LS lazs

Faghatketab.ir

FaEII"E'tKF.'tab N

Beginning Julia
Programming

For Engineers and Scientists

Sandeep Nagar

Apress’

Beginning Julia
Programming

Sandeep Nagar

Apress’

Beginning Julia Programming: For Engineers and Scientists

Sandeep Nagar
New York, USA

ISBN-13 (pbk): 978-1-4842-3170-8 ISBN-13 (electronic): 978-1-4842-3171-5
https://doi.org/10.1007/978-1-4842-3171-5

Library of Congress Control Number: 2017959880

Copyright © 2017 by Sandeep Nagar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Massimo Nardone
Coordinating Editor: Mark Powers
Copy Editor: Ann Dickson

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484231708. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3171-5

Dedicated to my wife, Rashmi, and my daughter, Aliya

Table of Contents

About the AUtROrccvcmriemminmssmiess s xvii
About the Technical REVIEWETcuseesssssnsssssnsssssnsssssnsssssnsssssnnssssnsssssanssssanssssanssssas Xix
Acknowledgments........ccccuuiissssnmesmmmmmmmsssssssssssssnmeessssssssssssnsssesssssssssnnnnnssnessssssnnnnnnns XXi
Chapter 1: Introduction........ccccviiinmmsssensnmmmmmmmsssssssss s ————————— 1
1.1 Welcome 10 the Julian World...........cocoirinnne e 1
20 | 00T 4T o 3
1.3 BrEf HISTOIY ..o e e e e e s 4
BT 113 7= Lo R RRT 5
L0 1171 2o 5
L - T 0 6
1.4.3WINAOWS OS.....o.eoeeeceec e e 7

L 41130 7

1.5 Package INSTallation...........ccoveeerrencrnsenrnesssese s 8
1.5.1 Initialization of Package Managerccccvvrernnenrnenesnsessssesessse s sesesessesenns 9

1.5.2 Updating Package RepOoSItOrYccuoorerrnnnnenesesessse s 9

1.5.3 Installing @ NeW PaCKAGEcocrerererrenerenereresese e sese e sessesessssessnnes 10

1.5.4 ReMOVING @ PACKAJEcccrveererererenerreeresesesse s ses e sss s sessssessssessnnes 10

1.5.5 Status of Installed PACKAGEScccceerrererernererenerese s seenes 11

1.5.6 Off-line Installation of PAackages [18]c.ccccurrermrermrersmrmrsesmrnsesesese s s e ssesesennes 12

1.6 Using Code in TRiS BOOKccoueerrrererrenerresesrsessssesessssesessesesssssssssssesssssssssesssssssssssssssssssssensnns 12
I 111111 SRS 13
LIRS T0 00 o 13

TABLE OF CONTENTS

Chapter 2: Object-Oriented Programmingccccsusssssnnssssssnsssssssssnsssssssssnssssssnnnssss 15
2.1 INEFOTUCTION......ceeeeeceeeeee e n e e ne e e nnn e 15
2.2 Procedural Programming VS. Q0P.........ccocivninnnnnrn e ses e 15
2.31d8A OF Q0P ..o e a e n e R e e e e e nnn e 15
p 3 0] - SRS S SR 16
2.5 TYPES OF ODJECL.....eecererererir e e s e s e s a e e e e ne s 16
2.6 ODJECT RETEIBINCE.evuerrertererrerersests e sessesse s s e ssessesa s e s e saesaese s e s s saesa e e s e saesaesa e e naesae s e e e e e naees 17

2.6.1 Multiple References for the Same ODbject.........cccvvvvvrvrirnr s e 19
p T 14T 1] OSSR 21
2.7.1 Naming @ VariabIecccooeieririrrr ettt s 22
2.7.2 Naming Style CONVENTION [4]cccverrererreriererensersessessesessessessessssessessesssssssessessessssensessens 22
2.8 SUMMAIY.....eiiiecieire e e e e R e e e e AR e e e e e R e R e b e e e R e 23
P 1010 o] TSRS 23

Chapter 3: Basic Math with Juliaccccccmmnnnnmnnnmnnssenmmmsssns s ———————— 25
BT 11010 1 0TSSR 25
R 3 = OSSR 26

3.2.1 HElIO WOKIA! ... 26
3.2.21/0 AL REPL.........ceeeecccs st se s bbbt 27
3.2.3Tabh COMPIETION ..ot e 28
3.2.4 Seeking Help from JULI@ccovoevereeerecerreere e 29
3.2.5 SHEIIMOUE......cceeeeerercreree e sre e e e ne e e 30
3.2.6 SEArCH MOUE ... e e 30
3.2.7 KEY BINUINGS.....ceueerercrrrererresesessesessesessssesessesessese s e sessssessssesessssssssssssssesssssssssssesssssenns 30
3.2.8 Version INfOrmationcocceeecrrenernscrnesesese s 3
3.3 Some Experiments With NUMDEIS ... s 31
3.3.1 NUMDEK SYSTEMS ... e 31
3.3.2 Julia @S CalCUIALONcceeereeerireerese e 32
3.4 Data Type for Integers and Real NUMDETS..........ccovvvrenrnsnncsne e s sessenens 36
3.5 TYPE ASSIGNMENTcccerierieiiriere s s s e e e R b e e e e e R b e e e e ae s 36
3.5.1 Hierarchy Tree of NUMDEr TYPES....ccvvriririernrirrere s sessese e sssses e ssesessessessesssssssessesaes 37
3.5.2 Floating Point Arithmetic ... s 40

TABLE OF CONTENTS

3.5.3 Overflow and DiViSiON EITOF.........cccovrrnisnmnenrnsssssse s sessssns 45
3.5.4 Floating Point Numbers vs. Real NUMDErS.........ccccvvinrininnn s 46
3.5.5 MAChINE PreCISIONcceeericirircsiree s s 48
3.6 Arbitrary Precision Arithmetic ... 49
3.7 NUMETICAl CONVEISION.......coveeereeereecresseessese e ses e e e ses e sse e sse e e s e e ssssessssssesseensenens 50
3.8 ArithmetiC OPErators.........ccocvviiriiricre e e e s 54
3.9 B00IeaN NUMDEIS.......cce et 55
3.9.1 Comparison of Mathematical Quantitiescccecvvrvrrnininninr 55
3.9.2 Chaining COMPAIISONS.......ccueerrrseseresersssesessessssasessassssnns 59
3.9.3 B00IEAN OPEIAtOrS......cceeriereriiriererie st s p st 60
3.10 Updating OPEratorsccoueeerreserrnsesssessssssessssessssessssesessssessssessssssssssssssssssssssssssssssssssssssenees 62
3.11 0PErator PrECEUBNCEccvverererererererteses s se s e s s sae e s e s ssesae e s saesae e s e naesaess e e s e sneees 64
BT 7T 4114 R 66
313 BiblIOgraphy ... e s 66
Chapter 4: Complex NUMDEIS.....ccuicurrrmmssmnmmmsssssnsmmsssssssssssssnsssssssssssssssssnsnssssssnnnsssss 69
11010 1 0SSR 69
4.2 Defining CompleX NUMDEISc.ccreerreerene s se s se s seseesssnens 69
4.3 Properties of COmplex NUMDEISccccueriininin s ssssesse s 72
4.4 CompleX ArithMETIC........cov i e e 74
I 11111 RS 77
2 10 00 =T o 1S 77
Chapter 5: Rational and Irrational NUmBbers.........cccuvmmminnnmmnmmnssssnmmnssssnmmsssssns 79
5.1 NUMDErsS @and RAtiOs.........cccorurimnininirmnneiss s 79
5.2 Rational NUMDEIScccoviiiiirrci e s 80
5.2.1 Representation of Rational NUMDEIS.........ccccvviririnninneninien s sessenns 80
5.2.2 Complex Numbers as Numerators and Denominatorscccovrvnenenennnnnsssesesesennns 81
5.2.3 Mathematical Operations on Rational NUMDErIS.........ccccvverrerrrerrenierenessensesessssessessenees 82
5.2.4 Converting a Rational Number to a Floating Point Number........cccccoovvvvvvrinevrienennn, 84
5.2.5 Rationals with Zero DEnomMInNAtorcccceeermninsnmsnnrss s 85
5.2.6 Rationals with Other Data TYPES......c.ccvrmrmnmmnsns s 85

vii

TABLE OF CONTENTS

5.3 Irrational NUMDEIScocciiirci e 87
5.4 SUMIMAIY.....citieririsise s ses e e e e e e b e s e e ee R e e A e s e e e e be e be e e e e e ne e 87
Chapter 6: Mathematical FUNCLiONS..........cccvnnimmsessmnnmnnmmmsssssssnnsesssssssssssssnesssnnns 89
6.1 INErOTUCTION......coiiiecce s e 89
6.2 DiViSION FUNCLIONS.......ccivicereeree s 89
6.2.1 div(X,y), fld(X,y), AN CIA(X,Y) «eceeeererrerrriererennsrssese s se s snes 90
6.2.2 rem(), mod(), and MOAT() ...ccererrerierrrrrrerererre s s nas 92
6.2.3 MOUAZPI() 1.vrvreererererneseesssssssssssssssss s s e e e e e e s s s s bbb e e e e e e e e e s 93
6.2.4 divrem() and flAMOA()cecerrereririrrre e 94
B.2.5 JO() +vrerererererereresmseesssssssssssssasssssssssssse e e e e e e s s s bbb E e e e e 94
B.2.6 ICIM() 1.vvvvererereseeeeeees s s s e e e R E A e e 95
6.3 Sign and Absolute Value FUNCLIONS...........ccvcvneninnnnc s 95
6.3.1 abs() AN ADS2()....eecerrererririrrir e ———————— 96
6.3.2 Absolute Value of a CompleX NUMDE.........cccovrrncerrcrere s e sens 97
6.3.3 sign(), signbit(), copysign(), and flipSign()........cecrrerrrrrrninimnnsnnne e 98
6.4 Power, Logs, and ROOTSccccevirrininicnn e sn e s se s s sss s snesnes 102
6.4.1 Numbers Raised t0 SOME POWETcccrerrricrerenereeresesesese s 103
6.4.2 sqri(), cbrt(), and RYPOL().....cceerrerieriirirerr e 104
6.4.3 Problem with hypot() Calculations...........ccccvvnininnnninnsr e 106
6.4.4 exp(), expm1(), [dexp(), and eXponent().........cccvrerrererrrserierinsnsensessese s sesesnens 107
6.4.5 10g(), 10g2(), 10g10(), AN 10GTP() ..vecverrrererrrrirririerese s srs s e s 109
6.5 Trigonometric and Hyperbolic FUNCHONS..........ccccorierrcnrererec e 113
6.5.1 TrigonOMEtric FUNCLIONScccevecrircrercse e 113
6.5.2 Hyperbolic FUNCLIONS ..o e 118
6.6 Iterative Algorithms to Calculate Mathematical FUNctionsccccccvvrinncncninecnscnenn, 119
6.6.1 Numerical ApproXimationscccovirininnninsnsesie s s s s ssssessessens 119
LTI 0] 1< T o S 119
6.6.3 TAYIOr SEIES ...cveueerreerercsersee s s e s e e s pe e e e 120
6.6.4 Taylor POIYNOMIAIS.........cccovrereriererreesesese s 121
6.6.5 Maclaurin Series for Sin(X) @Nd COS(X)crerererrmrerrererereressesessesessesessssesessesessesesessesenns 122

viil

TABLE OF CONTENTS

6.6.6 Series EXpansion t0 AlOrithMS........ccucvieveverrerierenesensesese s sesessessssessessessessssessessens 123
6.6.7 How Many Numbers of TermS! ... s s 124
6.7 SUMIMAIY.....citiiiirieieriesesise s st se st e s e e s se b e At s e e e e b e e e e e e bt e e e ns 124
6.8 BiDlOGIapNYc..ccviiicrer e 125
Chapter 7: ArraysS....cccueeummmmssnnnmsssssssnmssssssssesssssnssesssssnssssssssnnssssssnnnssssssnnnsssssnnnnnss 127
7.1 INtroduction 10 AITAYSccvvreririrrire e p e e s 127
421 00 4L 1T o] T 128
7.2.1 Arrays of Multiple DIMENSIONS.........ccovrererenerrrerereresee s 129
7.2.2 Arrays Of FIOALS........cccvierinnirinesn s st ss s sne s 130
7.2.3 Array Of FUNCLIONSccoeiiiiiincnesn s ss e s s sss e s 131
7.2.4 Arrays of Mixed Data TYPESccccvervrrrric s sns e s 132
7.2.5 Crealing ArTAYS........cccvcrerisnisie s s st se s s st e s b e e s saesr s e nne s 132
7.2.6 Creating an Array Using the Ellipsis Operatorccccuerienninininnsnsnnenesnsensennens 135
7.2.7 Creating Arrays USing [INSPACE.........ccucrrerrrirninieniens s s sssses e s sssssssessessens 135
7.2.8 Creating Arrays USing [0gSPACE.........ccvierrrirsinieniess s s sesse s ssssessessesssssssessessens 136
A I 111 T a4 OO 137
7.3 PropertieS Of ATTAYScoceeeerererresereresesre s e sse e e se s se s se s e s e e sss e ses s e ssesesessssenns 138
3 110 1= o S 141
7.4.1 Creating Subarrays USing : OPErator........c.cccvveererrerereserssesrssesese s sessesenns 141
- 4o PO 142
7.4.3 Slicing Multidimensional Arraysc.ccocoverernsesessesesesesessesessesesssesessesessssessssesessesenns 143
7.5 Filling Arrays With VAIUES........ccooveerrenmresernesise s ses s sesss e sessssens 145
ARSI I (=] () TSRS 145
7.5.2 ONES()eruerrererenerersesessenersnsessssessssasessssesessessssa e sssssssssssessansssssessssessssensssasessssensssansssnsssnns 147
T (1T) SRS 148
T.5.4 FAISES()..erveuerenererseserreneresessssesesss s s se s e e e s s e e s e e e e e R e e 148
7.5.5 Arrays Filled with Random NUMDErScccvvenrrerercserncs e 149
7.5.6 BYB().eruererreerersesessesessesessnsessssesessssesrs e ses e e e s e e ne e R e e e R e e e 152
<30 A {11 OO TN 152

ix

TABLE OF CONTENTS

7.6 RESNAPING AITAYSveiueririeesiesersessee s se s s s se e s s s sa e s ae s s e e b s s e e e ae s b s e s nesnesaenan s 153
748 00 T 1100 S 155
7.6.2 SQUEEZING AN AFTAYS..cueerererrererrerseserserersessssersessessessssessessesssssssessessessssessessessssassessens 156

728 A8 1o 157
7 8 0 10T 1) 158
7.7.2 Sort by TranSTormationccveevrevererseriereresserseresse s s e sessese s e ssesessessesassassensessens 159
7.7.3 Sorting AlIGOItRMScccveieererrerereree s s e sae e se e sresaese s e saesaesasensesaees 160
7.7.4 LexicographiCal OFUErcceevrerereererserersesessersessessesessessessessssessessessssessessesssssssensessens 162

7.8 FINAING RBMS IN AITAYScvvceriererirsir e p e s s s 163
7.8.1 find(), findfirst(), and findnext()........cceririnrininin s ———— 164

7.9 COPYING AN AMTAY.....cieeereeeeeeereeesesese s ses e ses e e se e e s sesse e sse e sessesessesessssesessssessesesssnsenns 165
7.9.1 DEEPCOPY ..ueriruerteririessesse e s st s s ss s a e bbb e st e ae b e e e e R e b e e e e e Re e Re e e e n e R 166

7.10 COMPIENENSIONcoueiiiecir e b e e e s b e e e nns 166

7.11 GENerator EXPreSSIONScccverireiserieresissessessesse s s e ssessesssses e s sss st s e ssesaessssessesnesaesessesnesaes 170

7.12 Assignment 0perator and ArTAYSccccveverrererenessersesessesesse s ssesessesessessssessessessesessessesaes 171
7.12.1 Other Mathematical OPeratorscccvvvevrrnienienn s s saens 172

7.13 SEETNEOIY ANU AITAYS.....cceiererrerersererersesessessessessssessessessssssessessessssessessessesessesaesssssssessessen 172

728 - 3 0T 1T 173
7.14.1 Creating @ DICHONAIYcccvcviereriererrere v ressere s se s se e s sae e s saesaessssessesaens 174
7.14.2 LooKing Up @ DICHIONAIY.......ceververieerererersee e serses e s s e e s sessae s s ssessnesnesae s 175
7.14.3 Finding Keys and ValUes...........cccvvvreririnninne s sses s ssessas s ssesssssssssesaesns 176
7.14.4 Changing VAIUEScccverrererreriersessssensessesssssssessessessessssessessssssssssessessssessessesssssssensessens 177
A8 T 1 =T S 177
7.14.6 ChecKing @ KeY-ValUe Pailccciveevverierenerseriesessesessesessessssesessessssessessessessssessessens 178
7.14.7 Adding and Deleting @ KeY........cccvvvrerininnnni s sessesses s s sessssssesae s 178

715 SUMIMAIY...c.ciiiiiieeine et e e e b e e et e e e e et e 179

7.16 BiDlIOGraphy ..o e e e s 179

Chapter 8: Arrays for Matrix Operationscccuusssemmmmmmrrmmsssssssssssssssesssssssssssssssnnns 181

8.1 DEfiniNg @N AITAYcccvrererenerrssesessesesese s se s se s s e e s sessesesse e sesssenns 181

8.2 Properties 0f @ MALFiXccviveernvennnenmnnserne s 184
8.2.1 DEtermMin@ntS.........cccveernrerrnennrese s sr e 185

TABLE OF CONTENTS

8.2 2 RANK ...ttt s 186
823 TrACEeeeererce e e 187
8.2.4 An Upper and Lower Triangular MatriXccocvvrvnnnniensnnnnenenses s ssessesssessesesns 187
8.2.5 Diagonal EIEMENTS......ccccevevirreriererieserese s sessesessessesesessesaesessessessessssessessesasssssessessens 189
LB 81 0] 1 190
8.3 MatriX OPEIALiONS....cccerrerrererrereresersererse e e se s saese s rsesresae e s e saesae e e e eaesaesa e e naesaesaeseenenaenaes 192
8.3.1 MURIPHICALION.......cveveeeceeeeeee s 193
ST 0 o 200
R LT T L U) 200
8.4.2 SCAlAr DIVISION.....cccovrerrreeercreresrseese e se s se s ne e 204
8.4.3 Left or Right DiVISIONccccvcerierinisinscne s e s s e s 206
8.4.4 POWEr Of @ MALIIXcervecercerie e s e 207
8.4.5 Exponentiation of MatriCes........ccvviririiinnsnie s sns s 210
8.4.6 Logarithm on MAIFICESccecereriirrirre st s sa e s s 212
8.5 BroadCasting........ccccvveririinnire s e 213
8.6 B00Iean OPerations..........cccuvrerinininieniesn s e e e 213
8.6.1 Comparison of EIBMENtS ... e snens 213
8.7 CoNCALENALIONecereeircer e 215
L (] 011 LSS 219
A (- oL L) SRS 220
8.8 Rotating @ MaLriX........cceerrererisernsesine s 222
8.9 SPECIAI MALIIXeveereriertrser st r e s se e e s b e s ae e e e e s ae s p e e e e aennen 223
8.9.1 SYMMELriC MAIMCEScvverrerirrerererir s r s se e s ae e nne e 223
8.9.2 Positive Definite MAtriXccouovrmrrmnnnnn s 224
8.9.3 Hermitian MatriCesS........ccccvrirrrisrririrrsssse s 225
8.9.4 SPArsSe MALTICESccevveruerieririeriere st s s a s s s a e se e s ae s ae e e nne s 226
8.10 SUMIMAIY....ceerrertrierierrereeserseressesessesessesaesesessesae s s s e ssessess e e saesaesae e e e eaesae s e e nsesansaesensesseaes 227
20 T 21 0] 10T =T 2R 227

xi

TABLE OF CONTENTS

Chapter 9: Srings......ucccurrmissmnnmmssssnnnmmssssssnmssssssssesssssssesssssnneesssns s ssnnnseessnnnnss 229
9.1 INEFOTUCTION......ceeeeeeeecr e n e e 229
8T T8 | S] T T 229
9.3 UNICOUR SYSIBIM ... s 230
eI 0P L T (-] TSSO 230
9.5 Corresponding INtEGEr VAIUE.........cvcvrererirrersere s s s sessesse s ssesessessessessssessesaessssessesaesnes 231
9.6 + Operator and CharaClerscvvvvrerererrerserere s s ses s s sse e s e s e saessese s e saesaesessesaesnes 233

9.6.1 Characters and Strings Are TW0 Data TYPESccvcevererveriererensenseressesessessessesessessessens 234
9.7 + 0perator and SIHNQSccvvvererrrrrerierr e s sa e e e saesa e e s e naenaen 235
9.8 CONCALENALION ... ne e 235
9.9 INtErPOlALION.......cce i —————————— 236
9.10 SEriNGS Are LIKE AITAYS.....cceererrnseressesessesessssesssssssssssesssssssssssssssssssssssssssnsssssssssssnssssnsssssssnns 238

Lo L0 ST 13 TSR 239

9.10.2 CONTAINS().rrrruererreerrenerensesessesessasessssesessesssssssssssesssssssssassssssssssssnsssssessssssssssnsssenssssssssnns 240
9.11 Common String FUNCTIONS.........ccvveeeriserncsrne e s 241

L8R IR T 0 L PSSR 241

eI B T) OO R 242

9.11.3 start(), endof(), and NEXI() ...ccvrrererrrrererrirrrese s 242

9.11.4 SPIE()..vvrerrrrrrererere s 243

9.11.5 uppercase() and IOWEICASE()cvruererererrenmrrnsessssesessasessssessssesessesessssesssssssssansssssssenns 245

9. 11,6 TEPIACE() «.vvreeerreerreerrsesesesesse s e s e e e s e e e e s e s e e e e e pe e e e 245

9.11.7 Ipad() @Nd rPAA()veererererrerereserrssesesese s se s sr s sr s 245

O.11.8 TRVEISE() c.vvrueerreerreerensessssesessasessssessssssessssessssesessssssssssssssessssenssssnessssssssssnsssansssnsssnns 246

9.11.9 strip(), IStrip(), aNd ISIFAP()...cerrererrrrererrerereserssesesese s senns 246

9.11.10 randStrNG() .. eeseeerrererensererseserseseressesessesessesessssesessesessssessssssssssssssssessssssssssssssansssssssenns 247
9.12 Reading Data as Arrays from STrNgS......cccccvvrerrnnrinsnnessssse s ssssesenns 247
9.13 Lexicographical Comparison 0f STFHNGSccccevivrrrrrieniennninsere e sessese s sss s ssesessessesnes 250
0. 14 SUMIMAIY....ceuertererrerersersesersessessessesessessesssssssessesaessssessessessessssessessessssessessessesessessesssssssensesaes 251
0T LN 2101 10T =T 2 251

xii

TABLE OF CONTENTS

Chapter 10: FUNCLIONScccuiemmmmmisnnnnmmsssssssmmsssssssmsssssssssssssssnnssssssnnnsssssnnnsssssnnnnnss 253
10.1 Introduction to Julia FUNCLIONSccoureierecerecr e 253
10.2 Defining a Simple Julia FUNCHON ... 254

10.2.1 Shorthand NOTAtION..........ccoerereree e s 256
10.2.2 MURIPIE INPUL ... s s 256
10.2.3 MUltiple QULPUEScoveirirc e s 262
10.2.4 ANONYMOUS FUNCLIONSooiiiiircrerin et se s s se s snes 263
10.2.5 MaP() FUNCHION ...ovverirece et 264
10.2.6 reduce(), foldl(), and foldr() FUNCLIONScccecrieriiinnnicrers e 266
10.2.7 MAPFEAUCE() cvueruerrerreirerese s s s s s e s s b r e e s s b e e s ae e e e nnan 267
10.3 Multiple DIiSPatCRES ..o et 268
10.3.1 Defining Multiple Function Definitionscooooeeenresnncsneserese e 269
10.4 Operators Defined as FUNCLIONS ... sesesaens 270
10.4.1 Functions Returning FUNCHONS..........ccoviirrrnnserreser e 271
T0.5 SUMMAIY.....citiiieireserese s e s e e e e e e R e E e e e r e 273

Chapter 11: Control FIOWcuuucummsssssssnmmmmmmmmsssssssssssmsssssssssssssssssssssssssssssssnnssnnss 275
11.1 Introduction t0 CONtrol FIOW.........ccovevieieriscrnsersessre e 275
11.2 TErNAry EXPrESSION.....cceveeerieriereserseresessesessessessessssessessesessessessesssssssessessssssessessesssssssessens 275
11.3 B00IEAN SWItCHING ..ceuevverreierierere s serer e s e s s s e s e s s s e s s saese s e saesnesas e naesnees 276
L - T OSSPSR 277
B R] T o OSSO SRRSO 279

11.5.1 Scope of a Loop Variable ... 280
11.5.2 CONEINUE.....eceeeeeeee e e e 281
11.5.3 COMPIreNeNSIONS.......ccvceieririrrire e s e 282
11.5.4 GENEIALOIS ... e ne e 284
11.5.5 BNUMEIALEceeeeceeceree e 284
11.5.6 ZIPPING AITAYS.....ciuiiriirirere s s r s s bbb se s s a e e enis 285
11,6 WHIlE LOOP....cicrieriiiircrerie it se s bbb st e e nne 285
T1.7 NESEEU LOOPS ...ttt st ettt e e nn 286
11,8 00 ... BN oo p e s 288

xiii

TABLE OF CONTENTS

T1.9 EXCEPLIONS. ..cei et s a e e a e e 289
11.9.1 BUilt-in EXCEPLIONSoocerieei st 289
11.9.2 Custom-BUilt EXCEPLIONScceverereeririererenieserseresaesessessessessssessessessssesessesasssssessesaes 290
11.9.3 catch...try Construct for Testing EXCEPLiONS......cccvvvvvvvverevnrriene e ses s e sessesaennes 291
11.9.4 fINAIIY ..o e 293

11,70 SUMMAIY....triruireererererseserserereses s ssssesessesaessssessesaessssessessessessssessesssssssessessesssssnsenaens 294

Chapter 12: Input Outputccviiimmn s ———————————— 295

12,1 INErOTUCTION.......ceceeerccr s e 295

12.2 CONSOIE /0. nenp s 295

12.3 BaSIiC SIrEAM 1/0 ... 296

12.4 Byte Array STre@miNg.......ccoceeeeeresernserenesersesesessesesesessesessssesessessssssessssssesssssssssessessssssssenns 299

12.5 Streaming a Line of CRAractersccuoecrvnernsesnsesenesessse s sessesenns 301

T2 TEXEI/0 .t 302
12.6.1 SNOW().e.vvrerereresesisesese e bbb 303
12.6.2 PIINE()e.vvrrierere e 305
LTS o411) 307
12.6.4 AISPIAY()..vvvvrererererererereresesese et 308

12.7 Different DiSplay UNILSccccvievenninienieninsirsese s sessese s sessessessessssessessesssssssessessesssssssessens 309

T2.8 FlR 1/0..eeeeeeeeeeee s bbb np e 310
12.8.1 open(), close(), aNd reAU().......cveerrererierirrrere s s e s seesne e saeens 311
12.8.2 Array Reading and Writing........ccccverininnnni s s s ssessessesssessessenns 313

12,9 SUMIMAIY.....ciiiireire s e e e bR Re e e e Rttt e e 315

12.10 BiblIOGraphy ..o s s 315

Chapter 13: Plotting......ccccsrrsssnmnnmmsssnnnmssssssssssssssssssssssssnssssssssnssssssssnssssssnnnssssssnnnnss 317

13.1 Introduction to PIOtiNG in JUl@........cccomreeeeeee s 317

13.2 API0t @S aN ODJECT......ccoverererrrese s e 318

13.3 PIOtS PACKAGEccvveeerreirerir e n e 319
13.3.1 Default Behavior of PIOTS........cccvevnermnine s ss s senses 322
13.3.2 Simpler Way 10 Plot EQUAtiONS..........ccccvvreninnin s ses e e 324
13.3.3 Implicitly Passing @ SECoNd PlOt...........cccuervrrnrennenessse s senns 325

Xiv

TABLE OF CONTENTS

13.3.4 Decorating the PIOTS ... s 326
13.3.5 Many Plots in the Same Window Using SUDPIOL()cceverrererenreriererresenserereesessenennes 327
T I 1 (00 LSS 329
13.3.7 Bar Charts........ccccoeveriimiircnirissssssse s s 330
13.3.8 Pi€ CharScvovvecccececes sttt 330
13.3.9 SCAMEN PIOTSc.ceeererrccccire s 331

13.4 3D PIOLS ..vveeeeeeee e bR 332
13,5 SUMMEANY...c. e s s s e b e e b e e e e s R e Re e e e e e nne 333
13.5.1 BiDIOGraphyc.coceeeecrresresere s 333
Chapter 14: Metaprogrammingccccseesssssssessssssssssssssssssssssssnsssssssnnsssssssnsssssssnnnnss 335
L L1010 1 £ 335
T4.2 TRE 1 OPEIALON ... et et e e nae 335
T4.3 EXPIESSIONS....ueiueiriserersersesessessessessssessessesssses e ssesse st s e ssesaests e ssesaessesessessesaesesnesaessesssnensessens 337
14.3.1 fieldnames() and dUMP() ...coeeeeernrerrnrenrrese s ssases 337

14.4 Expression INTerpolation ..o sesese s sesse s sse s e ssessessssessesaens 340
L1 T L 341
14.6 BUIIE-IN MACKOS ...t e 343
T4.7 SUMMAIY.. .t s s e s e s s e e e e s d e e e e Re R e e et s Re e Re st e e nnennen 344
1T = 345

About the Author

Sandeep Nagar, PhD (Material Science, KTH Royal Institute
of Technology, Sweden), teaches and consults on the use of
Julia and other open source software for data science and
analysis. In addition to teaching at universities, he frequently
gives workshops on open source software and is interested
in developing hardware for scientific experiments.

xvii

About the Technical Reviewer

Z .4 | Massimo Nardone has more than 22 years of experiences in
security, web and mobile development, cloud computing,
and IT architecture. His true IT passions are security and
Android.

He has been programming and teaching how to program
with Android, Perl, PHP, Java, VB, Python, C/C++, and
MySQL for more than 20 years.

He holds a Master of Science degree in computing
science from the University of Salerno, Italy.

He has worked as a project manager, software engineer,
research engineer, chief security architect, information security manager, PCI/SCADA
auditor, and senior lead IT security/cloud/SCADA architect for many years.

Massimo’s technical skills include security, Android, cloud, Java, MySQL, Drupal,
Cobol, Perl, web and mobile development, MongoDB, D3, Joomla, Couchbase, C/C++,
WebGL, Python, Pro Rails, Django CMS, Jekyll, and Scratch.

He currently works as the chief information security officer (CISO) for Cargotec Oyj.

He has worked as a visiting lecturer and supervisor for exercises at the Networking
Laboratory of the Helsinki University of Technology (Aalto University). He holds four
international patents (PKI, SIP, SAML, and Proxy areas).

Massimo has reviewed more than 40 IT books for different publishing companies
and he is the co-author of Pro Android Games (Apress, 2015).

Acknowledgments

I wish to thank Steve, Mark, and the whole team at Apress for bringing out this book in
such a nice format. I also wish to thank the Julia community for answering questions on
forums, which helped me learn difficult concepts with ease.

xxi

CHAPTER 1

Introduction

1.1 Welcome to the Julian World

When you consider the vast sea of programming languages, learning yet one more can
feel like an overwhelming task. Learning new programming schemes and constructs
requires time, patience, and dedicated efforts, so there should be really strong reasons to
invest in such a time-consuming activity. Julia is a programming language that provides
such reasons. Since there are so many established programming languages, including
Python, C, C++, Java, R, and MATLAB, you need to be really motivated to invest time in
learning this new language, Julia. By the end of this chapter, I hope that you will see there
are more than enough reasons to dive into Julian world.

Julia is touted to be the one programming language that meets all needs because it
removes the requirement of knowing multiple languages. Most programming languages
were designed to meet the needs at the time of their creation. For example, C was
designed to be an efficient procedural programming language. C++ was developed
to add object-oriented programming features to the already efficient and popular C
language. Java also added new features to the area of objects. MATLAB was invented to
ease the burden of coding efforts required to define a mathematical problem. Python
grew with a similar philosophy, but ventured into areas where MATLAB was inefficient.
Since the two languages were similar in structure, a lot of MATLAB coders shifted to
Python without much effort. It was open source and modular as well, which added to
the ease of using others’ code. However, one of the main problems with this kind of
development in computer science was that each programming language was only good
in specific areas. As a result, users needed multiple programming languages for different
tasks and then they needed to tweak them as required to make a needed software.

Some programming languages like C and C++ were created for speed, while others were

© Sandeep Nagar 2017
S. Nagar, Beginning Julia Programming, https://doi.org/10.1007/978-1-4842-3171-5_1

CHAPTER 1 INTRODUCTION

designed for efficient computation in their domain. The emergence of data science tasks
required a language that not only was fast but that also had a feature to remove the need
for multiple languages to complete a computational job.

Julia fits these new requirements almost perfectly. The web site http://
julialang.org/ states the following:

Julia provides the functionality, ease-of-use and intuitive syntax
of R, Python, MATLAB, SAS or Stata combined with the speed,
capacity and performance of C, C++ or Java [1].

Being open source in nature, Julia attracted a good number of developers to write
modules that are now used for most work. Julia is one of the the fastest modern open
source languages for data science, machine learning, and scientific computing.

With Julia's impressive set of facilities, you should now have enough reasons to
explore the langauge. It is one of the newest programming languages that can be used for
almost any type of computational tasks at present and, hopefully, in the future as well. In
addition, many high-tech companies seek Julian coders.

If you have some experience with the Python programming language, you know
that it became popular for a variety of reasons. It has an extremely simple learning
curve. With open source architecture, millions of developers have poured in thousands
of packages to perform various tasks. These packages are easy to use. You only have to
import them using a simple command. Python can also work on a variety of platforms.
It is object-oriented, which makes it one of the best-suited, high-level languages for
simulation and computation in general. It can also run parts of code written in other
programming languages. With these characteristics, it has become the most popular
language among coders at the time of writing. But, it has one big problem: it is slow.
Consequently, developers have found themselves in a fix when they need to write
time-efficient code. Many times, they choose to write time-inefficient parts in faster
languages like C or C++. This process makes the overall experience very enriching but
cumbersome. The primary motivation to create Julia mainly arose from this issue.

Julia’s creators themselves remark [2] on these issues:

We want a language that’s open source, with a liberal license.
We want the speed of C with the dynamism of Ruby. We want a
language that’s homoiconic, with true macros like Lisp, but with
obvious, familiar mathematical notation like MATLAB ®. We

want something as usable for general programming as Python,

http://julialang.org/
http://julialang.org/
http://julialang.org/

CHAPTER 1 INTRODUCTION

as easy for statistics as R, as natural for string processing as Perl,
as powerful for linear algebra as MATLAB, as good at gluing
programs together as the shell. Something that is dirt simple

to learn, yet keeps the most serious hackers happy. We want it
interactive and we want it compiled. (Did we mention it should be
as fast as C?)

The introduction of LLVM (Low Level Virtual Machine) enabled [3] this ideology.
It became possible to design a language from the the onset that satisfies most
requirements and, hence, eliminates the two-language approach. The LLVM-based JIT
(just-in-time) compiler allows Julia to approach and often match the performance of
C/C++. (Explaining this concept in detail is beyond the scope of this book and irrelevant
for a beginner.)

1.2 JIT Compiler

All programming instructions end up as machine code that is run on hardware (hence,
machine code is hardware-specific). Thus, faster code simply means efficient machine
code. Machine code can be done by hand, but it is a tedious job. Assembly language
(lower level language) is a symbolic representation of machine code and can be fed by
hand to a hardware device, but it suffers from two major roadblocks:

1. Itisnot easy to read and write.
2. Ttis hardware-specific.

These two problems are overcome by higher-level language. Currently, a variety
of higher-level languages exists. FORTRAN, C, C++, and so on, are compiler-based
languages where writing and reading code is easier than assembly language; they
convert to machine code quite efficiently. However, users are forced to provide a lot
of information about how the code should execute and what data types are used.
With ample information given to the compiler, the compiler builds machine code
AOT (ahead-of-time). On the other hand, interpreted languages like Python generate
machine code on the fly, that is, during program execution. Instead of a compiler, these
languages use an interpreter that interprets each line of code to be ultimately converted
into machine code. This allows a flexible and interactive environment that is loved by
all. Programmers can even delegate defining data types and defining memory allocation

CHAPTER 1 INTRODUCTION

tasks to the interpreter. But these facilities come at a cost since interpreted languages
need time to create proper machine code.

JIT compilation brings together the best of both the AOT and interpreter worlds.

The primary difference is that functions for specific tasks are compiled as requested.

In some instances, the programmer supplies all the information to the compiler for
efficient conversion to machine code. When some pieces of information are missing, the
compiler tries to infer missing information based on its usage.

However, in some cases, JIT isn’t the most optimum approach and fails miserably.
This happens when type inference fails or the compiler has insufficient information to
optimize effectively.

With these ideas in mind, the creators of Julia set upon an interesting journey that
provided the world with one of the most promising programming languages. Learning
about the history of its development can be very inspiring. The next section will describe
how people from various backgrounds came together to collaborate and make Julia.

1.3 Brief History

A popular mantra in the Julia community is “walk like Python; run like C.” Speed and
ease of use has been the primary criteria for developing Julia. A team of four developers
(Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and Alan Edelman) created this practical
language at MIT (Massachusetts Institute of Technology).

An article in Wired magazine illustrates the development of Julia [4]. The primary
motivation for developing this language originated from the problem Karpinski faced
when he designed a network simulator. For various parts of his project, he had to glue
together different programming languages that were best-suited for the job. He went to
get advice from Shah, who introduced him to Bezanson. Bezanson had concluded that
the trade-off between various programming languages was avoidable. This conclusion
addressed Karpinski’s problem. The three developers brought in the mathematician
Edelman, and they embarked on the project. Soon a high-level, high-performance,
dynamic programming language for technical computing with syntax that is familiar
to users of other technical computing environments began to take shape. It could rival
the calculation speeds of C. It also provided the much-needed sophisticated compiler,
allowed distributed parallel execution, and enabled higher numerical accuracy and an
extensive mathematical function library. With this armor in command, the group released
a series of research articles [5, 6, 7, 8], giving a glimpse into the wonderful Julian world.

4

CHAPTER 1 INTRODUCTION

1.4 Installation

Let’s dive into the Julian world and start learning about the power of the program. As
mentioned before, the primary resource for Julia developers is its own web site [9]. At
the time of writing, Current Release (v0.5.0) is downloadable from the Download tab of
the web site. First, choose to download the version as per your operating system [10].
Installation for MacOSX, Windows, and Linux-based OS is discussed on the web site.
An interesting way to explore Julia is using JuliaBox, where you don’t need to install
any software. Instead, you can access a server running a notebook instance with a Julia
kernel. (See Figure 1-1) Users can choose any of these methods to practice code.

& Julla Cownloads ® | A juiaBiox — sandeepafere; X fepleny
— o= : - - —

*

4ss fhincia 0 YouTuse - Brossca.. £ OpanFOAM 3 onlin courses P_-»v:uu{i; B Pytron resources’ B Linx -fLaTex Bletosks - B Giher Bookmari)
#& JuliaBox B hoer B Coscle L e O Sm g @ B

Juser@juliabox:~% julia

A fresh approach to technical computing
Documentation: http://docs. julislang.org
Type “Thelp” for help.

Version @.5.9 (2016-03-19 18:14 UTC)
Official http://julislang.org/ rel
xB6_64-pc=1inux-gnu

Figure 1-1. JuliaBox console

1.4.1 JuliaBox

If you have uninterrupted Internet access, you might like to work on Julia without
downloading and installing software on your local machine. The web site for JuliaBox is
given in the list of references [11]. Sign in using one of the accounts and open the Julia

console using the tab options.

CHAPTER 1 INTRODUCTION

Each cell can be used to write code or textual information in a markup language.
Beginners can simply choose to write the code in a cell and execute it by pressing
Shift+Enter. The results will be displayed below the implemented cell and a new cell will
get ready to take the next set of Julia commands.

1.4.2 Mac0S

Julia runs on MacOS 10.7 and later releases. Installation of Julia on Mac can be easily
performed by downloading the Julia-<version>.dmg file from its web site. This file
contains Julia.app. Installation can be performed by copying the Julia-<version>.app
to the hard drive (anywhere) or run from the disk image. Double-clicking the shortcut
icon starts the Julia console (Figure 1-2) in a similar manner as the Julia console in
JuliaBox (Figure 1-1). Multiple Julia.app binaries can coexist without interfering with
each other. Thus, multiple versions of Julia can be installed and used without interfering
with each other.

Last login: Wed Mar 8 14:33:38B on ttyseee
SANDEEPs-MacBook-Air:~ sandeepnagar$ exec '/Applications/Julia-0.5.app/Contents/
Resources/julia/bin/julia’

A fresh approach to technical computing
Documentation: http://docs.julialang.org
Type "7help” for help.

[|/

1=l | (1 | Version 0.5.0 (2016-09-19 18:14 UTC)
VA W U D V| official http://julialang.org/ release
|/ xB6_64-apple-darwinl3.4.0
julia>

Figure 1-2. Julia console at MacOSX

For uninstalling Julia, delete the Julia.app and the packages directory in ~/.julia.
If you would also like to remove your preferences files, remove ~/.juliarc.jl.

6

CHAPTER 1 INTRODUCTION

1.4.3 Windows 0S

Julia is available for Windows 7 and later. Both 32-bit and 64-bit OS versions are
compatible with Julia installations. The first step is to download the julia.exe file
(installer for your platform). It is worth noting that the 32-bit version of Julia works on
both x86 and x86_64. The 64-bit version of Julia will only run on 64-bit Windows (x86_64)
OS. Hence, it’s important to check the version information of your installed windows OS.
By default, it will install to your AppData folder. You may keep the default or choose your
own directory (for example, C:\Julia). Next, run the downloaded julia.exe file. This
will start the installation. After the installation is complete, a shortcut to the Julia program
will appear on your desktop. Double-click this Julia shortcut in the unpacked folder to
start the Julia environment, similar to the one seen in the JuliaBox (Figure 1-1). In the
event that problems arise, some dependencies might be missing. The Windows README
files contain information on dependencies. You have to install these dependencies to
complete installation.

In case problems force you to uninstall Julia, delete the extracted directory and
the packages directory in \%HOME\%/ . julia. If you would also like to remove your
preferences files, remove \%¥HOME\%/ . juliarc.jl and \%HOME\%/.julia_history.

1.4.4 Linux 0S
Installing from PPA for Ubuntu and Its Derivatives

For Ubuntu-based Linux distribution, add a repository and install Julia from the
command line terminal by typing the following:

$ sudo add-apt-repository ppa:staticfloat/juliareleases
$ sudo add-apt-repository ppa:staticfloat/julia-deps

$ sudo apt-get update

$ sudo apt-get install julia

The main advantage of using this method is that Julia will be updated with the other
software on an installed machine.
To remove Julia, type the following:

$ sudo apt-get purge julia

CHAPTER 1 INTRODUCTION

To remove the Julia repository so that, while updating, it does not seek to update Julia
(make sure you remove the package before removing the repository), use the following
code snippet:

$ sudo add-apt-repository --remove ppa:staticfloat/juliareleases

Installation on Fedora/RHEL/Cent0S/SL/0OEL

A copr (Cool Other Package Repo) [12] repository can be used in this case. This repository
provides a Julia RPM package for Fedora and EPEL (RHEL/CentOS/SLES/OEL). If you are
using RHEL, CentOS, Scientific Linux, or Oracle Enterprise Linux (version 5 or higher),
first enable EPEL for your distribution version by running a command prompt:

$ sudo dnf copr enable nalimilan/julia

Another way is to copy the relevant .repo file available to /etc/yum.repos.d/.
Finally, you can simply issue the following command-to-command terminal:

$ sudo yum install julia

New versions are built every night. If you have already installed Julia and you want to
upgrade to the latest version, issue the following command to the terminal:

$ sudo yum upgrade julia

Building from Source Code

Building from source code is usually preferred by experienced programmers since it
requires knowledge about handling files in Linux and changing permissions. Julia’s
source code is hosted at GitHub [13]. Hence, Git should be installed [14] in your system.
Once this is done, you must satisfy the dependencies [15] first. The following instructions
are also given at README file [16].

1.5 Package Installation

Apart from built-in Julia functions, users can add packages with specific functionalities
and can even make their own packages (and subsequently release them to the Julia
community). A list of packages is provided at the main web site [17]. It is clearly a very

8

CHAPTER 1 INTRODUCTION

rich ecosystem of computing facilities. Packages for all sorts of computational tasks are
already present and the Julia community appends this list on a regular basis.

For the purpose of adding and deleting packages to a Julia installation in a clean
manner, Julia has a built-in package manager [18], but this requires an active Internet
connection. Because the package manager uses Git internally to manage the package
Git repositories, users may run into protocol issues (if behind a firewall, for example)
when running Pkg.add() (to install packages). The following command can be run from
the command line to tell Git to use HTTPS instead of the Git protocol when cloning
repositories:

$ git config --global url."https://".insteadOf git://

1.5.1 Initialization of Package Manager

Initialization of a package manager can be done using Pkg.init() in the following
manner. First, open the Julia app by clicking its icon. A Julia terminal opens up that has
julia> asits command prompt. We shall issue a Julia command here. Try the following:

julia> Pkg.init()

The command will produce information about initialization of the package
directory.

1.5.2 Updating Package Repository

Suppose we want to work with the package named AlgebraicDiffEq. Its source code
can be found at its Git address [19]. It’s advisable to update the metadata of the package
repository to update the version of packages to the latest ones. Thus, we can issue the

following command:
julia> Pkg.update()

Depending on your state of machine, it will update versions for installed packages.
This may take quite some time depending on the speed of your machine and Internet
connection. It is good practice to issue this command periodically for keeping packages
in the most up-to-date condition.

CHAPTER 1 INTRODUCTION

1.5.3 Installing a New Package

The Julia package manager is declarative rather than imperative. This means that users
simply issue the command about what they want. The package manager figures out what
versions to install (or remove) to satisfy those requirements optimally—and minimally.
Hence, a user just adds the name of the package to the list of requirements. The package
manager then resolves the issues pertaining to its installation. This means that if some
package had been installed because it was needed by a previous version of something
you wanted but a newer version doesn’t have that requirement anymore, updating will
actually remove that package.

The installation of a package follows this pattern:

o Package requirements are in the file ~/.julia/v0.4/REQUIRE.
o The name of the package to be installed is added to this file.

o Pkg.resolve() is then called to resolve the dependencies issues for
final installation.

These tasks can be achieved by issuing a single command:
julia> Pkg.add("AlgebraicDiffEq")

The great benefit of a built-in installer is that it will take care of the dependency tree
for the new installation. The list of dependencies can be found in the REQUIRE file of the
package.

1.5.4 Removing a Package

Just as a package can be installated with great ease, a package can be removed by simply
issuing the following command:

julia> Pkg.rm("AlgebraicDiffEq")
The procedure to remove a package is similar to its installation:
o Package requirements are in the file ~/.julia/v0.4/REQUIRE.
o The name of the package to be removed is removed from this file.
o Pkg.resolve() is then called to resolve the dependencies issues for

final installation.

10

CHAPTER 1 INTRODUCTION

Both Pkg.add() and Pkg.rm() are convenient ways for adding and removing
requirements for a single package. However, in the case of multiple packages to be
handled, we recommend using Pkg.edit (). Issuing this command lets users edit the
contents of ¥/.julia/v0.4/REQUIRE manually, change the contents, and then update
their packages accordingly. This process should only be done by experienced users so
we have not discussed it here.

1.5.5 Status of Installed Packages

The command Pkg.status() prints out a summary of the state of packages you have
installed. As an example, when this command is run on my machine, the following
output is generated:

julia> Pkg.status()
1 required packages:

- IJulia 1.6.0
9 additional packages:

- BinDeps 0.7.0
- Compat 0.30.0
- Conda 0.7.0
- Homebrew 0.5.8
- JSON 0.13.0
- MbedTLS 0.4.5
- SHA 0.5.1
- URIParser 0.2.0
- ZMO 0.4.3

It can be clearly seen that all the installed packages cache is being updated for
further usage. Let’s look at the process [18] of updating a package:

o The first step of updating packages is to pull new changes to the
file found at address ~/.julia/v0.4/METADATA and see if any new
registered package versions have been published.

o Next, Pkg.update() attempts to update packages that are checked
out on a branch and not dirty (that is, no changes have been made to
files tracked by Git) by pulling changes from the package’s upstream
repository.

11

CHAPTER 1 INTRODUCTION

o Upstream changes will only be applied if no merging or rebasing is
necessary (in other words, if the branch can be fast-forwarded).

o Ifthe branch cannot be fast-forwarded, it is assumed that the users
are working on it and will update the repository themselves.

e Asafinal step, the update process recomputes an optimal set
of package versions to have installed to satisfy users’ top-level
requirements and the requirements of “fixed” packages.

1.5.6 Off-line Installation of Packages [18]

In case the Internet is not available, packages may be installed by copying the package
root directory Pkg.dir () from a machine with the same operating system and
environment. Issuing the command Pkg.add() performs the following within the
package root directory:

e Adds the name of the package to REQUIRE

« Downloads the package to . cache and then copies the package to the
package root directory

o Recursively performs step 2 against all the packages listed in the
package’s REQUIRE file.

o RunsPkg.build()

1.6 Using Code in This Book

The code in this book can be simply written at the Julia prompt and executed by pressing
the Enter key. If you are using JuliaBox or notebook format, you can execute a Julia cell
by pressing the Shift and Enter keys simultaneiously. The comments are written starting
with a # sign. They are optional and only assist conceptual clarity. Code is presented with
a different font for visual clarity.

Julia files are stored with a . j1 format. If the compiler path is well defined, then a
Julia file can simply be executed by running the following command:

$julia <filename.jl>

12

CHAPTER 1 INTRODUCTION

The best way to use this book is to treat it as a workbook. Read each concept and run
the sample code given with it. Try to run the code in the book and reason out the errors
and warnings, if any. Finally, try to write your own code to understand the concept in
greater detail.

1.7 Summary

In this chapter, we introduced the world of the Julia programming language and
provided instructions for its proper installation on Windows, Linux, and MacOSX
operating systems. These instructions might change over time as the availability of
computing resources and configurations changes. Hence, we advise users to keep

a tab on Julia’s language web site [9] to get the most updated version of Julia. In the
subsequent chapters, we will explore the structure of Julia in order to use it effectively.

1.8 Bibliography

[1] https://juliacomputing.com/

[2] http://julialang.org/blog/2012/02/why-we-created-julia
[3] http://11lvm.org/

[4] www.wired.com/2014/02/julia/

[5] J.Bezanson, S. Karpinski, V. B. Shah, and A. Edelman, “Julia: A
fast dynamic language for technical computing,” arXiv preprint
arXiv:1209.5145, 2012

[6] V.B.Shah, A. Edelman, S. Karpinski, J. Bezanson, and J. Kepner,
“Novel algebras for advanced analytics in Julia,” in High
Performance Extreme Computing Conference (HPEC), 2013 IEEE,
pp- 1-4, Sept 2013

[7] J.Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A
fresh approach to numerical computing,” November 2014

13

https://juliacomputing.com/
http://julialang.org/blog/2012/02/why-we-created-julia
http://llvm.org/
http://www.wired.com/2014/02/julia/

CHAPTER 1

14

[8]

[9]
[10]
[11]
[12]
[13]

[14]

[15]

[16]
[17]
(18]

[19]

INTRODUCTION

J. Bezanson, J. Chen, S. Karpinski, V. Shah, and A. Edelman, “Array
operators using multiple dispatch: a design methodology for array
implementations in dynamic languages,” in ARRAY’14 Proceedings
of ACM SIGPLAN International Workshop on Libraries,

Languages, and Compilers for Array Programming, (New York, NY,
USA), pp. 56-61, ACM, 2014

http://julialang.org/
http://julialang.org/downloads/platform.html
https://juliabox.com/
https://copr.fedorainfracloud.org/coprs/nalimilan/julia/
https://github.com/Julialang/julia

https://git-scm.com/book/en/v2/Getting-Started-
Installing-Git

https://github.com/Julialang/julia/blob/master/README.
md#Required-Build-Tools-External-Libraries

https://github.com/Julialang/julia/blob/master/README.md.
http://pkg.julialang.org/
http://docs.julialang.org/en/release-0.4/manual/packages/
http://github.com/JuliaDiffEq/AlgebraicDiffEq.jl

http://julialang.org/
http://julialang.org/downloads/platform.html
https://juliabox.com/
https://copr.fedorainfracloud.org/coprs/nalimilan/julia/
https://github.com/JuliaLang/julia
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
﻿https://github.com/JuliaLang/julia/blob/master/README.md#Required-Build-Tools-External-Libraries﻿
﻿https://github.com/JuliaLang/julia/blob/master/README.md#Required-Build-Tools-External-Libraries﻿
https://github.com/JuliaLang/julia/blob/master/README.md
http://pkg.julialang.org/
http://docs.julialang.org/en/release-0.4/manual/packages/
http://github.com/JuliaDiffEq/AlgebraicDiffEq.jl

CHAPTER 2

Object-Oriented
Programming

2.1 Introduction

Julia is designed to be an object-oriented programming (OOP) language. This choice is
inspired by the tremendous success of OOP languages in the computing community.
The ease of defining a computational problem in OOP made it a famous computing
paradigm; hence, Julia also adopted OOP. To learn Julia, getting to know OOP is a
prerequisite. We have dedicated this chapter for this purpose.

2.2 Procedural Programming vs. O0P

When defining computational tasks, you can define a set procedure to solve a problem
using blocks of data and connecting them as dictated by procedures. The paradigm that
emphasizes setting procedures irrespective of the type of data and their different usage
pattern is called procedural programming. On the other hand, OOP lays emphasis on
objects and their relationships with one another using operators (acting on objects, they
change their values and other attributes to solve a computational task). C++, Java, and
Python are OOP languages as is Julia.

2.3 Idea of OOP

The idea of objects originated from observations of the day-to-day life around us.
An object is understood as something that has a set of attributes and a related set of
behaviors. This is what human babies learn first about their environments. For example,

15
© Sandeep Nagar 2017

S. Nagar, Beginning Julia Programming, https://doi.org/10.1007/978-1-4842-3171-5_2

CHAPTER 2 OBJECT-ORIENTED PROGRAMMING

babies learn that a ball (object) has a color, shape, and size (attributes), and it rolls, skids,
and bounces (behavior).

In the early 1970s, Alan Kay at Xerox PARC (Palo Alto Research Center) worked on
the concept of OOP[1]. While working on a programming language called Smalltalk 2],
he employed the ideas of OOP. The key ideas were based on applying computer
programming to physical simulations. The real world can be imagined as various objects
(having attributes and behaviors) interacting with each other. So, it is natural to adopt
the same ideas while constructing a simulated world. All GUI-based systems inherit
their philosophy from Kay’s efforts toward these ideas and now all major programming
languages follow them religiously.

2.4 Object

In the Julian world, everything is an object. But what is an object? An object is an
abstract concept to signify an entity on which computation can be performed. Just like a
physical object, a computer’s object has a set of attributes and a related set of behaviors.
A number, string, pictures, videos, files, and so forth, can be visualized as objects. Within
numbers, you can subcategorize objects into other objects as integers, floating point
numbers, and boolean numbers, or their collection in an ordered or unordered fashion.
Within strings, you can have characters, words, sentences, and so on. Within files, it is
possible to have text files, media files, data files, script files, and so forth.

2.5 Types of Object

An object has an associated type. Type dictates the memory storage requirements and
what can be done computationally with an object. For example, int and float are
distinct types of objects in the sense that int stores integers and float stores floating
point numbers. These types will be discussed in greater detail in subsequent chapters.
While float needs to store information regarding the number of digits preceding and
succeeding the decimal point, an int object does not need to worry about the same
information. Similarly, a complex number is stored in another type of object, aptly
named complex since it needs to store two aspects of a complex numbers (i.e., their real
and imaginary parts). In this way, they must be stored quite differently in a computer’s

16

CHAPTER 2 OBJECT-ORIENTED PROGRAMMING

memory and then be used quite differently in subsequent computations. The creation of
an object necessarily requires the declaration of its type. Unless explicitly specified, Julia
assigns the type dynamically. The type of object can be obtained by using the built-in
function called typeof (), which takes the object whose types needs to be scanned.

Let’s test this concept using an example. Even though the value of objects is numeric
1, they are stored as an integer, floating point number, and a character:

julia> a = 1

1

julia> b = 1.0
1.0

julia> c = "1'

"1': ASCII/Unicode U+0031
(category Nd: Number, decimal digit)

julia> typeof(a) # 64-bit Integer object
Int64

julia> typeof(b) # 64-bit Floating point object
Float64

julia> typeof(c) # Character object
Char

The integer object is quite different from a floating point object and string. Some
functions will explicitly demand a particular type of object. In these cases, they need
to be converted into one another. Sometimes the conversion is troublesome and
occassionally it cannot be accomplished. Details of conversion problems are outlined
with the help of number objects in Chapter 3.

2.6 Object Reference

Julian objects are represented as a reference to an object in a computer’s memory. “A”
points to a memory location. This memory location can be accessed using the built-in
function pointer from objref(x) where x is the reference to the object. Similarly, the

17

CHAPTER 2 OBJECT-ORIENTED PROGRAMMING

size of memory in bytes can be obtained by using the function sizeof(x). This can be
understood by a code that we have previously used:

julia> a = 1 # a references to a Int64 type integer
object
1

julia> b = 1.0 # b references to a Float64 type floating
#point object
1.0

julia> c = '1' # C references to a Char type object
'1"': ASCII/Unicode U+0031
(category Nd: Number, decimal digit)

julia> typeof(a)
Int64

julia> typeof(b)
Float64

julia> typeof(c)
Char

julia> pointer from objref(a) # memory address of a
Ptr{Void} ®0x000000011b8240a0

julia> pointer from objref(b) # memory address of b
Ptr{Void} @0x0000000120804e30

julia> pointer from objref(c) # memory address of c
Ptr{Void} @0x0000000120a672€e0

julia> sizeof(a) # a occupies 8 bytes (Int64)
8

julia> sizeof(b) # b occupies 8 bytes (Int64)
8

julia> sizeof(c) # c occupies 4 bytes (Char)
4

18

CHAPTER 2 OBJECT-ORIENTED PROGRAMMING

The command whos () gives the detailed state of the machine’s memory

consumption. For example, at the time of writing, the state of my machine shows the

following:

julia> whos()

Base 34434
Core 12485
Main 41112
a 8
ans 4
b 8
C 4

KB
KB
KB
bytes
bytes
bytes
bytes

Module
Module
Module
Int64
Char
Float64
Char

The state of the machine clearly shows that apart from the modules Base, Core, and

Main, four references were created in present namespace (or, in simpler words, working

environment):

o a(8bytes for Int64 data type of object)

e b (8bytes for Float64 data type of object)

e (4 bytes for Char data type of object)

e ans ((4 bytes for Char data type of object))

ans is automatically created and references the last used object at
the Julia prompt.

2.6.1 Multiple References for the Same Object

Multiple references can refer to the same memory location of an object. This can be

accomplished by assignment operator =. The symbol of the assignment operator should

not be confused with the symbol for mathematical equality generally used while defining

mathematical equations. Let’s look at an example to further explain this concept:

julia> a =
1.5

1.5

julia> pointer from objref(a)
Ptr{Void} ®@0x0000000120804060

19

CHAPTER 2 OBJECT-ORIENTED PROGRAMMING

julia> b = a
1.5

julia> pointer from objref(b)
Ptr{Void} @0x0000000120804060

julia> c = b
1.5

juliay> pointer from objref(c)
Ptr{Void} ®0x0000000120804060

julia> a
1.5
julia> b
1.5
julia> ¢
1.5

julia> a = 1.2 # a now points to a different object
1.2

julia> pointer from objref(a) # different memory location
Ptr{Void} ®0x0000000123509090

julia> b

1.5

julia> ¢

1.5

julia> a

1.2

A reference to object (named a) is created that refers to a floating point value 1.5.

pointer from objref(a) shows that the address of the memory location is

0x0000000120804060 (a hexadecimal number representing a memory location). Now the
object is assigned to another reference (named b). It has been verified that the memory

20

CHAPTER 2 OBJECT-ORIENTED PROGRAMMING

addresses for a and b are the same. Please note that at the time of creation, only a was
used for referencing. In a similar fashion, a new reference is created (named c) from

a newly created reference named b. All three (a, b, and c) refer to the same memory
location. When a is reassigned to a new object, it changes its reference, whereas b and ¢
keep theirs.

2.7 Variables

A variable is a name associated (or bound) to a value—that is, a reference to data stored
in a memory location. Data are treated like an object; a variable refers, or points, to the
object. The value of the object can be changed while the code runs—hence, the name
variable. (In other words, the object is able to store different values at different points of
time.) For example, in the following code, a variable named a can store an integer, then
another value of the integer, then a floating point number, then a string, and finally a
rational number. Hence, the value of a can be variable.

julia> a = 1 # 'a' refers to integer object valued as 1
1

julia> a = 2 # Now 'a' refers to a new integer object
#valued as 2

2

julia> a = 3.4 # Now 'a' refers to a new floating point
#object valued as 3.4
3-4

julia> a = "hi" # Now 'a' refers to a string valued
as "hi"
"hill

julia> a = 1//2 # Now 'a' refers to a rational
number 1/2
1//2

21

CHAPTER 2 OBJECT-ORIENTED PROGRAMMING

2.7.1 Naming a Variable

Variable names are case-sensitive and do not have any semantic meaning within

Julia. For this reason, keywords cannot be used as variable names. Julia provides an
extremely flexible system of naming a variable. Even Unicode characters are allowed for
variable names. In the Julia REPL and several other Julia editing environments, Unicode
characters are invoked by issuing LaTeX commands for [3] them and then pressing Tab.
For example, to give the variable the name a, you would need to type \alpha and then
press the Tab key to see a as the variable name.

A few rules exist regarding variable names:

e Variable names must begin with a letter (A-Z or a-z), underscore, or a
subset of Unicode code points greater than ooAo.

e Subsequent characters may also include special characters
(for example, &, @, %, ", #, and so forth) and digits (0-9) or other
Unicode characters.

o Keywords are not allowed for naming variables.

2.7.2 Naming Style Convention [4]

To maintain uniformity, Julia proposes a styling convention (which is suggested, but is
not compulsory). The main aspects of style conventions are the following:

o Names of variables are written in lowercase alphabet letters.

u -n

e Word separation can be indicated by underscores (“_"), but use of

underscores is discouraged unless the name would be hard to read

otherwise.

e Names of types and modules begin with an uppercase letter
and word separation is shown with uppercase letters instead of

underscores.
« Names of functions and macros are lowercase, without underscores.

e Functions that write to their arguments have names that end in
“I" These are sometimes called “mutating” or “in-place” functions
because they are intended to produce changes in their arguments

after the function is called, not just return a value.

22

CHAPTER 2 OBJECT-ORIENTED PROGRAMMING

2.8 Summary

In this chapter, we have discussed the basic paradigm of OOP and how Julia truly
justifies its role as an OOP candidate. Dealing with objects makes the tasks modular as
the flexible nature of computation gives freedom to the developer to explore dimensions
of the computational tasks in a variety of ways. Different physical systems can be easily
simulated since you just need to define an appropriate computational object and declare
its properties as associated functions, called methods. Objects can be referenced by
variable names and calling by reference makes it easy to change the values.

2.9 Bibliography
[1] http://propella.sakura.ne.jp/earlyHistoryST/
EarlyHistoryST.html

[2] http://web.cecs.pdx.edu/~harry/musings/
SmalltalkOverview.html

[3] http://detexify.kirelabs.org/symbols.html

[4] https://docs.julialang.org/en/stable/manual/variables/

23

http://propella.sakura.ne.jp/earlyHistoryST/EarlyHistoryST.html
http://propella.sakura.ne.jp/earlyHistoryST/EarlyHistoryST.html
http://web.cecs.pdx.edu/∼harry/musings/SmalltalkOverview.html
http://web.cecs.pdx.edu/∼harry/musings/SmalltalkOverview.html
http://detexify.kirelabs.org/symbols.html
https://docs.julialang.org/en/stable/manual/variables/

CHAPTER 3

Basic Math with Julia

3.1 Introduction

In this chapter, we will explore how Julia can be used to perform simple mathematical
calculations that are the basis of most computational tasks. A basic knowledge of high-
school-level mathematics is required for understanding the contents of this chapter. The
chapter will include illustrations that represent mathematical numbers of various kinds
and their algebraic operations as well as other operations used to define mathematical
computations. In fact, Julia proves to be a good option while teaching basic mathematics
due to its simple learning curve.

It is important to note that apart from performing basic mathematical computation,
Julia is a good candidate for high-performance computing. The general conception
that high-performance computing means working with super computers is slowly
and steadily being replaced because cheap and powerful computation power is
readily available. A cluster of Raspberry Pi computers is a poor man’s (financially
poor, academically rich!) super computer. GPU (graphics processor unit)-based mini
super computers are within the reach of the common man now, but the role of a faster
programming language cannot be ignored here.

Laptops and desktops with few GHz multicore processors and between 2 and 8GB
RAM have become the worldwide norm. If you can use these machines to perform high-
performance computations, then the need for expensive computing systems becomes
obsolete. This removes the fundamental roadblock for researchers and students from
economically challenged social structures. If the solutions can be presented within an
open source framework, value is added to their ease of accessibility.

The Julia programming language satisfies most of these conditions. It is open source,
it supports multiparallel processing, it has a flat learning curve, and it boasts a speed

25
© Sandeep Nagar 2017

S. Nagar, Beginning Julia Programming, https://doi.org/10.1007/978-1-4842-3171-5_3

CHAPTER 3 BASIC MATH WITH JULIA

comparable to C/C++. Hence, Julia is fast becoming popular, especially for the task of
data analytics dealing with huge amounts of data that need to be crunched quickly.
Since the base of such a job is mathematics, let’s start learning how Julia treats basic
mathematics within its basic framework (without using additional packages).

3.2 REPL

Julia comes with a full-featured, interactive, command-line REPL (Read-Eval-Print
Loop) built into the executable. The interactive shell of the Julia programming language
is commonly known as REPL because

e it reads what a user types,

o the compiler evaluates what it reads,

e it prints out the return value after evaluation, and
o itloopsbackand does it all over again.

As soon as we click the Julia shortcut, we obtain the REPL environment, as shown
in Figure 1-2. The prompt is obtained as julia> and the cursor blinks at this prompt.
It is waiting for the input to be read and evaluated, and then it prints the output of
the evaluation and waits for the next input. A lot of similar environments exist in the
computing world. Linux’s shell, Python’s interactive environment, MATLAB'’s interactive
environment, and so on, follow the same philosophy.

In addition to allowing quick and easy evaluation of Julia statements, it has

e asearchable history,

e tab completion,

o many helpful key bindings, and
o dedicated help and shell modes.

3.2.1 Hello World!

Let’s print the string "Hello World," the very first program in the world of computing:

julia> println("Hello World")
Hello World

26

CHAPTER 3 BASIC MATH WITH JULIA

When you feed the Julia command as the words println("Hello World") at the
command prompt julia>, Julia reads this statement in the sense that it searches for
the built-in function println and feeds it a string (defined by enclosing characters in
a pair of quotation marks). This is evaluated by the Julia compiler as per definition of
the println function. The function simply displays on the command prompt whatever
string is fed to it. Hence, the result of evaluating println is printed on the console as
the words Hello World. As soon as this is done, the environment goes back to the Julia
prompt julia>, waiting for the next input.

3.2.2 1/0 at REPL

Let’s experiment with giving inputs and observing outputs at REPL:

julia> 2
2

julia> -2
-2

julia> 2.
2.0

julia> println(2-2.0)
0.0

julia> println("2-2.0")
2-2.0

¢ When we entered the number 2 at the prompt, it was evaluated as the
value 2, which looks like a positive integer number in mathematical
terms. It's important to remember that the value in the computer may
or may not be an exact mathematical quantity in some cases.

e Similarly, when we entered the number -2 at the prompt, it was
evaluated as the value -2, which looks like a negative integer number
in mathematical terms.

e When we entered the number 2. at the prompt, it was evaluated as the
value 2.0, which looks like a positive real number in mathematical
terms. Thus, writing numbers before and after the decimal points in Julia

is optional.
27

CHAPTER 3 BASIC MATH WITH JULIA

o When the value 2 is given to the built-in function println, it
evaluates it to be as the value 2. It looks like nothing has happened,
but that is not the case.

¢ When the mathematical expression 2 - 2.0 is fed to the built-in
function println, it evaluates the expression and prints the output as
the value 0.0.

¢ When the mathematical expression 2 - 2.0 is fed to the built-in
function println as a string, it prints the string just like it printed the
string Hello World before.

It can be noted that the Julia function println takes care of the fact that it might get
a different type of data and must act accordingly. When it got a mathematical expression,
it evaluated the same as per the rule of mathematics. When it got the same as a string, it
just displayed it at the terminal by printing on the computer screen below the prompt.
Let’s look at what happens if print1n gets multiple values (separated by commas):

julia> println("2-2.0","@#%"&! ",2+2)
2-2.004%°&! 4

The strings "2-2.0", "@#%"&!" is printed as such and the mathematical expression
2 + 2 is evaluated. The result, 4, is printed after the string because it appears in this order
as input to the function. Please note that whitespace is also one of the characters in a
string and it is also printed as a whitespace. Whitespace does not mean that it prints a
white-colored space, but rather it prints nothing in the sense that it prints a space colored
the same as the background color of the terminal.

3.2.3 Tab Completion

Just like Linux’s shell as well as MATLAB’s and Python’s interactive environments, Julia’s
REPL supports tab completion. You can enter the first few characters of a function or
type and then press the Tab key to get a list of all matches:

julia> pri
primitive type print_shortest println
print print_with_color

28

CHAPTER 3 BASIC MATH WITH JULIA

Please note that after writing pri, you need to press the Tab key to get options and to
get the output, as shown in the following section. It either completes it if it finds a unique
option, or else it just prints all possibilities for you to choose. It helps reduce syntax
errors and proves to be a great help while coding.

3.2.4 Seeking Help from Julia

The best way to learn Julia is to ask for help from the language itself! We saw a variety

of ways in which the function println() can be used. Suppose we wish to learn more
about it. You can write ? println at the Julia prompt. It will output a brief description of
its usage. As soon as it encounters ?, REPL goes into help mode (prompt changes from
julia> to ?help>) where anything written is searched within help files:

help?> println
search: println print_with_color print
print_shortest sprint @printf isprint

println(io::I0, xs...)

Print (using print) xs followed by a newline.
If io is not supplied, prints
to STDOUT.

If REPL cannot find a match for a query, it suggests similar words, assuming the user
has made a mistake while typing:

help?> clear
search: clear! ClusterManager

Couldn't find clear

Perhaps you meant clear!, close,

clamp, cld, ceil, Cchar, cat, cor or Char
No documentation found.

Binding clear does not exist.

Another use of the Tab key is to write LaTeX math symbols such as 7, @, , and so on.
In addtion to using ASCII [1] characters (128 in number), Julia supports printing
Unicode [2] characters (< 128, 000 characters).

29

CHAPTER 3 BASIC MATH WITH JULIA

3.2.5 Shell Mode

Linux shell commands are quite useful to execute processes. Julia REPL has a shell mode
for this purpose. A semicolon (;) activates the shell mode. It can be exited by pressing
the Backspace key at the beginning of the line:

julia>;
shell> 1s
Applications
Desktop
Documents
Downloads

3.2.6 Search Mode

All the executed lines get saved to a history file that can be searched. For this purpose,
a search mode needs to be enabled. This mode is activated by pressing the Control key
with the R key. The command prompt changes to (reverse-i-search)™':. Now, as
the query is typed, the search query will appear in the quotes. Just like Ctrl+R activates
reverse search, Ctrl+S activates a forward search.

3.2.7 Key Bindings

Julia makes use of key bindings as a main feature for working with REPL. A list of some
useful key bindings is given in Table 3-1.

Table 3-1. Some Important Key Bindings

~D Exit (when buffer is empty)
~C Exit (interrupt or cancel)
AL Clear console screen

Return/Enter New line, executing if it is complete
2,3 Enter help or shell mode (when at start of a line)

*R,"S Incremental history search

For a full list of key bindings, users are advised to check the reference number [3].

30

CHAPTER 3 BASIC MATH WITH JULIA

3.2.8 Version Information

versioninfo() prints the information about the version of Julia that is installed on a
particular machine, as in the following example:

julia> versioninfo()

Julia Version 0.6.0

Commit 903644385b (2017-06-19 13:05 UTC)
Platform Info:

0S: mac0S (x86_64-apple-darwini3.4.0)

CPU: Intel(R) Core(TM) i5-5250U CPU @ 1.60GHz
WORD_SIZE: 64

BLAS: libopenblas (USE64BITINT DYNAMIC ARCH NO AFFINITY Haswell)
LAPACK: libopenblasé64

LIBM: libopenlibm

LLVM: 1ibLLVM-3.9.1 (ORCJIT, broadwell)

3.3 Some Experiments with Numbers

Julia is an excellent tool for numerical computing owing to its elaborate system of
handling numbers flawlessly for complex mathematical calculations. Understanding
how numbers are defined within the Julian world is critical for a user before attempting
to create complex mathematical structures with Julia.

3.3.1 Number Systems

Mathematics entertains many different number systems in common use. For example:

e Theintegers:I={..—3,-2,-1,—,1,2,3...}
e The rational numbers: {E:p,qel,qio}
q

o Thereal numbers: R:{x:oo<x<oo}

e The complex numbers: {a +bi:a,beRi’= —1}

31

CHAPTER 3 BASIC MATH WITH JULIA

Special subsets are defined on top of these definitions, such as the natural numbers
{0, 1, 2...}, the even numbers, the odd numbers, the positive numbers, non-negative
numbers, and so on. Mathematically, these number systems are naturally nested within
each other since integers are rational numbers that are real numbers, which can be
viewed as part of the complex numbers.

Julia defines each number system as a data type. In other words, Julia creates a type
of numbers around which rules of their algebra are defined. Users must understand
how Julia defines the type for a particular number for its appropriate usage. An excellent
resource, in addition to this book, is at reference number [4].

3.3.2 Julia as Calculator

We have already seen that Julia REPL behaves like a calculator. You can feed a particular
calculation involving numbers at its terminal and it will output the result of the
calculation.

Integers and real numbers are treated differently for a digital computer. Hence, 5 and
5.0 are two distinct entities. Consequently, when two integers (2 and 3 are added), the
result is an integer:

julia> 243
5

It can be noted that when 2 (an integer) and 3.0 (a real number) are added, the result
is an integer (5).

julia> 2.43
5

However, when two real numbers (2.0 and 3.0) are added, the result is a real number
(5.0).

julia> 2.+3.
5.0

The complex number A+iB is represented as A+B imin Julia. Other languages use
the alphabet i or j to signify the imaginary part of a complex number, but Julia uses the
set of alphabets im delibrately for this purpose because i and j are used conventionally
while defining counters in loops.

32

CHAPTER 3 BASIC MATH WITH JULIA

When an integer (in other words, real number) is added to a complex number,
the result is a complex number but its components (real part and imaginary part) get
changed accordingly:
julia> 2 + (2+3im)

4 + 3im

julia> 2. + (2+3im) #real number is afloating point number
4 + 3im

julia> 2. + (2.0+3im) #complex number's real part
is floating point number
4.0 + 3.0im

julia> 2 + (2.0+3im)
4.0 + 3.0im

Rational numbers have numerators and denominators. Julia uses the command

Rational(A,B) to mean the mathematical rational number A Let's check how rational
B

numbers behave w.r.t addition with other kinds of numbers:

julia> Rational(2,3)
2//3

julia> Rational(2,3)+2
8//3

Hence, we get the following result:

2
228
3 3

Let’s see what happens if we use a real number instead of an integer:

julia> Rational(2,3)+2.0
2.6666666666666665

It is worth noting that the output is no longer represented as a rational number, but
instead as a real number:

%—i— 2.0=2.6666666666666665

33

CHAPTER 3 BASIC MATH WITH JULIA
Let’s check what happens when we add a rational number and a complex number:

julia> Rational(2,3)+ (2+3im)
8//3 + 3//1*im

(g)+(2+&):§+§i
3 3 1

As expected mathematically, the result is printed as a complex number with both
real and imaginary parts defined as rational numbers.
The following example demonstrates what happens when we add a rational number,

a complex number, and a real number:
julia> Rational(2,3)+ (2+3im) + 3.0
5.666666666666666 + 3.0im

2
(§)+(2 +3i)+3.0=5.666666666666666 +3.0i

The output is a complex number where real and imaginary parts are represented by
real numbers.

Let’s scan for irrational numbers such as z and e, which are predefined in Julia as pi
ande:

julia> pi
m = 3.1415926535897...

julia> e
e = 2.7182818284590...

The following examples shows how they behave when added with integers, rationals,
complex numbers, and other irrational numbers:

julia> e+pi
5.859874482048838

julia> e+2
4.718281828459045

julia> e+2.0
4.718281828459045

34

CHAPTER 3 BASIC MATH WITH JULIA

julia> e+Rational(2,3)
3.3849484951257116

julia> e+(2+3im)
4.718281828459045 + 3.0im

Efforts to define a rational number with two irrational numbers, z and e as
numerator and denominator, fail:

Rational(pi,e)
ERROR: MethodError: no method
matching Rational(::Irrational{:pi}, ::Irrational{:e})

Both error messages indicate syntax errors while matching the input error types and
finding incompatibility in doing so.
Boolean numbers in Julia are depicted by true and false:

julia> true
true

julia> false
false

It is meaningless to add boolean numbers to natural numbers of any kind because
you would normally get error messages of incompatibility. However, this is not the case
with Julia:

julia> true + 1
2

julia> true + 0
1

julia> true + 0.1
1.1

julia> true + Rational(2,3)
5//3

35

CHAPTER 3 BASIC MATH WITH JULIA

julia> true + pi
4.141592653589793

julia> true + (2 + 3im)
3 + 3im

The boolean numbers true and false have numerical values 1 and 0. This fact
should be taken into consideration to avoid confusion and errors.

An obvious conclusion derived from these simple experimental calculations is that
Julia not only functions as a calculator, but it also identifies the data type for calculations
dynamically and performs accordingly. In other words, you do not need to declare the data
type in advance as you do while writing code in C and C++. Julia identifies the data type from
its value. It is also important to note that Julia matches data types of numbers for performing
a particular operation. Some matches are incompatible. This indicates a sort of hierarchical
structure of defining data type. Now let’s investigate these concepts in greater detail.

3.4 Data Type for Integers and Real Numbers

Numbers are the basic building blocks of numerical mathematics. Representation of
numbers as computable quantities for a computer requires them to be stored as data in a
computer’s memory. Since the memory is limited in nature, fixed spaces of memory are
assigned for various number types like integers, real numbers, complex numbers, and so
forth. Their representation has been briefly discussed in Section 3.3.2. The next section
will discuss this topic in detail.

3.5 Type Assignment

It has become clear that integers and other numbers are stored and treated differently for
arithmetic calculations. Whereas integers are stored as just one unit in all of the allocated
memory space, real numbers are stored with information about numbers before and
after decimal points, rationals as information about numerators and denominators, and
complex numbers as information about their real as well as imaginary components. Julia
differs from C and C ++ in this regard because it is a dynamically typed language. That is,
the data type does not need to be declared explicitly. It is guaged by Julia depending on
the value. Julia also maintains a hierarchy among data types for calculations to assign a
data type to output if two or more data types are mixed within a calculation.

36

CHAPTER 3 BASIC MATH WITH JULIA

If we have a machine with a 64-bit architecture, then it can assign 64 bits for each

entity. But would it be wise to use 64 bits to store the small values (say 0)? Automatic

assignment faces this inefficient way of computation. Thus, it remains a developer’s

choice to either declare the data type strictly or let Julia take care of the same. When used

judiciously, this speeds up computation and lessens the requirements of memory space.

3.5.1 Hierarchy Tree of Number Types

When you encounter a number of data types for mathematical numbers, you need a

hierarchy tree for conversion of a data type from one to another. The hierarchy tree of

Julia’s type system for numbers is shown in Figure 3-1. Some of the data types have been

introduced earlier in this chapter and others may seem very new.

| Complex{T<:Real} | Real

AbstractFloat

BigFloat |Float16 Float32

Interger, |Irrational{sym}

Rational{T<:Integer}

Float64| |Biglnt | Bool | Signed

| Int128

Unsigned

| Int16

| Int32 | | Int64 |

Int8 | | Unt128

| Uint16 | | Ulnt32 |

Ulnt64| | Uint8 |

Figure 3-1. Hierarchy tree for types of numbers [5]

At the very top of the tree is the type Number. It has two subtypes named Complex and
Real. Whereas the former does not have any subtype, the latter has further subtypes.

They are depicted in the following illustration:

o AbstractFloat Floating point numbers, Integer, Irrational,

Rational.

e AbstractFloat has four subtypes:

o BigFloat: Arbitrary precision decimal numbers

e Float16: 16-bit precision decimal numbers

o Float32: 32-bit precision decimal numbers

o Float64: 64-bit precision decimal numbers

37

CHAPTER 3 BASIC MATH WITH JULIA

o Integer type has three subtypes:
o BigInt: Arbitrary precision integers
e Bool: Boolean Numbers
o Signed: Signed Integers
e Int8: 8-bit precision signed integer numbers
o Int16: 16-bit precision signed integer numbers
o Int32: 32-bit precision signed integer numbers
e Int64: 64-bit precision signed integer numbers
e Int128:128-bit precision signed integer numbers
o Unsigned: Unsigned Integers
e UInt8: 8-bit precision unsigned integer numbers
e UInt16: 16-bit precision unsigned integer numbers
e UInt32:32-bit precision unsigned integer numbers
e UInt64: 64-bit precision unsigned integer numbers
e UInt128:128-bit precision unsigned integer numbers
e Irrational:Irrational numbers

¢ Rational: Rational numbers

Number Types

There are four basic number types in Julia:
o Int
e Float
e Rational

o Complex

38

CHAPTER 3 BASIC MATH WITH JULIA

The type of number dictates how it will be stored and how precisely the stored value

is to the mathematical value it represents. To distinguish between these number types,

Julia’s parser uses the following easy-to-understand syntax rules [4]:

Integers do not have decimal points.

Floating point numbers have a decimal point (or are in scientific
notation).

Rationals are constructed from integers using the double division
operator //.

Complex numbers are formed by including a term with the imaginary
unit im.

The abstract data types in Julia play a vital role in defining hierarchy, even if they do

not play a direct role in defining a calculation. Abstract types allow code to be written

generically for different concrete types such as Int64, Float64, Complex, Rational, and

SO on.

Precision

The variety of data types allows us to choose the precision of numbers for a particular

mathematical calculation. To scan the precision of a data type, the built-in function

precision() comes in handy. It outputs the effective number of bits in the mantissa

(explained in Section 3.5.2):

julia> precision(BigFloat)

256

julia> precision(Float16)

11

julia> precision(Float32)

24

julia> precision(Float64)

53

39

CHAPTER 3 BASIC MATH WITH JULIA

Converting between different data types results in saving the computer’s memory
and speeding up calculations at the cost of precision. These decisions must be made
by the developer beforehand by using the information given in this chapter. You do not
always need higher precisions. For example, if you are working with dimensions of a

bridge and the numbers are represented in units of meters, then you can usually work
th

with a precision of 1 m. But if you are working with a calculation involving precision
10

around A= 10~9m, then you obviously need to be more accurate and precise.

3.5.2 Floating Point Arithmetic

Real numbers are represented as floating point numbers in a computer. The mapping
of a real number to a computer’s storage system is a formulaic representation (called
floating point representation) [6]. Here real numbers are expressed in three parts:
significand, base, and exponent.

For example, the value of 7 is 3.1415926535897... . Let’s suppose that we have only
four significant digits for a particular calculation, so the value can be rewritten as 3.1415.
Now this number is represented as 31415 x 10~* where 31415 is called significand, 10 is
called base, and -4 is called exponent.

While assigning a number to the part called significand, the information about the
number of significant digits is used. The significant figures of a number are digits that
carry meaning contributing to its measurement resolution. In the previous case, we
assumed only four significant digits depending on the requirements of calculations/
measurements. The term floating point refers to the fact that a number’s radix point
(decimal point) can "float"; that is, it can be placed anywhere relative to the significant
digits of the number. This position is indicated as the exponent component, and thus the
floating point representation can be thought of as a kind of scientific notation.

How to Store Floating Point Numbers

Computers can store numbers as floating point objects. A floating point object stores a
number as follows:

+dd,...d x p°

whered;=0,1,2...6—1butd, #0and m<e< Mwhere me I and M e I'.

40

CHAPTER 3 BASIC MATH WITH JULIA

Following are the three parts of a floating point number:
o Sign (1)
o Significand (Mantissa) (d,d,...d)
« Exponent (p)

Each part of a floating point number is stored at different memory locations and
occupy a specified number of bits. How many bits are defined to which part? These
questions have been answered by IEEE standards known as IEEE754 [6]. First, let’s
understand the concept of precision of a number representation.

1. Single precision:

e Occupies 4 bytes = 32 bits. (See Figure 3-2.)
2. Double precision:

e Occupies 8 bytes = 64 bits. (See Figure 3-3)
3. Extended double precision:

e Occupies 80 bits. (See Figure 3-4.)
4. Quadruple precision:

e Occupies 16 bytes = 128 bits. (See Figure 3-5.)

sign exponent (8 bits) fraction (23 bits)
| [I

ofo1]1{1|1]1]ofo]o| 1|0 o] o of 0] o o[o] 0] o] o[0] o] o[0] 0] o[0f 0 0] 0] = 0.15625
31 30 2322 (bit index) 0

Figure 3-2. IEEE 754 standard’s single precision floating point number format [7]

exponent fraction

sign (11 bit) (52 bit)
IT I |
o o [}
63 52 0

Figure 3-3. IEEE 754 standard’s double precision floating point number format [8]

41

CHAPTER 3 BASIC MATH WITH JULIA

exponent Integer Part fraction
sign (15 bit) (1 bit) (63 bit)
| |
L T T T T T T TR
)
79 64 0

Figure 3-4. IEEE 754 standard’s extended precision floating point number format [9]

exponent fraction
sign_(15 bit 2k

& . i i _
LT T e TR e T EO TN T E TR TR EEE TS
=]

o -]
127 112 0

Figure 3-5. IEEE 754 standard’s quadruple precision floating point number
format [10]

Each version has one bit reserved for depicting the sign of a number. Others bits
are divided for the significand and exponent. Since all numbers are stored as binary
numbers in a computer, the base is always 2. Depending on the number of bits available
for storage, the maximum numeral value can be defined for a data type.

For example, if n bits are available for the significand, then the maximum value can be
2", For the overall data type, if m bits are available for storage and one of them must be used
for assigning the sign bit, then 2" —1 is the maximum numeral value that can be stored by
that data type. The limits are toward the two extremes (positive and negative numbers) for
each data type. Hence, crossing the limits define overflow and underflow errors.

Julia follows the data type declaration as defined by the IEEE745 system. This system
is discussed in Table 3-2.

Table 3-2. Number Data Types of Julia and Their Properties

Type Signed? No. of Bits Smallest Value Largest Value
Int8 Yes 8 =2 2’

UInt8 No 8 0 28 -1

Int16 Yes 16 A 215

UInt16 No 16 0 216 — 1

Int32 Yes 32 =23 231

UInt32 No 32 0 2% -1

(continued)

42

Table 3-2 (continued)

CHAPTER 3 BASIC MATH WITH JULIA

Type Signed? No. of Bits Smallest Value Largest Value
Int64 Yes 64 —263 263

UInt64 No 64 0 264 — 1
Int128 Yes 128 =21 2127

UInt128 No 128 0 2128 — 1
Float16 Yes 16 —210x 25 —210x 25
Float32 Yes 32 —223 x 28 2% x 28
Float64 Yes 64 —252 x 211 —220 x 211

It is important to perform back-of-the-envelop calculations for a particular problem

to get an idea about maximum and minimum numbers expected during the running

of a program. Accordingly, you can assign data types. If you do not perform the same,

then Julia will assign them according to its own rules that might incur precision errors,

underflow errors, and overflow errors.

Julia provides facility to input the number values as binary, octal, hexadecimal, or

decimal numbers. The function typeof() can be used to probe the type of data. Let’s start

with integers. My computer has a 64-bit version of OS and a 64-bit version of the Julia

compiler. Hence, the default word size of my system is 64 bits. With these definitions,

let’s scan from small to bigger integers:

julia> typeof(1234567890)

Int64

julia> typeof(-1234567890)

Int64

julia> typeof(1234567890000000000000)

Int128

julia> typeof(-1234567890000000000000

0000000000000000)

Int128

43

CHAPTER 3 BASIC MATH WITH JULIA

julia> typeof(12345678900000000000000
00000000000000000000000000)
BigInt

Julia does not assigns UInt64 data type to all positive numbers by default. They must
be declared by using UInt64 () function. Unsigned integers are input and output using
the 0x prefix and hexadecimal (base 16) digits 0-9a-f. (The capitalized digits A-F also
work for input.) The size of the unsigned value is determined by the number of hex digits
used:

julia> typeof(0x1)
UInt8

julia> typeof(0x111)
UInt16

julia> typeof(0x11111111)
UInt32

julia> typeof(0x11111111abcdef)
UInte64

Binary and octal representations are also supported, as follows:

julia> typeof(ob1)
UInt8

julia> typeof(0b110111111)
UInt16

julia> typeof(0b110111111000000
111000101001)
UInt32

julia> typeof(0b110111111000000
1110001010010101101010101010101)
UInt64

julia> typeof(0011111)
UInt16

44

CHAPTER 3 BASIC MATH WITH JULIA

The built-in functions typemin() and typemax() can be used to find the minimum
and maximum numbers that can be stored within a data type:

julia> typemin(Int8)
-128

julia> typemin(UInt8)
0x00

julia> typemin(UInt64)
0x0000000000000000

julia> typemin(Int64)
-9223372036854775808

julia> typemax(Int64)
9223372036854775807

julia> typemax(Int128)
170141183460469231731687
303715884105727

julia> typemin(Int128)
-170141183460469231731687
303715884105728

3.5.3 Overflow and Division Error

When a number bigger than the biggest possible number is stored within a data type, we
encounter an overflow error message. Let’s say that we assign the maximum storeable
number in a variable named a and then we increase if by 1 and store the new value in a
new variable named b:

julia> a = typemax(Int64)
9223372036854775807

julia> b = a + 1
-9223372036854775808

julia> typemin(Int64)
-9223372036854775808

45

CHAPTER 3 BASIC MATH WITH JULIA

julia> c = a + 2
-9223372036854775807

julia> typeof(a)
Int64

julia> typeof(b)
Int64

julia> typeof(c)
Int64

Working within the default data type for integers (i.e., Int64), we see a wraparound
behavior where adding 1 to the maximum number makes it the lowest. In mathematics,
modular arithmetic is a system of arithmetic for integers, where numbers “wrap around”
upon reaching a certain value. Arithmetic with Julian integers also follows the same
concept. If a bigger number than defined for a particular data type is fed, an error
message is displayed:

julia> Float64(2€900)
ERROR: syntax: overflow in numeric constant "2e900"

3.5.4 Floating Point Numbers vs. Real Numbers

You should keep in mind that floating point numbers are abstracts of real numbers.
Sometimes this abstraction fails to represents the real numbers precisely.

The users must decide that if failure of this abstraction is insignificant, they can still
confidently use floating point representation for the calculations while keeping in mind
the errors. A few cases will make this clearer:
a+b

n

1. fgbneRic= such that ¢ R where R represent set of

real numbers

o This essentially says that between any two real numbers, there
exists another real number.

o However, this is not true for floating point numbers because
floating point numbers are defined for a finite precision.
(See Section 3.5.1.)

46

CHAPTER 3 BASIC MATH WITH JULIA

2. For the previous reason, floating point numbers are

approximations of real numbers.

\/7 X ﬁ —7=0 but Julia shows a finite small number for this
calculation is due to the finite precision nature of the floating
point number used to define V7!

julia> (sqrt(7)*sqrt(7))
7.000000000000001

julia> (sqrt(7)*sqrt(7))- 7
8.881784197001252e-16
. . . 1 1) 5 . .
Defined as a floating point, (5 + gj e 0 is miscalculated.
When it is converted to a rational type, it is calculated correctly:

julia> 1//2 + 1//3 == 5//6
true

julia> (1//2+1//3)-(5//6)
0//1

julia> 1/2 + 1/3 == 5/6
false

julia> (1/2+1/3)-(5/6)
-1.1102230246251565e-16

3. The property of associativity may not hold properly when defined

with floating point numbers, but it will hold properly if defined
with rational data type:

julia> a = 1//10

1//10

julia> b = 2//10
1//5

julia> c = 3//10
3//10

47

CHAPTER 3 BASIC MATH WITH JULIA

julia> a1 = 1/10
0.1
julia> b1 = 2/10
0.2
julia> c1 = 3/10
0.3

julia> (a+b)+c == a+(b+c)
true

julia> (al+b1)+c1l == al+(bl+cl)
false

3.5.5 Machine Precision

The concept of machine precision must be explained here. Machine precision is the
smallest number of a particular data type. Julia provides a function to find that out,
namely eps (). Try searching for eps () in help mode. The documentation is quite
illustrative. If the data type is described as T, then eps(T) gives the distance between 1.0
and the next larger representable floating point value of data-Type T.

julia> eps(Float16)
Float16(0.000977)

julia> eps(Float32)
1.1920929f-7

julia> eps(Float64)
2.220446049250313e-16

julia> eps(BigFloat)
1.72723371101888892507727
03725600799142232000728
87256277004740694033718
360632485e-77

48

CHAPTER 3 BASIC MATH WITH JULIA

3.6 Arbitrary Precision Arithmetic

Apart from floating point precision, Julia also provides facility for arbitrary point
precision by wrapping around the libraries GNU Multiple Precision Arithmetic Library
(GMP) [11] and the GNU MPFR [12] Library. This is not discussed in details here since a
basic user would not need this information too often.

For integers BigInt data types and for floating point numbers, BigFloat data types
are made available using the following approach:

julia> a = BigInt(typemax(Int64))
9223372036854775807

julia> typeof(a)
BigInt

julia> a = BigFloat(1.0)
1.00000000000000000000
000000000000000000000
000000000000000000000
0000000000000000

julia> a = BigFloat(1.5)
1.50000000000000000000
000000000000000000000
000000000000000000000
0000000000000000

The problem exists when the user tries to change decimal literals to floating point
numbers. For example:

julia> BigFloat(2.1)
2.100000000000000088817
84197001252323389053344
72656250000000000000000
00000000000

49

CHAPTER 3 BASIC MATH WITH JULIA

To overcome this problem, usage of big is recommended. big converts a number to
a maximum precision representation (typically BigInt or BigFloat):

julia> a = big"2.1"
2.0999999999999999999999
99999999999999999999999
99999999999999999999999
9999999986

julia> typeof(a)
BigFloat

The default precision, nominally 256 bits, and the rounding mode of BigFloat can
be changed usingwith_bigfloat precision() and with_rounding() functions.

3.7 Numerical Conversion

When you wish to convert one data type to another, you must be aware that conversion
might result in errors. For example, a floating point number being converted to an
integer must be rounded off and will lead to round-off errors. There are various rules
to round off, too. Also, when bigger numbers are converted to smaller-sized computer
memory formats, inexactness is introduced, which is shown by inexact errors.

Julia supports three forms of numerical conversion, which differ in their handling of

inexact conversions:
e T(x) orconvert(T,x) converts x to a value of type T

e Suppose we wish to convert the integer 3 into a Float64:

julia> a = Int64(3)

3

julia> a1 = Float64(a)
3.0

julia> a2 = Int64(a1)
3

50

julia> a3 = Int8(a2)

3

julia> a4 = convert(Float64,a3)
3.0

julia> a5 = convert(Int8,a4)

3

CHAPTER 3 BASIC MATH WITH JULIA

If T is a floating point type, the result is the nearest representable

value, which could be positive or negative infinity.

If T is an integer type, an InexactError is raised if x is not

representable by T.

julia> a = 2.1
2.1

julia> typeof(a)
Float64

julia> a1 = BigInt(a)
julia> a1=BigInt(a)

ERROR: InexactError()
Stacktrace:

[1] convert(::Type{BigInt},
::Float64) at ./gmp.jl:162
[2] BigInt(::Float64)

at ./sysimg.jl:24

julia> a1 = Int64(a)

ERROR: InexactError()
Stacktrace:

[1] convert(::Type{Int64},
::Float64) at ./float.jl:679
[2] Int64(::Float64)

at ./sysimg.jl:24

51

CHAPTER 3

52

BASIC MATH WITH JULIA

X % T converts an integer x to a value of integer type T congruent
to x modulo 2”n, where n is the number of bits in T. In other
words, the binary representation is truncated to fit.

julia> a = 128 % 1Int8
-128

julia> a1 = 127 % Int8
127

Since 127 is the maximum number that can be stored in the type
Int8 (27 — 1 =127), when the number 128 needs to be converted
to the data type Int$, its bits are truncated to fit in.

The rounding function Rounding off takes a type T as an

optional argument. For example, round(Int,x) is shorthand for

Int

(round(x)):

julia> round(Int8,127.2)

127

julia> round(Int8,125.9)

126

julia> round(127.2)

127

.0

julia> round(125.9)

126

.0

julia> Int8(round(127.2))

127

julia> Int8(round(125.9))

126

CHAPTER 3 BASIC MATH WITH JULIA

o Other rounding functions are floor(), ceil(), and trunc(). The

following are example code:

Name

Behavior

Return Type

round(x) round x to the nearest integer

round(T,x) round x to the nearest integer

floor (x)

round x towards -Inf

floor (T, x) round x towards -Inf

ceil(x)

round x towards Inf

ceil(T,x) round x towards Inf

trunc(x) round x towards 0

trunc(T,x) round x towards 0

typeof(x)
T
typeof(x)
T
typeof(x)
T
typeof(x)
T

julia>
3.0
julia>
3
julia>
2.0
julia>
2
julia>
3.0
julia>
3
julia>
2.0
julia>
2

round(2.6)

round(Int8,2.6)

floor(2.6)

floor(Int8,2.6)

ceil(2.6)

ceil(Int8,2.6)

trunc(2.6)

trunc(Int8,2.6)

53

CHAPTER 3 BASIC MATH WITH JULIA

3.8 Arithmetic Operators

Apart from defining mathematical numbers, users must also define arithmetic operators
such as +,-,*, and / to perform arithmetic calculations as per given the algebra of the
data type.

Some examples will make this clear:

julia> a = 1.0

1.0

Operator Symbol Name Behavior

+a unary plus Identity operation

-a unary minus Maps value to additive inverse of a

a+b binary plus Performs a plus b

a-b binary minus Performs a minus b

a*b times Performs a multiplied by b

a/b divide Gives quotient given when a divided by b is performed
a\b inverse divide Gives quotient given when b divided by a is performed
axb remainder Gives remainder obtained by a divided by b

a"b power Perform a®

julia> b = 1.5
1.5

julia> +a # Identity operation does
#not change value
1.0

julia> -a # Gives additive inverse of 1.0 as -1.0
-1.0

julia> a+b # 1.0+1.5 = 2.5
2.5

54

CHAPTER 3

julia> a-b # 1.0-1.5 = 0.5
-0.5

julia> a*b # 1.0 times 1.5 is 1.5
1.5

julia> a/b # Quotient of 1.0/1.5 is 0.66 ...
0.6666666666666666

julia> a\b # Quotient of 1.5/1.0 is 1.5
1.5

julia> a%b # Remainder of 1.0/1.5 is 1.0
1.0

julia> a"b # Remainder of 1.0 raised
#to the power 1.5 is 1.0
1.0

3.9 Boolean Numbers

BASIC MATH WITH JULIA

Boolean numbers, along with boolean algebra, has framed the backbone of modern

computing. George Bool developed boolean algebra to work with boolean numbers
(true and false along with boolean operators such as AND, OR, NOT, and XOR. They can be

used for comparison of quantities as well as making logical statements and finding their

truth value.

3.9.1 Comparison of Mathematical Quantities

Two logical numbers, namely true and false, exist in Julia that can be used to perform

boolean arithmetic operations. In their simplest form, they can be used to check for

inequalities and equalities between quantities.

julia> a = 1.0
1.0

julia> b = 1

1

55

CHAPTER 3 BASIC MATH WITH JULIA

julia> a == b # Value of 1.0 and 1 is 1
true

julia> al=-b # Mathematically 1.0 is not equal to -1
true

julia> a < b # Because 1.0=1 mathematically
false

julia> a <= b # Because atleast equality holds true
true

julia> a > b # Because 1.0=1 mathematically
false

julia> a>= b # Because atleast equality holds true
true

The following list of operators has been probed:

Operator Symbol Meaning

== equality

= inequality

< less than

<= less than or equal to
> more than

>= more than or equal to

Comparison of integers is straightforward for a computer as it just compares the bit
values. Floating point numbers are a bit different in this respect. They are compared as
per IEEE754 standard: [6]

o DPositive zero is equal but not greater than negative zero.
o Infisequalto itself and greater than everything else except NaN.
o -Infisequalto itself and less then everything else except NaN.

o NaNis not equal to, not less than, and not greater than anything,
including itself.
56

CHAPTER 3 BASIC MATH WITH JULIA

These statements can be checked easily, as follows:

julia>
true
julia>
true
julia>
false
julia>
false
julia>
false
julia>
false
julia>
true
julia>
false
julia>
false
julia>
false
julia>
NaN
julia>
false
julia>
false
julia>
false

+0.0 == 0.0 #+ve zero is same as zero

+0.0 == -0.0 # +ve zero is same as -ve zero

+0.0 < -0.0

+0.0 > -0.0

Inf == -Inf #+ve infinity is not equal to -ve infinity
Inf > Inf #+ve infinity isn't more than itself

Inf > -Inf #+ve infinity is more than -ve infinity

NaN == Inf #Inf and NaN can't be compared valuewise
Inf > NaN
-Inf > NaN
-NaN
NaN > Inf
NaN > -Inf

NaN == NaN # Two NaN values aren't same

57

CHAPTER 3 BASIC MATH WITH JULIA

julia> NaN != NaN
true

julia> NaN <= NaN
false

julia> NaN >= NaN
false

julia> NaN > NaN
false

julia> NaN > NaN
false

To avoid discrepancies with operator behavior with different data types, Julia

provides some built-in functions.

Function Behavior
isequal(x,y) x and y are identical
isfinite(x) x is not Inf or -Inf
isinf(x) x is equal to Inf or -Inf
isnan(x) x is equal to NaN

julia> isequal(1.0, 1)
true

julia> isfinite(Inf)
false

julia> isfinite(-Inf)
false

julia> isfinite(1.0)
true

juliay isinf(Inf)
true

58

CHAPTER 3 BASIC MATH WITH JULIA

julia> isinf(-Inf)
true

julia> isinf(1.0)
false

julia> isnan(NaN)
true

julia> isnan(Inf)
false

julia> isnan(-Inf)
false

julia> isnan(1.0)
false

3.9.2 Chaining Comparisons

Comparisons can be arbitrarily chained in Julia:

julia> 1 <2 > 3
false

1<2>3 can be understood by first assigning 1<2 to a, which is valued true, and then
a>3is calculated to be false:

julia> a=1 < 2
true

julia> a > 3
false

The order of evaluations in a chained comparison is undefined unless brackets are
used. The statement is read from the right-hand side and successive comparison results
are stitched together.

59

CHAPTER 3 BASIC MATH WITH JULIA

Expressions inclosed inside brackets are calculated first. The bracketed expressions
are also read from the right-hand size and successive comparisons are stitched together.
Following is an example:

julia> (1<2)>(3==3)
false

julia> 1<2
true

julia> 3==3
true

julia> true>true
false

julia> (1<2)>(3>3)
true

julia> 3>3
false

julia> true>false
true

3.9.3 Boolean Operators

The AND (&), NOT (! or ~), XOR ($), and OR (|) operators can be used to make complex
logical statements. It is worth noting that boolean operators are mostly bitwise operators.
That is, while performing comparison operations, they operate bitwise.

Expression Behavior

a bitwise NOT (NOT a)

a&b bitwise AND (a AND b)

alb bitwise AND (a AND b)

a$b bitwise XOR (a XOR b)
(continued)

60

CHAPTER 3 BASIC MATH WITH JULIA

Expression Behavior

a>>>b logical shift right
a>>b arithmetic shift right
a<<b logical/arithmetic shift left

Alogical shift is a bitwise operation that shifts all the bits of its operand. On the other
hand, an arithmetic shift is also a shift operator, sometimes termed a signed shift (even
though it is not restricted to signed operands). Both these operators can be defined for
left and right directions.

For binary numbers, it is a bitwise operation. (In other words, it shifts all of the bits
of its operand by the given number of bit position(s).) The vacant bit positions are filled
in. Instead of being filled with all 0s, as in a logical shift, when shifting to the right, the
leftmost bit (usually the sign bit in signed integer representation) is replicated to fill in all
the vacant positions (this is a kind of sign extension).

Let’s first scan the basic boolean operators and then understand the bitwise shift
operators. The variables named a and b are first defined to hold boolean values true and
false. Using boolean operators, simple as well as complex logical statements can be
made to obtain results:

julia> a = Bool(true)
true
julia> b = Bool(false)
false

julia> !a # NOT operator
false

julia> ~a # bitwise not
false

julia> a & b # AND operator
false

julia> a | b # OR operator
true

61

CHAPTER 3 BASIC MATH WITH JULIA

julia> a $ b # XOR operator
true

julia> a & (a | b) & a # A complex logical statement
true

3.10 Updating Operators

Every binary arithmetic and bitwise operator has an updating version, too. These
operators assign the result of the operation back into its left operand.

They are quite simple to define. The updating version of the binary operator is
formed by placing a = immediately after the operator.

Expression Behavior
a+=1 a = a+l
a-=1 a= a-1
a*=2 a = a*2
a/=2 a=a/2
a\=2 a =2/a
an=2 a = ak2
at=2 a = a2
al=a a=la
ad=2 a = ada
al=a a=ala

julia> a = 1.5
1.5

julia> a+=1 # a is now valued as 1.5+1 = 2.5
2.5

julia> a-=1 # a is now valued as 2.5-1=1.5
1.5

62

julia> a*=2 # a is now valued
3.0

julia> a/=2 # a is now valued
1.5

julia> a\=2 # a is now valued
1.3333333333333333

julia> 2/1.5 # verified
1.3333333333333333

julia> a=10 # redefining a to
10

julia> a%=2 # a is now valued
0

julia> 10%2 # verified
0

julia> a=10 # redefining a to
10

julia> a"=2 # a is now valued
100

CHAPTER 3

as 1.5*2=3.0

as 3.0/2 1.5

as 2/1.5

1.33 ...

be values as 10

as 10%2 = 0

be values as 10

as 10”2 = 100

julia> a = Bool(true) # a is defined as boolean true

true

julia> al=a # a is updated as
#valued as false
false

(NOT a) and hence get

julia> a # a is verified to be values as false

false

julia> a&=a # a is updated with values of (a8a)

#i.e false&false
false

BASIC MATH WITH JULIA

63

CHAPTER 3 BASIC MATH WITH JULIA

julia> a|=a # a is updated with values of
#(ala) i.e false|false
false

julia> a%$=a # a is updated with values of
$(a$a) i.e false$false
false

It is worth noting that the updating operator rebinds the variable on the left-hand
side. As a result, the type of the variable may change.

julia> a = UInt8(12)
0x0c

julia> typeof(a)
UInt8

julia> a "= 200.5
2.375963871483476€216

julia> typeof(a)
Float64

3.11 Operator Precedence

For the purpose of mathematical evaluations using mathematical numbers, it is
important for a programming number to define operator precedence. For example, if we
want to calculate

2+3%5/2%5

we must understand that the result depends on the order in which the mathematical
functions are operated. Let’s try the calculation on the Julia console:

julia> 2+3*5/2”3.5
3.3258252147247767

64

CHAPTER 3 BASIC MATH WITH JULIA

Now let’s understand the order in which operators were applied to get this value. As
per Julia’s documentation [13], the following is the operator precedence defined:

Symbol Meaning

A Exponentiation

// and \\ Fractions

*/ k& O\ Algebraic operations
+- 1% Addition

> < >= <= == === l= l== «: Comparison

julia> 2+3*5/2”3.5
3.3258252147247767

julia> 273.5 # First exponenttaion is applied
11.31370849898476

julia> ans # ans stored last calculated value
11.31370849898476

julia> 5/ans # Division operator
0.4419417382415922

julia> ans*3 # Multiplication operator
1.3258252147247767

julia> ans+2 # Addition
3.3258252147247767

The operator precedence logic follows famous BEDMAS (Bracket—Exponentiation—
Division—Multiplication—Addition—Subtraction) rule of mathematics. It’s
recommended to use brackets for numbers that need to be calculated separately. For
example:

(2+3)*(5/2)"

65

CHAPTER 3 BASIC MATH WITH JULIA

will first solve the calcuations in each bracket and then apply operator precedence.
Consequently, the result will be different:

julia> (2+3)*(5/2)"3.5
123.52647110032733

julia> 5/2 # First the bracket is solved for 5/2 and 2+3
2.5

julia> ans”3.5 # Next exponentiation is carried out
24.705294220065465

julia> ans*(5) # result is added to 243 = 5
123.52647110032733

3.12 Summary

This chapter has discussed the ways in which Julia performs mathematical tasks.

It makes a variety of objects for various types of numbers. Each object has specific
methods to deal with mathematical operators. Knowledge of the usage of an operator
with particular data lets you decide about their usage in a meaningful way. The hierarchy
tree of the number system must also be understood in totality as conversion rules dictate
how numbers will be dealt with in computational tasks. Decisions about using particular
data types for computation involve an effective trade-off between precision and memory
usage. Operator precedence is another important task discussed in this chapter since it
decides the ultimate result. Also, the Julia REPL and its various modes come in handy
when users perform mathematical computation.

3.13 Bibliography

[1] https://en.wikipedia.org/wiki/ASCIT#ASCII control
characters

[2] https://en.wikipedia.org/wiki/List _of Unicode characters

[3] http://docs.julialang.org/en/release-0.4/manual/
interacting-with-julia/

66

https://en.wikipedia.org/wiki/ASCII#ASCII_control_characters
https://en.wikipedia.org/wiki/ASCII#ASCII_control_characters
https://en.wikipedia.org/wiki/List_of_Unicode_characters
http://docs.julialang.org/en/release-0.4/manual/interacting-with-julia/
http://docs.julialang.org/en/release-0.4/manual/interacting-with-julia/

[10]

CHAPTER 3 BASIC MATH WITH JULIA

http://calculuswithjulia.github.io/toc.html

https://commons.wikimedia.org/wiki/File:Type-hierarchy-
for-julia-numbers.png

“IEEE standard for floating-point arithmetic,” IEEE Std 754-2008,
pp. 1-70, Aug 2008

https://en.wikipedia.org/wiki/IEEE_754-1985#/media/
File:IEEE_754_Single Floating Point_Format.svg

https://en.wikipedia.org/wiki/IEEE_754-1985#/media/
File:IEEE_754 Double Floating Point_ Format.svg

https://en.wikipedia.org/wiki/Extended_precision#media/
File:X86 Extended Floating Point_Format.svg

https://commons.wikimedia.org/wiki/File:IEEE_754
Quadruple Floating Point_Format.svg

https://gmplib.org/
www.mpfr.org/

http://docs.julialang.org/en/stable/

67

http://calculuswithjulia.github.io/toc.html
https://commons.wikimedia.org/wiki/File:Type-hierarchy-for-julia-numbers.png
https://commons.wikimedia.org/wiki/File:Type-hierarchy-for-julia-numbers.png
﻿https://en.wikipedia.org/wiki/IEEE_754-1985#/media/File:IEEE_754_Single_Floating_Point_Format.svg﻿
﻿https://en.wikipedia.org/wiki/IEEE_754-1985#/media/File:IEEE_754_Single_Floating_Point_Format.svg﻿
https://en.wikipedia.org/wiki/IEEE_754-1985#/media/File:IEEE_754_Double_Floating_Point_Format.svg
https://en.wikipedia.org/wiki/IEEE_754-1985#/media/File:IEEE_754_Double_Floating_Point_Format.svg
https://en.wikipedia.org/wiki/Extended_precision#media/File:X86_Extended_Floating_Point_Format.svg
https://en.wikipedia.org/wiki/Extended_precision#media/File:X86_Extended_Floating_Point_Format.svg
https://commons.wikimedia.org/wiki/File:IEEE_754_Quadruple_Floating_Point_Format.svg
https://commons.wikimedia.org/wiki/File:IEEE_754_Quadruple_Floating_Point_Format.svg
https://gmplib.org/
http://www.mpfr.org/
http://docs.julialang.org/en/stable/

CHAPTER 4
Complex Numbers

4.1 Introduction

Having a basic understanding of preliminary mathematical constructs, you now need
to understand how complex numbers are dealt with. Computations involving complex
numbers can be found in almost all branches of science and mathematics. All Julia-
based numerical computation developers must understand a variety of ways of defining
complex numbers and their mathematics to compute efficiently.

The world of complex numbers encompasses important scientific domains.
When used for descriptions of reality, they present more enriched pictures of physical
phenomena than real numbers. Every programming language that boasts of performing
mathematical calculations robustly must handle complex numbers with ease. Julia truly
is one such language. Complex numbers are defined in simple terms and most functions
for their handling are present. In addition, their usage in calculations with other data
types is quite flexible and flawless. These qualities make it one of the best choices to
perform complex analysis tasks.

4.2 Defining Complex Numbers

The first and most important task in defining complex numbers is to define a symbol

for the complex number i= J-1.A global constant represented by im is used to i. This
represents the principal J-1. Mathematicians usually use the alphabets i and j to
represent i, but these alphabets are also used widely within computer science faculties for
index variables. To avoid mistakes, the symbol im was chosen instead of symbols 1 or j.

69
© Sandeep Nagar 2017

S. Nagar, Beginning Julia Programming, https://doi.org/10.1007/978-1-4842-3171-5_4

CHAPTER 4 COMPLEX NUMBERS
The complex number 1 + 4i can thus be written as follows:

julia> a = 1+4im
1 + 4im

julia> real(a)
1

julia> imag(a)
4

The real part of the complex number is 1 and the imaginary part is 4i. Complex
numbers in Julia are stored as two numbers, re (real part) and im (imaginary part). Both
of these are some type of real number. They can be obtained using functions real() and
imag().

Another way to make a complex number object is by using complex(), complex32(),
complex64(), and complex128() functions:

julia> a = 3.5 # defining "a"
3.5

julia> b
_409

-4.9 # defining "b"

julia> z = complex(a,b) # making complex number
with a as real part and b as imaginary part
3.5 - 4.9im

julia> typeof(z)
Complex{Float64}

julia> typeof(real(z)) # Real part is stored as a
Floati64 object
Float64

julia> typeof(imag(z)) # Imaginary part is stored as a
Floati64 object
Float64

70

CHAPTER 4

julia> z1 = Complex32(a,b) # Complex number with
32 bit storage
Float16(3.5) - Float16(4.9)im

julia> typeof(real(z1l)) # z1 stores real part as
Float16 object
Float16

julia> typeof(imag(z1)) # z1 stores imaginary part
as Float16 object
Float16

julia> z2 = Complex64(a,b) # Complex number with
64 bit storage
3.5f0 - 4.9f0im

julia> typeof(real(z2)) # z2 stores real part as
Float32 object
Float32

julia> typeof(imag(z2)) # z2 stores imaginary part as
Float32 object
Float32

julia> z3 = Complex128(a,b) # Complex number with
128 bit storage
3.5 - 4.9im

julia> typeof(real(z2)) # z3 stores real part as
Float64 object
Float64

julia> typeof(imag(z2))# z3 stores imaginary part as
Float64 object
Float64

COMPLEX NUMBERS

It is worth noting that data types of real and imaginary parts are retained as per

definitions of defining functions and rules of conversions are similar to those used for

integers and real numbers.

71

CHAPTER 4 COMPLEX NUMBERS

4.3 Properties of Complex Numbers

Complex numbers are graphically defined, as shown in Figure 4-1. On a real-imaginary
axis based complex plane, a particular point is defined by a complex number a + ib
where a is the magnitude of the projection of the point on the real axis and b is the
magnitude of the projection of the point on the imaginary axis.

Figure 4-1 shows a point depicting the complex number z = x + iy and demonstrates
how the value of r = |z| (absolute value) and ¢ (argument) are given.

"4
U
N

0 X

» Re

Figure 4-1. Complex number depicted on a complex plane [1]

e (4.1)

¢p=tan”' (%) (4.2)

The absolute value of a complex number is simply its distance from the origin. The
argument of a complex number is simply the angle it makes with the horizontal axis in
an anticlockwise direction.

The principle and argument (in radians) for a complex number, say z = —4+3i, can be

calculated using Julia:
julia> z = -4 + 3im
-4 + 3im

julia> r = abs(z)
5.0

72

CHAPTER 4 COMPLEX NUMBERS

julia> r squared = abs2(z)
25

julia> phi = angle(z)
2.498091544796509

julia> z = -4 + 3im
-4 + 3im

julia> z_conjugate = conj(z)
-4 - 3im

julia> abs2(z) == z*z_conjugate
true

The conjugate of a complex number is its mirror image along the horizontal axis.
In other words, its imaginary part is the negative of the original number. When squared
with its conjugate, the result is 7%, which is verified by the last line in the previous code.

Inf and NaN propagate through complex numbers in the real and imaginary parts of
a complex number. Let’s work with three complex numbers: z1 = complex(NaN, Inf),
z2 = complex(Inf,NaN), and a simple complex number z3 = complex(1,2). Then, let’s
calculate z1+z2, z2+z3, and z1+z3 to test how complex numbers with NaN and Inf are
treated:

julia> z1 = complex(NaN,Inf)
NaN + Inf*im

julia> z2 = complex(Inf,NaN)
Inf + NaN*im

julia> z3 = complex(1,2)
1 + 2im

julia> z1+z3
NaN + Inf*im

julia> z2+z3
Inf + NaN*im

julia> z1+z2
NaN + NaN*im

73

CHAPTER 4 COMPLEX NUMBERS

4.4 Complex Arithmetic

Complex arithmetic involves similar operations as previously discussed for real numbers
in Chapter 4. These operations include addition, subtraction, multiplication, division,
raised to a power, and so on. However, rules for complex numbers are a bit different for
these operations.

Adding two complex numbers involves adding their real and imaginary parts. This is
also the case with subtraction. Suppose we define two complex numbers in the following
manner:

z,=a,+bj

z,=a,+b,i
Now we can define their addition and subtraction as follows:
z,+z,=(a,+a,)+(b,+b,)i
z,—-z,=(a,+a,)—(b,+b,)i

Multiplication and division operations for complex numbers are not so
straightforward:

z,%xz, =(a1xa2)+(alxbz)i+(a2xb2)+(b1xb2)(i2)

This simplifies by collecting real terms and imaginary terms because i* =-1:
z,xz,=(a,a,—bb,)+(a,b,+a,b,)i

Multiplying and dividing a complex number with a real number can be done in a
simpler manner by simply performing the multiplication or division for the real and
imaginary parts respectively.

A complex conjugate of a complex number z, =@, +bi is defined as z, =a, —bji .
Geometrically, z," is the “reflection” of z, about the real axis. Hence, if we calculate the
conjugate twice, we get the same number: (Zl*) =z,.

Division of a complex number can be performed using its conjugate as follows:

a1+bli_a1+b1ixa2—b2i_ala2+blb2+b1a2—alb2i
a,+bji a,+bji a,-bji a,+b)’ a, +b,’

74

CHAPTER 4 COMPLEX NUMBERS

As a result, multiplying the denominator’s complex conjugate with both numerator

and denominator yields a new complex number that is the result of division of two

complex numbers.

Julian operators, such as +, -, *,”, and /, work well with real numbers as well as with

complex numbers without any additional effort. For example:

julia> a = 3.2
3.2

julia> b = -4.4
-404

julia> z1 = complex(a,b)
3.2 - 4.4im

julia> z2 = -z1
-3.2 + 4.4im

julia> z3 = z1 + z2 # Adding two complex numbers
0.0 + 0.0im

julia> z3 = z1 - z2 # Subtracting two complex numbers
6.4 - 8.8im

julia> z3 = z1 * z2 # Multiplying two complex numbers
9.120000000000001 + 28.1600000000000041im

julia> z3 = z1 / z2 # Dividing two complex numbers
-1.0 - 0.0im

julia> z3 = z1"z2 # complex number raised to the power
of another complex number
-0.1407063188343073 - 0.241212985411246331im

julia> z3 = z1”2 # complex number raised to the power
of an real number
-9.120000000000001 - 28.160000000000004im

75

CHAPTER 4 COMPLEX NUMBERS

julia> z3 = 2*z1 # A real number multiplied with
a compelx number
6.4 - 8.8im

julia> z3 = z1*(z2"3.2 - z2/z1)
1211.337685375584 - 232.35311358949485im

When involved numbers are of mixed data types, hierarchy laws are followed:

julia> a = Int8(9)

9

julia> b = Float64(287.876567)
287.876567

julia> z = complex(a,b)
9.0 + 287.876567im

julia> typeof(real(z))
Floaté4

julia> typeof(imag(z))
Float64

julia> ¢ = Int64(3456)
3456

julia> z1 = c*(z)
31104.0 + 994901.4155521im

julia> typeof(imag(z1))
Float64

julia> typeof(real(z))
Float64

76

CHAPTER 4 COMPLEX NUMBERS

4.5 Summary

The ability to deal with complex numbers and their arithmetic allows Julia to enter

into the real-world simulation in a realistic manner. Complex analysis is one of the
cornerstones of mathematical studies in physical and engineering science. The physical
importance of real and imaginary parts is critical to scientific interpretation, especially
with time-varying phenomena (in general, dynamical problems). The ease of defining
complex numbers coupled with the ease of extracting real and complex parts as well

as operators for performing complex analysis makes Julia one of the most advanced
options for simulating real-life problems.

4.6 Bibliography

[1] https://en.wikipedia.org/wiki/File:Complex_number
illustration_modarg.svg

77

https://en.wikipedia.org/wiki/File:Complex_number_illustration_modarg.svg
https://en.wikipedia.org/wiki/File:Complex_number_illustration_modarg.svg

CHAPTER 5

Rational and Irrational
Numbers

5.1 Numbers and Ratios

A rational number is a number that can be written as a ratio of two numbers. This ratio
is also called a fraction representation. A fraction representation includes two parts:
the numerator (the number on top) and the denominator (the number on the bottom).
The following is a fraction representation of a rational number:

a
b

wherea, be Iand b = 0.)
For example, 0.50 can also be written as 2 Similarly 0.60 can be written as % ,

which can then be reduced to g . Rational numbers can be formally defined as

equivalence classes of pairs of integers (p, q) such that g # 0, for the equivalence relation
defined by (py, ¢1) ~ (p> g.) if p1q. = p.g,. This is simple to follow since

b _pP
b2 (5.1)
4 49
implies
hd, = P24, (5.2)
79
© Sandeep Nagar 2017

S. Nagar, Beginning Julia Programming, https://doi.org/10.1007/978-1-4842-3171-5_5

CHAPTER 5 RATIONAL AND IRRATIONAL NUMBERS

The decimal expansion of a rational number always either terminates after a finite
number of digits or begins to repeat the same finite sequence of digits over and over. It is
important to note that the discussion is not only true for numbers with base 10 (decimal
numbers), but it is also true with any other base such as 2 (binary numbers),

6 (hexadecimal numbers), and 8 (octadecimal numbers), and so on.

All the numbers that cannot be expressed as a ratio are called irrational numbers or,
in other words, a real number that is not rational is called irrational, such as the number
n =3.1415926535897... and the number e = e = 2.7182818284590... One can argue that the
ratio % can be written for &, but the ratio is an inexact representation of the actual

number. The decimal expansion of an irrational number continues without repeating:
julia> a = pi

a = 3.1415926535897...

julia> e

e = 2.7182818284590...

julia> inexactness = 22/7 - pi
inexactness = 0.0012644892673496777

5.2 Rational Numbers

2
Rational numbers represent exact ratios of numbers. For example, 3 can be valued as

0.66... . The number used must be restricted to a finite number of digits that will induce
errors in calculations due to the inexact representation as a fractional number of a ratio
of integers. If, on the other hand, the ratio itself can be used for calculations, the
exactness of the calculation can be preserved.

5.2.1 Representation of Rational Numbers

2
The operator // is used to define a rational number. For example, the rational number 3
can be defined as follows:

julia> a = 2//3
2//3

julia> typeof(a)
Rational{Int64}

80

CHAPTER 5 RATIONAL AND IRRATIONAL NUMBERS

The numerator and denominator can be extracted from a rational number using
num() and den() functions:

julia> a = 2

2
julia> b
-4

I
1
~

julia> a1 = a//b
-1//2

julia> num(a1)
-1

julia> den(a1)
2

This example also outlines an important fact. The // evaluates the rational number
by solving the rational number—that is, factorizing the numerator and denominator and
then canceling common factors:

2 2x1 -1

—_4_ —1x2x2 B 2

5.2.2 Complex Numbers as Numerators and Denominators

Rational numbers can be constructed using complex numbers as follows:

julia> a = complex(2,3)
2 + 3im
julia> b = complex(-3,2)
-3 + 2im

julia> 1//a
2//13 - 3//13%im

julia> -3//b
9//13 + 6//13*im

81

CHAPTER 5 RATIONAL AND IRRATIONAL NUMBERS

julia> a//b
0//1 - 1//1*im

julia> (-3//b)"a
0.09624621106941285 + 0.06935501144252361im

Whena = complex(2,3) andb = complex(-3,2), then 1//a (Equation 5.3) and
a//b (Equation 5.4) can be calculated mathematically as follows:

1 1 2-3i_2-3i_2 -3 (5.3)

2+3i 2430 2-3i 4+9 13 13

Similarly, for the expression a//b, you can construct a rational number made of two

2
complex numbers as +31_ , which can be solved as follows:

-3+2i
2+3i 2+3i -3-2i -6-4i—-9i+6 0 1,
- = .X T = +—+-1 (5'4)
-3+2i -3+2i -3-2i 9+4 13 1

5.2.3 Mathematical Operations on Rational Numbers

AJulian rational number can be operated upon just like a mathematical one:

+
|

Il

[a—

[= |~
|
|

RS Rl SYE

~
Il
Il

[w—

|
I
o

N |~ o
| — =[O = |

*
D= -
Il

o~
N

julia> a = 1//2
1//2

julia> a+a
1//1

julia> a-a
0//1

82

CHAPTER 5 RATIONAL AND IRRATIONAL NUMBERS

julia> a/a
1//1

julia> a*a
1//4

When the numerator and/or denominator are negative, the number is converted
with an appropriate sign:

julia> a = -3
-3
julia> b
4

1l
~

I}
1
N

julia> c
-2

a//b

julia> a1
-3//4

julia> a2 = a//c

3//2
Comparison operators can also be used on rational data types:

-2

julia> a
-2
julia> b
3

1
w

julia> a1 = a//b

-2//3

julia> a2 = (2*a)//(2*b)

-2//3

julia> a1 == a2
true

83

CHAPTER 5 RATIONAL AND IRRATIONAL NUMBERS

julia> a3 = (2*a)//(3*b)

-4//9

julia> a1 < a3
true

julia> ((a1 + a2) < a3) & (a2 == a3)
false

julia> ai+a2
-4//3

julia> (ai1+a2)<a3
true

julia> a2 == a3
false

julia> true & false
false

5.2.4 Converting a Rational Number to a Floating
Point Number

A rational number can be converted to a decimal point representation by dividing the
2
numerator by the denominator and writing the quotient. For example, o 04.

Sometimes this representation results in an infinitely recurring set of digits. For example,

3" 0.333.... Julia supports these mathematical calculations as follows:

julia> float(2//5)
0.4

julia> float(1//3)
0.3333333333333333

84

CHAPTER 5 RATIONAL AND IRRATIONAL NUMBERS

5.2.5 Rationals with Zero Denominator

Rational numbers are defined for nonzero denominators, but Julia allows zero
denominators and even allows usual computation. In other words, constructing infinite
rational values is acceptable in Julia. However, the construction of a fraction 9 is not

allowed: 0

1
1
=

julia> a
-1

Il
o

julia> b
0

1]
w

julia> ¢
3

julia> a1 = a//b
-1//0

julia> o//0

ERROR: ArgumentError: invalid
rational: zero(Int64)//zero(Int64)
Stacktrace:

[1] Rational{Int64}(::Int64, ::Int64)
at ./rational.jl:13

[2] //(::Int64, ::Int64)

at ./rational.jl:40

5.2.6 Rationals with Other Data Types

Rational data types interact with other data types as per promotion rules for data

type. In the following example, a1 stores a rational number with Int64 numerator and
denominator, and a2 stores a complex number. When ai+az2 is calculated, the complex
number is ¢ = obtained, whose real and imaginary parts are of the type Rational.
The same is true for the division operation.

85

CHAPTER 5 RATIONAL AND IRRATIONAL NUMBERS

julia> a1 = 2//3
2//3

julia> a1l+1
5//3

julia> a1 + 2.3
2.9666666666666663

julia> a2 = complex(-2,4)
-2 + 4im

julia> al+a2
-4//3 + 4//1%*im

julia> a1/a2
-1//15 - 2//15%im

Now let’s test how exact and inexact rations can be compared using boolean

operations where 1 = 0.5, 1 # 0.333- This inexactness can be calculated by
3

performing (1//3)-0.33. But when compared to float(1//3) (that is, the rational
number is represented as a floating point number and then subtracted by 1//3), we
obtain a zero. This indicates that before calculations between rational numbers and
integers or floating point numbers occur, rational numbers are converted into Float64
data type.

julia> 0.5 == 1//2
true

julia> 0.3 == 1//3
false

julia> 0.333 == 1//3
false

julia> a = float(1//3)
0.3333333333333333

julia> a == 1//3
false

86

CHAPTER 5 RATIONAL AND IRRATIONAL NUMBERS

julia> (1//3) - a
0.0

julia> (1//3)-0.333
0.0003333333333332966

julia> (1//3)-a # a = float(1//3)
0.0

5.3 Irrational Numbers

Irrational numbers are simply those numbers that are not rational; they cannot be
written as a ratio of two whole numbers. There are many examples such as z and e. Julia
defines a data type aptly named Irrational. For example, = and e are predefined as
irrational constants in Julia:

julia> pi
pi = 3.1415926535897...
julia> e
e = 2.7182818284590...

julia> typeof(pi)
Irrational{:pi}

julia> typeof(e)
Irrational{:e}

Notice that the numeric representation of an irrational number ends with three
dots, highlighting the fact that the digital representation does not end here but, in fact,

continues.

5.4 Summary

The ability to define and work with fractions was one of the cornerstones of Greek
mathematics. Most children learn how to work with rational numbers and their
arithmetic at a young age and the ease of providing exact solutions as fractions is well-
known. The ability to define rational numbers within a programming language makes it

87

CHAPTER 5 RATIONAL AND IRRATIONAL NUMBERS

quite suitable for numerical computing where exactness of a solution is critical. Defining
irrational numbers is equally important since irrational numbers, when introduced into
a computation, leads to inexactness and, thus, errors. The degree of inexactness depends
on the precision of the representation of an irrational number. Julia’s ability to define a
set precision of irrational numbers allows us to determine the degree of inexactness in a
numerical computation beforehand, as this chapter has demontrated.

88

CHAPTER 6

Mathematical Functions

6.1 Introduction

A mathematical function is a relation between a set of inputs and a set of permissible
outputs with the property such that each input is related to exactly one output. Most
users are already familiar with many such functions including the trigonometric
functions sin(x), cos(x), and tan(x); logarithms to the base of a number—say 10—as
log,o(x); exponentiation €% and so on. A programming language boasting to perform
complex mathematical calculations in an efficient manner must provide easy and
intuitive ways to interact with such mathematical functions and must also provide
ways to construct user-defined functions. Present chapter will illustrate some in-built
mathematical functions within Julia.

6.2 Division Functions

Division is one of the four basic arithmetic operations; the other three are addition,
subtraction, and multiplication. The division of two natural numbers is the process

of calculating the number of times one number is contained within the other. This is
essentially counting the number of groups we can make within the second number. For
example, when 10 (divisor) is divided by 3 (dividend), we can make 3 (quotient) groups
and 1 (remainder) remains. Division can also be described as the cycling of one number
over another until we find the end. The cycling can be linear, polar, and so on. Cycling is
depicted by the modulo function where a modulo b means that a is cycled b times to find
the number of cycles (quotient) and what remains (remainder).

89
© Sandeep Nagar 2017

S. Nagar, Beginning Julia Programming, https://doi.org/10.1007/978-1-4842-3171-5_6

CHAPTER6 MATHEMATICAL FUNCTIONS

A set of Julia functions is defined for performing the division of one or more numbers
in a specified manner. Table 6-1 outlines their syntax and behavior. Now let’s scan their
usage with the help of examples.

Table 6-1. Division Functions

Syntax Behavior

div(x,y) truncated division; quotient rounded toward zero

fld(x,y) floored division; quotient rounded toward -Inf

cld(x,y) ceiling division; quotient rounded toward +Inf

rem(x,y) remainder; satisfies x == div(x,y) *y + rem(x,y); sign matches x
mod(x,y) modulus; satisfies x == fld(x,y) *y + rem(x,y); sign matches x
mod1(x,y) mod () with offset 1

mod2pi(x,y) modulus with respect to 2z

divrem(x,y) returns (div(x,y),rem(x,y))

fldmod (x,y) returns (fld(x,y),mod(x,y))

gcd(x,y, ...) greatest positive common divisor of x, v, ...

lem(x,y, ...) least common multiple of x, vy, ...

6.2.1 div(x,y), fld(x,y), and cld(x,y)

Suppose we wish to perform 3 . The built-in functions div(x,y), fld(x,y), and
5
cld(x,y) produce the following results:

julia> div(3,5) # simple division
0

julia> f1d(3,5) # floor division
0

julia> cld(3,5) # ceil division
1

julia> 3/5
0.6

90

CHAPTER6 MATHEMATICAL FUNCTIONS

3
We know that — produces 0.6 as quotient and 0 as remainder. Hence, for three
functions, the following behavior is observed:

o Fordiv(), the result is truncated toward 0 so 0.6 becomes 0.
o Forfld(), the result is truncated toward —Infso 0.6 becomes 0.
e Forcld(), the result is truncated toward +infso 0.6 becomes 1.

Different kinds of data types can be used with these functions. Using Float64 gives
the following results:

julia> 2.24/3.45
0.6492753623188406

julia> div(2.24,3.45)
0.0

julia> cld(2.24,3.45)
1.0

julia> fld(2.24,3.45)
0.0

When you use mixed data types, the rules of conversion and promotions are
applied. You can use methods (f) to scan all the combinations of data types that will be
entertained by the function f. Thus, it is useful to scan methods (div), methods(f1ld), and
methods(cld). You can check that complex numbers cannot be used as inputs to these

functions:

julia> a = Float64(2.24)
2.24

julia> b = Int64(3)

3

julia> r1 = div(a,b)
0.0

julia> typeof(r1)
Float64

91

CHAPTER6 MATHEMATICAL FUNCTIONS

julia> r2 = fld(a,b)
0.0
julia> r3 = cld(a,b)
1.0

6.2.2 rem(), mod(), and mod1()

In addition to getting quotients by using functions div(), f1d(), and f1d(), you can

2
obtain the remainder by using the rem() function. Suppose we wish to check for 3 We
know that the quotient is 1 and the remainder is 1:
julia> a
3

3

1
1
N

julia> b
-2

julia> div(a,b) # Quotient
-1

julia> rem(a,b) # Remainder, sign matches a
1

julia> mod(a,b) # Modulo, sign matches b
-1

julia> modi(a,b) # Moulo with offset 1
1

In computing, the modulo operation finds the remainder after the division of one
number by another number (sometimes called “modulus”). The function mod(2, 3)
performs this task and returns 1 as a result.

92

CHAPTER6 MATHEMATICAL FUNCTIONS

6.2.3 mod2pi()

Just like the modulus functions cycle w.r.t real numbers, mod2pi()finds the remainder by
cycling over 2x. As a result, the value is always within the limits [0, 2x]:

julia> pi

pi= 3.1415926535897...
julia> mod2pi(1*pi)
3.141592653589793

julia> typeof(mod2pi(1*pi))
Float64

julia> typeof(1*pi)
Float64
julia> mod2pi(-1*pi)
3.1415926535897936
julia> mod2pi(2*pi)
6.283185307179586
julia> mod2pi(2*pi+1)
0.9999999999999998
julia> mod2pi(2*pi-1)
5.283185307179586
julia> mod2pi(1*pi-1)
2.141592653589793
It is worth noting that the mod2pi() function does not have Irrational data type as
one of its methods so mod2pi(pi) results in an error message. On the other hand, when

the irrational number p1i is operated upon, it becomes another data type, which can then
be used in the mod2pi() function.

93

CHAPTER6 MATHEMATICAL FUNCTIONS

6.2.4 divrem() and fldmod()

Instead of using div() and rem() functions separately, we can compute them within a
single statement using the divrem() function:

julia> quotient,remainder = divrem(10,3)

(3,1)

julia> quotient,remainder
(3.0,0.10000000000000053)

divrem(10,3.3)

julia> quotient,remainder = fldmod(10,3)
(3,1)
julia> quotient,remainder = fldmod(10,3.3)

(3.0,0.10000000000000053)

6.2.5 gcd()

The greatest common divisor is the biggest number that divides all the elements of a set
of numbers. gcd(x,Yy) gives the greatest common (positive) divisor (or zero if x and y are
both zero):

julia> gcd(3,6)
3

julia> gcd(319,666)
1

julia> gcd(-319,666)
1

julia> gcd(-319,-666)
1

94

CHAPTER6 MATHEMATICAL FUNCTIONS

6.2.6 lcm()

The least common multiple is the smallest positive number that occurs in a list of
multiples for a set of numbers. Julia function 1cm gives the least common (non-negative)
multiple:

julia> lem(40,55)
440

julia> 1lem(33,11)
33

julia> lem(33,-11)
33

julia> lem(-33,-11)
33

6.3 Sign and Absolute Value Functions

The sign of a number seems a small, insignificant property but proves to be a valuable
tool. A mere change of sign changes the quadrant in which a number is defined.
Oppositely signed numbers are mirror images of the original numbers in different
quadrants. Julia provides a set of functions to derive the information about the sign of a
number (Table 6-2).

Table 6-2. Julia Functions for Sign of a Number

Syntax Behavior

abs(x) a positive value with the magnitude of x

abs2(x) the squared magnitude of x

sign(x) indication of the sign of x, returning —1, 0, or +1
signbit(x) indication whether the sign bit is on (true) or off (false)
copysign(x,y) a value with the magnitude of x and the sign of y
flipsign(x,y) a value with the magnitude of x and the sign of x*y

95

CHAPTER6 MATHEMATICAL FUNCTIONS

6.3.1 abs() and abs2()

The absolute value of a number is the positive value of a number. Now there are two
ways to obtain a positive value with a computer. The first is to just flip the sign bit used
while defining a signed integer. The second is to square the number and then find the
square root of that number. The problem with the second method is that you may incur

approximation errors while performing these operations in some cases:

julia> a = -900707.7097680866 # Floating point number
-900707.7097680866

julia> sq = a*a
8.112743784356716e11

julia> sqroot = sqrt(sq)
900707.7097680866

julia> -sqroot == a
true

julia> a = -pi # Irrational number
-3.141592653589793

julia> sq = a*a
9.869604401089358

julia> sqroot = sqrt(sq)
3.141592653589793

julia> -sqroot == a
true

julia> a = -(2//3) # Rational number
-2//3

julia> sq = a*a
4//9

96

CHAPTER6 MATHEMATICAL FUNCTIONS

julia> sqroot = sqrt(sq)
0.6666666666666666

julia> -sqroot == float(a)
true

Julia provides the abs(x) function to know the absolute value of a number.
methods (abs) gives the options about various data types that can be used with the abs ()
function:

julia> abs(-190)
190

julia> abs(190)
190

julia> abs(-190.08967)
190.08967

julia> abs(190.08967)
190.08967

6.3.2 Absolute Value of a Complex Number

As discussed in Chapter 4, the absolute value of a complex number a + ib is
Ja® +b?
length of vector (defined by a complex number) from the origin.

julia> a = complex(2,-3)
2 - 3im

julia> abs(a)
3.6055512754639896

julia> abs2(a)
13

97

CHAPTER6 MATHEMATICAL FUNCTIONS

The squared absolute value gives
a’+b?

using the function abs2().

Problem with abs() Function

When abs is applied to signed integers, overflow may occur, resulting in the return
of a negative value. This overflow occurs only when abs is applied to the minimum
representable value of a signed integer.

julia> a = typemin(Int8)
-128

julia> abs(a)
-128

julia> a = typemin(Int32)
-2147483648

julia> abs(a)
-2147483648

6.3.3 sign(), signbit(), copysign(), and flipsign()

As described in by Section 3.5.2, when signed numbers are stored, a sign bit is reserved
for assigning the sign to a number. This bit can be scanned with the signbit() function,
which returns true if the value of the sign of x is negative. Otherwise, it returns false:

julia> a = -123 # Negative integer
-123

julia> signbit(a)
true

julia> b = 123 # Positive integer
123

98

CHAPTER 6

julia> signbit(b)
false

julia> c = 0 # Zero
0

julia> signbit(c)
false

julia> a1 = -123.123 # Negative float
-123.123

julia> signbit(a1)
true

julia> b1 = 123.123 # Positive float
123.123

julia> signbit(b1)
false

julia> c1 = 0.0 # Zero float
0.0

julia> signbit(c1)
false

julia> a2 = -2//3 # Negative rational
-2//3

julia> signbit(a2)
true

julia> a3 = 2//3 # Positive rational
2//3

julia> signbit(a3)
false

julia> a4 = -2//-3 # Positive rational
2//3

MATHEMATICAL FUNCTIONS

99

CHAPTER6 MATHEMATICAL FUNCTIONS

julia> signbit(a4)
false

julia> a5 = 0//1 # Zero rational
0//1

julia> signbit(as)
false

To know the sign of a number, the sign() function is used. It returns 0 if the input
number is zero, 1 if number is positive and -1 if input number is negative.

julia> a = -123
-123

julia> sign(a)
-1

julia> b = 123
123

julia> sign(b)
1

julia> c = 0
0

julia> sign(c)
0

Manipulating Signs

Sometimes, you need to assign a chosen sign to a number. One might need to scan a
particular number and assign the sign of the chosen number to a new number. This
is done by the function copysign(x,y). It returns x such that it has the same sign as y.
methods (copysign) gives the list of data types that can be fed to this function:

julia> copysign(123,-231)
-123

100

CHAPTER6 MATHEMATICAL FUNCTIONS

julia> copysign(-123,231)
123

julia> copysign(-123,-231)
-123

julia> copysign(123,231)
123

julia> copysign(123,0)
123

julia> copysign(-123,0)
123

flipsign(x,y) function returns x with its sign flipped if y is negative.

julia> flipsign(123,-231) # Sign flipped
-123

julia> flipsign(-123,231) # Sign unchanged
-123

julia> flipsign(-123,-231) # Sign flipped
123

julia> flipsign(123,231) # Sign unchanged
123

julia> flipsign(123,0) # Sign unchanged
123

julia> flipsign(-123,0) # Sign unchanged
-123

101

CHAPTER6 MATHEMATICAL FUNCTIONS

6.4 Power, Logs, and Roots

Raising a number to a power essentially signifies the number of times the power is

multiplied with itself. (For example, a” means a is multiplied » times.) It is interesting to

note that n can be any real number. Equations define the rules of calculations:

a"xa" =a"™" (6.1)
a’ _ nm
Pz (6.2)
a(] :1 (6.3)
an =L (6.4)
an
a"xa"=a"=1 (6.5)
(axb)' =a"xb" (6.6)
1 1
When 7 is a rational number with the form ; ,then g is called the n" root of a.
1
a"=b=a=>b" (6.7)
am =%g" (6.8)
Most interesting is the complex number i:
i*=-1 (6.9)
PP=—1xi=—i (6.10)
4 —_(_ —
i'=-ixi=—(-1)=1 (6.11)
PP =1xi=i (6.12)

These are called the complex roots of unity.

102

CHAPTER6 MATHEMATICAL FUNCTIONS

6.4.1 Numbers Raised to Some Power

When a number is powered to another number, a range of mathematical functions are
used in this regard. Users must check Equation 6.13 for defining the power of a number,
6.14 for defining the root of a number, and 6.15 for defining the logarithm of a number
with a chosen base:

a=b° (6.13)
b=¢a (6.14)
log,a=c (6.15)

Let’s understand these equations with a simple example:

1000=10°
10=3/1000

log,,1000=3

The facility to define powers, roots, and logarithms to a chosen based is provided by
arange of Julia functions, as given in Table 6-3.

Table 6-3. Julia Functions for Power, Roots, and Logarithm Calculations

Syntax Behavior
sqrt(x) calculates /x
cbrt{x} calculates 3/x

hypot(x,y) calculates \/x*> +y* (i.e., hypotenuse of a right-angled triangle with sides as x

and y)
exp(x) calculates e*
expm1(x) calculates e* — 1 accurate for x near 0
ldexp(x,n) calculates x* 2" computed efficiently for integer values of n
log(x) calculates /og4(x)
log(b,x) calculates /og,(x)

(continued)

103

CHAPTER6 MATHEMATICAL FUNCTIONS

Table 6-3. (continued)

Syntax Behavior

log2(x) calculates /og,(x)

log10(x) calculates log;q(X)

log1p(x) calculates /og(1 + x) accurate for x near zero

exponent(x) binary exponent of x

significand(x) binary significand (also known as mantissa) of a floating point number x

The following sections will scan them one by one for understanding their proper
usage. Sample Julia code is given after each function’s description so that you can test
the usage of the function.

6.4.2 sqrt(), cbrt(), and hypot()

1
The square root of a number x is a number raised to the power X which is symbolically

1
shown by Jx. Similarly, a cube root of a number is a number raised to the power 3’
which is symbolically shown by Yx.

julia> sqrt(2)
1.4142135623730951

julia> cbrt(2)
1.2599210498948732

methods(sqrt) and methods (cbrt) outline various data types that can be used with
these functions. Particularly exciting is the number i = J-1.The command sqrt(-1)
will produce a domain error message saying that a complex argument is needed. Hence,
the following code should be issued instead:

julia> a = complex(0,1)# complex number "i
0 + 1im

julia> sq = a"2
-1 + 0im

104

CHAPTER6 MATHEMATICAL FUNCTIONS

julia> sqrt(sq)
0.0 + 1.0im

The function cbrt() does not entertain complex data types, but it does entertains
negative numbers:

julia> cbrt(pi) # Irrational number
1.4645918875615231

julia> cbrt(-3.54) # Negative number
-1.5240565695688593

julia> cbrt(3.54) # Positive number
1.5240565695688593

julia> cbrt(2//3) # Rational number
0.8735804647362988

julia> cbrt(float(2//3))
0.8735804647362988

The third function, hypot(x,y), is used to calculate the hypotenuse of a triangle
made by a right triangle. This is also the length of a 2D vector defined by a complex

number a + ib:

Ja*+b®

julia> hypot(2,3) # x=2,y=3
3.6055512754639896

julia> sqrt(2”2 + 3"2) # same calcualtion as done by hypot()
3.605551275463989

julia> hypot(2//3,3//4) # Rational numbers
1.0034662148993578

julia> hypot(complex(2,3),complex(3,4)) # Complex nos.
6.164414002968977

105

CHAPTER6 MATHEMATICAL FUNCTIONS

6.4.3 Problem with hypot() Calculations

John D. Cook outlines a problem with hypot () in an interesting article [2]. If x is so
large that x*x overflows, the code will produce an infinite result. To avoid this problem,
itis suggested Cook suggests that the algorithm takes another route to calculate the
hypotenuse.

Without risking overflow, +/ x*+ yz can be calculated as follows:

1. max = maximum(|x|, [y|)

2. min = minimum(|x|, |y|)

max
3. r=

min
4. ans=max xv1+r°

Since step 4 includes the square root argument, which inputs max and min values,
you can avoid overflow errors. The data type Float64 includes the maximum numeric
value as 10%% (in other words, 1€308).

julia> 1e308
1.0e308

julia> 1e308*10 # Multiplication with 10
Inf

Now consider that x and y are 0.5 times 10°*® when calculating the hypotenuse:

julia> x = 1e308

1.0e308

julia> y = 1e308
1.0e308

julia> h = hypot(x,y)

1.4142135623730951e308

julia> x"2 # Overflow
Inf

106

CHAPTER6 MATHEMATICAL FUNCTIONS

julia> y”2 # Overflow
Inf

julia> h1 = sqrt(x*2 + y*2) # wrong result
Inf

6.4.4 exp(), expmi(), Idexp(), and exponent()

Exponentiation is raising a number to the power of e. e is Euler’s number (irrational)
defined to be valued as 2.7182818284590...

julia> e
e = 2.7182818284590...

exp()

The function exp(x) outputs e*. It is important to note that the use of exponential
function without proper care will incur overflow (e*) and/or underflow (e™) problems
with the result as +Inf and -Inf:

julia> exp(1)
2.718281828459045

julia> exp(2)
7.38905609893065

julia> exp(-1)
0.36787944117144233

julia> exp(-2)
0.1353352832366127

julia> exp(1//2)
1.6487212707001282

It is worth noting that while working with exp () and similar functions, an
approximation of number e is used. In other words, e is a never-ending irrational

107

CHAPTER6 MATHEMATICAL FUNCTIONS

number, but €' is calculated with finite precision as a floating point number and, hence,
itis finite in nature. Consequently, exp(1) == e results as false

julia> e
e = 2.7182818284590...

julia> exp(1)
2.718281828459045

julia> exp(1) == e
false

expmi()

The problem with the exp(x) function occurs when we wish to calculate exp (1+x) [3]
and the value of x is comparable to machine precision (that is, extremely small). In this
case, 1+x is approximated as x. To overcome this issue, exp1(x) is used to calculate
exp(1+x) cases where x is very small:

julia> exp(1)
2.718281828459045

julia> exp(1+1e-100)
2.718281828459045

julia> expmi(1+1e-100)
1.718281828459045

Idexp()

ldexp(x,n) uses a base 2 exponentiation and computes x x 2":

julia> ldexp(3.5,2)
14.0

julia> 3.5%(2"2)
14.0

108

CHAPTER6 MATHEMATICAL FUNCTIONS

exponent(x)
exponent(x) returns the x for 2 which is closest to x rounded toward zero:

julia> exponent(100.0)
6

julia> exponent(1000.0)
9

julia> 2”6
64

julia> 2”9
512

julia> exponent(128.0)
7

julia> 2"7
128

6.4.5 log(), log2(), log10(), and log1p()

The logarithm of a number is defined as follows:
a=b°=log,a=c
This example uses Equation 6.16:

10* =100=>log,,(100)=2

This examples also uses Equation 6.16, but with a different base, 2:

2"=128=log,(128)="7

The logarithm is an essential function in mathematics, particularly for those
quantities that rise or fall very fast. In such cases, it’s useful to analyze them on a
logarithmic scale rather than on a linear scale.

(6.16)

109

CHAPTER6 MATHEMATICAL FUNCTIONS

log()

Natural logarithms (for example, base e logarithm) are calculated using the function

Log():

log,(e)=1

This can be verified:

julia> e # Irrational number
e = 2.7182818284590...

julia> float(e) # Floating point number for e
2.718281828459045

julia> e™1 # e"1=e
2.718281828459045

julia> e™1 == float(e)
true

julia> log(e) $ log(e) to the base e is 1
1

Some physical properties show an exponential increase. The numerical values
of such data points become very big numbers very quickly. When the log function is
operated on such functions, you obtain smaller numbers. This is particularly important
to avoid overflow and underflow errors.

log2()

log2 () simply calculates log, for a number. The base is 2 instead of e here. Hence
log,(2) = 1 and log,4 = 2 because 2! = 2 and 2 = 4. Julia code can easily verify the same:

julia> log2(2)
1.0

julia> log2(4)
2.0

110

CHAPTER6 MATHEMATICAL FUNCTIONS

julia> 2™1
2

julia> 272
4

It is important to note that when you use a negative real exponent, you encounter a
DomainError. To avoid this problem, use floating points number representation for the
exponent.

julia> 2*-1.0
0.5

julia> log2(0.5)
-1.0

Rational numbers can also be used in the same manner:

julia> 27(2//3)
1.5874010519681994

julia> log2(1.5874010519681994)
0.6666666666666665

julia> float(2//3)
0.6666666666666666

log10()

log10() calculates the log,,(x) (for example, logarithm with base 10). Since 10! = 10 and
10%=100,

logm(lO) = 1
and

logw(lOO) = 2

111

CHAPTER 6 MATHEMATICAL FUNCTIONS
This can be verified easily with Julia code:

julia> log10(10)
1.0

julia> log10(100)
2.0

julia> log10(105.4) # Floating point number
2.022840610876528

julia> log10(2//3) # Rational number
-0.17609125905568127

julia> logi0(pi) # Irrational number pi
0.49714987269413385

julia> logio(e) # Irrational number e
0.4342944819032518

julia> loglo(complex(2,3)) # Complex numbers
0.5569716761534184 + 0.42682189085546657im

log1p()

As we discussed earlier in Section 6.4.4 for the case of calculating e'** when x is a small
number, you would encounter problems while calculating log,(1 + x) as well [3]. To
overcome this issue, the function logip() is proposed:

julia> log(1e10)
23.025850929940457

julia> log(1le10+1e-10) # Not different output
23.025850929940457

julia> loglp(1lel0+1e-10) # Different output
23.025850930040455

112

CHAPTER6 MATHEMATICAL FUNCTIONS

6.5 Trigonometric and Hyperbolic Functions
6.5.1 Trigonometric Functions

Trigonometric functions relate angles of a right-angled triangle to the length of its sides.
In Table 6-4, B H, and B represent perpendicular, hypotenuse, and base; and various
trigonometric functions are defined. The input argument to these functions is the angle
in units of radians. Angles in radians () can be converted to angle in degrees (d) using
the formula.

Table 6-4.. Trigonometric Functions

Function Abrv. Julia Function Formula Identity

sine sin sin P . P 1
I, szn(@)—cos(z—e _csc(Q)
cosecant CSC CSsc
7 csc(O)zsec(E—Q =— !
P 2 szn(9)
cosine cos cos B (n _ 1
I cos(@)-szn[;—@ _sec(O)
secant Sec sec
7 sec(9)=csc(£—9 = !
B 2 cos(@)
tangent tan tan i
g L tan(9)=cot(£—0j= L __ sin(0)
B 2 cot(@) cos(@)
cotangent cot cot
g B cot(@)ztan(z—sz ! :c?s(Q)
P 2 tan(@) sm(@)
d= rx180 (617)

113

CHAPTER6 MATHEMATICAL FUNCTIONS

From Equation 6.17, it can be easily deduced that 1 radian = 57.3°.

julia> 180/pi
57.29577951308232

Since sin(90° = 1), while working in radians, you first convert 90° into radians and
then feed it to the sin function:

julia> r =(90*pi)/180 # Convert 90 degree into radians
1.5707963267948966

julia> sin(r) # sin(90)=1
1.0

Some example Julia code will outline their usage. Let’s start by feeding known values
of sin and cos functions.

Function 0° 30° 45° 60° 90°

sin 0 1 1 J3 1
2 2o o

cos 1 J3 1 1 0
2 V22

tan 0 1 1 J3 Notdefined
V3

julia> r45d =(45%pi)/180 # 45 degrees to radians
0.7853981633974483

julia> r30d =(30*pi)/180 # 30 degrees to radians
0.5235987755982988

julia> r90d =(90*pi)/180 # 90 degrees to radians
1.5707963267948966

julia> sin(r45d) # sin(45)
0.7071067811865475

1/sqrt(2)

114

CHAPTER6 MATHEMATICAL FUNCTIONS

julia> 1/sqrt(2) # confirmation
0.7071067811865475

julia> tan(r45d) # tan(45) = 1
0.9999999999999999
julia> sin(r30d) # sin(30) = 1/2

0.49999999999999994

Discrepancies in Calculations

It is important to note that the functional values are not absolute in nature, but are, in
fact, approximate values. For this reason, discrepancies are bound to occur, as in the
following example:

sin(45° = cos(45°)) L

V2

But Julia code outputs different approximate values:

julia> sin(r45d) == cos(r45d)
false

julia> sin(r45d)
0.7071067811865475

julia> cos(r45d)
0.7071067811865476

julia> sin(r45d) - cos(r45d)
-1.1102230246251565e-16

julia> a = 1/sqrt(2)
0.7071067811865475

julia> sin(r45d)-a
0.0

julia> cos(r45d)-a
1.1102230246251565e-16

115

CHAPTER6 MATHEMATICAL FUNCTIONS

Another discrepancy occurs when calculating tan(90°), which is not defined
mathematically since the following is true:

tan(90°) = sin(90°) 1
a cos(90°) 0

But Julia code does give a value (very small). This happens because cos(90°) is not
approximated to be truly zero, but a very small number. Since the result is not zero,
tan(90°) has a finite value. This demonstrates that you should not convert radians
to degrees and then start working with Julia’s trigonometric functions. Instead, Julia
provides a separate set of functions for usage with degree values as input. (They are
outlined in following section.)

julia> tan(r9od)
1.633123935319537e16

julia> sin(r9od)/cos(r90d)
1.633123935319537¢e16

julia> sin(r9od)
1.0

julia> cos(r90d)
6.123233995736766e-17

Additional Features

Some additional functions can be made from these preliminary functions:
o Inverse functions include asin, acos, atab, acsc, asec and acot.

— Inverse functions are defined such that
asin(x) =y = sin(y) =x

julia> a = sin(r45d)
0.7071067811865475

116

CHAPTER6 MATHEMATICAL FUNCTIONS

julia> asin(a)
0.7853981633974482

julia> r45d # calculated previously
0.7853981633974483

Equivalent functions that take input angle in degrees are sind, asind,
cosd, acosd, tand, atand, cscd, acscd, secd, asecd, cotd, and acotd.

julia> tand(90)
Inf

julia> sind(0)
0.0

julia> sind(90)
1.0

julia> sind(45)
0.7071067811865476

julia> 1/sqrt(2)
0.7071067811865475

sinpi(x) and cospi(x) are provided for more accurate computations
of sin(zxx) and cos(7 xx) respectively, especially for bigger values
of x.

julia> sinpi(1)
0.0

julia> sinpi(0.5)
1.0

julia> sinpi(0.25)
0.7071067811865476

julia> sinpi(0.44)
0.9822872507286887

julia> sin(10e20)
-0.6671201770718048
117

CHAPTER6 MATHEMATICAL FUNCTIONS

6.5.2 Hyperbolic Functions

Just as the points cos(x) and sin(x) form a circle with a unit radius, the points cosh(x)
and sinh(x) form the right half of the equilateral hyperbola. They take a real number

as an argument called hyperbolic angle. Julia provides a list of hyperbolic functions

for evaluations including sinh(x), cosh(x), tanh(x), csch(x), sech(x), and coth(x).
Their inverse counterparts are asinh(x), acosh(x), atanh(x), acsch(x), asech(x), and
acoth(x).

julia> a = sinh(1)
1.1752011936438014

julia> asinh(a)
1.0

julia> a = sinh(0.5)
0.5210953054937474

julia> b = cosh(0.5)
1.1276259652063807

julia> ¢ = tanh(0.5)
0.46211715726000974

julia> c1 = a/b
0.4621171572600098

julia> c == c1

false
julia> c-c1
-5.551115123125783e-17
. . . : . sinh(x)
The previous code outlines the similar problem in calculating tanh(x)= h(),as
cosh(x

we observed when calculating tan. The result of a calculation from tanh(x) and
calculating it as a ratio of sinh(x) and cosh(x) isn’t the same since they are
approximations limited by machine precision.

118

CHAPTER6 MATHEMATICAL FUNCTIONS

6.6 Iterative Algorithms to Calculate Mathematical
Functions

It is worth understanding how mathematical functional values are calculated with a
computer using algorithms. A computer numerically approximates the functional value
using an algorithm based on a series expansion of a function.

6.6.1 Numerical Approximations

In the course of scientific investigation, finding exact answers may not be possible at
times. Instead of devoting a lot of effort to find an exact answer by solving the problem
analytically, another alternative is to develop methods for producing approximate
answers numerically. The number of significant digits determined for a numerical
approximation determines the accuracy of the answer. The degree of accuracy required
for a result always depends on the targeted application. For example, measuring the
length of a building does not need the answer to be accurate until the last length of

an atom (A). While measuring the body temperature of a human, you don’t need to

be accurate to more than two decimal places for most applications. In the era of faster
and more efficient computers, higher accuracies of computations can be calculated
by investing more time and storage, whenever required. But this facility must be used
judiciously.

6.6.2 Tolerance

When an approximated answer or a set of approximated answers is available to the user,
one of them must be chosen for a particular answer depending on the requirements of
the applications. One way to make this decision is to define a folerance limit. Tolerance
can be defined as a single number or a range of numbers (having a maximum and

a minimum). The rules to define tolerance limits are entirely application-oriented.

For example, while measuring human height, you can define the tolerance to be 1
centimeter. However, at the same time, while measuring the diameter of a human hair,
you would like to be more accurate by going down to 1 micron or less. While measuring
the size of red blood cell, you would need to go further down to 1 nm. Whereas the
decision to define tolerance is simpler while measuring sizes (that is, tolerance is

one or two orders of magnitude smaller than the size of the object), it may not be a

119

CHAPTER6 MATHEMATICAL FUNCTIONS

straightforward task in other applications. For example, the measurement of land for
constructing a building would require a tolerance of a fraction of meters, whereas
positioning a screw in a hole would require the accuracy of fraction of a centimeter.

In mathematical terms, if € is the tolerance limit, x is the real value, and x" is
approximated value, then the following is true:

x—x'|<e (6.18)

In this case, the absolute error (e,) and relative error (e,) in the measurements are
given by the following:

e, =|x—x| (6.19)

P e (6.20)

Hence, if the absolute error is less than or equal to the tolerance limit, then the
approximate solution/set of solutions is acceptable. However, if x is known, why do we
need to calculate x" (in other words, an approximate solution)?

In such cases where solutions of physical systems are unknown, x" can be calculated
and then be compared with physical measurements. The physical measurements
constitute the value of x in this case and, consequently, errors can be calculated using
Equation 6.20. Determining tolerance can then be determined around the fact that
occasionally x” will differ from x insignificantly; the errors won’t matter much.

6.6.3 Taylor Series

Most mathematical functions would require very many complex operators other than
the simpler ones (+, —, x, and +) to be computed. However, a polynomial requires only
the basic operators to be computed. Hence, if other mathematical functions can be
represented in terms of polynomials, then they can be approximated with relative ease.
The Taylor series expansion of a mathematical function performs this task.

A polynomial is defined as follows:

p(x)=a,+ax+a,x’+...+a,x" (6.21)

where a, € R (the a’s are called the coefficients). For the largest n that corresponds to
a, # 0, the degree of polynomial is defined as 7.

120

CHAPTER6 MATHEMATICAL FUNCTIONS

6.6.4 Taylor Polynomials

Taylor’s theorem shows the way to define a great many mathematical functions, which

can be defined as polynomials called Taylor polynomials. The accuracy of the final

answer shown by Taylor polynomial depends on its degree, that is, the number of

terms defined in the polynomial. This provides a convenient methods to customize the

polynomial as per desired tolerance.

Suppose a mathematical function f (x) needs to be approximated around x = a.

A Taylor polynomial p,(x) of degree n centered at x = a is that polynomial (of degree, at

most, of) that has the same value as n' derivative at x = a.

The following points are true when deriving the formula for a Taylor polynomial:

o The zero order polynomial p,(x) has a degree, at most, of zero.

po(x) must be a constant function (a horizontal line function graphically).

Approximating around x = a: py(x) =f(a).

o The first order polynomial py(x) has a degree, at most, of 1.

p1(x) must satisfy two conditions:
pi(a)=1(a)
and
pi(a)=f'(a)
p1(x) must be of the form p,(x) = mx + ¢ (a straight line with slope m and c as
intercept).
Since p,(a)=f"(a) so m=f'(a)
So one can write c= f(a)-f'(a)a

Substituting back values of m and ¢, we get

p(x)=r(a)x+f(a)-f'(a)a=[(a)(x~a)

121

CHAPTER6 MATHEMATICAL FUNCTIONS

Carrying forward the same arguments in a similar fashion, you can write the general
form of Taylor polynomial of order 7 as follows:

p.(x)=f(a)+ f’(a)(x—a)+% F'(a)(x-ay % F(a)(x—-a) +...+% F(a)(x—-a)

which can be rewritten in sigma notation as:

n

pa(x)= 2 (a)(x—a) (6:22)
The previous definition requires that the polynomial must have n derivatives at x = a.
The Maclaurin series is simply the Taylor series defined for a = 0. Also using

algebraic manipulations of The Taylor/Maclaurin series for basic functions such as

sin(x), cos(x), 5, and other complicated functions can also be defined in their series
forms. These can be performed by simply using algebraical operators in addition to
substitutions, derivatives, and integrations. This mathematical convenience comes

in handy when formulating approximate solutions for physical systems defined by

complicated functions. Let’s study the Maclaurin series expansion of two of the most

popular and widely used trigonometric functions—sin(x) and cos(x).

6.6.5 Maclaurin Series for sin(x) and cos(x)

Both sin(x) and cos(x) are continuous and differentiable in the range given by any set of
real numbers. Thus, their differentials exist in the same range. Consequently, they can be
expanded in the form of a Maclaurin series.

Suppose f{(x) = sin(x) needs to be approximated at a = 0.

Using Table 6-5 and Equation 6.22 results in the following:

1 1 1 1 1
sin(x)=x-——=x’+—=x"——x"+—x" - £—x" (6.23)
3! 5! 7! 9! n!

122

CHAPTER6 MATHEMATICAL FUNCTIONS

Table 6-5. Calculating Coefficients for the Maclaurin Series of sin(x) at x = 0

n f(x) f(a)
0 sin(x) 0

1 cos(X) 1

0 —Sin(x) 0

1 —c0s(X) -1
0 Sin(x) 0

Similarly f{x) = cos(x) needs to be approximated at a = 0.
Using Table 6-6 and Equation 6.22 results in the following:

2
X 1 1 1 1
cos(x)=1-—+—x"'——x"+—x"— £ —x" (6.24)
2 4! 6! 8! n!

Table 6-6. Calculating Coefficients for the Maclaurin Series of cos(x) at x = 0

n f(x) f(a)
0 cos(X) 1

1 —Sin(x) 0

0 —0s8(X) -1
1 sin(x) 0

0 cos(X) 1

6.6.6 Series Expansion to Algorithms

A series expansion produces a series of terms that must be simply added to produce a
functional approximated value. Algorithmically, one simply defines a general formula
for calculation and loops over the calculations, each time adding the calculated value to
the sum of values. This must be done until one satisfies the tolerance level. Users can set
tolerance to a particular value.

This is how built-in Julia functions for mathematical functions are written. Apart
from these simple ideas, users must also write smarter algorithms that give a wider

123

CHAPTER6 MATHEMATICAL FUNCTIONS

range of operations and avoid overflow as well as underflow errors. Setting the functions
confined to a particular data type depends on mathematical functions that need to be
calculated.

6.6.7 How Many Numbers of Terms!

By increasing the number of terms from a series expansion, you reduce the error by
many orders of magnitude. But does this trend mean that for achieving true values, one
must include « number of terms? After all, each time we add a new term, we invest in
time and energy resources in our computation. In general, Maclaurin’s series has the
accuracy of a”"! when n terms are used:
e“=1+a+a—2+a—3+a—4+...+a—n+0(a"“) (6.25)
21 3! 4! n!

Analytically, one can choose n to be any large number, but this cannot be done on a
computing machine. The chosen number is dictated by choosing tolerance to be closer
to eps value.

6.7 Summary

In this chapter, we have summarized how mathematical functions are treated in Julia.

A range of built-in functions performs mathematical operations on a range of data types.
Using the methods () function, you can check which data types can be used with which
functions. With predefined functions, performing mathematical calculations becomes
easier and more organized, but users are free to write their own functions (user-defined
functions) as per requirements, especially when built-in functions do not satisfy
requirements. In order to do so, users would need knowledge to write loop structures
and to define Julia functions. We will discuss these concepts in subsequent chapters.

124

CHAPTER6 MATHEMATICAL FUNCTIONS

6.8 Bibliography

[1] http://docs.julialang.org/en/stable/

[2] www.johndcook.com/blog/2010/06/02/whats-so-hard-about-
finding-a-hypotenuse/

[3] www.johndcook.com/blog/2010/06/07/math-1ibrary-
functions-that-seem-unnecessary/

125

http://docs.julialang.org/en/stable/
http://www.johndcook.com/blog/2010/06/02/whats-so-hard-about-finding-a-hypotenuse/
http://www.johndcook.com/blog/2010/06/02/whats-so-hard-about-finding-a-hypotenuse/
http://www.johndcook.com/blog/2010/06/07/math-library-functions-that-seem-unnecessary/
http://www.johndcook.com/blog/2010/06/07/math-library-functions-that-seem-unnecessary/

CHAPTER 7
Arrays

7.1 Introduction to Arrays

Just as integers, floating point numbers, complex numbers, rational number data types,
and irrational number data types define single values of different types, a host of other
data types holding multiple values at the same time also exists. Such data types include
Array, Tuple (tuples), Dict (dictionary), and Set (sets).

Arrays are particularly interesting since they are used for defining vectors, tables, and
matrices for scientific computing:

e A 1D (one-dimensional) array acts as a vector or list.
e A 2D array can be used as a table or matrix.
e 3D and more-D arrays can represent multidimensional matrices.

An array is an ordered collection of elements. An array is an object that contains
multiple data entries identified by their indices. Unlike many programming languages,
the Julia array index starts at 1, not 0. An array is a collection of objects, where these
collected objects are stored in a multidimensional grid. The dimension of an array is an
abstract idea that we will discuss later in this chapter.

In the most general case, an array may contain objects of type Any, which essentially
signifies it can store any variety of numeric data types. However, maintaining a
uniformity of data structures helps manage the computational resources and avoid
numerical computational errors. Hence, for most computational purposes, arrays should
contain objects of a more specific type, such as Float64 or Int32. Thus, Array data type
objects can hold values of different data types or be restricted to values of a specific data

type.

127
© Sandeep Nagar 2017

S. Nagar, Beginning Julia Programming, https://doi.org/10.1007/978-1-4842-3171-5_7

CHAPTER 7 ARRAYS

7.2 Construction

Arrays are often indicated with square brackets and comma-separated items. The
following code shows the simplest way to handmake arrays:

julia> a = [1,2,3,4]
4-element Array{Int64,1}:
1

2
3
4

julia> b = [1 2 3 4]
1x4 Array{Int64,2}:
1 2 3 4

julia> size(a)
(4,)

julia> size(b)
(1, 4)

julia> ndims(a)
1

julia> ndims(b)
2

Issuing the command a = [1,2,3,4] in a REPL environment makes a 4-element array
where each item is stored as Int64 type (because input values of arrays are integers and
the default data type of integers is Int64) and the array is defined to be a collection of four
entries. The reference to an array object is depicted by the variable name a. On the other
hand, when commandb = [1 2 3 4] (each element is separated by a white space), we
get a 1 x 4 array. The difference between the two can be probed by issuing the commands
size() and ndims (), which give the size in terms of numbers of rows and columns. Also,
when you create the array a, you observe information 4-element Array{Int64,1}:
signifying that it is a one-dimensional array storing four elements of data type Int64,
whereas b informs that 1x4 Array{Int64,2}.In other words, it is a two-dimensional array
with the shape 1 x 2 (1 row and 2 columns) storing elements of data type Int64.

128

CHAPTER 7 ARRAYS

Alternatively, one can also define an array containing random numbers with the
command structure Array{data_type} (Number) where the data type is defined within
curly brackets { } and the number of elements is defined within simple brackets ().

Please note that the elements are assigned randomly so the result will differ each time the
command is executed. For example, when the command a = Array{Int64}(3) isissued
two times, you obtain an array with three elements of random numbers for the type Int64:

julia> a = Array{Int64}(3)
3-element Array{Int64,1}:
4570398928

4509616976

4570398960

julia> a = Array{Int64}(3)
3-element Array{Int64,1}:
4510821744

4510825104

4507551632

Similarly, an array of three random numbers can be fabricated using the following:

julia> a = Array{Complex64}(3)
3-element Array{Complex{Float32},1}:
4.385861-31+1.4013f-45im
2.76974f-31+1.4013f-45im
2.64668f-31+1.4013f-45im

7.2.1 Arrays of Multiple Dimensions

Just as you defined a 1D array, you can define multidimensional arrays by inputting
the number of elements in each dimension. For example, a = Array{Int64}(2,3,4)
will create an array of the size 2 x 3 x 4. The first dimension has two values, the second
dimension has three values, and the third dimension has four values:

julia> a = Array{Int64}(2,3,4)
2x3x4 Array{Int64,3}:
[:, :, 1] =
4730481968 4730482096 4730597712
4730482032 4730597232 4730481168
129

CHAPTER 7 ARRAYS

[:J “ 2] =
4730481200 4730481264 4730481328
4730481232 4730481296 4730481360

[:)) 3] =
4730481392 4730481456 4730481520
4730481424 4730481488 4730481552

[:) “ 4] =
4730481584 4730481648 4730481712
4730481616 4730481680 4730481744

The notation [:, :,1] will become clear in subsequent sections.

7.2.2 Arrays of Floats

If even one element of an object is defined as a floating point number, the data type of all
number elements becomes Float64:

julia> a = [1,2.0,3,4]
4-element Array{Float64,1}:
1.0

2.0

3.0

4.0

julia> whos() # checking memeory usage

Base 34453 KB Module

Core 12510 KB Module

Main 41151 KB Module

a 32 bytes 4-element Array{Float64,1}
ans 32 bytes 4-element Array{Float64,1}

It is worth noting that the array a uses 32 bytes for its storage since each element is
Float64 type, which uses 8 bytes = 8 x 4 = 32 bytes. Hence, it is important to estimate
the size required to store an array when it contains a huge number of elements. This is
particularly important for devices and applications where memory is not a luxury like
single board computers (Raspberry Pi, for example).

130

CHAPTER 7 ARRAYS
An array of random numbers can be created in a manner similar to that of integers:

julia> a = Array{Float64}(7)
7-element Array{Float64,1}:

2.
.32224e-314
.32224e-314
.32224e-314
.32433e-314
.32472e-314
.32472e-314

N N N N NN

32224e-314

julia> a = Array{Float64}(2,3,4)
2x3x4 Array{Float64,3}:

[:J % 1] =
2.31516e-314 .31516e-314 .31516e-314
2.31516e-314 2.31516e-314 .31531e-314
[:) O 2] =
2.31531e-314 2.31538e-314 2.31538e-314
2.31531e-314 .31538e-314 .31563e-314
[:) o 3] =

2.31563e-314

2.31538e-314

.31538e-314

2.31561e-314 .31538e-314 .31554e-314
[::) 4] =

2.31538e-314 2.31553e-314 .31553e-314
2.31553e-314 2.31553e-314 2.31538e-314

7.2.3 Array of Functions

Since elements of an array can be of any data type, even mathematical functions can
themselves be an element of an array. Mathematical functions defined in Chapter 6
are defined under the data type Function. An array of mathematical functions can be
defined as follows:

131

CHAPTER 7 ARRAYS

julia> a = [sin,cos,tan,log]
4-element Array{Function,1}:
sin
cos
tan
log

7.2.4 Arrays of Mixed Data Types

It is possible to create an array of mixed data types, too. For example, a =
[sin,1,1.5,2+5im,2//3] creates an array were elements belong to Function, Int64,
Float64, Complex(Int64), and Rational{Int64} data types:

julia> a = [sin,1,1.5,2+5im,2//3]
5-element Array{Any,1}:

Sin

1

1.5

2+5im

2//3

7.2.5 Creating Arrays

Up to this point, we have just learned to make smaller arrays where the number of elements
is small. What if you need to make an array of a large number of integers or floating point
numbers separated by defined values, say odd integers from 1 to 1000? You would not like
to feed these elements of arrays by hand. The : operator comes in handy in this case.

The operator n:m defines a range from n to m and, thus, can be used to create an array
of a sequence of numbers. Using the collect() function, an array can be constructed
for a predefined range of numbers. The start and stop numbers can be floating point
numbers, too:

julia> collect(1:5)
5-element Array{Int64,1}:
1

2

132

CHAPTER 7 ARRAYS

3
4
5

julia> collect(1.1:5.6)
5-element Array{Float64,1}:
1.1

2.1

3.1

4.1

5.1

julia> collect(1:2:1000) # odd integers from 1 to 1000
500-element Array{Int64,1}:
1

3
5
7

995
997
999

It is worth noting that the increment (difference) between elements is set to 1 by
default. This can be changed as necessary in the following way:

julia> collect(1:2:9)
5-element Array{Int64,1}:
1

3
5
7
9

133

CHAPTER 7 ARRAYS

julia> collect(1.5:2.2:9.9)
4-element Array{Float64,1}:
1.5
3.7
5.9
8.1

Arguments are presented as start:increment:stop. Also stop indicates the biggest
number the array can contain. Elements of an array must be, at most, the stop number
or less.

Increments can be negative numbers, too. For example:

julia> collect(10.5:-1.2:3.3)
7-element Array{Float64,1}:
10.5

9.3

8.1

6.9

5.7

4.5

3.3

julia> collect(10:-3.2:1)
3-element Array{Float64,1}:
10.0

6.8

3.6

julia> collect(10:-3:1)
4-element Array{Inté4,1}:
10

7

1

julia> collect(1:-3:10)
0-element Array{Inté64,1}

134

CHAPTER 7 ARRAYS

The command collect(1:-3:10) produces a null array (an array having zero
elements) since negative increments cannot be implemented starting from 1 to 10.

7.2.6 Creating an Array Using the Ellipsis Operator

The ellipsis operator .. can be used to create an array with a range of objects without
using the collect() function:

julia> a = [1:5...]
5-element Array{Int64,1}:
1

2
3
4
5

julia> a = [1:2:9...]
5-element Array{Int64,1}:
1

3
5
7
9

julia> a = [1.2:2.2:9.9...]
4-element Array{Float64,1}:
1.2
3.4
5.6
7.8

7.2.7 Creating Arrays Using linspace

Another range object, namely linspace(), can be used to create arrays. linspace stands
for linearly spaced points. It takes three arguments as start:stop:number where number
defines the integer number of elements desired. For example:

135

CHAPTER 7 ARRAYS

julia> a = linspace(1,100,5)
5-element LinSpace{Float64}:
1.0,25.75,50.5,75.25,100.0

julia> a = linspace(1,100,3)
3-element LinSpace{Float64}:
1.0,50.5,100.0

julia> step(a) # Finding the step size
49.5

The function step() outputs the step size of a range object. Step size is easy to
calculate. If 1inspace(a,b,n) is defined, then the step size s is the following:

s=—r (7.1)

Now, this linspace object can be fed to the collect() function to construct an array:

julia> a = linspace(1,100,3)
3-element LinSpace{Float64}:
1.0,50.5,100.0

julia> collect(a)

3-element Array{Float64,1}:
1.0

50.5

100.0

7.2.8 Creating Arrays Using logspace

Just like 1inspace produces linearly spaced points, logspace produces logarithmically
spaced points. logspace(1,100,2) means to go from 10 to 10'®° in two steps. Similarly,
logspace(2,5,5) means to go from 10? to 10° in five steps:

julia> a = logspace(1,100,2)
2-element Array{Float64,1}:
10.0

1.0e100

136

CHAPTER 7 ARRAYS

julia> a = logspace(2,5,5)
5-element Array{Float64,1}:
100.0

562.341

3162.28

17782.8

100000.0

7.2.9 Similar Arrays

The built-in function similar ()creates an array that is similar to a given array but that
can be different in the data type of elements. For example, suppose one created an 2 x 3
array with data type Float64 and saved in variable name A. Then a new array saved in
variable name A1 can be created of the same shape but with the data type Int8:

julia> A = Array{Float64}(2,3)
2x3 Array{Float64,2}:

2.25514e-314 2.25514e-314 2.25515e-314
2.25514e-314 2.25518e-314 2.25514e-314

julia> similar(A,Int8)
2x3 Array{Int8,2}:

64 -30 1

57 13 0

Similarly, one can create an array of Float64 data type from an array of boolean

numbers:

julia> A = Array{Bool}(2,3)
2x3 Array{Bool,2}:
false true true
true false false

julia> similar(A,Float64)

2x3 Array{Float64,2}:

2.26024e-314 2.26024e-314 2.26024e-314
2.26024e-314 2.26024e-314 2.26024e-314

137

CHAPTER 7 ARRAYS

7.3 Properties of Arrays

A variety of built-in functions can be used to probe various properties of array objects.
We covered two of them, size()and ndims(), in Section 7.2. Let’s consider some more
functions:

o eltype: Type of element

julia> A = [1,2,3,4]
4-element Array{Int64,1}:
1

2
3
4

julia> eltype(A)
Int64

o length: Number of elements

julia> A = [1.1,-2.9,3.7,4.9]
element Array{Float64,1}:

1.1

-2.9

3.7

4.9

julia> length(A)
4

e ndims: Number of dimensions

julia> A = Array{Int64}(2,3,5)
2x3x5 Array{Int64,3}:

[:y, ¢, 1] =

4694973424 4694973552 4694972656
4694973488 4694973616 4694972688

[:) *y 2] =

4694972720 4694972784 4694972848

4694972752 4694972816 4694972880
138

[:) “ 3] =
4694972912 4694972976
4694972944 4694973008

[:)) 4] =
4694973104 4694993040
4694992976 4694973200

[:) “ 5] =
4694973296 4719342608
4694973328 4719342640

julia> ndims(A)
3

4694973040
4694973072

4694973232
4694973264

4719342704
0

julia> A = Array{Float64}(6)
6-element Array{Float64,1}:

2.30585e-314
2.33172e-314
2.33172e-314
2.33172e-314
2.33172e-314
2.33172e-314

julia> ndims(A)
1

CHAPTER 7 ARRAYS

size(): Size of the array (how many elements exist in each of its

dimensions)

julia> A = Array{Int64}(2,4,3)

2x4x3 Array{Int64,3}:
[, 1, 1] =

4694973424 4694973552
4694973488 4694973616

[:) “ 2] =
4694972784 4694972848
4694972816 4694972880

4694972656
4694972688

4694972912
4694972944

4694972720
4694972752

4694972976
4694973008

139

CHAPTER 7 ARRAYS

[:)) 3] =
4694973040 4694973104 4694993040 4694973232
4694973072 4694992976 4694973200 4694973264

julia> size(A) # No. of elements in each dimesnion
(2,4,3)

julia> size(A,3) # No. of elements in 3rd dimesnion
3

julia> size(A,2) # No. of elements in 2nd dimesnion
4

julia> size(A,1) # No. of elements in 1st dimesnion
2

e indices: Indices of the array

julia> A = [1,2,3,4,5]
5-element Array{Int64,1}:
1

2
3
4
5
julia> indices(A)

(Base.OneTo(5),)

julia> B = [1 2 3 4 5]
1x5 Array{Int64,2}:
1 2 3 4 5

julia> indices(B)
(Base.OneTo(1), Base.OneTo(5))

For array B, indices run from 1 to 1 in the first dimension and from 1 to 5 in the
second dimension.

140

CHAPTER 7 ARRAYS

7.4 Indexing

The index of an element is the address of the same element within an array. Indexing in
Julia starts at 1. For example, in a 1D array, the index of an element is the number of the
element’s position from the left. Julia does not have negative indexing. In other words,
elements can only be approached from the left.

julia> a = [12,4,6,3,6]
5-element Array{Int64,1}:
12

S W o B

julia> a[3]
6

julia> a[1]
12

7.4.1 Creating Subarrays Using : operator

Using indices and : operator, you can create subarrays. This is sometimes referred to as
slicing an array. For example, if an array is stored in a variable named a, then a[n:m] will
return another array with an element starting from the index n to m. Since the : defines a
range of elements, it is sometimes referred to as range operator. The following example
will make this concept clearer:

julia> a = [12,4,6,3,6]
5-element Array{Int64,1}:
12

S W o B

141

CHAPTER 7 ARRAYS

julia> a[2:4]

3-element Array{Int64,1}:
4

6

3

julia> a[range(2,4)]
4-element Array{Int64,1}:
4

6

3

6

The range() function can also be used instead of the : operator. If n or m exceeds the
bounds of a defined array, you will encounter a BoundsError.

7.4.2 end

Using the keyword end, one can access the last element of an array as follows:

julia> A = [1,2,3,4,5]
5-element Array{Int64,1}:

2
3
4
5
julia> A[1]
1

julia> A[end]
5

julia> A[end-2]
3

142

CHAPTER 7 ARRAYS
This can also be used in making a subset of a given array:

julia> a = collect(1:7)
7-element Array{Int64,1}:
1

~N o 1 bW N

julia> a[2:2:end]
3-element Array{Int64,1}:
2

4
6

a = collect(1:7) creates an array having numbers from 1 to 7. Now a[2:2:end]
creates a new array that starts with 2 and goes until the end of the original array a in steps
of two (elements 2, 4, 6).

7.4.3 Slicing Multidimensional Arrays

Slicing a multidimensional array is one of the key skills in real-world data analytics.
Finding the part of an array that you need to process and then slice it out of the main
array as a separate entity would require the knowledge of accessing the elements of the

array within a multidimensional framework:

julia> a = [[1,2,3] [4,5,6] [7,8,9]]
3x3 Array{Int64,2}:

1
2
3

(o) BN Vp IR
O 0

julia> a[2,3] # 2nd row, 3rd column element
8

143

CHAPTER 7 ARRAYS

julia> a[3,2] # 3rd row,2nd column element
6

julia> a[3,end] # 3row, last column element
9

julia> a[end,3] # last row, 3rd column element
9

julia> a[end,end] # last row and column element
9

Now the : operator can be used within slicing operations to select an entire row or
column, or particular parts of the same:

julia> a = [[1,2,3] [4,5,6] [7,8,9]]
3x3 Array{Int64,2}:

1
2
3

S v B
O 0

julia> a[:,3] # All elements of 3rd column
3-element Array{Int64,1}:

7

8

9

julia> a[3,:] # All elements of 3rd row
3-element Array{Int64,1}:

3

6

9

julia> a[3,1:2] # 3rd row and first to second rows
2-element Array{Int64,1}:

3

6

144

CHAPTER 7 ARRAYS

julia> a[2:3,2] # 2nd to third row and 2nd column
2-element Array{Int64,1}:

5
6

julia> a[2:3,2:3] # rows from 2nd to 3rd,
columns from 2nd to 3rd

2x2 Array{Int64,2}:

5 8

6 9

julia> a[2:end,1:end] # rows from 2nd to last,
columns from 1st to last

2x3 Array{Int64,2}:

2 5 8

3 6 9

7.5 Filling Arrays with Values

Automatically filling an array with data can be accomplished with a range of functions.

7.5.1 zeros()

An array of all elements as 0s can be constructed using the zeros () function as follows:

julia> a = zeros(7)
7-element Array{Float64,1}:
0.0

0.0

0.0

0.0

145

CHAPTER 7 ARRAYS

Syntax Behavior
zeros(A) an array of all zeros of the same element type and shape as A
ones(A) an array of all ones of the same element type and shape as A
trues(A) a Bool array with all values true and the shape of A
falses(A) a Bool array with all values false and the shape of A
rand(n) an array of n uniformly distributed random numbers in interval [0, 1)
randn(n) an array of n normally distributed random numbers
eye(n) an n x nidentity matrix
eye(n,m) an n x midentity matrix
fill(x,n) an array of dimensions n, filled with value x

0.0

0.0

0.0

julia> eltype(a)
Float64

julia> a = zeros(2,3)
2x3 Array{Float64,2}:
0.0 0.0 0.0
0.0 0.0 0.0

julia> a[2,2]
0.0

julia> a[2,2] == a[2,3] == a[1,1]
true

146

CHAPTER 7 ARRAYS

7.5.2 ones()

An array of all elements as 1s can be constructed using the ones () function as follows:

julia> a = ones(7)
7-element Array{Float64,1}:
1.0

L N = W S =
O O O © o ©

julia> eltype(a)
Float64

julia> a = ones(3,4)
3x4 Array{Float64,2}:
1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0

julia> a = ones(3,4,2)
3x4x2 Array{Float64,3}:

[:)) 1] =

1.0 1.0 1. 1.
1.0 1.0 1. 1.0
1.0 1.0 1. .0
[:) b) 2] =

1.0 1.0 1 1.
1.0 1.0 1 1.0
1.0 1.0 1 .0

147

CHAPTER 7 ARRAYS

7.5.3 trues()

Just like numerical 0s and 1s can be filled in an array, boolean true can be filled in an
array using the function trues() as follows:

julia> a = trues(2,3)
2x3 BitArray{2}:
true true true
true true true

julia> a = trues(3,4,2)
3x4x2 BitArray{3}:

[:, &, 1] =

true true true true
true true true true
true true true true

[:, 1, 2] =

true true true true
true true true true
true true true true

7.5.4 falses|()

In similar fashion, an array of boolean value false can be filled in an array using the
function falses():

julia> a = falses(2,3)
2x3 BitArray{2}:

false false false
false false false

julia> a = falses(3,4,2)
3x4x2 BitArray{3}:

[, &, 1] =

false false false false
false false false false
false false false false

148

CHAPTER 7 ARRAYS

[:J “ 2] =

false false false false
false false false false
false false false false

7.5.5 Arrays Filled with Random Numbers

Two functions provide arrays filled with random numbers. rand() provides uniformly
distributed random numbers within the interval [0, 1). On the other hand, randn()
provides an array filled with normally distributed random numbers:

julia> a = rand(8)
8-element Array{Float64,1}:
0.72864

.203516

.512295

.449959

.211407

.348952

.677256

.585907

O O O O © O o

julia> a = rand(8)
8-element Array{Float64,1}:
0.591333

.140416

.127931

.291892

.0306536

.0559765

.959664

.263331

O O O O © O o

149

CHAPTER 7 ARRAYS

Itis important to note that just like the two instances when we ran the command
rand(8), we got a different set of random numbers, we should also expect to get a
different set of random numbers while running this command:

julia> a = rand(8)
8-element Array{Float64,1}:
0.123916

.577333

.786042

.19784

.757978

.481438

375539

.949668

O O O O © O o

julia> a = randn(8)
8-element Array{Float64,1}:
-0.365407

-1.31341

-0.331167

-0.180398

-0.860501

0.831122

-0.223168

0.226383

The command works in a similar fashion for higher dimensional arrays:

julia> a = rand(2,3,5)

2x3x5 Array{Float64,3}:

[:, &, 1] =

0.0306414 0.767554 0.696444
0.0924386 0.334853 0.627763

[+, 55 2]
0.505539 0.00991551 0.277056
0.553033 0.272472 0.381655

150

[:J) 3] =

0.033432 0.826044 0.689259
0.927387 0.18994 0.517047
[:)) 4] =

0.725888 0.261185 0.155774
0.623608 0.211425 0.237139
[:)) 5] =

0.669267 0.659699 0.859842
0.691922 0.51326 0.156616
julia> a = randn(2,3,5)

2x3x5 Array{Float64,3}:

[:)) 1] =

-1.45105 0.506138 0.607333
0.269298 -0.172373 -0.7592
[:)) 2] =

-0.463605 0.459976 1.75424
-0.753155 0.043333 0.0107971
[::) 3] =

-0.470125 -0.426953 -1.02621
-0.0536346 1.10199 0.122024
[::) 4] =

1.00947 0.83089 0.395584

-0.0139497 -0.5233 0.405085

[:J “ 5] =
1.37339 -0.519548 0.5

56255

1.28814 -1.52136 0.0380677

CHAPTER 7 ARRAYS

151

CHAPTER 7 ARRAYS

7.5.6 eye()

An identity matrix is the one where diagonal elements are 1 and other elements are 0.
This can be created in Julia using the eye () command as follows:

julia> a = eye(3)

3x3 Array{Float64,2}:
1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

julia> a = eye(5)
5x5 Array{Float64,2}:
1.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 1.0

julias> a = eye(5,3)
5x3 Array{Float64,2}:
1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

0.0 0.0 0.0

0.0 0.0 0.0

It is worth noting that with a singular argument, eye(n), an n x n square identity
matrix is created, whereas eye(n,m) creates a matrix of dimension n x m.

7.5.7 fill()

Just like filling a matrix with Os and 1s can be done with zeros and ones, the fill
command produces an array filled with a desired numerical value as all of its elements:

julia> fill(s,3)
3-element Array{Int64,1}:
5

152

julia> fill(s,(2,3))
2x3 Array{Int64,2}:
5 55
5 5 5

julia> fill(s,(2,3,5))
2x3x5 Array{Int64,3}:
[:, ¢, 1] =

5 5 5

5 55

(9] v
v vl U
(Vs v

v
v
v

vl U
vl Ul
vl Ul

(9]
vl U
(9]

7.6 Reshaping Arrays

CHAPTER 7 ARRAYS

Reshaping an array means to change its dimensions. For example, a 1D array of the

shape 1 x 20 can be reshaped in a variety of ways: 4 x 5, 5 x 4, 2 x 2 x 5, and so on. This

can be done by the reshape() functions as shown below:

julia> A = Array{Int8}(4,5)

4x5 Array{Int8,2}:
-32 1 48 1 -16

153

CHAPTER 7 ARRAYS

-101 0 83 0 -101
-46 0 -7 0 -46
15 0 9 0O 15

julia> A1 = reshape(A,(5,4))
5x4 Array{Int8,2}:

-32 o -7 0

-101 0 9 -16

-46 0 1 -101

15 48 0 -46

1 8 0 15

julia> A1 = reshape(A,(20))
20-element Array{Int8,1}:
-32

-101

-46

15

48
83

o O O +»r vV

-16
-101
-46
15

154

CHAPTER 7 ARRAYS

julia> A1 = reshape(A,(2,2,5))
2x2x5 Array{Int8,3}:

[:, &, 1] =

-32 -46

-101 15

[:)) 2] =

48 -7

—
-

-
N
[E—
1

[+, : 5]
-16 -46
-101 15

7.6.1 Flipping

Flipping a particular dimension of a matrix can be performed at dimension n for a matrix
Ausing flipdim(A,n):

julia> A = [[1,2,3] [4,5,6]]
3x2 Array{Int64,2}:

1
2
3

[o2 NV, B~

julia> flipdim(A,1) # flipping row (dim=1)
3x2 Array{Int64,2}:

3
2
1

~ U1 o

155

CHAPTER 7 ARRAYS

julia> flipdim(A,2) # flipping column (dim=2)
3x2 Array{Int64,2}:

(o) NV, I

1
2
3

7.6.2 Squeezing and Arrays

Another built-in function named squeez () seems similar to reshaping, but it has quite
different behavior. squeeze(A, dims) removes the dimensions specified by dims from
array A:

julia> a = reshape(collect(1:9),(1,3,1,3))
Array of dimesnion 1x3x1x3 is created
1x3x1x3 Array{Int64,4}:

[, ¢, 1, 1] =

1 2 3

[:) :) 1) 2]
4 5 6

Lo |

-

-
=

-
w

[

1

julia> squeeze(a,3)

3rd dimesnion is removed and from
Array of 1x3x1x3 a new

Array of dimesnion 1x3x3 is created
1x3x3 Array{Int64,3}:

[, &, 1] =

1 2 3

[:)) 2] =
4 5 6

,_|
-

-
w
—_
1]

156

CHAPTER 7 ARRAYS

julia> squeeze(a,1)

1st dimesnion is removed and from
Array of 1x3x1x3 a new

Array of dimesnion 3x1x3 is created
3x1x3 Array{Int64,3}:

[:)) 1] =
1
2
3
[+, 1, 2] =
4
5
6
[:)) 3] =
7
8
9

7.7 Sorting

Sorting elements with a particular rule is an important aspect of matrix manipulation.
The built-in function sort (A), n sorts a matrix A along a dimension n. By default, Julia
picks reasonable algorithms and sorts in standard ascending order:

julia> sort([2,4,1,5,2,7,3])
7-element Array{Int64,1}:
1

~N U B W NN

157

CHAPTER 7 ARRAYS

Ifyou need to sort in descending order, you can choose the argument rev=true
(which is set to false) by default:

julia> sort([2,3,1,4,6,3,7], rev=true)
7-element Array{Int64,1}:
7

B, N W WD O

7.7.1 sortperm()

The built-in function sortperm() returns a permutation vector of indices of v that puts it
in sorted order:

julia> A = [2,3,1,4,6,3,7]

7-element Array{Int64,1}:

~N w oy bk wN

julia> v = sortperm(A) # array indices for incremental values
7-element Array{Int64,1}:
3

~N v B~ O N R

158

CHAPTER 7 ARRAYS

julia> A[v] # Creating array with new vector of indices
7-element Array{Int64,1}:
1

~N o B~ ww N

7.7.2 Sort by Transformation

Within the sort () function, you can use a particular transformation to sort the elements
in a particular fashion. For example, an array of positive and negative numbers is
defined, but you wish to sort them by ignoring their sign. In this case, you can use the
by=abs option in the sort() function to indicate that, while sorting, only absolute value
must be considered, as shown in the following example Julia code:

julia> A = [-2,3,-4,-1,0,-5]
6-element Array{Int64,1}:

julia> sort(A,by=abs)
6-element Array{Int64,1}:

159

CHAPTER 7 ARRAYS

7.7.3 Sorting Algorithms

At present, there are four sorting algorithms to choose from:

o InsertionSort
— Itis used internally by QuickSort.
— Itis efficient for smaller arrays.
— Ithas an order of O(n2) and is stable.

e QuickSort
— Ithas a default option for numeric values.
— Ithas an order of O(nlog(n)) and, hence, it is very fast.
— Itis not stable.

e Elements that are considered equal do not remain in the same
order in which they originally appeared.

o PartialQuickSort(k)

— Itis similar to QuickSort, but the output array is only sorted up to
index k where k has to be an integer.

o MergeSort
— Itis the default algorithm for non-numeric data.
— Ithas an order of O(nlogn) and is stable.
— Itis typically not as fast as QuickSort.

Let’s do a small experiment to validate these claims about various algorithms at
the Julia documentation web page. You can test the usage of the alg option within the
sort() function and time each event for various algorithms using the tic() and toc()
functions, which start and stop recording time as they appear.

It must be noted that this particular way of recording time of execution is not the
best option for benchmarking performance of an algorithm because it has not been
normalized for different processors, OS, and other parameters. Also a processor is free
to run an observed process (here the Julia command we are interested in) for different

160

CHAPTER 7 ARRAYS

intervals of time at different points of times. Hence, the time of execution will not even
be the same for code running on the same computer at different points of times. But our
aim is just to quickly check the time required for running the same sorting problem with
a different algorithm. In addition, the random numbers will be different each time the
command rand() is written. Thus, our present study is not enough to make judgments
about sorting algorithms, but rather to just test their execution times for a very crude
comparison.

The following Julia code is shown for this purpose. A Julia array is created with
rand(1:10000,100000) having 100,000 random numbers between 1 and 10,000. k is set
to 50,000 so that half of the numbers can be sorted. Then sort() is sandwiched between
the tic() and toc() command to obtain time elapsed to run the execution of code. The
results are compiled in Table 7-1.

julia> A = rand(1:10000,100000);

julia> k

50000;

julia> tic();qs=sort(A;alg=InsertionSort);toc()
elapsed time: 1.844173231 seconds
1.844173231

julia> tic();qs=sort(A;alg=QuickSort);toc()
elapsed time: 0.035997547 seconds
0.035997547

julia> tic();ps=sort(A;alg=PartialQuickSort(k));toc()
elapsed time: 0.022802908 seconds
0.022802908

julia> tic();qs=sort(A;alg=MergeSort);toc()
elapsed time: 0.037192645 seconds
0.037192645

161

CHAPTER 7 ARRAYS

Table 7-1. Time Elapsed Study for Various Sorting Algorithms

Algorithm Time Elapsed (s) Rank According to Speed
InsertionSort 1.844173231 4
QuickSort 0.035997547 2
PartialQuickSort(500) 0.022802908 1
MergeSort 0.037192645 3

Since PartialQuickSort(500) sorted only half the values, it came out the fastest;
however, compared to QuickSort, it is not faster when normalized with a number
of elements. So QuickSort is actually the fastest algorithm for the present crude
experiment.

7.7.4 Lexicographical Order

The built-in functions sortrows () and sortcolumns() are in lexicographical order.
Lexicographical order is sometimes called dictionary order because language
dictionaries follow the same order. Let’s test the same concept on an array of characters:
julia> A1 = [['b','a",'c'] ['d",'f","e"]]

3x2 Array{Char,2}:

lbl |d|
lal I_Fl
Icl Iel

julia> sort(A1,1)
3x2 Array{Char,2}:

lal |dl
lbl lel
Icl I_FI

julia> sort(A1,2)
3x2 Array{Char,2}:

lbl ldl
Ial I_FI
ICI |el

julia> sortrows(A1)
3x2 Array{Char,2}:
g

b "

C e

julia> sortcols(A1)
3x2 Array{Char,2}:
b "

g

c e

7.8 Finding Items in Arrays

CHAPTER 7 ARRAYS

Using the in() function, you can check if an item is a member of arrays, that is, if its

value matches the value of the elements. This seemingly insignificant facility proves to

be very powerful in writing comprehensions and loop structures, which makes Julia an

excellent choice for numerical computations. Following are two versions of its usage:

julia> A = [2,4,1,5,6]
5-element Array{Int64,1}:

2

[« N0, TR -

julia> 2 in A
true

julia> in(2,A)
true

julia> B = [A,A]

2-element Array{Array{Int64,1},1}:

[2)4)1)5’6]
[214)1)5’6]

163

CHAPTER 7 ARRAYS

julia> 2 in B
false

julia> A in B
true

It is clear from the previous example that elemental value is compared for in()
member function. When an array B is made using array A as two of its elements, then the
numeric value 2 is not found to be a member of B.

7.8.1 find(), findfirst(), and findnext()

Apart from just sensing the presence of a similar value, sometimes you need to find
the exact position of a value inside an array. The positions are addressed by indices.
The built-in function find() outputs the same. Another set of built-in functions,
findfirst() and findnext(), finds a value for its first occurrence and next to a given
index, respectively:

julia> A = collect(1:20); # Array having 1 to 20 numbers

julia> find(isodd,A) # Finding numbers which are odd
10-element Array{Int64,1}:

1
3
5
7
9

11
13
15
17
19

julia> findfirst(isodd,A)
1

julia> findnext(isodd,A,findfirst(A))
1

164

CHAPTER 7 ARRAYS

julia> findnext(isodd,A,findfirst(A)+1)
3

julia> findnext(isodd,A,findfirst(A)+10)
11

7.9 Copying an Array

While copying the contents of arrays seems a straightforward task, it has two varieties:
copy (shallow copy) and deepcopy. Let’s first study an example and then examine what
the difference between the two is:

julia> a = eye(3)

3x3 Array{Float64,2}:
1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

julia> b = [1,2,a] # b has array 'a' as its third element
3-element Array{Any,1}:

1

2

[1.0 0.0 0.0; 0.0 1.0 0.0; 0.0 0.0 1.0]

julia> ¢ = copy(b); d = deepcopy(b);

julia> b[3][1]=10 # changing first element of
third element as 10
10

julia> b

3-element Array{Any,1}:

1

2

[10.0 0.0 0.0; 0.0 1.0 0.0; 0.0 0.0 1.0]

165

CHAPTER 7 ARRAYS

julia> c # 'c' shallow copies a 'b' and changes
3-element Array{Any,1}:

1

2

[10.0 0.0 0.0; 0.0 1.0 0.0; 0.0 0.0 1.0]

julia> d # # d maintains deep copy of 'a’
3-element Array{Any,1}:

1

2

[1.0 0.0 0.0; 0.0 1.0 0.0; 0.0 0.0 1.0]

7.9.1 Deepcopy

From the previous example, it’s clear that while copy makes merely a new reference
(see Chapter 2, Section 2.6) to the same memory location as that of the original object,
deepcopy makes an entirely new copy (hence, a new memory location). This is the
reason that when the original object is changed, copy reflects those changes, while
deepcopy does not. This also means that while using copy does not increase the memory
footprint drastically, deepcopy does, especially for the cases when arrays occupy a
significant percentage of available memory. As a result, the two options should be used
judiciously as per requirements and available resources.

It is worth noting that while the command similar() (as explained in Section 7.2.9)
copies only the size, copy() and deepcopy() copy both the size and content.

7.10 Comprehension

Comprehension means to create arrays by a defined rule. It provides a general and
powerful way to construct arrays. The syntax is similar to a set of construction notation
in mathematics:

A= F(xy,...) for x=rx, y=1ry, ...]

In other words, it is comprised of a list of values for variables x and y. For each value,
F (x, y) is calculated and the element of the arrays is created. An example will make
this concept clear:

166

CHAPTER 7 ARRAYS

julia> A = rand(1:100,7)
7-element Array{Int64,1}:
24

3

90

80

20

78

57

julia> [A[i]*2 for i=1:length(A)]
All elements of A are squared
7-element Array{Int64,1}:

576

9

8100

6400

400

6084

3249

julia> [n”2 for n in A]

simpler way to perform the same
7-element Array{Int64,1}:

576

9

8100

6400

400

6084

3249

167

CHAPTER 7 ARRAYS

julia> [sqrt(A[i]) for i=1:length(A)]
All elments of A are square rooted
7-element Array{Float64,1}:

4.89898

1.73205

9.48683

8.94427

4.47214

8.83176

7.54983

julia> [1//2*A[i]+1//3*A[i+1] foxr i=2:length(A)-1]
one half of element is added to one third

of next element of A for createing new element
5-element Array{Rational{Int64},1}:

63//2

215//3

140//3

36//1

58//1

julia> [complex(A[i],A[i+1]) for i=1:length(A)-1]
A complex number is created with real part
is the element and complex part is

thr next element of A

6-element Array{Complex{Int64},1}:

24+31im

3+90im

90+80im

80+201im

20+78im

78+57im

The resulting array type depends on the types of the computed elements. As seen
in the previous example, the eletype() of an output array changed to type rational
or complex numbers, depending on the defined operation. For defining the type

168

CHAPTER 7 ARRAYS

explicitly, you can define the type of an output array. For example, if you desire to
get floating point numbers instead of rational numbers for the defined command

[1//2*A[i]+1//3*A[i+1] for i=2:length(A)-1], you can explicitly define the output

array type by printing Float64 at the beginning:

julia> Float64[1//2*A[i]+1//3*A[i+1] foxr i=2:length(A)-1]
5-element Array{Float64,1}:

31.5

71.6667

46.6667

36.0

58.0

A 2D and higher-dimension array can also be created simply by using
comprehension. Just write the formula for creating elements and then assign ranges

(separated by the , operator):

julia> [r*c for r in 1:5, c in 1:5]
5x5 Array{Int64,2}:

1 1 1 1 1

2 4 8 16 32

3 9 27 81 243

4 16 64 256 1024

5 25 125 625 3125

julia> [r"c+d for r im 1:3, c in 1:3, d in 3:5]
3x3x3 Array{Int64,3}:

[y &, 1] =
4 4 4
5 7 11
6 12 30
[:) > 2] =
5 5 5
6 8 12
7 13 31

169

CHAPTER 7 ARRAYS

[:J) 3] =
6 6 6
7 9 13
8 14 32

7.11 Generator Expressions

The comprehension style of defining the arrays requires the formula for generating the
elements to be written within square brackets. When it is written outside the square
brackets, it generates an object called Generator. This object can then be used in
defining the comprehension. Generator can be iterated to produce values on demand
instead of allocating an array and storing them in advance. For example:

julia> collect(x"y for x in 1:3,y in 1:3)
Array with element as x"y where

x is from 1 to 3

#y is from 1 to 3

3x3 Array{Int64,2}:

11 1
2 4 8
3.9 27

julia> collect(sin(x)*min(y) foxr x in pi:4*pi, y in [-2,4,5])
Array with element given by formula

sin(x)* min(y)

10x3 Array{Float64,2}:

-2.44929e-16 4.89859e-16 6.12323e-16

1.68294 -3.36588 -4.20735
1.81859 -3.63719 -4.54649
0.28224 -0.56448 -0.7056
-1.5136 3.02721 3.78401
-1.91785 3.8357 4.79462
-0.558831 1.11766 1.39708
1.31397 -2.62795 -3.28493
1.97872 -3.95743 -4.94679
0.824237 -1.64847 -2.06059

170

CHAPTER 7 ARRAYS

7.12 Assignment Operator and Arrays

Assignment operator = usually assigns the value on the left-hand side to an argument on
the right-hand side. This can be used to alter array values, too. For example:

julia> A = [1,2,3]
3-element Array{Int64,1}:
1

2

3

julia> A = [3,4,5] # Changes value in same size
3-element Array{Int64,1}:

3

4

5

julia> A = [3,4] # changes value in different size
2-element Array{Int64,1}:

3

4

This behavior can be understood in terms of the concept of a variable being merely
areference to a memory location. The variable named A points to a memory location
having a 3—elementArrayInt64, 1 object. When A is assigned to a different object, it
simply points to a new object as per the new assignment. The new object can be very
different from the original one.

An assignment operator can also be used to selectively assign new element values:

julia> A = rand(3,3)

3x3 Array{Float64,2}:

0.952371 0.0541676 0.957925
0.104845 0.168398 0.913292
0.571905 0.991414 0.0173661

julia> A[2:3, 3] =0

Assign the value zero to elements in
rows from 2 to 3 and

column number 3

0
171

CHAPTER 7 ARRAYS

julia> A

3x3 Array{Float64,2}:
0.952371 0.0541676 0.957925
0.104845 0.168398 0.0
0.571905 0.991414 0.0

7.12.1 Other Mathematical Operators

Chapter 8 is dedicated to explaining how mathematical functions can be operated on
arrays and their elements. This chapter is critical for numerical experimentation as most
of the data is converted into a matrix (stored in computer memory) and mathematical
functions are used to define a transformation equation. This transformation equation
operates on an input matrix and results in a new matrix (called transformed matrix).
Simulating a real system involves defining transformation equations. These transformed
matrices are converted back to the original form of data for visualization and
interpretation. For this reason, Julia’s abilities relating to speedy matrix transformation in
a flexible manner must be understood in detail so that users can judge correctly which to
choose and then define particular mathematical functions in the right manner.

7.13 Set Theory and Arrays

The Array data types can also be treated as equivalent to a mathematical set. The

set operations like U (Union) given by the built-in function union(), N (Intersection)
given by the built-in function intersect() and set difference (setdiff(A-B)) can be
calculated. Union operation collects the unique occurrence of an element of both sets.
Intersection collects common elements from both sets and set difference collects those
elements that are present in A but not in B.

julia> A = [1,2,3,4,-1,-3]
6-element Array{Int64,1}:
1

CHAPTER 7 ARRAYS

julia> B = [2,4,1,3,1,10]
6-element Array{Int64,1}:
2

UV TN N

10

julia> union(A,B)
7-element Array{Int64,1}:

10

julia> intersect(A,B)
4-element Array{Int64,1}:

N

3
4

julia> setdiff(A,B)
2-element Array{Int64,1}:
-1

-3

7.14 Dictionary

An English dictionary maps a useful piece of information in the form of an illustrative
paragraph and/or audio video files that can be found via a key. This kind of associative
collection is used in computer science, too, where a key-value pair is stored for future use

173

CHAPTER 7 ARRAYS

as a look-up table. By feeding a key, the value can be retrieved. A collection of such key-
value pairs is called a dictionary for obvious reasons.

7.14.1 Creating a Dictionary

Creating dictionaries is quite straightforward where key-value pairs are associated
using the => operator (called the Pair() function) and are separated by a comma. For
example:

julia> dict = Dict("red"=>1,"blue"=>2,"green"=>3)
Dict{String,Int64} with 3 entries:

"blue" => 2
"green" => 3
"red" =>1

julia> dict = Dict("red"=>"Red","blue"=>"Red","green"=>"Green")
Dict{String,String} with 3 entries:

llbluell => llRedll
"green" => "Green"
"Ied" => "Redll

julia> dict = Dict(1=>"Red",2=>"Red",3=>"Green")
Dict{Int64,String} with 3 entries:

2 => "Red"
3 => "Green"
1 => "Red"

The data type for keys and values can be similar or dissimilar with the condition that
keys must be unique.

If the data type of keys and values is known in advance, it can be alternatives defined
as the following:

julia> dict1 = Dict{Integer,String}(1=>"A",2=>"b")
Dict{Integer,String} with 2 entries:

2 => "b"

1=> "A"

174

CHAPTER 7 ARRAYS

An empty dictionary with known types
julia> dict1 = Dict{Integer,String}()
Dict{Integer,String} with 0 entries

An empty dictionary with unknown types
julia> dict1 = Dict()
Dict{Any,Any} with 0 entries

7.14.2 Looking Up a Dictionary

We use the index of an element to find the element of an array. In a similar fashion,
we use the key to find the value in a dictionary. Within square brackets, if a key is fed,
the value is returned, Alternatively, we can use the get () function, which inputs the
dictionary name and the key to output the value:

julia> dict = Dict(1=>"Red",2=>"Red",3=>"Green")
Dict{Int64,String} with 3 entries:

2 => "Red"
3 => "Green"
1 => "Red"

julia> dict[1]
llRedll

julia> dict[2]
"Redll

julia> dict[3]
"Green"

julia> get(dict,1,0)
llRedll

julia> get(dict,2,0)
"Redll

julia> get(dict,3,0)
"Green"

175

CHAPTER 7 ARRAYS

julia> get(dict,4,0)
0

julia> get(dict,4,"missing value")
"missing value"

The get () function uses the third argument (fed as a 0) in the previous code, which
is the default value for output in case the key-value pair is missing. This is highlighted in
the last two lines.

7.14.3 Finding Keys and Values

Keys of a dictionary can be found using the keys () function. The following Julia code
gives one such example:

julia> dict = Dict(1=>"Red",2=>"Red",3=>"Green")
Dict{Int64,String} with 3 entries:

2 => "Red"
3 => "Green"
1 => "Red"

julia> keys(dict)
Base.KeyIterator for a Dict{Int64,String} with 3 entries. Keys:
2

3
1

julia> values(dict)

Base.ValueIterator for a Dict{Int64,String} with 3 entries. Values:
"Red"

"Green"

"Red"

A KeyIterator object is returned as an output of the keys () function, whereas the
values() function outputs the ValueIterator object. They can be used to iterate over
the keys using the loop structure, which will be discussed in Chapter 11.

176

CHAPTER 7 ARRAYS

7.14.4 Changing Values

A different value can be associated with a key using the = operator as follows:

julia> dict = Dict(1=>"Red",2=>"Red",3=>"Green")
Dict{Int64,String} with 3 entries:

2 => "Red"
3 => "Green"
1 => "Red"

julia> dict[2]="Blue"

"Bluell

julia> dict

Dict{Int64,String} with 3 entries:

2 => "Blue"
3 => "Green"
1 => "Red"

Here the value associated with key 2 is changed to the String value "Blue" and this
change truly reflects the next time the dictionary is probed.

7.14.5 haskey()

Since the keys must be truly unique, the haskey () function comes in really handy
because it checks if the key is present in the dictionary:

julia> dict = Dict(1=>"Red",2=>"Blue",3=>"Green")
Dict{Int64,String} with 3 entries:

2 => "Blue"
3 => "Green"
1 => "Red"

julia> haskey(dict,4)
false

juliay haskey(dict,3)
true

177

CHAPTER 7 ARRAYS

7.14.6 Checking a Key-Value Pair

To check if a particular key-value pair is part of a dictionary, you can use the in operator
as follows:

julia> dict = Dict(1=>"Red",2=>"Blue",3=>"Green")
Dict{Int64,String} with 3 entries:

2 => "Blue"
3 => "Green"
1 => "Red"

julia> in((2=>"Red"),dict)
false

julia> din((2=>"Blue"),dict)
true

7.14.7 Adding and Deleting a Key

Adding a key can be performed quite simply. In the following Julia code, a key 4 shall be
associated with the value "Orange" and added to the dictionary. This will be reflected
the next time the dictionary is printed:

julia> dict = Dict(1=>"Red",2=>"Blue",3=>"Green")
Dict{Int64,String} with 3 entries:

2 => "Blue"
3 => "Green"
1 => "Red"

julia> dict[4]="Orange"
"Orange"

julia> dict
Dict{Int64,String} with 4 entries:
4 => "Orange"

2 => "Blue"
3 => "Green"
1 => "Red"

178

CHAPTER 7 ARRAYS

julia> delete!(dict,4)
Dict{Int64,String} with 3 entries:

2 => "Blue"
3 => "Green"
1 => "Red"

julia> dict
Dict{Int64,String} with 3 entries:

2 => "Blue"
3 => "Green"
1 => "Red"

Using the delete! () function, you can delete a key from the dictionary. The
exclamation mark signifies the version of function that changes the values of the input
object while operating.

7.15 Summary

Arrays are the backbone of matrix computations, which has enabled the use of
computers in the area of mathematics. Vectorizing a problem lets computers deal

with complex tasks within a computing machine and this, in turn, lets us approximate
a solution faster than achieving exact analytical solutions. Dynamically defining

and manipulating arrays within a variety of data types makes Julia a good option

for numerical computing. Fast operation is the key to Julia’s preference in this area.
Ease of defining vectorization of operations lets Julia work on arrays as matrices in a
flexible manner. Effectively managing, copying, sorting, and generating arrays using
comprehensions makes Julia a good choice for matrix-based mathematical methods to
solve physical problems.

7.16 Bibliography

[1] http://docs.julialang.org/en/stable/

179

http://docs.julialang.org/en/stable/

CHAPTER 8

Arrays for Matrix
Operations

8.1 Defining an Array

A Julia array is equivalent to a mathematical matrix because, just like a Julia array, a
matrix is an ordered collection of numbers. The simplest case for a matrix is the one
storing component of a 3D vector. For example, a vector 4 = 2i + 3}' —4k can also be
represented as either a row matrix:

[2 3 —4]

or a column matrix:

2
3
—4

In both cases, the numbers 2, 3, and —4 are ordered in a fashion. Now this matrix can
be represented by an array in Julia as follows:

julia> A = [2,3,-4]
3-element Array{Int64,1}:
2

3

-4

181
© Sandeep Nagar 2017

S. Nagar, Beginning Julia Programming, https://doi.org/10.1007/978-1-4842-3171-5_8

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

julia> size(A)

(3,)

julia> A’

1x3 Array{Int64,2}:
2 3 -4

julia> size(A')
(1,3)

julia> (A")’

3x1 Array{Int64,2}:
2

3

-4
julia> size((A')")
(3,1)

e Acreates a 1D array object (having only one index).

This is not equivalent to a mathematical matrix as a matrix

element must have at least two indices.

— For practical purposes, this can be used as a vector.

numbers.

This object is mostly used to represent a sequence or series of

e A’ createsal x 32D array object.

depicting columns.

This is equivalent to a column matrix.

Each element has two indices, one depicting rows and the other

e (A")' createsa3 x 12D array object.

— This is equivalent to a row matrix.

— Each element has two indices, one depicting rows and the other

depicting columns.

182

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

It is important to note that Julia arrays are column majors—they are read
columnwise, the same as BLAS [1] and LAPACK [2] libraries.

AJulia array doesn’t have to contain only numbers. In fact, it can contain other arrays
as its elements. Let’s define an array having two arrays as its elements. The array named
a has two elements; one of them is [1, 2, 3] and the other is [3, 4, 5]. Next, we create an
array that has two a as its elements. Probing the type of elements using eltype() for
a and b provides information that a has elements as an array of Int64, which is 1D in
nature. On the other hand, b has a 1D array of arrays of 1D Int64.

julia> a = [[1,2,3]1,[3,4,5]]
2-element Array{Array{Int64,1},1}:
[1,2,3]

[3,4,5]

julia> b = [a,a]

2-element Array{Array{Array{Int64,1},1},1}:
Array{Int64,1}[[1,2,3],[3,4,5]]
Array{Int64,1}[[1,2,3],[3,4,5]]

julia> eltype(a)
Array{Int64,1}

julia> eltype(b)
Array{Array{Int64,1},1}

The importance of the comma operator , can be highlighted with the following
example. A comma separates two elements of an array. When it is omitted and a
whitespace character (pressing the space bar prints a whitespace character) is used
instead, the elements belong to a separate column. We have already used this feature in
Chapter 7 (Section 7.2).

julia> a = [[1,2,3],[4,5,6]]
2-element Array{Array{Int64,1},1}:
[1,2,3]

[4,5,6]

183

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

jU1ia> b = [[112)3] [4:5:6]]
3x2 Array{Int64,2}:

1
2
3

S v b

julia> a = [[1,2,3], [4,5,6],[7,8,9]]
3-element Array{Array{Int64,1},1}:
[1,2,3]

[4,5,6]

[7,8,9]

julia> b = [[1,2,3] [4,5,6] [7,8,9]]
3x3 Array{Int64,2}:

1 3 6

2 4 8

3 59

julia> eltype(a) # elements are arrays
Array{Int64,1}

julia> eltype(b) # elements are numbers
Int64

8.2 Properties of a Matrix

Mathematical matrices have some properties associated with them. They can be
evaluated by built-in Julia functions:

Syntax Behavior

det(A) determinant of a square matrix A
inv(A) inverse of a square matrix A
pinv(A) pseudo-inverse of a matrix A
rank(A) rank of a matrix A

184

8.2.1 Determinants

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

Determinant of a 2 x 2 square matrix:

Z z‘=(ad ~bc) (8.1)

Similarly, determinant of a 3 x 3 square matrix:

a b c
c

d e fl=ax

g h i

d
§

f——bx‘
i

d
g

f

l

+CX

Z =aei+bfg+cdh—ceg—bdi—afh (8.2)

In a similar manner, a bigger matrix can be solved for finding a determinant. The

determinant of a square matrix can be evaluated using the command det (A) for an array

referenced by variable named A.

julia> a = rand(3,3)
3x3 Array{Float64,2}:
0.00507492 0.305511
0.196032 0.444446
0.461296 0.664772

julia> det(a)
0.03241777361378804

julia> b = zeros(3,3)
3x3 Array{Float64,2}:
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

julia> det(b)
0.0

0.0548617

0.374534
0.260325

185

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

julia> c = ones(3,3)
3x3 Array{Float64,2}:
1.0 1.0 1.0
1.0 1.0 1.0
1.0 1.0 1.0

julia> det(c)
0.0

8.2.2 Rank

The rank of a matrix is related to the linear independence of rows/columns elements.
The maximum number of linearly independent rows in a matrix A is called the row rank
(R) of A, and the maximum number of linearly independent columns in A is called the
column rank (R,) of A. Hence, for a, m x n, R, < m. Similarly, R, < n. Since there is no real
reason to differentiate between rows and columns, R, = R, = R (rank of matrix).

This matrix has rows and columns Number 1 and 2 as linearly dependent, which
makes the rank 2:

(8.3)

S

Il
w N -
D N
N B W

julia> A = [[1,2,3] [2,4,6] [3,4,7]]
3x3 Array{Int64,2}:

12 3
2 4 4
3 6 7

julia> rank(A)
2

186

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

8.2.3 Trace

The trace of a matrix is the sum of diagonals for a square matrix. For example,
for matrix A:

(8.4)

BN

Il
w N -
S N
N o W

The diagonal elements are 1, 4, and 7, so their sum is 12.

julia> A = [[1,2,3] [2,4,6] [3,4,7]]
3x3 Array{Int64,2}:

1 2 3
2 4 4
3 6 7

julia> trace(A)
12

8.2.4 An Upper and Lower Triangular Matrix

tril(A) and triu(A) create a lower and upper triangular matrix from the matrix A.

julia> A = [[1,2,3] [2,4,6] [3,4,7]]
3x3 Array{Int64,2}:

1 2 3
2 4 4
36 7

julia> triu(A)
3x3 Array{Int64,2}:

o O B

2 3
4 4
0o 7

187

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

julia> tril(A)
3x3 Array{Int64,2}:

1
2
3

S B~ O
~N O O

It works in a similar manner for nonsquare matrices:

julia> A = rand(3,4)
3x4 Array{Float64,2}:
0.384402 0.322611 0.894988
0.336801 0.949834 0.648842
0.717028 0.185107 0.684199

o

.839034
.0314278
.582574

o O

julia> tril(A)

3x4 Array{Float64,2}:

0.384402 0.0 0.0 0.0
0.336801 0.949834 0.0

0.717028 0.185107 0.684199

julia> triu(A)
3x4 Array{Float64,2}:

0.384402 0.322611 0.894988 0.839034
0.0 0.949834 0.648842 0.0314278
0.0 0.0 0.684199 0.582574

To test if a given matrix is an upper and lower triangular matrix, the built-in function
istriu() and istril() can be used:

julia> A = rand(3,3)
3x3 Array{Float64,2}:
0.912325 0.940698 0.768983
0.396439 0.555518 0.695407
0.961875 0.427829 0.987956

188

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

julia> triu A = triu(A)

3x3 Array{Float64,2}:
0.912325 0.940698 0.768983
0.0 0.555518 0.695407
0.0 0.0 0.987956

julia> tril A = tril(A)

3x3 Array{Float64,2}:
0.912325 0.0 0.0
0.396439 0.555518 0.0
0.961875 0.427829 0.987956

julia> istriu(triu_ A)
true

julia> istril(tril A)
true

8.2.5 Diagonal Elements

The built-in function diag(A, k) lists the diagonal elements with k as the offset for the
diagonal whose positive value indicates the approaching right side and the negative
value indicates the approaching left side:

julia> A = randn(3,4)
3x4 Array{Float64,2}:

0.171985 0.323654 -0.929096 0.237231
0.396988 0.000290637 -0.852227 -0.242657
1.52518 -0.721912 -1.40742 0.0488358

julia> diag(A)

3-element Array{Float64,1}:
0.171985

0.000290637

-1.40742

189

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

julia> diag(A,1)

3-element Array{Float64,1}:
0.323654

-0.852227

0.0488358

julia> diag(A,-1)

2-element Array{Float64,1}:
0.396988

-0.721912

julia> diag(A,-2)
1-element Array{Float64,1}:
1.52518

8.2.6 Norm

Following is the Euclidean norm where a, € A:

A=\a’+a>+al+...

The built-in function norm() computes the norm of a matrix. If a square complex or
real matrix A| is given, then matrix norm ||A|| is a nonnegative number associated with A

having the following properties:
1. ||A]| >0when ||A # 0||and | |A||=0ifA=0
2. k||All=11k||||A]]| for any scalar k
3. [IA+B[[<[|All+]]B]]
4. [|AB|| < [[A]]]lB]

julia> A = [[1,2,3] [4,5,6] [7,8,9]]
3x3 Array{Int64,2}:

1
2
3

(o) BNV, IR S
O o0

190

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

julia> norm(A)
16.84810335261421

julia> A = [[1//2,2//3,3//4] [4//5,5//6,6//7]]
3x2 Array{Rational{Int64},2}:

1//2 4775

2//3 5//6

3//4 6//7

julia> norm(A)
1.8199543952941895

julia> a = complex(2,3)
2 + 3im
julia> b
3 - 2im

complex(3,-2)

julia> A = [[a,b] [-b,-a]]
2x2 Array{Complex{Int64},2}:
243im -3+2im

3-2im -2-3im

julia> norm(A)
5.099019513592785

In the case of vectors X and Y , the Euclidean distance =
norm(x-y)

and the angle between them

- cosl(n orm(x;zj;zorm(J’)J

julia> x = [1,2,3]
3-element Array{Int64,1}:
1

2

3
191

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

julia> y = [2,4,6]
3-element Array{Int64,1}:
2

4

6

julia> dot_xy
28

dot(x,y)

julia> norm x = norm(x)
3.7416573867739413

julia> norm_y = norm(y)
7.483314773547883

julia> angle = dot_xy/(norm_x * norm_y)
1.0

julia> (angle*180)/pi # converting to degrees
57.29577951308232

8.3 Matrix Operations

Matrix algebra entertains two varieties of each operation. The first one is where each
element is operated upon (the operand is the element of an array). The second one is where
the entire matrices are operated with each other (the operand is a matrix.) For example:

{1 2}{—1 —2}{0 0} (85)
3 4|/ |-3 4] |0 0

julia> a= [[1,2] [3,4]]

2x2 Array{Int64,2}:

1 3
2 4

julia> b= [[-1,-2] [-3,-4]]
2x2 Array{Int64,2}:

1 -3

2 -4

192

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

2x2 Array{Int64,2}:

julia> a+b
0 0
0 0

8.3.1 Multiplication

Addition and subtraction work in an elementwise fashion, but multiplication has many

varieties:

e Scalar multiplication

a x A where aisa scalar and A is a vector.

o Elementwise multiplication

Each element of A is multiplied by corresponding element of B.

The shape of A and B must be identical.

e Vector multiplication

dot product ex. A.B

« Theshape of A and B must be identical.

cross product ex. AxB

« Theinner dimension of A and B must be identical.

triple dot product ex. A.(B xC)

« Theshape of A and the resultant of BxC must be identical.
e Theinner dimension of B and C must be identical.

triple cross product ex. Ax (B’ xC)

e Theinner dimension of B and C must be identical.

e Theinner dimension of A and BxC must be identical.

193

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

Scalar Multiplication

Scalar multiplication dictates multiplication of a scalar with each element of a matrix:

1 2 2x1 2x2 2 4
xX2= = (8.6)
3 4 2x3 2x4 6 8

Julia code implementing the same can be written as follows:

julia> a= [[1,2] [3,4]]
2x2 Array{Int64,2}:

1 3

2 4

julia> 2*a

2x2 Array{Int64,2}:

2 6

4 8

This is usually accomplished as follows:

e Ascalar 2 is converted to vector filled with scalar quantities with the
same shape as it is multiplying with, in our case, 2 x 2:

I

o Each element is multiplied elementwise with its corresponding
2x1 2x2| |2 4
2x3 2x4| |6 8

Elementwise Multiplication

element:

Elementwise multiplication between two matrices of the same size can be performed as

1 2] 2 3] [1x2 2x3] [2 6
L 4}{4 5}[%4 4x5}{12 20} (8.7)

follows:

194

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

This can be accomplished in Julia code using the elementwise multiplication
operator (. *) as follows:

julia> a = [[1,3] [2,4]]
2x2 Array{Int64,2}:
1 2

3 4

julia> b = [[2,4] [3,5]]
2x2 Array{Int64,2}:

2 3

4 5

julia> a.*b

2x2 Array{Int64,2}:
2 6

12 20

When the shape of arrays do not match, one encounters a DimensionMismatch error.
Hence, it is advisable that users check the dimensions of arrays (especially if they are big
and/or dynamically modified during calculations) before performing this calculation.

Dot Products

The dot product of a matrix multiplies the row elements of one matrix with the column
element of a second matrix and the sum all the numbers. Thus, the inner dimensions of
the matrices must be identical. For example, m x n can be multiplied with n x p matrix.
The result is a scalar, that is, a number:

111
11 1)

This can be accomplished in Julia with the following code:

=(1x1)+(1x1)+(1x1)+(1x1)+(1x1)+(1x1)=6 (8.8)

—
—

julia> a = ones(2,3)
2x3 Array{Float64,2}:
1.0 1.0 1.0
1.0 1.0 1.0

195

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

julia> b = a'

3x2 Array{Float64,2}:
1.0 1.0

1.0 1.0

1.0 1.0

julia> vecdot(a,b)
6.0

Rational numbers can also be processed within this framework. The result is a
rational number. The following example shows the process of working with rational
numbers:

julia> A = [[2//3,3//4] [4//5,3//2]]
2x2 Array{Rational{Int64},2}:

2//3 4775

3//4 3//2

julia> B = A’

2x2 Array{Rational{Int64},2}:
2//3 3//4

4//5 3/72

julia> vecdot(A,B)
701//180

julia> vecdot(B,A)
701//180

Similarly, complex numbers can also be used as matrix elements. The result is a
complex number. The following example shows the process of working with complex
numbers:

julia> a
2 + 3im

complex(2,3)

julia> b
2 - 2im

complex(2,-2)

julia> ¢
-2 - 2im

complex(-2,-2)

196

julia> d = complex(2,2)

2 + 2im

julia> A = [[a,b] [c,d]]

2x2 Array{Complex{Int64},2}:
243im -2-2im

2-2im 2+42im

julia> B = A’

2x2 Array{Complex{Int64},2}:
2-3im 2+2im

-242im 2-2im

julia> vecdot(A,B)

-21 - 20im

Cross Product

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

The cross product of two matrices, saya 2 x 3 matrix named A with 3 x 2 matrix

named B, results in another matrix with the dimension 2 x 2:

jU1ia> A= [[1J2)3] [4)5)6]]
3x2 Array{Int64,2}:

1
2
3

o U1 b

julia> B = A’

2x3 Array{Int64,2}:
1 2 3

4 5 6

julia> A*B
3x3 Array{Int64,2}:
17 22 27
22 29 36
27 36 45

197

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

The cross product can be performed with Rational data types, too. In this case, the
resulting matrix is composed of Rational data type:

julia> A = [[1//2,2//3,3//4] [4//5,5//6,6//7]]
3x2 Array{Rational{Int64},2}:

1//2 4/75

2//3 5//6

3//4 6//7

julia> B = A’
2x3 Array{Rational{Int64},2}:

1//2 2//3 3//4
4//5 5//6 6//7

julia> A*B

3x3 Array{Rational{Int64},2}:
89//100 1//1 297//280
1//1 41//36 17//14
297//280 17//14 1017//784

julia> eltype(A*B)
Rational{Int64}

Similarly, the cross product can be performed with Complex data types. In this case,
the resulting matrix is composed of a Complex data type:

julia> a = complex(2,3)
2 + 3im

julia> b = complex(-1,2)

-1 + 2im

julia> ¢
-2 - 4im

complex(-2,-4)

julia> d
2 + 4im

complex(2,4)

198

CHAPTER 8

julia> A = [[a,b,c] [b,a,c]]
3x2 Array{Complex{Int64},2}:
2+3im -1+42im
-142im 2+43im
-2-4im -2-4im

julia> B = A’

2x3 Array{Complex{Int64},2}:
2-3im -1-2im -2+4im
-1-2im 2-3im -2+4im

julia> A*B

3x3 Array{Complex{Int64},2}:
18+0im 8+0im -22-6im
8+0im 18+0im -22-6im
-22+6im -22+6im 40+0im

julia> eltype(A*B)
Complex{Int64}

ARRAYS FOR MATRIX OPERATIONS

Another syntax that is used for multiplication is * (A, B) for arrays stored in A and B. It

is equivalent to A*B:

jU1ia> A = [[1)2)3] [4:5:6]]
3x2 Array{Int64,2}:

1
2
3

o v b

julia> *(A,A")

3x3 Array{Int64,2}:
17 22 27

22 29 36

27 36 45

199

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

8.4 Division

The division of two matrices is a peculiar operation. Let’s first understand how this is
done analytically. When matrices A and B are given, then

é:AxB"1
B

Consequently, it is important to understand what is the inverse of a matrix to
perform division.

8.4.1 Inverse of a Matrix

The inverse of a square matrix A is such a matrix (depicted by A!) such that
AxA™ =1

where Iis the identity matrix. To calculate the inverse matrix from a given array, Julia
uses the built-in function inv(A) for an array object referenced by variable name A. The
usage is explained in the following code:

julia> A = rand(3,3) # A 3x3 matrix of random numbers
3x3 Array{Float64,2}:

0.0371386 0.382131 0.575963

0.920995 0.696674 0.897717

0.485728 0.705719 0.867646

julia> inv(A) # Inverse of matrix

3x3 Array{Float64,2}:

-0.733357 1.88985 -1.46853

-9.1587 -6.24467 12.5409
7.85998 4.02126 -8.22573

julia> A*inv(A) # A*inv(A) = I
3x3 Array{Float64,2}:

1.0 0.0 0.0
-8.88178e-16 1.0 0.0
-1.77636e-15 0.0 1.0

200

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

It is worth noting that the input array must depict a square matrix, that is, an array of

dimensions 7 x n. Julia will issue an error in the following situations:

e Aisnotsquare.

For a n x m matrix A, pinv(A) gives the pseudo-inverse:

julia> A = rand(2,3)
2x3 Array{Float64,2}:
0.844851 0.288378 0.568634
0.551517 0.83383 0.960742

julia> pinv(A)

3x2 Array{Float64,2}:
1.59703 -0.753778
-0.838736 0.980266
-0.18884 0.622796

julia> A*pinv(A)

2x2 Array{Float64,2}:

1.0 -1.33206e-17
1.86956e-16 1.0

e Aisnotinvertible.

A square matrix that is not invertible is called singular or

degenerate.

A square matrix a is singular if |A| = 0.

julia> A = [[1,1] [1,1]]
2x2 Array{Int64,2}:

1 1

1 1

julia> det(A)
0.0

201

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

julia> inv(A)

ERROR: Base.LinAlg.SingularException(2)
Stacktrace:

[1] inv! at ./linalg/lu.jl:308 [inlined]
[2] inv(::Base.LinAlg.LU{Floaté64,
Array{Float64,2}}) at

./linalg/lu.jl:310

[3] inv(::Array{Int64,2}) at
./linalg/dense.jl:659

— An exception Base.LinAlg.SingularException is generated if

Julia encounters a singular matrix.

The Inverse of a Matrix Made of Rational Numbers

The commands inv() and pinv() work well for square and nonsquare matrices,
respectively, that are made of rational numbers, too:

julia> A = [[1//2,2//3] [3//4,4//5]]
2x2 Array{Rational{Int64},2}:

1//2 3//4

2//3 4775

julia> inv(A)
2x2 Array{Rational{Int64},2}:
-8//1 15//2
20//3 -5//1

julia> A*inv(A)

2x2 Array{Rational{Int64},2}:
1//1 0//1

o//1 1//1

julia> A = [[1//2,2//3] [3//4,4//5] [5//6,6//7]]
2x3 Array{Rational{Int64},2}:

1//2 3//4 5//6

2//3 4//5 6//7

202

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

julia> pinv(A)
3x2 Array{Float32,2}:

-7.07495 6.77436
1.73306 -1.12989
3.88522 -3.04772

julia> A*pinv(A)

2x2 Array{Float32,2}:
1.0 -7.15256F-7
4.76837f-7 0.999999

The Inverse of a Matrix Made of Complex Numbers

The commands inv() and pinv() work well for square and nonsquare matrices,

respectively, that are made of complex numbers, too. In most cases, instead of getting

perfect zero at nondiagonal positions, we obtain extremely small numbers that can be

approximated as 0:

julia> a = complex(2,3)

2 + 3im

julia> b = complex(3,4)

3 + 4im

julia> A = [[a,b] [-b,a]]
2x2 Array{Complex{Int64},2}:
2+43im -3-4im

3+44im 2+43im

julia> inv(A)

2x2 Array{Complex{Float64},2}:
0.0583333-0.0751m 0.075-0.1083331im
-0.075+0.1083331im 0.0583333-0.0751im

julia> A*inv(A)

2x2 Array{Complex{Float64},2}:
1.0+5.55112e-17im 1.66533e-16-2.77556e-17im
-5.55112e-17+2.77556e-17im

1.040.0im

203

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

julia> A = [[a,b] [b,a] [-a,-b]]
2x3 Array{Complex{Int64},2}:
2+3im 3+4im -2-3im

3+44im 2+3im -3-4im

julia> pinv(A)

3x2 Array{Complex{Float64},2}:
-0.108108+0.101351im 0.141892-0.148649im
0.283784-0.297297im -0.216216+0.202703im
0.108108-0.101351im -0.141892+0.148649im

julia> A*pinv(A)

2x2 Array{Complex{Float64},2}:
1.0+1.38778e-16im 6.66134e-16+0.0im
0.0+1.11022e-16im 1.0-2.22045e-16im

8.4.2 Scalar Division

A scalar division of a matrix is elementwise division of a matrix with a scalar.

For example:

julia> A = ones(3,2)
3x2 Array{Float64,2}:
1.0 1.0
1.0 1.0
1.0 1.0

julia> A/2

3x2 Array{Float64,2}:
0.5 0.5

0.5 0.5

0.5 0.5

This is similar for an array of rational number and complex numbers:

julia> a = [[1//2,2//3] [3//4,4//5]]
2x2 Array{Rational{Int64},2}:

1//2 3//4

2//3 4775

204

julia> a/2
2x2 Array{Rational{Int64},2}:
1//4 3//8

1//3 2//5

julia> a = complex(2,3)

2 + 3im

julia> b = complex(-2,4)
-2 + 4im

julia> A = [[b,a] [-a,b]]

2x2 Array{Complex{Int64},2}:
-244im -2-3im
2+3im -2+4im

julia> A/2

2x2 Array{Complex{Float64},2}:

-1.042.0im -1.0-1.5im
1.0+1.5im -1.0+2.01im

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

We can even make elements as rational numbers using \\ operators:

julia> A = rand(1:9, 2, 2)
2x2 Array{Int64,2}:

6
4 8

julia> A//2
2x2 Array{Rational{Int64},2}:
4//1 3//1
2//1 4//1

205

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

8.4.3 Left or Right Division

In the case of matrices, A x B # B x A. In the case of finding division, we would have two
varieties:

e Left division

é=A’1><B
B

— This is performed by Julia syntax A\B.
o Right division

ézAxB’l
B

— This is performed by Julia syntax A/B:

julia> A = rand(2,2)
2x2 Array{Float64,2}:
0.0871932 0.403085
0.199973 0.611003

julia> B = rand(2,2)
2x2 Array{Float64,2}:
0.288173 0.691764
0.400971 0.457488

julia> A\B

2x2 Array{Float64,2}:
-0.528666 -8.71778
0.829277 3.60196

julia> A/B

2x2 Array{Float64,2}:
0.836428 -0.383675
1.05474 -0.259307

206

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

8.4.4 Power of a Matrix

Just like numbers, matrices can be raised to a power and, just like other operators, this
can be done elementwise or matrixwise. Elementwise raised to some power is simply
replacing elements with new numbers after applying the operations:

julia> A = [[2,3] [4,5]]
2x2 Array{Int64,2}:

2 4

3 5

julia> A.”2 # elements sqaures
2x2 Array{Int64,2}:

4 16

9 25

julia> A.”0.5 # square root of elements
2x2 Array{Float64,2}:

1.41421 2.0

1.73205 2.23607

julia> A.71//3 # elements with power 1/3
2x2 Array{Rational{Int64},2}:

2//3 4//3

1//1 5//3

julia> A.”complex(2,3) # elements raised
to the power a complex number 2+3i

2x2 Array{Complex{Float64},2}:
-1.94798+3.49362im -8.41077-13.6111im
-8.89315-1.38271im 2.89163-24.8322im

207

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

On the other hand, matrix operations can also be defined in terms of power. If A is a

matrix,
A"=AxAxA..(ntimes),nel’ (8.9)
1. 1.1
A" =—x—x—..(ntimes),nel" (8.10)
A A A
AOZI (8.11)

julia> A = [[2,3] [4,5]]
2x2 Array{Int64,2}:

2 4

3 5

julia> A2 # raised to power of positive integer
2x2 Array{Int64,2}:

16 28

21 37

julia> A~(-2) # raised to power of negative integer
2x2 Array{Float64,2}:

9.25 -7.0

-5.25 4.0

julia> A*(-2.5) # raised to power of fraction
2x2 Array{Complex{Float64},2}:
0.00211085-17.6309im 0.00371153+13.3696im
0.00278364+10.0272im 0.0048945-7.603671m

julia> A"0 # raised to power of zero
2x2 Array{Int64,2}:

1 0

0 1

208

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

julia> A~(complex(2,3)) # raised to
#power of complex number

2x2 Array{Complex{Float64},2}:
15.0873-5.16588im 26.5281-9.08321im
19.8961-6.81241im 34.9834-11.97831im

julia> A~(1//5) # raised to power of positive rational
2x2 Array{Complex{Float64},2}:

0.884712+0.317203im 0.45686-0.240537im
0.342645-0.180403im 1.22736+0.13681im

julia> A"(-2//5) # raised to power of negative rational
2x2 Array{Complex{Float64},2}:

0.49813-1.11379im -0.034878+0.8445941im
-0.0261585+0.633446im 0.471972-0.4803451im

Square Root of a Matrix

sqrtm(A) is a dedicated built-in function for calculating the square root a matrix. Just
like power operations, it requires A to be a square matrix:

julia> A = [[1,2] [3,4]]
2x2 Array{Int64,2}:

13

2 4

julia> A"(1//2) # using power
2x2 Array{Complex{Float64},2}:
0.553689+0.464394im 1.21044-0.318641im
0.806961-0.212426im 1.76413+0.145754im

julia> sqrtm(A) # using sqrtm function
2x2 Array{Complex{Float64},2}:
0.553689+0.464394im 1.21044-0.318641im
0.806961-0.212426im 1.76413+0.145754im

209

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

8.4.5 Exponentiation of Matrices

The built-in function expm(A) computes the matrix exponential of A, as follows:

0 A}‘l
ot = Z; (8.12)

n=0 *
eA=1+u4+%§?+f%%§+~‘ (8.13)

julia> a = [[1,2,3] [4,5,6] [7,8,9]]
3x3 Array{Int64,2}:

1
2
3

S v B
O 0

julia> expm(a)

3x3 Array{Float64,2}:

1.11891e6 2.53388e6 3.94886€6
1.37482e6 3.11342e6 4.85201e6
1.63072e6 3.69295e6 5.75517e6

The fact

can be verified using Julia code:

julia> a = rand(3,3)

3x3 Array{Float64,2}:
0.833095 0.295597 0.861936
0.748249 0.24969 0.63176
0.152565 0.227104 0.557303

julia> expm(a)*expm(-a)

3x3 Array{Float64,2}:

1.0 -5.55112e-17 0.0
6.93889e-17 1.0 -2.22045e-16
-2.77556e-17 5.55112e-17 1.0

210

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

Another fact, e” xe® =e*"? | can be verified using Julia code:

julia> a = rand(3,3)

3x3 Array{Float64,2}:

0.0487381 0.866547 0.00377073
0.391296 0.0638764 0.533699
0.425764 0.281759 0.626053

julia> tr a = a
3x3 Array{Float64,2}:

0.0487381 0.391296 0.425764
0.866547 0.0638764 0.281759
0.00377073 0.533699 0.626053

julia> sumi=(a+tr_a)
3x3 Array{Float64,2}:
0.0974763 1.25784 0.429535
1.25784 0.127753 0.815458
0.429535 0.815458 1.25211

julia> product = expm(a)*expm(tr_a)

3x3 Array{Float64,2}:

2.75234 2.44734 2.27168
2.44734 3.00784 3.09183
2.27168 3.09183 5.17031

julia> expm(sumi)

3x3 Array{Float64,2}:
2.65748 2.57752 2.3178
2.57752 3.20806 2.96962
2.3178 2.96962 5.08507

It is worth noting that due to numerical approximations, exact matrices might not be

obtained. For example, instead of zeros in nondiagonal elements for an identity matrix,

you might obtain very small numbers. Similarly, product == expm(sum1) would result

211

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

in false for the previous code since the elements are not exactly equal. But they are
close.

julia> product - expm(sumi)

3x3 Array{Float64,2}:

0.0948575 -0.130178 -0.046114

-0.130178 -0.200223 0.122203

-0.046114 0.122203 0.0852462

Users are encouraged to verify more identities related to exponentiation of matrices
while keeping in mind that approximations will result in inequalities where equality is
expected.

8.4.6 Logarithm on Matrices

The built-in function logm(A) computes the logarithm of a matrix. Given the definition
of exponentiation of a matrix by Equation 8.12, the logarithm of a matrix can be defined
as follows:

e’=B=log,(B)=A (8.14)

Matrix logarithms are not unique like logarithms of complex numbers. Furthermore,
a matrix has a logarithm if and only if it is invertible.
The use of function logm() is explained in the following code:

julia> a = rand(3,3)
3x3 Array{Float64,2}:
0.202601 0.368547 0.304107
0.984077 0.77166 0.554232
0.526979 0.248144 0.534636

julia> logm(a)

3x3 Array{Complex{Float64},2}:

-1.07606+2.37668im 0.410897-0.794355im 0.382366-0.381245im
1.15272-1.76414im -0.52341+0.590431im 0.838622+0.281392im
0.595192-1.09302im 0.411622+0.365746im -0.926971+0.1744841im

212

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

8.5 Broadcasting

When elementwise operations need to be performed on arrays of different sizes, Julia
provides broadcast (), which expands singleton dimensions in array arguments to
match the corresponding dimension in the other array without using extra memory and
applies the given function elementwise. The following Julia code will make this clear
where arrays a (size of 2 x 1) and b (size of 2 x 4) are multiplied using the broadcast
function:

julia> a = rand(2,1)
2x1 Array{Float64,2}:
0.340869
0.864133

julia> b = rand(2,4)
2x4 Array{Float64,2}:
0.764798 0.716987 0.184377 0.483765
0.743202 0.808572 0.513173 0.839672

julia> broadcast(*,a,b)

2x4 Array{Float64,2}:

0.260696 0.244399 0.0628484 0.1649
0.642226 0.698714 0.44345 0.725588

8.6 Boolean Operations

Just like arithmetic operators, boolean operators can be applied to matrices. The
simplest of them is the comparison of each element.

8.6.1 Comparison of Elements

Each element is compared with either a fixed value or a corresponding value of a matrix
with the same size. The results are stored as a matrix made of boolean values:

julia> # Element-wise operations

jU1ia> a = [[1)2:3] [4J516]]
3x2 Array{Int64,2}:

213

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

1
2
3

[o2 NV, B~

julia> b = 2*a
3x2 Array{Int64,2}:

2 8
4 10
6 12

julia> a.<b # Check if element of 'a’
are smaller than those of 'b'

3x2 BitArray{2}:

true true

true true

true true

julia> a.== 3 # Check if elements of 'a’
are equal to 3

3x2 BitArray{2}:

false false

false false

true false

julia> a.<b & a.>3 # Checking logic statements
3x2 BitArray{2}:

false false

false false

false false

julia> # Matrix operation

julia> b == (2*a) # If 'b' is two times 'a’
true

For matrix comparisons, the operators <, > do not work since their method does not
include working with arrays. Hence, a MethodError is generated.

214

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

8.7 Concatenation

Apart from arithmetic and boolean-type mathematical operations, appending and

truncating elements must also be defined to handle matrices in a flexible manner. This is

achieved by a range of operators as mentioned in the following table:

Syntax Behavior
cat(k,A ...) concatenate input n-d arrays along the dimension k
vcat(A) cat(1,A)
hcat(A) cat(2,A)

julia> A = reshape(1:15,5,3)
5x3 Base.ReshapedArray{Int64,2,
UnitRange{Int64},Tuple{}}:

1

2
3
4
5

6

7
8

9
10

11
12
13
14
15

julia> B = reshape(15:29,5,3)
5x3 Base.ReshapedArray{Int64,2,
UnitRange{Int64},Tuple{}}:

15
16
17
18
19

20
21
22
23
24

25
26
27
28
29

julia> cat(A,B) #concatenating A and B

along all dimesnions
5X3X1XIXIXIXIXIX1X1X1X1x1x1x1 Array{Int64,15}:

[+

)

1,1, 1,1, 1,1,1,1,1,1, 1,1, 1] =

15 20 25
16 21 26

215

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

17 22 27
18 23 28
19 24 29

julia> cat(1,A,B) # concatenating A and B row-wise
10x3 Array{Int64,2}:
1 11

12

13

14

10 15

15 20 25

16 21 26

17 22 27

18 23 28

19 24 29

O 0 N O

2
3
4
5

julia> cat(2,A,B) # concatenating A and B coloumn-wise
5x6 Array{Int64,2}:

1 6 11 15 20 25

2 7 12 16 21 26

3 8 13 17 22 27

4 9 14 18 23 28

5 10 15 19 24 29

julia> cat(3,A,B) # Adding contents of B to new dimension
5x3x2 Array{Int64,3}:

5, 1, 1] =

11

12

13

14

15

[+ 5, 2]
15 20 25
16 21 26

Uvi D W N B ™
O 00 N O

=
o

216

17 22 27
18 23 28
19 24 29

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

A set of shortcuts for vcat (A,B) and hcat(A,B) are as follows:

Syntax Alternate Syntax
vcat(A,B) [A;B]
hcat(A,B) [A B]

hvcat(A,B,C,D) A B;C D

julia> A = reshape(1:15,5,3)
5x3 Base.ReshapedArray{Int64,2,UnitRange{Int64},Tuple{}}:

1

2
3
4
5

6

7
8

9
10

11
12
13
14
15

julia> [A A]
5x6 Array{Int64,2}:

2
3
4
5

6

7
8

9
10

11
12
13
14
15

1 6
2 7
3 8
4 9
5 10

julia> [A;A]
10x3 Array{Int64,2}:

N P U1 B W N

6
7
8
9
10

6

11
12
13
14
15
11
12

217

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

3 8 13
4 9 14
5 10 15

julia> [A A;A A]
10x6 Array{Int64,2}:

1 6 11 1 6 11
2 7 12 2 7 12
3 8 13 3 8 13
4 9 14 4 9 14
5 10 15 5 10 15
1 6 11 1 11
2 12 2 12
3 13 3 13
4 14 4 14
5 10 15 5 10 15

The command vec() converts all matrices into a 1D matrix:

julia> A = rand(2,3,2)

2x3x2 Array{Float64,3}:

[:, &, 1] =

0.293696 0.336827 0.252549
0.999608 0.17789 0.718892

[+, 55 2]
0.958808 0.408669 0.950778
0.996035 0.533242 0.310243

julia> vec(A)

12-element Array{Float64,1}:
.293696

.999608

.336827

.17789

.252549

.718892

.958808

o O O O © O o

218

0.996035
0.408669
0.533242
0.950778
0.310243

8.7.1 repmat()

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

Given a matrix, if we wish to construct another matrix by repeating elements of the

original matrix, repmat () comes in handy. The syntax of repmat (A, n, m), which

constructs a matrix by repeating A n times in dimension number 1 (rows) and m times in

dimension number 2 (columns):

jU1ia> A= [[1)2:3] [4J516]]
3x2 Array{Int64,2}:

1
2
3

o U1 b

julia> repmat(A,2,2)
6x4 Array{Int64,2}:

1 4 1
2 5 2
3 6 3
1 4 1
2 5 2
3 6 3

julia> repmat(A,2,3)
6x6 Array{Int64,2}:

1 1

2
3
1
2

Ui B~ O U1 B

2
3
1
2

[WO, BN~ NIV s T S8

vl A~ O U1 D

1

2
3
1
2

4

5
6
4
5

219

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

8.7.2 repeat()

repeat (A, inner,outer) constructs an array by repeating the entries of A. The i; element
of inner specifies the number of times that the individual entries of the i; dimension of
A should be repeated. Similarly, the i; element of outer specifies the number of times
that a slice along the i; dimension of A should be repeated. When inner or outer are not
provided, repetitions are not performed:

julia> a = collect(2:4)
3-element Array{Int64,1}:
2

3

4

julia> repeat(a,inner=2)
6-element Array{Int64,1}:
2

A M W W N

julia> repeat(a,outer=2)
6-element Array{Int64,1}:
2

A W N DM W

julia> repeat(a,inner=2,outer=2)
12-element Array{Int64,1}:

2

2

3

3

220

B A W W NN DD

julia> a

3x2 Array{Int64,2}:

1
2
3

julia> repeat(a,inner=(1,3),outer=(3,1))

o v b

9x6 Array{Int64,2}:

w N P W N W DN R

julia> repeat(a,inner=(2,3),outer=(3,2))
18x12 Array{Int64,2}:

R P W W NN R

w N P W N R W N R

1

R R WwW W NN R

1

w N R W N R W N

1

B R W W NN R

4

Ul Oy B OV WU

4

A A OOy LT LT D

4

S B OB Oy WU

4

A A OOy LT LT D

4

S U1 B~ Oy B O WU

4

S B ooy 1 1B

1

B R W W NN R

P R W W NN R R

R P W W NNBR R

[[1,2,3] [4,5,6]]

A A OOy LT LT B D

H A OOy LT LT B D

A A OOy UV LT B D

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

221

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

2 2 255522 2555
2 2 255522 2555
333666 3 3366 6
33366 63 3366 6
111 4 4 4 1 1 1 4 4 4
111 4 4 4 111 4 4 4
2 2 255522 2555
2 2 255522 2555
333666 33366 6
333666 3 3366 6

8.8 Rotating a Matrix

Rotating a matrix A by 180 degrees can be performed by the built-in function
rot180(A,n) where n is the integer number of times the rotation needs to be performed.
If n is an even number, the action is equivalent to copy ():

julia> a=[1234567 8]
1x8 Array{Int64,2}:
12 3 45 6 7 8

julia> a1 = reshape(a,(2,4))
2x4 Array{Int64,2}:

1 3 5 7

2 4 6 8

julia> rot180(a1) # defualt n=1
2x4 Array{Int64,2}:

8 6 4 2

7 5 3 1

julia> rot180(a1,1) # 1 rotation
in forward direction

2x4 Array{Int64,2}:

8 6 4 2

7 5 3 1

222

CHAPTER 8

julia> rot180(a1,-1) # 1 rotation
in backward direction

2x4 Array{Int64,2}:

8 6 4 2

7 5 3 1

julia> rot180(a1,2) # 2 totations
in forward direction

2x4 Array{Int64,2}:

1 3 5 7

2 4 6 8

8.9 Special Matrix
8.9.1 Symmetric Matrices

ARRAYS FOR MATRIX OPERATIONS

A symmetric matrix is a square matrix that is equal to its transpose. For example:

A=A

The Julia function issymmetric(A) tests if array A represents a symmetric matrix and

gives a boolean output true or false. The entries of a symmetric matrix are symmetric

with respect to the main diagonal. So if the entries are written as A = (a;), then a; = a;;

for all indices i and j. For this reason, every square diagonal matrix is symmetric since all

off-diagonal elements are zero:

julia> A = rand(3,3)
3x3 Array{Float64,2}:
0.494451 0.65293 0.801365
0.775357 0.963112 0.535383
0.138436 0.206775 0.845183

julia> issymmetric(A)
false

julia> A = [[1,0] [0,1]]
2x2 Array{Int64,2}:

1 0

0 1

223

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

julia> issymmetric(A)
true

julia> A = [[1,7,3] [7,4,-5] [3,-5,6]]
3x3 Array{Int64,2}:

1 7 3
7 4 -5
3 -5 6

julia> issymmetric(A)
true

8.9.2 Positive Definite Matrix

A symmetric real matrix A is said to be positive definite if 3z (a scalar) such that

z'Az>0

is positive for every nonzero column vector z of n real numbers. For example:

[a b]{(l) ﬂxmm%b%o

julia> A = [[2,-1,0] [-1,2,-1] [0,-1,2]]
3x3 Array{Int64,2}:

2 -1 O
-1 2 -1
o -1 2

julia> b = [1,2,3]
3-element Array{Int64,1}:
1

2

3

julia> b'*A*b
1-element Array{Int64,1}:
12

224

(8.15)

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

julia> isposdef(A)
true

But this does not work with another matrix:

julia> A = [[1,7,3] [7,4,-5] [3,-5,6]]
3x3 Array{Int64,2}:

1 7 3
7 4 -5
3 -5 6

julia> b = [1,2,3]
3-element Array{Int64,1}:
1

2

3

julia> b'*A*b
1-element Array{Int64,1}:
57

julia> isposdef(A)
false

8.9.3 Hermitian Matrices

Hermitian is a complex square matrix that is equal to its own conjugate transpose.
In other words, i row and j column are equal to the complex conjugate of the element
in the j” row and i column for all indices i and j:

a,=a, (8.16)

tj

julia> A = [[2,2+im,4] [2-im,3,im] [4,-im,1]]
3x3 Array{Complex{Int64},2}:

240im 2-1im 4+40im

2+1im 3+0im 0-1im

4+0im O+1im 21+0im

julia> ishermitian(A)
true
225

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

8.9.4 Sparse Matrices

When a matrix has a large number of 0 as its elements, storing them is a waste of
precious computer memory and is an inefficient way of computing for in terms of time
and computational resources Such matrices are called sparse matrices. For efficient
computing framework, sparse matrices are stored in the Compressed Sparse Column
(CSC) format.

The built-in function speye() creates a sparse matrix of a given dimension. Its inputs
are vectors for denoting indices of rows and columns and a third vector denoting the

nonzero values:

jU1ia> a = [114)3)5)833];
julia> b = [4,7,18,9,7,3];
julia> ¢ = [1,2,-5,3,-100,0.5];
julia> s = sparse(a,b,c)

8x18 sparse matrix with 6 Float64 nonzero entries:
[3, 3] = 0.5

[1, 4] = 1.0

[4 b) 7] = 2.0

[8, 7] = -100.0

[5, 9] = 3.0

[3 » 18] = -5.0

julia> findn(s)
([3,1,4,8,5,31,[3,4,7,7,9,18])

julia> findnz(s)
([3)1)4)8J5J3])[3)4)7J7J9)18])[0'5J1’0)2'0)_100’0)3°O)_5'0])

The vectors a and b contribute to making the indices for nonzero elements and the
values of these nonzero elements are given by the third vector c. The dimension of the
sparse matrix is obviously the maximum values of a and b. The function findn() finds
the indices for the rows and columns of a sparse matrix as two separate arrays. Another
function findnz() finds the same plus the nonzero values as a third array.

226

CHAPTER 8 ARRAYS FOR MATRIX OPERATIONS

8.10 Summary

It is now clear that arrays can be used to define matrices. Matrix algebra is encoded in a
way the arrays can be manipulated. Vectorized versions of operations and corresponding
nonvectorized matrix operations can be executed with good speed. Data crunching
involves a flexible manner in which arrays can be defined as matrices and mathematical
operations can be done in quickly. Julia provides an upper hand in this arena and is fast
becoming favorite option of data analytics.

8.11 Bibliography

[1] www.netlib.org/blas/

[2] www.netlib.org/lapack/

227

http://www.netlib.org/blas/
http://www.netlib.org/lapack/

CHAPTER 9
Strings

9.1 Introduction

The handling of text-based data is an important feature of all programming frameworks.
Strings are simply defined as a set of characters. These include characters and words
(group of characters) made up of the following:

e Uppercase alphabets, for example, A,B,C ...

¢ Lowercase alphabets, for example, a,b,c ...

e Hindu-Arabic numerals, for example, 1,2,3 ...

e Some special symbols, for example, !,@,#,%$,%,",8,*

They can be found on most English-language-based keyboards. What about other
languages? They must also be included within a computational framework. However, natural
languages that humans use are not the preferred language of computation in computer
science. Computers, instead, use the language of binary numbers, where all entities are
defined as a group of bytes made up of two bits, either 1 or 0. Hence, these characters and
their groups must be mapped with binary numbers within a specific protocol that must be
internationally accepted. Thus, the ASCII and Unicode systems were developed.

9.2 ASCII System

The ASCII [1] system for characters maps English characters, numbers (as characters),
and some special characters to integer values between 0 and 127. These 128 sets of
combinations encompasss most of the required characters for English-related work.
A 7 (2% — 128) bits could store a unique ASCII character.

229
© Sandeep Nagar 2017

S. Nagar, Beginning Julia Programming, https://doi.org/10.1007/978-1-4842-3171-5_9

CHAPTER9 STRINGS

The ASCII system works quite well but is limited in scope. As more nations joined
the computing community, more language symbols needed to be incorporated into
computing. A range of mathematical symbols also needed to be incorporated.

9.3 Unicode System

The Unicode system [2] system is an extension of ASCII that increases the number of
bytes for storing a character and, thus, increases the number of characters that can be
uniquely defined. This system incorporates many languages and special symbols for
mathematical notations. Julia supports the Unicode definition of characters, meaning
that they can be used just like any other character while computing. This is a great
advantage for the mathematical environment as straightforward usage of mathematical
symbols makes it easy to understand. For example, 7 can be written as the symbol
itself, rather than as pi as a pnuemonics for the symbol. Those familiar with LATeX
formulation would understand that these symbols are written by proceeding their
command by the \ operator; the same is done in Julia. To write 7, you write \pi and press
the Tab key on the keyboard. This results in displaying the Unicode symbol 7.

Now let’s look at how Julia understands and interprets textual information. We
will start with characters and then graduate to groups of characters called strings. The
characters are primarily fed using the keyboard, but they can originate from a file both
within a machine and from outside-world interfacing instrument(s). Julia provides

versatile capabilities to deal with all the facilities with respect to handling strings.

9.4 Characters

Since Julia is an object-oriented programming language, characters must also be defined
as objects. The Julian data type for characters is Char. Let’s first understand characters
with an example:

julia> a = 'a

d

julia> typeof(a)
Char

230

CHAPTER9 STRINGS

Here a variable references to a memory location storing an object of the type Char
whose value is a. Incidentally, the name of the variable is also a. While a means a
reference name to Julia, 'a' refers to a Char (character) object.

9.5 Corresponding Integer Value

Since a character is stored as a set of binary digits, these binary digits can be interpreted
as numbers. Thus, each character has a corresponding integer value. This can be
illustrated by defining the character as an integer object as follows:

julia> Int32('a")
97

julia> Int32('z")
122

julia> Int32('!")
33

julia> Int32('#")
35

The reverse is also true; integers also correspond to a particular character:

julia> Char(121)

y

julia> Int32('y")
121

All integer values are not valid Unicode characters. The valid Unicode code points
(in hexadecimal digits) from U+00 - U+d7ffand U+e000 - U+10ffff. All of these numbers
have not been assigned intelligible meaning yet, but are valid Unicode characters. Julia
uses a machine’s locale and language settings to determine characters that must be
printed.

Since integers are associated with characters, they can be used with some arithmetic
operators. For example, one can calculate 'a'-'b" and Int32('a") - Int32('b") and

231

CHAPTER9 STRINGS

find that they are similar since 'a’ and 'b"' correspond to an integer value (given by
Int32('a") and Int32('b"), respectively):

julia> 'a' - 'b'
-1

julia> Int32('a') - Int32('b")
-1

julia> 1Int32('a")

97

julia> Int32('b")

98

julia> "A" == 'a' # Capitalized alphabets

hold different ineteger values than
small alphabets
false

julia> 'A' < a
true

julia> Int32('A")

65

julia> 'A'+1

'B': ASCII/Unicode U+0042
(category Lu: Letter, uppercase)
julia> 'A'+2

"C': ASCII/Unicode U+0043
(category Lu: Letter, uppercase)

julia> 'A'+58 # results corresponds to
integer value corresponding to the

symbol "}"

"{": ASCII/Unicode U+007b

(category Ps: Punctuation, open)

232

CHAPTER9 STRINGS

When we input commands like 'A'+1, we obtain a character as a result that
corresponds to the integer value that, in turn, corresponds to the result of the
calculation. Since 'A" corresponds to integer value 65, adding one to it results in 66,
which corresponds to 'B"'. The output also displays additional information—ASCII/
Unicode U+0042 (category Lu: Letter, uppercase). This defines that the output is an
ASCII/Unicode object whose category is Lu—a letter that is defined as uppercase.

9.6 + Operator and Characters

What happens when we concatenate two Char objects? In most programming languages,
the + works like a concatenation operator for characters and strings. When a character
aand ! need to be made into a string a!, we usually write 'a'+'!" or+('a","!"). Let’s
check if this can be done in Julia:

julia> charl = 'a' # definig first character
'a': ASCII/Unicode U+0061
(category L1: Letter, lowercase)

julia> char2 = '!" # defining second character
"I'": ASCII/Unicode U+0021
(category Po: Punctuation, other)

julia> typeof(chari) # verifying type of object
Char

julia> typeof(char2) # verifying type of object
Char

julia> +(chari,char2) # Operator + operated on charl and char2
ERROR: MethodError: no method matching +(::Char, ::Char)
Closest candidates are:

+(::Any, ::Any, ::Any, ::Any...) at operators.jl:424

+(::Char, ::Integer) at char.jl:40

+(::Integer, ::Char) at char.jl:41

233

CHAPTER9 STRINGS

As seen in the previous Julia code, we obtain a MethodError since the concatenation
operator does not handle Char objects. All operators are defined as Julia functions
(see Chapter 10). A method is a function associated with an object to probe its property.
Julia has a feature—multiple dispatch—which enables different functional definitions
as per data type. So while the + function recognizes objects like Int64 and Complex64,
it does not recognize Char because this was not defined in its source code. Hence, two
characters cannot be concatenated using the + operator.

If strings are sets of characters, then how will characters make strings if
concatenation is not allowed? We will explore this idea in the next section.

9.6.1 Characters and Strings Are Two Data Types

Julia defines a character using single quotes. String definitions need double or triple
quotes enclosing a single character or a set of characters:

julia> a1 = 'a' # character 'a' is referenced by a1

a

julia> typeof(a1l) # type of a1 is Char
Char

julia> a2 = "a" # String "a" is referenced by a2

d

julia> typeof(a2) # type of a2 is String
String

julia> a2 == a1 # a2 and a1l are not equal since
they store different objects
false

Triple quotes are used in those cases when we wish to print a single quote or double
quote as part of the string:

julia>
"You've been \"warned\" alread !Don't repeat!"

You've been "warned" alread !Don't repeat!"""

234

CHAPTER9 STRINGS

9.7 + Operator and Strings

Codeline a2 == a1is important to understand. Even though the value of the Char

and String objects use the same alphabet, namely ‘a, they are not actually the same.
Characters and strings are quite different in their behavior. Can strings be concatenated
using + operator?

julia> a1 = "Hello "
"Hello "

"world"

julia> a2
"world"

julia> ai1+a2

ERROR: MethodError: no

method matching +(::String, ::String)
Closest candidates are:

+(::Any, ::Any, ::Any, ::Any...)

at operators.jl:424

We can now see that the + operator does not concatenate strings. Julia must provide
an alternative way to add or cut elements from strings.

9.8 Concatenation

Concatenation of strings is performed using the function string(), which concatenates
multiple strings that are separated by the , separator:

julia> string('a','!') # dinputs are characetrs
lla!ll

julia> string("a","!") # inputs are strings
lla!ll

julia> string("a",'!") # inputs are stings and character
"a!ll

julia> string("a","'!'," ', "wow", "#") # Third character
is a whitespace
"al wowi#"

235

CHAPTER9 STRINGS

Another example will make it clearer:

julia> h = "hello"

"hello"

julia> w = "world"

"world"

julia> ws = " "# A white space as a string

julia> str = string(h,ws,w)
"hello world!"

Alternatively, the * operator also performs concatenation actions:
julia> Ilall*ll!ll
"a ! n
julia> *("all’"!ll
"a ! n

julia> h = "hello"
"hello"

julia> w "world"

"world"

julia> ws

julia> *(h,ws,w)
"hello world"

9.9 Interpolation

If variables store some values (in this case, a String object), their verbose calls are
performed as follows:

julia> h = "hello"
"hello"

236

CHAPTER9 STRINGS

julia> ws =

julia> e =

julia> "hwsse”
"hello !"

This is a better way of concatenation as it’s more convenient, particularly in the case
when we need to fill the value of a variable inside a string as output:

julia> a = 10
10

julia> int = "Integer"”
"Integer"

julia> b = 10.0
10.0

julia> float_number = "Floating point number"
"Floating point number"

julia> "$a is stored as $int"
"10 is stored as Integer"

julia> "$b is stored as $float number"
"10.0 is stored as Floating point number"

What if we need to print the character $ itself? We then should precede it with a
backlash character in this case:

julia> statement = "I have
"I have "

julia> currency = "US Dollars"
"US Dollars"

237

CHAPTER9 STRINGS

julia> value = 100
100

julia> print("$statement \$100 ($currency) in my account")
I have $100 (US Dollars) im my account

9.10 Strings Are Like Arrays

Just like arrays, a string’s characters are indexed. The index in Julia always start from 1
and the last index can be accessed by using end. This can be understood in the following
example:

julia> str = You've been "warned" alread !Don't repeat!"""

"You've been \"warned\" alread !Don't repeat!"

julia> str[1]
IYI
julia> str[end]

julia> str[end-20]

d

julia> length(str)
42

julia> str[10:20]
"en \"warned\""

julia> str[21:end]
alread !Don't repeat!"

The variable str references to the defined string. The following operations are
performed successively in the previous code:

o str[1] outputs the first character of the string object.
o str[end] outputs the last character of the string.

o str[end-20] outputs the twentieth character from the end.

238

CHAPTER9 STRINGS

o The total length of string can be calculated using length(str).
e Using an index less than 1 or greater than end raises a BoundsError.

e Slicing can be performed using the : operator. For example,
str[10:20] outputs from the tenth character to the twentieth
character. Similarly, str[21:end] outputs from the twenty-first
character to the end of the string (the last character).

What should we expect if we write str[10] and str[10:10]? 10" character is e:

julia> str[10]

e

julia> str[10:10]

e

julia> typeof(str[10])
Char

julia> typeof(str[10:10])
String

julia> str[10:10] == str[10]
false

It is observed that the output of str[10] is an object of Char type, whereas the output
of str[10:10] is an object of String. Even if their values are same, they are not similar
objects. As a result, the equality operator == shows false as its output.

9.10.1 search()

The built-in function search() can be used to search for the index of a particular
character in a string. The first argument is the string that needs to be probed, and

the second argument is the character/string that needs to be probed. In the case of
searching a character, the output is the index number. In the case of searching a string,
the output is the range object. If it does not find the input character in the input string,
the output is 0. If it does not finds the input string within the given string, it outputs a

239

CHAPTER9 STRINGS

range object 0: -1 signifying that the input string cannot be found in any given string.
This is demonstrated in the following Julia code:

julia> search("Sandeep Nagar", 'N')
9

julia> search("Sandeep Nagar", 's')
0

julia> search("Sandeep Nagar", 'a',3) # offset by 3
10

search("Sandeep Nagar", "Sandeep")
1:7

julia> search("Sandeep Nagar", "sandeep")
0:-1

julia> search("Sandeep Nagar", "randeep")
0:-1

9.10.2 contains()

The built-in function contains() can be used to test if a particular character or string is
contained inside a test string. The difference of output when compared to the search()
function is that the output of the contains() function is a boolean object. (Either it

is true if the input string is found, or it is false for the other case.) Also, this function
works only with String objects, not with Char objects, and hence throws a MethodError.
Thus, if a character needs to be searched (in the previous case S), it must be input as a
string ("S"). This is shown in the following Julia code:

julia> contains("Sandeep Nagar", "Sandeep")
true

julia> contains("Sandeep Nagar", " ")
true

julia> contains("Sandeep Nagar", "S")
true

240

CHAPTER9 STRINGS

julia> contains("Sandeep Nagar",'S")

ERROR: MethodError: no method matching contains
(::String, ::Char)

Closest candidates are:

contains(::Function, ::Any, ::Any)

at reduce.jl:664

contains(::AbstractString, ::AbstractString)

at strings/search.jl:378

An alternate way is to use the member function in() as follows:

julia> in('S',"Sandeep Nagar")
true

9.11 Common String Functions

A variety of string functions can operate on strings to perform specific tasks. Some of
them are discussed in the following sections.

9.11.1 repeat()

A string can be repeated a specific number of times by using the repeat () function:

julia> repeat("Hi",3)
"HiHiHi"

Alternatively, the * operator also performs the same job. This is quite obvious
mathematically too since power is merely successive multiplication; for example, 2° = 2 x
2 x 2. Since the operator * is used for concatenation, * performs successive operations of
similar nature for a specified number of times:

julia> "Hi""3
"HiHiHi"

julia> ~("Hi",3)
"HiHiHi"

241

CHAPTER9 STRINGS

9.11.2 join()

The built-in function join(io, items, delim, [last]) prints elements of items to io
with delim (delimiter) between them. If last is specified, it is used as the final delimiter
instead of delim:

julia> a = join(["Beginner","Intermediate","Advanced"],","," and ")
"Beginner,Intermediate and Advanced"

julia> println("""Three stages of julia learner are \n $a""")
Three stages of julia learner are
Beginner,Intermediate and Advanced

9.11.3 start(), endof(), and next()

The built-in function start () gives the first valid index. This is typically 1. The built-

in function endof () gives a maximal (byte) index that can be used to index. Another
built-in function, next (), returns the next character at or after the index i and the next
valid character index following that. We encounter a BoundsError if we attempt to probe
beyond the maximum index found in the input string:

julia> start("Sandeep Nagar")
1

julia> endof("Sandeep Nagar")
13

julia> length("Sandeep Nagar")

13

julia> a,b = next("Sandeep Nagar",5)
(e’ 6)

julia> a,b = next("Sandeep Nagar",13)
(III, 14)

242

CHAPTER9 STRINGS

julia> a,b = next("Sandeep Nagar",14)

ERROR: BoundsError: attempt to access

"Sandeep Nagar" at index [14]

Stacktrace:

[1] next(::String, ::Int64) at ./strings/string.jl:197

These functions can be used to iterate over strings using loop structures. (See
Chapter 11.)

9.11.4 split()

The built-in function split() takes an input as a String object and returns an Array
object where the elements are individual String objects for each word, that is, an array
of substrings:

julia> str = String("Hi, How are you")
"Hi, How are you"

julia> split(str)
4-element Array{SubString{String},1}:
"Hi, n

"How

are

If substrings needs to be made exactly at the occurrence of a specified character,
then an additional argument can be inserted. For example:

julia> str = String("Hi, How are you")

julia> split(str,"w")

2-element Array{SubString{String},1}:
"Hi, Ho"

"are you"

243

CHAPTER9 STRINGS

julia> split(str,"o")

3-element Array{SubString{String},1}:
"Hi, H"

"w are y"

u

julia> split(str,"are")
2-element Array{SubString{String},1}:
"Hi, How "

julia> split(str,"ow"
2-element Array{SubString{String},1}:
IIHi, HII

are you"

julia> split(str,"")
15-element Array{SubString{String},1}:
IIHII

1

noun
)

III_II
llell
n n

llull

As seen in the prevous example, if an empty string is used for splitting, then each
character makes the substring.

244

CHAPTER9 STRINGS

9.11.5 uppercase() and lowercase()

The built-in functions uppercase() and lowercase() convert the characters of a string to

uppercase or lowercase characters, respectively.

julia> uppercase("Sandeep Nagar")
"SANDEEP NAGAR"

julia> lowercase("Sandeep Nagar")
"sandeep nagar"

In the case of uppercase() functions on the string Sandeep Nagar, all characters
of the string get converted to uppercase characters. Those that are already uppercase
remain so. Similar actions happen for lowercase() functions where lowercase
characters remain so after operation.

9.11.6 replace()

The built-in function replace() returns a new string with a substring of characters
replaced with something else:

julia> name = "Sandip Nagar"
"Sandip Nagar"

julia> replace(name,"i","ee") # replace "i" with "ee"
"Sandeep Nagar"

julia> replace("sandeep","e",uppercase)
"sandEEp"

As seen in the last command, a function can also be supplied to the replace()
function to output a string in a desired form replacing the original string.

9.11.7 Ipad() and rpad()

Padding a string from the left and right side with a specific character for a specific
number of times can be done using 1pad() and rapd():

julia> name = "Sandeep Nagar"
"Sandeep Nagar"

245

CHAPTER9 STRINGS

julia> length(name)
13

julia> lpad("Sandeep Nagar",15,"a")
"aaSandeep Nagar"

julia> rpad("Sandeep Nagar",15,"a")
"Sandeep Nagaraa"

In the following section, the variable name references to a String object that has
length of 13 characters. When 1pad(name, 15, "a") is used, the character a is padded
from the left two times to make the desired length of 15. A similar task is accomplished
by the rpad() function but from the right-hand side.

9.11.8 reverse()

The built-in function reverse() reverses a string:

julia> reverse("Sandeep Nagar")
"ragaN peednaS"

9.11.9 strip(), Istrip(), and rstrip()

Stripping a string from undesirable characters is an important function while dealing
with strings in a programmatic way. The built-in function strip() performs the same:

julia> name = " Sandeep Nagar
Two white spaces at start and end of string
Sandeep Nagar "

julia> length(name)
15

julia> strip(name)
Two white spaces (start and end) have been stripped
"Sandeep Nagar"

julia> 1strip(name)
One white space (left) is stripped
"Sandeep Nagar "

246

CHAPTER9 STRINGS

julia> rstrip(name)
One white space (right) is stripped
" Sandeep Nagar"

9.11.10 randstring()

Creating a random string is as important while testing the code as creating a single or set
of random numbers. This can be accomplished by the built-in function randstring() as
follows:

julia> randstring(20)
"8bXPxczPGOv2EDweJBtX"

julia> randstring(20)
"3BMgodnhVbgVOnW6h9EO"

julia> randstring(20)
"nMDC8x4yc8UYMsNPdQrx"

julia> randstring(20)
"cZDVojcv2RYjzyZCLI6B"

Please note that the previous example shows that a different string is obtained each
time the same command, randstring(), is used, verifying its random nature. Users
might obtain different sets of strings from those mentioned for the same reason.

9.12 Reading Data as Arrays from Strings

Sometimes the data may be formatted as a string object. For mathematical
manipulation, this data must be converted as an element of an array. To read from

a string into an array, you can use the I0Buffer() function, which creates a read-

only I0Buffer on the data underlying the given string. To understand this object, try
exploring the same using help?> IOBuffer. (These I-0 (Input- Output) objects are
discussed in Chapter 12. Hence, the details are not discussed here, but the primary usage
is demonstrated for sake of simplicity.)

247

CHAPTER9 STRINGS

julia> str = "1 234567 89" # a string object
where entries are separated by white space
“123456789"

julia> a = IOBuffer(str) # IOBuffer object
I0Buffer(data=UInt8[...],

readable=true,

writable=false,

seekable=true,

append=false,

size=17,

maxsize=Inf,

ptr=1,

mark=-1)

julia> readdlm(a) # Read with delimiter
1x9 Array{Float64,2}:
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

julia> str = "1,2,3,4,5,6,7,8,9" # String where
#entities are separated by commas
"1)2)3)4)5)617)8)9"

julia> a = IOBuffer(str)
I0Buffer(data=UInt8[...],
readable=true,
writable=false,
seekable=true,
append=false,

size=17,

maxsize=Inf,

ptr=1,

mark=-1)

julia> readdlm(a) # No white space, no columns
Also commas are part of element

248

CHAPTER9 STRINGS

So element is not numeric type
1x1 Array{Any,2}:
"1)2)3)4)5J6J7)8)9"

The function readd1m() (read with delimiter) converts this I0Buffer object into
an array object. The columns are assumed to be separated by one or more whitespace
characters. If all data are numeric, the result will be a numeric array. If some elements
cannot be parsed as numbers, a heterogeneous array of numbers and strings is returned
with data type Any.

When the data is made of string objects, an array of substrings is created as follows:

julia> str = "Hi How are you"
"Hi How are you"

julia> a = IOBuffer(str)
I0Buffer(data=UInt8[...],
readable=true,
writable=false,
seekable=true,
append=false,

size=14,

maxsize=Inf,

ptr=1,

mark=-1)

julia> readdlm(a)
1x4 Array{Any,2}:
"Hill "HOW" "arell Ilyoull

Since the array is composed of Any object, it does not pose a problem if data are
made of a mixture of strings and numerals.

julia> str = "Hi How are you number 1"
"Hi How are you number 1"

julia> a = IOBuffer(str)
I0Buffer(data=UInt8[...],
readable=true,
writable=false,

249

CHAPTER9 STRINGS

seekable=true,
append=false,
size=23,
maxsize=Inf,
ptr=1,
mark=-1)

julia> readdlm(a)
1x6 Array{Any,2}:
"Hill IIHOWII Ilarell Ilyoull Ilnumberll 1

9.13 Lexicographical Comparison of Strings

Standard comparison operators compare strings by lexicographical rules [3].

A lexicographical comparison is the kind of comparison generally used to sort

words alphabetically in dictionaries. Thus, it is sometimes called dictionary order.
Lexicographical comparison involves comparing sequentially the elements that have

the same position in both ranges against each other until one element is not equivalent

to the other. The result of comparing these first nonmatching elements is the result of the

lexicographical comparison:

julia> str1l = "abcdefg"
"abcdefg"
julia> str2 = "abcdefh"

"abcdefth"

julia> str1l < str2
true

julia> str3 = "abcdefhi"

"abcdefthi”

julia> str3 > str2
true

julia> str4 > str3
false

250

CHAPTER9 STRINGS

julia> "20 March 2017" > "19 March 2017"
true

julia> "20 March 2016" > "19 March 2017"
true

julia> "superhero" == "Superhero'
false

julia> "superhero" > "Superhero"
true

9.14 Summary

The ability to deal with textual data is an important feature of Julia. To understand how
characters are defined and dealt with in a computing machine, check out Chapter 12,
Section 12.6. Dealing with characters in a programmable way lets a computational
linguist explore tasks under natural language processing (NLP) and derive meaningful
patterns within human and nonhuman languages. Julia’s ability to define a string and
flexibly manipulate it in a variety of manners makes it a good candidate for NLP. The
field of bio-informatics demands these abilities as well. As a result, Julia is a good
candidate to define code under these domains for faster execution.

9.15 Bibliography
[1] https://en.wikipedia.org/wiki/ASCIT#ASCII control

characters.

[2] https://en.wikipedia.org/wiki/List_of_Unicode_
characters.

[3] https://en.wikipedia.org/wiki/Lexicographical_order.

251

https://en.wikipedia.org/wiki/ASCII#ASCII_control_characters
https://en.wikipedia.org/wiki/ASCII#ASCII_control_characters
https://en.wikipedia.org/wiki/List_of_Unicode_characters
https://en.wikipedia.org/wiki/List_of_Unicode_characters
https://en.wikipedia.org/wiki/Lexicographical_order

CHAPTER 10

Functions

10.1 Introduction to Julia Functions

A procedural programming language involves breaking down a bigger program into
smaller chunks of functional blocks and then stitching them together as desired for the
task undertaken. A block of code performs a specific task when called by the master
program. This block of code is defined as a function. A function maps its input to output
according to the set definition as dictated by a (set of) statements called the body of
function. This definition is quite similar to the definition of a mathematical function.

The function object is referenced by a name that points to memory location where
function object is stored. When a function needs to be called, the name, along with a set
of inputs (in parentheses), is called during the execution of the program.

Alternatively, a function can also be defined as a first-class object that inputs an
argument list (arglist), processes the list of arguments as per definition of function
body, and returns none, one, or more values as outputs. Multiple arguments form
a tuple. So does the output if it is made up of multiple entities. For this reason, they
are separated by commas. The fype of arguments can be set or the arguments can be
determined using the kind of operations in the function body. It is recommended to set
the type for optimized utilization of computational resources. However, in this chapter,
we will ignore this recommendation for ease of understanding.

The syntax of a function is as follows:

julia> function fname(arglist)
#function body...
return values
end

253
© Sandeep Nagar 2017

S. Nagar, Beginning Julia Programming, https://doi.org/10.1007/978-1-4842-3171-5_10

CHAPTER 10 FUNCTIONS

The tabbing of a body part is optional, but it makes the appearance neater for visual
clarity. Hence, it is strongly recommended. Function names are usually defined in
lowercase characters as a convention. They can contain Unicode characters, too. The
return keyword is optional. In general, the value of the last expression is returned.
While calling a function, the name of the function is written with the arglist within
parentheses. If an assignment operator is used for the same (a = fname(arglist)), then
the return value is assigned to a. When the return is used without a value, the function
returns nothing; it just does a calculation but returns nothing.

10.2 Defining a Simple Julia Function

Let’s study Julia functions using some examples. Consider a function for calculating
the value of the hypotenuse of a right-angled triangle with the dimensions of its
perpendicular (say p) and base (say b) given. Let’s name the function f. The output
(hypotenuse) is referenced by variable h. This is defined as follows:

h=\p*+b* (10.1)

The following Julia code performs this task and the function is called as f(p,b)
where the values of p and b are given as inputs:

julia> function f(p,b)
h = sqrt(p”2 + b"2)
return h
end
f (generic function with 1 method)

julia> f(3,4)
5.0

julia> f(3.0,4.0)
5.0

When f(3,4) is written at the Julia prompt, f is called with p=3 and b=4.
Consequently, h is calculated to be 5.0 and is returned. Thus, the output of £(3,4) is 5.0.

Note that when we define a function and end its definition by the keyword end and
press Enter, REPL outputs the information that a generic function with one method

254

CHAPTER 10 FUNCTIONS

has been created. This has to do with the kind of data types allowed by the operators
used. The operators + and * operate on numerical data types only. Julia allows multiple
dispatches, that is, a different definition of a function for different data types. This will be
discussed later in Section 10.3.

It’s always useful to name a function meaningfully, so instead of naming the previous
function as f, we can name it hypotenues. When called, we write hypotenues (p,b):

julia> function hypotenues(p,b)
h = sqrt(p”2 + b"2)
return h
end
hypotenues (generic function with 1 method)

julia> hypotenues(3,4)
5.0

When we inspect the state of the computer’s memory at this stage (after executing
the Julia function at least once) by issuing the command whos (), we can observe that two
new objects are shown, f and hypotenues, in the main namespace. For this reason, we
can press the Tab key after filling in a few characters of its name and the tab competition
will work for the function’s name:

julia> whos()

Base 33853 KB Module
Core 12333 KB Module
Main 40714 KB Module

f 0 bytes #f
hypotenues 0 bytes #hypotenues

It is worth noting that the scope of the variable h is local to the function hypotenues.
In other words, it is valid only within the function body. These type of variables are called
local variables. The local nature of the variable can be verified as follows:

julia> hypotenues(3,4) # function is called
5.0

julia> h = 5.5 # h is set to be 5.5
5.5

255

CHAPTER 10 FUNCTIONS

julia> hypotenues(3,4) # calculation of h is unaffected
#by previous setting of h value
5.0

julia> h # h still holds the set vaue after
calling the function
5.5

10.2.1 Shorthand Notation

A function can also be written in shorthand notation:
fname(x,y,...) = a_function(x,y,...)

For example, in our case of calculating the hypotenuse, we can write a function in
shorthand notation as follows:

julia> hypotenues(p,b)=sqrt(p”2 + b"2)
hypotenues (generic function with 1 method)

julia> hypotenues(3,4)
5.0

This syntax matches with the analytical way of writing mathematical functions. Thus,
it is more intuitive. Moreover, not only ASCII but also Unicode characters can be used
for naming the function. This makes it particularly easy while translating a mathematical
expression into Julia code for scientific computation. But this notation has one severe
limitation. You can only define a single expression within this format. In other words, only
one mathematical rule can be defined in the body of the function.

10.2.2 Multiple Input

As is the case of the previous example of the function named hypoteneus, we can define
a Julia function with multiple inputs. Let’s consider another case. For example, let’s
consider the case when we need to find the length of a vector from the origin using its
three components on x, y, and z axes:

I={x*+y*+2° (10.2)

256

CHAPTER 10 FUNCTIONS

The following Julia code defines a function named length_vec that takes three
inputs (x, y, and z values) and gives output as length, which calculates for Equation 10.2.

julia> function length vec(x,y,z)

length = sqrt(x*2 + y*2 +z"2)

return length

end

length vec (generic function with 1 method)

julia> length vec(2,3,4)
5.385164807134504

julia> length_vec(-2,-3,-4)
5.385164807134504

From the previous code, it is worth noting that the vector
22+3}+4k

and

—2i -3j-4k

have the same length from (0, 0, 0), which is = 5.4 units.

However, we sometimes need a variable list of arguments in the multiple input
scenario. In this case, we would need to have a flexibility in the number of inputs while
calling the function. The next section discusses a variable argument list as input to the
function.

Variable Argument List

While defining a function, optional arguments can be defined so that the function can
use sensible defaults if specific values aren’t supplied. As an example, we shall modify
the already defined function length_vec (Section 10.2.2) and modify the same:

julia> function length veci(x,y,z=0)

length = sqrt(x*2 + y*2 +z"2)

return length

end

length_vec1l (generic function with 2 methods)

257

CHAPTER 10 FUNCTIONS

julia> length vec1(-2,-3) # z=0
3.605551275463989

julia> length_veci(-2,-3,-4) #z=-4
5.385164807134504

A new function named length_vec1 is defined with inputs x, y, z= 0. Values for x, y
are taken from the user and, if the value of z is not supplied by the user, it is taken to be
equal to 0 (default value).

A function defined this way will ensure that we do not encounter an error if the right
number of arguments is not supplied by the user, and it also defines a default behavior
of a Julia function. Both of these features prove useful during numerical computations as
well as software developments to avoid annoying error messages.

Positional Arguments

Until now, when we defined multiple inputs, they were used in the order in which they
were defined. What if the order of input is a critical factor in computation? For example:

julia> function sumprod(a,b,c)

answer = (a+b)*c

return answer

end

sumprod (generic function with 1 method)

#(1+2)*3=0

julia> sumprod(1,2,3)
9

#(3+42)*1=5
julia> sumprod(3,2,1)
5

If the order of input s (1, 2, 3), we obtain 9. When the order of inputis (3, 2, 1), the
result is 5. This is because the values of the variables are a=1, b=2, and c=3 in the first
case, while the values of the variables are a=3, b=2, and c=1 in the second case. In such
cases where users can make a mistake that can result in erroneous calculation, we need

to find a way to avoid this issue.

258

CHAPTER 10 FUNCTIONS

In addition, when we have a large number of inputs, it is difficult to keep track of
their order. This can be avoided if we use a positional argument method. Keywords can
be labeled for arguments in the form of a keyword=value pair:

julia>julia> function data type(a,b;c="Int64",d="Complex64")
println(typeof(a))
println(typeof(b))
return "Type of c is $c and Type of d is $d"
end
data_type (generic function with 1 method)

julia> data_type(2,3)

Int64

Int64

"Type of c is Int64 and Type of d is Complex64"

julia> data_type(2.5,3)
Float64
Int64

julia> data_type("Hi",3)

String

Int64

"Type of ¢ is Int64 and Type of d is Complex64"

julia> data_type("Hi",3,c=typeof('a"),d=typeof(1//2))
String
Int64
"Type of ¢ is Char and Type of d is Rational{Int64}"

julia> data_type(c=typeof('a"),"Hi",d=typeof(1//2),3)
String

Int64

"Type of ¢ is Char and Type of d is Rational{Int64}"

259

CHAPTER 10 FUNCTIONS

In the present context, three categories of inputs can be defined as follows:
e Normal
— Arguments that must be specified and also must be in a specific order
e Optional
— Arguments that may be skipped, but if specified, they must be in order
e Keywords
— Arguments that can be skipped and need not be specified in an order

Let’s understand these three kinds of inputs with the following Julia code. We define
a function named function1 with three inputs (of three finds discussed before: normal,
optional, and keywords). The function is called successively with these arguments to
illustrate their usage:

julia> function functioni(normal,optional=1;keyword=0.001)
println("normal argument is $normal")
println("optional argument is $optional™)
println("keyword argument is $keyword")
end
functionl (generic function with 2 methods)

#0nly normal argument is specified
julia> function1("Hi")

normal argument is Hi

optional argument is 1

keyword argument is 0.001

#Normal and Optional arguments

both are specified and the value of optional
argument is changed from 1 to 2

julia> function1("Hi",2)

normal argument is Hi

optional argument is 2

keyword argument is 0.001

260

CHAPTER 10 FUNCTIONS

#Keyword argument is explicitly specified
#with a different value

julia> function1("Hi",2,keyword=0.1)
normal argument is Hi

optional argument is 2

keyword argument is 0.1

#Keyword argument do not follow orders
julia> functioni(keyword=0.1,1,2)
normal argument is 1

optional argument is 2

keyword argument is 0.1

Variable Arguments List

Users might need the ultimate flexibility in providing a variable list of arguments in some
cases. For this purpose, a list of arguments is supplied from which values can be picked
as required. This can be achieved by using the splat operator (. . .). Using the help
mode, one can find information about using the splat operator. The following Julia code
will illustrate the use of the variable argument list:

julia> function variable arguments(args...)

answer = length(args)

println("number of arguments is $answer")

end

variable arguments (generic function with 1 method)

julia> variable arguments(1)
number of arguments is 1

julia> variable_arguments(1,2)
number of arguments is 2

julia> variable arguments(1,2,"Hi")
number of arguments is 3

julia> variable arguments(1,2,'a")
number of arguments is 3

261

CHAPTER 10 FUNCTIONS

Another example shows the use of this facility for printing the second value among
arguments:

julia> function second value(args...)
return args[2]
end

julia> second value([1,2],3,4) 3

julia> second value([1,2],[2,1])
2-element Array{Int64,1}:

2

1

10.2.3 Multiple Outputs

A function returns objects, which are termed as its outputs. A Julia object outputs just
one object. So how can we obtain multiple output values? We have to understand that
there is a difference between obtaining multiple values in the output and obtaining
multiple output objects.

Multiple outputs are returned as a tuple of values instead of a single value. In
this manner, a function still returns a single object. It is important to remember that
tuples can be created and destructured without parentheses, which gives an illusion of
returning multiple values. Let’s explore multiple output functions with a simple example:
a Julia function named power takes two inputs a, b, performs calculations a® and b*, and
outputs them. When called with inputs 2 and 3, it outputs 2° = 8 and 3*=9 as a tuple:

julia> function power(a,b)
a"b,b"a
end

power (generic function with 1 method)

julia> power(2,3)
(8,9)

julia> x,y=power(2,3)
(8,9)

262

CHAPTER 10 FUNCTIONS

julia> x
8

julia> y
9

Two variables, x and y, can be used with an assignment operator when functions
are called so that they are assigned the corresponding element of the output tuple. An
equivalent syntax for the same function definition including a return statement is as
follows:

julia> function power(a,b)
return a“b,b"a
end

10.2.4 Anonymous Functions

When functions are defined without names, they are called anonymous functions. For
example, Xx->x"3-3x"2+4x-21 defines a mathematical function:

f(x)=x-3x*+4x - 21

They are used to pass them to functions that take other functions as arguments.
Anonymous functions can be defined as map (), which will map the anonymous function
to the values supplied as the second argument. The second argument can be a single
value or multiple values as a list. Also the data type of inputs must be workable with
operators used in the definition. The Julia code for the same can be written as follows:

julia> map(x->x"3-3x"2+4x-21,3)
-9

julia> map(x->x"3-3x"2+4x-21,[3,2,1])
3-element Array{Int64,1}:

-9

-17

-19

julia> x
ERROR: UndefVarError: x not defined

263

CHAPTER 10 FUNCTIONS

It is important to note that after the execution of map () function, x disappears from
the namespace as it was a local variable for the function map (). Hence, when x is probed,
it shows an UnderVarError since it is not defined in the present namespace.

Mapping Multiple Values

Multiple values can be mapped when inputs are provided as a tuple, that is, inputs are
separated by a comma. Here the order of input values will matter:

julia> map((x,y,z) -> sqrt(x"2+y*2+z*2),[1,1,1],[-1,-1,-1],
[0,0,1])

3-element Array{Float64,1}:

1.41421

1.41421

1.73205

Its is important to note that for the calculation
Xt +yi+z?

the first element of each array is taken to perform the calculation and then output the
first element. Then the same happens with the second and third to produce the result:

JAY +(-1)°+(0) =2 =1.41421
JAY +(-1)+(0) =2 =1.41421
J) +(-1) +(1) =3 =1.73205

10.2.5 map() Function

The built-in function map () can be used for nonanonymous functions, too. If you have a
function and an array, the function can be called for each element of the array by using
the map() function. The function is called for each element of the array. The results are
collected as an array that is then returned. The whole process is termed mapping:

julia> map(sin,0)
0.0

264

CHAPTER 10 FUNCTIONS

julia> map(sin,[0,pi])
2-element Array{Float64,1}:
0.0

1.22465e-16

julia> map(sind,[0,pi])
2-element Array{Float64,1}:
0.0

0.0548037

The elementwise operation of the map () function is built in in most functions. They are,
in fact, optimized for faster operations:

julia> @time map(sin,1:100000);
0.005181 seconds (11 allocations: 781.625 KB)

julia> @time sin(1:100000);
0.021231 seconds (4.06 k allocations: 959.704 KB)

As is clear from the previous example, sin() gives faster results than mapping.Mapping
from one array to another can be performed (it is done elementwise) for a given
function, provided both of them have the same size. For example:

julia> map(//,1:10,2:11)
10-element Array{Rational{Int64},1}:
1//2

2//3

3//4

4//5

5//6

6//7

7//8

8//9

9//10

10//11

265

CHAPTER 10 FUNCTIONS

julia> map(*,[1,2,31,[2,4,3])
3-element Array{Int64,1}:

1

16

27

In the first example code, the command map(//,1:10,2:11) maps the built-in
function // from the array 1:10 to the array 2:11 in an elementwise fashion; the first
elementis 1//2, the second elementis 2//3, and so on.

In the second example code, the command map(*,[1,2,3],[2,4,3]) maps the
built-in function * from array [1,2,3] to the array 2,4, 3 elementwise. The elements of
the resultant array are the following:

(1r=1
(2)*=16
(3)}=27

10.2.6 reduce(), foldl(), and foldr() Functions

The map() function collects the results by operating a function elementwise on an
iterable object, such as an array of numbers. On the other hand, the built-in function
reduce() does a similar task, but after every element has been checked and processed
by the function, only one is left. The function should take two arguments and return one.
The array is reduced by continual application so that just one is left. For example, it can
be used to sum up the contents of an array:

julia> reduce(+,[1,2,3])
6

In first case of command reduce(+,[1,2,3]), operator + performs the following:

1+2=3+3=6

266

CHAPTER 10 FUNCTIONS

What if we use the subtraction operator? There is an issue surrounding the property
of associativity:

(1-2)-3 \Rightarrow -1-3 \Rightarrow -4 \\
1-(2-3) \Rightarrow 1-(-1) \Rightarrow 2

julia> reduce(-,[1,2,3])
-4

The reduce() function starts clubbing elements for operating from the left. The
foldl() and foldr() functions will determine the direction of folding the given array for
a particular operation to obtain a single valued output:

julia> reduce(-,[1,2,3])
-4

julia> foldl(-,[1,2,3])
-4

julia> foldr(-,[1,2,3])
2

10.2.7 mapreduce()

Mapping and folding can be performed simultaneously using the mapreduce(),
mapfoldl(), and mapfoldr() functions:

julia> mapreduce(+,-,[1,2,3])
-4

julia> map(+,[1,2,3])
3-element Array{Int64,1}:
1

2

3

267

CHAPTER 10 FUNCTIONS

julia> reduce(-,map(+,[1,2,3]))
-4

julia> mapfoldl(+,-,[1,2,3])

-4

julia> foldl(-,map(+,[1,2,3]))
-4

julia> mapfoldr(+,-,[1,2,3])

2

julia> foldr(-,map(+,[1,2,3]))
2

10.3 Multiple Dispatches

Until now, our function definitions included defining just one method. For example,

when we construct a function:

julia> f(x,y)=x+y

f (generic function with 1 method)

The output of the REPL prompt at which the function is defined in a shortcut

notation says that we have constructed a generic function with one method. The output

is type-sensitive in the sense that the + works on numbers, but not on strings and

characters, and hence will give a MethodError since the method is not defined for Char

and/or String data type as is evident for the following code:

julia> f(x,y)=x+y

f (generic function with 1 method)

julia> (2,3)

5

julia> f('a','b")
ERROR: MethodError: no

method matching +(::Char, ::Char)
Closest candidates are:

268

CHAPTER 10 FUNCTIONS

+(::Any, ::Any, ::Any, ::Any...) at
operators.jl:424

+(::Char, ::Integer) at char.jl:40
+(::Integer, ::Char) at char.jl:41
Stacktrace:

[1] f(::Char, ::Char) at ./REPL[365]:1

To avoid such scenarios, multiple dispatch facilities can be given while defining
functions so that functions can perform computations workable for various data types.

10.3.1 Defining Multiple Function Definitions

Let’s look at the concept of multiple dispatches by taking a simple example of a function
named typeInfo defined below:

#Defining first method for Inté64

julia> function typeInfo(a::Int64)
println("Input's type is Int64")

end

typeInfo (generic function with 1 method)

#Defining second method for Float64
julia> function typeInfo(a::Float64)
println("Input's type is Float64")

end

typeInfo (generic function with 2 methods)

#Defining third method for Char

julia> function typeInfo(a::Char)
println("Input's type is Char")

end

typeInfo (generic function with 3 methods)

#Defining fourth method for String

julia> function typeInfo(a::String)
println("Input's type 1is String")

end

typeInfo (generic function with 4 methods)

269

CHAPTER 10 FUNCTIONS

julia> typeInfo(2)
Input's type is Int64

julia> typeInfo(2.0)
Input's type is Float64

julia> typeInfo('a')
Input's type is Char

julia> typeInfo("Hello")
Input's type is String

The : : operator is used to attach a particular type to the variables.
The defined methods are probed using the methods () functions. As an example, let’s
probe the methods for the function typeInfo() we defined earlier:

julia> methods(typeInfo)

5 methods for generic function "typeInfo":
typeInfo(a::String) in Main at REPL[372]:2
typeInfo(a::Char) in Main at REPL[371]:2
typeInfo(a::Float64) in Main at REPL[370]:2
typeInfo(a::Complex{Float32}) in Main at REPL[369]:2
typeInfo(a::Int64) inm Main at REPL[368]:2

Itis important to note that the previous definitions of functions and their methods
will have a life inside the present REPL session.

10.4 Operators Defined as Functions

In Julia, most operators are just functions with support for special syntax where symbols
are used instead of names. But remember that symbols are simply Unicode characters
that are valid function names. For example, the operator + can be called just like a
function on two numbers. The infix form is exactly equivalent to the function application
form. Hence, the operator can be assigned to another name and used just like any other
function:

julia> 1+1.0
2.0

270

CHAPTER 10 FUNCTIONS

julia> +(1,1.0) # called like a function
2.0

julia> f=+ # name can be assigned to a variable
+ (generic function with 163 methods)

julia> f(1,1.0) # Assigned vairable name can be
used for calling
2.0

The exception to this case is 88 and | | operators since they require that their
operands are not evaluated before the evaluation of the operator.

10.4.1 Functions Returning Functions

A function (let’s call this a minor function) can be nested inside another function (let’s
call this a major function). In this case, the minor function returns an object that is used
by a major function to return another object in return.

As an example, let’s consider a major function named expo() that takes one
input x, which is essentially the power of exponentiation. A minor function defines
the functionality of calculating y* where y defines the values for which the power x is
calculated. Apart from calculating y*, the minor function also prints the type of object
returned by the minor function:

julia> function expo(x)

expol = function(y)
answer=y”~x
answer type = typeof(answer)
println(answer type)
return answer
end

end

julia> sq(2)
4

julia> sq = expo(2)
(::#58) (generic function with 1 method)

271

CHAPTER 10 FUNCTIONS

julia> sq(2)
Int64
4

julia> sq(2.0)
Float64
4.0

julia> cu = expo(3)
(::#58) (generic function with 1 method)

julia> cu(2)
Int64
8

julia> cu(2.0)
Float64
8.0

julia> sq_root = expo(0.5)
(::#58) (generic function with 1 method)

julia> sq_root(2)
Float64
1.4142135623730951

julia> sq_root(3)
Floaté4
1.7320508075688772

julia> cu_root(2)
Float64
1.2599210498948732

julia> cu_root(3)
Float64
1.4422495703074083

272

CHAPTER 10 FUNCTIONS

To calculate squares of numbers, you can write sq=expo(2), which calculates the
square of any number that is provided as input. Similarly, cu = expo(3) finds cubes,
sq_root = expo(0.5) finds square roots, and cu_root = expo(1//3) finds the cube
roots.

10.5 Summary

In this chapter, we have discussed functions within a Julian framework. Defining a bigger
code into a group of functions makes the task modular and manageable in a flexible
manner. The ability to pass arguments strictly or with flexibility allows us to write specific
functions for specific requirements. Functions also let us define methods for particular
objects. Thus, this ability forms the core of the OOP concept and Julia uses functions
quite effectively.

273

CHAPTER 11

Control Flow

11.1 Introduction to Control Flow

When you evaluate Julia code line-by-line for execution, you sometimes need to shift

the flow of execution out of this line-by-line manner to a different point of the code. In
other words, the flow of the program needs to be altered. There are many reasons why
you would need to make this shift. For example, a condition needs to be checked and
then the flow can be directed to one of many directions, some parts of the calculation are
repetitive so the program needs to be altered before returning back, or an error might
happen and the flow needs to redirected. Julia provides powerful constructs for these
situations, which will be described in this chapter.

11.2 Ternary Expression

When flow needs to be chosen for two directions based on a simple yes or no answer
for a condition, ternary operators ? and : can be used efficiently within a one-

line statement. For example, suppose one constructs a vector (referenced by a) as
[1,2,3,4,5]. If the length of this vector is less than 3, then all the elements must be
squared. If the length of this vector is more than 3, then the square root of all elements
must be taken. The following code can be implemented for this purpose:

julia> a = [1,2,3,4,5]
5-element Array{Int64,1}:

uvi B W N R

275
© Sandeep Nagar 2017

S. Nagar, Beginning Julia Programming, https://doi.org/10.1007/978-1-4842-3171-5_11

CHAPTER 11 CONTROL FLOW

julia> length(a)<3 ? a.”2 : sqrt.(a)
5-element Array{Float64,1}:

1.0
1.41421
1.73205
2.0
2.23607

julia> a=[1,2]

2-element Array{Int64,1}:
1

2

julia> length(a)<3?a.”2:sqrt.(a)
2-element Array{Int64,1}:

1

4

Since the length of a in the first case is actually 5 (it has five elements), the condition
is not satisfied and, hence, the square root of the elements is taken. In the second case,
the length of a becomes 2 and the condition is satisfied, which is why elements are
squared. This simple construct provides a powerful means for directing the flow within
just one line of code.

11.3 Boolean Switching

Similar to ternary expressions, boolean switching is presented in the cases where a single
or compound logical sentence presents true or false boolean data type as output. The
operators 88 represent the and operator, whereas | | represents the or operator. Their
usage can be understood in the following Julia code:

julia> a = 1
1

julia> isodd(a) && true
true

276

CHAPTER 11 CONTROL FLOW

#verification
julia> isodd(a)
true

julia> true && true
true

julia> isodd(a) || true
true

#verification
julia> true || true
true

These operators are used to evaluate a particular logical condition, following which a
decision can be made to direct the flow in a desired direction.

11.4 if-else

To check a logical condition, the keyword if is used following the set of expressions that
is executed when the condition is found to be true. If the condition is found to be false,
the set of expressions following the else keyword is executed. The keyword elseif
provides an option for checking another condition. The number of elseif blocks is not
limited to a particular number, which makes this option a powerful one for complex
systems. Conditions are made using boolean expressions as described in Section 11.3.

A simple example can be used to check if an element type of an input is an integer or
a float. The following Julia code accomplishes this:

julia> function el type(a)
if eltype(a)==Int64
println("$a is an integer")
else
println("$a is a float")
end
end
el type (generic function with 1 method)

277

CHAPTER 11 CONTROL FLOW

julia> el type(2)
2 is an integer

julia> el type(2.0)
2.0 is a float

The code can be improved to contain other data types using the elseif keyword.
For example, complex data types can also be included:

julia> function el type(a)
if eltype(a)==Int64
println("$a is an integer")
elseif eltype(a)==Complex64
println("$a is a complex number")
else
println("$a is a float")
end
end

julia> el type(complex(2,3))
2 + 3im is a float

julia> el type(2)
2 is an integer

julia> el _type(2.0)
2.0 is a float

In a similar fashion, a number of elseif conditions can be inserted. An important
aspect of Julia syntax is that you don’t need to worry about defining blocks of statements
within brackets (as in C and C++) or with indents (as in Python). The indents used
here are for visual clarity. The Julia compiler does not demand the same syntactically,
so you also don’t have to worry about using whitespace, braces, indentation, brackets,
semicolons, and so on, for defining blocks of code. However, you need to remember to
finish the conditional construction with end. Furthermore, the elseif and even the else
parts are optional.

278

CHAPTER 11 CONTROL FLOW

11.5 for Loop

The for ... end construct helps in working through a list or a set of values, or from a
start value to a finish value. The following example will help in understanding its usage.
Suppose we simply want to print the elements of an array [1,2,3]:

julia> a = [1,2,3]
3-element Array{Int64,1}:
1

2

3

julia> for i in a
println(a[i])
end

The elements of an array are iteratively valued by i over the array a using the
membership operator in, that is, using the syntax for i in a. Since Julia uses a very
intuitive syntax structure, it is easier for users to conceive and understand code.

It is important to note that while a was an array object, the for loop does not return an
array. Instead, a Void type object is returned. The Void object has just one instance called
nothing, which is used by convention when there is no value to return. At the end of the
loop, no value is returned as the loop simply performs whatever the tasks it is defined to do.
Some functions and/or parts of code are used only for their side effects and do not need to
return a value. The for loop structure is one of them. After the loop ends, it must not create
an object; hence, it creates a Void object. As a result, REPL does not print anything for it:

julia> a=for i in a
println(a[i])

end

1

3

julia> typeof(a)
Void
279

CHAPTER 11 CONTROL FLOW

Complex mathematical structures can be included within the block of the loop
for performing desired operations. For example, let’s consider a Julia code that prints
0dd when it encounters a odd number and prints Even otherwise. The numbers can be
checked using the function isodd():

julia> a=[1,2,3,4,5]
5-element Array{Int64,1}:

2
3
4
5

julia> for i in a
if isodd(i)
print("0dd \n")
else
print("Even \n")
end
end

0dd
Even
0dd
Even
0dd

11.5.1 Scope of a Loop Variable

The existence of a looping variable (i in the previous code) is independent of the loop in
which it is used. It can exit beforehand, in which case the loop’s behavior affects it. If it
did not exist before, it is destroyed as soon as the loop is exited. The following example
will make this clear:

julia> i=1
1

280

CHAPTER 11 CONTROL FLOW

julia> for i in 1:5 #i already existed
println(i)
end

Ui » W N R

julia> i # final value is governed by loop
5

julia> for j in 1:5 #j did not existed before
println(j)
end

vi B W N R

julia> j # j does not exist after loop
ERROR: UndefVarError: j not defined

11.5.2 continue

When you wish to skip certain values during a loop, continue comes in handy. You
make a rule using a logical expression and skip the values using an if statement. For
example, suppose you want to extract only the odd numbers from arrays of numbers
from 1 to 10:

julia> for i in 1:10
if i%2 ==
continue
end
println(i)
end

281

CHAPTER 11 CONTROL FLOW

O N U1 W R

When condition i%2==0 is checked, it proves true for all even numbers. Hence,
they are skipped using a continue statement. Others are simply fed to the println()
function, which prints them.

11.5.3 Comprehensions

Comprehensions are convenient ways of defining arrays using for loops. Here a rule
is defined within [] brackets (which removes the necessity of writing the end keyword
to end the for loop). For example, if you need to define an array of the square root of
numbers from 1 to 5, then you can write Julia code in one line as follows:

julia> [sqrt(i) for i in 1:5]
5-element Array{Float64,1}:
1.0

1.41421

1.73205

2.0

2.23607

You can define the type of elements by defining the type array outside [] brackets.
For example, writing Complex64 outside square brackets ensures the elements are of
the type Complex64. (Complex numbers are stored in 64 bits of memory.) The complex
numbers are defined as follows:

\/E+(2><k)i

julia> a = Complex64[sqrt(k)+(2k)im for k in 1:5]
5-element Array{Complex{Float32},1}:

1.0+2.0im

1.41421+4.0im

282

CHAPTER 11 CONTROL FLOW

1.73205+6.0im
2.0+8.01im
2.23607+10.0im

julia> eltype(a)
Complex{Float32}

An array of tuples, valued by a comprehension rule, can also be created as follows:

julia> [(sqrt(k),k,k*2) for k im 1:5]
5-element Array{Tuple{Float64,Int64,Int64},1}:
(1.0,1,1)

(1.41421,2,4)

(1.73205,3,9)

(2.0,4,16)

(2.23607,5,25)

In this example, each element is a tuple consisting of the square root of a number,
the number itself, and its square. Numbers range from 1 to 5.
Two iterators can also be defined in a comprehension format as follows:

julia> [(a,b) for a in 1:5,b in 2:4]
5x3 Array{Tuple{Int64,Int64},2}:
(1,2) (1,3) (1,4)

(2,2) (2,3) (2,4)

(3,2) (3,3) (3,4)

(4,2) (4,3) (4,4)

(5,2) (5,3) (5,4)

The first elements of tuples range from 1 to 5; the second element ranges
from 2 to 4.

283

CHAPTER 11 CONTROL FLOW

11.5.4 Generators

Generators, which are new to Julia, were introduced in version number 0.5. Just like
comprehensions, generators can be used to produce values from iterating a variable.
But they pose a striking difference. Unlike comprehensions, the values are produced on
demand. Let’s look at example Julia code:

julia> collect(x for x in 1:100 if x%7==0 8& x%3==0)
4-element Array{Int64,1}:

21

42

63

84

This example makes an array of numbers (within the range of 1 to 100 and that are
multiples of both 7 and 3).

11.5.5 enumerate

Using the built-in function enumerate(), you can produce a tuple of values with their index:

julia> a = ["3",3,3.0]
3-element Array{Any,1}:
II3II

3.0

julia> for(index,value) in enumerate(a)
println("$index $value")

end

13

23

3 3.0

In thsi example, an array is defined with three values: "3" (a string valued 3), 3
(an integer valued 3), and 3.0 (a floating point number valued 3.0). This list is iterated
with enumerate() to produce index and value pairs and store them in a defined tuple
(index,value). Each value is printed using the print1n() function.

284

CHAPTER 11 CONTROL FLOW

11.5.6 Zipping Arrays

Zipping arrays involves taking corresponding elements from each array as a member of a
tuple. For example:

julia> fer i in zip(1:5,5:10,10:15)
println(i)

end

(1,5,10)

(2,6,11)

(3,7,12)

(4,8,13)

(5,9,14)

The first element of each tuple is taken from the rule 1:5, the second element is
taken from the rule 5:10, and the third element of each tuple is taken from the rule
10:15.

11.6 while Loop

Thewhile ... end constructis used when a particular expression or a set of
expressions needs to be calculated while a condition is true.

julia> x = 0
0

julia> while x<5

println(sqrt(x))
X+=1

end

0.0

1.0

1.4142135623730951

1.7320508075688772

2.0

285

CHAPTER 11 CONTROL FLOW

This code first initializes the variable named x to value 0. Now the condition x < 5
is checked. When x = 0, then this condition is true and println(sqrt(x)) is executed.
The x++1 increments the value of x to 1 and again the condition is checked. If found
true, the println() statement is executed. This is done until the condition is true, that
is, until x = 4.

11.7 Nested Loops

One of the most convenient aspects of defining loops in the Julia programming language
is the simplicity of defining nested loops. Nested loops are written by simply separating
loops with a comma (,) operator. For example, let’s consider the following Julia code
where first x is spanned from 1 to 3 and, inside each step of this loop, y is spanned from

1 to 3. For each step within the y loop, z is defined as a tuple where the current value of x
and y are fed. So when x=1, coordinates (1,1), (1,2), (1,3) are created iteratively and
then x is incremented to 2 and same is done again:

julia> for x inm 1:3,y in 1:3
z = (%Y)
println(z)
end

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(3,1)

(3,2)

(3,3)

Similarly, another Julia code can be written where three coordinates on x, y, and z
axes of a vectors are defined using nested loops in X, y, and z, respectively (in the same
order). The coordinates are created as follows:

o First,x=1andy =1, and z takes values 1a dn, then 2.

— Coordinates are created as (1,1, 1) and (1, 1, 2).

286

CHAPTER 11 CONTROL FLOW

e Next, x=1andy increments to 2, and z takes values 1a dn, then 2.

— Coordinates are created as (1,2, 1) and (1, 2, 2).

e Nextx=1andy increments to 3, and z takes values 1a dn, then 2.

— Coordinates are created as (1,3, 1) and (1, 3, 2).

e Nowy and z loops have been exhausted to outer loop for x

incremented its value to x = 2 and the process is repeated for this new

value of x.

— First, (2,1,1) and (2, 1, 2) are created.

— Next, (2,2,1) and (2, 2, 2) are created.

— Next, (2,3,1) and (2, 3, 2) are created.

e Againy and z loops have been exhausted to outer loop for x

incremented its value to x = 3 and the process is repeated for this new

value of x.

— First, (3,1, 1) and (3, 1, 2) are created.

— Next, (3,2,1)and (3, 2, 2) are created.

— Next, (3,3, 1) and (3, 3, 2) are created.

o Ineach case, the length is calculated by the following formula:

Jxi+yi+2?

This is stored in the variable name distance and is used in the print1ln() function

for printing.

julia> for x im 1:3,y im 1:3, z in 1:2
distance = sqrt(x"2+y”2+z"2)
println("Length for vector ($x,$y,$z) is $distance")

end

Length for vector
Length for vector
Length for vector
Length for vector

(1,1,1)
(1,1,2)
(1,2,1)
(1,2,2)

is 1.7320508075688772
is 2.449489742783178
is 2.449489742783178
is 3.0

287

CHAPTER 11 CONTROL FLOW

Length for vector (1,3,1) is 3.3166247903554
Length for vector (1,3,2) is 3.7416573867739413
Length for vector (2,1,1) is 2.449489742783178
Length for vector (2,1,2) is 3.0

Length for vector (2,2,1) is 3.0

Length for vector (2,2,2) is 3.4641016151377544
Length for vector (2,3,1) is 3.7416573867739413
Length for vector (2,3,2) is 4.123105625617661
Length for vector (3,1,1) is 3.3166247903554
Length for vector (3,1,2) is 3.7416573867739413
Length for vector (3,2,1) is 3.7416573867739413
Length for vector (3,2,2) is 4.123105625617661
Length for vector (3,3,1) is 4.358898943540674
Length for vector (3,3,2) is 4.69041575982343

11.8 do...end

Thedo ... end construct can be used just like comprehension. Suppose we have an
array A having five numbers. When we write an anonymous function (x— > x == 1|Jx == 4|
where the value of x is either 1 or 4), to find() function (which returns the index of
resultant element), we can also use the do ... end construct as an alternate. Here, we
just avoid defining an anonymous function, as illustrated in the following Julia code:

julia> A = [1,2,3,4,5]
5-element Array{Int64,1}:

vi B W N R

julia> find(x-> x==1||x==4,A)
2-element Array{Int64,1}:

1

4

288

CHAPTER 11 CONTROL FLOW

julia> find(A) do x

x==1| | x==4

end

2-element Array{Int64,1}:
1

4

11.9 Exceptions

Sophisticated level programming involves error (or exception) handling. It is an essential
feature of writing Julia code and coders are encouraged to write their code with this
feature for better usage and understanding by the general community as well as for

code stability. When an unexpected condition occurs while executing a Julia program,

a defined function may not be able to return a reasonable value to its caller. This will
usually issue an error message, but it is advisable to use the exceptional condition to
perform one of the following:

o Terminate the program.
o Print a diagnostic error message.

e Ifthe programmer has provided code to handle such exceptional
circumstances, allow that code to take the appropriate action.

This way, you control the way the program proceeds rather than just getting an error
message.

11.9.1 Built-in Exceptions

There are a set of built-in exceptions in Julia, which are produced when an unexpected
condition has occurred. We have already encountered some error messages in a similar
fashion. The messages that we saw printed on REPL were defined because the Julia code
that generated them was written for handling exceptions.

Going inside the help mode (by writing ? on a Julia terminal and writing Exception),
you can obtain a list of built-in exceptions. Some of them are listed in Table 11-1.

289

CHAPTER 11 CONTROL FLOW

Table 11-1. Built-in Exceptions in Julia

Syntax lllustration

ArgumentError The parameters to a function call do not match a valid signature.

BoundsError An indexing operation into an array, a, tried to access an out-of-
bounds element, i.

DivideError Integer division was attempted with a denominator value of 0.

DomainError The arguments to a function or constructor are outside the valid
domain.

EOFError No more data was available to read from a file or stream.

InexactError Type conversion cannot be done exactly.

InterruptException The process was stopped by a terminal interrupt (CTRL+C).

MethodError A method with the required type signature does not exist in the
given generic function.

OutOfMemoryError An operation allocated too much memory for either the system or
the garbage collector to handle properly.

ReadOnlyMemoryError An operation tried to write to memory that is read-only.

OverflowError The result of an expression is too large for the specified type and
will cause a wraparound.

TypeError A type assertion failure occurred, or an intrinsic function was
called with an incorrect argument type.

UndefRefError The item or field is not defined for the given object.

UndefVarError A symbol in the current scope is not defined.

DimensionMismatch The objects called do not have matching dimensionality.

AssertionError The asserted condition did not evaluate to true.

11.9.2 Custom-Built Exceptions

Built-in exceptions can be used by the built-in function throw(), which throws an

exception as per a defined rule. For example, a DomainError can be thrown when the

user inputs a non-negative number defined exclusively for negative numbers, as shown

in the following Julia code:

290

CHAPTER 11 CONTROL FLOW

julia> f(x) = x<0 ? exp(x) : throw(DomainError())
f (generic function with 1 method)

julia> f(-1)
0.36787944117144233

julia> (1)

ERROR: DomainError:
Stacktrace:

[1] f(::Int64) at ./REPL[31]:1

The condition x<0 ensures that x should be smaller than 0.

Another function named error () is used to produce an ExrrorException that
interrupts the normal flow of control. For example, the following Julia code is written
where we wish to entertain only integers for inputting to our defined function. Any
other type of data should display a descriptive error message so that the user can input
correctly:

julia>f(x)=typeof(x)==Int64?e”x:error("Input only integer")
f (generic function with 1 method)

julia> (1)
2.718281828459045

julia> f(2)
7.38905609893065

julia> f(2.0)

ERROR: Input only integer

Stacktrace:
[1] f(::Float64) at ./REPL[34]:1

11.9.3 catch...try Construct for Testing Exceptions

The try .. catch statement allows for exceptions to be tested for. The catch clause
is not strictly necessary; when omitted, the default return value is nothing (the singleton
instance of type Void, used by convention when there is no value to return).

291

CHAPTER 11 CONTROL FLOW

The try ... catch constructlet’s us handle exceptions, both generally and dependent
on a variable. The general structure is as follows:

o try
— The main body of the function should be written within this block.
— Julia will try to execute the code within this block.
o catch
— This block catches the errors.
— Itis advised to use a variable, to which the exception can be assigned.

— Thisvariable can be used inthe if ... elseif ... else
construct to check the exception.

Let’s consider the example of a custom-built function to calculate the square root
of a quantity x where x has to be a positive number (Integer, Float, Complex type). We
would encounter an error if the user feeds a string as input. Hence, the error is stored in
err variable and then uses if ... else construct. If the err value is MethodError (that
is, the data type isn’t defined within the method of the built-in sqrt () function), then an
error message is printed on the terminal. This is verified in the following Julia code:

julia> function square root(x)
try
sqrt(x)
catch err
if isa(err,MethodError)
println("Input a number")
end
end
end

square_root (generic function with 1 method)

julia> square_root("a")
Input a number

julia> square root("alpha")
Input a number

292

CHAPTER 11 CONTROL FLOW

julia> square_root(complex(2,3))
1.6741492280355401 + 0.8959774761298381im

julia> square_root(2)
1.4142135623730951

The code can be improved to include the DomainError using the elseif option
where, if a negative number is given as input, it will be treated like a complex number
and the square root will be calculated:

julia> function square root(x)

try
sqrt(x)

catch err
if isa(err,MethodError)
println("Input a number")
elseif isa(err,DomainError)

sqrt(complex(x))

end

end

end
square_root (generic function with 1 method)

julia> square_root(-2)
0.0 + 1.4142135623730951im

julia> square root("a")
Input a number

julia> square_root(2)
1.4142135623730951

11.9.4 finally

Once the try ... catch construct has finished, Julia executes the code whether the
operation has succeeded or not. The finally keyword executes whether there was an
exception or not. This is particularly important because the Julia code that affects the

293

CHAPTER 11 CONTROL FLOW

state changes or uses resources like files, involving typical clean-up work (such as closing
files). These tasks needs to be done when the code is finished (finally!). Exceptions are
not a good choice for these tasks since they can cause a block of code to exit before
reaching its normal end. The finally keyword provides a way to run a particular Julia
code when a given block of code exits (regardless of the fact that it exited). This is
particularly important for file handling so it will be discussed in Chapter 12.

11.10 Summary

In this chapter, we illustrated Julia’s control flow structures. The control flow of
computational tasks is essential to any computational tasks. Defining loops, checking
comparison, and defining expressions for complex logical statements are critical for
writing code to solve a physical problem. The ability to run these tasks effectively

with different data types in a timely manner makes Julia a prime candidate for
numerical computation. The tasks’ ease of usage is a prominent feature in Julia.
One-line definitions of such features can be seen in very few programming languages.
Furthermore, there aren’t many strict rules about using indents and brackets to define
the blocks of code, which avoids syntactical errors on the part of the programmer.

294

Input Output

12.1 Introduction

Input and output of data are such basic operations for a programming language that they
are mostly taken for granted and powerful constructs existing for the same are mostly
ignored. Julia provides a variety of ways to input and output data. It is important to
differentiate them and use the appropriate one for a particular application.

Julia provides a rich ecosystem of interfaces to deal with streaming I/O objects such
as terminals, pipes, and TCP sockets. Julia prefers to handle data in terms of streams;
data is streamed continuously to the Julia program rather than working on it as a block
of memory. There are several varities of streaming (for both inputing and/or outputting
purposes). This chapter will deal with a variety of ways in which Julia can handle data
input and/or output streams.

12.2 Console 1/0

The Julia in this mode is, in fact, a medium for inputting and outputting data. This
comes under the category of console I/0. We have already used two functions, print()
and println(), for this purpose. They print the their inputs on the Julia terminal where
println() also appends a character to the output. The representation used by print
includes minimal formatting and tries to avoid Julia-specific details:

julia> println("Hello World")
Hello World

julia> print("Hello World")
Hello World

295
© Sandeep Nagar 2017

S. Nagar, Beginning Julia Programming, https://doi.org/10.1007/978-1-4842-3171-5_12

CHAPTER 12 INPUT OUTPUT

The terminal input can be achieved using the built-in readline() function. It
reads the keyboard input until the first occurrence of a newline character. The newline
character \n is also stored when the readline() function is used for input:

julia> a = readline();
Hi

julia> a
"Hi\n"

12.3 Basic Stream 1/0

The basic Julia functions read() and write() take the streams as their first argument.
Let’s first explore the built-in writing write() function:

julia> write(STDOUT, "Hello")
Hellos

julia> write(STDOUT, "Hello\n")
Hello
6

julia> write(STDOUT, "Hello\nWorld")
Hello
Worldi1

julia> write(STDOUT, "Hello\tWorld")
Hello Worldi1

julia> write(STDOUT, "Hello World")
Hello Worldi1

STDOUT is a global variable referring to the standard out stream:

julia> a = STDOUT
Base.TTY(RawFD(14) open, 0 bytes waiting)

TTY represents the computer terminal. By default, STDOUT is the set of output data
stream to the computer terminal. When we wrote the following:

write(STDOUT, "Hello")

296

CHAPTER 12 INPUT OUTPUT

we got the output Hel1lo5. Here Hello is the content of the input string to the write()
function and 5 is the number of bytes in the stream. When we wrote the following:

write(STDOUT, "Hello\n")

we added a new character called a newline character to the stream (represented by
\n); hence, the count of the number of bytes increased to 6. Also, when it is printed at
TTY (computer terminal), you can observe that the newline character is also printed i.e
between Hello and 6 being printed, a newline character is also printed (a gap of one line
exists). Other test commands also show the same capabilities.

Returning the number of bytes can be suppressed with the ; character at the end of
the command. This can be easily verified in the following Julia code:

julia> write(STDOUT, "Hello")
Hellos

julia> write(STDOUT,"Hello");
Hello #supresses \n too
julia>
The built-in function read() works in a similar fashion. As the name suggests, this
function will input a stream. Just like STDOUT, there is a global variable referring to the

standard input stream, STDIN, which will be used in the read() function. Let’s first use it
in the following Julia code and look at its usage and behavior from the output:

julia> read(STDIN,Char)

‘\n': ASCII/Unicode U+000a
(category Cc: Other, control)

The read() function would treat the stream as character data type from standard
input set by default on the keyboard and stored at the global variable STDIN. In this case,
the Enter key is pressed, which represents a newline character, \n, that is in turn printed.
Similarly, you can print alphabets like a as follows:

julia> read(STDIN,Char)

a

'a': ASCII/Unicode U+0061
(category L1: Letter, lowercase)
julia>

297

CHAPTER 12 INPUT OUTPUT

Within this same command structure, even a number key will produce a character
data type:

julia> read(STDIN,Char)
1
"1': ASCII/Unicode U+0031
(category Nd: Number, decimal digit)
julia>
When two numbers are fed as input and then the Enter key is pressed, the second
number is fed to the Julia command prompt:

julia> read(STDIN,Char)

10

"1': ASCII/Unicode U+0031

(category Nd: Number, decimal digit)

julia> 0 # Fed to REPL from previous input
0

julia> typeof(ans)
Int64

Here, the keys for numbers 1 and 0 are pressed and then the Enter key is pressed. In
this case, 1 (the number 1 as a character) becomes part of the stream and duly displayed,
after which 0 is fed to the next command prompt, which evaluates it to 0 and displays the
same. Since the last evaluated entity is stored in the variable ans, checking its data type
for 0 confirms that the data type is Int64 and not Char as for 1:

julia> read(STDIN,Char)

ab

"a': ASCII/Unicode U+0061
(category L1: Letter, lowercase)

julia> b
ERROR: UndefVarError: b not defined

Doing a similar task with a set of characters results in an error for julia>b since b
variable is not defined and cannot be evaluated.

298

CHAPTER 12 INPUT OUTPUT

Using the command methods (read), you can scan the kinds of data types that can
be fed to the function read(). Also, it is worth noting that write() takes the data to write
as its second argument, while read() takes the type of the data to be read as its second

argument.

12.4 Byte Array Streaming

Just like single characters (bytes) are streamed, a byte array can also be streamed as
follows:

julia> x = rand(UInt8,3)
3-element Array{UInt8,1}:
0x72
0x5a
0x37

julia> read!(STDIN,x)

abc

3-element Array{UInt8,1}:
0x61

0x62

0x63

julia> x

3-element Array{UInt8,1}:
0x61

0x62

0x63

During the first command, three random numbers of the data type Unit8 (8 bits = 1
byte) are stored in a variable named x. These numbers are fed to the read! () function.
The addition of ! forces the function to change stored values with new values. Now
the byte array x is open to read three bytes. When characters a, b, and c are fed at the
keyboard, these bytes are stored in the byte array. Their hexadecimal representation can

299

CHAPTER 12 INPUT OUTPUT

be verified to be present as values of elements in x. Conversely, another way to stream in
byte values in byte arrays is the following:

julia> read(STDIN,3)

abc

3-element Array{UInt8,1}:
0x61

0x62

0x63

julia> ans

3-element Array{UInt8,1}:
0x61

0x62

0x63

Here three values are streamed in the array default output variable ans:

julia> read(STDIN,3)

123

3-element Array{UInt8,1}:
0x31

0x32

0x33

julia>
julia> read(STDIN,3)

1s3

3-element Array{UInt8,1}:
0x31
0x73
0x33

julia> read(STDIN,3)
#$%

300

CHAPTER 12 INPUT OUTPUT

3-element Array{UInt8,1}:
0x23
0x24
0x25

Notice that the output of streamed bytes is shown in their hexadecimal
representation. Hence, the inputs can be any kind of Unicode characters in the input
stream.

12.5 Streaming a Line of Characters

When a line of characters must be streamed in, a simpler built-in function can be used
(readline()), which can take inputs of characters to make a line. Pressing the Enter key
on a keyboard prints a newline character, which declares the end of the line. The output
of the readline() function is a string. This is verified by issuing typeof(ans) at the Julia
command prompt:

julia> readline(STDIN)
Hi, How are you
"Hi, How are you\n"

julia> readline(STDIN)
123.345
"123.345\n"

julia> readline(STDIN)

#$% yY&* (

"#\$% yY&* (\n"

julia> typeof(ans) #probing last input at REPL
String

Please note that depending on a particular terminal’s settings, the TTY may be
line-buffered and might thus require an additional enter before the data is sent to
Julia REPL.

301

CHAPTER 12 INPUT OUTPUT

12.6 Textl/0

The capability to write textual data depends on the output media. For example, some
softwares and associated hardwares will only understand ASCII characters, while

others can also understand Unicode characters. For example, a seven-segment display
can display only English alphabets and Roman numerals using ASCII code. Hence,

itis important for a developer to keep in mind the kind of target hardware-software
combination for a particular application. Generally, one writes a Julia code that needs to
display on a graphical monitor (such as your desktop’s or laptop’s screen).

The data to monitor is streamed via a software channel that is responsible for interpreting
it as per the monitor’s configuration. Since it is a graphical terminal, apart from textual data,
it can also handle a lot of graphical formats. In a general sense, printing textual objects and
printing graphical objects are similar tasks and can be generalized for a computer-
programming environment. Julia code enables handling these objects and interpreting them
as per their defined properties. How many types of objects can one Julia function handle
simply depends on how many methods have been defined for the same. (See Chapter 10.)

We have already seen the primary usage of the built-in function write(). The
function write() operates on binary streams and text representations are written as is.
For example, the character a is stored in one byte and is given a Unicode represented by
the hexadecimal number 0x61. To print a, you can use the write() method:

julia> write(STDOUT,'a")
al

julia> write(STDOUT,'a");
a

julia> write(STDOUT,0x61)
a

julia> write(STDOUT,0x61);
al

It is worth noting that the ; operator suppresses the printing of the number of bytes
(one here) when used at the end of the command. Some other functions exist to handle
textual objects in a more structured manner:

e show()
o print()

302

CHAPTER 12 INPUT OUTPUT

e println()
o display()

12.6.1 show()

Most of the display functions, ultimately called show() for writing an object x, are given
a mime type to a given I/O stream (usually a memory buffer), if possible. The default
mime type is plain text. The function show() requires two input arguments—type of I/O
stream and data. The show() function can handle a variety of textual data and represents
them using its defined mime. For example, a complex number must be displayed
accordingly to its mime, which dictates textual information in the following order:

1. A number depicting the real part

2. Awhitespace

3. The symbol for signs + or - (as is the case for the defined number)
4. A whitespace

5. A number for the imaginary part

6. The alphabets imimmediately after the number for the imaginary
part

Let’s print some data types using the show() function. In each case, the data type
is defined in the variable a, which is given as the second argument to show() since the
first argument is STDOUT, which is set to a graphic terminal by default. This is the Julia

terminal in the present case:

julia> show(STDOUT,'a")

a
julia> show(STDOUT,'1")
lll

julia> a = "sandeep"
"sandeep”

julia> a = "sandeep nagar"
"sandeep nagar"

303

CHAPTER 12 INPUT OUTPUT

julia> show(STDOUT,a)
"sandeep nagar"

julia> show(STDOUT,a)
"sandeep”

julia> a = complex(2,3)
2 + 3im

julia> show(STDOUT,a)
2 + 3im

julia> a = 2//3

2//3

julia> show(STDOUT,a)
2//3

Similarly, mimes of characters dictate using single quotes around the characters
and mimes for strings dictate the use of double quotes around the group of characters
defining the string. Special characters like a whitespace are not displayed but
interpreted for their behavior and displayed accordingly. Similarly, a rational number
is printed with the symbol \\ between the numbers for the numerator and the
denominator.

The I0Context option can be used to pass the contextual information about output
from the show() function. It can be the first argument for the show() function specifying
output format properties. For example, :compact specifies that small values should be
printed in a compact form. In the case of numbers, they should be printed with fewer
digits. Similarly, :displaysize can be used to set the number of rows and columns for
displays of textual data, overriding the information dictated by the calling function. This
can be useful when you are using LCD displays that have a fixed number of rows and
columns for handling alphanumeric data. Here, the display size can be set to a given
number of rows and columns of a particular LCD display unit. In a similar fashion, data
display can be truncated by using the :1imit option for I0Context where displaying
textual information can be truncated as per defined values. In all cases, it is worth noting
that data are stored in memory and these functions only affect the display behavior of
the same; they do not alter the data in memory. Even if the data display is truncated, it is
not truncated by these functions for storage purposes.

304

CHAPTER 12 INPUT OUTPUT

12.6.2 print()

The built-in function print () simply prints an input to an output stream (by default, it is
set as a Julia terminal) with minimal formatting. It calls the show() function if it cannot
handle the features of formatting. Let’s take some examples. When we set a variable

a as numeric value 1, it prints the same. But when we set a as character value '1', the
print() still displays its numeric value. This behavior is different from the show()
function:

julia> a = 1
1

julia> print(a)
1

julia> show(STDOUT,a)
1

julia» a = '1'
I1I

julia> print(a)
1

julia> show(STDOUT,a)
I1I

Similarly, characters and strings can also be printed on the terminal as the following:

julia> a = 'z

z

julia> print(a)
z
julia> show(STDOUT,a)

z

julia> a = "sandeep nagar'
"sandeep nagar"

305

CHAPTER 12 INPUT OUTPUT

julia> print(a)
sandeep nagar

julia> show(STDOUT,a)
"sandeep nagar"

For other kinds of data like complex numbers, rationals, and strings with special
characters, the print() function can be used. It calls the show() function when special
considerations for formatting the display needs to be taken care of. Hence, the outputs of
print() and show() are equivalent:

julia> a = complex(2,3)
2 + 3im

julia> print(a)

2 + 3im

julia> show(STDOUT,a)
2 + 3im

julia> a = 2//3

2//3

julia> print(a)

2//3

julia> show(STDOUT,a)
2//3

julia> a = "sandeep@nagar"
"sandeep@nagar"”

julia> print(a)

sandeep@nagar
julia> show(STDOUT,a)
"sandeep@nagar"

306

CHAPTER 12 INPUT OUTPUT

The value of variables can be printed within strings using $, as has been explained
earlier. The outputs of print() and show() are obviously different as numeric values are
shown as strings in the show() function because the second argument was fed as a string
data type:

julia> a = 2
2

julia> print("$a")

2

julia> show(STDOUT,"$a")
"2"

12.6.3 printin()

The function print1ln() prints the input plus a newline character. This allows users
to avoid defining newline characters while giving input and seeing output always in a
newline each time a new instance of the print() function is called:

julia> a = 1
1

julia> print(a)

1

julia> println(a)
1

julia> a = 'z’
IZI

julia> print(a)

z

julia> println(a)
z

julia> a = "sandeep@nagar"
"sandeep@nagar"

307

CHAPTER 12 INPUT OUTPUT

julia> print(a)
sandeep@nagar
julia> println(a)
sandeep@nagar
julia>

It is worth noting that in each case, though the output looks similar for both
functions, println() inserted a newline character after printing the input. This can
be observed by the fact that the Julia prompt appears in the next-to-next line after the
output from println(), butit appears in the next-line when print() is used.

12.6.4 display()

The built-in function display() simply displays the input using the topmost applicable
display in the display stack, typically using the richest supported multimedia output for
x, with plain-text STDOUT output as a fallback. This kind of display can be chosen when
the display(d, x) variant attempts to display x on the given display d only. It throws
aMethodError if d cannot display objects of a given type. The display units can be
connected to the machine on which Julia is installed. Each display unit gets a position as
a memory location among display stacks. Thus, they can be called as per requirements.
By default, the display is the Julia console:

julia> a = 1
1

julia> display(a)
1

julia> a = '1'
Ill

julia> display(a)
|1|

julia> a = "1"
"1"

julia> display(a)
"1"

308

CHAPTER 12 INPUT OUTPUT

julia> a = "sandeep@nagar"
"sandeep@nagar"”

julia> display(a)
"sandeep@nagar”

12.7 Different Display Units

Section 12.6 concentrated on textual data only, but there can be many kinds of objects
that need to be displayed on a variety of display units. Objects like tables of data, graphs,
2D and 3D drawings, maps, photographs, and movies are handled by a variety of
display units. Present-day computers are equipped with multimedia consoles that have
appropriate hardware and software to stream and interpret multimedia data objects.
These objects are usually defined as a file or set of files in a particular format. To deal
with these kinds of data objects, Julia must be able to interpret them for inputting and
generate them in the right format for outputting. But even after doing the same, the
stream must be inputted and/or outputted from the right kind of input and/or output
device (which is able to handle that particular kind of data). Hence, knowledge of display
units is essential.

In addtion to multimedia consoles, you can have monochrome display units that do
not output color and data with a simple black-and-white screen. Some of them cannot
handle graphical objects. In some cases, graphics are created using textual information.
For example, a line can be made using the - symbol, and circles can be represented by
the o or 0 symbol.

LCD screens exist in a variety of formats ranging from colorful, big billboards
to LCD TVs tosimple LCD units with just eight characters in one row. No matter
what kind of LCD unit is attached to the machine, its ports of connections, memory
locations for its display driver, and so on, must be known to Julia in advance so that
they can be used to communicate with Julia code. LED screens follow the same pattern
as LCD screens.

3D printers, which can print a 3D object for display, are the newest kind of display
units. They are connected using simple USB ports or specialized hardware to a machine.
Connecting driver(s) that interpret data from a machine to a 3D printer must be installed
properly and then Julia code can be written to give commands to a 3D printer to get

309

CHAPTER 12 INPUT OUTPUT

streamed data for printing. The data essentially is in the form of a machine code, having
information about the controlling printer’s motor and filament feeding mechanism (for
filament-based 3D printers).

Listing all kinds of display units and their functioning is out of the scope of this
book, but we have provided a general description of the basic philosophy pertaining
to display units. The major takeaway lesson from this section is that, most often, files
are exchanged by Julia code and the machine’s operating system for the purpose of
interaction with a local or remote machine from which data are streamed in or out. Thus,
itis important to study how Julia handles files for this purpose.

12.8 Filel/0

Handling files is an essential part of the process of computation. Julia provides many
features to perform this act. A file is a group of symbols clubbed together as a unit in
a particular format. Files exist in a variety of formats and, hence, any programming
language enjoying the capabilities of handling files must provide the functionalities for
handling a variety of file formats as well as opening, making, editing, and deleting them
as desired, with ease.

UNIX and similar systems treat all computing resources as files, which comprise
a computer’s peripherals, including the keyboard. Reading keystrokes to input values
into a program remains a critical functionality of any programming language. We have
already learned that a keyboard is set to be the default value for the global variable
STDIN. We have also learned that keystrokes can be read by the functions read() and
readline(). The function read() can also be used to read files, but each file must be
opened first and must be closed after the operation so that it can be opened again. To
perform these operations, open() and close() operations exists.

Before you perform these actions, it is important to know where the file is located
(its path), what kind of permissions are allowed for users (permissions to read, write,
and/or execute), and whether users have permissions to create, edit, and delete files.
It is assumed that readers already have basic knowledge of these concepts since they
will not be discussed in great detail here. For learning the same you can refer reference
number(s) [1]. Knowledge of Linux commands [2] for handling files also comes in handy
when working with Julia programming.

310

CHAPTER 12 INPUT OUTPUT

12.8.1 open(), close(), and read()

The open() function takes a filename and returns an I0Stream object that can be used
for reading/writing data from/to the file. To work with a file, we need to either create one
or open an existing one. The function open() needs a string with a path to the file. If a file
by that name does not exist,it can be created if the second argument is given as "w" for
writing the file. Please note that following code is tested on MacOS and I believe that it
works uniformly on all Unix-based OS.

The following Julia code will write a file in the directory \tmp and name it t.txt with
writing permission. Then ii will create a variable f, which references to this file object.
Then f is used to write into this file object. The string "A, B, C, D\n"is fed to this text
file object:

julia> open("/tmp/t.txt", "w") do f
write(f, "A, B, C, D\n")
end

11

It is important to note that the code has not closed the file after opening the same.
Instead, the following code does the same. You must close a file after performing the
required actions so that it can be opened again in the same or different session:

julia> open("/tmp/t.txt", "w") do f
write(f, "A, B, C, D\n")

close(f)

end

Opening the Unix/Linux console and probing the contents of the directory tmp
allows you to verify that the file has been created by the user (who is logged it, in your

case):

$ cd /tmp

$ 1s

t.txt

$ head t.txt
A, B, C, D

311

CHAPTER 12 INPUT OUTPUT

The command 1s -1 will let you know what kind of permissions are assigned for
this file. Depending on the kind of user, you may have assigned read and/or write and/
or execute permissions by default, but you can change these assigments using the Linux
command chmod [2].

A file with multiple data points in multiple lines can also be created. Suppose you
wish to create a file containing five lines comprised of random numbers in a defined
string:

julia> open("/tmp/t.txt", "w") do f
for i in 1:5
random_number = rand()
write(f, "random number is $random number \n")

end
end

This will modify the existing file t.txt having the data as required. Suppose you
wish to write two random numbers per line. They must be separated by a symbol for
visual clarity as well as data integrity. Such symbols that perform this task are called
delimiters. A very commonly used delimiter is the symbol for a comma (,). Let’s modify
the previous code to include a comma between two random numbers per line:

julia> open("/tmp/t.txt", "w") do f
for i in 1:5
numl = rand()
num2 = rand()
write(f, "numi= $numi,num2=$num2 \n")
end
end

The same results, except when printing formatted strings, can be achieved by the
following code using the writedlm() function, which writes with a defined delimiter
symbol as one of the arguments:

julia> writedlm("/tmp/test.txt", rand(5,2), ", ")

312

CHAPTER 12 INPUT OUTPUT

12.8.2 Array Reading and Writing

The functions writedlm() and readd1lm() can be used to write arrays into a file and
make arrays from contents to the file as follows:

julia> random_num = rand(2,3)
2x3 Array{Float64,2}:

0.742948 0.346532 0.385416
0.567728 0.345581 0.553949

julia> writedlm("/tmp/t.txt",random_num)

This modifies (and creates in case t.txt did not exist in the directory \\tmp) the file
t.txt with contents of the array referenced by th evariable name random_num. It is worth
noting that a delimiter can be any symbol or group of symbols.

Just as the writedlm() function was used to write an array into a file, readd1m()
reads a file into an array:

julia> read file = readdlm("/tmp/t.txt")
2x3 Array{Float64,2}:

0.742948 0.346532 0.385416

0.567728 0.345581 0.553949

julia> read file

2x3 Array{Float64,2}:
0.742948 0.346532 0.385416
0.567728 0.345581 0.553949

When the delimiter is not defined, a whitespace is used for the same in the previous
case since array entries of the same row are delimited by a whitespace. For the redd1m()
function, the columns are assumed to be separated by one or more whitespaces. The
end-of-line delimiter is taken as \n. Moreover, if the whole data is numeric, the resultant
array is also numeric. If some elements cannot be parsed as numbers, a heterogeneous
array of numbers and strings is returned:

julia> writedlm("/tmp/t.txt",random_num,",

julia> random_num = rand(2,3)

313

CHAPTER 12 INPUT OUTPUT

2x3 Array{Float64,2}:
0.899567 0.195336 0.330642
0.951103 0.915678 0.986845

julia> writedlm("/tmp/t.txt",random_num,",
julia> read file = readdlm("/tmp/t.txt")

When readd1m() is not used with the delimiter argument in the previous case,
each row element becomes a string and, as a result, a 2 x 1 array is stored in read_file.
The actual delimiter in the file t.txt isa , (comma):

julia> read file = readdlm("/tmp/t.txt",","
2x3 Array{Float64,2}:

0.899567 0.195336 0.330642

0.951103 0.915678 0.986845

The type of data can also be specified as third arguments to ensure the data type of
all elements is uniform:

julia> read file = readdlm("/tmp/t.txt","',"',Float64)
2x3 Array{Float64,2}:

0.899567 0.195336 0.330642

0.951103 0.915678 0.986845

julia> eltype(read file)
Float64

Since most often data points are separated by a comma, csv (comma separated
vaules) versions of the functions are used as writecsv() and readcsv()to handle csv
files.

julia> read file = readcsv("/tmp/t.txt")
2x3 Array{Float64,2}:

0.899567 0.195336 0.330642

0.951103 0.915678 0.986845

julia> read_file

2x3 Array{Float64,2}:
0.899567 0.195336 0.330642
0.951103 0.915678 0.986845

314

CHAPTER 12 INPUT OUTPUT

12.9 Summary

In this chapter, we have dealt with defining the concept of I/O steams of data and

Julia’s ability to deal with a variety of streams in a flexible manner. Streams of data can
be input from a variety of input devices including keyboards, microphones, and video
cameras. The behavior of an input device can be objectified in Julia and then defined
using methods. The behavior of most output devices—such as a Julia terminal, a graphic
terminal, printers, plotters, LCD panels, LED panels, and even 3D printers—is similar.
Numerical computing deals with defining tasks in files. Julia’s ability to treat data in a file
as an I/0 stream defines an abstraction of layers that lets a developer define the code
with ease. File I/O operations define the backbone of numerical computations. For this
reason, this chapter is quite important for users who are serious about making a career
in data crunching using Julia.

12.10 Bibliography

[1] https://en.wikipedia.org/wiki/File system

[2] https://training.linuxfoundation.org/free-linux-training

315

https://en.wikipedia.org/wiki/File_system
https://training.linuxfoundation.org/free-linux-training

Plotting

13.1 Introduction to Plotting in Julia

Plotting is an essential part of science and engineering studies. Visualization of an
engineering concept leads to better understanding of the phenomenon. Also, in
today’s world, publications are becoming benchmarks of academic success, and good
publications require attractive graphs and animations for showcasing results. For
these reasons, plotting 2D and 3D graphs as well as making animations for a given
process/equation is an essential part of computational processing and post-processing
investigation.

The basic Julia package does not include any functions to make plots. Thus, users
need to use a variety of packages for this purpose. Following is a list of packages users
can take advantage of:

° Plots
e Pyplots
¢« GR

¢ UnicodePlots

e Plotly
o Gadify
e Bokeh

Most packages define plots in the same way. Plotting functions usually takes arrays
as inputs and offers a variety of options for decorating the plots such as changing the
marker style, marker size, and marker colors; connecting data points with lines of

317
© Sandeep Nagar 2017

S. Nagar, Beginning Julia Programming, https://doi.org/10.1007/978-1-4842-3171-5_13

CHAPTER 13 PLOTTING

varying sizes; giving a title, label, and legend to graphs; writing equations for labels,
legends, or somewhere in between the graphs; and so. This chapter begins with the
package Plots() and gives a brief introduction to some other packages and their unique
features.

13.2 A Plot as an Object

A plot is a graphical object that requires a graphical terminal. On a nongraphical
terminal, plots are usually created by placing characters in a specific series. This method
is usually not preferred nowadays when graphical terminals have increasingly become
widely available at reasonable costs and decent processing speeds, and they have a lot
of power. Hence, most Python graphing packages do make plot objects for dealing with
graphic terminals at computing machines.

A graphic object has many properties. Following are some of them:

o Size: Length and breadth of a plot as it appears on a graphing
terminal

o Shape: Aspect ratio (the ratio of length and breadth of a plot)

o Title: The string declaring the subject of a plot

o Axes: The axes that show reference data points

o Labels: The labels associated to axes showing a descriptive string
e Markers: Symbols of various shapes depicting data points

o Resolution: Measured in dpi (dots per inch) because, while printing,
the resolution of an image is determined by the ability of the printer
to define individual pixels as a dot and the number of dots per inch
will define the degree of pixelation of the figure

o Format of file: A plot can be stored in many formats reserved for
photographs and other kind of media.

o File name: A file name provides identification marker for an object in
a computing system.

A Julia plot object has a method to deal with all these properties. Using this method,
you can modify the features. It is possible to save a profile so that all objects can derive

318

CHAPTER 13 PLOTTING

values for their properties from the profile, thus avoiding the need to define them each
time a new object needs to be created and also to maintain uniformity.

Furthermore, a plot object is rendered by a graphical engine. Again a variety of
graphing engines of varying capabilities can be used. Some are more powerful in terms
of their abilities to produce plots of richer properties and producing them faster. While
working with different packages, some graphing engines provide a way to define a
particular engine for rendering at the back end. Fixing this aspect alleviates worries
about uniformity of configurations, quality, and formats of graphical objects.

13.3 Plots Package

Plots is a high-level plotting package. It provides powerful graphing capabilities that are
usually desired for most of the high-performance computing requirements. It interfaces
with other plotting packages (referred to as back ends or graphic engines) to produce
graphics files in a flexible manner. Each of these graphic back ends also can perform as
stand-alone plotting packages, but Plots provides a user-friendly, simple, and consistent
interface.

Before usage, a package must be imported into the present Julia session using
the import <packageName> command. The following command is one of the first
commands for using the Plots package:

If Plots package is not installed

julia> using Plots

ERROR: ArgumentError: Module Plots not found in current path.
Run “Pkg.add("Plots")" to install the Plots package.
Stacktrace:

[1] _require(::Symbol) at ./loading.jl:428

[2] require(::Symbol) at ./loading.jl:398

julia> Pkg.add("Plots") # Plots is installed

#Long list of outputs is suppressed here.

julia> using Plots # First time

INFO: Precompiling module Reexport.
INFO: Precompiling module StaticArrays.
INFO: Precompiling module RecipesBase.

319

CHAPTER 13 PLOTTING

INFO: Precompiling module PlotUtils.
INFO: Precompiling module PlotThemes.
INFO: Precompiling module Showoff.
INFO: Precompiling module StatsBase.
INFO: Precompiling module NaNMath.
INFO: Precompiling module Requires.

julia> using Plots # Second time onwards

julia> x = Array([1,2,3,4,5])
5-element Array{Int64,1}:
1

2
3
4
5

julia> y = x.”2 #vectorized power to array x
5-element Array{Int64,1}:

1

4

9

16

25

julia> plot(x,y)

Figure 13-1 shows the result, which encompasses the screenshot of a figure window
that appears on the graphic terminal of a computer.

It is worth noting that the colors and resolution of windows will be dictated by
the configuration of the graphic terminal inside the operating system of the user’s
machine, but it will appear similar to that in Figure 13-1. The top bar presents the Close,
Expand, and Hide buttons while the lower bar presents the Home, Move left, Move
right, Shift with mouse, Zoom in and zoom out, Change plot properties, and Graphic
object properties buttons. Users are encouraged to click the tabs and explore each one.
Explaining them is a wasteful exercise because they are quite intuitive.

320

Figure 13-1. Plotofxvs.y=x*

CHAPTER 13

25

20

15

10

®=® Figure 1
A € > +QFw B
(=)

//’//////

X=y=

PLOTTING

Since there are only five data points, the plotted graph issn’t a very smooth, straight
line connected with the data points. Ideally

y=x

is a smooth curve. To produce a graphically accurate curve, more data points are needed,

so the Julia code is modified as follows:

julia> x

julia> y

X."2;

julia> plot(x,y)

1:10e4;

Now instead of five data points, we have 10* data points, which results in Figure 13-2.

321

CHAPTER 13 PLOTTING

10000000000

7500000000

5000000000

2500000000

//

25000 50000 75000 100000

Figure 13-2. Plotofxvs.y=Xx*

The plot() function can also evaluate a mathematical expression, so the following
code would also result in the same figure as Figure 13-2.

julia> x=1:10e4;

julia> plot(x,y)

13.3.1 Default Behavior of Plots

Figure 13-2 is obtained using the default behavior of plot properties with the default
engine named PyPlots. Other plotting engines can also be chosen for changing the
behavior. As an example, the unicodeplots() can be invoked and used as follows:

julia>Pkg.add("UnicodePlots")
julia>Pkg.build("UnicodePlots™)

julia> unicodeplots()# first time usage
INFO: Precompiling module UnicodePlots.
Plots.UnicodePlotsBackend()

322

CHAPTER 13 PLOTTING

julia> unicodeplots()# second time onwards
Plots.UnicodePlotsBackend()

julia> x=1:10e4;
julia> plot(x,y)

The plot is not shown in a separate window, but on the Julia terminal itself, as
depicted in Figure 13-3.

julia> unicodeplots()

INFO: Precompiling module UnicodePlots.
Plots.UnicodePlotsBackend()

julia> x=1:10e4;

julia> pleot(x,y)

g Yl

julia>

Figure 13-3. Unicode Plot of x vs. y = x*

Since PyPlots is a good option for general purpose usage of producing good quality
plots, it is a good idea to include the following line of code at the beginning to ensure
PyPlot is set as the back end:

julia> pyplot()
Plots.PyPlotBackend()

323

CHAPTER 13 PLOTTING

13.3.2 Simpler Way to Plot Equations

The plot() command presents a simple way to plot mathematical equations. Suppose
you wished to plot the graph depicted in Figure 13-4.

y = sin(x) + sin(2x)

100 200 300 400 500
Figure 13-4. x vs. y = sin(x) + sin(2x)
The Julia code for performing this task is as follows:

julia> eq(x) = sind(x) + sind(2x)
eq (generic function with 1 method)

julia> plot(equation, 1:500)

The resulting graphs using this code looks like Figure 13-4

324

CHAPTER 13 PLOTTING

13.3.3 Implicitly Passing a Second Plot

Julia provides a way to implicitly pass an argument for the second plot arguments to exist
by using plot! () syntax, which changes the original plot since the ! version modifies the
existing object produced by the plot() command. The following code will produce the
graph shown in Figure 13-5:

julia> eq(x) = sind(x) + sind(2x)
eq (generic function with 1 method)

julia> plot(eq,1:500)

julia> eq1(x) = sind(2x)+sin(3x)
eql (generic function with 1 method)

julia> plot!(eq1,1:500)

Wk
m

Figure 13-5. x v.sy = sin(x) + sin(2x) and y = sin(2x) + sin(3x)

Thus, two plots are produced together on the same figure window where the second
plot command is passed to the exiting plot window implicitly.

325

CHAPTER 13 PLOTTING

13.3.4 Decorating the Plots

Documentation on the Plots web page [1] gives a detailed overview of various options
for decorating the plot with information in a meaningful manner. The following Julia
code performs some of the most relevant tasks and produces the graph in Figure 13-6.
Users are encouraged to read documentation to learn more.

julia> eq1(x) = sind(x) + sind(2x)
eql (generic function with 1 method)

julia> eq2(x) = sind(x) + sind(3x)
eq2 (generic function with 1 method)

julia> plot(eq1,
1:10:500,
label = "sin(x)+sin(2x)",
line =(:black,0.9,3, :dot))

julia> plot!(eq2,
1:10:500,

label = "sin(x)+sin(3x)",
line =(:black,0.7,3, :solid)
size=(800, 600)

)

326

CHAPTER 13

PLOTTING

\

mmE gin(x)+sini2x)
o cin{x)+5in(3x)

"
.
"
.
0
i
-
"
"
"
"
-
0
-
"

Figure 13-6. x vs. y = sin(x) + sin(2x) and y = sin(2x) + sin(3x) with some

decoration

200 300

400

13.3.5 Many Plots in the Same Window Using subplot()

A number of plots can be plotted within the same plot window using the subplot()
window. Plots with these configuration are treated as a matrix of graphs. For example,
let’s consider plotting four graphs as a matrix of 2 x 2 graphs. Suppose we wish to plot
sin(x) in the first graph (the graph element indexed for subplot as subplot(221),
sin(2x) in the second graph; the graph element indexed for subplot as subplot(222),
sin(3x) in the third graph; the graph element indexed for subplot as subplot(223),
sin(4x) in the fourth graph; the graph element indexed for subplot as subplot(224)).
The following Julia code does this work and a graph figure is obtained as illustrated in

Figure 13-7:

julia> x =

julia> y1

julia> y2

-4pi:pi/100:4pi;

327

CHAPTER 13 PLOTTING

julia> y3 = sin(3x);

julia> y4 = sin(4x);

julia> fig = PyPlot.figure(
"pyplot_subplot mixed",
figsize=(10,10),
dpi=200);

julia> PyPlot.subplot(221);
julia> PyPlot.plot(x,y1);
julia> PyPlot.subplot(222);
julia> PyPlot.plot(x,y2);
julia> PyPlot.subplot(223);
julia> PyPlot.plot(x,y3);
julia> PyPlot.subplot(224);

julia> PyPlot.plot(x,y4);

1 1
0 0
_1 T T _1
-10 -5 0 5 10 10 -5 0
1 1
0 0
_1 L T T T T T _1 B T T T T
-10 -5 0 5 10 10 -5 0

Figure 13-7. Subplots of sin(x), sin(2x), sin(3x), and sin(4x)

328

CHAPTER 13 PLOTTING

13.3.6 Histograms

Histograms are graphs where data are sampled into bins and numbers of data points
belonging to particular bins are plotted. Histograms are useful in statistics. Plots
functions has a method named histogram() that can be used as follows:

julia> x = randn(100000);
julia> Plots.histogram(x)

First, 100,000 normalized random numbers are generated using the randn()
function and then they are plotted using the histogram() function within Plots. The
resulting figure is shown in Figure 13-8. The bell shaped curve verifies that numbers are
indeed normally distributed.

10000

8000

6000

4000

2000

-2.5 0.0 25

Figure 13-8. Histogram of random numbers generated using rand() function

329

CHAPTER 13 PLOTTING

13.3.7 Bar Charts

Bar charts show vertical bars as per data for the y-axis. Let’s experiment with 20 random
numbers. The following Julia code below does the job and Figure 13-9 is the output:

julia> x = rand(20);

julia> Plots.bar(x)

0.75 1

0.50 +

0.25 4

0.00 -
o 10 20

Figure 13-9. Bar chart of 20 random numbers generated using the rand() function

13.3.8 Pie Charts

Pie charts depict a “pie” (a circle) whose area is proprtional to the data value. Let’s
experiment with 10 random numbers. The following Julia code does the job and
Figure 13-10 is the output:

julia> x = rand(10);

julia> Plots.pie(x)

330

CHAPTER 13 PLOTTING

Figure 13-10. Pie Chart of 10 random numbers generated using rand() function

13.3.9 Scatter Plots

Scatter plots just put a dot for x and y data at the coordinate made by x and y. In our
example, x-axis has linearly distributed 100 numbers from 1 to 100 and y-axis has 100
random numbers. The following Julia code performs the job of plotting a scatter plot, as

shown in Figure 13-11:
julia> x=1:100;
julia> y=randn(100);

julia> Plots.scatter(x,y)

331

CHAPTER 13 PLOTTING

g o vyl
°
2
° o
-] ° o
° o
. o o0 o o °
1 o ° e ©
° L]
° ° o0 °
° -]
-] o
.. o e o © e ©° o o ° b
0 (-] o rd ~ ° °
L] ° °
° °
° %
° e °, ° oo °

e o ° ° o. ° o

§ ° o &° ° ° o
e o hd
o L]
-] ° °
2 o
° o
0 50 100

Figure 13-11. Scatter plot of 100 random numbers generated using the rand()
function

13.4 3D plots

plot3d() can be used to plot 3D plots that takes three arguments. Here x and y variables
make the plans on which z is defined. In the following Julia code,

z = sin(x) + sin(y)
and the resultant figure is shown in Figure 13-12.

julia> x

1:0.01:10;

julia> y = 1:0.01:10;
julia> z = sin(x)+sin(y);

julia> Plots.plot3d(x,y,z);

332

CHAPTER 13 PLOTTING

vl

10.0

1.5

75 2.5
100

Figure 13-12. 3D plot using the plot3d() function

13.5 Summary

In this chapter, we have described Julia’s ability to process data and effectively visualize
the results as plots. The variety of plots and their easy definitions are one of the key
features of Julia. This chapter has also dealt with a computational task that is not dealt
with by the base package of Julia but by an external package. Hence, this chapter has
also demonstrated how to work with external packages and defined their configurations.
Itis important to note that explaining the plotting capability of Julia could be a book in
and of itself. For this reason, this chapter has just given a glimpse of these activities with
just one of the options in terms of the Plots package. It leaves users the opportunity to
explore the rest of the options and make informed decisions.

13.5.1 Bibliography

[1] https://juliaplots.github.io/

333

https://juliaplots.github.io/

CHAPTER 14
Metaprogramming

14.1 Introduction

Metaprogramming is one of the most powerful features of the Julia programming
language. Crudely speaking, metaprogramming is about Julia code controlling other
parts of source files to an extent that it can modify them and control their execution. To
understand this process, you must understand the way Julia code is executed. Broadly
speaking, there are two stages of Julia code execution:

e Making an Abstract Syntax Tree

— Julia code is parsed in the form that is suitable for evaluation.
o Evaluation

— The parsed code is executed by the compiler.

Metaprogramming is about modifying the code after it has been parsed but before
it has been executed. This feature proves to be very useful because you can write short
pieces of code that can perform the tedious job of writing bigger pieces of code as per a
given rule.

14.2 The : operator

Each Julia task is treated as an expression. REPL evaluates these expressions. To perform
metaprogramming, you must be able to stop Julia from evaluating an expression. This is
done by the : operator. Let’s check out its usage in the following Julia code:

julia> a = "Hello"
"Hello"

335
© Sandeep Nagar 2017

S. Nagar, Beginning Julia Programming, https://doi.org/10.1007/978-1-4842-3171-5_14

CHAPTER 14 METAPROGRAMMING
julia> :a
:a
julia> b = "1.0"
n 1 . o n
julia> :b
:b
julia> :(3.5"2)
:(3.5 " 2)
The output is shown as :a, :b, and : (3.5 " 2). These are termed as symbols. These
symbols are unevaluated pieces of code ready for modification.

Symbols can be formed alternatively by enclosing the expression within the quote
and end keywords. The following example demonstrates this concept:

julia>a= quote

3.5%2
end
quote # REPL[437], line 2:
3.5 "2
end

julia> typeof(a)
Expr

julia> eval(a) 12.25
julia> 3.5"2 12.25

julia> :(3.5"2)
:(3.5 " 2)

The variable a stores an Expr (expression) object. This can be evaluated using the
eval() function. Both the form of defining a symbol : (3.5 * 2) can be used. The quote

and end keywords are used in multiline usage and the : operator is usually used for a
single-line usage.

336

CHAPTER 14 METAPROGRAMMING

14.3 Expressions

Let’s look at an expression by probing it with Julia. For this purpose, let’s first construct
a simple expression for a piece of code that calculates the hypotenuse of a right-angled
triangle when its perpendicular side is give as 2 units and its base side is given as 3 units.

julia> A = quote
p=3
b=4
h=sqrt(p"2+b"2)
end
quote # REPL[442], line 2:

p = 3 # REPL[442], line 3:
b = 4 # REPL[442], line 4:
h = sqrt(p 2 +b * 2)
end

julia> eval(A) # evaluaing A
5.0

This expression will be used henceforth for probing its properties and construction.

14.3.1 fieldnames() and dump()

The fieldnames () function can be used to see the structure of this expression stored in
A. The complete structure, the Abstract Syntax Tree, can be obtained using the dump()
function.

julia> fieldnames(A)
3-element Array{Symbol,1}:
head

args

‘typ

julia> dump(A)

Expr
head: Symbol block
args: Array{Any}((6,))

337

CHAPTER 14 METAPROGRAMMING

338

1: Expr

2: Expr

3: Expr

4: Expr

5: Expr

6: Expr

head: Symbol line

args: Array{Any}((2,))
1: Int64 2

2: Symbol REPL[442]
typ: Any

head: Symbol =

args: Array{Any}((2,))
1: Symbol p

2: Int64 3

typ: Any

head: Symbol line

args: Array{Any}((2,))
1: Int64 3

2: Symbol REPL[442]
typ: Any

head: Symbol =

args: Array{Any}((2,))
1: Symbol b
2: Int64 4

typ: Any

head: Symbol line

args: Array{Any}((2,))
1: Int64 4
2: Symbol REPL[442]

typ: Any

head: Symbol =

args: Array{Any}((2,))
1: Symbol h

2: Expr

typ: Any

typ: Any
typ: Any
typ: Any

CHAPTER 14 METAPROGRAMMING

head: Symbol call

args: Array{Any}((2,))

1: Symbol sqrt

2: Expr
head: Symbol call
args: Array{Any}((3,))
1: Symbol +
2: Expr
3: Expr

The output is an array of expressions that are subexpressions of the original

expression stored in the variable name A. Each subexpression has a head, Expr, and

typ, which define a block of code, its subexpression, and the types included. This is the

Abstract Syntax Tree (AST). Let’s try to probe the arguments of the Symbol block:

julia> A.args[1]
:(# REPL[442], line 2:)

julia> A.args[2]
(p = 3)

julia> A.args[3]
:(# REPL[442], line 3:)

julia> A.args[4]
:(b = 4)

julia> A.args[5]
:(# REPL[442], line 4:)

julia> A.args[6]
:(h = sqrt(p ~ 2 + b * 2))

339

CHAPTER 14 METAPROGRAMMING
Alternatively, the for loop can be used to print the args list:

julia> for (n, expr) im enumerate(A.args)

println(n, ": ", expr)
end

1: # REPL[442], line 2:
2:p =3

3: # REPL[442], line 3:
4: b = 4

5: # REPL[442], line 4:
6: h =sqrt(p*2+b " 2)

Now let’s edit the A.args, which stores the expression :(h=sqrt(p*2+b”2)), to
another expression, : (multiply = p * b):

julia> eval(A) # Before editing
5.0

julia> A.args[end]= :(multiply=p*b)
:(multiply = p * b)

julia> eval(A) # after editing
12

This is a simple demonstration of metaprogramming where the subexpression
ofJulia code is edited to calculate something entirely different without writing the code
for the same.

14.4 Expression Interpolation

For writing an expression in a simpler fashion, you can use the $ interpolation operator
in expressions, as we learned for strings (see Chapter 9, Section 9.9). For example,

if we set x=-2 and y=2, then the expression expr=: (x"y)) returns : (x"y), whereas
exprl=:($x"y) will return : (-2 * y) while expr2=:(x*$y)) will return : (x * 2). All of
these evaluate to the same value—4. This is shown in the following Julia code:

julia> x=-2
-2

340

CHAPTER 14 METAPROGRAMMING

julia> y=2
2

julia> expr=:(x"y)

H(x *y)
julia> expri=:($x"y)
(-2 ")
julia> expr2=:(x"$y)
:(x ~2)

julia> eval(expr)
4

julia> eval(expri)
4

julia> eval(expr2)
4

One important feature of such an interpolation is that the expression evaluation
evaluates at parse time, whereas other interpolations evaluate only when the eval()
function is called after parse time.

14.5 Macros

Using a macro, you can generate a new output expression from an unevaluated input
expression. These expressions are evaluated at parse time and return an unevaluated
expression. They are like functions except for the fact that they map an input expression
to an output expression.

Syntax of a macro is as follows:

macro name_of_macro
body of macro
end

341

CHAPTER 14 METAPROGRAMMING

A macro is invoked by placing a @ before the name without a whitespace and then
passing an expression such as the following:

julia> @name_of macro expri,expr2

alternative way of calling
julia> @name_of macro(exprl,expr2)

Let’s understand this form of definition and usage with the following Julia code.
Here a macro named expFeatures is defined that prints the args, head, and typ for an
expression. It also evaluates the expressions and returns the evaluated value.

julia> macro expFeatures(expression)
if typeof(expression)==Expr
println(expression.args)
println(expression.head)
println(expression.typ)
end
answer=eval (expression)
return answer
end
@expFeatures (macro with 1 method)

julia> @expFeatures 3+4-5
AnY[:') :(3 + 4): 5]

Call

Any

2

julia> @expFeatures (3+4)-(5"2)
Any[:-, :(3 + 4), :(5 "~ 2)]
Call

Any

-18

342

CHAPTER 14 METAPROGRAMMING

julia> @expFeatures sin(90),sind(90)
Any[:(sin(90)), :(sind(90))]

Tuple

Any

(0.8939966636005579, 1.0)

When the macro @expFeatures is fed expressions 3+4-5, then args is found to be
Any[:-, :(3 + 4), 5], headis found to be call, and typ is found to be Any. Also the
expression is evaluated as 2. Similarly other expressions can be fed to this macro to
study the features of the same. Two expressions (sin(90 and sind(90)) are fed in the last
attempt separarted by a comma (which is why head becomes tuple) and the evaluation
is also done accordingly.

14.6 Built-in Macros

A lot of macros are predefined in the Julia compiler. Some of them will be discussed
here. One of the most preferred is to time the execution of a code. Using @time for an
expression, you can obtain the following:

e A macro to execute an expression

o The time it took to execute

¢ The number of allocations

o Total number of bytes its execution caused to be allocated

o Returning the value of the expression

julia> x=1:10e4;

julia> @time x.”3

1.024123 seconds (63.48 k allocations: 4.167 MiB)
100000-element Array{Float64,1}:

1.0

8.0

27.0

64.0

125.0

343

CHAPTER 14 METAPROGRAMMING

216.0
343.0
512.0
729.0
1000.0

.9976e14
.9979e14
.9982e14
.9985e14
.9988e14
.9991e14
.9994e14
.9997e14
.0e15

P W W VW VW VW VW OV Vv -

This shows that the execution took 1.024123 seconds, 63.48K allocations, and a
memory occupation of 4.167 MiB; then the partial display of the cube of each array
element is shown. Users can also experiment with @timev, @timed, @elapsed, and
@allocated and check thier usage using the help>? mode.

14.7 Summary

In this chapter, we have presented the concepts of a symbol, expression, interpolation of
expressions, and macros to introduce the concept of metaprogramming in Julia. Having
easy ways to perform metaprogramming in Julia is one of its most attractive features for
developers. A number of macros has been developed and released in a similar fashion.
The practices of making useful macros and using them judiciously are considered key
skills for a Julia programmer.

344

Index

A

Absolute value functions
abs() and abs2(), 96-97
complex number, 97
manipulating signs, 100, 102
problem, 98
sign and, 95
sign(), signbit(), copysign(), and
flipsign(), 98-100
Ahead-of-time (AOT), 3
Anonymous functions, 263
Arbitrary precision arithmetic, 49-50
Arithmetic operators, 54
Array
assignment operator, 171-172
comprehension, 166, 168-169
copying, 165-166
creating, 132, 134
dictionary, 174
adding key, 178-179
changing values, 177
creating, 174
deleting key, 178-179
get() function, 175-176
haskey() function, 177-178
keys() function, 176
key-value pair, 178
eltype, 138
end keyword, 142-143
eye() command, 152

© Sandeep Nagar 2017

falses() function, 148-149

fill command, 152-153

finding items in, 163-164
flipping, 155-156

floating point number, 130-131
of functions, 131

generator expressions, 170
indices, 140

Int64 type, 128-129

length, 138

mixed data types, 132
multidimensional, 129
ndims(), 138-139

objects, 127

ones() function, 147-148

with random numbers, 149-150, 152
range operator, 141-142
reshaping, 153, 155

set theory and, 172-173
similar(),137

size of, 139

slicing multidimensional, 143-145
sort() function, 159

sorting algorithms, 160, 162
sortperm() function, 158
squeezing and, 156-157
transformation equation, 172
trues() function, 148

using ellipsis operator, 135
using linspace, 135-136

345

S. Nagar, Beginning Julia Programming, https://doi.org/10.1007/978-1-4842-3171-5

INDEX

Array (cont.)
using logspace, 136
zeros() function, 145, 147
ASCII system, 229

B

Bar charts, 330
Binary operator, 62, 64
Bitwise operators, 60-61
Boolean algebra
arithmetic operations, 55
bitwise operators, 60-61
built-in functions, 58-59
chaining comparisons, 59-60
IEEE754 standard, 56, 58
Boolean operations, 213-214
Boolean switching, 276-277
Byte array streaming, 299, 301

C

Complex numbers
absolute value functions, 97
arithmetic operations, 74, 76-77
constant, 69
functions, 70-71
properties of, 72-73
rational numbers, 81-82
Complex roots of unity, 102
Control flow
do ... end, 288
exceptions, 289
built-in, 289-290
custom-built, 290
finally, 293-294
try ... catch construct, 292-293
for loop (see for loop)
if-else, 277-278

346

nested loop, 286-288
ternary expression, 275-276
while loop, 285-286
cos functions, 114, 122-123
Cube root, 104-105

D

Determinants matrix, 185
Dictionary order. See Lexicographical
order
Division error, 45
Division functions
built-in, 90
cycling, 89
data types, 91
divrem(), 94
gcd, 94-95
Icm, 95
mod2pi(), 93
modulo operation, 92
rem(), 92
syntax and behavior, 90
Dot products, 195-197
3D printers, 309

E

Ellipsis operator, 135

Equivalent functions, 117
Euclidean norm, 190-192
Exponential function, 107

F

finally keyword, 294
Floating point numbers, 84, 130-131

binary and octal representations, 44-45

data types

assign, 43
properties, 42
hex digits, 44
precision, 41-42
real numbers, 40, 46-47
for loop
comprehensions, 282-283
continue, 281-282
enumerate, 284
generators, 284
variable, 280-281
Void object, 279-280
zipping arrays, 285
Fraction representation, 79

G

Generator expressions, 170
Greatest common divisor (gcd), 94

H

Hermitian matrices, 225
Hyperbolic functions, 118
Hypotenuse of triangle, 105-107

if-else condition, 277-278
Inexact errors, 50-52, 54
Input output (I/0)
byte array streaming, 299, 301
console, 295
display units, 309
3D printers, 309
files
open(), close(), and read(), 311-312
read array, 313-314
write array, 313-314

INDEX

LCD screens, 309
line of characters streaming, 301
multimedia consoles, 309
newline character, 297
read() function, 297-298
text
display(), 308-309
print(), 305-306
println(), 307
show(), 303-304
write() method, 302
write() function, 296
Inverse functions, 116
Irrational numbers, 80, 87

J, K
Julia

basic mathematics, 25

calculator, 32-35

defined, 1

development, 4

functions
anonymous, 263
arglist, 253
body of, 253
defined, 253
local variables, 255
major, 271, 273
mapping multiple values, 264
mapreduce, 267-268
minor, 271, 273
multiple dispatch, 269-270
multiple inputs, 256-257
multiple outputs, 262
operators defined, 270
positional arguments, 258, 260-261
reduce, foldl, and foldr, 266-267

347

INDEX

Julia (cont.) M
shorthand notation, 256
simple, 254-255
variable argument list, 257, 261

hierarchy tree, 37-38

Machine precision, 48-49
Maclaurin series, 122-123
MacOS, 6

map function, 264, 266

JuliaBox, 5 . .
. Mathematical functions

Linux OS, 7-8

cube root, 104-105
MacOS, 6 .

defined, 89
number types, 38

expml, 108
package .

. exponential, 107
Git, 9

exponent(x), 109

hypotenuse of triangle, 105-107
Idexp, 108

logarithm, 109-110, 112
numerical approximations, 119

initialization of manager, 9
installation, 10
remove, 10
root directory, 12
status, 11-12
update repository, 9
updating, 11

precision, 39-40

Windows OS, 7

Just-in-time (JIT) compiler, 4

power
complex roots of unity, 102
logarithm calculations, 103-104
numbers raised to, 103-104
roots, 103-104

series expansion, 123

square root, 104

L Taylor polynomials, 121-122

LCD screens, 309 Taylor series, 120

Least common multiple (lcm), 95 tolerance limits, 119-120

Lexicographical comparison of Mathematical operations on rational

strings, 250-251 numbers, 82-84

Lexicographical order, 162-163 MATLAB, 1, 3

Linearly spaced points, 135 Matrix operations, array

Linux OS, Julia boolean operations, 213-214
add repository, 7 broadcasting, 213
installation on Fedora and EPEL, 8 comma operator, 183
remove repository, 8 complex data type, 198
source code, 8 concatenation, 215, 217-218

Logarithm function, 109-110, 112 repeat, 220, 222

Logspace, 136 repmat(), 219-220

Low Level Virtual Machine (LLVM), 3 cross product, 197-199

348

defining, 181-184
determinants, 185
diagonal elements, 189-190
division
exponentiation, 210-211
inverse of matrix, 200-204
left or right, 206
logarithm on, 212
power of matrix, 207-209
scalar, 204-205
square root of matrix, 209-210
dot products, 195-197
elementwise multiplication, 194-195
eltype(), 183
Euclidean norm, 190-192
Hermitian matrix, 225
inverse of matrix
complex numbers, 203-204
rational numbers, 202-203
square, 200-202
multiplication, 193
positive definite matrix, 224-225
rank, 186-187
rational data type, 198
rotating, 222
scalar multiplication, 194
sparse matrices, 226
symmetric matrix, 223
trace, 187
triangular matrix, 187-189
Metaprogramming
defined, 335
expression
dump(), 337, 339-340
fieldnames(), 337, 339-340
interpolation, 340-341
parse time, 341
macros, 341-343

INDEX

: operator, 335-336

@time expression, 343-344
Modulus, 92
Multimedia consoles, 309
Multiplication matrix

cross product, 197-199

dot product, 195-197

elementwise, 194-195

scalar, 194

N

Nested loops, 286-288
Number systems, 31-32
Numerical approximations, 119

O

Object-oriented programming (OOP)
multiple references, 19-20
object, 16
procedural programming vs., 15
reference, 17, 19
styling convention, 22
typeof(), 17
variables, 21, 22
Operator precedence, 64-65
Overflow error, 45

PQ

Padding, string, 245

Parse time, 341

Pie charts, 330

Plotting
bar charts, 330
configuration of graphic

terminal, 320, 322

3D, 332

349

INDEX

Plotting (cont.)

decorating, 326-327

default behavior of, 322-323

graphical object properties, 318

histograms, 329

implicitly pass, 325

mathematical equations, 324

object, 318-319

packages, 317, 319-320, 322

pie charts, 330

scatter, 331

subplot() window, 327, 329
Positional argument

method, 258, 260-261

Positive definite matrix, 224-225
Procedural programming vs. OOP, 15
Python, 2

R

Range operator, 141-142
Rank matrix, 186-187
Rational number
comparison operations, 83-84
complex numbers, 81-82
convert to floating point number, 84
with data types, 85, 87
fraction representation, 79
mathematical operations, 82-84
representation of, 80-81
with zero denominator, 85
Read-Eval-Print Loop (REPL)
defined, 26
help files, 29
inputs and outputs, 27-28
key bindings, 30
Linux shell commands, 30
search mode, 30

350

Tab key, 28
versioninfo(), 31

Real numbers, 36

floating point numbers vs., 46-47

Reshaping arrays, 153, 155

S

Scalar multiplication, 194
Scatter plots, 331

Series expansion, 123

Set theory, 172-173
Shorthand notation, 256
Similar arrays, 137

sin function, 114, 122
Slicing multidimensional

arrays, 143-145

Sparse matrices, 226
Square matrix, 200-202, 223
Square root, 104

Strings

characters, 230
concatenation, 235-236
contains(), 240
data types, 234
endof(), 242-243
index, 238-239
integer value, 231, 233
interpolation, 236-237
I0Buffer() function, 247, 249-250
join(), 242
lexicographical comparison
of, 250-251
next(), 242-243
+ operator and
characters, 233-234
strings, 235
padding, 245

random, 247

repeat(), 241

replace, 245

reverse, 246

search(), 239-240

set of characters, 229

split(), 243-244

start(), 242-243

stripping, 246

uppercase/lowercase characters, 245
Stripping, strings, 246
subplot() window, 327, 329
Symmetric matrix, 223

T

Taylor polynomials, 121-122
Taylor series, 120

Ternary expression, 275-276
Trace matrix, 187
Transformation equation, 172
Triangular matrix, 187-189

INDEX

Trigonometric functions
cos function, 114
cospi(x), 117
defined, 113
discrepancies, 115-116
equivalent, 117
inverse functions, 116
sin function, 114
sinpi(x), 117

U Vv

Unicode system, 230

W XY
while loop, 285-286
Windows OS, 7

y4

Zipping arrays, 285

351

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Introduction
	1.1 Welcome to the Julian World
	1.2 JIT Compiler
	1.3 Brief History
	1.4 Installation
	1.4.1 JuliaBox
	1.4.2 MacOS
	1.4.3 Windows OS
	1.4.4 Linux OS
	 Installing from PPA for Ubuntu and Its Derivatives
	 Installation on Fedora/RHEL/CentOS/SL/OEL
	 Building from Source Code

	1.5 Package Installation
	1.5.1 Initialization of Package Manager
	1.5.2 Updating Package Repository
	1.5.3 Installing a New Package
	1.5.4 Removing a Package
	1.5.5 Status of Installed Packages
	1.5.6 Off-line Installation of Packages [18]

	1.6 Using Code in This Book
	1.7 Summary
	1.8 Bibliography

	Chapter 2: Object-Oriented Programming
	2.1	 Introduction
	2.2	 Procedural Programming vs. OOP
	2.3	 Idea of OOP
	2.4	 Object
	2.5	 Types of Object
	2.6	 Object Reference
	2.6.1	 Multiple References for the Same Object

	2.7	 Variables
	2.7.1	 Naming a Variable
	2.7.2	 Naming Style Convention [4]

	2.8	 Summary
	2.9	 Bibliography

	Chapter 3: Basic Math with Julia
	3.1	 Introduction
	3.2	 REPL
	3.2.1	 Hello World!
	3.2.2	 I/O at REPL
	3.2.3	 Tab Completion
	3.2.4	 Seeking Help from Julia
	3.2.5	 Shell Mode
	3.2.6	 Search Mode
	3.2.7	 Key Bindings
	3.2.8	 Version Information

	3.3	 Some Experiments with Numbers
	3.3.1	 Number Systems
	3.3.2	 Julia as Calculator

	3.4	 Data Type for Integers and Real Numbers
	3.5	 Type Assignment
	3.5.1	 Hierarchy Tree of Number Types
	 Number Types
	 Precision

	3.5.2	 Floating Point Arithmetic
	 How to Store Floating Point Numbers

	3.5.3	 Overflow and Division Error
	3.5.4	 Floating Point Numbers vs. Real Numbers
	3.5.5	 Machine Precision

	3.6	 Arbitrary Precision Arithmetic
	3.7	 Numerical Conversion
	3.8	 Arithmetic Operators
	3.9	 Boolean Numbers
	3.9.1	 Comparison of Mathematical Quantities
	3.9.2	 Chaining Comparisons
	3.9.3	 Boolean Operators

	3.10	 Updating Operators
	3.11	 Operator Precedence
	3.12	 Summary
	3.13	 Bibliography

	Chapter 4: Complex Numbers
	4.1	 Introduction
	4.2	 Defining Complex Numbers
	4.3	 Properties of Complex Numbers
	4.4	 Complex Arithmetic
	4.5	 Summary
	4.6	 Bibliography

	Chapter 5: Rational and Irrational Numbers
	5.1 Numbers and Ratios
	5.2 Rational Numbers
	5.2.1 Representation of Rational Numbers
	5.2.2 Complex Numbers as Numerators and Denominators
	5.2.3 Mathematical Operations on Rational Numbers
	5.2.4 Converting a Rational Number to a Floating Point Number
	5.2.5 Rationals with Zero Denominator
	5.2.6 Rationals with Other Data Types

	5.3 Irrational Numbers
	5.4 Summary

	Chapter 6: Mathematical Functions
	6.1	 Introduction
	6.2	 Division Functions
	6.2.1	 div(x,y), fld(x,y), and cld(x,y)
	6.2.2	 rem(), mod(), and mod1()
	6.2.3	 mod2pi()
	6.2.4	 divrem() and fldmod()
	6.2.5	 gcd()
	6.2.6	 lcm()

	6.3	 Sign and Absolute Value Functions
	6.3.1	 abs() and abs2()
	6.3.2	 Absolute Value of a Complex Number
	 Problem with abs() Function

	6.3.3	 sign(), signbit(), copysign(), and flipsign()
	 Manipulating Signs

	6.4	 Power, Logs, and Roots
	6.4.1	 Numbers Raised to Some Power
	6.4.2	 sqrt(), cbrt(), and hypot()
	6.4.3	 Problem with hypot() Calculations
	6.4.4	 exp(), expm1(), ldexp(), and exponent()
	 exp()
	 expm1()
	 ldexp()
	 exponent(x)

	6.4.5	 log(), log2(), log10(), and log1p()
	 log()
	 log2()
	 log10()
	 log1p()

	6.5	 Trigonometric and Hyperbolic Functions
	6.5.1 Trigonometric Functions
	 Discrepancies in Calculations
	 Additional Features

	6.5.2	 Hyperbolic Functions

	6.6	 Iterative Algorithms to Calculate Mathematical Functions
	6.6.1	 Numerical Approximations
	6.6.2	 Tolerance
	6.6.3	 Taylor Series
	6.6.4	 Taylor Polynomials
	6.6.5	 Maclaurin Series for sin(x) and cos(x)
	6.6.6	 Series Expansion to Algorithms
	6.6.7	 How Many Numbers of Terms!

	6.7	 Summary
	6.8	 Bibliography

	Chapter 7: Arrays
	7.1 Introduction to Arrays
	7.2 Construction
	7.2.1 Arrays of Multiple Dimensions
	7.2.2 Arrays of Floats
	7.2.3 Array of Functions
	7.2.4 Arrays of Mixed Data Types
	7.2.5 Creating Arrays
	7.2.6 Creating an Array Using the Ellipsis Operator
	7.2.7 Creating Arrays Using linspace
	7.2.8 Creating Arrays Using logspace
	7.2.9 Similar Arrays

	7.3 Properties of Arrays
	7.4 Indexing
	7.4.1 Creating Subarrays Using: operator
	7.4.2 end
	7.4.3 Slicing Multidimensional Arrays

	7.5 Filling Arrays with Values
	7.5.1 zeros()
	7.5.2 ones()
	7.5.3 trues()
	7.5.4 falses()
	7.5.5 Arrays Filled with Random Numbers
	7.5.6 eye()
	7.5.7 fill()

	7.6 Reshaping Arrays
	7.6.1 Flipping
	7.6.2 Squeezing and Arrays

	7.7 Sorting
	7.7.1 sortperm()
	7.7.2 Sort by Transformation
	7.7.3 Sorting Algorithms
	7.7.4 Lexicographical Order

	7.8 Finding Items in Arrays
	7.8.1 find(), findfirst(), and findnext()

	7.9 Copying an Array
	7.9.1 Deepcopy

	7.10 Comprehension
	7.11 Generator Expressions
	7.12 Assignment Operator and Arrays
	7.12.1 Other Mathematical Operators

	7.13 Set Theory and Arrays
	7.14 Dictionary
	7.14.1 Creating a Dictionary
	7.14.2 Looking Up a Dictionary
	7.14.3 Finding Keys and Values
	7.14.4 Changing Values
	7.14.5 haskey()
	7.14.6 Checking a Key-Value Pair
	7.14.7 Adding and Deleting a Key

	7.15 Summary
	7.16 Bibliography

	Chapter 8: Arrays for Matrix Operations
	8.1 Defining an Array
	8.2 Properties of a Matrix
	8.2.1 Determinants
	8.2.2 Rank
	8.2.3 Trace
	8.2.4 An Upper and Lower Triangular Matrix
	8.2.5 Diagonal Elements
	8.2.6 Norm

	8.3 Matrix Operations
	8.3.1 Multiplication
	 Scalar Multiplication
	 Elementwise Multiplication
	 Dot Products
	 Cross Product

	8.4 Division
	8.4.1 Inverse of a Matrix
	 The Inverse of a Matrix Made of Rational Numbers
	 The Inverse of a Matrix Made of Complex Numbers

	8.4.2 Scalar Division
	8.4.3 Left or Right Division
	8.4.4 Power of a Matrix
	 Square Root of a Matrix

	8.4.5 Exponentiation of Matrices
	8.4.6 Logarithm on Matrices

	8.5 Broadcasting
	8.6 Boolean Operations
	8.6.1 Comparison of Elements

	8.7 Concatenation
	8.7.1 repmat()
	8.7.2 repeat()

	8.8 Rotating a Matrix
	8.9 Special Matrix
	8.9.1 Symmetric Matrices
	8.9.2 Positive Definite Matrix
	8.9.3 Hermitian Matrices
	8.9.4 Sparse Matrices

	8.10 Summary
	8.11 Bibliography

	Chapter 9: Strings
	9.1 Introduction
	9.2 ASCII System
	9.3 Unicode System
	9.4 Characters
	9.5 Corresponding Integer Value
	9.6 + Operator and Characters
	9.6.1 Characters and Strings Are Two Data Types

	9.7 + Operator and Strings
	9.8 Concatenation
	9.9 Interpolation
	9.10 Strings Are Like Arrays
	9.10.1 search()
	9.10.2 contains()

	9.11 Common String Functions
	9.11.1 repeat()
	9.11.2 join()
	9.11.3 start(), endof(), and next()
	9.11.4 split()
	9.11.5 uppercase() and lowercase()
	9.11.6 replace()
	9.11.7 lpad() and rpad()
	9.11.8 reverse()
	9.11.9 strip(), lstrip(), and rstrip()
	9.11.10 randstring()

	9.12 Reading Data as Arrays from Strings
	9.13 Lexicographical Comparison of Strings
	9.14 Summary
	9.15 Bibliography

	Chapter 10: Functions
	10.1	 Introduction to Julia Functions
	10.2	 Defining a Simple Julia Function
	10.2.1 Shorthand Notation
	10.2.2 Multiple Input
	 Variable Argument List
	 Positional Arguments
	 Variable Arguments List

	10.2.3 Multiple Outputs
	10.2.4 Anonymous Functions
	 Mapping Multiple Values

	10.2.5 map() Function
	10.2.6 reduce(), foldl(), and foldr() Functions
	10.2.7 mapreduce()

	10.3	 Multiple Dispatches
	10.3.1 Defining Multiple Function Definitions

	10.4	 Operators Defined as Functions
	10.4.1 Functions Returning Functions

	10.5	 Summary

	Chapter 11: Control Flow
	11.1	 Introduction to Control Flow
	11.2	 Ternary Expression
	11.3	 Boolean Switching
	11.4	 if-else
	11.5	 for Loop
	11.5.1 Scope of a Loop Variable
	11.5.2 continue
	11.5.3 Comprehensions
	11.5.4 Generators
	11.5.5 enumerate
	11.5.6 Zipping Arrays

	11.6	 while Loop
	11.7	 Nested Loops
	11.8	 do ... end
	11.9	 Exceptions
	11.9.1 Built-in Exceptions
	11.9.2 Custom-Built Exceptions
	11.9.3 catch...try Construct for Testing Exceptions
	11.9.4 finally

	11.10	 Summary

	Chapter 12: Input Output
	12.1	 Introduction
	12.2	 Console I/O
	12.3	 Basic Stream I/O
	12.4	 Byte Array Streaming
	12.5	 Streaming a Line of Characters
	12.6	 Text I/O
	12.6.1 show()
	12.6.2 print()
	12.6.3 println()
	12.6.4 display()

	12.7	 Different Display Units
	12.8	 File I/O
	12.8.1 open(), close(), and read()
	12.8.2 Array Reading and Writing

	12.9	 Summary
	12.10	 Bibliography

	Chapter 13: Plotting
	13.1	 Introduction to Plotting in Julia
	13.2	 A Plot as an Object
	13.3	 Plots Package
	13.3.1 Default Behavior of Plots
	13.3.2 Simpler Way to Plot Equations
	13.3.3 Implicitly Passing a Second Plot
	13.3.4 Decorating the Plots
	13.3.5 Many Plots in the Same Window Using subplot()
	13.3.6 Histograms
	13.3.7 Bar Charts
	13.3.8 Pie Charts
	13.3.9 Scatter Plots

	13.4	 3D plots
	13.5	 Summary
	13.5.1 Bibliography

	Chapter 14: Metaprogramming
	14.1	 Introduction
	14.2	 The: operator
	14.3	 Expressions
	14.3.1 fieldnames() and dump()

	14.4	 Expression Interpolation
	14.5	 Macros
	14.6	 Built-in Macros
	14.7	 Summary

	Index

