	includes	creating	the	foundations	of	our	automated
deployment	pipeline,	ensuring	that	we	have	automated	tests	that	constantly
validate	that	we	are	in	a	deployable	state,	having	developers	integrate	their	code
into	trunk	daily,	and	architecting	our	environments	and	code	to	enable	low-risk
releases.	Primary	focuses	within	these	chapters	include:

Creating	the	foundation	of	our	deployment	pipeline

Enabling	fast	and	reliable	automated	testing

Enabling	and	practicing	continuous	integration	and	testing

Automating,	enabling,	and	architecting	for	low-risk	releases

Implementing	these	practices	reduces	the	lead	time	to	get	production-like
environments,	enables	continuous	testing	that	gives	everyone	fast	feedback	on
their	work,	enables	small	teams	to	safely	and	independently	develop,	test,	and

deploy	their	code	into	production,	and	makes	production	deployments	and
releases	a	routine	part	of	daily	work.

Furthermore,	integrating	the	objectives	of	QA	and	Operations	into	everyone’s
daily	work	reduces	firefighting,	hardship,	and	toil,	while	making	people	more
productive	and	increasing	joy	in	the	work	we	do.	We	not	only	improve
outcomes,	but	our	organization	is	better	able	to	win	in	the	marketplace.

9 Create	the
Foundations	of	Our
Deployment
Pipeline

In	order	to	create	fast	and	reliable	flow	from	Dev	to	Ops,	we	must	ensure	that	we
always	use	production-like	environments	at	every	stage	of	the	value	stream.
Furthermore,	these	environments	must	be	created	in	an	automated	manner,
ideally	on	demand	from	scripts	and	configuration	information	stored	in	version
control,	and	entirely	self-serviced,	without	any	manual	work	required	from
Operations.	Our	goal	is	to	ensure	that	we	can	re-create	the	entire	production
environment	based	on	what’s	in	version	control.

All	too	often,	the	only	time	we	discover	how	our	applications	perform	in
anything	resembling	a	production-like	environment	is	during	production
deployment—far	too	late	to	correct	problems	without	the	customer	being
adversely	impacted.	An	illustrative	example	of	the	spectrum	of	problems	that
can	be	caused	by	inconsistently	built	applications	and	environments	is	the
Enterprise	Data	Warehouse	program	led	by	Em	Campbell-Pretty	at	a	large
Australian	telecommunications	company	in	2009.	Campbell-Pretty	became	the
general	manager	and	business	sponsor	for	this	$200	million	program,	inheriting
responsibility	for	all	the	strategic	objectives	that	relied	upon	this	platform.

In	her	presentation	at	the	2014	DevOps	Enterprise	Summit,	Campbell-Pretty
explained,	“At	the	time,	there	were	ten	streams	of	work	in	progress,	all	using

waterfall	processes,	and	all	ten	streams	were	significantly	behind	schedule.	Only
one	of	the	ten	streams	had	successfully	reached	User	Acceptance	Testing	[UAT]
on	schedule,	and	it	took	another	six	months	for	that	stream	to	complete	UAT,
with	the	resulting	capability	falling	well	short	of	business	expectations.	This
under-performance	was	the	main	catalyst	for	the	department’s	Agile
transformation.”

However,	after	using	Agile	for	nearly	a	year,	they	experienced	only	small
improvements,	still	falling	short	of	their	needed	business	outcomes.	Campbell-
Pretty	held	a	program-wide	retrospective	and	asked,	“After	reflecting	on	all	our
experiences	over	the	last	release,	what	are	things	we	could	do	that	would	double
our	productivity?”

Throughout	the	project,	there	was	grumbling	about	the	“lack	of	business
engagement.”	However,	during	the	retrospective,	“improve	availability	of
environments”	was	at	the	top	of	the	list.	In	hindsight,	it	was	obvious—
Development	teams	needed	provisioned	environments	in	order	to	begin	work,
and	were	often	waiting	up	to	eight	weeks.

They	created	a	new	integration	and	build	team	that	was	responsible	for	“building
quality	into	our	processes,	instead	of	trying	to	inspect	quality	after	the	fact.”	It
was	initially	comprised	of	database	administrators	(DBAs)	and	automation
specialists	tasked	with	automating	their	environment	creation	process.	The	team
quickly	made	a	surprising	discovery:	only	50%	of	the	source	code	in	their
development	and	test	environments	matched	what	was	running	in	production.

Campbell-Pretty	observed,	“Suddenly,	we	understood	why	we	encountered	so
many	defects	each	time	we	deployed	our	code	into	new	environments.	In	each
environment,	we	kept	fixing	forward,	but	the	changes	we	made	were	not	being
put	back	into	version	control.”

The	team	carefully	reverse-engineered	all	the	changes	that	had	been	made	to	the
different	environments	and	put	them	all	into	version	control.	They	also
automated	their	environment	creation	process	so	they	could	repeatedly	and
correctly	spin	up	environments.

Campbell-Pretty	described	the	results,	noting	that	“the	time	it	took	to	get	a
correct	environment	went	from	eight	weeks	to	one	day.	This	was	one	of	the	key
adjustments	that	allowed	us	to	hit	our	objectives	concerning	our	lead	time,	the
cost	to	deliver,	and	the	number	of	escaped	defects	that	made	it	into	production.”

Campbell-Pretty’s	story	shows	the	variety	of	problems	that	can	be	traced	back	to
inconsistently	constructed	environments	and	changes	not	being	systematically
put	back	into	version	control.

Throughout	the	remainder	of	this	chapter,	we	will	discuss	how	to	build	the
mechanisms	that	will	enable	us	to	create	environments	on	demand,	expand	the
use	of	version	control	to	everyone	in	the	value	stream,	make	infrastructure	easier
to	rebuild	than	to	repair,	and	ensure	that	developers	run	their	code	in	production-
like	environments	along	every	stage	of	the	software	development	life	cycle.

ENABLE	ON	DEMAND	CREATION	OF	DEV,	TEST,
AND	PRODUCTION	ENVIRONMENTS

As	seen	in	the	enterprise	data	warehouse	example	above,	one	of	the	major
contributing	causes	of	chaotic,	disruptive,	and	sometimes	even	catastrophic
software	releases,	is	the	first	time	we	ever	get	to	see	how	our	application
behaves	in	a	production-like	environment	with	realistic	load	and	production	data
sets	is	during	the	release.†	In	many	cases,	development	teams	may	have
requested	test	environments	in	the	early	stages	of	the	project.

However,	when	there	are	long	lead	times	required	for	Operations	to	deliver	test
environments,	teams	may	not	receive	them	soon	enough	to	perform	adequate
testing.	Worse,	test	environments	are	often	mis-configured	or	are	so	different
from	our	production	environments	that	we	still	end	up	with	large	production
problems	despite	having	performed	pre-deployment	testing.

In	this	step,	we	want	developers	to	run	production-like	environments	on	their
own	workstations,	created	on	demand	and	self-serviced.	By	doing	this,
developers	can	run	and	test	their	code	in	production-like	environments	as	part	of
their	daily	work,	providing	early	and	constant	feedback	on	the	quality	their
work.

Instead	of	merely	documenting	the	specifications	of	the	production	environment
in	a	document	or	on	a	wiki	page,	we	create	a	common	build	mechanism	that
creates	all	of	our	environments,	such	as	for	development,	test,	and	production.
By	doing	this,	anyone	can	get	production-like	environments	in	minutes,	without
opening	up	a	ticket,	let	alone	having	to	wait	weeks.‡

To	do	this	requires	defining	and	automating	the	creation	of	our	known,	good
environments,	which	are	stable,	secure,	and	in	a	risk-reduced	state,	embodying
the	collective	knowledge	of	the	organization.	All	our	requirements	are
embedded,	not	in	documents	or	as	knowledge	in	someone’s	head,	but	codified	in
our	automated	environment	build	process.

Instead	of	Operations	manually	building	and	configuring	the	environment,	we
can	use	automation	for	any	or	all	of	the	following:

Copying	a	virtualized	environment	(e.g.,	a	VMware	image,	running	a
Vagrant	script,	booting	an	Amazon	Machine	Image	file	in	EC2)

Building	an	automated	environment	creation	process	that	starts	from	“bare
metal”	(e.g.,	PXE	install	from	a	baseline	image)

Using	“infrastructure	as	code”	configuration	management	tools	(e.g.,	Puppet,
Chef,	Ansible,	Salt,	CFEngine,	etc.)

Using	automated	operating	system	configuration	tools	(e.g.,	Solaris
Jumpstart,	Red	Hat	Kickstart,	Debian	preseed)

Assembling	an	environment	from	a	set	of	virtual	images	or	containers	(e.g.,
Vagrant,	Docker)

Spinning	up	a	new	environment	in	a	public	cloud	(e.g.,	Amazon	Web
Services,	Google	App	Engine,	Microsoft	Azure),	private	cloud,	or	other	PaaS
(platform	as	a	service,	such	as	OpenStack	or	Cloud	Foundry,	etc.).

Because	we’ve	carefully	defined	all	aspects	of	the	environment	ahead	of	time,
we	are	not	only	able	to	create	new	environments	quickly,	but	also	ensure	that
these	environments	will	be	stable,	reliable,	consistent,	and	secure.	This	benefits
everyone.

Operations	benefits	from	this	capability,	to	create	new	environments	quickly,
because	automation	of	the	environment	creation	process	enforces	consistency
and	reduces	tedious,	error-prone	manual	work.	Furthermore,	Development
benefits	by	being	able	to	reproduce	all	the	necessary	parts	of	the	production
environment	to	build,	run,	and	test	their	code	on	their	workstations.	By	doing
this,	we	enable	developers	to	find	and	fix	many	problems,	even	at	the	earliest
stages	of	the	project,	as	opposed	to	during	integration	testing	or	worse,	in
production.

By	providing	developers	an	environment	they	fully	control,	we	enable	them	to
quickly	reproduce,	diagnose,	and	fix	defects,	safely	isolated	from	production
services	and	other	shared	resources.	They	can	also	experiment	with	changes	to
the	environments,	as	well	as	to	the	infrastructure	code	that	creates	it	(e.g.,

configuration	management	scripts),	further	creating	shared	knowledge	between
Development	and	Operations.§

CREATE	OUR	SINGLE	REPOSITORY	OF	TRUTH
FOR	THE	ENTIRE	SYSTEM

In	the	previous	step,	we	enabled	the	on	demand	creation	of	the	development,
test,	and	production	environments.	Now	we	must	ensure	that	all	parts	of	our
software	system.

For	decades,	comprehensive	use	of	version	control	has	increasingly	become	a
mandatory	practice	of	individual	developers	and	development	teams.¶	A	version
control	system	records	changes	to	files	or	sets	of	files	stored	within	the	system.
This	can	be	source	code,	assets,	or	other	documents	that	may	be	part	of	a
software	development	project.	We	make	changes	in	groups	called	commits	or
revisions.	Each	revision,	along	with	metadata	such	as	who	made	the	change	and
when,	is	stored	within	the	system	in	one	way	or	another,	allowing	us	to	commit,
compare,	merge,	and	restore	past	revisions	to	objects	to	the	repository.	It	also
minimizes	risks	by	establishing	a	way	to	revert	objects	in	production	to	previous
versions.	(In	this	book,	the	following	terms	will	be	used	interchangeably:
checked	in	to	version	control,	committed	into	version	control,	code	commit,
change	commit,	commit.)

When	developers	put	all	their	application	source	files	and	configurations	in
version	control,	it	becomes	the	single	repository	of	truth	that	contains	the	precise
intended	state	of	the	system.	However,	because	delivering	value	to	the	customer
requires	both	our	code	and	the	environments	they	run	in,	we	need	our
environments	in	version	control	as	well.	In	other	words,	version	control	is	for
everyone	in	our	value	stream,	including	QA,	Operations,	Infosec,	as	well	as
developers.	By	putting	all	production	artifacts	into	version	control,	our	version

control	repository	enables	us	to	repeatedly	and	reliably	reproduce	all
components	of	our	working	software	system—this	includes	our	applications	and
production	environment,	as	well	as	all	of	our	pre-production	environments.

To	ensure	that	we	can	restore	production	service	repeatedly	and	predictably
(and,	ideally,	quickly)	even	when	catastrophic	events	occur,	we	must	check	in
the	following	assets	to	our	shared	version	control	repository:

All	application	code	and	dependencies	(e.g.,	libraries,	static	content,	etc.)

Any	script	used	to	create	database	schemas,	application	reference	data,	etc.

All	the	environment	creation	tools	and	artifacts	described	in	the	previous	step
(e.g.,	VMware	or	AMI	images,	Puppet	or	Chef	recipes,	etc.)

Any	file	used	to	create	containers	(e.g.,	Docker	or	Rocket	definition	or
composition	files)

All	supporting	automated	tests	and	any	manual	test	scripts

Any	script	that	supports	code	packaging,	deployment,	database	migration,
and	environment	provisioning

All	project	artifacts	(e.g.,	requirements	documentation,	deployment
procedures,	release	notes,	etc.)

All	cloud	configuration	files	(e.g.,	AWS	Cloudformation	templates,
Microsoft	Azure	Stack	DSC	files,	OpenStack	HEAT)

Any	other	script	or	configuration	information	required	to	create	infrastructure
that	supports	multiple	services	(e.g.,	enterprise	service	buses,	database
management	systems,	DNS	zone	files,	configuration	rules	for	firewalls,	and
other	networking	devices).**

We	may	have	multiple	repositories	for	different	types	of	objects	and	services,
where	they	are	labelled	and	tagged	alongside	our	source	code.	For	instance,	we
may	store	large	virtual	machine	images,	ISO	files,	compiled	binaries,	and	so
forth	in	artifact	repositories	(e.g.,	Nexus,	Artifactory).	Alternatively,	we	may	put
them	in	blob	stores	(e.g.,	Amazon	S3	buckets)	or	put	Docker	images	into	Docker
registries,	and	so	forth.

It	is	not	sufficient	to	merely	be	able	to	re-create	any	previous	state	of	the
production	environment;	we	must	also	be	able	to	re-create	the	entire	pre-
production	and	build	processes	as	well.	Consequently,	we	need	to	put	into
version	control	everything	relied	upon	by	our	build	processes,	including	our
tools	(e.g.,	compilers,	testing	tools)	and	the	environments	they	depend	upon.††

In	Puppet	Labs’	2014	State	of	DevOps	Report,	the	use	of	version	control	by	Ops
was	the	highest	predictor	of	both	IT	performance	and	organizational
performance.	In	fact,	whether	Ops	used	version	control	was	a	higher	predictor
for	both	IT	performance	and	organizational	performance	than	whether	Dev	used
version	control.

The	findings	from	Puppet	Labs'	2014	State	of	DevOps	Report	underscores	the
critical	role	version	control	plays	in	the	software	development	process.	We	now
know	when	all	application	and	environment	changes	are	recorded	in	version
control,	it	enables	us	to	not	only	quickly	see	all	changes	that	might	have
contributed	to	a	problem,	but	also	provides	the	means	to	roll	back	to	a	previous
known,	running	state,	allowing	us	to	more	quickly	recover	from	failures.

But	why	does	using	version	control	for	our	environments	predict	IT	and
organizational	performance	better	than	using	version	control	for	our	code?

Because	in	almost	all	cases,	there	are	orders	of	magnitude	more	configurable
settings	in	our	environment	than	in	our	code.	Consequently,	it	is	the	environment

that	needs	to	be	in	version	control	the	most.‡‡

Version	control	also	provides	a	means	of	communication	for	everyone	working
in	the	value	stream—having	Development,	QA,	Infosec,	and	Operations	able	to
see	each	other’s	changes	helps	reduce	surprises,	creates	visibility	into	each
other’s	work,	and	helps	build	and	reinforce	trust.	See	Appendix	7.

MAKE	INFRASTRUCTURE	EASIER	TO	REBUILD
THAN	TO	REPAIR

When	we	can	quickly	rebuild	and	re-create	our	applications	and	environments
on	demand,	we	can	also	quickly	rebuild	them	instead	of	repairing	them	when
things	go	wrong.	Although	this	is	something	that	almost	all	large-scale	web
operations	do	(i.e.,	more	than	one	thousand	servers),	we	should	also	adopt	this
practice	even	if	we	have	only	one	server	in	production.

Bill	Baker,	a	distinguished	engineer	at	Microsoft,	quipped	that	we	used	to	treat
servers	like	pets:	“You	name	them	and	when	they	get	sick,	you	nurse	them	back
to	health.	[Now]	servers	are	[treated]	like	cattle.	You	number	them	and	when
they	get	sick,	you	shoot	them.”

By	having	repeatable	environment	creation	systems,	we	are	able	to	easily
increase	capacity	by	adding	more	servers	into	rotation	(i.e.,	horizontal	scaling).
We	also	avoid	the	disaster	that	inevitably	results	when	we	must	restore	service
after	a	catastrophic	failure	of	irreproducible	infrastructure,	created	through	years
of	undocumented	and	manual	production	changes.

To	ensure	consistency	of	our	environments,	whenever	we	make	production
changes	(configuration	changes,	patching,	upgrading,	etc.),	those	changes	need

to	be	replicated	everywhere	in	our	production	and	pre-production	environments,
as	well	as	in	any	newly	created	environments.

Instead	of	manually	logging	into	servers	and	making	changes,	we	must	make
changes	in	a	way	that	ensures	all	changes	are	replicated	everywhere
automatically	and	that	all	our	changes	are	put	into	version	control.

We	can	rely	on	our	automated	configuration	systems	to	ensure	consistency	(e.g.,
Puppet,	Chef,	Ansible,	Salt,	Bosh,	etc.),	or	we	can	create	new	virtual	machines
or	containers	from	our	automated	build	mechanism	and	deploy	them	into
production,	destroying	the	old	ones	or	taking	them	out	of	rotation.§§

The	latter	pattern	is	what	has	become	known	as	immutable	infrastructure,	where
manual	changes	to	the	production	environment	are	no	longer	allowed—the	only
way	production	changes	can	be	made	is	to	put	the	changes	into	version	control
and	re-create	the	code	and	environments	from	scratch.	By	doing	this,	no	variance
is	able	to	creep	into	production.

To	prevent	uncontrolled	configuration	variances,	we	may	disable	remote	logins
to	production	servers¶¶	or	routinely	kill	and	replace	production	instances,
ensuring	that	manually-applied	production	changes	are	removed.	This	action
motivates	everyone	to	put	their	changes	in	the	correct	way	through	version
control.	By	applying	such	measures,	we	are	systematically	reducing	the	ways
our	infrastructure	can	drift	from	our	known,	good	states	(e.g.,	configuration	drift,
fragile	artifacts,	works	of	art,	snowflakes,	and	so	forth).

Also,	we	must	keep	our	pre-production	environments	up	to	date—specifically,
we	need	developers	to	stay	running	on	our	most	current	environment.
Developers	will	often	want	to	keep	running	on	older	environments	because	they
fear	environment	updates	may	break	existing	functionality.	However,	we	want	to

update	them	frequently	so	we	can	find	problems	at	the	earliest	part	of	the	life
cycle.***

MODIFY	OUR	DEFINITION	OF	DEVELOPMENT
“DONE”	TO	INCLUDE	RUNNING	IN
PRODUCTION-LIKE	ENVIRONMENTS

Now	that	our	environments	can	be	created	on	demand	and	everything	is	checked
in	to	version	control,	our	goal	is	to	ensure	that	these	environments	are	being	used
in	the	daily	work	of	Development.	We	need	to	verify	that	our	application	runs	as
expected	in	a	production-like	environment	long	before	the	end	of	the	project	or
before	our	first	production	deployment.

Most	modern	software	development	methodologies	prescribe	short	and	iterative
development	intervals,	as	opposed	to	the	big	bang	approach	(e.g.,	the	waterfall
`model).	In	general,	the	longer	the	interval	between	deployment,	the	worse	the
outcomes.	For	example,	in	the	Scrum	methodology	a	sprint	is	a	time-boxed
development	interval	(typically	one	month	or	less)	within	which	we	are	required
to	be	done,	widely	defined	as	when	we	have	“working	and	potentially	shippable
code.”

Our	goal	is	to	ensure	that	Development	and	QA	are	routinely	integrating	the
code	with	production-like	environments	at	increasingly	frequent	intervals
throughout	the	project.†††	We	do	this	by	expanding	the	definition	of	“done”
beyond	just	correct	code	functionality	(addition	in	bold	text):	at	the	end	of	each
development	interval,	we	have	integrated,	tested,	working	and	potentially
shippable	code,	demonstrated	in	a	production-like	environment.

In	other	words,	we	will	only	accept	development	work	as	done	when	it	can	be
successfully	built,	deployed,	and	confirmed	that	it	runs	as	expected	in	a

production-like	environment,	instead	of	merely	when	a	developer	believes	it	to
be	done—ideally,	it	runs	under	a	production-like	load	with	a	production-like
dataset,	long	before	the	end	of	a	sprint.	This	prevents	situations	where	a	feature
is	called	done	merely	because	a	developer	can	run	it	successfully	on	their	laptop
but	nowhere	else.

By	having	developers	write,	test,	and	run	their	own	code	in	a	production-like
environment,	the	majority	of	the	work	to	successfully	integrate	our	code	and
environments	happens	during	our	daily	work,	instead	of	at	the	end	of	the	release.
By	the	end	of	our	first	interval,	our	application	can	be	demonstrated	to	run
correctly	in	a	production-like	environment,	with	the	code	and	environment
having	been	integrated	together	many	times	over,	ideally	with	all	the	steps
automated	(no	manual	tinkering	required).

Better	yet,	by	the	end	of	the	project,	we	will	have	successfully	deployed	and	run
our	code	in	production-like	environments	hundreds	or	even	thousands	of	times,
giving	us	confidence	that	most	of	our	production	deployment	problems	have
been	found	and	fixed.

Ideally,	we	use	the	same	tools,	such	as	monitoring,	logging,	and	deployment,	in
our	pre-production	environments	as	we	do	in	production.	By	doing	this,	we	have
familiarity	and	experience	that	will	help	us	smoothly	deploy	and	run,	as	well	as
diagnose	and	fix,	our	service	when	it	is	in	production.

By	enabling	Development	and	Operations	to	gain	a	shared	mastery	of	how	the
code	and	environment	interact,	and	practicing	deployments	early	and	often,	we
significantly	reduce	the	deployment	risks	that	are	associated	with	production
code	releases.	This	also	allows	us	to	eliminate	an	entire	class	of	operational	and
security	defects	and	architectural	problems	that	are	usually	caught	too	late	in	the
project	to	fix.

CONCLUSION

The	fast	flow	of	work	from	Development	to	Operations	requires	that	anyone	can
get	production-like	environments	on	demand.	By	allowing	developers	to	use
production-like	environments	even	at	the	earliest	stages	of	a	software	project,	we
significantly	reduce	the	risk	of	production	problems	later.	This	is	one	of	many
practices	that	demonstrate	how	Operations	can	make	developers	far	more
productive.	We	enforce	the	practice	of	developers	running	their	code	in
production-like	environments	by	incorporating	it	into	the	definition	of	“done.”

Furthermore,	by	putting	all	production	artifacts	into	version	control,	we	have	a
“single	source	of	truth”	that	allows	us	to	re-create	the	entire	production
environment	in	a	quick,	repeatable,	and	documented	way,	using	the	same
development	practices	for	Operations	work	as	we	do	for	Development	work.
And	by	making	production	infrastructure	easier	to	rebuild	than	to	repair,	we
make	resolving	problems	easier	and	faster,	as	well	as	making	it	easier	to	expand
capacity.

Having	these	practices	in	place	sets	the	stage	for	enabling	comprehensive	test
automation,	which	is	explored	in	the	next	chapter.

†	In	this	context,	environment	is	defined	as	everything	in	the	application	stack	except	for	the	application,	including	the	databases,
operating	systems,	networking,	virtualization,	and	all	associated	configurations.

‡	Most	developers	want	to	test	their	code,	and	they	have	often	gone	to	extreme	lengths	to	obtain	test	environments	to	do	so.
Developers	have	been	known	to	reuse	old	test	environments	from	previous	projects	(often	years	old)	or	ask	someone	who	has	a
reputation	of	being	able	to	find	one—they	just	won’t	ask	where	it	came	from,	because,	invariably,	someone	somewhere	is	now
missing	a	server.

§	Ideally,	we	should	be	finding	errors	before	integration	testing	when	is	too	late	in	the	testing	cycle	to	create	fast	feedback	for
developers.	If	we	are	unable	to	do	so,	we	likely	have	an	architectural	issue	that	needs	to	be	addressed.	Designing	our	systems	for
testability,	to	include	the	ability	to	discover	most	defects	using	a	non-integrated	virtual	environment	on	a	development	workstation,
is	a	key	part	of	creating	an	architecture	that	supports	fast	flow	and	feedback.

¶	The	first	version	control	system	was	likely	UPDATE	on	the	CDC6600	(1969).	Later	came	SCCS	(1972),	CMS	on	VMS	(1978),	RCS
(1982),	and	so	forth.

**	One	may	observe	that	version	control	fulfills	some	of	the	ITIL	constructs	of	the	Definitive	Media	Library	(DML)	and	Configuration
Management	Database	(CMDB),	inventorying	everything	required	to	re-create	the	production	environment.

††	In	future	steps,	we	will	also	check	in	to	version	control	all	the	supporting	infrastructure	we	build,	such	as	the	automated	test	suites
and	our	continuous	integration	and	deployment	pipeline	infrastructure.

‡‡	Anyone	who	has	done	a	code	migration	for	an	ERP	system	(e.g.,	SAP,	Oracle	Financials,	etc.)	may	recognize	the	following
situation:	When	a	code	migration	fails,	it	is	rarely	due	to	a	coding	error.	Instead,	it’s	far	more	likely	that	the	migration	failed	due	to
some	difference	in	the	environments,	such	as	between	Development	and	QA	or	QA	and	Production.

§§	At	Netflix,	the	average	age	of	Netflix	AWS	instance	is	twenty-four	days,	with	60%	being	less	than	one	week	old.

¶¶	Or	allow	it	only	in	emergencies,	ensuring	that	a	copy	of	the	console	log	is	automatically	emailed	to	the	operations	team.

***	The	entire	application	stack	and	environment	can	be	bundled	into	containers,	which	can	enable	unprecedented	simplicity	and
speed	across	the	entire	deployment	pipeline.

†††	The	term	integration	has	many	slightly	different	usages	in	Development	and	Operations.	In	Development,	integration	typically
refers	to	code	integration,	which	is	the	integration	of	multiple	code	branches	into	trunk	in	version	control.	In	continuous	delivery
and	DevOps,	integration	testing	refers	to	the	testing	of	the	application	in	a	production-like	environment	or	integrated	test
environment.

10Enable	Fast	and
Reliable	Automated	Testing

At	this	point,	Development	and	QA	are	using	production-like	environments	in
their	daily	work,	and	we	are	successfully	integrating	and	running	our	code	into	a
production-like	environment	for	every	feature	that	is	accepted,	with	all	changes
checked	in	to	version	control.	However,	we	are	likely	to	get	undesired	outcomes
if	we	find	and	fix	errors	in	a	separate	test	phase,	executed	by	a	separate	QA
department	only	after	all	development	has	been	completed.	And,	if	testing	is
only	performed	a	few	times	a	year,	developers	learn	about	their	mistakes	months
after	they	introduced	the	change	that	caused	the	error.	By	then,	the	link	between
cause	and	effect	has	likely	faded,	solving	the	problem	requires	firefighting	and
archaeology,	and,	worst	of	all,	our	ability	to	learn	from	the	mistake	and	integrate
it	into	our	future	work	is	significantly	diminished.

Automated	testing	addresses	another	significant	and	unsettling	problem.	Gary
Gruver	observes	that	“without	automated	testing,	the	more	code	we	write,	the
more	time	and	money	is	required	to	test	our	code—in	most	cases,	this	is	a	totally
unscalable	business	model	for	any	technology	organization.”

Although	Google	now	undoubtedly	exemplifies	a	culture	that	values	automated
testing	at	scale,	this	wasn’t	always	the	case.	In	2005,	when	Mike	Bland	joined
the	organization,	deploying	to	Google.com	was	often	extremely	problematic,
especially	for	the	Google	Web	Server	(GWS)	team.

As	Bland	explains,	“The	GWS	team	had	gotten	into	a	position	in	the	mid	2000s
where	it	was	extremely	difficult	to	make	changes	to	the	web	server,	a	C++
application	that	handled	all	requests	to	Google’s	home	page	and	many	other
Google	web	pages.	As	important	and	prominent	as	Google.com	was,	being	on
the	GWS	team	was	not	a	glamorous	assignment—it	was	often	the	dumping
ground	for	all	the	different	teams	who	were	creating	various	search	functionality,
all	of	whom	were	developing	code	independently	of	each	other.	They	had
problems	such	as	builds	and	tests	taking	too	long,	code	being	put	into	production
without	being	tested,	and	teams	checking	in	large,	infrequent	changes	that
conflicted	with	those	from	other	teams.”

The	consequences	of	this	were	large—search	results	could	have	errors	or
become	unacceptably	slow,	affecting	thousands	of	search	queries	on
Google.com.	The	potential	result	was	not	only	loss	of	revenue,	but	customer
trust.

Bland	describes	how	it	affected	developers	deploying	changes,	“Fear	became	the
mind-killer.	Fear	stopped	new	team	members	from	changing	things	because	they
didn’t	understand	the	system.	But	fear	also	stopped	experienced	people	from
changing	things	because	they	understood	it	all	too	well.”†	Bland	was	part	of	the
group	that	was	determined	to	solve	this	problem.

GWS	team	lead	Bharat	Mediratta	believed	automated	testing	would	help.	As
Bland	describes,	“They	created	a	hard	line:	no	changes	would	be	accepted	into
GWS	without	accompanying	automated	tests.	They	set	up	a	continuous	build
and	religiously	kept	it	passing.	They	set	up	test	coverage	monitoring	and	ensured
that	their	level	of	test	coverage	went	up	over	time.	They	wrote	up	policy	and
testing	guides,	and	insisted	that	contributors	both	inside	and	outside	the	team
follow	them.”

The	results	were	startling.	As	Bland	notes,	“GWS	quickly	became	one	of	the
most	productive	teams	in	the	company,	integrating	large	numbers	of	changes
from	different	teams	every	week	while	maintaining	a	rapid	release	schedule.
New	team	members	were	able	to	make	productive	contributions	to	this	complex
system	quickly,	thanks	to	good	test	coverage	and	code	health.	Ultimately,	their
radical	policy	enabled	the	Google.com	home	page	to	quickly	expand	its
capabilities	and	thrive	in	an	amazingly	fast-moving	and	competitive	technology
landscape.”

But	GWS	was	still	a	relatively	small	team	in	a	large	and	growing	company.	The
team	wanted	to	expand	these	practices	across	the	entire	organization.	Thus,	the
Testing	Grouplet	was	born,	an	informal	group	of	engineers	who	wanted	to
elevate	automated	testing	practices	across	the	entire	organization.	Over	the	next
five	years,	they	helped	replicate	this	culture	of	automated	testing	across	all	of
Google.‡

Now	when	any	Google	developer	commits	code,	it	is	automatically	run	against	a
suite	of	hundreds	of	thousands	of	automated	tests.	If	the	code	passes,	it	is
automatically	merged	into	trunk,	ready	to	be	deployed	into	production.	Many
Google	properties	build	hourly	or	daily,	then	pick	which	builds	to	release;	others
adopt	a	continuous	“Push	on	Green”	delivery	philosophy.

The	stakes	are	higher	than	ever—a	single	code	deployment	error	at	Google	can
take	down	every	property,	all	at	the	same	time	(such	as	a	global	infrastructure
change	or	when	a	defect	is	introduced	into	a	core	library	that	every	property
depends	upon).

Eran	Messeri,	an	engineer	in	the	Google	Developer	Infrastructure	group,	notes,
“Large	failures	happen	occasionally.	You’ll	get	a	ton	of	instant	messages	and
engineers	knocking	on	your	door.	[When	the	deployment	pipeline	is	broken,]	we

need	to	fix	it	right	away,	because	developers	can	no	longer	commit	code.
Consequently,	we	want	to	make	it	very	easy	to	roll	back.”

What	enables	this	system	to	work	at	Google	is	engineering	professionalism	and	a
high-trust	culture	that	assumes	everyone	wants	to	do	a	good	job,	as	well	as	the
ability	to	detect	and	correct	issues	quickly.	Messeri	explains,	“There	are	no	hard
policies	at	Google,	such	as,	‘If	you	break	production	for	more	than	ten	projects,
you	have	an	SLA	to	fix	the	issue	within	ten	minutes.’	Instead,	there	is	mutual
respect	between	teams	and	an	implicit	agreement	that	everyone	does	whatever	it
takes	to	keep	the	deployment	pipeline	running.	We	all	know	that	one	day,	I’ll
break	your	project	by	accident;	the	next	day,	you	may	break	mine.”

What	Mike	Bland	and	the	Testing	Grouplet	team	achieved	has	made	Google	one
of	the	most	productive	technology	organizations	in	the	world.	By	2013,
automated	testing	and	continuous	integration	at	Google	enabled	over	four
thousand	small	teams	to	work	together	and	stay	productive,	all	simultaneously
developing,	integrating,	testing,	and	deploying	their	code	into	production.	All
their	code	is	in	a	single,	shared	repository,	made	up	of	billions	of	files,	all	being
continuously	built	and	integrated,	with	50%	of	their	code	being	changed	each
month.	Some	other	impressive	statistics	on	their	performance	include:

40,000	code	commits/day

50,000	builds/day	(on	weekdays,	this	may	exceed	90,000)

120,000	automated	test	suites

75	million	test	cases	run	daily

100+	engineers	working	on	the	test	engineering,	continuous	integration,	and
release	engineering	tooling	to	increase	developer	productivity	(making	up
0.5%	of	the	R&D	workforce)

In	the	remainder	of	this	chapter,	we	will	go	through	the	continuous	integration
practices	required	to	replicate	these	outcomes.

CONTINUOUSLY	BUILD,	TEST,	AND	INTEGRATE
OUR	CODE	AND	ENVIRONMENTS

Our	goal	is	to	build	quality	into	our	product,	even	at	the	earliest	stages,	by
having	developers	build	automated	tests	as	part	of	their	daily	work.	This	creates
a	fast	feedback	loop	that	helps	developers	find	problems	early	and	fix	them
quickly,	when	there	are	the	fewest	constraints	(e.g.,	time,	resources).

In	this	step,	we	create	automated	test	suites	that	increase	the	frequency	of
integration	and	testing	of	our	code	and	our	environments	from	periodic	to
continuous.	We	do	this	by	building	our	deployment	pipeline,	which	will	perform
integration	of	our	code	and	environments	and	trigger	a	series	of	tests	every	time
a	new	change	is	put	into	version	control.§	(See	figure	13.)

The	deployment	pipeline,	first	defined	by	Jez	Humble	and	David	Farley	in	their
book	Continuous	Delivery:	Reliable	Software	Releases	Through	Build,	Test,	and
Deployment	Automation,	ensures	that	all	code	checked	in	to	version	control	is
automatically	built	and	tested	in	a	production-like	environment.	By	doing	this,
we	find	any	build,	test,	or	integration	errors	as	soon	as	a	change	is	introduced,
enabling	us	to	fix	them	immediately.	Done	correctly,	this	allows	us	to	always	be
assured	that	we	are	in	a	deployable	and	shippable	state.

To	achieve	this,	we	must	create	automated	build	and	test	processes	that	run	in
dedicated	environments.	This	is	critical	for	the	following	reasons:

Our	build	and	test	process	can	run	all	the	time,	independent	of	the	work
habits	of	individual	engineers.

A	segregated	build	and	test	process	ensures	that	we	understand	all	the
dependencies	required	to	build,	package,	run,	and	test	our	code	(i.e.,
removing	the	“it	worked	on	the	developer’s	laptop,	but	it	broke	in
production”	problem).

We	can	package	our	application	to	enable	the	repeatable	installation	of	code
and	configurations	into	an	environment	(e.g.,	on	Linux	RPM,	yum,	npm;	on
Windows,	OneGet;	alternatively	framework-specific	packaging	systems	can
be	used,	such	as	EAR	and	WAR	files	for	Java,	gems	for	Ruby,	etc.).

Instead	of	putting	our	code	in	packages,	we	may	choose	to	package	our
applications	into	deployable	containers	(e.g.,	Docker,	Rkt,	LXD,	AMIs).

Environments	can	be	made	more	production-like	in	a	way	that	is	consistent
and	repeatable	(e.g.,	compilers	are	removed	from	the	environment,
debugging	flags	are	turned	off,	etc.).

Our	deployment	pipeline	validates	after	every	change	that	our	code	successfully
integrates	into	a	production-like	environment.	It	becomes	the	platform	through
which	testers	request	and	certify	builds	during	acceptance	testing	and	usability
testing,	and	it	will	run	automated	performance	and	security	validations.

>

Figure	13:	The	deployment	pipeline	(Source:	Humble	and	Farley,	Continuous
Delivery,	3.)

Furthermore,	it	will	be	used	to	self-service	builds	to	UAT	(user	acceptance
testing),	integration	testing,	and	security	testing	environments.	In	future	steps,	as

we	evolve	the	deployment	pipeline,	it	will	also	be	used	to	manage	all	activities
required	to	take	our	changes	from	version	control	to	deployment.

A	variety	of	tools	have	been	designed	to	provide	deployment	pipeline
functionality,	many	of	them	open	source	(e.g.,	Jenkins,	ThoughtWorks	Go,
Concourse,	Bamboo,	Microsoft	Team	Foundation	Server,	TeamCity,	Gitlab	CI,
as	well	as	cloud-based	solutions	such	as	Travis	CI	and	Snap).¶

We	begin	the	deployment	pipeline	by	running	the	commit	stage,	which	builds
and	packages	the	software,	runs	automated	unity	tests,	and	performs	additional
validation	such	as	static	code	analysis,	duplication	and	test	coverage	analysis,
and	checking	style.**	If	successful,	this	triggers	the	acceptance	stage,	which
automatically	deploys	the	packages	created	in	the	commit	stage	into	a
production-like	environment	and	runs	the	automated	acceptance	tests.

Once	changes	are	accepted	into	version	control,	we	want	to	package	our	code
only	once,	so	that	the	same	packages	are	used	to	deploy	code	throughout	our
entire	deployment	pipeline.	By	doing	this,	code	will	be	deployed	into	our
integrated	test	and	staging	environments	in	the	same	way	that	it	is	deployed	into
production.	This	reduces	variances	that	can	avoid	downstream	errors	that	are
difficult	to	diagnose	(e.g.,	using	different	compilers,	compiler	flags,	library
versions,	or	configurations).††

The	goal	of	the	deployment	pipeline	is	to	provide	everyone	in	the	value	stream,
especially	developers,	the	fastest	possible	feedback	that	a	change	has	taken	us
out	of	a	deployable	state.	This	could	be	a	change	to	our	code,	to	any	of	our
environments,	to	our	automated	tests,	or	even	to	the	deployment	pipeline
infrastructure	(e.g.,	a	Jenkins	configuration	setting).

As	a	result,	our	deployment	pipeline	infrastructure	becomes	as	foundational	for
our	development	processes	as	our	version	control	infrastructure.	Our	deployment

pipeline	also	stores	the	history	of	each	code	build,	including	information	about
which	tests	were	performed	on	which	build,	which	builds	have	been	deployed	to
which	environment,	and	what	the	test	results	were.	In	combination	with	the
information	in	our	version	control	history,	we	can	quickly	determine	what
caused	our	deployment	pipeline	to	break	and,	likely,	how	to	fix	the	error.

This	information	also	helps	us	fulfill	evidence	requirements	for	audit	and
compliance	purposes,	with	evidence	being	automatically	generated	as	part	of
daily	work.

Now	that	we	have	a	working	deployment	pipeline	infrastructure,	we	must	create
our	continuous	integration	practices,	which	require	three	capabilities:

A	comprehensive	and	reliable	set	of	automated	tests	that	validate	we	are	in	a
deployable	state.

A	culture	that	“stops	the	entire	production	line”	when	our	validation	tests
fail.

Developers	working	in	small	batches	on	trunk	rather	than	long-lived	feature
branches.

In	the	next	section,	we	describe	why	fast	and	reliable	automated	testing	is
needed	and	how	to	build	it.

BUILD	A	FAST	AND	RELIABLE	AUTOMATED
VALIDATION	TEST	SUITE

In	the	previous	step,	we	started	to	create	the	automated	testing	infrastructure	that
validates	that	we	have	a	green	build	(i.e.,	whatever	is	in	version	control	is	in	a
buildable	and	deployable	state).	To	underscore	why	we	need	to	perform	this

integration	and	testing	step	continuously,	consider	what	happens	when	we	only
perform	this	operation	periodically,	such	as	during	a	nightly	build	process.

Suppose	we	have	a	team	of	ten	developers,	with	everyone	checking	their	code
into	version	control	daily,	and	a	developer	introduces	a	change	that	breaks	our
nightly	build	and	test	job.	In	this	scenario,	when	we	discover	the	next	day	that
we	no	longer	have	a	green	build,	it	will	take	minutes,	or	more	likely	hours,	for
our	development	team	to	figure	out	which	change	caused	the	problem,	who
introduced	it,	and	how	to	fix	it.

Worse,	suppose	the	problem	wasn’t	caused	by	a	code	change,	but	was	due	to	a
test	environment	issue	(e.g.,	an	incorrect	configuration	setting	somewhere).	The
development	team	may	believe	that	they	fixed	the	problem	because	all	the	unit
tests	pass,	only	to	discover	that	the	tests	will	still	fail	later	that	night.

Further	complicating	the	issue,	ten	more	changes	will	have	been	checked	in	to
version	control	by	the	team	that	day.	Each	of	these	changes	has	the	potential	to
introduce	more	errors	that	could	break	our	automated	tests,	further	increasing	the
difficulty	of	successfully	diagnosing	and	fixing	the	problem.

In	short,	slow	and	periodic	feedback	kills.	Especially	for	larger	development
teams.	The	problem	becomes	even	more	daunting	when	we	have	tens,	hundreds,
or	even	thousands	of	other	developers	checking	their	changes	into	version
control	each	day.	The	result	is	that	our	builds	and	automated	tests	are	frequently
broken,	and	developers	even	stop	checking	their	changes	into	version	control
(“Why	bother,	since	the	builds	and	tests	are	always	broken?”).	Instead	they	wait
to	integrate	their	code	at	the	end	of	the	project,	resulting	in	all	the	undesired
outcomes	of	large	batch	size,	big	bang	integrations,	and	production
deployments.‡‡

To	prevent	this	scenario,	we	need	fast	automated	tests	that	run	within	our	build
and	test	environments	whenever	a	new	change	is	introduced	into	version	control.
In	this	way	we	can	find	and	fix	any	problems	immediately,	as	the	Google	Web
Server	example	demonstrated.	By	doing	this,	we	ensure	our	batches	remains
small,	and,	at	any	given	point	in	time,	we	remain	in	a	deployable	state.

In	general,	automated	tests	fall	into	one	of	the	following	categories,	from	fastest
to	slowest:

Unit	tests:	These	typically	test	a	single	method,	class,	or	function	in
isolation,	providing	assurance	to	the	developer	that	their	code	operates	as
designed.	For	many	reasons,	including	the	need	to	keep	our	tests	fast	and
stateless,	unit	tests	often	“stub	out”	databases	and	other	external
dependencies	(e.g.,	functions	are	modified	to	return	static,	predefined	values,
instead	of	calling	the	real	database).§§

Acceptance	tests:	These	typically	test	the	application	as	a	whole	to	provide
assurance	that	a	higher	level	of	functionality	operates	as	designed	(e.g.,	the
business	acceptance	criteria	for	a	user	story,	the	correctness	of	an	API),	and
that	regression	errors	have	not	been	introduced	(i.e.,	we	broke	functionality
that	was	previously	operating	correctly).	Humble	and	Farley	define	the
difference	between	unit	and	acceptance	testing	as,	“The	aim	of	a	unit	test	is
to	show	that	a	single	part	of	the	application	does	what	the	programmer
intends	it	to....The	objective	of	acceptance	tests	is	to	prove	that	our
application	does	what	the	customer	meant	it	to,	not	that	it	works	the	way	its
programmers	think	it	should.”	After	a	build	passes	our	unit	tests,	our
deployment	pipeline	runs	it	against	our	acceptance	tests.	Any	build	that
passes	our	acceptance	tests	is	then	typically	made	available	for	manual
testing	(e.g.,	exploratory	testing,	UI	testing,	etc.),	as	well	as	for	integration
testing.

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	

AS POSSIBLE
CATCH ERRORS AS EARLY IN OUR AUTOMATED TESTING

behavior. This suite may take a couple of hours to run.”
[acceptance tests] that do hit the real database and involve more end-to-end
database, won’t be found. The second stage build runs a different suite of tests
that involve larger scale interactions, particularly those involving the real
can run very fast, keeping within the ten minute guideline. However any bugs
more localized unit tests with the database completely stubbed out. Such tests
perfectly within reason…[We first] do the compilation and run tests that are
Martin Fowler observes that, in general, “a ten-minute build [and test process] is

80% of our classes have unit tests).¶¶
validation test suite when it drops below a certain level (e.g., when less than
number of classes, lines of code, permutations, etc.), maybe even failing our
may choose to measure and make visible our test coverage (as a function of
of their daily work, regardless of how we’ve defined ‘done.’ To detect this, we
When facing deadline pressures, developers may stop creating unit tests as part

tests becomes an essential architectural requirement.
use virtual or simulated versions of remote services when running acceptance
of our defects as possible during unit and acceptance testing. The ability to
brittle, we want to minimize the number of integration tests and find as many
passed our unit and acceptance tests. Because integration tests are often
whole application.” Integration tests are performed on builds that have
test is usually a fully fledged set of acceptance tests that run against the
of each of the applications until they all cooperate. In this situation the smoke
“much of the work in the SIT environment involves deploying new versions
opposed to calling stubbed out interfaces. As Humble and Farley observe,
correctly interacts with other production applications and services, as
Integration tests: Integration tests are where we ensure that our application

AS	POSSIBLE
A	specific	design	goal	of	our	automated	test	suite	is	to	find	errors	as	early	in	the
testing	as	possible.	This	is	why	we	run	faster-running	automated	tests	(e.g.,	unit
tests)	before	slower-running	automated	tests	(e.g.,	acceptance	and	integration
tests),	which	are	both	run	before	any	manual	testing.

Another	corollary	of	this	principle	is	that	any	errors	should	be	found	with	the
fastest	category	of	testing	possible.	If	most	of	our	errors	are	found	in	our
acceptance	and	integration	tests,	the	feedback	we	provide	to	developers	is	orders
of	magnitude	slower	than	with	unit	tests—and	integration	testing	requires	using
scarce	and	complex	integration	test	environments,	which	can	only	be	used	by
one	team	at	a	time,	further	delaying	feedback.

Furthermore,	not	only	are	errors	detected	during	integration	testing	difficult	and
time-consuming	for	developers	to	reproduce,	even	validating	that	it	has	been
fixed	is	difficult	(i.e.,	a	developer	creates	a	fix	but	then	needs	to	wait	four	hours
to	learn	whether	the	integration	tests	now	pass).

Therefore,	whenever	we	find	an	error	with	an	acceptance	or	integration	test,	we
should	create	a	unit	test	that	could	find	the	error	faster,	earlier,	and	cheaper.
Martin	Fowler	described	the	notion	of	the	“ideal	testing	pyramid,”	where	we	are
able	to	catch	most	of	our	errors	using	our	unit	tests.	(See	figure	14.)	In	contrast,
in	many	testing	programs	the	inverse	is	true,	where	most	of	the	investment	is	in
manual	and	integration	testing.

Figure	14:	The	ideal	and	non-ideal	automated	testing	pyramids	(Source:	Martin
Fowler,	“TestPyramid.”)

If	we	find	that	unit	or	acceptance	tests	are	too	difficult	and	expensive	to	write
and	maintain,	it’s	likely	that	we	have	an	architecture	that	is	too	tightly-coupled,
where	strong	separation	between	our	module	boundaries	no	longer	exist	(or
maybe	never	existed).	In	this	case,	we	will	need	to	create	a	more	loosely-coupled
system	so	modules	can	be	independently	tested	without	integration
environments.	Acceptance	test	suites	for	even	the	most	complex	applications
that	run	in	minutes	are	possible.

ENSURE	TESTS	RUN	QUICKLY	(IN	PARALLEL,	IF
NECESSARY)
Because	we	want	our	tests	to	run	quickly,	we	need	to	design	our	tests	to	run	in
parallel,	potentially	across	many	different	servers.	We	may	also	want	to	run
different	categories	of	tests	in	parallel.	For	example,	when	a	build	passes	our
acceptance	tests,	we	may	run	our	performance	testing	in	parallel	with	our
security	testing,	as	shown	in	figure	15.	We	may	or	may	not	allow	manual

exploratory	testing	until	the	build	has	passed	all	our	automated	tests—which
enables	faster	feedback,	but	may	also	allow	manual	testing	on	builds	that	will
eventually	fail.

We	make	any	build	that	passes	all	our	automated	tests	available	to	use	for
exploratory	testing,	as	well	as	for	other	forms	of	manual	or	resource-intensive
testing	(such	as	performance	testing).	We	want	to	do	all	such	testing	as
frequently	as	possible	and	practical,	either	continually	or	on	a	schedule.

Figure	15:	Running	automated	and	manual	tests	in	parallel	
(Source:	Humble	and	Farley,	Continuous	Delivery,	Kindle	edition,	location	3868.)

Any	tester	(which	includes	all	our	developers)	should	use	the	latest	build	that	has
passed	all	the	automated	tests,	as	opposed	to	waiting	for	developers	to	flag	a
specific	build	as	ready	to	test.	By	doing	this,	we	ensure	that	testing	happens	as
early	in	the	process	as	possible.

WRITE	OUR	AUTOMATED	TESTS	BEFORE	WE	WRITE	THE
CODE	(“TEST-DRIVEN	DEVELOPMENT”)

One	of	the	most	effective	ways	to	ensure	we	have	reliable	automated	testing,	is
to	write	those	tests	as	part	of	our	daily	work,	using	techniques	such	as	test-driven
development	(TDD)	and	acceptance	test-driven	development	(ATDD).	This	is
when	we	begin	every	change	to	the	system	by	first	writing	an	automated	test	that
validates	the	expected	behavior	fails,	and	then	we	write	the	code	to	make	the
tests	pass.

This	technique	was	developed	by	Kent	Beck	in	the	late	1990s	as	part	of	Extreme
Programming,	and	has	the	following	three	steps:

1.	 Ensure	the	tests	fail.	“Write	a	test	for	the	next	bit	of	functionality	you	want	to
add.”	Check	in.

2.	 Ensure	the	tests	pass.	“Write	the	functional	code	until	the	test	passes.”Check
in.

3.	 “Refactor	both	new	and	old	code	to	make	it	well	structured.”Ensure	the	tests
pass.	Check	in	again.

These	automated	test	suites	are	checked	in	to	version	control	alongside	our	code,
which	provides	a	living,	up-to-date	specification	of	the	system.	Developers
wishing	to	understand	how	to	use	the	system	can	look	at	this	test	suite	to	find
working	examples	of	how	to	use	the	system’s	API.***

AUTOMATE	AS	MANY	OF	OUR	MANUAL	TESTS	AS
POSSIBLE
Our	goal	is	to	find	as	many	code	errors	through	our	automated	test	suites,
reducing	our	reliance	on	manual	testing.	In	her	2013	presentation	at	Flowcon
titled	“On	the	Care	and	Feeding	of	Feedback	Cycles,”	Elisabeth	Hendrickson
observed,	“Although	testing	can	be	automated,	creating	quality	cannot.	To	have
humans	executing	tests	that	should	be	automated	is	a	waste	of	human	potential.”

By	doing	this,	we	enable	all	our	testers	(which,	of	course,	includes	developers)
work	on	high-value	activities	that	cannot	be	automated,	such	as	exploratory
testing	or	improving	the	test	process	itself.

However,	merely	automating	all	our	manual	tests	may	create	undesired
outcomes—we	do	not	want	automated	tests	that	are	unreliable	or	generate	false
positives	(i.e.,	tests	that	should	have	passed	because	the	code	is	functionally
correct	but	failed	due	to	problems	such	as	slow	performance,	causing	timeouts,
uncontrolled	starting	state,	or	unintended	state	due	to	using	database	stubs	or
shared	test	environments).

Unreliable	tests	that	generate	false	positives	create	significant	problems—they
waste	valuable	time	(e.g.,	forcing	developers	to	re-run	the	test	to	determine
whether	there	is	actually	a	problem),	increase	the	overall	effort	of	running	and
interpreting	our	test	results,	and	often	result	in	stressed	developers	ignoring	test
results	entirely	or	turning	off	the	automated	tests	in	favor	of	focusing	on	creating
code.

The	result	is	always	the	same:	we	detect	the	problems	later,	the	problems	are
more	difficult	to	fix,	and	our	customers	have	worse	outcomes,	which	in	turn
creates	stress	across	the	value	stream.

To	mitigate	of	this,	a	small	number	of	reliable,	automated	tests	are	almost
always	preferable	over	a	large	number	of	manual	or	unreliable	automated	tests.
Therefore,	we	focus	on	automating	only	the	tests	that	genuinely	validate	the
business	goals	we	are	trying	to	achieve.	If	abandoning	a	test	results	in	production
defects,	we	should	add	it	back	to	our	manual	test	suite,	with	the	ideal	of
eventually	automating	it.

As	Gary	Gruver,	formerly	VP	of	Quality	Engineering,	Release	Engineering,	and
Operations	for	Macys.com,	described	observes,	“For	a	large	retailer	e-commerce

site,	we	went	from	running	1,300	manual	tests	that	we	ran	every	ten	days	to
running	only	ten	automated	tests	upon	every	code	commit—it’s	far	better	to	run
a	few	tests	that	we	trust	than	to	run	tests	that	aren’t	reliable.	Over	time,	we	grew
this	test	suite	to	having	hundreds	of	thousands	of	automated	tests.”

In	other	words,	we	start	with	a	small	number	of	reliable	automated	tests	and	add
to	them	over	time,	creating	an	ever-increasing	level	of	assurance	that	we	will
quickly	detect	any	changes	to	the	system	that	take	us	out	of	a	deployable	state.

INTEGRATE	PERFORMANCE	TESTING	INTO	OUR	TEST
SUITE
All	too	often,	we	discover	that	our	application	performs	poorly	during
integration	testing	or	after	it	has	been	deployed	to	production.	Performance
problems	are	often	difficult	to	detect,	such	as	when	things	slow	down	over	time,
going	unnoticed	until	it	is	too	late	(e.g.,	database	queries	without	an	index).	And
many	problems	are	difficult	to	solve,	especially	when	they	are	caused	by
architectural	decisions	we	made	or	unforeseen	limitations	of	our	networking,
database,	storage,	or	other	systems.

Our	goal	is	to	write	and	run	automated	performance	tests	that	validate	our
performance	across	the	entire	application	stack	(code,	database,	storage,
network,	virtualization,	etc.)	as	part	of	the	deployment	pipeline,	so	we	detect
problems	early,	when	the	fixes	are	cheapest	and	fastest.

By	understanding	how	our	application	and	environments	behave	under	a
production-like	load,	we	can	do	a	far	better	job	at	capacity	planning,	as	well	as
detecting	conditions	such	as:

When	our	database	query	times	grow	non-linearly	(e.g.,	we	forget	to	turn	on
database	indexing,	and	page	load	goes	from	one	hundred	minutes	to	thirty
seconds).

When	a	code	change	causes	the	number	of	database	calls,	storage	use,	or
network	traffic	to	increase	ten-fold.

When	we	have	acceptance	tests	that	are	able	to	be	run	in	parallel,	we	can	use
them	as	the	basis	of	our	performance	tests.	For	instance,	suppose	we	run	an	e-
commerce	site	and	have	identified	“search”	and	“checkout”	as	two	high-value
operations	that	must	perform	well	under	load.	To	test	this,	we	may	run	thousands
of	parallel	search	acceptance	tests	simultaneously	with	thousands	of	parallel
checkout	tests.

Due	to	the	large	amount	of	compute	and	I/O	that	is	required	to	run	performance
tests,	creating	a	performance	testing	environment	can	easily	be	more	complex
than	creating	the	production	environment	for	the	application	itself.	Because	of
this,	we	may	build	our	performance	testing	environment	at	the	start	of	any
project	and	ensure	that	we	dedicate	whatever	resources	are	required	to	build	it
early	and	correctly.

To	find	performance	problems	early,	we	should	log	performance	results	and
evaluate	each	performance	run	against	previous	results.	For	instance,	we	might
fail	the	performance	tests	if	performance	deviates	more	than	2%	from	the
previous	run.

INTEGRATE	NON-FUNCTIONAL	REQUIREMENTS	TESTING
INTO	OUR	TEST	SUITE
In	addition	to	testing	that	our	code	functions	as	designed	and	it	performs	under
production-like	loads,	we	also	want	to	validate	every	other	attribute	of	the
system	we	care	about.	These	are	often	called	non-functional	requirements,	which
include	availability,	scalability,	capacity,	security,	and	so	forth.

Many	of	these	requirements	are	fulfilled	by	the	correct	configuration	of	our
environments,	so	we	must	also	build	automated	tests	to	validate	that	our

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	

	 	 	

	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	
	 	

DEPLOYMENT PIPELINE BREAKS
PULL OUR ANDON CORD WHEN THE

to get back into a green build state.
that when someone breaks the deployment pipeline, we take all necessary steps
and that we are in a deployable state. Now, we must create an Andon cord so
At any point in time, our automated tests can validate that we have a green build

configured securely and correctly (e.g., server-spec).
hardening checks as part of our automated tests to ensure that everything is
Foodcritic for Chef, puppet-lint for Puppet). We should also run any security
should run tools that analyze the code that constructs our environments (e.g.,
deployment pipeline (e.g., static code analysis, test coverage analysis), we
Furthermore, similar to how we run analysis tools on our application in our

tests).
operating correctly (e.g., encoding environment tests into cucumber or gherkin
we use to test our code to also test that our environments are configured and
Puppet, Chef, Ansible, Salt, Bosh), we can use the same testing frameworks that
When we use infrastructure as code configuration management tools (e.g.,

All dependencies

Operating systems (e.g., audit logging enabled, etc.)

Language interpreters, compilers, etc.

Supporting applications, databases, libraries, etc.

functional requirements rely upon (e.g., security, performance, availability):
enforce the consistency and correctness of the following, which many non-
environments have been built and configured properly. For example, we want to

DEPLOYMENT	PIPELINE	BREAKS

When	we	have	a	green	build	in	our	deployment	pipeline,	we	have	a	high	degree
of	confidence	that	our	code	and	environment	will	operate	as	designed	when	we
deploy	our	changes	into	production.

In	order	to	keep	our	deployment	pipeline	in	a	green	state,	we	will	create	a	virtual
Andon	Cord,	similar	to	the	physical	one	in	the	Toyota	Production	System.
Whenever	someone	introduces	a	change	that	causes	our	build	or	automated	tests
to	fail,	no	new	work	is	allowed	to	enter	the	system	until	the	problem	is	fixed.
And	if	someone	needs	help	to	resolve	the	problem,	they	can	bring	in	whatever
help	they	need,	as	in	the	Google	example	at	the	beginning	of	this	chapter.

When	our	deployment	pipeline	is	broken,	at	a	minimum,	we	notify	the	entire
team	of	the	failure,	so	anyone	can	either	fix	the	problem	or	rollback	the	commit.
We	may	even	configure	the	version	control	system	to	prevent	further	code
commits	until	the	first	stage	(i.e.,	builds	and	unit	tests)	of	the	deployment
pipeline	is	back	in	a	green	state.	If	the	problem	was	due	to	an	automated	test
generating	a	false	positive	error,	the	offending	test	should	either	be	rewritten	or
removed.†††	Every	member	of	the	team	should	be	empowered	to	roll	back	the
commit	to	get	back	into	a	green	state.

Randy	Shoup,	former	engineering	director	for	Google	App	Engine,	wrote	about
the	importance	of	bringing	the	deployment	back	into	a	green	state.	“We
prioritize	the	team	goals	over	individual	goals—whenever	we	help	someone
move	their	work	forward,	we	help	the	entire	team.	This	applies	whether	we’re
helping	someone	fix	the	build	or	an	automated	test,	or	even	performing	a	code
review	for	them.	And	of	course,	we	know	that	they’ll	do	the	same	for	us,	when
we	need	help.	This	system	worked	without	a	lot	of	formality	or	policy—
everyone	knew	that	our	job	was	not	just	‘write	code,’	but	it	was	to	‘run	a
service.’	This	is	why	we	prioritized	all	quality	issues,	especially	those	related	to

reliability	and	scaling,	at	the	highest	level,	treating	them	as	a	Priority	0	‘show-
stopper’	problems.	From	a	systems	perspective,	these	practices	keep	us	from
slipping	backwards.”

When	later	stages	of	the	deployment	pipeline	fail,	such	as	acceptance	tests	or
performance	tests,	instead	of	stopping	all	new	work,	we	will	have	developers
and	testers	on-call	who	are	responsible	for	fixing	these	problems	immediately.
They	should	also	create	new	tests	that	run	at	an	earlier	stage	in	the	deployment
pipeline	to	catch	any	future	regressions.	For	example,	if	we	discover	a	defect	in
our	acceptance	tests,	we	should	write	a	unit	test	to	catch	the	problem.	Similarly,
if	we	discover	a	defect	in	exploratory	testing,	we	should	write	a	unit	or
acceptance	test.

To	increase	the	visibility	of	automated	test	failures,	we	should	create	highly
visible	indicators	so	that	the	entire	team	can	see	when	our	build	or	automated
tests	are	failing.	Many	teams	have	created	highly	visible	build	lights	that	get
mounted	on	a	wall,	indicating	the	current	build	status,	or	other	fun	ways	of
telling	the	team	the	build	is	broken,	including	lava	lamps,	playing	a	voice	sample
or	song,	klaxons,	traffic	lights,	and	so	forth.

In	many	ways,	this	step	is	more	challenging	than	creating	our	builds	and	test
servers—those	were	purely	technical	activities,	whereas	this	step	requires
changing	human	behavior	and	incentives.	However,	continuous	integration	and
continuous	delivery	require	these	changes,	as	we	explore	in	the	next	section.

WHY	WE	NEED	TO	PULL	THE	ANDON	CORD
The	consequence	of	not	pulling	the	Andon	cord	and	immediately	fixing	any
deployment	pipeline	issues	results	in	the	all	too	familiar	problem	where	it
becomes	ever	more	difficult	to	bring	our	applications	and	environment	back	into
a	deployable	state.	Consider	the	following	situation:

Someone	checks	in	code	that	breaks	the	build	or	our	automated	tests,	but	no
one	fixes	it.

Someone	else	checks	in	another	change	onto	the	broken	build,	which	also
doesn’t	pass	our	automated	tests—but	no	one	sees	the	failing	test	results
which	would	have	enabled	us	to	see	the	new	defect,	let	alone	fix	it.

Our	existing	tests	don’t	run	reliably,	so	we	are	very	unlikely	to	build	new
tests.	(Why	bother?	We	can’t	even	get	the	current	tests	to	run.)

When	this	happens,	our	deployments	to	any	environment	become	as	unreliable
as	when	we	had	no	automated	tests	or	were	using	a	waterfall	method,	where	the
majority	of	our	problems	are	being	discovered	in	production.	The	inevitable
outcome	of	this	vicious	cycle	is	that	we	end	up	where	we	started,	with	an
unpredictable	“stabilization	phase”	that	takes	weeks	or	months	where	our	whole
team	is	plunged	into	crisis,	trying	to	get	all	our	tests	to	pass,	taking	shortcuts
because	of	deadline	pressures,	and	adding	to	our	technical	debt.‡‡‡

CONCLUSION

In	this	chapter,	we	have	created	a	comprehensive	set	of	automated	tests	to
confirm	that	we	have	a	green	build	that	is	still	in	a	passing	and	deployable	state.
We	have	organized	our	test	suites	and	testing	activities	into	a	deployment
pipeline.	We	have	also	created	the	cultural	norm	of	doing	whatever	it	takes	to
get	back	into	a	green	build	state	if	someone	introduces	a	change	that	breaks	any
of	our	automated	tests.

By	doing	this,	we	set	the	stage	for	implementing	continuous	integration,	which
allows	many	small	teams	to	independently	and	safely	develop,	test,	and	deploy
code	into	production,	delivering	value	to	customers.

†	Bland	described	that	at	Google,	one	of	the	consequences	of	having	so	many	talented	developers	was	that	it	created	“imposter
syndrome,”	a	term	coined	by	psychologists	to	informally	describe	people	who	are	unable	to	internalize	their	accomplishments.
Wikipedia	states	that	“despite	external	evidence	of	their	competence,	those	exhibiting	the	syndrome	remain	convinced	that	they	are
frauds	and	do	not	deserve	the	success	they	have	achieved.	Proof	of	success	is	dismissed	as	luck,	timing,	or	as	a	result	of	deceiving
others	into	thinking	they	are	more	intelligent	and	competent	than	they	believe	themselves	to	be.”

‡	They	created	training	programs,	pushed	the	famous	Testing	on	the	Toilet	newsletter	(which	they	posted	in	the	bathrooms),	the	Test
Certified	roadmap	and	certification	program,	and	led	multiple	“fix-it”	days	(i.e.,	improvement	blitzes),	which	helped	teams	improve
their	automated	testing	processes	so	they	could	replicate	the	amazing	outcomes	that	the	GWS	team	was	able	to	achieve.

§	In	Development,	continuous	integration	often	refers	to	the	continuous	integration	of	multiple	code	branches	into	trunk	and	ensuring
that	it	passes	unit	tests.	However,	in	the	context	of	continuous	delivery	and	DevOps,	continuous	integration	also	mandates	running
on	production-like	environments	and	passing	acceptance	and	integration	tests.	Jez	Humble	and	David	Farley	disambiguate	these	by
calling	the	latter	CI+.	In	this	book,	continuous	integration	will	always	refer	to	CI+	practices.

¶	If	we	create	containers	in	our	deployment	pipeline	and	have	an	architecture	such	as	microservices,	we	can	enable	each	developer	to
build	immutable	artifacts	where	developers	assemble	and	run	all	the	service	components	in	an	environment	identical	to	production
on	their	workstation.	This	enables	developers	to	build	and	run	more	tests	on	their	workstation	instead	of	on	testing	servers,	giving
us	even	faster	feedback	on	their	work.

**	We	may	even	require	that	these	tools	are	run	before	changes	are	accepted	into	version	control	(e.g.,	get	pre-commit	hooks).	We	may
also	run	these	tools	within	the	developer	integrated	development	environment	(IDE;	where	the	developer	edits,	compiles,	and	runs
code),	which	creates	an	even	faster	feedback	loop.

††	We	can	also	use	containers,	such	as	Docker,	as	the	packaging	mechanism.	Containers	enable	the	capability	to	write	once,	run
anywhere.	These	containers	are	created	as	part	of	our	build	process	and	can	be	quickly	deployed	and	run	in	any	environment.
Because	the	same	container	is	run	in	every	environment,	we	help	enforce	the	consistency	of	all	our	build	artifacts.

‡‡	It	is	exactly	this	problem	that	led	to	the	development	of	continuous	integration	practices.

§§	There	is	a	broad	category	of	architectural	and	testing	techniques	used	to	handle	the	problems	of	tests	requiring	input	from	external
integration	points,	including	“stubs,”	“mocks,”	“service	virtualization,”	and	so	forth.	This	becomes	even	more	important	for
acceptance	and	integration	testing,	which	place	far	more	reliance	on	external	states.

¶¶	We	should	do	this	only	when	our	teams	already	value	automated	testing—this	type	of	metric	is	easily	gamed	by	developers	and
managers.

***	Nachi	Nagappan,	E.	Michael	Maximilien,	and	Laurie	Williams	(from	Microsoft	Research,	IBM	Almaden	Labs,	and	North
Carolina	State	University,	respectively)	conducted	a	study	that	showed	teams	using	TDD	produced	code	60%–90%	better	in	terms
of	defect	density	than	non-TDD	teams,	while	taking	only	15%–35%	longer.

†††	If	the	process	for	rolling	back	the	code	is	not	well-known,	a	potential	countermeasure	is	to	schedule	a	pair	programmed	rollback,
so	that	it	can	be	better	documented.

‡‡‡	This	is	sometimes	called	the	water-Scrum-fall	anti-pattern,	which	refers	to	when	an	organization	claims	to	be	using	Agile-like
practices,	but,	in	reality,	all	testing	and	defect	fixing	are	performed	at	the	end	of	the	project.

11Enable	and	Practice
Continuous	Integration

In	the	previous	chapter,	we	created	the	automated	testing	practices	to	ensure	that
developers	get	fast	feedback	on	the	quality	of	their	work.	This	becomes	even
more	important	as	we	increase	the	number	of	developers	and	the	number	of
branches	they	work	on	in	version	control.

The	ability	to	“branch”	in	version	control	systems	was	created	primarily	to
enable	developers	to	work	on	different	parts	of	the	software	system	in	parallel,
without	the	risk	of	individual	developers	checking	in	changes	that	could
destabilize	or	introduce	errors	into	trunk	(sometimes	also	called	master	or
mainline).†

However,	the	longer	developers	are	allowed	to	work	in	their	branches	in
isolation,	the	more	difficult	it	becomes	to	integrate	and	merge	everyone’s
changes	back	into	trunk.	In	fact,	integrating	those	changes	becomes
exponentially	more	difficult	as	we	increase	the	number	of	branches	and	the
number	of	changes	in	each	code	branch.

Integration	problems	result	in	a	significant	amount	of	rework	to	get	back	into	a
deployable	state,	including	conflicting	changes	that	must	be	manually	merged	or
merges	that	break	our	automated	or	manual	tests,	usually	requiring	multiple
developers	to	successfully	resolve.	And	because	integration	has	traditionally

been	done	at	the	end	of	the	project,	when	it	takes	far	longer	then	planned,	we	are
often	forced	to	cut	corners	to	make	the	release	date.

This	causes	another	downward	spiral:	when	merging	code	is	painful,	we	tend	to
do	it	less	often,	making	future	merges	even	worse.	Continuous	integration	was
designed	to	solve	this	problem	by	making	merging	into	trunk	a	part	of
everyone’s	daily	work.

The	surprising	breadth	of	problems	that	continuous	integration	solves,	as	well	as
the	solutions	themselves,	are	exemplified	in	Gary	Gruver’s	experience	as	the
director	of	engineering	for	HP’s	LaserJet	Firmware	division,	which	builds	the
firmware	that	runs	all	their	scanners,	printers,	and	multifunction	devices.

The	team	consisted	of	four	hundred	developers	distributed	across	the	US,	Brazil,
and	India.	Despite	the	size	of	their	team,	they	were	moving	far	too	slowly.	For
years,	they	were	unable	to	deliver	new	features	as	quickly	as	the	business
needed.

Gruver	described	the	problem	thusly:	“Marketing	would	come	to	us	with	a
million	ideas	to	dazzle	our	customer,	and	we’d	just	tell	them,	‘Out	of	your	list,
pick	the	two	things	you’d	like	to	get	in	the	next	six	to	twelve	months.’”

They	were	only	completing	two	firmware	releases	per	year,	with	the	majority	of
their	time	spent	porting	code	to	support	new	products.	Gruver	estimated	that
only	5%	of	their	time	was	spent	creating	new	features—the	rest	of	the	time	was
spent	on	non-productive	work	associated	with	their	technical	debt,	such	as
managing	multiple	code	branches	and	manual	testing,	as	shown	below:

20%	on	detailed	planning	(Their	poor	throughput	and	high	lead	times	were
misattributed	to	faulty	estimation,	and	so,	hoping	to	get	a	better	answer,	they
were	asked	to	estimate	the	work	in	greater	detail.)

25%	spent	porting	code,	all	maintained	on	separate	code	branches

10%	spent	integrating	their	code	between	developer	branches

15%	spent	completing	manual	testing

Gruver	and	his	team	created	a	goal	of	increasing	the	time	spent	on	innovation
and	new	functionality	by	a	factor	of	ten.	The	team	hoped	this	goal	could	be
achieved	through:

Continuous	integration	and	trunk-based	development

Significant	investment	in	test	automation

Creation	of	a	hardware	simulator	so	tests	could	be	run	on	a	virtual	platform

The	reproduction	of	test	failures	on	developer	workstations

A	new	architecture	to	support	running	all	printers	off	a	common	build	and
release

Before	this,	each	product	line	would	require	a	new	code	branch,	with	each	model
having	a	unique	firmware	build	with	capabilities	defined	at	compile	time.‡	The
new	architecture	would	have	all	developers	working	in	a	common	code	base,
with	a	single	firmware	release	supporting	all	LaserJet	models	built	off	of	trunk,
with	printer	capabilities	being	established	at	runtime	in	an	XML	configuration
file.

Four	years	later,	they	had	one	codebase	supporting	all	twenty-four	HP	LaserJet
product	lines	being	developed	on	trunk.	Gruver	admits	trunk-based	development
requires	a	big	mindset	shift.	Engineers	thought	trunk-based	development	would
never	work,	but	once	they	started,	they	couldn’t	imagine	ever	going	back.	Over
the	years	we’ve	had	several	engineers	leave	HP,	and	they	would	call	me	to	tell

me	about	how	backward	development	was	in	their	new	companies,	pointing	out
how	difficult	it	is	to	be	effective	and	release	good	code	when	there	is	no
feedback	that	continuous	integration	gives	them.

However,	trunk-based	development	required	them	to	build	more	effective
automated	testing.	Gruver	observed,	“Without	automated	testing,	continuous
integration	is	the	fastest	way	to	get	a	big	pile	of	junk	that	never	compiles	or	runs
correctly.”	In	the	beginning,	a	full	manual	testing	cycle	required	six	weeks.

In	order	to	have	all	firmware	builds	automatically	tested,	they	invested	heavily
in	their	printer	simulators	and	created	a	testing	farm	in	six	weeks—within	a	few
years	two	thousand	printer	simulators	ran	on	six	racks	of	servers	that	would	load
the	firmware	builds	from	their	deployment	pipeline.	Their	continuous	integration
(CI)	system	ran	their	entire	set	of	automated	unit,	acceptance,	and	integration
tests	on	builds	from	trunk,	just	as	described	in	the	previous	chapter.
Furthermore,	they	created	a	culture	that	halted	all	work	anytime	a	developer
broke	the	deployment	pipeline,	ensuring	that	developers	quickly	brought	the
system	back	into	a	green	state.

Automated	testing	created	fast	feedback	that	enabled	developers	to	quickly
confirm	that	their	committed	code	actually	worked.	Unit	tests	would	run	on	their
workstations	in	minutes,	three	levels	of	automated	testing	would	run	on	every
commit	as	well	as	every	two	and	four	hours.	The	final	full	regression	testing
would	run	every	twenty-four	hours.	During	this	process,	they:

Reduced	the	build	to	one	build	per	day,	eventually	doing	ten	to	fifteen	builds
per	day

Went	from	around	twenty	commits	per	day	performed	by	a	“build	boss”	to
over	one	hundred	commits	per	day	performed	by	individual	developers

Enabled	developers	to	change	or	add	75k–100k	lines	of	code	each	day

Reduced	regression	test	times	from	six	weeks	to	one	day

This	level	of	productivity	could	never	have	been	supported	prior	to	adopting
continuous	integration,	when	merely	creating	a	green	build	required	days	of
heroics.	The	resulting	business	benefits	were	astonishing:

Time	spent	on	driving	innovation	and	writing	new	features	increased	from
5%	of	developer	time	to	40%.

Overall	development	costs	were	reduced	by	approximately	40%.

Programs	under	development	were	increased	by	about	140%.

Development	costs	per	program	were	decreased	by	78%.

What	Gruver’s	experience	shows	is	that,	after	comprehensive	use	of	version
control,	continuous	integration	is	one	of	the	most	critical	practices	that	enable
the	fast	flow	of	work	in	our	value	stream,	enabling	many	development	teams	to
independently	develop,	test,	and	deliver	value.	Nevertheless,	continuous
integration	remains	a	controversial	practice.	The	remainder	of	this	chapter
describes	the	practices	required	to	implement	continuous	integration,	as	well	as
how	to	overcome	common	objections.

SMALL	BATCH	DEVELOPMENT	AND	WHAT
HAPPENS	WHEN	WE	COMMIT	CODE	TO	TRUNK
INFREQUENTLY

As	described	in	the	previous	chapters,	whenever	changes	are	introduced	into
version	control	that	cause	our	deployment	pipeline	to	fail,	we	quickly	swarm	the
problem	to	fix	it,	bringing	our	deployment	pipeline	back	into	a	green	state.

However,	significant	problems	result	when	developers	work	in	long-lived
private	branches	(also	known	as	“feature	branches”),	only	merging	back	into
trunk	sporadically,	resulting	in	a	large	batch	size	of	changes.	As	described	in	the
HP	LaserJet	example,	what	results	is	significant	chaos	and	rework	in	order	to	get
their	code	into	a	releasable	state.

Jeff	Atwood,	founder	of	the	Stack	Overflow	site	and	author	of	the	Coding
Horror	blog,	observes	that	while	there	are	many	branching	strategies,	they	can
all	be	put	on	the	following	spectrum:

Optimize	for	individual	productivity:	Every	single	person	on	the	project
works	in	their	own	private	branch.	Everyone	works	independently,	and
nobody	can	disrupt	anyone	else’s	work;	however,	merging	becomes	a
nightmare.	Collaboration	becomes	almost	comically	difficult—every
person’s	work	has	to	be	painstakingly	merged	with	everyone	else’s	work	to
see	even	the	smallest	part	of	the	complete	system.

Optimize	for	team	productivity:	Everyone	works	in	the	same	common
area.	There	are	no	branches,	just	a	long,	unbroken	straight	line	of
development.	There’s	nothing	to	understand,	so	commits	are	simple,	but	each
commit	can	break	the	entire	project	and	bring	all	progress	to	a	screeching
halt.

Atwood’s	observation	is	absolutely	correct—stated	more	precisely,	the	required
effort	to	successfully	merge	branches	back	together	increases	exponentially	as
the	number	of	branches	increase.	The	problem	lies	not	only	in	the	rework	this
“merge	hell”	creates,	but	also	in	the	delayed	feedback	we	receive	from	our
deployment	pipeline.	For	instance,	instead	of	performance	testing	against	a	fully
integrated	system	happening	continuously,	it	will	likely	happen	only	at	the	end
of	our	process.

Furthermore,	as	we	increase	the	rate	of	code	production	as	we	add	more
developers,	we	increase	the	probability	that	any	given	change	will	impact
someone	else	and	increase	the	number	of	developers	who	will	be	impacted	when
someone	breaks	the	deployment	pipeline.

Here	is	one	last	troubling	side	effect	of	large	batch	size	merges:	when	merging	is
difficult,	we	become	less	able	and	motivated	to	improve	and	refactor	our	code,
because	refactorings	are	more	likely	to	cause	rework	for	everyone	else.	When
this	happens,	we	are	more	reluctant	to	modify	code	that	has	dependencies
throughout	the	codebase,	which	is	(tragically)	where	we	may	have	the	highest
payoffs.

This	is	how	Ward	Cunningham,	developer	of	the	first	wiki,	first	described
technical	debt:	when	we	do	not	aggressively	refactor	our	codebase,	it	becomes
more	difficult	to	make	changes	and	to	maintain	over	time,	slowing	down	the	rate
at	which	we	can	add	new	features.	Solving	this	problem	was	one	of	the	primary
reasons	behind	the	creation	of	continuous	integration	and	trunk-based
development	practices,	to	optimize	for	team	productivity	over	individual
productivity.

ADOPT	TRUNK-BASED	DEVELOPMENT
PRACTICES

Our	countermeasure	to	large	batch	size	merges	is	to	institute	continuous
integration	and	trunk-based	development	practices,	where	all	developers	check
in	their	code	to	trunk	at	least	once	per	day.	Checking	code	in	this	frequently
reduces	our	batch	size	to	the	work	performed	by	our	entire	developer	team	in	a
single	day.	The	more	frequently	developers	check	in	their	code	to	trunk,	the
smaller	the	batch	size	and	the	closer	we	are	to	the	theoretical	ideal	of	single-
piece	flow.

Frequent	code	commits	to	trunk	means	we	can	run	all	automated	tests	on	our
software	system	as	a	whole	and	receive	alerts	when	a	change	breaks	some	other
part	of	the	application	or	interferes	with	the	work	of	another	developer.	And
because	we	can	detect	merge	problems	when	they	are	small,	we	can	correct	them
faster.

We	may	even	configure	our	deployment	pipeline	to	reject	any	commits	(e.g.,
code	or	environment	changes)	that	take	us	out	of	a	deployable	state.	This	method
is	called	gated	commits,	where	the	deployment	pipeline	first	confirms	that	the
submitted	change	will	successfully	merge,	build	as	expected,	and	pass	all	the
automated	tests	before	actually	being	merged	into	trunk.	If	not,	the	developer
will	be	notified,	allowing	corrections	to	be	made	without	impacting	anyone	else
in	the	value	stream.

The	discipline	of	daily	code	commits	also	forces	us	to	break	our	work	down	into
smaller	chunks	while	still	keeping	trunk	in	a	working,	releasable	state.	And
version	control	becomes	an	integral	mechanism	of	how	the	team	communicates
with	each	other—everyone	has	a	better	shared	understanding	of	the	system,	is
aware	of	the	state	of	the	deployment	pipeline,	and	can	help	each	other	when	it
breaks.	As	a	result,	we	achieve	higher	quality	and	faster	deployment	lead	times.

Having	these	practices	in	place,	we	can	now	again	modify	our	definition	of
“done”	(addition	in	bold	text):	“At	the	end	of	each	development	interval,	we
must	have	integrated,	tested,	working,	and	potentially	shippable	code,
demonstrated	in	a	production-like	environment,	created	from	trunk	using	a
one-click	process,	and	validated	with	automated	tests.”

Adhering	to	this	revised	definition	of	done	helps	us	further	ensure	the	ongoing
testability	and	deployability	of	the	code	we’re	producing.	By	keeping	our	code
in	a	deployable	state,	we	are	able	to	eliminate	the	common	practice	of	having	a
separate	test	and	stabilization	phase	at	the	end	of	the	project.

Case	Study	
Continuous	Integration	at	Bazaarvoice	(2012)

Ernest	Mueller,	who	helped	engineer	the	DevOps	transformation	at
National	Instruments,	later	helped	transform	the	development	and
release	processes	at	Bazaarvoice	in	2012.	Bazaarvoice	supplies
customer	generated	content	(e.g.,	reviews,	ratings)	for	thousands	of
retailers,	such	as	Best	Buy,	Nike,	and	Walmart.

At	that	time,	Bazaarvoice	had	$120	million	in	revenue	and	was
preparing	for	an	IPO.§	The	business	was	primarily	driven	by	the
Bazaarvoice	Conversations	application,	a	monolithic	Java
application	comprised	of	nearly	five	million	lines	of	code	dating	back
to	2006,	spanning	fifteen	thousand	files.	The	service	ran	on	1,200
servers	across	four	data	centers	and	multiple	cloud	service
providers.

Partially	as	a	result	of	switching	to	an	Agile	development	process
and	to	two-week	development	intervals,	there	was	a	tremendous
desire	to	increase	release	frequency	from	their	current	ten-week
production	release	schedule.	They	had	also	started	to	decouple
parts	of	their	monolithic	application,	breaking	it	down	into
microservices.

Their	first	attempt	at	a	two-week	release	schedule	was	in	January
of	2012.	Mueller	observed,	“It	didn’t	go	well.	It	caused	massive
chaos,	with	forty-four	production	incidents	filed	by	our	customers.
The	major	reaction	from	management	was	basically	‘Let’s	not	ever
do	that	again.’”

Mueller	took	over	the	release	processes	shortly	afterward,	with	the
goal	of	doing	bi-weekly	releases	without	causing	customer
downtime.	The	business	objectives	for	releasing	more	frequently
included	enabling	faster	A/B	testing	(described	in	upcoming
chapters)	and	increasing	the	flow	of	features	into	production.
Mueller	identified	three	core	problems:

Lack	of	test	automation	made	any	level	of	testing	during	the	two-
week	intervals	inadequate	to	prevent	large-scale	failures.

The	version	control	branching	strategy	allowed	developers	to
check	in	new	code	right	up	to	the	production	release.

The	teams	running	microservices	were	also	performing
independent	releases,	which	were	often	causing	issues	during	the
monolith	release	or	vice	versa.

Mueller	concluded	that	the	monolithic	Conversations	application
deployment	process	needed	to	be	stabilized,	which	required
continuous	integration.	In	the	six	weeks	that	followed,	developers
stopped	doing	feature	work	to	focus	instead	on	writing	automated
testing	suites,	including	unit	tests	in	JUnit,	regression	tests	in
Selenium,	and	getting	a	deployment	pipeline	running	in	TeamCity.
“By	running	these	tests	all	the	time,	we	felt	like	we	could	make
changes	with	some	level	of	safety.	And	most	importantly,	we	could
immediately	find	when	someone	broke	something,	as	opposed	to
discovering	it	only	after	it’s	in	production.”

They	also	changed	to	a	trunk/branch	release	model,	where	every
two	weeks	they	created	a	new	dedicated	release	branch,	with	no
new	commits	allowed	to	that	branch	unless	there	was	an

emergency—all	changes	would	be	worked	through	a	sign-off
process,	either	per-ticket	or	per-team	through	their	internal	wiki.
That	branch	would	go	through	a	QA	process,	which	would	then	be
promoted	into	production.

The	improvements	to	predictability	and	quality	of	the	releases	were
startling:

January	2012	release:	forty-four	customer	incidents	(continuous
integration	effort	begins)

March	6,	2012	release:	five	days	late,	five	customer	incidents

March	22,	2012	release:	on	time,	one	customer	incident

April	5,	2012	release:	on	time,	zero	customer	incidents

Mueller	further	described	how	successful	this	effort	was:

We	had	such	success	with	releases	every	two	weeks,	we
went	to	weekly	releases,	which	required	almost	no	changes
from	the	engineering	teams.	Because	releases	became	so
routine,	it	was	as	simple	as	doubling	the	number	of	releases
on	the	calendar	and	releasing	when	the	calendar	told	us	to.
Seriously,	it	was	almost	a	non-event.	The	majority	of	changes
required	were	in	our	customer	service	and	marketing	teams,
who	had	to	change	their	processes,	such	as	changing	the
schedule	of	their	weekly	customer	emails	to	make	sure
customers	knew	that	feature	changes	were	coming.	After	that,
we	started	working	toward	our	next	goals,	which	eventually
led	to	speeding	up	our	testing	times	from	three	plus	hours	to
less	than	an	hour,	reducing	the	number	of	environments	from

four	to	three	(Dev,	Test,	Production,	eliminating	Staging),	and
moving	to	a	full	continuous	delivery	model	where	we	enable
fast,	one-click	deployments.

CONCLUSION

Trunk-based	development	is	likely	the	most	controversial	practice	discussed	in
this	book.	Many	engineers	will	not	believe	that	it’s	possible,	even	those	that
prefer	working	uninterrupted	on	a	private	branch	without	having	to	deal	with
other	developers.	However,	the	data	from	Puppet	Labs’	2015	State	of	DevOps
Report	is	clear:	trunk-based	development	predicts	higher	throughput	and	better
stability,	and	even	higher	job	satisfaction	and	lower	rates	of	burnout.

While	convincing	developers	may	be	difficult	at	first,	once	they	see	the
extraordinary	benefits,	they	will	likely	become	lifetime	converts,	as	the	HP
LaserJet	and	Bazaarvoice	examples	illustrate.	Continuous	integration	practices
set	the	stage	for	the	next	step,	which	is	automating	the	deployment	process	and
enabling	low-risk	releases.

†	Branching	in	version	control	has	been	used	in	many	ways,	but	is	typically	used	to	divide	work	between	team	members	by	release,
promotion,	task,	component,	technology	platforms,	and	so	forth.

‡	Compile	flags	(#define	and	#ifdef)	were	used	to	enable/disable	code	execution	for	presence	of	copiers,	paper	size	supported,	and	so
on.

§	The	production	release	was	delayed	due	to	their	(successful)	IPO.

12Automate	and	Enable
Low-Risk	Releases

Chuck	Rossi	is	the	director	of	release	engineering	at	Facebook.	One	of	his
responsibilities	is	overseeing	the	daily	code	push.	In	2012,	Rossi	described	their
process	as	follows:	“Starting	around	1	p.m.,	I	switch	over	to	‘operations	mode’
and	work	with	my	team	to	get	ready	to	launch	the	changes	that	are	going	out	to
Facebook.com	that	day.	This	is	the	more	stressful	part	of	the	job	and	really	relies
heavily	on	my	team’s	judgment	and	past	experience.	We	work	to	make	sure	that
everyone	who	has	changes	going	out	is	accounted	for	and	is	actively	testing	and
supporting	their	changes.”

Just	prior	to	the	production	push,	all	developers	with	changes	going	out	must	be
present	and	check	in	on	their	IRC	chat	channel—any	developers	not	present
have	their	changes	automatically	removed	from	the	deployment	package.	Rossi
continued,	“If	everything	looks	good	and	our	test	dashboards	and	canary	tests†

are	green,	we	push	the	big	red	button	and	the	entire	Facebook.com	server	fleet
gets	the	new	code	delivered.	Within	twenty	minutes,	thousands	and	thousands	of
machines	are	up	on	new	code	with	no	visible	impact	to	the	people	using	the
site.”‡

Later	that	year,	Rossi	doubled	their	software	release	frequency	to	twice	daily.	He
explained	that	the	second	code	push	gave	engineers	not	on	the	US	West	Coast
the	ability	to	“move	and	ship	as	quickly	as	any	other	engineer	in	the	company,”

and	also	gave	everyone	a	second	opportunity	each	day	to	ship	code	and	launch
features.

Figure	16:	Number	of	developers	deploying	per	week	at	Facebook	
(Source:	Chuck	Rossi,	“Ship	early	and	ship	twice	as	often.”)

Kent	Beck,	the	creator	of	the	Extreme	Programming	methodology,	one	of	the
leading	proponents	of	Test	Driven	Development,	and	technical	coach	at
Facebook,	further	comments	on	the	their	code	release	strategy	in	an	article
posted	on	his	Facebook	page:	“Chuck	Rossi	made	the	observation	that	there
seem	to	be	a	fixed	number	of	changes	Facebook	can	handle	in	one	deployment.
If	we	want	more	changes,	we	need	more	deployments.	This	has	led	to	a	steady
increase	in	deployment	pace	over	the	past	five	years,	from	weekly	to	daily	to
thrice	daily	deployments	of	our	PHP	code	and	from	six	to	four	to	two	week
cycles	for	deploying	our	mobile	apps.	This	improvement	has	been	driven
primarily	by	the	release	engineering	team.”

By	using	continuous	integration	and	making	code	deployment	a	low-risk
process,	Facebook	has	enabled	code	deployment	to	be	a	part	of	everyone’s	daily
work	and	sustain	developer	productivity.	This	requires	that	code	deployment	be
automated,	repeatable,	and	predictable.	In	the	practices	described	in	the	book	so
far,	even	though	our	code	and	environments	have	been	tested	together,	most
likely	we	are	not	deploying	to	production	very	often	because	deployments	are
manual,	time-consuming,	painful,	tedious,	and	error-prone,	and	they	often
involve	an	inconvenient	and	unreliable	handoff	between	Development	and
Operations.

And	because	it	is	painful,	we	tend	to	do	it	less	and	less	frequently,	resulting	in
another	self-reinforcing	downward	spiral.	By	deferring	production	deployments,
we	accumulate	ever-larger	differences	between	the	code	to	be	deployed	and
what’s	running	in	production,	increasing	the	deployment	batch	size.	As
deployment	batch	size	grows,	so	does	the	risk	of	unexpected	outcomes
associated	with	the	change,	as	well	as	the	difficulty	fixing	them.

In	this	chapter,	we	reduce	the	friction	associated	with	production	deployments,
ensuring	that	they	can	be	performed	frequently	and	easily,	either	by	Operations
or	Development.	We	do	this	by	extending	our	deployment	pipeline.

Instead,	of	merely	continually	integrating	our	code	in	a	production-like
environment,	we	will	enable	the	promotion	into	production	of	any	build	that
passes	our	automated	test	and	validation	process,	either	on	demand	(i.e.,	at	the
push	of	a	button)	or	automatically	(i.e.,	any	build	that	passes	all	the	tests	is
automatically	deployed).

Because	of	the	number	of	practices	presented,	extensive	footnotes	are	provided
with	numerous	examples	and	additional	information,	without	interrupting	the
presentation	of	concepts	in	the	chapter.

AUTOMATE	OUR	DEPLOYMENT	PROCESS

Achieving	outcomes	like	those	at	Facebook	requires	that	we	have	an	automated
mechanism	that	deploys	our	code	into	production.	Especially	if	we	have	a
deployment	process	that	has	existed	for	years,	we	need	to	fully	document	the
steps	in	the	deployment	process,	such	as	in	a	value	stream	mapping	exercise,
which	we	can	assemble	in	a	workshop	or	document	incrementally	(e.g.,	in	a
wiki).

Once	we	have	the	process	documented,	our	goal	is	to	simplify	and	automate	as
many	of	the	manual	steps	as	possible,	such	as:

Packaging	code	in	ways	suitable	for	deployment

Creating	pre-configured	virtual	machine	images	or	containers

Automating	the	deployment	and	configuration	of	middleware

Copying	packages	or	files	onto	production	servers

Restarting	servers,	applications,	or	services

Generating	configuration	files	from	templates

Running	automated	smoke	tests	to	make	sure	the	system	is	working	and
correctly	configured

Running	testing	procedures

Scripting	and	automating	database	migrations

Where	possible,	we	will	re-architect	to	remove	steps,	particularly	those	that	take
a	long	time	to	complete.	We	also	want	to	not	only	reduce	our	lead	times	but	also

the	number	of	handoffs	as	much	as	possible	in	order	to	reduce	errors	and	loss	of
knowledge.

Having	developers	focus	on	automating	and	optimizing	the	deployment	process
can	lead	to	significant	improvements	in	deployment	flow,	such	as	ensuring	that
small	application	configuration	changes	no	longer	need	new	deployments	or	new
environments.

However,	this	requires	that	Development	works	closely	with	Operations	to
ensure	that	all	the	tools	and	processes	we	co-create	can	be	used	downstream,	as
opposed	to	alienating	Operations	or	reinventing	the	wheel.

Many	tools	that	provide	continuous	integration	and	testing	also	support	the
ability	to	extend	the	deployment	pipeline	so	that	validated	builds	can	be
promoted	into	production,	typically	after	the	production	acceptance	tests	are
performed	(e.g.,	the	Jenkins	Build	Pipeline	plugin,	ThoughtWorks	Go.cd	and
Snap	CI,	Microsoft	Visual	Studio	Team	Services,	and	Pivotal	Concourse).

The	requirements	for	our	deployment	pipeline	include:

Deploying	the	same	way	to	every	environment:	By	using	the	same
deployment	mechanism	for	every	environment	(e.g.,	development,	test,	and
production),	our	production	deployments	are	likely	to	be	far	more	successful,
since	we	know	that	it	has	been	successfully	performed	many	times	already
earlier	in	the	pipeline.

Smoke	testing	our	deployments:	During	the	deployment	process,	we	should
test	that	we	can	connect	to	any	supporting	systems	(e.g.,	databases,	message
buses,	external	services)	and	run	a	single	test	transaction	through	the	system
to	ensure	that	our	system	is	performing	as	designed.	If	any	of	these	tests	fail,
we	should	fail	the	deployment.

Ensure	we	maintain	consistent	environments:	In	previous	steps,	we
created	a	single-step	environment	build	process	so	that	the	development,	test,
and	production	environments	had	a	common	build	mechanism.	We	must
continually	ensure	that	these	environments	remain	synchronized.

Of	course,	when	any	problems	occur	during	deployment,	we	pull	the	Andon	cord
and	swarm	the	problem	until	the	problem	is	resolved,	just	as	we	do	when	our
deployment	pipeline	fails	in	any	of	the	earlier	steps.

Case	Study	
Daily	Deployments	at	CSG	International	(2013)

CSG	International	runs	one	of	the	largest	bill	printing	operations	in
the	US.	Scott	Prugh,	their	chief	architect	and	VP	of	Development,	in
an	effort	to	improve	the	predictability	and	reliability	of	their	software
releases,	doubled	their	release	frequency	from	two	per	year	to	four
per	year	(halving	their	deployment	interval	from	twenty-eight	weeks
to	fourteen	weeks).

Although	the	Development	teams	were	using	continuous	integration
to	deploy	their	code	into	test	environments	daily,	the	production
releases	were	being	performed	by	the	Operations	team.	Prugh
observed,	“It	was	as	if	we	had	a	‘practice	team’	that	practiced	daily
(or	even	more	frequently)	in	low-risk	test	environments,	perfecting
their	processes	and	tools.	But	our	production	‘game	team’	got	very
few	attempts	to	practice,	only	twice	per	year.	Worse,	they	were
practicing	in	the	high-risk	production	environments,	which	were
often	very	different	than	the	pre-production	environments	with
different	constraints—the	development	environments	were	missing

many	production	assets	such	as	security,	firewalls,	load	balancers,
and	a	SAN.”

To	solve	this	problem,	they	created	a	Shared	Operations	Team
(SOT)	that	was	responsible	for	managing	all	the	environments
(development,	test,	production)	performing	daily	deployments	into
those	development	and	test	environments,	as	well	as	doing
production	deployments	and	releases	every	fourteen	weeks.
Because	the	SOT	was	doing	deployments	every	day,	any	problems
they	encountered	that	were	left	unfixed	would	simply	occur	again
the	next	day.	This	created	tremendous	motivation	to	automate
tedious	or	error-prone	manual	steps	and	to	fix	any	issues	that	could
potentially	happen	again.	Because	the	deployments	were
performed	nearly	one	hundred	times	before	the	production	release,
most	problems	were	found	and	fixed	long	before	then.

Doing	this	revealed	problems	that	were	previously	only	experienced
by	the	Ops	team,	which	were	then	problems	for	the	entire	value
stream	to	solve.	The	daily	deployments	enabled	daily	feedback	on
which	practices	worked	and	which	didn’t.

They	also	focused	on	making	all	their	environments	look	as	similar
as	possible,	including	the	restricted	security	access	rights	and	load
balancers.	Prugh	writes,	“We	made	non-production	environments
as	similar	to	production	as	possible,	and	we	sought	to	emulate
production	constraints	in	as	many	ways	as	possible.	Early	exposure
to	production-class	environments	altered	the	designs	of	the
architecture	to	make	them	friendlier	in	these	constrained	or	different
environments.	Everyone	gets	smarter	from	this	approach.”

Prugh	also	observes:

“We	have	experienced	many	cases	where	changes	to	database
schemas	are	either	1)	handed	off	to	a	DBA	team	for	them	to	‘go
and	figure	it	out’	or	2)	automated	tests	that	run	on	unrealistically
small	data	sets	(i.e.,	“100’s	of	MB	vs.	100’s	of	GBs”),	which	led	to
production	failures.	In	our	old	way	of	working,	this	would	become	a
late-night	blame	game	between	teams	trying	to	unwind	the	mess.
We	created	a	development	and	deployment	process	that	removed
the	need	for	handoffs	to	DBAs	by	cross-training	developers,
automating	schema	changes,	and	executing	them	daily.	We
created	realistic	load	testing	against	sanitized	customer	data,
ideally	running	migrations	every	day.	By	doing	this,	we	run	our
service	hundreds	of	times	with	realistic	scenarios	before	seeing
actual	production	traffic.”§

Their	results	were	astonishing.	By	doing	daily	deployments	and
doubling	the	frequency	of	production	releases,	the	number	of
production	incidents	went	down	by	91%,	MTTR	went	down	by	80%,
and	the	deployment	lead	time	required	for	the	service	to	run	in
production	in	a	“fully	hands-off	state”	went	from	fourteen	days	to
one	day.

Prugh	reported	that	deployments	became	so	routine	that	the	Ops
team	was	playing	video	games	by	the	end	of	the	first	day.	In
addition	to	deployments	going	more	smoothly	for	Dev	and	Ops,	in
50%	of	the	cases	the	customer	received	the	value	in	half	the	time,
underscoring	how	more	frequent	deployments	can	be	good	for
Development,	QA,	Operations,	and	the	customer.

Figure	17:	Daily	deployments	and	increasing	release	frequency	resulted	in	decrease
in	#	of	production	incidents	and	MTTR	(Source:	“DOES15	-	Scott	Prugh	&	Erica
Morrison	-	Conway	&	Taylor	Meet	the	Strangler	(v2.0),”	YouTube	video,	29:39,

posted	by	DevOps	Enterprise	Summit,	November	5,	2015,
https://www.youtube.com/watch?v=tKdIHCL0DUg.)

ENABLE	AUTOMATED	SELF-SERVICE	DEPLOYMENTS
Consider	the	following	quote	from	Tim	Tischler,	Director	of	Operations
Automation	at	Nike,	Inc.,	that	describes	the	common	experience	of	a	generation
of	developers:	“As	a	developer,	there	has	never	been	a	more	satisfying	point	in
my	career	than	when	I	wrote	the	code,	when	I	pushed	the	button	to	deploy	it,
when	I	could	see	the	production	metrics	confirm	that	it	actually	worked	in
production,	and	when	I	could	fix	it	myself	if	it	didn’t.”

Developers’	ability	to	self-deploy	code	into	production,	to	quickly	see	happy
customers	when	their	feature	works,	and	to	quickly	fix	any	issues	without	having
to	open	up	a	ticket	with	Operations	has	diminished	over	the	last	decade—in	part
as	a	result	of	a	need	for	control	and	oversight,	perhaps	driven	by	security	and
compliance	requirements.

https://www.youtube.com/watch?v=tKdIHCL0DUg

The	resulting	common	practice	is	for	Operations	to	perform	code	deployments,
because	separation	of	duties	is	a	widely	accepted	practice	to	reduce	the	risk	of
production	outages	and	fraud.	However,	to	achieve	DevOps	outcomes,	our	goal
is	to	shift	our	reliance	to	other	control	mechanisms	that	can	mitigate	these	risks
equally	or	even	more	effectively,	such	as	through	automated	testing,	automated
deployment,	and	peer	review	of	changes.

The	Puppet	Labs’	2013	State	of	DevOps	Report,	which	surveyed	over	four
thousand	technology	professionals,	found	that	there	was	no	statistically
significant	difference	in	the	change	success	rates	between	organizations	where
Development	deployed	code	and	those	where	Operations	deployed	code.

In	other	words,	when	there	are	shared	goals	that	span	Development	and
Operations,	and	there	is	transparency,	responsibility,	and	accountability	for
deployment	outcomes,	it	doesn’t	matter	who	performs	the	deployment.	In	fact,
we	may	even	have	other	roles,	such	as	testers	or	project	managers,	able	to	deploy
to	certain	environments	so	they	can	get	their	own	work	done	quickly,	such	as
setting	up	demonstrations	of	specific	features	in	test	or	UAT	environments.

To	better	enable	fast	flow,	we	want	a	code	promotion	process	that	can	be
performed	by	either	Development	or	Operations,	ideally	without	any	manual
steps	or	handoffs.	This	affects	the	following	steps:

Build:	Our	deployment	pipeline	must	create	packages	from	version	control
that	can	be	deployed	to	any	environment,	including	production.

Test:	Anyone	should	be	able	to	run	any	or	all	of	our	automated	test	suite	on
their	workstation	or	on	our	test	systems.

Deploy:	Anybody	should	be	able	to	deploy	these	packages	to	any
environment	where	they	have	access,	executed	by	running	scripts	that	are
also	checked	in	to	version	control.

These	are	the	practices	that	enable	deployments	to	be	performed	successfully,
regardless	of	who	is	performing	the	deployment.

INTEGRATE	CODE	DEPLOYMENT	INTO	THE	DEPLOYMENT
PIPELINE
Once	the	code	deployment	process	is	automated,	we	can	make	it	part	of	the
deployment	pipeline.	Consequently,	our	deployment	automation	must	provide
the	following	capabilities:

Ensure	that	packages	created	during	the	continuous	integration	process	are
suitable	for	deployment	into	production

Show	the	readiness	of	production	environments	at	a	glance

Provide	a	push-button,	self-service	method	for	any	suitable	version	of	the
packaged	code	to	be	deployed	into	production

Record	automatically,	for	auditing	and	compliance	purposes,	which
commands	were	run	on	which	machines	when,	who	authorized	it,	and	what
the	output	was

Run	a	smoke	test	to	ensure	the	system	is	operating	correctly	and	the
configuration	settings,	including	items	such	as	database	connection	strings,
are	correct

Provide	fast	feedback	for	the	deployer	so	they	can	quickly	determine	whether
their	deployment	was	successful	(e.g.,	did	the	deployment	succeed,	is	the
application	performing	as	expected	in	production,	etc.)

Our	goal	is	ensure	that	deployments	are	fast—we	don’t	want	to	have	to	wait
hours	to	determine	whether	our	code	deployment	succeeded	or	failed	and	then

need	hours	to	deploy	any	needed	code	fixes.	Now	that	we	have	technologies
such	as	containers,	it	is	possible	to	complete	even	the	most	complex
deployments	in	seconds	or	minutes.	In	Puppet	Labs’	2014	State	of	DevOps
Report,	the	data	showed	that	high	performers	had	deployment	lead	times
measured	in	minutes	or	hours,	while	the	lowest	performers	had	deployment	lead
times	measured	in	months.

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	

	 	

Case Study

production through our deployment pipeline.
to safely and quickly promote changes to our code and our environments into
By building this capability, we now have a “deploy code” button that allows us

DevOps Report.)
time to restore production service after incidents (Source: Puppet Labs, 2014 State of
Figure 18: High performers had much faster deployment lead times and much faster

Case	Study	
Etsy—Self-Service	Developer	Deployment,	an	Example	of

Continuous	Deployment	(2014)

Unlike	at	Facebook	where	deployments	are	managed	by	release
engineers,	at	Etsy	deployments	are	performed	by	anyone	who
wants	to	perform	a	deployment,	such	as	Development,	Operations,
or	Infosec.	The	deployment	process	at	Etsy	has	become	so	safe
and	routine	that	new	engineers	will	perform	a	production
deployment	on	their	first	day	at	work—as	have	Etsy	board
members	and	even	dogs!

As	Noah	Sussman,	a	test	architect	at	Etsy,	wrote,	“By	the	time	8am
rolls	around	on	a	normal	business	day,	15	or	so	people	and	dogs
are	starting	to	queue	up,	all	of	them	expecting	to	collectively	deploy
up	to	25	changesets	before	the	day	is	done.”

Engineers	who	want	to	deploy	their	code	first	go	to	a	chat	room,
where	engineers	add	themselves	to	the	deploy	queue,	see	the
deployment	activity	in	progress,	see	who	else	is	in	the	queue,
broadcast	their	activities,	and	get	help	from	other	engineers	when
they	need	it.	When	it’s	an	engineer’s	turn	to	deploy,	they	are
notified	in	the	chat	room.

The	goal	at	Etsy	has	been	to	make	it	easy	and	safe	to	deploy	into
production	with	the	fewest	number	of	steps	and	the	least	amount	of
ceremony.	Likely	before	the	developer	even	checks	in	code,	they
will	run	on	their	workstation	all	4,500	unit	tests,	which	takes	less
than	one	minute.	All	calls	to	external	systems,	such	as	databases,
have	been	stubbed	out.

After	they	check	their	changes	in	to	trunk	in	version	control,	over
seven	thousand	automated	trunk	tests	are	instantly	run	on	their
continuous	integration	(CI)	servers.	Sussman	writes,	“Through	trial-
and-error,	we’ve	settled	on	about	11	minutes	as	the	longest	that	the
automated	tests	can	run	during	a	push.	That	leaves	time	to	re-run
the	tests	once	during	a	deployment	[if	someone	breaks	something
and	needs	to	fix	it],	without	going	too	far	past	the	20	minute	time
limit.”

If	all	the	tests	were	run	sequentially,	Sussman	states	that	“the	7,000
trunk	tests	would	take	about	half	an	hour	to	execute.	So	we	split
these	tests	up	into	subsets,	and	distribute	those	onto	the	10
machines	in	our	Jenkins	[CI]	cluster....Splitting	up	our	test	suite	and
running	many	tests	in	parallel,	gives	us	the	desired	11	minute
runtime.”

Figure	19:	The	Deployinator	console	at	Etsy	(Source:	Erik	Kastner,	“Quantum	of

Deployment,”	CodeasCraft.com,	May	20,	2010,
https://codeascraft.com/2010/05/20/quantum-of-deployment/.)

The	next	tests	to	run	are	the	smoke	tests,	which	are	system	level
tests	that	run	cURL	to	execute	PHPUnit	test	cases.	Following	these
tests,	the	functional	tests	are	run,	which	execute	end-to-end	GUI-
driven	tests	on	a	live	server—this	server	is	either	their	QA
environment	or	staging	environment	(nicknamed	“Princess”),	which
is	actually	a	production	server	that	has	been	taken	out	of	rotation,
ensuring	that	it	exactly	matches	the	production	environment.

Once	it	is	an	engineer’s	turn	to	deploy,	Erik	Kastner	writes,	“you	go
to	Deployinator	[an	internally	developed	tool,	see	figure	19]	and
push	the	button	to	get	it	on	QA.	From	there	it	visits
Princess....Then,	when	it’s	ready	to	go	live,	you	hit	the	“Prod”	button
and	soon	your	code	is	live,	and	everyone	in	IRC	[chat	channel]
knows	who	pushed	what	code,	complete	with	a	link	to	the	diff.	For
anyone	not	on	IRC,	there’s	the	email	that	everyone	gets	with	the
same	information.”

In	2009,	the	deployment	process	at	Etsy	was	a	cause	of	stress	and
fear.	By	2011,	it	had	become	a	routine	operation,	happening
twenty-five	to	fifty	times	per	day,	helping	engineers	get	their	code
quickly	into	production,	delivering	value	to	their	customers.

DECOUPLE	DEPLOYMENTS	FROM	RELEASES

In	the	traditional	launch	of	a	software	project,	releases	are	driven	by	our
marketing	launch	date.	On	the	prior	evening,	we	deploy	our	completed	software
(or	as	close	to	complete	as	we	could	get)	into	production.	The	next	morning,	we

http://codeascraft.com/2010/05/20/quantum-of-deployment/

announce	our	new	capabilities	to	the	world,	start	taking	orders,	deliver	the	new
functionality	to	customer,	etc.

However,	all	too	often	things	don’t	go	according	to	plan.	We	may	experience
production	loads	that	we	never	tested	or	designed	for,	causing	our	service	to	fail
spectacularly,	both	for	our	customers	and	our	organization.	Worse,	restoring
service	may	require	a	painful	rollback	process	or	an	equally	risky	fix	forward
operation,	where	we	make	changes	directly	in	production,	this	can	all	be	a	truly
miserable	experience	for	workers.	When	everything	is	finally	working,	everyone
breathes	a	sigh	of	relief,	grateful	that	production	deployments	and	releases	don’t
happen	more	often.

Of	course,	we	know	that	we	need	to	be	deploying	more	frequently	to	achieve	our
desired	outcome	of	smooth	and	fast	flow,	not	less	frequently.	To	enable	this,	we
need	to	decouple	our	production	deployments	from	our	feature	releases.	In
practice,	the	terms	deployment	and	release	are	often	used	interchangeably.
However,	they	are	two	distinct	actions	that	serve	two	very	different	purposes:

Deployment	is	the	installation	of	a	specified	version	of	software	to	a	given
environment	(e.g.,	deploying	code	into	an	integration	test	environment	or
deploying	code	into	production).	Specifically,	a	deployment	may	or	may	not
be	associated	with	a	release	of	a	feature	to	customers.

Release	is	when	we	make	a	feature	(or	set	of	features)	available	to	all	our
customers	or	a	segment	of	customers	(e.g.,	we	enable	the	feature	to	be	used
by	5%	of	our	customer	base).	Our	code	and	environments	should	be
architected	in	such	a	way	that	the	release	of	functionality	does	not	require
changing	our	application	code.¶

In	other	words,	when	we	conflate	deployment	and	release,	it	makes	it	difficult	to
create	accountability	for	successful	outcomes—decoupling	these	two	activities

allows	us	to	empower	Development	and	Operations	to	be	responsible	for	the
success	of	fast	and	frequent	deployments,	while	enabling	product	owners	to	be
responsible	for	the	successful	business	outcomes	of	the	release	(i.e.,	was
building	and	launching	the	feature	worth	our	time).

The	practices	described	so	far	in	this	book	ensure	that	we	are	doing	fast	and
frequent	production	deployments	throughout	feature	development,	with	the	goal
of	reducing	the	risk	and	impact	of	deployment	errors.	The	remaining	risk	is
release	risk,	which	is	whether	the	features	we	put	into	production	achieve	the
desired	customer	and	business	outcomes.

If	we	have	extremely	long	deployment	lead	times,	this	dictates	how	frequently
we	can	release	new	features	to	the	marketplace.	However,	as	we	become	able	to
deploy	on	demand,	how	quickly	we	expose	new	functionality	to	customers
becomes	a	business	and	marketing	decision,	not	a	technical	decision.	There	are
two	broad	categories	of	release	patterns	we	can	use:

Environment-based	release	patterns:	This	is	where	we	have	two	or	more
environments	that	we	deploy	into,	but	only	one	environment	is	receiving	live
customer	traffic	(e.g.,	by	configuring	our	load	balancers).	New	code	is
deployed	into	a	non-live	environment,	and	the	release	is	performed	moving
traffic	to	this	environment.	These	are	extremely	powerful	patterns,	because
they	typically	require	little	or	no	change	to	our	applications.	These	patterns
include	blue-green	deployments,	canary	releases,	and	cluster	immune
systems,	all	of	which	will	be	discussed	shortly.

Application-based	release	patterns:	This	is	where	we	modify	our
application	so	that	we	can	selectively	release	and	expose	specific	application
functionality	by	small	configuration	changes.	For	instance,	we	can
implement	feature	flags	that	progressively	expose	new	functionality	in
production	to	the	development	team,	all	internal	employees,	1%	of	our

customers,	or,	when	we	are	confident	that	the	release	will	operate	as
designed,	our	entire	customer	base.	As	discussed	earlier,	this	enables	a
technique	called	dark	launching,	where	we	stage	all	the	functionality	to	be
launched	in	production	and	test	it	with	production	traffic	before	our	release.
For	instance,	we	may	invisibly	test	our	new	functionality	with	production
traffic	for	weeks	before	our	launch	in	order	to	expose	problems	so	that	they
can	be	fixed	before	our	actual	launch.

ENVIRONMENT-BASED	RELEASE	PATTERNS
Decoupling	deployments	from	our	releases	dramatically	changes	how	we	work.
We	no	longer	have	to	perform	deployments	in	the	middle	of	the	night	or	on
weekends	to	lower	the	risk	of	negatively	impacting	customers.	Instead,	we	can
do	deployments	during	typical	business	hours,	enabling	Ops	to	finally	have
normal	working	hours,	just	like	everyone	else.

This	section	focuses	on	environment-based	release	patterns,	which	require	no
changes	to	application	code.	We	do	this	by	having	multiple	environments	to
deploy	into,	but	only	one	of	them	receives	live	customer	traffic.	By	doing	this,
we	can	significantly	decrease	the	risk	associated	with	production	releases	and
reduce	the	deployment	lead	time.

The	Blue-Green	Deployment	Pattern
The	simplest	of	the	three	patterns	is	called	blue-green	deployment.	In	this
pattern,	we	have	two	production	environments:	blue	and	green.	At	any	time,
only	one	of	these	is	serving	customer	traffic—in	figure	20,	the	green
environment	is	live.

Figure	20:	Blue-green	deployment	patterns	(Source:	Humble	and	North,	Continuous
Delivery,	261.)

To	release	a	new	version	of	our	service,	we	deploy	to	the	inactive	environment
where	we	can	perform	our	testing	without	interrupting	the	user	experience.
When	we	are	confident	that	everything	is	functioning	as	designed,	we	execute
our	release	by	directing	traffic	to	the	blue	environment.	Thus,	blue	becomes	live
and	green	becomes	staging.	Roll	back	is	performed	by	sending	customer	traffic
back	to	the	green	environment.**

The	blue-green	deployment	pattern	is	simple,	and	it	is	extremely	easy	to	retrofit
onto	existing	systems.	It	also	has	incredible	benefits,	such	as	enabling	the	team
to	perform	deployments	during	normal	business	hours	and	conduct	simple
changeovers	(e.g.,	changing	a	router	setting,	changing	a	symlink)	during	off-
peak	times.	This	alone	can	dramatically	improve	the	work	conditions	for	the
team	performing	the	deployment.

Dealing	with	Database	Changes
Having	two	versions	of	our	application	in	production	creates	problems	when
they	depend	upon	a	common	database—when	the	deployment	requires	database
schema	changes	or	adding,	modifying,	or	deleting	tables	or	columns,	the
database	cannot	support	both	versions	of	our	application.	There	are	two	general
approaches	to	solving	this	problem:

Create	two	databases	(i.e.,	a	blue	and	green	database):	Each	version—
blue	(old)	and	green	(new)—of	the	application	has	its	own	database.	During
the	release,	we	put	the	blue	database	into	read-only	mode,	perform	a	backup

of	it,	restore	onto	the	green	database,	and	finally	switch	traffic	to	the	green
environment.	The	problem	with	this	pattern	is	that	if	we	need	to	roll	back	to
the	blue	version,	we	can	potentially	lose	transactions	if	we	don’t	manually
migrate	them	from	the	green	version	first.

Decouple	database	changes	from	application	changes:	Instead	of
supporting	two	databases,	we	decouple	the	release	of	database	changes	from
the	release	of	application	changes	by	doing	two	things:	First,	we	make	only
additive	changes	to	our	database,	we	never	mutate	existing	database	objects,
and	second,	we	make	no	assumptions	in	our	application	about	which
database	version	will	be	in	production.	This	is	very	different	than	how	we’ve
been	traditionally	trained	to	think	about	databases,	where	we	avoid
duplicating	data.	The	process	of	Decoupling	database	changes	from
application	changes	was	used	by	IMVU	(among	others)	around	2009,
enabling	them	to	do	fifty	deployments	per	day,	some	of	which	required
database	changes.††

Case	Study	
Dixons	Retail—Blue-Green	Deployment	for	Point-Of-Sale

System	(2008)

Dan	North	and	Dave	Farley,	co-authors	of	Continuous	Delivery,
were	working	on	a	project	for	Dixons	Retail,	a	large	British	retailer
involving	thousands	of	point-of-sale	(POS)	systems	that	resided	in
hundreds	of	retail	stores	and	operating	under	a	number	of	different
customer	brands.

Although	blue-green	deployments	are	mostly	associated	with	online
web	services,	North	and	Farley	used	this	pattern	to	significantly
reduce	the	risk	and	changeover	times	for	POS	upgrades.

Traditionally,	upgrading	POS	systems	are	a	big	bang,	waterfall
project:	the	POS	clients	and	the	centralized	server	are	upgraded	at
the	same	time,	which	requires	extensive	downtime	(often	an	entire
weekend),	as	well	as	significant	network	bandwidth	to	push	out	the
new	client	software	to	all	the	retail	stores.	When	things	don’t	go
entirely	according	to	plan,	it	can	be	incredibly	disruptive	to	store
operations.

For	this	upgrade,	there	was	not	enough	network	bandwidth	to
upgrade	all	the	POS	systems	simultaneously,	which	made	the
traditional	strategy	impossible.	To	solve	this	problem,	they	used	the
blue-green	strategy	and	created	two	production	versions	of	the
centralized	server	software,	enabling	them	to	simultaneously
support	the	old	and	new	versions	of	the	POS	clients.

After	they	did	this,	weeks	before	the	planned	POS	upgrade,	they
started	sending	out	new	versions	of	client	POS	software	installers
to	the	retail	stores	over	the	slow	network	links,	deploying	the	new
software	onto	the	POS	systems	in	an	inactive	state.	Meanwhile,	the
old	version	kept	running	as	normal.

When	all	the	POS	clients	had	everything	staged	for	the	upgrade
(the	upgraded	client	and	server	had	tested	together	successfully,
and	new	client	software	had	been	deployed	to	all	clients),	the	store
managers	were	empowered	to	decide	when	to	release	the	new
version.

Depending	on	their	business	needs,	some	managers	wanted	to	use
the	new	features	immediately	and	released	right	away,	while	others
wanted	to	wait.	In	either	case,	whether	releasing	features
immediately	or	waiting,	itwas	significantly	better	for	the	managers

than	having	the	centralized	IT	department	choose	for	them	when
the	release	would	occur.

The	result	was	a	significantly	smoother	and	faster	release,	higher
satisfaction	from	the	store	managers,	and	far	less	disruption	to
store	operations.	Furthermore,	this	application	of	blue-green
deployments	to	thick-client	PC	applications	demonstrates	how
DevOps	patterns	can	be	universally	applied	to	different
technologies,	often	in	very	surprising	ways	but	with	the	same
fantastic	outcomes.

The	Canary	and	Cluster	Immune	System	Release	Patterns
The	blue-green	release	pattern	is	easy	to	implement	and	can	dramatically
increase	the	safety	of	software	releases.	There	are	variants	of	this	pattern	that	can
further	improve	safety	and	deployment	lead	times	using	automation,	but	with	the
potential	trade-off	of	additional	complexity.

The	canary	release	pattern	automates	the	release	process	of	promoting	to
successively	larger	and	more	critical	environments	as	we	confirm	that	the	code	is
operating	as	designed.

The	term	canary	release	comes	from	the	tradition	of	coal	miners	bringing	caged
canaries	into	mines	to	provide	early	detection	of	toxic	levels	of	carbon
monoxide.	If	there	wastoo	much	gas	in	the	cave,	it	would	kill	the	canaries	before
it	killed	the	miners,	alerting	them	to	evacuate.

In	this	pattern,	when	we	perform	a	release,	we	monitor	how	the	software	in	each
environment	is	performing.	When	something	appears	to	be	going	wrong,	we	roll
back;	otherwise,	we	deploy	to	the	next	environment.‡‡

Figure	21	shows	the	groups	of	environments	Facebook	created	to	support	this
release	pattern:

A1	group:	Production	servers	that	only	serve	internal	employees

A2	group:	Production	servers	that	only	serve	a	small	percentage	of
customers	and	are	deployed	when	certain	acceptance	criteria	have	been	met
(either	automated	or	manual)

A3	group:	The	rest	of	the	production	servers,	which	are	deployed	after	the
software	running	in	the	A2	cluster	meets	certain	acceptance	criteria

Figure	21:	The	canary	release	pattern	(Source:	Humble	and	Farley,	Continuous
Delivery,	263.)

The	cluster	immune	system	expands	upon	the	canary	release	pattern	by	linking
our	production	monitoring	system	with	our	release	process	and	by	automating
the	roll	back	of	code	when	the	user-facing	performance	of	the	production	system
deviates	outside	of	a	predefined	expected	range,	such	as	when	the	conversion
rates	for	new	users	drops	below	our	historical	norms	of	15%–20%.

There	are	two	significant	benefits	to	this	type	of	safeguard.	First,	we	protect
against	defects	that	are	hard	to	find	through	automated	tests,	such	as	a	web	page
change	that	renders	some	critical	page	element	invisible	(e.g.,	CSS	change).
Second,	we	reduce	the	time	required	to	detect	and	respond	to	the	degraded
performance	created	by	our	change.§§

APPLICATION-BASED	PATTERNS	TO	ENABLE	SAFER
RELEASES
In	the	previous	section,	we	created	environment-based	patterns	that	allowed	us
to	decouple	our	deployments	from	our	releases	by	using	multiple	environments
and	by	switching	between	which	environment	was	live,	which	can	be	entirely
implemented	at	the	infrastructure	level.

In	this	section,	we	describe	application-based	release	patterns	that	we	can
implement	in	our	code,	allowing	even	greater	flexibility	in	how	we	safely	release
new	features	to	our	customer,	often	on	a	per-feature	basis.	Because	application-
based	release	patterns	are	implemented	in	the	application,	these	require
involvement	from	Development.

Implement	Feature	Toggles
The	primary	way	we	enable	application-based	release	patterns	is	by
implementing	feature	toggles,	which	provide	us	with	the	mechanism	to
selectively	enable	and	disable	features	without	requiring	a	production	code
deployment.	Feature	toggles	can	also	control	which	features	are	visible	and
available	to	specific	user	segments	(e.g.,	internal	employees,	segments	of
customers).

Feature	toggles	are	usually	implemented	by	wrapping	application	logic	or	UI
elements	with	a	conditional	statement,	where	the	feature	is	enabled	or	disabled
based	on	a	configuration	setting	stored	somewhere.	This	can	be	as	simple	as	an

application	configuration	file	(e.g.,	configuration	files	in	JSON,	XML),	or	it
might	be	through	a	directory	service	or	even	a	web	service	specifically	designed
to	manage	feature	toggling.¶¶

Feature	toggles	also	enable	us	to	do	the	following:

Roll	back	easily:	Features	that	create	problems	or	interruptions	in	production
can	be	quickly	and	safely	disabled	by	merely	changing	the	feature	toggle
setting.	This	is	especially	valuable	when	deployments	are	infrequent—
switching	off	one	particular	stakeholder’s	features	is	usually	much	easier
than	rolling	back	an	entire	release.

Gracefully	degrade	performance:	When	our	service	experiences	extremely
high	loads	that	would	normally	require	us	to	increase	capacity	or,	worse,	risk
having	our	service	fail	in	production,	we	can	use	feature	toggles	to	reduce	the
quality	of	service.	In	other	words,	we	can	increase	the	number	of	users	we
serve	by	reducing	the	level	of	functionality	delivered	(e.g.,	reduce	the
number	of	customers	who	can	access	a	certain	feature,	disable	CPU-intensive
features	such	as	recommendations,	etc.).

Increase	our	resilience	through	a	service-oriented	architecture:	If	we
have	a	feature	that	relies	on	another	service	that	isn’t	complete	yet,	we	can
still	deploy	our	feature	into	production	but	hide	it	behind	a	feature	toggle.
When	that	service	finally	becomes	available,	we	can	toggle	the	feature	on.
Similarly,	when	a	service	we	rely	upon	fails,	we	can	turn	off	the	feature	to
prevent	calls	to	the	downstream	service	while	keeping	the	rest	of	the
application	running.

To	ensure	that	we	find	errors	in	features	wrapped	in	feature	toggles,	our
automated	acceptance	tests	should	run	with	all	feature	toggles	on.	(We	should
also	test	that	our	feature	toggling	functionality	works	correctly	too!)

Feature	toggles	enable	the	decoupling	of	code	deployments	and	feature	releases,
later	in	the	book	we	use	feature	toggles	to	enable	hypothesis-driven	development
and	A/B	testing,	furthering	our	ability	to	achieve	our	desired	business	outcomes.

Perform	Dark	Launches
Feature	toggles	allow	us	to	deploy	features	into	production	without	making	them
accessible	to	users,	enabling	a	technique	known	as	dark	launching.	This	is	where
we	deploy	all	the	functionality	into	production	and	then	perform	testing	of	that
functionality	while	it	is	still	invisible	to	customers.	For	large	or	risky	changes,
we	often	do	this	for	weeks	before	the	production	launch,	enabling	us	to	safely
test	with	the	anticipated	production-like	loads.

For	instance,	suppose	we	dark	launch	a	new	feature	that	poses	significant	release
risk,	such	as	new	search	features,	account	creation	processes,	or	new	database
queries.	After	all	the	code	is	in	production,	keeping	the	new	feature	disabled,	we
may	modify	user	session	code	to	make	calls	to	new	functions—instead	of
displaying	the	results	to	the	user,	we	simply	log	or	discard	the	results.

For	example,	we	may	have	1%	of	our	online	users	make	invisible	calls	to	a	new
feature	scheduled	to	be	launched	to	see	how	our	new	feature	behaves	under	load.
After	we	find	and	fix	any	problems,	we	progressively	increase	the	simulated
load	by	increasing	the	frequency	and	number	of	users	exercising	the	new
functionality.	By	doing	this,	we	are	able	to	safely	simulate	production-like	loads,
giving	us	confidence	that	our	service	will	perform	as	it	needs	to.

Furthermore,	when	we	launch	a	feature,	we	can	progressively	roll	out	the	feature
to	small	segments	of	customers,	halting	the	release	if	any	problems	are	found.
That	way,	we	minimize	the	number	of	customers	who	are	given	a	feature	only	to
have	it	taken	away	because	we	find	a	defect	or	are	unable	to	maintain	the
required	performance.

In	2009,	when	John	Allspaw	was	VP	of	Operations	at	Flickr,	he	wrote	to	the
Yahoo!	executive	management	team	about	their	dark	launch	process,	saying	that
it	“increases	everyone’s	confidence	almost	to	the	point	of	apathy,	as	far	as	fear
of	load-related	issues	are	concerned.	I	have	no	idea	how	many	code	deploys
there	were	made	to	production	on	any	given	day	in	the	past	5	years...because	for
the	most	part	I	don’t	care,	because	those	changes	made	in	production	have	such
a	low	chance	of	causing	issues.	When	they	have	caused	issues,	everyone	on	the
Flickr	staff	can	find	on	a	webpage	when	the	change	was	made,	who	made	the
change,	and	exactly	(line-by-line)	what	the	change	was.”***

Later,	when	we	have	built	adequate	production	telemetry	in	our	application	and
environments,	we	can	also	enable	faster	feedback	cycles	to	validate	our	business
assumptions	and	outcomes	immediately	after	we	deploy	the	feature	into
production.

By	doing	this,	we	no	longer	wait	until	a	big	bang	release	to	test	whether
customers	want	to	use	the	functionality	we	build.	Instead,	by	the	time	we
announce	and	release	our	big	feature,	we	have	already	tested	our	business
hypotheses	and	run	countless	experiments	to	continually	refine	our	product	with
real	customers,	which	helps	us	validate	that	the	features	will	achieve	the	desired
customer	outcomes.

Case	Study	
Dark	Launch	of	Facebook	Chat	(2008)

For	nearly	a	decade,	Facebook	has	been	one	of	the	most	widely
visited	Internet	sites,	as	measured	by	pages	viewed	and	unique	site
users.	In	2008,	it	had	over	seventy	million	daily	active	users,	which
created	a	challenge	for	the	team	that	was	developing	the	new
Facebook	Chat	functionality.†††

Eugene	Letuchy,	an	engineer	on	the	Chat	team,	wrote	about	how
the	number	of	concurrent	users	presented	a	huge	software
engineering	challenge:	“The	most	resource-intensive	operation
performed	in	a	chat	system	is	not	sending	messages.	It	is	rather
keeping	each	online	user	aware	of	the	online-idle-offline	states	of
their	friends,	so	that	conversations	can	begin.”

Implementing	this	computationally-intensive	feature	was	one	of	the
largest	technical	undertakings	ever	at	Facebook	and	took	almost	a
year	to	complete.‡‡‡	Part	of	the	complexity	of	the	project	was	due	to
the	wide	variety	of	technologies	needed	to	achieve	the	desired
performance,	including	C++,	JavaScript,	and	PHP,	as	well	as	their
first	use	of	Erlang	in	their	back-end	infrastructure.

Throughout	the	course	of	the	year-long	endeavor,	the	Chat	team
checked	their	code	in	to	version	control,	where	it	would	be	deployed
into	production	at	least	once	per	day.	At	first,	the	Chat	functionality
was	visible	only	to	the	Chat	team.	Later,	it	was	made	visible	to	all
internal	employees,	but	it	was	completely	hidden	from	external
Facebook	users	through	Gatekeeper,	the	Facebook	feature
toggling	service.

As	part	of	their	dark	launch	process,	every	Facebook	user	session,
which	runs	JavaScript	in	the	user	browser,	had	a	test	harness
loaded	into	it—the	chat	UI	elements	were	hidden,	but	the	browser
client	would	send	invisible	test	chat	messages	to	the	back-end	chat
service	that	was	already	in	production,	enabling	them	to	simulate
production-like	loads	throughout	the	entire	project,	allowing	them	to
find	and	fix	performance	problems	long	before	the	customer
release.

By	doing	this,	every	Facebook	user	was	part	of	a	massive	load
testing	program,	which	enabled	the	team	to	gain	confidence	that
their	systems	could	handle	realistic	production-like	loads.	The	Chat
release	and	launch	required	only	two	steps:	modifying	the
Gatekeeper	configuration	setting	to	make	the	Chat	feature	visible	to
some	portion	of	external	users,	and	having	Facebook	users	load
new	JavaScript	code	that	rendered	the	Chat	UI	and	disabled	the
invisible	test	harness.	If	something	went	wrong,	the	two	steps	would
be	reversed.	When	the	launch	day	of	Facebook	Chat	arrived,	it	was
surprisingly	successful	and	uneventful,	seeming	to	scale	effortlessly
from	zero	to	seventy	million	users	overnight.	During	the	release,
they	incrementally	enabled	the	chat	functionality	to	ever-larger
segments	of	the	customer	population—first	to	all	internal	Facebook
employees,	then	to	1%	of	the	customer	population,	then	to	5%,	and
so	forth.	As	Letuchy	wrote,	“The	secret	for	going	from	zero	to
seventy	million	users	overnight	is	to	avoid	doing	it	all	in	one	fell
swoop.”

SURVEY	OF	CONTINUOUS	DELIVERY	AND
CONTINUOUS	DEPLOYMENT	IN	PRACTICE

In	Continuous	Delivery,	Jez	Humble	and	David	Farley	define	the	term
continuous	delivery.	The	term	continuous	deployment	was	first	mentioned	by
Tim	Fitz	in	his	blog	post	“Continuous	Deployment	at	IMVU:	Doing	the
impossible	fifty	times	a	day.”	However,	in	2015,	during	the	construction	of	The
DevOps	Handbook,	Jez	Humble	commented,	“In	the	last	five	years,	there	has
been	confusion	around	the	terms	continuous	delivery	versus	continuous
deployment—and,	indeed,	my	own	thinking	and	definitions	have	changed	since
we	wrote	the	book.	Every	organization	should	create	their	variations,	based	on

what	they	need.	The	key	thing	we	should	care	about	is	not	the	form,	but	the
outcomes:	deployments	should	be	low-risk,	push-button	events	we	can	perform
on	demand.”

His	updated	definitions	of	continuous	delivery	and	continuous	deployment	are	as
follows:

When	all	developers	are	working	in	small	batches	on	trunk,	or	everyone	is
working	off	trunk	in	short-lived	feature	branches	that	get	merged	to	trunk
regularly,	and	when	trunk	is	always	kept	in	a	releasable	state,	and	when	we
can	release	on	demand	at	the	push	of	a	button	during	normal	business	hours,
we	are	doing	continuous	delivery.	Developers	get	fast	feedback	when	they
introduce	any	regression	errors,	which	include	defects,	performance	issues,
security	issues,	usability	issues,	etc.	When	these	issues	are	found,	they	are
fixed	immediately	so	that	trunk	is	always	deployable.

In	addition	to	the	above,	when	we	are	deploying	good	builds	into	production
on	a	regular	basis	through	self-service	(being	deployed	by	Dev	or	by	Ops)—
which	typically	means	that	we	are	deploying	to	production	at	least	once	per
day	per	developer,	or	perhaps	even	automatically	deploying	every	change	a
developer	commits—this	is	when	we	are	engaging	in	continuous
deployment.

Defined	this	way,	continuous	delivery	is	the	prerequisite	for	continuous
deployment—just	as	continuous	integration	is	a	prerequisite	for	continuous
delivery.	Continuous	deployment	is	likely	applicable	in	the	context	of	web
services	that	are	delivered	online.	However,	continuous	delivery	is	applicable	in
almost	every	context	where	we	desire	deployments	and	releases	that	have	high
quality,	fast	lead	times	and	have	highly	predictable,	low-risk	outcomes,
including	for	embedded	systems,	COTS	products,	and	mobile	apps.

At	Amazon	and	Google,	most	teams	practice	continuous	delivery,	although	some
perform	continuous	deployment—	thus,	there	is	considerable	variation	between
teams	in	how	frequently	they	deploy	code	and	how	deployments	are	performed.
Teams	are	empowered	to	choose	how	to	deploy	based	on	the	risks	they	are
managing.	For	example,	the	Google	App	Engine	team	often	deploys	once	per
day,	while	the	Google	Search	property	deploys	several	times	per	week.

Similarly,	most	of	the	cases	studies	presented	in	this	book	are	also	continuous
delivery,	such	as	the	embedded	software	running	on	HP	LaserJet	printers,	the
CSG	bill	printing	operations	running	on	twenty	technology	platforms	including	a
COBOL	mainframe	application,	Facebook,	and	Etsy.	These	same	patterns	can	be
used	for	software	that	runs	on	mobile	phones,	ground	control	stations	that
control	satellites,	and	so	forth.

CONCLUSION

As	the	Facebook,	Etsy,	and	CSG	examples	have	shown,	releases	and
deployments	do	not	have	to	be	high-risk,	high-drama	affairs	that	require	tens	or
hundreds	of	engineers	to	work	around	the	clock	to	complete.	Instead,	they	can	be
made	entirely	routine	and	a	part	of	everyone’s	daily	work.

By	doing	this,	we	can	reduce	our	deployment	lead	times	from	months	to
minutes,	allowing	our	organizations	to	quickly	deliver	value	to	our	customer
without	causing	chaos	and	disruption.	Furthermore,	by	having	Dev	and	Ops
work	together,	we	can	finally	make	Operations	work	humane.

†	A	canary	release	test	is	when	software	is	deployed	to	a	small	group	of	production	servers	to	make	sure	nothing	terrible	happens	to
them	with	live	customer	traffic.

‡	The	Facebook	front-end	codebase	is	primarily	written	in	PHP.	In	2010,	to	increase	site	performance,	the	PHP	code	was	converted
into	C++	by	their	internally	developed	HipHop	compiler,	which	was	then	compiled	into	a	1.5	GB	executable.	This	file	was	then
copied	onto	production	servers	using	BitTorrent,	enabling	the	copy	operation	to	be	completed	in	fifteen	minutes.

§	In	their	experiments,	they	found	that	SOT	teams	were	successful,	regardless	of	whether	they	were	managed	by	Development	or
Operations,	as	long	as	the	teams	were	staffed	with	the	right	people	and	were	dedicated	to	SOT	success.

¶	Operation	Desert	Shield	may	serve	as	an	effective	metaphor.	Starting	on	August	7,	1990,	thousands	of	men	and	materials	were	safely
deployed	over	four	months	into	the	production	theater,	culminating	in	a	single,	multi-disciplinary,	highly	coordinated	release.

**	Other	ways	that	we	can	implement	the	blue-green	pattern	include	setting	up	multiple	Apache/NGINX	web	servers	to	listen	on
different	physical	or	virtual	interfaces;	employing	multiple	virtual	roots	on	Windows	IIS	servers	bound	to	different	ports;	using
different	directories	for	every	version	of	the	system,	with	a	symbolic	link	determining	which	one	is	live	(e.g.,	as	Capistrano	does	for
Ruby	on	Rails);	running	multiple	versions	of	services	or	middleware	concurrently,	with	each	listening	on	different	ports;	using	two
different	data	centers	and	switching	traffic	between	the	data	centers,	instead	of	using	them	merely	as	hot-or	warm-spares	for	disaster
recovery	purposes	(incidentally,	by	routinely	using	both	environments,	we	are	continually	ensuring	that	our	disaster	recovery
process	works	as	designed);	or	using	different	availability	zones	in	the	cloud.

††	This	pattern	is	also	commonly	referred	to	as	the	expand/contract	pattern,	which	Timothy	Fitz	described	when	he	said,	“We	do	not
change	(mutate)	database	objects,	such	as	columns	or	tables.	Instead,	we	first	expand,	by	adding	new	objects,	then,	later,	contract	by
removing	the	old	ones.”	Furthermore,	increasingly,	there	are	technologies	that	enable	virtualization,	versioning,	labeling,	and	roll
back	of	databases,	such	as	Redgate,	Delphix,	DBMaestro,	and	Datical,	as	well	as	open	source	tools,	such	as	DBDeploy,	that	make
database	changes	dramatically	safer	and	faster.

‡‡	Note	that	canary	releases	require	having	multiple	versions	of	our	software	running	in	production	simultaneously.	However,	because
each	additional	version	we	have	in	production	creates	additional	complexity	to	manage,	we	should	keep	the	number	of	versions	to	a
minimum.	This	may	require	the	use	of	the	expand/contract	database	pattern	described	earlier.

§§	The	cluster	immune	system	was	first	documented	by	Eric	Ries	while	working	at	IMVU.	This	functionality	is	also	supported	by	Etsy
in	their	Feature	API	library,	as	well	as	by	Netflix.

¶¶	One	sophisticated	example	of	such	a	service	is	Facebook’s	Gatekeeper,	an	internally	developed	service	that	dynamically	selects
which	features	are	visible	to	specific	users	based	on	demographic	information	such	as	location,	browser	type,	and	user	profile	data
(age,	gender,	etc.).	For	instance,	a	particular	feature	could	be	configured	so	that	it	is	only	accessible	by	internal	employees,	10%	of
their	user	base,	or	only	users	between	the	ages	of	twenty-five	and	thirty-five.	Other	examples	include	the	Etsy	Feature	API	and	the
Netflix	Archaius	library.

***	Similarly,	as	Chuck	Rossi,	Director	of	Release	Engineering	at	Facebook,	described,	“All	the	code	supporting	every	feature	we’re
planning	to	launch	over	the	next	six	months	has	already	been	deployed	onto	our	production	servers.	All	we	need	to	do	is	turn	it	on.”

†††	By	2015,	Facebook	had	over	one	billion	active	users,	growing	17%	over	the	previous	year.

‡‡‡	This	problem	has	a	worst-case	computational	characteristic	of	O(n3).	In	other	words,	the	compute	time	increases	exponentially	as
the	function	of	the	number	of	online	users,	the	size	of	their	friend	lists,	and	the	frequency	of	online/offline	state	change.

13Architect	for	Low-Risk
Releases

Almost	every	well-known	DevOps	exemplar	has	had	near-death	experiences	due
to	architectural	problems,	such	as	in	the	stories	presented	about	LinkedIn,
Google,	eBay,	Amazon,	and	Etsy.	In	each	case,	they	were	able	to	successfully
migrate	to	a	more	suitable	architecture	that	addressed	their	current	problems	and
organizational	needs.

This	is	the	principle	of	evolutionary	architecture—Jez	Humble	observes	that
architecture	of	“any	successful	product	or	organization	will	necessarily	evolve
over	its	life	cycle.”	Before	his	tenure	at	Google,	Randy	Shoup	served	as	chief
engineer	and	distinguished	architect	at	eBay	from	2004	to	2011.	He	observes
that	“both	eBay	and	Google	are	each	on	their	fifth	entire	rewrite	of	their
architecture	from	top	to	bottom.”

He	reflects,	“Looking	back	with	20/20	hindsight,	some	technology	[and
architectural	choices]	look	prescient	and	others	look	shortsighted.	Each	decision
most	likely	best	served	the	organizational	goals	at	the	time.	If	we	had	tried	to
implement	the	1995	equivalent	of	microservices	out	of	the	gate,	we	would	have
likely	failed,	collapsing	under	our	own	weight	and	probably	taking	the	entire
company	with	us.”†

The	challenge	is	how	to	keep	migrating	from	the	architecture	we	have	to	the
architecture	we	need.	In	the	case	of	eBay,	when	they	needed	to	re-architect,	they

would	first	do	a	small	pilot	project	to	prove	to	themselves	that	they	understood
the	problem	well	enough	to	even	undertake	the	effort.	For	instance,	when
Shoup’s	team	was	planning	on	moving	certain	portions	of	the	site	to	full-stack
Java	in	2006,	they	looked	for	the	area	that	would	get	them	the	biggest	bang	for
their	buck	by	sorting	the	site	pages	by	revenue	produced.	They	chose	the	highest
revenue	areas,	stopping	when	there	was	not	enough	of	a	business	return	to	justify
the	effort.

What	Shoup’s	team	did	at	eBay	is	a	textbook	example	of	evolutionary	design,
using	a	technique	called	the	strangler	application	pattern—instead	of	“ripping
out	and	replacing”	old	services	with	architectures	that	no	longer	support	our
organizational	goals,	we	put	the	existing	functionality	behind	an	API	and	avoid
making	further	changes	to	it.	All	new	functionality	is	then	implemented	in	the
new	services	that	use	the	new	desired	architecture,	making	calls	to	the	old
system	when	necessary.

The	strangler	application	pattern	is	especially	useful	for	helping	migrate	portions
of	a	monolithic	application	or	tightly-coupled	services	to	one	that	is	more
loosely-coupled.	All	too	often,	we	find	ourselves	working	within	an	architecture
that	has	become	too	tightly-coupled	and	too	interconnected,	often	having	been
created	years	(or	decades)	ago.

The	consequences	of	overly	tight	architectures	are	easy	to	spot:	every	time	we
attempt	to	commit	code	in	to	trunk	or	release	code	in	to	production,	we	risk
creating	global	failures	(e.g.,	we	break	everyone	else’s	tests	and	functionality,	or
the	entire	site	goes	down).	To	avoid	this,	every	small	change	requires	enormous
amounts	of	communication	and	coordination	over	days	or	weeks,	as	well	as
approvals	from	any	group	that	could	potentially	be	affected.	Deployments
become	problematic	as	well—the	number	of	changes	that	are	batched	together
for	each	deployment	grows,	further	complicating	the	integration	and	test	effort,
and	increasing	the	already	high	likelihood	of	something	going	wrong.

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	

	 	 	
	 	 	

PRODUCTIVITY, TESTABILITY, AND SAFETY
AN ARCHITECTURE THAT ENABLES

of our organizational goals.
whatever current architecture we have to one that better enables the achievement
safety, as well as evaluate strategies that allow us to safely migrate from
architectures that enable developer productivity, testability, deployability, and
spiral, review the major architectural archetypes, examine the attributes of
In this chapter, we will describe steps we can take to reverse the downward

development teams is rarely the goal of an individual project.
reducing our overall complexity and increasing the productivity of all our
accountable for their contributions to overall system entropy.” In other words,
for the Cobbler’s Children, observes, “[IT project owners] are not held
Shoes
for IT Service Management, Resource Planning, and Governance: Making
large, complex organizations. Charles Betz, author of Architecture and Patterns
consequence of the Second Law of Architectural Thermodynamics, especially in
From an enterprise architecture perspective, this downward spiral is the

reinforcing downward spiral of deploying less frequently.
often contributes to a fear of integrating and deploying our code, and the self-
changes have seemingly unknowable and catastrophic consequences. It also
These all contribute to an extremely unsafe system of work, where small

coding—the rest of their time is spent in meetings.”)
(This results in another symptom: “My developers spend only 15% of their time
catastrophic failure, potentially requiring weeks to find and fix the problem.
thousands) of other developers, with any one of them able to create a
Even deploying small changes may require coordinating with hundreds (or even

In	contrast	to	a	tightly-coupled	architecture	that	can	impede	everyone’s
productivity	and	ability	to	safely	make	changes,	a	loosely-coupled	architecture
with	well-defined	interfaces	that	enforce	how	modules	connect	with	each	other
promotes	productivity	and	safety.	It	enables	small,	productive,	two-pizza	teams
that	are	able	to	make	small	changes	that	can	be	safely	and	independently
deployed.	And	because	each	service	also	has	a	well-defined	API,	it	enables
easier	testing	of	services	and	the	creation	of	contracts	and	SLAs	between	teams.

Figure	22:	Google	cloud	datastore	(Source:	Shoup,	“From	the	Monolith	to
Microservices.”)

As	Randy	Shoup	describes,	“This	type	of	architecture	has	served	Google
extremely	well—for	a	service	like	Gmail,	there’s	five	or	six	other	layers	of
services	underneath	it,	each	very	focused	on	a	very	specific	function.	Each
service	is	supported	by	a	small	team,	who	builds	it	and	runs	their	functionality,
with	each	group	potentially	making	different	technology	choices.	Another

example	is	the	Google	Cloud	Datastore	service,	which	is	one	of	the	largest
NoSQL	services	in	the	world—and	yet	it	is	supported	by	a	team	of	only	about
eight	people,	largely	because	it	is	based	on	layers	upon	layers	of	dependable
services	built	upon	each	other.”

This	kind	of	service-oriented	architecture	allows	small	teams	to	work	on	smaller
and	simpler	units	of	development	that	each	team	can	deploy	independently,
quickly,	and	safely.	Shoup	notes,	“Organizations	with	these	types	of
architectures,	such	as	Google	and	Amazon,	show	how	it	can	impact
organizational	structures,	[creating]	flexibility	and	scalability.	These	are	both
organizations	with	tens	of	thousands	of	developers,	where	small	teams	can	still
be	incredibly	productive.”

ARCHITECTURAL	ARCHETYPES:	MONOLITHS
VS.	MICROSERVICES

At	some	point	in	their	history,	most	DevOps	organizations	were	hobbled	by
tightly-coupled,	monolithic	architectures	that—while	extremely	successful	at
helping	them	achieve	product/market	fit—put	them	at	risk	of	organizational
failure	once	they	had	to	operate	at	scale	(e.g.,	eBay’s	monolithic	C++	application
in	2001,	Amazon’s	monolithic	OBIDOS	application	in	2001,	Twitter’s
monolithic	Rails	front-end	in	2009,	and	LinkedIn’s	monolithic	Leo	application
in	2011).	In	each	of	these	cases,	they	were	able	to	re-architect	their	systems	and
set	the	stage	not	only	to	survive,	but	also	to	thrive	and	win	in	the	marketplace.

Monolithic	architectures	are	not	inherently	bad—in	fact,	they	are	often	the	best
choice	for	an	organization	early	in	a	product	life	cycle.	As	Randy	Shoup
observes,	“There	is	no	one	perfect	architecture	for	all	products	and	all	scales.
Any	architecture	meets	a	particular	set	of	goals	or	range	of	requirements	and
constraints,	such	as	time	to	market,	ease	of	developing	functionality,	scaling,	etc.

The	functionality	of	any	product	or	service	will	almost	certainly	evolve	over
time—it	should	not	be	surprising	that	our	architectural	needs	will	change	as
well.	What	works	at	scale	1x	rarely	works	at	scale	10x	or	100x.”

Table	3:	Architectural	archetypes

(Source:	Shoup,	“From	the	Monolith	to	Microservices.”)

The	major	architectural	archetypes	are	shown	in	table	3,	each	row	indicates	a
different	evolutionary	need	for	an	organization,	with	each	column	giving	the
pros	and	cons	of	each	of	the	different	archetypes.	As	the	table	shows,	a
monolithic	architecture	that	supports	a	startup	(e.g.,	rapid	prototyping	of	new
features,	and	potential	pivots	or	large	changes	in	strategies)	is	very	different
from	an	architecture	that	needs	hundreds	of	teams	of	developers,	each	of	whom
must	be	able	to	independently	deliver	value	to	the	customer.	By	supporting
evolutionary	architectures,	we	can	ensure	that	our	architecture	always	serves	the
current	needs	of	the	organization.

Case	Study	
Evolutionary	Architecture	at	Amazon	(2002)

One	of	the	most	studied	architecture	transformations	occurred	at
Amazon.	In	an	interview	with	ACM	Turing	Award-winner	and
Microsoft	Technical	Fellow	Jim	Gray,	Amazon	CTO	Werner	Vogels
explains	that	Amazon.com	started	in	1996	as	a	“monolithic
application,	running	on	a	web	server,	talking	to	a	database	on	the
back	end.	This	application,	dubbed	Obidos,	evolved	to	hold	all	the
business	logic,	all	the	display	logic,	and	all	the	functionality	that
Amazon	eventually	became	famous	for:	similarities,
recommendations,	Listmania,	reviews,	etc.”

As	time	went	by,	Obidos	grew	too	tangled,	with	complex	sharing
relationships	meaning	individual	pieces	could	not	be	scaled	as
needed.	Vogels	tells	Gray	that	this	meant	“many	things	that	you
would	like	to	see	happening	in	a	good	software	environment
couldn’t	be	done	anymore;	there	were	many	complex	pieces	of

software	combined	into	a	single	system.	It	couldn’t	evolve
anymore.”

Describing	the	thought	process	behind	the	new	desired
architecture,	he	tells	Gray,	“We	went	through	a	period	of	serious
introspection	and	concluded	that	a	service-oriented	architecture
would	give	us	the	level	of	isolation	that	would	allow	us	to	build
many	software	components	rapidly	and	independently.”

Vogels	notes,	“The	big	architectural	change	that	Amazon	went
through	in	the	past	five	years	[from	2001–2005]	was	to	move	from	a
two-tier	monolith	to	a	fully-distributed,	decentralized,	services
platform	serving	many	different	applications.	A	lot	of	innovation	was
necessary	to	make	this	happen,	as	we	were	one	of	the	first	to	take
this	approach.”	The	lessons	from	Vogel’s	experience	at	Amazon
that	are	important	to	our	understanding	of	architecture	shifts	include
the	following:

Lesson	1:	When	applied	rigorously,	strict	service	orientation	is	an
excellent	technique	to	achieve	isolation;	you	achieve	a	level	of
ownership	and	control	that	was	not	seen	before.

Lesson	2:	Prohibiting	direct	database	access	by	clients	makes
performing	scaling	and	reliability	improvements	to	your	service
state	possible	without	involving	your	clients.

Lesson	3:	Development	and	operational	process	greatly	benefits
from	switching	to	service-orientation.	The	services	model	has	been
a	key	enabler	in	creating	teams	that	can	innovate	quickly	with	a
strong	customer	focus.	Each	service	has	a	team	associated	with	it,
and	that	team	is	completely	responsible	for	the	service—from

scoping	out	the	functionality	to	architecting,	building,	and	operating
it.

The	extent	to	which	applying	these	lessons	enhances	developer
productivity	and	reliability	is	breathtaking.	In	2011,	Amazon	was
performing	approximately	fifteen	thousands	deployments	per	day.
By	2015,	they	were	performing	nearly	136,000	deployments	per
day.

USE	THE	STRANGLER	APPLICATION	PATTERN
TO	SAFELY	EVOLVE	OUR	ENTERPRISE
ARCHITECTURE

The	term	strangler	application	was	coined	by	Martin	Fowler	in	2004	after	he
was	inspired	by	seeing	massive	strangler	vines	during	a	trip	to	Australia,	writing,
“They	seed	in	the	upper	branches	of	a	fig	tree	and	gradually	work	their	way
down	the	tree	until	they	root	in	the	soil.	Over	many	years	they	grow	into
fantastic	and	beautiful	shapes,	meanwhile	strangling	and	killing	the	tree	that	was
their	host.”

If	we	have	determined	that	our	current	architecture	is	too	tightly-coupled,	we	can
start	safely	decoupling	parts	of	the	functionality	from	our	existing	architecture.
By	doing	this,	we	enable	teams	supporting	the	decoupled	functionality	to
independently	develop,	test,	and	deploy	their	code	into	production	with
autonomy	and	safety,	and	reduce	architectural	entropy.

As	described	earlier,	the	strangler	application	pattern	involves	placing	existing
functionality	behind	an	API,	where	it	remains	unchanged,	and	implementing
new	functionality	using	our	desired	architecture,	making	calls	to	the	old	system
when	necessary.	When	we	implement	strangler	applications,	we	seek	to	access

all	services	through	versioned	APIs,	also	called	versioned	services	or	immutable
services.

Versioned	APIs	enable	us	to	modify	the	service	without	impacting	the	callers,
which	allows	the	system	to	be	more	loosely-coupled—if	we	need	to	modify	the
arguments,	we	create	a	new	API	version	and	migrate	teams	who	depend	on	our
service	to	the	new	version.	After	all,	we	are	not	achieving	our	re-architecting
goals	if	we	allow	our	new	strangler	application	to	get	tightly-coupled	into	other
services	(e.g.,	connecting	directly	to	another	service’s	database).

If	the	services	we	call	do	not	have	cleanly-defined	APIs,	we	should	build	them
or	at	least	hide	the	complexity	of	communicating	with	such	systems	within	a
client	library	that	has	a	cleanly	defined	API.

By	repeatedly	decoupling	functionality	from	our	existing	tightly-coupled	system,
we	move	our	work	into	a	safe	and	vibrant	ecosystem	where	developers	can	be
far	more	productive	resulting	in	the	legacy	application	shrinking	in	functionality.
It	might	even	disappear	entirely	as	all	the	needed	functionality	migrates	to	our
new	architecture.

By	creating	strangler	applications,	we	avoid	merely	reproducing	existing
functionality	in	some	new	architecture	or	technology—often,	our	business
processes	are	far	more	complex	than	necessary	due	to	the	idiosyncrasies	of	the
existing	systems,	which	we	will	end	up	replicating.	(By	researching	the	user,	we
can	often	re-engineer	the	process	so	that	we	can	design	a	far	simpler	and	more
streamlined	means	to	achieving	the	business	goal.)‡

An	observation	from	Martin	Fowler	underscores	this	risk:	“Much	of	my	career
has	involved	rewrites	of	critical	systems.	You	would	think	such	a	thing	is	easy—
just	make	the	new	one	do	what	the	old	one	did.	Yet	they	are	always	much	more
complex	than	they	seem,	and	overflowing	with	risk.	The	big	cut-over	date

looms,	and	the	pressure	is	on.	While	new	features	(there	are	always	new
features)	are	liked,	old	stuff	has	to	remain.	Even	old	bugs	often	need	to	be	added
to	the	rewritten	system.”

As	with	any	transformation,	we	seek	to	create	quick	wins	and	deliver	early
incremental	value	before	continuing	to	iterate.	Up-front	analysis	helps	us
identify	the	smallest	possible	piece	of	work	that	will	usefully	achieve	a	business
outcome	using	the	new	architecture.

Case	Study	
Strangler	Pattern	at	Blackboard	Learn	(2011)

Blackboard	Inc.	is	one	of	the	pioneers	of	providing	technology	for
educational	institutions,	with	annual	revenue	of	approximately	$650
million	in	2011.	At	that	time,	the	development	team	for	their	flagship
Learn	product,	packaged	software	that	was	installed	and	run	on-
premise	at	their	customer	sites,	was	living	with	the	daily
consequences	of	a	legacy	J2EE	codebase	that	went	back	to	1997.
As	David	Ashman,	their	chief	architect,	observes,	“we	still	have
fragments	of	Perl	code	still	embedded	throughout	our	codebase.”

In	2010,	Ashman	was	focused	on	the	complexity	and	growing	lead
times	associated	with	the	old	system,	observing	that	“our	build,
integration,	and	testing	processes	kept	getting	more	and	more
complex	and	error	prone.	And	the	larger	the	product	got,	the	longer
our	lead	times	and	the	worse	the	outcomes	for	our	customers.	To
even	get	feedback	from	our	integration	process	would	require
twenty-four	to	thirty-six	hours.”

Figure	23:	Blackboard	Learn	code	repository:	before	Building	Blocks	(Source:
“DOES14	-	David	Ashman	-	Blackboard	Learn	-	Keep	Your	Head	in	the	Clouds,”

YouTube	video,	30:43,	posted	by	DevOps	Enterprise	Summit	2014,	October	28,	2014,
https://www.youtube.com/watch?v=SSmixnMpsI4.)

How	this	started	to	impact	developer	productivity	was	made	visible
to	Ashman	in	graphs	generated	from	their	source	code	repository
going	all	the	way	back	to	2005.

In	figure	24,	the	top	graph	represents	the	number	of	lines	of	code	in
the	monolithic	Blackboard	Learn	code	repository;	the	bottom	graph
represents	the	number	of	code	commits.	The	problem	that	became
evident	to	Ashman	was	that	the	number	of	code	commits	started	to
decrease,	objectively	showing	the	increasing	difficulty	of	introducing
code	changes,	while	the	number	of	lines	of	code	continued	to
increase.	Ashman	noted,	“To	me,	it	said	we	needed	to	do
something,	otherwise	the	problems	would	keep	getting	worse,	with
no	end	in	sight.”

https://www.youtube.com/watch?v=SSmixnMpsI4

As	a	result,	in	2012	Ashman	focused	on	implementing	a	code	re-
architecturing	project	that	used	the	strangler	pattern.	The	team
accomplished	this	by	creating	what	they	internally	called	Building
Blocks,	which	allowed	developers	to	work	in	separate	modules	that
were	decoupled	from	the	monolithic	codebase	and	accessed
through	fixed	APIs.	This	enabled	them	to	work	with	far	more
autonomy,	without	having	to	constantly	communicate	and
coordinate	with	other	development	teams.

Figure	24:	Blackboard	Learn	code	repository:	after	Building	Blocks	(Source:
“DOES14	-	David	Ashman	-	Blackboard	Learn	-	Keep	Your	Head	in	the	Clouds.”

YouTube	video,	30:43,	posted	by	DevOps	Enterprise	Summit	2014,	October	28,	2014,
https://www.youtube.com/watch?v=SSmixnMpsI4.)

When	Building	Blocks	were	made	available	to	developers,	the	size
of	the	monolith	source	code	repository	began	to	decrease	(as
measured	by	number	of	lines	of	code).	Ashman	explained	that	this
was	because	developers	were	moving	their	code	into	the	Building
Block	modules	source	code	repository.	“In	fact,”	Ashman	reported,
“every	developer	given	a	choice	would	work	in	the	Building	Block

https://www.youtube.com/watch?v=SSmixnMpsI4

codebase,	where	they	could	work	with	more	autonomy	and	freedom
and	safety.”

The	graph	above	shows	the	connection	between	the	exponential
growth	in	the	number	of	lines	of	code	and	the	exponential	growth	of
the	number	of	code	commits	for	the	Building	Blocks	code
repositories.	The	new	Building	Blocks	codebase	allowed
developers	to	be	more	productive,	and	they	made	the	work	safer
because	mistakes	resulted	in	small,	local	failures	instead	of	major
catastrophes	that	impacted	the	global	system.

Ashman	concluded,	“Having	developers	work	in	the	Building	Blocks
architecture	made	for	impressive	improvements	in	code	modularity,
allowing	them	to	work	with	more	independence	and	freedom.	In
combination	with	the	updates	to	our	build	process,	they	also	got
faster,	better	feedback	on	their	work,	which	meant	better	quality.	”

CONCLUSION

To	a	large	extent,	the	architecture	that	our	services	operate	within	dictates	how
we	test	and	deploy	our	code.	This	was	validated	in	Puppet	Labs’	2015	State	of
DevOps	Report,	showing	that	architecture	is	one	of	the	top	predictors	of	the
productivity	of	the	engineers	that	work	within	it	and	of	how	changes	can	be
quickly	and	safely	made.

Because	we	are	often	stuck	with	architectures	that	were	optimized	for	a	different
set	of	organizational	goals,	or	for	an	era	long-passed,	we	must	be	able	to	safely
migrate	from	one	architecture	to	another.	The	case	studies	presented	in	this
chapter,	as	well	as	the	Amazon	case	study	previously	presented,	describe

techniques	like	the	strangler	pattern	that	can	help	us	migrate	between
architectures	incrementally,	enabling	us	to	adapt	to	the	needs	of	the	organization.

PART	III	CONCLUSION

Within	the	previous	chapters	of	Part	III,	we	have	implemented	the	architecture
and	technical	practices	that	enable	the	fast	flow	of	work	from	Dev	to	Ops,	so	that
value	can	be	quickly	and	safely	delivered	to	customers.

In	Part	IV:	The	Second	Way,	The	Technical	Practices	of	Feedback,	we	will
create	the	architecture	and	mechanisms	to	enable	the	reciprocal	fast	flow	of
feedback	from	right	to	left,	to	find	and	fix	problems	faster,	radiate	feedback,	and
ensure	better	outcomes	from	our	work.	This	enables	our	organization	to	further
increase	the	rate	at	which	it	can	adapt.

†	eBay’s	architecture	went	through	the	following	phases:	Perl	and	files	(v1,	1995),	C++	and	Oracle	(v2,	1997),	XSL	and	Java	(v3,
2002),	full-stack	Java	(v4,	2007),	Polyglot	microservices	(2013+).

‡	The	strangler	application	pattern	involves	incrementally	replacing	a	whole	system,	usually	a	legacy	system,	with	a	completely	new
one.	Conversely,	branching	by	abstraction,	a	term	coined	by	Paul	Hammant,	is	a	technique	where	we	create	an	abstraction	layer
between	the	areas	that	we	are	changing.	This	enables	evolutionary	design	of	the	application	architecture	while	allowing	everybody
to	work	off	trunk/master	and	practice	continuous	integration.

Part	IV

Introduction
In	Part	III,	we	described	the	architecture	and	technical	practices	required	to
create	fast	flow	from	Development	into	Operations.	Now	in	Part	IV,	we	describe
how	to	implement	the	technical	practices	of	the	Second	Way,	which	are	required
to	create	fast	and	continuous	feedback	from	Operations	to	Development.

By	doing	this,	we	shorten	and	amplify	feedback	loops	so	that	we	can	see
problems	as	they	occur	and	radiate	this	information	to	everyone	in	the	value
stream.	This	allows	us	to	quickly	find	and	fix	problems	earlier	in	the	software
development	life	cycle,	ideally	long	before	they	cause	a	catastrophic	failure.

Furthermore,	we	will	create	a	system	of	work	where	knowledge	acquired
downstream	in	Operations	is	integrated	into	the	upstream	work	of	Development
and	Product	Management.	This	allows	us	to	quickly	create	improvements	and
learnings,	whether	it’s	from	a	production	issue,	a	deployment	issue,	early
indicators	of	problems,	or	our	customer	usage	patterns.

Additionally,	we	will	create	a	process	that	allows	everyone	to	get	feedback	on
their	work,	makes	information	visible	to	enable	learning,	and	enables	us	to
rapidly	test	product	hypotheses,	helping	us	determine	if	the	features	we	are
building	are	helping	us	achieve	our	organizational	goals.

We	will	also	demonstrate	how	to	create	telemetry	from	our	build,	test,	and
deploy	processes,	as	well	as	from	user	behavior,	production	issues	and	outages,
audit	issues,	and	security	breaches.	By	amplifying	signals	as	part	of	our	daily

work,	we	make	it	possible	to	see	and	solve	problems	as	they	occur,	and	we	grow
safe	systems	of	work	that	allow	us	to	confidently	make	changes	and	run	product
experiments,	knowing	we	can	quickly	detect	and	remediate	failures.	We	will	do
all	of	this	by	exploring	the	following:

Creating	telemetry	to	enable	seeing	and	solving	problems

Using	our	telemetry	to	better	anticipate	problems	and	achieve	goals

Integrating	user	research	and	feedback	into	the	work	of	product	teams

Enabling	feedback	so	Dev	and	Ops	can	safely	perform	deployments

Enabling	feedback	to	increase	the	quality	of	our	work	through	peer	reviews
and	pair	programming

The	patterns	in	this	chapter	help	reinforce	the	common	goals	of	Product
Management,	Development,	QA,	Operations,	and	Infosec,	and	encourage	them
to	share	in	the	responsibility	of	ensuring	that	services	run	smoothly	in	production
and	collaborate	on	the	improvement	of	the	system	as	a	whole.	Where	possible,
we	want	to	link	cause	to	effect.	The	more	assumptions	we	can	invalidate,	the
faster	we	can	discover	and	fix	problems,	but	also	the	greater	our	ability	to	learn
and	innovate.

Throughout	the	following	chapters,	we	will	implement	feedback	loops,	enabling
everyone	to	work	together	toward	shared	goals,	to	see	problems	as	they	occur,
enable	quick	detection	and	recovery,	and	ensure	that	features	not	only	operate	as
designed	in	production,	but	also	achieve	organizational	goals	and	support
organizational	learning.

14Create	Telemetry	to
Enable	Seeing	and	Solving
Problems

A	fact	of	life	in	Operations	is	that	things	go	wrong—small	changes	may	result	in
many	unexpected	outcomes,	including	outages	and	global	failures	that	impact	all
our	customers.	This	is	the	reality	of	operating	complex	systems;	no	single	person
can	see	the	whole	system	and	understand	how	all	the	pieces	fit	together.

When	production	outages	and	other	problems	occur	in	our	daily	work,	we	don’t
often	have	the	information	we	need	to	solve	the	problem.	For	example,	during	an
outage	we	may	not	be	able	to	determine	whether	the	issue	is	due	to	a	failure	in
our	application	(e.g.,	defect	in	the	code),	in	our	environment	(e.g.,	a	networking
problem,	server	configuration	problem),	or	something	entirely	external	to	us
(e.g.,	a	massive	denial	of	service	attack).

In	Operations,	we	may	deal	with	this	problem	with	the	following	rule	of	thumb:
When	something	goes	wrong	in	production,	we	just	reboot	the	server.	If	that
doesn’t	work,	reboot	the	server	next	to	it.	If	that	doesn’t	work,	reboot	all	the
servers.	If	that	doesn’t	work,	blame	the	developers,	they’re	always	causing
outages.

In	contrast,	the	Microsoft	Operations	Framework	(MOF)	study	in	2001	found
that	organizations	with	the	highest	service	levels	rebooted	their	servers	twenty
times	less	frequently	than	average	and	had	five	times	fewer	“blue	screens	of

death.”	In	other	words,	they	found	that	the	best-performing	organizations	were
much	better	at	diagnosing	and	fixing	service	incidents,	in	what	Kevin	Behr,
Gene	Kim,	and	George	Spafford	called	a	“culture	of	causality”	in	The	Visible
Ops	Handbook.	High	performers	used	a	disciplined	approach	to	solving
problems,	using	production	telemetry	to	understand	possible	contributing	factors
to	focus	their	problem	solving,	as	opposed	to	lower	performers	who	would
blindly	reboot	servers.

To	enable	this	disciplined	problem-solving	behavior,	we	need	to	design	our
systems	so	that	they	are	continually	creating	telemetry,	widely	defined	as	“an
automated	communications	process	by	which	measurements	and	other	data	are
collected	at	remote	points	and	are	subsequently	transmitted	to	receiving
equipment	for	monitoring.”	Our	goal	is	to	create	telemetry	within	our
applications	and	environments,	both	in	our	production	and	pre-production
environments	as	well	as	in	our	deployment	pipeline.

Michael	Rembetsy	and	Patrick	McDonnell	described	how	production	monitoring
was	a	critical	part	of	Etsy’s	DevOps	transformation	that	started	in	2009.	This
was	because	they	were	standardizing	and	transitioning	their	entire	technology
stack	to	the	LAMP	stack	(Linux,	Apache,	MySQL,	and	PHP),	abandoning	a
myriad	of	different	technologies	being	used	in	production	that	were	increasingly
difficult	to	support.

At	the	2012	Velocity	Conference,	McDonnell	described	how	much	risk	this
created,	“We	were	changing	some	of	our	most	critical	infrastructure,	which,
ideally,	customers	would	never	notice.	However,	they’d	definitely	notice	if	we
screwed	something	up.	We	needed	more	metrics	to	give	us	confidence	that	we
weren’t	actually	breaking	things	while	we	were	doing	these	big	changes,	both
for	our	engineering	teams	and	for	team	members	in	the	non-technical	areas,	such
as	marketing.”

McDonnell	explained	further,	“We	started	collecting	all	our	server	information
in	a	tool	called	Ganglia,	displaying	all	the	information	into	Graphite,	an	open
source	tool	we	invested	heavily	into.	We	started	aggregating	metrics	together,
everything	from	business	metrics	to	deployments.	This	is	when	we	modified
Graphite	with	what	we	called	‘our	unparalleled	and	unmatched	vertical	line
technology’	that	overlaid	onto	every	metric	graph	when	deployments	happened.
By	doing	this,	we	could	more	quickly	see	any	unintended	deployment	side
effects.	We	even	started	putting	TV	screens	all	around	the	office	so	that
everyone	could	see	how	our	services	were	performing.”

By	enabling	developers	to	add	telemetry	to	their	features	as	part	of	their	daily
work,	they	created	enough	telemetry	to	help	make	deployments	safe.	By	2011,
Etsy	was	tracking	over	two	hundred	thousand	production	metrics	at	every	layer
of	the	application	stack	(e.g.,	application	features,	application	health,	database,
operating	system,	storage,	networking,	security,	etc.)	with	the	top	thirty	most
important	business	metrics	prominently	displayed	on	their	“deploy	dashboard.”
By	2014,	they	were	tracking	over	eight	hundred	thousand	metrics,	showing	their
relentless	goal	of	instrumenting	everything	and	making	it	easy	for	engineers	to
do	so.

As	Ian	Malpass,	an	engineer	at	Etsy,	quipped,	“If	Engineering	at	Etsy	has	a
religion,	it’s	the	Church	of	Graphs.	If	it	moves,	we	track	it.	Sometimes	we’ll
draw	a	graph	of	something	that	isn’t	moving	yet,	just	in	case	it	decides	to	make	a
run	for	it….Tracking	everything	is	key	to	moving	fast,	but	the	only	way	to	do	it
is	to	make	tracking	anything	easy....We	enable	engineers	to	track	what	they	need
to	track,	at	the	drop	of	a	hat,	without	requiring	time-sucking	configuration
changes	or	complicated	processes.”

One	of	the	findings	of	the	2015	State	of	DevOps	Report	was	that	high	performers
could	resolve	production	incidents	168	times	faster	than	their	peers,	with	the
median	high	performer	having	a	MTTR	measured	in	minutes,	while	the	median

low	performer	had	an	MTTR	measured	in	days.	The	top	two	technical	practices
that	enabled	fast	MTTR	were	the	use	of	version	control	by	Operations	and
having	telemetry	and	proactive	monitoring	in	the	production	environment.

Figure	25:	Incident	resolution	time	for	high,	medium,	and	low	performers	
(Source:	Puppet	Labs,	2014	State	of	DevOps	Report.)

As	was	created	at	Etsy,	our	goal	in	this	chapter	is	to	ensure	that	we	always	have
enough	telemetry	so	that	we	can	confirm	that	our	services	are	correctly	operating
in	production.	And	when	problems	do	occur,	make	it	possible	to	quickly

determine	what	is	going	wrong	and	make	informed	decisions	on	how	best	to	fix
it,	ideally	long	before	customers	are	impacted.	Furthermore,	telemetry	is	what
enables	us	to	assemble	our	best	understanding	of	reality	and	detect	when	our
understanding	of	reality	is	incorrect.

CREATE	OUR	CENTRALIZED	TELEMETRY
INFRASTRUCTURE

Operational	monitoring	and	logging	is	by	no	means	new—multiple	generations
of	Operations	engineers	have	used	and	customized	monitoring	frameworks	(e.g.,
HP	OpenView,	IBM	Tivoli,	and	BMC	Patrol/BladeLogic)	to	ensure	the	health	of
production	systems.	Data	was	typically	collected	through	agents	that	ran	on
servers	or	through	agent-less	monitoring	(e.g.,	SNMP	traps	or	polling	based
monitors).	There	was	often	a	graphical	user	interface	(GUI)	front	end,	and	back-
end	reporting	was	often	augmented	through	tools	such	as	Crystal	Reports.

Similarly,	the	practices	of	developing	applications	with	effective	logging	and
managing	the	resulting	telemetry	are	not	new—a	variety	of	mature	logging
libraries	exist	for	almost	all	programming	languages.

However,	for	decades	we	have	ended	up	with	silos	of	information,	where
Development	only	creates	logging	events	that	are	interesting	to	developers,	and
Operations	only	monitors	whether	the	environments	are	up	or	down.	As	a	result,
when	inopportune	events	occur,	no	one	can	determine	why	the	entire	system	is
not	operating	as	designed	or	which	specific	component	is	failing,	impeding	our
ability	to	bring	our	system	back	to	a	working	state.

In	order	for	us	to	see	all	problems	as	they	occur,	we	must	design	and	develop	our
applications	and	environments	so	that	they	generate	sufficient	telemetry,
allowing	us	to	understand	how	our	system	is	behaving	as	a	whole.	When	all

levels	of	our	application	stack	have	monitoring	and	logging,	we	enable	other
important	capabilities,	such	as	graphing	and	visualizing	our	metrics,	anomaly
detection,	proactive	alerting	and	escalation,	etc.

In	The	Art	of	Monitoring,	James	Turnbull	describes	a	modern	monitoring
architecture,	which	has	been	developed	and	used	by	Operations	engineers	at
web-scale	companies	(e.g.,	Google,	Amazon,	Facebook).	The	architecture	often
consisted	of	open	source	tools,	such	as	Nagios	and	Zenoss,	that	were	customized
and	deployed	at	a	scale	that	was	difficult	to	accomplish	with	licensed
commercial	software	at	the	time.	This	architecture	has	the	following
components:

Data	collection	at	the	business	logic,	application,	and	environments
layer:	In	each	of	these	layers,	we	are	creating	telemetry	in	the	form	of
events,	logs,	and	metrics.	Logs	may	be	stored	in	application-specific	files	on
each	server	(e.g.,	varlog/httpd-error.log),	but	preferably	we	want	all	our	logs
sent	to	a	common	service	that	enables	easy	centralization,	rotation,	and
deletion.	This	is	provided	by	most	operating	systems,	such	as	syslog	for
Linux,	the	Event	Log	for	Windows,	etc.	Furthermore,	we	gather	metrics	at	all
layers	of	the	application	stack	to	better	understand	how	our	system	is
behaving.	At	the	operating	system	level,	we	can	collect	metrics	such	as	CPU,
memory,	disk,	or	network	usage	over	time	using	tools	like	collectd,	Ganglia,
etc.	Other	tools	that	collect	performance	information	include	AppDynamics,
New	Relic,	and	Pingdom.

An	event	router	responsible	for	storing	our	events	and	metrics:	This
capability	potentially	enables	visualization,	trending,	alerting,	anomaly
detection,	and	so	forth.	By	collecting,	storing,	and	aggregating	all	our
telemetry,	we	better	enable	further	analysis	and	health	checks.	This	is	also
where	we	store	configurations	related	to	our	services	(and	their	supporting
applications	and	environments)	and	is	likely	where	we	do	threshold-based

alerting	and	health	checks.†

Once	we	have	centralized	our	logs,	we	can	transform	them	into	metrics	by
counting	them	in	the	event	router—for	example,	a	log	event	such	as	“child	pid
14024	exit	signal	Segmentation	fault”	can	be	counted	and	summarized	as	a
single	segfault	metric	across	our	entire	production	infrastructure.

By	transforming	logs	into	metrics,	we	can	now	perform	statistical	operations	on
them,	such	as	using	anomaly	detection	to	find	outliers	and	variances	even	earlier
in	the	problem	cycle.	For	instance,	we	might	configure	our	alerting	to	notify	us	if
we	went	from	“ten	segfaults	last	week”	to	“thousands	of	segfaults	in	the	last
hour,”	prompting	us	to	investigate	further.

In	addition	to	collecting	telemetry	from	our	production	services	and
environments,	we	must	also	collect	telemetry	from	our	deployment	pipeline
when	important	events	occur,	such	as	when	our	automated	tests	pass	or	fail	and
when	we	perform	deployments	to	any	environment.	We	should	also	collect
telemetry	on	how	long	it	takes	us	to	execute	our	builds	and	tests.	By	doing	this,
we	can	detect	conditions	that	could	indicate	problems,	such	as	if	the
performance	test	or	our	build	takes	twice	as	long	as	normal,	allowing	us	to	find
and	fix	errors	before	they	go	into	production.

Figure	26:	Monitoring	framework	(Source:	Turnbull,	The	Art	of	Monitoring,	Kindle
edition,	chap.	2.)

Furthermore,	we	should	ensure	that	it	is	easy	to	enter	and	retrieve	information
from	our	telemetry	infrastructure.	Preferably,	everything	should	be	done	through
self-service	APIs,	as	opposed	to	requiring	people	to	open	up	tickets	and	wait	to
get	reports.

Ideally,	we	will	create	telemetry	that	tells	us	exactly	when	anything	of	interest
happens,	as	well	as	where	and	how.	Our	telemetry	should	also	be	suitable	for

manual	and	automated	analysis	and	should	be	able	to	be	analyzed	without
having	the	application	that	produced	the	logs	on	hand.	As	Adrian	Cockcroft
pointed	out,	“Monitoring	is	so	important	that	our	monitoring	systems	need	to	be
more	available	and	scalable	than	the	systems	being	monitored.”

From	here	on,	the	term	telemetry	will	be	used	interchangeably	with	metrics,
which	includes	all	event	logging	and	metrics	created	by	our	services	at	all	levels
of	our	application	stack	and	generated	from	all	our	production	and	pre-
production	environments,	as	well	as	from	our	deployment	pipeline.

CREATE	APPLICATION	LOGGING	TELEMETRY
THAT	HELPS	PRODUCTION

Now	that	we	have	a	centralized	telemetry	infrastructure,	we	must	ensure	that	the
applications	we	build	and	operate	are	creating	sufficient	telemetry.	We	do	this
by	having	Dev	and	Ops	engineers	create	production	telemetry	as	part	of	their
daily	work,	both	for	new	and	existing	services.

Scott	Prugh,	Chief	Architect	and	Vice	President	of	Development	at	CSG,	said,
“Every	time	NASA	launches	a	rocket,	it	has	millions	of	automated	sensors
reporting	the	status	of	every	component	of	this	valuable	asset.	And	yet,	we	often
don’t	take	the	same	care	with	software—we	found	that	creating	application	and
infrastructure	telemetry	to	be	one	of	the	highest	return	investments	we’ve	made.
In	2014,	we	created	over	one	billion	telemetry	events	per	day,	with	over	one
hundred	thousand	code	locations	instrumented.”

In	the	applications	we	create	and	operate,	every	feature	should	be	instrumented
—if	it	was	important	enough	for	an	engineer	to	implement,	it	is	certainly
important	enough	to	generate	enough	production	telemetry	so	that	we	can

confirm	that	it	is	operating	as	designed	and	that	the	desired	outcomes	are	being
achieved.‡

Every	member	of	our	value	stream	will	use	telemetry	in	a	variety	of	ways.	For
example,	developers	may	temporarily	create	more	telemetry	in	their	application
to	better	diagnose	problems	on	their	workstation,	while	Ops	engineers	may	use
telemetry	to	diagnose	a	production	problem.	In	addition,	Infosec	and	auditors
may	review	the	telemetry	to	confirm	the	effectiveness	of	a	required	control,	and
a	product	manager	may	use	them	to	track	business	outcomes,	feature	usage,	or
conversion	rates.

To	support	these	various	usage	models,	we	have	different	logging	levels,	some
of	which	may	also	trigger	alerts,	such	as	the	following:

DEBUG	level:	Information	at	this	level	is	about	anything	that	happens	in	the
program,	most	often	used	during	debugging.	Often,	debug	logs	are	disabled
in	production	but	temporarily	enabled	during	troubleshooting.

INFO	level:	Information	at	this	level	consists	of	actions	that	are	user-driven
or	system	specific	(e.g.,	“beginning	credit	card	transaction”).

WARN	level:	Information	at	this	level	tells	us	of	conditions	that	could
potentially	become	an	error	(e.g.,	a	database	call	taking	longer	than	some
predefined	time).	These	will	likely	initiate	an	alert	and	troubleshooting,	while
other	logging	messages	may	help	us	better	understand	what	led	to	this
condition.

ERROR	level:	Information	at	this	level	focuses	on	error	conditions	(e.g.,
API	call	failures,	internal	error	conditions).

FATAL	level:	Information	at	this	level	tells	us	when	we	must	terminate
(e.g.,	a	network	daemon	can’t	bind	a	network	socket).

Choosing	the	right	logging	level	is	important.	Dan	North,	a	former
ThoughtWorks	consultant	who	was	involved	in	several	projects	in	which	the
core	continuous	delivery	concepts	took	shape,	observes,	“When	deciding
whether	a	message	should	be	ERROR	or	WARN,	imagine	being	woken	up	at	4
a.m.	Low	printer	toner	is	not	an	ERROR.”

To	help	ensure	that	we	have	information	relevant	to	the	reliable	and	secure
operations	of	our	service,	we	should	ensure	that	all	potentially	significant
application	events	generate	logging	entries,	including	those	provided	on	this	list
assembled	by	Anton	A.	Chuvakin,	a	research	VP	at	Gartner’s	GTP	Security	and
Risk	Management	group:

Authentication/authorization	decisions	(including	logoff)

System	and	data	access

System	and	application	changes	(especially	privileged	changes)

Data	changes,	such	as	adding,	editing,	or	deleting	data

Invalid	input	(possible	malicious	injection,	threats,	etc.)

Resources	(RAM,	disk,	CPU,	bandwidth,	or	any	other	resource	that	has	hard
or	soft	limits)

Health	and	availability

Startups	and	shutdowns

Faults	and	errors

Circuit	breaker	trips

Delays

Backup	success/failure

To	make	it	easier	to	interpret	and	give	meaning	to	all	these	log	entries,	we
should	(ideally)	create	logging	hierarchical	categories,	such	as	for	non-functional
attributes	(e.g.,	performance,	security)	and	for	attributes	related	to	features	(e.g.,
search,	ranking).

USE	TELEMETRY	TO	GUIDE	PROBLEM
SOLVING

As	described	in	the	beginning	of	this	chapter,	high	performers	use	a	disciplined
approach	to	solving	problems.	This	is	in	contrast	to	the	more	common	practice
of	using	rumor	and	hearsay,	which	can	lead	to	the	unfortunate	metric	of	mean
time	until	declared	innocent—how	quickly	can	we	convince	everyone	else	that
we	didn’t	cause	the	outage.

When	there	is	a	culture	of	blame	around	outages	and	problems,	groups	may
avoid	documenting	changes	and	displaying	telemetry	where	everyone	can	see
them	to	avoid	being	blamed	for	outages.

Other	negative	outcomes	due	to	lack	of	public	telemetry	include	a	highly
charged	political	atmosphere,	the	need	to	deflect	accusations,	and,	worse,	the
inability	to	create	institutional	knowledge	around	how	the	incidents	occurred	and
the	learnings	needed	to	prevent	these	errors	from	happening	again	in	the	future.§

In	contrast,	telemetry	enables	us	to	use	the	scientific	method	to	formulate
hypotheses	about	what	is	causing	a	particular	problem	and	what	is	required	to
solve	it.	Examples	of	questions	we	can	answer	during	problem	resolution
include:

What	evidence	do	we	have	from	our	monitoring	that	a	problem	is	actually
occurring?

What	are	the	relevant	events	and	changes	in	our	applications	and
environments	that	could	have	contributed	to	the	problem?

What	hypotheses	can	we	formulate	to	confirm	the	link	between	the	proposed
causes	and	effects?

How	can	we	prove	which	of	these	hypotheses	are	correct	and	successfully
effect	a	fix?

The	value	of	fact-based	problem	solving	lies	not	only	in	significantly	faster
MTTR	(and	better	customer	outcomes),	but	also	in	its	reinforcement	of	the
perception	of	a	win/win	relationship	between	Development	and	Operations.

ENABLE	CREATION	OF	PRODUCTION	METRICS
AS	PART	OF	DAILY	WORK

To	enable	everyone	to	be	able	to	find	and	fix	problems	in	their	daily	work,	we
need	to	enable	everyone	to	create	metrics	in	their	daily	work	that	can	be	easily
created,	displayed,	and	analyzed.	To	do	this,	we	must	create	the	infrastructure
and	libraries	necessary	to	make	it	as	easy	as	possible	for	anyone	in	Development
or	Operations	to	create	telemetry	for	any	functionality	they	build.	In	the	ideal,	it
should	be	as	easy	as	writing	one	line	of	code	to	create	a	new	metric	that	shows
up	in	a	common	dashboard	where	everyone	in	the	value	stream	can	see	it.

This	was	the	philosophy	that	guided	the	development	of	one	of	the	most	widely
used	metrics	libraries,	called	StatsD,	which	was	created	and	open-sourced	at
Etsy.	As	John	Allspaw	described,	“We	designed	StatsD	to	prevent	any	developer
from	saying,	‘It’s	too	much	of	a	hassle	to	instrument	my	code.’	Now	they	can	do
it	with	one	line	of	code.	It	was	important	to	us	that	for	a	developer,	adding
production	telemetry	didn’t	feel	as	difficult	as	doing	a	database	schema	change.”

StatsD	can	generate	timers	and	counters	with	one	line	of	code	(in	Ruby,	Perl,
Python,	Java,	and	other	languages)	and	is	often	used	in	conjunction	with
Graphite	or	Grafana,	which	renders	metric	events	into	graphs	and	dashboards.

Figure	27:	One	line	of	code	to	generate	telemetry	using	StatsD	and	Graphite	at	Etsy
(Source:	Ian	Malpass,	“Measure	Anything,	Measure	Everything.”)

Figure	27	above	shows	an	example	of	how	a	single	line	of	code	creates	a	user
login	event	(in	this	case,	one	line	of	PHP	code:
“StatsD::increment(“login.successes”)).	The	resulting	graph	shows	the	number
of	successful	and	failed	logins	per	minute,	and	overlaid	on	the	graph	are	vertical
lines	that	represent	a	production	deployment.

When	we	generate	graphs	of	our	telemetry,	we	will	also	overlay	onto	them	when
production	changes	occur,	because	we	know	that	the	significant	majority	of
production	issues	are	caused	by	production	changes,	which	include	code
deployments.	This	is	part	of	what	allows	us	to	have	a	high	rate	of	change,	while
still	preserving	a	safe	system	of	work.

Alternative	libraries	to	StatsD	that	allow	developers	to	generate	production
telemetry	can	be	easily	aggregated	and	analyzed	include	JMX	and	codahale
metrics.	Other	tools	that	create	metrics	invaluable	for	problem	solving	include

New	Relic,	AppDynamics,	and	Dynatrace.	Tools	such	as	munin	and	collectd	can
be	used	to	create	similar	functionality.¶

By	generating	production	telemetry	as	part	of	our	daily	work,	we	create	an	ever-
improving	capability	to	not	only	see	problems	as	they	occur,	but	also	to	design
our	work	so	that	problems	in	design	and	operations	can	be	revealed,	allowing	an
increasing	number	of	metrics	to	be	tracked,	as	we	saw	in	the	Etsy	case	study.

CREATE	SELF-SERVICE	ACCESS	TO
TELEMETRY	AND	INFORMATION	RADIATORS

In	the	previous	steps,	we	enabled	Development	and	Operations	to	create	and
improve	production	telemetry	as	part	of	their	daily	work.	In	this	step,	our	goal	is
to	radiate	this	information	to	the	rest	of	the	organization,	ensuring	that	anyone
who	wants	information	about	any	of	the	services	we	are	running	can	get	it
without	needing	production	system	access	or	privileged	accounts,	or	having	to
open	up	a	ticket	and	wait	for	days	for	someone	to	configure	the	graph	for	them.

By	making	telemetry	fast,	easy	to	get,	and	sufficiently	centralized,	everyone	in
the	value	stream	can	share	a	common	view	of	reality.	Typically,	this	means	that
production	metrics	will	be	radiated	on	web	pages	generated	by	a	centralized
server,	such	as	Graphite	or	any	of	the	other	technologies	described	in	the
previous	section.

We	want	our	production	telemetry	to	be	highly	visible,	which	means	putting	it	in
central	areas	where	Development	and	Operations	work,	thus	allowing	everyone
who	is	interested	to	see	how	our	services	are	performing.	At	a	minimum,	this
includes	everyone	in	our	value	stream,	such	as	Development,	Operations,
Product	Management,	and	Infosec.

This	is	often	referred	to	as	an	information	radiator,	defined	by	the	Agile
Alliance	as	“the	generic	term	for	any	of	a	number	of	handwritten,	drawn,
printed,	or	electronic	displays	which	a	team	places	in	a	highly	visible	location,
so	that	all	team	members	as	well	as	passers-by	can	see	the	latest	information	at	a
glance:	count	of	automated	tests,	velocity,	incident	reports,	continuous
integration	status,	and	so	on.	This	idea	originated	as	part	of	the	Toyota
Production	System.”

By	putting	information	radiators	in	highly	visible	places,	we	promote
responsibility	among	team	members,	actively	demonstrating	the	following
values:

The	team	has	nothing	to	hide	from	its	visitors	(customers,	stakeholders,	etc.)

The	team	has	nothing	to	hide	from	itself:	it	acknowledges	and	confronts
problems

Now	that	we	possess	the	infrastructure	to	create	and	radiate	production	telemetry
to	the	entire	organization,	we	may	also	choose	to	broadcast	this	information	to
our	internal	customers	and	even	to	our	external	customers.	For	example,	we
might	do	this	by	creating	publicly-viewable	service	status	pages	so	that
customers	can	learn	how	the	services	they	depend	upon	are	performing.

Although	there	may	be	some	resistance	to	providing	this	amount	of
transparency,	Ernest	Mueller	describes	the	value	of	doing	so:

One	of	the	first	actions	I	take	when	starting	in	an	organization	is	to	use
information	radiators	to	communicate	issues	and	detail	the	changes	we	are
making—this	is	usually	extremely	well-received	by	our	business	units,	who
were	often	left	in	the	dark	before.	And	for	Development	and	Operations
groups	who	must	work	together	to	deliver	a	service	to	others,	we	need	that
constant	communication,	information,	and	feedback.

We	may	even	extend	this	transparency	further—instead	of	trying	to	keep
customer-impacting	problems	a	secret,	we	can	broadcast	this	information	to	our
external	customers.	This	demonstrates	that	we	value	transparency,	thereby
helping	to	build	and	earn	customers’	trust.**	See	Appendix	10.

Case	Study	
Creating	Self-Service	Metrics	at	LinkedIn	(2011)

As	described	in	Part	III,	LinkedIn	was	created	in	2003	to	help	users
connect	“to	your	network	for	better	job	opportunities.”	By	November
2015,	LinkedIn	had	over	350	million	members	generating	tens	of
thousands	of	requests	per	second,	resulting	in	millions	of	queries
per	second	on	the	LinkedIn	back-end	systems.

Prachi	Gupta,	Director	of	Engineering	at	LinkedIn,	wrote	in	2011
about	the	importance	of	production	telemetry:	“At	LinkedIn,	we
emphasize	making	sure	the	site	is	up	and	our	members	have
access	to	complete	site	functionality	at	all	times.	Fulfilling	this
commitment	requires	that	we	detect	and	respond	to	failures	and
bottlenecks	as	they	start	happening.	That’s	why	we	use	these	time-
series	graphs	for	site	monitoring	to	detect	and	react	to	incidents
within	minutes...This	monitoring	technique	has	proven	to	be	a	great
tool	for	engineers.	It	lets	us	move	fast	and	buys	us	time	to	detect,
triage,	and	fix	problems.”

However,	in	2010,	even	though	there	was	an	incredibly	large
volume	of	telemetry	being	generated,	it	was	extremely	difficult	for
engineers	to	get	access	to	the	data,	let	alone	analyze	it.	Thus

began	Eric	Wong’s	summer	intern	project	at	LinkedIn,	which	turned
into	the	production	telemetry	initiative	that	created	InGraphs.

Wong	wrote,	“To	get	something	as	simple	as	CPU	usage	of	all	the
hosts	running	a	particular	service,	you	would	need	to	file	a	ticket
and	someone	would	spend	30	minutes	putting	it	[a	report]	together.”

At	the	time,	LinkedIn	was	using	Zenoss	to	collect	metrics,	but	as
Wong	explains,	“Getting	data	from	Zenoss	required	digging	through
a	slow	web	interface,	so	I	wrote	some	python	scripts	to	help
streamline	the	process.	While	there	was	still	manual	intervention	in
setting	up	metric	collection,	I	was	able	to	cut	down	the	time	spent
navigating	Zenoss’	interface.”

Over	the	course	of	the	summer,	he	continued	to	add	functionality	to
InGraphs	so	that	engineers	could	see	exactly	what	they	wanted	to
see,	adding	the	ability	to	make	calculations	across	multiple
datasets,	view	week-over-week	trending	to	compare	historical
performance,	and	even	define	custom	dashboards	to	pick	exactly
which	metrics	would	be	displayed	on	a	single	page.

In	writing	about	the	outcomes	of	adding	functionality	to	InGraphs
and	the	value	of	this	capability,	Gupta	notes,	“The	effectiveness	of
our	monitoring	system	was	highlighted	in	an	instant	where	our
InGraphs	monitoring	functionality	tied	to	a	major	web-mail	provider
started	trending	downwards	and	the	provider	realized	they	had	a
problem	in	their	system	only	after	we	reached	out	to	them!”

What	started	off	as	a	summer	internship	project	is	now	one	of	the
most	visible	parts	of	LinkedIn	operations.	InGraphs	has	been	so

successful	that	the	real-time	graphs	are	featured	prominently	in	the
company’s	engineering	offices	where	visitors	can’t	fail	to	see	them.

FIND	AND	FILL	ANY	TELEMETRY	GAPS

We	have	now	created	the	infrastructure	necessary	to	quickly	create	production
telemetry	throughout	our	entire	application	stack	and	radiate	it	throughout	our
organization.

In	this	step,	we	will	identify	any	gaps	in	our	telemetry	that	impede	our	ability	to
quickly	detect	and	resolve	incidents—this	is	especially	relevant	if	Dev	and	Ops
currently	have	little	(or	no)	telemetry.	We	will	use	this	data	later	to	better
anticipate	problems,	as	well	as	to	enable	everyone	to	gather	the	information	they
need	to	make	better	decisions	to	achieve	organizational	goals.

Achieving	this	requires	that	we	create	enough	telemetry	at	all	levels	of	the
application	stack	for	all	our	environments,	as	well	as	for	the	deployment
pipelines	that	support	them.	We	need	metrics	from	the	following	levels:

Business	level:	Examples	include	the	number	of	sales	transactions,	revenue
of	sales	transactions,	user	signups,	churn	rate,	A/B	testing	results,	etc.

Application	level:	Examples	include	transaction	times,	user	response	times,
application	faults,	etc.

Infrastructure	level	(e.g.,	database,	operating	system,	networking,
storage):	Examples	include	web	server	traffic,	CPU	load,	disk	usage,	etc.

Client	software	level	(e.g.,	JavaScript	on	the	client	browser,	mobile
application):	Examples	include	application	errors	and	crashes,	user
measured	transaction	times,	etc.

Deployment	pipeline	level:	Examples	include	build	pipeline	status	(e.g.,	red
or	green	for	our	various	automated	test	suites),	change	deployment	lead
times,	deployment	frequencies,	test	environment	promotions,	and
environment	status.

By	having	telemetry	coverage	in	all	of	these	areas,	we	will	be	able	to	see	the
health	of	everything	that	our	service	relies	upon,	using	data	and	facts	instead	of
rumors,	finger-pointing,	blame,	and	so	forth.

Further,	we	better	enable	detection	of	security-relevant	events	by	monitoring	any
application	and	infrastructure	faults	(e.g.,	abnormal	program	terminations,
application	errors	and	exceptions,	and	server	and	storage	errors).	Not	only	does
this	telemetry	better	inform	Development	and	Operations	when	our	services	are
crashing,	but	these	errors	are	often	indicators	that	a	security	vulnerability	is
being	actively	exploited.

By	detecting	and	correcting	problems	earlier,	we	can	fix	them	while	they	are
small	and	easy	to	fix,	with	fewer	customers	impacted.	Furthermore,	after	every
production	incident,	we	should	identify	any	missing	telemetry	that	could	have
enabled	faster	detection	and	recovery;	or,	better	yet,	we	can	identify	these	gaps
during	feature	development	in	our	peer	review	process.

APPLICATION	AND	BUSINESS	METRICS
At	the	application	level,	our	goal	is	to	ensure	that	we	are	generating	telemetry
not	only	around	application	health	(e.g.,	memory	usage,	transaction	counts,	etc.),
but	also	to	measure	to	what	extent	we	are	achieving	our	organizational	goals
(e.g.,	number	of	new	users,	user	login	events,	user	session	lengths,	percent	of
users	active,	how	often	certain	features	are	being	used,	and	so	forth).

For	example,	if	we	have	a	service	that	is	supporting	e-commerce,	we	want	to
ensure	that	we	have	telemetry	around	all	of	the	user	events	that	lead	up	to	a

successful	transaction	that	generates	revenue.	We	can	then	instrument	all	the
user	actions	that	are	required	for	our	desired	customer	outcomes.

These	metrics	will	vary	according	to	different	domains	and	organizational	goals.
For	instance,	for	e-commerce	sites,	we	may	want	to	maximize	the	time	spent	on
the	site;	however,	for	search	engines,	we	may	want	to	reduce	the	time	spent	on
the	site,	since	long	sessions	may	indicate	that	users	are	having	difficulty	finding
what	they’re	looking	for.

In	general,	business	metrics	will	be	part	of	a	customer	acquisition	funnel,	which
is	the	theoretical	steps	a	potential	customer	will	take	to	make	a	purchase.	For
instance,	in	an	e-commerce	site,	the	measurable	journey	events	include	total	time
on	site,	product	link	clicks,	shopping	cart	adds,	and	completed	orders.

Ed	Blankenship,	Senior	Product	Manager	for	Microsoft	Visual	Studio	Team
Services,	describes,	“Often,	feature	teams	will	define	their	goals	in	an
acquisition	funnel,	with	the	goal	of	their	feature	being	used	in	every	customer’s
daily	work.	Sometimes	they’re	informally	described	as	‘tire	kickers,’	‘active
users,’	‘engaged	users,’	and	‘deeply	engaged	users,’	with	telemetry	supporting
each	stage.”

Our	goal	is	to	have	every	business	metric	be	actionable—these	top	metrics
should	help	inform	how	to	change	our	product	and	be	amenable	to
experimentation	and	A/B	testing.	When	metrics	aren’t	actionable,	they	are	likely
vanity	metrics	that	provide	little	useful	information—these	we	want	to	store,	but
likely	not	display,	let	alone	alert	on.

Ideally,	anyone	viewing	our	information	radiators	will	be	able	to	make	sense	of
the	information	we	are	showing	in	the	context	of	desired	organizational
outcomes,	such	as	goals	around	revenue,	user	attainment,	conversion	rates,	etc.
We	should	define	and	link	each	metric	to	a	business	outcome	metric	at	the

earliest	stages	of	feature	definition	and	development,	and	measure	the	outcomes
after	we	deploy	them	in	production.	Furthermore,	doing	this	helps	product
owners	describe	the	business	context	of	each	feature	for	everyone	in	the	value
stream.

Figure	28:	Amount	of	user	excitement	of	new	features	in	user	forum	posts	after
deployments	(Source:	Mike	Brittain,	“Tracking	Every	Release,”	CodeasCraft.com,
December	8,	2010,	https://codeascraft.com/2010/12/08/track-every-release/.)

Further	business	context	can	be	created	by	being	aware	of	and	visually
displaying	time	periods	relevant	to	high-level	business	planning	and	operations,
such	as	high	transaction	periods	associated	with	peak	holiday	selling	seasons,
end-of-quarter	financial	close	periods,	or	scheduled	compliance	audits.	This
information	may	be	used	as	a	reminder	to	avoid	scheduling	risky	changes	when
availability	is	critical	or	avoid	certain	activities	when	audits	are	in	progress.

By	radiating	how	customers	interact	with	what	we	build	in	the	context	of	our
goals,	we	enable	fast	feedback	to	feature	teams	so	they	can	see	whether	the
capabilities	we	are	building	are	actually	being	used	and	to	what	extent	they	are

https://codeascraft.com/2010/12/08/track-every-release/

achieving	business	goals.	As	a	result,	we	reinforce	the	cultural	expectations	that
instrumenting	and	analyzing	customer	usage	is	also	a	part	of	our	daily	work,	so
we	better	understand	how	our	work	contributes	to	our	organizational	goals.

INFRASTRUCTURE	METRICS
Just	as	we	did	for	application	metrics,	our	goal	for	production	and	non-
production	infrastructure	is	to	ensure	that	we	are	generating	enough	telemetry	so
that	if	a	problem	occurs	in	any	environment,	we	can	quickly	determine	whether
infrastructure	is	a	contributing	cause	of	the	problem.	Furthermore,	we	must	be
able	to	pinpoint	exactly	what	in	the	infrastructure	is	contributing	to	the	problem
(e.g.,	database,	operating	system,	storage,	networking,	etc.).

We	want	to	make	as	much	infrastructure	telemetry	visible	as	possible,	across	all
the	technology	stakeholders,	ideally	organized	by	service	or	application.	In	other
words,	when	something	goes	wrong	with	something	in	our	environment,	we
need	to	know	exactly	what	applications	and	services	could	be	or	are	being
affected.††

In	decades	past,	creating	links	between	a	service	and	the	production
infrastructure	it	depended	on	was	often	a	manual	effort	(such	as	ITIL	CMDBs	or
creating	configuration	definitions	inside	alerting	tools	in	tools	such	as	Nagios).
However,	increasingly	these	links	are	now	registered	automatically	within	our
services,	which	are	then	dynamically	discovered	and	used	in	production	through
tools	such	as	Zookeeper,	Etcd,	Consul,	etc.

These	tools	enable	services	to	register	themselves,	storing	information	that	other
services	need	to	interact	with	it	(e.g.,	IP	address,	port	numbers,	URIs).	This
solves	the	manual	nature	of	the	ITIL	CMDB	and	is	absolutely	necessary	when
services	are	made	up	of	hundreds	(or	thousands	or	even	millions)	of	nodes,	each
with	dynamically	assigned	IP	addresses.‡‡

Regardless	of	how	simple	or	complex	our	services	are,	graphing	our	business
metrics	alongside	our	application	and	infrastructure	metrics	allow	us	to	detect
when	things	go	wrong.	For	instance,	we	may	see	that	new	customer	signups	drop
to	20%	of	daily	norms,	and	then	immediately	also	see	that	all	our	database
queries	are	taking	five	times	longer	than	normal,	enabling	us	to	focus	our
problem	solving.

Furthermore,	business	metrics	create	context	for	our	infrastructure	metrics,
enabling	Development	and	Operations	to	better	work	together	toward	common
goals.	As	Jody	Mulkey,	CTO	of	Ticketmaster/LiveNation,	observes,	“Instead	of
measuring	Operations	against	the	amount	of	downtime,	I	find	it’s	much	better	to
measure	both	Dev	and	Ops	against	the	real	business	consequences	of	downtime:
how	much	revenue	should	we	have	attained,	but	didn’t.”§§

Note	that	in	addition	to	monitoring	our	production	services,	we	also	need
telemetry	for	those	services	in	our	pre-production	environments	(e.g.,
development,	test,	staging,	etc.).	Doing	this	enables	us	to	find	and	fix	issues
before	they	go	into	production,	such	as	detecting	when	we	have	ever-increasing
database	insert	times	due	to	a	missing	table	index.

OVERLAYING	OTHER	RELEVANT	INFORMATION	ONTO
OUR	METRICS
Even	after	we	have	created	our	deployment	pipeline	that	allows	us	to	make	small
and	frequent	production	changes,	changes	still	inherently	create	risk.	Operational
side	effects	are	not	just	outages,	but	also	significant	disruptions	and	deviations
from	standard	operations.

To	make	changes	visible,	we	make	work	visible	by	overlaying	all	production
deployment	activities	on	our	graphs.	For	instance,	for	a	service	that	handles	a
large	number	of	inbound	transactions,	production	changes	can	result	in	a

significant	settling	period,	where	performance	degrades	substantially	as	all	cache
lookups	miss.

To	better	understand	and	preserve	quality	of	service,	we	want	to	understand	how
quickly	performance	returns	to	normal,	and	if	necessary,	take	steps	to	improve
performance.

Similarly,	we	want	to	overlay	other	useful	operational	activities,	such	as	when
the	service	is	under	maintenance	or	being	backed	up,	in	places	where	we	may
want	to	display	or	suppress	alerts.

CONCLUSION

The	improvements	enabled	by	production	telemetry	from	Etsy	and	LinkedIn
show	us	how	critical	it	is	to	see	problems	as	they	occur,	so	we	can	search	out	the
cause	and	quickly	remedy	the	situation.	By	having	all	elements	of	our	service
emitting	telemetry	that	can	be	analyzed,	whether	it	is	in	our	application,
database,	or	in	our	environment,	and	making	that	telemetry	widely	available,	we
can	find	and	fix	problems	long	before	they	cause	something	catastrophic,	ideally
long	before	a	customer	even	notices	that	something	is	wrong.	The	result	is	not
only	happier	customers,	but,	by	reducing	the	amount	of	firefighting	and	crises
when	things	go	wrong,	we	have	a	happier	and	more	productive	workplace	with
less	stress	and	lower	levels	of	burnouts.

†	Example	tools	include	Sensu,	Nagios,	Zappix,	LogsStash,	Splunk,	Sumo	Logic,	Datadog,	and	Riemann.

‡	A	variety	of	application	logging	libraries	exist	that	make	it	easy	for	developers	to	create	useful	telemetry,	and	we	should	choose	one
that	allows	us	to	send	all	our	application	logs	to	the	centralized	logging	infrastructure	that	we	created	in	the	previous	section.
Popular	examples	include	rrd4j	and	log4j	for	Java,	and	log4r	and	ruby-cabin	for	Ruby.

§	In	2004,	Gene	Kim,	Kevin	Behr	and	George	Spafford	described	this	as	a	symptom	of	lacking	a	“culture	of	causality,”	noting	that
high-performing	organizations	recognize	that	80%	of	all	outages	are	caused	by	change	and	80%	of	MTTR	is	spent	trying	to
determine	what	changed.

¶	A	whole	other	set	of	tools	to	aid	in	monitoring,	aggregation,	and	collection	include	Splunk,	Zabbix,	Sumo	Logic,	DataDog,	as	well	as
Nagios,	Cacti,	Sensu,	RRDTool,	Netflix	Atlas,	Riemann,	and	others.	Analysts	often	call	this	broad	category	of	tools	“application

performance	monitors.”

**	Creating	a	simple	dashboard	should	be	part	of	creating	any	new	product	or	service—automated	tests	should	confirm	that	both	the
service	and	dashboard	are	working	correctly,	helping	both	our	customers	and	our	ability	to	safely	deploy	code.

††	Exactly	as	an	ITIL	Configuration	Management	Database	(CMDB)	would	prescribe.

‡‡	Consul	may	be	of	specific	interest,	as	it	creates	an	abstraction	layer	that	easily	enables	service	mapping,	monitoring,	locks,	and	key-
value	configuration	stores,	as	well	as	host	clustering	and	failure	detection.

§§	This	could	be	the	cost	of	production	downtime	or	the	costs	associated	with	a	late	feature.	In	product	development	terms,	the	second
metric	is	known	as	cost	of	delay,	and	is	key	to	making	effective	prioritization	decisions.

15Analyze	Telemetry	to
Better	Anticipate

Problems	and	Achieve
Goals

As	we	saw	in	the	previous	chapter,	we	need	sufficient	production	telemetry	in
our	applications	and	infrastructure	to	see	and	solve	problems	as	they	occur.	In
this	chapter,	we	will	create	tools	that	allow	us	to	discover	variances	and	ever-
weaker	failure	signals	hidden	in	our	production	telemetry	so	we	can	avert
catastrophic	failures.	Numerous	statistical	techniques	will	be	presented,	along
with	case	studies	demonstrating	their	use.

A	great	example	of	analyzing	telemetry	to	proactively	find	and	fix	problems
before	customers	are	impacted	can	be	seen	at	Netflix,	a	global	provider	of
streaming	films	and	television	series.	Netflix	had	revenue	of	$6.2	billion	from
seventy-five	million	subscribers	in	2015.	One	of	their	goals	is	to	provide	the	best
experience	to	those	watching	videos	online	around	the	world,	which	requires	a
robust,	scalable,	and	resilient	delivery	infrastructure.	Roy	Rapoport	describes
one	of	the	challenges	of	managing	the	Netflix	cloud-based	video	delivery
service:	“Given	a	herd	of	cattle	that	should	all	look	and	act	the	same,	which
cattle	look	different	from	the	rest?	Or	more	concretely,	if	we	have	a	thousand-
node	stateless	compute	cluster,	all	running	the	same	software	and	subject	to	the
same	approximate	traffic	load,	our	challenge	is	to	find	any	nodes	that	don’t	look
like	the	rest	of	the	nodes.”

One	of	the	statistical	techniques	that	the	team	used	at	Netflix	in	2012	was	outlier
detection,	defined	by	Victoria	J.	Hodge	and	Jim	Austin	of	the	University	of	York
as	detecting	“abnormal	running	conditions	from	which	significant	performance
degradation	may	well	result,	such	as	an	aircraft	engine	rotation	defect	or	a	flow
problem	in	a	pipeline.”

Rapoport	explains	that	Netflix	“used	outlier	detection	in	a	very	simple	way,
which	was	to	first	compute	what	was	the	‘current	normal’	right	now,	given
population	of	nodes	in	a	compute	cluster.	And	then	we	identified	which	nodes
didn’t	fit	that	pattern,	and	removed	those	nodes	from	production.”

Rapoport	continues,	“We	can	automatically	flag	misbehaving	nodes	without
having	to	actually	define	what	the	‘proper’	behavior	is	in	any	way.	And	since
we’re	engineered	to	run	resiliently	in	the	cloud,	we	don’t	tell	anyone	in
Operations	to	do	something—instead,	we	just	kill	the	sick	or	misbehaving
compute	node,	and	then	log	it	or	notify	the	engineers	in	whatever	form	they
want.”

By	implementing	the	Server	Outlier	Detection	process,	Rapoport	states,	Netflix
has	“massively	reduced	the	effort	of	finding	sick	servers,	and,	more	importantly,
massively	reduced	the	time	require	Rapoport	states	d	to	fix	them,	resulting	in
improved	service	quality.	The	benefit	of	using	these	techniques	to	preserve
employee	sanity,	work/life	balance,	and	service	quality	cannot	be	overstated.”
The	work	done	at	Netflix	highlights	one	very	specific	way	we	can	use	telemetry
to	mitigate	problems	before	they	impact	our	customer.

Throughout	this	chapter	we	will	explore	many	statistical	and	visualization
techniques	(including	outlier	detection)	that	we	can	use	to	analyze	our	telemetry
to	better	anticipate	problems.	This	enables	us	to	solve	problems	faster,	cheaper,
and	earlier	than	ever,	before	our	customer	or	anyone	in	our	organization	is

impacted;	furthermore,	we	will	also	create	more	context	for	our	data	to	help	us
make	better	decisions	and	achieve	our	organizational	goals.

USE	MEANS	AND	STANDARD	DEVIATIONS	TO
DETECT	POTENTIAL	PROBLEMS

One	of	the	simplest	statistical	techniques	that	we	can	use	to	analyze	a	production
metric	is	computing	its	mean	(or	average)	and	standard	deviations.	By	doing
this,	we	can	create	a	filter	that	detects	when	this	metric	is	significantly	different
from	its	norm,	and	even	configure	our	alerting	so	that	we	can	take	corrective
action	(e.g.,	notify	on-call	production	staff	at	2	a.m.	to	investigate	when	database
queries	are	significantly	slower	than	average).

When	critical	production	services	have	problems,	waking	people	at	2	a.m.	may
be	the	right	thing	to	do.	However,	when	we	create	alerts	that	are	not	actionable
or	are	false-positives,	we’ve	unnecessarily	woken	up	people	in	the	middle	of	the
night.	As	John	Vincent,	an	early	leader	in	the	DevOps	movement,	observed,
“Alert	fatigue	is	the	single	biggest	problem	we	have	right	now…We	need	to	be
more	intelligent	about	our	alerts	or	we’ll	all	go	insane.”

We	create	better	alerts	by	increasing	the	signal-to-noise	ratio,	focusing	on	the
variances	or	outliers	that	matter.	Suppose	we	are	analyzing	the	number	of
unauthorized	login	attempts	per	day.	Our	collected	data	has	a	Gaussian
distribution	(i.e.,	normal	or	bell	curve	distribution)	that	matches	the	graph	in	the
figure	29.	The	vertical	line	in	the	middle	of	the	bell	curve	is	the	mean,	and	the
first,	second,	and	third	standard	deviations	indicated	by	the	other	vertical	lines
contain	68%,	95%,	and	99.7%	of	the	data,	respectively.

Figure	29:	Standard	deviations	(σ)	&	mean	(µ)	with	Gaussian	distribution	(Source:
Wikipedia’s	“Normal	Distribution”	entry,

https://en.wikipedia.org/wiki/Normal_distribution.)

A	common	use	of	standard	deviations	is	to	periodically	inspect	the	data	set	for	a
metric	and	alert	if	it	has	significantly	varied	from	the	mean.	For	instance,	we
may	set	an	alert	for	when	the	number	of	unauthorized	login	attempts	per	day	is
three	standard	deviations	greater	than	the	mean.	Provided	that	this	data	set	has
Gaussian	distribution,	we	would	expect	that	only	0.3%	of	the	data	points	would
trigger	the	alert.

Even	this	simple	type	of	statistical	analysis	is	valuable,	because	no	one	had	to
define	a	static	threshold	value,	something	which	is	infeasible	if	we	are	tracking
thousands	or	hundreds	of	thousands	of	production	metrics.

For	the	remainder	of	this	book,	we	will	use	the	terms	telemetry,	metric,	and	data
sets	interchangeably—in	other	words,	a	metric	(e.g.,	“page	load	times”)	will	map
to	a	data	set	(e.g.,	2	ms,	8	ms,	11	ms,	etc.),	the	term	used	by	statisticians	to
describe	a	matrix	of	data	points	where	each	column	represents	a	variable	of
which	statistical	operations	are	performed.

http://en.wikipedia.org/wiki/Normal_distribution

INSTRUMENT	AND	ALERT	ON	UNDESIRED
OUTCOMES

Tom	Limoncelli,	co-author	of	The	Practice	of	Cloud	System	Administration:
Designing	and	Operating	Large	Distributed	Systems	and	a	former	Site
Reliability	Engineer	at	Google,	relates	the	following	story	on	monitoring:
“When	people	ask	me	for	recommendations	on	what	to	monitor,	I	joke	that	in	an
ideal	world,	we	would	delete	all	the	alerts	we	currently	have	in	our	monitoring
system.	Then,	after	each	user-visible	outage,	we’d	ask	what	indicators	would
have	predicted	that	outage	and	then	add	those	to	our	monitoring	system,	alerting
as	needed.	Repeat.	Now	we	only	have	alerts	that	prevent	outages,	as	opposed	to
being	bombarded	by	alerts	after	an	outage	already	occurred.”

In	this	step,	we	will	replicate	the	outcomes	of	such	an	exercise.	One	of	the
easiest	ways	to	do	this	is	to	analyze	our	most	severe	incidents	in	the	recent	past
(e.g.,	30	days)	and	create	a	list	of	telemetry	that	could	have	enabled	earlier	and
faster	detection	and	diagnosis	of	the	problem,	as	well	as	easier	and	faster
confirmation	that	an	effective	fix	had	been	implemented.

For	instance,	if	we	had	an	issue	where	our	NGINX	web	server	stopped
responding	to	requests,	we	would	look	at	the	leading	indicators	that	could	have
warned	us	earlier	that	we	were	starting	to	deviate	from	standard	operations,	such
as:

Application	level:	increasing	web	page	load	times,	etc.

OS	level:	server	free	memory	running	low,	disk	space	running	low,	etc.

Database	level:	database	transaction	times	taking	longer	than	normal,	etc.

Network	level:	number	of	functioning	servers	behind	the	load	balancer

dropping,	etc.

Each	of	these	metrics	is	a	potential	precursor	to	a	production	incident.	For	each,
we	would	configure	our	alerting	systems	to	notify	them	when	they	deviate
sufficiently	from	the	mean,	so	that	we	can	take	corrective	action.

By	repeating	this	process	on	ever-weaker	failure	signals,	we	find	problems	ever
earlier	in	the	life	cycle,	resulting	in	fewer	customer	impacting	incidents	and	near
misses.	In	other	words,	we	are	preventing	problems	as	well	as	enabling	quicker
detection	and	correction.

PROBLEMS	THAT	ARISE	WHEN	OUR
TELEMETRY	DATA	HAS	NON-GAUSSIAN
DISTRIBUTION

Using	means	and	standard	deviations	to	detect	variance	can	be	extremely	useful.
However,	using	these	techniques	on	many	of	the	telemetry	data	sets	that	we	use
in	Operations	will	not	generate	the	desired	results.	As	Dr.	Toufic	Boubez
observes,	“Not	only	will	we	get	wakeup	calls	at	2	a.m.,	we’ll	get	them	at	2:37
a.m.,	4:13	a.m.,	5:17	a.m.	This	happens	when	the	underlying	data	that	we’re
monitoring	doesn’t	have	a	Gaussian	distribution.”

In	other	words,	when	the	distribution	of	the	data	set	does	not	have	the	Gaussian
bell	curve	described	earlier,	the	properties	associated	with	standard	deviations	do
not	apply.	For	example,	consider	the	scenario	in	which	we	are	monitoring	the
number	of	file	downloads	per	minute	from	our	website.	We	want	to	detect
periods	when	we	have	unusually	high	numbers	of	downloads,	such	as	when	our
download	rate	is	greater	than	three	standard	deviations	from	our	average,	so	that
we	can	proactively	add	more	capacity.

Figure	30	shows	our	number	of	simultaneous	downloads	per	minute	over	time,
with	a	bar	overlaid	on	top.	When	the	bar	is	black,	the	number	of	downloads
within	a	given	period	(sometimes	called	a	“sliding	window”)	is	at	least	three
standard	deviations	from	the	average.	Otherwise,	it	is	gray.

Figure	30:	Downloads	per	minute:	over-alerting	when	using	“3	standard	deviation”
rule	

(Source:	Dr.	Toufic	Boubez,	“Simple	math	for	anomaly	detection.”)

The	obvious	problem	that	the	graph	shows	is	that	we	are	alerting	almost	all	of
the	time.	This	is	because	in	almost	any	given	period	of	time,	we	have	instances
when	the	download	count	exceeds	our	three	standard	deviation	threshold.

To	confirm	this,	when	we	create	a	histogram	(see	figure	31)	that	shows	the
frequency	of	downloads	per	minute,	we	can	see	that	it	does	not	have	the	classic,
symmetrical	bell	curve	shape.	Instead,	it	is	obvious	that	the	distribution	is
skewed	toward	the	lower	end,	showing	that	the	majority	of	the	time	we	have

very	few	downloads	per	minute	but	that	download	counts	frequently	spike	three
standard	deviations	higher.

Figure	31:	Downloads	per	minute:	histogram	of	data	showing	non-Gaussian
distribution	

(Source:	Dr.	Toufic	Boubez,	“Simple	math	for	anomaly	detection.”)

Many	production	data	sets	are	non-Gaussian	distribution.	Dr.	Nicole	Forsgren
explains,	“In	Operations,	many	of	our	data	sets	have	what	we	call	‘chi	squared’
distribution.	Using	standard	deviations	for	this	data	not	only	results	in	over-or
under-alerting,	but	it	also	results	in	nonsensical	results.”	She	continues,	“When
you	compute	the	number	of	simultaneous	downloads	that	are	three	standard
deviations	below	the	mean,	you	end	up	with	a	negative	number,	which	obviously
doesn’t	make	sense.”

Over-alerting	causes	Operations	engineers	to	be	woken	up	in	the	middle	of	the
night	for	protracted	periods	of	time,	even	when	there	are	few	actions	that	they
can	appropriately	take.	The	problem	associated	with	under-alerting	is	just	as
significant.	For	instance,	suppose	we	are	monitoring	the	number	of	completed
transactions,	and	the	completed	transaction	count	drops	by	50%	in	the	middle	of

the	day	due	to	a	software	component	failure.	If	this	is	still	within	three	standard
deviations	of	the	mean,	no	alert	will	be	generated,	meaning	that	our	customers
will	discover	the	problem	before	we	do,	at	which	point	the	problem	may	be
much	more	difficult	to	solve.

Fortunately,	there	are	techniques	we	can	use	to	detect	anomalies	in	even	non-
Gaussian	data	sets,	which	are	described	next.

Case	Study	
Auto-Scaling	Capacity	at	Netflix	(2012)

Another	tool	developed	at	Netflix	to	increase	service	quality,	Scryer,
addresses	some	of	the	shortcomings	of	Amazon	Auto	Scaling
(AAS),	which	dynamically	increases	and	decreases	AWS	compute
server	counts	based	on	workload	data.	Scryer	works	by	predicting
what	customer	demands	will	be	based	on	historical	usage	patterns
and	provisions	the	necessary	capacity.

Scryer	addressed	three	problems	with	AAS.	The	first	was	dealing
with	rapid	spikes	in	demand.	Because	AWS	instance	startup	times
can	be	ten	to	forty-five	minutes,	additional	compute	capacity	was
often	delivered	too	late	to	deal	with	spikes	in	demand.	The	second
problem	was	that	after	outages,	the	rapid	decrease	in	customer
demand	led	to	AAS	removing	too	much	compute	capacity	to	handle
future	incoming	demand.	The	third	problem	was	that	AAS	didn’t
factor	in	known	usage	traffic	patterns	when	scheduling	compute
capacity.

Figure	32:	Netflix	customer	viewing	demand	for	five	days	(Source:	Daniel	Jacobson,
Danny	Yuan,	and	Neeraj	Joshi,	“Scryer:	Netflix’s	Predictive	Auto	Scaling	Engine,”
The	Netflix	Tech	Blog,	November	5,	2013,	http://techblog.netflix.com/2013/11/scryer-

netflixs-predictive-auto-scaling.html.)

Netflix	took	advantage	of	the	fact	that	their	consumer	viewing
patterns	were	surprisingly	consistent	and	predictable,	despite	not
having	Gaussian	distributions.	Below	is	a	chart	reflecting	customer
requests	per	second	throughout	the	work	week,	showing	regular
and	consistent	customer	viewing	patterns	Monday	through	Friday.

Scryer	uses	a	combination	of	outlier	detections	to	throw	out
spurious	data	points	and	then	uses	techniques	such	as	Fast	Fourier
Transform	(FFT)	and	linear	regression	to	smooth	the	data	while
preserving	legitimate	traffic	spikes	that	recur	in	their	data.	The
result	is	that	Netflix	can	forecast	traffic	demand	with	surprising
accuracy.

http://techblog.netflix.com/2013/11/scryer-netflixs-predictive-auto-scaling.html

Figure	33:	Netflix	Scryer	forecasting	customer	traffic	and	the	resulting	AWS	schedule
of	compute	resources	(Source:	Jacobson,	Yuan,	Joshi,	“Scryer:	Netflix’s	Predictive

Auto	Scaling	Engine.”)

Only	months	after	first	using	Scryer	in	production,	Netflix
significantly	improved	their	customer	viewing	experience,	improved
service	availability,	and	reduced	Amazon	EC2	costs.

USING	ANOMALY	DETECTION	TECHNIQUES

When	our	data	does	not	have	Gaussian	distribution,	we	can	still	find	noteworthy
variances	using	a	variety	of	methods.	These	techniques	are	broadly	categorized
as	anomaly	detection,	often	defined	as	“the	search	for	items	or	events	which	do
not	conform	to	an	expected	pattern.”	Some	of	these	capabilities	can	be	found
inside	our	monitoring	tools,	while	others	may	require	help	from	people	with
statistical	skills.

Tarun	Reddy,	VP	of	Development	and	Operations	at	Rally	Software,	actively
advocates	this	active	collaboration	between	Operations	and	statistics,	observing,
“To	better	enable	service	quality,	we	put	all	our	production	metrics	into	Tableau,
a	statistical	analysis	software	package.	We	even	have	an	Ops	engineer	trained	in
statistics	who	writes	R	code	(another	statistical	package)—this	engineer	has	her
own	backlog,	filled	with	requests	from	other	teams	inside	the	company	who

want	to	find	variance	ever	earlier,	before	it	causes	an	even	larger	variance	that
could	affect	our	customers.”

One	of	the	statistical	techniques	we	can	use	is	called	smoothing,	which	is
especially	suitable	if	our	data	is	a	time	series,	meaning	each	data	point	has	a	time
stamp	(e.g.,	download	events,	completed	transaction	events,	etc.).	Smoothing
often	involves	using	moving	averages	(or	rolling	averages),	which	transform	our
data	by	averaging	each	point	with	all	the	other	data	within	our	sliding	window.
This	has	the	effect	of	smoothing	out	short-term	fluctuations	and	highlighting
longer-term	trends	or	cycles.†

An	example	of	this	smoothing	effect	is	shown	in	the	figure	34.	The	black	line
represents	the	raw	data,	while	the	blue	line	indicates	the	thirty	day	moving
average	(i.e.,	the	average	of	the	trailing	thirty	days).‡

Figure	34:	Autodesk	share	price	and	thirty	day	moving	average	filter	(Source:
Jacobson,	Yuan,	Joshi,	“Scryer:	Netflix’s	Predictive	Auto	Scaling	Engine.”)

More	exotic	filtering	techniques	exist,	such	as	Fast	Fourier	Transforms,	which
has	been	widely	used	in	image	processing,	and	the	Kolmogorov-Smirnov	test

(found	in	Graphite	and	Grafana),	which	is	often	used	to	find	similarities	or
differences	in	periodic/seasonal	metric	data.

We	can	expect	that	a	large	percentage	of	telemetry	concerning	user	data	will
have	periodic/seasonal	similarities—web	traffic,	retail	transactions,	movie
watching,	and	many	other	user	behaviors	have	very	regular	and	surprisingly
predictable	daily,	weekly,	and	yearly	patterns.	This	enables	us	to	be	able	to
detect	situations	that	vary	from	historical	norms,	such	as	when	our	order
transaction	rate	on	a	Tuesday	afternoon	drops	to	50%	of	our	weekly	norms.

Because	of	the	usefulness	of	these	techniques	in	forecasting,	we	may	be	able	to
find	people	in	the	Marketing	or	Business	Intelligence	departments	with	the
knowledge	and	skills	necessary	to	analyze	this	data.	We	may	want	to	seek	these
people	out	and	explore	working	together	to	identify	shared	problems	and	use
improved	anomaly	detection	and	incident	prediction	to	solve	them.§

Case	Study	
Advanced	Anomaly	Detection	(2014)

At	Monitorama	in	2014,	Dr.	Toufic	Boubez	described	the	power	of
using	anomaly	detection	techniques,	specifically	highlighting	the
effectiveness	of	the	Komogorov-Smirnov	test,	a	technique	that	is
often	used	in	statistics	to	determine	whether	two	data	sets	differ
significantly	and	is	found	in	the	popular	Graphite	and	Grafana	tool.
The	purpose	of	presenting	this	case	study	here	is	not	as	a	tutorial,
but	to	demonstrate	how	a	class	of	statistical	techniques	can	be
used	in	our	work,	as	well	as	how	it’s	likely	being	used	in	our
organizations	in	completely	different	applications.

Figure	35	shows	the	number	of	transactions	per	minute	at	an	e-
commerce	site.	Note	the	weekly	periodicity	of	the	graph,	with
transaction	volume	dropping	on	the	weekends.	By	visual	inspection,
we	can	see	that	something	peculiar	seems	to	happen	on	the	fourth
week	when	normal	transaction	volume	doesn’t	return	to	normal
levels	on	Monday.	This	suggests	an	event	we	should	investigate.

Figure	35:	Transaction	volume:	under-alerting	using	“3	standard	deviation”	rule	
(Source:	Dr.	Toufic	Boubez,	“Simple	math	for	anomaly	detection.”)

Using	the	three	standard	deviation	rule	would	only	alert	us	twice,
missing	the	critical	Monday	dropoff	in	transaction	volume.	Ideally,
we	would	also	want	to	be	alerted	that	the	data	has	drifted	from	our
expected	Monday	pattern.

“Even	saying	‘Kolmogorov-Smirnov’	is	a	great	way	to	impress
everyone,”	Dr.	Boubez	jokes.	“But	what	Ops	engineers	should	tell
statisticians	is	that	these	types	of	non-parametric	techniques	are

great	for	Operations	data,	because	it	makes	no	assumptions	about
normality	or	any	other	probability	distribution,	which	is	crucial	for	us
to	understand	what’s	going	on	in	our	very	complex	systems.	These
techniques	compare	two	probability	distributions,	allowing	us	to
compare	periodic	or	seasonal	data,	which	helps	us	find	variances	in
data	that	varies	from	day	to	day	or	week	to	week.”

Figure	36,	on	the	following	page,	shows	is	the	same	data	set	with
the	K-S	filter	applied,	with	the	third	area	highlighting	the	anomalous
Monday	where	transaction	volume	didn’t	return	to	normal	levels.
This	would	have	alerted	us	of	a	problem	in	our	system	that	would
have	been	virtually	impossible	to	detect	using	visual	inspection	or
using	standard	deviations.	In	this	scenario,	this	early	detection
could	prevent	a	customer	impacting	event,	as	well	as	better	enable
us	to	achieve	our	organizational	goals.

Figure	36:	Transaction	volume:	using	Kolmogorov-Smirnov	test	to	alert	on

anomalies	
(Source:	Dr.	Toufic	Boubez,	“Simple	math	for	anomaly	detection.”)

CONCLUSION

In	this	chapter,	we	explored	several	different	statistical	techniques	that	can	be
used	to	analyze	our	production	telemetry	so	we	can	find	and	fix	problems	earlier
than	ever,	often	when	they	are	still	small	and	long	before	they	cause	catastrophic
outcomes.	This	enables	us	to	find	ever-weaker	failure	signals	that	we	can	then
act	upon,	creating	an	ever	safer	system	of	work,	as	well	as	increasing	our	ability
to	achieve	our	goals.

Specific	case	studies	were	presented,	including	how	Netflix	used	these
techniques	to	proactively	remove	compute	servers	from	production	and	auto-
scale	their	compute	infrastructure.	We	also	discussed	how	to	use	a	moving
average	and	the	Kolmogorov-Smirnov	filter,	both	of	which	can	be	found	in
popular	telemetry	graphing	tools.

In	the	next	chapter,	we	will	describe	how	to	integrate	production	telemetry	into
the	daily	work	of	Development	in	order	to	make	deployments	safer	and	improve
the	system	as	a	whole.

†	Smoothing	and	other	statistical	techniques	are	also	used	to	manipulate	graphic	and	audio	files.	For	instance,	image	smoothing	(or
blurring)	as	each	pixel	is	replaced	by	the	average	of	all	its	neighbors.

‡	Other	examples	of	smoothing	filters	include	weighted	moving	averages	or	exponential	smoothing	(which	linearly	or	exponentially
weight	more	recent	data	points	over	older	data	points,	respectively),	and	so	forth.

§	Tools	we	can	using	to	solve	these	types	of	problems	include	Microsoft	Excel	(which	remains	one	of	the	easiest	and	fastest	ways	to
manipulate	data	for	one-time	purposes),	as	well	as	statistical	packages	such	as	SPSS,	SAS,	and	the	open	source	R	project,	now	one
of	the	most	widely	used	statistical	packages.	Many	other	tools	have	been	created,	including	several	that	Etsy	has	open-sourced,	such
as	Oculus,	which	finds	graphs	with	similar	shapes	that	may	indicate	correlation;	Opsweekly,	which	tracks	alert	volumes	and
frequencies;	and	Skyline,	which	attempts	to	identify	anomalous	behavior	in	system	and	application	graphs.

16Enable	Feedback	So
Development	and

Operations	Can	Safely
Deploy	Code

In	2006,	Nick	Galbreath	was	VP	of	Engineering	at	Right	Media,	responsible	for
both	the	Development	and	Operations	departments	for	an	online	advertising
platform	that	displayed	and	served	over	ten	billion	impressions	daily.

Galbreath	described	the	competitive	landscape	they	operated	in:

In	our	business,	ad	inventory	levels	were	extremely	dynamic,	so	we	needed
to	respond	to	market	conditions	within	minutes.	This	meant	that
Development	had	to	be	able	to	quickly	make	code	changes	and	get	them	into
production	as	soon	as	possible,	otherwise	we	would	lose	to	faster
competitors.	We	found	that	having	a	separate	group	for	testing,	and	even
deployment,	was	simply	too	slow.	We	had	to	integrate	all	these	functions
into	one	group,	with	shared	responsibilities	and	goals.	Believe	it	or	not,	our
biggest	challenge	was	getting	developers	to	overcome	their	fear	of	deploying
their	own	code!

There	is	an	interesting	irony	here:	Dev	often	complains	about	Ops	being	afraid
to	deploy	code.	But	in	this	case,	when	given	the	power	to	deploy	their	own	code,
developers	became	just	as	afraid	to	perform	code	deployments.

The	fear	of	deploying	code	that	was	shared	by	both	Dev	and	Ops	at	Right	Media
is	not	unusual.	However,	Galbreath	observed	that	providing	faster	and	more
frequent	feedback	to	engineers	performing	deployments	(whether	Dev	or	Ops),
as	well	as	reducing	the	batch	size	of	their	work,	created	safety	and	then
confidence.

After	observing	many	teams	go	through	this	transformation,	Galbreath	describes
their	progression	as	follows:

We	start	with	no	one	in	Dev	or	Ops	being	willing	to	push	the	“deploy	code”
button	that	we’ve	built	that	automates	the	entire	code	deployment	process,
because	of	the	paralyzing	fear	of	being	the	first	person	to	potentially	bring	all
of	the	production	systems	down.	Eventually,	when	someone	is	brave	enough
to	volunteer	to	push	their	code	into	production,	inevitably,	due	to	incorrect
assumptions	or	production	subtleties	that	weren’t	fully	appreciated,	the	first
production	deployment	doesn’t	go	smoothly—and	because	we	don’t	have
enough	production	telemetry,	we	only	find	out	about	the	problems	when
customers	tell	us.

To	fix	the	problem,	our	team	urgently	fixes	the	code	and	pushes	it	into
production,	but	this	time	with	more	production	telemetry	added	to	our
applications	and	environment.	This	way,	we	can	actually	confirm	that	our	fix
restored	service	correctly,	and	we’ll	be	able	to	detect	this	type	of	problem	before
a	customer	tells	us	next	time.

Later,	more	developers	start	to	push	their	own	code	into	production.	And
because	we’re	working	in	a	complex	system,	we’ll	still	probably	break
something	in	production,	but	this	time	we’ll	be	able	to	quickly	see	what
functionality	broke,	and	quickly	decide	whether	to	roll	back	or	fix-forward,
resolving	the	problem.	This	is	a	huge	victory	for	the	entire	team	and	everyone
celebrates—we’re	now	on	a	roll.

However,	the	team	wants	to	improve	the	outcomes	of	their	deployments,	so
developers	proactively	get	more	peer	reviews	of	their	code	changes	(described	in
chapter	18),	and	everyone	helps	each	other	write	better	automated	tests	so	we
can	find	errors	before	deployment.	And	because	everyone	now	knows	that	the
smaller	our	production	changes,	the	fewer	problems	we	will	have,	developers
start	checking	ever-smaller	increments	of	code	more	frequently	into	the
deployment	pipeline,	ensuring	that	their	change	is	working	successfully	in
production	before	moving	to	their	next	change.

We	are	now	deploying	code	more	frequently	than	ever,	and	service	stability	is
better	than	ever	too.	We	have	re-discovered	that	the	secret	to	smooth	and
continuous	flow	is	making	small,	frequent	changes	that	anyone	can	inspect	and
easily	understand.

Galbreath	observes	that	the	above	progression	benefits	everyone,	including
Development,	Operations,	and	Infosec.	“As	the	person	who	is	also	responsible
for	security,	it’s	reassuring	to	know	that	we	can	deploy	fixes	into	production
quickly,	because	changes	are	going	into	production	throughout	the	entire	day.
Furthermore,	it	always	amazes	me	how	interested	every	engineer	becomes	in
security	when	you	find	problems	in	their	code	that	they	are	responsible	for	and
that	they	can	quickly	fix	themselves.”

The	Right	Media	story	shows	that	it	is	not	enough	to	merely	automate	the
deployment	process—we	must	also	integrate	the	monitoring	of	production
telemetry	into	our	deployment	work,	as	well	as	establish	the	cultural	norms	that
everyone	is	equally	responsible	for	the	health	of	the	entire	value	stream.

In	this	chapter,	we	create	the	feedback	mechanisms	that	enable	us	to	improve	the
health	of	the	value	stream	at	every	stage	of	the	service	life	cycle,	from	product
design	through	development	and	deployment	and	into	operation	and	eventually
retirement.	By	doing	this,	we	ensure	that	our	services	are	“production	ready,”

even	at	the	earliest	stages	of	the	project,	as	well	as	integrating	the	learnings	from
each	release	and	production	problem	into	our	future	work,	resulting	in	better
safety	and	productivity	for	everyone.

USE	TELEMETRY	TO	MAKE	DEPLOYMENTS
SAFER

In	this	step,	we	ensure	that	we	are	actively	monitoring	our	production	telemetry
when	anyone	performs	a	production	deployment,	as	was	illustrated	in	the	Right
Media	story.	This	allows	whoever	is	doing	the	deployment,	be	it	Dev	or	Ops,	to
quickly	determine	whether	features	are	operating	as	designed	after	the	new
release	is	running	in	production.	After	all,	we	should	never	consider	our	code
deployment	or	production	change	to	be	done	until	it	is	operating	as	designed	in
the	production	environment.

We	do	this	by	actively	monitoring	the	metrics	associated	with	our	feature	during
our	deployment	to	ensure	we	haven’t	inadvertently	broken	our	service—or
worse,	that	we	broke	another	service.	If	our	change	breaks	or	impairs	any
functionality,	we	quickly	work	to	restore	service,	bringing	in	whoever	else	is
required	to	diagnose	and	fix	the	issue.†

As	described	in	Part	III,	our	goal	is	to	catch	errors	in	our	deployment	pipeline
before	they	get	into	production.	However,	there	will	still	be	errors	that	we	don’t
detect,	and	we	rely	on	production	telemetry	to	quickly	restore	service.	We	may
choose	to	turn	off	broken	features	with	feature	toggles	(which	is	often	the	easiest
and	least	risky	option	since	it	involves	no	deployments	to	production),	or	fix
forward	(i.e.,	make	code	changes	to	fix	the	defect,	which	are	then	pushed	into
production	through	the	deployment	pipeline),	or	roll	back	(e.g.,	switch	back	to
the	previous	release	by	using	feature	toggles	or	by	taking	broken	servers	out	of
rotation	using	the	blue-green	or	canary	release	patterns,	etc.)

Although	fixing	forward	can	often	be	dangerous,	it	can	be	extremely	safe	when
we	have	automated	testing	and	fast	deployment	processes,	and	sufficient
telemetry	that	allows	us	to	quickly	confirm	whether	everything	is	functioning
correctly	in	production.

Figure	37	shows	a	deployment	of	PHP	code	change	at	Etsy	that	generated	a
spike	in	PHP	runtime	warnings—in	this	case,	the	developer	quickly	noticed	the
problem	within	minutes,	and	generated	a	fix	and	deployed	it	into	production,
resolving	the	issue	in	less	than	ten	minutes.

Because	production	deployments	are	one	of	the	top	causes	of	production	issues,
each	deployment	and	change	event	is	overlaid	onto	our	metric	graphs	to	ensure
that	everyone	in	the	value	stream	is	aware	of	relevant	activity,	enabling	better
communication	and	coordination,	as	well	as	faster	detection	and	recovery.

Figure	37:	Deployment	to	Etsy.com	causes	PHP	runtime	warnings	and	is	quickly
fixed	

(Source:	Mike	Brittain,	“Tracking	Every	Release.”)

DEV	SHARES	PAGER	ROTATION	DUTIES	WITH
OPS

Even	when	our	production	deployments	and	releases	go	flawlessly,	in	any
complex	service	we	will	still	have	unexpected	problems,	such	as	incidents	and
outages	that	happen	at	inopportune	times	(every	night	at	2	a.m.).	Left	unfixed,
these	can	cause	recurring	problems	and	suffering	for	Ops	engineers	downstream,
especially	when	these	problems	are	not	made	visible	to	the	upstream	engineers
responsible	for	creating	the	problem.

Even	if	the	problem	results	in	a	defect	being	assigned	to	the	feature	team,	it	may
be	prioritized	below	the	delivery	of	new	features.	The	problem	may	keep
recurring	for	weeks,	months,	or	even	years,	causing	continual	chaos	and
disruption	in	Operations.	This	is	an	example	of	how	upstream	work	centers	can
locally	optimize	for	themselves	but	actually	degrade	performance	for	the	entire
value	stream.

To	prevent	this	from	happening,	we	will	have	everyone	in	the	value	stream	share
the	downstream	responsibilities	of	handling	operational	incidents.	We	can	do
this	by	putting	developers,	development	managers,	and	architects	on	pager
rotation,	just	as	Pedro	Canahuati,	Facebook	Director	of	Production	Engineering,
did	in	2009.	This	ensures	everyone	in	the	value	stream	gets	visceral	feedback	on
any	upstream	architectural	and	coding	decisions	they	make.

By	doing	this,	Operations	doesn’t	struggle,	isolated	and	alone	with	code-related
production	issues;	instead,	everyone	is	helping	find	the	proper	balance	between
fixing	production	defects	and	developing	new	functionality,	regardless	of	where
we	reside	in	the	value	stream.	As	Patrick	Lightbody,	SVP	of	Product
Management	at	New	Relic,	observed	in	2011,	“We	found	that	when	we	woke	up
developers	at	2	a.m.,	defects	were	fixed	faster	than	ever.”

One	side	effect	of	this	practice	is	that	it	helps	Development	management	see	that
business	goals	are	not	achieved	simply	because	features	have	been	marked	as
“done.”	Instead,	the	feature	is	only	done	when	it	is	performing	as	designed	in
production,	without	causing	excessive	escalations	or	unplanned	work	for	either
Development	or	Operations.‡

This	practice	is	equally	applicable	for	market-oriented	teams,	responsible	for
both	developing	the	feature	and	running	it	in	production,	and	for	functionally-
oriented	teams.	As	Arup	Chakrabarti,	Operations	Engineering	Manager	at
PagerDuty,	observed	during	a	2014	presentation,	“It’s	becoming	less	and	less
common	for	companies	to	have	dedicated	on-call	teams;	instead,	everyone	who
touches	production	code	and	environments	is	expected	to	be	reachable	in	the
event	of	downtime.”

Regardless	of	how	we’ve	organized	our	teams,	the	underlying	principles	remain
the	same:	when	developers	get	feedback	on	how	their	applications	perform	in
production,	which	includes	fixing	it	when	it	breaks,	they	become	closer	to	the
customer,	this	creates	a	buy-in	that	everyone	in	the	value	stream	benefits	from.

HAVE	DEVELOPERS	FOLLOW	WORK
DOWNSTREAM

One	of	the	most	powerful	techniques	in	interaction	and	user	experience	design
(UX)	is	contextual	inquiry.	This	is	when	the	product	team	watches	a	customer
use	the	application	in	their	natural	environment,	often	working	at	their	desk.
Doing	so	often	uncovers	startling	ways	that	customers	struggle	with	the
application,	such	as	requiring	scores	of	clicks	to	perform	simple	tasks	in	their
daily	work,	cutting	and	pasting	text	from	multiple	screens,	or	writing	down	notes
on	paper.	All	of	these	are	examples	of	compensatory	behaviors	and	workarounds
for	usability	issues.

The	most	common	reaction	for	developers	after	participating	in	a	customer
observation	is	dismay,	often	stating	“how	awful	it	was	seeing	the	many	ways	we
have	been	inflicting	pain	on	our	customers.”	These	customer	observations
almost	always	result	in	significant	learning	and	a	fervent	desire	to	improve	the
situation	for	the	customer.

Our	goal	is	to	use	this	same	technique	to	observe	how	our	work	affects	our
internal	customers.	Developers	should	follow	their	work	downstream,	so	they
can	see	how	downstream	work	centers	must	interact	with	their	product	to	get	it
running	into	production.§

Developers	want	to	follow	their	work	downstream—by	seeing	customer
difficulties	firsthand,	they	make	better	and	more	informed	decisions	in	their
daily	work.

By	doing	this,	we	create	feedback	on	the	non-functional	aspects	of	our	code—all
the	elements	that	are	not	related	to	the	customer-facing	feature—and	identify
ways	that	we	can	improve	deployability,	manageability,	operability,	and	so	on.

UX	observation	often	has	a	powerful	impact	on	the	observers.	When	describing
his	first	customer	observation,	Gene	Kim,	the	founder	and	CTO	at	Tripwire	for
thirteen	years	and	co-author	of	this	book,	said:

One	of	the	worst	moments	of	my	professional	career	was	in	2006	when	I
spent	an	entire	morning	watching	one	of	our	customers	use	our	product.	I
was	watching	him	perform	an	operation	that	we	expected	customers	to	do
weekly,	and,	to	our	extreme	horror,	we	discovered	that	it	required	sixty-three
clicks.	This	person	kept	apologizing,	saying	things	like,	“Sorry,	there’s
probably	a	better	way	to	do	this.”

Unfortunately,	there	wasn’t	a	better	way	to	do	that	operation.	Another
customer	described	how	initial	product	setup	took	1,300	steps.	Suddenly,	I

understood	why	the	job	of	managing	our	product	was	always	assigned	to	the
newest	engineer	on	the	team—no	one	wanted	the	job	of	running	our	product.
That	was	one	of	the	reasons	I	helped	create	the	UX	practice	at	my	company,
to	help	atone	for	the	pain	we	were	inflicting	on	our	customers.

UX	observation	enables	the	creation	of	quality	at	the	source	and	results	in	far
greater	empathy	for	fellow	team	members	in	the	value	stream.	Ideally,	UX
observation	helps	us	as	we	create	codified	non-functional	requirements	to	add	to
our	shared	backlog	of	work,	eventually	allowing	us	to	proactively	integrate	them
into	every	service	we	build,	which	is	an	important	part	of	creating	a	DevOps
work	culture.¶

HAVE	DEVELOPERS	INITIALLY	SELF-MANAGE
THEIR	PRODUCTION	SERVICE

Even	when	Developers	are	writing	and	running	their	code	in	production-like
environments	in	their	daily	work,	Operations	may	still	experience	disastrous
production	releases	because	it	is	the	first	time	we	actually	see	how	our	code
behaves	during	a	release	and	under	true	production	conditions.	This	result	occurs
because	operational	learnings	often	occur	too	late	in	the	software	life	cycle.

Left	unaddressed,	the	result	is	often	production	software	that	is	difficult	to
operate.	As	an	anonymous	Ops	engineer	once	said,	“In	our	group,	most	system
administrators	lasted	only	six	months.	Things	were	always	breaking	in
production,	the	hours	were	insane,	and	application	deployments	were	painful
beyond	belief—the	worst	part	was	pairing	the	application	server	clusters,	which
would	take	us	six	hours.	During	each	moment,	we	all	felt	like	the	developers
personally	hated	us.”

This	can	be	an	outcome	of	not	having	enough	Ops	engineers	to	support	all	the
product	teams	and	the	services	we	already	have	in	production,	which	can	happen
in	both	functionally-and	market-oriented	teams.

One	potential	countermeasure	is	to	do	what	Google	does,	which	is	have
Development	groups	self-manage	their	services	in	production	before	they
become	eligible	for	a	centralized	Ops	group	to	manage.	By	having	developers	be
responsible	for	deployment	and	production	support,	we	are	far	more	likely	to
have	a	smooth	transition	to	Operations.**

To	prevent	the	possibility	of	problematic,	self-managed	services	going	into
production	and	creating	organizational	risk,	we	may	define	launch	requirements
that	must	be	met	in	order	for	services	to	interact	with	real	customers	and	be
exposed	to	real	production	traffic.	Furthermore,	to	help	the	product	teams,	Ops
engineers	should	act	as	consultants	to	help	them	make	their	services	production-
ready.

By	creating	launch	guidance,	we	help	ensure	that	every	product	team	benefits
from	the	cumulative	and	collective	experience	of	the	entire	organization,
especially	Operations.	Launch	guidance	and	requirements	will	likely	include	the
following:

Defect	counts	and	severity:	Does	the	application	actually	perform	as
designed?

Type/frequency	of	pager	alerts:	Is	the	application	generating	an
unsupportable	number	of	alerts	in	production?

Monitoring	coverage:	Is	the	coverage	of	monitoring	sufficient	to	restore
service	when	things	go	wrong?

System	architecture:	Is	the	service	loosely-coupled	enough	to	support	a

high	rate	of	changes	and	deployments	in	production?

Deployment	process:	Is	there	a	predictable,	deterministic,	and	sufficiently
automated	process	to	deploy	code	into	production?

Production	hygiene:	Is	there	evidence	of	enough	good	production	habits
that	would	allow	production	support	to	be	managed	by	anyone	else?

Superficially,	these	requirements	may	appear	similar	to	traditional	production
checklists	we	have	used	in	the	past.	However,	the	key	differences	are	we	require
effective	monitoring	to	be	in	place,	deployments	to	be	reliable	and	deterministic,
and	an	architecture	that	supports	fast	and	frequent	deployments.

If	any	deficiencies	are	found	during	the	review,	the	assigned	Ops	engineer
should	help	the	feature	team	resolve	the	issues	or	even	help	re-engineer	the
service	if	necessary,	so	that	it	can	be	easily	deployed	and	managed	in
production.

At	this	time,	we	may	also	want	to	learn	whether	this	service	is	subject	to	any
regulatory	compliance	objectives	or	if	it	is	likely	to	be	in	the	future:

Does	the	service	generate	a	significant	amount	of	revenue?	(For	example,	if
it	is	more	than	5%	of	total	revenue	of	a	publicly-held	US	corporation,	it	is	a
“significant	account”	and	in-scope	for	compliance	with	Section	404	of	the
Sarbanes-Oxley	Act	of	2002	[SOX].)

Does	the	service	have	high	user	traffic	or	have	high	outage/impairment
costs?	(i.e.,	do	operational	issues	risk	creating	availability	or	reputational
risk?)

Does	the	service	store	payment	cardholder	information,	such	as	credit	card
numbers,	or	personally	identifiable	information,	such	as	Social	Security

numbers	or	patient	care	records?	Are	there	other	security	issues	that	could
create	regulatory,	contractual	obligation,	privacy,	or	reputation	risk?

Does	the	service	have	any	other	regulatory	or	contractual	compliance
requirements	associated	with	it,	such	as	US	export	regulations,	PCI-DSS,
HIPAA,	and	so	forth?

This	information	helps	ensure	that	we	effectively	manage	not	only	the	technical
risks	associated	with	this	service,	but	also	any	potential	security	and	compliance
risks.	It	also	provides	essential	input	into	the	design	of	the	production	control
environment.

Figure	38:	The	“Service	Handback”	at	Google	(Source:	“SRE@Google:	Thousands
of	DevOps	Since	2004,”	YouTube	video,	45:57,	posted	by	USENIX,	January	12,	2012,

https://www.youtube.com/watch?v=iIuTnhdTzK0.)

By	integrating	operability	requirements	into	the	earliest	stages	of	the
development	process	and	having	Development	initially	self-manage	their	own
applications	and	services,	the	process	of	transitioning	new	services	into

http://www.youtube.com/watch?v=iIuTnhdTzK0

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	
T e	Launc 	an 	Han -o 	Rea ness	Rev ew	at	Goog e

h h d d ff di i l
Case Study

and Launch Readiness Review processes evolved, and the benefits that resulted.
Reliability Engineering at Google describes how the Hand-off Readiness Review
troublesome to manage in production.†† The following case study of Site

the company and, in rare cases, handing them back when they become too
engineers joining the team when the services become strategically important to
By doing this, Development is able to quickly generate new services, with Ops
the best demonstrations of the mutual respect between Dev and Ops engineers.
The handback remains a long-standing practice at Google and is perhaps one of

projects.
Operations has enough capacity to work on improvement work and preventive
local problem into a global problem. This mechanism also helps ensure that
while an ever-increasing amount of technical debt buries them and amplifies a
Operations in a situation where they are trapped into managing a fragile service
This mechanism serves as our pressure escape valve, ensuring that we never put

production-ready.
shifts from production support to consultation, helping the team make the service
When a service goes back into a developer-managed state, the role of Operations

ability to return production support responsibility back to Development.
when a production service becomes sufficiently fragile, Operations has the
In this step, we may create a service handback mechanism—in other words,

Operations organizations.
service in production. This is especially relevant for functionally-oriented
mechanism to ensure that Operations is never stuck with an unsupportable
complete. However, for services already in production, we need a different
production becomes smoother, becoming far easier and more predictable to

The	Launch	and	Hand-off	Readiness	Review	at	Google
(2010)

One	of	the	many	surprising	facts	about	Google	is	that	they	have	a
functional	orientation	for	their	Ops	engineers,	who	are	referred	to	as
“Site	Reliability	Engineers”	(SRE),	a	term	coined	by	Ben	Treynor
Sloss	in	2004.‡‡	That	year,	Treynor	Sloss	started	off	with	a	staff	of
seven	SREs	that	grew	to	over	1,200	SREs	by	2014.	As	Treynor
Sloss	said,	“If	Google	ever	goes	down,	it’s	my	fault.”	Treynor	Sloss
has	resisted	creating	a	single	sentence	definition	of	what	SREs	are,
but,	he	once	described	SREs	as	“what	happens	when	a	software
engineer	is	tasked	with	what	used	to	be	called	operations.”

Every	SRE	reports	to	Treynor	Sloss’s	organization	to	help	ensure
consistency	of	quality	of	staffing	and	hiring,	and	they	are	embedded
into	product	teams	across	Google	(which	also	provide	their
funding).	However,	SREs	are	still	so	scarce	they	are	assigned	only
to	the	product	teams	that	have	the	highest	importance	to	the
company	or	those	that	must	comply	with	regulatory	requirements.
Furthermore,	those	services	must	have	low	operational	burden.
Products	that	don’t	meet	the	necessary	criteria	remain	in	a
developer-managed	state.

Even	when	new	products	become	important	enough	to	the
company	to	warrant	being	assigned	an	SRE,	developers	still	must
have	self-managed	their	service	in	production	for	at	least	six
months	before	it	becomes	eligible	to	have	an	SRE	assigned	to	the
team.

To	help	ensure	that	these	self-managed	product	teams	can	still
benefit	from	the	collective	experience	of	the	SRE	organization,

Google	created	two	sets	of	safety	checks	for	two	critical	stages	of
releasing	new	services	called	the	Launch	Readiness	Review	and
the	Hand-Off	Readiness	Review	(LRR	and	HRR,	respectively).

The	LRR	must	be	performed	and	signed	off	on	before	any	new
Google	service	is	made	publicly	available	to	customers	and
receives	live	production	traffic,	while	the	HRR	is	performed	when
the	service	is	transitioned	to	an	Ops-managed	state,	usually
months	after	the	LRR.	The	LRR	and	HRR	checklists	are	similar,	but
the	HRR	is	far	more	stringent	and	has	higher	acceptance
standards,	while	the	LRR	is	self-reported	by	the	product	teams.

Any	product	team	going	through	an	LRR	or	HRR	has	an	SRE
assigned	to	them	to	help	them	understand	the	requirements	and	to
help	them	achieve	those	requirements.	The	LRR	and	HRR	launch
checklists	have	evolved	over	time	so	every	team	can	benefit	from
the	collective	experiences	of	all	previous	launches,	whether
successful	or	unsuccessful.	Tom	Limoncelli	noted	during	his
“SRE@Google:	Thousands	of	DevOps	Since	2004”	presentation	in
2012,	“Every	time	we	do	a	launch,	we	learn	something.	There	will
always	be	some	people	who	are	less	experienced	than	others
doing	releases	and	launches.	The	LRR	and	HRR	checklists	are	a
way	to	create	that	organizational	memory.”

Requiring	product	teams	to	self-manage	their	own	services	in
production	forces	Development	to	walk	in	the	shoes	of	Ops,	but
guided	by	the	LRR	and	HRR,	which	not	only	makes	service
transition	easier	and	more	predictable,	but	also	helps	create
empathy	between	upstream	and	downstream	work	centers.

Figure	39:	The	“Launch	readiness	review	and	hand-offs	readiness	review”	at	Google
(Source:	“SRE@Google:	Thousands	of	DevOps	Since	2004,”	YouTube	video,	45:57,

posted	by	USENIX,	January	12,	2012,	https://www.youtube.com/watch?
v=iIuTnhdTzK0.)

Limoncelli	noted,	“In	the	best	case,	product	teams	have	been	using
the	LRR	checklist	as	a	guideline,	working	on	fulfilling	it	in	parallel
with	developing	their	service,	and	reaching	out	to	SREs	to	get	help
when	they	need	it.”

Furthermore,	Limoncelli	observed,	“The	teams	that	have	the	fastest
HRR	production	approval	are	the	ones	that	worked	with	SREs
earliest,	from	the	early	design	stages	up	until	launch.	And	the	great
thing	is,	it’s	always	easy	to	get	an	SRE	to	volunteer	to	help	with
your	project.	Every	SRE	sees	value	in	giving	advice	to	project
teams	early,	and	will	likely	volunteer	a	few	hours	or	days	to	do	just
that.”

http://www.youtube.com/watch?v=iIuTnhdTzK0

The	practice	of	SREs	helping	product	teams	early	is	an	important
cultural	norm	that	is	continually	reinforced	at	Google.	Limoncelli
explained,	“Helping	product	teams	is	a	long-term	investment	that
will	pay	off	many	months	later	when	it	comes	time	to	launch.	It	is	a
form	of	‘good	citizenship’	and	‘community	service’	that	is	valued,	it
is	routinely	considered	when	evaluating	engineers	for	SRE
promotions.”

CONCLUSION

In	this	chapter,	we	discussed	the	feedback	mechanisms	that	enable	us	to	improve
our	service	at	every	stage	of	our	daily	work,	whether	it	is	deploying	changes	into
production,	fixing	code	when	things	go	wrong	and	engineers	are	paged,	having
developers	follow	their	work	downstream,	creating	non-functional	requirements
that	help	development	teams	write	more	production-ready	code,	or	even	handing
problematic	services	back	to	be	self-managed	by	Development.

By	creating	these	feedback	loops,	we	make	production	deployments	safer,
increase	the	production	readiness	of	code	created	by	Development,	and	help
create	a	better	working	relationship	between	Development	and	Operations	by
reinforcing	shared	goals,	responsibilities,	and	empathy.

In	the	next	chapter,	we	explore	how	telemetry	can	enable	hypothesis-driven
development	and	A/B	testing	to	perform	experiments	that	help	us	achieve	our
organizational	goals	and	win	in	the	marketplace.

†	By	doing	this,	along	with	the	required	architecture,	we	“optimize	for	MTTR,	instead	of	MTBF,”	a	popular	DevOps	maxim	to
describe	our	desire	to	optimize	for	recovering	from	failures	quickly,	as	opposed	to	attempting	to	prevent	failures.

‡	ITIL	defines	warranty	as	when	a	service	can	run	in	production	reliably	without	intervention	for	a	predefined	period	of	time	(e.g.,	two
weeks).	This	definition	of	warranty	should	ideally	be	integrated	into	our	collective	definition	of	“done.”

§	By	following	work	downstream,	we	may	uncover	ways	to	help	improve	flow,	such	as	automating	complex,	manual	steps	(e.g.,
pairing	application	server	clusters	that	require	six	hours	to	successfully	complete);	performing	packaging	of	code	once	instead	of

creating	it	multiple	times	at	different	stages	of	QA	and	Production	deployment;	working	with	testers	to	automate	manual	test	suites,
thus	removing	a	common	bottleneck	for	more	frequent	deployment;	and	creating	more	useful	documentation	instead	of	having
someone	decipher	developer	application	notes	to	build	packaged	installers.

¶	More	recently,	Jeff	Sussna	attempted	to	further	codify	how	to	better	achieve	UX	goals	in	what	he	calls	“digital	conversations,”	which
are	intended	to	help	organizations	understand	the	customer	journey	as	a	complex	system,	broadening	the	context	of	quality.	The	key
concepts	include	designing	for	service,	not	software;	minimizing	latency	and	maximizing	strength	of	feedback;	designing	for	failure
and	operating	to	learn;	using	Operations	as	an	input	to	design;	and	seeking	empathy.

**	We	further	increase	the	likelihood	of	production	problems	being	fixed	by	ensuring	that	the	Development	teams	remain	intact,	and
not	disbanded	after	the	project	is	complete.

††	In	organizations	with	project-based	funding,	there	may	be	no	developers	to	hand	the	service	back	to,	as	the	team	has	already	been
disbanded	or	may	not	have	the	budget	or	time	to	take	on	service	responsibility.	Potential	countermeasures	include	holding	an
improvement	blitz	to	improve	the	service,	temporarily	funding	or	staffing	improvement	efforts,	or	retiring	the	service.

‡‡	In	this	book,	we	use	the	term	“Ops	engineer,”	but	the	two	terms,	“Ops	Engineer”	and	“Site	Reliability	Engineer,”	are	intended	to	be
interchangeable.

17Integrate	Hypothesis-
Driven	Development

and	A/B	Testing	into	Our
Daily	Work

All	too	often	in	software	projects,	developers	work	on	features	for	months	or
years,	spanning	multiple	releases,	without	ever	confirming	whether	the	desired
business	outcomes	are	being	met,	such	as	whether	a	particular	feature	is
achieving	the	desired	results	or	even	being	used	at	all.

Worse,	even	when	we	discover	that	a	given	feature	isn’t	achieving	the	desired
results,	making	corrections	to	the	feature	may	be	out-prioritized	by	other	new
features,	ensuring	that	the	under-performing	feature	will	never	achieve	its
intended	business	goal.	In	general,	Jez	Humble	observes,	“the	most	inefficient
way	to	test	a	business	model	or	product	idea	is	to	build	the	complete	product	to
see	whether	the	predicted	demand	actually	exists.”

Before	we	build	a	feature,	we	should	rigorously	ask	ourselves,	“Should	we	build
it,	and	why?”	We	should	then	perform	the	cheapest	and	fastest	experiments
possible	to	validate	through	user	research	whether	the	intended	feature	will
actually	achieve	the	desired	outcomes.	We	can	use	techniques	such	as
hypothesis-driven	development,	customer	acquisition	funnels,	and	A/B	testing,
concepts	we	explore	throughout	this	chapter.	Intuit,	Inc.	provides	a	dramatic
example	of	how	organizations	use	these	techniques	to	create	products	that

customers	love,	to	promote	organizational	learning,	and	to	win	in	the
marketplace.

Intuit	is	focused	on	creating	business	and	financial	management	solutions	to
simplify	life	for	small	businesses,	consumers,	and	accounting	professionals.	In
2012,	they	had	$4.5	billion	in	revenue	and	8,500	employees,	with	flagship
products	that	include	QuickBooks,	TurboTax,	Mint,	and,	until	recently,
Quicken.†

Scott	Cook,	the	founder	of	Intuit,	has	long	advocated	building	a	culture	of
innovation,	encouraging	teams	to	take	an	experimental	approach	to	product
development	and	exhorting	leadership	to	support	them.	As	he	said,	“Instead	of
focusing	on	the	boss’s	vote…the	emphasis	is	on	getting	real	people	to	really
behave	in	real	experiments,	and	basing	your	decisions	on	that.”	This	is	the
epitome	of	a	scientific	approach	to	product	development.

Cook	explained	that	what	is	needed	is	“a	system	where	every	employee	can	do
rapid,	high-velocity	experiments….Dan	Maurer	runs	our	consumer	division....
[which]	runs	the	TurboTax	website.	When	he	took	over,	we	did	about	seven
experiments	a	year.”

He	continued,	“By	installing	a	rampant	innovation	culture	[in	2010],	they	now
do	165	experiments	in	the	three	months	of	the	[US]	tax	season.	Business	result?
[The]	conversion	rate	of	the	website	is	up	50	percent….	The	folks	[team
members]	just	love	it,	because	now	their	ideas	can	make	it	to	market.”

Aside	from	the	effect	on	the	website	conversion	rate,	one	of	the	most	surprising
elements	of	this	story	is	that	TurboTax	performed	production	experiments	during
their	peak	traffic	seasons.	For	decades,	especially	in	retailing,	the	risk	of
revenue-impacting	outages	during	the	holiday	season	were	so	high	that	we
would	often	put	into	place	a	change	freeze	from	mid-October	to	mid-January.

However,	by	making	software	deployments	and	releases	fast	and	safe,	the
TurboTax	team	made	online	user	experimentation	and	any	required	production
changes	a	low-risk	activity	that	could	be	performed	during	the	highest	traffic	and
revenue	generating	periods.

This	highlights	the	notion	that	the	period	when	experimentation	has	the	highest
value	is	during	peak	traffic	seasons.	Had	the	TurboTax	team	waited	until	April
16th,	the	day	after	the	US	tax	filing	deadline,	to	implement	these	changes,	the
company	could	have	lost	many	of	its	prospective	customers,	and	even	some	of
its	existing	customers,	to	the	competition.

The	faster	we	can	experiment,	iterate,	and	integrate	feedback	into	our	product	or
service,	the	faster	we	can	learn	and	out-experiment	the	competition.	And	how
quickly	we	can	integrate	our	feedback	depends	on	our	ability	to	deploy	and
release	software.

The	Intuit	example	shows	that	the	Intuit	TurboTax	team	was	able	to	make	this
situation	work	for	them	and	won	in	the	marketplace	as	a	result.

A	BRIEF	HISTORY	OF	A/B	TESTING

As	the	Intuit	TurboTax	story	highlights,	an	extremely	powerful	user	research
technique	is	defining	the	customer	acquisition	funnel	and	performing	A/B
testing.	A/B	testing	techniques	were	pioneered	in	direct	response	marketing,
which	is	one	of	the	two	major	categories	of	marketing	strategies.	The	other	is
called	mass	marketing	or	brand	marketing	and	often	relies	on	placing	as	many
ad	impressions	in	front	of	people	as	possible	to	influence	buying	decisions.

In	previous	eras,	before	email	and	social	media,	direct	response	marketing	meant
sending	thousands	of	postcards	or	flyers	via	postal	mail,	and	asking	prospects	to

accept	an	offer	by	calling	a	telephone	number,	returning	a	postcard,	or	placing
an	order.

In	these	campaigns,	experiments	were	performed	to	determine	which	offer	had
the	highest	conversion	rates.	They	experimented	with	modifying	and	adapting
the	offer,	re-wording	the	offer,	varying	the	copywriting	styles,	design	and
typography,	packaging,	and	so	forth,	to	determine	which	was	most	effective	in
generating	the	desired	action	(e.g.,	calling	a	phone	number,	ordering	a	product).

Each	experiment	often	required	doing	another	design	and	print	run,	mailing	out
thousands	of	offers,	and	waiting	weeks	for	responses	to	come	back.	Each
experiment	typically	cost	tens	of	thousands	of	dollars	per	trial	and	required
weeks	or	months	to	complete.	However,	despite	the	expense,	iterative	testing
easily	paid	off	if	it	significantly	increased	conversion	rates	(e.g.,	the	percentage
of	respondents	ordering	a	product	going	from	3%–12%).

Well-documented	cases	of	A/B	testing	include	campaign	fundraising,	Internet
marketing,	and	the	Lean	Startup	methodology.	Interestingly,	it	has	also	been
used	by	the	British	government	to	determine	which	letters	were	most	effective	in
collecting	overdue	tax	revenue	from	delinquent	citizens.‡

INTEGRATING	A/B	TESTING	INTO	OUR
FEATURE	TESTING

The	most	commonly	used	A/B	technique	in	modern	UX	practice	involves	a
website	where	visitors	are	randomly	selected	to	be	shown	one	of	two	versions	of
a	page,	either	a	control	(the	“A”)	or	a	treatment	(the	“B”).	Based	on	statistical
analysis	of	the	subsequent	behavior	of	these	two	cohorts	of	users,	we
demonstrate	whether	there	is	a	significant	difference	in	the	outcomes	of	the	two,
establishing	a	causal	link	between	the	treatment	(e.g.,	a	change	in	a	feature,

design	element,	background	color)	and	the	outcome	(e.g.,	conversion	rate,
average	order	size).

For	example,	we	may	conduct	an	experiment	to	see	whether	modifying	the	text
or	color	on	a	“buy”	button	increases	revenue	or	whether	slowing	down	the
response	time	of	a	website	(by	introducing	an	artificial	delay	as	the	treatment)
reduces	revenue.	This	type	of	A/B	testing	allows	us	to	establish	a	dollar	value	on
performance	improvements.

Sometimes,	A/B	tests	are	also	known	as	online	controlled	experiments	and	split
tests.	It’s	also	possible	to	run	experiments	with	more	than	one	variable.	This
allows	us	to	see	how	the	variables	interact,	a	technique	known	as	multivariate
testing.

The	outcomes	of	A/B	tests	are	often	startling.	Ronny	Kohavi,	Distinguished
Engineer	and	General	Manager	of	the	Analysis	and	Experimentation	group	at
Microsoft,	observed	that	after	“evaluating	well-designed	and	executed
experiments	that	were	designed	to	improve	a	key	metric,	only	about	one-third
were	successful	at	improving	the	key	metric!”	In	other	words,	two-thirds	of
features	either	have	a	negligible	impact	or	actually	make	things	worse.	Kohavi
goes	on	to	note	that	all	these	features	were	originally	thought	to	be	reasonable,
good	ideas,	further	elevating	the	need	for	user	testing	over	intuition	and	expert
opinions.

The	implications	of	the	Kohavi	data	are	staggering.	If	we	are	not	performing
user	research,	the	odds	are	that	two-thirds	of	the	features	we	are	building	deliver
zero	or	negative	value	to	our	organization,	even	as	they	make	our	codebase	ever
more	complex,	thus	increasing	our	maintenance	costs	over	time	and	making	our
software	more	difficult	to	change.	Furthermore,	the	effort	to	build	these	features
is	often	made	at	the	expense	of	delivering	features	that	would	deliver	value	(i.e.,
opportunity	cost).	Jez	Humble	joked,	“Taken	to	an	extreme,	the	organization	and

customers	would	have	been	better	off	giving	the	entire	team	a	vacation,	instead
of	building	one	of	these	non–value-adding	features.”

Our	countermeasure	is	to	integrate	A/B	testing	into	the	way	we	design,
implement,	test,	and	deploy	our	features.	Performing	meaningful	user	research
and	experiments	ensures	that	our	efforts	help	achieve	our	customer	and
organizational	goals,	and	help	us	win	in	the	marketplace.

INTEGRATE	A/B	TESTING	INTO	OUR	RELEASE

Fast	and	iterative	A/B	testing	is	made	possible	by	being	able	to	quickly	and
easily	do	production	deployments	on	demand,	using	feature	toggles	and
potentially	delivering	multiple	versions	of	our	code	simultaneously	to	customer
segments.	Doing	this	requires	useful	production	telemetry	at	all	levels	of	the
application	stack.

By	hooking	into	our	feature	toggles,	we	can	control	which	percentage	of	users
see	the	treatment	version	of	an	experiment.	For	example,	we	may	have	one-half
of	our	customers	be	our	treatment	group	and	one-half	get	shown	the	following:
“Similar	items	link	on	unavailable	items	in	the	cart.”	As	part	of	our	experiment,
we	compare	the	behavior	of	the	control	group	(no	offer	made)	against	the
treatment	group	(offer	made),	perhaps	measuring	number	of	purchases	made	in
that	session.

Etsy	open-sourced	their	experimentation	framework	Feature	API	(formerly
known	as	the	Etsy	A/B	API),	which	not	only	supports	A/B	testing	but	also
online	ramp-ups,	enabling	throttling	exposure	to	experiments.	Other	A/B	testing
products	include	Optimizely,	Google	Analytics,	etc.

In	a	2014	interview	with	Kendrick	Wang	of	Apptimize,	Lacy	Rhoades	at	Etsy
described	their	journey:	“Experimentation	at	Etsy	comes	from	a	desire	to	make
informed	decisions,	and	ensure	that	when	we	launch	features	for	our	millions	of
members,	they	work.	Too	often,	we	had	features	that	took	a	lot	of	time	and	had
to	be	maintained	without	any	proof	of	their	success	or	any	popularity	among
users.	A/B	testing	allows	us	to...say	a	feature	is	worth	working	on	as	soon	as	it’s
underway.”

INTEGRATING	A/B	TESTING	INTO	OUR
FEATURE	PLANNING

Once	we	have	the	infrastructure	to	support	A/B	feature	release	and	testing,	we
must	ensure	that	product	owners	think	about	each	feature	as	a	hypothesis	and	use
our	production	releases	as	experiments	with	real	users	to	prove	or	disprove	that
hypothesis.	Constructing	experiments	should	be	designed	in	the	context	of	the
overall	customer	acquisition	funnel.	Barry	O’Reilly,	co-author	of	Lean
Enterprise:	How	High	Performance	Organizations	Innovate	at	Scale,	described
how	we	can	frame	hypotheses	in	feature	development	in	the	following	form:

We	Believe	that	increasing	the	size	of	hotel	images	on	the	booking	page

Will	Result	in	improved	customer	engagement	and	conversion

We	Will	Have	Confidence	To	Proceed	When	we	see	a	5%	increase	in
customers	who	review	hotel	images	who	then	proceed	to	book	in	forty-eight
hours.

Adopting	an	experimental	approach	to	product	development	requires	us	to	not
only	break	down	work	into	small	units	(stories	or	requirements),	but	also
validate	whether	each	unit	of	work	is	delivering	the	expected	outcomes.	If	it

does	not,	we	modify	our	road	map	of	work	with	alternative	paths	that	will
actually	achieve	those	outcomes.

Case	Study

Doubling	Revenue	Growth	through	Fast	Release	Cycle
Experimentation	at	Yahoo!	Answers	(2010)

The	faster	we	can	iterate	and	integrate	feedback	into	the	product	or
service	we	are	delivering	to	customers,	the	faster	we	can	learn	and
the	bigger	the	impact	we	can	create.	How	dramatically	outcomes
can	be	affected	by	faster	cycle	times	was	evident	at	Yahoo!
Answers	as	they	went	from	one	release	every	six	weeks	to	multiple
releases	every	week.

In	2009,	Jim	Stoneham	was	General	Manager	of	the	Yahoo!
Communities	group	that	included	Flickr	and	Answers.	Previously,
he	had	been	primarily	responsible	for	Yahoo!	Answers,	competing
against	other	Q&A	companies	such	as	Quora,	Aardvark,	and	Stack
Exchange.

At	that	time,	Answers	had	approximately	140	million	monthly
visitors,	with	over	twenty	million	active	users	answering	questions	in
over	twenty	different	languages.	However,	user	growth	and	revenue
had	flattened,	and	user	engagement	scores	were	declining.

Stoneham	observes	that	“Yahoo	Answers	was	and	continues	to	be
one	of	the	biggest	social	games	on	the	Internet;	tens	of	millions	of
people	are	actively	trying	to	‘level	up’	by	providing	quality	answers
to	questions	faster	than	the	next	member	of	the	community.	There
were	many	opportunities	to	tweak	the	game	mechanic,	viral	loops,

and	other	community	interactions.	When	you’re	dealing	with	these
human	behaviors,	you’ve	got	to	be	able	to	do	quick	iterations	and
testing	to	see	what	clicks	with	people.”

He	continues,	“These	[experiments]	are	the	things	that	Twitter,
Facebook,	and	Zynga	did	so	well.	Those	organizations	were	doing
experiments	at	least	twice	per	week—they	were	even	reviewing	the
changes	they	made	before	their	deployments,	to	make	sure	they
were	still	on	track.	So	here	I	am,	running	[the]	largest	Q&A	site	in
the	market,	wanting	to	do	rapid	iterative	feature	testing,	but	we	can’t
release	any	faster	than	once	every	4	weeks.	In	contrast,	the	other
people	in	the	market	had	a	feedback	loop	10x	faster	than	us.”

Stoneham	observed	that	as	much	as	product	owners	and
developers	talk	about	being	metrics-driven,	if	experiments	are	not
performed	frequently	(daily	or	weekly),	the	focus	of	daily	work	is
merely	on	the	feature	they’re	working	on,	as	opposed	to	customer
outcomes.

As	the	Yahoo!	Answers	team	was	able	to	move	to	weekly
deployments,	and	later	multiple	deployments	per	week,	their	ability
to	experiment	with	new	features	increased	dramatically.	Their
astounding	achievements	and	learnings	over	the	next	twelve
months	of	experimentation	included	increased	monthly	visits	of
72%,	increased	user	engagement	of	threefold,	and	the	team
doubled	their	revenue.	To	continue	their	success,	the	team	focused
on	optimizing	the	following	top	metrics:

Time	to	first	answer:	How	quickly	was	an	answer	posted	to	a	user
question?

Time	to	best	answer:	How	quickly	did	the	user	community	award	a
best	answer?

Upvotes	per	answer:	How	many	times	was	an	answer	upvoted	by
the	user	community?

Answers/week/person:	How	many	answers	were	users	creating?

Second	search	rate:	How	often	did	visitors	have	to	search	again	to
get	an	answer?	(Lower	is	better.)

Stoneham	concluded,	“This	was	exactly	the	learning	that	we
needed	to	win	in	the	marketplace—and	it	changed	more	than	our
feature	velocity.	We	transformed	from	a	team	of	employees	to	a
team	of	owners.	When	you	move	at	that	speed,	and	are	looking	at
the	numbers	and	the	results	daily,	your	investment	level	radically
changes.”

CONCLUSION

Success	requires	us	to	not	only	deploy	and	release	software	quickly,	but	also	to
out-experiment	our	competition.	Techniques	such	as	hypothesis-driven
development,	defining	and	measuring	out	customer	acquisition	funnel,	and	A/B
testing	allow	us	to	perform	user-experiments	safely	and	easily,	enabling	us	to
unleash	creativity	and	innovation,	and	create	organizational	learning.	And,	while
succeeding	is	important,	the	organizational	learning	that	comes	from
experimentation	also	gives	employees	ownership	of	business	objectives	and
customer	satisfaction.	In	the	next	chapter,	we	examine	and	create	review	and
coordination	processes	as	a	way	to	increase	the	quality	of	our	current	work.

†	In	2016,	Intuit	sold	the	Quicken	business	to	the	private	equity	firm	H.I.G.	Capital.

‡	There	are	many	other	ways	to	conduct	user	research	before	embarking	on	development.	Among	the	most	inexpensive	methods
include	performing	surveys,	creating	prototypes	(either	mock-ups	using	tools	such	as	Balsamiq	or	interactive	versions	written	in
code),	and	performing	usability	testing.	Alberto	Savoia,	Director	of	Engineering	at	Google,	coined	the	term	pretotyping	for	the
practice	of	using	prototypes	to	validate	whether	we	are	building	the	right	thing.	User	research	is	so	inexpensive	and	easy	relative	to
the	effort	and	cost	of	building	a	useless	feature	in	code	that,	in	almost	every	case,	we	shouldn’t	prioritize	a	feature	without	some
form	of	validation.

18Create	Review	and
Coordination	Processes

to	Increase	Quality	of	Our
Current	Work

In	the	previous	chapters,	we	created	the	telemetry	necessary	to	see	and	solve
problems	in	production	and	at	all	stages	of	our	deployment	pipeline,	and	created
fast	feedback	loops	from	customers	to	help	enhance	organizational	learning—
learning	that	encourages	ownership	and	responsibility	for	customer	satisfaction
and	feature	performance,	which	helps	us	succeed.

Our	goal	in	this	chapter	is	to	enable	Development	and	Operations	to	reduce	the
risk	of	production	changes	before	they	are	made.	Traditionally,	when	we	review
changes	for	deployment,	we	tend	to	rely	heavily	on	reviews,	inspections,	and
approvals	just	prior	to	deployment.	Frequently	those	approvals	are	given	by
external	teams	who	are	often	too	far	removed	from	the	work	to	make	informed
decisions	on	whether	a	change	is	risky	or	not,	and	the	time	required	to	get	all	the
necessary	approvals	also	lengthens	our	change	lead	times.

The	peer	review	process	at	GitHub	is	a	striking	example	of	how	inspection	can
increase	quality,	make	deployments	safe,	and	be	integrated	into	the	flow	of
everyone’s	daily	work.	They	pioneered	the	process	called	pull	request,	one	of
the	most	popular	forms	of	peer	review	that	span	Dev	and	Ops.

Scott	Chacon,	CIO	and	co-founder	of	GitHub,	wrote	on	his	website	that	pull
requests	are	the	mechanism	that	lets	engineers	tell	others	about	changes	they
have	pushed	to	a	repository	on	GitHub.	Once	a	pull	request	is	sent,	interested
parties	can	review	the	set	of	changes,	discuss	potential	modifications,	and	even
push	follow-up	commits	if	necessary.	Engineers	submitting	a	pull	request	will
often	request	a	“+1,”	“+2,”	or	so	forth,	depending	on	how	many	reviews	they
need,	or	“@mention”	engineers	that	they’d	like	to	get	reviews	from.

At	GitHub,	pull	requests	are	also	the	mechanism	used	to	deploy	code	into
production	through	a	collective	set	of	practices	they	call	“GitHub	Flow”—it’s
how	engineers	request	code	reviews,	gather	and	integrate	feedback,	and
announce	that	code	will	be	deployed	to	production	(i.e.,	“master”	branch).

Figure	40:	Comments	and	suggestions	on	a	GitHub	pull	request	
(Source:	Scott	Chacon,	“GitHub	Flow,”	ScottChacon.com,	August	31,	2011,

http://scottchacon.com/2011/08/31/github-flow.html.)

GitHub	Flow	is	composed	of	five	steps:

http://scottchacon.com/2011/08/31/github-flow.html

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

	 	 	 	

PROCESSES
THE DANGERS OF CHANGE APPROVAL

reliably, securely, safely, and as designed.
continuously collaborating so that changes we make to our systems will operate
work. Our goal is to ensure that Development, Operations, and Infosec are
moving to integrated peer review performed continually as a part of our daily
GitHub, to shift our reliance away from periodic inspections and approvals, and
Throughout this chapter we will integrate practices, such as those used at

deployments into production, all made possible through the pull request process.
busiest deployment day of the year, with 563 builds and 175 successful
many exciting ideas were brainstormed and discussed, the company had their
deployments. In particular, on August 23rd, after a company-wide summit where
quality and security. For example, in 2012 they performed an amazing 12,602
allowed GitHub to quickly and reliably deliver features to market with high
These practices, which integrate review and coordination into daliy work, have

 deploys them into production.
. Once the code changes are merged and pushed to master, the engineer5

 feature, the engineer can then merge it into master.
. When they get their desired reviews and get any necessary approvals of the4

 merging, they open a pull request.
. When they need feedback or help, or when they think the branch is ready for3

 the same named branch on the server.
. The engineer commits to that branch locally, regularly pushing their work to2

 branch off of master (e.g., “new-oauth2-scopes”).
. To work on something new, the engineer creates a descriptively named1

PROCESSES

The	Knight	Capital	failure	is	one	of	the	most	prominent	software	deployment
errors	in	recent	memory.	A	fifteen	minute	deployment	error	resulted	in	a	$440
million	trading	loss,	during	which	the	engineering	teams	were	unable	to	disable
the	production	services.	The	financial	losses	jeopardized	the	firm’s	operations
and	forced	the	company	to	be	sold	over	the	weekend	so	they	could	continue
operating	without	jeopardizing	the	entire	financial	system.

John	Allspaw	observed	that	when	high-profile	incidents	occur,	such	as	the
Knight	Capital	deployment	accident,	there	are	typically	two	counterfactual
narratives	for	why	the	accident	occurred.†

The	first	narrative	is	that	the	accident	was	due	to	a	change	control	failure,	which
seems	valid	because	we	can	imagine	a	situation	where	better	change	control
practices	could	have	detected	the	risk	earlier	and	prevented	the	change	from
going	into	production.	And	if	we	couldn’t	prevent	it,	we	might	have	taken	steps
to	enable	faster	detection	and	recovery.

The	second	narrative	is	that	the	accident	was	due	to	a	testing	failure.	This	also
seems	valid,	with	better	testing	practices	we	could	have	identified	the	risk	earlier
and	canceled	the	risky	deployment,	or	we	could	have	at	least	taken	steps	to
enable	faster	detection	and	recovery.

The	surprising	reality	is	that	in	environments	with	low-trust,	command-and-
control	cultures,	the	outcomes	of	these	types	of	change	control	and	testing
countermeasures	often	result	in	an	increased	likelihood	that	problems	will	occur
again,	potentially	with	even	worse	outcomes.

Gene	Kim	(co-author	of	this	book)	describes	his	realization	that	change	and
testing	controls	can	potentially	have	the	opposite	effect	than	intended	as	“one	of
the	most	important	moments	of	my	professional	career.	This	‘aha’	moment	was

the	result	of	a	conversation	in	2013	with	John	Allspaw	and	Jez	Humble	about	the
Knight	Capital	accident,	making	me	question	some	of	my	core	beliefs	that	I’ve
formed	over	the	last	ten	years,	especially	having	been	trained	as	an	auditor.”

He	continues,	“However	upsetting	it	was,	it	was	also	a	very	formative	moment
for	me.	Not	only	did	they	convince	me	that	they	were	correct,	we	tested	these
beliefs	in	the	2014	State	of	DevOps	Report,	which	led	to	some	astonishing
findings	that	reinforce	that	building	high-trust	cultures	is	likely	the	largest
management	challenge	of	this	decade.”

POTENTIAL	DANGERS	OF	“OVERLY
CONTROLLING	CHANGES”

Traditional	change	controls	can	lead	to	unintended	outcomes,	such	as
contributing	to	long	lead	times,	and	reducing	the	strength	and	immediacy	of
feedback	from	the	deployment	process.	In	order	to	understand	how	this	happens,
let	us	examine	the	controls	we	often	put	in	place	when	change	control	failures
occur:

Adding	more	questions	that	need	to	be	answered	to	the	change	request	form

Requiring	more	authorizations,	such	as	one	more	level	of	management
approval	(e.g.,	instead	of	merely	the	VP	of	Operations	approving,	we	now
require	that	the	CIO	also	approve)	or	more	stakeholders	(e.g.,	network
engineering,	architecture	review	boards,	etc.)

Requiring	more	lead	time	for	change	approvals	so	that	change	requests	can
be	properly	evaluated

These	controls	often	add	more	friction	to	the	deployment	process	by	multiplying
the	number	of	steps	and	approvals,	and	increasing	batch	sizes	and	deployment

lead	times,	which	we	know	reduces	the	likelihood	of	successful	production
outcomes	for	both	Dev	and	Ops.	These	controls	also	reduce	how	quickly	we	get
feedback	from	our	work.

One	of	the	core	beliefs	in	the	Toyota	Production	System	is	that	“people	closest
to	a	problem	typically	know	the	most	about	it.”	This	becomes	more	pronounced
as	the	work	being	performed	and	the	system	the	work	occurs	in	become	more
complex	and	dynamic,	as	is	typical	in	DevOps	value	streams.	In	these	cases,
creating	approval	steps	from	people	who	are	located	further	and	further	away
from	the	work	may	actually	reduce	the	likelihood	of	success.	As	has	been	proven
time	and	again,	the	further	the	distance	between	the	person	doing	the	work	(i.e.,
the	change	implementer)	and	the	person	deciding	to	do	the	work	(i.e.,	the	change
authorizer),	the	worse	the	outcome.

In	Puppet	Labs’	2014	State	of	DevOps	Report,	one	of	the	key	findings	was	that
high-performing	organizations	relied	more	on	peer	review	and	less	on	external
approval	of	changes.	Figure	41	shows	that	the	more	organizations	rely	on	change
approvals,	the	worse	their	IT	performance	in	terms	of	both	stability	(mean	time
to	restore	service	and	change	fail	rate)	and	throughput	(deployment	lead	times,
deployment	frequency).

In	many	organizations,	change	advisory	boards	serve	an	important	role	in
coordinating	and	governing	the	delivery	process,	but	their	job	should	not	be	to
manually	evaluate	every	change,	nor	does	ITIL	mandate	such	a	practice.

To	understand	why	this	is	the	case,	consider	the	predicament	of	being	on	a
change	advisory	board,	reviewing	a	complex	change	composed	of	hundreds	of
thousands	of	lines	of	code	changes,	and	created	by	hundreds	of	engineers.

At	one	extreme,	we	cannot	reliably	predict	whether	a	change	will	be	successful
either	by	reading	a	hundred-word	description	of	the	change	or	by	merely

validating	that	a	checklist	has	been	completed.	At	the	other	extreme,	painfully
scrutinizing	thousands	of	lines	of	code	changes	is	unlikely	to	reveal	any	new
insights.	Part	of	this	is	the	nature	of	making	changes	inside	of	a	complex	system.
Even	the	engineers	who	work	inside	the	codebase	as	part	of	their	daily	work	are
often	surprised	by	the	side	effects	of	what	should	be	low-risk	changes.

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	

CHANGES
ENABLE COORDINATION AND SCHEDULING OF

effectively. We explore both of these in the next two sections.
authorize our changes. We also need to coordinate and schedule changes
closely resemble peer review, reducing our reliance on external bodies to
For all these reasons, we need to create effective control practices that more

 approvals (Source: Puppet Labs, DevOps Survey Of Practice 2014)
Figure 41: Organizations that rely on peer review outperform those with change

Whenever	we	have	multiple	groups	working	on	systems	that	share	dependencies,
our	changes	will	likely	need	to	be	coordinated	to	ensure	that	they	don’t	interfere
with	each	other	(e.g.,	marshaling,	batching,	and	sequencing	the	changes).	In
general,	the	more	loosely-coupled	our	architecture,	the	less	we	need	to
communicate	and	coordinate	with	other	component	teams—when	the
architecture	is	truly	service-oriented,	teams	can	make	changes	with	a	high	degree
of	autonomy,	where	local	changes	are	unlikely	to	create	global	disruptions.

However,	even	in	a	loosely-coupled	architecture,	when	many	teams	are	doing
hundreds	of	independent	deployments	per	day,	there	may	be	a	risk	of	changes
interfering	with	each	other	(e.g.,	simultaneous	A/B	tests).	To	mitigate	these
risks,	we	may	use	chat	rooms	to	announce	changes	and	proactively	find
collisions	that	may	exist.

For	more	complex	organizations	and	organizations	with	more	tightly-coupled
architectures,	we	may	need	to	deliberately	schedule	our	changes,	where
representatives	from	the	teams	get	together,	not	to	authorize	changes,	but	to
schedule	and	sequence	their	changes	in	order	to	minimize	accidents.

However,	certain	areas,	such	as	global	infrastructure	changes	(e.g.,	core	network
switch	changes)	will	always	have	a	higher	risk	associated	with	them.	These
changes	will	always	require	technical	countermeasures,	such	as	redundancy,
failover,	comprehensive	testing,	and	(ideally)	simulation.

ENABLE	PEER	REVIEW	OF	CHANGES

Instead	of	requiring	approval	from	an	external	body	prior	to	deployment,	we
may	require	engineers	to	get	peer	reviews	of	their	changes.	In	Development,	this
practice	has	been	called	code	review,	but	it	is	equally	applicable	to	any	change

we	make	to	our	applications	or	environments,	including	servers,	networking,	and
databases.‡	The	goal	is	to	find	errors	by	having	fellow	engineers	close	to	the
work	scrutinize	our	changes.	This	review	improves	the	quality	of	our	changes,
which	also	creates	the	benefits	of	cross-training,	peer	learning,	and	skill
improvement.

A	logical	place	to	require	reviews	is	prior	to	committing	code	to	trunk	in	source
control,	where	changes	could	potentially	have	a	team-wide	or	global	impact.	At
a	minimum,	fellow	engineers	should	review	our	change,	but	for	higher	risk
areas,	such	as	database	changes	or	business-critical	components	with	poor
automated	test	coverage,	we	may	require	further	review	from	a	subject	matter
expert	(e.g.,	information	security	engineer,	database	engineer)	or	multiple
reviews	(e.g.,	“+2”	instead	of	merely	“+1”).

The	principle	of	small	batch	sizes	also	applies	to	code	reviews.	The	larger	the
size	of	the	change	that	needs	to	be	reviewed,	the	longer	it	takes	to	understand
and	the	larger	the	burden	on	the	reviewing	engineer.	As	Randy	Shoup	observed,
“There	is	a	non-linear	relationship	between	the	size	of	the	change	and	the
potential	risk	of	integrating	that	change—when	you	go	from	a	ten	line	code
change	to	a	one	hundred	line	code,	the	risk	of	something	going	wrong	is	more
than	ten	times	higher,	and	so	forth.”	This	is	why	it’s	so	essential	for	developers
to	work	in	small,	incremental	steps	rather	than	on	long-lived	feature	branches.

Furthermore,	our	ability	to	meaningfully	critique	code	changes	goes	down	as	the
change	size	goes	up.	As	Giray	Özil	tweeted,	“Ask	a	programmer	to	review	ten
lines	of	code,	he’ll	find	ten	issues.	Ask	him	to	do	five	hundred	lines,	and	he’ll
say	it	looks	good.”

Guidelines	for	code	reviews	include:

Everyone	must	have	someone	to	review	their	changes	(e.g.,	to	the	code,

environment,	etc.)	before	committing	to	trunk.

Everyone	should	monitor	the	commit	stream	of	their	fellow	team	members	so
that	potential	conflicts	can	be	identified	and	reviewed.

Define	which	changes	qualify	as	high	risk	and	may	require	review	from	a
designated	subject	matter	expert	(e.g.,	database	changes,	security-sensitive
modules	such	as	authentication,	etc.).§

If	someone	submits	a	change	that	is	too	large	to	reason	about	easily—in	other
words,	you	can’t	understand	its	impact	after	reading	through	it	a	couple	of
times,	or	you	need	to	ask	the	submitter	for	clarification—it	should	be	split	up
into	multiple,	smaller	changes	that	can	be	understood	at	a	glance.

To	ensure	that	we	are	not	merely	rubber	stamping	reviews,	we	may	also	want	to
inspect	the	code	review	statistics	to	determine	the	number	of	proposed	changes
approved	versus	not	approved,	and	perhaps	sample	and	inspect	specific	code
reviews.

Code	reviews	come	in	various	forms:

Pair	programming:	programmers	work	in	pairs	(see	section	below)

“Over-the-shoulder”:	One	developer	looks	over	the	author’s	shoulder	as	the
latter	walks	through	the	code.

Email	pass-around:	A	source	code	management	system	emails	code	to
reviewers	automatically	after	the	code	is	checked	in.

Tool-assisted	code	review:	Authors	and	reviewers	use	specialized	tools
designed	for	peer	code	review	(e.g.,	Gerrit,	GitHub	pull	requests,	etc.)	or
facilities	provided	by	the	source	code	repositories	(e.g.,	GitHub,	Mercurial,
Subversion,	as	well	as	other	platforms	such	as	Gerrit,	Atlassian	Stash,	and

Atlassian	Crucible).

Close	scrutiny	of	changes	in	many	forms	is	effective	in	locating	errors
previously	overlooked.	Code	reviews	can	facilitate	increased	code	commits	and
production	deployments,	and	support	trunk-based	deployment	and	continuous
delivery	at	scale,	as	we	will	see	in	the	following	case	study.

Case	Study

Code	Reviews	at	Google	(2010)

Google	is	an	excellent	example	of	a	company	that	employees
trunk-based	development	and	continuous	delivery	at	scale.	As
noted	earlier	in	this	book,	Eran	Messeri	described	that	in	2013	the
processes	at	Google	enabled	over	thirteen	thousand	developers	to
work	off	of	trunk	on	a	single	source	code	tree,	performing	over
5,500	code	commits	per	week,	resulting	in	hundreds	of	production
deployments	per	week.	In	2010,	there	were	20+	changes	being
checked	in	to	trunk	every	minute,	resulting	in	50%	of	the	codebase
being	changed	every	month.

This	requires	considerable	discipline	from	Google	team	members
and	mandatory	code	reviews,	which	cover	the	following	areas:

Code	readability	for	languages	(enforces	style	guide)

Ownership	assignments	for	code	sub-trees	to	maintain	consistency
and	correctness

Code	transparency	and	code	contributions	across	teams

Figure	42	shows	how	code	review	lead	times	are	affected	by	the
change	size.	On	the	x-axis	is	the	size	of	the	change,	and	on	the	y-
axis	is	the	lead	time	required	for	code	review	process.	In	general,
the	larger	the	change	submitted	for	code	reviews,	the	longer	the
lead	time	required	to	get	the	necessary	sign	offs.	And	the	data
points	in	the	upper-left	corner	represent	the	more	complex	and
potentially	risky	changes	that	required	more	deliberation	and
discussion.

Figure	42:	Size	of	change	vs.	lead	time	for	reviews	at	Google	(Source:	Ashish	Kumar,
“Development	at	the	Speed	and	Scale	of	Google,”	presentation	at	QCon,	San

Francisco,	CA,	2010,	https://qconsf.com/sf2010/dl/qcon-sanfran-
2010/slides/AshishKumar_DevelopingProductsattheSpeedandScaleofGoogle.pdf.)

While	he	was	working	as	a	Google	engineering	director,	Randy
Shoup	started	a	personal	project	to	solve	a	technical	problem	that
the	organization	was	facing.	He	said,	“I	worked	on	that	project	for
weeks	and	finally	got	around	to	asking	a	subject	matter	expert	to
review	my	code.	It	was	nearly	three	thousand	lines	of	code,	which
took	the	reviewer	days	of	work	to	go	through.	He	told	me,	‘Please

http://qconsf.com/sf2010/dl/qcon-sanfran-2010/slides/AshishKumar_DevelopingProductsattheSpeedandScaleofGoogle.pdf

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	
	 	

ALL OUR CHANGES
ENABLE PAIR PROGRAMMING TO IMPROVE

test, deploy, and release in ever smaller batch sizes.
deployment frequency. By doing this, we build in quality, which allows us to
as part of the smooth and continual flow into production, and increase our
around change freeze periods, we want to fully integrate testing our daily work
Instead of performing testing on large batches of changes that are scheduled

our incident counts and MTTR go up—the opposite of the outcome we want.
we increase our deployment batch size, our change success rates go down and
deployment batch size. And we know from both theory and practice that when
test, which means we are deploying less frequently, thus increasing our
“additional testing” often has the consequence of taking significantly longer to
naturally slower and more tedious than automated testing and performing
This is especially true if we are doing manual testing, because manual testing is

more testing at the end of the project, we may worsen our outcomes.
typical reaction is to do more testing. However, if we are merely performing
testing countermeasure can sometimes backfire. When testing failures occur, our
scale, such as we saw in the Google case study, let us examine the effects of how
associated with change approval processes, and enable continuous delivery at
Now that we have created peer reviews that reduce our risk, shorten lead times

MANUAL TESTING AND CHANGE FREEZES
POTENTIAL DANGERS OF DOING MORE

reviews a part of my daily work.”
time to do that. That was also when I learned how to make code
don’t do that to me again.’ I was grateful that this engineer took the

ALL	OUR	CHANGES

Pair	programming	is	when	two	engineers	work	together	at	the	same	workstation,
a	method	popularized	by	Extreme	Programming	and	Agile	in	the	early	2000s.	As
with	code	reviews,	this	practice	started	in	Development	but	is	equally	applicable
to	the	work	that	any	engineer	does	in	our	value	stream.	In	this	book,	we	will	use
the	term	pairing	and	pair	programming	interchangeably,	to	indicate	that	the
practice	is	not	just	for	developers.

In	one	common	pattern	of	pairing,	one	engineer	fills	the	role	of	the	driver,	the
person	who	actually	writes	the	code,	while	the	other	engineer	acts	as	the
navigator,	observer,	or	pointer,	the	person	who	reviews	the	work	as	it	is	being
performed.	While	reviewing,	the	observer	may	also	consider	the	strategic
direction	of	the	work,	coming	up	with	ideas	for	improvements	and	likely	future
problems	to	address.	This	frees	the	driver	to	focus	all	of	his	or	her	attention	on
the	tactical	aspects	of	completing	the	task,	using	the	observer	as	a	safety	net	and
guide.	When	the	two	have	differing	specialties,	skills	are	transferred	as	an
automatic	side	effect,	whether	it’s	through	ad-hoc	training	or	by	sharing
techniques	and	workarounds.

Another	pair	programming	pattern	reinforces	test-driven	development	(TDD)	by
having	one	engineer	write	the	automated	test	and	the	other	engineer	implement
the	code.	Jeff	Atwood,	one	of	the	founders	of	Stack	Exchange,	wrote,	“I	can’t
help	wondering	if	pair	programming	is	nothing	more	than	code	review	on
steroids….The	advantage	of	pair	programming	is	its	gripping	immediacy:	it	is
impossible	to	ignore	the	reviewer	when	he	or	she	is	sitting	right	next	to	you.”

He	continued,	“Most	people	will	passively	opt	out	[of	reviewing	code]	if	given
the	choice.	With	pair	programming,	that’s	not	possible.	Each	half	of	the	pair	has
to	understand	the	code,	right	then	and	there,	as	it’s	being	written.	Pairing	may	be

invasive,	but	it	can	also	force	a	level	of	communication	that	you’d	otherwise
never	achieve.”

Dr.	Laurie	Williams	performed	a	study	in	2001	that	showed	“paired
programmers	are	15%	slower	than	two	independent	individual	programmers,
while	‘error-free’	code	increased	from	70%	to	85%.	Since	testing	and	debugging
are	often	many	times	more	costly	than	initial	programming,	this	is	an	impressive
result.	Pairs	typically	consider	more	design	alternatives	than	programmers
working	alone	and	arrive	at	simpler,	more	maintainable	designs;	they	also	catch
design	defects	early.”	Dr.	Williams	also	reported	that	96%	of	her	respondents
stated	that	they	enjoyed	their	work	more	when	they	programmed	in	pairs	than
when	they	programmed	alone.¶

Pair	programming	has	the	additional	benefit	of	spreading	knowledge	throughout
the	organization	and	increasing	information	flow	within	the	team.	Having	more
experienced	engineers	review	while	the	less	experienced	engineer	codes	is	also
an	effective	way	to	teach	and	be	taught.

Case	Study	
Pair	Programming	Replacing	Broken	Code	Review

Processes	at	Pivotal	Labs	(2011)

Elisabeth	Hendrickson,	VP	of	Engineering	at	Pivotal	Software,	Inc.
and	author	of	Explore	It!:	Reduce	Risk	and	Increase	Confidence
with	Exploratory	Testing,	has	spoken	extensively	about	making
every	team	responsible	for	their	own	quality,	as	opposed	to	making
separate	departments	responsible.	She	argues	that	doing	so	not
only	increase	quality,	but	significantly	increases	the	flow	of	work
into	production.

In	her	2015	DevOps	Enterprise	Summit	presentation,	she	described
how	in	2011,	there	were	two	accepted	methods	of	code	review	at
Pivotal:	pair	programming	(which	ensured	that	every	line	of	code
was	inspected	by	two	people)	or	a	code	review	process	that	was
managed	by	Gerrit	(which	ensured	that	every	code	commit	had	two
designated	people	“+1”	the	change	before	it	was	allowed	into
trunk).

The	problem	Hendrickson	observed	with	the	Gerrit	code	review
process	was	that	it	would	often	take	an	entire	week	for	developers
to	receive	their	required	reviews.	Worse,	skilled	developers	were
experiencing	the	“frustrating	and	soul	crushing	experience	of	not
being	able	to	get	simple	changes	into	the	codebase,	because	we
had	inadvertently	created	intolerable	bottlenecks.”

Hendrickson	lamented	that	“the	only	people	who	had	the	ability	to
‘+1’	the	changes	were	senior	engineers,	who	had	many	other
responsibilities	and	often	didn’t	care	as	much	about	the	fixes	the
more	junior	developers	were	working	on	or	their	productivity.	It
created	a	terrible	situation—while	you	were	waiting	for	your
changes	to	get	reviewed,	other	developers	were	checking	in	their
changes.	So	for	a	week,	you	would	have	to	merge	all	their	code
changes	onto	your	laptop,	re-run	all	the	tests	to	ensure	that
everything	still	worked,	and	(sometimes)	you’d	have	to	resubmit
your	changes	for	review	again!”

To	fix	the	problem	and	eliminate	all	of	these	delays,	they	ended	up
dismantling	the	entire	Gerrit	code	review	process,	instead	requiring
pair	programming	to	implement	code	changes	into	the	system.	By
doing	this,	they	reduced	the	amount	of	time	required	to	get	code
reviewed	from	weeks	to	hours.

Hendrickson	is	quick	to	note	that	code	reviews	work	fine	in	many
organizations,	but	it	requires	a	culture	that	values	reviewing	code
as	highly	as	it	values	writing	the	code	in	the	first	place.	When	that
culture	is	not	yet	in	place,	pair	programming	can	serve	as	a
valuable	interim	practice.

EVALUATING	THE	EFFECTIVENESS	OF	PULL	REQUEST
PROCESSES
Because	the	peer	review	process	is	an	important	part	of	our	control	environment,
we	need	to	be	able	to	determine	whether	it	is	working	effectively	or	not.	One
method	is	to	look	at	production	outages	and	examine	the	peer	review	process	for
any	relevant	changes.

Another	method	comes	from	Ryan	Tomayko,	CIO	and	co-founder	of	GitHub
and	one	of	the	inventors	of	the	pull	request	process.	When	asked	to	describe	the
difference	between	a	bad	pull	request	and	a	good	pull	request,	he	said	it	has	little
to	do	with	the	production	outcome.	Instead,	a	bad	pull	request	is	one	that	doesn’t
have	enough	context	for	the	reader,	having	little	or	no	documentation	of	what	the
change	is	intended	to	do.	For	example,	a	pull	request	that	merely	has	the
following	text:	“Fixing	issue	#3616	and	#3841.”**

That	was	an	actual	internal	GitHub	pull	request,	which	Tomayko	critiqued,
“This	was	probably	written	by	a	new	engineer	here.	First	off,	no	specific
engineers	were	specifically	@mentioned—at	a	minimum,	the	engineer	should
have	mentioned	their	mentor	or	a	subject	matter	expert	in	the	area	that	they’re
modifying	to	ensure	that	someone	appropriate	reviews	their	change.	Worse,
there	isn’t	any	explanation	of	what	the	changes	actually	are,	why	it’s	important,
or	exposing	any	of	the	implementer’s	thinking.”

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	

FEARLESSLY CUT BUREAUCRATIC

population of pull requests or those that are relevant to production incidents.
process by sampling and examining pull requests, either from the entire
As described above, we can evaluate the effectiveness of our peer review

“Now that is a great pull request.”
and pages of discussion. Reading through the pull request, Tomayko smiled,
countermeasures to prevent it from happening again. This was followed by pages
and mistaken assumptions led to the accident, as well as a list of proposed
The change submitter then apologized for the outage, describing what conditions

missing column in the CI servers. (Link to Post-Mortem: MySQL outage)”
“I am pushing this now. Builds are now failing for the branch, because of a
potential risks, leading up to the following statement by the pull request author:
database migration. It was many pages long, with lengthy discussions about the
As an example, Tomayko produced another internal GitHub pull request for a

the future.
there is a candid conversation on how to prevent the problem from recurring in
corresponding issue. All discussion happens without placing blame; instead,
happens upon deployment, it is added to the pull request, with a link to the
to better mitigate the risk, and so forth. And if something bad or unexpected
pointed out, ideas on better ways to implement the desired change, ideas on how
context that the pull request provided—often, there will be additional risks
Tomayko also looks for good discussion of the change, enabled by all the

was made, as well as any identified risks and resulting countermeasures.
there must be sufficient detail on why the change is being made, how the change
effective review process, Tomayko quickly listed off the essential elements:
On the other hand, when asked to describe a great pull request that indicates an

FEARLESSLY	CUT	BUREAUCRATIC
PROCESSES

So	far,	we	have	discussed	peer	review	and	pair	programming	processes	that
enable	us	to	increase	the	quality	of	our	work	without	relying	on	external
approvals	for	changes.	However,	many	companies	still	have	long-standing
processes	for	approval	that	require	months	to	navigate.	These	approval	processes
can	significantly	increase	lead	times,	not	only	preventing	us	from	delivering
value	quickly	to	customers,	but	potentially	increasing	the	risk	to	our
organizational	objectives.	When	this	happens,	we	must	re-engineer	our	processes
so	that	we	can	achieve	our	goals	more	quickly	and	safely.

As	Adrian	Cockcroft	observed,	“A	great	metric	to	publish	widely	is	how	many
meetings	and	work	tickets	are	mandatory	to	perform	a	release—the	goal	is	to
relentlessly	reduce	the	effort	required	for	engineers	to	perform	work	and	deliver
it	to	the	customer.”

Similarly,	Dr.	Tapabrata	Pal,	technical	fellow	at	Capital	One,	described	a
program	at	Capital	One	called	Got	Goo?,	which	involves	a	dedicated	team
removing	obstacles—including	tools,	processes,	and	approvals—that	impede
work	completion.	Jason	Cox,	Senior	Director	of	Systems	Engineering	at	Disney,
described	in	his	presentation	at	the	DevOps	Enterprise	Summit	in	2015	a
program	called	Join	The	Rebellion	that	aimed	to	remove	toil	and	obstacles	from
daily	work.

At	Target	in	2012,	a	combination	of	the	Technology	Enterprise	Adoption
Process	and	Lead	Architecture	Review	Board	(TEAP-LARB	process)	resulted	in
complicated,	long	approval	times	for	anyone	attempting	to	bring	in	new
technology.	The	TEAP	form	needed	to	be	filled	out	by	anyone	wanting	to
propose	new	technologies	to	be	adopted,	such	as	a	new	database	or	monitoring

technologies.	These	proposals	were	evaluated,	and	those	deemed	appropriate
were	put	onto	the	monthly	LARB	meeting	agenda.

Heather	Mickman	and	Ross	Clanton,	Director	of	Development	and	Director	of
Operations	at	Target,	Inc.,	respectively,	were	helping	to	lead	the	DevOps
movement	at	Target.	During	their	DevOps	initiative,	Mickman	had	identified	a
technology	needed	to	enable	an	initiative	from	the	lines	of	business	(in	this	case,
Tomcat	and	Cassandra).	The	decision	from	the	LARB	was	that	Operations	could
not	support	it	at	the	time.	However,	because	Mickman	was	so	convinced	that	this
technology	was	essential,	she	proposed	that	her	Development	team	be
responsible	for	service	support	as	well	as	integration,	availability,	and	security,
instead	of	relying	on	the	Operations	team.

“As	we	went	through	the	process,	I	wanted	to	better	understand	why	the	TEAP-
LARB	process	took	so	long	to	get	through,	and	I	used	the	technique	of	‘the	five
why’s’....Which	eventually	led	to	the	question	of	why	TEAP-LARB	existed	in
the	first	place.	The	surprising	thing	was	that	no	one	knew,	outside	of	a	vague
notion	that	we	needed	some	sort	of	governance	process.	Many	knew	that	there
had	been	some	sort	of	disaster	that	could	never	happen	again	years	ago,	but	no
one	could	remember	exactly	what	that	disaster	was,	either,”	Mickman	observed.

Mickman	concluded	that	this	process	was	not	necessary	for	her	group	if	they
were	responsible	for	the	operational	responsibilities	of	the	technology	she	was
introducing.	She	added,	“I	let	everyone	know	that	any	future	technologies	that
we	would	support	wouldn’t	have	to	go	through	the	TEAP-LARB	process,
either.”

The	outcome	was	that	Cassandra	was	successfully	introduced	inside	Target	and
eventually	widely	adopted.	Furthermore,	the	TEAP-LARB	process	was
eventually	dismantled.	Out	of	appreciation,	her	team	awarded	Mickman	the

Lifetime	Achievement	Award	for	removing	barriers	to	get	technology	work	done
within	Target.

CONCLUSION

In	this	chapter,	we	discussed	how	to	integrate	practices	into	our	daily	work	that
increase	the	quality	of	our	changes	and	reduce	the	risk	of	poor	deployment
outcomes,	reducing	our	reliance	on	approval	processes.	Case	studies	from
GitHub	and	Target	show	that	these	practices	not	only	improve	our	outcomes,	but
also	significantly	reduce	lead	times	and	increase	developer	productivity.	To	do
this	kind	of	work	requires	a	high-trust	culture.

Consider	a	story	that	John	Allspaw	told	about	a	newly	hired	junior	engineer:	The
engineer	asked	if	it	was	okay	to	deploy	a	small	HTML	change,	and	Allspaw
responded,	“I	don’t	know,	is	it?”	He	then	asked	“Did	you	have	someone	review
your	change?	Do	you	know	who	the	best	person	to	ask	is	for	changes	of	this
type?	Did	you	do	everything	you	absolutely	could	to	assure	yourself	that	this
change	operates	in	production	as	designed?	If	you	did,	then	don’t	ask	me—just
make	the	change!”

By	responding	this	way,	Allspaw	reminded	the	engineer	that	she	was	solely
responsibility	for	the	quality	of	her	change—if	she	did	everything	she	felt	she
could	to	give	herself	confidence	that	the	change	would	work,	then	she	didn’t
need	to	ask	anyone	for	approval,	she	should	make	the	change.

Creating	the	conditions	that	enable	change	implementers	to	fully	own	the	quality
of	their	changes	is	an	essential	part	of	the	high-trust,	generative	culture	we	are
striving	to	build.	Furthermore,	these	conditions	enable	us	to	create	an	ever-safer
system	of	work,	where	we	are	all	helping	each	other	achieve	our	goals,	spanning
whatever	boundaries	necessary	to	get	there.

PART	IV	CONCLUSION

Part	IV	has	shown	us	that	by	implementing	feedback	loops	we	can	enable
everyone	to	work	together	toward	shared	goals,	see	problems	as	they	occur,	and,
with	quick	detection	and	recovery,	ensure	that	features	not	only	operate	as
designed	in	production,	but	also	achieve	organizational	goals	and	organizational
learning.	We	have	also	examined	how	to	enable	shared	goals	spanning	Dev	and
Ops	so	that	they	can	improve	the	health	of	the	entire	value	stream.

We	are	now	ready	to	enter	Part	V:	The	Third	Way,	The	Technical	Practices	of
Learning,	so	we	can	create	opportunities	for	learning	that	happen	earlier	and
ever	more	quickly	and	cheaply,	and	so	that	we	can	unleash	a	culture	of
innovation	and	experimentation	that	enables	everyone	to	do	meaningful	work
that	helps	our	organization	succeed.

†	Counterfactual	thinking	is	a	term	used	in	psychology	that	involves	the	human	tendency	to	create	possible	alternatives	to	life	events
that	have	already	occurred.	In	reliability	engineering,	it	often	involves	narratives	of	the	“system	as	imagined”	as	opposed	to	the
“system	in	reality.”

‡	In	this	book,	the	terms	code	review	and	change	review	will	be	used	interchangeably.

§	Incidentally,	a	list	of	high-risk	areas	of	code	and	environments	has	likely	already	been	created	by	the	change	advisory	board.

¶	Some	organizations	may	require	pair	programming,	while	in	others,	engineers	find	someone	to	pair	program	with	when	working	in
areas	where	they	want	more	scrutiny	(such	as	before	checking	in)	or	for	challenging	tasks.	Another	common	practice	is	to	set
pairing	hours	for	a	subset	of	the	working	day,	perhaps	four	hours	from	mid-morning	to	mid-afternoon.

**	Gene	Kim	is	grateful	to	Shawn	Davenport,	James	Fryman,	Will	Farr,	and	Ryan	Tomayko	at	GitHub	for	discussing	the	differences
between	good	and	bad	pull	requests.

Part	V

Introduction
In	Part	III,	The	First	Way:	The	Technical	Practices	of	Flow,	we	discussed
implementing	the	practices	required	to	create	fast	flow	in	our	value	stream.	In
Part	IV,	The	Second	Way:	The	Technical	Practices	of	Feedback,	our	goal	was	to
create	as	much	feedback	as	possible,	from	as	many	areas	in	our	system	as
possible—sooner,	faster,	and	cheaper.

In	Part	V,	The	Third	Way:	The	Technical	Practices	of	Learning,	we	present	the
practices	that	create	opportunities	for	learning,	as	quickly,	frequently,	cheaply,
and	as	soon	as	possible.	This	includes	creating	learnings	from	accidents	and
failures,	which	are	inevitable	when	we	work	within	complex	systems,	as	well	as
organizing	and	designing	our	systems	of	work	so	that	we	are	constantly
experimenting	and	learning,	continually	making	our	systems	safer.	The	results
include	higher	resilience	and	an	ever-growing	collective	knowledge	of	how	our
system	actually	works,	so	that	we	are	better	able	to	achieve	our	goals.

In	the	following	chapters,	we	will	institutionalize	rituals	that	increase	safety,
continuous	improvement,	and	learning	by	doing	the	following:

Establish	a	just	culture	to	make	safety	possible

Inject	production	failures	to	create	resilience

Convert	local	discoveries	into	global	improvements

Reserve	time	to	create	organizational	improvements	and	learning

We	will	also	create	mechanisms	so	that	any	new	learnings	generated	in	one	area
of	the	organization	can	be	rapidly	used	across	the	entire	organization,	turning
local	improvements	into	global	advancements.	In	this	way,	we	not	only	learn
faster	than	our	competition,	helping	us	win	in	the	marketplace,	but	also	create	a
safer,	more	resilient	work	culture	that	people	are	excited	to	be	a	part	of	and	that
helps	them	achieve	their	highest	potential.

19Enable	and	Inject
Learning	into	Daily	Work

When	we	work	within	a	complex	system,	it	is	impossible	for	us	to	predict	all	the
outcomes	for	the	actions	we	take.	This	contributes	to	unexpected	and	sometimes
catastrophic	accidents,	even	when	we	use	static	precautionary	tools,	such	as
checklists	and	runbooks,	which	codify	our	current	understanding	of	the	system.

To	enable	us	to	safely	work	within	complex	systems,	our	organizations	must
become	ever	better	at	self-diagnostics	and	self-improvement	and	must	be	skilled
at	detecting	problems,	solving	them,	and	multiplying	the	effects	by	making	the
solutions	available	throughout	the	organization.	This	creates	a	dynamic	system
of	learning	that	allows	us	to	understand	our	mistakes	and	translate	that
understanding	into	actions	that	prevent	those	mistakes	from	recurring	in	the
future.

The	result	is	what	Dr.	Steven	Spear	describes	as	resilient	organizations,	who	are
“skilled	at	detecting	problems,	solving	them,	and	multiplying	the	effect	by
making	the	solutions	available	throughout	the	organization.”	These
organizations	can	heal	themselves.	“For	such	an	organization,	responding	to
crises	is	not	idiosyncratic	work.	It	is	something	that	is	done	all	the	time.	It	is	this
responsiveness	that	is	their	source	of	reliability.”

A	striking	example	of	the	incredible	resilience	that	can	result	from	these
principles	and	practices	was	seen	on	April	21,	2011,	when	the	entire	Amazon

AWS	US-EAST	availability	zone	went	down,	taking	down	virtually	all	of	their
customers	who	depended	on	it,	including	Reddit	and	Quora.†	However,	Netflix
was	a	surprising	exception,	seemingly	unaffected	by	this	massive	AWS	outage.

Following	the	event,	there	was	considerable	speculation	about	how	Netflix	kept
their	services	running.	A	popular	theory	was	since	Netflix	was	one	of	the	largest
customers	of	Amazon	Web	Services,	it	was	given	some	special	treatment	that
allowed	them	to	keep	running.	However,	a	Netflix	Engineering	blog	post
explained	that	it	was	their	architectural	design	decisions	in	2009	enabled	their
exceptional	resilience.

Back	in	2008,	Netflix’s	online	video	delivery	service	ran	on	a	monolithic	J2EE
application	hosted	in	one	of	their	data	centers.	However,	starting	in	2009,	they
began	re-architecting	this	system	to	be	what	they	called	cloud	native—it	was
designed	to	run	entirely	in	the	Amazon	public	cloud	and	to	be	resilient	enough	to
survive	significant	failures.

One	of	their	specific	design	objectives	was	to	ensure	Netflix	services	kept
running,	even	if	an	entire	AWS	availability	zone	went	down,	such	as	happened
with	US-EAST.	To	do	this	required	that	their	system	be	loosely-coupled,	with
each	component	having	aggressive	timeouts	to	ensure	that	failing	components
didn’t	bring	the	entire	system	down.Instead,	each	feature	and	component	was
designed	to	gracefully	degrade.	For	example,	during	traffic	surges	that	created
CPU-usage	spikes,	instead	of	showing	a	list	of	movies	personalized	to	the	user,
they	would	show	static	content,	such	as	cached	or	un-personalized	results,	which
required	less	computation.

Furthermore,	the	blog	post	explained	that,	in	addition	to	implementing	these
architectural	patterns,	they	also	built	and	had	been	running	a	surprising	and
audacious	service	called	Chaos	Monkey,	which	simulated	AWS	failures	by
constantly	and	randomly	killing	production	servers.	They	did	so	because	they

wanted	all	“engineering	teams	to	be	used	to	a	constant	level	of	failure	in	the
cloud”	so	that	services	could	“automatically	recover	without	any	manual
intervention.”

In	other	words,	the	Netflix	team	ran	Chaos	Monkey	to	gain	assurance	that	they
had	achieved	their	operational	resilience	objectives,	constantly	injecting	failures
into	their	pre-production	and	production	environments.

As	one	might	expect,	when	they	first	ran	Chaos	Monkey	in	their	production
environments,	services	failed	in	ways	they	never	could	have	predicted	or
imagined—by	constantly	finding	and	fixing	these	issues	during	normal	working
hours,	Netflix	engineers	quickly	and	iteratively	created	a	more	resilient	service,
while	simultaneously	creating	organizational	learnings	(during	normal	working
hours!)	that	enabled	them	to	evolve	their	systems	far	beyond	their	competition.

Chaos	Monkey	is	just	one	example	of	how	learning	can	be	integrated	into	daily
work.	The	story	also	shows	how	learning	organizations	think	about	failures,
accidents,	and	mistakes—as	an	opportunity	for	learning	and	not	something	to	be
punished.	This	chapter	explores	how	to	create	a	system	of	learning	and	how	to
establish	a	just	culture,	as	well	as	how	to	routinely	rehearse	and	deliberately
create	failures	to	accelerate	learning.

ESTABLISH	A	JUST,	LEARNING	CULTURE

One	of	the	prerequisites	for	a	learning	culture	is	that	when	accidents	occur
(which	they	undoubtedly	will),	the	response	to	those	accidents	is	seen	as	“just.”
Dr.	Sidney	Dekker,	who	helped	codify	some	of	the	key	elements	of	safety
culture	and	coined	the	term	just	culture,	writes,	“When	responses	to	incidents
and	accidents	are	seen	as	unjust,	it	can	impede	safety	investigations,	promoting
fear	rather	than	mindfulness	in	people	who	do	safety-critical	work,	making

organizations	more	bureaucratic	rather	than	more	careful,	and	cultivating
professional	secrecy,	evasion,	and	self-protection.”

This	notion	of	punishment	is	present,	either	subtly	or	prominently,	in	the	way
many	managers	have	operated	during	the	last	century.	The	thinking	goes,	in
order	to	achieve	the	goals	of	the	organization,	leaders	must	command,	control,
establish	procedures	to	eliminate	errors,	and	enforce	compliance	of	those
procedures.

Dr.	Dekker	calls	this	notion	of	eliminating	error	by	eliminating	the	people	who
caused	the	errors	the	Bad	Apple	Theory.	He	asserts	that	this	is	invalid,	because
“human	error	is	not	our	cause	of	troubles;	instead,	human	error	is	a	consequence
of	the	design	of	the	tools	that	we	gave	them.”

If	accidents	are	not	caused	by	“bad	apples,”	but	rather	are	due	to	inevitable
design	problems	in	the	complex	system	that	we	created,	then	instead	of	“naming,
blaming,	and	shaming”	the	person	who	caused	the	failure,	our	goal	should
always	be	to	maximize	opportunities	for	organizational	learning,	continually
reinforcing	that	we	value	actions	that	expose	and	share	more	widely	the
problems	in	our	daily	work.	This	is	what	enables	us	to	improve	the	quality	and
safety	of	the	system	we	operate	within	and	reinforce	the	relationships	between
everyone	who	operates	within	that	system.

By	turning	information	into	knowledge	and	building	the	results	of	the	learning
into	our	systems,	we	start	to	achieve	the	goals	of	a	just	culture,	balancing	the
needs	for	safety	and	accountability.	As	John	Allspaw,	CTO	of	Etsy,	states,	“Our
goal	at	Etsy	is	to	view	mistakes,	errors,	slips,	lapses,	and	so	forth	with	a
perspective	of	learning.”

When	engineers	make	mistakes	and	feel	safe	when	giving	details	about	it,	they
are	not	only	willing	to	be	held	accountable,	but	they	are	also	enthusiastic	in

helping	the	rest	of	the	company	avoid	the	same	error	in	the	future.	This	is	what
creates	organizational	learning.	On	the	other	hand,	if	we	punish	that	engineer,
everyone	is	dis-incentivized	to	provide	the	necessary	details	to	get	an
understanding	of	the	mechanism,	pathology,	and	operation	of	the	failure,	which
guarantees	that	the	failure	will	occur	again.

Two	effective	practices	that	help	create	a	just,	learning-based	culture	are
blameless	post-mortems	and	the	controlled	introduction	of	failures	into
production	to	create	opportunities	to	practice	for	the	inevitable	problems	that
arise	within	complex	systems.	We	will	first	look	at	blameless	post-mortems	and
follow	that	with	an	exploration	of	why	failure	can	be	a	good	thing.

SCHEDULE	BLAMELESS	POST-MORTEM
MEETINGS	AFTER	ACCIDENTS	OCCUR

To	help	enable	a	just	culture,	when	accidents	and	significant	incidents	occur
(e.g.,	failed	deployment,	production	issue	that	affected	customers),	we	should
conduct	a	blameless	post-mortem	after	the	incident	has	been	resolved.‡

Blameless	post-mortems,	a	term	coined	by	John	Allspaw,	help	us	examine
“mistakes	in	a	way	that	focuses	on	the	situational	aspects	of	a	failure’s
mechanism	and	the	decision-making	process	of	individuals	proximate	to	the
failure.”

To	do	this,	we	schedule	the	post-mortem	as	soon	as	possible	after	the	accident
occurs	and	before	memories	and	the	links	between	cause	and	effect	fade	or
circumstances	change.	(Of	course,	we	wait	until	after	the	problem	has	been
resolved	so	as	not	to	distract	the	people	who	are	still	actively	working	on	the
issue.)

In	the	blameless	post-mortem	meeting,	we	will	do	the	following:

Construct	a	timeline	and	gather	details	from	multiple	perspectives	on
failures,	ensuring	we	don’t	punish	people	for	making	mistakes

Empower	all	engineers	to	improve	safety	by	allowing	them	to	give	detailed
accounts	of	their	contributions	to	failures

Enable	and	encourage	people	who	do	make	mistakes	to	be	the	experts	who
educate	the	rest	of	the	organization	on	how	not	to	make	them	in	the	future

Accept	that	there	is	always	a	discretionary	space	where	humans	can	decide	to
take	action	or	not,	and	that	the	judgment	of	those	decisions	lies	in	hindsight

Propose	countermeasures	to	prevent	a	similar	accident	from	happening	in	the
future	and	ensure	these	countermeasures	are	recorded	with	a	target	date	and
an	owner	for	follow-up

To	enable	us	to	gain	this	understanding,	the	following	stakeholders	need	to	be
present	at	the	meeting:

The	people	involved	in	decisions	that	may	have	contributed	to	the	problem

The	people	who	identified	the	problem

The	people	who	responded	to	the	problem

The	people	who	diagnosed	the	problem

The	people	who	were	affected	by	the	problem

And	anyone	else	who	is	interested	in	attending	the	meeting.

Our	first	task	in	the	blameless	post-mortem	meeting	is	to	record	our	best
understanding	of	the	timeline	of	relevant	events	as	they	occurred.	This	includes
all	actions	we	took	and	what	time	(ideally	supported	by	chat	logs,	such	as	IRC	or

Slack),	what	effects	we	observed	(ideally	in	the	form	of	the	specific	metrics	from
our	production	telemetry,	as	opposed	to	merely	subjective	narratives),	all
investigation	paths	we	followed,	and	what	resolutions	were	considered.

To	enable	these	outcomes,	we	must	be	rigorous	about	recording	details	and
reinforcing	a	culture	that	information	can	be	shared	without	fear	of	punishment
or	retribution.	Because	of	this,	especially	for	our	first	few	post-mortems,	it	may
be	helpful	to	have	the	meeting	led	by	a	trained	facilitator	who	wasn’t	involved	in
the	accident.

During	the	meeting	and	the	subsequent	resolution,	we	should	explicitly	disallow
the	phrases	“would	have”	or	“could	have,”	as	they	are	counterfactual	statements
that	result	from	our	human	tendency	to	create	possible	alternatives	to	events	that
have	already	occurred.

Counterfactual	statements,	such	as	“I	could	have...”	or	“If	I	had	known	about
that,	I	should	have…,”	frame	the	problem	in	terms	of	the	system	as	imagined
instead	of	in	terms	of	the	system	that	actually	exists,	which	is	the	context	we
need	to	restrict	ourselves	to.	See	Appendix	8.

One	of	the	potentially	surprising	outcomes	of	these	meetings	is	that	people	will
often	blame	themselves	for	things	outside	of	their	control	or	question	their	own
abilities.	Ian	Malpass,	an	engineer	at	Etsy	observes,	“In	that	moment	when	we
do	something	that	causes	the	entire	site	to	go	down,	we	get	this	‘ice	water	down
the	spine’	feeling,	and	likely	the	first	thought	through	our	head	is,	‘I	suck	and	I
have	no	idea	what	I’m	doing.’	We	need	to	stop	ourselves	from	doing	that,	as	it	is
route	to	madness,	despair,	and	feelings	of	being	an	imposter,	which	is	something
that	we	can’t	let	happen	to	good	engineers.	The	better	question	to	focus	on	is,
‘Why	did	it	make	sense	to	me	when	I	took	that	action?’”

In	the	meeting,	we	must	reserve	enough	time	for	brainstorming	and	deciding
which	countermeasures	to	implement.	Once	the	countermeasures	have	been
identified,	they	must	be	prioritized	and	given	an	owner	and	timeline	for
implementation.	Doing	this	further	demonstrates	that	we	value	improvement	of
our	daily	work	more	than	daily	work	itself.

Dan	Milstein,	one	of	the	principal	engineers	at	Hubspot,	writes	that	he	begins	all
blameless	post-mortem	meetings	“by	saying,	‘We’re	trying	to	prepare	for	a
future	where	we’re	as	stupid	as	we	are	today.’”	In	other	words,	it	is	not
acceptable	to	have	a	countermeasure	to	merely	“be	more	careful”	or	“be	less
stupid”—instead,	we	must	design	real	countermeasures	to	prevent	these	errors
from	happening	again.

Examples	of	such	countermeasures	include	new	automated	tests	to	detect
dangerous	conditions	in	our	deployment	pipeline,	adding	further	production
telemetry,	identifying	categories	of	changes	that	require	additional	peer	review,
and	conducting	rehearsals	of	this	category	of	failure	as	part	of	regularly
scheduled	Game	Day	exercises.

PUBLISH	OUR	POST-MORTEMS	AS	WIDELY	AS
POSSIBLE

After	we	conduct	a	blameless	post-mortem	meeting,	we	should	widely	announce
the	availability	of	the	meeting	notes	and	any	associated	artifacts	(e.g.,	timelines,
IRC	chat	logs,	external	communications).	This	information	should	(ideally)	be
placed	in	a	centralized	location	where	our	entire	organization	can	access	it	and
learn	from	the	incident.	Conducting	post-mortems	is	so	important	that	we	may
even	prohibit	production	incidents	from	being	closed	until	the	post-mortem
meeting	has	been	completed.

Doing	this	helps	us	translate	local	learnings	and	improvements	into	global
learnings	and	improvements.	Randy	Shoup,	former	engineering	director	for
Google	App	Engine,	describes	how	documentation	of	post-mortem	meetings	can
have	tremendous	value	to	others	in	the	organization,	“As	you	can	imagine	at
Google,	everything	is	searchable.	All	the	post-mortem	documents	are	in	places
where	other	Googlers	can	see	them.	And	trust	me,	when	any	group	has	an
incident	that	sounds	similar	to	something	that	happened	before,	these	post-
mortem	documents	are	among	the	first	documents	being	read	and	studied.”§

Widely	publishing	post-mortems	and	encouraging	others	in	the	organization	to
read	them	increases	organizational	learning,	and	it	also	becoming	increasingly
commonplace	for	online	service	companies	to	publish	post-mortems	for
customer-impacting	outages.	This	often	significantly	increases	the	transparency
we	have	with	our	internal	and	external	customers,	which	in	turn	increases	their
trust	in	us.

This	desire	to	conduct	as	many	blameless	post-mortem	meetings	as	necessary	at
Etsy	led	to	some	problems—over	the	course	of	four	years,	Etsy	accumulated	a
large	number	of	post-mortem	meeting	notes	in	wiki	pages,	which	became
increasingly	difficult	to	search,	save,	and	collaborate	from.

To	help	with	this	issue,	they	developed	a	tool	called	Morgue	to	easily	record
aspects	of	each	accident,	such	as	the	incident	MTTR	and	severity,	better	address
time	zones	(which	became	relevant	as	more	Etsy	employees	were	working
remotely),	and	include	other	data,	such	as	rich	text	in	Markdown	format,
embedded	images,	tags,	and	history.

Morgue	was	designed	to	make	it	easy	for	the	team	to	record:

Whether	the	problem	was	due	to	a	scheduled	or	an	unscheduled	incident

The	post-mortem	owner

Relevant	IRC	chat	logs	(especially	important	for	3	a.m.	issues	when	accurate
note-taking	may	not	happen)

Relevant	JIRA	tickets	for	corrective	actions	and	their	due	dates	(information
particularly	important	to	management)

Links	to	customer	forum	posts	(where	customers	complain	about	issues)

After	developing	and	using	Morgue,	the	number	of	recorded	post-mortems	at
Etsy	increased	significantly	compared	to	when	they	used	wiki	pages,	especially
for	P2,	P3,	and	P4	incidents	(i.e.,	lower	severity	problems).	This	result
reinforced	the	hypothesis	that	if	they	made	it	easier	to	document	post-mortems
through	tools	such	as	Morgue,	more	people	would	record	and	detail	the
outcomes	of	their	post-mortem	meetings,	enabling	more	organizational	learning.

Dr.	Amy	C.	Edmondson,	Novartis	Professor	of	Leadership	and	Management	at
Harvard	Business	School	and	co-author	of	Building	the	Future:	Big	Teaming	for
Audacious	Innovation,	writes:

Again,	the	remedy—which	does	not	necessarily	involve	much	time	and
expense—is	to	reduce	the	stigma	of	failure.	Eli	Lilly	has	done	this	since	the
early	1990s	by	holding	‘failure	parties’	to	honor	intelligent,	high-quality
scientific	experiments	that	fail	to	achieve	the	desired	results.	The	parties
don’t	cost	much,	and	redeploying	valuable	resources—particularly	scientists
—to	new	projects	earlier	rather	than	later	can	save	hundreds	of	thousands	of
dollars,	not	to	mention	kickstart	potential	new	discoveries.

DECREASE	INCIDENT	TOLERANCES	TO	FIND
EVER-WEAKER	FAILURE	SIGNALS

Inevitably,	as	organizations	learn	how	to	see	and	solve	problems	efficiently,	they
need	to	decrease	the	threshold	of	what	constitutes	a	problem	in	order	to	keep
learning.	To	do	this,	we	seek	to	amplify	weak	failure	signals.	For	example,	as
described	in	chapter	4,	when	Alcoa	was	able	to	reduce	the	rate	of	workplace
accidents	so	that	they	were	no	longer	commonplace,	Paul	O’Neill,	CEO	of
Alcoa,	started	to	be	notified	of	accident	near-misses	in	addition	to	actual
workplace	accidents.

Dr.	Spear	summarizes	O’Neill’s	accomplishments	at	Alcoa	when	he	writes,
“Though	it	started	by	focusing	on	problems	related	to	workplace	safety,	it	soon
found	that	safety	problems	reflected	process	ignorance	and	that	this	ignorance
would	also	manifest	itself	in	other	problems	such	as	quality,	timeliness,	and
yield	versus	scrap.”

When	we	work	within	complex	systems,	this	need	to	amplify	weak	failure
signals	is	critical	to	averting	catastrophic	failures.	The	way	NASA	handled
failure	signals	during	the	space	shuttle	era	serves	as	an	illustrative	example:	In
2003,	sixteen	days	into	the	Columbia	space	shuttle	mission,	it	exploded	as	it	re-
entered	the	earth’s	atmosphere.	We	now	know	that	a	piece	of	insulating	foam
had	broken	off	the	external	fuel	tank	during	takeoff.

However,	prior	to	Columbia’s	re-entry,	a	handful	of	mid-level	NASA	engineers
had	reported	this	incident,	but	their	voices	had	gone	unheard.	They	observed	the
foam	strike	on	video	monitors	during	a	post-launch	review	session	and
immediately	notified	NASA’s	managers,	but	they	were	told	that	the	foam	issue
was	nothing	new.	Foam	dislodgement	had	damaged	shuttles	in	previous
launches,	but	had	never	resulted	in	an	accident.	It	was	considered	a	maintenance
problem	and	not	acted	upon	until	it	was	too	late.

Michael	Roberto,	Richard	M.J.	Bohmer,	and	Amy	C.	Edmondson	wrote	in	a
2006	article	for	Harvard	Business	Review	how	NASA	culture	contributed	to	this

problem.	They	describe	how	organizations	are	typically	structured	in	one	of	two
models:	a	standardized	model,	where	routine	and	systems	govern	everything,
including	strict	compliance	with	timelines	and	budgets,	or	an	experimental
model,	where	every	day	every	exercise	and	every	piece	of	new	information	is
evaluated	and	debated	in	a	culture	that	resembles	a	research	and	design	(R&D)
laboratory.

They	observe,	“Firms	get	into	trouble	when	they	apply	the	wrong	mind-set	to	an
organization	[which	dictates	how	they	respond	to	ambiguous	threats	or,	in	the
terminology	of	this	book,	weak	failure	signals]....By	the	1970s,	NASA	had
created	a	culture	of	rigid	standardization,	promoting	to	Congress	the	space
shuttle	as	a	cheap	and	reusable	spacecraft.”	NASA	favored	strict	process
compliance	instead	of	an	experimental	model	where	every	piece	of	information
needed	to	be	evaluated	as	it	occured	without	bias.	The	absence	of	continuous
learning	and	experimentation	had	dire	consequences.	The	authors	conclude	that
it	is	culture	and	mind-set	that	matters,	not	just	“being	careful”—as	they	write,
“vigilance	alone	will	not	prevent	ambiguous	threats	[weak	failure	signals]	from
turning	into	costly	(and	sometimes	tragic)	failures.”

Our	work	in	the	technology	value	stream,	like	space	travel,	should	be
approached	as	a	fundamentally	experimental	endeavor	and	managed	that	way.
All	work	we	do	is	a	potentially	important	hypothesis	and	a	source	of	data,	rather
than	a	routine	application	and	validation	of	past	practice.	Instead	of	treating
technology	work	as	entirely	standardized,	where	we	strive	for	process
compliance,	we	must	continually	seek	to	find	ever-weaker	failure	signals	so	that
we	can	better	understand	and	manage	the	system	we	operate	in.

REDEFINE	FAILURE	AND	ENCOURAGE
CALCULATED	RISK-TAKING

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	
	 	

RESILIENCE AND LEARNING
INJECT PRODUCTION FAILURES TO ENABLE

that’s a good thing, and should not be punished.”
of people making mistakes. Yes, you’ll have more failures in production. But
He concludes, “DevOps must allow this sort of innovation and the resulting risks

deployments.”
daily basis, and has personally performed huge numbers of production
miles but by light-years. That work has enabled us to do deployments safely on a
this engineer moved the state of our operations and automation forward not by
But, of course, this is a person we’d never fire. In that same eighteen months,
by an engineer who had taken down Netflix twice in the last eighteen months.
had at Netflix—it was caused by, frankly, a dumb mistake. In fact, it was caused
He continues, “I was talking with a co-worker about a massive outage we just

obviously having more failures.”
times more frequently but with only half the change failure rate, they’re
need! You can even see it in the data: if high performers are performing thirty
fail and make mistakes more often. Not only is this okay, it’s what organizations
DevOps Report proved to me is that high-performing DevOps organizations will
On failures, Roy Rapoport from Netflix observes, “What the 2014 State of

learning from failures.
everyone should feel both comfortable with and responsible for surfacing and
learning and calculated risk-taking, we need leaders to continually reinforce that
likelihood of fraud and other unethical practices. To reinforce our culture of
ethics experts have long observed that the “tone at the top” predicts the
organizational culture and values through their actions. Audit, accounting, and
Leaders of an organization, whether deliberately or inadvertently, reinforce the

As	we	saw	in	the	chapter	introduction,	injecting	faults	into	the	production
environment	(such	as	Chaos	Monkey)	is	one	way	we	can	increase	our	resilience.
In	this	section,	we	describe	the	processes	involved	in	rehearsing	and	injecting
failures	into	our	system	to	confirm	that	we	have	designed	and	architected	our
systems	properly,	so	that	failures	happen	in	specific	and	controlled	ways.	We	do
this	by	regularly	(or	even	continuously)	performing	tests	to	make	certain	that	our
systems	fail	gracefully.

As	Michael	Nygard,	author	of	Release	It!	Design	and	Deploy	Production-Ready
Software,	comments,	“Like	building	crumple	zones	into	cars	to	absorb	impacts
and	keep	passengers	safe,	you	can	decide	what	features	of	the	system	are
indispensable	and	build	in	failure	modes	that	keep	cracks	away	from	those
features.	If	you	do	not	design	your	failure	modes,	then	you	will	get	whatever
unpredictable—and	usually	dangerous—ones	happen	to	emerge.”

Resilience	requires	that	we	first	define	our	failure	modes	and	then	perform
testing	to	ensure	that	these	failure	modes	operate	as	designed.	One	way	we	do
this	is	by	injecting	faults	into	our	production	environment	and	rehearsing	large-
scale	failures	so	we	are	confident	we	can	recover	from	accidents	when	they
occur,	ideally	without	even	impacting	our	customers.

The	2012	story	about	Netflix	and	the	Amazon	AWS-EAST	outage	presented	in
the	introduction	is	just	one	example.	An	even	more	interesting	example	of
resilience	at	Netflix	was	during	the	“Great	Amazon	Reboot	of	2014,”	when
nearly	10%	of	the	entire	Amazon	EC2	server	fleet	had	to	be	rebooted	to	apply	an
emergency	Xen	security	patch.	As	Christos	Kalantzis	of	Netflix	Cloud	Database
Engineering	recalled,	“When	we	got	the	news	about	the	emergency	EC2	reboots,
our	jaws	dropped.	When	we	got	the	list	of	how	many	Cassandra	nodes	would	be
affected,	I	felt	ill.	”But,	Kalantzis	continues,	“Then	I	remembered	all	the	Chaos
Monkey	exercises	we’ve	gone	through.	My	reaction	was,	‘Bring	it	on!’”

Once	again,	the	outcomes	were	astonishing.	Of	the	2,700+	Cassandra	nodes	used
in	production,	218	were	rebooted,	and	twenty-two	didn’t	reboot	successfully.	As
Kalantzis	and	Bruce	Wong	from	Netflix	Chaos	Engineering	wrote,	“Netflix
experienced	0	downtime	that	weekend.	Repeatedly	and	regularly	exercising
failure,	even	in	the	persistence	[database]	layer,	should	be	part	of	every
company’s	resilience	planning.	If	it	wasn’t	for	Cassandra’s	participation	in
Chaos	Monkey,	this	story	would	have	ended	much	differently.”

Even	more	surprising,	not	only	was	no	one	at	Netflix	working	active	incidents
due	to	failed	Cassandra	nodes,	no	one	was	even	in	the	office—they	were	in
Hollywood	at	a	party	celebrating	an	acquisition	milestone.	This	is	another
example	demonstrating	that	proactively	focusing	on	resilience	often	means	that	a
firm	can	handle	events	that	may	cause	crises	for	most	organizations	in	a	manner
that	is	routine	and	mundane.¶	See	Appendix	9.

INSTITUTE	GAME	DAYS	TO	REHEARSE
FAILURES

In	this	section,	we	describe	specific	disaster	recovery	rehearsals	called	Game
Days,	a	term	popularized	by	Jesse	Robbins,	one	of	the	founders	of	the	Velocity
Conference	community	and	co-founder	of	Chef,	for	the	work	he	did	at	Amazon,
where	he	was	responsible	for	programs	to	ensure	site	availability	and	was	widely
known	internally	as	the	“Master	of	Disaster.”The	concept	of	Game	Days	comes
from	the	discipline	of	resilience	engineering.	Robbins	defines	resilience
engineering	as	“an	exercise	designed	to	increase	resilience	through	large-scale
fault	injection	across	critical	systems.”

Robbins	observes	that	“whenever	you	set	out	to	engineer	a	system	at	scale,	the
best	you	can	hope	for	is	to	build	a	reliable	software	platform	on	top	of

components	that	are	completely	unreliable.	That	puts	you	in	an	environment
where	complex	failures	are	both	inevitable	and	unpredictable.”

Consequently,	we	must	ensure	that	services	continue	to	operate	when	failures
occur,	potentially	throughout	our	system,	ideally	without	crisis	or	even	manual
intervention.	As	Robbins	quips,	“a	service	is	not	really	tested	until	we	break	it	in
production.”

Our	goal	for	Game	Day	is	to	help	teams	simulate	and	rehearse	accidents	to	give
them	the	ability	to	practice.	First,	we	schedule	a	catastrophic	event,	such	as	the
simulated	destruction	of	an	entire	data	center,	to	happen	at	some	point	in	the
future.	We	then	give	teams	time	to	prepare,	to	eliminate	all	the	single	points	of
failure,	and	to	create	the	necessary	monitoring	procedures,	failover	procedures,
etc.

Our	Game	Day	team	defines	and	executes	drills,	such	as	conducting	database
failovers	(i.e.,	simulating	a	database	failure	and	ensuring	that	the	secondary
database	works)	or	turning	off	an	important	network	connection	to	expose
problems	in	the	defined	processes.	Any	problems	or	difficulties	that	are
encountered	are	identified,	addressed,	and	tested	again.

At	the	scheduled	time,	we	then	execute	the	outage.	As	Robbins	describes,	at
Amazon	they	“would	literally	power	off	a	facility—without	notice—and	then	let
the	systems	fail	naturally	and	[allow]	the	people	to	follow	their	processes
wherever	they	led.”

By	doing	this,	we	start	to	expose	the	latent	defects	in	our	system,	which	are	the
problems	that	appear	only	because	of	having	injected	faults	into	the	system.
Robbins	explains,	“You	might	discover	that	certain	monitoring	or	management
systems	crucial	to	the	recovery	process	end	up	getting	turned	off	as	part	of	the
failure	you’ve	orchestrated.	[Or]	you	would	find	some	single	points	of	failure

you	didn’t	know	about	that	way.”	These	exercises	are	then	conducted	in	an
increasingly	intense	and	complex	way	with	the	goal	of	making	them	feel	like
just	another	part	of	an	average	day.

By	executing	Game	Days,	we	progressively	create	a	more	resilient	service	and	a
higher	degree	of	assurance	that	we	can	resume	operations	when	inopportune
events	occur,	as	well	create	more	learnings	and	a	more	resilient	organization.

An	excellent	example	of	simulating	disaster	is	Google’s	Disaster	Recovery
Program	(DiRT).	Kripa	Krishnan	is	a	technical	program	director	at	Google,	and,
at	the	time	of	this	writing,	has	led	the	program	for	over	seven	years.	During	that
time,	they’ve	simulated	an	earthquake	in	Silicon	Valley,	which	resulted	in	the
entire	Mountain	View	campus	being	disconnected	from	Google;	major	data
centers	having	complete	loss	of	power;	and	even	aliens	attacking	cities	where
engineers	resided.

As	Krishnan	wrote,	“An	often-overlooked	area	of	testing	is	business	process	and
communications.	Systems	and	processes	are	highly	intertwined,	and	separating
testing	of	systems	from	testing	of	business	processes	isn’t	realistic:	a	failure	of	a
business	system	will	affect	the	business	process,	and	conversely	a	working
system	is	not	very	useful	without	the	right	personnel.”

Some	of	the	learnings	gained	during	these	disasters	included:

When	connectivity	was	lost,	the	failover	to	the	engineer	workstations	didn’t
work

Engineers	didn’t	know	how	to	access	a	conference	call	bridge	or	the	bridge
only	had	capacity	for	fifty	people	or	they	needed	a	new	conference	call
provider	who	would	allow	them	to	kick	off	engineers	who	had	subjected	the
entire	conference	to	hold	music

When	the	data	centers	ran	out	of	diesel	for	the	backup	generators,	no	one
knew	the	procedures	for	making	emergency	purchases	through	the	supplier,
resulting	in	someone	using	a	personal	credit	card	to	purchase	$50,000	worth
of	diesel.

By	creating	failure	in	a	controlled	situation,	we	can	practice	and	create	the
playbooks	we	need.	One	of	the	other	outputs	of	Game	Days	is	that	people
actually	know	who	to	call	and	know	who	to	talk	to—by	doing	this,	they	develop
relationships	with	people	in	other	departments	so	they	can	work	together	during
an	incident,	turning	conscious	actions	into	unconscious	actions	that	are	able	to
become	routine.

CONCLUSION

To	create	a	just	culture	that	enables	organizational	learning,	we	have	to	re-
contextualize	so-called	failures.	When	treated	properly,	errors	that	are	inherent
in	complex	systems	can	create	a	dynamic	learning	environment	where	all	of	the
shareholders	feel	safe	enough	to	come	forward	with	ideas	and	observations,	and
where	groups	rebound	more	readily	from	projects	that	don’t	perform	as
expected.

Both	blameless	post-mortems	and	injecting	production	failures	reinforce	a
culture	that	everyone	should	feel	both	comfortable	with	and	responsible	for
surfacing	and	learning	from	failures.	In	fact,	when	we	sufficiently	reduce	the
number	of	accidents,	we	decrease	our	tolerance	so	that	we	can	keep	learning.	As
Peter	Senge	is	known	to	say,	“The	only	sustainable	competitive	advantage	is	an
organization’s	ability	to	learn	faster	than	the	competition.”

†	In	January	2013	at	re:Invent,	James	Hamilton,	VP	and	Distinguished	Engineer	for	Amazon	Web	Services	said	that	the	US	East
region	had	more	than	ten	data	centers	all	by	itself,	and	added	that	a	typical	data	center	has	between	fifty	thousand	and	eighty
thousand	servers.	By	this	math,	the	2011	EC2	outage	affected	customers	on	more	than	half	a	million	servers.

‡	This	practice	has	also	been	called	blameless	post-incident	reviews	as	well	as	post-event	retrospectives.	There	is	also	a	noteworthy
similarity	to	the	routine	retrospectives	that	are	a	part	of	many	iterative	and	agile	development	practices.

§	We	may	also	choose	to	extend	the	philosophies	of	Transparent	Uptime	to	our	post-mortem	reports	and,	in	addition	to	making	a
service	dashboard	available	to	the	public,	we	may	choose	to	publish	(maybe	sanitized)	post-mortem	meetings	to	the	public.	Some	of
the	most	widely	admired	public	post-mortems	include	those	posted	by	the	Google	App	Engine	team	after	a	significant	2010	outage,
as	well	as	the	post-mortem	of	the	2015	Amazon	DynamoDB	outage.	Interestingly,	Chef	publishes	their	post-mortem	meeting	notes
on	their	blog,	as	well	as	recorded	videos	of	the	actual	post-mortem	meetings.

¶	Specific	architectural	patterns	that	they	implemented	included	fail	fasts	(setting	aggressive	timeouts	such	that	failing	components
don’t	make	the	entire	system	crawl	to	a	halt),	fallbacks	(designing	each	feature	to	degrade	or	fall	back	to	a	lower	quality
representation),	and	feature	removal	(removing	non-critical	features	when	they	run	slowly	from	any	given	page	to	prevent	them
from	impacting	the	member	experience).	Another	astonishing	example	of	the	resilience	that	the	Netflix	team	created	beyond
preserving	business	continuity	during	the	AWS	outage,	was	that	Netflix	went	over	six	hours	into	the	AWS	outage	before	declaring
a	Sev	1	incident,	assuming	that	AWS	service	would	eventually	be	restored	(i.e.,	“AWS	will	come	back…	it	usually	does,	right?”).
Only	after	six	hours	into	the	outage	did	they	activate	any	business	continuity	procedures.

20Convert	Local
Discoveries	into	Global
Improvements

In	the	previous	chapter,	we	discussed	developing	a	safe	learning	culture	by
encouraging	everyone	to	talk	about	mistakes	and	accidents	through	blameless
post-mortems.	We	also	explored	finding	and	fixing	ever-weaker	failure	signals,
as	well	as	reinforcing	and	rewarding	experimentation	and	risk-taking.
Furthermore,	we	helped	make	our	system	of	work	more	resilient	by	proactively
scheduling	and	testing	failure	scenarios,	making	our	systems	safer	by	finding
latent	defects	and	fixing	them.

In	this	chapter,	we	will	create	mechanisms	that	make	it	possible	for	new
learnings	and	improvements	discovered	locally	to	be	captured	and	shared
globally	throughout	the	entire	organization,	multiplying	the	effect	of	global
knowledge	and	improvement.	By	doing	this,	we	elevate	the	state	of	the	practice
of	the	entire	organization	so	that	everyone	doing	work	benefits	from	the
cumulative	experience	of	the	organization.

USE	CHAT	ROOMS	AND	CHAT	BOTS	TO
AUTOMATE	AND	CAPTURE	ORGANIZATIONAL
KNOWLEDGE

Many	organizations	have	created	chat	rooms	to	facilitate	fast	communication
within	teams.	However,	chat	rooms	are	also	used	to	trigger	automation.

This	technique	was	pioneered	in	the	ChatOps	journey	at	GitHub.	The	goal	was
to	put	automation	tools	into	the	middle	of	the	conversation	in	their	chat	rooms,
helping	create	transparency	and	documentation	of	their	work.	As	Jesse	Newland,
a	systems	engineer	at	GitHub,	describes,	“Even	when	you’re	new	to	the	team,
you	can	look	in	the	chat	logs	and	see	how	everything	is	done.	It’s	as	if	you	were
pair-programming	with	them	all	the	time.”

They	created	Hubot,	a	software	application	that	interacted	with	the	Ops	team	in
their	chat	rooms,	where	it	could	be	instructed	to	perform	actions	merely	by
sending	it	a	command	(e.g.,	“@hubot	deploy	owl	to	production”).	The	results
would	also	be	sent	back	into	the	chat	room.

Having	this	work	performed	by	automation	in	the	chat	room	(as	opposed	to
running	automated	scripts	via	command	line)	had	numerous	benefits,	including:

Everyone	saw	everything	that	was	happening.

Engineers	on	their	first	day	of	work	could	see	what	daily	work	looked	like
and	how	it	was	performed.

People	were	more	apt	to	ask	for	help	when	they	saw	others	helping	each
other.

Rapid	organizational	learning	was	enabled	and	accumulated.

Furthermore,	beyond	the	above	tested	benefits,	chat	rooms	inherently	record	and
make	all	communications	public;	in	contrast,	emails	are	private	by	default,	and
the	information	in	them	cannot	easily	be	discovered	or	propagated	within	an
organization.

Integrating	our	automation	into	chat	rooms	helps	document	and	share	our
observations	and	problem	solving	as	an	inherent	part	of	performing	our	work.
This	reinforces	a	culture	of	transparency	and	collaboration	in	everything	we	do.

This	is	also	an	extremely	effective	way	of	converting	local	learning	to	global
knowledge.	At	Github,	all	the	Operations	staff	worked	remotely—in	fact,	no	two
engineers	worked	in	the	same	city.	As	Mark	Imbriaco,	former	VP	of	Operations
at	GitHub,	recalls,	“There	was	no	physical	water	cooler	at	GitHub.	The	chat
room	was	the	water	cooler.”

Github	enabled	Hubot	to	trigger	their	automation	technologies,	including
Puppet,	Capistrano,	Jenkins,	resque	(a	Redis-backed	library	for	creating
background	jobs),	and	graphme	(which	generates	graphs	from	Graphite).

Actions	performed	through	Hubot	included	checking	the	health	of	services,
doing	puppet	pushes	or	code	deployments	into	production,	and	muting	alerts	as
services	went	into	maintenance	mode.	Actions	that	were	performed	multiple
times,	such	as	pulling	up	the	smoke	test	logs	when	a	deployment	failed,	taking
production	servers	out	of	rotation,	reverting	to	master	for	production	front-end
services,	or	even	apologizing	to	the	engineers	who	were	on	call,	also	became
Hubot	actions.†

Similarly,	commits	to	the	source	code	repository	and	the	commands	that	trigger
production	deployments	both	emit	messages	to	the	chat	room.	Additionally,	as
changes	move	through	the	deployment	pipeline,	their	status	is	posted	in	the	chat
room.

A	typical	quick	chat	room	exchange	might	look	like:

“@sr:	@jnewland,	how	do	you	get	that	list	of	big	repos?	disk_hogs	or
something?”

“@jnewland:	/disk-hogs”

Newland	observes	that	certain	questions	that	were	previously	asked	during	the
course	of	a	project	are	rarely	asked	now.	For	example,	engineers	may	ask	each
other,	“How	is	that	deploy	going?”	or	“Are	you	deploying	that,	or	should	I?”	or
“How	does	the	load	look?”

Among	all	the	benefits	that	Newland	describes,	which	include	faster	onboarding
of	newer	engineers	and	making	all	engineers	more	productive,	the	result	that	he
felt	was	most	important	was	that	Ops	work	became	more	humane	as	Ops
engineers	were	enabled	to	discover	problems	and	help	each	other	quickly	and
easily.

GitHub	created	an	environment	for	collaborative	local	learning	that	could	be
transformed	into	learnings	across	the	organization.	Throughout	the	rest	of	this
chapter	we	will	explore	ways	to	create	and	accelerate	the	spread	of	new
organizational	learnings.

AUTOMATE	STANDARDIZED	PROCESSES	IN
SOFTWARE	FOR	RE-USE

All	too	often,	we	codify	our	standards	and	processes	for	architecture,	testing,
deployment,	and	infrastructure	management	in	prose,	storing	them	in	Word
documents	that	are	uploaded	somewhere.	The	problem	is	that	engineers	who	are
building	new	applications	or	environments	often	don’t	know	that	these
documents	exist,	or	they	don’t	have	the	time	to	implement	the	documented
standards.	The	result	is	they	create	their	own	tools	and	processes,	with	all	the
disappointing	outcomes	we’d	expect:	fragile,	insecure,	and	unmaintainable
applications	and	environments	that	are	expensive	to	run,	maintain,	and	evolve.

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	
	 	 	

ORGANIZATION
REPOSITORY FOR OUR ENTIRE
CREATE A SINGLE, SHARED SOURCE CODE

shared services supported by the organization.
allow practices to be widely adopted—we may even consider turning them into
By making this automated process the easiest means to achieve the goal, we

direct proportion to the degree to which its policies are expressed as code.”
them. Arbuckle concluded that “the actual compliance of an organization is in
enable the process to be widely adopted, providing value to anyone who uses
By encoding our manual processes into code that is automated and executed, we

as a byproduct.”
blueprints that were able to be used easily by anyone, we achieved consistency
to be builders, not bricklayers. By putting our design standards into automated
The mechanism they created was called ArchOps, which “enabled our engineers

servers in tens of data centers.”
frameworks, spanning thousands of applications running on tens of thousands of
policy—national, regional, and industry regulations across dozens of regulatory
needed to create a mechanism that would allow teams to easily comply with
Justin Arbuckle was chief architect at GE Capital in 2013 when he said, “We

available for everyone to search and use.
usable is by putting it into a centralized source code repository, making the tool
them easier to reuse. One of the best ways we can make this knowledge re-
organizational learnings and knowledge, into an executable form that makes
these documented standards and processes, which encompass the sum of our
Instead of putting our expertise into Word documents, we need to transform

A	firm-wide,	shared	source	code	repository	is	one	of	the	most	powerful
mechanisms	used	to	integrate	local	discoveries	across	the	entire	organization.
When	we	update	anything	in	the	source	code	repository	(e.g.,	a	shared	library),	it
rapidly	and	automatically	propagates	to	every	other	service	that	uses	that	library,
and	it	is	integrated	through	each	team’s	deployment	pipeline.

Google	is	one	of	the	largest	examples	of	using	an	organization-wide	shared
source	code	repository.	By	2015,	Google	had	a	single	shared	source	code
repository	with	over	one	billion	files	and	over	two	billion	lines	of	code.	This
repository	is	used	by	every	one	of	their	twenty-five	thousand	engineers	and
spans	every	Google	property,	including	Google	Search,	Google	Maps,	Google
Docs,	Google+,	Google	Calendar,	Gmail,	and	YouTube.‡

One	of	the	valuable	results	of	this	is	that	engineers	can	leverage	the	diverse
expertise	of	everyone	in	the	organization.	Rachel	Potvin,	a	Google	engineering
manager	overseeing	the	Developer	Infrastructure	group,	told	Wired	that	every
Google	engineer	can	access	“a	wealth	of	libraries”	because	“almost	everything
has	already	been	done.”

Furthermore,	as	Eran	Messeri,	an	engineer	in	the	Google	Developer
Infrastructure	group,	explains,	one	of	the	advantages	of	using	a	single	repository
is	that	it	allows	users	to	easily	access	all	of	the	code	in	its	most	up-to-date	form,
without	the	need	for	coordination.

We	put	into	our	shared	source	code	repository	not	only	source	code,	but	also
other	artifacts	that	encode	knowledge	and	learning,	including:

Configuration	standards	for	our	libraries,	infrastructure,	and	environments
(Chef	recipes,	Puppet	manifests,	etc.)

Deployment	tools

Testing	standards	and	tools,	including	security

Deployment	pipeline	tools

Monitoring	and	analysis	tools

Tutorials	and	standards

Encoding	knowledge	and	sharing	it	through	this	repository	is	one	of	the	most
powerful	mechanisms	we	have	for	propagating	knowledge.	As	Randy	Shoup
describes,	“The	most	powerful	mechanism	for	preventing	failures	at	Google	is
the	single	code	repository.	Whenever	someone	checks	in	anything	into	the	repo,
it	results	in	a	new	build,	which	always	uses	the	latest	version	of	everything.
Everything	is	built	from	source	rather	than	dynamically	linked	at	runtime—there
is	always	a	single	version	of	a	library	that	is	the	current	one	in	use,	which	is	what
gets	statically	linked	during	the	build	process.”

Tom	Limoncelli	is	the	co-author	of	The	Practice	of	Cloud	System
Administration:	Designing	and	Operating	Large	Distributed	Systems	and	a
former	Site	Reliability	Engineer	at	Google.	In	his	book,	he	states	that	the	value
of	having	a	single	repository	for	an	entire	organization	is	so	powerful	it	is
difficult	to	even	explain.

You	can	write	a	tool	exactly	once	and	have	it	be	usable	for	all	projects.	You
have	100%	accurate	knowledge	of	who	depends	on	a	library;	therefore,	you
can	refactor	it	and	be	100%	sure	of	who	will	be	affected	and	who	needs	to
test	for	breakage.	I	could	probably	list	one	hundred	more	examples.	I	can’t
express	in	words	how	much	of	a	competitive	advantage	this	is	for	Google.

At	Google,	every	library	(e.g.,	libc,	OpenSSL,	as	well	internally	developed
libraries	such	as	Java	threading	libraries)	has	an	owner	who	is	responsible	for
ensuring	that	the	library	not	only	compiles,	but	also	successfully	passes	the	tests

for	all	projects	that	depend	upon	it,	much	like	a	real-world	librarian.	That	owner
is	also	responsible	for	migrating	each	project	from	one	version	to	the	next.

Consider	the	real-life	example	of	an	organization	that	runs	eighty-one	different
versions	of	the	Java	Struts	framework	library	in	production—all	but	one	of	those
versions	have	critical	security	vulnerabilities,	and	maintaining	all	those	versions,
each	with	its	own	quirks	and	idiosyncrasies,	creates	significant	operational
burden	and	stress.	Furthermore,	all	this	variance	makes	upgrading	versions	risky
and	unsafe,	which	in	turn	discourages	developers	from	upgrading.	And	the	cycle
continues.

The	single	source	repository	solves	much	of	this	problem,	as	well	as	having
automated	tests	that	allow	teams	to	migrate	to	new	versions	safely	and
confidently.

If	we	are	not	able	to	build	everything	off	a	single	source	tree,	we	must	find
another	means	to	maintain	known	good	versions	of	the	libraries	and	their
dependencies.	For	instance,	we	may	have	an	organization-wide	repository	such
as	Nexus,	Artifactory,	or	a	Debian	or	RPM	repository,	which	we	must	then
update	where	there	are	known	vulnerabilities,	both	in	these	repositories	and	in
production	systems.

SPREAD	KNOWLEDGE	BY	USING	AUTOMATED
TESTS	AS	DOCUMENTATION	AND
COMMUNITIES	OF	PRACTICE

When	we	have	shared	libraries	being	used	across	the	organization,	we	should
enable	rapid	propagation	of	expertise	and	improvements.	Ensuring	that	each	of
these	libraries	has	significant	amounts	of	automated	testing	included	means	these
libraries	become	self-documenting	and	show	other	engineers	how	to	use	them.

This	benefit	will	be	nearly	automatic	if	we	have	test-driven	development	(TDD)
practices	in	place,	where	automated	tests	are	written	before	we	write	the	code.
This	discipline	turns	our	test	suites	into	a	living,	up-to-date	specification	of	the
system.	Any	engineer	wishing	to	understand	how	to	use	the	system	can	look	at
the	test	suite	to	find	working	examples	of	how	to	use	the	system’s	API.

Ideally,	each	library	will	have	a	single	owner	or	a	single	team	supporting	it,
representing	where	knowledge	and	expertise	for	the	library	resides.	Furthermore,
we	should	(ideally)	only	allow	one	version	to	be	used	in	production,	ensuring
that	whatever	is	in	production	leverages	the	best	collective	knowledge	of	the
organization.

In	this	model,	the	library	owner	is	also	responsible	for	safely	migrating	each
group	using	the	repository	from	one	version	to	the	next.	This	in	turn	requires
quick	detection	of	regression	errors	through	comprehensive	automated	testing
and	continuous	integration	for	all	systems	that	use	the	library.

In	order	to	more	rapidly	propagate	knowledge,	we	can	also	create	discussion
groups	or	chat	rooms	for	each	library	or	service,	so	anyone	who	has	questions
can	get	responses	from	other	users,	who	are	often	faster	to	respond	than	the
developers.

By	using	this	type	of	communication	tool	instead	of	having	isolated	pockets	of
expertise	spread	throughout	the	organization,	we	facilitate	an	exchange	of
knowledge	and	experience,	ensuring	that	workers	are	able	to	help	each	other
with	problems	and	new	patterns.

DESIGN	FOR	OPERATIONS	THROUGH
CODIFIED	NON-FUNCTIONAL	REQUIREMENTS

When	Development	follows	their	work	downstream	and	participates	in
production	incident	resolution	activities,	the	application	becomes	increasingly
better	designed	for	Operations.	Furthermore,	as	we	start	to	deliberately	design
our	code	and	application	so	that	it	can	accommodate	fast	flow	and	deployability,
we	will	likely	identify	a	set	of	non-functional	requirements	that	we	will	want	to
integrate	into	all	of	our	production	services.

Implementing	these	non-functional	requirements	will	enable	our	services	to	be
easy	to	deploy	and	keep	running	in	production,	where	we	can	quickly	detect	and
correct	problems,	and	ensure	it	degrades	gracefully	when	components	fail.
Examples	of	non-functional	requirements	include	ensuring	that	we	have:

Sufficient	production	telemetry	in	our	applications	and	environments

The	ability	to	accurately	track	dependencies

Services	that	are	resilient	and	degrade	gracefully

Forward	and	backward	compatibility	between	versions

The	ability	to	archive	data	to	manage	the	size	of	the	production	data	set

The	ability	to	easily	search	and	understand	log	messages	across	services

The	ability	to	trace	requests	from	users	through	multiple	services

Simple,	centralized	runtime	configuration	using	feature	flags	and	so	forth

By	codifying	these	types	of	non-functional	requirements,	we	make	it	easier	for
all	our	new	and	existing	services	to	leverage	the	collective	knowledge	and
experience	of	the	organization.	These	are	all	responsibilities	of	the	team	building
the	service.

BUILD	REUSABLE	OPERATIONS	USER	STORIES
INTO	DEVELOPMENT

When	there	is	Operations	work	that	cannot	be	fully	automated	or	made	self-
service,	our	goal	is	to	make	this	recurring	work	as	repeatable	and	deterministic
as	possible.	We	do	this	by	standardizing	the	needed	work,	automating	as	much
as	possible,	and	documenting	our	work	so	that	we	can	best	enable	product	teams
to	better	plan	and	resource	this	activity.

Instead	of	manually	building	servers	and	then	putting	them	into	production
according	to	manual	checklists,	we	should	automate	as	much	of	this	work	as
possible.	Where	certain	steps	cannot	be	automated	(e.g.,	manually	racking	a
server	and	having	another	team	cable	it),	we	should	collectively	define	the
handoffs	as	clearly	as	possible	to	reduce	lead	times	and	errors.	This	will	also
enable	us	to	better	plan	and	schedule	these	steps	in	the	future.	For	instance,	we
can	use	tools	such	as	Rundeck	to	automate	and	execute	workflows,	or	work
ticket	systems	such	as	JIRA	or	ServiceNow.

Ideally,	for	all	our	recurring	Ops	work	we	will	know	the	following:	what	work	is
required,	who	is	needed	to	perform	it,	what	the	steps	to	complete	it	are,	and	so
forth.	For	instance,	“We	know	a	high-availability	rollout	takes	fourteen	steps,
requiring	work	from	four	different	teams,	and	the	last	five	times	we	performed
this,	it	took	an	average	of	three	days.”

Just	as	we	create	user	stories	in	Development	that	we	put	into	the	backlog	and
then	pull	into	work,	we	can	create	well-defined	“Ops	user	stories”	that	represent
work	activities	that	can	be	reused	across	all	our	projects	(e.g.,	deployment,
capacity,	security,	etc.).	By	creating	these	well	defined	Ops	user	stories,	we
expose	repeatable	IT	Operations	work	in	a	manner	where	it	shows	up	alongside
Development	work,	enabling	better	planning	and	more	repeatable	outcomes.

ENSURE	TECHNOLOGY	CHOICES	HELP
ACHIEVE	ORGANIZATIONAL	GOALS

When	one	of	our	goals	is	to	maximize	developer	productivity	and	we	have
service-oriented	architectures,	small	service	teams	can	potentially	build	and	run
their	service	in	whatever	language	or	framework	that	best	serves	their	specific
needs.	In	some	cases,	this	is	what	best	enables	us	to	achieve	our	organizational
goals.

However,	there	are	scenarios	when	the	opposite	occurs,	such	as	when	expertise
for	a	critical	service	resides	only	in	one	team,	and	only	that	team	can	make
changes	or	fix	problems,	creating	a	bottleneck.	In	other	words,	we	may	have
optimized	for	team	productivity	but	inadvertently	impeded	the	achievement	of
organizational	goals.

This	often	happens	when	we	have	a	functionally-oriented	Operations	group	that
is	responsible	for	any	aspect	of	service	support.	In	these	scenarios,	to	ensure	that
we	enable	the	deep	skill	sets	in	specific	technologies,	we	want	to	make	sure	that
Operations	can	influence	which	components	are	used	in	production,	or	give	them
the	ability	to	not	be	responsible	for	unsupported	platforms.

If	we	do	not	have	a	list	of	technologies	that	Operations	will	support,	collectively
generated	by	Development	and	Operations,	we	should	systematically	go	through
the	production	infrastructure	and	services,	as	well	as	all	their	dependencies	that
are	currently	supported,	to	find	which	ones	are	creating	a	disproportionate
amount	of	failure	demand	and	unplanned	work.	Our	goal	is	to	identify	the
technologies	that:

Impede	or	slow	down	the	flow	of	work

Disproportionately	create	high	levels	of	unplanned	work

Disproportionately	create	large	numbers	of	support	requests

Are	most	inconsistent	with	our	desired	architectural	outcomes	(e.g.
throughput,	stability,	security,	reliability,	business	continuity)

By	removing	these	problematic	infrastructures	and	platforms	from	the
technologies	supported	by	Ops,	we	enable	them	to	focus	on	infrastructure	that
best	helps	achieve	the	global	goals	of	the	organization.

As	Tom	Limoncelli	describes,	“When	I	was	at	Google,	we	had	one	official
compiled	language,	one	official	scripting	language,	and	one	official	UI	language.
Yes,	other	languages	were	supported	in	some	way	or	another,	but	sticking	with
‘the	big	three’	meant	support	libraries,	tools,	and	an	easier	way	to	find
collaborators.”§	These	standards	were	also	reinforced	by	the	code	review
process,	as	well	as	what	languages	were	supported	by	their	internal	platforms.

In	a	presentation	that	he	gave	with	Olivier	Jacques	and	Rafael	Garcia	at	the	2015
DevOps	Enterprise	Summit,	Ralph	Loura,	CIO	of	HP,	stated:

Internally,	we	described	our	goal	as	creating	“buoys,	not	boundaries.”
Instead	of	drawing	hard	boundaries	that	everyone	has	to	stay	within,	we	put
buoys	that	indicate	deep	areas	of	the	channel	where	you’re	safe	and
supported.	You	can	go	past	the	buoys	as	long	as	you	follow	the
organizational	principles.	After	all,	how	are	we	ever	going	to	see	the	next
innovation	that	helps	us	win	if	we’re	not	exploring	and	testing	at	the	edges?
As	leaders,	we	need	to	navigate	the	channel,	mark	the	channel,	and	allow
people	to	explore	past	it.

Case	Study	
Standardizing	a	New	Technology	Stack	at	Etsy	(2010)

In	many	organizations	adopting	DevOps,	a	common	story
developers	tell	is,	“Ops	wouldn’t	provide	us	what	we	needed,	so	we
just	built	and	supported	it	ourselves.”	However,	in	the	early	stages
of	the	Etsy	transformation,	technology	leadership	took	the	opposite
approach,	significantly	reducing	the	number	of	supported
technologies	in	production.

In	2010,	after	a	nearly	disastrous	peak	holiday	season,	the	Etsy
team	decided	to	massively	reduce	the	number	of	technologies	used
in	production,	choosing	a	few	that	the	entire	organization	could	fully
support	and	eradicating	the	rest.¶

Their	goal	was	to	standardize	and	very	deliberately	reduce	the
supported	infrastructure	and	configurations.	One	of	the	early
decisions	was	to	migrate	Etsy’s	entire	platform	to	PHP	and	MySQL.
This	was	primarily	a	philosophical	decision	rather	than	a
technological	decision—they	wanted	both	Dev	and	Ops	to	be	able
to	understand	the	full	technology	stack	so	that	everyone	could
contribute	to	a	single	platform,	as	well	as	enable	everyone	to	be
able	to	read,	rewrite,	and	fix	each	other’s	code.	Over	the	next
several	years,	as	Michael	Rembetsy,	who	was	Etsy’s	Director	of
Operations	at	the	time,	recalls,	“We	retired	some	great
technologies,	taking	them	entirely	out	of	production,”	including
lighttpd,	Postgres,	MongoDB,	Scala,	CoffeeScript,	Python,	and
many	others.

Similarly,	Dan	McKinley,	a	developer	on	the	feature	team	that
introduced	MongoDB	into	Etsy	in	2010,	writes	on	his	blog	that	all
the	benefits	of	having	a	schema-less	database	were	negated	by	all
the	operational	problems	the	team	had	to	solve.	These	included
problems	concerning	logging,	graphing,	monitoring,	production

telemetry,	and	backups	and	restoration,	as	well	as	numerous	other
issues	that	developers	typically	do	not	need	to	concern	themselves
with.	The	result	was	to	abandon	MongoDB,	porting	the	new	service
to	use	the	already	supported	MySQL	database	infrastructure.

CONCLUSION

The	techniques	described	in	this	chapter	enable	every	new	learning	to	be
incorporated	into	the	collective	knowledge	of	the	organization,	multiplying	its
effect.	We	do	this	by	actively	and	widely	communicating	new	knowledge,	such
as	through	chat	rooms	and	through	technology	such	as	architecture	as	code,
shared	source	code	repositories,	technology	standardization,	and	so	forth.	By
doing	this,	we	elevate	the	state	of	the	practice	of	not	just	Dev	and	Ops,	but	also
the	entire	organization,	so	everyone	who	performs	work	does	so	with	the
cumulative	experience	of	the	entire	organization.

†	Hubot	often	performed	tasks	by	calling	shell	scripts,	which	could	then	be	executed	from	the	chat	room	anywhere,	including	from	an
engineer’s	phone.

‡	The	Chrome	and	Android	projects	reside	in	a	separate	source	code	repository,	and	certain	algorithms	that	are	kept	secret,	such	as
PageRank,	are	available	only	to	certain	teams.

§	Google	used	C++	as	their	official	compiled	language,	Python	(and	later	Go)	as	their	official	scripting	language,	and	Java	and
JavaScript	via	Google	Web	Toolkit	as	their	official	UI	languages.

¶	At	that	time,	Etsy	used	PHP,	lighttp,	Postgres,	MongoDB,	Scala,	CoffeeScript,	Python,	as	well	as	many	other	platforms	and
languages.

21Reserve	Time	to	Create
Organizational	Learning
and	Improvement

One	of	the	practices	that	forms	part	of	the	Toyota	Production	System	is	called
the	improvement	blitz	(or	sometimes	a	kaizen	blitz),	defined	as	a	dedicated	and
concentrated	period	of	time	to	address	a	particular	issue,	often	over	the	course	of
a	several	days.	Dr.	Spear	explains,	“...blitzes	often	take	this	form:	A	group	is
gathered	to	focus	intently	on	a	process	with	problems…The	blitz	lasts	a	few
days,	the	objective	is	process	improvement,	and	the	means	are	the	concentrated
use	of	people	from	outside	the	process	to	advise	those	normally	inside	the
process.”

Spear	observes	that	the	output	of	the	improvement	blitz	team	will	often	be	a	new
approach	to	solving	a	problem,	such	as	new	layouts	of	equipment,	new	means	of
conveying	material	and	information,	a	more	organized	workspace,	or
standardized	work.	They	may	also	leave	behind	a	to-do	list	of	changes	to	be
made	down	the	road.

An	example	of	a	DevOps	improvement	blitz	is	the	Monthly	Challenge	program
at	the	Target	DevOps	Dojo.	Ross	Clanton,	Director	of	Operations	at	Target,	is
responsible	for	accelerating	the	adoption	of	DevOps.	One	of	his	primary
mechanisms	for	this	is	the	Technology	Innovation	Center,	more	popularly
known	as	the	DevOps	Dojo.

The	DevOps	Dojo	occupies	about	eighteen	thousand	square	feet	of	open	office
space,	where	DevOps	coaches	help	teams	from	across	the	Target	technology
organization	elevate	the	state	of	their	practice.	The	most	intensive	format	is	what
they	call	“30-Day	Challenges,”	where	internal	development	teams	come	in	for	a
month	and	work	together	with	dedicated	Dojo	coaches	and	engineers.	The	team
brings	their	work	with	them,	with	the	goal	of	solving	an	internal	problem	they
have	been	struggling	with	and	to	create	a	breakthrough	in	thirty	days.

Throughout	the	thirty	days,	they	work	intensively	with	the	Dojo	coaches	on	the
problem—planning,	working,	and	doing	demos	in	two-day	sprints.	When	the	30-
Day	Challenge	is	complete,	the	internal	teams	return	to	their	lines	of	business,
not	only	having	solved	a	significant	problem,	but	bringing	their	new	learnings
back	to	their	teams.

Clanton	describes,	“We	currently	have	capacity	to	have	eight	teams	doing	30-
Day	Challenges	concurrently,	so	we	are	focused	on	the	most	strategic	projects	of
the	organization.	So	far,	we’ve	had	some	of	our	most	critical	capabilities	come
through	the	Dojo,	including	teams	from	Point	Of	Sale	(POS),	Inventory,	Pricing,
and	Promotion.”

By	having	full-time	assigned	Dojo	staff	and	being	focused	on	only	one
objective,	teams	going	through	a	30-Day	Challenge	make	incredible
improvements.

Ravi	Pandey,	a	Target	development	manager	who	went	through	this	program,
explains,	“In	the	old	days,	we	would	have	to	wait	six	weeks	to	get	a	test
environment.	Now,	we	get	it	in	minutes,	and	we’re	working	side	by	side	with
Ops	engineers	who	are	helping	us	increase	our	productivity	and	building	tooling
for	us	to	help	us	achieve	our	goals.”	Clanton	expands	on	this	idea,	“It	is	not
uncommon	for	teams	to	achieve	in	days	what	would	usually	take	them	three	to

six	months.	So	far,	two	hundred	learners	have	come	through	the	Dojo,	having
completed	fourteen	challenges.”

The	Dojo	also	supports	less	intensive	engagement	models,	including	Flash
Builds,	where	teams	come	together	for	one-to	three-day	events,	with	the	goal	of
shipping	a	minimal	viable	product	(MVP)	or	a	capability	by	the	end	of	the	event.
They	also	host	Open	Labs	every	two	weeks,	where	anyone	can	visit	the	Dojo	to
talk	to	the	Dojo	coaches,	attend	demos,	or	receive	training.

In	this	chapter,	we	will	describe	this	and	other	ways	of	reserving	time	for
organizational	learning	and	improvement,	further	institutionalizing	the	practice
of	dedicating	time	for	improving	daily	work.

INSTITUTIONALIZE	RITUALS	TO	PAY	DOWN
TECHNICAL	DEBT

In	this	section,	we	schedule	rituals	that	help	enforce	the	practice	of	reserving
Dev	and	Ops	time	for	improvement	work,	such	as	non-functional	requirements,
automation,	etc.	One	of	the	easiest	ways	to	do	this	is	to	schedule	and	conduct
day-or	week-long	improvement	blitzes,	where	everyone	on	a	team	(or	in	the
entire	organization)	self-organizes	to	fix	problems	they	care	about—no	feature
work	is	allowed.	It	could	be	a	problematic	area	of	the	code,	environment,
architecture,	tooling,	and	so	forth.	These	teams	span	the	entire	value	stream,
often	combining	Development,	Operations,	and	Infosec	engineers.	Teams	that
typically	don’t	work	together	combine	their	skills	and	effort	to	improve	a	chosen
area	and	then	demonstrate	their	improvement	to	the	rest	of	the	company.

In	addition	to	the	Lean-oriented	terms	kaizen	blitz	and	improvement	blitz,	the
technique	of	dedicated	rituals	for	improvement	work	has	also	been	called	spring
or	fall	cleanings	and	ticket	queue	inversion	weeks.	Other	terms	have	also	been

used,	such	as	hack	days,	hackathons,	and	20%	innovation	time.	Unfortunately,
these	specific	rituals	sometimes	focus	on	product	innovation	and	prototyping
new	market	ideas,	rather	than	on	improvement	work,	and	worse,	they	are	often
restricted	to	developers—which	is	considerably	different	than	the	goals	of	an
improvement	blitz.†

Our	goal	during	these	blitzes	is	not	to	simply	experiment	and	innovate	for	the
sake	of	testing	out	new	technologies,	but	to	improve	our	daily	work,	such	as
solving	our	daily	workarounds.	While	experiments	can	also	lead	to
improvements,	improvement	blitzes	are	very	focused	on	solving	specific
problems	we	encounter	in	our	daily	work.

We	may	schedule	week-long	improvement	blitzes	that	prioritize	Dev	and	Ops
working	together	toward	improvement	goals.	These	improvement	blitzes	are
simple	to	administer:	One	week	is	selected	where	everyone	in	the	technology
organization	works	on	an	improvement	activity	at	the	same	time.	At	the	end	of
the	period,	each	team	makes	a	presentation	to	their	peers	that	discusses	the
problem	they	were	tackling	and	what	they	built.	This	practice	reinforces	a
culture	in	which	engineers	work	across	the	entire	value	stream	to	solve
problems.	Furthermore,	it	reinforces	fixing	problems	as	part	of	our	daily	work
and	demonstrates	that	we	value	paying	down	technical	debt.

What	makes	improvement	blitzes	so	powerful	is	that	we	are	empowering	those
closest	to	the	work	to	continually	identify	and	solve	their	own	problems.
Consider	for	a	moment	that	our	complex	system	is	like	a	spider	web,	with
intertwining	strands	that	are	constantly	weakening	and	breaking.	If	the	right
combination	of	strands	breaks,	the	entire	web	collapses.	There	is	no	amount	of
command-and-control	management	that	can	direct	workers	to	fix	each	strand	one
by	one.	Instead,	we	must	create	the	organizational	culture	and	norms	that	lead	to
everyone	continually	finding	and	fixing	broken	strands	as	part	of	our	daily	work.

As	Dr.	Spear	observes,	“No	wonder	then	that	spiders	repair	rips	and	tears	in	the
web	as	they	occur,	not	waiting	for	the	failures	to	accumulate.”

A	great	example	of	the	success	of	the	improvement	blitz	concept	is	described	by
Mark	Zuckerberg,	Facebook	CEO.	In	an	interview	with	Jessica	Stillman	of
Inc.com,	he	says,	“Every	few	months	we	have	a	hackathon,	where	everyone
builds	prototypes	for	new	ideas	they	have.	At	the	end,	the	whole	team	gets
together	and	looks	at	everything	that	has	been	built.	Many	of	our	most	successful
products	came	out	of	hackathons,	including	Timeline,	chat,	video,	our	mobile
development	framework	and	some	of	our	most	important	infrastructure	like	the
HipHop	compiler.”

Of	particular	interest	is	the	HipHop	PHP	compiler.	In	2008,	Facebook	was
facing	significant	capacity	problems,	with	over	one-hundred	million	active	users
and	rapidly	growing,	creating	tremendous	problems	for	the	entire	engineering
team.	During	a	hack	day,	Haiping	Zhao,	Senior	Server	Engineer	at	Facebook,
started	experimenting	with	converting	PHP	code	to	compilable	C++	code,	with
the	hope	of	significantly	increasing	the	capacity	of	their	existing	infrastructure.
Over	the	next	two	years,	a	small	team	was	assembled	to	build	what	became
known	as	the	HipHop	compiler,	converting	all	Facebook	production	services
from	interpreted	PHP	to	compiled	C++	binaries.	HipHop	enabled	Facebook’s
platform	to	handle	six	times	higher	production	loads	than	the	native	PHP.

In	an	interview	with	Cade	Metz	of	Wired,	Drew	Paroski,	one	of	the	engineers
who	worked	on	the	project,	noted,	“There	was	a	moment	where,	if	HipHop
hadn’t	been	there,	we	would	have	been	in	hot	water.	We	would	probably	have
needed	more	machines	to	serve	the	site	than	we	could	have	gotten	in	time.	It	was
a	Hail	Mary	pass	that	worked	out.”

Later,	Paroski	and	fellow	engineers	Keith	Adams	and	Jason	Evans	decided	that
they	could	beat	the	performance	of	the	HipHop	compiler	effort	and	reduce	some

of	its	limitations	that	reduced	developer	productivity.	The	resulting	project	was
the	HipHop	virtual	machine	project	(“HHVM”),	taking	a	just-in-time
compilation	approach.	By	2012,	HHVM	had	completely	replaced	the	HipHop
compiler	in	production,	with	nearly	twenty	engineers	contributing	to	the	project.

By	performing	regularly	scheduled	improvement	blitzes	and	hack	weeks,	we
enable	everyone	in	the	value	stream	to	take	pride	and	ownership	in	the
innovations	they	create,	and	we	continually	integrate	improvements	into	our
system,	further	enabling	safety,	reliability,	and	learning.

ENABLE	EVERYONE	TO	TEACH	AND	LEARN

A	dynamic	culture	of	learning	creates	conditions	so	that	everyone	can	not	only
learn,	but	also	teach,	whether	through	traditional	didactic	methods	(e.g.,	people
taking	classes,	attending	training)	or	more	experiential	or	open	methods	(e.g.,
conferences,	workshops,	mentoring).	One	way	that	we	can	foster	this	teaching
and	learning	is	to	dedicate	organizational	time	to	it.

Steve	Farley,	VP	of	Information	Technology	at	Nationwide	Insurance,	said,	“We
have	five	thousand	technology	professionals,	who	we	call	‘associates.’	Since
2011,	we	have	been	committed	to	create	a	culture	of	learning—part	of	that	is
something	we	call	Teaching	Thursday,	where	each	week	we	create	time	for	our
associates	to	learn.	For	two	hours,	each	associate	is	expected	to	teach	or	learn.
The	topics	are	whatever	our	associates	want	to	learn	about—some	of	them	are
on	technology,	on	new	software	development	or	process	improvement
techniques,	or	even	on	how	to	better	manage	their	career.	The	most	valuable
thing	any	associate	can	do	is	mentor	or	learn	from	other	associates.”

As	has	been	made	evident	throughout	this	book,	certain	skills	are	becoming
increasingly	needed	by	all	engineers,	not	just	by	developers.	For	instance,	it	is

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	

CONFERENCES
SHARE YOUR EXPERIENCES FROM DEVOPS

innovating, love change, there is a wonderful and vibrant future ahead of us.”
Enterprise Summit presentation, “For all technology professionals who love
As Glenn O’Donnell from Forrester Research quipped in his 2014 DevOps

that we get earlier detection when critical components fail.
run it periodically, sending the results to our monitoring and alerting systems so
would then integrate this new automated test into our deployment pipeline and
(e.g., key application functionality, database transactions, message queues). We
parts of the application to ensure that critical components are working correctly
authenticate an application, and login and run automated tests against various
problems. For instance, we might have Development show Operations how to
well as by having Development and Operations work together to solve small
performing code reviews that include both parties so that we learn by doing, as
We can help further help teach skills through our daily work by jointly

ask a friendly developer, because they would love to help.”
Operations people who are trying to learn automation, it shouldn’t be scary—just
who was part of the National Instruments DevOps transformation, said, “For
learners, and one of the best ways to learn is from our peers. Karthik Gaekwad,
sense of embarrassment or shame, it shouldn’t. After all, we are all lifelong
Although the prospect of learning something new may be intimidating or cause a

principles and patterns.
engineers remain relevant as more technology value streams adopt DevOps
creating automation. Familiarity with Development techniques helps Operations
automated testing, deployment pipelines, configuration management, and
with Development techniques, rituals, and skills, such as version control,
becoming more important for all Operations and Test engineers to be familiar

CONFERENCES

In	many	cost-focused	organizations,	engineers	are	often	discouraged	from
attending	conferences	and	learning	from	their	peers.	To	help	build	a	learning
organization,	we	should	encourage	our	engineers	(both	from	Development	and
Operations)	to	attend	conferences,	give	talks	at	them,	and,	when	necessary,
create	and	organize	internal	or	external	conferences	themselves.

DevOpsDays	remains	one	of	the	most	vibrant	self-organized	conference	series
today.	Many	DevOps	practices	have	been	shared	and	promulgated	at	these
events.	It	has	remained	free	or	nearly	free,	supported	by	a	vibrant	community	of
practitioner	communities	and	vendors.

The	DevOps	Enterprise	Summit	was	created	in	2014	for	technology	leaders	to
share	their	experiences	adopting	DevOps	principles	and	practices	in	large,
complex	organizations.	The	program	is	organized	primarily	around	experience
reports	from	technology	leaders	on	the	DevOps	journey,	as	well	as	subject
matter	experts	on	topics	selected	by	the	community.

Case	Study	
Internal	Technology	Conferences	at	Nationwide	Insurance,

Capital	One,	and	Target	(2014)

Along	with	attending	external	conferences,	many	companies,
including	those	described	in	this	section,	have	internal	conferences
for	their	technology	employees.

Nationwide	Insurance	is	a	leading	provider	of	insurance	and
financial	services,	and	operates	in	heavily	regulated	industries.
Their	many	offerings	include	auto	and	homeowners	insurance,	and
they	are	the	top	provider	of	public-sector	retirement	plans	and	pet

insurance.	As	of	2014,	$195	billion	in	assets,	with	$24	billion	in
revenue.	Since	2005,	Nationwide	has	been	adopting	Agile	and
Lean	principles	to	elevate	the	state	of	practice	for	their	five
thousand	technology	professionals,	enabling	grassroots	innovation.

Steve	Farley,	VP	of	Information	Technology,	remembers,	“Exciting
technology	conferences	were	starting	to	appear	around	that	time,
such	as	the	Agile	national	conference.	In	2011,	the	technology
leadership	at	Nationwide	agreed	that	we	should	create	a
technology	conference,	called	TechCon.	By	holding	this	event,	we
wanted	to	create	a	better	way	to	teach	ourselves,	as	well	as	ensure
that	everything	had	a	Nationwide	context,	as	opposed	to	sending
everyone	to	an	external	conference.”

Capital	One,	one	of	the	largest	banks	in	the	US	with	over	$298
billion	in	assets	and	$24	billion	in	revenue	in	2015,	held	their	first
internal	software	engineering	conference	in	2015	as	part	of	their
goal	to	create	a	world-class	technology	organization.	The	mission
was	to	promote	a	culture	of	sharing	and	collaboration,	and	to	build
relationships	between	the	technology	professionals	and	enable
learning.	The	conference	had	thirteen	learning	tracks	and	fifty-two
sessions,	and	over	1,200	internal	employees	attended.

Dr.	Tapabrata	Pal,	a	technical	fellow	at	Capital	One	and	one	of	the
organizers	of	the	event,	describes,	“We	even	had	an	expo	hall,
where	we	had	twenty-eight	booths,	where	internal	Capital	One
teams	were	showing	off	all	the	amazing	capabilities	they	were
working	on.	We	even	decided	very	deliberately	that	there	would	be
no	vendors	there,	because	we	wanted	to	keep	the	focus	on	Capital
One	goals.”

Target	is	the	sixth-largest	retailer	in	the	US,	with	$72	billion	in
revenue	in	2014	and	1,799	retail	stores	and	347,000	employees
worldwide.	Heather	Mickman,	a	director	of	Development,	and	Ross
Clanton	have	held	six	internal	DevOpsDays	events	since	2014	and
have	over	975	followers	inside	their	internal	technology	community,
modeled	after	the	DevOpsDays	held	at	ING	in	Amsterdam	in	2013.‡

After	Mickman	and	Clanton	attended	the	DevOps	Enterprise
Summit	in	2014,	they	held	their	own	internal	conference,	inviting
many	of	the	speakers	from	outside	firms	so	that	they	could	re-
create	their	experience	for	their	senior	leadership.	Clanton
describes,	“2015	was	the	year	when	we	got	executive	attention	and
when	we	built	up	momentum.	After	that	event,	tons	of	people	came
up	to	us,	asking	how	they	could	get	involved	and	how	they	could
help.”

CREATE	INTERNAL	CONSULTING	AND
COACHES	TO	SPREAD	PRACTICES

Creating	an	internal	coaching	and	consulting	organization	is	a	method
commonly	used	to	spread	expertise	across	an	organization.	This	can	come	in
many	different	forms.	At	Capital	One,	designated	subject	matter	experts	hold
office	hours	where	anyone	can	consult	with	them,	ask	questions,	etc.

Earlier	in	the	book,	we	began	the	story	of	how	the	Testing	Grouplet	built	a
world-class	automated	testing	culture	at	Google	starting	in	2005.	Their	story
continues	here,	as	they	try	to	improve	the	state	of	automated	testing	across	all	of
Google	by	using	dedicated	improvement	blitzes,	internal	coaches,	and	even	an
internal	certification	program.

Bland	said,	at	that	time,	there	was	a	20%	innovation	time	policy	at	Google,
enabling	developers	to	spend	roughly	one	day	per	week	on	a	Google-related
project	outside	of	their	primary	area	of	responsibility.	Some	engineers	chose	to
form	grouplets,	ad	hoc	teams	of	like-minded	engineers	who	wanted	to	pool	their
20%	time,	allowing	them	to	do	focused	improvement	blitzes.

A	testing	grouplet	was	formed	by	Bharat	Mediratta	and	Nick	Lesiecki,	with	the
mission	of	driving	the	adoption	of	automated	testing	across	Google.	Even	though
they	had	no	budget	or	formal	authority,	as	Mike	Bland	described,	“There	were
no	explicit	constraints	put	upon	us,	either.	And	we	took	advantage	of	that.”

They	used	several	mechanisms	to	drive	adoption,	but	one	of	the	most	famous
was	Testing	on	the	Toilet	(or	TotT),	their	weekly	testing	periodical.	Each	week,
they	published	a	newsletter	in	nearly	every	bathroom	in	nearly	every	Google
office	worldwide.	Bland	said,	“The	goal	was	to	raise	the	degree	of	testing
knowledge	and	sophistication	throughout	the	company.	It’s	doubtful	an	online-
only	publication	would’ve	involved	people	to	the	same	degree.”

Bland	continues,	“One	of	the	most	significant	TotT	episodes	was	the	one	titled,
‘Test	Certified:	Lousy	Name,	Great	Results,’	because	it	outlined	two	initiatives
that	had	significant	success	in	advancing	the	use	of	automated	testing.”

Test	Certified	(TC)	provided	a	road	map	to	improve	the	state	of	automated
testing.	As	Bland	describes,	“It	was	intended	to	hack	the	measurement-focused
priorities	of	Google	culture...and	to	overcome	the	first,	scary	obstacle	of	not
knowing	where	or	how	to	start.	Level	1	was	to	quickly	establish	a	baseline
metric,	Level	2	was	setting	a	policy	and	reaching	an	automated	test	coverage
goal,	and	Level	3	was	striving	towards	a	long-term	coverage	goal.”

The	second	capability	was	providing	Test	Certified	mentors	to	any	team	who
wanted	advice	or	help,	and	Test	Mercenaries	(i.e.,	a	full-time	team	of	internal

coaches	and	consultants)	to	work	hands-on	with	teams	to	improve	their	testing
practices	and	code	quality.	The	Mercenaries	did	so	by	applying	the	Testing
Grouplet’s	knowledge,	tools,	and	techniques	to	a	team’s	own	code,	using	TC	as
both	a	guide	and	a	goal.	Bland	was	eventually	a	leader	of	the	Testing	Grouplet
from	2006	to	2007,	and	a	member	of	the	Test	Mercenaries	from	2007	to	2009.

Bland	continues,	“It	was	our	goal	to	get	every	team	to	TC	Level	3,	whether	they
were	enrolled	in	our	program	our	not.	We	also	collaborated	closely	with	the
internal	testing	tools	teams,	providing	feedback	as	we	tackled	testing	challenges
with	the	product	teams.	We	were	boots	on	the	ground,	applying	the	tools	we
built,	and	eventually,	we	were	able	to	remove	‘I	don’t	have	time	to	test’	as	a
legitimate	excuse.”

He	continues,	“The	TC	levels	exploited	the	Google	metrics-driven	culture—the
three	levels	of	testing	were	something	that	people	could	discuss	and	brag	about
at	performance	review	time.	The	Testing	Grouplet	eventually	got	funding	for	the
Test	Mercenaries,	a	staffed	team	of	full-time	internal	consultants.	This	was	an
important	step,	because	now	management	was	fully	onboard,	not	with	edicts,	but
by	actual	funding.”

Another	important	construct	was	leveraging	company-wide	“Fixit”	improvement
blitzes.	Bland	describes	Fixits	as	“when	ordinary	engineers	with	an	idea	and	a
sense	of	mission	recruit	all	of	Google	engineering	for	one-day,	intensive	sprints
of	code	reform	and	tool	adoption.”	He	organized	four	company-wide	Fixits,	two
pure	Testing	Fixits	and	two	that	were	more	tools-related,	the	last	involving	more
than	one	hundred	volunteers	in	over	twenty	offices	in	thirteen	countries.	He	also
led	the	Fixit	Grouplet	from	2007	to	2008.

These	Fixits,	as	Bland	describes	means	that	we	should	provide	focused	missions
at	critical	points	in	time	to	generate	excitement	and	energy,	which	helps	advance

the	state-of-the-art.	This	will	help	the	long-term	culture	change	mission	reach	a
new	plateau	with	every	big,	visible	effort.

The	results	of	the	testing	culture	are	self-evident	in	the	amazing	results	Google
has	achieved,	presented	throughout	the	book.

CONCLUSION

This	chapter	described	how	we	can	institute	rituals	that	help	reinforce	the	culture
that	we	are	all	lifelong	learners	and	that	we	value	the	improvement	of	daily	work
over	daily	work	itself.	We	do	this	by	reserving	time	to	pay	down	technical	debt,
create	forums	that	allow	everyone	to	learn	from	and	teach	each	other,	both	inside
our	organization	and	outside	it.	And	we	make	experts	available	to	help	internal
teams,	either	by	coaching	or	consulting	or	even	just	holding	office	hours	to
answer	questions.

By	having	everyone	help	each	other	learn	in	our	daily	work,	we	out-learn	the
competition,	helping	us	win	in	the	marketplace.	But	also	we	help	each	other
achieve	our	full	potential	as	human	beings.

CONCLUSION	TO	PART	V

Throughout	Part	V,	we	explored	the	practices	that	help	create	a	culture	of
learning	and	experimentation	in	your	organization.	Learning	from	incidents,
creating	shared	repositories,	and	sharing	learnings	is	essential	when	we	work	in
complex	systems,	helping	to	make	our	work	culture	more	just	and	our	systems
safer	and	more	resilient.

In	Part	VI,	we’ll	explore	how	to	extend	flow,	feedback,	and	learning	and
experimentation	by	using	them	to	simultaneously	help	us	achieve	our
Information	Security	goals.

†	From	here	on,	the	terms	“hack	week”	and	“hackathon”	are	used	interchangeably	with	“improvement	blitz,”	and	not	in	the	context	of
“you	can	work	on	whatever	you	want.”

‡	Incidentally,	the	first	Target	internal	DevOpsDays	event	was	modeled	after	the	first	ING	DevOpsDays	that	was	organized	by	Ingrid
Algra,	Jan-Joost	Bouwman,	Evelijn	Van	Leeuwen,	and	Kris	Buytaert	in	2013,	after	some	of	the	ING	team	attended	the	2013	Paris
DevOpsDays.

22Information	Security	as
Everyone’s	Job,	Every	Day

One	of	the	top	objections	to	implementing	DevOps	principles	and	patterns	has
been,	“Information	security	and	compliance	won’t	let	us.”	And	yet,	DevOps	may
be	one	of	the	best	ways	to	better	integrate	information	security	into	the	daily
work	of	everyone	in	the	technology	value	stream.

When	Infosec	is	organized	as	a	silo	outside	of	Development	and	Operations,
many	problems	arise.	James	Wickett,	one	of	the	creators	of	the	Gauntlt	security
tool	and	organizer	of	DevOpsDays	Austin	and	the	Lonestar	Application	Security
conference,	observed:

One	interpretation	of	DevOps	is	that	it	came	from	the	need	to	enable
developers	productivity,	because	as	the	number	of	developers	grew,	there
weren’t	enough	Ops	people	to	handle	all	the	resulting	deployment	work.	This
shortage	is	even	worse	in	Infosec—the	ratio	of	engineers	in	Development,
Operations,	and	Infosec	in	a	typical	technology	organization	is	100:10:1.
When	Infosec	is	that	outnumbered,	without	automation	and	integrating
information	security	into	the	daily	work	of	Dev	and	Ops,	Infosec	can	only	do
compliance	checking,	which	is	the	opposite	of	security	engineering—and
besides,	it	also	makes	everyone	hate	us.

James	Wickett	and	Josh	Corman,	former	CTO	of	Sonatype	and	respected
information	security	researcher,	have	written	about	incorporating	information

security	objectives	into	DevOps,	a	set	of	practices	and	principles	termed	Rugged
DevOps.	Similar	ideas	were	created	by	Dr.	Tapabrata	Pal,	Director	and	Platform
Engineering	Technical	Fellow	at	Capital	One,	and	the	Capital	One	team,	who
describe	their	processes	as	DevOpsSec,	where	Infosec	is	integrated	into	all	stages
of	the	SDLC.	Rugged	DevOps	traces	some	of	its	history	to	Visible	Ops	Security,
written	by	Gene	Kim,	Paul	Love,	and	George	Spafford.

Throughout	The	DevOps	Handbook,	we	have	explored	how	to	fully	integrate	the
QA	and	Operations	objectives	throughout	our	entire	technology	value	stream.	In
this	chapter,	we	describe	how	to	similarly	integrate	Infosec	objectives	into	our
daily	work,	where	we	can	increase	developer	and	operational	productivity,
increase	safety,	and	increase	our	security.

INTEGRATE	SECURITY	INTO	DEVELOPMENT
ITERATION	DEMONSTRATIONS

One	of	our	goals	is	to	have	feature	teams	engaged	with	Infosec	as	early	as
possible,	as	opposed	to	primarily	engaging	at	the	end	of	the	project.	One	way	we
can	do	this	is	by	inviting	Infosec	to	the	product	demonstrations	at	the	end	of
each	development	interval	so	that	they	can	better	understand	the	team	goals	in
the	context	of	organizational	goals,	observe	their	implementations	as	they	are
being	built,	and	provide	guidance	and	feedback	at	the	earliest	stages	of	the
project,	when	there	is	the	most	amount	of	time	and	freedom	to	make	corrections.

Justin	Arbuckle,	former	chief	architect	at	GE	Capital,	observes,	“When	it	came
to	information	security	and	compliance,	we	found	that	blockages	at	the	end	of
the	project	were	much	more	expensive	than	at	the	beginning—and	Infosec
blockages	were	among	the	worst.	‘Compliance	by	demonstration’	became	one	of
the	rituals	we	used	to	shift	all	this	complexity	earlier	in	the	process.”

He	continues,	“By	having	Infosec	involved	throughout	the	creation	of	any	new
capability,	we	were	able	to	reduce	our	use	of	static	checklists	dramatically	and
rely	more	on	using	their	expertise	throughout	the	entire	software	development
process.”

This	helped	the	organization	achieve	its	goals.	Snehal	Antani,	former	CIO	of
Enterprise	Architecture	at	GE	Capital	Americas,	described	their	top	three	key
business	measurements	were	“development	velocity	(i.e.,	speed	of	delivering
features	to	market),	failed	customer	interactions	(i.e.,	outages,	errors),	and
compliance	response	time	(i.e.,	lead	time	from	audit	request	to	delivery	of	all
quantitative	and	qualitative	information	required	to	fulfill	the	request).”

When	Infosec	is	an	assigned	part	of	the	team,	even	if	they	are	only	being	kept
informed	and	observing	the	process,	they	gain	the	business	context	they	need	to
make	better	risk-based	decisions.	Furthermore,	Infosec	is	able	to	help	feature
teams	learn	what	is	required	to	meet	security	and	compliance	objectives.

INTEGRATE	SECURITY	INTO	DEFECT
TRACKING	AND	POST-MORTEMS

When	possible,	we	want	to	track	all	open	security	issues	in	the	same	work
tracking	system	that	Development	and	Operations	are	using,	ensuring	the	work
is	visible	and	can	be	prioritized	against	all	other	work.	This	is	very	different
from	how	Infosec	has	traditionally	worked,	where	all	security	vulnerabilities	are
stored	in	a	GRC	(governance,	risk,	and	compliance)	tool	that	only	Infosec	has
access	to.	Instead,	we	will	put	any	needed	work	in	the	systems	that	Dev	and	Ops
use.

In	a	presentation	at	the	2012	Austin	DevOpsDays,	Nick	Galbreath,	who	headed
up	Information	Security	at	Etsy	for	many	years,	describes	how	they	treated

security	issues,	“We	put	all	security	issues	into	JIRA,	which	all	engineers	use	in
their	daily	work,	and	they	were	either	‘P1’	or	‘P2,’	meaning	that	they	had	to	be
fixed	immediately	or	by	the	end	of	the	week,	even	if	the	issue	is	only	an
internally-facing	application.”

Furthermore,	he	states,	“Any	time	we	had	a	security	issue,	we	would	conduct	a
post-mortem,	because	it	would	result	in	better	educating	our	engineers	on	how	to
prevent	it	from	happening	again	in	the	future,	as	well	as	a	fantastic	mechanism
for	transferring	security	knowledge	to	our	engineering	teams.”

INTEGRATE	PREVENTIVE	SECURITY
CONTROLS	INTO	SHARED	SOURCE	CODE
REPOSITORIES	AND	SHARED	SERVICES

In	chapter	20,	we	created	a	shared	source	code	repository	that	makes	it	easy	for
anyone	to	discover	and	reuse	the	collective	knowledge	of	our	organization—not
only	for	our	code,	but	also	for	our	toolchains,	deployment	pipeline,	standards,
etc.	By	doing	this,	anyone	can	benefit	from	the	cumulative	experience	of
everyone	in	the	organization.

Now	we	will	add	to	our	shared	source	code	repository	any	mechanisms	or	tools
that	help	enable	us	to	ensure	our	applications	and	environments	are	secure.	We
will	add	libraries	that	are	pre-blessed	by	security	to	fulfill	specific	Infosec
objectives,	such	as	authentication	and	encryption	libraries	and	services.	Because
everyone	in	the	DevOps	value	stream	uses	version	control	for	anything	they
build	or	support,	putting	our	information	security	artifacts	there	makes	it	much
easier	to	influence	the	daily	work	of	Dev	and	Ops,	because	anything	we	create	is
available,	searchable,	and	reusable.	Version	control	also	serves	as	a	omni-

directional	communication	mechanism	to	keep	all	parties	aware	of	changes
being	made.

If	we	have	a	centralized	shared	services	organization,	we	may	also	collaborate
with	them	to	create	and	operate	shared	security-relevant	platforms,	such	as
authentication,	authorization,	logging,	and	other	security	and	auditing	services
that	Dev	and	Ops	require.	When	engineers	use	one	of	these	predefined	libraries
or	services,	they	won’t	need	to	schedule	a	separate	security	design	review	for
that	module;	they’ll	be	using	the	guidance	we’ve	created	concerning
configuration	hardening,	database	security	settings,	key	lengths,	and	so	forth.

To	further	increase	the	likelihood	that	the	services	and	libraries	we	provide	will
be	used	correctly,	we	can	provide	security	training	to	Dev	and	Ops,	as	well	as
review	what	they’ve	created	to	help	ensure	that	security	objectives	are	being
implemented	correctly,	especially	for	teams	using	these	tools	for	the	first	time.

Ultimately,	our	goal	is	to	provide	the	security	libraries	or	services	that	every
modern	application	or	environment	requires,	such	as	enabling	user
authentication,	authorization,	password	management,	data	encryption,	and	so
forth.	Furthermore,	we	can	provide	Dev	and	Ops	with	effective	security-specific
configuration	settings	for	the	components	they	use	in	their	application	stacks,
such	as	for	logging,	authentication,	and	encryption.	We	may	include	items	such
as:

Code	libraries	and	their	recommended	configurations	(e.g.,	2FA	[two-factor
authentication	library],	bcrypt	password	hashing,	logging)

Secret	management	(e.g.,	connection	settings,	encryption	keys)	using	tools
such	as	Vault,	sneaker,	Keywhiz,	credstash,	Trousseau,	Red	October,	etc.

OS	packages	and	builds	(e.g.,	NTP	for	time	syncing,	secure	versions	of
OpenSSL	with	correct	configurations,	OSSEC	or	Tripwire	for	file	integrity

monitoring,	syslog	configuration	to	ensure	logging	of	critical	security	into
our	centralized	ELK	stack)

By	putting	all	these	into	our	shared	source	code	repository,	we	make	it	easy	for
any	engineer	to	correctly	create	and	use	logging	and	encryption	standards	in
their	applications	and	environments,	with	no	further	work	from	us.

We	should	also	collaborate	with	Ops	teams	to	create	a	base	cookbook	or	build
image	of	our	OS,	databases,	and	other	infrastructure	(e.g.,	NGINX,	Apache,
Tomcat),	showing	they	are	in	a	known,	secure,	and	risk-reduced	state.	Our
shared	repository	not	only	becomes	the	place	where	we	can	get	the	latest
versions,	but	also	becomes	a	place	where	we	can	collaborate	with	other
engineers	and	monitor	and	alert	on	changes	made	to	security-sensitive	modules.

INTEGRATE	SECURITY	INTO	OUR
DEPLOYMENT	PIPELINE

In	previous	eras,	in	order	to	harden	and	secure	our	application,	we	would	start
our	security	review	after	development	was	completed.	Often,	the	output	of	this
review	would	be	hundreds	of	pages	of	vulnerabilities	in	a	PDF,	which	we’d	give
to	Development	and	Operations,	which	would	be	completely	un-addressed	due
to	project	due	date	pressure	or	problems	being	found	too	late	in	the	software	life
cycle	to	be	easily	corrected.

In	this	step,	we	will	automate	as	many	of	our	information	security	tests	as
possible,	so	that	they	run	alongside	all	our	other	automated	tests	in	our
deployment	pipeline,	being	performed	(ideally)	upon	every	code	commit	by	Dev
or	Ops,	and	even	in	the	earliest	stages	of	a	software	project.

Our	goal	is	to	provide	both	Dev	and	Ops	with	fast	feedback	on	their	work	so	that
they	are	notified	whenever	they	commit	changes	that	are	potentially	insecure.	By
doing	this,	we	enable	them	to	quickly	detect	and	correct	security	problems	as
part	of	their	daily	work,	which	enables	learning	and	prevents	future	errors.

Ideally,	these	automated	security	tests	will	be	run	in	our	deployment	pipeline
alongside	the	other	static	code	analysis	tools.

Tools	such	as	Gauntlt	have	been	designed	to	integrate	into	the	deployment
pipelines,	which	run	automated	security	tests	on	our	applications,	our	application
dependencies,	our	environment,	etc.	Remarkably,	Gauntlt	even	puts	all	its
security	tests	in	Gherkin	syntax	test	scripts,	which	is	widely	used	by	developers
for	unit	and	functional	testing.	Doing	this	puts	security	testing	in	a	framework
they	are	likely	already	familiar	with.	This	also	allows	security	tests	to	easily	run
in	a	deployment	pipeline	on	every	committed	change,	such	as	static	code
analysis,	checking	for	vulnerable	dependencies,	or	dynamic	testing.

Figure	43:	Jenkins	running	automated	security	testing	(Source:	James	Wicket	and
Gareth	Rushgrove,	“Battle-tested	code	without	the	battle,”	Velocity	2014	conference

presentation,	posted	to	Speakerdeck.com,	June	24,	2014,
https://speakerdeck.com/garethr/battle-tested-code-without-the-battle.)

By	doing	this,	we	provide	everyone	in	the	value	stream	with	the	fastest	possible
feedback	about	the	security	of	what	they	are	creating,	enabling	Dev	and	Ops
engineers	to	find	and	fix	issues	quickly.

http://speakerdeck.com/garethr/battle-tested-code-without-the-battle

ENSURE	SECURITY	OF	THE	APPLICATION

Often,	Development	testing	focuses	on	the	correctness	of	functionality,	looking
at	positive	logic	flows.	This	type	of	testing	is	often	referred	to	as	the	happy	path,
which	validates	user	journeys	(and	sometimes	alternative	paths)	where
everything	goes	as	expected,	with	no	exceptions	or	error	conditions.

On	the	other	hand,	effective	QA,	Infosec,	and	Fraud	practitioners	will	often
focus	on	the	sad	paths,	which	happen	when	things	go	wrong,	especially	in
relation	to	security-related	error	conditions.	(These	types	of	security-specific
conditions	are	often	jokingly	referred	to	as	the	bad	paths.)

For	instance,	suppose	we	have	an	e-commerce	site	with	a	customer	input	form
that	accepts	credit	card	numbers	as	part	of	generating	a	customer	order.	We	want
to	define	all	the	sad	and	bath	paths	required	to	ensure	that	invalid	credit	cards	are
properly	rejected	to	prevent	fraud	and	security	exploits,	such	as	SQL	injections,
buffer	overruns,	and	other	undesirable	outcomes.

Instead	of	performing	these	tests	manually,	we	would	ideally	generate	them	as
part	of	our	automated	unit	or	functional	tests	so	that	they	can	be	run
continuously	in	our	deployment	pipeline.	As	part	of	our	testing,	we	will	want	to
include	the	following:

Static	analysis:	This	is	testing	that	we	perform	in	a	non-runtime
environment,	ideally	in	the	deployment	pipeline.	Typically,	a	static	analysis
tool	will	inspect	program	code	for	all	possible	runtime	behaviors	and	seek
out	coding	flaws,	back	doors,	and	potentially	malicious	code	(this	is
sometimes	known	as	“testing	from	the	inside-out”).	Examples	of	tools
include	Brakeman,	Code	Climate,	and	searching	for	banned	code	functions
(e.g.,	“exec()”).

Dynamic	analysis:	As	opposed	to	static	testing,	dynamic	analysis	consists	of
tests	executed	while	a	program	is	in	operation.	Dynamic	tests	monitor	items
such	as	system	memory,	functional	behavior,	response	time,	and	overall
performance	of	the	system.	This	method	(sometimes	known	as	“testing	from
the	outside-in”)	is	similar	to	the	manner	in	which	a	malicious	third	party
might	interact	with	an	application.	Examples	include	Arachni	and	OWASP
ZAP	(Zed	Attack	Proxy).†	Some	types	of	penetration	testing	can	also	be
performed	in	an	automated	fashion	and	should	be	included	as	part	of
dynamic	analysis	using	tools	such	as	Nmap	and	Metasploit.	Ideally,	we
should	perform	automated	dynamic	testing	during	the	automated	functional
testing	phase	of	our	deployment	pipeline,	or	even	against	our	services	while
they	are	in	production.	To	ensure	correct	security	handling,	tools	like
OWASP	ZAP	can	be	configured	to	attack	our	services	through	a	web
browser	proxy	and	inspect	the	network	traffic	within	our	test	harness.

Dependency	scanning:	Another	type	of	static	testing	we	would	normally
perform	at	build	time	inside	of	our	deployment	pipeline	involves
inventorying	all	our	dependencies	for	binaries	and	executables,	and	ensuring
that	these	dependencies,	which	we	often	don’t	have	control	over,	are	free	of
vulnerabilities	or	malicious	binaries.	Examples	include	Gemnasium	and
bundler	audit	for	Ruby,	Maven	for	Java,	and	the	OWASP	Dependency-
Check.

Source	code	integrity	and	code	signing:	All	developers	should	have	their
own	PGP	key,	perhaps	created	and	managed	in	a	system	such	as	keybase.io.
All	commits	to	version	control	should	be	signed—that	is	straightforward	to
configure	using	the	open	source	tools	gpg	and	git.	Furthermore,	all	packages
created	by	the	CI	process	should	be	signed,	and	their	hash	recorded	in	the
centralized	logging	service	for	audit	purposes.

Furthermore,	we	should	define	design	patterns	to	help	developers	write	code	to

prevent	abuse,	such	as	putting	in	rate	limits	for	our	services	and	graying	out
submit	buttons	after	they	have	being	pressed.	OWASP	publishes	a	great	deal	of
useful	guidance	such	as	the	Cheat	Sheet	series,	which	includes:

How	to	store	passwords

How	to	handle	forgotten	passwords

How	to	handle	logging

How	to	prevent	cross-site	scripting	(XSS)	vulnerabilities

Case	Study	
Static	Security	Testing	at	Twitter	(2009)

The	“10	Deploys	per	Day:	Dev	and	Ops	Cooperation	at	Flickr”
presentation	by	John	Allspaw	and	Paul	Hammond	is	famous	for
catalyzing	the	Dev	and	Ops	community	in	2009.	The	equivalent	for
the	information	security	community	is	likely	the	presentation	that
Justin	Collins,	Alex	Smolen,	and	Neil	Matatall	gave	on	their
information	security	transformation	work	at	Twitter	at	the
AppSecUSA	conference	in	2012.

Twitter	had	many	challenges	due	to	hyper-growth.	For	years,	the
famous	Fail	Whale	error	page	would	be	displayed	when	Twitter	did
not	have	sufficient	capacity	to	keep	up	with	user	demand,	showing
a	graphic	of	a	whale	being	lifted	by	eight	birds.	The	scale	of	user
growth	was	breathtaking—between	January	and	March	2009,	the
number	of	active	Twitter	users	went	from	2.5	million	to	10	million.

Twitter	also	had	security	problems	during	this	period.	In	early	2009,
two	serious	security	breaches	occurred.	First,	in	January	the
@BarackObama	Twitter	account	was	hacked.	Then	in	April,	the
Twitter	administrative	accounts	were	compromised	through	a	brute-
force	dictionary	attack.	These	events	led	the	Federal	Trade
Commission	to	judge	that	Twitter	was	misleading	its	users	into
believing	that	their	accounts	were	secure	and	issued	an	FTC
consent	order.

The	consent	order	required	that	Twitter	comply	within	sixty	days	by
instituting	a	set	of	processes	that	were	to	be	enforced	for	the
following	twenty	years	and	would	do	the	following:

Designate	an	employee	or	employees	to	be	responsible	for
Twitter’s	information	security	plan

Identify	reasonably	foreseeable	risks,	both	internal	and	external,
that	could	lead	to	an	intrusion	incident	and	create	and	implement	a
plan	to	address	these	risks‡

Maintain	the	privacy	of	user	information,	not	just	from	outside
sources	but	also	internally,	with	an	outline	of	possible	sources	of
verification	and	testing	of	the	security	and	correctness	of	these
implementations

The	group	of	engineers	assigned	to	solve	this	problem	had	to
integrate	security	into	the	daily	work	of	Dev	and	Ops	and	close	the
security	holes	that	allowed	the	breaches	to	happen	in	the	first
place.

In	their	previously	mentioned	presentation,	Collins,	Smolen,	and
Matatall	identified	several	problems	they	needed	to	address:

Prevent	security	mistakes	from	being	repeated:	They	found
that	they	were	fixing	the	same	defects	and	vulnerabilities	over	and
over	again.	They	needed	to	modify	the	system	of	work	and
automation	tools	to	prevent	the	issues	from	happening	again.

Integrate	security	objectives	into	existing	developer	tools:
They	identified	early	on	that	the	major	source	of	vulnerabilities
were	code	issues.	They	couldn’t	run	a	tool	that	generated	a	huge
PDF	report	and	then	email	it	to	someone	in	Development	or
Operations.	Instead,	they	needed	to	provide	the	developer	who
had	created	the	vulnerability	with	the	exact	information	needed	to
fix	it.

Preserve	trust	of	Development:	They	needed	to	earn	and
maintain	the	trust	of	Development.	That	meant	they	needed	to
know	when	they	sent	Development	false	positives,	so	they	could
fix	the	error	that	prompted	the	false	positive	and	avoid	wasting
Development’s	time.

Maintain	fast	flow	through	Infosec	through	automation:	Even
when	code	vulnerability	scanning	was	automated,	Infosec	still	had
to	do	lots	of	manual	work	and	waiting.	They	had	to	wait	for	the
scan	to	complete,	get	back	the	big	stack	of	reports,	interpret	the
reports,	and	then	find	the	person	responsible	for	fixing	it.	And	when
the	code	changed,	it	had	to	be	done	all	over	again.	By	automating
the	manual	work,	they	did	fewer	dumb	“button-pushing”	tasks,
enabling	them	to	use	more	creativity	and	judgment.

Make	everything	security	related	self-service,	if	possible:	They
trusted	that	most	people	wanted	to	do	the	right	thing,	so	it	was

necessary	to	provide	them	with	all	the	context	and	information	they
needed	to	fix	any	issues.

Take	a	holistic	approach	to	achieving	Infosec	objectives:	Their
goal	was	to	do	analysis	from	all	the	angles:	source	code,	the
production	environment,	and	even	what	their	customers	were
seeing.

The	first	big	breakthrough	for	the	Infosec	team	occured	during	a
company-wide	hack	week	when	they	integrated	static	code	analysis
into	the	Twitter	build	process.	The	team	used	Brakeman,	which
scans	Ruby	on	Rails	applications	for	vulnerabilities.	The	goal	was
to	integrate	security	scanning	into	the	earliest	stages	of	the
Development	process,	not	just	when	the	code	was	committed	into
the	source	code	repo.

Figure	44:	Number	of	Brakeman	security	vulnerabilities	detected

The	results	of	integrating	security	testing	into	the	development
process	were	breathtaking.	Over	the	years,	by	creating	fast
feedback	for	developers	when	they	write	insecure	code	and
showing	them	how	to	fix	the	vulnerabilities,	Brakeman	has	reduced
the	rate	of	vulnerabilities	found	by	60%,	as	shown	in	figure	44.	(The
spikes	are	usually	associated	with	new	releases	of	Brakeman.)

This	cases	study	illustrates	just	how	necessary	it	is	to	integrate
security	into	the	daily	work	and	tools	of	DevOps	and	how	effectively
it	can	work.	Doing	so	mitigates	security	risk,	reduces	the	probability
of	vulnerabilities	in	the	system,	and	helps	teach	developers	to	write
more	secure	code.

ENSURE	SECURITY	OF	OUR	SOFTWARE
SUPPLY	CHAIN

Josh	Corman	observed	that	as	developers	“we	are	no	longer	writing	customized
software—instead,	we	assemble	what	we	need	from	open	source	parts,	which
has	become	the	software	supply	chain	that	we	are	very	much	reliant	upon.”	In
other	words,	when	we	use	components	or	libraries—either	commercial	or	open
source—in	our	software,	we	not	only	inherit	their	functionality,	but	also	any
security	vulnerabilities	they	contain.

When	selecting	software,	we	detect	when	our	software	projects	are	relying	on
components	or	libraries	that	have	known	vulnerabilities,	and	help	developers
choose	the	components	they	use	deliberately	and	with	due	care,	selecting	those
components	(e.g.,	open	source	projects)	that	have	a	demonstrated	history	of
quickly	fixing	software	vulnerabilities.	We	also	look	for	multiple	versions	of	the
same	library	being	used	across	our	production	landscape,	particularly	the
presence	of	older	versions	of	libraries	which	contain	known	vulnerabilities.

Examining	cardholder	data	breaches	shows	how	important	the	security	of	open
source	components	we	choose	can	be.	Since	2008,	the	annual	Verizon	PCI	Data
Breach	Investigation	Report	(DBIR)	has	been	the	most	authoritative	voice	on
data	breaches	where	cardholder	data	was	lost	or	stolen.	In	the	2014	report,	they
studied	over	eighty-five	thousand	breaches	to	better	understand	where	attacks
were	coming	from,	how	cardholder	data	was	stolen,	and	factors	leading	to	the
breach.

The	DBIR	found	that	ten	vulnerabilities	(i.e.,	CVEs)	accounted	for	almost	97%
of	the	exploits	used	in	studied	cardholder	data	breaches	in	2014.	Of	these	ten
vulnerabilities,	eight	of	them	were	over	ten	years	old.

The	2015	Sonatype	State	of	the	Software	Supply	Chain	Report	further	analyzed
the	vulnerability	data	from	the	Nexus	Central	Repository.	In	2015,	this
repository	provided	the	build	artifacts	for	over	605,000	open	source	projects,
servicing	over	seventeen	billion	download	requests	of	artifacts	and	dependencies
primarily	for	the	Java	platform,	originating	from	106,000	organizations.

The	report	included	these	startling	findings:

The	typical	organization	relied	upon	7,601	build	artifacts	(i.e.,	software
suppliers	or	components)	and	used	18,614	different	versions	(i.e.,	software
parts).

Of	those	components	being	used,	7.5%	had	known	vulnerabilities,	with	over
66%	of	those	vulnerabilities	being	over	two	years	old	without	having	been
resolved.

The	last	statistic	confirms	another	information	security	study	by	Dr.	Dan	Geer
and	Josh	Corman,	which	showed	that	of	the	open	source	projects	with	known
vulnerabilities	registered	in	the	National	Vulnerability	Database,	only	41%	were
ever	fixed	and	required,	on	average,	390	days	to	publish	a	fix.	For	those

vulnerabilities	that	were	labeled	at	the	highest	severity	(i.e.,	those	scored	as
CVSS	level	10),	fixes	required	224	days.§

ENSURE	SECURITY	OF	THE	ENVIRONMENT

In	this	step,	we	should	do	whatever	is	required	to	help	ensure	that	the
environments	are	in	a	hardened,	risk-reduced	state.	Although	we	may	have
created	known,	good	configurations	already,	we	must	put	in	monitoring	controls
to	ensure	that	all	production	instances	match	these	known	good	states.

We	do	this	by	generating	automated	tests	to	ensure	that	all	appropriate	settings
have	been	correctly	applied	for	configuration	hardening,	database	security
settings,	key	lengths,	and	so	forth.	Furthermore,	we	will	use	tests	to	scan	our
environments	for	known	vulnerabilities.¶

Another	category	of	security	verification	is	understanding	actual	environments
(i.e.,	“as	they	actually	are”).	Examples	of	tools	for	this	include	Nmap	to	ensure
that	only	expected	ports	are	open	and	Metasploit	to	ensure	that	we’ve	adequately
hardened	our	environments	against	known	vulnerabilities,	such	as	scanning	with
SQL	injection	attacks.	The	output	of	these	tools	should	be	put	into	our	artifact
repository	and	compared	with	the	previous	version	as	part	of	our	functional
testing	process.	Doing	this	will	help	us	detect	any	undesirable	changes	as	soon	as
they	occur.

Case	Study	
18F	Automating	Compliance	for	the	Federal	Government

with	Compliance	Masonry

US	Federal	Government	agencies	were	projected	to	spend	nearly
$80	billion	on	IT	in	2016,	supporting	the	mission	of	all	the	executive

branch	agencies.	Regardless	of	agency,	to	take	any	system	from
“dev	complete”	to	“live	in	production”	requires	obtaining	an	Authority
to	Operate	(ATO)	from	a	Designated	Approving	Authority	(DAA).
The	laws	and	policies	that	govern	complience	in	government	are
comprised	of	tens	of	documents	that	together	number	over	four
thousand	pages,	littered	with	acronyms	such	as	FISMA,	FedRAMP,
and	FITARA.	Even	for	systems	that	only	require	low	levels	of
confidentiality,	integrity,	and	availability,	over	one	hundred	controls
must	be	implemented,	documented,	and	tested.	It	typically	takes
between	eight	and	fourteen	months	for	an	ATO	to	be	granted
following	“dev	complete.”

The	18F	team	in	the	federal	government’s	General	Services
Administration	has	taken	a	multi-pronged	approach	to	solving	this
problem.	Mike	Bland	explains,	“18F	was	created	within	the	General
Services	Administration	to	capitalize	on	the	momentum	generated
by	the	Healthcare.gov	recovery	to	reform	how	the	government
builds	and	buys	software.”

One	18F	effort	is	a	platform	as	a	service	called	Cloud.gov,	created
from	open	source	components.	Cloud.gov	runs	on	AWS	GovCloud
at	present.	Not	only	does	the	platform	handle	many	of	the
operational	concerns	delivery	teams	might	otherwise	have	to	take
care	of,	such	as	logging,	monitoring,	alerting,	and	service	lifecycle
management,	it	also	handles	the	bulk	of	compliance	concerns.	By
running	on	this	platform,	a	large	majority	of	the	controls	that
government	systems	must	implement	can	be	taken	care	of	at	the
infrastructure	and	platform	level.	Then,	only	the	remaining	controls
that	are	in	scope	at	the	application	layer	have	to	be	documented

and	tested,	significantly	reducing	the	compliance	burden	and	the
time	it	takes	to	receive	an	ATO.

AWS	GovCloud	has	already	been	approved	for	use	for	federal
government	systems	of	all	types,	including	those	which	require	high
levels	of	confidentiality,	integrity,	and	availability.	By	the	time	you
read	this	book,	it	is	expected	that	Cloud.gov	will	be	approved	for	all
systems	that	require	moderate	levels	of	confidentiality,	integrity,
and	availability.**

Furthermore,	the	Cloud.gov	team	is	building	a	framework	to
automate	the	creation	of	system	security	plans	(SSPs),	which	are
“comprehensive	descriptions	of	the	system’s	architecture,
implemented	controls,	and	general	security	posture…[which	are]
often	incredibly	complex,	running	several	hundred	pages	in	length.”
They	developed	a	prototype	tool	called	compliance	masonry	so	that
SSP	data	is	stored	in	machine-readable	YAML	and	then	turned	into
GitBooks	and	PDFs	automatically.

18F	is	dedicated	to	working	in	the	open	and	publishes	its	work	open
source	in	the	public	domain.	You	can	find	compliance	masonry	and
the	components	that	make	up	Cloud.gov	in	18F’s	GitHub
repositories—you	can	even	stand	up	your	own	instance	of
Cloud.gov.	The	work	on	open	documentation	for	SSPs	is	being
done	in	close	partnership	with	the	OpenControl	community.

INTEGRATE	INFORMATION	SECURITY	INTO
PRODUCTION	TELEMETRY

Marcus	Sachs,	one	of	the	Verizon	Data	Breach	researchers,	observed	in	2010,
“Year	after	year,	in	the	vast	majority	of	cardholder	data	breaches,	the
organization	detected	the	security	breach	months	or	quarters	after	the	breach
occurred.	Worse,	the	way	the	breach	was	detected	was	not	an	internal
monitoring	control,	but	was	far	more	likely	someone	outside	of	the	organization,
usually	a	business	partner	or	the	customer	who	notices	fraudulent	transactions.
One	of	the	primary	reasons	for	this	is	that	no	one	in	the	organization	was
regularly	reviewing	the	log	files.”

In	other	words,	internal	security	controls	are	often	ineffective	in	successfully
detecting	breaches	in	a	timely	manner,	either	because	of	blind	spots	in	our
monitoring	or	because	no	one	in	our	organization	is	examining	the	relevant
telemetry	in	their	daily	work.

In	chapter	14,	we	discussed	creating	a	culture	in	Dev	and	Ops	where	everyone	in
the	value	stream	is	creating	production	telemetry	and	metrics,	making	them
visible	in	prominent	public	places	so	that	everyone	can	see	how	our	services	are
performing	in	production.	Furthermore,	we	explored	the	necessity	of	relentlessly
seeking	ever-weaker	failure	signals	so	that	we	can	find	and	fix	problems	before
they	result	in	a	catastrophic	failure.

Here,	we	deploy	the	monitoring,	logging,	and	alerting	required	to	fulfill	our
information	security	objectives	throughout	our	applications	and	environments,	as
well	as	ensure	that	it	is	adequately	centralized	to	facilitate	easy	and	meaningful
analysis	and	response.

We	do	this	by	integrating	our	security	telemetry	into	the	same	tools	that
Development,	QA,	and	Operations	are	using,	giving	everyone	in	the	value
stream	visibility	into	how	their	application	and	environments	are	performing	in	a
hostile	threat	environment	where	attackers	are	constantly	attempting	to	exploit

	 	 	 	 	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	

	 	 	 	

	 	

	 	 	

	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	

ENVIRONMENT
CREATING SECURITY TELEMETRY IN OUR

events to ensure we can detect and correct issues quickly.
successful logins. And, of course, we should create alerting around important
unauthorized access, we might display the ratio of unsuccessful login attempts to
For instance, as an early indicator of brute-force login attempts to gain

User credit card changes

User email address resets

User password resets

Successful and unsuccessful user logins

Examples may include:

applications.
of fraud and unauthorized access, we must create the relevant telemetry in our
In order to detect problematic user behavior that could be an indicator or enabler

APPLICATIONS
CREATING SECURITY TELEMETRY IN OUR

designing countermeasures in their daily work.
we reinforce that everyone needs to be thinking about security risks and
By radiating how our services are being attacked in the production environment,

perform denials-of-service, and so forth.
vulnerabilities, gain unauthorized access, plant backdoors, commit fraud,

In	addition	to	instrumenting	our	application,	we	also	need	to	create	sufficient
telemetry	in	our	environments	so	that	we	can	detect	early	indicators	of
unauthorized	access,	especially	in	the	components	that	are	running	on
infrastructure	that	we	do	not	control	(e.g.,	hosting	environments,	in	the	cloud).

We	need	to	monitor	and	potentially	alert	on	items,	including	the	following:

OS	changes	(e.g.,	in	production,	in	our	build	infrastructure)

Security	group	changes

Changes	to	configurations	(e.g.,	OSSEC,	Puppet,	Chef,	Tripwire)

Cloud	infrastructure	changes	(e.g.,	VPC,	security	groups,	users	and
privileges)

XSS	attempts	(i.e.,	“cross-site	scripting	attacks”)

SQLi	attempts	(i.e.,	“SQL	injection	attacks”)

Web	server	errors	(e.g.,	4XX	and	5XX	errors)

We	also	want	to	confirm	that	we’ve	correctly	configured	our	logging	so	that	all
telemetry	is	being	sent	to	the	right	place.	When	we	detect	attacks,	in	addition	to
logging	that	it	happened,	we	may	also	choose	to	block	access	and	store
information	about	the	source	to	aid	us	in	choosing	the	best	mitigation	actions.

Case	Study	
Instrumenting	the	Environment	at	Etsy	(2010)

In	2010,	Nick	Galbreath	was	director	of	engineering	at	Etsy	and
responsible	for	information	security,	fraud	control,	and	privacy.

Galbreath	defined	fraud	as	when	“the	system	works	incorrectly,
allowing	invalid	or	un-inspected	input	into	the	system,	causing
financial	loss,	data	loss/theft,	system	downtime,	vandalism,	or	an
attack	on	another	system.”

To	achieve	these	goals,	Galbreath	did	not	create	a	separate	fraud
control	or	information	security	department;	instead,	he	embedded
those	responsibilities	throughout	the	DevOps	value	stream.

Galbreath	created	security-related	telemetry	that	were	displayed
alongside	all	the	other	more	Dev	and	Ops	oriented	metrics,	which
every	Etsy	engineer	routinely	saw:

Abnormal	production	program	terminations	(e.g.,
segmentation	faults,	core	dumps,	etc.):	“Of	particular	concern
was	why	certain	processes	kept	dumping	core	across	our	entire
production	environment,	triggered	from	traffic	coming	from	the	one
IP	address,	over	and	over	again.	Of	equal	concern	were	those
HTTP	‘500	Internal	Server	Errors.’	These	are	indicators	that	a
vulnerability	was	being	exploited	to	gain	unauthorized	access	to
our	systems,	and	that	a	patch	needs	to	be	urgently	applied.”

Database	syntax	error:	“We	were	always	looking	for	database
syntax	errors	inside	our	code—these	either	enabled	SQL	Injection
attacks	or	were	actual	attacks	in	progress.	For	this	reason,	we	had
zero-tolerance	for	database	syntax	errors	in	our	code,	because	it
remains	one	of	the	leading	attack	vectors	used	to	compromise
systems.”

Indications	of	SQL	injection	attacks:	“This	was	a	ridiculously
simple	test—we’d	merely	alert	whenever	‘UNION	ALL’	showed	up

in	user-input	fields,	since	it	almost	always	indicates	a	SQL	injection
attack.	We	also	added	unit	tests	to	make	sure	that	this	type	of
uncontrolled	user	input	could	never	be	allowed	into	our	database
queries.”

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	

PROTECT OUR DEPLOYMENT PIPELINE

code.”
thought about the security of their code as they were writing the
And that was awesome, because it changed how developers
that developers realized that they were being attacked all the time!
Galbreath observed, “One of the results of showing this graph was

real-time.”
operating environment is than seeing their code being attacked in
observed, “Nothing helps developers understand how hostile the
were attempted in the production environment. As Galbreath
which shows the number of potential SQL injection attacks that
Figure 45 is an example of a graph that every developer would see,

 security.)
http://www.slideshare.net/nickgsuperstar/devopssec-apply-devops-principles-to-

SlideShare.net, posted by Nick Galbreath, April 12, 2012,
“DevOpsSec: Appling DevOps Priciples to Security, DevOpsDays Austin 2012,”

Figure 45: Developers would see SQL injection attempts in Graphite at Etsy (Source:

http://www.slideshare.net/nickgsuperstar/devopssec-apply-devops-principles-to-security

PROTECT	OUR	DEPLOYMENT	PIPELINE

The	infrastructure	that	supports	our	continuous	integration	and	continuous
deployment	processes	also	presents	a	new	surface	area	vulnerable	to	attack.	For
instance,	if	someone	compromises	the	servers	running	deployment	pipeline	that
has	the	credentials	for	our	version	control	system,	it	could	enable	someone	to
steal	source	code.	Worse,	if	the	deployment	pipeline	has	write	access,	an
attacker	could	also	inject	malicious	changes	into	our	version	control	repository,
and,	therefore,	inject	malicious	changes	into	our	application	and	services.

As	Jonathan	Claudius,	former	Senior	Security	Tester	at	TrustWave	SpiderLabs,
observed,	“Continuous	build	and	test	servers	are	awesome,	and	I	use	them
myself.	But	I	started	thinking	about	ways	to	use	CI/CD	as	a	way	to	inject
malicious	code.	Which	led	to	the	question	of	where	would	be	a	good	place	to
hide	malicious	code?	The	answer	was	obvious:	in	the	unit	tests.	No	one	actually
looks	at	the	unit	tests,	and	they’re	run	every	time	someone	commits	code	to	the
repo.”

This	demonstrates	that	in	order	to	adequately	protect	the	integrity	of	our
applications	and	environments,	we	must	also	mitigate	the	attack	vectors	on	our
deployment	pipeline.	Risks	include	developers	introducing	code	that	enables
unauthorized	access	(which	we’ve	mitigated	through	controls	such	as	code
testing,	code	reviews,	and	penetration	testing)	and	unauthorized	users	gaining
access	to	our	code	or	environment	(which	we’ve	mitigated	through	controls	such
as	ensuring	configurations	match	known,	good	states,	and	effective	patching).

However,	in	order	to	protect	our	continuous	build,	integration,	or	deployment
pipeline,	our	mitigation	strategies	may	include:

Hardening	continuous	build	and	integration	servers	and	ensuring	we	can
reproduce	them	in	an	automated	manner,	just	as	we	would	for	infrastructure

that	supports	customer-facing	production	services,	to	prevent	our	continuous
build	and	integration	servers	from	being	compromised

Reviewing	all	changes	introduced	into	version	control,	either	through	pair
programming	at	commit	time	or	by	a	code	review	process	between	commit
and	merge	into	trunk,	to	prevent	continuous	integration	servers	from	running
uncontrolled	code	(e.g.,	unit	tests	may	contain	malicious	code	that	allows	or
enables	unauthorized	access)

Instrumenting	our	repository	to	detect	when	test	code	contains	suspicious
API	calls	(e.g.,	unit	tests	accessing	the	filesystem	or	network)	is	checked	in
to	the	repository,	perhaps	quarantining	it	and	triggering	an	immediate	code
review

Ensuring	every	CI	process	runs	on	its	own	isolated	container	or	VM

Ensuring	the	version	control	credentials	used	by	the	CI	system	are	read-only

CONCLUSION

Throughout	this	chapter	we	have	described	ways	to	integrate	information
security	objectives	into	all	stages	of	our	daily	work.	We	do	this	by	integrating
security	controls	into	the	mechanisms	we’ve	already	created,	ensuring	that	all
on-demand	environments	are	also	in	a	hardened,	risk-reduced	state—by
integrating	security	testing	into	the	deployment	pipeline	and	ensuring	the
creation	of	security	telemetry	in	pre-production	and	production	environments.
By	doing	so,	we	enable	developer	and	operational	productivity	to	increase	while
simultaneously	increasing	our	overall	safety.	Our	next	step	is	to	protect	the
deployment	pipeline.

†	The	Open	Web	Application	Security	Project	(OWASP)	is	a	non-profit	organization	focused	on	improving	the	security	of	software.

‡	Strategies	for	managing	these	risks	include	providing	employee	training	and	management;	rethinking	the	design	of	information
systems,	including	network	and	software;	and	instituting	processes	designed	to	prevent,	detect,	and	respond	to	attacks.

§	Tools	that	can	help	ensure	the	integrity	of	our	software	dependencies	include	OWASP	Dependency	Check	and	Sonatype	Nexus
Lifecycle.

¶	Examples	of	tools	that	can	help	with	security	correctness	testing	(i.e.,	“as	it	should	be”)	include	automated	configuration
management	systems	(e.g.,	Puppet,	Chef,	Ansible,	Salt),	as	well	as	tools	such	as	ServerSpec	and	the	Netflix	Simian	Army	(e.g.,
Conformity	Monkey,	Security	Monkey,	etc.).

**	These	approvals	are	known	as	FedRAMP	JAB	P-ATOs.

23Protecting	the
Deployment	Pipeline

Throughout	this	chapter	we	will	look	at	how	to	protect	our	deployment	pipeline,
as	well	as	how	to	acheive	security	and	compliance	objectives	in	our	control
environment,	including	change	management	and	separation	of	duty.

INTEGRATE	SECURITY	AND	COMPLIANCE	INTO
CHANGE	APPROVAL	PROCESSES

Almost	any	IT	organization	of	any	significant	size	will	have	existing	change
management	processes,	which	are	the	primary	controls	to	reduce	operations	and
security	risks.	Compliance	manager	and	security	managers	place	reliance	on
change	management	processes	for	compliance	requirements,	and	they	typically
require	evidence	that	all	changes	have	been	appropriately	authorized.

If	we	have	constructed	our	deployment	pipeline	correctly	so	that	deployments
are	low-risk,	the	majority	of	our	changes	won’t	need	to	go	through	a	manual
change	approval	process,	because	we	will	have	placed	our	reliance	on	controls
such	as	automated	testing	and	proactive	production	monitoring.

In	this	step,	we	will	do	what	is	required	to	ensure	that	we	can	successfully
integrate	security	and	compliance	into	any	existing	change	management	process.
Effective	change	management	policies	will	recognize	that	there	are	different
risks	associated	with	different	types	of	changes	and	that	those	changes	are	all

handled	differently.	These	processes	are	defined	in	ITIL,	which	breaks	changes
down	into	three	categories:

Standard	changes:	These	are	lower-risk	changes	that	follow	an	established
and	approved	process,	but	can	also	be	pre-approved.	They	include	monthly
updates	of	application	tax	tables	or	country	codes,	website	content	and
styling	changes,	and	certain	types	of	application	or	operating	system	patches
that	have	a	well-understood	impact.	The	change	proposer	does	not	require
approval	before	deploying	the	change,	and	change	deployments	can	be
completely	automated	and	should	be	logged	so	there	is	traceability.

Normal	changes:	These	are	higher-risk	changes	that	require	review	or
approval	from	the	agreed	upon	change	authority.	In	many	organizations,	this
responsibility	is	inappropriately	placed	on	the	change	advisory	board	(CAB)
or	emergency	change	advisory	board	(ECAB),	which	may	lack	the	required
expertise	to	understand	the	full	impact	of	the	change,	often	leading	to
unacceptably	long	lead	times.	This	problem	is	especially	relevant	for	large
code	deployments,	which	may	contain	hundreds	of	thousands	(or	even
millions)	of	lines	of	new	code,	submitted	by	hundreds	of	developers	over	the
course	of	several	months.	In	order	for	normal	changes	to	be	authorized,	the
CAB	will	almost	certainly	have	a	well-defined	request	for	change	(RFC)
form	that	defines	what	information	is	required	for	the	go/no-go	decision.	The
RFC	form	usually	includes	the	desired	business	outcomes,	planned	utility
and	warranty,†	a	business	case	with	risks	and	alternatives,	and	a	proposed
schedule.‡

Urgent	changes:	These	are	emergency,	and,	consequently,	potentially	high
risk,	changes	that	must	be	put	into	production	immediately	(e.g.,	urgent
security	patch,	restore	service).	These	changes	often	require	senior
management	approval,	but	allow	documentation	to	be	performed	after	the
fact.	A	key	goal	of	DevOps	practices	is	to	streamline	our	normal	change

process	such	that	it	is	also	suitable	for	emergency	changes.

RE-CATEGORIZE	THE	MAJORITY	OF	OUR
LOWER	RISK	CHANGES	AS	STANDARD
CHANGES

Ideally,	by	having	a	reliable	deployment	pipeline	in	place,	we	will	have	already
earned	a	reputation	for	fast,	reliable,	and	non-dramatic	deployments.	At	this
point,	we	should	seek	to	gain	agreement	from	Operations	and	the	relevant
change	authorities	that	our	changes	have	been	demonstrated	to	be	low	risk
enough	to	be	defined	as	standard	changes,	pre-approved	by	the	CAB.	This
enables	us	to	deploy	into	production	without	need	for	further	approval,	although
the	changes	should	still	be	properly	recorded.

One	way	to	support	an	assertion	that	our	changes	are	low	risk	is	to	show	a
history	of	changes	over	a	significant	time	period	(e.g.,	months	or	quarters)	and
provide	a	complete	list	of	production	issues	during	that	same	period.	If	we	can
show	high	change	success	rates	and	low	MTTR,	we	can	assert	that	we	have	a
control	environment	that	is	effectively	preventing	deployment	errors,	as	well	as
prove	that	we	can	effectively	and	quickly	detect	and	correct	any	resulting
problems.

Even	when	our	changes	are	categorized	as	standard	changes,	they	still	need	to	be
visual	and	recorded	in	our	change	management	systems	(e.g.,	Remedy	or
ServiceNow).	Ideally,	deployments	will	be	performed	automatically	by	our
configuration	management	and	deployment	pipeline	tools	(e.g.,	Puppet,	Chef,
Jenkins)	and	the	results	will	be	automatically	recorded.	By	doing	this,	everyone
in	our	organization	(DevOps	or	not)	will	have	visibility	into	our	changes	in
addition	to	all	the	other	changes	happening	in	the	organization.

We	may	automatically	link	these	change	request	records	to	specific	items	in	our
work	planning	tools	(e.g.,	JIRA,	Rally,	LeanKit,	ThoughtWorks	Mingle),
allowing	us	to	create	more	context	for	our	changes,	such	as	linking	to	feature
defects,	production	incidents,	or	user	stories.	This	can	be	accomplished	in	a
lightweight	way	by	including	ticket	numbers	from	planning	tools	in	the
comments	associated	with	version	control	check	ins.§	By	doing	this,	we	can
trace	a	production	deployment	to	the	changes	in	version	control	and,	from	there,
trace	them	further	back	to	the	planning	tool	tickets.

Creating	this	traceability	and	context	should	be	easy	and	should	not	create	an
overly	onerous	or	time-consuming	burden	for	engineers.	Linking	to	user	stories,
requirements,	or	defects	is	almost	certainly	sufficient—any	further	detail,	such
as	opening	a	ticket	for	each	commit	to	version	control,	is	likely	not	useful,	and
thus	unnecessary	and	undesired,	as	it	will	impose	a	significant	level	of	friction
on	their	daily	work.

WHAT	TO	DO	WHEN	CHANGES	ARE
CATEGORIZED	AS	NORMAL	CHANGES

For	those	changes	that	we	cannot	get	classified	as	standard	changes,	they	will	be
considered	normal	changes	and	will	require	approval	from	at	least	a	subset	of
the	CAB	before	deployment.	In	this	case,	our	goal	is	still	to	ensure	that	we	can
deploy	quickly,	even	if	it	is	not	fully	automated.

In	this	case,	we	must	ensure	that	any	submitted	change	requests	are	as	complete
and	accurate	as	possible,	giving	the	CAB	everything	they	need	to	properly
evaluate	our	change—after	all,	if	our	change	request	is	malformed	or
incomplete,	it	will	be	bounced	back	to	us,	increasing	the	time	required	for	us	to
get	into	production	and	casting	doubt	on	whether	we	actually	understand	the
goals	of	the	change	management	process.

We	can	almost	certainly	automate	the	creation	of	complete	and	accurate	RFCs,
populating	the	ticket	with	details	of	exactly	what	is	to	be	changed.	For	instance,
we	could	automatically	create	a	ServiceNow	change	ticket	with	a	link	to	the
JIRA	user	story,	along	with	the	build	manifests	and	test	output	from	our
deployment	pipeline	tool	and	links	to	the	Puppet/Chef	scripts	that	will	be	run.

Because	our	submitted	changes	will	be	manually	evaluated	by	people,	it	is	even
more	important	that	we	describe	the	context	of	the	change.	This	includes
identifying	why	we	are	making	the	change	(e.g.,	providing	a	link	to	the	features,
defects,	or	incidents),	who	is	affected	by	the	change,	and	what	is	going	to	be
changed.

Our	goal	is	to	share	the	evidence	and	artifacts	that	give	us	confidence	that	the
change	will	operate	in	production	as	designed.	Although	RFCs	typically	have
free-form	text	fields,	we	should	provide	links	to	machine-readable	data	to	enable
others	to	integrate	and	process	our	data	(e.g.,	links	to	JSON	files).

In	many	toolchains,	this	can	be	done	in	a	compliant	and	fully	automated	way.
For	example,	ThoughtWorks’	Mingle	and	Go	can	automatically	link	this
information	together,	such	as	a	list	of	defects	fixed	and	new	features	completed
that	are	associated	with	the	change,	and	put	it	into	an	RFC.

Upon	submission	of	our	RFC,	the	relevant	members	of	the	CAB	will	review,
process,	and	approve	these	changes	as	they	would	any	other	submitted	change
request.	If	all	goes	well,	the	change	authorities	will	appreciate	the	thoroughness
and	detail	of	our	submitted	changes,	because	we	have	allowed	them	to	quickly
validate	the	correctness	of	the	information	we’ve	provided	(e.g.,	viewing	the
links	to	artifacts	from	our	deployment	pipeline	tools).	However,	our	goal	should
be	to	continually	show	an	exemplary	track	record	of	successful	changes,	so	we
can	eventually	gain	their	agreement	that	our	automated	changes	can	be	safely
classified	as	standard	changes.

Case	Study	
Automated	Infrastructure	Changes	as	Standard	Changes	at

Salesforce.com	(2012)

Salesforce	was	founded	in	2000	with	the	aim	of	making	customer
relationship	management	easily	available	and	deliverable	as	a
service.	Salesforce’s	offerings	were	widely	adopted	by	the
marketplace,	leading	to	a	successful	IPO	in	2004.	By	2007,	the
company	had	over	fifty-nine	thousand	enterprise	customers,
processing	hundreds	of	millions	of	transactions	per	day,	with	annual
revenue	of	$497	million.

However,	around	that	same	time,	their	ability	to	develop	and
release	new	functionality	to	their	customers	seemed	to	grind	to	a
halt.	In	2006,	they	had	four	major	customer	releases,	but	in	2007
they	were	only	able	to	do	one	customer	release	despite	having
hired	more	engineers.	The	result	was	that	the	number	of	features
delivered	per	team	kept	decreasing	and	the	days	between	major
releases	kept	increasing.

And	because	the	batch	size	of	each	release	kept	getting	larger,	the
deployment	outcomes	also	kept	getting	worse.	Karthik	Rajan,	then
VP	of	Infrastructure	Engineering,	reports	in	a	2013	presentation	that
2007	marked	“the	last	year	when	software	was	created	and	shipped
using	a	waterfall	process	and	when	we	made	our	shift	to	a	more
incremental	delivery	process.”

At	the	2014	DevOps	Enterprise	Summit,	Dave	Mangot	and	Reena
Mathew	described	the	resulting	multi-year	DevOps	transformation
that	started	in	2009.	According	to	Mangot	and	Mathew,	by

implementing	DevOps	principles	and	practices,	the	company
reduced	their	deployment	lead	times	from	six	days	to	five	minutes
by	2013.	As	a	result,	they	were	able	to	scale	capacity	more	easily,
allowing	them	to	process	over	one	billion	transactions	per	day.

One	of	the	main	themes	of	the	Salesforce	transformation	was	to
make	quality	engineering	everyone’s	job,	regardless	of	whether
they	were	part	of	Development,	Operations,	or	Infosec.	To	do	this,
they	integrated	automated	testing	into	all	stages	of	the	application
and	environment	creation,	as	well	as	into	the	continuous	integration
and	deployment	process,	and	created	the	open	source	tool	Rouster
to	conduct	functional	testing	of	their	Puppet	modules.

They	also	started	to	routinely	perform	destructive	testing,	a	term
used	in	manufacturing	to	refer	to	performing	prolonged	endurance
testing	under	the	most	severe	operating	conditions	until	the
component	being	tested	is	destroyed.	The	Salesforce	team	started
routinely	testing	their	services	under	increasingly	higher	loads	until
the	service	broke,	which	helped	them	understand	their	failure
modes	and	make	appropriate	corrections.	Unsurprisingly,	the	result
was	significantly	higher	service	quality	with	normal	production
loads.

Information	Security	also	worked	with	Quality	Engineering	at	the
earliest	stages	of	their	project,	continually	collaborating	in	critical
phases	such	as	architecture	and	test	design,	as	well	as	properly
integrating	security	tools	into	the	automated	testing	process.

For	Mangot	and	Mathew,	one	of	the	key	successes	from	all	the
repeatability	and	rigor	they	designed	into	the	process	was	being
told	by	their	change	management	group	that	“infrastructure

changes	made	through	Puppet	would	now	be	treated	as	‘standard
changes,’	requiring	far	less	or	even	no	further	approvals	from	the
CAB.”	Furthermore,	they	noted	that	“manual	changes	to
infrastructure	would	still	require	approvals.”

By	doing	this,	they	had	not	only	integrated	their	DevOps	processes
with	the	change	management	process,	but	also	created	further
motivation	to	automate	the	change	process	for	more	of	their
infrastructure.

REDUCE	RELIANCE	ON	SEPARATION	OF	DUTY

For	decades,	we	have	used	separation	of	duty	as	one	of	our	primary	controls	to
reduce	the	risk	of	fraud	or	mistakes	in	the	software	development	process.	It	has
been	the	accepted	practice	in	most	SDLCs	to	require	developer	changes	to	be
submitted	to	a	code	librarian,	who	would	review	and	approve	the	change	before
IT	Operations	promoted	the	change	into	production.

There	are	plenty	of	other	less	contentious	examples	of	separation	of	duty	in	Ops
work,	such	as	server	administrators	ideally	being	able	to	view	logs	but	not	delete
or	modify	them,	in	order	to	prevent	someone	with	privileged	access	from
deleting	evidence	of	fraud	or	other	issues.

When	we	did	production	deployments	less	frequently	(e.g.,	annually)	and	when
our	work	was	less	complex,	compartmentalizing	our	work	and	doing	hand-offs
were	tenable	ways	of	conducting	business.	However,	as	complexity	and
deployment	frequency	increase,	performing	production	deployments
successfully	increasingly	requires	everyone	in	the	value	stream	to	quickly	see
the	outcomes	of	their	actions.

Separation	of	duty	often	can	impede	this	by	slowing	down	and	reducing	the
feedback	engineers	receive	on	their	work.	This	prevents	engineers	from	taking
full	responsibility	for	the	quality	of	their	work	and	reduces	a	firm’s	ability	to
create	organizational	learning.

Consequently,	wherever	possible,	we	should	avoid	using	separation	of	duties	as
a	control.	Instead,	we	should	choose	controls	such	as	pair	programming,
continuous	inspection	of	code	check-ins,	and	code	review.	These	controls	can
give	us	the	necessary	reassurance	about	the	quality	of	our	work.	Furthermore,	by
putting	these	controls	in	place,	if	separation	of	duties	is	required,	we	can	show
that	we	achieve	equivalent	outcomes	with	the	controls	we	have	created.

Case	Study	
PCI	Compliance	and	a	Cautionary	Tale	of	Separating

Duties	at	Etsy	(2014)

Bill	Massie	is	a	development	manager	at	Etsy	and	is	responsible	for
the	payment	application	called	ICHT	(an	abbreviation	for	“I	Can	Haz
Tokens”).	ICHT	takes	customer	credit	orders	through	a	set	of
internally-developed	payment	processing	applications	that	handle
online	order	entry	by	taking	customer-entered	cardholder	data,
tokenizing	it,	communicating	with	the	payment	processor,	and
completing	the	order	transaction.¶

Because	the	scope	of	the	Payment	Card	Industry	Data	Security
Standards	(PCI	DSS)	cardholder	data	environment	(CDE)	is	“the
people,	processes	and	technology	that	store,	process	or	transmit
cardholder	data	or	sensitive	authentication	data,”	including	any
connected	system	components,	the	ICHT	application	has	in	scope
for	the	PCI	DSS.

To	contain	the	PCI	DSS	scope,	the	ICHT	application	is	physically
and	logically	separated	from	the	rest	of	the	Etsy	organization	and	is
managed	by	a	completely	separate	application	team	of	developers,
database	engineers,	networking	engineers,	and	ops	engineers.
Each	team	member	is	issued	two	laptops:	one	for	ICHT	(which	are
configured	differently	to	meet	the	DSS	requirements,	as	well	as
being	locked	in	a	safe	when	not	in	use)	and	one	for	the	rest	of	Etsy.

By	doing	this,	they	were	able	to	decouple	the	CDE	environment
from	the	rest	of	the	Etsy	organization,	limiting	the	scope	of	the	PCI
DSS	regulations	to	one	segregated	area.	The	systems	that	form	the
CDE	are	separated	(and	managed	differently)	from	the	rest	of
Etsy’s	environments	at	the	physical,	network,	source	code,	and
logical	infrastructure	levels.	Furthermore,	the	CDE	is	built	and
operated	by	a	cross-functional	team	that	is	solely	responsible	for
the	CDE.

The	ICHT	team	had	to	modify	their	continuous	delivery	practices	in
order	to	accommodate	the	need	for	code	approvals.	According	to
Section	6.3.2	of	the	PCI	DSS	v3.1,	teams	should	review:

All	custom	code	prior	to	release	to	production	or	customers	in	order
to	identify	any	potential	coding	vulnerability	(using	either	manual	or
automated	processes)	as	follows:

Are	code	changes	reviewed	by	individuals	other	than	the
originating	code	author,	and	by	individuals	knowledgeable	about
code-review	techniques	and	secure	coding	practices?

Do	code	reviews	ensure	code	is	developed	according	to	secure
coding	guidelines?

Are	appropriate	corrections	implemented	prior	to	release?

Are	code	review	results	reviewed	and	approved	by	management
prior	to	release?

To	fulfill	this	requirement,	the	team	initially	decided	to	designate
Massie	as	the	change	approver	responsible	for	deploying	any
changes	into	production.	Desired	deployments	would	be	flagged	in
JIRA,	and	Massie	would	mark	them	as	reviewed	and	approved,	and
manually	deploy	them	into	the	ICHT	production.

This	has	enabled	Etsy	to	meet	their	PCI	DSS	requirements	and	get
their	signed	Report	of	Compliance	from	their	assessors.	However,
with	regard	to	the	team,	significant	problems	have	resulted.

Massie	observes	that	one	troubling	side	effect	“is	a	level	of
‘compartmentalization’	that	is	happening	in	the	ICHT	team	that	no
other	group	is	having	at	Etsy.	Ever	since	we	implemented
separation	of	duty	and	other	controls	required	by	the	PCI	DSS
compliance,	no	one	can	be	a	full-stack	engineer	in	this
environment.”

As	a	result,	while	the	rest	of	the	Development	and	Operations
teams	at	Etsy	work	together	closely	and	deploy	changes	smoothly
and	with	confidence,	Massie	notes	that	“within	our	PCI
environment,	there	is	fear	and	reluctance	around	deployment	and
maintenance	because	no	one	has	visibility	outside	their	portion	of
the	software	stack.	The	seemingly	minor	changes	we	made	to	the
way	we	work	seem	to	have	created	an	impenetrable	wall	between
developers	and	ops,	and	creates	an	undeniable	tension	that	no	one
at	Etsy	has	had	since	2008.	Even	if	you	have	confidence	in	your

portion,	it’s	impossible	to	get	confidence	that	someone	else’s
change	isn’t	going	to	break	your	part	of	the	stack.”

This	case	study	shows	that	compliance	is	possible	in	organizations
using	DevOps.	However,	the	potentially	cautionary	tale	here	is	that
all	the	virtues	that	we	associate	with	high-performing	DevOps
teams	are	fragile—even	a	team	that	has	shared	experiences	with
high	trust	and	shared	goals	can	begin	to	struggle	when	low	trust
control	mechanisms	are	put	into	place.

ENSURE	DOCUMENTATION	AND	PROOF	FOR
AUDITORS	AND	COMPLIANCE	OFFICERS

As	technology	organizations	increasingly	adopt	DevOps	patterns,	there	is	more
tension	than	ever	between	IT	and	audit.	These	new	DevOps	patterns	challenge
traditional	thinking	about	auditing,	controls,	and	risk	mitigation.

As	Bill	Shinn,	a	principal	security	solutions	architect	at	Amazon	Web	Services,
observes,	“DevOps	is	all	about	bridging	the	gap	between	Dev	and	Ops.	In	some
ways,	the	challenge	of	bridging	the	gap	between	DevOps	and	auditors	and
compliance	officers	is	even	larger.	For	instance,	how	many	auditors	can	read
code	and	how	many	developers	have	read	NIST	800-37	or	the	Gramm-Leach-
Bliley	Act?	That	creates	a	gap	of	knowledge,	and	the	DevOps	community	needs
to	help	bridge	that	gap.”

Case	Study	
Proving	Compliance	in	Regulated	Environments	(2015)

Helping	large	enterprise	customers	show	that	they	can	still	comply
with	all	relevant	laws	and	regulations	is	among	Bill	Shinn’s
responsibilities	as	a	principal	security	solutions	architect	at	Amazon
Web	Services.	Over	the	years,	he	has	spent	time	with	over	one
thousand	enterprise	customers,	including	Hearst	Media,	GE,
Phillips,	and	Pacific	Life,	who	have	publicly	referenced	their	use	of
public	clouds	in	highly	regulated	environments.

Shinn	notes,	“One	of	the	problems	is	that	auditors	have	been
trained	in	methods	that	aren’t	very	suitable	for	DevOps	work
patterns.	For	example,	if	an	auditor	saw	an	environment	with	ten
thousand	productions	servers,	they	have	been	traditionally	trained
to	ask	for	a	sample	of	one	thousand	servers,	along	with	screenshot
evidence	of	asset	management,	access	control	settings,	agent
installations,	server	logs,	and	so	forth.”

“That	was	fine	with	physical	environments,”	Shinn	continues.	“But
when	infrastructure	is	code,	and	when	auto-scaling	makes	servers
appear	and	disappear	all	the	time,	how	do	you	sample	that?	You
run	into	the	same	problems	when	you	have	a	deployment	pipeline,
which	is	very	different	than	the	traditional	software	development
process,	where	one	group	writes	the	code	and	another	group
deploys	that	code	into	production.”

He	explains,	“In	audit	fieldwork,	the	most	commonplace	methods	of
gathering	evidence	are	still	screenshots	and	CSV	files	filled	with
configuration	settings	and	logs.	Our	goal	is	to	create	alternative
methods	of	presenting	the	data	that	clearly	show	auditors	that	our
controls	are	operating	and	effective.”

To	help	bridge	that	gap,	he	has	teams	work	with	auditors	in	the
control	design	process.	They	use	an	iterative	approach,	assigning	a
single	control	for	each	sprint	to	determine	what	is	needed	in	terms
of	audit	evidence.	This	has	helped	ensure	that	auditors	get	the
information	they	need	when	the	service	is	in	production,	entirely	on
demand.

Shinn	states	that	the	best	way	to	accomplish	this	is	to	“send	all	data
into	our	telemetry	systems,	such	as	Splunk	or	Kibana.	This	way
auditors	can	get	what	they	need,	completely	self-serviced.	They
don’t	need	to	request	a	data	sample—instead,	they	log	into	Kibana,
and	then	search	for	audit	evidence	they	need	for	a	given	time
range.	Ideally,	they’ll	see	very	quickly	that	there’s	evidence	to
support	that	our	controls	are	working.”

Shinn	continues,	“With	modern	audit	logging,	chat	rooms,	and
deployment	pipelines,	there’s	unprecedented	visibility	and
transparency	into	what’s	happening	in	production,	especially
compared	to	how	Operations	used	to	be	done,	with	far	lower
probability	of	errors	and	security	flaws	being	introduced.	So,	the
challenge	is	to	turn	all	that	evidence	into	something	an	auditor
recognizes.”

That	requires	deriving	the	engineering	requirements	from	the	actual
regulations.	Shinn	explains,	“To	discover	what	HIPAA	requires	from
an	information	security	perspective,	you	have	to	look	into	the	forty-
five	CFR	Part	160	legislation,	go	into	Subparts	A	and	C	of	Part	164.
Even	then,	you	need	to	keep	reading	until	you	get	into	‘technical
safeguards	and	audit	controls.’	Only	there	will	you	see	that	what	is
required	is	that	we	need	to	determine	activities	that	will	be	tracked
and	audited	relevant	to	Patient	Healthcare	Information,	document

and	implement	those	controls,	select	tools,	and	then	finally	review
and	capture	the	appropriate	information.”

Shinn	continues,	“How	to	fulfill	that	requirement	is	the	discussion
that	needs	to	be	happening	between	compliance	and	regulatory
officers,	and	the	security	and	DevOps	teams,	specifically	around
how	to	prevent,	detect,	and	correct	problems.	Sometimes	they	can
be	fulfilled	in	a	configuration	setting	in	version	control.	Other	times,
it’s	a	monitoring	control.”

Shinn	gives	an	example:	“We	may	choose	to	implement	one	of
those	controls	using	AWS	CloudWatch,	and	we	can	test	that	the
control	is	operating	with	one	command	line.	Furthermore,	we	need
to	show	where	the	logs	are	going—in	the	ideal,	we	push	all	this	into
our	logging	framework,	where	we	can	link	the	audit	evidence	with
the	actual	control	requirement.”

To	help	solve	this	problem,	the	DevOps	Audit	Defense	Toolkit
describes	the	end-to-end	narrative	of	the	compliance	and	audit
process	for	a	fictitious	organization	(Parts	Unlimited	from	The
Phoenix	Project).	It	starts	by	describing	the	entity’s	organizational
goals,	business	processes,	top	risks,	and	resulting	control
environment,	as	well	as	how	management	could	successfully	prove
that	controls	exist	and	are	effective.	A	set	of	audit	objections	is	also
presented,	as	well	as	how	to	overcome	them.

The	document	describes	how	controls	could	be	designed	in	a
deployment	pipeline	to	mitigate	the	stated	risks,	and	provides
examples	of	control	attestations	and	control	artifacts	to	demonstrate
control	effectiveness.	It	was	intended	to	be	general	to	all	control
objectives,	including	in	support	of	accurate	financial	reporting,

regulatory	compliance	(e.g.,	SEC	SOX-404,	HIPAA,	FedRAMP,	EU
Model	Contracts,	and	the	proposed	SEC	Reg-SCI	regulations),
contractual	obligations	(e.g.,	PCI	DSS,	DOD	DISA),	and	effective
and	efficient	operations.

Case	Study	
Relying	on	Production	Telemetry	for	ATM	Systems

Mary	Smith	(a	pseudonym)	heads	up	the	DevOps	initiative	for	the
consumer	banking	property	of	a	large	US	financial	services
organization.	She	made	the	observation	that	information	security,
auditors,	and	regulators	often	put	too	much	reliance	on	code
reviews	to	detect	fraud.	Instead,	they	should	be	relying	on
production	monitoring	controls	in	addition	to	using	automated
testing,	code	reviews,	and	approvals,	to	effectively	mitigate	the
risks	associated	with	errors	and	fraud.

She	observed:

Many	years	ago,	we	had	a	developer	who	planted	a	backdoor
in	the	code	that	we	deploy	to	our	ATM	cash	machines.	They
were	able	to	put	the	ATMs	into	maintenance	mode	at	certain
times,	allowing	them	to	take	cash	out	of	the	machines.	We
were	able	to	detect	the	fraud	very	quickly,	and	it	wasn’t
through	a	code	review.	These	types	of	backdoors	are	difficult,
or	even	impossible,	to	detect	when	the	perpetrators	have
sufficient	means,	motive,	and	opportunity.

However,	we	quickly	detected	the	fraud	during	our	regularly
operations	review	meeting	when	someone	noticed	that	ATMs

in	a	city	were	being	put	into	maintenance	mode	at
unscheduled	times.	We	found	the	fraud	even	before	the
scheduled	cash	audit	process,	when	they	reconcile	the
amount	of	cash	in	the	ATMs	with	authorized	transactions.

In	this	case	study,	the	fraud	occurred	despite	separation	of	duties
between	Development	and	Operations	and	a	change	approval
process,	but	was	quickly	detected	and	corrected	through	effective
production	telemetry.

CONCLUSION

Throughout	this	chapter,	we	have	discussed	practices	that	make	information
security	everyone’s	job,	where	all	of	our	information	security	objectives	are
integrated	into	the	daily	work	of	everyone	in	the	value	stream.	By	doing	this,	we
significantly	improve	the	effectiveness	of	our	controls,	so	that	we	can	better
prevent	security	breaches,	as	well	as	detect	and	recover	from	them	faster.	And
we	significantly	reduce	the	work	associated	with	preparing	and	passing
compliance	audits.

PART	VI	CONCLUSION

Throughout	the	previous	chapters,	we	explored	how	to	take	DevOps	principles
and	apply	them	to	Information	Security,	helping	us	achieve	our	goals,	and
making	sure	security	is	a	part	of	everyone’s	job,	every	day.	Better	security
ensures	that	we	are	defensible	and	sensible	with	our	data,	that	we	can	recover
from	security	problems	before	they	become	catastrophic,	and,	most	importantly,
that	we	can	make	the	security	of	our	systems	and	data	better	than	ever.

†	ITIL	defines	utility	as	“what	the	service	does,”	while	warranty	is	defined	as	“how	the	service	is	delivered	and	can	be	used	to
determine	whether	a	service	is	‘fit	for	use.’”

‡	To	further	manage	risk	changes,	we	may	also	have	defined	rules,	such	as	certain	changes	can	only	be	implemented	by	a	certain	group
or	individual	(e.g.,	only	DBAs	can	deploy	database	schema	changes).	Traditionally,	the	CAB	meetings	have	been	held	weekly,
where	the	change	requests	are	approved	and	scheduled.	From	ITIL	version	3	onward,	it	is	acceptable	for	changes	to	be	approved
electronically	in	a	just-in-time	fashion	through	a	change	management	tool.	It	also	specifically	recommends	that	“standard	changes
should	be	identified	early	on	when	building	the	Change	Management	process	to	promote	efficiency.	Otherwise,	a	Change
Management	implementation	can	create	unnecessarily	high	levels	of	administration	and	resistance	to	the	Change	Management
process.”

§	The	term	ticket	is	used	generically	to	indicate	any	uniquely	identifiable	work	item.

¶	The	authors	thank	Bill	Massie	and	John	Allspaw	for	spending	an	entire	day	with	Gene	Kim	sharing	their	compliance	experience.

A	Call	to	Action

Conclusion	to	the	DevOps	Handbook
We	have	come	to	the	end	of	a	detailed	exploration	of	both	the	principles	and
technical	practices	of	DevOps.	At	a	time	when	every	technology	leader	is
challenged	with	enabling	security,	reliability,	and	agility,	and	at	a	time	when
security	breaches,	time	to	market,	and	massive	technology	transformation	is
taking	place,	DevOps	offers	a	solution.	Hopefully,	this	book	has	provided	an	in-
depth	understanding	of	the	problem	and	a	road	map	to	creating	relevant
solutions.

As	we	have	explored	throughout	The	DevOps	Handbook,	we	know	that,	left
unmanaged,	an	inherent	conflict	can	exist	between	Development	and	Operations
that	creates	ever-worsening	problems,which	results	in	slower	time	to	market	for
new	products	and	features,	poor	quality,	increased	outages	and	technical	debt,
reduced	engineering	productivity,	as	well	as	increased	employee	dissatisfaction
and	burnout.

DevOps	principles	and	patterns	enable	us	to	break	this	core,	chronic	conflict.
After	reading	this	book,	we	hope	you	see	how	a	DevOps	transformation	can
enable	the	creation	of	dynamic	learning	organizations,	achieving	the	amazing
outcomes	of	fast	flow	and	world-class	reliability	and	security,	as	well	as
increased	competitiveness	and	employee	satisfaction.

DevOps	requires	potentially	new	cultural	and	management	norms,	and	changes
in	our	technical	practices	and	architecture.	This	requires	a	coalition	that	spans
business	leadership,	Product	Management,	Development,	QA,	IT	Operations,

Information	Security,	and	even	Marketing,	where	many	technology	initiatives
originate.	When	all	these	teams	work	together,	we	can	create	a	safe	system	of
work,	enabling	small	teams	to	quickly	and	independently	develop	and	validate
code	that	can	be	safely	deployed	to	customers.	This	results	in	maximizing
developer	productivity,	organizational	learning,	high	employee	satisfaction,	and
the	ability	to	win	in	the	marketplace.

Our	goal	in	writing	this	book	was	to	sufficiently	codify	DevOps	principles	and
practices	so	that	the	amazing	outcomes	achieved	within	the	DevOps	community
could	be	replicated	by	others.	We	hope	to	accelerate	the	adoption	of	DevOps
initiatives	and	support	their	successful	implementations	while	lowering	the
activation	energy	required	for	them	to	be	completed.

We	know	the	dangers	of	postponing	improvements	and	settling	for	daily	work-
arounds,	as	well	as	the	difficulties	of	changing	how	we	prioritize	and	perform
our	daily	work.	Furthermore,	we	understand	the	risks	and	effort	required	to	get
organizations	to	embrace	a	different	way	of	working,	as	well	as	the	perception
that	DevOps	is	another	passing	fad,	soon	to	replaced	by	the	next	buzzword.

We	assert	that	DevOps	is	transformational	to	how	we	perform	technology	work,
just	as	Lean	forever	transformed	how	manufacturing	work	was	performed	in	the
1980s.	Those	that	adopt	DevOps	will	win	in	the	marketplace,	at	the	expense	of
those	that	do	not.	They	will	create	energized	and	continually	learning
organizations	that	out-perform	and	out-innovate	their	competitors.

Because	of	this,	DevOps	is	not	just	a	technology	imperative,	but	also	an
organizational	imperative.	The	bottom	line	is,	DevOps	is	applicable	and	relevant
to	any	and	all	organizations	that	must	increase	flow	of	planned	work	through	the
technology	organization,	while	maintaining	quality,	reliability,	and	security	for
our	customers.

Our	call	to	action	is	this:	no	matter	what	role	you	play	in	your	organization,	start
finding	people	around	you	who	want	to	change	how	work	is	performed.	Show
this	book	to	others	and	create	a	coalition	of	like-minded	thinkers	to	break	out	of
the	downward	spiral.	Ask	organizational	leaders	to	support	these	efforts,	or,
better	yet,	sponsor	and	lead	these	efforts	yourself.

Finally,	since	you’ve	made	it	this	far,	we	have	a	dirty	secret	to	reveal.	In	many
of	our	case	studies,	following	the	achievement	of	the	breakthrough	results
presented,	many	of	the	change	agents	were	promoted—but,	in	some	cases,	there
was	later	a	change	of	leadership	which	resulted	in	many	of	the	people	involved
leaving,	accompanied	by	a	rolling	back	of	the	organizational	changes	they	had
created.

We	believe	it’s	important	not	to	be	cynical	about	this	possibility.	The	people
involved	in	these	transformations	knew	up	front	that	what	they	were	doing	had	a
high	chance	of	failure,	and	they	did	it	anyway.	In	doing	so,	perhaps	most
importantly,	they	inspired	the	rest	of	us	by	showing	us	what	can	be	done.
Innovation	is	impossible	without	risk	taking,	and	if	you	haven’t	managed	to
upset	at	least	some	people	in	management,	you’re	probably	not	trying	hard
enough.	Don’t	let	your	organization’s	immune	system	deter	or	distract	you	from
your	vision.	As	Jesse	Robbins,	previously	“master	of	disaster”	at	Amazon,	likes
to	say,	“Don’t	fight	stupid,	make	more	awesome.”

DevOps	benefits	all	of	us	in	the	technology	value	stream,	whether	we	are	Dev,
Ops,	QA,	Infosec,	Product	Owners,	or	customers.	It	brings	joy	back	to
developing	great	products,	with	fewer	death	marches.	It	enables	humane	work
conditions	with	fewer	weekends	and	missed	holidays	with	our	loved	ones.	It
enables	teams	to	work	together	to	survive,	learn,	thrive,	delight	our	customers,
and	help	our	organization	succeed.

We	sincerely	hope	The	DevOps	Handbook	helps	you	achieve	these	goals.

Appendices

APPENDIX	1		THE	CONVERGENCE	OF	DEVOPS
We	believe	that	DevOps	is	benefiting	from	an	incredible	convergence	of
management	movements,	which	are	all	mutually	reinforcing	and	can	help	create
a	powerful	coalition	to	transform	how	organizations	develop	and	deliver	IT
products	and	services.

John	Willis	named	this	“the	Convergence	of	DevOps.”	The	various	elements	of
this	convergence	are	described	below	in	approximate	chronological	order.	(Note
that	these	descriptions	are	not	intended	to	be	an	exhaustive	description,	but
merely	enough	to	show	the	progression	of	thinking	and	the	rather	improbable
connections	that	led	to	DevOps.)

THE	LEAN	MOVEMENT
The	Lean	Movement	started	in	the	1980s	as	an	attempt	to	codify	the	Toyota
Production	System	with	the	popularization	of	techniques	such	as	Value	Stream
Mapping,	kanban	boards,	and	Total	Productive	Maintenance.

Two	major	tenets	of	Lean	were	the	deeply	held	belief	that	lead	time	(i.e.,	the
time	required	to	convert	raw	materials	into	finished	goods)	was	the	best
predictor	of	quality,	customer	satisfaction,	and	employee	happiness;	and	that	one
of	the	best	predictors	of	short	lead	times	was	small	batch	sizes,	with	the
theoretical	ideal	being	“single	piece	flow”	(i.e.,	“1x1”	flow:	inventory	of	1,	batch
size	of	1).

Lean	principles	focus	on	creating	value	for	the	customer—thinking
systematically,	creating	constancy	of	purpose,	embracing	scientific	thinking,
creating	flow	and	pull	(versus	push),	assuring	quality	at	the	source,	leading	with
humility,	and	respecting	every	individual.

THE	AGILE	MOVEMENT
Started	in	2001,	the	Agile	Manifesto	was	created	by	seventeen	of	the	leading
thinkers	in	software	development,	with	the	goal	of	turning	lightweight	methods
such	as	DP	and	DSDM	into	a	wider	movement	that	could	take	on	heavyweight
software	development	processes	such	as	waterfall	development	and
methodologies	such	as	the	Rational	Unified	Process.

A	key	principle	was	to	“deliver	working	software	frequently,	from	a	couple	of
weeks	to	a	couple	of	months,	with	a	preference	to	the	shorter	timescale.”	Two
other	principles	focus	on	the	need	for	small,	self-motivated	teams,	working	in	a
high-trust	management	model	and	an	emphasis	on	small	batch	sizes.	Agile	is
also	associated	with	a	set	of	tools	and	practices	such	as	Scrum,	Standups,	and	so
on.

THE	VELOCITY	CONFERENCE	MOVEMENT
Started	in	2007,	the	Velocity	Conference	was	created	by	Steve	Souders,	John
Allspaw,	and	Jesse	Robbins	to	provide	a	home	for	the	IT	Operations	and	Web
Performance	tribe.	At	the	Velocity	2009	conference,	John	Allspaw	and	Paul
Hammond	gave	the	seminal	“10	Deploys	per	Day:	Dev	and	Ops	Cooperation	at
Flickr.”

THE	AGILE	INFRASTRUCTURE	MOVEMENT
At	the	2008	Agile	Toronto	conference,	Patrick	Dubois	and	Andrew	Schafer	held
a	“birds	of	a	feather”	session	on	applying	Agile	principles	to	infrastructure	as

opposed	to	application	code.	They	rapidly	gained	a	following	of	like-minded
thinkers,	including	John	Willis.	Later,	Dubois	was	so	excited	by	Allspaw	and
Hammond’s	“10	Deploys	per	Day:	Dev	and	Ops	Cooperation	at	Flickr”
presentation	that	he	created	the	first	DevOpsDays	in	Ghent,	Belgium,	in	2009,
coining	the	word	“DevOps.”

THE	CONTINUOUS	DELIVERY	MOVEMENT
Building	upon	the	Development	discipline	of	continuous	build,	test,	and
integration,	Jez	Humble	and	David	Farley	extended	the	concept	of	continuous
delivery,	which	included	a	“deployment	pipeline”	to	ensure	that	code	and
infrastructure	are	always	in	a	deployable	state	and	that	all	code	checked	in	to
truck	is	deployed	into	production.

This	idea	was	first	presented	at	Agile	2006	and	was	also	independently
developed	by	Tim	Fitz	in	a	blog	post	titled	“Continuous	Deployment.”

THE	TOYOTA	KATA	MOVEMENT
In	2009,	Mike	Rother	wrote	Toyota	Kata:	Managing	People	for	Improvement,
Adaptiveness	and	Superior	Results,	which	described	learnings	over	his	twenty-
year	journey	to	understand	and	codify	the	causal	mechanisms	of	the	Toyota
Production	System.	Toyota	Kata	describes	the	“unseen	managerial	routines	and
thinking	that	lie	behind	Toyota’s	success	with	continuous	improvement	and
adaptation…	and	how	other	companies	develop	similar	routines	and	thinking	in
their	organizations.”

His	conclusion	was	that	the	Lean	community	missed	the	most	important	practice
of	all,	which	he	described	as	the	Improvement	Kata.	He	explains	that	every
organization	has	work	routines,	and	the	critical	factor	in	Toyota	was	making
improvement	work	habitual,	and	building	it	into	the	daily	work	of	everyone	in

the	organization.	The	Toyota	Kata	institutes	an	iterative,	incremental,	scientific
approach	to	problem	solving	in	the	pursuit	of	a	shared	organizational	true	north.

THE	LEAN	STARTUP	MOVEMENT
In	2011,	Eric	Ries	wrote	The	Lean	Startup:	How	Today’s	Entrepreneurs	Use
Continuous	Innovation	to	Create	Radically	Successful	Businesses,	codifying	his
lessons	learned	at	IMVU,	a	Silicon	Valley	startup,	which	built	upon	the	work	of
Steve	Blank	in	The	Four	Steps	to	the	Epiphany	as	well	as	continuous
deployment	techniques.	Eric	Ries	also	codified	related	practices	and	terms
including	Minimum	Viable	Product,	the	build-measure-learn	cycle,	and	many
continuous	deployment	technical	patterns.

THE	LEAN	UX	MOVEMENT
In	2013,	Jeff	Gothelf	wrote	Lean	UX:	Applying	Lean	Principles	to	Improve	User
Experience,	which	codified	how	to	improve	the	“fuzzy	front	end”	and	explained
how	product	owners	can	frame	business	hypotheses,	experiment,	and	gain
confidence	in	those	business	hypotheses	before	investing	time	and	resources	in
the	resulting	features.	By	adding	Lean	UX,	we	now	have	the	tools	to	fully
optimize	the	flow	between	business	hypotheses,	feature	development,	testing,
deployment,	and	service	delivery	to	the	customer.

THE	RUGGED	COMPUTING	MOVEMENT
In	2011,	Joshua	Corman,	David	Rice,	and	Jeff	Williams	examined	the	apparent
futility	of	securing	applications	and	environments	late	in	the	life	cycle.	In
response,	they	created	a	philosophy	called	“Rugged	Computing,”	which	attempts
to	frame	the	non-functional	requirements	of	stability,	scalability,	availability,
survivability,	sustainability,	security,	supportability,	manageability,	and
defensibility.

Because	of	the	potential	for	high	release	rates,	DevOps	can	put	incredible
pressure	on	QA	and	Infosec,	because	when	deploy	rates	go	from	monthly	or
quarterly	to	hundreds	or	thousands	daily,	no	longer	are	two	week	turnaround
times	from	Infosec	or	QA	tenable.	The	Rugged	Computing	movement	posited
that	the	current	approach	to	fighting	the	vulnerable	industrial	complex	being
employed	by	most	information	security	programs	is	hopeless.

APPENDIX	2		THEORY	OF	CONSTRAINTS	AND
CORE,	CHRONIC	CONFLICTS

The	Theory	of	Constraints	body	of	knowledge	extensively	discusses	the	use	of
creating	core	conflict	clouds	(often	referred	to	as	“C3”).	Here	is	the	conflict
cloud	for	IT:

Figure	46:	The	core,	chronic	conflict	facing	every	IT	organization

During	the	1980s,	there	was	a	very	well-known	core,	chronic	conflict	in
manufacturing.	Every	plant	manager	had	two	valid	business	goals:	protect	sales
and	reduce	costs.	The	problem	was	that	in	order	to	protect	sales,	sales
management	was	incentivized	to	increase	inventory	to	ensure	that	it	was	always
possible	to	fulfill	customer	demand.

On	the	other	hand,	in	order	to	reduce	cost,	production	management	was
incentivized	to	decrease	inventory	to	ensure	that	money	was	not	tied	up	in	work
in	progress	that	wasn’t	immediately	shippable	to	the	customer	in	the	form	of
fulfilled	sales.

They	were	able	to	break	the	conflict	by	adopting	Lean	principles,	such	as
reducing	batch	sizes,	reducing	work	in	process,	and	shortening	and	amplifying
feedback	loops.	This	resulted	in	dramatic	increases	in	plant	productivity,	product
quality,	and	customer	satisfaction.

The	principles	behind	DevOps	work	patterns	are	the	same	as	those	that
transformed	manufacturing,	allowing	us	to	optimize	the	IT	value	stream,
converting	business	needs	into	capabilities	and	services	that	provide	value	for
our	customers.

APPENDIX	3		TABULAR	FORM	OF	DOWNWARD
SPIRAL

The	columnar	form	of	the	downward	spiral	depicted	in	The	Phoenix	Project	is
shown	below:

Table	4:	The	Downward	Spiral

APPENDIX	4		THE	DANGERS	OF	HANDOFFS
AND	QUEUES

The	problem	with	high	amounts	of	queue	time	is	exacerbated	when	there	are
many	handoffs,	because	that	is	where	queues	are	created.	Figure	47	shows	wait
time	as	a	function	of	how	busy	a	resource	at	a	work	center	is.	The	asymptotic
curve	shows	why	a	“simple	thirty-minute	change”	often	takes	weeks	to	complete
—specific	engineers	and	work	centers	often	become	problematic	bottlenecks

when	they	operate	at	high	utilization.	As	a	work	center	approaches	100%
utilization,	any	work	required	from	it	will	languish	in	queues	and	won’t	be
worked	on	without	someone	expediting/escalating.

Figure	47:	Queue	size	and	wait	times	as	function	of	percent	utilization	(Source:	Kim,
Behr,	and	Spafford,	The	Phoenix	Project,	ePub	edition,	557.)

In	figure	47,	the	x-axis	is	the	percent	busy	for	a	given	resource	at	a	work	center,
and	the	y-axis	is	the	approximate	wait	time	(or,	more	precisely	stated,	the	queue
length).	What	the	shape	of	the	line	shows	is	that	as	resource	utilization	goes	past
80%,	wait	time	goes	through	the	roof.

In	The	Phoenix	Project,	here’s	how	Bill	and	his	team	realized	the	devastating
consequences	of	this	property	on	lead	times	for	the	commitments	they	were
making	to	the	project	management	office:

I	tell	them	about	what	Erik	told	me	at	MRP-8,	about	how	wait	times	depend
upon	resource	utilization.	“The	wait	time	is	the	‘percentage	of	time	busy’
divided	by	the	‘percentage	of	time	idle.’	In	other	words,	if	a	resource	is	fifty

percent	busy,	then	it’s	fifty	percent	idle.	The	wait	time	is	fifty	percent
divided	by	fifty	percent,	so	one	unit	of	time.	Let’s	call	it	one	hour.

So,	on	average,	our	task	would	wait	in	the	queue	for	one	hour	before	it	gets
worked.

“On	the	other	hand,	if	a	resource	is	ninety	percent	busy,	the	wait	time	is
‘ninety	percent	divided	by	ten	percent,’	or	nine	hours.	In	other	words,	our
task	would	wait	in	queue	nine	times	longer	than	if	the	resource	were	fifty
percent	idle.”

I	conclude,	“So…For	the	Phoenix	task,	assuming	we	have	seven	handoffs,
and	that	each	of	those	resources	is	busy	ninety	percent	of	the	time,	the	tasks
would	spend	in	queue	a	total	of	nine	hours	times	the	seven	steps…”

“What?	Sixty-three	hours,	just	in	queue	time?”	Wes	says,	incredulously.
“That’s	impossible!”

Patty	says	with	a	smirk,	“Oh,	of	course.	Because	it’s	only	thirty	seconds	of
typing,	right?”

Bill	and	team	realize	that	their	“simple	thirty-minute	task”	actually	requires
seven	handoffs	(e.g.,	server	team,	networking	team,	database	team,	virtualization
team,	and,	of	course,	Brent,	the	“rockstar”	engineer).

Assuming	that	all	work	centers	were	90%	busy,	the	figure	shows	us	that	the
average	wait	time	at	each	work	center	is	nine	hours—and	because	the	work	had
to	go	through	seven	work	centers,	the	total	wait	time	is	seven	times	that:	sixty-
three	hours.

In	other	words,	the	total	%	of	value	added	time	(sometimes	known	as	process
time)	was	only	0.16%	of	the	total	lead	time	(thirty	minutes	divided	by	sixty-three

hours).	That	means	that	for	99.8%	of	our	total	lead	time,	the	work	was	simply
sitting	in	queue,	waiting	to	be	worked	on.

APPENDIX	5		MYTHS	OF	INDUSTRIAL	SAFETY

Decades	of	research	into	complex	systems	shows	that	countermeasures	are	based
on	several	myths.	In	“Some	Myths	about	Industrial	Safety,”	by	Denis	Besnard
and	Erik	Hollnagel,	they	are	summarized	as	such:

Myth	1:	“Human	error	is	the	largest	single	cause	of	accidents	and	incidents.”

Myth	2:	“Systems	will	be	safe	if	people	comply	with	the	procedures	they
have	been	given.”

Myth	3:	“Safety	can	be	improved	by	barriers	and	protection;	more	layers	of
protection	results	in	higher	safety.”

Myth	4:	“Accident	analysis	can	identify	the	root	cause	(the	‘truth’)	of	why
the	accident	happened.”

Myth	5:	“Accident	investigation	is	the	logical	and	rational	identification	of
causes	based	on	facts.”

Myth	6:	“Safety	always	has	the	highest	priority	and	will	never	be
compromised.”

The	differences	between	what	is	myth	and	what	is	true	are	shown	below:

Table	5:	Two	Stories

APPENDIX	6		THE	TOYOTA	ANDON	CORD

Many	ask	how	can	any	work	be	completed	if	the	Andon	cord	is	being	pulled
over	five	thousand	times	per	day?	To	be	precise,	not	every	Andon	cord	pull
results	in	stopping	the	entire	assembly	line.	Rather,	when	the	Andon	cord	is
pulled,	the	team	leader	overseeing	the	specified	work	center	has	fifty	seconds	to
resolve	the	problem.	If	the	problem	has	not	been	resolved	by	the	time	the	fifty
seconds	is	up,	the	partially	assembled	vehicle	will	cross	a	physically	drawn	line
on	the	floor,	and	the	assembly	line	will	be	stopped.

Figure	48:	The	Toyota	Andon	cord

APPENDIX	7		COTS	SOFTWARE

Currently,	in	order	to	get	complex	COTS	(commercial	off-the-shelf)	software
(e.g.,	SAP,	IBM	WebSphere,	Oracle	WebLogic)	into	version	control,	we	may
have	to	eliminate	the	use	of	graphical	point-and-click	vendor	installer	tools.	To
do	that,	we	need	to	discover	what	the	vendor	installer	is	doing,	and	we	may	need
to	do	an	install	on	a	clean	server	image,	diff	the	file	system,	and	put	those	added
files	into	version	control.	Files	that	don’t	vary	by	environment	are	put	into	one
place	(“base	install”),	while	environment-specific	files	are	put	into	their	own
directory	(“test”	or	“production”).	By	doing	this,	software	install	operations

become	merely	a	version	control	operation,	enabling	better	visibility,
repeatability,	and	speed.

We	may	also	have	to	transform	any	application	configuration	settings	so	that
they	are	in	version	control.	For	instance,	we	may	transform	application
configurations	that	are	stored	in	a	database	into	XML	files	and	vice	versa.

APPENDIX	8		POST-MORTEM	MEETINGS

A	sample	agenda	of	the	post-mortem	meeting	is	shown	below:

An	initial	statement	will	be	made	by	the	meeting	leader	or	facilitator	to
reinforce	that	this	meeting	is	a	blameless	post-mortem	and	that	we	will	not
focus	on	past	events	or	speculate	on	“would	haves”	or	“could	haves.”
Facilitators	might	read	the	“Retrospective	Prime	Directive”	from	the	website
Retrospective.com.

Furthermore,	the	facilitator	will	remind	everyone	that	any	countermeasures
must	be	assigned	to	someone,	and	if	the	corrective	action	does	not	warrant
being	a	top	priority	when	the	meeting	is	over,	then	it	is	not	a	corrective
action.	(This	is	to	prevent	the	meeting	from	generating	a	list	of	good	ideas
that	are	never	implemented.)

Those	at	the	meeting	will	reach	an	agreement	on	the	complete	timeline	of	the
incident,	including	when	and	who	detected	the	issue,	how	it	was	discovered
(e.g.,	automated	monitoring,	manual	detection,	customer	notified	us),	when
service	was	satisfactorily	restored,	and	so	forth.	We	will	also	integrate	into
the	timeline	all	external	communications	during	the	incident.	

When	we	use	the	word	“timeline,”	it	may	evoke	the	image	of	a	linear	set	of
steps	of	how	we	gained	an	understanding	of	the	problem	and	eventually	fixed
it.	In	reality,	especially	in	complex	systems,	there	will	likely	be	many	events
that	contributed	to	the	accident,	and	many	troubleshooting	paths	and	actions
will	have	been	taken	in	an	effort	to	fix	it.	In	this	activity,	we	seek	to	chronicle
all	of	these	events	and	the	perspectives	of	the	actors	and	establish	hypotheses
concerning	cause	and	effect	where	possible.

The	team	will	create	a	list	of	all	the	factors	which	contributed	to	the	incident,
both	human	and	technical.	They	may	then	sort	them	into	categories,	such	as
‘design	decision,’	‘remediation,’	‘discovering	there	was	a	problem,’	and	so
forth.	The	team	will	use	techniques	such	as	brainstorming	and	the	‘infinite
hows’	to	drill	down	on	contributing	factors	they	deem	particularly	important
to	discover	deeper	levels	of	contributing	factors.	All	perspectives	should	be
included	and	respected—nobody	should	be	permitted	to	argue	with	or	deny
the	reality	of	a	contributing	factor	somebody	else	has	identified.	It’s
important	for	the	post-mortem	facilitator	to	ensure	that	sufficient	time	is
spent	on	this	activity,	and	that	the	team	doesn’t	try	and	engage	in	convergent
behavior	such	as	trying	to	identify	one	or	more	‘root	causes.’

Those	at	the	meeting	will	reach	an	agreement	on	the	list	of	corrective	actions
that	will	be	made	top	priorities	after	the	meeting.	Assembling	this	list	will
require	brainstorming	and	choosing	the	best	potential	actions	to	either
prevent	the	issue	from	occurring	or	enable	faster	detection	or	recovery.	Other
ways	to	improve	the	systems	may	also	be	included.	

Our	goal	is	to	identify	the	smallest	number	of	incremental	steps	to	achieve
the	desired	outcomes,	as	opposed	to	“big	bang”	changes,	which	not	only	take
longer	to	implement,	but	delay	the	improvements	we	need.	

We	will	also	generate	a	separate	list	of	lower	priority	ideas	and	assign	an
owner.	If	similar	problems	occur	in	the	future,	these	ideas	may	serve	as	the
foundation	for	crafting	future	countermeasures.

Those	at	the	meeting	will	reach	an	agreement	on	the	incident	metrics	and
their	organizational	impact.	For	example,	we	may	choose	to	measure	our
incidents	by	the	following	metrics:

▹			Event	severity:	How	severe	was	this	issue?	This	directly	relates	to
the	impact	on	the	service	and	our	customers.

▹			Total	downtime:	How	long	were	customers	unable	to	use	the
service	to	any	degree?

▹			Time	to	detect:	How	long	did	it	take	for	us	or	our	systems	to	know
there	was	a	problem?

▹			Time	to	resolve:	How	long	after	we	knew	there	was	a	problem	did
it	take	for	us	to	restore	service?

Bethany	Macri	from	Etsy	observed,	“Blamelessness	in	a	post-mortem	does	not
mean	that	no	one	takes	responsibility.	It	means	that	we	want	to	find	out	what	the
circumstances	were	that	allowed	the	person	making	the	change	or	who
introduced	the	problem	to	do	this.	What	was	the	larger	environment….	The	idea
is	that	by	removing	blame,	you	remove	fear,	and	by	removing	fear,	you	get
honesty.”

APPENDIX	9		THE	SIMIAN	ARMY

After	the	2011	AWS	EAST	Outage,	Netflix	had	numerous	discussions	about
engineering	their	systems	to	automatically	deal	with	failure.	These	discussions

have	evolved	into	a	service	called	“Chaos	Monkey.”

Since	then,	Chaos	Monkey	has	evolved	into	a	whole	family	of	tools,	known
internally	as	the	“Netflix	Simian	Army,”	to	simulate	increasingly	catastrophic
levels	of	failures:

Chaos	Gorilla:	simulates	the	failure	of	an	entire	AWS	availability	zone

Chaos	Kong:	simulates	failure	of	entire	AWS	regions,	such	as	North
America	or	Europe

Other	member	of	the	Simian	Army	now	include:

Latency	Monkey:	induces	artificial	delays	or	downtime	in	their	RESTful
client-server	communication	layer	to	simulate	service	degradation	and	ensure
that	dependent	services	respond	appropriately

Conformity	Monkey:	finds	and	shuts	down	AWS	instances	that	don’t
adhere	to	best-practices	(e.g.,	when	instances	don’t	belong	to	an	auto-scaling
group	or	when	there	is	no	escalation	engineer	email	address	listed	in	the
service	catalog)

Doctor	Monkey:	taps	into	health	checks	that	run	on	each	instance	and	finds
unhealthy	instances	and	proactively	shuts	them	down	if	owners	don’t	fix	the
root	cause	in	time

Janitor	Monkey:	ensures	that	their	cloud	environment	is	running	free	of
clutter	and	waste;	searches	for	unused	resources	and	disposes	of	them

Security	Monkey:	an	extension	of	Conformity	Monkey;	finds	and
terminates	instances	with	security	violations	or	vulnerabilities,	such	as
improperly	configured	AWS	security	groups

APPENDIX	10		TRANSPARENT	UPTIME

Lenny	Rachitsky	wrote	about	the	benefits	of	what	he	called	“transparent
uptime”:

1.	 Your	support	costs	go	down	as	your	users	are	able	to	self-identify	system
wide	problems	without	calling	or	emailing	your	support	department.	Users
will	no	longer	have	to	guess	whether	their	issues	are	local	or	global,	and	can
more	quickly	get	to	the	root	of	the	problem	before	complaining	to	you.

2.	 You	are	better	able	to	communicate	with	your	users	during	downtime	events,
taking	advantage	of	the	broadcast	nature	of	the	Internet	versus	the	one-to-one
nature	of	email	and	the	phone.	You	spend	less	time	communicating	the	same
thing	over	and	over	and	more	time	resolving	the	issue.

3.	 You	create	a	single	and	obvious	place	for	your	users	to	come	to	when	they
are	experiencing	downtime.	You	save	your	users’	time	currently	spent
searching	forums,	Twitter,	or	your	blog.

4.	 Trust	is	the	cornerstone	of	any	successful	SaaS	adoption.	Your	customers	are
betting	their	business	and	their	livelihoods	on	your	service	or	platform.	Both
current	and	prospective	customers	require	confidence	in	your	service.	Both
need	to	know	they	won’t	be	left	in	the	dark,	alone	and	uninformed,	when	you
run	into	trouble.	Real	time	insight	into	unexpected	events	is	the	best	way	to
build	this	trust.	Keeping	them	in	the	dark	and	alone	is	no	longer	an	option.

5.	 It’s	only	a	matter	of	time	before	every	serious	SaaS	provider	will	be	offering
a	public	health	dashboard.	Your	users	will	demand	it.

Additional	Resources

Many	of	the	common	problems	faced	by	IT	organizations	are	discussed	in
the	first	half	of	the	book	The	Phoenix	Project:	A	Novel	about	IT,	DevOps,
and	Helping	Your	Business	Win	by	Gene	Kim,	Kevin	Behr,	and	George
Spafford.

This	video	shows	a	speech	Paul	O’Neill	gave	on	his	tenure	as	CEO	of	Alcoa,
including	the	investigation	he	took	part	in	after	a	teenage	worker	was	killed
at	one	of	Alcoa’s	plants:	https://www.youtube.com/watch?v=tC2ucDs_XJY	.

For	more	on	value	stream	mapping,	see	Value	Stream	Mapping:	How	to
Visualize	Work	and	Align	Leadership	for	Organizational	Transformation	by
Karen	Martin	and	Mike	Osterling.

For	more	on	ORMs,	visit	Stack	Overflow:
http://stackoverflow.com/questions/1279613/what-is-an-orm-and-where-can-
i-learn-more-about-it	.

An	excellent	primer	on	many	agile	development	rituals	and	how	to	use	them
in	IT	Operations	work	can	be	found	in	a	series	of	posts	written	on	the	Agile
Admin	blog:	http://theagileadmin.com/2011/02/21/scrum-for-operations-
what-is-scrum/	.

For	more	information	on	architecting	for	fast	builds,	see	Daniel	Worthington-
Bodart’s	blog	post	“Crazy	Fast	Build	Times	(or	When	10	Seconds	Starts	to

https://www.youtube.com/watch?v=tC2ucDs_XJY
http://stackoverflow.com/questions/1279613/what-is-an-orm-and-where-can-i-learn-more-about-it
http://theagileadmin.com/2011/02/21/scrum-for-operations-what-is-scrum/

Make	You	Nervous)”:	http://dan.bodar.com/2012/02/28/crazy-fast-build-
times-or-when-10-seconds-starts-to-make-you-nervous/	.

For	more	details	on	performance	testing	at	Facebook,	along	with	some
detailed	information	on	Facebook’s	release	process,	check	out	Chuck	Rossi’s
presentation	“The	Facebook	Release	Process”:
http://www.infoq.com/presentations/Facebook-Release-Process	.

Many	more	variants	of	dark	launching	can	be	found	in	chapter	8	of	The
Practice	of	Cloud	System	Administration:	Designing	and	Operating	Large
Distributed	Systems,	Volume	2	by	Thomas	A.	Limoncelli,	Strata	R.	Chalup,
and	Christina	J.	Hogan.

There	is	an	excellent	technical	discussion	of	feature	toggles	here:
http://martinfowler.com/articles/feature-toggles.html	.

Releases	are	discussed	in	more	detail	in	The	Practice	of	Cloud	System
Administration:	Designing	and	Operating	Large	Distributed	Systems,
Volume	2	by	Thomas	A.	Limoncelli,	Strata	R.	Chalup,	and	Christina	J.
Hogan;	Continuous	Delivery:	Reliable	Software	Releases	Through	Build,
Test,	and	Deployment	Automation	by	Jez	Humble	and	David	Farley;	and
Release	It!	Design	and	Deploy	Production-Ready	Software	by	Michael	T.
Nygard.

A	description	of	the	circuit	breaker	pattern	can	be	found	here:
http://martinfowler.com/bliki/CircuitBreaker.html	.

For	more	on	the	cost	of	delay	see	The	Principles	of	Product	Development
Flow:	Second	Generation	Lean	Product	Development	by	Donald	G.
Reinertsen.

A	further	discussion	on	staying	ahead	of	failures	for	the	Amazon	S3	service

http://dan.bodar.com/2012/02/28/crazy-fast-build-times-or-when-10-seconds-starts-to-make-you-nervous/
http://www.infoq.com/presentations/Facebook-Release-Process
http://martinfowler.com/articles/feature-toggles.html
http://martinfowler.com/bliki/CircuitBreaker.html

can	be	found	here:	https://qconsf.com/sf2010/dl/qcon-sanfran-
2009/slides/JasonMcHugh_AmazonS3ArchitectingForResiliencyInTheFaceOfFailures.pdf
.

For	an	excellent	guide	on	conducting	user	research,	see	Lean	UX:	Applying
Lean	Principles	to	Improve	User	Experience	by	Jeff	Gothelf	and	Josh
Seiden.

Which	Test	Won?	is	a	site	that	displays	hundreds	of	real-life	A/B	tests	and
asks	the	viewer	to	guess	which	variant	performed	better,	reinforcing	the	key
that	unless	we	actually	test,	we’re	merely	guessing.	Visit	it	here:
http://whichtestwon.com/	.

A	list	of	architectural	patterns	can	be	found	in	Release	It!	Design	and	Deploy
Production-Ready	Software	by	Michael	T.	Nygard.

An	example	of	published	Chef	postmortem	meeting	notes	can	be	found	here:
https://www.chef.io/blog/2014/08/14/cookbook-dependency-api-postmortem/
.	A	video	of	the	meeting	can	be	found	here:
https://www.youtube.com/watch?v=Rmi1Tn5oWfI	.

A	current	schedule	of	upcoming	DevOpsDays	can	be	found	on	the
DevOpsDays	website:	http://www.devopsdays.org/	.	Instructions	on
organizing	a	new	DevOpsDays	can	be	found	on	the	DevOpsDay	Organizing
Guide	page:	http://www.devopsdays.org/pages/organizing/	.

More	on	using	tools	to	manage	secrets	can	be	found	in	Noah	Kantrowitz’s
post	“Secrets	Management	and	Chef”	on	his	blog:
https://coderanger.net/chef-secrets/	.

James	Wickett	and	Gareth	Rushgrove	have	put	all	their	examples	of	secure
pipelines	on	the	GitHub	website:	https://github.com/secure-pipeline	.

https://qconsf.com/sf2010/dl/qcon-sanfran-2009/slides/JasonMcHugh_AmazonS3ArchitectingForResiliencyInTheFaceOfFailures.pdf
http://whichtestwon.com/
https://www.chef.io/blog/2014/08/14/cookbook-dependency-api-postmortem/
https://www.youtube.com/watch?v=Rmi1Tn5oWfI
http://www.devopsdays.org/
http://www.devopsdays.org/pages/organizing/
https://coderanger.net/chef-secrets/
https://github.com/secure-pipeline

The	National	Vulnerability	Database	website	and	XML	data	feeds	can	be
found	at:	https://nvd.nist.gov/	.

A	concrete	scenario	involving	integration	between	Puppet	and
ThoughtWorks’	Go	and	Mingle	(a	project	management	application)	can	be
found	in	a	Puppet	Labs	blog	post	by	Andrew	Cunningham	and	Andrew
Myers	and	edited	by	Jez	Humble:	https://puppetlabs.com/blog/a-deployment-
pipeline-for-infrastructure	.

Preparing	and	passing	compliance	audits	is	further	explored	in	Jason	Chan’s
2015	presentation	“SEC310:	Splitting	the	Check	on	Compliance	and
Security:	Keeping	Developers	and	Auditors	Happy	in	the	Cloud”:
https://www.youtube.com/watch?v=Io00_K4v12Y&feature=youtu.be	.

The	story	of	how	application	configuration	settings	were	transformed	by	Jez
Humble	and	David	Farley	for	Oracle	WebLogic	was	described	in	the	book
Continuous	Delivery:	Reliable	Software	Releases	Through	Build,	Test,	and
Deployment	Automation.	Mirco	Hering	described	a	more	generic	approach	to
this	process	here:	http://notafactoryanymore.com/2015/10/19/devops-for-
systems-of-record-a-new-hope-preview-of-does-talk/	.

A	sample	list	of	DevOps	operational	requirements	can	be	found	here:
http://blog.devopsguys.com/2013/12/19/the-top-ten-devops-operational-
requirements/	.

https://nvd.nist.gov/
https://puppetlabs.com/blog/a-deployment-pipeline-for-infrastructure
https://www.youtube.com/watch?v=Io00_K4v12Y&feature=youtu.be
http://notafactoryanymore.com/2015/10/19/devops-for-systems-of-record-a-new-hope-preview-of-does-talk/
http://blog.devopsguys.com/2013/12/19/the-top-ten-devops-operational-requirements/

Endnotes

INTRODUCTION

Before	the	revolution…	Eliyahu	M.	Goldratt,	Beyond	the	Goal:	Eliyahu	Goldratt
Speaks	on	the	Theory	of	Constraints	(Your	Coach	in	a	Box)	(Prince	Frederick,
Maryland:	Gildan	Media,	2005),	Audiobook.

Put	even	more…	Jeff	Immelt,	“GE	CEO	Jeff	Immelt:	Let’s	Finally	End	the
Debate	over	Whether	We	Are	in	a	Tech	Bubble,”	Business	Insider,	December	9,
2015,	http://www.businessinsider.com/ceo-of-ge-lets-finally-end-the-debate-
over-whether-we-are-in-a-tech-bubble-2015-12	.

Or	as	Jeffrey…	“Weekly	Top	10:	Your	DevOps	Flavor,”	Electric	Cloud,	April
1,	2016,	http://electric-cloud.com/blog/2016/04/weekly-top-10-devops-flavor/	.

Dr.	Eliyahu	M.	Goldratt…	Goldratt,	Beyond	the	Goal.

As	Christopher	Little…	Christopher	Little,	personal	correspondence	with	Gene
Kim,	2010.

As	Steven	J.	Spear…	Steven	J.	Spear,	The	High-Velocity	Edge:	How	Market
Leaders	Leverage	Operational	Excellence	to	Beat	the	Competition	(New	York,
NY:	McGraw	Hill	Education),	Kindle	edition,	chap.	3.

In	2013,	the…	Chris	Skinner,	“Banks	have	bigger	development	shops	than
Microsoft,”	Chris	Skinner’s	Blog,	accessed	July	28,	2016,

http://www.businessinsider.com/ceo-of-ge-lets-finally-end-the-debate-over-whether-we-are-in-a-tech-bubble-2015-12
http://electric-cloud.com/blog/2016/04/weekly-top-10-devops-flavor/

http://thefinanser.com/2011/09/banks-have-bigger-development-shops-than-
microsoft.html/	.

Projects	are	typically…	Nico	Stehr	and	Reiner	Grundmann,	Knowledge:	Critical
Concepts,	Volume	3	(London:	Routledge,	2005),	139.

Dr.	Vernon	Richardson…	A.	Masli,	V.	Richardson,	M.	Widenmier,	and	R.
Zmud,	“Senior	Executive’s	IT	Management	Responsibilities:	Serious	IT
Deficiencies	and	CEO-CFO	Turnover,”	MIS	Quaterly	(published	electronically
June	21,	2016).

Consider	the	following…	“IDC	Forecasts	Worldwide	IT	Spending	to	Grow	6%
in	2012,	Despite	Economic	Uncertainty,”	Business	Wire,	September	10,	2012,
http://www.businesswire.com/news/home/20120910005280/en/IDC-Forecasts-
Worldwide-Spending-Grow-6-2012	.

The	first	surprise…	Nigel	Kersten,	IT	Revolution,	and	PwC,	2015	State	of
DevOps	Report	(Portland,	OR:	Puppet	Labs,	2015),
https://puppet.com/resources/white-paper/2015-state-of-devops-report?
_ga=1.6612658.168869.1464412647&link=blog	.

This	is	highlighted…	Frederick	P.	Brooks,	Jr.,	The	Mythical	Man-Month:	Essays
on	Software	Engineering,	Anniversary	Edition	(Upper	Saddle	River,	NJ:
Addison-Wesley,	1995).

As	Randy	Shoup…	Gene	Kim,	Gary	Gruver,	Randy	Shoup,	and	Andrew	Phillips,
“Exploring	the	Uncharted	Territory	of	Microservices,”	XebiaLabs.com,	webinar,
February	20,	2015,	https://xebialabs.com/community/webinars/exploring-the-
uncharted-territory-of-microservices/	.

The	2015	State…	Kersten,	IT	Revolution,	and	PwC,	2015	State	of	DevOps
Report.

http://thefinanser.com/2011/09/banks-have-bigger-development-shops-than-microsoft.html/
http://www.businesswire.com/news/home/20120910005280/en/IDC-Forecasts-Worldwide-Spending-Grow-6-2012
https://puppet.com/resources/white-paper/2015-state-of-devops-report?_ga=1.6612658.168869.1464412647&link=blog
https://xebialabs.com/community/webinars/exploring-the-uncharted-territory-of-microservices/

Another	more	extreme…	“Velocity	2011:	Jon	Jenkins,	‘Velocity	Culture’,”
YouTube	video,	15:13,	posted	by	O’Reilly,	June	20,	2011,
https://www.youtube.com/watch?v=dxk8b9rSKOo	;	“Transforming	Software
Development,”	YouTube	video,	40:57,	posted	by	Amazon	Web	Service,	April
10,	2015,	https://www.youtube.com/watch?v=YCrhemssYuI&feature=youtu.be	.

Later	in	his…	Eliyahu	M.	Goldratt,	Beyond	the	Goal.

As	with	The…	JGFLL,	review	of	The	Phoenix	Project:	A	Novel	About	IT,
DevOps,	and	Helping	Your	Business	Win,	by	Gene	Kim,	Kevin	Behr,	and
George	Spafford,	Amazon.com	review,	March	4,	2013,
http://www.amazon.com/review/R1KSSPTEGLWJ23	;	Mark	L	Townsend,
review	of	The	Phoenix	Project:	A	Novel	About	IT,	DevOps,	and	Helping	Your
Business	Win,	by	Gene	Kim,	Kevin	Behr,	and	George	Spafford,	Amazon.com
review,	March	2,	2013,	http://uedata.amazon.com/gp/customer-
reviews/R1097DFODM12VD/ref=cm_cr_getr_d_rvw_ttl?
ie=UTF8&ASIN=B00VATFAMI	;	Scott	Van	Den	Elzen,	review	of	The	Phoenix
Project:	A	Novel	About	IT,	DevOps,	and	Helping	Your	Business	Win,	by	Gene
Kim,	Kevin	Behr,	and	George	Spafford,	Amazon.com	review,	March	13,	2013,
http://uedata.amazon.com/gp/customer-
reviews/R2K95XEH5OL3Q5/ref=cm_cr_getr_d_rvw_ttl?
ie=UTF8&ASIN=B00VATFAMI	.

PART	I	INTRODUCTION

One	key	principle…	Kent	Beck,	et	al.,	“Twelve	Principles	of	Agile	Software,”
AgileManifesto.org,	2001,	http://agilemanifesto.org/principles.html	.

He	concluded	that…	Mike	Rother,	Toyota	Kata:	Managing	People	for
Improvement,	Adaptiveness	and	Superior	Results	(New	York:	McGraw	Hill,

https://www.youtube.com/watch?v=dxk8b9rSKOo
https://www.youtube.com/watch?v=YCrhemssYuI&feature=youtu.be
http://www.amazon.com/review/R1KSSPTEGLWJ23
http://uedata.amazon.com/gp/customer-reviews/R1097DFODM12VD/ref=cm_cr_getr_d_rvw_ttl?ie=UTF8&ASIN=B00VATFAMI
http://uedata.amazon.com/gp/customer-reviews/R2K95XEH5OL3Q5/ref=cm_cr_getr_d_rvw_ttl?ie=UTF8&ASIN=B00VATFAMI
http://agilemanifesto.org/principles.html

2010),	Kindle	edition,	Part	III.

CHAPTER	1

Karen	Martin	and…	Karen	Martin	and	Mike	Osterling,	Value	Stream	Mapping:
How	to	Visualize	Work	and	Align	Leadership	for	Organizational	Transformation
(New	York:	McGraw	Hill,	2013),	Kindle	edition,	chap	1.

In	this	book…	Ibid.,	chap.	3.

Karen	Martin	and…	Ibid.

CHAPTER	2

Studies	have	shown…	Joshua	S.	Rubinstein,	David	E.	Meyer,	and	Jeffrey	E.
Evans,	“Executive	Control	of	Cognitive	Processes	in	Task	Switching,”	Journal
of	Experimental	Psychology:	Human	Perception	and	Performance	27,	no.	4
(2001):	763-797,	doi:	10.1037//0096-1523.27.4.763,
http://www.umich.edu/~bcalab/documents/RubinsteinMeyerEvans2001.pdf	.

Dominica	DeGrandis,	one…	“DOES15—Dominica	DeGrandis—The	Shape	of
Uncertainty,”	YouTube	video,	22:54,	posted	by	DevOps	Enterprise	Summit,
November	5,	2015,	https://www.youtube.com/watch?v=Gp05i0d34gg	.

Taiichi	Ohno	compared…	Sami	Bahri,	“Few	Patients-In-Process	and	Less
Safety	Scheduling;	Incoming	Supplies	are	Secondary,”	The	Deming	Institute
Blog,	August	22,	2013,	https://blog.deming.org/2013/08/fewer-patients-in-
process-and-less-safety-scheduling-incoming-supplies-are-secondary/	.

In	other	words…	Meeting	between	David	J.	Andersen	and	team	at	Motorola
with	Daniel	S.	Vacanti,	February	24,	2004;	story	retold	at	USC	CSSE	Research

http://www.umich.edu/~bcalab/documents/RubinsteinMeyerEvans2001.pdf
https://www.youtube.com/watch?v=Gp05i0d34gg
https://blog.deming.org/2013/08/fewer-patients-in-process-and-less-safety-scheduling-incoming-supplies-are-secondary/

Review	with	Barry	Boehm	in	March	2004.

The	dramatic	differences…	James	P.	Womack	and	Daniel	T.	Jones,	Lean
Thinking:	Banish	Waste	and	Create	Wealth	in	Your	Corporation	(New	York:
Free	Press,	2010),	Kindle	edition,	chap.	1.

There	are	many…	Eric	Ries,	“Work	in	small	batches,”
StartupLessonsLearned.com,	February	20,	2009,
http://www.startuplessonslearned.com/2009/02/work-in-small-batches.html	.

In	Beyond	the…	Goldratt,	Beyond	the	Goal.

As	a	solution…	Eliyahu	M.	Goldratt,	The	Goal:	A	Process	of	Ongoing
Improvement	(Great	Barrington,	MA:	North	River	Press,	2014),	Kindle	edition,
“Five	Focusing	Steps.”

Shigeo	Shingo,	one…	Shigeo	Shingo,	A	Study	of	the	Toyota	Production	System:
From	an	Industrial	Engineering	Viewpoint	(London:	Productivity	Press,	1989);
“The	7	Wastes	(Seven	forms	of	Muda),”	BeyondLean.com,	accessed	July	28,
2016,	http://www.beyondlean.com/7-wastes.html	.

In	the	book…	Mary	Poppendieck	and	Tom	Poppendieck,	Implementing	Lean
Software:	From	Concept	to	Cash,	(Upper	Saddle	River,	NJ:	Addison-Wesley,
2007),	74.

The	following	categories…	Adapted	from	Damon	Edwards,	“DevOps	Kaizen:
Find	and	Fix	What	Is	Really	Behind	Your	Problems,”	Slideshare.net,	posted	by
dev2ops,	May	4,	2015,	http://www.slideshare.net/dev2ops/dev-ops-kaizen-
damon-edwards	.

CHAPTER	3

http://www.startuplessonslearned.com/2009/02/work-in-small-batches.html
http://www.beyondlean.com/7-wastes.html
http://www.slideshare.net/dev2ops/dev-ops-kaizen-damon-edwards

Dr.	Charles	Perrow…	Charles	Perrow,	Normal	Accidents:	Living	with	High	Risk
Technologies	(Princeton,	NJ:	Princeton	University	Press,	1999).

Dr.	Sidney	Dekker…	Dr.	Sidney	Dekker,	The	Field	Guide	to	Understanding
Human	Error	(Lund	University,	Sweden:	Ashgate,	2006).

After	he	decoded…	Spear,	The	High-Velocity	Edge,	chap.	8.

Dr.	Spear	extended…	Ibid.

Dr.	Peter	Senge…	Peter	M.	Senge,	The	Fifth	Discipline:	The	Art	&	Practice	of
the	Learning	Organization	(New	York:	Doubleday,	2006),	Kindle	edition,	chap.
5.

In	one	well-documented…	“NUMMI,”	This	American	Life,	March	26,	2010,
http://www.thisamericanlife.org/radio-archives/episode/403/transcript	.

As	Elisabeth	Hendrickson…	“DOES15	-	Elisabeth	Hendrickson	-	Its	All	About
Feedback,”	YouTube	video,	34:47,	posted	by	DevOps	Enterprise	Summit,
November	5,	2015,	https://www.youtube.com/watch?v=r2BFTXBundQ	.

“In	doing	so…	Spear,	The	High-Velocity	Edge,	chap.	1.

As	Dr.	Spear…	Ibid.,	chap.	4.

Examples	of	ineffective…	Jez	Humble,	Joanne	Molesky,	and	Barry	O’Reilly,
Lean	Enterprise:	How	High	Performance	Organizations	Innovate	at	Scale
(Sebastopol,	CA:	O’Reilly	Media,	2015),	Kindle	edition,	Part	IV.

In	the	1700s…	Dr.	Thomas	Sowell,	Knowledge	and	Decisions	(New	York:	Basic
Books,	1980),	222.

As	Gary	Gruver…	Gary	Gruver,	personal	correspondence	with	Gene	Kim,	2014.

http://www.thisamericanlife.org/radio-archives/episode/403/transcript
https://www.youtube.com/watch?v=r2BFTXBundQ

CHAPTER	4

For	instance,	in…	Paul	Adler,	“Time-and-Motion	Regained,”	Harvard	Business
Review,	January-February	1993,	https://hbr.org/1993/01/time-and-motion-
regained	.

The	“name,	blame…	Dekker,	The	Field	Guide	to	Understanding	Human	Error,
chap.	1.

Dr.	Sidney	Dekker…	“Just	Culture:	Balancing	Safety	and	Accountability,”	Lund
University,	Human	Factors	&	System	Safety	website,	November	6,	2015,
http://www.humanfactors.lth.se/sidney-dekker/books/just-culture/	.

He	observed	that…	Ron	Westrum,	“The	study	of	information	flow:	A	personal
journey,”	Proceedings	of	Safety	Science	67	(August	2014):	58-63,
https://www.researchgate.net/publication/261186680_
The_study_of_information_flow_A_personal_journey	.

Just	as	Dr.	Westrum…	Nicole	Forsgren	Velasquez,	Gene	Kim,	Nigel	Kersten,
and	Jez	Humble,	2014	State	of	DevOps	Report	(Portland,	OR:	Puppet	Labs,	IT
Revolution	Press,	and	ThoughtWorks,	2014),	http://puppetlabs.com/2014-
devops-report	.

As	Bethany	Macri…	Bethany	Macri,	“Morgue:	Helping	Better	Understand
Events	by	Building	a	Post	Mortem	Tool	-	Bethany	Macri,”	Vimeo	video,	33:34,
posted	by	info@devopsdays.org,	October	18,	2013,	http://vimeo.com/77206751	.

Dr.	Spear	observes…	Spear,	The	High-Velocity	Edge,	chap.	1.

In	The	Fifth…	Senge,	The	Fifth	Discipline,	chap.	1.

Mike	Rother	observed…	Mike	Rother,	Toyota	Kata,	12.

https://hbr.org/1993/01/time-and-motion-regained
http://www.humanfactors.lth.se/sidney-dekker/books/just-culture/
https://www.researchgate.net/publication/261186680_The_study_of_information_flow_A_personal_journey
http://puppetlabs.com/2014-devops-report
http://vimeo.com/77206751

This	is	why…	Mike	Orzen,	personal	correspondence	with	Gene	Kim,	2012.

Consider	the	following…	“Paul	O’Neill,”	Forbes,	October	11,	2001,
http://www.forbes.com/2001/10/16/poneill.html	.

In	1987,	Alcoa…	Spear,	The	High-Velocity	Edge,	chap.	4.

As	Dr.	Spear…	Ibid.

A	remarkable	example…	Ibid.,	chap.	5.

This	process	of…	Nassim	Nicholas	Taleb,	Antifragile:	Things	That	Gain	from
Disorder	(Incerto),	(New	York:	Random	House,	2012).

According	to	Womack…	Jim	Womack,	Gemba	Walks	(Cambridge,	MA:	Lean
Enterprise	Institute,	2011),	Kindle	edition,	location	4113.

Mike	Rother	formalized…	Rother,	Toyota	Kata,	Part	IV.

Mike	Rother	observes…	Ibid.,	Conclusion.

CHAPTER	5

Therefore,	we	must…	Michael	Rembetsy	and	Patrick	McDonnell,	“Continuously
Deploying	Culture	[at	Etsy],”	Slideshare.net,	October	4,	2012,	posted	by	Patrick
McDonnel.bl,	http://www.slideshare.net/mcdonnps/continuously-deploying-
culture-scaling-culture-at-etsy-14588485	.

In	2015,	Nordstrom…	“Nordstrom,	Inc.,”	company	profile	on	Vault.com,
http://www.vault.com/company-profiles/retail/nordstrom,-inc/company-
overview.aspx	.

http://www.forbes.com/2001/10/16/poneill.html
http://www.slideshare.net/mcdonnps/continuously-deploying-culture-scaling-culture-at-etsy-14588485
http://www.vault.com/company-profiles/retail/nordstrom,-inc/company-overview.aspx

The	stage	for…	Courtney	Kissler,	“DOES14	-	Courtney	Kissler	-	Nordstrom	-
Transforming	to	a	Culture	of	Continuous	Improvement,”	YouTube	video,	29:59,
posted	by	DevOps	Enterprise	Summit	2014,	October	29,	2014,
https://www.youtube.com/watch?v=0ZAcsrZBSlo	.

These	organizations	were…	Tom	Gardner,	“Barnes	&	Noble,	Blockbuster,
Borders:	The	Killer	B’s	Are	Dying,”	The	Motley	Fool,	July	21,	2010,
http://www.fool.com/investing/general/2010/07/21/barnes-noble-blockbuster-
borders-the-killer-bs-are.aspx	.

As	Kissler	described…	Kissler,	“DOES14	-	Courtney	Kissler	-	Nordstrom.”

As	Kissler	said…	Ibid;	Alterations	to	quote	made	by	Courtney	Kissler	via
personal	correspondence	with	Gene	Kim,	2016.

As	Kissler	stated…	Ibid;	Alterations	to	quote	made	by	Courtney	Kissler	via
personal	correspondence	with	Gene	Kim,	2016.

In	2015,	Kissler…	Ibid.

She	continued,	“This…	Ibid.

Kissler	concluded,	“From…	Ibid.

An	example	of…	Ernest	Mueller,	“Business	model	driven	cloud	adoption:	what
NI	Is	doing	in	the	cloud,”	Slideshare.net,	June	28,	2011,	posted	by	Ernest
Mueller,	http://www.slideshare.net/mxyzplk/business-model-driven-cloud-
adoption-what-ni-is-doing-in-the-cloud	.

Although	many	believe…	Unpublished	calculation	by	Gene	Kim	after	the	2014
DevOps	Enterprise	Summit.

https://www.youtube.com/watch?v=0ZAcsrZBSlo
http://www.fool.com/investing/general/2010/07/21/barnes-noble-blockbuster-borders-the-killer-bs-are.aspx
http://www.slideshare.net/mxyzplk/business-model-driven-cloud-adoption-what-ni-is-doing-in-the-cloud

Indeed,	one	of…	Kersten,	IT	Revolution,	and	PwC,	2015	State	of	DevOps
Report.

CSG	(2013):	In…	Prugh,	“DOES14:	Scott	Prugh,	CSG	-	DevOps	and	Lean	in
Legacy	Environments,”	Slideshare.net,	November	14,	2014,	posted	by	DevOps
Enterprise	Summit,	http://www.slideshare.net/DevOpsEnterpriseSummit/scott-
prugh	.

Etsy	(2009):	In…	Rembetsy	and	McDonnell,	“Continuously	Deploying	Culture
[at	Etsy].”

The	Gartner	research…	Bernard	Golden,	“What	Gartner’s	Bimodal	IT	Model
Means	to	Enterprise	CIOs,”	CIO	Magazine,	January	27,	2015,
http://www.cio.com/article/2875803/cio-role/what-gartner-s-bimodal-it-model-
means-to-enterprise-cios.html	.

Systems	of	record…	Ibid.

Systems	of	engagement…	Ibid.

The	data	from…	Kersten,	IT	Revolution,	and	PwC,	2015	State	of	DevOps
Report.

Scott	Prugh,	VP…	Scott	Prugh,	personal	correspondence	with	Gene	Kim,	2014.

Geoffrey	A.	Moore…	Geoffrey	A.	Moore	and	Regis	McKenna,	Crossing	the
Chasm:	Marketing	and	Selling	High-Tech	Products	to	Mainstream	Customers
(New	York:	HarperCollins,	2009),	11.

Big	bang,	top-down…	Linda	Tucci,	“Four	Pillars	of	PayPal’s	‘Big	Bang’	Agile
Transformation,”	TechTarget,	August	2014,
http://searchcio.techtarget.com/feature/Four-pillars-of-PayPals-big-bang-Agile-
transformation	.

http://www.slideshare.net/DevOpsEnterpriseSummit/scott-prugh
http://www.cio.com/article/2875803/cio-role/what-gartner-s-bimodal-it-model-means-to-enterprise-cios.html
http://searchcio.techtarget.com/feature/Four-pillars-of-PayPals-big-bang-Agile-transformation

The	following	list…	“Creating	High	Velocity	Organizations,”	description	of
course	by	Roberto	Fernandez	and	Steve	Spear,	MIT	Sloan	Executive	Education
website,	accessed	May	30,	2016,
http://executive.mit.edu/openenrollment/program/organizational-development-
high-velocity-organizations	.

But	as	Ron	van	Kemenade…	Ron	Van	Kemande,	“Nothing	Beats	Engineering
Talent:	The	Agile	Transformation	at	ING,”	presentation	at	the	DevOps
Enterprise	Summit,	London,	UK,	June	30-July	1,	2016.

Peter	Drucker,	a…	Leigh	Buchanan,	“The	Wisdom	of	Peter	Drucker	from	A	to
Z,”	Inc.,	November	19,	2009,	http://www.inc.com/articles/2009/11/drucker.html
.

CHAPTER	6

Over	the	years…	Kissler,	“DOES14	-	Courtney	Kissler	-	Nordstrom.”

Kissler	explained:…	Ross	Clanton	and	Michael	Ducy,	interview	of	Courtney
Kissler	and	Jason	Josephy,	“Continuous	Improvement	at	Nordstrom,”	The	Goat
Farm,	podcast	audio,	June	25,	2015,	http://goatcan.do/2015/06/25/the-goat-
farm-episode-7-continuous-improvement-at-nordstrom/	.

She	said	proudly…	Ibid.

Technology	executives	or…	Brian	Maskell,	“What	Does	This	Guy	Do?	Role	of
Value	Stream	Manager,”	Maskell,	July	3,	2015,	http://blog.maskell.com/?
p=2106http://www.lean.org/common/display/?o=221	.

Damon	Edwards	observed…	Damon	Edwards,	“DevOps	Kaizen:	Find	and	Fix
What	Is	Really	Behind	Your	Problems,”	Slideshare.net,	posted	by	dev2ops,	May

http://executive.mit.edu/openenrollment/program/organizational-development-high-velocity-organizations
http://www.inc.com/articles/2009/11/drucker.html
http://goatcan.do/2015/06/25/the-goat-farm-episode-7-continuous-improvement-at-nordstrom/
http://blog.maskell.com/?p=2106http://www.lean.org/common/display/?o=221

4,	2015,	http://www.slideshare.net/dev2ops/dev-ops-kaizen-damon-edwards	.

In	their	book…	Vijay	Govindarajan	and	Chris	Trimble,	The	Other	Side	of
Innovation:	Solving	the	Execution	Challenge	(Boston,	MA:	Harvard	Business
Review,	2010)	Kindle	edition.

Based	on	their…	Ibid.,	Part	I.

After	the	near-death…	Marty	Cagan,	Inspired:	How	to	Create	Products
Customers	Love	(Saratoga,	CA:	SVPG	Press,	2008),	12.

Cagan	notes	that…	Ibid.

Six	months	after…	Ashlee	Vance,	“LinkedIn:	A	Story	About	Silicon	Valley’s
Possibly	Unhealthy	Need	for	Speed,”	Bloomberg,	April	30,	2013,
http://www.bloomberg.com/bw/articles/2013-04-29/linkedin-a-story-about-
silicon-valleys-possibly-unhealthy-need-for-speed	.

LinkedIn	was	created…	“LinkedIn	started	back	in	2003	—	LinkedIn	-	A	Brief
History,”	Slideshare.net,	posted	by	Josh	Clemm,	November	9,	2015,
http://www.slideshare.net/joshclemm/how-linkedin-scaleda-brief-history/3-
LinkedIn_started_back_in_2003	.

One	year	later…	Jonas	Klit	Nielsen,	“8	Years	with	LinkedIn	–	Looking	at	the
Growth	[Infographic],”	MindJumpers.com,	May	10,	2011,
http://www.mindjumpers.com/blog/2011/05/linkedin-growth-infographic/	.

By	November	2015…	“LinkedIn	started	back	in	2003,”	Slideshare.net.

The	problem	was…	“From	a	Monolith	to	Microservices	+	REST:	The	Evolution
of	LinkedIn’s	Architecture,”	Slideshare.net,	posted	by	Karan	Parikh,	November
6,	2014,http://www.slideshare.net/parikhk/restli-and-deco	.

http://www.slideshare.net/dev2ops/dev-ops-kaizen-damon-edwards
http://www.bloomberg.com/bw/articles/2013-04-29/linkedin-a-story-about-silicon-valleys-possibly-unhealthy-need-for-speed
http://www.slideshare.net/joshclemm/how-linkedin-scaled-a-brief-history/3-LinkedIn_started_back_in_2003
http://www.mindjumpers.com/blog/2011/05/linkedin-growth-infographic/
http://www.slideshare.net/parikhk/restli-and-deco

Josh	Clemm,	a…	“LinkedIn	started	back	in	2003,”	Slideshare.net.

In	2013,	journalist…	Vance,	“LinkedIn:	A	Story	About,”	Bloomberg.

Scott	launched	Operation…	“How	I	Structured	Engineering	Teams	at	LinkedIn
and	AdMob	for	Success,”	First	Round	Review,
2015,http://firstround.com/review/how-i-structured-engineering-teams-at-
linkedin-and-admob-for-success/	.

Scott	described	one…	Ashlee	Vance,	“Inside	Operation	InVersion,	the	Code
Freeze	that	Saved	LinkedIn,”	Bloomberg,	April	11,	2013,
http://www.bloomberg.com/news/articles/2013-04-10/inside-operation-
inversion-the-code-freeze-that-saved-linkedin	.

However,	Vance	described…	Vance,	“LinkedIn:	A	Story	About,”	Bloomberg.

As	Josh	Clemm…	“LinkedIn	started	back	in	2003,”	Slideshare.net.

Kevin	Scott	stated…	“How	I	Structured	Engineering	Teams,”	First	Round
Review.

As	Christopher	Little…	Christopher	Little,	personal	correspondence	with	Gene
Kim,	2011.

As	Ryan	Martens…	Ryan	Martens,	personal	correspondence	with	Gene	Kim,
2013.

CHAPTER	7

He	observed,	“After…	Dr.	Melvin	E.	Conway,	“How	Do	Committees	Invent?”
MelConway.com,	http://www.melconway.com/research/committees.html	,
previously	published	in	Datamation,	April	1968.

http://firstround.com/review/how-i-structured-engineering-teams-at-linkedin-and-admob-for-success/
http://www.bloomberg.com/news/articles/2013-04-10/inside-operation-inversion-the-code-freeze-that-saved-linkedin
http://www.melconway.com/research/committees.html

These	observations	led…	Ibid.

Eric	S.	Raymond,	author…	Eric	S.	Raymond,	“Conway’s	Law,”	catb.org,
accessed	May	31,	2016,	http://catb.org/~esr/jargon/	.

Etsy’s	DevOps	journey…	Sarah	Buhr,	“Etsy	Closes	Up	86	Percent	on	First	Day
of	Trading,”	Tech	Crunch,	April	16,	2015,
http://techcrunch.com/2015/04/16/etsy-stock-surges-86-percent-at-close-of-first-
day-of-trading-to-30-per-share/	.

As	Ross	Snyder…	“Scaling	Etsy:	What	Went	Wrong,	What	Went	Right,”
Slideshare.net,	posted	by	Ross	Snyder,	October	5,	2011,
http://www.slideshare.net/beamrider9/scaling-etsy-what-went-wrong-what-went-
right	.

As	Snyder	observed…	Ibid.

In	other	words…	Sean	Gallagher,	“When	‘Clever’	Goes	Wrong:	How	Etsy
Overcame	Poor	Architectural	Choices,”	Arstechnica,	October	3,	2011,
http://arstechnica.com/business/2011/10/when-clever-goes-wrong-how-etsy-
overcame-poor-architectural-choices/	.

Snyder	explained	that…	“Scaling	Etsy”	Slideshare.net.

Etsy	initially	had…	Ibid.

In	the	spring…	Ibid.

As	Snyder	described…	Ross	Snyder,	“Surge	2011—Scaling	Etsy:	What	Went
Wrong,	What	Went	Right,”	YouTube	video,	posted	by	Surge	Conference,
December	23,	2011,	https://www.youtube.com/watch?v=eenrfm50mXw	.

As	Snyder	said…	Ibid.

http://catb.org/~esr/jargon/
http://techcrunch.com/2015/04/16/etsy-stock-surges-86-percent-at-close-of-first-day-of-trading-to-30-per-share/
http://www.slideshare.net/beamrider9/scaling-etsy-what-went-wrong-what-went-right
http://arstechnica.com/business/2011/10/when-clever-goes-wrong-how-etsy-overcame-poor-architectural-choices/
https://www.youtube.com/watch?v=eenrfm50mXw

Sprouter	was	one…	“Continuously	Deploying	Culture:	Scaling	Culture	at	Etsy	-
Velocity	Europe	2012,”	Slideshare.net,	posted	by	Patrick	McDonnell,	October	4,
2012,	http://www.slideshare.net/mcdonnps/continuously-deploying-culture-
scaling-culture-at-etsy-14588485	.

They	are	defined…	“Creating	High	Velocity	Organizations,”	description	of
course	by	Roberto	Fernandez	and	Steven	Spear.

Adrian	Cockcroft	remarked…	Adrian	Cockcroft,	personal	correspondence	with
Gene	Kim,	2014.

In	the	Lean…	Spear,	The	High-Velocity	Edge,	chap.	8.

As	Mike	Rother…	Rother,	Toyota	Kata,	250.

Reflecting	on	shared…	“DOES15	-	Jody	Mulkey	-	DevOps	in	the	Enterprise:	A
Transformation	Journey,”	YouTube	video,	28:22,	posted	by	DevOps	Enterprise
Summit,	November	5,	2015,	https://www.youtube.com/watch?
v=USYrDaPEFtM	.

He	continued,	“The…	Ibid.

Pedro	Canahuati,	their…	Pedro	Canahuati,	“Growing	from	the	Few	to	the
Many:	Scaling	the	Operations	Organization	at	Facebook,”	InfoQ,	December	16,
2013,	http://www.infoq.com/presentations/scaling-operations-facebook	.

When	departments	over-specialize…	Spear,	The	High-Velocity	Edge,	chap.	1.

Scott	Prugh	writes…	Scott	Prugh,	“Continuous	Delivery,”	Scaled	Agile
Framework,	updated	February	14,	2013,
http://www.scaledagileframework.com/continuousdelivery/	.

“By	cross-training…	Ibid.

http://www.slideshare.net/mcdonnps/continuously-deploying-culture-scaling-culture-at-etsy-14588485
https://www.youtube.com/watch?v=USYrDaPEFtM
http://www.infoq.com/presentations/scaling-operations-facebook
http://www.scaledagileframework.com/continuous-delivery/

“Traditional	managers	will…	Ibid.

Furthermore,	as	Prugh…	Ibid.

When	we	value…	Dr.	Carol	Dweck,	“Carol	Dweck	Revisits	the	‘Growth
Mindset,’”	Education	Week,	September	22,	2015,
http://www.edweek.org/ew/articles/2015/09/23/carol-dweck-revisits-the-growth-
mindset.html	.

As	Jason	Cox…	Jason	Cox,	“Disney	DevOps:	To	Infinity	and	Beyond,”
presentation	at	DevOps	Enterprise	Summit	2014,	San	Francisco,	CA,	October
2014.

As	John	Lauderbach…	John	Lauderbach,	personal	conversation	with	Gene	Kim,
2001.

These	properties	are…	Tony	Mauro,	“Adopting	Microservices	at	Netflix:
Lessons	for	Architectural	Design,”	NGINX,	February	19,	2015,
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-
practices/	.;	Adam	Wiggins,	“The	Twelve-Factor	App,”	12Factor.net,	January
30,	2012,	http://12factor.net/	.

Randy	Shoup,	former…	“Exploring	the	Uncharted	Territory	of	Microservices,”
YouTube	video,	56:50,	posted	by	XebiaLabs,	Inc.,	February	20,	2015,
https://www.youtube.com/watch?v=MRa21icSIQk	.

As	part	of…	Humble,	O’Reilly,	and	Molesky,	Lean	Enterprise,	Part	III.

In	the	Netflix…	Reed	Hastings,	“Netflix	Culture:	Freedom	and	Responsibility,”
Slideshare.net,	August	1,	2009,	http://www.slideshare.net/reed2001/culture-
1798664	.

Amazon	CTO	Werner…	Larry	Dignan,	“Little	Things	Add	Up,”	Baseline,

http://www.edweek.org/ew/articles/2015/09/23/carol-dweck-revisits-the-growth-mindset.html
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
http://12factor.net/
https://www.youtube.com/watch?v=MRa21icSIQk
http://www.slideshare.net/reed2001/culture-1798664

October	19,	2005,	http://www.baselinemag.com/c/a/Projects-
Management/Profiles-Lessons-From-the-Leaders-in-the-iBaselinei500/3	.

Target	is	the…	Heather	Mickman	and	Ross	Clanton,	“DOES15	-	Heather
Mickman	&	Ross	Clanton	-	(Re)building	an	Engineering	Culture:	DevOps	at
Target,”	YouTube	video,	33:39,	posted	by	DevOps	Enterprise	Summit,
November	5,	2015,	https://www.youtube.com/watch?v=7s-VbB1fG5o	.

As	Mickman	described…	Ibid.

In	an	attempt…	Ibid.

Because	our	team…	Ibid.

In	the	following…	Ibid.

These	changes	have…	Ibid.

The	API	Enablement…	Ibid.

CHAPTER	8

At	Big	Fish…	“Big	Fish	Celebrates	11th	Consecutive	Year	of	Record	Growth,”
BigFishGames.com,	January	28,	2014,	http://pressroom.bigfishgames.com/2014-
01-28-Big-Fish-Celebrates-11th-Consecutive-Year-of-Record-Growth	.

He	observed	that…	Paul	Farrall,	personal	correspondence	with	Gene	Kim,
January	2015.

Farrall	defined	two…	Ibid.,	2014.

He	concludes,	“The…	Ibid.

http://www.baselinemag.com/c/a/Projects-Management/Profiles-Lessons-From-the-Leaders-in-the-iBaselinei500/3
https://www.youtube.com/watch?v=7s-VbB1fG5o
http://pressroom.bigfishgames.com/2014-01-28-Big-Fish-Celebrates-11th-Consecutive-Year-of-Record-Growth

Ernest	Mueller	observed…	Ernest	Mueller,	personal	correspondence	with	Gene
Kim,	2014.

As	Damon	Edwards…	Edwards,	“DevOps	Kaizen.”

Dianne	Marsh,	Director…	“Dianne	Marsh	‘Introducing	Change	while
Preserving	Engineering	Velocity,”	YouTube	video,	17:37,	posted	by	Flowcon,
November	11,	2014,	https://www.youtube.com/watch?v=eW3ZxY67fnc	.

Jason	Cox	said…	Jason	Cox,	“Disney	DevOps.”

At	Etsy,	this…	“devopsdays	Minneapolis	2015	-	Katherine	Daniels	-	DevOps:
The	Missing	Pieces,”	YouTube	video,	33:26,	posted	by	DevOps	Minneapolis,
July	13,	2015,	https://www.youtube.com/watch?v=LNJkVw93yTU	.

As	Ernest	Mueller…	Ernest	Mueller,	personal	correspondence	with	Gene	Kim,
2015.

Scrum	is	an	agile…	Hirotaka	Takeuchi	and	Ikujiro	Nonaka,	“New	Product
Development	Game,”	Harvard	Business	Review	(January	1986):	137-146.

CHAPTER	9

In	her	presentation…	Em	Campbell-Pretty,	“DOES14	-	Em	Campbell-Pretty	-
How	a	Business	Exec	Led	Agile,	Lead,	CI/CD,”	YouTube	video,	29:47,	posted
by	DevOps	Enterprise	Summit,	April	20,	2014,
https://www.youtube.com/watch?v=-4pIMMTbtwE	.

Campbell-Pretty	became…	Ibid.

They	created	a…	Ibid.

https://www.youtube.com/watch?v=eW3ZxY67fnc
https://www.youtube.com/watch?v=LNJkVw93yTU
https://www.youtube.com/watch?v=-4pIMMTbtwE

Campbell-Pretty	observed…	Ibid.

Campbell-Pretty	described…	Ibid.

The	first	version…	“Version	Control	History,”	PlasticSCM.com,	accessed	May
31,	2016,	https://www.plasticscm.com/version-control-history.html	.

A	version	control…	Jennifer	Davis	and	Katherine	Daniels,	Effective	DevOps:
Building	a	Culture	of	Collaboration,	Affinity,	and	Tooling	at	Scale	(Sebastopol,
CA:	O’Reilly	Media,	2016),	37.

Bill	Baker,	a…	Simon	Sharwood,	“Are	Your	Servers	PETS	or	CATTLE?,”	The
Register,	March	18	2013,
http://www.theregister.co.uk/2013/03/18/servers_pets_or_cattle_cern/	.

At	Netflix,	the…	Jason	Chan,	“OWASP	AppSecUSA	2012:	Real	World	Cloud
Application	Security,”	YouTube	video,	37:45,	posted	by	Christiaan008,
December	10,	2012,	https://www.youtube.com/watch?v=daNA0jXDvYk	.

The	latter	pattern…	Chad	Fowler,	“Trash	Your	Servers	and	Burn	Your	Code:
Immutable	Infrastructure	and	Disposable	Components,”	ChadFowler.com,	June
23,	2013,	http://chadfowler.com/2013/06/23/immutable-deployments.html	.

The	entire	application…	John	Willis,	“Docker	and	the	Three	Ways	of	DevOps
Part	1:	The	First	Way—Systems	Thinking,”	Docker,	May	26,	2015,
https://blog.docker.com/2015/05/docker-three-ways-devops/	.

CHAPTER	10

Gary	Gruver,	former…	Gary	Gruver,	personal	correspondence	with	Gene	Kim,
2014.

https://www.plasticscm.com/version-control-history.html
http://www.theregister.co.uk/2013/03/18/servers_pets_or_cattle_cern/
https://www.youtube.com/watch?v=daNA0jXDvYk
http://chadfowler.com/2013/06/23/immutable-deployments.html
https://blog.docker.com/2015/05/docker-three-ways-devops/

They	had	problems…	“DOES15	-	Mike	Bland	-	Pain	Is	Over,	If	You	Want	It,”
Slideshare.net,	posted	by	Gene	Kim,	November	18,	2015,
http://www.slideshare.net/ITRevolution/does15-mike-bland-pain-is-over-if-you-
want-it-55236521	.

Bland	describes	how…	Ibid.

Bland	described	that…	Ibid.

As	Bland	describes…	Ibid.

As	Bland	notes…	Ibid.

Over	the	next…	Ibid.

Eran	Messeri,	an…	Eran	Messeri,	“What	Goes	Wrong	When	Thousands	of
Engineers	Share	the	Same	Continuous	Build?,”	presentation	at	the	GOTO
Conference,	Aarhus,	Denmark,	October	2,	2013.

Messeri	explains,	“There…	Ibid.

All	their	code…	Ibid.

Some	of	the…	Ibid.

In	Development,	continuous…	Jez	Humble	and	David	Farley,	personal
correspondence	with	Gene	Kim,	2012.

The	deployment	pipeline…	Jez	Humble	and	David	Farley,	Continuous	Delivery:
Reliable	Software	Releases	through	Build,	Test,	and	Deployment	Automation
(Upper	Saddle	River,	NJ:	Addison-Wesly,	2011),	3.

Humble	and	Farley…	Ibid.,	188.

http://www.slideshare.net/ITRevolution/does15-mike-bland-pain-is-over-if-you-want-it-55236521

As	Humble	and…	Ibid.,	258.

Martin	Fowler	observes…	Martin	Fowler,	“Continuous	Integration,”
MartinFowler.com,	May	1,	2006,
http://www.martinfowler.com/articles/continuousIntegration.html	.

Martin	Fowler	described…	Martin	Fowler,	“TestPyramid,”	MartinFowler.com,
May	1,	2012,	http://martinfowler.com/bliki/TestPyramid.html	.

This	technique	was	..	Martin	Fowler,	“Test	Driven	Development,”
MartinFowler.com,	March	5,	2005,
http://martinfowler.com/bliki/TestDrivenDevelopment.html	.

Nachi	Nagappan,	E.	Michael…	Nachiappan	Nagappan,	E.	Michael	Maximilien,
Thirumalesh	Bhat,	and	Laurie	Williams,	“Realizing	quality	improvement
through	test	driven	development:	results	and	experiences	of	four	industrial
teams,”	Empir	Software	Engineering,	13,	(2008):	289-302,
http://research.microsoft.com/en-us/groups/ese/nagappan_tdd.pdf	.

In	her	2013…	Elisabeth	Hendrickson,	“On	the	Care	and	Feeding	of	Feedback
Cycles,”	Slideshare.net,	posted	by	Elisabeth	Hendrickson,	November	1,	2013,
http://www.slideshare.net/ehendrickson/care-and-feeding-of-feedback-cycles	.

However,	merely	automating…	“Decreasing	false	positives	in	automated
testing,”	Slideshare.net,	posted	by	Sauce	Labs,	March	24,	2015,
http://www.slideshare.net/saucelabs/decreasing-false-positives-in-automated-
testing	.;	Martin	Fowler,	“Eradicating	Non-determinism	in	Tests,”
MartinFowler.com,	April	14,	2011,
http://martinfowler.com/articles/nonDeterminism.html	.

As	Gary	Gruver…	Gary	Gruver,	“DOES14	-	Gary	Gruver	-	Macy’s	-
Transforming	Traditional	Enterprise	Software	Development	Processes,”

http://www.martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/bliki/TestPyramid.html
http://martinfowler.com/bliki/TestDrivenDevelopment.html
http://research.microsoft.com/en-us/groups/ese/nagappan_tdd.pdf
http://www.slideshare.net/ehendrickson/care-and-feeding-of-feedback-cycles
http://www.slideshare.net/saucelabs/decreasing-false-positives-in-automated-testing
http://martinfowler.com/articles/nonDeterminism.html

YouTube	video,	27:24,	posted	by	DevOps	Enterprise	Summit	2014,	October	29,
2014,	https://www.youtube.com/watch?v=-HSSGiYXA7U	.

Randy	Shoup,	former…	Randy	Shoup,	“The	Virtuous	Cycle	of	Velocity:	What	I
Learned	About	Going	Fast	at	eBay	and	Google	by	Randy	Shoup,”	YouTube
video,	30:05,	posted	by	Flowcon,	December	26,	2013,
https://www.youtube.com/watch?v=EwLBoRyXTOI	.

This	is	sometimes…	David	West,	“Water	scrumfall	is-
reality_of_agile_for_most,”	Slideshare.net,	posted	by	harsoft,	April	22,	2013,
http://www.slideshare.net/harsoft/water-scrumfall-isrealityofagileformost	.

CHAPTER	11

The	surprising	breadth…	Gene	Kim,	“The	Amazing	DevOps	Transformation	of
the	HP	LaserJet	Firmware	Team	(Gary	Gruver),”	ITRevolution.com,	2013,
http://itrevolution.com/the-amazing-devops-transformation-of-the-hp-laserjet-
firmware-team-gary-gruver/	.

Gruver	described	this…	Ibid.

Compile	flags	(#define…	Ibid.

Gruver	admits	trunk-based…	Gary	Gruver	and	Tommy	Mouser,	Leading	the
Transformation:	Applying	Agile	and	DevOps	Principles	at	Scale	(Portland,	OR:
IT	Revolution	Press),	60.

Gruver	observed,	“Without…	Kim,	“The	Amazing	DevOps	Transformation	”
ITRevolution.com.

Jeff	Atwood,	founder…	Jeff	Atwood,	“Software	Branching	and	Parallel
Universes,”	CodingHorror.com,	October	2,	2007,

https://www.youtube.com/watch?v=-HSSGiYXA7U
https://www.youtube.com/watch?v=EwLBoRyXTOI
http://www.slideshare.net/harsoft/water-scrumfall-isrealityofagileformost
http://itrevolution.com/the-amazing-devops-transformation-of-the-hp-laserjet-firmware-team-gary-gruver/

http://blog.codinghorror.com/software-branching-and-parallel-universes/	.

This	is	how…	Ward	Cunningham,	“Ward	Explains	Debt	Metaphor,”	c2.com,
2011,	http://c2.com/cgi/wiki?WardExplainsDebtMetaphor	.

Ernest	Mueller,	who…	Ernest	Mueller,	“2012:	A	Release	Odyssey,”
Slideshare.net,	posted	by	Ernest	Mueller,	March	12,	2014,
http://www.slideshare.net/mxyzplk/2012-a-release-odyssey	.

At	that	time…	“Bazaarvoice,	Inc.	Announces	Its	Financial	Results	for	the	Fourth
Fiscal	Quarter	and	Fiscal	Year	Ended	April	30,	2012,”	BasaarVoice.com,	June	6,
2012,	http://investors.bazaarvoice.com/releasedetail.cfm?ReleaseID=680964	.

Mueller	observed,	“It…	Ernest	Mueller,	“DOES15	-	Ernest	Mueller	-	DevOps
Transformations	At	National	Instruments	and…,”	YouTube	video,	34:14,	posted
by	DevOps	Enterprise	Summit,	November	5,	2015,
https://www.youtube.com/watch?v=6Ry40h1UAyE	.

“By	running	these…	Ibid.

Mueller	further	described…	Ibid.

However,	the	data…	Kersten,	IT	Revolution,	and	PwC,	2015	State	of	DevOps
Report.

CHAPTER	12

In	2012,	Rossi…	Chuck	Rossi,	“Release	engineering	and	push	karma:	Chuck
Rossi,”	post	on	Chuck	Rossi’s	Facebook	page,	April	5,	2012,
https://www.facebook.com/notes/facebook-engineering/release-engineering-and-
push-karma-chuck-rossi/10150660826788920	.

http://blog.codinghorror.com/software-branching-and-parallel-universes/
http://c2.com/cgi/wiki?WardExplainsDebtMetaphor
http://www.slideshare.net/mxyzplk/2012-a-release-odyssey
http://investors.bazaarvoice.com/releasedetail.cfm?ReleaseID=680964
https://www.youtube.com/watch?v=6Ry40h1UAyE
https://www.facebook.com/notes/facebook-engineering/release-engineering-and-push-karma-chuck-rossi/10150660826788920

Just	prior	to…	Ryan	Paul,	“Exclusive:	a	behind-the-scenes	look	at	Facebook
release	engineering,”	Ars	Technica,	April	5,	2012,
http://arstechnica.com/business/2012/04/exclusive-a-behind-the-scenes-look-at-
facebook-release-engineering/1/	.

Rossi	continued,	“If…	Chuck	Rossi,	“Release	engineering	and	push	karma.”

The	Facebook	front-end…	Paul,	“Exclusive:	a	behind-the-scenes	look	at
Facebook	release	engineering,”	Ars	Technica.

He	explained	that…	Chuck	Rossi,	“Ship	early	and	ship	twice	as	often,”	post	on
Chuck	Rossi’s	Facebook	page,	August	3,	2012,
https://www.facebook.com/notes/facebook-engineering/ship-early-and-ship-
twice-as-often/10150985860363920	.

Kent	Beck,	the	..	Kent	Beck,	“Slow	Deployment	Causes	Meetings,”	post	on	Kent
Beck’s	Facebook	page,	November	19,	2015),
https://www.facebook.com/notes/kent-beck/slow-deployment-causes-
meetings/1055427371156793?_rdr=p	.

Scott	Prugh,	their…	Prugh,	“DOES14:	Scott	Prugh,	CSG	-	DevOps	and	Lean	in
Legacy	Environments.”

Prugh	observed,	“It…	Ibid.

Prugh	writes,	“We…	Ibid.

Prugh	also	observes:…	Ibid.

In	their	experiments…	Puppet	Labs	and	IT	Revolution	Press,	2013	State	of
DevOps	Report	(Portland,	OR:	Puppet	Labs,	2013),	http://www.exin-
library.com/Player/eKnowledge/2013-state-of-devops-report.pdf	.

http://arstechnica.com/business/2012/04/exclusive-a-behind-the-scenes-look-at-facebook-release-engineering/1/
https://www.facebook.com/notes/facebook-engineering/ship-early-and-ship-twice-as-often/10150985860363920
https://www.facebook.com/notes/kent-beck/slow-deployment-causes-meetings/1055427371156793?_rdr=p
http://www.exin-library.com/Player/eKnowledge/2013-state-of-devops-report.pdf

Prugh	reported	that…	Scott	Prugh	and	Erica	Morrison,	“DOES15	-	Scott	Prugh
&	Erica	Morrison	-	Conway	&	Taylor	Meet	the	Strangler	(v2.0),”	YouTube
video,	29:39,	posted	by	DevOps	Enterprise	Summit,	November	5,	2015,
https://www.youtube.com/watch?v=tKdIHCL0DUg	.

Consider	the	following…	Tim	Tischler,	personal	conversation	with	Gene	Kim,
FlowCon	2013.

In	practice,	the…	Puppet	Labs	and	IT	Revolution	Press,	2013	State	of	DevOps
Report.

In	Puppet	Labs’…	Velasquez,	Kim,	Kersten,	and	Humble,	2014	State	of	DevOps
Report.

The	deployment	process…	Chad	Dickerson,	“Optimizing	for	developer
happiness,”	CodeAsCraft.com,	June	6,	2011,
https://codeascraft.com/2011/06/06/optimizing-for-developer-happiness/	.

As	Noah	Sussman…	Noah	Sussman	and	Laura	Beth	Denker,	“Divide	and
Conquer,”	CodeAsCraft.com,	April	20,	2011,
https://codeascraft.com/2011/04/20/divide-and-concur/	.

Sussman	writes,	“Through…	Ibid.

If	all	the	tests…	Ibid.

Once	it	is	an…	Erik	Kastner,	“Quantum	of	Deployment,”	CodeAsCraft.com,
May	20,	2010,	https://codeascraft.com/2010/05/20/quantum-of-deployment/	.

This	technique	was…	Timothy	Fitz,	“Continuous	Deployment	at	IMVU:	Doing
the	impossible	fifty	times	a	day,”	TimothyFitz.com,	February	10,	2009,
http://timothyfitz.com/2009/02/10/continuous-deployment-at-imvu-doing-the-
impossible-fifty-times-a-day/	.

https://www.youtube.com/watch?v=tKdIHCL0DUg
https://codeascraft.com/2011/06/06/optimizing-for-developer-happiness/
https://codeascraft.com/2011/04/20/divide-and-concur/
https://codeascraft.com/2010/05/20/quantum-of-deployment/
http://timothyfitz.com/2009/02/10/continuous-deployment-at-imvu-doing-the-impossible-fifty-times-a-day/

This	pattern	is…	Fitz,	“Continuous	Deployment,”	TimothyFitz.com.;	Michael
Hrenko,	“DOES15	-	Michael	Hrenko	-	DevOps	Insured	By	Blue	Shield	of
California,”	YouTube	video,	42:24,	posted	by	DevOps	Enterprise	Summit,
November	5,	2015,	https://www.youtube.com/watch?v=NlgrOT24UDw	.

Dan	North	and	Dave…	Humble	and	Farley,	Continuous	Delivery,	265.

The	cluster	immune…	Eric	Ries,	The	Lean	Startup:	How	Today’s	Entrepreneurs
Use	Continuous	Innovation	to	Create	Radically	Successful	Businesses	(New
York:	Random	House,	2011),	Audiobook.

One	sophisticated	example…	Andrew	‘Boz’	Bosworth,	“Building	and	testing	at
Facebook,”	post	on	Boz	Facebook	page,	August	8,	2012,
https://www.facebook.com/notes/facebook-engineering/building-and-testing-at-
facebook/10151004157328920	;	“Etsy’s	Feature	flagging	API	used	for
operational	rampups	and	A/B	testing,”	GitHub.com,
https://github.com/etsy/feature	;	“Library	for	configuration	management	API,”
GitHub.com,	https://github.com/Netflix/archaius	.

In	2009,	when…	John	Allspaw,	“Convincing	management	that	cooperation	and
collaboration	was	worth	it,”	KitchenSoap.com,	January	5,	2012,
http://www.kitchensoap.com/2012/01/05/convincing-management-that-
cooperation-and-collaboration-was-worth-it/	.

Similarly,	as	Chuck…	Rossi,	“Release	engineering	and	push	karma.”

For	nearly	a	decade…	Emil	Protalinski,	“Facebook	passes	1.55B	monthly	active
users	and	1.01B	daily	active	users,”	Venture	Beat,	November	4,	2015,
http://venturebeat.com/2015/11/04/facebook-passes-1-55b-monthly-active-users-
and-1-01-billion-daily-active-users/	.

https://www.youtube.com/watch?v=NlgrOT24UDw
https://www.facebook.com/notes/facebook-engineering/building-and-testing-at-facebook/10151004157328920
https://github.com/etsy/feature
https://github.com/Netflix/archaius
http://www.kitchensoap.com/2012/01/05/convincing-management-that-cooperation-and-collaboration-was-worth-it/
http://venturebeat.com/2015/11/04/facebook-passes-1-55b-monthly-active-users-and-1-01-billion-daily-active-users/

By	2015,	Facebook…	Ibid.

Eugene	Letuchy,	an…	Eugene	Letuchy,	“Facebook	Chat,”	post	on	Eugene
Letuchy’s	Facebook	page,	May	3,	2008,	http://www.facebook.com/note.php?
note_id=14218138919&id=944554719	.

Implementing	this	computationally-intensive…	Ibid.

As	Letuchy	wrote…	Ibid.

However,	in	2015…	Jez	Humble,	personal	correspondence	with	Gene	Kim,
2014.

His	updated	definitions…	Ibid.

At	Amazon	and…	Ibid.

CHAPTER	13

This	is	the…	Jez	Humble,	“What	is	Continuous	Delivery,”
ContinuousDelivery.com,	accessed	May	28,	2016,
https://continuousdelivery.com/	.

He	observes	that…	Kim,	Gruver,	Shoup,	and	Phillips,	“Exploring	the	Uncharted
Territory	of	Microservices.”

He	reflects,	“Looking…	Ibid.

eBay’s	architecture	went…	Shoup,	“From	Monolith	to	Microservices.”

Charles	Betz,	author…	Charles	Betz,	Architecture	and	Patterns	for	IT	Service
Management,	Resource	Planning,	and	Governance:	Making	Shoes	for	the
Cobbler’s	Children	(Witham,	MA:	Morgan	Kaufmann,	2011),	300.

http://www.facebook.com/note.php?note_id=14218138919&id=944554719
https://continuousdelivery.com/

As	Randy	Shoup…	Randy	Shoup,	“From	the	Monolith	to	Microservices,”
Slideshare.net,	posted	by	Randy	Shoup,	October	8,	2014,
http://www.slideshare.net/RandyShoup/goto-aarhus2014-
enterprisearchitecturemicroservices	.

Shoup	notes,	“Organizations…	Ibid.

As	Randy	Shoup	observes…	Ibid.

One	of	the	most…	Werner	Vogels,	“A	Conversation	with	Werner	Vogels,”
acmqueque	4,	no.	4	(2006):	14-22,	http://queue.acm.org/detail.cfm?id=1142065	.

Vogels	tells	Gray…	Ibid.

Describing	the	thought…	Ibid.

Vogels	notes,	“The…	Ibid.

In	2011,	Amazon…	John	Jenkins,	“Velocity	2011:	Jon	Jenkins,	“Velocity
Culture,””	YouTube	video,	15:13,	posted	by	O’Reilly,	June	20,	2011,
{https://www.youtube.com/watch?v=dxk8b9rSKOo	.

By	2015,	they…	Ken	Exner,	“Transforming	Software	Development,”	YouTube
video,	40:57,	posted	by	Amazon	Web	Services,	April	10,	2015,
https://www.youtube.com/watch?v=YCrhemssYuI&feature=youtu.be	.

The	term	strangler…	Martin	Fowler,	“StranglerApplication,”	MartinFowler.com,
June	29,	2004,	http://www.martinfowler.com/bliki/StranglerApplication.html	.

When	we	implement…	Boris	Lublinsky,	“Versioning	in	SOA,”	The	Architecture
Journal,	April	2007,	https://msdn.microsoft.com/en-us/library/bb491124.aspx	.

http://www.slideshare.net/RandyShoup/goto-aarhus2014-enterprisearchitecturemicroservices
http://queue.acm.org/detail.cfm?id=1142065
https://www.youtube.com/watch?v=dxk8b9rSKOo
https://www.youtube.com/watch?v=YCrhemssYuI&feature=youtu.be
http://www.martinfowler.com/bliki/StranglerApplication.html
https://msdn.microsoft.com/en-us/library/bb491124.aspx

The	strangler	application…	Paul	Hammant,	“Introducing	Branch	by
Abstraction,”	PaulHammant.com,	April	26,	2007,
http://paulhammant.com/blog/branch_by_abstraction.html	.

An	observation	from…	Martin	Fowler,	“StranglerApplication,”
MartinFowler.com,	June	29,	2004,
http://www.martinfowler.com/bliki/StranglerApplication.html	.

Blackboard	Inc.,	is…	Gregory	T.	Huang,	“Blackboard	CEO	Jay	Bhatt	on	the
Global	Future	of	Edtech,”	Xconomy,	June	2,	2014,
http://www.xconomy.com/boston/2014/06/02/blackboard-ceo-jay-bhatt-on-the-
global-future-of-edtech/	.

As	David	Ashman…	David	Ashman,	“DOES14	-	David	Ashman	-	Blackboard
Learn	-	Keep	Your	Head	in	the	Clouds,”	YouTube	video,	30:43,	posted	by
DevOps	Enterprise	Summit	2014,	October	28,	2014,
https://www.youtube.com/watch?v=SSmixnMpsI4	.

In	2010,	Ashman…	Ibid.

How	this	started…	David	Ashman,	personal	correspondence	with	Gene	Kim,
2014.

Ashman	noted,	“To…	Ibid.

“In	fact,”	Ashman…	Ibid.

Ashman	concluded,	“Having…	Ibid.

CHAPTER	14

http://paulhammant.com/blog/branch_by_abstraction.html
http://www.martinfowler.com/bliki/StranglerApplication.html
http://www.xconomy.com/boston/2014/06/02/blackboard-ceo-jay-bhatt-on-the-global-future-of-edtech/
https://www.youtube.com/watch?v=SSmixnMpsI4

In	Operations,	we…	Kim,	Behr,	and	Spafford,	The	Visible	Ops	Handbook:
Implementing	ITIL	in	4	Practical	and	Auditable	Steps	(Eugene,	OR:	IT	Process
Institute,	2004),	Kindle	edition,	Introduction.

In	contrast,	the…	Ibid.

In	other	words…	Ibid.

To	enable	this…	“Telemetry,”	Wikipedia,	last	modified	May	5,	2016,
https://en.wikipedia.org/wiki/Telemetry	.

McDonnell	described	how…	Michael	Rembetsy	and	Patrick	McDonnell,
“Continuously	Deploying	Culture:	Scaling	Culture	at	Etsy	-	Velocity	Europe
2012,”	Slideshare.net,	posted	by	Patrick	McDonnell,	October	4,	2012,
http://www.slideshare.net/mcdonnps/continuously-deploying-culture-scaling-
culture-at-etsy-14588485	.

McDonnell	explained	further…	Ibid.

By	2011,	Etsy…	John	Allspaw,	personal	conversation	with	Gene	Kim,	2014.

As	Ian	Malpass…	Ian	Malpass,	“Measure	Anything,	Measure	Everything,”
CodeAsCraft.com,	February	15,	2011,
http://codeascraft.com/2011/02/15/measure-anything-measure-everything/	.

One	of	the	findings…	Kersten,	IT	Revolution,	and	PwC,	2015	State	of	DevOps
Report.

The	top	two…	“2014	State	Of	DevOps	Findings!	Velocity	Conference,”
Slideshare.net,	posted	by	Gene	Kim,	June	30,	2014,
http://www.slideshare.net/realgenekim/2014-state-of-devops-findings-velocity-
conference	.

https://en.wikipedia.org/wiki/Telemetry
http://www.slideshare.net/mcdonnps/continuously-deploying-culture-scaling-culture-at-etsy-14588485
http://codeascraft.com/2011/02/15/measure-anything-measure-everything/
http://www.slideshare.net/realgenekim/2014-state-of-devops-findings-velocity-conference

In	The	Art…	James	Turnbull,	The	Art	of	Monitoring	(Seattle,	WA:	Amazon
Digital	Services,	2016),	Kindle	edition,	Introduction.

The	resulting	capability…	“Monitorama	-	Please,	no	more	Minutes,
Milliseconds,	Monoliths	or	Monitoring	Tools,”	Slideshare.net,	posted	by	Adrian
Cockcroft,	May	5,	2014,	http://www.slideshare.net/adriancockcroft/monitorama-
please-no-more	.

Scott	Prugh,	Chief…	Prugh,	“DOES14:	Scott	Prugh,	CSG	-	DevOps	and	Lean	in
Legacy	Environments.”

To	support	these…	Brice	Figureau,	“The	10	Commandments	of	Logging,”
Mastersen’s	Blog,	January	13,	2013,	http://www.masterzen.fr/2013/01/13/the-
10-commandments-of-logging/	.

Choosing	the	right…	Dan	North,	personal	correspondence	with	Gene	Kim,
2016.

To	help	ensure…	Anton	Chuvakin,	“LogLogic/Chuvakin	Log	Checklist,”
republished	with	permission,	2008,	http://juliusdavies.ca/logging/llclc.html	.

In	2004,	Kim…	Kim,	Behr,	and	Spafford,	The	Visible	Ops	Handbook,
Introduction.

This	was	the…	Dan	North,	“Ops	and	Operability,”	SpeakerDeck.com,	February
25,	2016,	https://speakerdeck.com/tastapod/ops-and-operability	.

As	John	Allspaw…	John	Allspaw,	personal	correspondence	with	Gene	Kim,
2011.

This	is	often…	“Information	Radiators,”	AgileAlliance.com,	accessed	May	31,
2016,	https://www.agilealliance.org/glossary/incremental-radiators/	.

http://www.slideshare.net/adriancockcroft/monitorama-please-no-more
http://www.masterzen.fr/2013/01/13/the-10-commandments-of-logging/
http://juliusdavies.ca/logging/llclc.html
https://speakerdeck.com/tastapod/ops-and-operability
https://www.agilealliance.org/glossary/incremental-radiators/

Although	there	may…	Ernest	Mueller,	personal	correspondence	with	Gene	Kim,
2014.

Prachi	Gupta,	Director…	Prachi	Gupta,	“Visualizing	LinkedIn’s	Site
Performance,”	LinkedIn	Engineering	blog,	June	13,	2011,
https://engineering.linkedin.com/25/visualizing-linkedins-site-performance	.

Thus	began	Eric…	Eric	Wong,	“Eric	the	Intern:	the	Origin	of	InGraphs,”
LinkedIn,	June	30,	2011,	http://engineering.linkedin.com/32/eric-intern-origin-
ingraphs	.

Wong	wrote,	“To…	Ibid.

At	the	time…	Ibid.

In	writing	about…	Gupta,	“Visualizing	LinkedIn’s	Site	Performance.”

Ed	Blankenship,	Senior…	Ed	Blankenship,	personal	correspondence	with	Gene
Kim,	2016.

However,	increasingly	these…	Mike	Burrows,	“The	Chubby	lock	service	for
loosely-coupled	distributed	systems,”	OSDI’06:	Seventh	Symposium	on
Operating	System	Design	and	Implementation,	November	2006,
http://static.googleusercontent.com/media/research.google.com/en//archive/chubby-
osdi06.pdf	.

Consul	may	be…	Jeff	Lindsay,	“Consul	Service	Discovery	with	Docker,”
Progrium.com,	August	20,	2014,	http://progrium.com/blog/2014/08/20/consul-
service-discovery-with-docker	.

As	Jody	Mulkey…	Jody	Mulkey,	“DOES15	-	Jody	Mulkey	-	DevOps	in	the
Enterprise:	A	Transformation	Journey,”	YouTube	video,	28:22,	posted	by

https://engineering.linkedin.com/25/visualizing-linkedins-site-performance
http://engineering.linkedin.com/32/eric-intern-origin-ingraphs
http://static.googleusercontent.com/media/research.google.com/en//archive/chubby-osdi06.pdf
http://progrium.com/blog/2014/08/20/consul-service-discovery-with-docker

DevOps	Enterprise	Summit,	November	5,	2015,
https://www.youtube.com/watch?v=USYrDaPEFtM	.

CHAPTER	15

In	2015,	Netflix…	Netflix	Letter	to	Shareholders,	January	19,	2016,
http://files.shareholder.com/downloads/NFLX/2432188684x0x870685/C6213FF9-
5498-4084-A0FF-74363CEE35A1/Q4_15_Letter_to_Shareholders_-
_COMBINED.pdf	.

Roy	Rapoport	describes…	Roy	Rapoport,	personal	correspondence	with	Gene
Kim,	2014.

One	of	the	statistical…	Victoria	Hodge	and	Jim	Austin,	“A	Survey	of	Outlier
Detection	Methodologies,”	Artificial	Intelligence	Review	22,	no.	2	(October
2004):	85-126,	http://www.geo.upm.es/postgrado/CarlosLopez/
papers/Hodge+Austin_OutlierDetection_AIRE381.pdf	.

Rapoport	explains	that…	Roy	Rapoport,	personal	correspondence	with	Gene
Kim,	2014.

Rapoport	continues,	“We…	Ibid.

Rapoport	states	that…	Ibid.

As	John	Vincent…	Toufic	Boubez,	“Simple	math	for	anomaly	detection	toufic
boubez	-	metafor	software	-	monitorama	pdx	2014-05-05,”	Slideshare.net,
posted	by	tboubez,	May	6,	2014,	http://www.slideshare.net/tboubez/simple-
math-for-anomaly-detection-toufic-boubez-metafor-software-monitorama-pdx-
20140505	.

https://www.youtube.com/watch?v=USYrDaPEFtM
http://files.shareholder.com/downloads/NFLX/2432188684x0x870685/C6213FF9-5498-4084-A0FF-74363CEE35A1/Q4_15_Letter_to_Shareholders_-_COMBINED.pdf
http://www.geo.upm.es/postgrado/CarlosLopez/papers/Hodge+Austin_OutlierDetection_AIRE381.pdf
http://www.slideshare.net/tboubez/simple-math-for-anomaly-detection-toufic-boubez-metafor-software-monitorama-pdx-20140505

Tom	Limoncelli,	co-author…	Tom	Limoncelli,	“Stop	monitoring	whether	or	not
your	service	is	up!,”	EverythingSysAdmin.com,	November	27,	2013,
http://everythingsysadmin.com/2013/11/stop-monitoring-if-service-is-up.html	.

As	Dr.	Toufic…	Toufic	Boubez,	“Simple	math	for	anomaly	detection	toufic
boubez	-	metafor	software	-	monitorama	pdx	2014-05-05,”	Slideshare.net,
posted	by	tboubez,	May	6,	2014,	http://www.slideshare.net/tboubez/simple-
math-for-anomaly-detection-toufic-boubez-metafor-software-monitorama-pdx-
20140505	.

Dr.	Nicole	Forsgren…	Dr.	Nicole	Forsgren,	personal	correspondence	with	Gene
Kim,	2015.

Scryer	works	by…	Daniel	Jacobson,	Danny	Yuan,	and	Neeraj	Joshi,	“Scryer:
Netflix’s	Predictive	Auto	Scaling	Engine,”	The	Netflix	Tech	Blog,	November	5,
2013,	http://techblog.netflix.com/2013/11/scryer-netflixs-predictive-auto-
scaling.html	.

These	techniques	are…	Varun	Chandola,	Arindam	Banerjee,	and	Vipin	Kumar,
“Anomaly	detection:	A	survey,”	ACM	Computing	Surveys	41,	no.	3	(July	2009):
article	no.	15,	http://doi.acm.org/10.1145/1541880.1541882	.

Tarun	Reddy,	VP…	Tarun	Reddy,	personal	interview	with	Gene	Kim,	Rally
headquarters,	Boulder,	CO,	2014.

At	Monitorama	in	2014…	“Kolmogorov-Smirnov	Test,”	Wikipedia,	last
modified	May	19,	2016,
http://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test	.

Even	saying	Kilmogorov-Smirnov…	”Simple	math	for	anomaly	detection	toufic
boubez	-	metafor	software	-	monitorama	pdx	2014-05-05,”	Slideshare.net,
posted	by	tboubez,	May	6,	2014,	http://www.slideshare.net/tboubez/simple-

http://everythingsysadmin.com/2013/11/stop-monitoring-if-service-is-up.html
http://www.slideshare.net/tboubez/simple-math-for-anomaly-detection-toufic-boubez-metafor-software-monitorama-pdx-20140505
http://techblog.netflix.com/2013/11/scryer-netflixs-predictive-auto-scaling.html
http://doi.acm.org/10.1145/1541880.1541882
http://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test

math-for-anomaly-detection	-toufic-boubez-metafor-software-monitorama-pdx-
20140505.

CHAPTER	16

In	2006,	Nick…	Mark	Walsh,	“Ad	Firms	Right	Media,	AdInterax	Sell	To
Yahoo,”	MediaPost,	October	18,	2006,
http://www.mediapost.com/publications/article/49779/ad-firms-right-media-
adinterax-sell-to-yahoo.html?edition=	.

Galbreath	described	the…	Nick	Galbreath,	personal	conversation	with	Gene,
2013.

However,	Galbreath	observed…	Nick	Galbreath,	“Continuous	Deployment	-
The	New	#1	Security	Feature,	from	BSildesLA	2012,”	Slideshare.net,	posted	by
Nick	Galbreath,	Aug	16,	2012,
http://www.slideshare.net/nickgsuperstar/continuous-deployment-the-new-1-
security-feature	.

After	observing	many…	Ibid.

Galbreath	observes	that…	Ibid.

As	Patrick	Lightbody…	“Volocity	2011:	Patrick	Lightbody,	‘From	Inception	to
Acquisition,’”	YouTube	video,	15:28,	posted	by	O’Reilly,	June	17,	2011,
https://www.youtube.com/watch?v=ShmPod8JecQ.

As	Arup	Chakrabarti…	Arup	Chakrabarti,	“Common	Ops	Mistakes,”
presentation	at	Heavy	Bit	Industries,	June	3,	2014,	http://www
.heavybit.com/library/video/common-ops-mistakes/

http://www.mediapost.com/publications/article/49779/ad-firms-right-media-adinterax-sell-to-yahoo.html?edition=
http://www.slideshare.net/nickgsuperstar/continuous-deployment-the-new-1-security-feature

More	recently,	Jeff…	”From	Design	Thinking	to	DevOps	and	Back	Again:
Unifying	Design	&	Operations,”	Vimeo	video,	21:19,	posted	by	William	Evans,
June	5,	2015,	https://vimeo.com/129939230.

As	an	anonymous…	Anonymous,	personal	conversation	with	Gene	Kim,	2005.

Launch	guidance	and…	Tom	Limoncelli,	“SRE@Google:	Thousands	Of
DevOps	Since	2004,”	YouTube	video	of	USENIX	Association	Talk,	NYC,
posted	by	USENIX,	45:57,	posted	January	12,	2012,
http://www.youtube.com/watch?v=iIuTnhdTzK	.

As	Treynor	Sloss	has…	Ben	Treynor,	“Keys	to	SRE”	(presentation,	Usenix
SREcon14,	Santa	Clara,	CA,	May	30,	2014),
https://www.usenix.org/conference/srecon14/technical-
sessions/presentation/keys-sre	.

Treynor	Sloss	has	resisted…	Ibid.

Even	when	new…	Limoncelli,	“SRE@Google.”

Tom	Limoncelli	noted…	Ibid.

Limoncelli	noted,	“In…	Ibid.

Furthermore,	Limoncelli	observed…	Tom	Limoncelli,	personal	correspondence
with	Gene	Kim,	2016.

Limoncelli	explained,	“Helping…	Ibid.,	2015.

CHAPTER	17

In	general,	Jez…	Humble,	O’Reilly	and	Molesky,	Lean	Enterprise,	Part	II.

http://www.youtube.com/watch?v=iIuTnhdTzK
https://www.usenix.org/conference/srecon14/technical-sessions/presentation/keys-sre

In	2012,	they…	Intuit,	Inc.,	“2012	Annual	Report:	Form	10-K,”	July	31,	2012,
http://s1.q4cdn.com/018592547/files/doc_financials/
2012/INTU_2012_7_31_10K_r230_at_09_13_12_FINAL_and_Camera_Ready.pdf
.

Cook	explained	that…	Scott	Cook,	“Leadership	in	an	Agile	Age:	An	Interview
with	Scott	Cook,”	Intuit.com,	April	20,	2011,
https://web.archive.org/web/20160205050418/
http://network.intuit.com/2011/04/20/leadership-in-theagile-age/

He	continued,	“By…	Ibid.

In	previous	eras…	“Direct	Marketing,”	Wikipedia,	last	modified	May	28,	2016,
https://en.wikipedia.org/wiki/Direct_marketing	.

Interestingly,	it	has…	Freakonomics,	“Fighting	Poverty	With	Actual	Evidence:
Full	Transcript,”	Freakonomics.com,	November	27,	2013,
http://freakonomics.com/2013/11/27/fighting-poverty-with-actual-evidence-full-
transcript/	.

Ronny	Kohavi,	Distinguished…	Ron	Kohavi,	Thomas	Crook,	and	Roger
Longbotham,	“Online	Experimentation	at	Microsoft,”	(paper	presented	at	the
Fifteenth	ACM	SIGKDD	International	Conference	on	Knowledge	Discovery
and	Data	Mining,	Paris,	France,	2009),	http://www.exp-
platform.com/documents/exp_dmcasestudies.pdf	.

Kohavi	goes	on…	Ibid.

Jez	Humble	joked…	Jez	Humble,	personal	correspondence	with	Gene	Kim,
2015.

http://s1.q4cdn.com/018592547/files/doc_financials/2012/INTU_2012_7_31_10K_r230_at_09_13_12_FINAL_and_Camera_Ready.pdf
https://web.archive.org/web/20160205050418/http://network.intuit.com/2011/04/20/leadership-in-the-agile-age/
https://en.wikipedia.org/wiki/Direct_marketing
http://freakonomics.com/2013/11/27/fighting-poverty-with-actual-evidence-full-transcript/
http://www.exp-platform.com/documents/exp_dmcasestudies.pdf

In	a	2014…	Wang,	Kendrick,	“Etsy’s	Culture	Of	Continuous	Experimentation
and	A/B	Testing	Spurs	Mobile	Innovation,”	Apptimize.com,	January	30,	2014,
http://apptimize.com/blog/2014/01/etsy-continuous-innovation-ab-testing/	.

Barry	O’Reilly,	co-author…	Barry	O’Reilly,	“How	to	Implement	Hypothesis-
Driven	Development,”	BarryOReilly.com,	October	21,	2013,
http://barryoreilly.com/2013/10/21/how-to-implement-hypothesis-driven-
development/	.

In	2009,	Jim…	Gene	Kim,	“Organizational	Learning	and	Competitiveness:
Revisiting	the	“Allspaw/Hammond	10	Deploys	Per	Day	at	Flickr”	Story,”
ITRevolution.com,	2015,	http://itrevolution.com/organizational-learning-and-
competitiveness-a-different-view-of-the-allspawhammond-10-deploys-per-day-
at-flickr-story/	.

Stoneham	observes	that…	Ibid.

He	continues,	“These…	Ibid.

Their	astounding	achievements…	Ibid.

Stoneham	concluded,	“This…	Ibid.

CHAPTER	18

Once	a	pull…	Scott	Chacon,	“Github	Flow,”	ScottChacon.com,	August	31,
2011,	http://scottchacon.com/2011/08/31/github-flow.html	.

For	example,	in…	Jake	Douglas,	“Deploying	at	Github,”	GitHub.com,	August
29,	2012,	https://github.com/blog/1241-deploying-at-github	.

http://apptimize.com/blog/2014/01/etsy-continuous-innovation-ab-testing/
http://barryoreilly.com/2013/10/21/how-to-implement-hypothesis-driven-development/
http://itrevolution.com/organizational-learning-and-competitiveness-a-different-view-of-the-allspawhammond-10-deploys-per-day-at-flickr-story/
http://scottchacon.com/2011/08/31/github-flow.html
https://github.com/blog/1241-deploying-at-github

A	fifteen	minute…	John	Allspaw,	“Counterfactual	Thinking,	Rules,	and	the
Knight	Capital	Accident,”	KitchenSoap.com,	October	29,	2013,
http://www.kitchensoap.com/2013/10/29/counterfactuals-knight-capital/	.

One	of	the	core…	Bradley	Staats	and	David	M.	Upton,	“Lean	Knowledge
Work,”	Harvard	Business	Review,	October	2011,	https://hbr.org/2011/10/lean-
knowledge-work	.

In	the	2014…	Velasquez,	Kim,	Kersten,	and	Humble,	2014	State	of	DevOps
Report.

As	Randy	Shoup…	Randy	Shoup,	personal	interview	with	Gene	Kim,	2015.

As	Giary	Özil…	Giray	Özil,	Twitter	post,	February	27,	2013,	10:42	a.m.,
https://twitter.com/girayozil/status/306836785739210752	.

As	noted	earlier…	Eran	Messeri,	“What	Goes	Wrong	When	Thousands	of
Engineers	Share	the	Same	Continuous	Build?,”	(2013),
http://scribes.tweetscriber.com/realgenekim/206	.

In	2010,	there…	John	Thomas	and	Ashish	Kumar,	“Welcome	to	the	Google
Engineering	Tools	Blog,”	Google	Engineering	Tools	blog,	posted	May	3,	2011,
http://google-engtools.blogspot.com/2011/05/welcome-to-google-engineering-
tools.html	.

This	requires	considerable…	Ashish	Kumar,	“Development	at	the	Speed	and
Scale	of	Google,”	(presentation	at	QCon,	San	Francisco,	CA,	2010),
https://qconsf.com/sf2010/dl/qcon-sanfran-
2010/slides/AshishKumar_DevelopingProductsattheSpeedandScaleofGoogle.pdf
.

He	said,	“I…	Randy	Shoup,	personal	correspondence	with	Gene	Kim,	2014.

http://www.kitchensoap.com/2013/10/29/counterfactuals-knight-capital/
https://hbr.org/2011/10/lean-knowledge-work
https://twitter.com/girayozil/status/306836785739210752
http://scribes.tweetscriber.com/realgenekim/206
http://google-engtools.blogspot.com/2011/05/welcome-to-google-engineering-tools.html
https://qconsf.com/sf2010/dl/qcon-sanfran-2010/slides/AshishKumar_DevelopingProductsattheSpeedandScaleofGoogle.pdf

Jeff	Atwood,	one…	Jeff	Atwood,	“Pair	Programming	vs.	Code	Reviews,”
CodingHorror.com,	November	18,	2013,	http://blog.codinghorror.com/pair-
programming-vs-code-reviews/	.

He	continued,	“Most…	Ibid.

Dr.	Laurie	Williams	performed…	“Pair	Programming,”	ALICE	Wiki	page,	last
modified	April	4,	2014,	http://euler.math.uga.edu/wiki/index.php?
title=Pair_programming	.

She	argues	that…	Elisabeth	Hendrickson,	“DOES15	-	Elisabeth	Hendrickson	-
Its	All	About	Feedback,”	YouTube	video,	34:47,	posted	by	DevOps	Enterprise
Summit,	November	5,	2015,	https://www.youtube.com/watch?v=r2BFTXBundQ
.

In	her	2015…	Ibid.

The	problem	Hendrickson…	Ibid.

Worse,	skilled	developers…	Ibid.

Hendrickson	lamented	that…	Ibid.

That	was	an	actual…	Ryan	Tomayko	and	Shawn	Davenport,	personal	interview
with	Gene	Kim,	2013.

It	is	many…	Ibid.

Reading	through	the…	Ibid.

Adrian	Cockcroft	observed…	Adrian	Cockcroft,	interview	by	Michael	Ducy	and
Ross	Clanton,	“Adrian	Cockcroft	of	Battery	Ventures	–	the	Goat	Farm	–	Episode
8,”	The	Goat	Farm,	podcast	audio,	July	31,	2015,

http://blog.codinghorror.com/pair-programming-vs-code-reviews/
http://euler.math.uga.edu/wiki/index.php?title=Pair_programming
https://www.youtube.com/watch?v=r2BFTXBundQ

http://goatcan.do/2015/07/31/adriancockcroft-of-battery-ventures-the-goat-farm-
episode-8/	.

Similarly,	Dr.	Tapabrata	Pal…	Tapabrata	Pal,	“DOES15	-	Tapabrata	Pal	-
Banking	on	Innovation	&	DevOps,”	YouTube	video,	32:57,	posted	by	DevOps
Enterprise	Summit,	January	4,	2016,	https://www.youtube.com/watch?
v=bbWFCKGhxOs	.

Jason	Cox,	Senior…	Jason	Cox,	“Disney	DevOps.”

At	Target	in…	Ross	Clanton	and	Heather	Mickman,	‘DOES14	-	Ross	Clanton
and	Heather	Mickman	-	DevOps	at	Target,”	YouTube	video,	29:20,	posted	by
DevOps	Enterprise	Summit	2014,	October	29,	2014,
https://www.youtube.com/watch?v=exrjV9V9vhY	.

“As	we	went…	Ibid.

She	added,	“I…	Ibid.

Consider	a	story…	John	Allspaw	and	Jez	Humble,	personal	correspondence
with	Gene	Kim,	2014.

CHAPTER	19

The	result	is…	Spear,	The	High-Velocity	Edge,	chap.	1.

“For	such	an…	Ibid.,	chap.	10.

A	striking	example…	Julianne	Pepitone,	“Amazon	EC2	Outage	Downs	Reddit,
Quora,”	CNN	Money,	April	22,	2011,
http://money.cnn.com/2011/04/21/technology/amazon_server_outage	.

http://goatcan.do/2015/07/31/adrian-cockcroft-of-battery-ventures-the-goat-farm-episode-8/
https://www.youtube.com/watch?v=bbWFCKGhxOs
https://www.youtube.com/watch?v=exrjV9V9vhY
http://money.cnn.com/2011/04/21/technology/amazon_server_outage

In	January	2013…	Timothy	Prickett	Morgan,	“A	Rare	Peek	Into	The	Massive
Scale	of	AWS,”	Enterprise	Tech,	November	14,	2014,
http://www.enterprisetech.com/2014/11/14/rare-peek-massive-scale-aws/	.

However,	a	Netflix…	Adrian	Cockcroft,	Cory	Hicks,	and	Greg	Orzell,	“Lessons
Netflix	Learned	from	the	AWS	Outage,”	The	Netflix	Tech	Blog,	April	29,	2011,
http://techblog.netflix.com/2011/04/lessons-netflix-learned-from-aws-
outage.html	.

They	did	so…	Ibid.

Dr.	Sidney	Dekker…	Sidney	Dekker,	Just	Culture:	Balancing	Safety	and
Accountability	(Lund	University,	Sweden:	Ashgate	Publishing	Company,	2007),
152.

He	asserts	that…	“DevOpsDays	Brisbane	2014	-	Sidney	Decker	-	System
Failure,	Human	Error:	Who’s	to	Blame?”	Vimeo	video,	1:07:38,	posted	by
info@devopsdays.org,	2014,	https://vimeo.com/102167635	.

As	John	Allspaw…	Jenn	Webb,	interview	with	John	Allspaw,	“PostMortems,
Sans	Finger-Pointing,”	The	O’Reilly	Radar	Postcast,	podcast	audio,	August	21,
2014,	http://radar.oreilly.com/2014/08/postmortems-sans-finger-pointing-the-
oreilly-radar-podcast.html	.

Blameless	postmortems,	a…	John	Allspaw,	“Blameless	PostMortems	and	a	Just
Culture,”	CodeAsCraft.com,	May	22,	2012,
http://codeascraft.com/2012/05/22/blameless-postmortems/	.

Ian	Malpass,	an…	Ian	Malpass,	“DevOpsDays	Minneapolis	2014	--	Ian
Malpass,	Fallible	humans,”	YouTube	video,	35:48,	posted	by	DevOps
Minneapolis,	July	20,	2014,	https://www.youtube.com/watch?v=5NY-SrQFrBU
.

http://www.enterprisetech.com/2014/11/14/rare-peek-massive-scale-aws/
http://techblog.netflix.com/2011/04/lessons-netflix-learned-from-aws-outage.html
https://vimeo.com/102167635
http://radar.oreilly.com/2014/08/postmortems-sans-finger-pointing-the-oreilly-radar-podcast.html
http://codeascraft.com/2012/05/22/blameless-postmortems/
https://www.youtube.com/watch?v=5NY-SrQFrBU

Dan	Milstein,	one…	Dan	Milstein,	“PostMortems	at	HubSpot:	What	I	Learned
from	250	Whys,”	HubSpot,	June	1,	2011,
http://product.hubspot.com/blog/bid/64771/PostMortems-at-HubSpot-What-I-
Learned-From-250-Whys	.

Randy	Shoup,	former…	Randy	Shoup,	personal	correspondence	with	Gene	Kim,
2014.

We	may	also…	“PostMortem	for	February	24,	2010	Outage,”	Google	App
Engine	website,	March	4,	2010,
https://groups.google.com/forum/#!topic/google-appengine/p2QKJ0OSLc8	;
“Summary	of	the	Amazon	DynamoDB	Service	Disruption	and	Related	Impacts
in	the	US-East	Region,”	Amazon	Web	Services	website,	accessed	May	28,	2016,
https://aws.amazon.com/message/5467D2/	.

This	desire	to…	Bethany	Macri,	“Morgue:	Helping	Better	Understand	Events	by
Building	a	Post	Mortem	Tool	-	Bethany	Macri,”	Vimeo	video,	33:34,	posted	by
info@devopsdays.org,	October	18,	2013,	http://vimeo.com/77206751	.

For	example,	as…	Spear,	The	High-Velocity	Edge,	chap.	4.

Dr.	Amy	C.	Edmondson…	Amy	C.	Edmondson,	“Strategies	for	Learning	from
Failure,”	Harvard	Business	Review,	April	2011,
https://hbr.org/2011/04/strategies-for-learning-from-failure	.

Dr.	Spear	summarizes…	Ibid.

We	now	know…	Ibid.,	chap.	3.

However,	prior	to…	Michael	Roberto,	Richard	M.J.	Bohmer,	and	Amy	C.
Edmondson,	“Facing	Ambiguous	Threats,”	Harvard	Business	Review,
November	2006,	https://hbr.org/2006/11/facing-ambiguous-threats/ar/1	.

http://product.hubspot.com/blog/bid/64771/Post-Mortems-at-HubSpot-What-I-Learned-From-250-Whys
https://groups.google.com/forum/#!topic/google-appengine/p2QKJ0OSLc8
https://aws.amazon.com/message/5467D2/
http://vimeo.com/77206751
https://hbr.org/2011/04/strategies-for-learning-from-failure
https://hbr.org/2006/11/facing-ambiguous-threats/ar/1

They	describe	how…	Ibid.

They	observe,	“Firms…	Ibid.

The	authors	conclude…	Ibid.

On	failures,	Roy…	Roy	Rapoport,	personal	correspondence	with	Gene	Kim,
2012.

He	continues,	“I…	Ibid.

He	concludes,	“DevOps…	Ibid.

As	Michael	Nygard…	Michael	T.	Nygard,	Release	It!:	Design	and	Deploy
Production-Ready	Software	(Pragmatic	Bookshelf:	Raleigh,	NC,	2007),	Kindle
edition,	Part	I.

An	even	more…	Jeff	Barr,	“EC2	Maintenance	Update,”	AWS	Blog,	September
25,	2014,	https://aws.amazon.com/blogs/aws/ec2-maintenance-update/	.

As	Christos	Kalantzis…	Bruce	Wong	and	Christos	Kalantzis,	“A	State	of	Xen	-
Chaos	Monkey	&	Cassandra,”	The	Netflix	Tech	Blog,	October	2,	2014,
http://techblog.netflix.com/2014/10/a-state-of-xen-chaos-monkey-
cassandra.html	.

But,	Kalantzis	continues…	Ibid.

As	Kalantzis	and…	Ibid.

Even	more	surprising…	Roy	Rapoport,	personal	correspondence	with	Gene
Kim,	2015.

Specific	architectural	patterns…	Adrian	Cockcroft,	personal	correspondence
with	Gene	Kim,	2012.

https://aws.amazon.com/blogs/aws/ec2-maintenance-update/
http://techblog.netflix.com/2014/10/a-state-of-xen-chaos-monkey-cassandra.html

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	
	

	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	
	

	 	 	

	 	 	

	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	

	 	 	 	

	 	 	 	 	 	 	

	

CHAPTER 20

As Peter Senge… Widely attributed to Peter Senge.

Some of the learnings… Ibid.

unexpected/abstract .
http://cacm.acm.org/magazines/2012/11/156583-weathering-the-
Communications of the ACM 55, no. 11 (November 2012): 48-52,
Krishnan wrote, “An… Kripa Krishnan, “Weathering the Unexpected,”

https://www.youtube.com/watch?v=KqqS3wgQum0 .
Google,” YouTube video, 21:35, posted by Flowcon, November 11, 2014,
During that time… “Kripa Krishnan: ‘Learning Continuously From Failures’ at

Robbins explains, “You… Ibid.

As Robbins describes… Ibid.

As Robbins quips… Ibid.

id=2371297 .
amcqueue 10, no. 9 (September 13, 2012): https://queue.acm.org/detail.cfm?
Tom Limoncelli, “Resilience Engineering: Learning to Embrace Failure,”
Jesse Robbins observes… Jesse Robbins, Kripa Krishnan, John Allspaw, and

Robbins defines resilience… Ibid.

through-destruction .
2011, http://www.slideshare.net/jesserobbins/ameday-creating-resiliency-
Destruction - LISA11,” Slideshare.net, posted by Jesse Robbins, December 7,
In this section… Jesse Robbins, “GameDay: Creating Resiliency Through

http://www.slideshare.net/jesserobbins/ameday-creating-resiliency-through-destruction
https://queue.acm.org/detail.cfm?id=2371297
https://www.youtube.com/watch?v=KqqS3wgQum0
http://cacm.acm.org/magazines/2012/11/156583-weathering-the-unexpected/abstract

CHAPTER	20

As	Jesse	Newland…	Jesse	Newland,	“ChatOps	at	GitHub,”	SpeakerDeck.com,
February	7,	2013,	https://speakerdeck.com/jnewland/chatops-at-github	.

As	Mark	Imbriaco…	Mark	Imbriaco,	personal	correspondence	with	Gene	Kim,
2015.

They	enabled	Hubot…	Newland,	“ChatOps	at	GitHub.”

Hubot	often	performed…	Ibid.

Newland	observes	that…	Ibid.

Instead	of	putting…	Leon	Osterweil,	“Software	processes	are	software	too,”
paper	presented	at	International	Conference	on	Software	Engineering,	Monterey,
CA,	1987,	http://www.cs.unibo.it/cianca/wwwpages/ids/letture/Osterweil.pdf	.

Justin	Arbuckle	was…	Justin	Arbuckle,	“What	Is	ArchOps:	Chef	Executive
Roundtable”	(2013).

What	resulted	was…	Ibid.

Arbuckle’s	conclusion	was…	Ibid.

By	2015,	Google…	Cade	Metz,	“Google	Is	2	Billion	Lines	of	Code—and	It’s	All
in	One	Place,”	Wired,	September	16,	2015,
http://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/	.

The	Chrome	and…	Ibid.

Rachel	Potvin,	a…	Ibid.

Furthermore,	as	Eran…	Eran	Messeri,	“What	Goes	Wrong	When	Thousands	of
Engineers	Share	the	Same	Continuous	Build?”	(2013),

https://speakerdeck.com/jnewland/chatops-at-github
http://www.cs.unibo.it/cianca/wwwpages/ids/letture/Osterweil.pdf
http://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/

http://scribes.tweetscriber.com/realgenekim/206	.

As	Randy	Shoup…	Randy	Shoup,	personal	correspondence	with	Gene	Kim,
2014.

Tom	Limoncelli,	co-author…	Tom	Limoncelli,	“Yes,	you	can	really	work	from
HEAD,”	EverythingSysAdmin.com,	March	15,	2014,
http://everythingsysadmin.com/2014/03/yes-you-really-can-work-from-
head.html	.

Tom	Limoncelli	describes…	Tom	Limoncelli,	“Python	is	better	than	Perl6,”
EverythingSysAdmin.com,	January	10,	2011,
http://everythingsysadmin.com/2011/01/python-is-better-than-perl6.html	.

Google	used	C++…	“Which	programming	languages	does	Google	use
internally?,”	Quora.com	forum,	accessed	May	29,	2016,
https://www.quora.com/Which-programming-languages-does-Googleuse-
internally	.;	“When	will	Google	permit	languages	other	than	Python,	C++,	Java
and	Go	to	be	used	for	internal	projects?,”	Quora.com	forum,	accessed	May	29,
2016,	https://www.quora.com/When-will-Google-permit-languages-other-than-
Python-C-Java-and-Go-to-be-used-for-internal-projects/answer/Neil-
Kandalgaonkar	.

In	a	presentation…	Ralph	Loura,	Olivier	Jacques,	and	Rafael	Garcia,	“DOES15
-	Ralph	Loura,	Olivier	Jacques,	&	Rafael	Garcia	-	Breaking	Traditional	IT
Paradigms	to…,”	YouTube	video,	31:07,	posted	by	DevOps	Enterprise	Summit,
November	16,	2015,	https://www.youtube.com/watch?v=q9nNqqie_sM	.

In	many	organizations…	Michael	Rembetsy	and	Patrick	McDonnell,
“Continuously	Deploying	Culture:	Scaling	Culture	at	Etsy	-	Velocity	Europe
2012,”	Slideshare.net,	posted	by	Patrick	McDonnell,	October	4,	2012,

http://scribes.tweetscriber.com/realgenekim/206
http://everythingsysadmin.com/2014/03/yes-you-really-can-work-from-head.html
http://everythingsysadmin.com/2011/01/python-is-better-than-perl6.html
https://www.quora.com/Which-programming-languages-does-Google-use-internally
https://www.quora.com/When-will-Google-permit-languages-other-than-Python-C-Java-and-Go-to-be-used-for-internal-projects/answer/Neil-Kandalgaonkar
https://www.youtube.com/watch?v=q9nNqqie_sM

http://www.slideshare.net/mcdonnps/continuously-deploying-culture-scaling-
culture-at-etsy-14588485	.

At	that	time,	Etsy…	Ibid.

Over	the	next…	Ibid.

Similarly,	Dan	McKinley…	Dan	McKinley,	“Why	MongoDB	Never	Worked
Out	at	Etsy,”	McFunley.com,	December	26,	2012,	http://mcfunley.com/why-
mongodb-never-worked-out-at-etsy	.

CHAPTER	21

One	of	the…	“Kaizen,”	Wikipedia,	last	modified	May	12,	2016,
https://en.wikipedia.org/wiki/Kaizen	.

Dr.	Spear	explains…	Spear,	The	High-Velocity	Edge,	chap.	8.

Spear	observes	that…	Ibid.

Clanton	describes,	“We…	Mickman	and	Clanton,	“(Re)building	an	Engineering
Culture.”

Ravi	Pandey,	a…	Ravi	Pandey,	personal	correspondence	with	Gene	Kim,	2015.

Clanton	expands	on…	Mickman	and	Clanton,	“(Re)building	an	Engineering
Culture.”

In	addition	to…	Hal	Pomeranz,	“Queue	Inversion	Week,”	Righteous	IT,
February	12,	2009,	https://righteousit.wordpress.com/2009/02/12/queue-
inversion-week/	.

As	Dr.	Spear…	Spear,	The	High-Velocity	Edge,	chap.	3.

http://www.slideshare.net/mcdonnps/continuously-deploying-culture-scaling-culture-at-etsy-14588485
http://mcfunley.com/why-mongodb-never-worked-out-at-etsy
https://en.wikipedia.org/wiki/Kaizen
https://righteousit.wordpress.com/2009/02/12/queue-inversion-week/

In	an	interview	with	Jessica…	Jessica	Stillman,	“Hack	Days:	Not	Just	for
Facebookers,”	Inc.,	February	3,	2012,	http://www.inc.com/jessica-stillman/hack-
days-not-just-for-facebookers.html	.

In	2008,	Facebook…	AP,	“Number	of	active	users	at	Facebook	over	the	years,”
Yahoo!	News,	May	1,	2013,	https://www.yahoo.com/news/number-active-users-
facebook-over-230449748.html?ref=gs	.

During	a	hack…	Haiping	Zhao,	“HipHop	for	PHP:	Move	Fast,”	post	on	Haiping
Zhao’s	Facebook	page,	February	2,	2010,
https://www.facebook.com/notes/facebook-engineering/hiphop-for-php-move-
fast/280583813919	.

In	an	interview	with	Cade…	Cade	Metz,	“How	Three	Guys	Rebuilt	the
Foundation	of	Facebook,”	Wired,	June	10,	2013,
http://www.wired.com/wiredenterprise/2013/06/facebook-hhvm-saga/all/	.

Steve	Farley,	VP…	Steve	Farley,	personal	correspondence	with	Gene	Kim,
January	5,	2016.

Karthik	Gaekwad,	who…	“Agile	2013	Talk:	How	DevOps	Change	Everything,”
Slideshare.net,	posted	by	Karthik	Gaekwad,	August	7,	2013,
http://www.slideshare.net/karthequian/howdevops
changeseverythingagile2013karthikgaekwad/	.

As	Glenn	O’Donnell…	Glenn	O’Donnell,	“DOES14	-	Glenn	O’Donnell	-
Forrester	-	Modern	Services	Demand	a	DevOps	Culture	Beyond	Apps,”
YouTube	video,	12:20,	posted	by	DevOps	Enterprise	Summit	2014,	November
5,	2014,	https://www.youtube.com/watch?v=pvPWKuO4_48	.

As	of	2014…	Nationwide,	2014	Annual	Report,
https://www.nationwide.com/about-us/nationwide-annual-report-2014.jsp	.

http://www.inc.com/jessica-stillman/hack-days-not-just-for-facebookers.html
https://www.yahoo.com/news/number-active-users-facebook-over-230449748.html?ref=gs
https://www.facebook.com/notes/facebook-engineering/hiphop-for-php-move-fast/280583813919
http://www.wired.com/wiredenterprise/2013/06/facebook-hhvm-saga/all/
http://www.slideshare.net/karthequian/howdevopschangeseverythingagile2013karthikgaekwad/
https://www.youtube.com/watch?v=pvPWKuO4_48
https://www.nationwide.com/about-us/nationwide-annual-report-2014.jsp

Steve	Farley,	VP…	Steve	Farley,	personal	correspondence	with	Gene	Kim,
2016.

Capital	One,	one…	“DOES15	-	Tapabrata	Pal	-	Banking	on	Innovation	&
DevOps,”	YouTube	video,	32:57,	posted	by	DevOps	Enterprise	Summit,
January	4,	2016,	https://www.youtube.com/watch?v=bbWFCKGhxOs	.

Dr.	Tapabrata	Pal…	Tapabrata	Pal,	personal	correspondence	with	Gene	Kim,
2015.

Target	is	the…	“Corporate	Fact	Sheet,”	Target	company	website,	accessed	June
9,	2016,	https://corporate.target.com/press/corporate	.

Incidentally,	the	first…	Evelijn	Van	Leeuwen	and	Kris	Buytaert,	“DOES15	-
Evelijn	Van	Leeuwen	and	Kris	Buytaert	-	Turning	Around	the	Containership,”
YouTube	video,	30:28,	posted	by	DevOps	Enterprise	Summit,	December	21,
2015,	https://www.youtube.com/watch?v=0GId4AMKvPc	.

Clanton	describes,	“2015…	Mickman	and	Clanton,	“(Re)building	an
Engineering	Culture.”

At	Capital	One…	“DOES15	-	Tapabrata	Pal	-	Banking	on	Innovation	&
DevOps,”	YouTube	video,	32:57,	posted	by	DevOps	Enterprise	Summit,
January	4,	2016,	https://www.youtube.com/watch?v=bbWFCKGhxOs	.

Bland	explains	that…	Bland,	“DOES15	-	Mike	Bland	-	Pain	Is	Over,	If	You
Want	It.”

Even	though	they…	Ibid.

They	used	several…	Ibid.

Bland	described,	“The…	Ibid.

https://www.youtube.com/watch?v=bbWFCKGhxOs
https://corporate.target.com/press/corporate
https://www.youtube.com/watch?v=0GId4AMKvPc
https://www.youtube.com/watch?v=bbWFCKGhxOs

Bland	continues,	“One…	Ibid.

As	Bland	describes…	Ibid.

Bland	continues,	“It…	Ibid.

He	continues,	“The…	Ibid.

Bland	describes	Fixits…	Mike	Bland,	“Fixits,	or	I	Am	the	Walrus,”	Mike-
Bland.com,	October	4,	2011,	https://mike-bland.com/2011/10/04/fixits.html	.

These	Fixits,	as…	Ibid.

CHAPTER	22

One	of	the	top…	James	Wickett,	“Attacking	Pipelines--Security	meets
Continuous	Delivery,”	Slideshare.net,	posted	by	James	Wickett,	June	11,	2014,
http://www.slideshare.net/wickett/attacking-pipelinessecurity-meets-continuous-
delivery	.

James	Wickett,	one…	Ibid.

Similar	ideas	were…	Tapabrata	Pal,	“DOES15	-	Tapabrata	Pal	-	Banking	on
Innovation	&	DevOps,”	YouTube	video,	32:57,	posted	by	DevOps	Enterprise
Summit,	January	4,	2016,	https://www.youtube.com/watch?v=bbWFCKGhxOs	.

Justin	Arbuckle,	former…	Justin	Arbuckle,	personal	interview	with	Gene	Kim,
2015.

He	continues,	“By…	Ibid.

This	helped	the…	Snehal	Antani,	“IBM	Innovate	DevOps	Keynote,”	YouTube
video,	47:57,	posted	by	IBM	DevOps,	June	12,	2014,

https://mike-bland.com/2011/10/04/fixits.html
http://www.slideshare.net/wickett/attacking-pipelinessecurity-meets-continuous-delivery
https://www.youtube.com/watch?v=bbWFCKGhxOs

https://www.youtube.com/watch?v=s0M1P05-6Io	.

In	a	presentation…	Nick	Galbreath,	“DevOpsSec:	Appling	DevOps	Principles	to
Security,	DevOpsDays	Austin	2012,”	Slideshare,	posted	by	Nick	Galbreath,
April	12,	2012,	http://www.slideshare.net/nickgsuperstar/devopssec-apply-
devops-principles-to-security	.

Furthermore,	he	states…	Ibid.

Furthermore,	we	should…	“OWASP	Cheat	Sheet	Series,”	OWASP.org,	last
modified	March	2,	2016,
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series	.

The	scale	of…	Justin	Collins,	Alex	Smolen,	and	Neil	Matatall,	“Putting	to	your
Robots	to	Work	V1.1,”	Slideshare.net,	posted	by	Neil	Matatall,	April	24,	2012,
http://www.slideshare.net/xplodersuv/sf-2013-robots/	.

In	early	2009…	“What	Happens	to	Companies	That	Get	Hacked?	FTC	Cases,”
Giant	Bomb	forum,	posted	by	SuicidalSnowman,	July	2012,
http://www.giantbomb.com/forums/off-topic-31/what-happens-to-companies-
that-get-hacked-ftc-case-540466/	.

In	their	previously…	Collins,	Smolen,	and	Matatall,	“Putting	to	your	Robots	to
Work	V1.1.”

The	first	big…	Twitter	Engineering,	“Hack	Week	@	Twitter,”	Twitter	blog,
January	25,	2012,	https://blog.twitter.com/2012/hack-week-twitter	.

Josh	Corman	observed…	Josh	Corman	and	John	Willis,	“Immutable
Awesomeness	-	Josh	Corman	and	John	Willis	at	DevOps	Enterprise	Summit
2015,”	YouTube	video,	34:25,	posted	by	Sonatype,	October	21,	2015,
https://www.youtube.com/watch?v=-S8-lrm3iV4	.

https://www.youtube.com/watch?v=s0M1P05-6Io
http://www.slideshare.net/nickgsuperstar/devopssec-apply-devops-principles-to-security
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
http://www.slideshare.net/xplodersuv/sf-2013-robots/
http://www.giantbomb.com/forums/off-topic-31/what-happens-to-companies-that-get-hacked-ftc-case-540466/
https://blog.twitter.com/2012/hack-week-twitter
https://www.youtube.com/watch?v=-S8-lrm3iV4

In	the	2014…	Verizon,	”2014	Data	Breach	Investigations	Report,”	(Verizon
Enterprise	Solutions,	2014),	https://dti.delaware.gov/pdfs/rp_Verizon-DBIR-
2014_en_xg.pdf	.

In	2015,	this…	“2015	State	of	the	Software	Supply	Chain	Report:	Hidden	Speed
Bumps	on	the	Way	to	‘Continuous,’”	(Fulton,	MD:	Sonatype,	Inc,	2015),
http://cdn2.hubspot.net/hubfs/1958393/White_Papers/2015_State_
of_the_Software_Supply_Chain_Report-.pdf?t=1466775053631	.

The	last	statistic…	Dan	Geer	and	Joshua	Corman,	“Almost	Too	Big	to	Fail,”
;login::	The	Usenix	Magazine,	39,	no.	4	(August	2014):	66-68,
https://www.usenix.org/system/files/login/articles/15_geer_0.pdf	.

US	Federal	Government…	Wyatt	Kash,	“New	details	released	on	proposed	2016
IT	spending,”	FedScoop,	February	4,	2015,	http://fedscoop.com/what-top-
agencies-would-spend-on-it-projects-in-2016	.

As	Mike	Bland…	Bland,	“DOES15	-	Mike	Bland	-	Pain	Is	Over,	If	You	Want
It.”

Furthermore,	the	Cloud.gov…	Mossadeq	Zia,	Gabriel	Ramírez,	Noah	Kunin,
“Compliance	Masonry:	Bulding	a	risk	management	platform,	brick	by	brick,”
18F,	April	15,	2016,	https://18f.gsa.gov/2016/04/15/compliance-masonry-
buildling-a-risk-management-platform/	.

Marcus	Sachs,	one…	Marcus	Sachs,	personal	correspondence	with	Gene	Kim,
2010.

We	need	to…	“VPC	Best	Configuration	Practices,”	Flux7	blog,	January	23,
2014,	http://blog.flux7.com/blogs/aws/vpc-best-configuration-practices	.

https://dti.delaware.gov/pdfs/rp_Verizon-DBIR-2014_en_xg.pdf
https://www.usenix.org/system/files/login/articles/15_geer_0.pdf
http://fedscoop.com/what-top-agencies-would-spend-on-it-projects-in-2016
https://18f.gsa.gov/2016/04/15/compliance-masonry-buildling-a-risk-management-platform/
http://blog.flux7.com/blogs/aws/vpc-best-configuration-practices

In	2010,	Nick…	Nick	Galbreath,	“Fraud	Engineering,	from	Merchant	Risk
Council	Annual	Meeting	2012,”	Slideshare.net,	posted	by	Nick	Galbreath,	May
3,	2012,	http://www.slideshare.net/nickgsuperstar/fraud-engineering	.

Of	particular	concern…	Nick	Galbreath,	“DevOpsSec:	Appling	DevOps
Principles	to	Security,	DevOpsDays	Austin	2012,”	Slideshare.net,	posted	by
Nick	Galbreath,	April	12,	2013,
http://www.slideshare.net/nickgsuperstar/devopssec-apply-devops-principles-to-
security	.

We	were	always…	Ibid.

This	was	a	ridiculously…	Ibid.

As	Galbreath	observed…	Ibid.

Galbreath	observed,	“One…	Ibid.

As	Jonathan	Claudius…	Jonathan	Claudius,	“Attacking	Cloud	Services	with
Source	Code,”	Speakerdeck.com,	posted	by	Jonathan	Claudius,	April	16,	2013,
https://speakerdeck.com/claudijd/attacking-cloud-services-with-source-code	.

CHAPTER	23

ITIL	defines	utility…	Axelos,	ITIL	Service	Transition	(ITIL	Lifecycle	Suite)
(Belfast,	Ireland:	TSO,	2011),	48.

Salesforce	was	founded…	Reena	Matthew	and	Dave	Mangot,	“DOES14	-	Reena
Mathew	and	Dave	Mangot	-	Salesforce,”	Slideshare.net,	posted	by
ITRevolution,	October	29,	2014,
http://www.slideshare.net/ITRevolution/does14-reena-matthew-and-dave-
mangot-salesforce	.

http://www.slideshare.net/nickgsuperstar/fraud-engineering
http://www.slideshare.net/nickgsuperstar/devopssec-apply-devops-principles-to-security
https://speakerdeck.com/claudijd/attacking-cloud-services-with-source-code
http://www.slideshare.net/ITRevolution/does14-reena-matthew-and-dave-mangot-salesforce

By	2007,	the…	Dave	Mangot	and	Karthik	Rajan,	“Agile.2013.effecting.a.dev
ops.transformation.at.salesforce,”	Slideshare.net,	posted	by	Dave	Mangot,
August	12,	2013,	http://www.slideshare.net/dmangot/agile2013effectingadev-
opstransformationatsalesforce	.

Karthik	Rajan,	then…	Ibid.

At	the	2014…	Matthew	and	Mangot,	“DOES14	-	Salesforce.”

For	Mangot	and…	Ibid.

Furthermore,	they	noted…	Ibid.

Bill	Massie	is…	Bill	Massie,	personal	correspondence	with	Gene	Kim,	2014.

Because	the	scope…	“Glossary,”	PCI	Security	Standards	Council	website,
accessed	May	30,	2016,
https://www.pcisecuritystandards.org/pci_security/glossary	.

Are	code	review…	PCI	Security	Standards	Council,	Payment	Card	Industry
(PCI)	Data	Security	Stands:	Requirements	and	Security	Assessment	Procedures,
Version	3.1	(PCI	Security	Standards	Council,	2015),	Section	6.3.2.
https://webcache.googleusercontent.com/search?
q=cache:hpRe2COzzdAJ:https://www.cisecuritystandards.org/documents/PCI_DSS_v3-
1_SAQ_D_Merchant_rev1-1.docx+&cd=2&hl=en&ct=clnk&gl=us	.

To	fulfill	this…	Bill	Massie,	personal	correspondence	with	Gene	Kim,	2014.

Massie	observes	that…	Ibid.

As	a	result…	Ibid.

http://www.slideshare.net/dmangot/agile2013effectingadev-opstransformationatsalesforce
https://www.pcisecuritystandards.org/pci_security/glossary
https://webcache.googleusercontent.com/search?q=cache:hpRe2COzzdAJ:https://www.cisecuritystandards.org/documents/PCI_DSS_v3-1_SAQ_D_Merchant_rev1-1.docx+&cd=2&hl=en&ct=clnk&gl=us

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	

	

	 	 	

	 	 	

	 	 	

	 	 	

	 	 	

	 	 	

	 	 	

	 	 	

	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	
	

	 	 	

CONCLUSION

She observed:… Ibid., 2014.

Kim, 2013
She made the… Mary Smith (a pseudonym), personal correspondence with Gene

http://itrevolution.com/devops-and-auditors-the-devops-audit-defense-toolkit .
DevOps Audit Defense Toolkit (Portland, OR: IT Revolution, 2015),
To help solve… James DeLuccia, Jeff Gallimore, Gene Kim, and Byron Miller,

Shinn gives an… Ibid.

Shinn continues, “How… Ibid.

That requires deriving… Ibid.

Shinn continues, “With… Ibid.

Shinn states that… Ibid.

He explains, “In… Ibid.

“That was fine… Ibid.

Shinn notes, “One… Ibid.

Helping large enterprise… Ibid.

prove-it-the-last-mile-for-devops-in-regulated-organizations .
November 20, 2015, http://www.slideshare.net/ITRevolution/does15-bill-shinn-
DevOps in Regulated Organizations,” Slideshare.net, posted by ITRevolution,
As Bill Shinn… Bill Shinn, “DOES15 - Bill Shinn - Prove it! The Last Mile for

http://www.slideshare.net/ITRevolution/does15-bill-shinn-prove-it-the-last-mile-for-devops-in-regulated-organizations
http://itrevolution.com/devops-and-auditors-the-devops-audit-defense-toolkit

As	Jesse	Robbins…	“Hacking	Culture	at	VelocityConf,”	Slideshare.net,	posted
by	Jesse	Robbins,	June	28,	2012,
http://www.slideshare.net/jesserobbins/hacking-culture-at-velocityconf	.

APPENDIX

The	Lean	movement	started…	Ries,	The	Lean	Startup.

A	key	principal…	Kent	Beck	et	al.,	“Twelve	Principles	of	Agile	Software,”
AgileManifesto.org,	2001,	http://agilemanifesto.org/principles.html	.

Building	upon	the…	Humble	and	Farley,	Continuous	Delivery.

This	idea	was…	Fitz,	“Continuous	Deployment	at	IMVU.”

Toyota	Kata	describes…	Rother,	Toyota	Kata,	Introduction.

His	conclusion	was…	Ibid..

In	2011,	Eric…	Ries,	The	Lean	Startup.

In	The	Phoenix…	Kim,	Behr,	and	Spafford,	The	Phoenix	Project,	365.

Myth	1:	“Human…	Denis	Besnard	and	Erik	Hollnagel,	Some	Myths	about
Industrial	Safety(Paris,	Centre	De	Recherche	Sur	Les	Risques	Et	Les	Crises
Mines,	2012),	3,	http://gswong.com/?wpfb_dl=31	.

Myth	2:	“Systems…	Ibid.,	4.

Myth	3:	“Safety…	Ibid.,	6.

Myth	4:	“Accident…	Ibid.,	8.

http://www.slideshare.net/jesserobbins/hacking-culture-at-velocityconf
http://agilemanifesto.org/principles.html
http://gswong.com/?wpfb_dl=31

Myth	5:	“Accident…	Ibid.,	9.

Myth	6:	Safety…	Ibid.,	11.

Rather,	when	the…	John	Shook,	“Five	Missing	Pieces	in	Your	Standardized
Work	(Part	3	of	3),”	Lean.org,	October	27,	2009,
http://www.lean.org/shook/DisplayObject.cfm?o=1321	.

Time	to	resolve…	“Post	Event	Retrospective	-	Part	1,”	Rally	Blogs,	accessed
May	31,	2016,	https://www.rallydev.com/blog/engineering/post-event-
retrospective-part-i	.

Bethany	Macri,	from…	“Morgue:	Helping	Better	Understand	events	by	Building
a	Post	Mortem	Tool	-	Bethany	Macri,”	Vimeo	video,	33:34,	posted	by
info@devopsdays.org,	October	18,	2013,	http://vimeo.com/77206751	.

These	discussions	have…	Cockcroft,	Hicks,	and	Orzell,	“Lessons	Netflix
Learned.”

Since	then,	Chaos…	Ibid.

Lenny	Rachitsky	wrote…	Lenny	Rachitsky,	“7	Keys	to	a	Successful	Public
Health	Dashboard,”	Transparent	Uptime,	December	1,	2008,
http://www.transparentuptime.com/2008/11/rules-for-successful-public-
health.html	.

http://www.lean.org/shook/DisplayObject.cfm?o=1321
https://www.rallydev.com/blog/engineering/post-event-retrospective-part-i
http://vimeo.com/77206751
http://www.transparentuptime.com/2008/11/rules-for-successful-public-health.html

Index

Symbols	Numbers	A
B	C	D	E	F	G	H	I	J	K
L	M	N	O	P	Q	R	S	T	U

V	W	Y	Z

Note:	Figures	are	indicated	with	f;	footnotes	are	indicated	with	n	SYMBOLS
%C/A,	11,	65

NUMBERS
2PT.	See	two-pizza	team
18F	team,	325–326
2013	State	of	DevOps	Report,	159–160

A
AAS.	See	Amazon	Auto	Scaling
Adams,	Keith,	302
Agile
Infrastructure	and	Velocity	Movement,	5
Infrastructure	Movement,	354
Manifesto,	4–5
Movement,	354
principles,	xxii–xxiii

Aisin	Seiki	Global,	43–44
Alcoa,	41–42,	279

Algra,	Ingrid,	305n
Allspaw,	John
Agile	Infrastructure	and	Velocity	Movement,	5
dark	launches,	173–174
deployment	failures,	251–252
learning	culture,	273–274
production	metrics,	204
Velocity	Movement,	354

Allstate,	66
Amazon
continuous	delivery,	176
deploys	per	day,	xxxivn
evolutionary	architecture,	184–185
market-oriented	organization,	81
service-oriented	architecture,	90–91

Amazon	Auto	Scaling,	221–222
Amazon	AWS
compliance	in	regulated	environments,	342–344
resilience,	271–273,	281–282
service	outage,	271n	Andon	cord
consequences	of	not	pulling,	140
illustrated,	361f
swarming,	31,	32
virtual,	138–140
and	work	stoppages,	360–361

Antani,	Snehal,	314
APIs
enablement,	91–93
Feature	API,	245
service	interactions	using,	89

versioned,	185
application	logging,	201–203,	201n	application-based	release	patterns,	171–175
Arbuckle,	Justin,	290,	314
architecture,	evolutionary
Amazon	case	study,	184–185
architectural	archetypes,	183f	Blackboard	Learn	case	study,	186–189,	187f,
188f	code	repository,	187f,	188f	decoupling	functionality,	186
description	of,	179–180
immutable	services,	185
loosely-coupled	architecture,	181–182
monoliths	vs	microservices,	182–185
Second	Law	of	Architectural	Thermodynamics,	180–181
service-oriented	architecture,	182
strangler	application	pattern,	180,	185–189
tightly-coupled	architecture,	180–181,	185
versioned	APIs,	185
versioned	services,	185

architecture,	loosely-coupled,	89–93,	181–182,	254–255
architecture,	monitoring,	198–199
architecture,	service-oriented,	89,	90–91,	182
Ashman,	David,	187
ATDD.	See	development,	acceptance	test-driven
Atwood,	Jeff,	147,	259–260
Austin,	Jim,	215–216
automated	environment	build	process
assets	to	check	into	version	control	repository,	116
automated	configuration	systems,	118
benefits	of	automation,	114–115
common	build	mechanisms,	113
critical	role	of	version	control,	117

environment	consistency,	118
environment	development	on	demand,	113–115
environment	re-build	vs	repair,	118
environments	stored	in	version	control,	115–116
immutable	infrastructure,	119
metadata,	115
new	definition	of	finished	development,	119–121
quick	environment	development,	112
shared	version	control	repository,	115–118
sprints,	119–120
standardization,	114
testing,	113
testing	environments,	113
uses	of	automation,	114
version	control	as	predictor	of	organizational	performance,	117
version	control	systems,	115–118

automated	validation	test	suite
acceptance	test-driven	development,	134–135
acceptance	tests,	131,	132
analysis	tools,	138
automating	manual	tests,	135–136
code	configuration	management	tools,	138
environment	validation,	137–138
error	detection,	132–133
fast	testing,	132,	133–134
feedback,	130
green	builds,	129–130
ideal	vs	non-ideal	testing,	133f	integration	tests,	131,	132
non-functional	requirements	testing,	137–138
performance	testing,	136–137

test	types,	130–131
test-driven	development,	134–135
testing	in	parallel,	133–134,	134f	unit	tests,	130–131,	132–133
unreliable	test,	135

automation.	See	automated	environment	build	process;	deployment	process
automation;	testing,	automated	B
Baker,	Bill,	118
Barnes	&	Noble,	51
batch	sizes
continuous	deployment,	20
error	management,	19
large,	19–20
single-piece	flow,	19,	20
small,	18–20
small	batch	strategy,	19
small	vs	large,	20f

Bazaarvoice,	97n,	149–151
Beck,	Kent,	134,	154
Beedle,	Mike,	102n
Behr,	Kevin,	195,	203n	Besnard,	Denis,	359–360
Betz,	Charles,	180–181,	313n	Big	Fish	Games,	95–97
bimodal	IT,	56
Blackboard	Learn
case	study,	187f,	188f	Perl,	187
strangler	application	pattern,	186–189

blameless	post-mortems
countermeasures,	276
goals	of,	274–275
outcomes	of,	275–276
publicizing,	277–278

sample	agenda,	362–364
stakeholders	present,	275
transparent	uptime,	277n	Bland,	Mike,	123–126,	124n,	306–307,	325

Blank,	Steve,	355
Blankenship,	Ed,	210
blitz
goals,	301
improvement,	299
kaizen,	299

Blockbuster,	51
blue-green	deployment	pattern
deployment,	166–169,	166f,	167n	Farley,	David,	168–169
low-risk	releases,	166–169,	166f	Ruby	on	Rails,	167n

BMW,	67
Bohmer,	Richard	M.	J.,	279
Booch,	Grady,	6n
Borders,	51
Boubez,	Toufic,	219,	224–226
Bouwman,	Jan-Joost,	305n	Brakeman,	322,	322f	brownfield	services.	See
services,	brownfield
Building	Blocks,	188–189
build-measure-learn	cycle,	355
bureaucratic	organizations,	39
Burgess,	Mark,	6n
business	logic
changes	to,	78,	79
coordinating	changes	to,	79
moving	to	application	layer,	79

business	relationship	manager,	96
Buytaert,	Kris,	305n	C

C++
eBay,	179n,	182
Facebook,	153n,	175,	302
Google,	296n
Google	Web	Server,	123

Cagan,	Marty,	70
Campbell-Pretty,	Em,	111–112
Canahuati,	Pedro,	85
canary	release	pattern,	153n,	169–171,	170f,	170n	canary	tests,	153
Capitol	One,	304–306
case	studies
Amazon,	184–185
Amazon	AWS,	271–273,	344–345
anomaly	detection	techniques,	224–226
ATM	systems,	344–345
Bazaarvoice,	149–151
Big	Fish	Games,	95–97
Blackboard	Learn,	186–189,	187f,	188f	Capitol	One,	304–306
CSG	International,	157–159
Dixons	Retail,	168–169
Etsy,	77–80,	162–164,	297–298,	328–330,	339–341
Facebook,	153–155,	174–175
Federal	Government,	325–326
Google,	237–239,	257–258
Google	Web	Server,	123–126
HP,	144–146
Intuit,	241–248
LinkedIn,	71–73,	207–208
Nationwide	Insurance,	304–306
Netflix,	215–216,	221–222,	271–273

Nordstrom,	51–55,	61–62
Pivotal	Labs,	260–261
Right	Media,	227–229
Salesforce.com,	337–338
Target,	91–93,	299–300,	304–306
Twitter,	320–323
Yahoo!	Answers,	246–248

Chacon,	Scott,	249
Chakrabarti,	Arup,	232
change	approval	processes.	See	also	code	reviews
case	study,	249–251
change	advisory	boards,	253
change	control	failures,	252–253
change	freezes,	258–259
change	review	lead	times,	258f	code	reviews,	255–258
coordination	and	scheduling	of	changes,	254–255
counterfactual	thinking,	251,	251n	cutting	bureaucratic	processes,	263–264
dangers	of,	251–252
email	pass-around,	257
engineer	roles,	259
GitHub	Flow,	250
Google	case	study,	257–258
guidelines	for	code	reviews,	256
in	a	loosely-coupled	architecture,	254–255
manual	testing,	258–259
over-the-shoulder,	256
pair	programming,	256,	259–263
peer	reviews,	249–251,	253,	254f,	255–258
Pivotal	Labs	case	study,	260–261
pull	requests,	250,	250f,	261–263

review	steps,	250–251
small	batch	sizes,	255–256
test-driven	development,	259–260
tool-assisted,	257
traditional	change	controls,	252–254
types	of	code	reviews,	256–257

Chaos	Monkey,	272–273,	281–282,	364
chat	rooms,	74
ChatOps,	287–289
Chuvakin,	Anton	A.,	202
CI.	See	continuous	integration
Clanton,	Ross,	263,	299–300,	305
Claudius,	Jonathan,	330
Clemm,	Josh,	71,	72
Cloud.gov,	325–326
cluster	immune	system,	171n	cluster	immune	system	release	pattern,	169,	170–
171
coaching	kata,	45
Cockcoft,	Adrian,	82n,	200,	263
code
commits,	148
configuration	management	tools,	138
deployment,	22,	160–162
deployment	process	automation,	160
deployment	process	changes,	154
infrastructure	as,	6n	merging,	143–144
migration,	117n
packaging,	128
repositories,	187f,	188f,	290–292,	315–317
re-use,	289–290

signing,	319–320
source	code	integrity,	319–320

code	commits,	148
code	reviews.	See	also	change	approval	processes
change	review	lead	times,	258f	email	pass-around,	257
Google	case	study,	257–258
guidelines	for,	256
over-the-shoulder,	256
pair	programming,	256
small	batch	sizes,	255–256
tool-assisted,	257
types	of,	256–257

collective	knowledge,	42–43
compliance
audit	and	compliance	documentation	and	proof,	341–345
regulatory	compliance	objectives,	235–236
security	and	compliance	and	change	approval	processes,	333–335

configuration	management	tools,	116n	constraints
bottlenecks,	22
code	deployment,	22
environment	creation,	22
overly	tight	architecture,	23
test	setup	and	run,	22–23

continual	experimentation	and	learning,	37–46
continuous	delivery
deployment	pipeline,	127–129,	127f	Google,	176
low-risk	releases,	175–177

Continuous	Delivery	Movement,	5–6,	354
continuous	deployment,	6,	20,	175–177
continuous	integration

case	study,	149–151
code	merging,	143–144
description	of,	144–146
Dev	vs	DevOps,	126n
frequent	code	commits,	148
gated	commits,	148
integration	problems,	143
large	batch	development,	147–148
and	trunk-based	development	practices,	148–151
and	version	control,	148–149

Convergence	of	DevOps,	353–356
Conway,	Melvin,	77
Conway’s	Law,	77–78,	88
Cook,	Scott,	242
core	chronic	conflict,	xxiv–xxvi,	xxvn
core	conflict	cloud,	356–357,	356f	Corman,	Josh,	313,	323
cost	of	delay,	213n
COTS	software,	361
Cox,	Jason,	87,	99–100,	263
CSG	International
brownfield	services,	56
cross-training,	86–87
daily	deployments,	157–159

Cunningham,	Ward,	148

D
dark	launches,	173–175
dashboards,	207n
data	sets.	See	telemetry
Debois,	Patrick,	5

dedicated	release	engineer,	96
DeGrandis,	Dominica,	18
Dekker,	Sidney
just	culture,	273
safety	culture,	28,	38

dependency	scanning
Java,	319
Ruby	on	Rails,	319

Deployinator,	163–164,	163f	deployment
automated	self-service,	159–160
blue-green	pattern,	166–169,	166f,	167n	change,	124
code,	22,	154,	160–162
consistency,	156
continuous,	20,	175–177
daily,	157–159
decoupling	from	releases,	164–175
defined,	164
on	demand,	165
fast,	161,	161f	flow,	156
issues,	78
lead	time,	8–11,	9f,	165
making	safer,	229–230
overlay	of	production	deployment	activities,	213
pace,	154
pipeline	requirements,	156–157
process	automation,	155–164,	159f	self-service	developer,	162–164
speed	and	success,	79
tool,	163–164,	163f	deployment	lead	time
design	and	development,	8
lead	time	vs	processing	time,	9–10,	9f	Lean	Manufacturing,	9

Lean	Product	Development,	8
long,	10,	10f,	165
short,	10–11,	11f	testing	and	operations,	9
workflow,	9

deployment	pipeline
breakdown,	138–140
containers	in,	128n
continuous	delivery,	127–129,	127f	and	information	security,	330–331

deployment	pipeline	protection
Amazon	AWS	case	study,	342–344
audit	and	compliance	documentation	and	proof,	341–345
categories	of	changes,	334–335,	334n	compliance	in	regulated	environments,
341–345
destructive	testing,	338
Etsy	case	study,	339–341
normal	changes,	334,	336–338
production	telemetry	for	ATM	systems,	344–345
Salesforce	case	study,	337–338
security	and	compliance	and	change	approval	processes,	333–335
separation	of	duties,	338–341
standard	changes,	334,	335–336
urgent	changes,	334–335

deployment	process	automation
automated	self-service	deployments,	159–160
automating	manual	steps,	155–156
code	deployment	as	part	of	deployment	pipeline,	160–162
code	promotion	processes,	160
CSG	International	case	study,	157–159
deployment	consistency,	156
deployment	flow,	156

deployment	pipeline	requirements,	156–157
environment	consistency,	157,	158
Etsy	case	study,	162–164
fast	deployments,	161,	161f	lead	time	reduction,	156
MTTR,	158,	159f,	161f	process	documentation,	155
production	incident	decrease,	158,	159f	self-service	developer	deployment,
162–164
Shared	Operations	team,	157
smoke	testing,	156,	163

deployment	vs	releases,	164–175
Dev	in	production-like	environments
assets	to	check	into	version	control	repository,	116
automated	configuration	systems,	118
benefits	of	automation,	114–115
common	build	mechanisms,	113
critical	role	of	version	control,	117
environment	consistency,	118
environment	development	on	demand,	113–115
environment	re-build	vs	repair,	118
environments	stored	in	version	control,	115–116
immutable	infrastructure,	119
metadata,	115
new	definition	of	finished	development,	119–121
quick	environment	development,	112
shared	version	control	repository,	115–118
sprints,	119–120
standardization,	114
testing,	113
testing	environments,	113
uses	of	automation,	114

version	control	as	predictor	of	organizational	performance,	117
version	control	systems,	115–118

Development.	See	entries	under	Dev
development,	acceptance	test-driven,	134–135
development,	test-driven
automated	testing,	134–135,	293
handling	defect	density,	135n	and	low-risk	releases,	154
and	pair	programming,	259–260
testing	before	code	writing,	9n	development,	trunk-based,	143–151

development,	waterfall,	5
DevOps
Agile	Infrastructure	and	Velocity	Movement,	5
Agile	Manifesto,	4–5
business	value	of,	xxxii–xxxiii
Continuous	Delivery	Movement,	5–6
defined,	4
DevOpsDays,	5
downward	spiral	in,	xxx–xxxii
ethics	of,	xxix–xxxv
history	of,	3–6
Lean	Movement,	4
revolution,	xxii
team	engagement,	101n	The	Three	Ways,	11–12
Toyota	Kata	movement,	6

DevOps	myths
LAMP	stack,	xvi
MySQL,	xvi
PHP,	xvi

DevOps	transformation
bimodal	IT,	56

chat	rooms,	74
expanding	DevOps,	58–59
greenfield	vs	brownfield	services,	54–56
leveraging	innovators,	57–58
LinkedIn	case	study,	71–73
making	work	visible,	73
managing	technical	debt,	69–71
phases	of	initiatives,	59
rapid	communication	environment,	74
reinforcing	desired	behavior,	73–74
shared	tools,	73–74
shared	work	queue,	73–74
systems	of	engagement,	56–57
systems	of	record,	56
technical	debt,	69–71,	70f	technology	adoption	curve,	58f	transformation	team,
66–73

DevOpsDays,	5,	305n	Dignan,	Larry,	91
Disney,	87,	99–100
Dixons	Retail,	168–169
documentation
automated	tests	as,	293
process,	155

downward	spiral,	xxvi–xxviii,	xxx–xxxii,	357,	357f	Drucker,	Peter,	60
Dweck,	Carol,	87

E
eBay,	70,	179–180,	179n,	182
e-commerce	sites
anomaly	detection	techniques,	224–226
application	security,	318

metrics	sources,	210
Nordstrom,	51–55
Target,	91–93

Edmondson,	Amy	C.,	278,	279
Edwards,	Damon,	64,	97
employee	Net	Promotor	Score,	xxxiiin
environment	consistency,	157,	158
environment	security,	324–326,	324n	environments
consistency,	157,	158
creation	restraints,	22
definition	of,	113n
rapid	communication	environment,	74
validation,	137–138

environments,	automated	build
assets	to	check	into	version	control	repository,	116
automated	configuration	systems,	118
benefits	of	automation,	114–115
common	build	mechanisms,	113
critical	role	of	version	control,	117
environment	consistency,	118
environment	development	on	demand,	113–115
environment	re-build	vs	repair,	118
environments	stored	in	version	control,	115–116
immutable	infrastructure,	119
metadata,	115
new	definition	of	finished	development,	119–121
quick	environment	development,	112
shared	version	control	repository,	115–118
sprints,	119–120
standardization,	114

testing,	113
testing	environments,	113
uses	of	automation,	114
version	control	as	predictor	of	organizational	performance,	117
version	control	systems,	115–118

environments,	production-like
assets	to	check	into	version	control	repository,	116
automated	configuration	systems,	118
benefits	of	automation,	114–115
common	build	mechanisms,	113
critical	role	of	version	control,	117
development	on	demand,	113–115
environment	consistency,	118
environment	development	on	demand,	113–115
environment	re-build	vs	repair,	118
environments	stored	in	version	control,	115–116
immutable	infrastructure,	119
metadata,	115
new	definition	of	finished	development,	119–121
quick	environment	development,	112
shared	version	control	repository,	115–118
sprints,	119–120
standardization,	114
testing,	113
testing	environments,	113
uses	of	automation,	114
version	control	as	predictor	of	organizational	performance,	117
version	control	systems,	115–118

errors
detection,	28,	114n,	132–133

management,	19
Etsy
brownfield	services,	56
case	study,	77–80,	162–164
code	deployment,	162n	designated	Ops,	100–101
DevOps	transformation,	51
functional-oriented	organizations,	84
LAMP	stack	at,	196
metrics	library,	204–206
Morgue,	277–278
MySQL	at,	196,	297–298
organizational	learning,	40
PHP,	196,	297,	297n	production	monitoring,	196–198
programming	languages	used,	297n	publicizing	post-mortems,	277
Python,	297,	297n	security	telemetry,	328–330
separation	of	duties,	339–341
Sprouter,	78–80,	88
technology	stack	standardization,	297–298

Evans,	Eric	J.,	89
Evans,	Jason,	302
Extreme	Programming,	134,	154

F
Facebook
C++,	153n,	175,	302
canary	release	pattern,	170
case	study,	153–155
dark	launches,	174–175
front-end	codebase,	153n	Gatekeeper,	172n
JavaScript,	175

PHP,	153n,	154,	175,	302
shared	pain,	85
technical	debt,	302

Farley,	David
automated	testing,	126–127
blue-green	deployment	pattern,	168–169
continuous	delivery,	175–176,	354
Continuous	Delivery	Movement,	5–6
continuous	integration,	126n	infrastructure	as	code,	6n	Farley,	Steve,	303,	305

Farrall,	Paul,	95–97
fast	release	cycle	experimentation
case	study,	246–248
Feature	API,	245
history	of,	243
integrating	into	feature	planning,	245–248
integrating	into	feature	testing,	244–245
integrating	into	release,	245
outcomes	of,	244
user	research,	244–245
Yahoo!	Answers,	246–248

fast	testing,	132,	133–134
feature	toggles,	171–173,	172n,	175,	229–230
features
consequences	of	new,	57
extra,	24
planning,	245–248
testing,	244–245

Federal	Government	agencies,	325–326
feedback
automated	build,	integration,	and	test	processes,	30

automated	testing,	126,	130
error	detection,	28
ineffective	quality	controls,	32–34
mechanisms	for	production	telemetry,	229
Ops	and	market-oriented	outcomes,	103
optimizing	for	downstream	work	centers,	34–35
problem	prevention,	30
problem	visibility,	29–30
production	telemetry,	229
QA	automation,	33–34
safety	in	complex	systems,	27–29
swarming,	30–32

feed-forward	loops,	29,	30
Fernandez,	Roberto,	59,	80
first	stories,	360f
Fitz,	Tim
continuous	delivery,	354
continuous	deployment,	6,	175–177
expand/contract	pattern,	168n	fix	forward,	230

fixed	mindset,	87
Flickr,	173–174
Forsgren,	Nicole,	220
Fowler,	Martin,	132,	185,	186

G
Gaekwad,	Karthik,	303
Galbreath,	Nick,	227–229,	328–330
Game	Days,	282–284
Ganglia,	196
Garcia,	Rafael,	297

Gatekeeper,	172n,	175
Gauntlt,	313,	317
General	Motors	Fremont	plant,	29,	31,	37
generative	organizations,	39–40
GitHub
functional-oriented	organizations,	84
GitHub	Flow,	250
organizational	knowledge,	287–289
peer	reviews,	249–251

GitHub	Flow,	250
goal	setting,	68
Google
automated	testing,	125n	C++,	296n
code	reviews,	257–258
continuous	delivery,	176
Disaster	Recovery	Program	(DiRT),	284
functional-oriented	organizations,	84
imposter	syndrome,	124n	Java,	296n
JavaScript,	296n	launch	and	handoff	readiness	reviews,	237–239
production	service,	234
programming	languages	used,	297n	publicizing	post-mortems,	277
Python,	296
service-oriented	architecture,	90
source	code	repository,	291–292

Google	App	Engine,	139
Google	Cloud	Datastore,	181f,	182
Google	Web	Server
Andon	cord,	138
automated	testing,	123–126
C++,	123

case	study,	123–126
Fixit	Grouplet,	307
Testing	Grouplet,	124–126,	306–307

Govindarajan,	Vijay,	66
Grafana,	204,	224
Graphite,	196,	204,	224
Gray,	Jim,	184
greenfield	services.	See	services,	greenfield
growth	mindset,	87
Gruver,	Gary
automated	testing,	123,	136
continuous	integration,	144–146
ineffective	quality	controls,	34

Gupta,	Prachi,	207–208
GWS.	See	Google	Web	Server

H
Hammant,	Paul,	186n
Hammond,	Paul,	5,	354
HandOff	Readiness	Review,	237–239,	239f	handoffs
dangers	of,	358–359
loss	of	knowledge,	21
reducing	batch	size,	21
workflow	management,	21

hardening	phase,	53n	Hendrickson,	Elisabeth,	30,	135,	260–261
heroics,	10,	25,	25n	high-trust	culture,	37–38
HipHop	compiler,	302
Hodge,	Victoria	J.,	215–216
Hollnagel,	Erik,	359–360
HP,	144–146

HRR.	See	HandOff	Readiness	Review
Humble,	Jez
automated	testing,	126–127
continuous	delivery,	175–176
Continuous	Delivery	Movement,	5–6
continuous	integration,	126n	dangers	of	change	approval	processes,	252
evolutionary	architecture,	179
infrastructure	as	code,	6n	user	research,	244

hypothesis-driven	development,	241–248

I
ICHT,	339–341
Imbriaco,	Mark,	288
imposter	syndrome,	124n	improvement	blitz
organizational	learning	and	improvement,	299
Spear,	Steven,	299
Toyota	Production	System,	299

improvement	goal	examples,	68
improvement	kata,	6,	355
industrial	safety,	359–360
information	radiator,	206–208
information	security
18F	team,	325–326
application	security,	318–323
automated	security	testing,	318f	bad	paths,	318
Brakeman,	322,	322f	build	images,	317
Cloud.gov,	325–326
code	signing,	319–320
creating	security	telemetry,	327–330
data	breaches,	323–324

and	defect	tracking	and	post-mortems,	315
dependency	scanning,	319
and	the	deployment	pipeline,	317–318,	330–331
dynamic	analysis,	319
environment	security,	324–326
Etsy	case	study,	328–330
Federal	Government	case	study,	325–326
Gauntlt,	313,	317
Graphite,	329f
happy	paths,	318
integrating	into	production	telemetry,	326–327
inviting	InfoSec	to	product	demonstrations,	314
Java,	324
Metasploit,	325
Nmap,	325
preventive	security	controls,	315–317
Ruby	on	Rails,	322
rugged	DevOps,	313
sad	paths,	318
security	libraries,	316
shared	code	repositories	and	services,	315–317
software	supply	chain	security,	323–324
source	code	integrity,	319–320
SQL	injection	attempts,	329,	329f	static	analysis,	319,	320–323
Twitter	case	study,	320–323
value	stream,	63

Infosec.	See	information	security
infrastructure	as	code,	6n	infrastructure	metrics,	213n	InGraphs,	208
integrated	development	environment,	128n	integration,	120n
Intuit,	241–248

iteration	length,	68
ITIL,	116n,	231n,	253,	333,	334n	ITIL	CMDB,	212,	212n	J
Jacob,	Adam,	6n
Jacques,	Olivier,	297
Java
automation,	127
Bazaarvoice,	149
dependency	scanning,	319
eBay,	179n
Google,	296n
information	security,	324
LinkedIn,	71
logging	infrastructure,	201n	ORM,	79n
production	metrics,	204
threading	libraries,	292

JavaScript
Facebook,	175
Google,	296n
production	telemetry,	209

Jones,	Daniel	T.,	19
just	culture,	38

K
Kalantzis,	Christos,	281–282
kanban	boards
and	the	Lean	Movement,	4
sharing	between	Ops	and	Dev,	104
workflow	management,	16–17,	16f	Kanies,	Luke,	6n

Kastner,	Erik,	163–164
Kim,	Gene,	195,	203n,	233,	252,	313

Kissler,	Courtney,	51–54,	61–62
Knight	Capital,	251–252
knowledge	sharing,	42–43
Kohavi,	Ronny,	244
Krishnan,	Kripa,	284

L
LAMP	stack
DevOps	myths,	xvi
at	Etsy,	196

Lauderbach,	John,	88n
Launch	Readiness	Review,	238–239
lead	time
change	review,	258f
deployment,	8–11,	9f,	165
and	the	Lean	Movement,	353
reduction,	156

Lean	Manufacturing
deployment	lead	time,	8–11
functional-oriented	organizations,	84
manufacturing	value	stream,	7–8
technology	value	stream,	8–11
The	Three	Ways,	11–12

Lean	Movement,	4,	353
Lean	principles,	xxii
Lean	Product	Development,	9
Lean	Startup	Movement,	355
Lean	UX	Movement,	355
learning	culture
Amazon	AWS	case	study,	271–273

amplifying	weak	failure	signals,	279–280
bad	apple	theory,	273
blameless	post-mortems,	274–276
Chaos	Monkey,	272–273,	281–282
Game	Days,	282–284
injecting	faults	into	production	environment,	281–282,	282n	just	culture,	273–
274
leaders	and,	44–46
Morgue,	277–278
Netflix	case	study,	271–273
publicizing	post-mortems,	277–278
redefining	failure,	280–281
rehearsing	failures,	282–284
resilience,	281–282
resilience	engineering,	282–283
The	Third	Way,	44–46
and	Toyota	Kata,	45
and	Toyota	Production	System,	45

Lesiecki,	Nick,	306–307
Letuchy,	Eugene,	174–175
Lightbody,	Patrick,	231
Limoncelli,	Tom,	218,	238–239,	292,	296–297
LinkedIn
case	study,	71–73
Java,	71
Operation	Inversion,	72
Oracle,	71
self-service	metrics,	207–208

Little,	Christopher,	xxvii,	73
logging,	201–203,	201n	logging	infrastructure

Java,	201n
Ruby	on	Rails,	201n

Loura,	Ralph,	297
Love,	Paul,	313
low-risk	releases
application-based	release	patterns,	165–166,	171–175
automated	self-service	deployments,	159–160
automating	manual	steps,	155–156
blue-green	deployment	pattern,	166–169,	166f	canary	release	pattern,	169–
171,	170f	canary	tests,	153
cluster	immune	system	release	pattern,	169,	170–171
code	deployment	as	part	of	deployment	pipeline,	160–162
code	deployment	process	changes,	154
code	promotion	processes,	160
continuous	delivery,	175–177
continuous	deployment,	175–177
CSG	International	case	study,	157–159
dark	launches,	173–175
database	changes,	167–168,	168n	decoupling	deployment	from	releases,	164–
175
deployment	consistency,	156
deployment	defined,	164
deployment	flow,	156
deployment	lead	time,	165
deployment	on	demand,	165
deployment	pace,	154
deployment	pipeline	requirements,	156–157
deployment	process	automation,	155–164
deployment	tool,	163–164,	163f	Dixons	Retail	case	study,	168–169
environment	consistency,	157,	158

environment-based	release	patterns,	165,	166–171
Etsy	case	study,	162–164
evolutionary	architecture,	179–189
Facebook	case	study,	174–175
fast	deployments,	161,	161f	feature	toggles,	171–173,	175
lead	time	reduction,	156
MTTR,	158,	159f,	161f	performance	degradation,	172
point-of-sale	systems,	168–169
process	documentation,	155
production	incident	decrease,	158,	159f	release	frequency,	153,	154f	release
risk,	165
releases	defined,	164–165
resilience,	172
roll	back,	172
self-service	developer	deployment,	162–164
Shared	Operations	team,	157
smoke	testing,	156,	163

LRR.	See	Launch	Readiness	Review

M
Macri,	Bethany,	363
Macys.com,	136
making	work	visible,	15–17,	73,	104
Malpass,	Ian,	197,	276
Mangot,	Dave,	337–338
manufacturing	lead	time,	4
manufacturing	value	stream
defined,	7
description	of,	7–8
feedback	issues,	29

integrating	learning,	37
low-trust	environment,	37
workflow,	7–8

Marsh,	Dianne,	98
Martin,	Karen,	7
Massie,	Bill,	339,	341
Mathew,	Reena,	337–338
Maximilien,	E.	Michael,	135n	McDonnell,	Patrick,	196
McKinley,	Dan,	298
Mediratta,	Bharat,	124,	306–307
Messeri,	Eran,	125,	291
metadata,	115
Metasploit,	325
metrics
actionable	business,	211f	applications	and	business,	210–212
infrastructure,	212–213
libraries,	204–205
production,	204–206
self-service,	207–208
sources,	209
for	telemetry	improvement,	65–66

Metz,	Cade,	302
Mickman,	Heather,	91–93,	263,	305
Microsoft,	118
Microsoft	Operations	Framework,	195
Milstein,	Dan,	276
minimum	viable	product,	355
MOF.	See	Microsoft	Operations	Framework
Moore,	Geoffrey	A.,	57
Morgue,	277–278

MTTR
deployment	process	automation,	158,	159f	recording,	277
telemetry,	197,	197f	Mueller,	Ernst,	97n,	149–151,	207

Mulkey,	Jody,	84–85,	212
MySQL
DevOps	myths,	xvi
at	Etsy,	196,	297–298

N
Nagappan,	Nachi,	135n	Nagios,	198
NASA,	279–280
National	Instruments,	54–55
Nationwide	Insurance,	304–306
Netflix
auto-scaling	capacity,	221–222
market-oriented	organization,	81
Netflix	AWS,	118n
organizational	values,	90n	redefining	failure,	280–281
resilience,	271–273,	281–282
self-service	platforms,	98
telemetry	analysis,	215–216

Newland,	Jesse,	287–289
Nike,	159
Nmap,	325
non-functional	requirements,	294
Nordstrom,	51–55,	61–62
North,	Dan,	168–169,	202
NR	Program,	42–43
Nygard,	Michael,	281

O
Obidos,	184
Object	Relational	Mapping	layer,	79,	79n	O’Donnell,	Glenn,	304
Ohno,	Taiichi,	18n
O’Neill,	Paul,	41,	279
Open	Web	Application	Security	Project,	319,	319n,	324n	Operation	Desert
Shield,	165n	Operation	Inversion,	72
Operations.	See	entries	under	Ops	Ops	and	market-oriented	outcomes
creating	shared	services,	97–99
engineers	embedded	into	service	teams,	99–100
feedback,	103
integration	into	Dev	rituals,	101–104
internal	shared	services	teams,	97–99
liaisons	assigned	to	service	teams,	100–101
making	work	visible,	104
Ops	liaisons,	96
participation	in	Dev	retrospectives,	102–103
participation	in	Dev	standups,	102
self-service	platforms,	97–98
silos,	102
tool	standardization,	98–99

optimizing	for	downstream	work	centers
customer	types,	34
Designing	for	Manufacturing	principles,	34

Oracle
application	configuration	settings,	368
COTS	software,	361
eBay,	179n
ERP	code	migration,	117n	LinkedIn,	71

organizational	cultures,	39,	39f	organizational	knowledge

automated	tests	as	documentation,	293
automating	standardized	processes,	289–290
ChatOps,	287–289
code	re-use,	289–290
codified	non-functional	requirements,	294
communities	of	practice,	293
Etsy	case	study,	297–298
Hubot,	287–289
integrating	automation	into	chat	rooms,	287–289
resuable	Ops	user	stories,	295
source	code	repository,	290–292
technology	choices	to	achieve	organizational	goals,	295–298
technology	stack	standardization,	297–298
test-driven	development,	293
using	chat	rooms	and	chat	bots,	287–289

organizational	learning	and	improvement
attending	external	conferences,	304–306
blitz	goals,	301
Capitol	One	case	study,	304–306
enable	learning	and	teaching,	303–304
improvement	blitz,	299
internal	consulting	and	coaching,	306–307
kaizen	blitz,	299
Nationwide	Insurance	case	study,	304–306
paying	down	technical	debt,	300–303
Target	case	study,	299–300,	304–306
The	Third	Way,	38–40

organizations
functional-oriented,	80,	84
market-oriented,	80–81

matrix-oriented,	80
ORM.	See	Object	Relational	Mapping	layer
Osterling,	Mike,	7
Özil,	Giray,	256

P
pair	programming
and	code	reviews,	256
description	of,	259–263
pair	programmed	rollback,	139n	pairing	hours,	260n
Pivotal	Labs	case	study,	260–261

Pal,	Tapabrata,	263,	305,	313
Pandey,	Ravi,	300
Paroski,	Drew,	302
pathological	organizations,	39
PayPal,	58n
Perl
Blackboard	Learn,	187
eBay,	179n
production	metrics,	204

Perrow,	Charles,	28
PHP
Conway’s	Law,	78
DevOps	myths,	xvi
Etsy,	196,	297,	297n	Facebook,	153n,	154,	175,	302
ORM,	79
production	telemetry,	205,	230,	230f	Pivotal	Labs,	260–261

point-of-sale	systems,	168–169
Poppendieck,	Mary,	24
Poppendieck,	Tom,	24

post-mortems.	See	blameless	post-mortems
problem	visibility,	29–30
problems
fact-based	problem	solving,	203–204
integration,	143
leaders	and	problem	solving,	44
prevention	of,	30
problem	visibility,	29–30
swarming	of	smaller,	32

production	metrics
Java,	204
Perl,	204
Python,	204
Ruby	on	Rails,	204

production	monitoring.	See	telemetry
production	telemetry.	See	also	telemetry;	telemetry	analysis
contextual	inquiry,	232–233
feature	toggles,	229–230
feedback	mechanisms,	229
fix	forward,	230,	230f	function-oriented	teams,	231–232
Google	case	study,	237–239
HandOff	Readiness	Review,	238–239
improving	flow,	232n	JavaScript,	209
launch	and	handoff	readiness	reviews,	237–239,	239f	launch	guidance,	234–
235
Launch	Readiness	Review,	238–239
making	deployments	safer,	229–230
market-oriented	teams,	231
pager	rotation	duties,	230–232
PHP,	205,	230,	230f	production	service,	234–239

regulatory	compliance	objectives,	235–236
roll	back,	230
service	handback	mechanism,	236f,	237
site	reliability	engineers,	237–239
UX	observation,	233,	233n	Prugh,	Scott
and	bimodal	IT,	57
cross-training,	86–87
daily	deployments,	157–158
telemetry,	201

Puppet	Labs,	159–160
Python
Etsy,	297,	297n	Google,	296
ORM,	79n
production	metrics,	204

Q
quality	controls,	32–34
queue	time,	358–359,	358f	queues
long,	81
queue	time,	358–359,	358f	shared	work,	73–74
size,	18,	18n	R

Rachitsky,	Lenny,	365
Rajan,	Karthik,	337
Rapoport,	Roy,	215–216,	280–281
Rational	Unified	Process,	5,	354
Raymond,	Eric	A.,	77
Red	Hat,	114
Reddy,	Tarun,	222–223
reinforcing	desired	behavior,	73–74
release	patterns

application-based,	165–166,	171–175
canary,	169–171,	170f	cluster	immune	system,	169,	170–171
environment-based,	165,	166–171

releases,	164–165
Rembetsy,	Michael,	51,	196,	298
repositories
code,	187f,	188f,	290–292,	315–317
version	control,	115–118

resilience,	43–44,	172,	271–273,	281–282
rework,	11
Richardson,	Vernon,	xxviiin
Ries,	Eric,	20,	171n,	355
Right	Media,	227–229
Robbins,	Jesse,	283,	354
Roberto,	Michael,	279
roll	back,	139n,	230
Rossi,	Chuck,	153–155,	174n	Rother,	Mike
coaching	kata,	45
functional-oriented	organizations,	84
improvement	kata,	40
Toyota	Kata	movement,	6

Ruby	on	Rails
automation,	127
blue-green	deployment,	167n	dependency	scanning,	319
information	security,	322
logging	infrastructure,	201n	ORM,	79
production	metrics,	204

Rugged	Computing	Movement,	355–356

S

Sachs,	Marcus,	326
safety	culture,	28,	38–40
safety	in	complex	systems,	27–29
safety	in	the	workplace,	41–42
Salesforce.com,	337–338
Schafer,	Andrew,	5,	354
Schwaber,	Ken,	102n
Scott,	Kevin,	72–73
Scrum	methodology,	102n,	119–120
Scryer,	221–222
second	stories,	360f	self-service	platforms,	97–98,	206–208
Senge,	Peter
learning	organizations,	40
problem	visibility,	29

service	handback	mechanism,	236f,	237,	237n	services,	brownfield
CSG	International,	56
defined,	55
DevOps	transformation,	54–56
Etsy,	56
improving	speed	and	quality,	57
with	largest	potential	business	benefit,	55n	transformations	of,	55–56
value	streams,	54–56

services,	greenfield
consequences	of	new	features,	57
defined,	54
types	of	projects,	54–56

services,	immutable,	185
services,	shared,	97–99
services,	versioned,	185
Shingo,	Shigeo,	23

Shinn,	Bill,	342–344
Shoup,	Randy
deployment	pipeline	breakdowns,	139
evolutionary	architecture,	179,	182
loosely-coupled	architecture,	90
peer	reviews	of	code	changes,	255–256
publicizing	post-mortems,	277
source	code	repository,	291–292

silos
Ops	and	market-oriented	outcomes,	102
team	organization,	85

Simian	Army,	364–365
single-piece	flow,	19,	20
smoke	testing,	156,	163
smoothing,	223,	223f,	223n	SOAs.	See	architecture,	service-oriented
Souders,	Steve,	354
Spafford,	George,	195,	203n,	313
Spear,	Steven
conditions	for	safety,	28
improvement	blitz,	299
IT	failures,	xxvii
organizational	learning,	40
paying	down	technical	debt,	302
resilience,	271
workplace	safety,	41–42

sprint	planning	boards,	16–17
sprints,	119–120
Sprouter,	78–80,	88
stabilization	phase,	53n	stack	engineers,	86
StatsD,	204–205

Stillman,	Jessica,	302
Stoneham,	Him,	246–248
strangler	application	pattern,	180,	185–189,	186n	Sussman,	Noah,	162–163
Sussna,	Jeff,	233n
swarming
Andon	cord,	31,	32
and	common	management	practice,	31
goal	of,	30
reasons	for,	31
of	smaller	problems,	32

systems	of	engagement
defined,	56–57
and	related	brownfield	systems	of	record,	57

systems	of	record,	56

T
Tableau,	223
Target
API	enablement,	91–93
case	study,	91–93
cutting	bureaucratic	processes,	263–264
DevOps	Dojo,	299–300
first	DevOpsDays,	305n	internal	technology	conferences,	304–306

TDD.	See	development,	test-driven
team	organization
API	enablement	at	Target,	91–93
bounded	contexts,	89
business	logic	changes,	78,	79
business	relationship	manager,	96
collaboration,	88

Conway’s	Law,	77–78,	88
cross-functional	and	independent	teams,	82
cross-training,	85–87
database	stored	procedures	changes,	78
decreasing	handoffs,	79
dedicated	release	engineer,	96
deployment	issues,	78
deployment	speed	and	success,	79
embedding	needed	skills,	82–83
fixed	mindset,	87
functional-oriented	organizations,	80
funding	services	and	products,	87–88
growth	mindset,	87
integrating	Ops	into	Dev	teams,	95–105
internal	shared	services	teams,	97–99
long	queues,	81
loosely-coupled	architecture,	89–93
making	functional	orientation	work,	83–84,	83f	market	orientations,	80–81,
82–83
matrix-orientations,	80
optimizing	for	cost,	81–82
optimizing	for	speed,	82–83
quality	as	shared	goal,	84–85
service	interactions	via	APIs,	89
service-oriented	architecture,	89
shared	pain,	85
silos,	85
specialists	vs.	generalists,	85–87,	86f	stack	engineers,	86
synchronization,	78
team	boundaries,	88

team	size,	90–91
testing	and	operations,	89
two-pizza	team,	90–91

team	size,	90–91
teams
18F	team,	325–326
development,	8
function-oriented,	231–232
market-oriented,	231
service,	83n,	97–101
shared	operations,	157,	158n	team	formation,	67
team	size,	90–91
technology	value	stream,	8
testing,	124–126
transformation,	66–74
two-pizza	team,	90–91

technical	debt
description	of,	148
managing,	69–71
paying	down,	144,	300–303
reducing,	69–71,	70f	technology	adoption	curve,	58f	technology	value	stream
absence	of	fast	feedback,	29–30
creating	a	high-trust	culture,	37–38
defined,	8
deployment	lead	time,	8–11
inputs,	8
integrating	learning,	37–38
responses	to	incidents	and	accidents,	38–39

telemetry.	See	also	production	telemetry;	telemetry	analysis	actionable	business
metrics,	211f	application	logging,	201–203

applications	and	business	metrics,	210–212
centralized	infrastructure,	198–200
culture	of	causality,	195
customer	acquisition	funnel,	210
data	collection,	199
DEBUG	level,	201
defined,	196
ERROR	level,	202
event	router,	199
fact-based	problem	solving,	203–204
FATAL	level,	202
graphs	and	dashboards,	204–205
identify	gaps,	209–213
incident	resolution	time,	197f	INFO	level,	202
information	radiator,	206–208
information	security	in	product	telemetry,	326–327
infrastructure	metrics,	212–213
ITIL	CMDB,	212
LinkedIn	case	study,	207–208
log	centralization,	199
logging	entry	generation,	202–203
logging	levels,	201–202
making	deployments	safer,	229–230
metrics	for	improvement,	65–66
metrics	libraries,	204–205
metrics	library,	204–206
metrics	sources,	209
monitoring	architecture,	198–199
monitoring	framework,	200f	MTTR,	197,	197f	overlay	of	production
deployment	activities,	213

production	metrics,	204–206
and	the	Second	Way,	30
security	telemetry,	327–330
self-service	metrics,	207–208
self-service	platforms,	206–208
StatsD,	204–205
tools,	205n
WARN	level,	202

telemetry	analysis.	See	also	production	telemetry;	telemetry
3	standard	deviation	rule,	219,	219f,	225,	225f	alerts	for	undesired	outcomes,
218
analysis	tools,	224n	anomaly	detection	techniques,	222–226
automated,	222f
auto-scaling	capacity,	221–222,	221f	case	study,	215–216
filtering	techniques,	224
Gaussian	distribution,	217,	217f	Kolmogorov-Smirnov	test,	224,	225,	226f
means,	216–217
Netflix	case	study,	221–222
non-Gaussian	distribution,	219–222,	220f	non-parametric	techniques,	225
outlier	detection,	215–216
precursors	to	production	incidents,	218
Server	Outlier	Detection,	216
smoothing,	223,	223f,	223n	standard	deviations,	216–217,	217f	statistical
techniques,	216–217,	223

test	environments,	113n	testing
automated,	123–127,	125n,	130,	134–135,	136,	293
automated	validation	test	suite,	132,	133–134,	133f,	134f,	136–138
destructive	testing,	338
fast	testing,	132,	133–134
ideal	vs	non-ideal	testing,	133f	manual	testing,	258–259

non-functional	requirements	testing,	137–138
performance	testing,	136–137
smoke	testing,	156,	163
testing	environments,	113
testing	in	parallel,	133–134,	134f	testing,	A/B
case	study,	246–248
Feature	API,	245
history	of,	243
integrating	into	feature	planning,	245–248
integrating	into	feature	testing,	244–245
integrating	into	release,	245
outcomes	of,	244
user	research,	243n,	244–245
Yahoo!	Answers,	246–248

testing,	automated
acceptance	test-driven	development,	134–135
acceptance	tests,	131,	132,	139
analysis	tools,	138
automated	build	and	test	processes,	127
automated	test	suites,	126
automated	validation	test	suite,	129–138
automating	manual	tests,	135–136
change	deployment,	124
code	configuration	management	tools,	138
code	packaging,	128
deployment	pipeline,	127–129
environment	validation,	137–138
error	detection,	132–133
failure	indicators,	139
fast	testing,	132,	133–134

feedback,	126,	130
green	builds,	129–130
handling	input	from	external	integration	points,	131n	ideal	vs	non-ideal
testing,	133f	integration	tests,	131,	132
non-functional	requirements	testing,	137–138
performance	testing,	136–137
production	increases,	124
test	types,	130–131
test-driven	development,	134–135
testing	in	parallel,	133–134,	134f	testing	teams,	124–126
and	trunk-based	development,	145–146
unit	tests,	130–131,	132–133,	139
unreliable	test,	135
version	control,	128

The	First	Way
batch	size	comparison,	20f	bottlenecks,	22
constraint	identification,	21–23
continuous,	20
controlling	queue	size,	18
description	of,	11
error	management,	19
handoff	reduction,	21
increasing	workflow,	15
kanban	boards,	16–17
large	batch	sizes,	19–20
limiting	work	in	process,	17–18
loss	of	knowledge,	21
making	work	visible,	15–17
multitasking,	17–18
reducing	batch	size,	18–20

single	piece	flow,	19,	20
small	batch	sizes,	18–20
small	batch	strategy,	19
sprint	planning	boards,	16–17
transferring	work,	15–16
waste	elimination,	23–25
work	interruptions,	17
workflow	management,	16,	21
workflow	visualizations,	16–17

The	Second	Way
Andon	cord,	31,	32
conditions	for	safety,	28–29
description	of,	12
error	detection,	28
failure,	28
feedback	loops,	29,	30
feed-forward	loops,	29,	30
increasing	information	flow,	29
ineffective	quality	controls,	32–34
optimizing	for	downstream	work	centers,	34–35
peer	reviews,	33–34
problem	visibility,	29–30
QA	automation,	33–34
safety	in	complex	systems,	27–29
swarming,	30–32
telemetry,	30

The	Third	Way
blameless	post-mortems,	40
collective	knowledge,	42–43
creating	a	high-trust	culture,	37–38

description	of,	12–13
improvement	of	daily	work,	40–42
integrating	learning,	37–38
knowledge	sharing,	42–43
leadership,	44
learning	culture,	44–46
organizational	cultures,	39,	39f	organizational	learning,	38–40
resilience,	43–44
safety	culture,	38–40
workarounds,	40
workplace	safety,	41–42

The	Three	Ways
The	First	Way,	11
illustrated,	12f
increasing	workflow,	12
The	Phoenix	Project,	11
The	Second	Way,	12
The	Third	Way,	12–13

Theory	of	Constraints,	356–357
Three	Mile	Island,	28
threshold-based	alerting	tools,	199n	Ticketmaster,	84–85
Timberland,	67
Tischler,	Tim,	159
Tomayko,	Ryan,	261–262
Total	Productive	Maintenance,	4,	353
Toyota	Kata
description	of,	6
functional-oriented	organizations,	84
and	the	improvement	of	daily	work,	40
and	learning	culture,	45

movement,	355
Toyota	Production	System
Andon	cord,	138
change	approval	processes,	253
improvement	blitz,	299
information	radiator,	206
and	the	Lean	Movement,	4,	353
and	learning	culture,	45
and	safe	systems,	28
Toyota	Kata	movement,	6

transparent	uptime,	365
Treynor,	Ben,	237–238
Trimble,	Chris,	66
Turnbull,	James,	198
Twitter,	320–323
two-pizza	team,	90–91

U
US	Navy,	42
user	research,	244–245
user	stories,	8,	295,	335,	336

V
value	stream
Development,	63
Infosec,	63
manufacturing,	7–8
Operations,	63
product	owner,	63
release	managers,	63

supporting	members,	63
technology,	8–11
technology	executives,	63
test,	63
value	stream	manager,	63
value	stream	mapping,	4,	61–62,	353

value	stream	mapping
%C/A,	65
areas	of	focus,	64
creating,	63–66
example	of,	65f
first	pass,	65
future	value	stream	map,	66
and	the	Lean	Movement,	4,	353
metrics	for	improvement,	65–66
value	stream	improvements,	61–62

value	streams
expanding	DevOps,	58–59
greenfield	vs	brownfield	services,	54–56
leveraging	innovators,	57–58
selecting	a	stream	for	DevOps	transformation,	51–60
systems	of	engagement,	56–57
systems	of	record,	56
technology	adoption	curve,	58f	Van	Leeuwen,	Evelijn,	305n	Vance,	Ashlee,	72

Velocity	Movement,	354
version	control
assets	to	check	into	version	control	repository,	116
automated	testing,	128
branching,	143n
and	continuous	integration,	148–149

critical	role	of	version	control,	117
environments	stored	in	version	control,	115–116
metadata,	115
shared	version	control	repository,	115–118
version	control	as	predictor	of	organizational	performance,	117
version	control	systems,	115–118

Vincent,	John,	216
Vogels,	Werner,	91,	184

W
Wall	Street	Journal,	66
waste	and	hardship
defects,	25
extra	features,	24
extra	processes,	24
heroics,	25,	25n	motion,	24–25
nonstandard	or	manual	work,	25
partially	done	work,	24
task	switching,	24
waiting,	24
waste	elimination,	23–25

water-Scrum-fall	anti-pattern,	140n	Westrum,	Ron,	39–40
Wickett,	James,	313
Williams,	Laurie,	135n,	260
Willis,	John
Agile	infrastructure,	5
convergence	of	DevOps,	3

WIP.	See	work	in	process
Wolaberg,	Kirsten,	58n	Womack,	James	P.
batch	sizes,	19

leaders	and	problem	solving,	44
Wong,	Eric,	208
work	in	process
controlling	queue	size,	18
interruptions,	17
multitasking,	17–18

work	visibility,	15–17,	73,	104
workflow
increasing,	12,	15
management,	16
visualizations,	16–17

Y
Yahoo!	Answers,	246–248

Z
Zenoss,	198,	208
Zhao,	Haiping,	302
Zuckerberg,	Mark,	302

Acknowledgments

Jez	Humble
Creating	this	book	has	been	a	labor	of	love	for	Gene	in	particular.	It’s	an
immense	privilege	and	pleasure	to	have	worked	with	Gene	and	my	other	co-
authors,	John	and	Pat,	along	with	Todd,	Anna,	Robyn	and	the	editorial	and
production	team	at	IT	Revolution	preparing	this	work—thank	you.	I	also	want	to
thank	Nicole	Forsgren	whose	work	with	Gene,	Alanna	Brown,	Nigel	Kersten
and	I	on	the	PuppetLabs/DORA	State	of	DevOps	Report	over	the	last	three	years
has	been	instrumental	in	developing,	testing	and	refining	many	of	the	ideas	in
this	book.	My	wife,	Rani,	and	my	two	daughters,	Amrita	and	Reshmi,	have
given	me	boundless	love	and	support	during	my	work	on	this	book,	as	in	every
part	of	my	life.	Thank	you.	I	love	you.	Finally,	I	feel	incredibly	lucky	to	be	part
of	the	DevOps	community,	which	almost	without	exception	walks	the	talk	of
practicing	empathy	and	growing	a	culture	of	respect	and	learning.	Thanks	to
each	and	every	one	of	you.

John	Willis
First	and	foremost,	I	need	to	acknowledge	my	saint	of	a	wife	for	putting	up	with
my	crazy	career.	It	would	take	another	book	to	express	how	much	I	learned	from
my	co-authors	Patrick,	Gene	and	Jez.	Other	very	important	influencers	and
advisers	in	my	journey	are	Mark	Hinkle,	Mark	Burgess,	Andrew	Clay	Shafer,
and	Michael	Cote.	I	also	want	to	give	a	shout	out	to	Adam	Jacob	for	hiring	me	at
Chef	and	giving	me	the	freedom	to	explore,	in	the	early	days,	this	thing	we	call

Devops.	Last	but	definitely	not	least	is	my	partner	in	crime,	my	Devops	Cafe
cohost,	Damon	Edwards.

Patrick	Debois
I	would	like	to	thank	those	who	were	on	this	ride,	much	gratitude	to	you	all.

Gene	Kim
I	cannot	thank	Margueritte,	my	loving	wife	of	nearly	eleven	amazing	years,
enough	for	putting	up	with	me	being	in	deadline	mode	for	over	five	years,	as
well	as	my	sons,	Reid,	Parker,	and	Grant.	And	of	course,	my	parents,	Ben	and
Gail	Kim,	for	helping	me	become	a	nerd	early	in	life.	I	also	want	to	thank	my
fellow	co-authors	for	everything	that	I	learned	from	them,	as	well	as	Anna	Noak,
Aly	Hoffman,	Robyn	Crummer-Olsen,	Todd	Sattersten,	and	the	rest	of	the	IT
Revolution	team	for	shepherding	this	book	to	its	completion.

I	am	so	grateful	for	all	the	people	who	taught	me	so	many	things,	which	form	the
foundation	of	this	book:	John	Allspaw	(Etsy),	Alanna	Brown	(Puppet),	Adrian
Cockcroft	(Battery	Ventures),	Justin	Collins	(Brakeman	Pro),	Josh	Corman
(Atlantic	Council),	Jason	Cox	(The	Walt	Disney	Company),	Dominica
DeGrandis	(LeanKit),	Damon	Edwards	(DTO	Solutions),	Dr.	Nicole	Forsgren
(Chef),	Gary	Gruver,	Sam	Guckenheimer	(Microsoft),	Elisabeth	Hendrickson
(Pivotal	Software),	Nick	Galbreath	(Signal	Sciences),	Tom	Limoncelli	(Stack
Exchange),	Chris	Little,	Ryan	Martens,	Ernest	Mueller	(AlienVault),	Mike
Orzen,	Scott	Prugh	(CSG	International),	Roy	Rapoport	(Netflix),	Tarun	Reddy
(CA/Rally),	Jesse	Robbins	(Orion	Labs),	Ben	Rockwood	(Chef),	Andrew	Shafer
(Pivotal),	Randy	Shoup	(Stitch	Fix),	James	Turnbull	(Kickstarter),	and	James
Wickett	(Signal	Sciences).

I	also	want	to	thank	the	many	people	whose	incredible	DevOps	journeys	we
studied,	including	Justin	Arbuckle,	David	Ashman,	Charlie	Betz,	Mike	Bland,

Dr.	Toufic	Boubez,	Em	Campbell-Pretty,	Jason	Chan,	Pete	Cheslock,	Ross
Clanton,	Jonathan	Claudius,	Shawn	Davenport,	James	DeLuccia,	Rob	England,
John	Esser,	James	Fryman,	Paul	Farrall,	Nathen	Harvey,	Mirco	Hering,	Adam
Jacob,	Luke	Kanies,	Kaimar	Karu,	Nigel	Kersten,	Courtney	Kissler,	Bethany
Macri,	Simon	Morris,	Ian	Malpass,	Dianne	Marsh,	Norman	Marks,	Bill	Massie,
Neil	Matatall,	Michael	Nygard,	Patrick	McDonnell,	Eran	Messeri,	Heather
Mickman,	Jody	Mulkey,	Paul	Muller,	Jesse	Newland,	Dan	North,	Dr.	Tapabrata
Pal,	Michael	Rembetsy,	Mike	Rother,	Paul	Stack,	Gareth	Rushgrove,	Mark
Schwartz,	Nathan	Shimek,	Bill	Shinn,	JP	Schneider,	Dr.	Steven	Spear,	Laurence
Sweeney,	Jim	Stoneham,	and	Ryan	Tomayko.

And	I	am	so	profoundly	grateful	for	the	many	reviewers	who	gave	us	fantastic
feedback	that	shaped	this	book:	Will	Albenzi,	JT	Armstrong,	Paul	Auclair,	Ed
Bellis,	Daniel	Blander,	Matt	Brender,	Alanna	Brown,	Branden	Burton,	Ross
Clanton,	Adrian	Cockcroft,	Jennifer	Davis,	Jessica	DeVita,	Stephen	Feldman,
Martin	Fisher,	Stephen	Fishman,	Jeff	Gallimore,	Becky	Hartman,	Matt	Hatch,
William	Hertling,	Rob	Hirschfeld,	Tim	Hunter,	Stein	Inge	Morisbak,	Mark
Klein,	Alan	Kraft,	Bridget	Kromhaut,	Chris	Leavory,	Chris	Leavoy,	Jenny
Madorsky,	Dave	Mangot,	Chris	McDevitt,	Chris	McEniry,	Mike	McGarr,
Thomas	McGonagle,	Sam	McLeod,	Byron	Miller,	David	Mortman,	Chivas
Nambiar,	Charles	Nelles,	John	Osborne,	Matt	O’Keefe,	Manuel	Pais,	Gary
Pedretti,	Dan	Piessens,	Brian	Prince,	Dennis	Ravenelle,	Pete	Reid,	Markos
Rendell,	Trevor	Roberts,	Jr.,	Frederick	Scholl,	Matthew	Selheimer,	David
Severski,	Samir	Shah,	Paul	Stack,	Scott	Stockton,	Dave	Tempero,	Todd	Varland,
Jeremy	Voorhis,	and	Branden	Williams.

And	several	people	gave	me	an	amazing	glimpse	of	what	the	future	of	authoring
with	modern	toolchains	looks	like,	including	Andrew	Odewahn	(O’Reilly
Media)	who	let	us	use	the	fantastic	Chimera	reviewing	platform,	James	Turnbull

(Kickstarter)	for	his	help	creating	my	first	publishing	rendering	toolchain,	and
Scott	Chacon	(GitHub)	for	his	work	on	GitHub	Flow	for	authors.

Author	Biographies

GENE
KIM

Gene	Kim	is	a	multiple	award-winning	CTO,	researcher,	and
author	of	The	Phoenix	Project:	A	Novel	About	IT,	DevOps,	and
Helping	Your	Business	Win	and	The	Visible	Ops	Handbook.	He	is
founder	of	IT	Revolution	and	hosts	the	DevOps	Enteprise	Summit
conferences.

JEZ
HUMBLE

Jez	Humble	is	co-author	of	Lean	Enterprise	and	the	Jolt	Award-
winning	Continuous	Delivery.	He	works	at	18F,	teaches	at	UC
Berkeley,	and	is	CTO	and	co-founder	of	DevOps	Research	and
Assessment,	LLC.

PATRICK
DEBOIS

Patrick	Debois	is	an	independent	IT	consultant	who	is	bridging
the	gap	between	projects	and	operations	by	using	Agile
techniques,	in	development,	project	management,	and	system
administration.

John	Willis	has	worked	in	the	IT	management	industry	for	more
than	thirty-five	years.	He	has	authored	six	IBM	Redbooks	and	was
the	founder	and	chief	architect	at	Chain	Bridge	Systems.	Currently
he	is	an	Evangelist	at	Docker,	Inc.

WILLIS
JOHN

WILLIS

	Preface
	Aha!
	Gene Kim
	Jez Humble
	Patrick Debois
	John Willis

	SPREADING THE AHA! MOMENT

	Foreword
	Imagine a World Where Dev and Ops Become DevOps
	An Introduction to The DevOps Handbook
	THE PROBLEM: SOMETHING IN YOUR ORGANIZATION MUST NEED IMPROVEMENT (OR YOU WOULDN’T BE READING THIS BOOK)
	THE CORE, CHRONIC CONFLICT
	DOWNWARD SPIRAL IN THREE ACTS
	WHY DOES THIS DOWNWARD SPIRAL HAPPEN EVERYWHERE?
	THE COSTS: HUMAN AND ECONOMIC

	THE ETHICS OF DEVOPS: THERE IS A BETTER WAY
	BREAKING THE DOWNWARD SPIRAL WITH DEVOPS
	THE BUSINESS VALUE OF DEVOPS
	DEVOPS HELPS SCALE DEVELOPER PRODUCTIVITY
	THE UNIVERSALITY OF THE SOLUTION

	THE DEVOPS HANDBOOK: AN ESSENTIAL GUIDE

	Part I The Three Ways
	A BRIEF HISTORY
	THE LEAN MOVEMENT
	THE AGILE MANIFESTO
	AGILE INFRASTRUCTURE AND VELOCITY MOVEMENT
	THE CONTINUOUS DELIVERY MOVEMENT
	TOYOTA KATA

	1 Agile, Continuous Delivery, and the Three Ways
	THE MANUFACTURING VALUE STREAM
	THE TECHNOLOGY VALUE STREAM
	FOCUS ON DEPLOYMENT LEAD TIME
	Defining Lead Time vs. Processing Time
	The Common Scenario: Deployment Lead Times Requiring Months
	Our DevOps Ideal: Deployment Lead Times of Minutes

	OBSERVING “%C/A” AS A MEASURE OF REWORK

	THE THREE WAYS: THE PRINCIPLES UNDERPINNING DEVOPS
	CONCLUSION

	2 The First Way: The Principles of Flow
	MAKE OUR WORK VISIBLE
	LIMIT WORK IN PROCESS (WIP)
	REDUCE BATCH SIZES
	REDUCE THE NUMBER OF HANDOFFS
	CONTINUALLY IDENTIFY AND ELEVATE OUR CONSTRAINTS
	ELIMINATE HARDSHIPS AND WASTE IN THE VALUE STREAM
	CONCLUSION

	3 The Second Way: The Principles of Feedback
	WORKING SAFELY WITHIN COMPLEX SYSTEMS
	SEE PROBLEMS AS THEY OCCUR
	SWARM AND SOLVE PROBLEMS TO BUILD NEW KNOWLEDGE
	KEEP PUSHING QUALITY CLOSER TO THE SOURCE
	ENABLE OPTIMIZING FOR DOWNSTREAM WORK CENTERS
	CONCLUSION

	4 The Third Way: The Principles of Continual Learning and Experimentation
	ENABLING ORGANIZATIONAL LEARNING AND A SAFETY CULTURE
	INSTITUTIONALIZE THE IMPROVEMENT OF DAILY WORK
	TRANSFORM LOCAL DISCOVERIES INTO GLOBAL IMPROVEMENTS
	INJECT RESILIENCE PATTERNS INTO OUR DAILY WORK
	LEADERS REINFORCE A LEARNING CULTURE
	CONCLUSION
	PART I CONCLUSION

	Part II Where to Start
	Introduction
	5 Selecting Which Value Stream to Start With
	GREENFIELD VS. BROWNFIELD SERVICES
	CONSIDER BOTH SYSTEMS OF RECORD AND SYSTEMS OF ENGAGEMENT
	START WITH THE MOST SYMPATHETIC AND INNOVATIVE GROUPS
	EXPANDING DEVOPS ACROSS OUR ORGANIZATION
	CONCLUSION

	6 Understanding the Work in Our Value Stream, Making it Visible, and Expanding it Across the Organization
	IDENTIFYING THE TEAMS SUPPORTING OUR VALUE STREAM
	CREATE A VALUE STREAM MAP TO SEE THE WORK
	CREATING A DEDICATED TRANSFORMATION TEAM
	AGREE ON A SHARED GOAL
	KEEP OUR IMPROVEMENT PLANNING HORIZONS SHORT
	RESERVE 20% OF CYCLES FOR NON-FUNCTIONAL REQUIREMENTS AND REDUCING TECHNICAL DEBT
	INCREASE THE VISIBILITY OF WORK

	USE TOOLS TO REINFORCE DESIRED BEHAVIOR
	CONCLUSION

	7 How to Design Our Organization and Architecture with Conway’s Law in Mind
	ORGANIZATIONAL ARCHETYPES
	PROBLEMS OFTEN CAUSED BY OVERLY FUNCTIONAL ORIENTATION (“OPTIMIZING FOR COST”)
	ENABLE MARKET-ORIENTED TEAMS (“OPTIMIZING FOR SPEED”)
	MAKING FUNCTIONAL ORIENTATION WORK
	TESTING, OPERATIONS, AND SECURITY AS EVERYONE’S JOB, EVERY DAY
	ENABLE EVERY TEAM MEMBER TO BE A GENERALIST
	FUND NOT PROJECTS, BUT SERVICES AND PRODUCTS
	DESIGN TEAM BOUNDARIES IN ACCORDANCE WITH CONWAY’S LAW
	CREATE LOOSELY-COUPLED ARCHITECTURES TO ENABLE DEVELOPER PRODUCTIVITY AND SAFETY
	KEEP TEAM SIZES SMALL (THE “TWO-PIZZA TEAM” RULE)

	CONCLUSION

	8 How to Get Great Outcomes by Integrating Operations into the Daily Work of Development
	CREATE SHARED SERVICES TO INCREASE DEVELOPER PRODUCTIVITY
	EMBED OPS ENGINEERS INTO OUR SERVICE TEAMS
	ASSIGN AN OPS LIAISON TO EACH SERVICE TEAM
	INTEGRATE OPS INTO DEV RITUALS
	INVITE OPS TO OUR DEV STANDUPS
	INVITE OPS TO OUR DEV RETROSPECTIVES
	MAKE RELEVANT OPS WORK VISIBLE ON SHARED KANBAN BOARDS

	CONCLUSION
	PART II CONCLUSION

	PART III—THE FIRST WAY: THE TECHNICAL PRACTICES OF FLOW
	9 Create the Foundations of Our Deployment Pipeline
	ENABLE ON DEMAND CREATION OF DEV, TEST, AND PRODUCTION ENVIRONMENTS
	CREATE OUR SINGLE REPOSITORY OF TRUTH FOR THE ENTIRE SYSTEM
	MAKE INFRASTRUCTURE EASIER TO REBUILD THAN TO REPAIR
	MODIFY OUR DEFINITION OF DEVELOPMENT “DONE” TO INCLUDE RUNNING IN PRODUCTION-LIKE ENVIRONMENTS
	CONCLUSION

	10 Enable Fast and Reliable Automated Testing
	CONTINUOUSLY BUILD, TEST, AND INTEGRATE OUR CODE AND ENVIRONMENTS
	BUILD A FAST AND RELIABLE AUTOMATED VALIDATION TEST SUITE
	CATCH ERRORS AS EARLY IN OUR AUTOMATED TESTING AS POSSIBLE
	ENSURE TESTS RUN QUICKLY (IN PARALLEL, IF NECESSARY)
	WRITE OUR AUTOMATED TESTS BEFORE WE WRITE THE CODE (“TEST-DRIVEN DEVELOPMENT”)
	AUTOMATE AS MANY OF OUR MANUAL TESTS AS POSSIBLE
	INTEGRATE PERFORMANCE TESTING INTO OUR TEST SUITE
	INTEGRATE NON-FUNCTIONAL REQUIREMENTS TESTING INTO OUR TEST SUITE

	PULL OUR ANDON CORD WHEN THE DEPLOYMENT PIPELINE BREAKS
	WHY WE NEED TO PULL THE ANDON CORD

	CONCLUSION

	11 Enable and Practice Continuous Integration
	SMALL BATCH DEVELOPMENT AND WHAT HAPPENS WHEN WE COMMIT CODE TO TRUNK INFREQUENTLY
	ADOPT TRUNK-BASED DEVELOPMENT PRACTICES
	CONCLUSION

	12 Automate and Enable Low-Risk Releases
	AUTOMATE OUR DEPLOYMENT PROCESS
	ENABLE AUTOMATED SELF-SERVICE DEPLOYMENTS
	INTEGRATE CODE DEPLOYMENT INTO THE DEPLOYMENT PIPELINE

	DECOUPLE DEPLOYMENTS FROM RELEASES
	ENVIRONMENT-BASED RELEASE PATTERNS
	The Blue-Green Deployment Pattern
	Dealing with Database Changes
	The Canary and Cluster Immune System Release Patterns

	APPLICATION-BASED PATTERNS TO ENABLE SAFER RELEASES
	Implement Feature Toggles
	Perform Dark Launches

	SURVEY OF CONTINUOUS DELIVERY AND CONTINUOUS DEPLOYMENT IN PRACTICE
	CONCLUSION

	13 Architect for Low-Risk Releases
	AN ARCHITECTURE THAT ENABLES PRODUCTIVITY, TESTABILITY, AND SAFETY
	ARCHITECTURAL ARCHETYPES: MONOLITHS VS. MICROSERVICES
	USE THE STRANGLER APPLICATION PATTERN TO SAFELY EVOLVE OUR ENTERPRISE ARCHITECTURE
	CONCLUSION
	PART III CONCLUSION

	PART IV—THE SECOND WAY: THE TECHNICAL PRACTICES OF FEEDBACK
	Introduction
	14 Create Telemetry to Enable Seeing and Solving Problems
	CREATE OUR CENTRALIZED TELEMETRY INFRASTRUCTURE
	CREATE APPLICATION LOGGING TELEMETRY THAT HELPS PRODUCTION
	USE TELEMETRY TO GUIDE PROBLEM SOLVING
	ENABLE CREATION OF PRODUCTION METRICS AS PART OF DAILY WORK
	CREATE SELF-SERVICE ACCESS TO TELEMETRY AND INFORMATION RADIATORS
	FIND AND FILL ANY TELEMETRY GAPS
	APPLICATION AND BUSINESS METRICS
	INFRASTRUCTURE METRICS
	OVERLAYING OTHER RELEVANT INFORMATION ONTO OUR METRICS

	CONCLUSION

	15 Analyze Telemetry to Better Anticipate Problems and Achieve Goals
	USE MEANS AND STANDARD DEVIATIONS TO DETECT POTENTIAL PROBLEMS
	INSTRUMENT AND ALERT ON UNDESIRED OUTCOMES
	PROBLEMS THAT ARISE WHEN OUR TELEMETRY DATA HAS NON-GAUSSIAN DISTRIBUTION
	USING ANOMALY DETECTION TECHNIQUES
	CONCLUSION

	16 Enable Feedback So Development and Operations Can Safely Deploy Code
	USE TELEMETRY TO MAKE DEPLOYMENTS SAFER
	DEV SHARES PAGER ROTATION DUTIES WITH OPS
	HAVE DEVELOPERS FOLLOW WORK DOWNSTREAM
	HAVE DEVELOPERS INITIALLY SELF-MANAGE THEIR PRODUCTION SERVICE
	CONCLUSION

	17 Integrate Hypothesis-Driven Development and A/B Testing into Our Daily Work
	A BRIEF HISTORY OF A/B TESTING
	INTEGRATING A/B TESTING INTO OUR FEATURE TESTING
	INTEGRATE A/B TESTING INTO OUR RELEASE
	INTEGRATING A/B TESTING INTO OUR FEATURE PLANNING
	CONCLUSION

	18 Create Review and Coordination Processes to Increase Quality of Our Current Work
	THE DANGERS OF CHANGE APPROVAL PROCESSES
	POTENTIAL DANGERS OF “OVERLY CONTROLLING CHANGES”
	ENABLE COORDINATION AND SCHEDULING OF CHANGES
	ENABLE PEER REVIEW OF CHANGES
	POTENTIAL DANGERS OF DOING MORE MANUAL TESTING AND CHANGE FREEZES
	ENABLE PAIR PROGRAMMING TO IMPROVE ALL OUR CHANGES
	EVALUATING THE EFFECTIVENESS OF PULL REQUEST PROCESSES

	FEARLESSLY CUT BUREAUCRATIC PROCESSES
	CONCLUSION
	PART IV CONCLUSION

	PART V—THE THIRD WAY: THE TECHNICAL PRACTICES OF CONTINUAL LEARNING AND EXPERIMENTATION
	Introduction
	19 Enable and Inject Learning into Daily Work
	ESTABLISH A JUST, LEARNING CULTURE
	SCHEDULE BLAMELESS POST-MORTEM MEETINGS AFTER ACCIDENTS OCCUR
	PUBLISH OUR POST-MORTEMS AS WIDELY AS POSSIBLE
	DECREASE INCIDENT TOLERANCES TO FIND EVER-WEAKER FAILURE SIGNALS
	REDEFINE FAILURE AND ENCOURAGE CALCULATED RISK-TAKING
	INJECT PRODUCTION FAILURES TO ENABLE RESILIENCE AND LEARNING
	INSTITUTE GAME DAYS TO REHEARSE FAILURES
	CONCLUSION

	20 Convert Local Discoveries into Global Improvements
	USE CHAT ROOMS AND CHAT BOTS TO AUTOMATE AND CAPTURE ORGANIZATIONAL KNOWLEDGE
	AUTOMATE STANDARDIZED PROCESSES IN SOFTWARE FOR RE-USE
	CREATE A SINGLE, SHARED SOURCE CODE REPOSITORY FOR OUR ENTIRE ORGANIZATION
	SPREAD KNOWLEDGE BY USING AUTOMATED TESTS AS DOCUMENTATION AND COMMUNITIES OF PRACTICE
	DESIGN FOR OPERATIONS THROUGH CODIFIED NON-FUNCTIONAL REQUIREMENTS
	BUILD REUSABLE OPERATIONS USER STORIES INTO DEVELOPMENT
	ENSURE TECHNOLOGY CHOICES HELP ACHIEVE ORGANIZATIONAL GOALS
	CONCLUSION

	21 Reserve Time to Create Organizational Learning and Improvement
	INSTITUTIONALIZE RITUALS TO PAY DOWN TECHNICAL DEBT
	ENABLE EVERYONE TO TEACH AND LEARN
	SHARE YOUR EXPERIENCES FROM DEVOPS CONFERENCES
	CREATE INTERNAL CONSULTING AND COACHES TO SPREAD PRACTICES
	CONCLUSION
	CONCLUSION TO PART V

	22 Information Security as Everyone’s Job, Every Day
	INTEGRATE SECURITY INTO DEVELOPMENT ITERATION DEMONSTRATIONS
	INTEGRATE SECURITY INTO DEFECT TRACKING AND POST-MORTEMS
	INTEGRATE PREVENTIVE SECURITY CONTROLS INTO SHARED SOURCE CODE REPOSITORIES AND SHARED SERVICES
	INTEGRATE SECURITY INTO OUR DEPLOYMENT PIPELINE
	ENSURE SECURITY OF THE APPLICATION
	ENSURE SECURITY OF OUR SOFTWARE SUPPLY CHAIN
	ENSURE SECURITY OF THE ENVIRONMENT
	INTEGRATE INFORMATION SECURITY INTO PRODUCTION TELEMETRY
	CREATING SECURITY TELEMETRY IN OUR APPLICATIONS
	CREATING SECURITY TELEMETRY IN OUR ENVIRONMENT
	PROTECT OUR DEPLOYMENT PIPELINE
	CONCLUSION

	23 Protecting the Deployment Pipeline
	INTEGRATE SECURITY AND COMPLIANCE INTO CHANGE APPROVAL PROCESSES
	RE-CATEGORIZE THE MAJORITY OF OUR LOWER RISK CHANGES AS STANDARD CHANGES
	WHAT TO DO WHEN CHANGES ARE CATEGORIZED AS NORMAL CHANGES
	REDUCE RELIANCE ON SEPARATION OF DUTY
	ENSURE DOCUMENTATION AND PROOF FOR AUDITORS AND COMPLIANCE OFFICERS
	CONCLUSION
	PART VI CONCLUSION

	A Call to Action
	Conclusion to the DevOps Handbook

	Appendices
	APPENDIX 1 THE CONVERGENCE OF DEVOPS
	THE LEAN MOVEMENT
	THE AGILE MOVEMENT
	THE VELOCITY CONFERENCE MOVEMENT
	THE AGILE INFRASTRUCTURE MOVEMENT
	THE CONTINUOUS DELIVERY MOVEMENT
	THE TOYOTA KATA MOVEMENT
	THE LEAN STARTUP MOVEMENT
	THE LEAN UX MOVEMENT
	THE RUGGED COMPUTING MOVEMENT

	APPENDIX 2 THEORY OF CONSTRAINTS AND CORE, CHRONIC CONFLICTS
	APPENDIX 3 TABULAR FORM OF DOWNWARD SPIRAL
	APPENDIX 4 THE DANGERS OF HANDOFFS AND QUEUES
	APPENDIX 5 MYTHS OF INDUSTRIAL SAFETY
	APPENDIX 6 THE TOYOTA ANDON CORD
	APPENDIX 7 COTS SOFTWARE
	APPENDIX 8 POST-MORTEM MEETINGS
	APPENDIX 9 THE SIMIAN ARMY
	APPENDIX 10 TRANSPARENT UPTIME

	Additional Resources
	Endnotes
	INTRODUCTION
	PART I INTRODUCTION
	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	CHAPTER 7
	CHAPTER 8
	CHAPTER 9
	CHAPTER 10
	CHAPTER 11
	CHAPTER 12
	CHAPTER 13
	CHAPTER 14
	CHAPTER 15
	CHAPTER 16
	CHAPTER 17
	CHAPTER 18
	CHAPTER 19
	CHAPTER 20
	CHAPTER 21
	CHAPTER 22
	CHAPTER 23
	CONCLUSION
	APPENDIX

	Index
	Symbols Numbers A B C D E F G H I J K L M N O P Q R S T U V W Y Z

	Acknowledgments
	Jez Humble
	John Willis
	Patrick Debois
	Gene Kim

	Author Biographies
	GENE KIM
	JEZ HUMBLE
	PATRICK DEBOIS
	JOHN WILLIS

