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CHAPTER 1

Introduction

1.1  Welcome to the Julian World
When you consider the vast sea of programming languages, learning yet one more can 

feel like an overwhelming task. Learning new programming schemes and constructs 

requires time, patience, and dedicated efforts, so there should be really strong reasons to 

invest in such a time-consuming activity. Julia is a programming language that provides 

such reasons. Since there are so many established programming languages, including 

Python, C, C++, Java, R, and MATLAB, you need to be really motivated to invest time in 

learning this new language, Julia. By the end of this chapter, I hope that you will see there 

are more than enough reasons to dive into Julian world.

Julia is touted to be the one programming language that meets all needs because it 

removes the requirement of knowing multiple languages. Most programming languages 

were designed to meet the needs at the time of their creation. For example, C was 

designed to be an efficient procedural programming language. C++ was developed 

to add object-oriented programming features to the already efficient and popular C 

language. Java also added new features to the area of objects. MATLAB was invented to 

ease the burden of coding efforts required to define a mathematical problem. Python 

grew with a similar philosophy, but ventured into areas where MATLAB was inefficient. 

Since the two languages were similar in structure, a lot of MATLAB coders shifted to 

Python without much effort. It was open source and modular as well, which added to 

the ease of using others’ code. However, one of the main problems with this kind of 

development in computer science was that each programming language was only good 

in specific areas. As a result, users needed multiple programming languages for different 

tasks and then they needed to tweak them as required to make a needed software. 

Some programming languages like C and C++ were created for speed, while others were 
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designed for efficient computation in their domain. The emergence of data science tasks 

required a language that not only was fast but that also had a feature to remove the need 

for multiple languages to complete a computational job.

Julia fits these new requirements almost perfectly. The web site http://

julialang.org/ states the following:

Julia provides the functionality, ease-of-use and intuitive syntax 

of R, Python, MATLAB, SAS or Stata combined with the speed, 

capacity and performance of C, C++ or Java [1].

Being open source in nature, Julia attracted a good number of developers to write 

modules that are now used for most work. Julia is one of the the fastest modern open 

source languages for data science, machine learning, and scientific computing.

With Julia’s impressive set of facilities, you should now have enough reasons to 

explore the langauge. It is one of the newest programming languages that can be used for 

almost any type of computational tasks at present and, hopefully, in the future as well. In 

addition, many high-tech companies seek Julian coders.

If you have some experience with the Python programming language, you know 

that it became popular for a variety of reasons. It has an extremely simple learning 

curve. With open source architecture, millions of developers have poured in thousands 

of packages to perform various tasks. These packages are easy to use. You only have to 

import them using a simple command. Python can also work on a variety of platforms. 

It is object-oriented, which makes it one of the best-suited, high-level languages for 

simulation and computation in general. It can also run parts of code written in other 

programming languages. With these characteristics, it has become the most popular 

language among coders at the time of writing. But, it has one big problem: it is slow. 

Consequently, developers have found themselves in a fix when they need to write 

time-efficient code. Many times, they choose to write time-inefficient parts in faster 

languages like C or C++. This process makes the overall experience very enriching but 

cumbersome. The primary motivation to create Julia mainly arose from this issue.

Julia’s creators themselves remark [2] on these issues:

We want a language that’s open source, with a liberal license. 

We want the speed of C with the dynamism of Ruby. We want a 

language that’s homoiconic, with true macros like Lisp, but with 

obvious, familiar mathematical notation like MATLAB Ⓡ. We 

want something as usable for general programming as Python, 
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as easy for statistics as R, as natural for string processing as Perl, 

as powerful for linear algebra as MATLAB, as good at gluing 

programs together as the shell. Something that is dirt simple 

to learn, yet keeps the most serious hackers happy. We want it 

interactive and we want it compiled. (Did we mention it should be 

as fast as C?)

The introduction of LLVM (Low Level Virtual Machine) enabled [3] this ideology. 

It became possible to design a language from the the onset that satisfies most 

requirements and, hence, eliminates the two-language approach. The LLVM-based JIT 

(just-in-time) compiler allows Julia to approach and often match the performance of  

C/C++. (Explaining this concept in detail is beyond the scope of this book and irrelevant 

for a beginner.)

1.2  JIT Compiler
All programming instructions end up as machine code that is run on hardware (hence, 

machine code is hardware-specific). Thus, faster code simply means efficient machine 

code. Machine code can be done by hand, but it is a tedious job. Assembly language 

(lower level language) is a symbolic representation of machine code and can be fed by 

hand to a hardware device, but it suffers from two major roadblocks:

 1. It is not easy to read and write.

 2. It is hardware-specific.

These two problems are overcome by higher-level language. Currently, a variety 

of higher-level languages exists. FORTRAN, C, C++, and so on, are compiler-based 

languages where writing and reading code is easier than assembly language; they 

convert to machine code quite efficiently. However, users are forced to provide a lot 

of information about how the code should execute and what data types are used. 

With ample information given to the compiler, the compiler builds machine code 

AOT (ahead-of-time). On the other hand, interpreted languages like Python generate 

machine code on the fly, that is, during program execution. Instead of a compiler, these 

languages use an interpreter that interprets each line of code to be ultimately converted 

into machine code. This allows a flexible and interactive environment that is loved by 

all. Programmers can even delegate defining data types and defining memory allocation 
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tasks to the interpreter. But these facilities come at a cost since interpreted languages 

need time to create proper machine code.

JIT compilation brings together the best of both the AOT and interpreter worlds. 

The primary difference is that functions for specific tasks are compiled as requested. 

In some instances, the programmer supplies all the information to the compiler for 

efficient conversion to machine code. When some pieces of information are missing, the 

compiler tries to infer missing information based on its usage.

However, in some cases, JIT isn’t the most optimum approach and fails miserably. 

This happens when type inference fails or the compiler has insufficient information to 

optimize effectively.

With these ideas in mind, the creators of Julia set upon an interesting journey that 

provided the world with one of the most promising programming languages. Learning 

about the history of its development can be very inspiring. The next section will describe 

how people from various backgrounds came together to collaborate and make Julia.

1.3  Brief History
A popular mantra in the Julia community is “walk like Python; run like C.” Speed and 

ease of use has been the primary criteria for developing Julia. A team of four developers 

(Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and Alan Edelman) created this practical 

language at MIT (Massachusetts Institute of Technology).

An article in Wired magazine illustrates the development of Julia [4]. The primary 

motivation for developing this language originated from the problem Karpinski faced 

when he designed a network simulator. For various parts of his project, he had to glue 

together different programming languages that were best-suited for the job. He went to 

get advice from Shah, who introduced him to Bezanson. Bezanson had concluded that 

the trade-off between various programming languages was avoidable. This conclusion 

addressed Karpinski’s problem. The three developers brought in the mathematician 

Edelman, and they embarked on the project. Soon a high-level, high-performance, 

dynamic programming language for technical computing with syntax that is familiar 

to users of other technical computing environments began to take shape. It could rival 

the calculation speeds of C. It also provided the much-needed sophisticated compiler, 

allowed distributed parallel execution, and enabled higher numerical accuracy and an 

extensive mathematical function library. With this armor in command, the group released 

a series of research articles [5, 6, 7, 8], giving a glimpse into the wonderful Julian world.
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1.4  Installation
Let’s dive into the Julian world and start learning about the power of the program. As 

mentioned before, the primary resource for Julia developers is its own web site [9]. At 

the time of writing, Current Release (v0.5.0) is downloadable from the Download tab of 

the web site. First, choose to download the version as per your operating system [10]. 

Installation for MacOSX, Windows, and Linux-based OS is discussed on the web site. 

An interesting way to explore Julia is using JuliaBox, where you don’t need to install 

any software. Instead, you can access a server running a notebook instance with a Julia 

kernel. (See Figure 1-1) Users can choose any of these methods to practice code.

1.4.1  JuliaBox
If you have uninterrupted Internet access, you might like to work on Julia without 

downloading and installing software on your local machine. The web site for JuliaBox is 

given in the list of references [11]. Sign in using one of the accounts and open the Julia 

console using the tab options.

Figure 1-1. JuliaBox console
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Each cell can be used to write code or textual information in a markup language. 

Beginners can simply choose to write the code in a cell and execute it by pressing 

Shift+Enter. The results will be displayed below the implemented cell and a new cell will 

get ready to take the next set of Julia commands.

1.4.2  MacOS
Julia runs on MacOS 10.7 and later releases. Installation of Julia on Mac can be easily 

performed by downloading the Julia-<version>.dmg file from its web site. This file 

contains Julia.app. Installation can be performed by copying the Julia-<version>.app 

to the hard drive (anywhere) or run from the disk image. Double-clicking the shortcut 

icon starts the Julia console (Figure 1-2) in a similar manner as the Julia console in 

JuliaBox (Figure 1-1). Multiple Julia.app binaries can coexist without interfering with 

each other. Thus, multiple versions of Julia can be installed and used without interfering 

with each other.

For uninstalling Julia, delete the Julia.app and the packages directory in ~/.julia. 

If you would also like to remove your preferences files, remove ~/.juliarc.jl.

Figure 1-2. Julia console at MacOSX
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1.4.3  Windows OS
Julia is available for Windows 7 and later. Both 32-bit and 64-bit OS versions are 

compatible with Julia installations. The first step is to download the julia.exe file 

(installer for your platform). It is worth noting that the 32-bit version of Julia works on 

both x86 and x86_64. The 64-bit version of Julia will only run on 64-bit Windows (x86_64) 

OS. Hence, it’s important to check the version information of your installed windows OS. 

By default, it will install to your AppData folder. You may keep the default or choose your 

own directory (for example, C:\Julia). Next, run the downloaded julia.exe file. This 

will start the installation. After the installation is complete, a shortcut to the Julia program 

will appear on your desktop. Double-click this Julia shortcut in the unpacked folder to 

start the Julia environment, similar to the one seen in the JuliaBox (Figure 1-1). In the 

event that problems arise, some dependencies might be missing. The Windows README 

files contain information on dependencies. You have to install these dependencies to 

complete installation.

In case problems force you to uninstall Julia, delete the extracted directory and 

the packages directory in \%HOME\%/.julia. If you would also like to remove your 

preferences files, remove \%HOME\%/.juliarc.jl and \%HOME\%/.julia_history.

1.4.4  Linux OS
 Installing from PPA for Ubuntu and Its Derivatives
For Ubuntu-based Linux distribution, add a repository and install Julia from the 

command line terminal by typing the following:

$ sudo add-apt-repository ppa:staticfloat/juliareleases

$ sudo add-apt-repository ppa:staticfloat/julia-deps

$ sudo apt-get update

$ sudo apt-get install julia

The main advantage of using this method is that Julia will be updated with the other 

software on an installed machine.

To remove Julia, type the following:

$ sudo apt-get purge julia
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To remove the Julia repository so that, while updating, it does not seek to update Julia 

(make sure you remove the package before removing the repository), use the following 

code snippet:

$ sudo add-apt-repository --remove ppa:staticfloat/juliareleases

 Installation on Fedora/RHEL/CentOS/SL/OEL

A copr (Cool Other Package Repo) [12] repository can be used in this case. This repository 

provides a Julia RPM package for Fedora and EPEL (RHEL/CentOS/SLES/OEL). If you are 

using RHEL, CentOS, Scientific Linux, or Oracle Enterprise Linux (version 5 or higher), 

first enable EPEL for your distribution version by running a command prompt:

$ sudo dnf copr enable nalimilan/julia

Another way is to copy the relevant .repo file available to /etc/yum.repos.d/. 

Finally, you can simply issue the following command-to-command terminal:

$ sudo yum install julia

New versions are built every night. If you have already installed Julia and you want to 

upgrade to the latest version, issue the following command to the terminal:

$ sudo yum upgrade julia

 Building from Source Code

Building from source code is usually preferred by experienced programmers since it 

requires knowledge about handling files in Linux and changing permissions. Julia’s 

source code is hosted at GitHub [13]. Hence, Git should be installed [14] in your system. 

Once this is done, you must satisfy the dependencies [15] first. The following instructions 

are also given at README file [16].

1.5  Package Installation
Apart from built-in Julia functions, users can add packages with specific functionalities 

and can even make their own packages (and subsequently release them to the Julia 

community). A list of packages is provided at the main web site [17]. It is clearly a very 
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rich ecosystem of computing facilities. Packages for all sorts of computational tasks are 

already present and the Julia community appends this list on a regular basis.

For the purpose of adding and deleting packages to a Julia installation in a clean 

manner, Julia has a built-in package manager [18], but this requires an active Internet 

connection. Because the package manager uses Git internally to manage the package 

Git repositories, users may run into protocol issues (if behind a firewall, for example) 

when running Pkg.add() (to install packages). The following command can be run from 

the command line to tell Git to use HTTPS instead of the Git protocol when cloning 

repositories:

$ git config --global url."https://".insteadOf git://

1.5.1  Initialization of Package Manager
Initialization of a package manager can be done using Pkg.init() in the following 

manner. First, open the Julia app by clicking its icon. A Julia terminal opens up that has 

julia> as its command prompt. We shall issue a Julia command here. Try the following:

julia> Pkg.init()

The command will produce information about initialization of the package 

directory.

1.5.2  Updating Package Repository
Suppose we want to work with the package named AlgebraicDiffEq. Its source code 

can be found at its Git address [19]. It’s advisable to update the metadata of the package 

repository to update the version of packages to the latest ones. Thus, we can issue the 

following command:

julia> Pkg.update()

Depending on your state of machine, it will update versions for installed packages. 

This may take quite some time depending on the speed of your machine and Internet 

connection. It is good practice to issue this command periodically for keeping packages 

in the most up-to-date condition.
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1.5.3  Installing a New Package
The Julia package manager is declarative rather than imperative. This means that users 

simply issue the command about what they want. The package manager figures out what 

versions to install (or remove) to satisfy those requirements optimally—and minimally. 

Hence, a user just adds the name of the package to the list of requirements. The package 

manager then resolves the issues pertaining to its installation. This means that if some 

package had been installed because it was needed by a previous version of something 

you wanted but a newer version doesn’t have that requirement anymore, updating will 

actually remove that package.

The installation of a package follows this pattern:

• Package requirements are in the file ~/.julia/v0.4/REQUIRE.

• The name of the package to be installed is added to this file.

• Pkg.resolve() is then called to resolve the dependencies issues for 

final installation.

These tasks can be achieved by issuing a single command:

julia> Pkg.add("AlgebraicDiffEq")

The great benefit of a built-in installer is that it will take care of the dependency tree 

for the new installation. The list of dependencies can be found in the REQUIRE file of the 

package.

1.5.4  Removing a Package
Just as a package can be installated with great ease, a package can be removed by simply 

issuing the following command:

julia> Pkg.rm("AlgebraicDiffEq")

The procedure to remove a package is similar to its installation:

• Package requirements are in the file ~/.julia/v0.4/REQUIRE.

• The name of the package to be removed is removed from this file.

• Pkg.resolve() is then called to resolve the dependencies issues for 

final installation.
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Both Pkg.add() and Pkg.rm() are convenient ways for adding and removing 

requirements for a single package. However, in the case of multiple packages to be 

handled, we recommend using Pkg.edit(). Issuing this command lets users edit the 

contents of ~/.julia/v0.4/REQUIRE manually, change the contents, and then update 

their packages accordingly. This process should only be done by experienced users so 

we have not discussed it here.

1.5.5  Status of Installed Packages
The command Pkg.status() prints out a summary of the state of packages you have 

installed. As an example, when this command is run on my machine, the following 

output is generated:

julia> Pkg.status()

1 required packages:

- IJulia                            1.6.0

9 additional packages:

- BinDeps                           0.7.0

- Compat                            0.30.0

- Conda                             0.7.0

- Homebrew                          0.5.8

- JSON                              0.13.0

- MbedTLS                           0.4.5

- SHA                               0.5.1

- URIParser                         0.2.0

- ZMQ                               0.4.3

It can be clearly seen that all the installed packages cache is being updated for 

further usage. Let’s look at the process [18] of updating a package:

• The first step of updating packages is to pull new changes to the 

file found at address ~/.julia/v0.4/METADATA and see if any new 

registered package versions have been published.

• Next, Pkg.update() attempts to update packages that are checked 

out on a branch and not dirty (that is, no changes have been made to 

files tracked by Git) by pulling changes from the package’s upstream 

repository.
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• Upstream changes will only be applied if no merging or rebasing is 

necessary (in other words, if the branch can be fast-forwarded).

• If the branch cannot be fast-forwarded, it is assumed that the users 

are working on it and will update the repository themselves.

• As a final step, the update process recomputes an optimal set 

of package versions to have installed to satisfy users’ top-level 

requirements and the requirements of “fixed” packages.

1.5.6  Off-line Installation of Packages [18]
In case the Internet is not available, packages may be installed by copying the package 

root directory Pkg.dir() from a machine with the same operating system and 

environment. Issuing the command Pkg.add() performs the following within the 

package root directory:

• Adds the name of the package to REQUIRE

• Downloads the package to .cache and then copies the package to the 

package root directory

• Recursively performs step 2 against all the packages listed in the 

package’s REQUIRE file.

• Runs Pkg.build()

1.6  Using Code in This Book
The code in this book can be simply written at the Julia prompt and executed by pressing 

the Enter key. If you are using JuliaBox or notebook format, you can execute a Julia cell 

by pressing the Shift and Enter keys simultaneiously. The comments are written starting 

with a # sign. They are optional and only assist conceptual clarity. Code is presented with 

a different font for visual clarity.

Julia files are stored with a .jl format. If the compiler path is well defined, then a 

Julia file can simply be executed by running the following command:

$julia <filename.jl>
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The best way to use this book is to treat it as a workbook. Read each concept and run 

the sample code given with it. Try to run the code in the book and reason out the errors 

and warnings, if any. Finally, try to write your own code to understand the concept in 

greater detail.

1.7  Summary
In this chapter, we introduced the world of the Julia programming language and 

provided instructions for its proper installation on Windows, Linux, and MacOSX 

operating systems. These instructions might change over time as the availability of 

computing resources and configurations changes. Hence, we advise users to keep 

a tab on Julia’s language web site [9] to get the most updated version of Julia. In the 

subsequent chapters, we will explore the structure of Julia in order to use it effectively.
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CHAPTER 2

Object-Oriented 
Programming

2.1  Introduction
Julia is designed to be an object-oriented programming (OOP) language. This choice is 

inspired by the tremendous success of OOP languages in the computing community. 

The ease of defining a computational problem in OOP made it a famous computing 

paradigm; hence, Julia also adopted OOP. To learn Julia, getting to know OOP is a 

prerequisite. We have dedicated this chapter for this purpose.

2.2  Procedural Programming vs. OOP
When defining computational tasks, you can define a set procedure to solve a problem 

using blocks of data and connecting them as dictated by procedures. The paradigm that 

emphasizes setting procedures irrespective of the type of data and their different usage 

pattern is called procedural programming. On the other hand, OOP lays emphasis on 

objects and their relationships with one another using operators (acting on objects, they 

change their values and other attributes to solve a computational task). C++, Java, and 

Python are OOP languages as is Julia.

2.3  Idea of OOP
The idea of objects originated from observations of the day-to-day life around us. 

An object is understood as something that has a set of attributes and a related set of 

behaviors. This is what human babies learn first about their environments. For example, 
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babies learn that a ball (object) has a color, shape, and size (attributes), and it rolls, skids, 

and bounces (behavior).

In the early 1970s, Alan Kay at Xerox PARC (Palo Alto Research Center) worked on 

the concept of OOP[1]. While working on a programming language called Smalltalk [2],  

he employed the ideas of OOP. The key ideas were based on applying computer 

programming to physical simulations. The real world can be imagined as various objects 

(having attributes and behaviors) interacting with each other. So, it is natural to adopt 

the same ideas while constructing a simulated world. All GUI-based systems inherit 

their philosophy from Kay’s efforts toward these ideas and now all major programming 

languages follow them religiously.

2.4  Object
In the Julian world, everything is an object. But what is an object? An object is an 

abstract concept to signify an entity on which computation can be performed. Just like a 

physical object, a computer’s object has a set of attributes and a related set of behaviors. 

A number, string, pictures, videos, files, and so forth, can be visualized as objects. Within 

numbers, you can subcategorize objects into other objects as integers, floating point 

numbers, and boolean numbers, or their collection in an ordered or unordered fashion. 

Within strings, you can have characters, words, sentences, and so on. Within files, it is 

possible to have text files, media files, data files, script files, and so forth.

2.5  Types of Object
An object has an associated type. Type dictates the memory storage requirements and 

what can be done computationally with an object. For example, int and float are 

distinct types of objects in the sense that int stores integers and float stores floating 

point numbers. These types will be discussed in greater detail in subsequent chapters. 

While float needs to store information regarding the number of digits preceding and 

succeeding the decimal point, an int object does not need to worry about the same 

information. Similarly, a complex number is stored in another type of object, aptly 

named complex since it needs to store two aspects of a complex numbers (i.e., their real 

and imaginary parts). In this way, they must be stored quite differently in a computer’s 
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memory and then be used quite differently in subsequent computations. The creation of 

an object necessarily requires the declaration of its type. Unless explicitly specified, Julia 

assigns the type dynamically. The type of object can be obtained by using the built-in 

function called typeof(), which takes the object whose types needs to be scanned.

Let’s test this concept using an example. Even though the value of objects is numeric 

1, they are stored as an integer, floating point number, and a character:

julia> a = 1

1

julia> b = 1.0

1.0

julia> c = '1'

'1': ASCII/Unicode U+0031

(category Nd: Number, decimal digit)

julia> typeof(a) # 64-bit Integer object

Int64

julia> typeof(b) # 64-bit Floating point object

Float64

julia> typeof(c) # Character object

Char

The integer object is quite different from a floating point object and string. Some 

functions will explicitly demand a particular type of object. In these cases, they need 

to be converted into one another. Sometimes the conversion is troublesome and 

occassionally it cannot be accomplished. Details of conversion problems are outlined 

with the help of number objects in Chapter 3.

2.6  Object Reference
Julian objects are represented as a reference to an object in a computer’s memory. “A” 

points to a memory location. This memory location can be accessed using the built-in 

function pointer_from_objref(x) where x is the reference to the object. Similarly, the 
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size of memory in bytes can be obtained by using the function sizeof(x). This can be 

understood by a code that we have previously used:

julia> a = 1 # a references to a Int64 type integer

#  object

1

julia> b = 1.0 # b references to a Float64 type floating

#point object

1.0

julia> c = '1' # C  references to a Char type object

'1': ASCII/Unicode U+0031

(category Nd: Number, decimal digit)

julia> typeof(a)

Int64

julia> typeof(b)

Float64

julia> typeof(c)

Char

julia> pointer_from_objref(a) # memory address of a

Ptr{Void} @0x000000011b8240a0

julia> pointer_from_objref(b) # memory address of b

Ptr{Void} @0x0000000120804e30

julia> pointer_from_objref(c) # memory address of c

Ptr{Void} @0x0000000120a672e0

julia> sizeof(a) # a occupies 8 bytes (Int64)

8

julia> sizeof(b) # b occupies 8 bytes (Int64)

8

julia> sizeof(c) # c occupies 4 bytes (Char)

4
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The command whos() gives the detailed state of the machine’s memory 

consumption. For example, at the time of writing, the state of my machine shows the 

following:

julia> whos()

Base  34434 KB     Module

Core  12485 KB     Module

Main  41112 KB     Module

a         8 bytes  Int64

ans       4 bytes  Char

b         8 bytes  Float64

c         4 bytes  Char

The state of the machine clearly shows that apart from the modules Base, Core, and 

Main, four references were created in present namespace (or, in simpler words, working 

environment):

• a (8 bytes for Int64 data type of object)

• b (8 bytes for Float64 data type of object)

• c (4 bytes for Char data type of object)

• ans ((4 bytes for Char data type of object))

 – ans is automatically created and references the last used object at 

the Julia prompt.

2.6.1  Multiple References for the Same Object
Multiple references can refer to the same memory location of an object. This can be 

accomplished by assignment operator =. The symbol of the assignment operator should 

not be confused with the symbol for mathematical equality generally used while defining 

mathematical equations. Let’s look at an example to further explain this concept:

julia> a = 1.5

1.5

julia> pointer_from_objref(a)

Ptr{Void} @0x0000000120804060
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julia> b = a

1.5

julia> pointer_from_objref(b)

Ptr{Void} @0x0000000120804060

julia> c = b

1.5

julia> pointer_from_objref(c)

Ptr{Void} @0x0000000120804060

julia> a

1.5

julia> b

1.5

julia> c

1.5

julia> a = 1.2 # a now points to a different object

1.2

julia> pointer_from_objref(a) # different memory location

Ptr{Void} @0x0000000123509090

julia> b

1.5

julia> c

1.5

julia> a

1.2

A reference to object (named a) is created that refers to a floating point value 1.5.  

pointer_from_objref(a) shows that the address of the memory location is 

0x0000000120804060 (a hexadecimal number representing a memory location). Now the 

object is assigned to another reference (named b). It has been verified that the memory 

Chapter 2  ObjeCt-Oriented prOgramming



21

addresses for a and b are the same. Please note that at the time of creation, only a was 

used for referencing. In a similar fashion, a new reference is created (named c) from 

a newly created reference named b. All three (a, b, and c) refer to the same memory 

location. When a is reassigned to a new object, it changes its reference, whereas b and c 

keep theirs.

2.7  Variables
A variable is a name associated (or bound) to a value—that is, a reference to data stored 

in a memory location. Data are treated like an object; a variable refers, or points, to the 

object. The value of the object can be changed while the code runs—hence, the name 

variable. (In other words, the object is able to store different values at different points of 

time.) For example, in the following code, a variable named a can store an integer, then 

another value of the integer, then a floating point number, then a string, and finally a 

rational number. Hence, the value of a can be variable.

julia> a = 1 # 'a' refers to integer object valued as 1

1

julia> a = 2 # Now 'a' refers to a new integer object

#valued as 2

2

julia> a = 3.4 # Now 'a' refers to a new floating point

#object valued as 3.4

3.4

julia> a = "hi" # Now 'a' refers to a string valued

# as "hi"

"hi"

julia> a =  1//2 # Now 'a' refers to a rational

# number 1/2

1//2
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2.7.1  Naming a Variable
Variable names are case-sensitive and do not have any semantic meaning within 

Julia. For this reason, keywords cannot be used as variable names. Julia provides an 

extremely flexible system of naming a variable. Even Unicode characters are allowed for 

variable names. In the Julia REPL and several other Julia editing environments, Unicode 

characters are invoked by issuing LaTeX commands for [3] them and then pressing Tab. 

For example, to give the variable the name a, you would need to type \alpha and then 

press the Tab key to see α as the variable name.

A few rules exist regarding variable names:

• Variable names must begin with a letter (A–Z or a–z), underscore, or a 

subset of Unicode code points greater than ooAo.

• Subsequent characters may also include special characters  

(for example, &, @, %, ˆ, #, and so forth) and digits (0–9) or other 

Unicode characters.

• Keywords are not allowed for naming variables.

2.7.2  Naming Style Convention [4]
To maintain uniformity, Julia proposes a styling convention (which is suggested, but is 

not compulsory). The main aspects of style conventions are the following:

• Names of variables are written in lowercase alphabet letters.

• Word separation can be indicated by underscores (“_”), but use of 

underscores is discouraged unless the name would be hard to read 

otherwise.

• Names of types and modules begin with an uppercase letter 

and word separation is shown with uppercase letters instead of 

underscores.

• Names of functions and macros are lowercase, without underscores.

• Functions that write to their arguments have names that end in 

“!”. These are sometimes called “mutating” or “in-place” functions 

because they are intended to produce changes in their arguments 

after the function is called, not just return a value.
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2.8  Summary
In this chapter, we have discussed the basic paradigm of OOP and how Julia truly 

justifies its role as an OOP candidate. Dealing with objects makes the tasks modular as 

the flexible nature of computation gives freedom to the developer to explore dimensions 

of the computational tasks in a variety of ways. Different physical systems can be easily 

simulated since you just need to define an appropriate computational object and declare 

its properties as associated functions, called methods. Objects can be referenced by 

variable names and calling by reference makes it easy to change the values.
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CHAPTER 3

Basic Math with Julia

3.1  Introduction
In this chapter, we will explore how Julia can be used to perform simple mathematical 

calculations that are the basis of most computational tasks. A basic knowledge of high- 

school- level mathematics is required for understanding the contents of this chapter. The 

chapter will include illustrations that represent mathematical numbers of various kinds 

and their algebraic operations as well as other operations used to define mathematical 

computations. In fact, Julia proves to be a good option while teaching basic mathematics 

due to its simple learning curve.

It is important to note that apart from performing basic mathematical computation, 

Julia is a good candidate for high-performance computing. The general conception 

that high-performance computing means working with super computers is slowly 

and steadily being replaced because cheap and powerful computation power is 

readily available. A cluster of Raspberry Pi computers is a poor man’s (financially 

poor, academically rich!) super computer. GPU (graphics processor unit)-based mini 

super computers are within the reach of the common man now, but the role of a faster 

programming language cannot be ignored here.

Laptops and desktops with few GHz multicore processors and between 2 and 8GB 

RAM have become the worldwide norm. If you can use these machines to perform high- 

performance computations, then the need for expensive computing systems becomes 

obsolete. This removes the fundamental roadblock for researchers and students from 

economically challenged social structures. If the solutions can be presented within an 

open source framework, value is added to their ease of accessibility.

The Julia programming language satisfies most of these conditions. It is open source, 

it supports multiparallel processing, it has a flat learning curve, and it boasts a speed 
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comparable to C/C++. Hence, Julia is fast becoming popular, especially for the task of 

data analytics dealing with huge amounts of data that need to be crunched quickly. 

Since the base of such a job is mathematics, let’s start learning how Julia treats basic 

mathematics within its basic framework (without using additional packages).

3.2  REPL
Julia comes with a full-featured, interactive, command-line REPL (Read-Eval-Print 

Loop) built into the executable. The interactive shell of the Julia programming language 

is commonly known as REPL because

• it reads what a user types,

• the compiler evaluates what it reads,

• it prints out the return value after evaluation, and

• it loops back and does it all over again.

As soon as we click the Julia shortcut, we obtain the REPL environment, as shown 

in Figure 1-2. The prompt is obtained as julia> and the cursor blinks at this prompt. 

It is waiting for the input to be read and evaluated, and then it prints the output of 

the evaluation and waits for the next input. A lot of similar environments exist in the 

computing world. Linux’s shell, Python’s interactive environment, MATLAB’s interactive 

environment, and so on, follow the same philosophy.

In addition to allowing quick and easy evaluation of Julia statements, it has

• a searchable history,

• tab completion,

• many helpful key bindings, and

• dedicated help and shell modes.

3.2.1  Hello World!
Let’s print the string "Hello World," the very first program in the world of computing:

julia> println("Hello  World")

Hello World
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When you feed the Julia command as the words println("Hello World") at the 

command prompt julia>, Julia reads this statement in the sense that it searches for 

the built-in function println and feeds it a string (defined by enclosing characters in 

a pair of quotation marks). This is evaluated by the Julia compiler as per definition of 

the println function. The function simply displays on the command prompt whatever 

string is fed to it. Hence, the result of evaluating println is printed on the console as 

the words Hello World. As soon as this is done, the environment goes back to the Julia 

prompt julia>, waiting for the next input.

3.2.2  I/O at REPL
Let’s experiment with giving inputs and observing outputs at REPL:

julia> 2

2

julia> -2

-2

julia> 2.

2.0

julia> println(2-2.0)

0.0

julia> println("2-2.0")

2-2.0

• When we entered the number 2 at the prompt, it was evaluated as the 

value 2, which looks like a positive integer number in mathematical 

terms. It’s important to remember that the value in the computer may 

or may not be an exact mathematical quantity in some cases.

• Similarly, when we entered the number -2 at the prompt, it was 

evaluated as the value -2, which looks like a negative integer number 

in mathematical terms.

• When we entered the number 2. at the prompt, it was evaluated as the  

value 2.0, which looks like a positive real number in mathematical 

terms. Thus, writing numbers before and after the decimal points in Julia 

is optional.
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• When the value 2 is given to the built-in function println, it 

evaluates it to be as the value 2. It looks like nothing has happened, 

but that is not the case.

• When the mathematical expression 2 - 2.0 is fed to the built-in 

function println, it evaluates the expression and prints the output as 

the value 0.0.

• When the mathematical expression 2 - 2.0 is fed to the built-in 

function println as a string, it prints the string just like it printed the 

string Hello World before.

It can be noted that the Julia function println takes care of the fact that it might get 

a different type of data and must act accordingly. When it got a mathematical expression, 

it evaluated the same as per the rule of mathematics. When it got the same as a string, it 

just displayed it at the terminal by printing on the computer screen below the prompt. 

Let’s look at what happens if println gets multiple values (separated by commas):

julia> println("2-2.0","@#%^&! ",2+2)

2-2.0@#%^&! 4

The strings "2-2.0","@#%^&!" is printed as such and the mathematical expression  

2 + 2 is evaluated. The result, 4, is printed after the string because it appears in this order 

as input to the function. Please note that whitespace is also one of the characters in a 

string and it is also printed as a whitespace. Whitespace does not mean that it prints a 

white- colored space, but rather it prints nothing in the sense that it prints a space colored 

the same as the background color of the terminal.

3.2.3  Tab Completion
Just like Linux’s shell as well as MATLAB’s and Python’s interactive environments, Julia’s 

REPL supports tab completion. You can enter the first few characters of a function or 

type and then press the Tab key to get a list of all matches:

julia> pri

primitive type    print_shortest    println

print             print_with_color
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Please note that after writing pri, you need to press the Tab key to get options and to 

get the output, as shown in the following section. It either completes it if it finds a unique 

option, or else it just prints all possibilities for you to choose. It helps reduce syntax 

errors and proves to be a great help while coding.

3.2.4  Seeking Help from Julia
The best way to learn Julia is to ask for help from the language itself! We saw a variety 

of ways in which the function println() can be used. Suppose we wish to learn more 

about it. You can write ? println at the Julia prompt. It will output a brief description of 

its usage. As soon as it encounters ?, REPL goes into help mode (prompt changes from 

julia> to ?help>) where anything written is searched within help files:

help?> println

search: println print_with_color print

print_shortest sprint @printf isprint

println(io::IO, xs...)

Print (using print) xs followed by a newline.

If io is not supplied, prints

to STDOUT.

If REPL cannot find a match for a query, it suggests similar words, assuming the user 

has made a mistake while typing:

help?> clear

search: clear! ClusterManager

Couldn't find clear

Perhaps you meant clear!, close,

clamp, cld, ceil, Cchar, cat, cor or Char

No documentation found.

Binding clear does not exist.

Another use of the Tab key is to write LaTeX math symbols such as π, α, μ, and so on. 

In addtion to using ASCII [1] characters (128 in number), Julia supports printing  

Unicode [2] characters (< 128, 000 characters).
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3.2.5  Shell Mode
Linux shell commands are quite useful to execute processes. Julia REPL has a shell mode 

for this purpose. A semicolon (;) activates the shell mode. It can be exited by pressing 

the Backspace key at the beginning of the line:

julia>;

shell> ls

Applications

Desktop

Documents

Downloads

3.2.6  Search Mode
All the executed lines get saved to a history file that can be searched. For this purpose, 

a search mode needs to be enabled. This mode is activated by pressing the Control key 

with the R key. The command prompt changes to (reverse-i-search)`':. Now, as 

the query is typed, the search query will appear in the quotes. Just like Ctrl+R activates 

reverse search, Ctrl+S activates a forward search.

3.2.7  Key Bindings
Julia makes use of key bindings as a main feature for working with REPL. A list of some 

useful key bindings is given in Table 3-1.

For a full list of key bindings, users are advised to check the reference number [3].

Table 3-1. Some Important Key Bindings

^D exit (when buffer is empty)

^C exit (interrupt or cancel)

^L Clear console screen

return/enter New line, executing if it is complete

?,; enter help or shell mode (when at start of a line)

^R,^S incremental history search
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3.2.8  Version Information
versioninfo() prints the information about the version of Julia that is installed on a 

particular machine, as in the following example:

julia> versioninfo()

Julia Version 0.6.0

Commit 903644385b (2017-06-19 13:05  UTC)

Platform Info:

OS: macOS (x86_64-apple-darwin13.4.0)

CPU: Intel(R) Core(TM) i5-5250U CPU @ 1.60GHz

WORD_SIZE: 64

BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell)

LAPACK: libopenblas64_

LIBM: libopenlibm

LLVM: libLLVM-3.9.1 (ORCJIT, broadwell)

3.3  Some Experiments with Numbers
Julia is an excellent tool for numerical computing owing to its elaborate system of 

handling numbers flawlessly for complex mathematical calculations. Understanding 

how numbers are defined within the Julian world is critical for a user before attempting 

to create complex mathematical structures with Julia.

3.3.1  Number Systems
Mathematics entertains many different number systems in common use. For example:

• The integers: I = {…− 3, −2, −1, −, 1, 2, 3…}

• The rational numbers: 
p

q
p q I q: , ,Î ¹

ì
í
î

ü
ý
þ

0

• The real numbers: R x x= ¥< <¥{ }:

• The complex numbers: a bi a b R i+ Î = -{ }: , 2 1
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Special subsets are defined on top of these definitions, such as the natural numbers 

{0, 1, 2...}, the even numbers, the odd numbers, the positive numbers, non-negative 

numbers, and so on. Mathematically, these number systems are naturally nested within 

each other since integers are rational numbers that are real numbers, which can be 

viewed as part of the complex numbers.

Julia defines each number system as a data type. In other words, Julia creates a type 

of numbers around which rules of their algebra are defined. Users must understand 

how Julia defines the type for a particular number for its appropriate usage. An excellent 

resource, in addition to this book, is at reference number [4].

3.3.2  Julia as Calculator
We have already seen that Julia REPL behaves like a calculator. You can feed a particular 

calculation involving numbers at its terminal and it will output the result of the 

calculation.

Integers and real numbers are treated differently for a digital computer. Hence, 5 and 

5.0 are two distinct entities. Consequently, when two integers (2 and 3 are added), the 

result is an integer:

julia> 2+3

5

It can be noted that when 2 (an integer) and 3.0 (a real number) are added, the result 

is an integer (5).

julia> 2.+3

5

However, when two real numbers (2.0 and 3.0) are added, the result is a real number 

(5.0).

julia> 2.+3.

5.0

The complex number A+iB is represented as A+B im in Julia. Other languages use 

the alphabet i or j to signify the imaginary part of a complex number, but Julia uses the 

set of alphabets im delibrately for this purpose because i and j are used conventionally 

while defining counters in loops.
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When an integer (in other words, real number) is added to a complex number, 

the result is a complex number but its components (real part and imaginary part) get 

changed accordingly:

julia> 2 + (2+3im)

4 + 3im

julia> 2. + (2+3im) #real number is afloating point number

4 + 3im

julia> 2. + (2.0+3im) #complex number's real part

# is floating point number

4.0 + 3.0im

julia> 2 + (2.0+3im)

4.0 + 3.0im

Rational numbers have numerators and denominators. Julia uses the command 

Rational(A,B) to mean the mathematical rational number A

B
. Let’s check how rational 

numbers behave w.r.t addition with other kinds of numbers:

julia> Rational(2,3)

2//3

julia> Rational(2,3)+2

8//3

Hence, we get the following result:

2

3
2

8

3
+ =

Let’s see what happens if we use a real number instead of an integer:

julia>  Rational(2,3)+2.0

2.6666666666666665

It is worth noting that the output is no longer represented as a rational number, but 

instead as a real number:

2

3
2 0 2 6666666666666665+ =. .
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Let’s check what happens when we add a rational number and a complex number:

julia> Rational(2,3)+ (2+3im)

8//3 + 3//1*im

2

3
2 3

8

3

3

1
æ
è
ç

ö
ø
÷+ +( ) = +i i

As expected mathematically, the result is printed as a complex number with both 

real and imaginary parts defined as rational numbers.

The following example demonstrates what happens when we add a rational number, 

a complex number, and a real number:

julia> Rational(2,3)+ (2+3im) + 3.0

5.666666666666666 + 3.0im

2

3
2 3 3 0 5 666666666666666 3 0æ

è
ç

ö
ø
÷+ +( )+ = +i i. . .

The output is a complex number where real and imaginary parts are represented by 

real numbers.

Let’s scan for irrational numbers such as π and e, which are predefined in Julia as pi 

and e:

julia> pi

π = 3.1415926535897...

julia> e

e = 2.7182818284590...

The following examples shows how they behave when added with integers, rationals, 

complex numbers, and other irrational numbers:

julia> e+pi

5.859874482048838

julia> e+2

4.718281828459045

julia> e+2.0

4.718281828459045
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julia> e+Rational(2,3)

3.3849484951257116

julia> e+(2+3im)

4.718281828459045 + 3.0im

Efforts to define a rational number with two irrational numbers, π and e as 

numerator and denominator, fail:

Rational(pi,e)

ERROR: MethodError: no method

matching  Rational(::Irrational{:pi}, ::Irrational{:e})

Both error messages indicate syntax errors while matching the input error types and 

finding incompatibility in doing so.

Boolean numbers in Julia are depicted by true and false:

julia> true

true

julia> false

false

It is meaningless to add boolean numbers to natural numbers of any kind because 

you would normally get error messages of incompatibility. However, this is not the case 

with Julia:

julia> true + 1

2

julia> true + 0

1

julia> true + 0.1

1.1

julia> true + Rational(2,3)

5//3
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julia> true + pi

4.141592653589793

julia> true + (2 + 3im)

3 + 3im

The boolean numbers true and false have numerical values 1 and 0. This fact 

should be taken into consideration to avoid confusion and errors.

An obvious conclusion derived from these simple experimental calculations is that 

Julia not only functions as a calculator, but it also identifies the data type for calculations 

dynamically and performs accordingly. In other words, you do not need to declare the data 

type in advance as you do while writing code in C and C++. Julia identifies the data type from 

its value. It is also important to note that Julia matches data types of numbers for performing 

a particular operation. Some matches are incompatible. This indicates a sort of hierarchical 

structure of defining data type. Now let’s investigate these concepts in greater detail.

3.4  Data Type for Integers and Real Numbers
Numbers are the basic building blocks of numerical mathematics. Representation of 

numbers as computable quantities for a computer requires them to be stored as data in a 

computer’s memory. Since the memory is limited in nature, fixed spaces of memory are 

assigned for various number types like integers, real numbers, complex numbers, and so 

forth. Their representation has been briefly discussed in Section 3.3.2. The next section 

will discuss this topic in detail.

3.5  Type Assignment
It has become clear that integers and other numbers are stored and treated differently for 

arithmetic calculations. Whereas integers are stored as just one unit in all of the allocated 

memory space, real numbers are stored with information about numbers before and 

after decimal points, rationals as information about numerators and denominators, and 

complex numbers as information about their real as well as imaginary components. Julia 

differs from C and C ++ in this regard because it is a dynamically typed language. That is, 

the data type does not need to be declared explicitly. It is guaged by Julia depending on 

the value. Julia also maintains a hierarchy among data types for calculations to assign a 

data type to output if two or more data types are mixed within a calculation.
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If we have a machine with a 64-bit architecture, then it can assign 64 bits for each 

entity. But would it be wise to use 64 bits to store the small values (say 0)? Automatic 

assignment faces this inefficient way of computation. Thus, it remains a developer’s 

choice to either declare the data type strictly or let Julia take care of the same. When used 

judiciously, this speeds up computation and lessens the requirements of memory space.

3.5.1  Hierarchy Tree of Number Types
When you encounter a number of data types for mathematical numbers, you need a 

hierarchy tree for conversion of a data type from one to another. The hierarchy tree of 

Julia’s type system for numbers is shown in Figure 3-1. Some of the data types have been 

introduced earlier in this chapter and others may seem very new.

At the very top of the tree is the type Number. It has two subtypes named Complex and 

Real. Whereas the former does not have any subtype, the latter has further subtypes. 

They are depicted in the following illustration:

• AbstractFloat Floating point numbers, Integer, Irrational, 

Rational.

• AbstractFloat has four subtypes:

• BigFloat: Arbitrary precision decimal numbers

• Float16: 16-bit precision decimal numbers

• Float32: 32-bit precision decimal numbers

• Float64: 64-bit precision decimal numbers

Number

Complex{T<:Real} Real

AbstractFloat

BigFloat Float16 Float32 Float64 BigInt Bool Signed

Interger Irrational{sym} Rational{T<:Integer}

Unsigned

Int128 Int16 Int32 Int64 Int8 UInt128 UInt16 UInt32 UInt64 UInt8

Figure 3-1. Hierarchy tree for types of numbers [5]
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• Integer type has three subtypes:

• BigInt: Arbitrary precision integers

• Bool: Boolean Numbers

• Signed: Signed Integers

• Int8: 8-bit precision signed integer numbers

• Int16: 16-bit precision signed integer numbers

• Int32: 32-bit precision signed integer numbers

• Int64: 64-bit precision signed integer numbers

• Int128: 128-bit precision signed integer numbers

• Unsigned: Unsigned Integers

• UInt8: 8-bit precision unsigned integer numbers

• UInt16: 16-bit precision unsigned integer numbers

• UInt32: 32-bit precision unsigned integer numbers

• UInt64: 64-bit precision unsigned integer numbers

• UInt128: 128-bit precision unsigned integer numbers

• Irrational: Irrational numbers

• Rational: Rational numbers

 Number Types

There are four basic number types in Julia:

• Int

• Float

• Rational

• Complex
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The type of number dictates how it will be stored and how precisely the stored value 

is to the mathematical value it represents. To distinguish between these number types, 

Julia’s parser uses the following easy-to-understand syntax rules [4]:

• Integers do not have decimal points.

• Floating point numbers have a decimal point (or are in scientific 

notation).

• Rationals are constructed from integers using the double division 

operator //.

• Complex numbers are formed by including a term with the imaginary 

unit im.

The abstract data types in Julia play a vital role in defining hierarchy, even if they do 

not play a direct role in defining a calculation. Abstract types allow code to be written 

generically for different concrete types such as Int64, Float64, Complex, Rational, and 

so on.

 Precision

The variety of data types allows us to choose the precision of numbers for a particular 

mathematical calculation. To scan the precision of a data type, the built-in function 

precision() comes in handy. It outputs the effective number of bits in the mantissa 

(explained in Section 3.5.2):

julia> precision(BigFloat)

256

julia> precision(Float16)

11

julia> precision(Float32)

24

julia> precision(Float64)

53
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Converting between different data types results in saving the computer’s memory 

and speeding up calculations at the cost of precision. These decisions must be made 

by the developer beforehand by using the information given in this chapter. You do not 

always need higher precisions. For example, if you are working with dimensions of a 

bridge and the numbers are represented in units of meters, then you can usually work 

with a precision of 1

10

th

m. But if you are working with a calculation involving precision 

around Å= 10−9m, then you obviously need to be more accurate and precise.

3.5.2  Floating Point Arithmetic
Real numbers are represented as floating point numbers in a computer. The mapping 

of a real number to a computer’s storage system is a formulaic representation (called 

floating point representation) [6]. Here real numbers are expressed in three parts: 

significand, base, and exponent.

For example, the value of π is 3.1415926535897… . Let’s suppose that we have only 

four significant digits for a particular calculation, so the value can be rewritten as 3.1415. 

Now this number is represented as 31415 × 10−4 where 31415 is called significand, 10 is 

called base, and -4 is called exponent.

While assigning a number to the part called significand, the information about the 

number of significant digits is used. The significant figures of a number are digits that 

carry meaning contributing to its measurement resolution. In the previous case, we 

assumed only four significant digits depending on the requirements of calculations/

measurements. The term floating point refers to the fact that a number’s radix point 

(decimal point) can "float"; that is, it can be placed anywhere relative to the significant 

digits of the number. This position is indicated as the exponent component, and thus the 

floating point representation can be thought of as a kind of scientific notation.

 How to Store Floating Point Numbers

Computers can store numbers as floating point objects. A floating point object stores a 

number as follows:

± ¼ ´d d ds
e

1 2 b

where di = 0, 1, 2…β − 1 but d1 ≠ 0 and m ≤ e ≤ M where m 𝜖 I− and M 𝜖 I+.
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Following are the three parts of a floating point number:

• Sign (±)

• Significand (Mantissa) (d1d2…ds)

• Exponent (β)

Each part of a floating point number is stored at different memory locations and 

occupy a specified number of bits. How many bits are defined to which part? These 

questions have been answered by IEEE standards known as IEEE754 [6]. First, let’s 

understand the concept of precision of a number representation.

 1. Single precision:

• Occupies 4 bytes = 32 bits. (See Figure 3-2.)

 2. Double precision:

• Occupies 8 bytes = 64 bits. (See Figure 3-3)

 3. Extended double precision:

• Occupies 80 bits. (See Figure 3-4.)

 4. Quadruple precision:

• Occupies 16 bytes = 128 bits. (See Figure 3-5.)

Figure 3-2. IEEE 754 standard’s single precision floating point number format [7]

Figure 3-3. IEEE 754 standard’s double precision floating point number format [8]
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Each version has one bit reserved for depicting the sign of a number. Others bits 

are divided for the significand and exponent. Since all numbers are stored as binary 

numbers in a computer, the base is always 2. Depending on the number of bits available 

for storage, the maximum numeral value can be defined for a data type.

For example, if n bits are available for the significand, then the maximum value can be 

2n. For the overall data type, if m bits are available for storage and one of them must be used 

for assigning the sign bit, then 2 1n -  is the maximum numeral value that can be stored by 

that data type. The limits are toward the two extremes (positive and negative numbers) for 

each data type. Hence, crossing the limits define overflow and underflow errors.

Julia follows the data type declaration as defined by the IEEE745 system. This system 

is discussed in Table 3-2.

Figure 3-5. IEEE 754 standard’s quadruple precision floating point number 
format [10]

Table 3-2. Number Data Types of Julia and Their Properties

Type Signed? No. of Bits Smallest Value Largest Value

Int8 Yes 8 −27 27

UInt8 No 8 0 28 − 1

Int16 Yes 16 −215 215

UInt16 No 16 0 216 − 1

Int32 Yes 32 −231 231

UInt32 No 32 0 232 − 1

Figure 3-4. IEEE 754 standard’s extended precision floating point number format [9]

(continued )
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It is important to perform back-of-the-envelop calculations for a particular problem 

to get an idea about maximum and minimum numbers expected during the running 

of a program. Accordingly, you can assign data types. If you do not perform the same, 

then Julia will assign them according to its own rules that might incur precision errors, 

underflow errors, and overflow errors.

Julia provides facility to input the number values as binary, octal, hexadecimal, or 

decimal numbers. The function typeof() can be used to probe the type of data. Let’s start 

with integers. My computer has a 64-bit version of OS and a 64-bit version of the Julia 

compiler. Hence, the default word size of my system is 64 bits. With these definitions, 

let’s scan from small to bigger integers:

julia> typeof(1234567890)

Int64

julia> typeof(-1234567890)

Int64

julia> typeof(1234567890000000000000)

Int128

julia> typeof(-1234567890000000000000

0000000000000000)

Int128

Type Signed? No. of Bits Smallest Value Largest Value

Int64 Yes 64 −263 263

UInt64 No 64 0 264 − 1

Int128 Yes 128 −2127 2127

UInt128 No 128 0 2128 − 1

Float16 Yes 16 −210 × 25 −210 × 25

Float32 Yes 32 −223 × 28 223 × 28

Float64 Yes 64 −252 × 211 −220 × 211

Table 3-2 (continued)
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julia> typeof(12345678900000000000000

00000000000000000000000000)

BigInt

Julia does not assigns UInt64 data type to all positive numbers by default. They must 

be declared by using UInt64() function. Unsigned integers are input and output using 

the 0x prefix and hexadecimal (base 16) digits 0-9a-f. (The capitalized digits A-F also 

work for input.) The size of the unsigned value is determined by the number of hex digits 

used:

julia> typeof(0x1)

UInt8

julia> typeof(0x111)

UInt16

julia> typeof(0x11111111)

UInt32

julia> typeof(0x11111111abcdef)

UInt64

Binary and octal representations are also supported, as follows:

julia> typeof(0b1)

UInt8

julia> typeof(0b110111111)

UInt16

julia> typeof(0b110111111000000

111000101001)

UInt32

julia> typeof(0b110111111000000

1110001010010101101010101010101)

UInt64

julia> typeof(0o11111)

UInt16
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The built-in functions typemin() and typemax() can be used to find the minimum 

and maximum numbers that can be stored within a data type:

julia> typemin(Int8)

-128

julia> typemin(UInt8)

0x00

julia> typemin(UInt64)

0x0000000000000000

julia> typemin(Int64)

-9223372036854775808

julia> typemax(Int64)

9223372036854775807

julia> typemax(Int128)

170141183460469231731687

303715884105727

julia> typemin(Int128)

-170141183460469231731687

303715884105728

3.5.3  Overflow and Division Error
When a number bigger than the biggest possible number is stored within a data type, we 

encounter an overflow error message. Let’s say that we assign the maximum storeable 

number in a variable named a and then we increase if by 1 and store the new value in a 

new variable named b:

julia> a = typemax(Int64)

9223372036854775807

julia> b = a + 1

-9223372036854775808

julia> typemin(Int64)

-9223372036854775808
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julia> c = a + 2

-9223372036854775807

julia> typeof(a)

Int64

julia> typeof(b)

Int64

julia>  typeof(c)

Int64

Working within the default data type for integers (i.e., Int64), we see a wraparound 

behavior where adding 1 to the maximum number makes it the lowest. In mathematics, 

modular arithmetic is a system of arithmetic for integers, where numbers “wrap around” 

upon reaching a certain value. Arithmetic with Julian integers also follows the same 

concept. If a bigger number than defined for a particular data type is fed, an error 

message is displayed:

julia> Float64(2e900)

ERROR: syntax: overflow in numeric constant "2e900"

3.5.4  Floating Point Numbers vs. Real Numbers
You should keep in mind that floating point numbers are abstracts of real numbers. 

Sometimes this abstraction fails to represents the real numbers precisely.

The users must decide that if failure of this abstraction is insignificant, they can still 

confidently use floating point representation for the calculations while keeping in mind 

the errors. A few cases will make this clearer:

 1. If a b n c
a b

n
, , ÎÂ$ =

+  such that cÎÂ  where ℜ represent set of 

real numbers

• This essentially says that between any two real numbers, there 

exists another real number.

• However, this is not true for floating point numbers because 

floating point numbers are defined for a finite precision.  

(See Section 3.5.1.)
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 2. For the previous reason, floating point numbers are 

approximations of real numbers.

• 7 7 7 0´ - =  but Julia shows a finite small number for this 

calculation is due to the finite precision nature of the floating 

point number used to define 7 :

julia> (sqrt(7)*sqrt(7))

7.000000000000001

julia> (sqrt(7)*sqrt(7))-    7

8.881784197001252e-16

• Defined as a floating point, 
1

2

1

6

5

6
0+æ

è
ç

ö
ø
÷- =  is miscalculated. 

When it is converted to a rational type, it is calculated correctly:

julia> 1//2 + 1//3 == 5//6

true

julia> (1//2+1//3)-(5//6)

0//1

julia> 1/2 + 1/3 == 5/6

false

julia> (1/2+1/3)-(5/6)

-1.1102230246251565e-16

 3. The property of associativity may not hold properly when defined 

with floating point numbers, but it will hold properly if defined 

with rational data type:

julia> a = 1//10

1//10

julia> b = 2//10

1//5

julia> c = 3//10

3//10
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julia> a1 = 1/10

0.1

julia> b1 = 2/10

0.2

julia> c1 = 3/10

0.3

julia> (a+b)+c == a+(b+c)

true

julia> (a1+b1)+c1 == a1+(b1+c1)

false

3.5.5  Machine Precision
The concept of machine precision must be explained here. Machine precision is the 

smallest number of a particular data type. Julia provides a function to find that out, 

namely eps(). Try searching for eps() in help mode. The documentation is quite 

illustrative. If the data type is described as T, then eps(T) gives the distance between 1.0 

and the next larger representable floating point value of data-Type T.

julia> eps(Float16)

Float16(0.000977)

julia> eps(Float32)

1.1920929f-7

julia> eps(Float64)

2.220446049250313e-16

julia> eps(BigFloat)

1.72723371101888892507727

03725600799142232000728

87256277004740694033718

360632485e-77

Chapter 3  BasiC Math with Julia



49

3.6  Arbitrary Precision Arithmetic
Apart from floating point precision, Julia also provides facility for arbitrary point 

precision by wrapping around the libraries GNU Multiple Precision Arithmetic Library 

(GMP) [11] and the GNU MPFR [12] Library. This is not discussed in details here since a 

basic user would not need this information too often.

For integers BigInt data types and for floating point numbers, BigFloat data types 

are made available using the following approach:

julia> a = BigInt(typemax(Int64))

9223372036854775807

julia> typeof(a)

BigInt

julia> a = BigFloat(1.0)

1.00000000000000000000

000000000000000000000

000000000000000000000

0000000000000000

julia> a = BigFloat(1.5)

1.50000000000000000000

000000000000000000000

000000000000000000000

0000000000000000

The problem exists when the user tries to change decimal literals to floating point 

numbers. For example:

julia> BigFloat(2.1)

2.100000000000000088817

84197001252323389053344

72656250000000000000000

00000000000
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To overcome this problem, usage of big is recommended. big converts a number to 

a maximum precision representation (typically BigInt or BigFloat):

julia> a = big"2.1"

2.0999999999999999999999

99999999999999999999999

99999999999999999999999

9999999986

julia> typeof(a)

BigFloat

The default precision, nominally 256 bits, and the rounding mode of BigFloat can 

be changed using with_bigfloat_precision() and with_rounding() functions.

3.7  Numerical Conversion
When you wish to convert one data type to another, you must be aware that conversion 

might result in errors. For example, a floating point number being converted to an 

integer must be rounded off and will lead to round-off errors. There are various rules 

to round off, too. Also, when bigger numbers are converted to smaller-sized computer 

memory formats, inexactness is introduced, which is shown by inexact errors.

Julia supports three forms of numerical conversion, which differ in their handling of 

inexact conversions:

• T(x) or convert(T,x) converts x to a value of type T

• Suppose we wish to convert the integer 3 into a Float64:

julia> a = Int64(3)

3

julia> a1 = Float64(a)

3.0

julia> a2 = Int64(a1)

3
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julia> a3 = Int8(a2)

3

julia> a4 = convert(Float64,a3)

3.0

julia> a5 = convert(Int8,a4)

3

• If T is a floating point type, the result is the nearest representable 

value, which could be positive or negative infinity.

• If T is an integer type, an InexactError is raised if x is not 

representable by T.

julia> a = 2.1

2.1

julia> typeof(a)

Float64

julia> a1 = BigInt(a)

julia> a1=BigInt(a)

ERROR: InexactError()

Stacktrace:

[1] convert(::Type{BigInt},

::Float64) at ./gmp.jl:162

[2] BigInt(::Float64)

at ./sysimg.jl:24

julia> a1 = Int64(a)

ERROR: InexactError()

Stacktrace:

[1] convert(::Type{Int64},

::Float64) at ./float.jl:679

[2] Int64(::Float64)

at ./sysimg.jl:24

Chapter 3  BasiC Math with Julia



52

• x % T converts an integer x to a value of integer type T congruent 

to x modulo 2^n, where n is the number of bits in T. In other 

words, the binary representation is truncated to fit.

julia> a = 128 %  Int8

-128

julia> a1 = 127 %  Int8

127

• Since 127 is the maximum number that can be stored in the type 

Int8 (27 − 1 = 127), when the number 128 needs to be converted 

to the data type Int8, its bits are truncated to fit in.

• The rounding function Rounding off takes a type T as an 

optional argument. For example, round(Int,x) is shorthand for 

Int(round(x)):

julia> round(Int8,127.2)

127

julia> round(Int8,125.9)

126

julia> round(127.2)

127.0

julia> round(125.9)

126.0

julia> Int8(round(127.2))

127

julia> Int8(round(125.9))

126
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• Other rounding functions are floor(), ceil(), and trunc(). The 

following are example code:

Name Behavior Return Type

round(x) round x to the nearest integer typeof(x)

round(T,x) round x to the nearest integer T

floor(x) round x towards -Inf typeof(x)

floor(T,x) round x towards -Inf T

ceil(x) round x towards Inf typeof(x)

ceil(T,x) round x towards Inf T

trunc(x) round x towards 0 typeof(x)

trunc(T,x) round x towards 0 T

julia> round(2.6)

3.0

julia> round(Int8,2.6)

3

julia> floor(2.6)

2.0

julia> floor(Int8,2.6)

2

julia> ceil(2.6)

3.0

julia> ceil(Int8,2.6)

3

julia> trunc(2.6)

2.0

julia> trunc(Int8,2.6)

2
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3.8  Arithmetic Operators
Apart from defining mathematical numbers, users must also define arithmetic operators 

such as +,-,*, and / to perform arithmetic calculations as per given the algebra of the 

data type.

Some examples will make this clear:

julia> a = 1.0

1.0

Operator Symbol Name Behavior

+a unary plus identity operation

-a unary minus Maps value to additive inverse of a

a+b binary plus performs a plus b

a-b binary minus performs a minus b

a*b times performs a multiplied by b

a/b divide Gives quotient given when a divided by b is performed

a\b inverse divide Gives quotient given when b divided by a is performed

a%b remainder Gives remainder obtained by a divided by b

a^b power perform a b

julia> b = 1.5

1.5

julia> +a # Identity operation does

#not change  value

1.0

julia> -a # Gives additive inverse of 1.0 as -1.0

-1.0

julia> a+b # 1.0+1.5 = 2.5

2.5
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julia> a-b # 1.0-1.5 = 0.5

-0.5

julia> a*b # 1.0 times 1.5 is 1.5

1.5

julia> a/b # Quotient of 1.0/1.5 is 0.66 ...

0.6666666666666666

julia> a\b # Quotient of 1.5/1.0 is 1.5

1.5

julia> a%b # Remainder of 1.0/1.5 is 1.0

1.0

julia> a^b # Remainder of 1.0 raised

#to the power 1.5 is 1.0

1.0

3.9  Boolean Numbers
Boolean numbers, along with boolean algebra, has framed the backbone of modern 

computing. George Bool developed boolean algebra to work with boolean numbers 

(true and false along with boolean operators such as AND, OR, NOT, and XOR. They can be 

used for comparison of quantities as well as making logical statements and finding their 

truth value.

3.9.1  Comparison of Mathematical Quantities
Two logical numbers, namely true and false, exist in Julia that can be used to perform 

boolean arithmetic operations. In their simplest form, they can be used to check for 

inequalities and equalities between quantities.

julia> a = 1.0

1.0

julia> b = 1

1
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julia> a == b # Value of 1.0 and 1 is 1

true

julia> a!=-b # Mathematically 1.0 is not equal to -1

true

julia> a  <  b  #  Because  1.0=1  mathematically

false

julia> a <= b # Because atleast equality holds true

true

julia> a  >  b  #  Because  1.0=1  mathematically

false

julia> a>= b # Because atleast equality holds true

true

The following list of operators has been probed:

Operator Symbol Meaning

== equality

!= inequality

< less than

<= less than or equal to

> more than

>= more than or equal to

Comparison of integers is straightforward for a computer as it just compares the bit 

values. Floating point numbers are a bit different in this respect. They are compared as 

per IEEE754 standard: [6]

• Positive zero is equal but not greater than negative zero.

• Inf is equal to itself and greater than everything else except NaN.

• -Inf is equal to itself and less then everything else except NaN.

• NaN is not equal to, not less than, and not greater than anything, 

including itself.
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These statements can be checked easily, as follows:

julia> +0.0 == 0.0 #+ve zero is same as zero

true

julia> +0.0 == -0.0 # +ve zero is same as -ve zero

true

julia> +0.0 < -0.0

false

julia> +0.0 > -0.0

false

julia> Inf == -Inf #+ve infinity is not equal to -ve infinity

false

julia> Inf > Inf #+ve infinity isn't more than itself

false

julia> Inf > -Inf #+ve infinity is more than -ve infinity

true

julia> NaN  ==  Inf #Inf and  NaN  can't be  compared  valuewise

false

julia> Inf >  NaN

false

julia> -Inf > NaN

false

julia>  -NaN

NaN

julia> NaN  >  Inf

false

julia> NaN > -Inf

false

julia> NaN == NaN # Two NaN values aren't same

false
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julia> NaN != NaN

true

julia> NaN <= NaN

false

julia> NaN >= NaN

false

julia> NaN > NaN

false

julia> NaN > NaN

false

To avoid discrepancies with operator behavior with different data types, Julia 

provides some built-in functions.

Function Behavior

isequal(x,y) x and y are identical

isfinite(x) x is not Inf or -Inf

isinf(x) x is equal to Inf or -Inf

isnan(x) x is equal to NaN

julia> isequal(1.0, 1)

true

julia> isfinite(Inf)

false

julia> isfinite(-Inf)

false

julia> isfinite(1.0)

true

julia> isinf(Inf)

true
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julia> isinf(-Inf)

true

julia> isinf(1.0)

false

julia> isnan(NaN)

true

julia> isnan(Inf)

false

julia> isnan(-Inf)

false

julia> isnan(1.0)

false

3.9.2  Chaining Comparisons
Comparisons can be arbitrarily chained in Julia:

julia> 1 < 2 > 3

false

1<2>3 can be understood by first assigning 1<2 to a, which is valued true, and then 

a>3 is calculated to be false:

julia> a=1 < 2

true

julia> a > 3

false

The order of evaluations in a chained comparison is undefined unless brackets are 

used. The statement is read from the right-hand side and successive comparison results 

are stitched together.
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Expressions inclosed inside brackets are calculated first. The bracketed expressions 

are also read from the right-hand size and successive comparisons are stitched together. 

Following is an example:

julia> (1<2)>(3==3)

false

julia> 1<2

true

julia> 3==3

true

julia> true>true

false

julia> (1<2)>(3>3)

true

julia> 3>3

false

julia> true>false

true

3.9.3  Boolean Operators
The AND (&), NOT (! or ~), XOR ($), and OR (|) operators can be used to make complex 

logical statements. It is worth noting that boolean operators are mostly bitwise operators. 

That is, while performing comparison operations, they operate bitwise.

Expression Behavior

a bitwise NOT (NOT a)

a & b bitwise AND (a AND b)

a | b bitwise AND (a AND b)

a $ b bitwise XOR (a XOR b)

(continued )
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Expression Behavior

a >>> b logical shift right

a >> b arithmetic shift right

a << b logical/arithmetic shift left

A logical shift is a bitwise operation that shifts all the bits of its operand. On the other 

hand, an arithmetic shift is also a shift operator, sometimes termed a signed shift (even 

though it is not restricted to signed operands). Both these operators can be defined for 

left and right directions.

For binary numbers, it is a bitwise operation. (In other words, it shifts all of the bits 

of its operand by the given number of bit position(s).) The vacant bit positions are filled 

in. Instead of being filled with all 0s, as in a logical shift, when shifting to the right, the 

leftmost bit (usually the sign bit in signed integer representation) is replicated to fill in all 

the vacant positions (this is a kind of sign extension).

Let’s first scan the basic boolean operators and then understand the bitwise shift 

operators. The variables named a and b are first defined to hold boolean values true and 

false. Using boolean operators, simple as well as complex logical statements can be 

made to obtain results:

julia> a = Bool(true)

true

julia> b = Bool(false)

false

julia> !a # NOT operator

false

julia> ∼a # bitwise not
false

julia> a & b # AND operator

false

julia> a | b # OR operator

true
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julia> a $ b # XOR operator

true

julia> a & (a | b) & a # A complex logical statement

true

3.10   Updating Operators
Every binary arithmetic and bitwise operator has an updating version, too. These 

operators assign the result of the operation back into its left operand.

They are quite simple to define. The updating version of the binary operator is 

formed by placing a = immediately after the operator.

Expression Behavior

a+=1 a = a+1

a-=1 a = a-1

a*=2 a = a*2

a/=2 a = a/2

a\=2 a = 2/a

a%=2 a = a%2

a^=2 a = a^2

a!=a a = !a

a&=2 a = a&a

a|=a a = a | a

julia> a = 1.5

1.5

julia> a+=1 # a is now valued as 1.5+1 = 2.5

2.5

julia> a-=1 # a is now valued as 2.5-1=1.5

1.5
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julia> a*=2 # a is now valued as 1.5*2=3.0

3.0

julia> a/=2 # a is now valued as 3.0/2 = 1.5

1.5

julia> a\=2 # a is now valued as 2/1.5 = 1.33 ...

1.3333333333333333

julia> 2/1.5 # verified

1.3333333333333333

julia> a=10 # redefining a to be values as 10

10

julia> a%=2 # a is now valued as 10%2 = 0

0

julia> 10%2  #  verified

0

julia> a=10 # redefining a to be values as 10

10

julia> a^=2 # a is now valued as 10^2 = 100

100

julia> a = Bool(true) # a is defined as boolean true

true

julia> a!=a # a is updated as (NOT a) and hence get

#valued as false

false

julia> a # a is verified to be values as false

false

julia> a&=a # a is updated with values of (a&a)

#i.e false&false

false
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julia> a|=a # a is updated with values of

#(a|a) i.e false|false

false

julia> a$=a # a is updated with values of

$(a$a) i.e false$false

false

It is worth noting that the updating operator rebinds the variable on the left-hand 

side. As a result, the type of the variable may change.

julia> a = UInt8(12)

0x0c

julia> typeof(a)

UInt8

julia> a ^= 200.5

2.375963871483476e216

julia> typeof(a)

Float64

3.11   Operator Precedence
For the purpose of mathematical evaluations using mathematical numbers, it is 

important for a programming number to define operator precedence. For example, if we 

want to calculate

2 3 5 2 53+ * / .

we must understand that the result depends on the order in which the mathematical 

functions are operated. Let’s try the calculation on the Julia console:

julia> 2+3*5/2^3.5

3.3258252147247767
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Now let’s understand the order in which operators were applied to get this value. As 

per Julia’s documentation [13], the following is the operator precedence defined:

Symbol Meaning

^ exponentiation

// and \\ Fractions

* / %  &  \ algebraic operations

+ - | $ addition

> < >= <= == === != !== <: Comparison

julia> 2+3*5/2^3.5

3.3258252147247767

julia> 2^3.5 # First exponenttaion is applied

11.31370849898476

julia> ans # ans stored last calculated value

11.31370849898476

julia> 5/ans # Division operator

0.4419417382415922

julia> ans*3 # Multiplication operator

1.3258252147247767

julia> ans+2 # Addition

3.3258252147247767

The operator precedence logic follows famous BEDMAS (Bracket—Exponentiation—

Division—Multiplication—Addition—Subtraction) rule of mathematics. It’s 

recommended to use brackets for numbers that need to be calculated separately. For 

example:

 2 3 5 2
3 5+( )*( )/
.
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will first solve the calcuations in each bracket and then apply operator precedence. 

Consequently, the result will be different:

julia>   (2+3)*(5/2)^3.5

123.52647110032733

julia> 5/2 # First the bracket is solved for 5/2 and 2+3

2.5

julia> ans^3.5 # Next exponentiation is carried out

24.705294220065465

julia> ans*(5) # result is added to 2+3 = 5

123.52647110032733

3.12   Summary
This chapter has discussed the ways in which Julia performs mathematical tasks. 

It makes a variety of objects for various types of numbers. Each object has specific 

methods to deal with mathematical operators. Knowledge of the usage of an operator 

with particular data lets you decide about their usage in a meaningful way. The hierarchy 

tree of the number system must also be understood in totality as conversion rules dictate 

how numbers will be dealt with in computational tasks. Decisions about using particular 

data types for computation involve an effective trade-off between precision and memory 

usage. Operator precedence is another important task discussed in this chapter since it 

decides the ultimate result. Also, the Julia REPL and its various modes come in handy 

when users perform mathematical computation.
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CHAPTER 4

Complex Numbers

4.1  Introduction
Having a basic understanding of preliminary mathematical constructs, you now need 

to understand how complex numbers are dealt with. Computations involving complex 

numbers can be found in almost all branches of science and mathematics. All Julia- 

based numerical computation developers must understand a variety of ways of defining 

complex numbers and their mathematics to compute efficiently.

The world of complex numbers encompasses important scientific domains. 

When used for descriptions of reality, they present more enriched pictures of physical 

phenomena than real numbers. Every programming language that boasts of performing 

mathematical calculations robustly must handle complex numbers with ease. Julia truly 

is one such language. Complex numbers are defined in simple terms and most functions 

for their handling are present. In addition, their usage in calculations with other data 

types is quite flexible and flawless. These qualities make it one of the best choices to 

perform complex analysis tasks.

4.2  Defining Complex Numbers
The first and most important task in defining complex numbers is to define a symbol 

for the complex number i = -1 . A global constant represented by im is used to i. This 

represents the principal -1 . Mathematicians usually use the alphabets i and j to 

represent i, but these alphabets are also used widely within computer science faculties for 

index variables. To avoid mistakes, the symbol im was chosen instead of symbols i or j.
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The complex number 1 + 4i can thus be written as follows:

julia> a = 1+4im

1 + 4im

julia> real(a)

1

julia> imag(a)

4

The real part of the complex number is 1 and the imaginary part is 4i. Complex 

numbers in Julia are stored as two numbers, re (real part) and im (imaginary part). Both 

of these are some type of real number. They can be obtained using functions real() and 

imag().

Another way to make a complex number object is by using complex(), complex32(), 

complex64(), and complex128() functions:

julia> a = 3.5 # defining "a"

3.5

julia> b = -4.9 # defining "b"

-4.9

julia> z = complex(a,b) # making complex number

# with a as real part and b as imaginary part

3.5 - 4.9im

julia> typeof(z)

Complex{Float64}

julia> typeof(real(z)) # Real part is stored as a

# Floati64 object

Float64

julia> typeof(imag(z)) # Imaginary part is stored as a

# Floati64 object

Float64
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julia> z1 = Complex32(a,b) # Complex number with

# 32 bit storage

Float16(3.5) - Float16(4.9)im

julia> typeof(real(z1)) # z1 stores real part as

# Float16 object

Float16

julia> typeof(imag(z1)) # z1 stores imaginary part

# as Float16 object

Float16

julia> z2 = Complex64(a,b) # Complex number with

# 64 bit storage

3.5f0 - 4.9f0im

julia> typeof(real(z2)) # z2 stores real part as

# Float32 object

Float32

julia> typeof(imag(z2)) # z2 stores imaginary part as

# Float32 object

Float32

julia> z3 = Complex128(a,b) # Complex number with

# 128 bit storage

3.5 - 4.9im

julia> typeof(real(z2)) # z3 stores real part as

# Float64 object

Float64

julia> typeof(imag(z2))# z3 stores imaginary part as

# Float64 object

Float64

It is worth noting that data types of real and imaginary parts are retained as per 

definitions of defining functions and rules of conversions are similar to those used for 

integers and real numbers.
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4.3  Properties of Complex Numbers
Complex numbers are graphically defined, as shown in Figure 4-1. On a real-imaginary 

axis based complex plane, a particular point is defined by a complex number a + ib 

where a is the magnitude of the projection of the point on the real axis and b is the 

magnitude of the projection of the point on the imaginary axis.

Figure 4-1 shows a point depicting the complex number z = x + iy and demonstrates 

how the value of r = |z| (absolute value) and ϕ (argument) are given.

 r x y= +2 2  (4.1)

 f = æ
è
ç

ö
ø
÷

-tan
y

x
1

 (4.2)

The absolute value of a complex number is simply its distance from the origin. The 

argument of a complex number is simply the angle it makes with the horizontal axis in 

an anticlockwise direction.

The principle and argument (in radians) for a complex number, say z = −4+3i, can be 

calculated using Julia:

julia> z = -4 + 3im

-4 + 3im

julia> r = abs(z)

5.0

Figure 4-1. Complex number depicted on a complex plane [1]
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julia> r_squared = abs2(z)

25

julia> phi = angle(z)

2.498091544796509

julia> z = -4 + 3im

-4 + 3im

julia> z_conjugate = conj(z)

-4 - 3im

julia> abs2(z) == z*z_conjugate

true

The conjugate of a complex number is its mirror image along the horizontal axis. 

In other words, its imaginary part is the negative of the original number. When squared 

with its conjugate, the result is r2, which is verified by the last line in the previous code.

Inf and NaN propagate through complex numbers in the real and imaginary parts of 

a complex number. Let’s work with three complex numbers: z1 = complex(NaN,Inf), 

z2 = complex(Inf,NaN), and a simple complex number z3 = complex(1,2). Then, let’s 

calculate z1+z2, z2+z3, and z1+z3 to test how complex numbers with NaN and Inf are 

treated:

julia> z1 = complex(NaN,Inf)

NaN + Inf*im

julia> z2 = complex(Inf,NaN)

Inf + NaN*im

julia> z3 = complex(1,2)

1 + 2im

julia> z1+z3

NaN + Inf*im

julia> z2+z3

Inf + NaN*im

julia> z1+z2

NaN + NaN*im
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4.4  Complex Arithmetic
Complex arithmetic involves similar operations as previously discussed for real numbers 

in Chapter 4. These operations include addition, subtraction, multiplication, division, 

raised to a power, and so on. However, rules for complex numbers are a bit different for 

these operations.

Adding two complex numbers involves adding their real and imaginary parts. This is 

also the case with subtraction. Suppose we define two complex numbers in the following 

manner:

 
z a b i

z a b i
1 1 1

2 2 2

= +
= +

 

Now we can define their addition and subtraction as follows:

 
z z a a b b i

z z a a b b i
1 2 1 2 1 2

1 2 1 2 1 2

+ = +( )+ +( )
- = +( )- +( )

 

Multiplication and division operations for complex numbers are not so 

straightforward:

 z z a a a b i a b b b i1 2 1 2 1 2 2 2 1 2
2´ = ´( )+ ´( ) + ´( )+ ´( )( )  

This simplifies by collecting real terms and imaginary terms because i2 1= - :

 z z a a b b a b a b i1 2 1 2 1 2 1 2 2 1´ = -( )+ +( )  

Multiplying and dividing a complex number with a real number can be done in a 

simpler manner by simply performing the multiplication or division for the real and 

imaginary parts respectively.

A complex conjugate of a complex number z a b i1 1 1= +  is defined as z a b i1 1 1
* = - . 

Geometrically, z1
* is the “reflection” of z1 about the real axis. Hence, if we calculate the 

conjugate twice, we get the same number: z z1 1
* *( ) = .

Division of a complex number can be performed using its conjugate as follows:

 
a b i

a b i

a b i

a b i

a b i

a b i

a a b b

a b

b1 1

2 2

1 1

2 2

2 2

2 2

1 2 1 2

2
2

2
2

1+
+

=
+
+

´
-
-

=
+
+

+
aa a b

a b
i2 1 2

2
2

2
2

-
+
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As a result, multiplying the denominator’s complex conjugate with both numerator 

and denominator yields a new complex number that is the result of division of two 

complex numbers.

Julian operators, such as +,-,*,^, and /, work well with real numbers as well as with 

complex numbers without any additional effort. For example:

julia> a = 3.2

3.2

julia> b = -4.4

-4.4

julia> z1 = complex(a,b)

3.2 - 4.4im

julia> z2 = -z1

-3.2  +  4.4im

julia> z3 = z1 + z2 # Adding two complex numbers

0.0 + 0.0im

julia> z3 = z1 - z2 # Subtracting two complex numbers

6.4 - 8.8im

julia> z3 = z1 * z2 # Multiplying two complex numbers

9.120000000000001 + 28.160000000000004im

julia> z3 = z1 / z2 # Dividing two complex numbers

-1.0 - 0.0im

julia> z3 = z1^z2 # complex number raised to the power

# of another complex number

-0.1407063188343073 - 0.24121298541124633im

julia> z3 = z1^2 # complex number raised to the power

# of an real number

-9.120000000000001 - 28.160000000000004im
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julia> z3 = 2*z1 # A real number multiplied with

# a compelx number

6.4 - 8.8im

julia> z3  =  z1*(z2^3.2  - z2/z1)

1211.337685375584 - 232.35311358949485im

When involved numbers are of mixed data types, hierarchy laws are followed:

julia> a = Int8(9)

9

julia> b = Float64(287.876567)

287.876567

julia> z = complex(a,b)

9.0 + 287.876567im

julia> typeof(real(z))

Float64

julia> typeof(imag(z))

Float64

julia> c = Int64(3456)

3456

julia> z1 = c*(z)

31104.0 + 994901.415552im

julia> typeof(imag(z1))

Float64

julia> typeof(real(z))

Float64

Chapter 4  Complex Numbers



77

4.5  Summary
The ability to deal with complex numbers and their arithmetic allows Julia to enter 

into the real-world simulation in a realistic manner. Complex analysis is one of the 

cornerstones of mathematical studies in physical and engineering science. The physical 

importance of real and imaginary parts is critical to scientific interpretation, especially 

with time-varying phenomena (in general, dynamical problems). The ease of defining 

complex numbers coupled with the ease of extracting real and complex parts as well 

as operators for performing complex analysis makes Julia one of the most advanced 

options for simulating real-life problems.
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CHAPTER 5

Rational and Irrational 
Numbers

5.1  Numbers and Ratios
A rational number is a number that can be written as a ratio of two numbers. This ratio  

is also called a fraction representation. A fraction representation includes two parts:  

the numerator (the number on top) and the denominator (the number on the bottom). 

The following is a fraction representation of a rational number:

 

a

b  

where a, b ∈ I and b ≠ 0.

For example, 0.50 can also be written as 
1

2
. Similarly 0.60 can be written as 

6

10
, 

which can then be reduced to 
3

5
. Rational numbers can be formally defined as 

equivalence classes of pairs of integers (p, q) such that q ≠ 0, for the equivalence relation 

defined by (p1, q1) ~ (p2, q2) if p1q2 = p2q1. This is simple to follow since

 
p

q

p

q
1

1

2

2

=  (5.1)

implies

 p q p q1 1 2 2=  (5.2)
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The decimal expansion of a rational number always either terminates after a finite 

number of digits or begins to repeat the same finite sequence of digits over and over. It is 

important to note that the discussion is not only true for numbers with base 10 (decimal 

numbers), but it is also true with any other base such as 2 (binary numbers),  

6 (hexadecimal numbers), and 8 (octadecimal numbers), and so on.

All the numbers that cannot be expressed as a ratio are called irrational numbers or, 

in other words, a real number that is not rational is called irrational, such as the number 

π = 3.1415926535897… and the number e = e = 2.7182818284590… One can argue that the 

ratio 
22

7
 can be written for π, but the ratio is an inexact representation of the actual 

number. The decimal expansion of an irrational number continues without repeating:

julia> a = pi

a = 3.1415926535897...

julia> e

e = 2.7182818284590...

julia> inexactness = 22/7 - pi

inexactness = 0.0012644892673496777

5.2  Rational Numbers
Rational numbers represent exact ratios of numbers. For example, 

2

3
 can be valued as 

0.66… . The number used must be restricted to a finite number of digits that will induce 

errors in calculations due to the inexact representation as a fractional number of a ratio 

of integers. If, on the other hand, the ratio itself can be used for calculations, the 

exactness of the calculation can be preserved.

5.2.1  Representation of Rational Numbers
The operator // is used to define a rational number. For example, the rational number 

2

3
 

can be defined as follows:

julia> a = 2//3

2//3

julia> typeof(a)

Rational{Int64}
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The numerator and denominator can be extracted from a rational number using 

num() and den() functions:

julia> a = 2

2

julia> b = -4

-4

julia> a1 = a//b

-1//2

julia> num(a1)

-1

julia> den(a1)

2

This example also outlines an important fact. The // evaluates the rational number 

by solving the rational number—that is, factorizing the numerator and denominator and 

then canceling common factors:

 
2

4

2 1

1 2 2

1

2-
=

´
- ´ ´

=
-  

5.2.2  Complex Numbers as Numerators and Denominators
Rational numbers can be constructed using complex numbers as follows:

julia> a = complex(2,3)

2 + 3im

julia> b = complex(-3,2)

-3 + 2im

julia> 1//a

2//13 - 3//13*im

julia> -3//b

9//13 + 6//13*im
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julia> a//b

0//1 - 1//1*im

julia> (-3//b)^a

0.09624621106941285 + 0.06935501144252361im

When a = complex(2,3) and b = complex(-3,2), then 1//a (Equation 5.3) and 

a//b (Equation 5.4) can be calculated mathematically as follows:

 
1

2 3

1

2 3

2 3

2 3

2 3

4 9

2

13

3

13+
=

+
´

-
-

=
-
+

= -
-

i i

i

i

i
i  (5.3)

Similarly, for the expression a//b, you can construct a rational number made of two 

complex numbers as 
2 3

3 2

+
- +

i

i
, which can be solved as follows:

 
2 3

3 2

2 3

3 2

3 2

3 2

6 4 9 6

9 4

0

13

1

1

+
- +

=
+

- +
´
- -
- -

=
- - - +

+
+ +

i i i i

i i i

i
i  (5.4)

5.2.3  Mathematical Operations on Rational Numbers
A Julian rational number can be operated upon just like a mathematical one:

 

1

2

1

2

1

1
1

1

2

1

2

0

1
0

1

2

1

2

1

1
1

1

2

1

2

1

4

+ = =

- = =

= =

=

/

*

 

julia> a = 1//2

1//2

julia> a+a

1//1

julia> a-a

0//1
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julia> a/a

1//1

julia> a*a

1//4

When the numerator and/or denominator are negative, the number is converted 

with an appropriate sign:

julia> a = -3

-3

julia> b = 4

4

julia> c = -2

-2

julia> a1 = a//b

-3//4

julia> a2 = a//c

3//2

Comparison operators can also be used on rational data types:

julia> a = -2

-2

julia> b = 3

3

julia> a1 = a//b

-2//3

julia> a2 = (2*a)//(2*b)

-2//3

julia> a1 == a2

true
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julia> a3 = (2*a)//(3*b)

-4//9

julia> a1 < a3

true

julia> ((a1 + a2) < a3) & (a2 == a3)

false

julia> a1+a2

-4//3

julia> (a1+a2)<a3

true

julia> a2 == a3

false

julia> true & false

false

5.2.4  Converting a Rational Number to a Floating  
Point Number

A rational number can be converted to a decimal point representation by dividing the 

numerator by the denominator and writing the quotient. For example, 
2

5
0 4= . . 

Sometimes this representation results in an infinitely recurring set of digits. For example, 
1

3
0 333= ¼. . Julia supports these mathematical calculations as follows:

julia> float(2//5)

0.4

julia> float(1//3)

0.3333333333333333
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5.2.5  Rationals with Zero Denominator
Rational numbers are defined for nonzero denominators, but Julia allows zero 

denominators and even allows usual computation. In other words, constructing infinite 

rational values is acceptable in Julia. However, the construction of a fraction 0

0
 is not 

allowed:

julia> a = -1

-1

julia> b = 0

0

julia> c = 3

3

julia> a1 = a//b

-1//0

julia> 0//0

ERROR: ArgumentError: invalid

rational: zero(Int64)//zero(Int64)

Stacktrace:

[1] Rational{Int64}(::Int64, ::Int64)

at ./rational.jl:13

[2] //(::Int64, ::Int64)

at ./rational.jl:40

5.2.6  Rationals with Other Data Types
Rational data types interact with other data types as per promotion rules for data 

type. In the following example, a1 stores a rational number with Int64 numerator and 

denominator, and a2 stores a complex number. When a1+a2 is calculated, the complex 

number is c = obtained, whose real and imaginary parts are of the type Rational.  

The same is true for the division operation.
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julia> a1 = 2//3

2//3

julia> a1+1

5//3

julia> a1 + 2.3

2.9666666666666663

julia> a2 = complex(-2,4)

-2 + 4im

julia> a1+a2

-4//3 + 4//1*im

julia> a1/a2

-1//15 - 2//15*im

Now let’s test how exact and inexact rations can be compared using boolean 

operations where 1

2
0 5

1

3
0 333= ¹. , . . This inexactness can be calculated by 

performing (1//3)-0.33. But when compared to float(1//3) (that is, the rational 

number is represented as a floating point number and then subtracted by 1//3), we 

obtain a zero. This indicates that before calculations between rational numbers and 

integers or floating point numbers occur, rational numbers are converted into Float64 

data type.

julia> 0.5 == 1//2

true

julia> 0.3 == 1//3

false

julia> 0.333 == 1//3

false

julia> a = float(1//3)

0.3333333333333333

julia> a == 1//3

false
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julia> (1//3) - a

0.0

julia> (1//3)-0.333

0.0003333333333332966

julia> (1//3)-a # a = float(1//3)

0.0

5.3  Irrational Numbers
Irrational numbers are simply those numbers that are not rational; they cannot be 

written as a ratio of two whole numbers. There are many examples such as π and e. Julia 

defines a data type aptly named Irrational. For example, π and e are predefined as 

irrational constants in Julia:

julia> pi

pi = 3.1415926535897...

julia>  e

e = 2.7182818284590...

julia> typeof(pi)

Irrational{:pi}

julia> typeof(e)

Irrational{:e}

Notice that the numeric representation of an irrational number ends with three 

dots, highlighting the fact that the digital representation does not end here but, in fact, 

continues.

5.4  Summary
The ability to define and work with fractions was one of the cornerstones of Greek 

mathematics. Most children learn how to work with rational numbers and their 

arithmetic at a young age and the ease of providing exact solutions as fractions is well- 

known. The ability to define rational numbers within a programming language makes it 
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quite suitable for numerical computing where exactness of a solution is critical. Defining 

irrational numbers is equally important since irrational numbers, when introduced into 

a computation, leads to inexactness and, thus, errors. The degree of inexactness depends 

on the precision of the representation of an irrational number. Julia’s ability to define a 

set precision of irrational numbers allows us to determine the degree of inexactness in a 

numerical computation beforehand, as this chapter has demontrated.
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CHAPTER 6

Mathematical Functions

6.1  Introduction
A mathematical function is a relation between a set of inputs and a set of permissible 

outputs with the property such that each input is related to exactly one output. Most 

users are already familiar with many such functions including the trigonometric 

functions sin(x), cos(x), and tan(x); logarithms to the base of a number—say 10—as 

log10(x); exponentiation ex; and so on. A programming language boasting to perform 

complex mathematical calculations in an efficient manner must provide easy and 

intuitive ways to interact with such mathematical functions and must also provide 

ways to construct user-defined functions. Present chapter will illustrate some in-built 

mathematical functions within Julia.

6.2  Division Functions
Division is one of the four basic arithmetic operations; the other three are addition, 

subtraction, and multiplication. The division of two natural numbers is the process 

of calculating the number of times one number is contained within the other. This is 

essentially counting the number of groups we can make within the second number. For 

example, when 10 (divisor) is divided by 3 (dividend), we can make 3 (quotient) groups 

and 1 (remainder) remains. Division can also be described as the cycling of one number 

over another until we find the end. The cycling can be linear, polar, and so on. Cycling is 

depicted by the modulo function where a modulo b means that a is cycled b times to find 

the number of cycles (quotient) and what remains (remainder).
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A set of Julia functions is defined for performing the division of one or more numbers 

in a specified manner. Table 6-1 outlines their syntax and behavior. Now let’s scan their 

usage with the help of examples.

6.2.1  div(x,y), fld(x,y), and cld(x,y)
Suppose we wish to perform 3

5
. The built-in functions div(x,y), fld(x,y), and 

cld(x,y) produce the following results:

julia> div(3,5) # simple division

0

julia> fld(3,5) # floor division

0

julia> cld(3,5) # ceil division

1

julia> 3/5

0.6

Table 6-1. Division Functions

Syntax Behavior

div(x,y) truncated division; quotient rounded toward zero

fld(x,y) floored division; quotient rounded toward -Inf

cld(x,y) ceiling division; quotient rounded toward +Inf

rem(x,y) remainder; satisfies x == div(x,y) *y + rem(x,y); sign matches x

mod(x,y) modulus; satisfies x == fld(x,y) *y + rem(x,y); sign matches x

mod1(x,y) mod() with offset 1

mod2pi(x,y) modulus with respect to 2π

divrem(x,y) returns (div(x,y),rem(x,y))

fldmod(x,y) returns (fld(x,y),mod(x,y))

gcd(x,y, ...) greatest positive common divisor of x, y,...

lcm(x,y, ...) least common multiple of x, y,...
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We know that 
3

5
 produces 0.6 as quotient and 0 as remainder. Hence, for three 

functions, the following behavior is observed:

• For div(), the result is truncated toward 0 so 0.6 becomes 0.

• For fld(), the result is truncated toward −Inf so 0.6 becomes 0.

• For cld(), the result is truncated toward +inf so 0.6 becomes 1.

Different kinds of data types can be used with these functions. Using Float64 gives 

the following results:

julia> 2.24/3.45

0.6492753623188406

julia> div(2.24,3.45)

0.0

julia> cld(2.24,3.45)

1.0

julia> fld(2.24,3.45)

0.0

When you use mixed data types, the rules of conversion and promotions are 

applied. You can use methods(f) to scan all the combinations of data types that will be 

entertained by the function f. Thus, it is useful to scan methods(div), methods(fld), and 

methods(cld). You can check that complex numbers cannot be used as inputs to these 

functions:

julia> a = Float64(2.24)

2.24

julia> b = Int64(3)

3

julia> r1 = div(a,b)

0.0

julia> typeof(r1)

Float64
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julia> r2 = fld(a,b)

0.0

julia> r3 = cld(a,b)

1.0

6.2.2  rem(), mod(), and mod1()
In addition to getting quotients by using functions div(), fld(), and fld(), you can 

obtain the remainder by using the rem() function. Suppose we wish to check for 
2

3
. We 

know that the quotient is 1 and the remainder is 1:

julia> a = 3

3

julia> b = -2

-2

julia> div(a,b) # Quotient

-1

julia> rem(a,b) # Remainder, sign matches a

1

julia> mod(a,b) # Modulo, sign matches b

-1

julia> mod1(a,b) # Moulo with offset 1

1

In computing, the modulo operation finds the remainder after the division of one 

number by another number (sometimes called “modulus”). The function mod(2,3) 

performs this task and returns 1 as a result.
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6.2.3  mod2pi()
Just like the modulus functions cycle w.r.t real numbers, mod2pi()finds the remainder by 

cycling over 2π. As a result, the value is always within the limits [0, 2π]:

julia> pi

pi= 3.1415926535897...

julia> mod2pi(1*pi)

3.141592653589793

julia> typeof(mod2pi(1*pi))

Float64

julia> typeof(1*pi)

Float64

julia> mod2pi(-1*pi)

3.1415926535897936

julia> mod2pi(2*pi)

6.283185307179586

julia> mod2pi(2*pi+1)

0.9999999999999998

julia> mod2pi(2*pi-1)

5.283185307179586

julia> mod2pi(1*pi-1)

2.141592653589793

It is worth noting that the mod2pi() function does not have Irrational data type as 

one of its methods so mod2pi(pi) results in an error message. On the other hand, when 

the irrational number pi is operated upon, it becomes another data type, which can then 

be used in the mod2pi() function.
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6.2.4  divrem() and fldmod()
Instead of using div() and rem() functions separately, we can compute them within a 

single statement using the divrem() function:

julia> quotient,remainder = divrem(10,3)

(3,1)

julia> quotient,remainder = divrem(10,3.3)

(3.0,0.10000000000000053)

julia> quotient,remainder = fldmod(10,3)

(3,1)

julia> quotient,remainder = fldmod(10,3.3)

(3.0,0.10000000000000053)

6.2.5  gcd()
The greatest common divisor is the biggest number that divides all the elements of a set 

of numbers. gcd(x,y) gives the greatest common (positive) divisor (or zero if x and y are 

both zero):

julia> gcd(3,6)

3

julia> gcd(319,666)

1

julia> gcd(-319,666)

1

julia> gcd(-319,-666)

1
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6.2.6  lcm()
The least common multiple is the smallest positive number that occurs in a list of 

multiples for a set of numbers. Julia function lcm gives the least common (non-negative) 

multiple:

julia> lcm(40,55)

440

julia> lcm(33,11)

33

julia> lcm(33,-11)

33

julia> lcm(-33,-11)

33

6.3  Sign and Absolute Value Functions
The sign of a number seems a small, insignificant property but proves to be a valuable 

tool. A mere change of sign changes the quadrant in which a number is defined. 

Oppositely signed numbers are mirror images of the original numbers in different 

quadrants. Julia provides a set of functions to derive the information about the sign of a 

number (Table 6-2).

Table 6-2. Julia Functions for Sign of a Number

Syntax Behavior

abs(x) a positive value with the magnitude of x

abs2(x) the squared magnitude of x

sign(x) indication of the sign of x, returning −1, 0, or +1

signbit(x) indication whether the sign bit is on (true) or off (false)

copysign(x,y) a value with the magnitude of x and the sign of y

flipsign(x,y) a value with the magnitude of x and the sign of x*y
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6.3.1  abs() and abs2()
The absolute value of a number is the positive value of a number. Now there are two 

ways to obtain a positive value with a computer. The first is to just flip the sign bit used 

while defining a signed integer. The second is to square the number and then find the 

square root of that number. The problem with the second method is that you may incur 

approximation errors while performing these operations in some cases:

julia> a = -900707.7097680866 # Floating point number

-900707.7097680866

julia> sq = a*a

8.112743784356716e11

julia> sqroot = sqrt(sq)

900707.7097680866

julia> -sqroot == a

true

julia> a = -pi # Irrational number

-3.141592653589793

julia> sq = a*a

9.869604401089358

julia> sqroot = sqrt(sq)

3.141592653589793

julia> -sqroot == a

true

julia> a = -(2//3) # Rational number

-2//3

julia> sq = a*a

4//9
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julia> sqroot = sqrt(sq)

0.6666666666666666

julia> -sqroot == float(a)

true

Julia provides the abs(x) function to know the absolute value of a number. 

methods(abs) gives the options about various data types that can be used with the abs() 

function:

julia> abs(-190)

190

julia> abs(190)

190

julia> abs(-190.08967)

190.08967

julia> abs(190.08967)

190.08967

6.3.2  Absolute Value of a Complex Number
As discussed in Chapter 4, the absolute value of a complex number a + ib is

a b2 2+

length of vector (defined by a complex number) from the origin.

julia> a = complex(2,-3)

2 - 3im

julia> abs(a)

3.6055512754639896

julia> abs2(a)

13
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The squared absolute value gives

a b2 2+

using the function abs2().

 Problem with abs() Function

When abs is applied to signed integers, overflow may occur, resulting in the return 

of a negative value. This overflow occurs only when abs is applied to the minimum 

representable value of a signed integer.

julia> a = typemin(Int8)

-128

julia> abs(a)

-128

julia> a = typemin(Int32)

-2147483648

julia> abs(a)

-2147483648

6.3.3  sign(), signbit(), copysign(), and flipsign()
As described in by Section 3.5.2, when signed numbers are stored, a sign bit is reserved 

for assigning the sign to a number. This bit can be scanned with the signbit() function, 

which returns true if the value of the sign of x is negative. Otherwise, it returns false:

julia> a = -123 # Negative integer

-123

julia> signbit(a)

true

julia> b = 123 # Positive integer

123
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julia> signbit(b)

false

julia> c = 0 # Zero

0

julia> signbit(c)

false

julia> a1 = -123.123 # Negative float

-123.123

julia> signbit(a1)

true

julia> b1 = 123.123 # Positive float

123.123

julia> signbit(b1)

false

julia> c1 = 0.0 # Zero float

0.0

julia> signbit(c1)

false

julia> a2 = -2//3 # Negative rational

-2//3

julia> signbit(a2)

true

julia> a3 = 2//3 # Positive rational

2//3

julia> signbit(a3)

false

julia> a4 = -2//-3 # Positive rational

2//3
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julia> signbit(a4)

false

julia> a5 = 0//1 # Zero rational

0//1

julia> signbit(a5)

false

To know the sign of a number, the sign() function is used. It returns 0 if the input 

number is zero, 1 if number is positive and -1 if input number is negative.

julia> a = -123

-123

julia> sign(a)

-1

julia> b = 123

123

julia> sign(b)

1

julia> c = 0

0

julia> sign(c)

0

 Manipulating Signs

Sometimes, you need to assign a chosen sign to a number. One might need to scan a 

particular number and assign the sign of the chosen number to a new number. This 

is done by the function copysign(x,y). It returns x such that it has the same sign as y. 

methods(copysign) gives the list of data types that can be fed to this function:

julia> copysign(123,-231)

-123
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julia> copysign(-123,231)

123

julia> copysign(-123,-231)

-123

julia> copysign(123,231)

123

julia> copysign(123,0)

123

julia> copysign(-123,0)

123

flipsign(x,y) function returns x with its sign flipped if y is negative.

julia> flipsign(123,-231) # Sign flipped

-123

julia> flipsign(-123,231) # Sign unchanged

-123

julia> flipsign(-123,-231) # Sign flipped

123

julia> flipsign(123,231) # Sign unchanged

123

julia> flipsign(123,0) # Sign unchanged

123

julia> flipsign(-123,0) # Sign unchanged

-123
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6.4  Power, Logs, and Roots
Raising a number to a power essentially signifies the number of times the power is 

multiplied with itself. (For example, an means a is multiplied n times.) It is interesting to 

note that n can be any real number. Equations define the rules of calculations:

 a a an m n m´ = +  (6.1)

 
a

a
a

n

m
n m= -

 (6.2)

 a0 1=  (6.3)

 a
a

n
n

- =
1  (6.4)

 a a an n´ = =- 0 1  (6.5)

 a b a b
n n n´( ) = ´  (6.6)

When n is a rational number with the form 
1

n
, then an

1

 is called the nth root of a.

 a b a bn n
1

= Þ =  (6.7)

 a a
n

m nm=  (6.8)

Most interesting is the complex number i:

 i2 1= -  (6.9)

 i i i3 1= - ´ = -  (6.10)

 i i i4 1 1= - ´ = - -( ) =  (6.11)

 i i i5 1= ´ =  (6.12)

These are called the complex roots of unity.
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6.4.1  Numbers Raised to Some Power
When a number is powered to another number, a range of mathematical functions are 

used in this regard. Users must check Equation 6.13 for defining the power of a number, 

6.14 for defining the root of a number, and 6.15 for defining the logarithm of a number 

with a chosen base:

 a bc=  (6.13)

 b ac=  (6.14)

 log a cb =  (6.15)

Let’s understand these equations with a simple example:

 1000 103=  

 10 10003=  

 log101000 3=  

The facility to define powers, roots, and logarithms to a chosen based is provided by 

a range of Julia functions, as given in Table 6-3.

Table 6-3. Julia Functions for Power, Roots, and Logarithm Calculations

Syntax Behavior

sqrt(x) calculates x

cbrt{x} calculates x3

hypot(x,y) calculates x y2 2+  (i.e., hypotenuse of a right-angled triangle with sides as x 

and y )

exp(x) calculates ex

expm1(x) calculates ex − 1 accurate for x near 0

ldexp(x,n) calculates x* 2n computed efficiently for integer values of n

log(x) calculates loge(x )

log(b,x) calculates logb(x )

(continued )
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The following sections will scan them one by one for understanding their proper 

usage. Sample Julia code is given after each function’s description so that you can test 

the usage of the function.

6.4.2  sqrt(), cbrt(), and hypot()
The square root of a number x is a number raised to the power 

1

2
, which is symbolically 

shown by x . Similarly, a cube root of a number is a number raised to the power 
1

3
, 

which is symbolically shown by x3 .

julia> sqrt(2)

1.4142135623730951

julia> cbrt(2)

1.2599210498948732

methods(sqrt) and methods(cbrt) outline various data types that can be used with 

these functions. Particularly exciting is the number i = -1 . The command sqrt(-1) 

will produce a domain error message saying that a complex argument is needed. Hence, 

the following code should be issued instead:

julia> a = complex(0,1)# complex number "i"

0 + 1im

julia> sq = a^2

-1 + 0im

Syntax Behavior

log2(x) calculates log2(x )

log10(x) calculates log10(x )

log1p(x) calculates log(1 + x ) accurate for x near zero

exponent(x) binary exponent of x

significand(x) binary significand (also known as mantissa) of a floating point number x

Table 6-3. (continued)
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julia> sqrt(sq)

0.0 + 1.0im

The function cbrt() does not entertain complex data types, but it does entertains 

negative numbers:

julia> cbrt(pi) # Irrational number

1.4645918875615231

julia> cbrt(-3.54) # Negative number

-1.5240565695688593

julia> cbrt(3.54) # Positive number

1.5240565695688593

julia> cbrt(2//3) # Rational number

0.8735804647362988

julia> cbrt(float(2//3))

0.8735804647362988

The third function, hypot(x,y), is used to calculate the hypotenuse of a triangle 

made by a right triangle. This is also the length of a 2D vector defined by a complex 

number a + ib:

 a b2 2+  

julia> hypot(2,3) # x=2,y=3

3.6055512754639896

julia> sqrt(2^2 + 3^2) # same calcualtion as done by hypot()

3.605551275463989

julia> hypot(2//3,3//4) # Rational numbers

1.0034662148993578

julia> hypot(complex(2,3),complex(3,4)) # Complex nos.

6.164414002968977
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6.4.3  Problem with hypot() Calculations
John D. Cook outlines a problem with hypot() in an interesting article [2]. If x is so 

large that x*x overflows, the code will produce an infinite result. To avoid this problem, 

it is suggested Cook suggests that the algorithm takes another route to calculate the 

hypotenuse.

Without risking overflow, x y2 2+  can be calculated as follows:

 1. max = maximum(|x|, |y|)

 2. min = minimum(|x|, |y|)

 3. r =
max

min

 4. ans r= ´ +max 1 2

Since step 4 includes the square root argument, which inputs max and min values, 

you can avoid overflow errors. The data type Float64 includes the maximum numeric 

value as 10308 (in other words, 1e308).

julia> 1e308

1.0e308

julia> 1e308*10 # Multiplication with 10

Inf

Now consider that x and y are 0.5 times 10308 when calculating the hypotenuse:

julia> x = 1e308

1.0e308

julia> y = 1e308

1.0e308

julia> h =  hypot(x,y)

1.4142135623730951e308

julia> x^2 # Overflow

Inf
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julia> y^2 # Overflow

Inf

julia> h1 = sqrt(x^2 + y^2) # wrong result

Inf

6.4.4  exp(), expm1(), ldexp(), and exponent()
Exponentiation is raising a number to the power of e. e is Euler’s number (irrational) 

defined to be valued as 2.7182818284590…

julia> e

e   =   2.7182818284590...

 exp()

The function exp(x) outputs ex. It is important to note that the use of exponential 

function without proper care will incur overflow (ex) and/or underflow (e−x) problems 

with the result as +Inf and -Inf:

julia> exp(1)

2.718281828459045

julia> exp(2)

7.38905609893065

julia> exp(-1)

0.36787944117144233

julia> exp(-2)

0.1353352832366127

julia> exp(1//2)

1.6487212707001282

It is worth noting that while working with exp() and similar functions, an 

approximation of number e is used. In other words, e is a never-ending irrational 
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number, but e1 is calculated with finite precision as a floating point number and, hence, 

it is finite in nature. Consequently, exp(1) == e results as false.

julia> e

e = 2.7182818284590...

julia> exp(1)

2.718281828459045

julia> exp(1) == e

false

 expm1()

The problem with the exp(x) function occurs when we wish to calculate exp(1+x) [3] 

and the value of x is comparable to machine precision (that is, extremely small). In this 

case, 1+x is approximated as x. To overcome this issue, exp1(x) is used to calculate 

exp(1+x) cases where x is very small:

julia> exp(1)

2.718281828459045

julia> exp(1+1e-100)

2.718281828459045

julia> expm1(1+1e-100)

1.718281828459045

 ldexp()

ldexp(x,n) uses a base 2 exponentiation and computes x × 2n:

julia> ldexp(3.5,2)

14.0

julia> 3.5*(2^2)

14.0
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 exponent(x)

exponent(x) returns the x for 2y which is closest to x rounded toward zero:

julia> exponent(100.0)

6

julia> exponent(1000.0)

9

julia> 2^6

64

julia> 2^9

512

julia> exponent(128.0)

7

julia> 2^7

128

6.4.5  log(), log2(), log10(), and log1p()
The logarithm of a number is defined as follows:

 a b log a cc
b= Þ =  (6.16)

This example uses Equation 6.16:

 10 100 100 22
10= Þ ( ) =log  

This examples also uses Equation 6.16, but with a different base, 2:

 2 128 128 77
2= Þ ( ) =log  

The logarithm is an essential function in mathematics, particularly for those 

quantities that rise or fall very fast. In such cases, it’s useful to analyze them on a 

logarithmic scale rather than on a linear scale.
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 log()

Natural logarithms (for example, base e logarithm) are calculated using the function 

log():

 log ee ( ) =1  

This can be verified:

julia> e # Irrational number

e = 2.7182818284590...

julia> float(e) # Floating point number for e

2.718281828459045

julia> e^1 # e^1=e

2.718281828459045

julia> e^1 == float(e)

true

julia> log(e) $ log(e) to the base e is 1

1

Some physical properties show an exponential increase. The numerical values 

of such data points become very big numbers very quickly. When the log function is 

operated on such functions, you obtain smaller numbers. This is particularly important 

to avoid overflow and underflow errors.

 log2()

log2() simply calculates log2 for a number. The base is 2 instead of e here. Hence  

log2(2) = 1 and log24 = 2 because 21 = 2 and 22 = 4. Julia code can easily verify the same:

julia> log2(2)

1.0

julia> log2(4)

2.0
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julia> 2^1

2

julia> 2^2

4

It is important to note that when you use a negative real exponent, you encounter a 

DomainError. To avoid this problem, use floating points number representation for the 

exponent.

julia> 2^-1.0

0.5

julia> log2(0.5)

-1.0

Rational numbers can also be used in the same manner:

julia> 2^(2//3)

1.5874010519681994

julia> log2(1.5874010519681994)

0.6666666666666665

julia> float(2//3)

0.6666666666666666

 log10()

log10() calculates the log10(x) (for example, logarithm with base 10). Since 101 = 10 and 

102 = 100,

log10(10) = 1

and

log10(100) = 2
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This can be verified easily with Julia code:

julia> log10(10)

1.0

julia> log10(100)

2.0

julia> log10(105.4) # Floating point number

2.022840610876528

julia> log10(2//3) # Rational number

-0.17609125905568127

julia> log10(pi) # Irrational number pi

0.49714987269413385

julia> log10(e) # Irrational number e

0.4342944819032518

julia> log10(complex(2,3)) # Complex numbers

0.5569716761534184 + 0.42682189085546657im

 log1p()

As we discussed earlier in Section 6.4.4 for the case of calculating e1+x when x is a small 

number, you would encounter problems while calculating loge(1 + x) as well [3]. To 

overcome this issue, the function log1p() is proposed:

julia> log(1e10)

23.025850929940457

julia> log(1e10+1e-10) # Not different output

23.025850929940457

julia> log1p(1e10+1e-10) # Different output

23.025850930040455
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6.5  Trigonometric and Hyperbolic Functions
6.5.1  Trigonometric Functions
Trigonometric functions relate angles of a right-angled triangle to the length of its sides. 

In Table 6-4, P, H, and B represent perpendicular, hypotenuse, and base; and various 

trigonometric functions are defined. The input argument to these functions is the angle 

in units of radians. Angles in radians (r) can be converted to angle in degrees (d) using 

the formula.

 d
r

=
´180
p

 (6.17)

Table 6-4.. Trigonometric Functions

Function Abrv. Julia Function Formula Identity

sine sin sin P

H
sin cos

csc
q p q

q
( ) = -æ

è
ç

ö
ø
÷ = ( )2

1

cosecant csc csc H

P
csc sec

sin
q p q

q
( ) = -æ

è
ç

ö
ø
÷ = ( )2

1

cosine cos cos B

H
cos sin

sec
q p q

q
( ) = -æ

è
ç

ö
ø
÷ = ( )2

1

secant sec sec H

B
sec csc

cos
q p q

q
( ) = -æ

è
ç

ö
ø
÷ = ( )2

1

tangent tan tan P

B
tan cot

cot

sin

cos
q p q

q
q
q

( ) = -æ
è
ç

ö
ø
÷ = ( )

=
( )
( )2

1

cotangent cot cot B

P
cot tan

tan

cos

sin
q p q

q
q
q

( ) = -æ
è
ç

ö
ø
÷ = ( )

=
( )
( )2

1
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From Equation 6.17, it can be easily deduced that 1 radian ≈ 57.3°.

julia> 180/pi

57.29577951308232

Since sin(90° = 1), while working in radians, you first convert 90° into radians and 

then feed it to the sin function:

julia> r =(90*pi)/180 # Convert 90 degree into radians

1.5707963267948966

julia> sin(r) # sin(90)=1

1.0

Some example Julia code will outline their usage. Let’s start by feeding known values 

of sin and cos functions.

Function 0° 30° 45° 60° 90°

sin 0 1

2

1

2
3

2

1

cos 1 3

2

1

2

1

2

0

tan 0 1

3

1 3 not defined

julia> r45d =(45*pi)/180 # 45 degrees to radians

0.7853981633974483

julia> r30d =(30*pi)/180 # 30 degrees to radians

0.5235987755982988

julia> r90d =(90*pi)/180 # 90 degrees to radians

1.5707963267948966

julia> sin(r45d) # sin(45) = 1/sqrt(2)

0.7071067811865475
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julia> 1/sqrt(2) # confirmation

0.7071067811865475

julia> tan(r45d) # tan(45) = 1

0.9999999999999999

julia> sin(r30d) # sin(30) = 1/2

0.49999999999999994

 Discrepancies in Calculations

It is important to note that the functional values are not absolute in nature, but are, in 

fact, approximate values. For this reason, discrepancies are bound to occur, as in the 

following example:

 
sin cos45 45

1

2
° = °( )( ) =  

But Julia code outputs different approximate values:

julia> sin(r45d) == cos(r45d)

false

julia>   sin(r45d)

0.7071067811865475

julia>  cos(r45d)

0.7071067811865476

julia> sin(r45d) - cos(r45d)

-1.1102230246251565e-16

julia> a = 1/sqrt(2)

0.7071067811865475

julia> sin(r45d)-a

0.0

julia> cos(r45d)-a

1.1102230246251565e-16
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Another discrepancy occurs when calculating tan(90°), which is not defined 

mathematically since the following is true:

 
tan

sin

cos
90

90

90

1

0
°( ) = °( )

°( )
=  

But Julia code does give a value (very small). This happens because cos(90°) is not 

approximated to be truly zero, but a very small number. Since the result is not zero, 

tan(90°) has a finite value. This demonstrates that you should not convert radians 

to degrees and then start working with Julia’s trigonometric functions. Instead, Julia 

provides a separate set of functions for usage with degree values as input. (They are 

outlined in following section.)

julia> tan(r90d)

1.633123935319537e16

julia> sin(r90d)/cos(r90d)

1.633123935319537e16

julia> sin(r90d)

1.0

julia> cos(r90d)

6.123233995736766e-17

 Additional Features

Some additional functions can be made from these preliminary functions:

• Inverse functions include asin, acos, atab, acsc, asec and acot.

 – Inverse functions are defined such that

asin(x) = y ⇒ sin(y) = x

julia> a = sin(r45d)

0.7071067811865475
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julia> asin(a)

0.7853981633974482

julia> r45d # calculated previously

0.7853981633974483

• Equivalent functions that take input angle in degrees are sind, asind, 

cosd, acosd, tand, atand, cscd, acscd, secd, asecd, cotd, and acotd.

julia> tand(90)

Inf

julia> sind(0)

0.0

julia> sind(90)

1.0

julia> sind(45)

0.7071067811865476

julia> 1/sqrt(2)

0.7071067811865475

• sinpi(x) and cospi(x) are provided for more accurate computations 

of sin p ´( )x  and cos p ´( )x  respectively, especially for bigger values 

of x.

julia> sinpi(1)

0.0

julia> sinpi(0.5)

1.0

julia> sinpi(0.25)

0.7071067811865476

julia> sinpi(0.44)

0.9822872507286887

julia> sin(10e20)

-0.6671201770718048
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6.5.2  Hyperbolic Functions
Just as the points cos(x) and sin(x) form a circle with a unit radius, the points cosh(x) 

and sinh(x) form the right half of the equilateral hyperbola. They take a real number 

as an argument called hyperbolic angle. Julia provides a list of hyperbolic functions 

for evaluations including sinh(x), cosh(x), tanh(x), csch(x), sech(x), and coth(x). 

Their inverse counterparts are asinh(x), acosh(x), atanh(x), acsch(x), asech(x), and 

acoth(x).

julia> a = sinh(1)

1.1752011936438014

julia> asinh(a)

1.0

julia> a = sinh(0.5)

0.5210953054937474

julia> b = cosh(0.5)

1.1276259652063807

julia> c = tanh(0.5)

0.46211715726000974

julia> c1 = a/b

0.4621171572600098

julia> c == c1

false

julia> c-c1

-5.551115123125783e-17

The previous code outlines the similar problem in calculating tanh
sinh

cosh
x

x

x
( ) = ( )

( )
, as 

we observed when calculating tan. The result of a calculation from tanh(x) and 

calculating it as a ratio of sinh(x) and cosh(x) isn’t the same since they are 

approximations limited by machine precision.
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6.6  Iterative Algorithms to Calculate Mathematical 
Functions

It is worth understanding how mathematical functional values are calculated with a 

computer using algorithms. A computer numerically approximates the functional value 

using an algorithm based on a series expansion of a function.

6.6.1  Numerical Approximations
In the course of scientific investigation, finding exact answers may not be possible at 

times. Instead of devoting a lot of effort to find an exact answer by solving the problem 

analytically, another alternative is to develop methods for producing approximate 

answers numerically. The number of significant digits determined for a numerical 

approximation determines the accuracy of the answer. The degree of accuracy required 

for a result always depends on the targeted application. For example, measuring the 

length of a building does not need the answer to be accurate until the last length of 

an atom (Å). While measuring the body temperature of a human, you don’t need to 

be accurate to more than two decimal places for most applications. In the era of faster 

and more efficient computers, higher accuracies of computations can be calculated 

by investing more time and storage, whenever required. But this facility must be used 

judiciously.

6.6.2  Tolerance
When an approximated answer or a set of approximated answers is available to the user, 

one of them must be chosen for a particular answer depending on the requirements of 

the applications. One way to make this decision is to define a tolerance limit. Tolerance 

can be defined as a single number or a range of numbers (having a maximum and 

a minimum). The rules to define tolerance limits are entirely application-oriented. 

For example, while measuring human height, you can define the tolerance to be 1 

centimeter. However, at the same time, while measuring the diameter of a human hair, 

you would like to be more accurate by going down to 1 micron or less. While measuring 

the size of red blood cell, you would need to go further down to 1 nm. Whereas the 

decision to define tolerance is simpler while measuring sizes (that is, tolerance is 

one or two orders of magnitude smaller than the size of the object), it may not be a 
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straightforward task in other applications. For example, the measurement of land for 

constructing a building would require a tolerance of a fraction of meters, whereas 

positioning a screw in a hole would require the accuracy of fraction of a centimeter.

In mathematical terms, if ∈ is the tolerance limit, x is the real value, and x* is 

approximated value, then the following is true:

 
x x- £Î*

 (6.18)

In this case, the absolute error (ea) and relative error (er) in the measurements are 

given by the following:

 
e x xa = - *

 (6.19)

 e
x x

xr =
- *

 (6.20)

Hence, if the absolute error is less than or equal to the tolerance limit, then the 

approximate solution/set of solutions is acceptable. However, if x is known, why do we 

need to calculate x* (in other words, an approximate solution)?

In such cases where solutions of physical systems are unknown, x* can be calculated 

and then be compared with physical measurements. The physical measurements 

constitute the value of x in this case and, consequently, errors can be calculated using 

Equation 6.20. Determining tolerance can then be determined around the fact that 

occasionally x* will differ from x insignificantly; the errors won’t matter much.

6.6.3  Taylor Series
Most mathematical functions would require very many complex operators other than 

the simpler ones (+, −, ×, and ÷) to be computed. However, a polynomial requires only 

the basic operators to be computed. Hence, if other mathematical functions can be 

represented in terms of polynomials, then they can be approximated with relative ease. 

The Taylor series expansion of a mathematical function performs this task.

A polynomial is defined as follows:

 p x a a x a x a xn
n( ) = + + +¼+0 1 2

2  (6.21)

where an ∈ R (the a’s are called the coefficients). For the largest n that corresponds to  

an ≠ 0, the degree of polynomial is defined as n.
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6.6.4  Taylor Polynomials
Taylor’s theorem shows the way to define a great many mathematical functions, which 

can be defined as polynomials called Taylor polynomials. The accuracy of the final 

answer shown by Taylor polynomial depends on its degree, that is, the number of 

terms defined in the polynomial. This provides a convenient methods to customize the 

polynomial as per desired tolerance.

Suppose a mathematical function f (x) needs to be approximated around x = a. 

A Taylor polynomial pn(x) of degree n centered at x = a is that polynomial (of degree, at 

most, of n) that has the same value as nth derivative at x = a.

The following points are true when deriving the formula for a Taylor polynomial:

• The zero order polynomial p0(x) has a degree, at most, of zero.

 – p0(x) must be a constant function (a horizontal line function graphically).

 – Approximating around x = a: p0(x) = f (a).

• The first order polynomial p0(x) has a degree, at most, of 1.

 – p1(x) must satisfy two conditions:

 p a f a1 ( ) = ( )  

 and

 p a f a1
’ ( ) = ( )¢  

 – p1(x) must be of the form p1(x) = mx + c (a straight line with slope m and c as 

intercept).

 – Since p a f a1
’ ( ) = ( )¢  so m f a= ( )¢

 – So one can write c f a f a a= ( )- ( )¢

 – Substituting back values of m and c, we get

 p x f a x f a f a a f a x a1 ( ) = ( ) + ( )- ( ) = ( ) -( )¢ ¢  
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Carrying forward the same arguments in a similar fashion, you can write the general 

form of Taylor polynomial of order n as follows:

 p x f a f a x a f a x a f a x a
nn ( ) = ( )+ ( ) -( )+ ( ) -( ) + ( ) -( ) +¼+¢ ¢¢ ¢¢¢1

2

1

3

12 3

! !!
f a x an n( ) -( )  

which can be rewritten in sigma notation as:

 
p x

k
f a x an

k

n
k k( ) = ( ) -( )

=
å

0

1

!  (6.22)

The previous definition requires that the polynomial must have n derivatives at x = a.

The Maclaurin series is simply the Taylor series defined for a = 0. Also using  

algebraic manipulations of The Taylor/Maclaurin series for basic functions such as  

sin(x), cos(x), ex, and other complicated functions can also be defined in their series 

forms. These can be performed by simply using algebraical operators in addition to 

substitutions, derivatives, and integrations. This mathematical convenience comes 

in handy when formulating approximate solutions for physical systems defined by 

complicated functions. Let’s study the Maclaurin series expansion of two of the most 

popular and widely used trigonometric functions—sin(x) and cos(x).

6.6.5  Maclaurin Series for sin(x) and cos(x)
Both sin(x) and cos(x) are continuous and differentiable in the range given by any set of 

real numbers. Thus, their differentials exist in the same range. Consequently, they can be 

expanded in the form of a Maclaurin series.

Suppose f(x) = sin(x) needs to be approximated at a = 0.

Using Table 6-5 and Equation 6.22 results in the following:

 sin x x x x x x
n

xn( ) = - + - + -¼±
1

3

1

5

1

7

1

9

13 5 7 9

! ! ! ! !
 (6.23)
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Similarly f(x) = cos(x) needs to be approximated at a = 0.

Using Table 6-6 and Equation 6.22 results in the following:

 cos
! ! ! !

x
x

x x x
n

xn( ) = - + - + -¼±1
2

1

4

1

6

1

8

12
4 6 8  (6.24)

6.6.6  Series Expansion to Algorithms
A series expansion produces a series of terms that must be simply added to produce a 

functional approximated value. Algorithmically, one simply defines a general formula 

for calculation and loops over the calculations, each time adding the calculated value to 

the sum of values. This must be done until one satisfies the tolerance level. Users can set 

tolerance to a particular value.

This is how built-in Julia functions for mathematical functions are written. Apart 

from these simple ideas, users must also write smarter algorithms that give a wider 

Table 6-5. Calculating Coefficients for the Maclaurin Series of sin(x) at x = 0

n f (x) f (a)

0 sin(x) 0

1 cos(x) 1

0 −sin(x) 0

1 −cos(x) −1

0 sin(x) 0

Table 6-6. Calculating Coefficients for the Maclaurin Series of cos(x) at x = 0

n f (x) f (a)

0 cos(x) 1

1 −sin(x) 0

0 −cos(x) −1

1 sin(x) 0

0 cos(x) 1
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range of operations and avoid overflow as well as underflow errors. Setting the functions 

confined to a particular data type depends on mathematical functions that need to be 

calculated.

6.6.7  How Many Numbers of Terms!
By increasing the number of terms from a series expansion, you reduce the error by 

many orders of magnitude. But does this trend mean that for achieving true values, one 

must include ∞ number of terms? After all, each time we add a new term, we invest in 

time and energy resources in our computation. In general, Maclaurin’s series has the 

accuracy of an+1 when n terms are used:

 e a
a a a a

n
O aa

n
n= + + + + +¼+ + ( )+1

2 3 4

2 3 4
1

! ! ! !
 (6.25)

Analytically, one can choose n to be any large number, but this cannot be done on a 

computing machine. The chosen number is dictated by choosing tolerance to be closer 

to eps value.

6.7  Summary
In this chapter, we have summarized how mathematical functions are treated in Julia.  

A range of built-in functions performs mathematical operations on a range of data types. 

Using the methods() function, you can check which data types can be used with which 

functions. With predefined functions, performing mathematical calculations becomes 

easier and more organized, but users are free to write their own functions (user-defined 

functions) as per requirements, especially when built-in functions do not satisfy 

requirements. In order to do so, users would need knowledge to write loop structures 

and to define Julia functions. We will discuss these concepts in subsequent chapters.
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CHAPTER 7

Arrays

7.1  Introduction to Arrays
Just as integers, floating point numbers, complex numbers, rational number data types, 

and irrational number data types define single values of different types, a host of other 

data types holding multiple values at the same time also exists. Such data types include 

Array, Tuple (tuples), Dict (dictionary), and Set (sets).

Arrays are particularly interesting since they are used for defining vectors, tables, and 

matrices for scientific computing:

• A 1D (one-dimensional) array acts as a vector or list.

• A 2D array can be used as a table or matrix.

• 3D and more-D arrays can represent multidimensional matrices.

An array is an ordered collection of elements. An array is an object that contains 

multiple data entries identified by their indices. Unlike many programming languages, 

the Julia array index starts at 1, not 0. An array is a collection of objects, where these 

collected objects are stored in a multidimensional grid. The dimension of an array is an 

abstract idea that we will discuss later in this chapter.

In the most general case, an array may contain objects of type Any, which essentially 

signifies it can store any variety of numeric data types. However, maintaining a 

uniformity of data structures helps manage the computational resources and avoid 

numerical computational errors. Hence, for most computational purposes, arrays should 

contain objects of a more specific type, such as Float64 or Int32. Thus, Array data type 

objects can hold values of different data types or be restricted to values of a specific data 

type.
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7.2  Construction
Arrays are often indicated with square brackets and comma-separated items. The 

following code shows the simplest way to handmake arrays:

julia> a = [1,2,3,4]

4-element Array{Int64,1}:

1

2

3

4

julia> b = [1 2 3 4]

1x4 Array{Int64,2}:

1  2  3  4

julia> size(a)

(4,)

julia> size(b)

(1, 4)

julia> ndims(a)

1

julia> ndims(b)

2

Issuing the command a = [1,2,3,4] in a REPL environment makes a 4-element array 

where each item is stored as Int64 type (because input values of arrays are integers and 

the default data type of integers is Int64) and the array is defined to be a collection of four 

entries. The reference to an array object is depicted by the variable name a. On the other 

hand, when command b = [1 2 3 4] (each element is separated by a white space), we 

get a 1 × 4 array. The difference between the two can be probed by issuing the commands 

size() and ndims(), which give the size in terms of numbers of rows and columns. Also, 

when you create the array a, you observe information 4-element Array{Int64,1}: 

signifying that it is a one-dimensional array storing four elements of data type Int64, 

whereas b informs that 1x4 Array{Int64,2}. In other words, it is a two-dimensional array 

with the shape 1 × 2 (1 row and 2 columns) storing elements of data type Int64.
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Alternatively, one can also define an array containing random numbers with the 

command structure Array{data_type}(Number) where the data type is defined within 

curly brackets {} and the number of elements is defined within simple brackets (). 

Please note that the elements are assigned randomly so the result will differ each time the 

command is executed. For example, when the command a = Array{Int64}(3) is issued 

two times, you obtain an array with three elements of random numbers for the type Int64:

julia> a = Array{Int64}(3)

3-element Array{Int64,1}:

4570398928

4509616976

4570398960

julia> a = Array{Int64}(3)

3-element Array{Int64,1}:

4510821744

4510825104

4507551632

Similarly, an array of three random numbers can be fabricated using the following:

julia> a = Array{Complex64}(3)

3-element Array{Complex{Float32},1}:

4.38586f-31+1.4013f-45im

2.76974f-31+1.4013f-45im

2.64668f-31+1.4013f-45im

7.2.1  Arrays of Multiple Dimensions
Just as you defined a 1D array, you can define multidimensional arrays by inputting 

the number of elements in each dimension. For example, a = Array{Int64}(2,3,4) 

will create an array of the size 2 × 3 × 4. The first dimension has two values, the second 

dimension has three values, and the third dimension has four values:

julia> a = Array{Int64}(2,3,4)

2x3x4 Array{Int64,3}:

[:, :, 1] =

4730481968  4730482096  4730597712

4730482032  4730597232  4730481168
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[:, :, 2] =

4730481200  4730481264  4730481328

4730481232  4730481296  4730481360

[:, :, 3] =

4730481392  4730481456  4730481520

4730481424  4730481488  4730481552

[:, :, 4] =

4730481584  4730481648  4730481712

4730481616  4730481680  4730481744

The notation [:,:,1] will become clear in subsequent sections.

7.2.2  Arrays of Floats
If even one element of an object is defined as a floating point number, the data type of all 

number elements becomes Float64:

julia> a = [1,2.0,3,4]

4-element Array{Float64,1}:

1.0

2.0

3.0

4.0

julia> whos() # checking memeory usage

Base  34453 KB     Module

Core  12510 KB     Module

Main  41151 KB     Module

a     32 bytes  4-element Array{Float64,1}

ans     32 bytes  4-element Array{Float64,1}

It is worth noting that the array a uses 32 bytes for its storage since each element is 

Float64 type, which uses 8 bytes ⇒ 8 × 4 = 32 bytes. Hence, it is important to estimate 

the size required to store an array when it contains a huge number of elements. This is 

particularly important for devices and applications where memory is not a luxury like 

single board computers (Raspberry Pi, for example).
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An array of random numbers can be created in a manner similar to that of integers:

julia> a = Array{Float64}(7)

7-element Array{Float64,1}:

2.32224e-314

2.32224e-314

2.32224e-314

2.32224e-314

2.32433e-314

2.32472e-314

2.32472e-314

julia> a = Array{Float64}(2,3,4)

2x3x4 Array{Float64,3}:

[:, :, 1] =

2.31516e-314  2.31516e-314  2.31516e-314

2.31516e-314  2.31516e-314  2.31531e-314

[:, :, 2] =

2.31531e-314  2.31538e-314  2.31538e-314

2.31531e-314  2.31538e-314  2.31563e-314

[:, :, 3] =

2.31563e-314  2.31538e-314  2.31538e-314

2.31561e-314  2.31538e-314  2.31554e-314

[:, :, 4] =

2.31538e-314  2.31553e-314  2.31553e-314

2.31553e-314  2.31553e-314  2.31538e-314

7.2.3  Array of Functions
Since elements of an array can be of any data type, even mathematical functions can 

themselves be an element of an array. Mathematical functions defined in Chapter 6 

are defined under the data type Function. An array of mathematical functions can be 

defined as follows:
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julia> a = [sin,cos,tan,log]

4-element Array{Function,1}:

sin

cos

tan

log

7.2.4  Arrays of Mixed Data Types
It is possible to create an array of mixed data types, too. For example, a = 

[sin,1,1.5,2+5im,2//3] creates an array were elements belong to Function, Int64, 

Float64, Complex(Int64), and Rational{Int64} data types:

julia> a = [sin,1,1.5,2+5im,2//3]

5-element Array{Any,1}:

Sin

1

1.5

2+5im

2//3

7.2.5  Creating Arrays
Up to this point, we have just learned to make smaller arrays where the number of elements 

is small. What if you need to make an array of a large number of integers or floating point 

numbers separated by defined values, say odd integers from 1 to 1000? You would not like 

to feed these elements of arrays by hand. The : operator comes in handy in this case.

The operator n:m defines a range from n to m and, thus, can be used to create an array 

of a sequence of numbers. Using the collect() function, an array can be constructed 

for a predefined range of numbers. The start and stop numbers can be floating point 

numbers, too:

julia> collect(1:5)

5-element Array{Int64,1}:

1

2
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3

4

5

julia> collect(1.1:5.6)

5-element Array{Float64,1}:

1.1

2.1

3.1

4.1

5.1

julia> collect(1:2:1000) # odd integers from 1 to 1000

500-element Array{Int64,1}:

1

3

5

7

.

.

.

995

997

999

It is worth noting that the increment (difference) between elements is set to 1 by 

default. This can be changed as necessary in the following way:

julia> collect(1:2:9)

5-element Array{Int64,1}:

1

3

5

7

9
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julia> collect(1.5:2.2:9.9)

4-element Array{Float64,1}:

1.5

3.7

5.9

8.1

Arguments are presented as start:increment:stop. Also stop indicates the biggest 

number the array can contain. Elements of an array must be, at most, the stop number  

or less.

Increments can be negative numbers, too. For example:

julia> collect(10.5:-1.2:3.3)

7-element Array{Float64,1}:

10.5

9.3

8.1

6.9

5.7

4.5

3.3

julia> collect(10:-3.2:1)

3-element Array{Float64,1}:

10.0

6.8

3.6

julia> collect(10:-3:1)

4-element Array{Int64,1}:

10

7

4

1

julia> collect(1:-3:10)

0-element Array{Int64,1}
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The command collect(1:-3:10) produces a null array (an array having zero 

elements) since negative increments cannot be implemented starting from 1 to 10.

7.2.6  Creating an Array Using the Ellipsis Operator
The ellipsis operator … can be used to create an array with a range of objects without 

using the collect() function:

julia> a = [1:5...]

5-element Array{Int64,1}:

1

2

3

4

5

julia> a = [1:2:9...]

5-element Array{Int64,1}:

1

3

5

7

9

julia> a = [1.2:2.2:9.9...]

4-element Array{Float64,1}:

1.2

3.4

5.6

7.8

7.2.7  Creating Arrays Using linspace
Another range object, namely linspace(), can be used to create arrays. linspace stands 

for linearly spaced points. It takes three arguments as start:stop:number where number 

defines the integer number of elements desired. For example:
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julia> a = linspace(1,100,5)

5-element LinSpace{Float64}:

1.0,25.75,50.5,75.25,100.0

julia> a = linspace(1,100,3)

3-element LinSpace{Float64}:

1.0,50.5,100.0

julia> step(a) # Finding the step size

49.5

The function step() outputs the step size of a range object. Step size is easy to 

calculate. If linspace(a,b,n) is defined, then the step size s is the following:

 
s

b a

n
=

-
 (7.1)

Now, this linspace object can be fed to the collect() function to construct an array:

julia> a = linspace(1,100,3)

3-element LinSpace{Float64}:

1.0,50.5,100.0

julia> collect(a)

3-element Array{Float64,1}:

1.0

50.5

100.0

7.2.8  Creating Arrays Using logspace
Just like linspace produces linearly spaced points, logspace produces logarithmically 

spaced points. logspace(1,100,2) means to go from 101 to 10100 in two steps. Similarly, 

logspace(2,5,5) means to go from 102 to 105 in five steps:

julia> a = logspace(1,100,2)

2-element Array{Float64,1}:

10.0

1.0e100
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julia> a = logspace(2,5,5)

5-element Array{Float64,1}:

100.0

562.341

3162.28

17782.8

100000.0

7.2.9  Similar Arrays
The built-in function similar()creates an array that is similar to a given array but that 

can be different in the data type of elements. For example, suppose one created an 2 × 3 

array with data type Float64 and saved in variable name A. Then a new array saved in 

variable name A1 can be created of the same shape but with the data type Int8:

julia> A = Array{Float64}(2,3)

2x3 Array{Float64,2}:

2.25514e-314  2.25514e-314  2.25515e-314

2.25514e-314  2.25518e-314  2.25514e-314

julia> similar(A,Int8)

2x3 Array{Int8,2}:

64  -30  1

57   13  0

Similarly, one can create an array of Float64 data type from an array of boolean 

numbers:

julia> A = Array{Bool}(2,3)

2x3 Array{Bool,2}:

false   true  true

true  false false

julia> similar(A,Float64)

2x3 Array{Float64,2}:

2.26024e-314  2.26024e-314  2.26024e-314

2.26024e-314  2.26024e-314  2.26024e-314
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7.3  Properties of Arrays
A variety of built-in functions can be used to probe various properties of array objects. 

We covered two of them, size()and ndims(), in Section 7.2. Let’s consider some more 

functions:

• eltype: Type of element

julia> A = [1,2,3,4]

4-element Array{Int64,1}:

1

2

3

4

julia> eltype(A)

Int64

• length: Number of elements

julia> A = [1.1,-2.9,3.7,4.9]

element Array{Float64,1}:

1.1

-2.9

3.7

4.9

julia> length(A)

4

• ndims: Number of dimensions

julia> A = Array{Int64}(2,3,5)

2x3x5 Array{Int64,3}:

[:, :, 1] =

4694973424  4694973552  4694972656

4694973488  4694973616  4694972688

[:, :, 2] =

4694972720  4694972784  4694972848

4694972752  4694972816  4694972880

Chapter 7  arrays



139

[:, :, 3] =

4694972912  4694972976  4694973040

4694972944  4694973008  4694973072

[:, :, 4] =

4694973104  4694993040  4694973232

4694992976  4694973200  4694973264

[:, :, 5] =

4694973296  4719342608  4719342704

4694973328  4719342640           0

julia> ndims(A)

3

julia> A = Array{Float64}(6)

6-element Array{Float64,1}:

2.30585e-314

2.33172e-314

2.33172e-314

2.33172e-314

2.33172e-314

2.33172e-314

julia> ndims(A)

1

• size(): Size of the array (how many elements exist in each of its 

dimensions)

julia> A = Array{Int64}(2,4,3)

2x4x3 Array{Int64,3}:

[:, :, 1] =

4694973424  4694973552  4694972656  4694972720

4694973488  4694973616  4694972688  4694972752

[:, :, 2] =

4694972784  4694972848  4694972912  4694972976

4694972816  4694972880  4694972944  4694973008
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[:, :, 3] =

4694973040  4694973104  4694993040  4694973232

4694973072  4694992976  4694973200  4694973264

julia> size(A) # No. of elements in each dimesnion

(2,4,3)

julia> size(A,3) # No. of elements in 3rd dimesnion

3

julia> size(A,2) # No. of elements in 2nd dimesnion

4

julia> size(A,1) # No. of elements in 1st dimesnion

2

• indices: Indices of the array

julia> A = [1,2,3,4,5]

5-element Array{Int64,1}:

1

2

3

4

5

julia> indices(A)

(Base.OneTo(5),)

julia> B = [1 2 3 4 5]

1x5 Array{Int64,2}:

1  2  3  4  5

julia> indices(B)

(Base.OneTo(1), Base.OneTo(5))

For array B, indices run from 1 to 1 in the first dimension and from 1 to 5 in the 

second dimension.
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7.4  Indexing
The index of an element is the address of the same element within an array. Indexing in 

Julia starts at 1. For example, in a 1D array, the index of an element is the number of the 

element’s position from the left. Julia does not have negative indexing. In other words, 

elements can only be approached from the left.

julia> a = [12,4,6,3,6]

5-element Array{Int64,1}:

12

4

6

3

6

julia> a[3]

6

julia> a[1]

12

7.4.1  Creating Subarrays Using : operator
Using indices and : operator, you can create subarrays. This is sometimes referred to as 

slicing an array. For example, if an array is stored in a variable named a, then a[n:m] will 

return another array with an element starting from the index n to m. Since the : defines a 

range of elements, it is sometimes referred to as range operator. The following example 

will make this concept clearer:

julia> a = [12,4,6,3,6]

5-element Array{Int64,1}:

12

4

6

3

6
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julia> a[2:4]

3-element Array{Int64,1}:

4

6

3

julia> a[range(2,4)]

4-element  Array{Int64,1}:

4

6

3

6

The range() function can also be used instead of the : operator. If n or m exceeds the 

bounds of a defined array, you will encounter a BoundsError.

7.4.2  end
Using the keyword end, one can access the last element of an array as follows:

julia> A = [1,2,3,4,5]

5-element Array{Int64,1}:

1

2

3

4

5

julia> A[1]

1

julia> A[end]

5

julia> A[end-2]

3
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This can also be used in making a subset of a given array:

julia> a = collect(1:7)

7-element Array{Int64,1}:

1

2

3

4

5

6

7

julia> a[2:2:end]

3-element Array{Int64,1}:

2

4

6

a = collect(1:7) creates an array having numbers from 1 to 7. Now a[2:2:end] 

creates a new array that starts with 2 and goes until the end of the original array a in steps 

of two (elements 2, 4, 6).

7.4.3  Slicing Multidimensional Arrays
Slicing a multidimensional array is one of the key skills in real-world data analytics. 

Finding the part of an array that you need to process and then slice it out of the main 

array as a separate entity would require the knowledge of accessing the elements of the 

array within a multidimensional framework:

julia> a = [[1,2,3] [4,5,6] [7,8,9]]

3x3 Array{Int64,2}:

1  4  7

2  5  8

3  6  9

julia> a[2,3] # 2nd row, 3rd column element

8
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julia> a[3,2] # 3rd row,2nd column element

6

julia> a[3,end] # 3row, last column element

9

julia> a[end,3] # last row, 3rd column element

9

julia> a[end,end] # last row and column element

9

Now the : operator can be used within slicing operations to select an entire row or 

column, or particular parts of the same:

julia> a = [[1,2,3] [4,5,6] [7,8,9]]

3x3 Array{Int64,2}:

1  4  7

2  5  8

3  6  9

julia> a[:,3] # All elements of 3rd column

3-element Array{Int64,1}:

7

8

9

julia> a[3,:] # All elements of 3rd row

3-element Array{Int64,1}:

3

6

9

julia> a[3,1:2] # 3rd row and first to second rows

2-element Array{Int64,1}:

3

6
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julia> a[2:3,2] # 2nd to third row and 2nd column

2-element Array{Int64,1}:

5

6

julia> a[2:3,2:3] # rows from 2nd to 3rd,

# columns from 2nd to 3rd

2x2 Array{Int64,2}:

5  8

6  9

julia> a[2:end,1:end] # rows from 2nd to last,

# columns from 1st to last

2x3 Array{Int64,2}:

2  5  8

3  6  9

7.5  Filling Arrays with Values
Automatically filling an array with data can be accomplished with a range of functions.

7.5.1  zeros()
An array of all elements as 0s can be constructed using the zeros() function as follows:

julia> a = zeros(7)

7-element Array{Float64,1}:

0.0

0.0

0.0

0.0
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Syntax Behavior

zeros(A) an array of all zeros of the same element type and shape as A

ones(A) an array of all ones of the same element type and shape as A

trues(A) a Bool array with all values true and the shape of A

falses(A) a Bool array with all values false and the shape of A

rand(n) an array of n uniformly distributed random numbers in interval [0, 1)

randn(n) an array of n normally distributed random numbers

eye(n) an n × n identity matrix

eye(n,m) an n × m identity matrix

fill(x,n) an array of dimensions n, filled with value x

0.0

0.0

0.0

julia> eltype(a)

Float64

julia> a = zeros(2,3)

2x3 Array{Float64,2}:

0.0  0.0  0.0

0.0  0.0  0.0

julia> a[2,2]

0.0

julia> a[2,2] == a[2,3] == a[1,1]

true
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7.5.2  ones()
An array of all elements as 1s can be constructed using the ones() function as follows:

julia> a = ones(7)

7-element Array{Float64,1}:

1.0

1.0

1.0

1.0

1.0

1.0

1.0

julia> eltype(a)

Float64

julia> a = ones(3,4)

3x4 Array{Float64,2}:

1.0  1.0  1.0  1.0

1.0  1.0  1.0  1.0

1.0  1.0  1.0  1.0

julia> a = ones(3,4,2)

3x4x2 Array{Float64,3}:

[:, :, 1] =

1.0  1.0  1.0  1.0

1.0  1.0  1.0  1.0

1.0  1.0  1.0  1.0

[:, :, 2] =

1.0  1.0  1.0  1.0

1.0  1.0  1.0  1.0

1.0  1.0  1.0  1.0
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7.5.3  trues()
Just like numerical 0s and 1s can be filled in an array, boolean true can be filled in an 

array using the function trues() as follows:

julia> a = trues(2,3)

2x3 BitArray{2}:

true  true  true

true  true  true

julia> a = trues(3,4,2)

3x4x2 BitArray{3}:

[:, :, 1] =

true  true  true  true

true  true  true  true

true  true  true  true

[:, :, 2] =

true  true  true  true

true  true  true  true

true  true  true  true

7.5.4  falses()
In similar fashion, an array of boolean value false can be filled in an array using the 

function falses():

julia> a = falses(2,3)

2x3 BitArray{2}:

false  false  false

false  false  false

julia>  a  =  falses(3,4,2)

3x4x2  BitArray{3}:

[:, :, 1] =

false  false  false  false

false  false  false  false

false  false  false  false
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[:, :, 2] =

false  false  false  false

false  false  false  false

false  false  false  false

7.5.5  Arrays Filled with Random Numbers
Two functions provide arrays filled with random numbers. rand() provides uniformly 

distributed random numbers within the interval [0, 1). On the other hand, randn() 

provides an array filled with normally distributed random numbers:

julia> a = rand(8)

8-element Array{Float64,1}:

0.72864

0.203516

0.512295

0.449959

0.211407

0.348952

0.677256

0.585907

julia> a = rand(8)

8-element Array{Float64,1}:

0.591333

0.140416

0.127931

0.291892

0.0306536

0.0559765

0.959664

0.263331
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It is important to note that just like the two instances when we ran the command 

rand(8), we got a different set of random numbers, we should also expect to get a 

different set of random numbers while running this command:

julia> a = rand(8)

8-element Array{Float64,1}:

0.123916

0.577333

0.786042

0.19784

0.757978

0.481438

0.375539

0.949668

julia> a = randn(8)

8-element Array{Float64,1}:

-0.365407

-1.31341

-0.331167

-0.180398

-0.860501

0.831122

-0.223168

0.226383

The command works in a similar fashion for higher dimensional arrays:

julia> a = rand(2,3,5)

2x3x5 Array{Float64,3}:

[:, :, 1] =

0.0306414  0.767554  0.696444

0.0924386  0.334853  0.627763

[:, :, 2] =

0.505539  0.00991551  0.277056

0.553033  0.272472    0.381655
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[:, :, 3] =

0.033432  0.826044   0.689259

0.927387  0.18994    0.517047

[:, :, 4] =

0.725888  0.261185   0.155774

0.623608  0.211425   0.237139

[:, :, 5] =

0.669267  0.659699   0.859842

0.691922  0.51326    0.156616

julia> a = randn(2,3,5)

2x3x5 Array{Float64,3}:

[:, :, 1] =

-1.45105    0.506138    0.607333

0.269298  -0.172373   -0.7592

[:, :, 2] =

-0.463605   0.459976   1.75424

-0.753155   0.043333   0.0107971

[:, :, 3] =

-0.470125   -0.426953   -1.02621

-0.0536346   1.10199     0.122024

[:, :, 4] =

1.00947     0.83089  0.395584

-0.0139497  -0.5233   0.405085

[:, :, 5] =

1.37339  -0.519548  0.556255

1.28814  -1.52136   0.0380677
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7.5.6  eye()
An identity matrix is the one where diagonal elements are 1 and other elements are 0. 

This can be created in Julia using the eye() command as follows:

julia> a = eye(3)

3x3 Array{Float64,2}:

1.0  0.0  0.0

0.0  1.0  0.0

0.0  0.0  1.0

julia> a = eye(5)

5x5 Array{Float64,2}:

1.0  0.0  0.0  0.0  0.0

0.0  1.0  0.0  0.0  0.0

0.0  0.0  1.0  0.0  0.0

0.0  0.0  0.0  1.0  0.0

0.0  0.0  0.0  0.0  1.0

julia> a = eye(5,3)

5x3 Array{Float64,2}:

1.0  0.0  0.0

0.0  1.0  0.0

0.0  0.0  1.0

0.0  0.0  0.0

0.0  0.0  0.0

It is worth noting that with a singular argument, eye(n), an n × n square identity 

matrix is created, whereas eye(n,m) creates a matrix of dimension n × m.

7.5.7  fill()
Just like filling a matrix with 0s and 1s can be done with zeros and ones, the fill 

command produces an array filled with a desired numerical value as all of its elements:

julia> fill(5,3)

3-element Array{Int64,1}:

5
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5

5

julia> fill(5,(2,3))

2x3 Array{Int64,2}:

5  5  5

5  5  5

julia> fill(5,(2,3,5))

2x3x5 Array{Int64,3}:

[:, :, 1] =

5  5  5

5  5  5

[:, :, 2] =

5  5  5

5  5  5

[:, :, 3] =

5  5  5

5  5  5

[:, :, 4] =

5  5  5

5  5  5

[:, :, 5] =

5  5  5

5  5  5

7.6  Reshaping Arrays
Reshaping an array means to change its dimensions. For example, a 1D array of the 

shape 1 × 20 can be reshaped in a variety of ways: 4 × 5, 5 × 4, 2 × 2 × 5, and so on. This 

can be done by the reshape() functions as shown below:

julia> A = Array{Int8}(4,5)

4x5 Array{Int8,2}:

-32  1  48  1  -16
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-101  0  83  0  -101

-46  0  -7  0   -46

15  0   9  0    15

julia> A1 = reshape(A,(5,4))

5x4 Array{Int8,2}:

-32   0  -7     0

-101   0   9   -16

-46   0   1  -101

15  48   0   -46

1  83   0    15

julia> A1 = reshape(A,(20))

20-element Array{Int8,1}:

-32

-101

-46

15

1

0

0

0

48

83

-7

9

1

0

0

0

-16

-101

-46

15
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julia> A1 = reshape(A,(2,2,5))

2x2x5 Array{Int8,3}:

[:, :, 1] =

-32  -46

-101   15

[:, :, 2] =

1  0

0  0

[:, :, 3] =

48  -7

83   9

[:, :, 4] =

1  0

0  0

[:, :, 5] =

-16  -46

-101   15

7.6.1  Flipping
Flipping a particular dimension of a matrix can be performed at dimension n for a matrix 

A using flipdim(A,n):

julia> A = [[1,2,3] [4,5,6]]

3x2 Array{Int64,2}:

1  4

2  5

3  6

julia> flipdim(A,1) # flipping row (dim=1)

3x2 Array{Int64,2}:

3  6

2  5

1  4
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julia> flipdim(A,2) # flipping column (dim=2)

3x2 Array{Int64,2}:

4  1

5  2

6  3

7.6.2  Squeezing and Arrays
Another built-in function named squeez() seems similar to reshaping, but it has quite 

different behavior. squeeze(A, dims) removes the dimensions specified by dims from 

array A:

julia> a = reshape(collect(1:9),(1,3,1,3))

# Array of dimesnion 1x3x1x3 is created

1x3x1x3 Array{Int64,4}:

[:, :, 1, 1] =

1  2  3

[:, :, 1, 2] =

4  5  6

[:, :, 1, 3] =

7  8  9

julia> squeeze(a,3)

# 3rd dimesnion is removed and from

# Array of 1x3x1x3 a new

# Array of dimesnion 1x3x3 is created

1x3x3 Array{Int64,3}:

[:, :, 1] =

1  2  3

[:, :, 2] =

4  5  6

[:, :, 3] =

7  8  9
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julia> squeeze(a,1)

# 1st dimesnion is removed and from

# Array of 1x3x1x3 a new

# Array of dimesnion 3x1x3 is created

3x1x3 Array{Int64,3}:

[:, :, 1] =

1

2

3

[:, :, 2] =

4

5

6

[:, :, 3] =

7

8

9

7.7  Sorting
Sorting elements with a particular rule is an important aspect of matrix manipulation. 

The built-in function sort(A),n sorts a matrix A along a dimension n. By default, Julia 

picks reasonable algorithms and sorts in standard ascending order:

julia> sort([2,4,1,5,2,7,3])

7-element Array{Int64,1}:

1

2

2

3

4

5

7
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If you need to sort in descending order, you can choose the argument rev=true 

(which is set to false) by default:

julia> sort([2,3,1,4,6,3,7], rev=true)

7-element Array{Int64,1}:

7

6

4

3

3

2

1

7.7.1  sortperm()
The built-in function sortperm() returns a permutation vector of indices of v that puts it 

in sorted order:

julia> A = [2,3,1,4,6,3,7]

7-element Array{Int64,1}:

2

3

1

4

6

3

7

julia> v = sortperm(A) # array indices for incremental values

7-element Array{Int64,1}:

3

1

2

6

4

5

7
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julia> A[v] # Creating array with new vector of indices

7-element Array{Int64,1}:

1

2

3

3

4

6

7

7.7.2  Sort by Transformation
Within the sort() function, you can use a particular transformation to sort the elements 

in a particular fashion. For example, an array of positive and negative numbers is 

defined, but you wish to sort them by ignoring their sign. In this case, you can use the 

by=abs option in the sort() function to indicate that, while sorting, only absolute value 

must be considered, as shown in the following example Julia code:

julia> A = [-2,3,-4,-1,0,-5]

6-element Array{Int64,1}:

-2

3

-4

-1

0

-5

julia> sort(A,by=abs)

6-element Array{Int64,1}:

0

-1

-2

3

-4

-5
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7.7.3  Sorting Algorithms
At present, there are four sorting algorithms to choose from:

• InsertionSort

 – It is used internally by QuickSort.

 – It is efficient for smaller arrays.

 – It has an order of O(n2) and is stable.

• QuickSort

 – It has a default option for numeric values.

 – It has an order of O(nlog(n)) and, hence, it is very fast.

 – It is not stable.

• Elements that are considered equal do not remain in the same 

order in which they originally appeared.

• PartialQuickSort(k)

 – It is similar to QuickSort, but the output array is only sorted up to 

index k where k has to be an integer.

• MergeSort

 – It is the default algorithm for non-numeric data.

 – It has an order of O(nlogn) and is stable.

 – It is typically not as fast as QuickSort.

Let’s do a small experiment to validate these claims about various algorithms at 

the Julia documentation web page. You can test the usage of the alg option within the 

sort() function and time each event for various algorithms using the tic() and toc() 

functions, which start and stop recording time as they appear.

It must be noted that this particular way of recording time of execution is not the 

best option for benchmarking performance of an algorithm because it has not been 

normalized for different processors, OS, and other parameters. Also a processor is free 

to run an observed process (here the Julia command we are interested in) for different 
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intervals of time at different points of times. Hence, the time of execution will not even 

be the same for code running on the same computer at different points of times. But our 

aim is just to quickly check the time required for running the same sorting problem with 

a different algorithm. In addition, the random numbers will be different each time the 

command rand() is written. Thus, our present study is not enough to make judgments 

about sorting algorithms, but rather to just test their execution times for a very crude 

comparison.

The following Julia code is shown for this purpose. A Julia array is created with 

rand(1:10000,100000) having 100,000 random numbers between 1 and 10,000. k is set 

to 50,000 so that half of the numbers can be sorted. Then sort() is sandwiched between 

the tic() and toc() command to obtain time elapsed to run the execution of code. The 

results are compiled in Table 7-1.

julia> A = rand(1:10000,100000);

julia> k = 50000;

julia> tic();qs=sort(A;alg=InsertionSort);toc()

elapsed time: 1.844173231 seconds

1.844173231

julia> tic();qs=sort(A;alg=QuickSort);toc()

elapsed time: 0.035997547 seconds

0.035997547

julia> tic();ps=sort(A;alg=PartialQuickSort(k));toc()

elapsed time: 0.022802908 seconds

0.022802908

julia> tic();qs=sort(A;alg=MergeSort);toc()

elapsed time: 0.037192645 seconds

0.037192645
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Since PartialQuickSort(500) sorted only half the values, it came out the fastest; 

however, compared to QuickSort, it is not faster when normalized with a number 

of elements. So QuickSort is actually the fastest algorithm for the present crude 

experiment.

7.7.4  Lexicographical Order
The built-in functions sortrows() and sortcolumns() are in lexicographical order. 

Lexicographical order is sometimes called dictionary order because language 

dictionaries follow the same order. Let’s test the same concept on an array of characters:

julia> A1 = [['b','a','c'] ['d','f','e']]

3x2 Array{Char,2}:

'b'  'd'

'a'  'f'

'c'  'e'

julia> sort(A1,1)

3x2 Array{Char,2}:

'a'  'd'

'b'  'e'

'c'  'f'

julia> sort(A1,2)

3x2 Array{Char,2}:

'b'  'd'

'a'  'f'

'c'  'e'

Table 7-1. Time Elapsed Study for Various Sorting Algorithms

Algorithm Time Elapsed (s) Rank According to Speed

InsertionSort 1.844173231 4

QuickSort 0.035997547 2

PartialQuickSort(500) 0.022802908 1

MergeSort 0.037192645 3
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julia> sortrows(A1)

3x2 Array{Char,2}:

'a'  'f'

'b'  'd'

'c'  'e'

julia> sortcols(A1)

3x2 Array{Char,2}:

'b'  'd'

'a'  'f'

'c'  'e'

7.8  Finding Items in Arrays
Using the in() function, you can check if an item is a member of arrays, that is, if its 

value matches the value of the elements. This seemingly insignificant facility proves to 

be very powerful in writing comprehensions and loop structures, which makes Julia an 

excellent choice for numerical computations. Following are two versions of its usage:

julia> A = [2,4,1,5,6]

5-element Array{Int64,1}:

2

4

1

5

6

julia> 2 in A

true

julia> in(2,A)

true

julia> B = [A,A]

2-element Array{Array{Int64,1},1}:

[2,4,1,5,6]

[2,4,1,5,6]
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julia> 2 in B

false

julia> A in B

true

It is clear from the previous example that elemental value is compared for in() 

member function. When an array B is made using array A as two of its elements, then the 

numeric value 2 is not found to be a member of B.

7.8.1  find(), findfirst(), and findnext()
Apart from just sensing the presence of a similar value, sometimes you need to find 

the exact position of a value inside an array. The positions are addressed by indices. 

The built-in function find() outputs the same. Another set of built-in functions, 

findfirst() and findnext(), finds a value for its first occurrence and next to a given 

index, respectively:

julia> A = collect(1:20); # Array having 1 to 20 numbers

julia> find(isodd,A) # Finding numbers which are odd

10-element Array{Int64,1}:

1

3

5

7

9

11

13

15

17

19

julia> findfirst(isodd,A)

1

julia> findnext(isodd,A,findfirst(A))

1
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julia> findnext(isodd,A,findfirst(A)+1)

3

julia> findnext(isodd,A,findfirst(A)+10)

11

7.9  Copying an Array
While copying the contents of arrays seems a straightforward task, it has two varieties: 

copy (shallow copy) and deepcopy. Let’s first study an example and then examine what 

the difference between the two is:

julia> a = eye(3)

3x3 Array{Float64,2}:

1.0  0.0  0.0

0.0  1.0  0.0

0.0  0.0  1.0

julia> b = [1,2,a] # b has array 'a' as its third element

3-element Array{Any,1}:

1

2

[1.0 0.0 0.0; 0.0 1.0 0.0; 0.0 0.0 1.0]

julia> c = copy(b); d = deepcopy(b);

julia> b[3][1]=10 # changing first element of

# third element as 10

10

julia> b

3-element Array{Any,1}:

1

2

[10.0 0.0 0.0; 0.0 1.0 0.0; 0.0 0.0 1.0]
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julia> c # 'c' shallow copies a 'b' and changes

3-element Array{Any,1}:

1

2

[10.0 0.0 0.0; 0.0 1.0 0.0; 0.0 0.0 1.0]

julia> d # # d maintains deep copy of 'a'

3-element Array{Any,1}:

1

2

[1.0 0.0 0.0; 0.0 1.0 0.0; 0.0 0.0 1.0]

7.9.1 Deepcopy
From the previous example, it’s clear that while copy makes merely a new reference 

(see Chapter 2, Section 2.6) to the same memory location as that of the original object, 

deepcopy makes an entirely new copy (hence, a new memory location). This is the 

reason that when the original object is changed, copy reflects those changes, while 

deepcopy does not. This also means that while using copy does not increase the memory 

footprint drastically, deepcopy does, especially for the cases when arrays occupy a 

significant percentage of available memory. As a result, the two options should be used 

judiciously as per requirements and available resources.

It is worth noting that while the command similar() (as explained in Section 7.2.9) 

copies only the size, copy() and deepcopy() copy both the size and content.

7.10  Comprehension
Comprehension means to create arrays by a defined rule. It provides a general and 

powerful way to construct arrays. The syntax is similar to a set of construction notation 

in mathematics:

A = [ F(x,y,...) for x=rx, y=ry, ... ]

In other words, it is comprised of a list of values for variables x and y. For each value, 

F (x, y) is calculated and the element of the arrays is created. An example will make 

this concept clear:
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julia> A = rand(1:100,7)

7-element  Array{Int64,1}:

24

3

90

80

20

78

57

julia> [A[i]^2 for i=1:length(A)]

# All elements of A are squared

7-element Array{Int64,1}:

576

9

8100

6400

400

6084

3249

julia> [n^2 for n in A]

# simpler way to perform the same

7-element Array{Int64,1}:

576

9

8100

6400

400

6084

3249

Chapter 7  arrays



168

julia> [sqrt(A[i]) for i=1:length(A)]

# All elments of A are square rooted

7-element Array{Float64,1}:

4.89898

1.73205

9.48683

8.94427

4.47214

8.83176

7.54983

julia> [1//2*A[i]+1//3*A[i+1] for i=2:length(A)-1]

# one half of element is added to one third

# of next element of A for createing new element

5-element Array{Rational{Int64},1}:

63//2

215//3

140//3

36//1

58//1

julia> [complex(A[i],A[i+1]) for i=1:length(A)-1]

# A complex number is created with real part

# is the element and complex part is

# thr next element of A

6-element Array{Complex{Int64},1}:

24+3im

3+90im

90+80im

80+20im

20+78im

78+57im

The resulting array type depends on the types of the computed elements. As seen 

in the previous example, the eletype() of an output array changed to type rational 

or complex numbers, depending on the defined operation. For defining the type 
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explicitly, you can define the type of an output array. For example, if you desire to 

get floating point numbers instead of rational numbers for the defined command 

[1//2*A[i]+1//3*A[i+1] for i=2:length(A)-1], you can explicitly define the output 

array type by printing Float64 at the beginning:

julia> Float64[1//2*A[i]+1//3*A[i+1] for i=2:length(A)-1]

5-element Array{Float64,1}:

31.5

71.6667

46.6667

36.0

58.0

A 2D and higher-dimension array can also be created simply by using 

comprehension. Just write the formula for creating elements and then assign ranges 

(separated by the , operator):

julia> [r^c for r in 1:5, c in 1:5]

5x5 Array{Int64,2}:

1   1    1    1      1

2   4    8   16     32

3   9   27   81    243

4  16   64  256   1024

5  25  125  625   3125

julia> [r^c+d for r in 1:3, c in 1:3, d in 3:5]

3x3x3 Array{Int64,3}:

[:, :, 1] =

4   4   4

5   7  11

6  12  30

[:, :, 2] =

5   5   5

6   8  12

7  13  31

Chapter 7  arrays



170

[:, :, 3] =

6   6   6

7   9  13

8  14  32

7.11  Generator Expressions
The comprehension style of defining the arrays requires the formula for generating the 

elements to be written within square brackets. When it is written outside the square 

brackets, it generates an object called Generator. This object can then be used in 

defining the comprehension. Generator can be iterated to produce values on demand 

instead of allocating an array and storing them in advance. For example:

julia> collect(x^y for x in 1:3,y in 1:3)

# Array with element as x^y where

# x is from 1 to 3

# y is from 1 to 3

3x3 Array{Int64,2}:

1  1   1

2  4   8

3  9  27

julia> collect(sin(x)*min(y) for x in pi:4*pi, y in [-2,4,5])

# Array with element given by formula

# sin(x)* min(y)

10x3 Array{Float64,2}:

-2.44929e-16   4.89859e-16   6.12323e-16

1.68294      -3.36588      -4.20735

1.81859      -3.63719      -4.54649

0.28224      -0.56448      -0.7056

-1.5136        3.02721       3.78401

-1.91785       3.8357        4.79462

-0.558831      1.11766       1.39708

1.31397      -2.62795      -3.28493

1.97872      -3.95743      -4.94679

0.824237     -1.64847      -2.06059

Chapter 7  arrays



171

7.12  Assignment Operator and Arrays
Assignment operator = usually assigns the value on the left-hand side to an argument on 

the right-hand side. This can be used to alter array values, too. For example:

julia> A = [1,2,3]

3-element Array{Int64,1}:

1

2

3

julia> A  =  [3,4,5] #  Changes  value  in same  size

3-element    Array{Int64,1}:

3

4

5

julia> A = [3,4] # changes value in different size

2-element Array{Int64,1}:

3

4

This behavior can be understood in terms of the concept of a variable being merely 

a reference to a memory location. The variable named A points to a memory location 

having a 3−elementArrayInt64, 1 object. When A is assigned to a different object, it 

simply points to a new object as per the new assignment. The new object can be very 

different from the original one.

An assignment operator can also be used to selectively assign new element values:

julia> A = rand(3,3)

3x3 Array{Float64,2}:

0.952371  0.0541676  0.957925

0.104845  0.168398   0.913292

0.571905  0.991414   0.0173661

julia> A[2:3, 3] = 0

# Assign the value zero to elements in

# rows from 2 to 3 and

# column number 3

0
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julia> A

3x3 Array{Float64,2}:

0.952371  0.0541676  0.957925

0.104845  0.168398   0.0

0.571905  0.991414   0.0

7.12.1  Other Mathematical Operators
Chapter 8 is dedicated to explaining how mathematical functions can be operated on 

arrays and their elements. This chapter is critical for numerical experimentation as most 

of the data is converted into a matrix (stored in computer memory) and mathematical 

functions are used to define a transformation equation. This transformation equation 

operates on an input matrix and results in a new matrix (called transformed matrix). 

Simulating a real system involves defining transformation equations. These transformed 

matrices are converted back to the original form of data for visualization and 

interpretation. For this reason, Julia’s abilities relating to speedy matrix transformation in 

a flexible manner must be understood in detail so that users can judge correctly which to 

choose and then define particular mathematical functions in the right manner.

7.13  Set Theory and Arrays
The Array data types can also be treated as equivalent to a mathematical set. The 

set operations like ∪ (Union) given by the built-in function union(), ∩ (Intersection) 

given by the built-in function intersect() and set difference (setdiff(A-B)) can be 

calculated. Union operation collects the unique occurrence of an element of both sets. 

Intersection collects common elements from both sets and set difference collects those 

elements that are present in A but not in B.

julia> A = [1,2,3,4,-1,-3]

6-element Array{Int64,1}:

1

2

3

4

-1

-3
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julia> B = [2,4,1,3,1,10]

6-element Array{Int64,1}:

2

4

1

3

1

10

julia> union(A,B)

7-element Array{Int64,1}:

1

2

3

4

-1

-3

10

julia> intersect(A,B)

4-element Array{Int64,1}:

1

2

3

4

julia> setdiff(A,B)

2-element Array{Int64,1}:

-1

-3

7.14  Dictionary
An English dictionary maps a useful piece of information in the form of an illustrative 

paragraph and/or audio video files that can be found via a key. This kind of associative 

collection is used in computer science, too, where a key-value pair is stored for future use 
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as a look-up table. By feeding a key, the value can be retrieved. A collection of such key- 

value pairs is called a dictionary for obvious reasons.

7.14.1  Creating a Dictionary
Creating dictionaries is quite straightforward where key-value pairs are associated 

using the => operator (called the Pair() function) and are separated by a comma. For 

example:

julia> dict = Dict("red"=>1,"blue"=>2,"green"=>3)

Dict{String,Int64} with 3 entries:

"blue"  => 2

"green" => 3

"red"   => 1

julia> dict = Dict("red"=>"Red","blue"=>"Red","green"=>"Green")

Dict{String,String} with 3 entries:

"blue"  => "Red"

"green" => "Green"

"red"   => "Red"

julia> dict = Dict(1=>"Red",2=>"Red",3=>"Green")

Dict{Int64,String} with 3 entries:

2 => "Red"

3 => "Green"

1 => "Red"

The data type for keys and values can be similar or dissimilar with the condition that 

keys must be unique.

If the data type of keys and values is known in advance, it can be alternatives defined 

as the following:

julia> dict1 = Dict{Integer,String}(1=>"A",2=>"b")

Dict{Integer,String} with 2 entries:

2 => "b"

1 => "A"
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# An empty dictionary with known types

julia> dict1 = Dict{Integer,String}()

Dict{Integer,String} with 0 entries

# An empty dictionary with unknown types

julia> dict1 = Dict()

Dict{Any,Any} with 0 entries

7.14.2  Looking Up a Dictionary
We use the index of an element to find the element of an array. In a similar fashion, 

we use the key to find the value in a dictionary. Within square brackets, if a key is fed, 

the value is returned, Alternatively, we can use the get() function, which inputs the 

dictionary name and the key to output the value:

julia> dict = Dict(1=>"Red",2=>"Red",3=>"Green")

Dict{Int64,String} with 3 entries:

2 => "Red"

3 => "Green"

1 => "Red"

julia> dict[1]

"Red"

julia> dict[2]

"Red"

julia> dict[3]

"Green"

julia> get(dict,1,0)

"Red"

julia> get(dict,2,0)

"Red"

julia> get(dict,3,0)

"Green"
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julia> get(dict,4,0)

0

julia> get(dict,4,"missing value")

"missing value"

The get() function uses the third argument (fed as a 0) in the previous code, which 

is the default value for output in case the key-value pair is missing. This is highlighted in 

the last two lines.

7.14.3  Finding Keys and Values
Keys of a dictionary can be found using the keys() function. The following Julia code 

gives one such example:

julia> dict = Dict(1=>"Red",2=>"Red",3=>"Green")

Dict{Int64,String} with 3 entries:

2 => "Red"

3 => "Green"

1 => "Red"

julia> keys(dict)

Base.KeyIterator for a Dict{Int64,String} with 3 entries. Keys:

2

3

1

julia> values(dict)

Base.ValueIterator for a Dict{Int64,String} with 3 entries. Values:

"Red"

"Green"

"Red"

A KeyIterator object is returned as an output of the keys() function, whereas the 

values() function outputs the ValueIterator object. They can be used to iterate over 

the keys using the loop structure, which will be discussed in Chapter 11.
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7.14.4  Changing Values
A different value can be associated with a key using the = operator as follows:

julia> dict = Dict(1=>"Red",2=>"Red",3=>"Green")

Dict{Int64,String} with 3 entries:

2 => "Red"

3 => "Green"

1 => "Red"

julia> dict[2]="Blue"

"Blue"

julia> dict

Dict{Int64,String} with 3 entries:

2 => "Blue"

3 => "Green"

1 => "Red"

Here the value associated with key 2 is changed to the String value "Blue" and this 

change truly reflects the next time the dictionary is probed.

7.14.5  haskey()
Since the keys must be truly unique, the haskey() function comes in really handy 

because it checks if the key is present in the dictionary:

julia> dict = Dict(1=>"Red",2=>"Blue",3=>"Green")

Dict{Int64,String} with 3 entries:

2 => "Blue"

3 => "Green"

1 => "Red"

julia> haskey(dict,4)

false

julia> haskey(dict,3)

true
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7.14.6  Checking a Key-Value Pair
To check if a particular key-value pair is part of a dictionary, you can use the in operator 

as follows:

julia> dict = Dict(1=>"Red",2=>"Blue",3=>"Green")

Dict{Int64,String} with 3 entries:

2 => "Blue"

3 => "Green"

1 => "Red"

julia> in((2=>"Red"),dict)

false

julia>  in((2=>"Blue"),dict)

true

7.14.7  Adding and Deleting a Key
Adding a key can be performed quite simply. In the following Julia code, a key 4 shall be 

associated with the value "Orange" and added to the dictionary. This will be reflected 

the next time the dictionary is printed:

julia> dict = Dict(1=>"Red",2=>"Blue",3=>"Green")

Dict{Int64,String} with 3 entries:

2 => "Blue"

3 => "Green"

1 => "Red"

julia> dict[4]="Orange"

"Orange"

julia> dict

Dict{Int64,String} with 4 entries:

4 => "Orange"

2 => "Blue"

3 => "Green"

1 => "Red"
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julia> delete!(dict,4)

Dict{Int64,String} with 3 entries:

2 => "Blue"

3 => "Green"

1 => "Red"

julia> dict

Dict{Int64,String} with 3 entries:

2 => "Blue"

3 => "Green"

1 => "Red"

Using the delete!() function, you can delete a key from the dictionary. The 

exclamation mark signifies the version of function that changes the values of the input 

object while operating.

7.15  Summary
Arrays are the backbone of matrix computations, which has enabled the use of 

computers in the area of mathematics. Vectorizing a problem lets computers deal 

with complex tasks within a computing machine and this, in turn, lets us approximate 

a solution faster than achieving exact analytical solutions. Dynamically defining 

and manipulating arrays within a variety of data types makes Julia a good option 

for numerical computing. Fast operation is the key to Julia’s preference in this area. 

Ease of defining vectorization of operations lets Julia work on arrays as matrices in a 

flexible manner. Effectively managing, copying, sorting, and generating arrays using 

comprehensions makes Julia a good choice for matrix-based mathematical methods to 

solve physical problems.
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CHAPTER 8

Arrays for Matrix 
Operations

8.1  Defining an Array
A Julia array is equivalent to a mathematical matrix because, just like a Julia array, a 

matrix is an ordered collection of numbers. The simplest case for a matrix is the one 

storing component of a 3D vector. For example, a vector 
�
a i j k= + -2 3 4ˆ ˆ ˆ  can also be 

represented as either a row matrix:

 2 3 4-[ ]  

or a column matrix:

 

2

3

4-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

 

In both cases, the numbers 2, 3, and −4 are ordered in a fashion. Now this matrix can 

be represented by an array in Julia as follows:

julia> A = [2,3,-4]

3-element Array{Int64,1}:

2

3

-4
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julia> size(A)

(3,)

julia> A'

1x3 Array{Int64,2}:

2  3  -4

julia> size(A')

(1,3)

julia> (A')'

3x1 Array{Int64,2}:

2

3

-4

julia> size((A')')

(3,1)

• A creates a 1D array object (having only one index).

 – This is not equivalent to a mathematical matrix as a matrix  

element must have at least two indices.

 – For practical purposes, this can be used as a vector.

 – This object is mostly used to represent a sequence or series of 

numbers.

• A' creates a 1 × 3 2D array object.

 – This is equivalent to a column matrix.

 – Each element has two indices, one depicting rows and the other 

depicting columns.

• (A')' creates a 3 × 1 2D array object.

 – This is equivalent to a row matrix.

 – Each element has two indices, one depicting rows and the other 

depicting columns.
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It is important to note that Julia arrays are column majors—they are read 

columnwise, the same as BLAS [1] and LAPACK [2] libraries.

A Julia array doesn’t have to contain only numbers. In fact, it can contain other arrays 

as its elements. Let’s define an array having two arrays as its elements. The array named 

a has two elements; one of them is [1, 2, 3] and the other is [3, 4, 5]. Next, we create an 

array that has two a as its elements. Probing the type of elements using eltype() for 

a and b provides information that a has elements as an array of Int64, which is 1D in 

nature. On the other hand, b has a 1D array of arrays of 1D Int64.

julia> a = [[1,2,3],[3,4,5]]

2-element Array{Array{Int64,1},1}:

[1,2,3]

[3,4,5]

julia> b = [a,a]

2-element Array{Array{Array{Int64,1},1},1}:

Array{Int64,1}[[1,2,3],[3,4,5]]

Array{Int64,1}[[1,2,3],[3,4,5]]

julia> eltype(a)

Array{Int64,1}

julia> eltype(b)

Array{Array{Int64,1},1}

The importance of the comma operator , can be highlighted with the following 

example. A comma separates two elements of an array. When it is omitted and a 

whitespace character (pressing the space bar prints a whitespace character) is used 

instead, the elements belong to a separate column. We have already used this feature in 

Chapter 7 (Section 7.2).

julia> a = [[1,2,3],[4,5,6]]

2-element Array{Array{Int64,1},1}:

[1,2,3]

[4,5,6]
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julia> b = [[1,2,3] [4,5,6]]

3x2 Array{Int64,2}:

1  4

2  5

3  6

julia> a = [[1,2,3], [4,5,6],[7,8,9]]

3-element Array{Array{Int64,1},1}:

[1,2,3]

[4,5,6]

[7,8,9]

julia> b = [[1,2,3] [4,5,6] [7,8,9]]

3x3 Array{Int64,2}:

1  3  6

2  4  8

3  5  9

julia> eltype(a) # elements are arrays

Array{Int64,1}

julia> eltype(b) # elements are numbers

Int64

8.2  Properties of a Matrix
Mathematical matrices have some properties associated with them. They can be 

evaluated by built-in Julia functions:

Syntax Behavior

det(A) determinant of a square matrix A

inv(A) inverse of a square matrix A

pinv(A) pseudo-inverse of a matrix A

rank(A) rank of a matrix A
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8.2.1  Determinants
Determinant of a 2 × 2 square matrix:

 
a b

c d
ad bc= -( )  (8.1)

Similarly, determinant of a 3 × 3 square matrix:

 

a b c

d e f

g h i

a
c f

h i
b

d f

g i
c

d e

g h
aei bfg cdh ceg bdi afh= ´ - ´ + ´ = + + - - -  (8.2)

In a similar manner, a bigger matrix can be solved for finding a determinant. The 

determinant of a square matrix can be evaluated using the command det(A) for an array 

referenced by variable named A.

julia> a = rand(3,3)

3x3 Array{Float64,2}:

0.00507492  0.305511  0.0548617

0.196032    0.444446  0.374534

0.461296    0.664772  0.260325

julia> det(a)

0.03241777361378804

julia> b = zeros(3,3)

3x3 Array{Float64,2}:

0.0  0.0  0.0

0.0  0.0  0.0

0.0  0.0  0.0

julia> det(b)

0.0
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julia> c = ones(3,3)

3x3 Array{Float64,2}:

1.0  1.0  1.0

1.0  1.0  1.0

1.0  1.0  1.0

julia> det(c)

0.0

8.2.2  Rank
The rank of a matrix is related to the linear independence of rows/columns elements. 

The maximum number of linearly independent rows in a matrix A is called the row rank 

(Rr) of A, and the maximum number of linearly independent columns in A is called the 

column rank (Rc) of A. Hence, for a, m × n, Rr ≤ m. Similarly, Rc ≤ n. Since there is no real 

reason to differentiate between rows and columns, Rr = Rc = R (rank of matrix).

This matrix has rows and columns Number 1 and 2 as linearly dependent, which 

makes the rank 2:

 
A =

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 2 3

2 4 4

3 6 7
 (8.3)

julia> A = [[1,2,3] [2,4,6] [3,4,7]]

3x3 Array{Int64,2}:

1  2  3

2  4  4

3  6  7

julia> rank(A)

2
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8.2.3  Trace
The trace of a matrix is the sum of diagonals for a square matrix. For example,  

for matrix A:

 
A =

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 2 3

2 4 4

3 6 7
 (8.4)

The diagonal elements are 1, 4, and 7, so their sum is 12.

julia> A = [[1,2,3] [2,4,6] [3,4,7]]

3x3 Array{Int64,2}:

1  2  3

2  4  4

3  6  7

julia> trace(A)

12

8.2.4  An Upper and Lower Triangular Matrix
tril(A) and triu(A) create a lower and upper triangular matrix from the matrix A.

julia> A = [[1,2,3] [2,4,6] [3,4,7]]

3x3 Array{Int64,2}:

1  2  3

2  4  4

3  6  7

julia> triu(A)

3x3 Array{Int64,2}:

1  2  3

0  4  4

0  0  7
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julia> tril(A)

3x3 Array{Int64,2}:

1  0  0

2  4  0

3  6  7

It works in a similar manner for nonsquare matrices:

julia> A = rand(3,4)

3x4 Array{Float64,2}:

0.384402  0.322611  0.894988  0.839034

0.336801  0.949834  0.648842  0.0314278

0.717028  0.185107  0.684199  0.582574

julia> tril(A)

3x4 Array{Float64,2}:

0.384402  0.0       0.0       0.0

0.336801  0.949834  0.0       0.0

0.717028  0.185107  0.684199  0.0

julia> triu(A)

3x4 Array{Float64,2}:

0.384402  0.322611  0.894988  0.839034

0.0       0.949834  0.648842  0.0314278

0.0       0.0       0.684199  0.582574

To test if a given matrix is an upper and lower triangular matrix, the built-in function 

istriu() and istril() can be used:

julia> A = rand(3,3)

3x3 Array{Float64,2}:

0.912325  0.940698  0.768983

0.396439  0.555518  0.695407

0.961875  0.427829  0.987956
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julia> triu_A = triu(A)

3x3 Array{Float64,2}:

0.912325  0.940698  0.768983

0.0       0.555518  0.695407

0.0       0.0       0.987956

julia> tril_A = tril(A)

3x3 Array{Float64,2}:

0.912325  0.0       0.0

0.396439  0.555518  0.0

0.961875  0.427829  0.987956

julia> istriu(triu_A)

true

julia> istril(tril_A)

true

8.2.5  Diagonal Elements
The built-in function diag(A,k) lists the diagonal elements with k as the offset for the 

diagonal whose positive value indicates the approaching right side and the negative 

value indicates the approaching left side:

julia> A = randn(3,4)

3x4 Array{Float64,2}:

0.171985   0.323654      -0.929096   0.237231

0.396988   0.000290637   -0.852227  -0.242657

1.52518   -0.721912      -1.40742    0.0488358

julia> diag(A)

3-element Array{Float64,1}:

0.171985

0.000290637

-1.40742
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julia> diag(A,1)

3-element Array{Float64,1}:

0.323654

-0.852227

0.0488358

julia> diag(A,-1)

2-element Array{Float64,1}:

0.396988

-0.721912

julia> diag(A,-2)

1-element Array{Float64,1}:

1.52518

8.2.6  Norm
Following is the Euclidean norm where an ∈ A:

 A a a a= + + +¼1
2

2
2

3
2  

The built-in function norm() computes the norm of a matrix. If a square complex or 

real matrix A| is given, then matrix norm ||A|| is a nonnegative number associated with A 

having the following properties:

 1. ||A|| > 0 when ||A ≠ 0|| and ||A|| = 0 if A = 0

 2. k||A|| = ||k||||A|| for any scalar k

 3. ||A + B|| ≤ ||A|| + ||B||

 4. ||AB|| ≤ ||A||||B||

julia> A = [[1,2,3] [4,5,6] [7,8,9]]

3x3 Array{Int64,2}:

1  4  7

2  5  8

3  6  9
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julia> norm(A)

16.84810335261421

julia> A = [[1//2,2//3,3//4] [4//5,5//6,6//7]]

3x2 Array{Rational{Int64},2}:

1//2  4//5

2//3  5//6

3//4  6//7

julia> norm(A)

1.8199543952941895

julia> a = complex(2,3)

2 + 3im

julia> b = complex(3,-2)

3 - 2im

julia> A = [[a,b] [-b,-a]]

2x2 Array{Complex{Int64},2}:

2+3im  -3+2im

3-2im  -2-3im

julia> norm(A)

5.099019513592785

In the case of vectors 
�
x  and 

�
y , the Euclidean distance = 

 norm x y
� �
-( )  

and the angle between them

 =
( )´ ( )

æ

è
çç

ö

ø
÷÷

-cos
x y

norm x norm y
1

� �
.

 

julia> x = [1,2,3]

3-element Array{Int64,1}:

1

2

3
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julia> y = [2,4,6]

3-element Array{Int64,1}:

2

4

6

julia> dot_xy = dot(x,y)

28

julia> norm_x = norm(x)

3.7416573867739413

julia> norm_y = norm(y)

7.483314773547883

julia> angle = dot_xy/(norm_x * norm_y)

1.0

julia> (angle*180)/pi # converting to degrees

57.29577951308232

8.3  Matrix Operations
Matrix algebra entertains two varieties of each operation. The first one is where each 

element is operated upon (the operand is the element of an array). The second one is where 

the entire matrices are operated with each other (the operand is a matrix.) For example:

 
1 2

3 4

1 2

3 4

0 0

0 0

é

ë
ê

ù

û
ú +

- -
- -
é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú  (8.5)

julia> a= [[1,2] [3,4]]

2x2 Array{Int64,2}:

1  3

2  4

julia> b= [[-1,-2] [-3,-4]]

2x2 Array{Int64,2}:

-1  -3

-2  -4
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julia> a+b

2x2 Array{Int64,2}:

0  0

0  0

8.3.1  Multiplication
Addition and subtraction work in an elementwise fashion, but multiplication has many 

varieties:

• Scalar multiplication

 – a × 
�
A  where a is a scalar and 

�
A  is a vector.

• Elementwise multiplication

 – Each element of 
�
A  is multiplied by corresponding element of 

�
B .

 – The shape of 
�
A  and 

�
B  must be identical.

• Vector multiplication

 – dot product ex. 
� �
A B.

• The shape of 
�
A  and 

�
B  must be identical.

 – cross product ex. 
� �
A B´

• The inner dimension of 
�
A  and 

�
B  must be identical.

 – triple dot product ex. 
� � �
A B C. ´( )

• The shape of 
�
A  and the resultant of 

� �
B C´  must be identical.

• The inner dimension of 
�
B  and 

�
C  must be identical.

 – triple cross product ex. 
� � �
A B C´ ´( )

• The inner dimension of 
�
B  and 

�
C  must be identical.

• The inner dimension of 
�
A  and 

�
B C´  must be identical.

Chapter 8  arrays for Matrix operations



194

 Scalar Multiplication

Scalar multiplication dictates multiplication of a scalar with each element of a matrix:

 
1 2

3 4
2

2 1 2 2

2 3 2 4

2 4

6 8
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´ ´
´ ´
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é

ë
ê

ù

û
ú  (8.6)

Julia code implementing the same can be written as follows:

julia> a= [[1,2] [3,4]]

2x2 Array{Int64,2}:

1  3

2  4

julia> 2*a

2x2 Array{Int64,2}:

2  6

4  8

This is usually accomplished as follows:

• A scalar 2 is converted to vector filled with scalar quantities with the 

same shape as it is multiplying with, in our case, 2 × 2:
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• Each element is multiplied elementwise with its corresponding 

element:

 
2 1 2 2

2 3 2 4

2 4

6 8
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ú  

 Elementwise Multiplication

Elementwise multiplication between two matrices of the same size can be performed as 

follows:

 

1 2

3 4

2 3

4 5

1 2 2 3

3 4 4 5

2 6

12 20
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û
ú  (8.7)
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This can be accomplished in Julia code using the elementwise multiplication 

operator (.*) as follows:

julia> a = [[1,3] [2,4]]

2x2 Array{Int64,2}:

1  2

3  4

julia> b = [[2,4] [3,5]]

2x2 Array{Int64,2}:

2  3

4  5

julia> a.*b

2x2 Array{Int64,2}:

2   6

12  20

When the shape of arrays do not match, one encounters a DimensionMismatch error. 

Hence, it is advisable that users check the dimensions of arrays (especially if they are big 

and/or dynamically modified during calculations) before performing this calculation.

 Dot Products

The dot product of a matrix multiplies the row elements of one matrix with the column 

element of a second matrix and the sum all the numbers. Thus, the inner dimensions of 

the matrices must be identical. For example, m × n can be multiplied with n × p matrix. 

The result is a scalar, that is, a number:

 
1 1 1

1 1 1

1 1

1 1

1 1

1 1 1 1 1 1 1 1 1 1
é

ë
ê

ù

û
ú

é

ë

ê
ê
ê

ù

û

ú
ú
ú
= ´( )+ ´( )+ ´( )+ ´( )+ ´(. ))+ ´( ) =1 1 6  (8.8)

This can be accomplished in Julia with the following code:

julia> a = ones(2,3)

2x3 Array{Float64,2}:

1.0  1.0  1.0

1.0  1.0  1.0
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julia> b = a'

3x2 Array{Float64,2}:

1.0  1.0

1.0  1.0

1.0  1.0

julia> vecdot(a,b)

6.0

Rational numbers can also be processed within this framework. The result is a 

rational number. The following example shows the process of working with rational 

numbers:

julia> A = [[2//3,3//4] [4//5,3//2]]

2x2 Array{Rational{Int64},2}:

2//3  4//5

3//4  3//2

julia> B = A'

2x2 Array{Rational{Int64},2}:

2//3  3//4

4//5  3//2

julia> vecdot(A,B)

701//180

julia> vecdot(B,A)

701//180

Similarly, complex numbers can also be used as matrix elements. The result is a 

complex number. The following example shows the process of working with complex 

numbers:

julia> a = complex(2,3)

2 + 3im

julia> b = complex(2,-2)

2 - 2im

julia> c = complex(-2,-2)

-2 - 2im
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julia> d = complex(2,2)

2 + 2im

julia> A = [[a,b] [c,d]]

2x2 Array{Complex{Int64},2}:

2+3im  -2-2im

2-2im   2+2im

julia> B = A'

2x2 Array{Complex{Int64},2}:

2-3im  2+2im

-2+2im  2-2im

julia> vecdot(A,B)

-21 - 20im

 Cross Product

The cross product of two matrices, say a 2 x 3 matrix named 
�
A  with 3 x 2 matrix 

named 
�
B , results in another matrix with the dimension 2 x 2:

julia> A = [[1,2,3] [4,5,6]]

3x2 Array{Int64,2}:

1  4

2  5

3  6

julia> B = A'

2x3 Array{Int64,2}:

1  2  3

4  5  6

julia> A*B

3x3 Array{Int64,2}:

17  22  27

22  29  36

27  36  45
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The cross product can be performed with Rational data types, too. In this case, the 

resulting matrix is composed of Rational data type:

julia> A = [[1//2,2//3,3//4] [4//5,5//6,6//7]]

3x2 Array{Rational{Int64},2}:

1//2  4//5

2//3  5//6

3//4  6//7

julia> B = A'

2x3 Array{Rational{Int64},2}:

1//2  2//3  3//4

4//5  5//6  6//7

julia> A*B

3x3 Array{Rational{Int64},2}:

89//100   1//1    297//280

1//1    41//36    17//14

297//280  17//14  1017//784

julia> eltype(A*B)

Rational{Int64}

Similarly, the cross product can be performed with Complex data types. In this case, 

the resulting matrix is composed of a Complex data type:

julia> a = complex(2,3)

2 + 3im

julia> b = complex(-1,2)

-1 + 2im

julia> c = complex(-2,-4)

-2 - 4im

julia> d = complex(2,4)

2 + 4im
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julia> A = [[a,b,c] [b,a,c]]

3x2 Array{Complex{Int64},2}:

2+3im  -1+2im

-1+2im   2+3im

-2-4im  -2-4im

julia> B = A'

2x3 Array{Complex{Int64},2}:

2-3im  -1-2im  -2+4im

-1-2im   2-3im  -2+4im

julia> A*B

3x3 Array{Complex{Int64},2}:

18+0im    8+0im  -22-6im

8+0im   18+0im  -22-6im

-22+6im  -22+6im   40+0im

julia>  eltype(A*B)

Complex{Int64}

Another syntax that is used for multiplication is *(A,B) for arrays stored in A and B. It 

is equivalent to A*B:

julia> A = [[1,2,3] [4,5,6]]

3x2 Array{Int64,2}:

1  4

2  5

3  6

julia> *(A,A')

3x3 Array{Int64,2}:

17  22  27

22  29  36

27  36  45
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8.4  Division
The division of two matrices is a peculiar operation. Let’s first understand how this is 

done analytically. When matrices A and B are given, then

 
A

B
A B= ´ -1  

Consequently, it is important to understand what is the inverse of a matrix to 

perform division.

8.4.1  Inverse of a Matrix
The inverse of a square matrix A is such a matrix (depicted by A–1) such that

 A A´ =-1 1  

where I is the identity matrix. To calculate the inverse matrix from a given array, Julia 

uses the built-in function inv(A) for an array object referenced by variable name A. The 

usage is explained in the following code:

julia> A = rand(3,3) # A 3x3 matrix of random numbers

3x3 Array{Float64,2}:

0.0371386  0.382131  0.575963

0.920995   0.696674  0.897717

0.485728   0.705719  0.867646

julia> inv(A) # Inverse of matrix

3x3 Array{Float64,2}:

-0.733357   1.88985   -1.46853

-9.1587    -6.24467   12.5409

 7.85998    4.02126   -8.22573

julia> A*inv(A) # A*inv(A) = I

3x3 Array{Float64,2}:

 1.0          0.0  0.0

-8.88178e-16  1.0  0.0

-1.77636e-15  0.0  1.0
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It is worth noting that the input array must depict a square matrix, that is, an array of 

dimensions n × n. Julia will issue an error in the following situations:

• A is not square.

 – For a n × m matrix A, pinv(A) gives the pseudo-inverse:

julia> A = rand(2,3)

2x3 Array{Float64,2}:

0.844851  0.288378  0.568634

0.551517  0.83383   0.960742

julia> pinv(A)

3x2 Array{Float64,2}:

 1.59703   -0.753778

-0.838736   0.980266

-0.18884    0.622796

julia> A*pinv(A)

2x2 Array{Float64,2}:

1.0          -1.33206e-17

1.86956e-16   1.0

• A is not invertible.

 – A square matrix that is not invertible is called singular or 

degenerate.

 – A square matrix a is singular if |A| = 0.

julia> A = [[1,1] [1,1]]

2x2 Array{Int64,2}:

1  1

1  1

julia> det(A)

0.0
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julia> inv(A)

ERROR: Base.LinAlg.SingularException(2)

Stacktrace:

[1] inv! at ./linalg/lu.jl:308 [inlined]

[2] inv(::Base.LinAlg.LU{Float64,

Array{Float64,2}}) at

./linalg/lu.jl:310

[3] inv(::Array{Int64,2}) at

./linalg/dense.jl:659

 – An exception Base.LinAlg.SingularException is generated if 

Julia encounters a singular matrix.

 The Inverse of a Matrix Made of Rational Numbers

The commands inv() and pinv() work well for square and nonsquare matrices, 

respectively, that are made of rational numbers, too:

julia> A = [[1//2,2//3] [3//4,4//5]]

2x2 Array{Rational{Int64},2}:

1//2  3//4

2//3  4//5

julia> inv(A)

2x2 Array{Rational{Int64},2}:

-8//1  15//2

20//3  -5//1

julia> A*inv(A)

2x2 Array{Rational{Int64},2}:

1//1  0//1

0//1  1//1

julia> A = [[1//2,2//3] [3//4,4//5] [5//6,6//7]]

2x3 Array{Rational{Int64},2}:

1//2  3//4  5//6

2//3  4//5  6//7
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julia> pinv(A)

3x2 Array{Float32,2}:

-7.07495   6.77436

1.73306  -1.12989

3.88522  -3.04772

julia> A*pinv(A)

2x2 Array{Float32,2}:

1.0         -7.15256f-7

4.76837f-7   0.999999

 The Inverse of a Matrix Made of Complex Numbers

The commands inv() and pinv() work well for square and nonsquare matrices, 

respectively, that are made of complex numbers, too. In most cases, instead of getting 

perfect zero at nondiagonal positions, we obtain extremely small numbers that can be 

approximated as 0:

julia> a = complex(2,3)

2 + 3im

julia> b = complex(3,4)

3 + 4im

julia> A = [[a,b] [-b,a]]

2x2 Array{Complex{Int64},2}:

2+3im  -3-4im

3+4im   2+3im

julia> inv(A)

2x2 Array{Complex{Float64},2}:

 0.0583333-0.075im        0.075-0.108333im

-0.075+0.108333im         0.0583333-0.075im

julia> A*inv(A)

2x2 Array{Complex{Float64},2}:

1.0+5.55112e-17im  1.66533e-16-2.77556e-17im

-5.55112e-17+2.77556e-17im                   1.0+0.0im
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julia> A = [[a,b] [b,a] [-a,-b]]

2x3 Array{Complex{Int64},2}:

2+3im  3+4im  -2-3im

3+4im  2+3im  -3-4im

julia> pinv(A)

3x2 Array{Complex{Float64},2}:

-0.108108+0.101351im   0.141892-0.148649im

0.283784-0.297297im  -0.216216+0.202703im

0.108108-0.101351im  -0.141892+0.148649im

julia> A*pinv(A)

2x2 Array{Complex{Float64},2}:

1.0+1.38778e-16im   6.66134e-16+0.0im

0.0+1.11022e-16im   1.0-2.22045e-16im

8.4.2  Scalar Division
A scalar division of a matrix is elementwise division of a matrix with a scalar.  

For example:

julia> A = ones(3,2)

3x2 Array{Float64,2}:

1.0  1.0

1.0  1.0

1.0  1.0

julia> A/2

3x2 Array{Float64,2}:

0.5  0.5

0.5  0.5

0.5  0.5

This is similar for an array of rational number and complex numbers:

julia> a = [[1//2,2//3] [3//4,4//5]]

2x2 Array{Rational{Int64},2}:

1//2  3//4

2//3  4//5
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julia> a/2

2x2 Array{Rational{Int64},2}:

1//4  3//8

1//3  2//5

julia> a = complex(2,3)

2 + 3im

julia> b = complex(-2,4)

-2 + 4im

julia> A = [[b,a] [-a,b]]

2x2 Array{Complex{Int64},2}:

-2+4im   -2-3im

2+3im    -2+4im

julia> A/2

2x2 Array{Complex{Float64},2}:

-1.0+2.0im    -1.0-1.5im

 1.0+1.5im    -1.0+2.0im

We can even make elements as rational numbers using \\ operators:

julia> A = rand(1:9, 2, 2)

2x2 Array{Int64,2}:

8  6

4  8

julia> A//2

2x2 Array{Rational{Int64},2}:

4//1  3//1

2//1  4//1
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8.4.3  Left or Right Division
In the case of matrices, A × B ≠ B × A. In the case of finding division, we would have two 

varieties:

• Left division

 
A

B
A B= ´-1  

 – This is performed by Julia syntax A\B.

• Right division

 
A

B
A B= ´ -1  

 – This is performed by Julia syntax A/B:

julia> A = rand(2,2)

2x2 Array{Float64,2}:

0.0871932  0.403085

0.199973   0.611003

julia> B = rand(2,2)

2x2 Array{Float64,2}:

0.288173  0.691764

0.400971  0.457488

julia> A\B

2x2 Array{Float64,2}:

-0.528666  -8.71778

 0.829277   3.60196

julia> A/B

2x2 Array{Float64,2}:

0.836428  -0.383675

1.05474   -0.259307
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8.4.4  Power of a Matrix
Just like numbers, matrices can be raised to a power and, just like other operators, this 

can be done elementwise or matrixwise. Elementwise raised to some power is simply 

replacing elements with new numbers after applying the operations:

julia> A = [[2,3] [4,5]]

2x2 Array{Int64,2}:

2  4

3  5

julia> A.^2 # elements sqaures

2x2 Array{Int64,2}:

4  16

9  25

julia> A.^0.5 # square root of elements

2x2 Array{Float64,2}:

1.41421  2.0

1.73205  2.23607

julia> A.^1//3 # elements with power 1/3

2x2 Array{Rational{Int64},2}:

2//3  4//3

1//1  5//3

julia> A.^complex(2,3) # elements raised

# to the power a complex number 2+3i

2x2 Array{Complex{Float64},2}:

-1.94798+3.49362im  -8.41077-13.611im

-8.89315-1.3827im    2.89163-24.8322im
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On the other hand, matrix operations can also be defined in terms of power. If A is a 

matrix,

 A A A A n times n In = ´ ´ ¼( ) Î +,  (8.9)

 A
A A A

n times n In- += ´ ´ ¼( ) Î
1 1 1

,  (8.10)

 A I0 =  (8.11)

julia> A = [[2,3] [4,5]]

2x2 Array{Int64,2}:

2  4

3  5

julia> A^2 # raised to power of positive integer

2x2 Array{Int64,2}:

16  28

21  37

julia> A^(-2) # raised to power of negative integer

2x2 Array{Float64,2}:

 9.25  -7.0

-5.25   4.0

julia> A^(-2.5) # raised to power of fraction

2x2 Array{Complex{Float64},2}:

0.00211085-17.6309im  0.00371153+13.3696im

0.00278364+10.0272im   0.0048945-7.60367im

julia> A^0 # raised to power of zero

2x2 Array{Int64,2}:

1  0

0  1
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julia> A^(complex(2,3)) # raised to

#power of complex number

2x2 Array{Complex{Float64},2}:

15.0873-5.16588im  26.5281-9.08321im

19.8961-6.81241im  34.9834-11.9783im

julia> A^(1//5) # raised to power of positive rational

2x2 Array{Complex{Float64},2}:

0.884712+0.317203im  0.45686-0.240537im

0.342645-0.180403im  1.22736+0.1368im

julia> A^(-2//5) # raised to power of negative rational

2x2 Array{Complex{Float64},2}:

0.49813-1.11379im   -0.034878+0.844594im

-0.0261585+0.633446im   0.471972-0.480345im

 Square Root of a Matrix

sqrtm(A) is a dedicated built-in function for calculating the square root a matrix. Just 

like power operations, it requires A to be a square matrix:

julia> A = [[1,2] [3,4]]

2x2 Array{Int64,2}:

1  3

2  4

julia> A^(1//2) # using  power

2x2 Array{Complex{Float64},2}:

0.553689+0.464394im  1.21044-0.31864im

0.806961-0.212426im  1.76413+0.145754im

julia> sqrtm(A) # using sqrtm function

2x2 Array{Complex{Float64},2}:

0.553689+0.464394im  1.21044-0.31864im

0.806961-0.212426im  1.76413+0.145754im
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8.4.5  Exponentiation of Matrices
The built-in function expm(A) computes the matrix exponential of A, as follows:

 e
A

n
A

n

n

=
=

¥

å
0 !

 (8.12)

 e A
AA AAAA = + + + +1
2 3! !

�  (8.13)

julia> a = [[1,2,3] [4,5,6] [7,8,9]]

3x3 Array{Int64,2}:

1  4  7

2  5  8

3  6  9

julia> expm(a)

3x3 Array{Float64,2}:

1.11891e6  2.53388e6  3.94886e6

1.37482e6  3.11342e6  4.85201e6

1.63072e6  3.69295e6  5.75517e6

The fact

 e e IA A´ =-  

can be verified using Julia code:

julia> a = rand(3,3)

3x3 Array{Float64,2}:

0.833095  0.295597  0.861936

0.748249  0.24969   0.63176

0.152565  0.227104  0.557303

julia> expm(a)*expm(-a)

3x3 Array{Float64,2}:

1.0          -5.55112e-17   0.0

6.93889e-17  1.0           -2.22045e-16

-2.77556e-17  5.55112e-17    1.0
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Another fact, e e eA B A B´ = + , can be verified using Julia code:

julia> a = rand(3,3)

3x3 Array{Float64,2}:

0.0487381  0.866547   0.00377073

0.391296   0.0638764  0.533699

0.425764   0.281759   0.626053

julia> tr_a = a'

3x3 Array{Float64,2}:

0.0487381   0.391296   0.425764

0.866547    0.0638764  0.281759

0.00377073  0.533699   0.626053

julia> sum1=(a+tr_a)

3x3 Array{Float64,2}:

0.0974763  1.25784   0.429535

1.25784    0.127753  0.815458

0.429535   0.815458  1.25211

julia> product = expm(a)*expm(tr_a)

3x3 Array{Float64,2}:

2.75234  2.44734  2.27168

2.44734  3.00784  3.09183

2.27168  3.09183  5.17031

julia> expm(sum1)

3x3 Array{Float64,2}:

2.65748  2.57752  2.3178

2.57752  3.20806  2.96962

2.3178   2.96962  5.08507

It is worth noting that due to numerical approximations, exact matrices might not be 

obtained. For example, instead of zeros in nondiagonal elements for an identity matrix, 

you might obtain very small numbers. Similarly, product == expm(sum1) would result 
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in false for the previous code since the elements are not exactly equal. But they are 

close.

julia> product - expm(sum1)

3x3 Array{Float64,2}:

 0.0948575  -0.130178   -0.046114

-0.130178   -0.200223    0.122203

-0.046114    0.122203    0.0852462

Users are encouraged to verify more identities related to exponentiation of matrices 

while keeping in mind that approximations will result in inequalities where equality is 

expected.

8.4.6  Logarithm on Matrices
The built-in function logm(A) computes the logarithm of a matrix. Given the definition 

of exponentiation of a matrix by Equation 8.12, the logarithm of a matrix can be defined 

as follows:

 e B log B AA
e= Þ ( ) =  (8.14)

Matrix logarithms are not unique like logarithms of complex numbers. Furthermore, 

a matrix has a logarithm if and only if it is invertible.

The use of function logm() is explained in the following code:

julia> a = rand(3,3)

3x3 Array{Float64,2}:

0.202601  0.368547  0.304107

0.984077  0.77166   0.554232

0.526979  0.248144  0.534636

julia> logm(a)

3x3 Array{Complex{Float64},2}:

-1.07606+2.37668im   0.410897-0.794355im   0.382366-0.381245im

 1.15272-1.76414im  -0.52341+0.590431im    0.838622+0.281392im

 0.595192-1.09302im  0.411622+0.365746im  -0.926971+0.174484im
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8.5  Broadcasting
When elementwise operations need to be performed on arrays of different sizes, Julia 

provides broadcast(), which expands singleton dimensions in array arguments to 

match the corresponding dimension in the other array without using extra memory and 

applies the given function elementwise. The following Julia code will make this clear 

where arrays a (size of 2 × 1) and b (size of 2 × 4) are multiplied using the broadcast 

function:

julia> a = rand(2,1)

2x1 Array{Float64,2}:

0.340869

0.864133

julia> b = rand(2,4)

2x4 Array{Float64,2}:

0.764798  0.716987  0.184377  0.483765

0.743202  0.808572  0.513173  0.839672

julia> broadcast(*,a,b)

2x4 Array{Float64,2}:

0.260696  0.244399  0.0628484  0.1649

0.642226  0.698714  0.44345    0.725588

8.6  Boolean Operations
Just like arithmetic operators, boolean operators can be applied to matrices. The 

simplest of them is the comparison of each element.

8.6.1  Comparison of Elements
Each element is compared with either a fixed value or a corresponding value of a matrix 

with the same size. The results are stored as a matrix made of boolean values:

julia> # Element-wise operations

julia> a = [[1,2,3] [4,5,6]]

3x2 Array{Int64,2}:
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1  4

2  5

3  6

julia> b = 2*a

3x2 Array{Int64,2}:

2   8

4  10

6  12

julia> a.<b # Check if element of 'a'

# are smaller than those of 'b'

3x2  BitArray{2}:

true true

true true

true true

julia> a.== 3 # Check if elements of 'a'

# are equal to 3

3x2 BitArray{2}:

false  false

false  false

true  false

julia> a.<b & a.>3 # Checking logic statements

3x2 BitArray{2}:

false  false

false  false

false  false

julia> # Matrix operation

julia> b == (2*a) # If 'b' is two times 'a'

true

For matrix comparisons, the operators <,> do not work since their method does not 

include working with arrays. Hence, a MethodError is generated.
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8.7  Concatenation
Apart from arithmetic and boolean-type mathematical operations, appending and 

truncating elements must also be defined to handle matrices in a flexible manner. This is 

achieved by a range of operators as mentioned in the following table:

Syntax Behavior

cat(k,A ...) concatenate input n-d arrays along the dimension k

vcat(A) cat(1,A)

hcat(A) cat(2,A)

julia> A = reshape(1:15,5,3)

5x3 Base.ReshapedArray{Int64,2,

UnitRange{Int64},Tuple{}}:

1   6  11

2   7  12

3   8  13

4   9  14

5  10  15

julia> B = reshape(15:29,5,3)

5x3 Base.ReshapedArray{Int64,2,

UnitRange{Int64},Tuple{}}:

15  20  25

16  21  26

17  22  27

18  23  28

19  24  29

julia> cat(A,B) #concatenating A and B

# along all dimesnions

5x3x1x1x1x1x1x1x1x1x1x1x1x1x1 Array{Int64,15}:

[:, :, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] =

15  20  25

16  21  26
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17  22  27

18  23  28

19  24  29

julia> cat(1,A,B) # concatenating A and B row-wise

10x3 Array{Int64,2}:

1   6  11

2   7  12

3   8  13

4   9  14

5  10  15

15  20  25

16  21  26

17  22  27

18  23  28

19  24  29

julia> cat(2,A,B) # concatenating A and B coloumn-wise

5x6 Array{Int64,2}:

1   6  11  15  20  25

2   7  12  16  21  26

3   8  13  17  22  27

4   9  14  18  23  28

5  10  15  19  24  29

julia> cat(3,A,B) # Adding contents of B to new dimension

5x3x2 Array{Int64,3}:

[:, :, 1] =

1   6  11

2   7  12

3   8  13

4   9  14

5  10  15

[:, :, 2] =

15  20  25

16  21  26
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17  22  27

18  23  28

19  24  29

A set of shortcuts for vcat(A,B) and hcat(A,B) are as follows:

Syntax Alternate Syntax

vcat(A,B) [A;B]

hcat(A,B) [A B]

hvcat(A,B,C,D) A B;C D

julia> A = reshape(1:15,5,3)

5x3 Base.ReshapedArray{Int64,2,UnitRange{Int64},Tuple{}}:

1   6  11

2   7  12

3   8  13

4   9  14

5  10  15

julia> [A A]

5x6 Array{Int64,2}:

1   6  11  1   6  11

2   7  12  2   7  12

3   8  13  3   8  13

4   9  14  4   9  14

5  10  15  5  10  15

julia> [A;A]

10x3 Array{Int64,2}:

1   6  11

2   7  12

3   8  13

4   9  14

5  10  15

1   6  11

2   7  12
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3   8  13

4   9  14

5  10  15

julia> [A A;A A]

10x6 Array{Int64,2}:

1   6  11   1   6  11

2   7  12   2   7  12

3   8  13   3   8  13

4   9  14   4   9  14

5  10  15   5  10  15

1   6  11   1   6  11

2   7  12   2   7  12

3   8  13   3   8  13

4   9  14   4   9  14

5  10  15   5  10  15

The command vec() converts all matrices into a 1D matrix:

julia> A = rand(2,3,2)

2x3x2 Array{Float64,3}:

[:, :, 1] =

0.293696  0.336827  0.252549

0.999608  0.17789   0.718892

[:, :, 2] =

0.958808  0.408669  0.950778

0.996035  0.533242  0.310243

julia> vec(A)

12-element Array{Float64,1}:

0.293696

0.999608

0.336827

0.17789

0.252549

0.718892

0.958808
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0.996035

0.408669

0.533242

0.950778

0.310243

8.7.1  repmat()
Given a matrix, if we wish to construct another matrix by repeating elements of the 

original matrix, repmat() comes in handy. The syntax of repmat(A, n, m), which 

constructs a matrix by repeating A n times in dimension number 1 (rows) and m times in 

dimension number 2 (columns):

julia> A = [[1,2,3] [4,5,6]]

3x2 Array{Int64,2}:

1  4

2  5

3  6

julia> repmat(A,2,2)

6x4 Array{Int64,2}:

1  4  1  4

2  5  2  5

3  6  3  6

1  4  1  4

2  5  2  5

3  6  3  6

julia> repmat(A,2,3)

6x6 Array{Int64,2}:

1  4  1  4  1  4

2  5  2  5  2  5

3  6  3  6  3  6

1  4  1  4  1  4

2  5  2  5  2  5
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8.7.2  repeat()
repeat(A,inner,outer) constructs an array by repeating the entries of A. The ii element 

of inner specifies the number of times that the individual entries of the ii dimension of 

A should be repeated. Similarly, the ii element of outer specifies the number of times 

that a slice along the ii dimension of A should be repeated. When inner or outer are not 

provided, repetitions are not performed:

julia> a = collect(2:4)

3-element Array{Int64,1}:

2

3

4

julia> repeat(a,inner=2)

6-element  Array{Int64,1}:

2

2

3

3

4

4

julia> repeat(a,outer=2)

6-element Array{Int64,1}:

2

3

4

2

3

4

julia> repeat(a,inner=2,outer=2)

12-element Array{Int64,1}:

2

2

3

3
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4

4

2

2

3

3

4

4

julia> a = [[1,2,3] [4,5,6]]

3x2 Array{Int64,2}:

1  4

2  5

3  6

julia> repeat(a,inner=(1,3),outer=(3,1))

9x6 Array{Int64,2}:

1  1  1  4  4  4

2  2  2  5  5  5

3  3  3  6  6  6

1  1  1  4  4  4

2  2  2  5  5  5

3  3  3  6  6  6

1  1  1  4  4  4

2  2  2  5  5  5

3  3  3  6  6  6

julia> repeat(a,inner=(2,3),outer=(3,2))

18x12 Array{Int64,2}:

1  1  1  4  4  4  1  1  1  4  4  4

1  1  1  4  4  4  1  1  1  4  4  4

2  2  2  5  5  5  2  2  2  5  5  5

2  2  2  5  5  5  2  2  2  5  5  5

3  3  3  6  6  6  3  3  3  6  6  6

3  3  3  6  6  6  3  3  3  6  6  6

1  1  1  4  4  4  1  1  1  4  4  4

1  1  1  4  4  4  1  1  1  4  4  4
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2  2  2  5  5  5  2  2  2  5  5  5

2  2  2  5  5  5  2  2  2  5  5  5

3  3  3  6  6  6  3  3  3  6  6  6

3  3  3  6  6  6  3  3  3  6  6  6

1  1  1  4  4  4  1  1  1  4  4  4

1  1  1  4  4  4  1  1  1  4  4  4

2  2  2  5  5  5  2  2  2  5  5  5

2  2  2  5  5  5  2  2  2  5  5  5

3  3  3  6  6  6  3  3  3  6  6  6

3  3  3  6  6  6  3  3  3  6  6  6

8.8  Rotating a Matrix
Rotating a matrix A by 180 degrees can be performed by the built-in function 

rot180(A,n) where n is the integer number of times the rotation needs to be performed. 

If n is an even number, the action is equivalent to copy():

julia> a = [1 2 3 4 5 6 7 8]

1x8 Array{Int64,2}:

1  2  3  4  5  6  7  8

julia> a1 = reshape(a,(2,4))

2x4 Array{Int64,2}:

1  3  5  7

2  4  6  8

julia> rot180(a1) # defualt n=1

2x4 Array{Int64,2}:

8  6  4  2

7  5  3  1

julia> rot180(a1,1) # 1 rotation

# in forward direction

2x4 Array{Int64,2}:

8  6  4  2

7  5  3  1
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julia> rot180(a1,-1) # 1 rotation

# in backward direction

2x4 Array{Int64,2}:

8  6  4  2

7  5  3  1

julia> rot180(a1,2) # 2 totations

# in forward direction

2x4 Array{Int64,2}:

1  3  5  7

2  4  6  8

8.9  Special Matrix
8.9.1  Symmetric Matrices
A symmetric matrix is a square matrix that is equal to its transpose. For example:

 A A= ¢  

The Julia function issymmetric(A) tests if array A represents a symmetric matrix and 

gives a boolean output true or false. The entries of a symmetric matrix are symmetric 

with respect to the main diagonal. So if the entries are written as A = (aij ), then aij = aji, 

for all indices i and j. For this reason, every square diagonal matrix is symmetric since all 

off-diagonal elements are zero:

julia> A = rand(3,3)

3x3 Array{Float64,2}:

0.494451  0.65293   0.801365

0.775357  0.963112  0.535383

0.138436  0.206775  0.845183

julia> issymmetric(A)

false

julia> A = [[1,0] [0,1]]

2x2 Array{Int64,2}:

1  0

0  1
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julia> issymmetric(A)

true

julia> A = [[1,7,3] [7,4,-5] [3,-5,6]]

3x3 Array{Int64,2}:

1   7   3

7   4  -5

3  -5   6

julia> issymmetric(A)

true

8.9.2  Positive Definite Matrix
A symmetric real matrix A is said to be positive definite if ∃z (a scalar) such that

 ¢ >z Az 0  

is positive for every nonzero column vector z of n real numbers. For example:

 a b
a

b
a b[ ]´é

ë
ê

ù

û
ú´

é

ë
ê

ù

û
ú = + >

1 0

0 1
02 2  (8.15)

julia> A = [[2,-1,0] [-1,2,-1] [0,-1,2]]

3x3 Array{Int64,2}:

 2  -1   0

-1   2  -1

 0  -1   2

julia> b = [1,2,3]

3-element Array{Int64,1}:

1

2

3

julia> b'*A*b

1-element Array{Int64,1}:

12
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julia> isposdef(A)

true

But this does not work with another matrix:

julia> A = [[1,7,3] [7,4,-5] [3,-5,6]]

3x3 Array{Int64,2}:

1   7   3

7   4  -5

3  -5   6

julia> b = [1,2,3]

3-element Array{Int64,1}:

1

2

3

julia> b'*A*b

1-element Array{Int64,1}:

57

julia> isposdef(A)

false

8.9.3  Hermitian Matrices
Hermitian is a complex square matrix that is equal to its own conjugate transpose.  

In other words, ith row and jth column are equal to the complex conjugate of the element 

in the jth row and ith column for all indices i and j:

 a ai j ji=  (8.16)

julia> A = [[2,2+im,4] [2-im,3,im] [4,-im,1]]

3x3 Array{Complex{Int64},2}:

2+0im  2-1im  4+0im

2+1im  3+0im  0-1im

4+0im  0+1im  1+0im

julia> ishermitian(A)

true
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8.9.4  Sparse Matrices
When a matrix has a large number of 0 as its elements, storing them is a waste of 

precious computer memory and is an inefficient way of computing for in terms of time 

and computational resources Such matrices are called sparse matrices. For efficient 

computing framework, sparse matrices are stored in the Compressed Sparse Column 

(CSC) format.

The built-in function speye() creates a sparse matrix of a given dimension. Its inputs 

are vectors for denoting indices of rows and columns and a third vector denoting the 

nonzero values:

julia> a = [1,4,3,5,8,3];

julia> b = [4,7,18,9,7,3];

julia> c = [1,2,-5,3,-100,0.5];

julia> s = sparse(a,b,c)

8x18 sparse matrix with 6 Float64 nonzero entries:

[3 ,  3]  =     0.5

[1 ,  4]  =     1.0

[4 ,  7]  =     2.0

[8 ,  7]  =  -100.0

[5 ,  9]  =     3.0

[3 , 18]  =    -5.0

julia> findn(s)

([3,1,4,8,5,3],[3,4,7,7,9,18])

julia> findnz(s)

([3,1,4,8,5,3],[3,4,7,7,9,18],[0.5,1.0,2.0,-100.0,3.0,-5.0])

The vectors a and b contribute to making the indices for nonzero elements and the 

values of these nonzero elements are given by the third vector c. The dimension of the 

sparse matrix is obviously the maximum values of a and b. The function findn() finds 

the indices for the rows and columns of a sparse matrix as two separate arrays. Another 

function findnz() finds the same plus the nonzero values as a third array.
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8.10  Summary
It is now clear that arrays can be used to define matrices. Matrix algebra is encoded in a 

way the arrays can be manipulated. Vectorized versions of operations and corresponding 

nonvectorized matrix operations can be executed with good speed. Data crunching 

involves a flexible manner in which arrays can be defined as matrices and mathematical 

operations can be done in quickly. Julia provides an upper hand in this arena and is fast 

becoming favorite option of data analytics.
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CHAPTER 9

Strings

9.1  Introduction
The handling of text-based data is an important feature of all programming frameworks. 

Strings are simply defined as a set of characters. These include characters and words 

(group of characters) made up of the following:

• Uppercase alphabets, for example, A,B,C ...

• Lowercase alphabets, for example, a,b,c ...

• Hindu-Arabic numerals, for example, 1,2,3 ...

• Some special symbols, for example, !,@,#,$,%,^,&,*

They can be found on most English-language-based keyboards. What about other 

languages? They must also be included within a computational framework. However, natural 

languages that humans use are not the preferred language of computation in computer 

science. Computers, instead, use the language of binary numbers, where all entities are 

defined as a group of bytes made up of two bits, either 1 or 0. Hence, these characters and 

their groups must be mapped with binary numbers within a specific protocol that must be 

internationally accepted. Thus, the ASCII and Unicode systems were developed.

9.2  ASCII System
The ASCII [1] system for characters maps English characters, numbers (as characters), 

and some special characters to integer values between 0 and 127. These 128 sets of 

combinations encompasss most of the required characters for English-related work.  

A 7 (26 − 128) bits could store a unique ASCII character.
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The ASCII system works quite well but is limited in scope. As more nations joined 

the computing community, more language symbols needed to be incorporated into 

computing. A range of mathematical symbols also needed to be incorporated.

9.3  Unicode System
The Unicode system [2]  system is an extension of ASCII that increases the number of 

bytes for storing a character and, thus, increases the number of characters that can be 

uniquely defined. This system incorporates many languages and special symbols for 

mathematical notations. Julia supports the Unicode definition of characters, meaning 

that they can be used just like any other character while computing. This is a great 

advantage for the mathematical environment as straightforward usage of mathematical 

symbols makes it easy to understand. For example, π can be written as the symbol 

itself, rather than as pi as a pnuemonics for the symbol. Those familiar with LATeX 

formulation would understand that these symbols are written by proceeding their 

command by the \ operator; the same is done in Julia. To write π, you write \pi and press 

the Tab key on the keyboard. This results in displaying the Unicode symbol π.

Now let’s look at how Julia understands and interprets textual information. We 

will start with characters and then graduate to groups of characters called strings. The 

characters are primarily fed using the keyboard, but they can originate from a file both 

within a machine and from outside-world interfacing instrument(s). Julia provides 

versatile capabilities to deal with all the facilities with respect to handling strings.

9.4  Characters
Since Julia is an object-oriented programming language, characters must also be defined 

as objects. The Julian data type for characters is Char. Let’s first understand characters 

with an example:

julia> a = 'a'

'a'

julia> typeof(a)

Char
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Here a variable references to a memory location storing an object of the type Char 

whose value is a. Incidentally, the name of the variable is also a. While a means a 

reference name to Julia, 'a' refers to a Char (character) object.

9.5  Corresponding Integer Value
Since a character is stored as a set of binary digits, these binary digits can be interpreted 

as numbers. Thus, each character has a corresponding integer value. This can be 

illustrated by defining the character as an integer object as follows:

julia> Int32('a')

97

julia> Int32('z')

122

julia> Int32('!')

33

julia> Int32('#')

35

The reverse is also true; integers also correspond to a particular character:

julia> Char(121)

'y'

julia> Int32('y')

121

All integer values are not valid Unicode characters. The valid Unicode code points 

(in hexadecimal digits) from U+00 - U+d7ff and U+e000 - U+10ffff. All of these numbers 

have not been assigned intelligible meaning yet, but are valid Unicode characters. Julia 

uses a machine’s locale and language settings to determine characters that must be 

printed.

Since integers are associated with characters, they can be used with some arithmetic 

operators. For example, one can calculate 'a'-'b' and Int32('a') - Int32('b') and 
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find that they are similar since 'a' and 'b' correspond to an integer value (given by 

Int32('a') and Int32('b'), respectively):

julia> 'a' - 'b'

-1

julia> Int32('a') - Int32('b')

-1

julia>  Int32('a')

97

julia>  Int32('b')

98

julia> 'A' == 'a' # Capitalized alphabets

# hold different ineteger values than

#  small  alphabets

false

julia> 'A' <    'a'

true

julia> Int32('A')

65

julia> 'A'+1

'B': ASCII/Unicode U+0042

(category Lu: Letter, uppercase)

julia> 'A'+2

'C': ASCII/Unicode U+0043

(category Lu: Letter, uppercase)

julia> 'A'+58 # results corresponds to

# integer value corresponding to the

# symbol "}"

'{': ASCII/Unicode U+007b

(category Ps: Punctuation, open)
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When we input commands like 'A'+1, we obtain a character as a result that 

corresponds to the integer value that, in turn, corresponds to the result of the 

calculation. Since 'A' corresponds to integer value 65, adding one to it results in 66, 

which corresponds to 'B'. The output also displays additional information—ASCII/

Unicode U+0042 (category Lu: Letter, uppercase). This defines that the output is an 

ASCII/Unicode object whose category is Lu—a letter that is defined as uppercase.

9.6  + Operator and Characters
What happens when we concatenate two Char objects? In most programming languages, 

the + works like a concatenation operator for characters and strings. When a character 

a and ! need to be made into a string a!, we usually write 'a'+'!' or +('a','!'). Let’s 

check if this can be done in Julia:

julia> char1 = 'a' # definig first character

'a': ASCII/Unicode U+0061

(category Ll: Letter, lowercase)

julia> char2 = '!' # defining second character

'!': ASCII/Unicode U+0021

(category Po: Punctuation, other)

julia> typeof(char1) # verifying type of object

Char

julia> typeof(char2) # verifying type of object

Char

julia> +(char1,char2) # Operator + operated on char1 and char2

ERROR: MethodError: no method matching +(::Char, ::Char)

Closest candidates  are:

+(::Any, ::Any, ::Any, ::Any...) at operators.jl:424

+(::Char, ::Integer) at char.jl:40

+(::Integer, ::Char) at char.jl:41
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As seen in the previous Julia code, we obtain a MethodError since the concatenation 

operator does not handle Char objects. All operators are defined as Julia functions  

(see Chapter 10). A method is a function associated with an object to probe its property. 

Julia has a feature—multiple dispatch—which enables different functional definitions 

as per data type. So while the + function recognizes objects like Int64 and Complex64, 

it does not recognize Char because this was not defined in its source code. Hence, two 

characters cannot be concatenated using the + operator.

If strings are sets of characters, then how will characters make strings if 

concatenation is not allowed? We will explore this idea in the next section.

9.6.1  Characters and Strings Are Two Data Types
Julia defines a character using single quotes. String definitions need double or triple 

quotes enclosing a single character or a set of characters:

julia> a1 = 'a' # character 'a' is referenced by a1

'a'

julia> typeof(a1) # type of a1 is Char

Char

julia> a2 = "a" # String "a" is referenced by a2

"a"

julia> typeof(a2) # type of a2 is String

String

julia> a2 == a1 # a2 and a1 are not equal since

# they store different objects

false

Triple quotes are used in those cases when we wish to print a single quote or double 

quote as part of the string:

julia> """You've been "warned" alread !Don't repeat!"""

"You've been \"warned\" alread !Don't repeat!"
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9.7  + Operator and Strings
Code line a2 == a1 is important to understand. Even though the value of the Char 

and String objects use the same alphabet, namely ‘a’, they are not actually the same. 

Characters and strings are quite different in their behavior. Can strings be concatenated 

using + operator?

julia> a1 = "Hello "

"Hello "

julia> a2 = "world"

"world"

julia> a1+a2

ERROR: MethodError: no

method matching +(::String, ::String)

Closest candidates are:

+(::Any, ::Any, ::Any, ::Any...)

at operators.jl:424

We can now see that the + operator does not concatenate strings. Julia must provide 

an alternative way to add or cut elements from strings.

9.8  Concatenation
Concatenation of strings is performed using the function string(), which concatenates 

multiple strings that are separated by the , separator:

julia> string('a','!') #  inputs are  characetrs

"a!"

julia> string("a","!") #  inputs are strings

"a!"

julia> string("a",'!') # inputs are stings and character

"a!"

julia> string("a",'!',' ', "wow", "#") # Third character

# is a whitespace

"a! wow#"
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Another example will make it clearer:

julia> h = "hello"

"hello"

julia> w = "world"

"world"

julia> ws = " "# A white space as a string

" "

julia> str = string(h,ws,w)

"hello world!"

Alternatively, the * operator also performs concatenation actions:

julia> "a"*"!"

"a!"

julia> *("a","!")

"a!"

julia> h = "hello"

"hello"

julia> w  =  "world"

"world"

julia> ws = " "

" "

julia> *(h,ws,w)

"hello world"

9.9  Interpolation
If variables store some values (in this case, a String object), their verbose calls are 

performed as follows:

julia> h = "hello"

"hello"
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julia> ws = " "

" "

julia> e = "!"

"!"

julia> "$h$ws$e"

"hello !"

This is a better way of concatenation as it’s more convenient, particularly in the case 

when we need to fill the value of a variable inside a string as output:

julia> a = 10

10

julia> int = "Integer"

"Integer"

julia> b = 10.0

10.0

julia> float_number = "Floating point number"

"Floating point number"

julia> "$a is stored as $int"

"10 is stored as Integer"

julia> "$b is stored as $float_number"

"10.0 is stored as Floating point number"

What if we need to print the character $ itself? We then should precede it with a 

backlash character in this case:

julia> statement = "I have "

"I have "

julia> currency = "US Dollars"

"US Dollars"
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julia> value = 100

100

julia> print("$statement \$100 ($currency) in my account")

I have  $100 (US Dollars) in my account

9.10  Strings Are Like Arrays
Just like arrays, a string’s characters are indexed. The index in Julia always start from 1 

and the last index can be accessed by using end. This can be understood in the following 

example:

julia> str = """You've been "warned" alread !Don't repeat!"""

"You've been \"warned\" alread !Don't repeat!"

julia> str[1]

'Y'

julia> str[end]

'!'

julia> str[end-20]

'a'

julia> length(str)

42

julia> str[10:20]

"en \"warned\""

julia> str[21:end]

alread !Don't repeat!"

The variable str references to the defined string. The following operations are 

performed successively in the previous code:

• str[1] outputs the first character of the string object.

• str[end] outputs the last character of the string.

• str[end-20] outputs the twentieth character from the end.
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• The total length of string can be calculated using length(str).

• Using an index less than 1 or greater than end raises a BoundsError.

• Slicing can be performed using the : operator. For example, 

str[10:20] outputs from the tenth character to the twentieth 

character. Similarly, str[21:end] outputs from the twenty-first 

character to the end of the string (the last character).

What should we expect if we write str[10] and str[10:10]? 10th character is e:

julia> str[10]

'e'

julia> str[10:10]

"e"

julia> typeof(str[10])

Char

julia> typeof(str[10:10])

String

julia> str[10:10] == str[10]

false

It is observed that the output of str[10] is an object of Char type, whereas the output 

of str[10:10] is an object of String. Even if their values are same, they are not similar 

objects. As a result, the equality operator == shows false as its output.

9.10.1  search()
The built-in function search() can be used to search for the index of a particular 

character in a string. The first argument is the string that needs to be probed, and 

the second argument is the character/string that needs to be probed. In the case of 

searching a character, the output is the index number. In the case of searching a string, 

the output is the range object. If it does not find the input character in the input string, 

the output is 0. If it does not finds the input string within the given string, it outputs a 

Chapter 9  StringS



240

range object 0:-1 signifying that the input string cannot be found in any given string. 

This is demonstrated in the following Julia code:

julia> search("Sandeep Nagar", 'N')

9

julia> search("Sandeep Nagar", 's')

0

julia> search("Sandeep Nagar", 'a',3) # offset by 3

10

search("Sandeep Nagar", "Sandeep")

1:7

julia> search("Sandeep Nagar", "sandeep")

0:-1

julia> search("Sandeep Nagar", "randeep")

0:-1

9.10.2  contains()
The built-in function contains() can be used to test if a particular character or string is 

contained inside a test string. The difference of output when compared to the search() 

function is that the output of the contains() function is a boolean object. (Either it 

is true if the input string is found, or it is false for the other case.) Also, this function 

works only with String objects, not with Char objects, and hence throws a MethodError. 

Thus, if a character needs to be searched (in the previous case S), it must be input as a 

string ("S"). This is shown in the following Julia code:

julia> contains("Sandeep Nagar", "Sandeep")

true

julia> contains("Sandeep Nagar", " ")

true

julia> contains("Sandeep Nagar", "S")

true
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julia> contains("Sandeep Nagar",'S')

ERROR: MethodError: no method matching contains

(::String, ::Char)

Closest candidates are:

contains(::Function, ::Any, ::Any)

at reduce.jl:664

contains(::AbstractString, ::AbstractString)

at strings/search.jl:378

An alternate way is to use the member function in() as follows:

julia> in('S',"Sandeep Nagar")

true

9.11  Common String Functions
A variety of string functions can operate on strings to perform specific tasks. Some of 

them are discussed in the following sections.

9.11.1  repeat()
A string can be repeated a specific number of times by using the repeat() function:

julia> repeat("Hi",3)

"HiHiHi"

Alternatively, the ^ operator also performs the same job. This is quite obvious 

mathematically too since power is merely successive multiplication; for example, 23 = 2 × 

2 × 2. Since the operator * is used for concatenation, ^ performs successive operations of 

similar nature for a specified number of times:

julia> "Hi"^3

"HiHiHi"

julia> ^("Hi",3)

"HiHiHi"
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9.11.2  join()
The built-in function join(io, items, delim, [last]) prints elements of items to io 

with delim (delimiter) between them. If last is specified, it is used as the final delimiter 

instead of delim:

julia> a = join(["Beginner","Intermediate","Advanced"],","," and ")

"Beginner,Intermediate and Advanced"

julia> println("""Three stages of julia learner are \n $a""")

Three stages of julia learner are

Beginner,Intermediate and Advanced

9.11.3  start(), endof(), and next()
The built-in function start() gives the first valid index. This is typically 1. The built- 

in function endof() gives a maximal (byte) index that can be used to index. Another 

built-in function, next(), returns the next character at or after the index i and the next 

valid character index following that. We encounter a BoundsError if we attempt to probe 

beyond the maximum index found in the input string:

julia> start("Sandeep Nagar")

1

julia> endof("Sandeep Nagar")

13

julia> length("Sandeep Nagar")

13

julia> a,b = next("Sandeep Nagar",5)

('e', 6)

julia> a,b = next("Sandeep Nagar",13)

('r', 14)
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julia> a,b = next("Sandeep Nagar",14)

ERROR: BoundsError: attempt to access

"Sandeep Nagar" at index [14]

Stacktrace:

[1] next(::String, ::Int64) at ./strings/string.jl:197

These functions can be used to iterate over strings using loop structures. (See 

Chapter 11.)

9.11.4  split()
The built-in function split() takes an input as a String object and returns an Array 

object where the elements are individual String objects for each word, that is, an array 

of substrings:

julia> str = String("Hi, How are you")

"Hi, How are you"

julia> split(str)

4-element  Array{SubString{String},1}:

"Hi,"

"How"

"are"

"you"

If substrings needs to be made exactly at the occurrence of a specified character, 

then an additional argument can be inserted. For example:

julia> str = String("Hi, How are you")

julia> split(str,"w")

2-element Array{SubString{String},1}:

"Hi, Ho"

"are you"
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julia> split(str,"o")

3-element Array{SubString{String},1}:

"Hi, H"

"w are y"

"u"

julia> split(str,"are")

2-element Array{SubString{String},1}:

"Hi, How "

" you"

julia> split(str,"ow")

2-element Array{SubString{String},1}:

"Hi, H"

" are you"

julia> split(str,"")

15-element Array{SubString{String},1}:

"H"

"i"

","

" "

"H"

"o"

"w"

" "

"a"

"r"

"e"

" "

"y"

"o"

"u"

As seen in the prevous example, if an empty string is used for splitting, then each 

character makes the substring.
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9.11.5  uppercase() and lowercase()
The built-in functions uppercase() and lowercase() convert the characters of a string to 

uppercase or lowercase characters, respectively.

julia> uppercase("Sandeep Nagar")

"SANDEEP NAGAR"

julia> lowercase("Sandeep Nagar")

"sandeep nagar"

In the case of uppercase() functions on the string Sandeep Nagar, all characters 

of the string get converted to uppercase characters. Those that are already uppercase 

remain so. Similar actions happen for lowercase() functions where lowercase 

characters remain so after operation.

9.11.6  replace()
The built-in function replace() returns a new string with a substring of characters 

replaced with something else:

julia> name = "Sandip Nagar"

"Sandip Nagar"

julia> replace(name,"i","ee") # replace "i" with "ee"

"Sandeep Nagar"

julia> replace("sandeep","e",uppercase)

"sandEEp"

As seen in the last command, a function can also be supplied to the replace() 

function to output a string in a desired form replacing the original string.

9.11.7  lpad() and rpad()
Padding a string from the left and right side with a specific character for a specific 

number of times can be done using lpad() and rapd():

julia> name = "Sandeep Nagar"

"Sandeep Nagar"
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julia> length(name)

13

julia> lpad("Sandeep Nagar",15,"a")

"aaSandeep Nagar"

julia> rpad("Sandeep Nagar",15,"a")

"Sandeep Nagaraa"

In the following section, the variable name references to a String object that has 

length of 13 characters. When lpad(name,15,"a") is used, the character a is padded 

from the left two times to make the desired length of 15. A similar task is accomplished 

by the rpad() function but from the right-hand side.

9.11.8  reverse()
The built-in function reverse() reverses a string:

julia> reverse("Sandeep Nagar")

"ragaN peednaS"

9.11.9  strip(), lstrip(), and rstrip()
Stripping a string from undesirable characters is an important function while dealing 

with strings in a programmatic way. The built-in function strip() performs the same:

julia> name = " Sandeep Nagar "

# Two white spaces at start and end of string

Sandeep Nagar "

julia> length(name)

15

julia> strip(name)

# Two white spaces (start and end) have been stripped

"Sandeep Nagar"

julia> lstrip(name)

# One white space (left) is stripped

"Sandeep Nagar "
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julia> rstrip(name)

# One white space (right) is stripped

" Sandeep Nagar"

9.11.10  randstring()
Creating a random string is as important while testing the code as creating a single or set 

of random numbers. This can be accomplished by the built-in function randstring() as 

follows:

julia> randstring(20)

"8bXPxczPGOv2EDweJBtX"

julia> randstring(20)

"3BMgodnhVbgVQnW6h9E0"

julia> randstring(20)

"nMDC8x4yc8UYMsNPdQrx"

julia> randstring(20)

"cZDVojcv2RYjzyZCLJ6B"

Please note that the previous example shows that a different string is obtained each 

time the same command, randstring(), is used, verifying its random nature. Users 

might obtain different sets of strings from those mentioned for the same reason.

9.12  Reading Data as Arrays from Strings
Sometimes the data may be formatted as a string object. For mathematical 

manipulation, this data must be converted as an element of an array. To read from 

a string into an array, you can use the IOBuffer() function, which creates a read- 

only IOBuffer on the data underlying the given string. To understand this object, try 

exploring the same using help?> IOBuffer. (These I-O (Input- Output) objects are 

discussed in Chapter 12. Hence, the details are not discussed here, but the primary usage 

is demonstrated for sake of simplicity.)
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julia> str = "1 2 3 4 5 6 7 8 9" # a string object

# where entries are separated by white space

"1 2 3 4 5 6 7 8 9"

julia> a = IOBuffer(str) # IOBuffer object

IOBuffer(data=UInt8[...],

readable=true,

writable=false,

seekable=true,

append=false,

size=17,

maxsize=Inf,

ptr=1,

mark=-1)

julia> readdlm(a) # Read with delimiter

1x9 Array{Float64,2}:

1.0  2.0  3.0  4.0  5.0  6.0  7.0  8.0  9.0

julia> str = "1,2,3,4,5,6,7,8,9" #  String where

#entities are separated by commas

"1,2,3,4,5,6,7,8,9"

julia> a = IOBuffer(str)

IOBuffer(data=UInt8[...],

readable=true,

writable=false,

seekable=true,

append=false,

size=17,

maxsize=Inf,

ptr=1,

mark=-1)

julia> readdlm(a) # No white space, no columns

# Also commas are part of element
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# So element is not numeric type

1x1 Array{Any,2}:

"1,2,3,4,5,6,7,8,9"

The function readdlm() (read with delimiter) converts this IOBuffer object into 

an array object. The columns are assumed to be separated by one or more whitespace 

characters. If all data are numeric, the result will be a numeric array. If some elements 

cannot be parsed as numbers, a heterogeneous array of numbers and strings is returned 

with data type Any.

When the data is made of string objects, an array of substrings is created as follows:

julia> str = "Hi How are you"

"Hi How are you"

julia> a = IOBuffer(str)

IOBuffer(data=UInt8[...],

readable=true,

writable=false,

seekable=true,

append=false,

size=14,

maxsize=Inf,

ptr=1,

mark=-1)

julia>  readdlm(a)

1x4 Array{Any,2}:

"Hi"  "How"  "are"  "you"

Since the array is composed of Any object, it does not pose a problem if data are 

made of a mixture of strings and numerals.

julia> str = "Hi How are you number 1"

"Hi How are you number 1"

julia> a = IOBuffer(str)

IOBuffer(data=UInt8[...],

readable=true,

writable=false,
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seekable=true,

append=false,

size=23,

maxsize=Inf,

ptr=1,

mark=-1)

julia> readdlm(a)

1x6 Array{Any,2}:

"Hi"  "How"  "are"  "you"  "number"  1

9.13  Lexicographical Comparison of Strings
Standard comparison operators compare strings by lexicographical rules [3].  

A lexicographical comparison is the kind of comparison generally used to sort  

words alphabetically in dictionaries. Thus, it is sometimes called dictionary order.

Lexicographical comparison involves comparing sequentially the elements that have 

the same position in both ranges against each other until one element is not equivalent 

to the other. The result of comparing these first nonmatching elements is the result of the 

lexicographical comparison:

julia> str1 = "abcdefg"

"abcdefg"

julia> str2 = "abcdefh"

"abcdefh"

julia> str1 < str2

true

julia> str3 = "abcdefhi"

"abcdefhi"

julia> str3 > str2

true

julia> str4 > str3

false
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julia> "20 March 2017" > "19 March 2017"

true

julia> "20 March 2016" > "19 March 2017"

true

julia> "superhero" == "Superhero"

false

julia> "superhero" > "Superhero"

true

9.14  Summary
The ability to deal with textual data is an important feature of Julia. To understand how 

characters are defined and dealt with in a computing machine, check out Chapter 12, 

Section 12.6. Dealing with characters in a programmable way lets a computational 

linguist explore tasks under natural language processing (NLP) and derive meaningful 

patterns within human and nonhuman languages. Julia’s ability to define a string and 

flexibly manipulate it in a variety of manners makes it a good candidate for NLP. The 

field of bio-informatics demands these abilities as well. As a result, Julia is a good 

candidate to define code under these domains for faster execution.
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CHAPTER 10

Functions
10.1  Introduction to Julia Functions
A procedural programming language involves breaking down a bigger program into 

smaller chunks of functional blocks and then stitching them together as desired for the 

task undertaken. A block of code performs a specific task when called by the master 

program. This block of code is defined as a function. A function maps its input to output 

according to the set definition as dictated by a (set of) statements called the body of 

function. This definition is quite similar to the definition of a mathematical function.

The function object is referenced by a name that points to memory location where 

function object is stored. When a function needs to be called, the name, along with a set 

of inputs (in parentheses), is called during the execution of the program.

Alternatively, a function can also be defined as a first-class object that inputs an 

argument list (arglist), processes the list of arguments as per definition of function 

body, and returns none, one, or more values as outputs. Multiple arguments form 

a tuple. So does the output if it is made up of multiple entities. For this reason, they 

are separated by commas. The type of arguments can be set or the arguments can be 

determined using the kind of operations in the function body. It is recommended to set 

the type for optimized utilization of computational resources. However, in this chapter, 

we will ignore this recommendation for ease of understanding.

The syntax of a function is as follows:

julia> function fname(arglist)

                 #function body...

                 return values

        end
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The tabbing of a body part is optional, but it makes the appearance neater for visual 

clarity. Hence, it is strongly recommended. Function names are usually defined in 

lowercase characters as a convention. They can contain Unicode characters, too. The 

return keyword is optional. In general, the value of the last expression is returned. 

While calling a function, the name of the function is written with the arglist within 

parentheses. If an assignment operator is used for the same (a = fname(arglist)), then 

the return value is assigned to a. When the return is used without a value, the function 

returns nothing; it just does a calculation but returns nothing.

10.2  Defining a Simple Julia Function
Let’s study Julia functions using some examples. Consider a function for calculating 

the value of the hypotenuse of a right-angled triangle with the dimensions of its 

perpendicular (say p) and base (say b) given. Let’s name the function f. The output 

(hypotenuse) is referenced by variable h. This is defined as follows:

 h p b= +2 2  (10.1)

The following Julia code performs this task and the function is called as f(p,b) 

where the values of p and b are given as inputs:

julia> function f(p,b)

                 h = sqrt(p^2 + b^2)

                 return h

        end

f (generic function with 1 method)

julia> f(3,4)

5.0

julia> f(3.0,4.0)

5.0

When f(3,4) is written at the Julia prompt, f is called with p=3 and b=4. 

Consequently, h is calculated to be 5.0 and is returned. Thus, the output of f(3,4) is 5.0.

Note that when we define a function and end its definition by the keyword end and 

press Enter, REPL outputs the information that a generic function with one method 
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has been created. This has to do with the kind of data types allowed by the operators 

used. The operators + and ^ operate on numerical data types only. Julia allows multiple 

dispatches, that is, a different definition of a function for different data types. This will be 

discussed later in Section 10.3.

It’s always useful to name a function meaningfully, so instead of naming the previous 

function as f, we can name it hypotenues. When called, we write hypotenues(p,b):

julia> function hypotenues(p,b)

                 h = sqrt(p^2 + b^2)

                 return h

        end

hypotenues (generic function with 1 method)

julia> hypotenues(3,4)

5.0

When we inspect the state of the computer’s memory at this stage (after executing 

the Julia function at least once) by issuing the command whos(), we can observe that two 

new objects are shown, f and hypotenues, in the main namespace. For this reason, we 

can press the Tab key after filling in a few characters of its name and the tab competition 

will work for the function’s name:

julia> whos()

Base  33853 KB    Module

Core  12333 KB    Module

Main  40714 KB    Module

...

f      0 bytes  #f

hypotenues      0 bytes  #hypotenues

It is worth noting that the scope of the variable h is local to the function hypotenues. 

In other words, it is valid only within the function body. These type of variables are called 

local variables. The local nature of the variable can be verified as follows:

julia> hypotenues(3,4) # function is called

5.0

julia> h = 5.5 # h is set to be 5.5

5.5
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julia> hypotenues(3,4) # calculation of h is unaffected

#by previous setting of h value

5.0

julia> h # h still holds the set vaue after

# calling the function

5.5

10.2.1  Shorthand Notation
A function can also be written in shorthand notation:

fname(x,y,...) = a_function(x,y,...)

For example, in our case of calculating the hypotenuse, we can write a function in 

shorthand notation as follows:

julia> hypotenues(p,b)=sqrt(p^2 + b^2)

hypotenues (generic function with 1 method)

julia> hypotenues(3,4)

5.0

This syntax matches with the analytical way of writing mathematical functions. Thus, 

it is more intuitive. Moreover, not only ASCII but also Unicode characters can be used 

for naming the function. This makes it particularly easy while translating a mathematical 

expression into Julia code for scientific computation. But this notation has one severe 

limitation. You can only define a single expression within this format. In other words, only 

one mathematical rule can be defined in the body of the function.

10.2.2  Multiple Input
As is the case of the previous example of the function named hypoteneus, we can define 

a Julia function with multiple inputs. Let’s consider another case. For example, let’s 

consider the case when we need to find the length of a vector from the origin using its 

three components on x, y, and z axes:

 l x y z= + +2 2 2  (10.2)
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The following Julia code defines a function named length_vec that takes three 

inputs (x, y, and z values) and gives output as length, which calculates for Equation 10.2.

julia> function length_vec(x,y,z)

length = sqrt(x^2 + y^2 +z^2)

return length

end

length_vec (generic function with 1 method)

julia> length_vec(2,3,4)

5.385164807134504

julia> length_vec(-2,-3,-4)

5.385164807134504

From the previous code, it is worth noting that the vector

 2 3 4ˆ ˆ ˆi j k+ +  

and

 - - -2 3 4ˆ ˆ ˆi j k  

have the same length from (0, 0, 0), which is ≈ 5.4 units.

However, we sometimes need a variable list of arguments in the multiple input 

scenario. In this case, we would need to have a flexibility in the number of inputs while 

calling the function. The next section discusses a variable argument list as input to the 

function.

 Variable Argument List

While defining a function, optional arguments can be defined so that the function can 

use sensible defaults if specific values aren’t supplied. As an example, we shall modify 

the already defined function length_vec (Section 10.2.2) and modify the same:

julia> function length_vec1(x,y,z=0)

length = sqrt(x^2 + y^2 +z^2)

return length

end

length_vec1 (generic function with 2 methods)
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julia> length_vec1(-2,-3) # z=0

3.605551275463989

julia> length_vec1(-2,-3,-4) #z=-4

5.385164807134504

A new function named length_vec1 is defined with inputs x, y, z = 0. Values for x, y 

are taken from the user and, if the value of z is not supplied by the user, it is taken to be 

equal to 0 (default value).

A function defined this way will ensure that we do not encounter an error if the right 

number of arguments is not supplied by the user, and it also defines a default behavior 

of a Julia function. Both of these features prove useful during numerical computations as 

well as software developments to avoid annoying error messages.

 Positional Arguments

Until now, when we defined multiple inputs, they were used in the order in which they 

were defined. What if the order of input is a critical factor in computation? For example:

julia> function sumprod(a,b,c)

answer = (a+b)*c

return answer

end

sumprod (generic function with 1 method)

#(1+2)*3=0

julia> sumprod(1,2,3)

9

#(3+2)*1=5

julia> sumprod(3,2,1)

5

If the order of input is (1, 2, 3), we obtain 9. When the order of input is (3, 2, 1), the 

result is 5. This is because the values of the variables are a=1, b=2, and c=3 in the first 

case, while the values of the variables are a=3, b=2, and c=1 in the second case. In such 

cases where users can make a mistake that can result in erroneous calculation, we need 

to find a way to avoid this issue.
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In addition, when we have a large number of inputs, it is difficult to keep track of 

their order. This can be avoided if we use a positional argument method. Keywords can 

be labeled for arguments in the form of a keyword=value pair:

julia>julia> function data_type(a,b;c="Int64",d="Complex64")

                println(typeof(a))

                println(typeof(b))

                return "Type of c is $c and Type of d is $d"

      end

data_type (generic function with 1 method)

julia> data_type(2,3)

Int64

Int64

"Type of c is Int64 and Type of d is Complex64"

julia> data_type(2.5,3)

Float64

Int64

julia> data_type("Hi",3)

String

Int64

"Type of c is Int64 and Type of d is Complex64"

julia> data_type("Hi",3,c=typeof('a'),d=typeof(1//2))

String

Int64

"Type of c is Char and Type of d is Rational{Int64}"

julia> data_type(c=typeof('a'),"Hi",d=typeof(1//2),3)

String

Int64

"Type of c is Char and Type of d is Rational{Int64}"
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In the present context, three categories of inputs can be defined as follows:

• Normal

 – Arguments that must be specified and also must be in a specific order

• Optional

 – Arguments that may be skipped, but if specified, they must be in order

• Keywords

 – Arguments that can be skipped and need not be specified in an order

Let’s understand these three kinds of inputs with the following Julia code. We define 

a function named function1 with three inputs (of three finds discussed before: normal, 

optional, and keywords). The function is called successively with these arguments to 

illustrate their usage:

julia> function function1(normal,optional=1;keyword=0.001)

                 println("normal argument is $normal")

                 println("optional argument is $optional")

                 println("keyword argument is $keyword")

       end

function1 (generic function with 2 methods)

#Only normal argument is specified

julia> function1("Hi")

normal argument is Hi

optional argument is 1

keyword argument is 0.001

#Normal and Optional arguments

# both are specified and the value of optional

# argument is changed from 1 to 2

julia> function1("Hi",2)

normal argument is Hi

optional argument is 2

keyword argument is 0.001
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#Keyword argument is explicitly specified

#with a different value

julia> function1("Hi",2,keyword=0.1)

normal argument is Hi

optional argument is 2

keyword argument is 0.1

#Keyword argument do not follow orders

julia> function1(keyword=0.1,1,2)

normal argument is 1

optional argument is 2

keyword argument is 0.1

 Variable Arguments List

Users might need the ultimate flexibility in providing a variable list of arguments in some 

cases. For this purpose, a list of arguments is supplied from which values can be picked 

as required. This can be achieved by using the splat operator (...). Using the help 

mode, one can find information about using the splat operator. The following Julia code 

will illustrate the use of the variable argument list:

julia> function variable_arguments(args...)

answer = length(args)

println("number of arguments is $answer")

end

variable_arguments (generic function with 1 method)

julia> variable_arguments(1)

number of arguments is 1

julia> variable_arguments(1,2)

number of arguments is 2

julia> variable_arguments(1,2,"Hi")

number of arguments is 3

julia> variable_arguments(1,2,'a')

number of arguments is 3
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Another example shows the use of this facility for printing the second value among 

arguments:

julia> function second_value(args...)

return args[2]

end

julia> second_value([1,2],3,4) 3

julia> second_value([1,2],[2,1])

2-element Array{Int64,1}:

2

1

10.2.3  Multiple Outputs
A function returns objects, which are termed as its outputs. A Julia object outputs just 

one object. So how can we obtain multiple output values? We have to understand that 

there is a difference between obtaining multiple values in the output and obtaining 

multiple output objects.

Multiple outputs are returned as a tuple of values instead of a single value. In 

this manner, a function still returns a single object. It is important to remember that 

tuples can be created and destructured without parentheses, which gives an illusion of 

returning multiple values. Let’s explore multiple output functions with a simple example: 

a Julia function named power takes two inputs a,b, performs calculations ab and ba,, and 

outputs them. When called with inputs 2 and 3, it outputs 23 = 8 and 32 = 9 as a tuple:

julia> function power(a,b)

a^b,b^a

end

power (generic function with 1 method)

julia> power(2,3)

(8,9)

julia> x,y=power(2,3)

(8,9)
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julia> x

8

julia> y

9

Two variables, x and y, can be used with an assignment operator when functions 

are called so that they are assigned the corresponding element of the output tuple. An 

equivalent syntax for the same function definition including a return statement is as 

follows:

julia> function power(a,b)

return a^b,b^a

end

10.2.4  Anonymous Functions
When functions are defined without names, they are called anonymous functions. For 

example, x->x^3-3x^2+4x-21 defines a mathematical function:

f (x) = x3 − 3x2 + 4x − 21

They are used to pass them to functions that take other functions as arguments. 

Anonymous functions can be defined as map(), which will map the anonymous function 

to the values supplied as the second argument. The second argument can be a single 

value or multiple values as a list. Also the data type of inputs must be workable with 

operators used in the definition. The Julia code for the same can be written as follows:

julia> map(x->x^3-3x^2+4x-21,3)

-9

julia> map(x->x^3-3x^2+4x-21,[3,2,1])

3-element Array{Int64,1}:

-9

-17

-19

julia> x

ERROR: UndefVarError: x not defined
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It is important to note that after the execution of map() function, x disappears from 

the namespace as it was a local variable for the function map(). Hence, when x is probed, 

it shows an UnderVarError since it is not defined in the present namespace.

 Mapping Multiple Values

Multiple values can be mapped when inputs are provided as a tuple, that is, inputs are 

separated by a comma. Here the order of input values will matter:

julia> map((x,y,z) -> sqrt(x^2+y^2+z^2),[1,1,1],[-1,-1,-1],

[0,0,1])

3-element   Array{Float64,1}:

1.41421

1.41421

1.73205

Its is important to note that for the calculation

 x y z2 2 2+ +  

the first element of each array is taken to perform the calculation and then output the 

first element. Then the same happens with the second and third to produce the result:

 

1 1 0 2 1 41421

1 1 0 2 1 41421

1 1

2 2 2

2 2 2

2

( ) + -( ) + ( ) = =

( ) + -( ) + ( ) = =

( ) + -(

.

.

)) + ( ) = =2 2
1 3 1 73205.

 

10.2.5  map() Function
The built-in function map() can be used for nonanonymous functions, too. If you have a 

function and an array, the function can be called for each element of the array by using 

the map() function. The function is called for each element of the array. The results are 

collected as an array that is then returned. The whole process is termed mapping:

julia> map(sin,0)

0.0
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julia> map(sin,[0,pi])

2-element Array{Float64,1}:

0.0

1.22465e-16

julia> map(sind,[0,pi])

2-element Array{Float64,1}:

0.0

0.0548037

The elementwise operation of the map() function is built in in most functions. They are, 

in fact, optimized for faster operations:

julia> @time map(sin,1:100000);

0.005181 seconds (11 allocations: 781.625 KB)

julia> @time sin(1:100000);

0.021231 seconds (4.06 k allocations: 959.704 KB)

As is clear from the previous example, sin() gives faster results than mapping.Mapping 

from one array to another can be performed (it is done elementwise) for a given 

function, provided both of them have the same size. For example:

julia> map(//,1:10,2:11)

10-element Array{Rational{Int64},1}:

1//2

2//3

3//4

4//5

5//6

6//7

7//8

8//9

9//10

10//11
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julia> map(^,[1,2,3],[2,4,3])

3-element Array{Int64,1}:

1

16

27

In the first example code, the command map(//,1:10,2:11) maps the built-in 

function // from the array 1:10 to the array 2:11 in an elementwise fashion; the first 

element is 1//2, the second element is 2//3, and so on.

In the second example code, the command map(^,[1,2,3],[2,4,3]) maps the 

built-in function ^ from array [1,2,3] to the array 2,4,3 elementwise. The elements of 

the resultant array are the following:

(1)2 = 1

(2)4 = 16

(3)3 = 27

10.2.6  reduce(), foldl(), and foldr() Functions
The map() function collects the results by operating a function elementwise on an 

iterable object, such as an array of numbers. On the other hand, the built-in function 

reduce() does a similar task, but after every element has been checked and processed 

by the function, only one is left. The function should take two arguments and return one. 

The array is reduced by continual application so that just one is left. For example, it can 

be used to sum up the contents of an array:

julia> reduce(+,[1,2,3])

6

In first case of command reduce(+,[1,2,3]), operator + performs the following:

 1 2 3 3 6+ Þ + Þ  
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What if we use the subtraction operator? There is an issue surrounding the property 

of associativity:

(1-2)-3 \Rightarrow -1-3 \Rightarrow -4 \\

1-(2-3) \Rightarrow 1-(-1) \Rightarrow 2

julia> reduce(-,[1,2,3])

-4

The reduce() function starts clubbing elements for operating from the left. The 

foldl() and foldr() functions will determine the direction of folding the given array for 

a particular operation to obtain a single valued output:

julia> reduce(-,[1,2,3])

-4

julia> foldl(-,[1,2,3])

-4

julia> foldr(-,[1,2,3])

2

10.2.7  mapreduce()
Mapping and folding can be performed simultaneously using the mapreduce(), 

mapfoldl(), and mapfoldr() functions:

julia> mapreduce(+,-,[1,2,3])

-4

julia> map(+,[1,2,3])

3-element Array{Int64,1}:

1

2

3
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julia> reduce(-,map(+,[1,2,3]))

-4

julia> mapfoldl(+,-,[1,2,3])

-4

julia> foldl(-,map(+,[1,2,3]))

-4

julia> mapfoldr(+,-,[1,2,3])

2

julia> foldr(-,map(+,[1,2,3]))

2

10.3  Multiple Dispatches
Until now, our function definitions included defining just one method. For example, 

when we construct a function:

julia> f(x,y)=x+y

f (generic function with 1 method)

The output of the REPL prompt at which the function is defined in a shortcut 

notation says that we have constructed a generic function with one method. The output 

is type-sensitive in the sense that the + works on numbers, but not on strings and 

characters, and hence will give a MethodError since the method is not defined for Char 

and/or String data type as is evident for the following code:

julia> f(x,y)=x+y

f (generic function with 1 method)

julia> f(2,3)

5

julia> f('a','b')

ERROR: MethodError: no

method matching +(::Char, ::Char)

Closest candidates are:
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+(::Any, ::Any, ::Any, ::Any...) at

operators.jl:424

+(::Char, ::Integer) at char.jl:40

+(::Integer, ::Char) at char.jl:41

Stacktrace:

[1] f(::Char, ::Char) at ./REPL[365]:1

To avoid such scenarios, multiple dispatch facilities can be given while defining 

functions so that functions can perform computations workable for various data types.

10.3.1  Defining Multiple Function Definitions
Let’s look at the concept of multiple dispatches by taking a simple example of a function 

named typeInfo defined below:

#Defining first method for Int64

julia> function typeInfo(a::Int64)

println("Input's type is Int64")

end

typeInfo (generic function with 1 method)

#Defining second method for Float64

julia> function typeInfo(a::Float64)

println("Input's  type  is  Float64")

end

typeInfo (generic function with 2 methods)

#Defining third method for Char

julia> function typeInfo(a::Char)

println("Input's type is Char")

end

typeInfo (generic function with 3 methods)

#Defining fourth method for String

julia> function typeInfo(a::String)

println("Input's  type  is  String")

end

typeInfo (generic function with 4 methods)
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julia> typeInfo(2)

Input's type is Int64

julia> typeInfo(2.0)

Input's type is Float64

julia> typeInfo('a')

Input's type is Char

julia> typeInfo("Hello")

Input's type is String

The :: operator is used to attach a particular type to the variables.

The defined methods are probed using the methods() functions. As an example, let’s 

probe the methods for the function typeInfo() we defined earlier:

julia> methods(typeInfo)

# 5 methods for generic function "typeInfo":

typeInfo(a::String) in Main at REPL[372]:2

typeInfo(a::Char) in Main at REPL[371]:2

typeInfo(a::Float64) in Main at REPL[370]:2

typeInfo(a::Complex{Float32}) in Main at REPL[369]:2

typeInfo(a::Int64) in Main at REPL[368]:2

It is important to note that the previous definitions of functions and their methods 

will have a life inside the present REPL session.

10.4  Operators Defined as Functions
In Julia, most operators are just functions with support for special syntax where symbols 

are used instead of names. But remember that symbols are simply Unicode characters 

that are valid function names. For example, the operator + can be called just like a 

function on two numbers. The infix form is exactly equivalent to the function application 

form. Hence, the operator can be assigned to another name and used just like any other 

function:

julia> 1+1.0

2.0
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julia> +(1,1.0) # called like a function

2.0

julia> f=+ # name can be assigned to a variable

+ (generic function with 163 methods)

julia> f(1,1.0) # Assigned vairable name can be

# used for calling

2.0

The exception to this case is && and || operators since they require that their 

operands are not evaluated before the evaluation of the operator.

10.4.1  Functions Returning Functions
A function (let’s call this a minor function) can be nested inside another function (let’s 

call this a major function). In this case, the minor function returns an object that is used 

by a major function to return another object in return.

As an example, let’s consider a major function named expo() that takes one 

input x, which is essentially the power of exponentiation. A minor function defines 

the functionality of calculating yx where y defines the values for which the power x is 

calculated. Apart from calculating yx, the minor function also prints the type of object 

returned by the minor function:

julia> function expo(x)

       expo1  = function(y)

                answer=y^x

                answer_type = typeof(answer)

                println(answer_type)

                return answer

                end

       end

julia> sq(2)

4

julia> sq = expo(2)

(::#58) (generic function with 1 method)
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julia> sq(2)

Int64

4

julia> sq(2.0)

Float64

4.0

julia> cu = expo(3)

(::#58) (generic function with 1 method)

julia> cu(2)

Int64

8

julia> cu(2.0)

Float64

8.0

julia> sq_root = expo(0.5)

(::#58) (generic function with 1 method)

julia> sq_root(2)

Float64

1.4142135623730951

julia> sq_root(3)

Float64

1.7320508075688772

julia> cu_root(2)

Float64

1.2599210498948732

julia> cu_root(3)

Float64

1.4422495703074083
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To calculate squares of numbers, you can write sq=expo(2), which calculates the 

square of any number that is provided as input. Similarly, cu = expo(3) finds cubes,  

sq_root = expo(0.5) finds square roots, and cu_root = expo(1//3) finds the cube 

roots.

10.5  Summary
In this chapter, we have discussed functions within a Julian framework. Defining a bigger 

code into a group of functions makes the task modular and manageable in a flexible 

manner. The ability to pass arguments strictly or with flexibility allows us to write specific 

functions for specific requirements. Functions also let us define methods for particular 

objects. Thus, this ability forms the core of the OOP concept and Julia uses functions 

quite effectively.
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CHAPTER 11

Control Flow
11.1  Introduction to Control Flow
When you evaluate Julia code line-by-line for execution, you sometimes need to shift 

the flow of execution out of this line-by-line manner to a different point of the code. In 

other words, the flow of the program needs to be altered. There are many reasons why 

you would need to make this shift. For example, a condition needs to be checked and 

then the flow can be directed to one of many directions, some parts of the calculation are 

repetitive so the program needs to be altered before returning back, or an error might 

happen and the flow needs to redirected. Julia provides powerful constructs for these 

situations, which will be described in this chapter.

11.2  Ternary Expression
When flow needs to be chosen for two directions based on a simple yes or no answer 

for a condition, ternary operators ? and : can be used efficiently within a one- 

line statement. For example, suppose one constructs a vector (referenced by a) as 

[1,2,3,4,5]. If the length of this vector is less than 3, then all the elements must be 

squared. If the length of this vector is more than 3, then the square root of all elements 

must be taken. The following code can be implemented for this purpose:

julia> a = [1,2,3,4,5]

5-element Array{Int64,1}:

1

2

3

4

5
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julia> length(a)<3 ? a.^2 : sqrt.(a)

5-element Array{Float64,1}:

1.0

1.41421

1.73205

2.0

2.23607

julia> a=[1,2]

2-element Array{Int64,1}:

1

2

julia> length(a)<3?a.^2:sqrt.(a)

2-element Array{Int64,1}:

1

4

Since the length of a in the first case is actually 5 (it has five elements), the condition 

is not satisfied and, hence, the square root of the elements is taken. In the second case, 

the length of a becomes 2 and the condition is satisfied, which is why elements are 

squared. This simple construct provides a powerful means for directing the flow within 

just one line of code.

11.3  Boolean Switching
Similar to ternary expressions, boolean switching is presented in the cases where a single 

or compound logical sentence presents true or false boolean data type as output. The 

operators && represent the and operator, whereas || represents the or operator. Their 

usage can be understood in the following Julia code:

julia> a = 1

1

julia> isodd(a) && true

true
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#verification

julia> isodd(a)

true

julia> true && true

true

julia> isodd(a) || true

true

#verification

julia> true || true

true

These operators are used to evaluate a particular logical condition, following which a 

decision can be made to direct the flow in a desired direction.

11.4  if-else
To check a logical condition, the keyword if is used following the set of expressions that 

is executed when the condition is found to be true. If the condition is found to be false, 

the set of expressions following the else keyword is executed. The keyword elseif 

provides an option for checking another condition. The number of elseif blocks is not 

limited to a particular number, which makes this option a powerful one for complex 

systems. Conditions are made using boolean expressions as described in Section 11.3.

A simple example can be used to check if an element type of an input is an integer or 

a float. The following Julia code accomplishes this:

julia> function el_type(a)

        if eltype(a)==Int64

                println("$a is an integer")

        else

                println("$a is a float")

        end

end

el_type (generic function with 1 method)
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julia> el_type(2)

2 is an integer

julia> el_type(2.0)

2.0 is a float

The code can be improved to contain other data types using the elseif keyword.  

For example, complex data types can also be included:

julia> function el_type(a)

        if eltype(a)==Int64

                println("$a is an integer")

        elseif eltype(a)==Complex64

                println("$a is a complex number")

        else

                println("$a is a float")

        end

end

julia> el_type(complex(2,3))

2 + 3im is a float

julia> el_type(2)

2 is an integer

julia> el_type(2.0)

2.0 is a float

In a similar fashion, a number of elseif conditions can be inserted. An important 

aspect of Julia syntax is that you don’t need to worry about defining blocks of statements 

within brackets (as in C and C++) or with indents (as in Python). The indents used 

here are for visual clarity. The Julia compiler does not demand the same syntactically, 

so you also don’t have to worry about using whitespace, braces, indentation, brackets, 

semicolons, and so on, for defining blocks of code. However, you need to remember to 

finish the conditional construction with end. Furthermore, the elseif and even the else 

parts are optional.
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11.5  for Loop
The for ... end construct helps in working through a list or a set of values, or from a 

start value to a finish value. The following example will help in understanding its usage. 

Suppose we simply want to print the elements of an array [1,2,3]:

julia> a = [1,2,3]

3-element Array{Int64,1}:

1

2

3

julia> for i in a

                println(a[i])

        end

1

2

3

The elements of an array are iteratively valued by i over the array a using the 

membership operator in, that is, using the syntax for i in a. Since Julia uses a very 

intuitive syntax structure, it is easier for users to conceive and understand code.

It is important to note that while a was an array object, the for loop does not return an 

array. Instead, a Void type object is returned. The Void object has just one instance called 

nothing, which is used by convention when there is no value to return. At the end of the 

loop, no value is returned as the loop simply performs whatever the tasks it is defined to do. 

Some functions and/or parts of code are used only for their side effects and do not need to 

return a value. The for loop structure is one of them. After the loop ends, it must not create 

an object; hence, it creates a Void object. As a result, REPL does not print anything for it:

julia> a=for i in a

println(a[i])

end

1

2

3

julia> typeof(a)

Void
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Complex mathematical structures can be included within the block of the loop 

for performing desired operations. For example, let’s consider a Julia code that prints 

Odd when it encounters a odd number and prints Even otherwise. The numbers can be 

checked using the function isodd():

julia> a=[1,2,3,4,5]

5-element Array{Int64,1}:

1

2

3

4

5

julia> for i in a

        if isodd(i)

                print("Odd \n")

        else

                print("Even \n")

        end

end

Odd

Even

Odd

Even

Odd

11.5.1  Scope of a Loop Variable
The existence of a looping variable (i in the previous code) is independent of the loop in 

which it is used. It can exit beforehand, in which case the loop’s behavior affects it. If it 

did not exist before, it is destroyed as soon as the loop is exited. The following example 

will make this clear:

julia> i=1

1
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julia> for i in 1:5 #i already existed

println(i)

end

1

2

3

4

5

julia> i # final value is governed by loop

5

julia> for j in 1:5 #j did not existed before

println(j)

end

1

2

3

4

5

julia> j # j does not exist after loop

ERROR: UndefVarError: j not defined

11.5.2  continue
When you wish to skip certain values during a loop, continue comes in handy. You 

make a rule using a logical expression and skip the values using an if statement. For 

example, suppose you want to extract only the odd numbers from arrays of numbers 

from 1 to 10:

julia> for i in 1:10

                if i%2 == 0

                        continue

                end

        println(i)

        end
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1

3

5

7

9

When condition i%2==0 is checked, it proves true for all even numbers. Hence, 

they are skipped using a continue statement. Others are simply fed to the println() 

function, which prints them.

11.5.3  Comprehensions
Comprehensions are convenient ways of defining arrays using for loops. Here a rule 

is defined within [] brackets (which removes the necessity of writing the end keyword 

to end the for loop). For example, if you need to define an array of the square root of 

numbers from 1 to 5, then you can write Julia code in one line as follows:

julia> [sqrt(i) for i in 1:5]

5-element Array{Float64,1}:

1.0

1.41421

1.73205

2.0

2.23607

You can define the type of elements by defining the type array outside [] brackets. 

For example, writing Complex64 outside square brackets ensures the elements are of 

the type Complex64. (Complex numbers are stored in 64 bits of memory.) The complex 

numbers are defined as follows:

 k k i+ ´( )2  

julia> a = Complex64[sqrt(k)+(2k)im for k in 1:5]

5-element Array{Complex{Float32},1}:

1.0+2.0im

1.41421+4.0im
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1.73205+6.0im

2.0+8.0im

2.23607+10.0im

julia> eltype(a)

Complex{Float32}

An array of tuples, valued by a comprehension rule, can also be created as follows:

julia> [(sqrt(k),k,k^2) for k in 1:5]

5-element Array{Tuple{Float64,Int64,Int64},1}:

(1.0,1,1)

(1.41421,2,4)

(1.73205,3,9)

(2.0,4,16)

(2.23607,5,25)

In this example, each element is a tuple consisting of the square root of a number, 

the number itself, and its square. Numbers range from 1 to 5.

Two iterators can also be defined in a comprehension format as follows:

julia> [(a,b) for a in 1:5,b in 2:4]

5x3 Array{Tuple{Int64,Int64},2}:

(1,2)  (1,3)  (1,4)

(2,2)  (2,3)  (2,4)

(3,2)  (3,3)  (3,4)

(4,2)  (4,3)  (4,4)

(5,2)  (5,3)  (5,4)

The first elements of tuples range from 1 to 5; the second element ranges  

from 2 to 4.
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11.5.4  Generators
Generators, which are new to Julia, were introduced in version number 0.5. Just like 

comprehensions, generators can be used to produce values from iterating a variable. 

But they pose a striking difference. Unlike comprehensions, the values are produced on 

demand. Let’s look at example Julia code:

julia> collect(x for x in 1:100 if x%7==0 && x%3==0)

4-element Array{Int64,1}:

21

42

63

84

This example makes an array of numbers (within the range of 1 to 100 and that are 

multiples of both 7 and 3).

11.5.5  enumerate
Using the built-in function enumerate(), you can produce a tuple of values with their index:

julia> a = ["3",3,3.0]

3-element Array{Any,1}:

"3"

3

3.0

julia> for(index,value) in enumerate(a)

println("$index $value")

end

1 3

2 3

3 3.0

In thsi example, an array is defined with three values: "3" (a string valued 3), 3 

(an integer valued 3), and 3.0 (a floating point number valued 3.0). This list is iterated 

with enumerate() to produce index and value pairs and store them in a defined tuple 

(index,value). Each value is printed using the println() function.
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11.5.6  Zipping Arrays
Zipping arrays involves taking corresponding elements from each array as a member of a 

tuple. For example:

julia> for i in zip(1:5,5:10,10:15)

println(i)

end

(1,5,10)

(2,6,11)

(3,7,12)

(4,8,13)

(5,9,14)

The first element of each tuple is taken from the rule 1:5, the second element is 

taken from the rule 5:10, and the third element of each tuple is taken from the rule 

10:15.

11.6  while Loop
The while ... end construct is used when a particular expression or a set of 

expressions needs to be calculated while a condition is true.

julia> x = 0

0

julia> while x<5

        println(sqrt(x))

        x+=1

end

0.0

1.0

1.4142135623730951

1.7320508075688772

2.0

Chapter 11  Control Flow



286

This code first initializes the variable named x to value 0. Now the condition x < 5 

is checked. When x = 0, then this condition is true and println(sqrt(x)) is executed. 

The x++1 increments the value of x to 1 and again the condition is checked. If found 

true, the println() statement is executed. This is done until the condition is true, that 

is, until x = 4.

11.7  Nested Loops
One of the most convenient aspects of defining loops in the Julia programming language 

is the simplicity of defining nested loops. Nested loops are written by simply separating 

loops with a comma (,) operator. For example, let’s consider the following Julia code 

where first x is spanned from 1 to 3 and, inside each step of this loop, y is spanned from 

1 to 3. For each step within the y loop, z is defined as a tuple where the current value of x 

and y are fed. So when x=1, coordinates (1,1), (1,2), (1,3) are created iteratively and 

then x is incremented to 2 and same is done again:

julia> for x in 1:3,y in 1:3

        z = (x,y)

        println(z)

        end

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(3,1)

(3,2)

(3,3)

Similarly, another Julia code can be written where three coordinates on x, y, and z 

axes of a vectors are defined using nested loops in x,y, and z, respectively (in the same 

order). The coordinates are created as follows:

• First, x = 1 and y = 1, and z takes values 1a dn, then 2.

 – Coordinates are created as (1, 1, 1) and (1, 1, 2).
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• Next, x = 1 and y increments to 2, and z takes values 1a dn, then 2.

 – Coordinates are created as (1, 2, 1) and (1, 2, 2).

• Next x = 1 and y increments to 3, and z takes values 1a dn, then 2.

 – Coordinates are created as (1, 3, 1) and (1, 3, 2).

• Now y and z loops have been exhausted to outer loop for x 

incremented its value to x = 2 and the process is repeated for this new 

value of x.

 – First, (2, 1, 1) and (2, 1, 2) are created.

 – Next, (2, 2, 1) and (2, 2, 2) are created.

 – Next, (2, 3, 1) and (2, 3, 2) are created.

• Again y and z loops have been exhausted to outer loop for x 

incremented its value to x = 3 and the process is repeated for this new 

value of x.

 – First, (3, 1, 1) and (3, 1, 2) are created.

 – Next, (3, 2, 1) and (3, 2, 2) are created.

 – Next, (3, 3, 1) and (3, 3, 2) are created.

• In each case, the length is calculated by the following formula:

 x y z2 2 2+ +  

This is stored in the variable name distance and is used in the println() function 

for printing.

julia> for x in 1:3,y in 1:3, z in 1:2

distance = sqrt(x^2+y^2+z^2)

println("Length for vector ($x,$y,$z) is $distance")

end

Length for vector (1,1,1) is 1.7320508075688772

Length for vector (1,1,2) is 2.449489742783178

Length for vector (1,2,1) is 2.449489742783178

Length for vector (1,2,2) is 3.0
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Length for vector (1,3,1) is 3.3166247903554

Length for vector (1,3,2) is 3.7416573867739413

Length for vector (2,1,1) is 2.449489742783178

Length for vector (2,1,2) is 3.0

Length for vector (2,2,1) is 3.0

Length for vector (2,2,2) is 3.4641016151377544

Length for vector (2,3,1) is 3.7416573867739413

Length for vector (2,3,2) is 4.123105625617661

Length for vector (3,1,1) is 3.3166247903554

Length for vector (3,1,2) is 3.7416573867739413

Length for vector (3,2,1) is 3.7416573867739413

Length for vector (3,2,2) is 4.123105625617661

Length for vector (3,3,1) is 4.358898943540674

Length for vector (3,3,2) is 4.69041575982343

11.8  do ... end
The do ... end construct can be used just like comprehension. Suppose we have an 

array A having five numbers. When we write an anonymous function (x− > x == 1||x == 4|  

where the value of x is either 1 or 4), to find() function (which returns the index of 

resultant element), we can also use the do ... end construct as an alternate. Here, we 

just avoid defining an anonymous function, as illustrated in the following Julia code:

julia> A = [1,2,3,4,5]

5-element Array{Int64,1}:

1

2

3

4

5

julia> find(x-> x==1||x==4,A)

2-element Array{Int64,1}:

1

4
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julia> find(A) do x

x==1||x==4

end

2-element Array{Int64,1}:

1

4

11.9  Exceptions
Sophisticated level programming involves error (or exception) handling. It is an essential 

feature of writing Julia code and coders are encouraged to write their code with this 

feature for better usage and understanding by the general community as well as for 

code stability. When an unexpected condition occurs while executing a Julia program, 

a defined function may not be able to return a reasonable value to its caller. This will 

usually issue an error message, but it is advisable to use the exceptional condition to 

perform one of the following:

• Terminate the program.

• Print a diagnostic error message.

• If the programmer has provided code to handle such exceptional 

circumstances, allow that code to take the appropriate action.

This way, you control the way the program proceeds rather than just getting an error 

message.

11.9.1  Built-in Exceptions
There are a set of built-in exceptions in Julia, which are produced when an unexpected 

condition has occurred. We have already encountered some error messages in a similar 

fashion. The messages that we saw printed on REPL were defined because the Julia code 

that generated them was written for handling exceptions.

Going inside the help mode (by writing ? on a Julia terminal and writing Exception), 

you can obtain a list of built-in exceptions. Some of them are listed in Table 11-1.
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11.9.2  Custom-Built Exceptions
Built-in exceptions can be used by the built-in function throw(), which throws an 

exception as per a defined rule. For example, a DomainError can be thrown when the 

user inputs a non-negative number defined exclusively for negative numbers, as shown 

in the following Julia code:

Table 11-1. Built-in Exceptions in Julia

Syntax Illustration

ArgumentError the parameters to a function call do not match a valid signature.

BoundsError an indexing operation into an array, a, tried to access an out-of-

bounds element, i.

DivideError Integer division was attempted with a denominator value of 0.

DomainError the arguments to a function or constructor are outside the valid 

domain.

EOFError no more data was available to read from a file or stream.

InexactError type conversion cannot be done exactly.

InterruptException the process was stopped by a terminal interrupt (Ctrl+C).

MethodError a method with the required type signature does not exist in the 

given generic function.

OutOfMemoryError an operation allocated too much memory for either the system or 

the garbage collector to handle properly.

ReadOnlyMemoryError an operation tried to write to memory that is read-only.

OverflowError the result of an expression is too large for the specified type and 

will cause a wraparound.

TypeError a type assertion failure occurred, or an intrinsic function was 

called with an incorrect argument type.

UndefRefError the item or field is not defined for the given object.

UndefVarError a symbol in the current scope is not defined.

DimensionMismatch the objects called do not have matching dimensionality.

AssertionError the asserted condition did not evaluate to true.
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julia> f(x) = x<0 ? exp(x) : throw(DomainError())

f (generic function with 1 method)

julia> f(-1)

0.36787944117144233

julia> f(1)

ERROR: DomainError:

Stacktrace:

[1] f(::Int64) at ./REPL[31]:1

The condition x<0 ensures that x should be smaller than 0.

Another function named error() is used to produce an ErrorException that 

interrupts the normal flow of control. For example, the following Julia code is written 

where we wish to entertain only integers for inputting to our defined function. Any 

other type of data should display a descriptive error message so that the user can input 

correctly:

julia>f(x)=typeof(x)==Int64?e^x:error("Input only integer")

f (generic function with 1 method)

julia> f(1)

2.718281828459045

julia> f(2)

7.38905609893065

julia> f(2.0)

ERROR: Input only integer

Stacktrace:

[1] f(::Float64) at ./REPL[34]:1

11.9.3  catch...try Construct for Testing Exceptions
The try .. catch statement allows for exceptions to be tested for. The catch clause  

is not strictly necessary; when omitted, the default return value is nothing (the singleton 

instance of type Void, used by convention when there is no value to return).  

Chapter 11  Control Flow



292

The try ... catch construct let’s us handle exceptions, both generally and dependent 

on a variable. The general structure is as follows:

• try

 – The main body of the function should be written within this block.

 – Julia will try to execute the code within this block.

• catch

 – This block catches the errors.

 – It is advised to use a variable, to which the exception can be assigned.

 – This variable can be used in the if ... elseif ... else 

construct to check the exception.

Let’s consider the example of a custom-built function to calculate the square root 

of a quantity x where x has to be a positive number (Integer, Float, Complex type). We 

would encounter an error if the user feeds a string as input. Hence, the error is stored in 

err variable and then uses if ... else construct. If the err value is MethodError (that 

is, the data type isn’t defined within the method of the built-in sqrt() function), then an 

error message is printed on the terminal. This is verified in the following Julia code:

julia> function square_root(x)

        try

                sqrt(x)

        catch err

                if isa(err,MethodError)

        println("Input a number")

                end

        end

end

square_root (generic function with 1 method)

julia> square_root("a")

Input a number

julia> square_root("alpha")

Input a number
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julia> square_root(complex(2,3))

1.6741492280355401 + 0.8959774761298381im

julia> square_root(2)

1.4142135623730951

The code can be improved to include the DomainError using the elseif option 

where, if a negative number is given as input, it will be treated like a complex number 

and the square root will be calculated:

julia> function square_root(x)

        try

                sqrt(x)

        catch err

                if isa(err,MethodError)

                println("Input a number")

                elseif isa(err,DomainError)

                        sqrt(complex(x))

                end

        end

end

square_root (generic function with 1 method)

julia> square_root(-2)

0.0 + 1.4142135623730951im

julia> square_root("a")

Input a number

julia> square_root(2)

1.4142135623730951

11.9.4  finally
Once the try ... catch construct has finished, Julia executes the code whether the 

operation has succeeded or not. The finally keyword executes whether there was an 

exception or not. This is particularly important because the Julia code that affects the 
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state changes or uses resources like files, involving typical clean-up work (such as closing 

files). These tasks needs to be done when the code is finished (finally!). Exceptions are 

not a good choice for these tasks since they can cause a block of code to exit before 

reaching its normal end. The finally keyword provides a way to run a particular Julia 

code when a given block of code exits (regardless of the fact that it exited). This is 

particularly important for file handling so it will be discussed in Chapter 12.

11.10   Summary
In this chapter, we illustrated Julia’s control flow structures. The control flow of 

computational tasks is essential to any computational tasks. Defining loops, checking 

comparison, and defining expressions for complex logical statements are critical for 

writing code to solve a physical problem. The ability to run these tasks effectively  

with different data types in a timely manner makes Julia a prime candidate for  

numerical computation. The tasks’ ease of usage is a prominent feature in Julia.  

One- line definitions of such features can be seen in very few programming languages. 

Furthermore, there aren’t many strict rules about using indents and brackets to define 

the blocks of code, which avoids syntactical errors on the part of the programmer.
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CHAPTER 12

Input Output

12.1  Introduction
Input and output of data are such basic operations for a programming language that they 

are mostly taken for granted and powerful constructs existing for the same are mostly 

ignored. Julia provides a variety of ways to input and output data. It is important to 

differentiate them and use the appropriate one for a particular application.

Julia provides a rich ecosystem of interfaces to deal with streaming I/O objects such 

as terminals, pipes, and TCP sockets. Julia prefers to handle data in terms of streams; 

data is streamed continuously to the Julia program rather than working on it as a block 

of memory. There are several varities of streaming (for both inputing and/or outputting 

purposes). This chapter will deal with a variety of ways in which Julia can handle data 

input and/or output streams.

12.2  Console I/O
The Julia in this mode is, in fact, a medium for inputting and outputting data. This 

comes under the category of console I/O. We have already used two functions, print() 

and println(), for this purpose. They print the their inputs on the Julia terminal where 

println() also appends a character to the output. The representation used by print 

includes minimal formatting and tries to avoid Julia-specific details:

julia> println("Hello World")

Hello World

julia> print("Hello World")

Hello World



296

The terminal input can be achieved using the built-in readline() function. It 

reads the keyboard input until the first occurrence of a newline character. The newline 

character \n is also stored when the readline() function is used for input:

julia> a = readline();

Hi

julia> a

"Hi\n"

12.3  Basic Stream I/O
The basic Julia functions read() and write() take the streams as their first argument. 

Let’s first explore the built-in writing write() function:

julia> write(STDOUT,"Hello")

Hello5

julia> write(STDOUT,"Hello\n")

Hello

6

julia> write(STDOUT,"Hello\nWorld")

Hello

World11

julia> write(STDOUT,"Hello\tWorld")

Hello   World11

julia> write(STDOUT,"Hello World")

Hello World11

STDOUT is a global variable referring to the standard out stream:

julia> a = STDOUT

Base.TTY(RawFD(14) open, 0 bytes waiting)

TTY represents the computer terminal. By default, STDOUT is the set of output data 

stream to the computer terminal. When we wrote the following:

write(STDOUT,"Hello")
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we got the output Hello5. Here Hello is the content of the input string to the write() 

function and 5 is the number of bytes in the stream. When we wrote the following:

write(STDOUT,"Hello\n")

we added a new character called a newline character to the stream (represented by 

\n); hence, the count of the number of bytes increased to 6. Also, when it is printed at 

TTY (computer terminal), you can observe that the newline character is also printed i.e 

between Hello and 6 being printed, a newline character is also printed (a gap of one line 

exists). Other test commands also show the same capabilities.

Returning the number of bytes can be suppressed with the ; character at the end of 

the command. This can be easily verified in the following Julia code:

julia> write(STDOUT,"Hello")

Hello5

julia> write(STDOUT,"Hello");

Hello #supresses \n too

julia>

The built-in function read() works in a similar fashion. As the name suggests, this 

function will input a stream. Just like STDOUT, there is a global variable referring to the 

standard input stream, STDIN, which will be used in the read() function. Let’s first use it 

in the following Julia code and look at its usage and behavior from the output:

julia> read(STDIN,Char)

'\n': ASCII/Unicode U+000a

(category Cc: Other, control)

The read() function would treat the stream as character data type from standard 

input set by default on the keyboard and stored at the global variable STDIN. In this case, 

the Enter key is pressed, which represents a newline character, \n, that is in turn printed. 

Similarly, you can print alphabets like a as follows:

julia> read(STDIN,Char)

a

'a': ASCII/Unicode U+0061

(category Ll: Letter, lowercase)

julia>
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Within this same command structure, even a number key will produce a character 

data type:

julia> read(STDIN,Char)

1

'1': ASCII/Unicode U+0031

(category Nd: Number, decimal digit)

julia>

When two numbers are fed as input and then the Enter key is pressed, the second 

number is fed to the Julia command prompt:

julia> read(STDIN,Char)

10

'1': ASCII/Unicode U+0031

(category Nd: Number, decimal digit)

julia> 0 # Fed to REPL from previous input

0

julia> typeof(ans)

Int64

Here, the keys for numbers 1 and 0 are pressed and then the Enter key is pressed. In 

this case, 1 (the number 1 as a character) becomes part of the stream and duly displayed, 

after which 0 is fed to the next command prompt, which evaluates it to 0 and displays the 

same. Since the last evaluated entity is stored in the variable ans, checking its data type 

for 0 confirms that the data type is Int64 and not Char as for 1:

julia> read(STDIN,Char)

ab

'a': ASCII/Unicode U+0061

(category Ll: Letter, lowercase)

julia> b

ERROR: UndefVarError: b not defined

Doing a similar task with a set of characters results in an error for julia>b since b 

variable is not defined and cannot be evaluated.
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Using the command methods(read), you can scan the kinds of data types that can 

be fed to the function read(). Also, it is worth noting that write() takes the data to write 

as its second argument, while read() takes the type of the data to be read as its second 

argument.

12.4  Byte Array Streaming
Just like single characters (bytes) are streamed, a byte array can also be streamed as 

follows:

julia> x = rand(UInt8,3)

3-element Array{UInt8,1}:

0x72

0x5a

0x37

julia> read!(STDIN,x)

abc

3-element Array{UInt8,1}:

0x61

0x62

0x63

julia> x

3-element Array{UInt8,1}:

0x61

0x62

0x63

During the first command, three random numbers of the data type Unit8 (8 bits = 1 

byte) are stored in a variable named x. These numbers are fed to the read!() function. 

The addition of ! forces the function to change stored values with new values. Now 

the byte array x is open to read three bytes. When characters a, b, and c are fed at the 

keyboard, these bytes are stored in the byte array. Their hexadecimal representation can 
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be verified to be present as values of elements in x. Conversely, another way to stream in 

byte values in byte arrays is the following:

julia> read(STDIN,3)

abc

3-element Array{UInt8,1}:

0x61

0x62

0x63

julia> ans

3-element Array{UInt8,1}:

0x61

0x62

0x63

Here three values are streamed in the array default output variable ans:

julia> read(STDIN,3)

123

3-element Array{UInt8,1}:

0x31

0x32

0x33

julia>

julia> read(STDIN,3)

1s3

3-element Array{UInt8,1}:

0x31

0x73

0x33

julia> read(STDIN,3)

#$%
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3-element Array{UInt8,1}:

0x23

0x24

0x25

Notice that the output of streamed bytes is shown in their hexadecimal 

representation. Hence, the inputs can be any kind of Unicode characters in the input 

stream.

12.5  Streaming a Line of Characters
When a line of characters must be streamed in, a simpler built-in function can be used 

(readline()), which can take inputs of characters to make a line. Pressing the Enter key 

on a keyboard prints a newline character, which declares the end of the line. The output 

of the readline() function is a string. This is verified by issuing typeof(ans) at the Julia 

command prompt:

julia> readline(STDIN)

Hi, How are you

"Hi, How are you\n"

julia> readline(STDIN)

123.345

"123.345\n"

julia> readline(STDIN)

#$%^yY&*(

"#\$%^yY&*(\n"

julia> typeof(ans) #probing last input at REPL

String

Please note that depending on a particular terminal’s settings, the TTY may be  

line- buffered and might thus require an additional enter before the data is sent to  

Julia REPL.
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12.6  Text I/O
The capability to write textual data depends on the output media. For example, some 

softwares and associated hardwares will only understand ASCII characters, while 

others can also understand Unicode characters. For example, a seven-segment display 

can display only English alphabets and Roman numerals using ASCII code. Hence, 

it is important for a developer to keep in mind the kind of target hardware-software 

combination for a particular application. Generally, one writes a Julia code that needs to 

display on a graphical monitor (such as your desktop’s or laptop’s screen).

The data to monitor is streamed via a software channel that is responsible for interpreting 

it as per the monitor’s configuration. Since it is a graphical terminal, apart from textual data, 

it can also handle a lot of graphical formats. In a general sense, printing textual objects and 

printing graphical objects are similar tasks and can be generalized for a computer-

programming environment. Julia code enables handling these objects and interpreting them 

as per their defined properties. How many types of objects can one Julia function handle 

simply depends on how many methods have been defined for the same. (See Chapter 10.)

We have already seen the primary usage of the built-in function write(). The 

function write() operates on binary streams and text representations are written as is. 

For example, the character a is stored in one byte and is given a Unicode represented by 

the hexadecimal number 0x61. To print a, you can use the write() method:

julia> write(STDOUT,'a')

a1

julia> write(STDOUT,'a');

a

julia> write(STDOUT,0x61)

a

julia> write(STDOUT,0x61);

a1

It is worth noting that the ; operator suppresses the printing of the number of bytes 

(one here) when used at the end of the command. Some other functions exist to handle 

textual objects in a more structured manner:

• show()

• print()
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• println()

• display()

12.6.1  show()
Most of the display functions, ultimately called show() for writing an object x, are given 

a mime type to a given I/O stream (usually a memory buffer), if possible. The default 

mime type is plain text. The function show() requires two input arguments—type of I/O 

stream and data. The show() function can handle a variety of textual data and represents 

them using its defined mime. For example, a complex number must be displayed 

accordingly to its mime, which dictates textual information in the following order:

 1. A number depicting the real part

 2. A whitespace

 3. The symbol for signs + or - (as is the case for the defined number)

 4. A whitespace

 5. A number for the imaginary part

 6. The alphabets im immediately after the number for the imaginary 

part

Let’s print some data types using the show() function. In each case, the data type 

is defined in the variable a, which is given as the second argument to show() since the 

first argument is STDOUT, which is set to a graphic terminal by default. This is the Julia 

terminal in the present case:

julia> show(STDOUT,'a')

'a'

julia> show(STDOUT,'1')

'1'

julia> a = "sandeep"

"sandeep"

julia> a = "sandeep nagar"

"sandeep nagar"
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julia> show(STDOUT,a)

"sandeep nagar"

julia> show(STDOUT,a)

"sandeep"

julia> a = complex(2,3)

2 + 3im

julia> show(STDOUT,a)

2 + 3im

julia> a = 2//3

2//3

julia> show(STDOUT,a)

2//3

Similarly, mimes of characters dictate using single quotes around the characters 

and mimes for strings dictate the use of double quotes around the group of characters 

defining the string. Special characters like a whitespace are not displayed but 

interpreted for their behavior and displayed accordingly. Similarly, a rational number 

is printed with the symbol \\ between the numbers for the numerator and the 

denominator.

The IOContext option can be used to pass the contextual information about output 

from the show() function. It can be the first argument for the show() function specifying 

output format properties. For example, :compact specifies that small values should be 

printed in a compact form. In the case of numbers, they should be printed with fewer 

digits. Similarly, :displaysize can be used to set the number of rows and columns for 

displays of textual data, overriding the information dictated by the calling function. This 

can be useful when you are using LCD displays that have a fixed number of rows and 

columns for handling alphanumeric data. Here, the display size can be set to a given 

number of rows and columns of a particular LCD display unit. In a similar fashion, data 

display can be truncated by using the :limit option for IOContext where displaying 

textual information can be truncated as per defined values. In all cases, it is worth noting 

that data are stored in memory and these functions only affect the display behavior of 

the same; they do not alter the data in memory. Even if the data display is truncated, it is 

not truncated by these functions for storage purposes.
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12.6.2  print()
The built-in function print() simply prints an input to an output stream (by default, it is 

set as a Julia terminal) with minimal formatting. It calls the show() function if it cannot 

handle the features of formatting. Let’s take some examples. When we set a variable 

a as numeric value 1, it prints the same. But when we set a as character value '1', the 

print() still displays its numeric value. This behavior is different from the show() 

function:

julia> a = 1

1

julia> print(a)

1

julia> show(STDOUT,a)

1

julia> a = '1'

'1'

julia> print(a)

1

julia> show(STDOUT,a)

'1'

Similarly, characters and strings can also be printed on the terminal as the following:

julia> a = 'z'

'z'

julia> print(a)

z

julia> show(STDOUT,a)

'z'

julia> a = "sandeep nagar"

"sandeep nagar"
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julia> print(a)

sandeep nagar

julia> show(STDOUT,a)

"sandeep nagar"

For other kinds of data like complex numbers, rationals, and strings with special 

characters, the print() function can be used. It calls the show() function when special 

considerations for formatting the display needs to be taken care of. Hence, the outputs of 

print() and show() are equivalent:

julia> a = complex(2,3)

2 + 3im

julia> print(a)

2 + 3im

julia> show(STDOUT,a)

2 + 3im

julia> a = 2//3

2//3

julia> print(a)

2//3

julia> show(STDOUT,a)

2//3

julia> a = "sandeep@nagar"

"sandeep@nagar"

julia> print(a)

sandeep@nagar

julia> show(STDOUT,a)

"sandeep@nagar"
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The value of variables can be printed within strings using $, as has been explained 

earlier. The outputs of print() and show() are obviously different as numeric values are 

shown as strings in the show() function because the second argument was fed as a string 

data type:

julia> a = 2

2

julia> print("$a")

2

julia> show(STDOUT,"$a")

"2"

12.6.3  println()
The function println() prints the input plus a newline character. This allows users 

to avoid defining newline characters while giving input and seeing output always in a 

newline each time a new instance of the print() function is called:

julia> a = 1

1

julia> print(a)

1

julia> println(a)

1

julia> a = 'z'

'z'

julia> print(a)

z

julia> println(a)

z

julia> a = "sandeep@nagar"

"sandeep@nagar"
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julia> print(a)

sandeep@nagar

julia> println(a)

sandeep@nagar

julia>

It is worth noting that in each case, though the output looks similar for both 

functions, println() inserted a newline character after printing the input. This can 

be observed by the fact that the Julia prompt appears in the next-to-next line after the 

output from println(), but it appears in the next-line when print() is used.

12.6.4  display()
The built-in function display() simply displays the input using the topmost applicable 

display in the display stack, typically using the richest supported multimedia output for 

x, with plain-text STDOUT output as a fallback. This kind of display can be chosen when 

the display(d, x) variant attempts to display x on the given display d only. It throws 

a MethodError if d cannot display objects of a given type. The display units can be 

connected to the machine on which Julia is installed. Each display unit gets a position as 

a memory location among display stacks. Thus, they can be called as per requirements. 

By default, the display is the Julia console:

julia> a = 1

1

julia> display(a)

1

julia> a = '1'

'1'

julia> display(a)

'1'

julia> a = "1"

"1"

julia> display(a)

"1"
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julia> a = "sandeep@nagar"

"sandeep@nagar"

julia> display(a)

"sandeep@nagar"

12.7  Different Display Units
Section 12.6 concentrated on textual data only, but there can be many kinds of objects 

that need to be displayed on a variety of display units. Objects like tables of data, graphs, 

2D and 3D drawings, maps, photographs, and movies are handled by a variety of 

display units. Present-day computers are equipped with multimedia consoles that have 

appropriate hardware and software to stream and interpret multimedia data objects. 

These objects are usually defined as a file or set of files in a particular format. To deal 

with these kinds of data objects, Julia must be able to interpret them for inputting and 

generate them in the right format for outputting. But even after doing the same, the 

stream must be inputted and/or outputted from the right kind of input and/or output 

device (which is able to handle that particular kind of data). Hence, knowledge of display 

units is essential.

In addtion to multimedia consoles, you can have monochrome display units that do 

not output color and data with a simple black-and-white screen. Some of them cannot 

handle graphical objects. In some cases, graphics are created using textual information. 

For example, a line can be made using the – symbol, and circles can be represented by 

the o or 0 symbol.

LCD screens exist in a variety of formats ranging from colorful, big billboards 

to LCD TVs tosimple LCD units with just eight characters in one row. No matter 

what kind of LCD unit is attached to the machine, its ports of connections, memory 

locations for its display driver, and so on, must be known to Julia in advance so that 

they can be used to communicate with Julia code. LED screens follow the same pattern 

as LCD screens.

3D printers, which can print a 3D object for display, are the newest kind of display 

units. They are connected using simple USB ports or specialized hardware to a machine. 

Connecting driver(s) that interpret data from a machine to a 3D printer must be installed 

properly and then Julia code can be written to give commands to a 3D printer to get 
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streamed data for printing. The data essentially is in the form of a machine code, having 

information about the controlling printer’s motor and filament feeding mechanism (for 

filament-based 3D printers).

Listing all kinds of display units and their functioning is out of the scope of this 

book, but we have provided a general description of the basic philosophy pertaining 

to display units. The major takeaway lesson from this section is that, most often, files 

are exchanged by Julia code and the machine’s operating system for the purpose of 

interaction with a local or remote machine from which data are streamed in or out. Thus, 

it is important to study how Julia handles files for this purpose.

12.8  File I/O
Handling files is an essential part of the process of computation. Julia provides many 

features to perform this act. A file is a group of symbols clubbed together as a unit in 

a particular format. Files exist in a variety of formats and, hence, any programming 

language enjoying the capabilities of handling files must provide the functionalities for 

handling a variety of file formats as well as opening, making, editing, and deleting them 

as desired, with ease.

UNIX and similar systems treat all computing resources as files, which comprise 

a computer’s peripherals, including the keyboard. Reading keystrokes to input values 

into a program remains a critical functionality of any programming language. We have 

already learned that a keyboard is set to be the default value for the global variable 

STDIN. We have also learned that keystrokes can be read by the functions read() and 

readline(). The function read() can also be used to read files, but each file must be 

opened first and must be closed after the operation so that it can be opened again. To 

perform these operations, open() and close() operations exists.

Before you perform these actions, it is important to know where the file is located 

(its path), what kind of permissions are allowed for users (permissions to read, write, 

and/or execute), and whether users have permissions to create, edit, and delete files. 

It is assumed that readers already have basic knowledge of these concepts since they 

will not be discussed in great detail here. For learning the same you can refer reference 

number(s) [1]. Knowledge of Linux commands [2] for handling files also comes in handy 

when working with Julia programming.

Chapter 12  Input Output



311

12.8.1  open(), close(), and read()
The open() function takes a filename and returns an IOStream object that can be used 

for reading/writing data from/to the file. To work with a file, we need to either create one 

or open an existing one. The function open() needs a string with a path to the file. If a file 

by that name does not exist,it can be created if the second argument is given as "w" for 

writing the file. Please note that following code is tested on MacOS and I believe that it 

works uniformly on all Unix-based OS.

The following Julia code will write a file in the directory \tmp and name it t.txt with 

writing permission. Then ii will create a variable f, which references to this file object. 

Then f is used to write into this file object. The string "A, B, C, D\n" is fed to this text 

file object:

julia> open("/tmp/t.txt", "w") do f

       write(f, "A, B, C, D\n")

end

11

It is important to note that the code has not closed the file after opening the same. 

Instead, the following code does the same. You must close a file after performing the 

required actions so that it can be opened again in the same or different session:

julia> open("/tmp/t.txt", "w") do f

write(f, "A, B, C, D\n")

close(f)

end

Opening the Unix/Linux console and probing the contents of the directory tmp 

allows you to verify that the file has been created by the user (who is logged it, in your 

case):

$ cd /tmp

$ ls

t.txt

$ head t.txt

A, B, C, D
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The command ls -l will let you know what kind of permissions are assigned for 

this file. Depending on the kind of user, you may have assigned read and/or write and/

or execute permissions by default, but you can change these assigments using the Linux 

command chmod [2].

A file with multiple data points in multiple lines can also be created. Suppose you 

wish to create a file containing five lines comprised of random numbers in a defined 

string:

julia> open("/tmp/t.txt", "w") do f

       for i in 1:5

               random_number = rand()

               write(f, "random number is $random_number \n")

       end

end

This will modify the existing file t.txt having the data as required. Suppose you 

wish to write two random numbers per line. They must be separated by a symbol for 

visual clarity as well as data integrity. Such symbols that perform this task are called 

delimiters. A very commonly used delimiter is the symbol for a comma (,). Let’s modify 

the previous code to include a comma between two random numbers per line:

julia> open("/tmp/t.txt", "w") do f

      for i in 1:5

               num1 = rand()

               num2 = rand()

               write(f, "num1= $num1,num2=$num2 \n")

      end

end

The same results, except when printing formatted strings, can be achieved by the 

following code using the writedlm() function, which writes with a defined delimiter 

symbol as one of the arguments:

julia> writedlm("/tmp/test.txt", rand(5,2), ", ")
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12.8.2  Array Reading and Writing
The functions writedlm() and readdlm() can be used to write arrays into a file and 

make arrays from contents to the file as follows:

julia> random_num = rand(2,3)

2x3 Array{Float64,2}:

0.742948  0.346532  0.385416

0.567728  0.345581  0.553949

julia> writedlm("/tmp/t.txt",random_num)

This modifies (and creates in case t.txt did not exist in the directory \\tmp) the file 

t.txt with contents of the array referenced by th evariable name random_num. It is worth 

noting that a delimiter can be any symbol or group of symbols.

Just as the writedlm() function was used to write an array into a file, readdlm() 

reads a file into an array:

julia> read_file = readdlm("/tmp/t.txt")

2x3 Array{Float64,2}:

0.742948  0.346532  0.385416

0.567728  0.345581  0.553949

julia> read_file

2x3 Array{Float64,2}:

0.742948  0.346532  0.385416

0.567728  0.345581  0.553949

When the delimiter is not defined, a whitespace is used for the same in the previous 

case since array entries of the same row are delimited by a whitespace. For the reddlm() 

function, the columns are assumed to be separated by one or more whitespaces. The 

end-of-line delimiter is taken as \n. Moreover, if the whole data is numeric, the resultant 

array is also numeric. If some elements cannot be parsed as numbers, a heterogeneous 

array of numbers and strings is returned:

julia> writedlm("/tmp/t.txt",random_num,",")

julia> random_num = rand(2,3)
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2x3 Array{Float64,2}:

0.899567  0.195336  0.330642

0.951103  0.915678  0.986845

julia> writedlm("/tmp/t.txt",random_num,",")

julia> read_file = readdlm("/tmp/t.txt")

When readdlm() is not used with the delimiter argument in the previous case,  

each row element becomes a string and, as a result, a 2 × 1 array is stored in read_file. 

The actual delimiter in the file t.txt is a , (comma):

julia> read_file = readdlm("/tmp/t.txt",',')

2x3 Array{Float64,2}:

0.899567  0.195336  0.330642

0.951103  0.915678  0.986845

The type of data can also be specified as third arguments to ensure the data type of 

all elements is uniform:

julia> read_file = readdlm("/tmp/t.txt",',',Float64)

2x3 Array{Float64,2}:

0.899567  0.195336  0.330642

0.951103  0.915678  0.986845

julia> eltype(read_file)

Float64

Since most often data points are separated by a comma, csv (comma separated 

vaules) versions of the functions are used as writecsv() and readcsv()to handle csv 

files.

julia> read_file = readcsv("/tmp/t.txt")

2x3 Array{Float64,2}:

0.899567  0.195336  0.330642

0.951103  0.915678  0.986845

julia> read_file

2x3 Array{Float64,2}:

0.899567  0.195336  0.330642

0.951103  0.915678  0.986845
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12.9  Summary
In this chapter, we have dealt with defining the concept of I/O steams of data and 

Julia’s ability to deal with a variety of streams in a flexible manner. Streams of data can 

be input from a variety of input devices including keyboards, microphones, and video 

cameras. The behavior of an input device can be objectified in Julia and then defined 

using methods. The behavior of most output devices—such as a Julia terminal, a graphic 

terminal, printers, plotters, LCD panels, LED panels, and even 3D printers—is similar. 

Numerical computing deals with defining tasks in files. Julia’s ability to treat data in a file 

as an I/O stream defines an abstraction of layers that lets a developer define the code 

with ease. File I/O operations define the backbone of numerical computations. For this 

reason, this chapter is quite important for users who are serious about making a career 

in data crunching using Julia.
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CHAPTER 13

Plotting

13.1  Introduction to Plotting in Julia
Plotting is an essential part of science and engineering studies. Visualization of an 

engineering concept leads to better understanding of the phenomenon. Also, in 

today’s world, publications are becoming benchmarks of academic success, and good 

publications require attractive graphs and animations for showcasing results. For 

these reasons, plotting 2D and 3D graphs as well as making animations for a given 

process/equation is an essential part of computational processing and post-processing 

investigation.

The basic Julia package does not include any functions to make plots. Thus, users 

need to use a variety of packages for this purpose. Following is a list of packages users 

can take advantage of:

• Plots

• Pyplots

• GR

• UnicodePlots

• Plotly

• Gadify

• Bokeh

Most packages define plots in the same way. Plotting functions usually takes arrays 

as inputs and offers a variety of options for decorating the plots such as changing the 

marker style, marker size, and marker colors; connecting data points with lines of 
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varying sizes; giving a title, label, and legend to graphs; writing equations for labels, 

legends, or somewhere in between the graphs; and so. This chapter begins with the 

package Plots() and gives a brief introduction to some other packages and their unique 

features.

13.2  A Plot as an Object
A plot is a graphical object that requires a graphical terminal. On a nongraphical 

terminal, plots are usually created by placing characters in a specific series. This method 

is usually not preferred nowadays when graphical terminals have increasingly become 

widely available at reasonable costs and decent processing speeds, and they have a lot 

of power. Hence, most Python graphing packages do make plot objects for dealing with 

graphic terminals at computing machines.

A graphic object has many properties. Following are some of them:

• Size: Length and breadth of a plot as it appears on a graphing 

terminal

• Shape: Aspect ratio (the ratio of length and breadth of a plot)

• Title: The string declaring the subject of a plot

• Axes: The axes that show reference data points

• Labels: The labels associated to axes showing a descriptive string

• Markers: Symbols of various shapes depicting data points

• Resolution: Measured in dpi (dots per inch) because, while printing, 

the resolution of an image is determined by the ability of the printer 

to define individual pixels as a dot and the number of dots per inch 

will define the degree of pixelation of the figure

• Format of file: A plot can be stored in many formats reserved for 

photographs and other kind of media.

• File name: A file name provides identification marker for an object in 

a computing system.

A Julia plot object has a method to deal with all these properties. Using this method, 

you can modify the features. It is possible to save a profile so that all objects can derive 
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values for their properties from the profile, thus avoiding the need to define them each 

time a new object needs to be created and also to maintain uniformity.

Furthermore, a plot object is rendered by a graphical engine. Again a variety of 

graphing engines of varying capabilities can be used. Some are more powerful in terms 

of their abilities to produce plots of richer properties and producing them faster. While 

working with different packages, some graphing engines provide a way to define a 

particular engine for rendering at the back end. Fixing this aspect alleviates worries 

about uniformity of configurations, quality, and formats of graphical objects.

13.3  Plots Package
Plots is a high-level plotting package. It provides powerful graphing capabilities that are 

usually desired for most of the high-performance computing requirements. It interfaces 

with other plotting packages (referred to as back ends or graphic engines) to produce 

graphics files in a flexible manner. Each of these graphic back ends also can perform as 

stand-alone plotting packages, but Plots provides a user-friendly, simple, and consistent 

interface.

Before usage, a package must be imported into the present Julia session using 

the import <packageName> command. The following command is one of the first 

commands for using the Plots package:

# If Plots package is not installed

julia> using Plots

ERROR: ArgumentError: Module Plots not found in current path.

Run `Pkg.add("Plots")` to install the Plots package.

Stacktrace:

[1] _require(::Symbol) at ./loading.jl:428

[2] require(::Symbol) at ./loading.jl:398

julia> Pkg.add("Plots") # Plots is installed

#Long list of outputs is suppressed here.

julia> using Plots # First time

INFO: Precompiling module Reexport.

INFO: Precompiling module StaticArrays.

INFO: Precompiling module RecipesBase.
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INFO: Precompiling module PlotUtils.

INFO: Precompiling module PlotThemes.

INFO: Precompiling module Showoff.

INFO: Precompiling module StatsBase.

INFO: Precompiling module NaNMath.

INFO: Precompiling module Requires.

julia> using Plots # Second time onwards

julia> x = Array([1,2,3,4,5])

5-element Array{Int64,1}:

1

2

3

4

5

julia> y = x.^2 #vectorized power to array x

5-element Array{Int64,1}:

1

4

9

16

25

julia> plot(x,y)

Figure 13-1 shows the result, which encompasses the screenshot of a figure window 

that appears on the graphic terminal of a computer.

It is worth noting that the colors and resolution of windows will be dictated by 

the configuration of the graphic terminal inside the operating system of the user’s 

machine, but it will appear similar to that in Figure 13-1. The top bar presents the Close, 

Expand, and Hide buttons while the lower bar presents the Home, Move left, Move 

right, Shift with mouse, Zoom in and zoom out, Change plot properties, and Graphic 

object properties buttons. Users are encouraged to click the tabs and explore each one. 

Explaining them is a wasteful exercise because they are quite intuitive.
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Since there are only five data points, the plotted graph issn’t a very smooth, straight 

line connected with the data points. Ideally

 y x= 2

 

is a smooth curve. To produce a graphically accurate curve, more data points are needed, 

so the Julia code is modified as follows:

julia> x = 1:10e4;

julia> y = x.^2;

julia> plot(x,y)

Now instead of five data points, we have 104 data points, which results in Figure 13-2.

Figure 13-1. Plot of x vs. y = x2
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The plot() function can also evaluate a mathematical expression, so the following 

code would also result in the same figure as Figure 13-2.

julia> x=1:10e4;

julia> plot(x,y)

13.3.1  Default Behavior of Plots
Figure 13-2 is obtained using the default behavior of plot properties with the default 

engine named PyPlots. Other plotting engines can also be chosen for changing the 

behavior. As an example, the unicodeplots() can be invoked and used as follows:

julia>Pkg.add("UnicodePlots")

julia>Pkg.build("UnicodePlots")

julia> unicodeplots()# first time usage

INFO: Precompiling module UnicodePlots.

Plots.UnicodePlotsBackend()

Figure 13-2. Plot of x vs. y = x2
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julia> unicodeplots()# second time onwards

Plots.UnicodePlotsBackend()

julia> x=1:10e4;

julia> plot(x,y)

The plot is not shown in a separate window, but on the Julia terminal itself, as 

depicted in Figure 13-3.

Since PyPlots is a good option for general purpose usage of producing good quality 

plots, it is a good idea to include the following line of code at the beginning to ensure 

PyPlot is set as the back end:

julia> pyplot()

Plots.PyPlotBackend()

Figure 13-3. Unicode Plot of x vs. y = x2
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13.3.2  Simpler Way to Plot Equations
The plot() command presents a simple way to plot mathematical equations. Suppose 

you wished to plot the graph depicted in Figure 13-4.

y = sin(x) + sin(2x)

The Julia code for performing this task is as follows:

julia> eq(x) = sind(x) + sind(2x)

eq (generic function with 1 method)

julia> plot(equation, 1:500)

The resulting graphs using this code looks like Figure 13-4

Figure 13-4. x vs. y = sin(x) + sin(2x)
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13.3.3  Implicitly Passing a Second Plot
Julia provides a way to implicitly pass an argument for the second plot arguments to exist 

by using plot!() syntax, which changes the original plot since the ! version modifies the 

existing object produced by the plot() command. The following code will produce the 

graph shown in Figure 13-5:

julia> eq(x) = sind(x) + sind(2x)

eq (generic function with 1 method)

julia> plot(eq,1:500)

julia> eq1(x) = sind(2x)+sin(3x)

eq1 (generic function with 1 method)

julia> plot!(eq1,1:500)

Thus, two plots are produced together on the same figure window where the second 

plot command is passed to the exiting plot window implicitly.

Figure 13-5. x v.s y = sin(x) + sin(2x) and y = sin(2x) + sin(3x)
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13.3.4  Decorating the Plots
Documentation on the Plots web page [1] gives a detailed overview of various options 

for decorating the plot with information in a meaningful manner. The following Julia 

code performs some of the most relevant tasks and produces the graph in Figure 13-6. 

Users are encouraged to read documentation to learn more.

julia> eq1(x) = sind(x) + sind(2x)

eq1 (generic function with 1 method)

julia> eq2(x) = sind(x) + sind(3x)

eq2 (generic function with 1 method)

julia> plot(eq1,

        1:10:500,

        label = "sin(x)+sin(2x)",

        line =(:black,0.9,3, :dot))

julia> plot!(eq2,

       1:10:500,

label = "sin(x)+sin(3x)",

line =(:black,0.7,3, :solid)

size=(800, 600)

)
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13.3.5  Many Plots in the Same Window Using subplot()
A number of plots can be plotted within the same plot window using the subplot() 

window. Plots with these configuration are treated as a matrix of graphs. For example, 

let’s consider plotting four graphs as a matrix of 2 × 2 graphs. Suppose we wish to plot 

sin(x) in the first graph (the graph element indexed for subplot as subplot(221), 

sin(2x) in the second graph; the graph element indexed for subplot as subplot(222), 

sin(3x) in the third graph; the graph element indexed for subplot as subplot(223), 

sin(4x) in the fourth graph; the graph element indexed for subplot as subplot(224)). 

The following Julia code does this work and a graph figure is obtained as illustrated in 

Figure 13-7:

julia> x = -4pi:pi/100:4pi;

julia> y1 = sin(x);

julia> y2 = sin(2x);

Figure 13-6. x vs. y = sin(x) + sin(2x) and y = sin(2x) + sin(3x) with some 
decoration
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julia> y3 = sin(3x);

julia> y4 = sin(4x);

julia> fig = PyPlot.figure(

         "pyplot_subplot_mixed",

         figsize=(10,10),

         dpi=200);

julia> PyPlot.subplot(221);

julia> PyPlot.plot(x,y1);

julia> PyPlot.subplot(222);

julia> PyPlot.plot(x,y2);

julia> PyPlot.subplot(223);

julia> PyPlot.plot(x,y3);

julia> PyPlot.subplot(224);

julia> PyPlot.plot(x,y4);

Figure 13-7. Subplots of sin(x), sin(2x), sin(3x), and sin(4x)
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13.3.6  Histograms
Histograms are graphs where data are sampled into bins and numbers of data points 

belonging to particular bins are plotted. Histograms are useful in statistics. Plots 

functions has a method named histogram() that can be used as follows:

julia> x = randn(100000);

julia> Plots.histogram(x)

First, 100,000 normalized random numbers are generated using the randn() 

function and then they are plotted using the histogram() function within Plots. The 

resulting figure is shown in Figure 13-8. The bell shaped curve verifies that numbers are 

indeed normally distributed.

Figure 13-8. Histogram of random numbers generated using rand() function

Chapter 13  plotting



330

13.3.7  Bar Charts
Bar charts show vertical bars as per data for the y-axis. Let’s experiment with 20 random 

numbers. The following Julia code below does the job and Figure 13-9 is the output:

julia> x = rand(20);

julia> Plots.bar(x)

13.3.8  Pie Charts
Pie charts depict a “pie” (a circle) whose area is proprtional to the data value. Let’s 

experiment with 10 random numbers. The following Julia code does the job and 

Figure 13-10 is the output:

julia> x = rand(10);

julia> Plots.pie(x)

Figure 13-9. Bar chart of 20 random numbers generated using the rand() function

Chapter 13  plotting



331

13.3.9  Scatter Plots
Scatter plots just put a dot for x and y data at the coordinate made by x and y. In our 

example, x-axis has linearly distributed 100 numbers from 1 to 100 and y-axis has 100 

random numbers. The following Julia code performs the job of plotting a scatter plot, as 

shown in Figure 13-11:

julia> x=1:100;

julia> y=randn(100);

julia> Plots.scatter(x,y)

Figure 13-10. Pie Chart of 10 random numbers generated using rand() function
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13.4  3D plots
plot3d() can be used to plot 3D plots that takes three arguments. Here x and y variables 

make the plans on which z is defined. In the following Julia code,

z = sin(x) + sin(y)

and the resultant figure is shown in Figure 13-12.

julia> x = 1:0.01:10;

julia> y = 1:0.01:10;

julia> z = sin(x)+sin(y);

julia> Plots.plot3d(x,y,z);

Figure 13-11. Scatter plot of 100 random numbers generated using the rand() 
function
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13.5  Summary
In this chapter, we have described Julia’s ability to process data and effectively visualize 

the results as plots. The variety of plots and their easy definitions are one of the key 

features of Julia. This chapter has also dealt with a computational task that is not dealt 

with by the base package of Julia but by an external package. Hence, this chapter has 

also demonstrated how to work with external packages and defined their configurations. 

It is important to note that explaining the plotting capability of Julia could be a book in 

and of itself. For this reason, this chapter has just given a glimpse of these activities with 

just one of the options in terms of the Plots package. It leaves users the opportunity to 

explore the rest of the options and make informed decisions.

13.5.1  Bibliography

 [1] https://juliaplots.github.io/

Figure 13-12. 3D plot using the plot3d() function
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CHAPTER 14

Metaprogramming

14.1  Introduction
Metaprogramming is one of the most powerful features of the Julia programming 

language. Crudely speaking, metaprogramming is about Julia code controlling other 

parts of source files to an extent that it can modify them and control their execution. To 

understand this process, you must understand the way Julia code is executed. Broadly 

speaking, there are two stages of Julia code execution:

• Making an Abstract Syntax Tree

 – Julia code is parsed in the form that is suitable for evaluation.

• Evaluation

 – The parsed code is executed by the compiler.

Metaprogramming is about modifying the code after it has been parsed but before 

it has been executed. This feature proves to be very useful because you can write short 

pieces of code that can perform the tedious job of writing bigger pieces of code as per a 

given rule.

14.2  The : operator
Each Julia task is treated as an expression. REPL evaluates these expressions. To perform 

metaprogramming, you must be able to stop Julia from evaluating an expression. This is 

done by the : operator. Let’s check out its usage in the following Julia code:

julia> a = "Hello"

"Hello"
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julia> :a

:a

julia> b = "1.0"

"1.0"

julia> :b

:b

julia> :(3.5^2)

:(3.5 ^ 2)

The output is shown as :a, :b, and :(3.5 ^ 2). These are termed as symbols. These 

symbols are unevaluated pieces of code ready for modification.

Symbols can be formed alternatively by enclosing the expression within the quote 

and end keywords. The following example demonstrates this concept:

julia>a= quote

                3.5^2

        end

quote # REPL[437], line 2:

3.5 ^ 2

end

julia> typeof(a)

Expr

julia>  eval(a) 12.25

julia>  3.5^2 12.25

julia> :(3.5^2)

:(3.5 ^ 2)

The variable a stores an Expr (expression) object. This can be evaluated using the 

eval() function. Both the form of defining a symbol :(3.5 ^ 2) can be used. The quote 

and end keywords are used in multiline usage and the : operator is usually used for a 

single-line usage.
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14.3  Expressions
Let’s look at an expression by probing it with Julia. For this purpose, let’s first construct 

a simple expression for a piece of code that calculates the hypotenuse of a right-angled 

triangle when its perpendicular side is give as 2 units and its base side is given as 3 units.

julia> A = quote

                 p=3

                 b=4

                 h=sqrt(p^2+b^2)

         end

quote  # REPL[442], line 2:

p = 3 # REPL[442], line 3:

b = 4 # REPL[442], line 4:

h = sqrt(p ^ 2 + b ^ 2)

end

julia> eval(A) # evaluaing A

5.0

This expression will be used henceforth for probing its properties and construction.

14.3.1  fieldnames() and dump()
The fieldnames() function can be used to see the structure of this expression stored in 

A. The complete structure, the Abstract Syntax Tree, can be obtained using the dump() 

function.

julia> fieldnames(A)

3-element Array{Symbol,1}:

:head

:args

:typ

julia> dump(A)

Expr

        head: Symbol block

        args: Array{Any}((6,))

Chapter 14  MetaprograMMing



338

                1: Expr

                        head: Symbol line

                        args: Array{Any}((2,))

                        1: Int64 2

                        2: Symbol REPL[442]

                        typ: Any

                2: Expr

                        head: Symbol =

                        args: Array{Any}((2,))

                        1: Symbol p

                        2: Int64 3

                        typ: Any

                3: Expr

                        head: Symbol line

                        args: Array{Any}((2,))

                        1: Int64 3

                        2: Symbol REPL[442]

                        typ: Any

                4: Expr

                        head: Symbol =

                        args: Array{Any}((2,))

                        1: Symbol b

                        2: Int64 4

                        typ: Any

                5: Expr

                        head: Symbol line

                        args: Array{Any}((2,))

                        1: Int64 4

                        2: Symbol REPL[442]

                        typ: Any

                6: Expr

                        head: Symbol =

                        args: Array{Any}((2,))

                        1: Symbol h

                        2: Expr
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                                head: Symbol call

                                args: Array{Any}((2,))

                                1: Symbol sqrt

                                2: Expr

                                        head: Symbol call

                                        args: Array{Any}((3,))

                                        1: Symbol +

                                        2: Expr

                                        3: Expr

                        typ: Any

                typ: Any

       typ: Any

typ: Any

The output is an array of expressions that are subexpressions of the original 

expression stored in the variable name A. Each subexpression has a head, Expr, and 

typ, which define a block of code, its subexpression, and the types included. This is the 

Abstract Syntax Tree (AST). Let’s try to probe the arguments of the Symbol block:

julia> A.args[1]

:( # REPL[442], line 2:)

julia> A.args[2]

:(p = 3)

julia> A.args[3]

:( # REPL[442], line 3:)

julia> A.args[4]

:(b = 4)

julia> A.args[5]

:( # REPL[442], line 4:)

julia> A.args[6]

:(h = sqrt(p ^ 2 + b ^ 2))
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Alternatively, the for loop can be used to print the args list:

julia> for (n, expr) in enumerate(A.args)

println(n,  ":  ",  expr)

end

1:  # REPL[442], line 2:

2: p = 3

3:  # REPL[442], line 3:

4: b = 4

5:  # REPL[442], line 4:

6: h = sqrt(p ^ 2 + b ^ 2)

Now let’s edit the A.args, which stores the expression :(h=sqrt(p^2+b^2)), to 

another expression, :(multiply = p * b):

julia> eval(A) # Before editing

5.0

julia> A.args[end]= :(multiply=p*b)

:(multiply = p * b)

julia> eval(A) # after editing

12

This is a simple demonstration of metaprogramming where the subexpression 

ofJulia code is edited to calculate something entirely different without writing the code 

for the same.

14.4  Expression Interpolation
For writing an expression in a simpler fashion, you can use the $ interpolation operator 

in expressions, as we learned for strings (see Chapter 9, Section 9.9). For example, 

if we set x=-2 and y=2, then the expression expr=:(x^y)) returns :(x^y), whereas 

expr1=:($x^y) will return :(-2 ^ y) while expr2=:(x^$y)) will return :(x ^ 2). All of 

these evaluate to the same value—4. This is shown in the following Julia code:

julia> x=-2

-2
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julia> y=2

2

julia> expr=:(x^y)

:(x ^ y)

julia> expr1=:($x^y)

:(-2 ^ y)

julia> expr2=:(x^$y)

:(x ^ 2)

julia> eval(expr)

4

julia> eval(expr1)

4

julia> eval(expr2)

4

One important feature of such an interpolation is that the expression evaluation 

evaluates at parse time, whereas other interpolations evaluate only when the eval() 

function is called after parse time.

14.5  Macros
Using a macro, you can generate a new output expression from an unevaluated input 

expression. These expressions are evaluated at parse time and return an unevaluated 

expression. They are like functions except for the fact that they map an input expression 

to an output expression.

Syntax of a macro is as follows:

macro name_of_macro

# body of macro

end
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A macro is invoked by placing a @ before the name without a whitespace and then 

passing an expression such as the following:

julia> @name_of_macro expr1,expr2

# alternative way of calling

julia> @name_of_macro(expr1,expr2)

Let’s understand this form of definition and usage with the following Julia code. 

Here a macro named expFeatures is defined that prints the args, head, and typ for an 

expression. It also evaluates the expressions and returns the evaluated value.

julia> macro expFeatures(expression)

        if typeof(expression)==Expr

                println(expression.args)

                println(expression.head)

                println(expression.typ)

        end

answer=eval(expression)

return answer

end

@expFeatures (macro with 1 method)

julia> @expFeatures 3+4-5

Any[:-, :(3 + 4), 5]

Call

Any

2

julia> @expFeatures (3+4)-(5^2)

Any[:-, :(3 + 4), :(5 ^ 2)]

Call

Any

-18
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julia> @expFeatures sin(90),sind(90)

Any[:(sin(90)), :(sind(90))]

Tuple

Any

(0.8939966636005579, 1.0)

When the macro @expFeatures is fed expressions 3+4-5, then args is found to be 

Any[:-, :(3 + 4), 5], head is found to be call, and typ is found to be Any. Also the 

expression is evaluated as 2. Similarly other expressions can be fed to this macro to 

study the features of the same. Two expressions (sin(90 and sind(90)) are fed in the last 

attempt separarted by a comma (which is why head becomes tuple) and the evaluation 

is also done accordingly.

14.6  Built-in Macros
A lot of macros are predefined in the Julia compiler. Some of them will be discussed 

here. One of the most preferred is to time the execution of a code. Using @time for an 

expression, you can obtain the following:

• A macro to execute an expression

• The time it took to execute

• The number of allocations

• Total number of bytes its execution caused to be allocated

• Returning the value of the expression

julia> x=1:10e4;

julia> @time x.^3

1.024123 seconds (63.48 k allocations: 4.167 MiB)

100000-element  Array{Float64,1}:

1.0

8.0

27.0

64.0

125.0
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216.0

343.0

512.0

729.0

1000.0

.

.

.

9.9976e14

9.9979e14

9.9982e14

9.9985e14

9.9988e14

9.9991e14

9.9994e14

9.9997e14

1.0e15

This shows that the execution took 1.024123 seconds, 63.48K allocations, and a 

memory occupation of 4.167 MiB; then the partial display of the cube of each array 

element is shown. Users can also experiment with @timev, @timed, @elapsed, and  

@allocated and check thier usage using the help>? mode.

14.7  Summary
In this chapter, we have presented the concepts of a symbol, expression, interpolation of 

expressions, and macros to introduce the concept of metaprogramming in Julia. Having 

easy ways to perform metaprogramming in Julia is one of its most attractive features for 

developers. A number of macros has been developed and released in a similar fashion. 

The practices of making useful macros and using them judiciously are considered key 

skills for a Julia programmer.
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Absolute value functions

abs() and abs2(), 96–97
complex number, 97
manipulating signs, 100, 102
problem, 98
sign and, 95
sign(), signbit(), copysign(), and 

flipsign(), 98–100
Ahead-of-time (AOT), 3
Anonymous functions, 263
Arbitrary precision arithmetic, 49–50
Arithmetic operators, 54
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assignment operator, 171–172
comprehension, 166, 168–169
copying, 165–166
creating, 132, 134
dictionary, 174

adding key, 178–179
changing values, 177
creating, 174
deleting key, 178–179
get() function, 175–176
haskey() function, 177–178
keys() function, 176
key-value pair, 178

eltype, 138
end keyword, 142–143
eye() command, 152

falses() function, 148–149
fill command, 152–153
finding items in, 163–164
flipping, 155–156
floating point number, 130–131
of functions, 131
generator expressions, 170
indices, 140
Int64 type, 128–129
length, 138
mixed data types, 132
multidimensional, 129
ndims(), 138–139
objects, 127
ones() function, 147–148
with random numbers, 149–150, 152
range operator, 141–142
reshaping, 153, 155
set theory and, 172–173
similar(),137
size of, 139
slicing multidimensional, 143–145
sort() function, 159
sorting algorithms, 160, 162
sortperm() function, 158
squeezing and, 156–157
transformation equation, 172
trues() function, 148
using ellipsis operator, 135
using linspace, 135–136
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using logspace, 136
zeros() function, 145, 147

ASCII system, 229

B
Bar charts, 330
Binary operator, 62, 64
Bitwise operators, 60–61
Boolean algebra

arithmetic operations, 55
bitwise operators, 60–61
built-in functions, 58–59
chaining comparisons, 59–60
IEEE754 standard, 56, 58

Boolean operations, 213–214
Boolean switching, 276–277
Byte array streaming, 299, 301

C
Complex numbers

absolute value functions, 97
arithmetic operations, 74, 76–77
constant, 69
functions, 70–71
properties of, 72–73
rational numbers, 81–82

Complex roots of unity, 102
Control flow

do … end, 288
exceptions, 289

built-in, 289–290
custom-built, 290
finally, 293–294
try … catch construct, 292–293

for loop (see for loop)
if-else, 277–278

nested loop, 286–288
ternary expression, 275–276
while loop, 285–286

cos functions, 114, 122–123
Cube root, 104–105

D
Determinants matrix, 185
Dictionary order. See Lexicographical 

order
Division error, 45
Division functions

built-in, 90
cycling, 89
data types, 91
divrem(), 94
gcd, 94–95
lcm, 95
mod2pi(), 93
modulo operation, 92
rem(), 92
syntax and behavior, 90

Dot products, 195–197
3D printers, 309

E
Ellipsis operator, 135
Equivalent functions, 117
Euclidean norm, 190–192
Exponential function, 107

F
finally keyword, 294
Floating point numbers, 84, 130–131

binary and octal representations, 44–45
data types

Array (cont.)

Index



347

assign, 43
properties, 42

hex digits, 44
precision, 41–42
real numbers, 40, 46–47

for loop
comprehensions, 282–283
continue, 281–282
enumerate, 284
generators, 284
variable, 280–281
Void object, 279–280
zipping arrays, 285

Fraction representation, 79

G
Generator expressions, 170
Greatest common divisor (gcd), 94

H
Hermitian matrices, 225
Hyperbolic functions, 118
Hypotenuse of triangle, 105–107

I
if-else condition, 277–278
Inexact errors, 50–52, 54
Input output (I/O)

byte array streaming, 299, 301
console, 295
display units, 309
3D printers, 309
files

open(), close(), and read(), 311–312
read array, 313–314
write array, 313–314

LCD screens, 309
line of characters streaming, 301
multimedia consoles, 309
newline character, 297
read() function, 297–298
text

display(), 308–309
print(), 305–306
println(), 307
show(), 303–304
write() method, 302

write() function, 296
Inverse functions, 116
Irrational numbers, 80, 87

J, K
Julia

basic mathematics, 25
calculator, 32–35
defined, 1
development, 4
functions

anonymous, 263
arglist, 253
body of, 253
defined, 253
local variables, 255
major, 271, 273
mapping multiple values, 264
mapreduce, 267–268
minor, 271, 273
multiple dispatch, 269–270
multiple inputs, 256–257
multiple outputs, 262
operators defined, 270
positional arguments, 258, 260–261
reduce, foldl, and foldr, 266–267
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shorthand notation, 256
simple, 254–255
variable argument list, 257, 261

hierarchy tree, 37–38
JuliaBox, 5
Linux OS, 7–8
MacOS, 6
number types, 38
package

Git, 9
initialization of manager, 9
installation, 10
remove, 10
root directory, 12
status, 11–12
update repository, 9
updating, 11

precision, 39–40
Windows OS, 7

Just-in-time (JIT) compiler, 4

L
LCD screens, 309
Least common multiple (lcm), 95
Lexicographical comparison of  

strings, 250–251
Lexicographical order, 162–163
Linearly spaced points, 135
Linux OS, Julia

add repository, 7
installation on Fedora and EPEL, 8
remove repository, 8
source code, 8

Logarithm function, 109–110, 112
Logspace, 136
Low Level Virtual Machine (LLVM), 3

M
Machine precision, 48–49
Maclaurin series, 122–123
MacOS, 6
map function, 264, 266
Mathematical functions

cube root, 104–105
defined, 89
expm1, 108
exponential, 107
exponent(x), 109
hypotenuse of triangle, 105–107
ldexp, 108
logarithm, 109–110, 112
numerical approximations, 119
power

complex roots of unity, 102
logarithm calculations, 103–104
numbers raised to, 103–104
roots, 103–104

series expansion, 123
square root, 104
Taylor polynomials, 121–122
Taylor series, 120
tolerance limits, 119–120

Mathematical operations on rational 
numbers, 82–84

MATLAB, 1, 3
Matrix operations, array

boolean operations, 213–214
broadcasting, 213
comma operator, 183
complex data type, 198
concatenation, 215, 217–218

repeat, 220, 222
repmat(), 219–220

cross product, 197–199
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defining, 181–184
determinants, 185
diagonal elements, 189–190
division

exponentiation, 210–211
inverse of matrix, 200–204
left or right, 206
logarithm on, 212
power of matrix, 207–209
scalar, 204–205
square root of matrix, 209–210

dot products, 195–197
elementwise multiplication, 194–195
eltype(), 183
Euclidean norm, 190–192
Hermitian matrix, 225
inverse of matrix

complex numbers, 203–204
rational numbers, 202–203
square, 200–202

multiplication, 193
positive definite matrix, 224–225
rank, 186–187
rational data type, 198
rotating, 222
scalar multiplication, 194
sparse matrices, 226
symmetric matrix, 223
trace, 187
triangular matrix, 187–189

Metaprogramming
defined, 335
expression

dump(), 337, 339–340
fieldnames(), 337, 339–340
interpolation, 340–341
parse time, 341

macros, 341–343

: operator, 335–336
@time expression, 343–344

Modulus, 92
Multimedia consoles, 309
Multiplication matrix

cross product, 197–199
dot product, 195–197
elementwise, 194–195
scalar, 194

N
Nested loops, 286–288
Number systems, 31–32
Numerical approximations, 119

O
Object-oriented programming (OOP)

multiple references, 19–20
object, 16
procedural programming vs., 15
reference, 17, 19
styling convention, 22
typeof(), 17
variables, 21, 22

Operator precedence, 64–65
Overflow error, 45

P, Q
Padding, string, 245
Parse time, 341
Pie charts, 330
Plotting

bar charts, 330
configuration of graphic  

terminal, 320, 322
3D, 332
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decorating, 326–327
default behavior of, 322–323
graphical object properties, 318
histograms, 329
implicitly pass, 325
mathematical equations, 324
object, 318–319
packages, 317, 319–320, 322
pie charts, 330
scatter, 331
subplot() window, 327, 329

Positional argument  
method, 258, 260–261

Positive definite matrix, 224–225
Procedural programming vs. OOP, 15
Python, 2

R
Range operator, 141–142
Rank matrix, 186–187
Rational number

comparison operations, 83–84
complex numbers, 81–82
convert to floating point number, 84
with data types, 85, 87
fraction representation, 79
mathematical operations, 82–84
representation of, 80–81
with zero denominator, 85

Read-Eval-Print Loop (REPL)
defined, 26
help files, 29
inputs and outputs, 27–28
key bindings, 30
Linux shell commands, 30
search mode, 30

Tab key, 28
versioninfo(), 31

Real numbers, 36
floating point numbers vs., 46–47

Reshaping arrays, 153, 155

S
Scalar multiplication, 194
Scatter plots, 331
Series expansion, 123
Set theory, 172–173
Shorthand notation, 256
Similar arrays, 137
sin function, 114, 122
Slicing multidimensional  

arrays, 143–145
Sparse matrices, 226
Square matrix, 200–202, 223
Square root, 104
Strings

characters, 230
concatenation, 235–236
contains(), 240
data types, 234
endof(), 242–243
index, 238–239
integer value, 231, 233
interpolation, 236–237
IOBuffer() function, 247, 249–250
join(), 242
lexicographical comparison  

of, 250–251
next(), 242–243
+ operator and

characters, 233–234
strings, 235

padding, 245
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random, 247
repeat(), 241
replace, 245
reverse, 246
search(), 239–240
set of characters, 229
split(), 243–244
start(), 242–243
stripping, 246
uppercase/lowercase characters, 245

Stripping, strings, 246
subplot() window, 327, 329
Symmetric matrix, 223

T
Taylor polynomials, 121–122
Taylor series, 120
Ternary expression, 275–276
Trace matrix, 187
Transformation equation, 172
Triangular matrix, 187–189

Trigonometric functions
cos function, 114
cospi(x), 117
defined, 113
discrepancies, 115–116
equivalent, 117
inverse functions, 116
sin function, 114
sinpi(x), 117

U, V
Unicode system, 230

W, X, Y
while loop, 285–286
Windows OS, 7

Z
Zipping arrays, 285
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