

 فقط کتاب

 مرجع معتبر دانلود کتاب هاي تخصصی

Faghatketab.ir

CentOS	7	Server	Deployment
Cookbook

Table	of	Contents

CentOS	7	Server	Deployment	Cookbook
Credits
About	the	Author
About	the	Reviewer
www.PacktPub.com

Why	subscribe?
Preface

What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Sections

Getting	ready
How	to	do	it…
How	it	works…
There's	more…
See	also

Conventions
Reader	feedback
Customer	support

Errata
Piracy
Questions

1. Getting	Started	with	CentOS
Introduction
Installing	CentOS	using	Anaconda	in	graphics	mode

Getting	ready
How	to	do	it...
How	it	works...
See	also

Installing	CentOS	using	Anaconda	in	text	mode
Getting	ready
How	to	do	it...
How	it	works...

See	also
Coordinating	multiple	installations	using	Kickstart

Getting	ready
How	to	do	it...
How	it	works...
See	also

Running	a	cloud	image	with	Amazon	Web	Services'	EC2
Getting	ready
How	to	do	it...
How	it	works...
See	also

Installing	a	container	image	from	the	Docker	Registry
Getting	ready
How	to	do	it...
How	it	works...
See	also

Installing	the	GNOME	desktop
Getting	ready
How	to	do	it...
How	it	works...
See	also

Installing	the	KDE	Plasma	desktop
Getting	ready
How	to	do	it...
How	it	works...
See	also

2. Networking
Introduction
Setting	a	static	IP	address

Getting	ready
How	to	do	it...
How	it	works...
See	also

Binding	multiple	addresses	to	a	single	Ethernet	device
Getting	ready
How	to	do	it...
How	it	works...

See	also
Bonding	two	Ethernet	devices

Getting	ready
How	to	do	it...
How	it	works...
See	also

Configuring	the	network	firewall	with	FirewallD
Getting	ready
How	to	do	it...
How	it	works...
See	also

Configuring	the	network	firewall	using	iptables
Getting	ready
How	to	do	it...
How	it	works...
See	also

Installing	a	DHCP	server
Getting	ready
How	to	do	it...
How	it	works...
See	also

Configuring	an	NFS	server	to	share	a	filesystem
Getting	ready
How	to	do	it...
How	it	works...
See	also

Configuring	an	NFS	client	to	use	a	shared	filesystem
Getting	ready
How	to	do	it...
How	it	works...
See	also

Serving	Windows	shares	with	Samba
Getting	ready
How	to	do	it...
How	it	works...
See	also

3. User	and	Permission	Management

Introduction
Escalating	privileges	with	sudo

Getting	ready
How	to	do	it...
How	it	works...
See	also

Enforcing	password	restrictions
Getting	ready
How	to	do	it...
How	it	works...
See	also

Setting	default	permissions	for	new	files	and	directories
Getting	ready
How	to	do	it...
How	it	works...
See	also

Running	binaries	as	a	different	user
Getting	ready
How	to	do	it...
How	it	works...
See	also

Working	with	SELinux	for	greater	security
Getting	ready
How	to	do	it...
How	it	works...
See	also

4. Software	Installation	Management
Introduction
Registering	the	EPEL	and	Remi	repositories

Getting	ready
How	to	do	it...
How	it	works...
See	also

Prioritizing	repositories	using	the	Priorities	plugin
Getting	ready
How	to	do	it...
How	it	works...

See	also
Automating	software	updates	with	yum-cron

Getting	ready
How	to	do	it...
How	it	works...
See	also

Verifying	installed	RPM	packages
Getting	ready
How	to	do	it...
How	it	works...
See	also

Compiling	a	program	from	source
Getting	ready
How	to	do	it...
How	it	works...
See	also

5. Managing	Filesystems	and	Storage
Introduction
Viewing	the	size	of	files	and	available	storage

Getting	ready
How	to	do	it...
How	it	works...
See	also

Setting	storage	limits	for	users	and	groups
Getting	ready
How	to	do	it...
How	it	works...
See	also

Creating	a	RAM	disk
Getting	ready
How	to	do	it...
How	it	works...
See	also

Creating	a	RAID
Getting	ready
How	to	do	it...
How	it	works...

See	also
Replacing	a	device	in	a	RAID

Getting	ready
How	to	do	it...
How	it	works...
See	also

Creating	a	new	LVM	volume
Getting	ready
How	to	do	it...
How	it	works...
See	also

Removing	an	existing	LVM	volume
Getting	ready
How	to	do	it...
How	it	works...
See	also

Adding	storage	and	growing	an	LVM	volume
Getting	ready
How	to	do	it...
How	it	works...
See	also

Working	with	LVM	snapshots
Getting	ready
How	to	do	it...
How	it	works...
See	also

6. Allowing	Remote	Access
Introduction
Running	commands	remotely	through	SSH

Getting	ready
How	to	do	it...
How	it	works...
See	also

Configuring	a	more	secure	SSH	login
Getting	ready
How	to	do	it...
How	it	works...

See	also
Securely	connecting	to	SSH	without	a	password

Getting	ready
How	to	do	it...
How	it	works...
See	also

Restricting	SSH	access	by	user	or	group
Getting	ready
How	to	do	it...
How	it	works...
See	also

Protecting	SSH	with	Fail2ban
Getting	ready
How	to	do	it...
How	it	works...
See	also

Confining	sessions	to	a	chroot	jail
Getting	ready
How	to	do	it...
How	it	works...
See	also

Configuring	TigerVNC
Getting	ready
How	to	do	it...
How	it	works...
See	also

Tunneling	VNC	connections	through	SSH
Getting	ready
How	to	do	it...
How	it	works...
See	also

7. Working	with	Databases
Introduction
Setting	up	a	MySQL	database

Getting	ready
How	to	do	it...
How	it	works...

See	also
Backing	up	and	restoring	a	MySQL	database

Getting	ready
How	to	do	it...
How	it	works...
See	also

Configuring	MySQL	replication
Getting	ready
How	to	do	it...
How	it	works...
See	also

Standing	up	a	MySQL	cluster
Getting	ready
How	to	do	it...
How	it	works...
See	also

Setting	up	a	MongoDB	database
Getting	ready
How	to	do	it…
How	it	works...
See	also

Backing	up	and	restoring	a	MongoDB	database
Getting	ready
How	to	do	it...
How	it	works...
See	also

Configuring	a	MongoDB	replica	set
Getting	ready
How	to	do	it...
How	it	works...
See	also

Setting	up	an	OpenLDAP	directory
Getting	ready
How	to	do	it...
How	it	works...
See	also

Backing	up	and	restoring	an	OpenLDAP	database

Getting	ready
How	to	do	it...
How	it	works...
See	also

8. Managing	Domains	and	DNS
Introduction
Setting	up	BIND	as	a	resolving	DNS	server

Getting	ready
How	to	do	it...
How	it	works...
See	also

Configuring	BIND	as	an	authoritative	DNS	server
Getting	ready
How	to	do	it...
How	it	works...
See	also

Writing	a	reverse	lookup	zone	file
Getting	ready
How	to	do	it...
How	it	works...
See	also

Setting	up	a	slave	DNS	server
Getting	ready
How	to	do	it...
How	it	works...
See	also

Configuring	rndc	to	control	BIND
Getting	ready
How	to	do	it...
How	it	works...
See	also

9. Managing	E-mails
Introduction
Configuring	Postfix	to	provide	SMTP	services

Getting	ready
How	to	do	it...
How	it	works...

See	also
Adding	SASL	to	Postfix	with	Dovecot

Getting	ready
How	to	do	it...
How	it	works...
See	also

Configuring	Postfix	to	use	TLS
Getting	ready
How	to	do	it...
How	it	works...
See	also

Configuring	Dovecot	for	secure	POP3	and	IMAP	access
Getting	ready
How	to	do	it...
How	it	works...
See	also

Targeting	spam	with	SpamAssassin
Getting	ready
How	to	do	it...
How	it	works...
See	also

Routing	messages	with	Procmail
Getting	ready
How	to	do	it...
How	it	works...
See	also

10. Managing	Web	Servers
Introduction
Installing	Apache	HTTP	Server	and	PHP

Getting	ready
How	to	do	it...
How	it	works...
See	also

Configuring	name-based	virtual	hosting
Getting	ready
How	to	do	it...
How	it	works...

See	also
Configuring	Apache	to	serve	pages	over	HTTPS

Getting	ready
How	to	do	it...
How	it	works...
See	also

Enabling	overrides	and	performing	URL	rewriting
Getting	ready
How	to	do	it...
How	it	works...
See	also

Installing	NGINX	as	a	load	balancer
Getting	ready
How	to	do	it...
How	it	works...
See	also

11. Safeguarding	Against	Threats
Introduction
Sending	messages	to	Syslog

Getting	ready
How	to	do	it...
How	it	works...
See	also

Rotating	log	files	with	logrotate
Getting	ready
How	to	do	it...
How	it	works...
See	also

Using	Tripwire	to	detect	modified	files
Getting	ready
How	to	do	it...
How	it	works...
See	also

Using	ClamAV	to	fight	viruses
Getting	ready
How	to	do	it...
How	it	works...

See	also
Checking	for	rootkits	with	chkrootkit

Getting	ready
How	to	do	it...
How	it	works...
See	also

Using	Bacula	for	network	backups
Getting	ready
How	to	do	it...
How	it	works
See	also

12. Virtualization
Introduction
Creating	a	new	virtual	machine

Getting	ready
How	to	do	it...
How	it	works...
See	also

Cloning	a	virtual	machine
Getting	ready
How	to	do	it...
How	it	works...
See	also

Adding	storage	to	a	virtual	machine
Getting	ready
How	to	do	it...
How	it	works...
See	also

Connecting	USB	peripherals	to	a	guest	system
Getting	ready
How	to	do	it...
How	it	works...
See	also

Configuring	a	guest's	network	interface
Getting	ready
How	to	do	it...
How	it	works...

See	also

CentOS	7	Server	Deployment
Cookbook

CentOS	7	Server	Deployment
Cookbook
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	
system,	or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	
permission	of	the	publisher,	except	in	the	case	of	brief	quotations	embedded	in	
critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	
of	the	information	presented.	However,	the	information	contained	in	this	book	is	
sold	without	warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	
Publishing,	and	its	dealers	and	distributors	will	be	held	liable	for	any	damages	
caused	or	alleged	to	be	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.	
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	September	2016

Production	reference:	1270916

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	

B3	2PB,	UK.

ISBN	978-1-78328-888-5

www.packtpub.com

http://www.packtpub.com

Credits
Author

Timothy	Boronczyk

Copy	Editor

Tom	Jacob

Reviewer

Mitja	Resman

Project	Coordinator

	Kinjal	Bari

Commissioning	Editor

Kartikey	Pandey

Proofreader

Safis	Editing

Acquisition	Editor

Rahul	Nair

Indexer

Pratik	Shirodkar

Content	Development	Editor

Mehvash	Fatima

Graphics

Kirk	D'Penha

Technical	Editors

Devesh	Chugh

Siddhi	Rane

Production	Coordinator

Shantanu	N.	Zagade

About	the	Author
Timothy	Boronczyk	is	a	native	of	Syracuse,	New	York,	where	he	works	as	a
lead	developer	at	Optanix,	Inc.	(formerly	ShoreGroup,	Inc.).	He's	been	involved
with	web	technologies	since	1998,	has	a	degree	in	Software	Application
Programming,	and	is	a	Zend	Certified	Engineer.	In	what	little	spare	time	he	has
left,	Timothy	enjoys	hanging	out	with	friends,	studying	Esperanto,	and	sleeping
with	his	feet	off	the	end	of	the	bed.	He's	easily	distracted	by	shiny	objects.

About	the	Reviewer
Mitja	Resman	comes	from	a	small,	beautiful	country	called	Slovenia,	located	in	
southern	Central	Europe.	Mitja	is	a	fan	of	Linux	and	is	an	open	source	enthusiast.	
Mitja	is	a	Red	Hat	Certified	Engineer	and	Linux	Professional	Institute	
professional.	Working	as	a	system	administrator,	Mitja	got	years	of	professional	
experience	with	open	source	software	and	Linux	system	administration	on	local	
and	international	projects	worldwide.	The	swiss	army	knife	syndrome	makes	
Mitja	an	expert	in	the	field	of	VMware	virtualization,	Microsoft	system	
administration,	and	lately,	also	Android	system	administration.

Mitja	has	a	strong	desire	to	learn,	develop,	and	share	knowledge	with	others.	This	
is	the	reason	he	started	a	blog	called	GeekPeek.Net	(https://geekpeek.net/.	
GeekPeek.Net	provides	CentOS	Linux	guides	and	How	to	articles	covering	all	
sorts	of	topics	appropriate	for	beginners	and	advanced	users.	He	wrote	a	book,	
CentOS	High	Availability	by	Packt	Publishing,	covering	the	topic	of	how	to	
install,	configure,	and	manage	clusters	on	CentOS	Linux.

Mitja	is	also	a	devoted	father	and	husband.	His	two	daughters	and	wife	are	the	
ones	who	take	his	mind	off	the	geek	stuff	and	make	him	appreciate	life,	looking	
forward	to	things	to	come.

https://geekpeek.net/

www.PacktPub.com
For	support	files	and	downloads	related	to	your	book,	please
visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version
at	www.PacktPub.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount
on	the	eBook	copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more
details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,
sign	up	for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers
on	Packt	books	and	eBooks.

https://www.packtpub.com/mapt

Get	the	most	in-demand	software	skills	with	Mapt.	Mapt	gives	you	full	access	to
all	Packt	books	and	video	courses,	as	well	as	industry-leading	tools	to	help	you
plan	your	personal	development	and	advance	your	career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Preface
For	over	a	decade,	the	CentOS	project	has	provided	the	community	with	a	free,
enterprise-grade	operating	system	through	the	rebranding	and	recompilation	of	the
Red	Hat	Enterprise	Linux	source.	Since	CentOS	users	rely	almost	exclusively	on
the	community	for	their	support	needs,	I	was	keen	to	write	this	book	when	Packt
approached	me	about	the	project's	latest	release,	CentOS	7.	The	recipes	we	chose
cover	a	wide	range	of	topics,	from	getting	started	to	managing	many	common	web
services,	and	hopefully	administrators	of	any	skill	level	will	find	something	of
interest.

However,	writing	a	book	is	a	huge	undertaking.	Because	of	this,	I	want	to	thank
the	staff	at	Packt,	my	family,	and	my	friends,	for	their	support.	The	dog	needs	to	be
taken	for	a	walk,	family	engagements	need	attending,	and	emergencies	arise	at	the
workplace.	Without	the	understanding	and	encouragement	of	those	around	me	and
the	editorial	staff,	you	wouldn't	be	reading	this	book.

What	this	book	covers
The	recipes	presented	in	this	book	aim	to	make	even	the	most	difficult	
configuration	tasks	easy	by	providing	step-by-step	instructions	and	discussion.	
Here's	a	quick	rundown	of	what	you	can	expect	from	each	of	the	12	chapters.

Chapter	1,	Getting	Started	with	CentOS,	contains	recipes	for	installing	CentOS	
using	graphical,	text-based,	and	kick-start	approaches.	How	to	set	up	a	CentOS	
platform	for	projects	running	Docker	and	on	Amazon	Web	Services	is	also	
discussed.

Chapter	2,	Networking,	contains	recipes	to	help	you	complete	common	
networking	tasks,	such	as	how	to	set	up	a	static	IP	address,	assign	multiple	
addresses	to	a	single	network	interface,	bond	multiple	interfaces	with	the	same	
address,	and	configure	the	system's	firewall	using	FirewallD	and	iptables.	It	also	
presents	recipes	for	configuring	network	services	such	as	DHCP,	NFS,	and	
Samba.

Chapter	3,	User	and	Permission	Management,	shows	you	how	to	increase	the	
security	of	your	system	by	enforcing	password	restrictions,	adjusting	the	default	
permissions	given	to	newly	created	files	and	directories,	and	the	use	of	sudo	to	
avoid	circulating	the	root	password.	How	to	work	with	SELinux	is	also	
discussed.

Chapter	4,	Software	Installation	Management,	provides	recipes	focused	on	
working	with	software	repositories	and	installing	software.	You'll	learn	how	to	
register	the	EPEL	and	Remi	repositories,	prioritize	the	repositories	packages	are	
installed	from,	and	update	your	software	automatically.	You'll	also	learn	how	to	
compile	and	install	software	from	source	code.

Chapter	5,	Managing	Filesystems	and	Storage,	presents	recipes	that	show	you	
how	to	set	up	and	work	with	RAID	and	with	LVM.	These	services	leverage	your	
system's	storage	to	maintain	availability,	increase	reliability,	and	to	keep	your	
data	safe	against	inevitable	disk	failures.

Chapter	6,	Allowing	Remote	Access,	aims	to	help	you	provide	remote	access	to	
your	CentOS	system	in	a	secure	manner.	Its	recipes	cover	using	SSH,	configuring

a	chroot	jail,	and	tunneling	VNC	connections	through	an	encrypted	SSH	tunnel.

Chapter	7,	Working	with	Databases,	collects	recipes	that	provide	you	with	the	
necessary	steps	to	get	started	with	various	database	services	such	as	MySQL,	
MongoDB,	and	OpenLDAP.	You'll	also	learn	how	to	provide	backup	and	
redundancy	for	these	services.

Chapter	8,	Managing	Domains	and	DNS,	takes	us	into	the	world	of	DNS.	The	
recipes	show	you	how	to	set	up	a	resolving	DNS	server	to	decrease	latency	
caused	by	domain	lookups	and	how	to	manage	your	own	domain	with	an	
authoritative	DNS	server.

Chapter	9,	Managing	E-mails,	will	help	you	set	up	your	own	mail	server.	The	
recipes	discuss	configuring	Postfix	to	provide	SMTP	services,	configuring	
Dovecot	to	provide	IMAP	and	POP3	services,	and	securing	these	services	with	
TLS.	You'll	also	find	instructions	on	how	to	set	up	SpamAssassin	to	help	reduce	
unsolicited	bulk	e-mails.

Chapter	10,	Managing	Web	Servers,	contains	recipes	about	configuring	Apache	to	
server	web	content.	You'll	learn	how	to	set	up	name-based	virtual	hosting,	server	
pages	over	HTTPS,	and	perform	URL	rewriting.	How	to	set	up	NGINX	as	a	load	
balancer	is	also	discussed.

Chapter	11,	Safeguarding	Against	Threats,	contains	recipes	to	help	protect	the	
investment	you've	made	in	your	CentOS	server.	They	cover	logging,	threat	
monitoring,	virus	and	rootkits,	and	network	backups.

Chapter	12,	Virtualization,	shows	you	how	CentOS	can	function	as	a	host	
operating	system	to	one	or	more	virtualized	guests.	This	allows	you	to	take	better	
advantage	of	your	hardware	resources	by	running	multiple	operating	systems	on	
the	same	physical	system.

What	you	need	for	this	book
To	follow	the	recipes	in	this	book,	first	and	foremost	you'll	need	a	system	capable
of	running	CentOS	7.	The	minimum	requirements	(and	maximum	capabilities)	are
documented	in	the	Red	Hat	Enterprise	Linux	knowledge	base	available	online	at
https://access.redhat.com/articles/rhel-limits.	In	brief,	you'll	need	a	system	that
has	the	following:

x86_64	processor	(RHEL/CentOS	7	does	not	support	x86)
1	GB	RAM
8	GB	Disk	capacity

Apart	from	a	system	to	install	CentOS	on,	you'll	also	need	a	copy	of	the	CentOS
installation	media	and	a	working	network	connection.	You	can	download	a	copy
directly	from	https://www.centos.org/download/	or	using	BitTorrent.

https://access.redhat.com/articles/rhel-limits
https://www.centos.org/download/

Who	this	book	is	for
This	book	is	for	Linux	professionals	with	basic	Unix/Linux	functionality
experience,	perhaps	even	having	set	up	a	server	before,	who	want	to	advance
their	knowledge	in	administering	various	services.

Sections
In	this	book,	you	will	find	several	headings	that	appear	frequently	(Getting	ready,
How	to	do	it...,	How	it	works...,	There's	more...,	and	See	also).

To	give	clear	instructions	on	how	to	complete	a	recipe,	we	use	these	sections	as
follows.

Getting	ready
This	section	tells	you	what	to	expect	in	the	recipe,	and	describes	how	to	set	up
any	software	or	any	preliminary	settings	required	for	the	recipe.

How	to	do	it…
This	section	contains	the	steps	required	to	follow	the	recipe.

How	it	works…
This	section	usually	consists	of	a	detailed	explanation	of	what	happened	in	the
previous	section.

There's	more…
This	section	consists	of	additional	information	about	the	recipe	in	order	to	make
the	reader	more	knowledgeable	about	the	recipe.

See	also
This	section	provides	helpful	links	to	other	useful	information	for	the	recipe.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between
different	kinds	of	information.	Here	are	some	examples	of	these	styles	and	an
explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file
extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown
as	follows:	"The	repositories'	configuration	files	are	found	in	the
/etc/yum.repos.d	directory."

A	block	of	code	is	set	as	follows:

	[sshd]

	enabled=true

	bantime=86400

	maxretry=5

Any	command-line	input	or	output	is	written	as	follows:

	firewall-cmd	--zone=public	--permanent	--add-service=dns

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	
screen,	for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	"Select	
your	desired	language	and	click	on	Continue."

Note

Warnings	or	important	notes	appear	in	a	box	like	this.

Tip

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about
this	book-what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it
helps	us	develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	feedback@packtpub.com,	and	mention
the	book's	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing
or	contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to
help	you	to	get	the	most	from	your	purchase.

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes
do	happen.	If	you	find	a	mistake	in	one	of	our	books-maybe	a	mistake	in	the	text	or
the	code-we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can
save	other	readers	from	frustration	and	help	us	improve	subsequent	versions	of
this	book.	If	you	find	any	errata,	please	report	them	by	visiting
http://www.packtpub.com/submit-errata,	selecting	your	book,	clicking	on	the
Errata	Submission	Form	link,	and	entering	the	details	of	your	errata.	Once	your
errata	are	verified,	your	submission	will	be	accepted	and	the	errata	will	be
uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the	Errata
section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book
in	the	search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all
media.	At	Packt,	we	take	the	protection	of	our	copyright	and	licenses	very
seriously.	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	please	provide	us	with	the	location	address	or	website	name	immediately
so	that	we	can	pursue	a	remedy.

Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you
valuable	content.

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us
at	questions@packtpub.com,	and	we	will	do	our	best	to	address	the	problem.

Chapter	1.	Getting	Started	with
CentOS
This	chapter	contains	the	following	recipes:

Installing	CentOS	using	Anaconda	in	graphics	mode
Installing	CentOS	using	Anaconda	in	text	mode
Coordinating	multiple	installations	using	Kickstart
Running	a	cloud	image	with	Amazon	Web	Services'	EC2
Installing	a	container	image	from	the	Docker	Registry
Installing	the	GNOME	desktop
Installing	the	KDE	Plasma	desktop

Introduction
This	chapter's	recipes	focus	on	getting	up	and	running	with	CentOS	using	a	variety
of	installation	methods.	You'll	learn	how	to	perform	interactive	graphical	and	text-
based	installations	using	Anaconda	and	perform	an	unattended	installation	using
Kickstart.	You'll	also	see	how	to	run	CentOS	in	the	cloud	with	Amazon	Web
Services	and	in	a	Docker	container	image.	Most	of	the	recipes	in	this	book	take
place	at	the	command	prompt,	but	some	require	a	graphical	desktop,	so	we'll
finish	up	with	a	look	at	installing	the	GNOME	and	KDE	Plasma	desktops.

Installing	CentOS	using	Anaconda	in
graphics	mode
In	this	recipe,	you'll	learn	how	to	install	CentOS	using	the	graphical	installer
Anaconda.	This	is	the	most	common	way	that	CentOS	is	installed,	although	there
are	other	ways	too	(some	of	which	are	discussed	in	later	recipes).	This	approach
is	also	the	easiest	installation	method,	especially	for	setting	up	single-server
deployments.

Getting	ready
This	recipe	assumes	that	you	have	a	copy	of	the	CentOS	7	installation	medium.	If
you	don't,	visit	https://www.centos.org	and	download	a	minimal	ISO	image.
You'll	also	need	to	make	a	physical	disc	from	the	image.	Instructions	for	burning
the	ISO	image	to	disc	can	be	found	at
https://www.centos.org/docs/5/html/CD_burning_howto.html.

Tip

If	your	system	doesn't	have	an	optical	drive	and	its	BIOS	supports	booting	from	a
USB	device,	you	can	also	write	the	ISO	image	to	a	USB	stick.

https://www.centos.org
https://www.centos.org/docs/5/html/CD_burning_howto.html

How	to	do	it...
Follow	these	steps	to	install	CentOS	using	the	graphical	installer	Anaconda:

1. Insert	the	installation	disc	into	your	system's	optical	drive	(or	USB	stick	into
a	USB	port)	and	reboot.	The	system	should	boot	to	the	CentOS	7	installation
menu:

The	installer	is	launched	from	the	installation	menu

Note

If	your	system	doesn't	boot	to	the	installation	menu	then	the	drive	may	not	be
configured	as	a	boot	device.	The	exact	steps	to	verify	and	adjust	the
configuration	vary	between	BIOS	vendors,	but	in	general	you'll	press	Esc,
F1,	F2,	or	Delete	while	the	system	is	booting	to	gain	access	to	the	BIOS
settings.	Then	you'll	find	the	list	of	boot	devices	and	change	the	order	in
which	each	is	searched	for	a	boot	record.

2. Using	the	arrow	keys,	make	sure	that	the	Install	CentOS	7	option	is
highlighted	and	press	Enter.

3. The	WELCOME	TO	CENTOS	7	screen	confirms	which	language	to	use
during	the	installation	process.	Select	your	desired	language	and	click	on
Continue:

You	can	change	the	language	used	during	the	installation	process

4. The	next	screen	is	a	menu	that	organizes	the	installation	options	by	category.
We'll	configure	networking	first—click	on	NETWORK	&	HOST	NAME
under	the	SYSTEM	category:

Note

If	your	system	doesn't	have	a	mouse,	you	can	navigate	using	Tab	to	cycle
through	the	input	fields,	use	the	arrow	keys	to	select	the	entry,	and	press
Enter	to	select	or	activate	an	input.

The	installation	summary	screen	organizes	the	installation	options	into
categories

5. Enter	the	system's	hostname	in	the	Host	name	field.	Then,	select	the	system's
primary	network	interface	and	toggle	the	switch	at	the	right	to	ON	to	enable
it.	Click	on	the	Done	button	when	you're	finished	to	return	to	the
INSTALLATION	SUMMARY	menu:

The	NETWORK	&	HOST	NAME	screen	lets	us	configure	the	system's
network	interfaces

6. Click	on	DATE	&	TIME	under	the	LOCALIZATION	category.
7. Set	your	time	zone	by	either	selecting	your	region	and	city	or	by	clicking	on

your	location	on	the	map.	Then,	click	on	Done	to	return	to	the
INSTALLATION	SUMMARY	menu:

The	DATE	&	TIME	screen	lets	us	configure	the	system's	time	zone

8. If	you	know	what	purpose	the	system	will	serve	on	your	network	and	require
something	more	than	a	minimal	installation,	click	on	SOFTWARE
SELECTION	under	the	SOFTWARE	category.	Select	the	environment	and
any	additional	add-ons	to	install	the	desired	packages.	When	you're	finished,
click	on	Done:

The	SOFTWARE	SELECTION	screen	lets	us	install	purpose-based	software

Note

Software	can	easily	be	installed	using	yum,	so	don't	worry	if	you	need	to
install	additional	software	after	you	already	have	CentOS	up	and	running.
The	SOFTWARE	SELECTION	section	is	purely	for	convenience.

9. Click	on	INSTALLATION	DESTINATION	under	the	SYSTEM	category.
10. Click	on	the	appropriate	drive	in	the	Local	Standard	Disks	area	to	set	the

installation	target.	If	the	drive	is	not	bootable,	or	if	multiple	drives	are
selected,	click	on	the	Full	disk	summary	and	boot	loader...	link	at	the
bottom	of	the	screen	to	open	the	Selected	Disks	window.	Then,	select	the
drive	you	want	to	be	the	boot	device,	click	on	the	Set	as	Boot	Device
button,	and	click	on	Close.	When	you're	finished,	click	on	Done:

The	INSTALLATION	DESTINATION	screen	lets	us	set	the	disk	where
CentOS	will	be	installed

11. Click	on	the	Begin	Installation	button	to	start	the	installation	process.
12. Click	on	Root	Password.	In	the	input	fields,	enter	and	confirm	the	password

you	want	to	use	for	the	system's	root	account.	Click	on	Done	when	you've
finished	entering	these	details:

Note

You'll	need	to	press	the	Done	button	twice	to	return	to	the	configuration
screen	if	you	specify	a	password	that's	too	weak.	If	you	need	help	to	create	a
strong	password,	visit	http://www.howtogeek.com/195430/how-to-create-a-
strong-password-and-remember-it/.

http://www.howtogeek.com/195430/how-to-create-a-strong-password-and-remember-it/

The	ROOT	PASSWORD	screen	lets	us	set	the	root	account's	password

13. Click	on	User	Creation.	In	the	input	fields,	provide	your	name,	username,
and	desired	password.	Again,	press	Done	when	you've	finished	entering
these	details:

The	CREATE	USER	screen	lets	us	create	an	unprivileged	user	account

14. When	the	installation	is	complete,	click	on	the	Finish	Configuration	button.
Anaconda	will	finalize	the	system's	configuration	and	the	button's	label	will
change	to	Reboot.

15. Remove	the	CentOS	installation	media	from	the	drive	and	reboot	your
system.

How	it	works...
After	installing	CentOS	using	Anaconda	in	graphical	mode,	you	should	now	have	
a	basic	CentOS	7	system	up	and	running.	The	process	began	when	we	booted	the	
system	from	the	installation	disc	and	selected	Install	CentOS	7	from	the	
installation	menu.	The	installer's	kernel	loaded	into	memory	and	Anaconda	
launched	in	graphical	mode.

The	NETWORK	&	HOST	NAME	screen	shows	a	list	of	the	available	network	
interfaces	and	basic	information	about	them,	for	instance,	the	card's	MAC	address	
and	transfer	rate.	By	default,	the	interfaces	are	configured	to	use	DHCP	to	obtain	
their	IP	address	when	they	are	enabled.	(Configuring	a	static	IP	address	is	
discussed	in	a	later	recipe.

The	system's	time	zone	is	set	on	the	LOCALIZATION	screen.	The	date	and	time	
fields	are	disabled	when	NTP	is	enabled	because	the	values	will	be	set	by	the	
NTP	service.	The	system	clock's	time	can	drift	for	many	reasons,	especially	if	the	
system	is	running	on	a	virtual	machine,	so	allowing	NTP	to	manage	the	system's	
time	is	a	good	idea	to	ensure	it	stays	correct.	If	the	date	and	time	fields	aren't	set	
by	NTP,	make	sure	the	Network	Time	toggle	is	set	ON.	You	can	specify	an	NTP	
server	by	clicking	on	the	button	with	the	gears	icon.

The	INSTALLATION	DESTINATION	screen	lets	us	set	the	installation	target	
for	CentOS	and	specify	how	the	system's	drives	are	partitioned.	You	can	choose	to	
configure	the	partitions	if	you	have	special	requirements,	but	in	this	recipe	I	let	
Anaconda	partition	the	drives	automatically.

While	Anaconda	is	busy	installing	CentOS	and	any	additional	software	packages	
you	may	have	requested,	it	shows	us	the	Configuration	screen.	This	screen	gives	
us	the	opportunity	to	set	a	password	for	the	system's	administrative	account
(root	and	create	an	unprivileged	user	account.	You	should	only	sign	in	with	root	
when	necessary;	for	your	normal	day-to-day	work	you	should	use	your	
unprivileged	account.	Anaconda	finalizes	the	installation	by	configuring	the	
system's	boot	record	and	creating	the	user	account.

After	the	system	reboots,	the	Grub	boot	loader	prompt	appears	and	the	arrow	keys	
can	be	used	to	select	a	boot	configuration.	There's	also	a	timer,	so	pressing

nothing	will	eventually	boot	the	system	using	the	default	configuration.

See	also
For	more	information	on	installing	CentOS	7,	refer	to	the	RHEL	7	Installation
Guide	(https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide).

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/

Installing	CentOS	using	Anaconda	in
text	mode
Next,	you'll	learn	how	to	install	CentOS	using	Anaconda	in	text	mode.	It's
recommended	that	you	install	CentOS	graphically	because	graphics	mode	is	easier
to	use	and	offers	more	functionality.	However,	it	may	not	be	available	when	the
system	lacks	sufficient	resources	to	run	the	installer	in	graphical	mode,	for
example,	if	the	display	adaptor's	capabilities	are	limited	or	if	there	is	reduced
RAM.

Getting	ready
This	recipe	assumes	that	you	have	a	copy	of	the	CentOS	7	installation	medium.	If
you	don't,	visit	https://www.centos.org	to	download	an	ISO	image	and	then	burn
the	image	to	a	disc.

https://www.centos.org

How	to	do	it...
Follow	these	steps	to	perform	a	text-based	installation	of	CentOS:

1. Insert	the	installation	disc	into	your	system's	optical	drive	(or	USB	stick	into
a	USB	port)	and	reboot.	The	system	should	boot	to	the	CentOS	7	installation
menu.

2. Using	the	arrow	keys,	make	sure	the	Install	CentOS	7	option	is	highlighted
and	press	Tab.	The	command	to	boot	the	installer	kernel	appears	at	the
bottom	of	the	screen.

3. Add	the	word	text	to	the	end	of	the	list	of	arguments	and	press	Enter.
Anaconda	will	launch	in	text	mode:

	vmzlinuz	initrd=initrd.img	inst.stage2=hd:LABEL=CentOS

	\x207\x20x86_64	rd.live.check	quiet	text	

Note

Anaconda	will	launch	in	text	mode	automatically	if	your	system	has	less	than
768	MB	of	RAM.

4. The	Installation	menu	presents	the	installation	options	by	category.	Type	2
and	press	Enter	to	select	Timezone	settings:

The	text-based	installation	menu	categorizes	the	installation	options

5. The	Timezone	settings	menu	presents	a	list	of	regions.	Enter	the	number	for
the	desired	value.

6. You	will	be	given	a	list	of	available	time	zones	in	the	selected	region
(paginate	through	the	list	by	pressing	Enter	if	the	list	is	long).	Enter	the
number	for	the	desired	time	zone.

7. If	you	know	what	purpose	the	system	will	serve	and	require	something	more
than	a	minimal	installation,	enter	3	to	select	Software	selection.	Here	you
can	select	groups	of	software	packages	for	that	purpose.	When	finished,	enter
c	to	continue	back	to	the	Installation	menu.

8. Enter	5	to	select	Network	settings.
9. Enter	1	to	set	the	system's	hostname.	Type	the	desired	name	and	press	Enter.
10. Enter	the	number	to	configure	the	system's	primary	network	interface.	Then,

enter	7	to	mark	Connect	automatically	after	reboot	and	8	to	mark	Apply
configuration	in	installer.	Enter	c	to	go	back	to	the	Network	settings	menu
and	c	again	to	return	to	the	Installation	menu:

The	Network	settings	menu	lets	us	configure	the	system's	network
interfaces

11. Enter	6	to	select	Install	Destination.
12. If	the	desired	drive	is	not	already	marked,	enter	the	number	for	the	drive.

Then,	enter	c	to	continue.	The	Autopartioning	Options	menu	is	shown	in	the
following	screenshot:

The	Install	Destination	menu	let	us	set	the	installation	target	and	the
Autopartioning	Options	menu	lets	us	specify	how	the	disk	will	be	used

13. Enter	the	number	for	the	desired	partitioning	(Use	All	Space	is	the	default)
and	then	c	to	continue.

14. Select	the	desired	partition	scheme	(LVM	is	the	default)	and	then	enter	c	to
return	to	the	Installation	menu.

15. Enter	8	to	select	Create	user.
16. Enter	1	to	mark	the	Create	user	option.	Provide	your	name	and	set	a

username	for	the	account	by	entering	2	and	3	respectively.	Enter	4	to	mark	the
Use	password	option	and	then	5	to	set	your	password.	Then,	enter	c	to	return
to	the	Installation	menu:

Note

You	must	confirm	you	really	want	to	use	your	password	if	you	provide	a
password	that	is	too	weak.

The	Create	User	menu	let	us	create	an	unprivileged	user	account

17. Enter	9	to	select	Set	root	password.	Enter	and	confirm	the	password	you
want	to	use	for	the	system's	root	account.

18. After	all	of	the	sections	that	required	attention	have	been	resolved,	enter	b	to
begin	the	installation	process.

19. When	the	installation	is	complete,	remove	the	media	from	the	drive	and
reboot	the	system.

How	it	works...
This	recipe	showed	you	how	to	install	CentOS	using	Anaconda	running	in	text
mode.	The	process	began	when	we	booted	the	system	from	the	installation	disc,
selected	Install	CentOS	7	from	the	installation	menu,	and	added	the	text	option
to	the	boot	parameters.	The	installer's	kernel	loaded	into	memory	and	Anaconda
launched	in	text	mode.

The	text-based	installation	is	similar	to	installing	CentOS	in	graphical	mode,
answering	prompts	for	time	zone,	software,	and	networking	information.
However,	Anaconda	presents	the	prompts	in	a	different	order	when	running	in	text
mode	and	some	functionality	is	missing.	For	example,	we	can't	perform	custom
disk	partitioning.	Nevertheless,	text	mode	enables	us	to	quickly	install	a	basic
CentOS	system.

See	also
For	more	information	on	installing	CentOS	7,	refer	to	the	RHEL	7	Installation
Guide	(https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide).

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide

Coordinating	multiple	installations
using	Kickstart
If	you're	planning	on	installing	CentOS	on	multiple	servers,	it's	more	convenient	to
automate	as	much	of	the	process	as	possible.	In	this	recipe,	you'll	learn	how	to	use
Anaconda's	kickstart.cfg	file	to	perform	an	unattended	network-based
installation.

Getting	ready
This	recipe	requires	at	least	two	systems	on	your	network:	an	existing	system
running	an	HTTP	server	to	host	the	installation	files	and	Kickstart	configuration
(the	recipe	Installing	Apache	HTTP	Server	and	PHP	in	Chapter	10,	Managing
Web	Servers,	shows	you	how	to	install	Apache)	and	the	target	system	on	which
we'll	install	CentOS.	You'll	also	need	the	installation	media	and	administrative
privileges.

How	to	do	it...
Follow	these	steps	to	perform	unattended	network	installations	using	the	Kickstart
method:

1. Log	in	to	the	system	running	the	HTTP	server	using	the	root	account.
2. Place	the	installation	disc	in	the	system's	optical	drive.
3. Mount	the	disc	using	the	mount	command	so	that	its	contents	are	accessible:

mount	/dev/cdrom	/media

4. Create	a	new	directory	under	Apache's	web	root	to	host	the	installation	files:

mkdir	-p	/var/www/html/centos/7/x86_64

5. Copy	the	contents	of	the	installation	disc	to	the	new	directory:

cp	-r	/media/*	/var/www/html/centos/7/x86_64

6. Copy	the	kickstart.cfg	file	created	by	Anaconda	when	the	system	was
installed	to	Apache's	web	root:

cp	/root/kickstart.cfg	/var/www/html/kickstart.cfg

7. Unmount	and	remove	the	installation	disc:

umount	/media

eject	/dev/cdrom

8. Insert	the	disc	into	the	target	system's	drive	and	reboot	it.	The	system	should
boot	to	the	CentOS	7	installation	menu.

9. Highlight	the	Install	CentOS	7	option	and	press	Tab.
10. Update	the	arguments	used	to	boot	the	installer	kernel	to	read	as	follows.

Change	the	IP	address	as	necessary	to	point	to	the	system	hosting	the
Kickstart	file:

			vmlinuz	initrd=initrd.img	

ks=http://192.168.56.100/kickstart.cfg	

11. Press	Enter	to	begin	the	installation	process.
12. Once	the	installation	process	begins,	you	can	eject	the	disc	and	begin	the	next

system's	installation.	Repeat	steps	8-11	for	each	additional	system.

How	it	works...
Anaconda	writes	the	configuration	values	we	provide	when	performing	a
graphical	or	text-based	installation	to	kickstart.cfg.	If	you	plan	on	installing
CentOS	on	multiple	servers,	it's	more	convenient	to	use	the	file	to	provide	the
interface's	answers.	The	remaining	installations	can	be	performed	mostly
unattended	and	the	systems'	configurations	will	be	more	consistent.

This	recipe	showed	you	how	to	make	the	kickstart.cfg	file	and	the	CentOS
installation	files	available	to	other	systems	over	the	network,	and	update	the	boot
command	to	tell	Anaconda	where	to	look	for	the	installation	files	and	prompt
responses.	Since	the	software	packages	are	retrieved	from	the	installation	server
instead	of	the	disc,	you	can	eject	the	disc	as	soon	as	the	installation	process	is
underway	and	use	it	to	begin	the	next	process	on	your	next	system.

Of	course,	kickstart.cfg	can	be	used	as	a	starting	point,	and	you	can	edit	the
responses	using	a	text	editor	to	further	customize	the	installations.	If	you	like,	you
can	create	multiple	kickstart	files	in	the	web	root,	each	with	a	different
configuration.	Just	specify	the	desired	file	when	you	set	the	installer's	boot
arguments.

Tip

Although	you	can	edit	your	kickstart	files	with	a	basic	text	editor,	dedicated
programs	exist	for	editing	them	as	well.	Check	out	Kickstart	Configurator
(http://landoflinux.com/linux_kickstart_configurator.html).

http://landoflinux.com/linux_kickstart_configurator.html

See	also
For	more	information	on	coordinating	multiple	installations	of	CentOS	7,	refer	to
the	following	resources:

RHEL	7	Installation	Guide	(https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide)
Anaconda	documentation	(http://rhinstaller.github.io/anaconda/index.html)
Install	PXE	Server	on	CentOS	7	(http://www.unixmen.com/install-pxe-
server-centos-7)

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide
http://rhinstaller.github.io/anaconda/index.html
http://www.unixmen.com/install-pxe-server-centos-7

Running	a	cloud	image	with	Amazon
Web	Services'	EC2
Amazon	Web	Services	(AWS)	is	a	suite	of	services	hosted	within	Amazon's
network	infrastructure	which	allows	companies	and	individuals	take	advantage	of
their	computing/storage	capacity	and	world	wide	data	centers.	Elastic	Cloud
Compute	(EC2)	is	a	virtualization	platform	that	lets	us	set	up	virtual	systems	on
demand,	usually	to	host	websites	and	web	apps.	This	recipe	will	walk	you
through	the	process	of	setting	up	a	new	virtual	server	running	CentOS	on	the	AWS
platform.

Getting	ready
This	recipe	assumes	that	you	have	an	AWS	account.	You	can	sign	up	for	one	at
http://aws.amazon.com.	You	will	need	to	provide	a	valid	credit	card,	although	you
will	have	access	to	Amazon's	free	tier	for	12	months.

http://aws.amazon.com

How	to	do	it...
To	set	up	a	new	Amazon	Machine	Instance	(AMI)	on	AWS's	EC2	platform,	follow
these	steps:

1. Log	in	at	https://aws.amazon.com	and	go	to	the	AWS	Management	console.
Under	the	Compute	category,	click	on	the	EC2	link	to	access	the	EC2
management	page.	Then,	click	on	the	Launch	Instance	button:

https://aws.amazon.com

The	EC2	Management	Console	presents	an	overview	and	quick	access	to
resources

2. On	the	Choose	an	Amazon	Machine	Image	(AMI)	page,	select	Community
AMIs	in	the	side	menu	and	then	check	the	CentOS	filter.	A	list	of	instances
created	by	the	community	will	be	shown.	Select	the	one	you	desire:

Note

Review	the	list	of	available	images	carefully.	Many	are	available,	created
using	different	versions	of	CentOS	and	with	various	configurations.

The	image	selection	page	presents	a	filterable	list	of	machine	images
created	by	community	users

3. On	the	Review	Instance	Launch	page,	review	your	instance's	resources	(the
number	of	virtual	CPUs,	available	memory,	and	so	on)	and	click	on	the
Launch	button:

Note

Amazon	guides	you	through	selecting	an	AMI	and	configuring	it	in	a	wizard-
like	fashion,	listing	the	steps	at	the	top	of	the	page.	The	Review	and	Launch
buttons	jump	directly	to	the	last	step.	You	can	use	the	links	at	the	top	of	the
page	to	go	back	to	an	earlier	step	and	adjust	the	instance's	configuration.

Review	your	instance's	resources	on	the	Review	Instance	Launch	page

4. Using	the	drop-down	list,	select	Create	a	new	key	pair,	enter	a	suitable
filename	for	the	key,	and	click	on	the	Download	Key	Pair	button.	After	you
save	the	downloaded	private	encryption	key,	click	on	the	Launch	Instances
button:

You're	prompted	to	create	a	pair	of	encryption	keys	the	first	time	you
launch	the	image

5. On	the	launch	status	page,	click	on	the	View	Instances	button	at	the	bottom	of
the	page.	Then,	right-click	on	the	running	instance	and	select	Connect	from
the	context	menu.	Select	the	preferred	connection	method	and	follow	the
instructions	that	appear	on	the	screen.

How	it	works...
This	recipe	walked	you	through	the	steps	necessary	to	spin	up	a	new	CentOS	AMI
on	AWS's	EC2	platform.	To	log	in	to	the	system,	a	password	or	set	of	encryption
keys	is	needed,	and	since	the	primary	user	account's	password	is	likely	to	be
unknown,	we	opted	to	generate	a	new	pair	of	keys.	The	private	key	is	downloaded
and	then	used	with	your	SSH	client	to	authenticate	your	login.

Once	you	have	logged	in	to	your	running	system,	it's	worth	viewing	the	contents	of
the	/etc/system-release	file	to	verify	the	running	version	of	CentOS.	Also,	you
should	use	the	passwd	command	to	change	the	root	account's	password	if	the
account	isn't	already	locked	down.	This	is	an	important	security	precaution
because	you	don't	know	who	knows	the	default	password.	You'll	find	recipes	for
managing	user	permissions	in	Chapter	3,	User	and	Permission	Management,	and
recipes	for	managing	remote	access	in	Chapter	6,	Allowing	Remote	Access:

After	you	log	in,	verify	the	system's	version	number	and	update	the	root
password

See	also
Refer	to	the	following	resources	for	more	information	on	working	with	AMIs	on
Amazon's	EC2	platform:

What	Is	Amazon	EC2?
(http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html)
Connect	to	Your	Linux	Instance
(http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
Remove	SSH	Host	Key	Pairs
(http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/building-shared-
amis.html#remove-ssh-host-key-pairs)

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/building-shared-amis.html#remove-ssh-host-key-pairs

Installing	a	container	image	from	the
Docker	Registry
This	recipe	shows	you	how	to	procure	a	CentOS	base	for	your	development	needs
using	Docker,	a	virtualization	strategy	based	on	the	concept	of	containers.	Each
container	wraps	the	target	software	in	its	own	filesystem	so	that	it	can	run
regardless	of	the	operating	system	on	which	it's	installed.	Developers	like	Docker
especially	because	it	helps	provide	consistency	between	development	and
deployment	environments.

Getting	ready
The	recipe	assumes	that	you	have	a	system	with	Docker	installed.	If	you	don't,	you
can	obtain	the	Docker	installer	from	http://www.docker.com.

http://www.docker.com

How	to	do	it...
Follow	these	steps	to	install	a	CentOS	container	image	from	the	Docker	Registry:

1. Open	the	Docker	Toolbox	terminal	program.
2. At	the	terminal's	prompt,	invoke	the	docker	pull	command	to	retrieve	a

CentOS	7	container:

docker	pull	centos:7

3. After	the	container	has	been	downloaded,	you	can	launch	an	interactive	shell
with	docker	run:

docker	run	-i	-t	centos:7	/bin/bash

How	it	works...
This	recipe	retrieves	the	official	CentOS	container	from	the	Docker	Registry	using
the	docker	pull	command.	By	providing	the	version	tag	(:7),	we	can	make	sure
we	retrieved	CentOS	7	as	opposed	to	an	earlier	(or	perhaps	newer)	version.

Alternatively,	Kitematic	is	the	graphical	program	which	lets	us	search	for	and
retrieve	containers	from	the	registry.	Simply	launch	Kitematic	and	enter	CentOS
as	the	search	term	in	the	search	box.	Then,	look	for	the	official	CentOS	repository
in	the	results	list.

The	default	version	retrieved	by	Kitematic	is	the	latest.	To	specifically	select
CentOS	7	or	a	maintenance	release,	click	on	the	entry's	ellipsis	button.	Set	the
desired	tag	and	then	click	on	the	Create	button:

Kitematic	displays	the	results	of	searching	for	CentOS

See	also
Refer	to	the	following	resources	for	more	information	about	working	with
Docker:

Docker	home	page	(http://www.docker.com)
Understanding	the	Docker	architecture
(https://docs.docker.com/engine/understanding-docker)
The	official	CentOS	Docker	hub	(https://hub.docker.com/_/centos)

http://www.docker.com
https://docs.docker.com/engine/understanding-docker
https://hub.docker.com/_/centos

Installing	the	GNOME	desktop
This	recipe	shows	you	how	to	install	the	GNOME	desktop	environment,	which
provides	a	graphical	user	interface	(GUI)	for	working	with	your	CentOS	system.
Usually,	such	environments	aren't	installed	on	server	systems,	but	it	can	be
convenient	sometimes	to	have	one	available.	For	example,	an	administrator	might
feel	more	comfortable	updating	a	system's	configuration	using	graphical	programs.

Note

GNOME	isn't	the	only	GUI	environment	available	—other	popular	environments
include	KDE,	XFCE,	and	Fluxbox.	If	GNOME	isn't	your	cup	of	tea,	the	next
recipe	shows	you	how	to	install	KDE.

Getting	ready
This	recipe	requires	a	CentOS	system	with	a	working	network	connection.
Administrative	privileges	are	also	required	by	logging	in	with	the	root	account.

How	to	do	it...
Follow	these	steps	to	install	the	GNOME	desktop	environment:

1. Install	the	GNOME	Desktop	package	group	with	yum	groupinstall:

yum	groupinstall	"GNOME	Desktop"

2. Manually	start	the	desktop	environment	using	startx:

startx

3. If	more	than	one	environment	is	installed,	you'll	need	to	specify	the	path	to
gnome-session:

startx	/usr/bin/gnome-session

4. When	you're	done	using	GNOME	and	log	out	of	the	desktop,	you'll	be
returned	to	the	console.

5. To	configure	the	system	to	automatically	start	the	graphical	environment
when	it	boots,	set	the	default	start	up	target	to	graphical.target:

systemctl	set-default	graphical.target

How	it	works...
This	recipe	uses	yum	to	install	the	GNOME	desktop	environment.	All	of	the	
necessary	components	and	dependencies	are	installed	by	the	GNOME	Desktop	
package	group.	Package	groups	saves	us	time	and	hassle	because	they	let	us	install	
a	collection	of	packages	for	a	common	task	at	the	same	time	instead	of	individual	
packages	one	at	a	time.

yum	groupinstall	"GNOME	Desktop"

Unlike	Windows,	where	the	graphical	desktop	is	part	of	its	operating	system,	
Linux	systems	delegate	basic	graphics	and	input	handling	to	a	graphics	server.	
This	approach	is	one	reason	why	there	are	several	desktop	environments	to	
choose	from	—it	abstracts	many	of	the	specifics	and	provides	a	common	platform	
on	top	of	which	any	number	of	environments	can	run,	both	locally	and	across	a	
network.	CentOS's	default	graphics	server	is	X	Window	System.

If	GNOME	is	the	only	desktop	environment	installed,	it'll	be	run	by	default	when	
we	launch	X	with	startx.	However,	if	more	than	one	desktop	is	installed,	we	
need	to	tell	X	which	one	we	want	to	run.	For	GNOME,	we	provide	the	path	to	
gnome-session:

startx	/usr/bin/gnome-session

The	GNOME	desktop	provides	a	graphical	interface	for	working	with	the	
system

The	systemd	service	manager	is	responsible	for	starting	various	servers	and	
processes	when	the	system	boots.	The	systemctl	command	is	our	interface	to	the	
service	manager	and	can	be	used	to	set	the	default	boot	target.	The	default	target	
dictates	whether	the	system	boots	to	a	terminal	or	GUI-based	login	screen:

systemctl	set-default	graphical.target

When	set	to	graphical,	systemd	starts	X	and	the	GNOME	Display	Manager	when	
the	system	boots,	which	presents	us	with	a	graphical	login	to	provide	our	account	
details.	Once	we're	authenticated,	the	desktop	session	is	initiated	and	we	find	
ourselves	at	the	GNOME	desktop.

If	you	no	longer	want	to	boot	to	the	graphical	environment,	you	can	set	the	default
target	back	to	multiuser	and	the	system	will	boot	to	the	terminal-based	login
screen	again:

systemctl	set-default	multi-user.target

Tip

You	can	choose	which	desktop	environment	you	want	to	use	if	more	than	one
environment	is	installed	by	selecting	it	from	the	gear	button	on	the	login	screen:

You	can	select	your	preferred	desktop	from	the	login	screen

See	also
The	following	resources	will	provide	you	with	more	information	about	installing
graphical	desktop	environments	and	using	the	GNOME	desktop:

GNOME	Library	(https://help.gnome.org)
RHEL	7	Desktop	Migration	and	Administration	Guide
(https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Desktop_Migration_and_Administration_Guide
Guild	to	X11/Starting	Sessions
(https://en.wikibooks.org/wiki/Guide_to_X11/Starting_Sessions)
How	to	install	desktop	environments	on	CentOS	7
(http://unix.stackexchange.com/questions/181503/how-to-install-desktop-
environments-on-centos-7/181504#181504)

https://help.gnome.org
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Desktop_Migration_and_Administration_Guide
https://en.wikibooks.org/wiki/Guide_to_X11/Starting_Sessions
http://unix.stackexchange.com/questions/181503/how-to-install-desktop-environments-on-centos-7/181504#181504

Installing	the	KDE	Plasma	desktop
Separating	the	graphical	interface	from	the	operating	system	gives	users	the	power
to	choose	the	graphical	environment	they	like	best.	Don't	worry	if	you're	not	a
GNOME	fan	because	there	are	still	many	other	desktops	you	can	explore!	This
recipe	shows	you	how	to	install	another	popular	desktop	environment,	KDE
Plasma	Workspaces.

Getting	ready
This	recipe	requires	a	CentOS	system	with	a	working	network	connection.
Administrative	privileges	are	also	required	by	logging	in	with	the	root	account.

How	to	do	it...
Follow	these	steps	to	install	the	KDE	Plasma	Workspaces	desktop	environment:

1. Install	the	KDE	Plasma	Workspaces	package	group:

yum	groupinstall	"KDE	Plasma	Workspaces"

2. Manually	start	the	desktop	environment	using	startkde.	When	you're	done
using	KDE	and	log	out	of	the	desktop,	you'll	be	returned	to	the	console:

startkde

3. To	configure	the	system	to	automatically	start	the	graphical	environment
when	it	boots,	use	systemctl	to	set	the	default	start	up	target	to
graphical.target:

systemctl	set-default	graphical.target

How	it	works...
This	recipe	installs	the	KDE	Plasma	Workspaces	desktop	environment	via	Yum's
package	groups.	All	of	the	necessary	software	components	and	dependencies	to
run	KDE	are	installed	by	the	KDE	Plasma	Workspaces	package	group:

yum	groupinstall	"KDE	Plasma	Workspaces"

The	startkde	script	starts	the	X	server	and	launches	the	KDE	environment
together.	Unlike	with	GNOME,	we're	not	invoking	startx	directly,	so	we	don't
need	to	provide	additional	paths	when	more	than	one	environment	is	installed:

startkde

KDE	Plasma	Workspaces	is	a		popular	graphical	desktop	environment	for
Linux-based	systems

See	also
The	following	resources	will	provide	you	with	more	information	about	installing
and	using	KDE	Plasma	Workspaces:

How	to	install	desktop	environments	on	CentOS	7
(http://unix.stackexchange.com/questions/181503/how-to-install-desktop-
environments-on-centos-7/181504#181504)
KDE	documentation	(https://docs.kde.org)

http://unix.stackexchange.com/questions/181503/how-to-install-desktop-environments-on-centos-7/181504#181504
https://docs.kde.org

Chapter	2.	Networking
This	chapter	contains	the	following	recipes:

Setting	a	static	IP	address
Binding	multiple	addresses	to	a	single	Ethernet	device
Bonding	two	Ethernet	devices
Configuring	the	network	firewall	with	FirewallD
Configuring	the	network	firewall	using	iptables
Installing	a	DHCP	server
Configuring	an	NFS	server	to	share	a	filesystem
Configuring	an	NFS	client	to	use	a	shared	filesystem
Serving	Windows	shares	with	Samba

Introduction
The	recipes	in	this	chapter	cover	various	networking	tasks	that	should	prove
useful	to	you	as	a	CentOS	administrator.	You'll	learn	how	to	configure	a	static	IP
address,	bind	multiple	addresses	to	a	single	Ethernet	device,	and	bond	two
devices	together.	You'll	also	see	how	to	configure	the	system's	firewall	using
FirewallD	and	iptables,	and	how	to	set	up	a	DHCP	server	to	distribute	IP
addresses,	which	allows	other	computers	using	dynamic	networking
configurations	to	access	the	network.	The	remaining	recipes	will	teach	you	how	to
set	up	centralized	file	storage	using	NFS	and	Samba.

Setting	a	static	IP	address
This	recipe	shows	you	how	to	configure	a	static	IP	address.	Unless	you	configured
a	static	address	during	installation,	CentOS	uses	the	Dynamic	Host	Configuration
Protocol	(DHCP)	to	obtain	an	IP	address	to	communicate	across	the	network.
Using	a	dynamically	assigned	address	is	fine	for	most	desktop	and	laptop	systems,
but	those	that	host	e-mail	servers,	file	sharing	and	print	services,	and	web	servers
should	have	an	address	that	doesn't	change.	The	static	address	provides	a	stable,
known	location	on	the	network	where	users	can	access	a	system's	services.

Getting	ready
This	recipe	requires	a	CentOS	system	with	a	working	network	connection	and
administrative	privileges	provided	by	logging	in	with	the	root	account.	It
assumes	that	your	primary	Ethernet	device	is	named	enp0s3	and	is	currently
configured	with	DHCP.	If	your	device	is	named	differently,	substitute	its	name
appropriately	in	the	following	commands.

How	to	do	it...
Follow	these	steps	to	configure	a	static	IP	address:

1. Open	the	Ethernet	device's	configuration	file,	found	under	/etc/
sysconfig/network-scripts,with	your	text	editor:

vi	/etc/sysconfig/network-scripts/ifcfg-enp0s3

2. Change	the	value	of	BOOTPROTO	to	none:

BOOTPROTO="none"

3. At	the	end	of	the	file,	add	the	IPADDR,	NETMASK,	and	BROADCAST	entries	to
set	the	desired	IP	address.	Assign	them	values	that	properly	reflect	your
network:

IPADDR="192.168.56.100"

NETMASK="255.255.255.0"

BROADCAST="192.168.56.255"

The	interface	is	configured	with	a	static	IP	address

4. Save	your	changes	and	close	the	file.
5. Open	the	/etc/sysconfig/network	file	using	your	editor:

vi	/etc/sysconfig/network

6. Add	a	GATEWAY	entry	to	identify	your	network's	gateway:

GATEWAY="192.168.56.1"

7. Save	your	changes	and	close	the	file.
8. Restart	the	networking	service	for	the	configuration	changes	to	take	effect:

systemctl	restart	network.service

How	it	works...
In	this	recipe,	you	learned	how	to	assign	a	static	IP	address	to	an	Ethernet	device.
It	assumed	the	name	of	your	primary	Ethernet	device	to	be	enp0s3,	thus	ifcfg-
enp0s3	would	be	the	name	of	the	device's	configuration	file.	If	your	device	is
named	differently	(for	example,	eth0,	eno1677,	and	so	on)	then	you	need	to	adjust
the	recipe's	directions	accordingly.

First,	we	changed	the	value	for	BOOTPROTO	from	dhcp,	the	protocol	used	to	obtain
an	IP	address	dynamically,	to	none	since	we	are	setting	the	address	ourselves.
Then	we	added	the	IPADDR,	NETMASK,	and	BROADCAST	entries	to	provide	the
details	of	the	static	IP	address.	Next,	we	specified	the	network's	default	gateway
using	GATEWAY	in	/etc/	sysconfig/network.	This	allows	us	to	route	traffic
beyond	the	local	subnetwork.

After	you	restart	the	networking	service,	you	can	confirm	the	new	address	using
the	ip	command.	ip	addr	show	will	display	information	about	the	current	state
of	your	system's	network	devices:

ip	addr	show	displays	your	system's	networking	information

See	also
For	more	information	on	configuring	network	settings	in	CentOS,	refer	to	the
Configure	IP	Networking	chapter	in	the	RHEL	7	Networking	Guide
(https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-
Configure_IP_Networking.html).

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-Configure_IP_Networking.html

Binding	multiple	addresses	to	a	single
Ethernet	device
This	recipe	shows	you	how	to	bind	multiple	IP	addresses	to	a	single	Ethernet
device.	The	ability	to	assign	more	than	one	address	to	the	same	device	can	be
useful-the	most	obvious	benefit	is	that	you	don't	need	to	procure	multiple	Ethernet
cards.	The	cost	of	hardware	has	dropped	substantially,	but	IT	budgets	still	run
tight.	Perhaps	a	less	obvious	benefit,	but	one	more	valuable,	is	the	greater
flexibility	it	gives	when	configuring	network	services.	Different	services,	such	as
e-mail	and	websites,	can	run	on	the	same	system	but	be	accessed	using	different
addresses.

Getting	ready
This	recipe	requires	a	CentOS	system	with	a	working	network	connection.	It
assumes	that	your	primary	Ethernet	device	is	enp0s3	and	is	configured	with	a
static	IP	address.	You'll	also	need	administrative	privileges	provided	by	logging
in	with	the	root	account.

How	to	do	it...
Follow	these	steps	to	bind	multiple	addresses	to	the	same	Ethernet	device:

1. Make	a	copy	of	the	device's	configuration	file:

cp	/etc/sysconfig/network-scripts/ifcfg-enp0s3

	/etc/sysconfig/network-scripts/ifcfg-enp0s3:1

2. Open	the	new	file	with	your	text	editor:

vi	/etc/sysconfig/network-scripts/ifcfg-enp0s3:1

3. Delete	the	UUID	entry	entirely.	If	a	HWADDR	entry	exists,	delete	that	also.
4. Update	the	NAME	and	DEVICE	values:

NAME="System	enp0s3:1"

DEVICE="enp0s3:1"

5. Change	the	value	of	IPADDR	to	the	IP	address	you	wish	to	use:

IPADDR="192.168.56.101"

6. Save	your	changes	and	close	the	file.
7. Restart	the	networking	service	for	the	configuration	changes	to	take	effect:

systemctl	restart	network.service

How	it	works...
In	this	recipe,	you	learned	how	to	assign	multiple	IP	addresses	to	the	same
Ethernet	device.	We	made	a	copy	of	one	of	the	original	network	configuration
files,	taking	care	to	name	it	appropriately	to	create	a	virtual	adapter,	and	edited	its
configuration	details.	Since	the	name	of	the	first	device's	configuration	is	ifcfg-
enp0s3,	the	new	file	is	named	ifcfg-enp0s3:1	to	create	the	first	virtual	adapter
associated	with	that	device.	If	you	want	to	add	more	adapters	(assign	more	IP
addresses),	repeat	the	steps	using	incrementing	numbers,	for	example,	enp0s3:2,
enp0s3:3,	and	so	on.

In	the	configuration	file,	we	removed	the	HWADDR	and	UUID	entries	since	they	are
not	needed	for	a	virtual	adapter.	Then	we	updated	the	DEVICE	and	NAME	entries	to
give	the	adapter	its	own	identify,	and,	of	course,	we	updated	the	IPADDR	entry	to
assign	its	IP	address:

Multiple	IP	addresses	are	bound	to	an	Ethernet	device	via	a	virtual	adapter

See	also
Refer	to	the	following	resources	for	more	information	on	binding	multiple
addresses	to	the	same	Ethernet	device:

Create	Multiple	IP	Addresses	to	One	Single	Network	Interface
(http://www.tecmint.com/create-multiple-ip-addresses-to-one-single-
network-interface)
Assign	Multiple	IP	Addresses	To	Single	Network	Interface	Card	On	CentOS
7	(http://www.unixmen.com/linux-basics-assign-multiple-ip-addresses-
single-network-interface-card-centos-7)
Adding	Secondary	IP	Addresses	(https://dbiers.me/adding-secondary-ip-
addresses-centosrhel/)

http://www.tecmint.com/create-multiple-ip-addresses-to-one-single-network-interface
http://www.unixmen.com/linux-basics-assign-multiple-ip-addresses-single-network-interface-card-centos-7
https://dbiers.me/adding-secondary-ip-addresses-centosrhel/

Bonding	two	Ethernet	devices
In	this	recipe,	you'll	learn	how	to	combine	multiple	Ethernet	devices	as	a	single
network	device	in	a	configuration	known	as	channel	bonding.	Channel	bonding
allows	us	to	bind	multiple	devices	together	so	that	they	appear	as	a	single
interface	to	servers	running	on	the	CentOS	system.	Its	purpose	is	to	improve	your
system's	overall	network	performance	and	provide	redundancy	if	one	of	the
network	devices	fails.

Getting	ready
This	recipe	requires	a	CentOS	system	with	at	least	two	Ethernet	devices.	It
assumes	that	your	primary	Ethernet	device	is	enp0s3.	If	your	device	is	named
differently,	substitute	the	name	appropriately	in	the	recipe's	commands.	You'll	also
need	administrative	privileges	provided	by	logging	in	with	the	root	account.

How	to	do	it...
Follow	these	steps	to	bond	two	Ethernet	devices:

1. Install	the	bind-utils	and	ethtool	packages:

yum	install	bind-utils	ethtool

2. Create	a	new	configuration	file	for	the	bonded	interface:

vi	/etc/sysconfig/network-scripts/ifcfg-bond0

3. Add	the	following	lines	to	the	file,	substituting	values	for	IPADDR,	NETMASK,
and	BROADCAST	that	are	appropriate	for	your	network:

BOOTPROTO="none"

DEVICE="bond0"

USERCTL="no"

ONBOOT="yes"

IPADDR="192.168.56.100"

NETMASK="255.255.255.0"

BROADCAST="192.168.56.255"

4. Save	your	changes	and	close	the	configuration	file.
5. Open	the	configuration	file	of	the	first	device	you	wish	to	bond:

vi	/etc/sysconfig/network-scripts/ifcfg-enp0s3

6. Make	sure	BOOTPROTO	is	set	to	none	and	ONBOOT	is	set	to	yes.	Then	remove
the	IPADDR,	NETMASK,	and	BROADCAST	entries	if	they	exist.

7. Add	the	SLAVE	and	MASTER	entries	at	the	end	of	the	file:

SLAVE=yes

MASTER=bond0

8. Save	your	changes	and	close	the	configuration	file.
9. Repeat	steps	5-8	for	each	additional	device	you	want	to	bond.
10. Create	the	configuration	file	used	by	the	kernel	to	control	how	the	bonding

interface	should	behave:

vi	/etc/modprobe.d/bonding.conf

11. Add	the	following	lines	to	the	file:

alias	bond0	bonding

options	bond0	mode=5	miimon=100

12. Save	your	changes	and	close	the	file.
13. Register	the	bonding	module	with	the	system's	kernel:

modprobe	bonding

14. Restart	networking	services	for	the	changes	to	take	effect:

systemctl	restart	network.service

How	it	works...
We	began	by	creating	a	configuration	file	for	the	bonding	interface	at
/etc/sysconfig/	network-scripts/ifcfg-bond0.	BOOTPROTO	was	set	to	
none	because	the	IP	address	is	set	statically,	DEVICE	gives	a	name	to	the	interface,	
USERCTL	was	set	to	no	to	prohibit	nonadministrative	users	from	bringing	the	
interface	up	and	down,	and	ONBOOT	was	set	to	yes	so	that	the	interface	will	be	
automatically	activated.	We	also	gave	the	IP	address	information	with	IPADDR,	
NETMASK,	and	BROADCAST:

BOOTPROTO="none"

DEVICE="bond0"

USERCTL="no"

ONBOOT="yes"

IPADDR="192.168.56.100"

NETMASK="255.255.255.0"

BROADCAST="192.168.56.255"

Then	we	updated	the	configuration	files	for	each	device	we	want	to	bond.	We	
made	sure	BOOTPROTO	was	set	to	none	and	there	was	no	address	information	since	
the	device	will	no	longer	need	its	own	IP	address.	Adding	the	SLAVE	and	MASTER	
entries,	we	identified	the	device	as	being	bound	to	the	new	bond0	device:

SLAVE=yes

MASTER=bond0

By	performing	these	steps,	we	have	created	a	new	virtual	device	known	as	the	
bonding	master	that	will	use	our	real	Ethernet	devices	as	slaves.	If	one	slave	
device	fails,	the	other	slave	will	still	be	active,	providing	redundancy.

Next,	we	created	a	new	configuration	file	with	our	preferences	for	the	kernel	
bonding	module.	The	module	is	the	kernel	implementation	of	the	bonding	device	
and	is	responsible	for	coordinating	the	physical	devices:

alias	bond0	bonding

options	bond0	miimon=100	mode=5

miimon=100	specifies	that	MII	link	monitoring	will	occur	every	100	milliseconds	
to	verify	that	the	physical	devices	are	active.	mode=5	represents	a	basic	
configuration	that	doesn't	require	any	specific	type	of	network	switch	support.	It

allows	outgoing	traffic	to	be	distributed	according	to	the	current	load	on	each
slave	device.	There	are	five	other	modes	which	give	you	plenty	of	options	in
configuring	how	the	devices	work	together,	although	you	should	be	aware	that
some	modes	may	require	specific	hardware	support.	Refer	to
http://wiki.centos.org/TipsAndTricks/BondingInterfaces	for	more	information.

After	making	changes	to	the	device's	configuration	files,	we	registered	the	bonding
kernel	module	using	modprobe:

modprobe	bonding

Two	Ethernet	devices	are	bound	with	the	same	IP	addresses	through	the
bonding	adapter

http://wiki.centos.org/TipsAndTricks/BondingInterfaces

See	also
For	more	information	on	bonding	Ethernet	devices	CentOS,	refer	to	the	Configure
Network	Bonding	chapter	in	the	RHEL	7	Networking	Guide
(https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-
Configure_Network_Bonding.html).

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-Configure_Network_Bonding.html

Configuring	the	network	firewall	with
FirewallD
Now	you'll	learn	how	to	configure	the	networking	firewall	using	FirewallD.
Starting	with	CentOS	7,	FirewallD	replaces	iptables	as	the	default	firewall
configuration	utility	(although	iptables	is	still	used	behind	the	scenes	by
FirewallD).	Based	on	which	zones	and	services	you	configure,	you	can	increase
the	network	security	of	your	server	by	controlling	what	traffic	is	allowed	or
disallowed	to	and	from	the	system.

Getting	ready
This	recipe	requires	a	CentOS	system	with	a	working	network	connection.	You'll
also	need	administrative	privileges	provided	by	logging	in	with	the	root	account.

How	to	do	it...
This	collection	of	commands	will	show	you	how	to	perform	several	basic
configuration	tasks	using	FirewallD's	command-line	client,	firewall-cmd:

1. To	identify	the	currently	active	zones	and	which	Ethernet	devices	are
assigned	to	them,	use	the	--get-active-zones	flag:

firewall-cmd	--get-active-zones

2. To	temporarily	change	which	zone	a	device	is	assigned	to,	use	the	--zone
argument	to	specify	the	target	zone	and	--change-interface	to	specify	the
Ethernet	device:

firewall-cmd	--zone=public	--change-interface=enp0s3

3. To	permanently	assign	a	device	to	a	zone,	add	a	ZONE	entry	to	the	device's
configuration	file.	This	change	will	not	take	effect	until	the	service	has	been
restarted:

vi	/etc/sysconfig/network-scripts/ifcfg-enp0s3

ZONE="public"

4. To	identify	the	current	configuration	for	a	zone,	use	the	--zone	argument	to
specify	the	target	zone	and	include	--list-all:

firewall-cmd	--zone=public	--list-all

5. To	allow	traffic	through	the	firewall,	use	the	--add-service	or	--add-
port	arguments:

Traffic	for	common	services	and	protocols	such	as	HTTP	and	SMTP	can	be
allowed	by	name.	The	following	adds	the	http	service	which	opens	port	80
(the	port	used	by	Apache	and	other	HTTP	servers):

firewall-cmd	--zone=public	--permanent	--add-service=http

Traffic	can	always	be	allowed	directly	given	the	port	and	network	protocol.
The	following	opens	port	8080	to	TCP	traffic,	another	port	commonly	used	to
serve	web	content:

firewall-cmd	--zone=public	--permanent	--add-port=8080/tcp

6. To	disallow	traffic	that	is	currently	allowed	through	the	firewall,	use	the	--
remove-service	or	--remove-port	arguments:

firewall-cmd	--zone=public	--permanent	--remove-service=http

firewall-cmd	--zone=public	--permanent	--remove-	

port=8080/tcp

7. To	reload	the	firewall	after	making	a	change,	use	--reload		:

firewall-cmd	--reload

How	it	works...
The	default	installation	of	FirewallD	makes	several	preconfigured	zones	
available,	for	example,	public,	dmz,	work,	home,	and	trusted.	Different	
interfaces	can	be	assigned	to	different	zones	and	have	different	rules	applied.	To	
see	all	of	the	available	zones	and	their	configuration,	we	can	invoke	firewall-
cmd	with	the	--list-all-zones	flag:

firewall-cmd	--list-all-zones

Most	updates	made	to	the	firewall	rules	will	take	effect	immediately	but	are	
temporary.	We	saw	this	earlier	when	we	had	to	update	the	device's	configuration	
file	and	restart	the	service	to	make	a	zone	change	permanent.	This	lets	us	
experiment	with	different	settings	before	finalizing	the	configuration.	When	
configuring	services	and	ports,	the	--permanent	flag	is	used	to	make	the	changes	
permanent.	If	you	don't	provide	the	flag,	the	changes	will	take	effect	immediately	
but	will	only	be	temporary	(not	persist	across	a	system	reboot	or	restart	of	the	
firewall	service:

firewall-cmd	--zone=public	--permanent	--remove-service=http

Named	services	are	preconfigured	port	settings	that	are	common	to	a	specific	
network	service	and	are	available	for	our	convenience.	For	example,	SSH	traffic	
commonly	consists	of	TCP	packets	destined	for	port	22,	so	the	ssh	service	
reflects	this.	In	the	examples,	we	used	the	http	service,	which	configured	port	80,	
the	standard	port	used	to	serve	web	pages.	While	assigning	the	port	directly	has	
the	same	effect,	services	provide	convenient,	human-readable	names	and	should	
be	used	when	possible.	To	get	a	list	of	all	available	services,	use	--get-
services:

firewall-cmd	--get-services

firewall-cmd	is	a	command-line	client	for	configuring	firewall	rules

Note

Named	services	are	defined	as	XML	files	under
/usr/lib/firewalld/services.	If	you	want	to	allow	access	for	some	traffic	
but	a	service	isn't	defined,	and	you	would	prefer	to	perform	the	configuration	
using	a	service	instead	of	the	port	and	protocol	for	the	sake	of	readability,	you	can	
create	a	new	service	file	in	this	directory.	Copy	an	existing	file	as	your	starting	
point	and	modify	it	to	suit	your	needs.

See	also
For	more	information	on	working	with	FirewallD,	refer	to	the	following
resources:

RHEL	7	Migration	Planning	Guide:	Security	and	Access	Control
(https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_%20Linux/7/html/Migration_Planning_Guide/sect-
Red_Hat_Enterprise_%20Linux-Migration_Planning_Guide-
Security_and_Access_%20Control.html)
FirewallD	(http://fedoraproject.org/wiki/FirewallD)
How	To	Set	Up	a	Firewall	Using	FirewallD	on	CentOS	7
(https://www.digitalocean.com/community/tutorials/how-to-set-up-a-
firewall-using-firewalld-on-centos-7)

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_%20Linux/7/html/Migration_Planning_Guide/sect-Red_Hat_Enterprise_%20Linux-Migration_Planning_Guide-Security_and_Access_%20Control.html
http://fedoraproject.org/wiki/FirewallD
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-firewall-using-firewalld-on-centos-7

Configuring	the	network	firewall
using	iptables
In	this	recipe,	you'll	learn	how	to	replace	FirewallD	with	the	iptables	service	and
perform	basic	firewall	configurations.	iptables	was	the	default	method	for
managing	the	firewall's	settings	in	CentOS	prior	to	version	7.	Some	administrators
might	prefer	iptables	because	it's	within	their	comfort	level	or	maybe	they	have
several	older	servers	running	in	the	data	center	and	they	want	to	maintain
similarity	as	much	as	possible.

Getting	ready
This	recipe	requires	a	CentOS	system	with	a	working	network	connection.	You'll
also	need	administrative	privileges	provided	by	logging	in	with	the	root	account.

How	to	do	it...
The	following	steps	will	allow	you	to	replace	FirewallD	with	the	iptables
service:

1. Stop	the	FirewallD	service	and	disable	it:

systemctl	stop	firewalld

systemctl	mask	firewalld

2. Install	the	iptables-services	package	which	contains	the	service:

yum	install	iptables-services

3. Start	the	service	and	register	it	so	that	it	will	start	automatically	when	the
system	is	booted:

systemctl	start	iptables

systemctl	enable	iptables

The	following	collection	of	commands	will	show	you	how	to	perform	several
basic	configuration	tasks	using	iptables:

Use	the	-L	flag	to	print	the	current	configuration.	Add	the	--line-numbers
flag	to	display	each	rule's	ID	number	alongside	it:

iptables	-L	--line-numbers

Use	the	following	command	to	allow	TCP	traffic	on	port	80	from	the	enp0s3
interface	through	the	firewall:

iptables	-A	INPUT	-i	enp0s3	--dport	80	-p	tcp	-j	ACCEPT

To	remove	the	rule	that	allows	TCP	traffic	on	port	80,	execute	iptables	-L
--line-numbers	to	find	the	rule's	ID	and	then	use	the	following	(replace	##
with	the	rule's	ID):

iptables	-D	INPUT	##

Reload	iptables	after	making	configuration	changes	for	them	to	be	in	effect:

systemctl	restart	iptables

How	it	works...
To	replace	FirewallD	with	the	iptables	service	to	manage	the	network	firewall,	
we	first	stopped	and	disabled	the	FirewallD	service;	we	don't	want	multiple	
firewall	daemons	running	since	it	would	lead	to	conflicts.	FirewallD	uses	iptables	
behind	the	scenes	so	iptables	is	already	installed,	but	the	iptables	service	isn't.	
So,	next	we	installed	the	iptables-services	package:

yum	install	iptables-services

We	then	saw	how	to	perform	basic	configurations	to	allow	and	disallow	traffic.	
For	example,	the	recipe	presented	the	command	to	add	a	rule	that	allows	TCP	
traffic	through	port	80:

iptables	-A	INPUT	-i	enp0s3	--dport	80	-p	tcp	-j	ACCEPT

The	-A	argument	indicates	that	we	wish	to	add	a	firewall	rule	and	is	followed	by	
the	rule	type.	Possible	values	are	INPUT,	OUTPUT,	and	FORWARD,	which	apply	to	
incoming	traffic,	outgoing	traffic,	and	traffic	that	is	routed,	respectively	(if	the	
system	is	configured	as	a	router,	for	example.	Since	INPUT	is	specified,	our	rule	
applies	to	incoming	traffic	on	port	80.

The	-i	argument	specifies	the	network	interface	that	is	monitored	by	the	rule.	In	
this	case,	the	rule	applies	to	enp0s3.	Then,	--dport	specifies	the	traffic's	
destination	port,	in	this	case	port	80,	and	-p	specifies	the	transport	protocol,	for	
example,	either	TCP	or	UDP.

The	-j	argument	is	the	target	action	for	jump	to.	With	iptables,	rules	are	strung	
together	to	make	chains	of	filtering	logic.	Imagine	iptables	checking	traffic	against	
each	rule	we've	specified;	if	the	first	rule	doesn't	match,	it	goes	on	to	check	the	
next	rule,	and	the	next,	until	a	match	is	found.	When	the	matching	rule	is	found,	
iptables	stops	checking	and	jumps	to	the	desired	state.	Possible	states	are	ACCEPT	
to	accept	the	traffic,	REJECT	to	actively	deny	the	connection,	and	DROP	to	silently	
ignore	it.

We	also	saw	how	to	display	the	rules	that	are	currently	defined	using	the	-L	flag	
and	that	using	--line-numbers	will	display	an	identifier	alongside	each	rule:

iptables	-L	--line-numbers

iptables	accepts	or	denies	traffic	based	on	the	configured	rules

Knowing	a	rule's	identifier	is	convenient	if	we	want	to	delete	it.	By	providing	-D,	
the	rule	type	(INPUT,	OUTPUT,	or	FORWARD,	and	the	ID,	we	can	succinctly	remove	
a	rule	from	the	chain:

iptables	-D	INPUT	6

Alternatively,	you	can	respecify	the	entire	rule	while	substituting	-A	with	-D	to	
delete	it:

iptables	-D	INPUT	-i	enp0s3	--dport	80	-p	tcp	-j	ACCEPT

See	also
Refer	to	the	following	resources	for	more	information	on	working	with	iptables:

How	to	Migrate	from	FirewallD	to	iptables	on	CentOS	7
(https://www.digitalocean.com/community/tutorials/how-to-migrate-from-
firewalld-to-iptables-on-centos-7)
How	to	List	and	Delete	iptables	Firewall	Rules
(https://www.digitalocean.com/community/tutorials/how-to-list-and-delete-
iptables-firewall-rules)
25	Most	Frequently	Used	Linux	iptables	Rules
(http://www.thegeekstuff.com/2011/06/iptables-rules-examples)
Drop	versus	reject
(http://www.chiark.greenend.org.uk/~peterb/network/drop-vs-reject)

https://www.digitalocean.com/community/tutorials/how-to-migrate-from-firewalld-to-iptables-on-centos-7
https://www.digitalocean.com/community/tutorials/how-to-list-and-delete-iptables-firewall-rules
http://www.thegeekstuff.com/2011/06/iptables-rules-examples
http://www.chiark.greenend.org.uk/~peterb/network/drop-vs-reject

Installing	a	DHCP	server
This	recipe	will	show	you	how	to	set	up	your	own	DHCP	server	on	CentOS.
DHCP	is	used	to	assign	IP	addresses	and	other	network	configuration	details	on
demand	to	a	client.	While	a	system	configured	with	a	static	IP	address	will
already	know	all	the	necessary	networking	details,	a	system	configured	to	use
DHCP	broadcasts	a	request	on	the	network	and	waits	to	receive	a	response	from
the	DHCP	server.

Getting	ready
This	recipe	requires	a	CentOS	system	with	a	working	network	connection.	You'll
also	need	administrative	privileges	provided	by	logging	in	with	the	root	account.

Note

Only	one	DHCP	server	should	be	running	on	the	network	to	prevent	clients	from
receiving	conflicting	responses	that	can	result	in	network	instability.	Many	routers
already	have	a	DHCP	service	running	on	them,	so	check	for	this	on	your	own
network	before	proceeding.

How	to	do	it...
Follow	these	steps	to	set	up	a	DHCP	server:

1. Install	the	dhcp	package:

yum	install	dhcp

2. Copy	the	example	configuration	file	provided	by	the	package	to	serve	as	the
starting	point	of	your	server's	configuration:

cp	/usr/share/doc/dhcp-4.2.5/dhcpd.conf.example

	/etc/dhcp/dhcpd.conf

3. Open	the	configuration	file	using	your	text	editor:

vi	/etc/dhcp/dhcpd.conf

4. Modify	the	configuration	with	values	that	make	sense	for	your	environment.
In	particular,	you'll	want	to	address	the	following	options:	domain-name	and
domain-name-servers,	subnet,	the	dynamic-bootp	range,	broadcast-
address,	and	routers.	Here	is	an	example	configuration	for	a	network	of
two	subnets:

#	option	definitions	common	to	all	supported	networks

option	domain-name	localdomain;

option	domain-name-servers	ns1.localdomain;

default-lease-time	600;

max-lease-time	7200;

#	This	DHCP	server	is	the	official	DHCP	server	for	the

#	local	network

authoritative;

#	No	service	will	be	given	on	this	subnet,	but	declaring

#	it	helps	the	server	to	understand	the	network	topology.

subnet	192.168.56.0	netmask	255.255.255.0	{

}

#	This	is	a	basic	subnet	declaration

subnet	192.168.56.0	netmask	255.255.255.128	{

	range	192.168.56.110	192.168.56.120;

	option	domain-name-servers	ns1.localdomain;

	option	domain-name	"localdomain";

	option	routers	192.168.56.1;

	option	broadcast-address	192.168.56.127;

}

#	This	is	the	second	subnet

subnet	192.168.56.128	netmask	255.255.255.128	{

	range	192.168.56.200	192.168.56.210;

	option	domain-name-servers	ns2.sub.localdomain;

	option	domain-name	"sub.localdomain";

	option	routers	192.168.56.129;

	option	broadcast-address	192.168.56.255;

}

5. Save	your	changes	and	close	the	file.
6. Start	the	dhcp	service	and	enable	it	to	start	at	system	boot:

systemctl	start	dhcpd

systemctl	enable	dhcpd

7. Open	ports	67	and	68	in	the	system's	firewall	to	allow	traffic:

firewall-cmd	--zone=public	--permanent	--add-service=dhcp

firewall-cmd	--reload

How	it	works...
A	system	configured	to	use	DHCP	will	broadcast	a	request	and	wait	to	receive	a
response	from	the	DHCP	server.	The	server's	response	lets	the	client	know	which
IP	address,	netmask,	gateway	information,	and	so	on	to	use	on	the	network.
DHCP-provisioned	addresses	are	usually	leased,	which	means	that	after	a	set
amount	of	time	they	expire	and	the	client	needs	to	send	another	request.	The	DHCP
server,	in	addition	to	handing	out	connection	details,	must	keep	track	of	the
addresses	that	have	already	been	leased	so	that	a	client	doesn't	receive	an	address
that's	already	in	use	by	another	system.

We	began	by	installing	the	dhcpd	package,	which	contains	the	server	and	example
configuration	files.	Copying	the	example	configuration	to	use	as	a	starting	point
for	our	own	saves	us	from	having	to	draft	the	entire	configuration	from	scratch:

cp	/usr/share/doc/dhcp-4.2.5/dhcpd.conf.example	

/etc/dhcp/dhcpd.conf

In	the	configuration	file,	there	are	several	places	where	you	need	to	provide
values	that	make	sense	for	your	network.	The	minimal	configuration	file	provided
as	an	illustration	in	the	recipe	reflects	a	network	divided	into	two	subnets.	The
first	subnet	is	192.168.56.0/25	and	the	second	is	192.168.56.128/25.	Each
subnet	has	its	own	declaration.

Examining	the	first	subnet	declaration,	the	subnet's	ID	is	192.168.56.0	with	a
netmask	of	255.255.255.128.	The	range	option	will	restrict	the	DHCP	server	in
assigning	IP	addresses	in	the	range	of	192.168.56.110	to	120	(the	other
addresses	are	still	valid	and	are	available	for	static	assignment).	Subsequent
option	entries	provide	the	subnet's	broadcast-address	and	gateway,	and	override
the	domain	name	and	nameservers	defined	globally:

#	This	is	a	basic	subnet	declaration

subnet	192.168.56.0	netmask	255.255.255.128	{

	range	192.168.56.110	192.168.56.120;

	option	domain-name-servers	ns1.localdomain;

	option	domain-name	"localdomain";

	option	routers	192.168.56.1;

	option	broadcast-address	192.168.56.127;

}

Configuring	a	DHCP	server	properly	requires	an	understanding	of	computer
networking.	It	is	a	complex	topic	and,	as	such,	we	can't	discuss	every	option	in
detail.	I	advise	you	to	read	the	manual	page	for	dhcpd.conf	for	extra	guidance.
The	page	can	be	accessed	using	the	man	command:

man	5	dhcpd.conf

The	configuration	file	for	dhcpd	is	documented	in	a	manual	page

Once	the	DHCP	server	was	configured	and	running,	we	then	needed	to	poke	a	hole	
in	the	firewall	to	allow	requests	and	responses	to	flow	freely.	DHCP	requests	
occur	using	UDP	and	ports	57	and	58	(you	can	allow	them	using	the	service	
defined	for	FirewallD:

firewall-cmd	--zone=public	--permanent	--add-service=dhcp	

firewall-cmd	--reload

See	also
For	more	information	on	setting	up	a	DHCP	server,	refer	to	the	following
resources:

The	dhcpd.conf	manual	page	(man	5	dhcpd.conf)
RHEL	7	Networking	Guide:	DHCP	Servers
(https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-
DHCP_Servers.html)
Quick	Start:	Setup	CentOS	7	as	a	DHCP	Server
(www.yoyoclouds.com/2015/01/quick-start-setup-centos-7-as-dhcp.html)
Subnet	Calculator	(www.subnet-calculator.com)

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-DHCP_Servers.html
http://www.yoyoclouds.com/2015/01/quick-start-setup-centos-7-as-dhcp.html
http://www.subnet-calculator.com/

Configuring	an	NFS	server	to	share	a
filesystem
Network	File	System	(NFS)	is	a	protocol	for	a	distributed	filesystem.	That	is,	we
can	store	files	to	a	directory	on	a	remote	server	and	clients	can	mount	the	share.
The	remote	directory	will	appear	to	the	client	as	if	it	were	local,	although	all	data
saved	to	it	resides	on	the	server.	This	recipe	shows	you	how	to	configure	NFS	on
a	server	and	expose	the	storage	as	a	network	share.	(The	next	recipe	will	show
you	how	to	configure	NFS	on	a	client.)

Getting	ready
This	recipe	requires	a	CentOS	system	with	a	working	network	connection.	You'll
also	need	administrative	privileges	provided	by	logging	in	with	the	root	account.

How	to	do	it...
Follow	these	steps	to	set	up	an	NFS	server:

1. Install	the	nfs-utils	and	libnfsidmap	packages:

yum	install	nfs-utils	libnfsidmap

2. Create	a	globally	accessible	directory	which	will	serve	as	the	root	of	the	file
share:

mkdir	-m	777	/var/nfsshare

3. Open	/etc/exports	and	add	the	following	entry	to	mark	the	directory	for
export	by	NFS.	When	done,	save	and	close	the	file:

/var/nfsshare	192.168.56.0/24(rw,sync,root_squash)

The	exports	file	is	very	picky.	Make	sure	there's	no	space	between	the
network	and	the	parenthesized	options	as	well	as	no	spaces	around	the
commas	that	separate	the	options.

4. Start	the	necessary	services	and	register	them	so	that	they	will	start	when	the
server	boots:

	systemctl	start	rpcbind	nfs-server

	systemctl	enable	rpcbind	nfs-server

5. Open	ports	111,	2048,	and	2049	in	the	firewall	to	allow	traffic	through:

firewall-cmd	--permanent	--zone	public	--add-service	rpc-bind

firewall-cmd	--permanent	--zone	public	--add-service	mountd

firewall-cmd	--permanent	--zone	public	--add-service	nfs

firewall-cmd	--reload

How	it	works...
In	this	recipe,	you	learned	how	to	set	up	a	shared	network	directory	using	NFS.	
After	installing	the	appropriate	packages,	we	created	the	shared	directory,	
registered	it	to	be	exported,	and	started	the	necessary	system	services.

/etc/exports	is	the	configuration	file	that	manages	which	filesystems	are	
exported	and	how.	We	added	an	entry	that	identified	the	directory	we	want	to	
export,	followed	by	which	clients	they	are	exported	to	and	the	options	that	govern	
how	the	export	will	be	treated:

/var/nfsshare	192.168.56.0/24(rw,sync,root_squash

In	the	example,	we	make	the	share	available	to	192.168.56.0/24,	in	other	
words,	any	host	on	the	network.	Alternatively,	you	can	share	the	directory	a	single	
host	or	a	range	of	hosts.	An	entry	that	shares	the	directory	with	a	specific	host	
looks	like	the	following:

/var/nfsshare	192.168.56.101(rw,sync,root_squash

The	rw++	option	allows	both	read	and	write	access	to	the	share.	sync	flushes	any	
changes	to	a	file	immediately	to	disk.	While	writing	to	disk	might	make	access	to	
the	file	slower	at	times,	the	delay	won't	be	noticeable	unless	your	system	is	under	
high	load,	and	it	would	seem	like	a	fair	trade-off	for	the	safety	that	immediate	
flushes	provide	in	the	event	of	a	crash.

NFS	will	effectively	squash	the	root	user's	ownership	when	root_squash	is	
provided	by	changing	the	owner	to	nfsnobody.	This	is	a	security	measure	that	
mitigates	the	risk	of	a	root	user	on	the	client	system	attempting	to	write	a	file	to	the	
share	with	root	ownership	(otherwise	a	malicious	user	could	store	a	file	and	mark	
it	executable	where	it	might	be	run	with	root	privileges.	If	you	want	to	squash	the	
ownership	of	all	files	to	nfsnobdy,	you	can	use	the	all_squash	option.

NFS	relies	on	a	few	other	services,	which	is	why	we	also	enabled	rpcbind	and	
opened	firewall	ports	for	rpcbind	and	mountd.	NFS	works	on	top	of	the	Remote	
Procedure	Call	(RPC	protocol,	and	rcpind	is	responsible	for	mapping	the	RPC-
based	services	to	their	ports.	An	incoming	connection	from	a	client	first	hits	the	
rpcbind	service,	providing	an	RPC	identifier.	Rpcbind	resolves	the	identifier	to	a

particular	service	(NFS	in	this	case)	and	redirects	the	client	to	the	appropriate
port.	There,	mountd	handles	the	request	to	determine	whether	the	requested	share
is	exported	and	whether	the	client	is	allowed	to	access	it.

See	also
Refer	to	the	following	resources	for	more	information	about	configuring	an	NFS
server:

The	Network	Filesystem	(http://www.tldp.org/LDP/nag/node140.html)
RHEL	7	Storage	Administration	Guide:	NFS	Server	Configuration
(https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/nfs-
serverconfig.html)
How	to	setup	NFS	Server	on	CentOS	7	(http://www.itzgeek.com/how-
tos/linux/centos-how-tos/how-to-setup-nfs-server-on-centos-7-rhel-7-
fedora-22.html)

http://www.tldp.org/LDP/nag/node140.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/nfs-serverconfig.html
http://www.itzgeek.com/how-tos/linux/centos-how-tos/how-to-setup-nfs-server-on-centos-7-rhel-7-fedora-22.html

Configuring	an	NFS	client	to	use	a
shared	filesystem
This	recipe	continues	where	the	previous	recipe	left	off,	showing	you	how	to
configure	NFS	on	a	client	system.

Getting	ready
This	recipe	requires	a	CentOS	system	with	a	working	network	connection.	It
assumes	that	an	NFS	server	has	been	configured	as	explained	in	the	previous
recipe.	You'll	also	need	administrative	privileges	provided	by	logging	in	with	the
root	account.

How	to	do	it...
Follow	these	steps	to	configure	an	NFS	client:

1. Install	the	nfs-utils	and	libnfsidmap	packages:

yum	install	nfs-utils	libnfsidmap

2. Create	the	directory	which	will	serve	as	the	mount	point	for	the	remote
filesystem:

mkdir	/mnt/nfs

3. Start	the	rpcbind	service	and	register	it	so	that	it	will	start	when	the	server
boots:

systemctl	start	rpcbind

systemctl	enable	rpcbind

4. Mount	the	NFS	share	to	the	mount	point:

mount	-t	nfs	192.168.56.100:/var/nfsshare	/mnt/nfs

How	it	works...
Like	the	server	side,	the	client	side	of	NFS	relies	on	RPC.	So,	we	started	and	
enabled	the	rpcbind	service.	The	mount	command	is	then	used	to	mount	the	remote	
share:

mount	-t	nfs	192.168.56.100:/var/nfsshare	/mnt/nfs

The	-t	argument	indicates	the	share's	filesystem	type,	which,	of	course	is,	nfs.	
The	location	of	the	remote	share	is	also	provided,	the	IP	address	of	the	server	and	
the	directory	of	the	shared	data	separated	by	a	colon.	Finally,	the	mount	target	is	
given.

To	manually	unmount	the	share,	the	umount	command	is	used	with	the	mount	
point:

umount	/mnt/nfs

We	can	also	configure	the	system	to	mount	the	NFS	share	automatically	at	boot	
time.	Open	/etc/fstab	using	your	editor	and	add	the	following	line:

192.168.0.100:/var/nfsshare	/mnt/nfs/var/nfsshare	nfs	defaults	0	

0

The	share	will	be	automatically	mounted	when	the	system	boots.	Since	mount	can	
look	up	information	in	/etc/fstab,	the	invocation	to	mount	the	share	manually	
becomes	much	simpler	once	it's	registered	in	this	manner.	You	can	now	mount	the	
share	manually	by	providing	just	the	mount:

mount	/mnt/nfs

See	also
Refer	to	the	following	resources	for	more	information	about	configuring	an	NFS
client:

The	mount	manual	page	(man	8	mount)
Setting	up	an	NFS	Client	(http://www.tldp.org/HOWTO/NFS-
HOWTO/client.html)
RHEL	7	Storage	Administration	Guide:	NFS	Client	Configuration
(https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/nfs-
clientconfig.html)
How	to	setup	NFS	Server	on	CentOS	7	(http://www.itzgeek.com/how-
tos/linux/centos-how-tos/how-to-setup-nfs-server-on-centos-7-rhel-7-
fedora-22.html)

http://www.tldp.org/HOWTO/NFS-HOWTO/client.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/nfs-clientconfig.html
http://www.itzgeek.com/how-tos/linux/centos-how-tos/how-to-setup-nfs-server-on-centos-7-rhel-7-fedora-22.html

Serving	Windows	shares	with	Samba
In	this	recipe,	you	will	learn	how	to	serve	a	Windows	share	from	a	CentOS
system	using	Samba.	Like	NFS,	a	Windows	share	is	a	directory	on	a	remote
server	that	a	client	may	access	to	store	files.	Samba	is	a	server	that	understands
the	SMB	protocol	used	by	Windows	so	that	it	can	export	directories	that	a
Windows	client	can	mount.

Getting	ready
This	recipe	requires	a	CentOS	system	with	a	working	network	connection.	You'll
also	need	administrative	privileges	provided	by	logging	in	with	the	root	account.

The	name	of	your	Windows	workgroup	is	needed	to	configure	Samba	properly.
Before	you	begin,	on	your	Windows	system	in	your	network,	run	net	config
workstation	and	record	the	Workstation	domain	value:

net	config	workstation	displays	information	about	the	Windows	system's
workgroup	and	domain

How	to	do	it...
Follow	these	steps	to	set	up	Samba	to	share	directories	with	Windows	systems:

1. Install	the	samba	package:

yum	install	samba

2. Create	a	dedicated	group	for	Samba	users:

groupadd	smbgroup

3. Create	the	directory	which	will	serve	as	the	root	of	the	file	share.	Set	its
group	ownership	to	the	new	Samba	users	group:

mkdir	-m	770	/var/sambashare

chgrp	smbgroup	/var/sambashare

4. Open	Samba's	configuration	file	using	your	text	editor:

vi	/etc/samba/smb.conf

5. Update	the	workgroup	parameter	in	the	[global]	section	to	match	the
Windows	workgroup	name.	Feel	free	to	review	the	other	parameters	in	the
configuration	file	as	each	is	clearly	documented	with	helpful	comments:

Workgroup	=	WORKGROUP

6. At	the	end	of	the	configuration	file,	add	the	following	content:

[share]

path	=	/var/sambashare

guest	ok	=	no

valid	users	=	@smbgroup

writable	=	yes

	create	mask	=	0755

7. Save	your	changes	and	close	the	file.
8. Start	the	necessary	services	and	register	them	so	that	they	will	start	when	the

server	boots:

systemctl	start	smb	nmb

systemctl	enable	smb	nmb

9. Open	ports	137-139	and	445	to	allow	the	network	traffic:

firewall-cmd	--permanent	--zone	public	--add-service	samba

firewall-cmd	--reload

10. For	each	user	who	will	connect	to	the	share,	assign	them	to	the	users	group
and	register	the	password	they	will	use:

usermod	-a	-G	smbgroup	tboronczyk

smbpasswd	-a	tboronczyk

How	it	works...
In	this	recipe,	you	learned	how	to	install	and	configure	Samba	to	share	a	directory	
which	a	Windows	client	can	access.

We	started	by	doing	a	bit	of	research	using	the	net	config	command	to	discover	
the	Windows	workgroup	that	our	client	belongs	to.	This	is	important	because	two	
systems	on	the	same	network	but	identifying	themselves	as	part	of	different	
workgroups	will	not	be	able	to	communicate	with	one	another.	In	the	example,	the	
workgroup's	name	was	simply	WORKGROUP.

Next,	we	installed	the	samba	package	and	created	a	special	group	named	
smbgroup.	We'll	configure	Samba	so	that	any	user	account	on	the	CentOS	system	
will	be	able	to	access	the	share	as	long	as	it's	assigned	to	the	smbgroup	group.	
Then	we	created	the	directory	we	would	be	sharing	and	set	its	group	ownership	to	
the	new	group.

We	then	edited	Samba's	configuration	file,	specifying	the	name	of	the	Windows	
workgroup	we	looked	up	earlier	for	the	workgroup	value,	and	added	a	section	to	
define	the	new	share.	We	restricted	the	share	so	that	only	authenticated	users	
belonging	to	smbgroup	can	access	it	by	setting	guest	ok	to	no	and	valid	users	
to	@smbgroup.	The	writable	entry	allows	users	to	create	and	update	files	on	the	
share	(otherwise	the	files	would	be	read-only,	and	the	create	mask	entry	was	
used	to	specify	the	default	file	permissions	that	new	files	will	be	assigned	in	the	
Linux	filesystem.	The	name	share	within	brackets	not	only	starts	that	
configuration	section	but	also	serves	as	the	name	the	share	will	be	exported	as
(that	is,	\\192.168.56.100\share.	You	can	export	multiple	shares	as	long	as	
each	name	is	distinct.

For	each	user	account	that	will	be	used	to	connect	to	the	share,	we	made	sure	it	
belonged	to	the	smbgroup	and	used	the	smbpasswd	command	to	specify	a	
password	the	account	would	use	to	authenticate	its	SMB	sessions.	This	password	
is	maintained	separately	from	the	system's	credentials	and	is	valid	only	for	
authenticating	to	Samba,	so	a	password	different	from	the	account's	login	
password	should	be	chosen.

Managing	Samba	users	is	done	using	smbpasswd.	The	-a	flag	adds	an	entry	in

Samba's	account	database,	and	we	can	delete	a	user	from	the	database	using	the	-
x	flag:

smbpasswd	-x	tboronczyk

On	the	Windows	system,	you	can	use	the	net	use	command	to	map	the	remote
share	to	a	drive	letter.	Once	it's	mapped,	the	drive	appears	in	the	list	of	available
drives:

net	use	Z:	\\192.168.56.100\share	/USER:tboronczyk

Alternatively,	you	can	map	the	drive	through	the	Windows	GUI,	navigating	through
Computer	|	Map	network	drive	|	Map	network	drive	in	File	Explorer	while
the	This	PC	bookmark	is	selected:

The	Samba	share	is	available	as	a	network	mapped	drive

See	also
For	more	information	on	working	with	Samba,	refer	to	the	following	resources:

The	smb.conf	manual	page	(man	5	smb.conf)
Using	Samba	on	CentOS	With	Windows	7/8
(https://rcollier.me/2013/07/30/using-samba-on-centos-with-windows-78/)
Install	And	Configure	Samba	Server	In	CentOS	7
(http://www.unixmen.com/install-configure-samba-server-centos-7)

https://rcollier.me/2013/07/30/using-samba-on-centos-with-windows-78/
http://www.unixmen.com/install-configure-samba-server-centos-7

Chapter	3.	User	and	Permission
Management
This	chapter	contains	the	following	recipes:

Escalating	privileges	with	sudo
Enforcing	password	restrictions
Setting	default	permissions	for	new	files	and	directories
Running	binaries	as	a	different	user
Working	with	SELinux	for	greater	security

Introduction
Each	of	the	recipes	in	this	chapter	pertain	to	users	and	permissions.	You'll	learn
how	to	let	users	temporarily	escalate	their	privileges	without	requiring	the	root
password	and	how	to	enforce	complexity	requirements	for	users.	You'll	also	learn
how	to	specify	what	access	permissions	are	given	to	new	files	and	directories	by
default	and	how	the	traditional	Unix	permission	system	can	allow	a	program	to
run	under	a	different	security	context	than	that	of	the	user	who	launched	it.	Finally,
we'll	look	at	SELinux,	a	secondary	permission	system	that	hardens	the	security	of
your	CentOS	server.

Escalating	privileges	with	sudo
The	root	account	is	Linux's	god	account,	and	it	has	the	ability	to	perform	pretty
much	any	activity	on	the	system.	For	security	reasons,	you	should	use	an
unprivileged	user	account	for	your	day-to-day	activities	and	use	root	only	when
it's	necessary	for	administration	tasks.	It's	also	important	to	keep	the	root's
password	secret;	the	more	people	who	know	its	password,	the	harder	it	is	to	keep
it	secret.	A	quote	by	Benjamin	Franklin	comes	to	mind:	Three	can	keep	a	secret	if
two	of	them	are	dead.

If	more	than	one	administrator	has	been	tasked	with	managing	a	system,	keeping
root	secure	can	be	difficult.	sudo	solves	this	problem	by	giving	users	a	way	to
execute	commands	with	the	privileges	of	another	user	(most	commonly	root).
Each	of	the	administrator	accounts	can	be	configured	using	one	of	the	methods
presented	in	this	recipe	to	escalate	their	privileges	temporarily	with	sudo,	and
root's	password	can	remain	secret.

Getting	ready
This	recipe	requires	a	CentOS	system	and	administrative	access	provided	by
logging	in	with	the	root	account.	You'll	also	need	one	or	two	unprivileged	user
accounts	to	configure	(refer	to	the	useradd	man	page	man	8	useradd	for
information	on	creating	user	accounts).

How	to	do	it...
One	way	to	allow	an	unprivileged	account	the	use	of	sudo	is	to	assign	it	a
membership	in	the	wheel	group.	This	is	done	with	the	following	steps:

1. Use	usermod	to	add	the	user	account	to	wheel:

usermod	-a	-G	wheel	tboronczyk

2. Verify	the	update	using	the	groups	command.	wheel	should	list	one	of	the
groups	which	the	account	is	a	member	of:

groups	tboronczyk

Another	way	to	grant	access	to	sudo	is	by	configuring	the	sudoers	policy	which
identifies	which	accounts	can	use	sudo	and	in	what	manner.	You	can	easily	add	an
account	to	the	policy	with	the	following	steps:

1. Create	a	new	file	in	the	/etc/sudoers.d	directory	named	after	the	user
account:

touch	/etc/sudoers.d/tboronczyk

2. Open	the	file	and	add	the	following	directive.	When	finished,	save	your
update	and	close	the	file:

tboronczyk	ALL	=	ALL

How	it	works...
For	a	user	to	use	the	sudo	command	they	must	be	somehow	listed	in	the	sudoers	
policy.	This	is	checked	by	sudo	to	verify	whether	the	account	is	authorized	to	
perform	the	attempted	action.	This	recipe	presented	two	ways	of	accomplishing	
this:	by	assigning	the	user	account	to	the	wheel	group	(which	is	already	registered	
in	the	policy	or	by	adding	the	account	directly	to	the	policy.

In	the	first	approach,	the	usermod	command	assigns	the	user	membership	in	
wheel.	The	-G	option	specifies	the	name	of	the	group	and	-a	instructs	usermod	to	
add	the	user	to	that	group.	It's	important	that	you	provide	-a	since	without	it	the	
list	of	assigned	groups	is	overwritten	with	only	what	is	given	with	-G	(that	is,	the	
account	would	belong	only	to	wheel.

usermod	-a	-G	wheel	tboronczyk

The	second	approach	registers	the	account	with	the	sudoers	policy	by	creating	a	
file	for	the	user	under	/etc/sudoers.d.	We	alternatively	could	have	added	the	
user's	information	to	the	/etc/sudoers	configuration	file,	but	the	policy	already	
includes	any	files	found	in	the	sudoers.d	directory	as	part	of	its	configuration.	
Creating	a	file	for	each	user	in	the	directory	will	be	more	manageable	given	a	
large	number	of	users	when	it	is	time	to	revoke	access.

Both	approaches	allow	a	user	the	use	of	sudo	to	execute	commands	they	wouldn't	
ordinarily	have	sufficient	rights	to.	For	example:

sudo	umount	/media

The	first	time	a	user	invokes	sudo,	a	message	is	displayed	that	reminds	them	to	be	
responsible	with	their	new-found	power.	The	user	must	provide	their	password	to	
verify	their	identity;	the	verification	is	cached	for	five	minutes	from	the	last	
invocation	as	an	extra	bit	of	protection	against	malicious	users	who	might	walk	up	
to	a	terminal	that	was	carelessly	left	logged	in.

sudo	reminds	the	user	that	with	great	power	comes	great	responsibly

The	sudoers	policy	is	flexible	enough	to	allow	a	user	account	to	execute	certain	
commands	instead	of	giving	carte	blanche	access.	Recall	the	configuration	
directive	for	our	unprivileged	user	account:

tboronczyk	ALL	=	ALL

The	username	is	specified	followed	by	assigning	the	ALL	alias	to	ALL.	As	you	
might	determine	by	looking	at	this,	ALL	is	the	predefined	alias	that	represents	all	
commands.	We	can	redefine	the	alias	for	the	given	user	as	a	list	of	allowed	
commands:

tboronczyk	ALL	=	/bin/mount	/bin/umount

Now	the	account	can	invoke	any	command	it	normally	has	access	to,	but	only	the	
mount	and	umount	commands	with	elevated	privileges	(assuming	the	account	isn't	
a	member	of	wheel.

Tip

Are	you	tired	of	typing	sudo	before	your	commonly-used	administrative	
commands?	You	can	create	aliases	for	a	smoother	command	line	experience.	
Suppose	your	unprivileged	account	is	allowed	to	use	the	mount	and	umount	
commands	with	sudo.	Adding	the	following	lines	to	your	~/.bashrc	file	will	let	
you	invoke	them	commands	without	explicitly	typing	sudo:

alias	mount	sudo	/bin/mount

alias	umount	sudo	/bin/umount

Multiple	directives	in	the	policy	can	apply	to	an	account	in	which	case	they	are
applied	additively,	first	to	last.	To	see	this	in	action,	suppose	an	account	already
has	full	sudo	usage	by	assignment	in	the	wheel	group.	By	default,	the	user	needs
to	provide	their	password	to	execute	a	command.	We	can	relax	this	requirement
and	allow	the	user	to	use	ls	to	display	the	contents	of	restricted	directories
without	a	password:

tboronczyk	ALL	=	NOPASSWD:	/bin/ls

The	wheel	group's	policy	is	applied	first,	establishing	the	default	behavior.	Then
our	new	directive	uses	the	NOPASSWD	tag	to	grant	the	user	unauthenticated	access
to	the	ls	command.	The	user	will	still	need	to	provide	their	password	for
commands	such	as	mount	and	passwd	but	won't	need	to	provide	it	to	list	restricted
directories.

See	also
Refer	to	the	following	resources	for	more	information	on	working	with	sudo	to
temporarily	elevate	an	account's	privileges:

The	sudo	man	page	(man	8	sudo)
The	sudoers	man	page	(man	5	sudoers)
Code	Snipcademy:	Using	sudo	and	su	and	their	differences
(https://code.snipcademy.com/tutorials/linux-command-
line/permissions/sudo)

https://code.snipcademy.com/tutorials/linux-command-line/permissions/sudo

Enforcing	password	restrictions
A	weak	password	can	be	one	of	the	weakest	security	points	of	any	system.	Simple
passwords	are	susceptible	to	brute-force	attacks	and	long-lived	passwords,	if	they
are	compromised,	provide	a	wide	window	of	opportunity	for	malicious	activity.
Because	of	this,	it's	important	to	ensure	that	your	users	choose	sufficiently
complex	passwords	and	change	them	regularly.	This	recipe	shows	you	how	to
strengthen	your	system's	security	by	enforcing	various	restrictions	on	users'
passwords.	You'll	learn	how	to	specify	the	minimum	complexity	requirements	for
a	password,	how	long	before	a	password	must	be	changed,	and	how	to	lock	down
an	account	after	a	number	of	failed	login	attempts.

Getting	ready
This	recipe	requires	a	CentOS	system	and	administrative	access,	either	provided
by	logging	in	with	the	root	account	or	by	using	sudo.

How	to	do	it...
Follow	these	steps	to	enforce	password	restrictions	that	will	increase	the	security
of	your	CentOS	system:

1. The	parameters	governing	password	aging	are	found	in	/etc/login.defs;
open	the	file	using	your	text	editor	of	choice:

vi	/etc/login.defs

2. Locate	the	password	aging	controls	section	and	update	the	value	of
PASS_MAX_DAYS,	PASS_MIN_DAYS,	PASS_MIN_LEN,	and	PASS_WARN_AGE:

PASS_MAX_DAYS		90

PASS_MIN_DAYS		0

PASS_MIN_LEN	 	8

PASS_WARN_AGE		15

3. Save	your	changes	and	close	the	file.
4. The	values	specified	in	login.defs	will	be	applied	to	new	accounts	when

they	are	created.	Existing	users	must	have	their	password	parameters	set
separately	using	the	chage	command:

chage	--maxdays	90	--mindays	0	--warndays	15	tboronczyk

5. The	parameters	governing	the	acceptable	complexity	for	passwords	are
found	in	/etc/security/pwquality.conf;	open	the	file	for	editing:

vi	/etc/security/pwquality.conf

6. Uncomment	the	minlen	value	to	specify	the	desired	minimum	password
complexity	plus	1.	For	example,	an	eight-character	password	consisting	of
all	lowercase	characters	would	require	a	minlen	of	9:

minlen	=	9

7. You	may	uncomment	other	values	and	set	them	as	well	if	you	like.	Each	value
is	preceded	by	a	brief	descriptive	comment	of	what	it	does.	To	require	a
minimum	number	of	characters	to	be	from	a	certain	class	(uppercase,
lowercase,	digits,	and	other/special),	specify	the	value	as	a	negative	number.
For	example,	if	passwords	require	at	least	one	numeric	digit	and	one
uppercase	character	then	both	dcredit	and	ucredit	would	be	set	to	-1:

Options	for	configuring	your	system's	password	complexity	requirements
are	found	in	pwquality.conf

8. Save	your	changes	and	close	the	file.
9. Next	we'll	update	PAM's	password-auth	and	system-auth	module

configurations	to	lock	out	an	account	after	a	number	of	unsuccessful	login-
attempts.	Open	the	file	/etc/pam.d/password-auth:

vi	/etc/pam.d/password-auth

10. Update	the	group	of	auth	lines	at	the	beginning	of	the	file	to	read	as	follows.
The	second	and	fourth	lines	have	been	added	and	include	pam_faillock	to
the	authentication	stack:

auth			required						pam_env.so

auth			required						pam_faillock.so	preauth	silent	audit	

deny=3	

	unlock_time=600

auth			sufficient				pam_unix.so	nullok	try_first_pass

auth	 	[default=die]	pam_faillock.so	authfail	audit	deny=3	

	unlock_time=600

auth			requisite					pam_succeed_if.so	uid	>=	1000	

quiet_success

auth			required						pam_deny.so

11. Update	the	group	of	account	lines	to	read	as	follows.	The	second	line	has
been	added	to	include	pam_faillock	to	the	account	stack:

account		required	 	pam_unix.so

account		required	 	pam_faillock.so

account		sufficient	pam_localuser.com

account		sufficient	pam_succeed_if.so	uid	<	1000	quiet

account		required	 	pam_permit.so

Note

Be	careful	when	updating	the	password-auth	and	system-auth	files.	The
order	in	which	modules	are	listed	in	a	stack	is	significant!

12. Save	your	changes	and	close	the	file.	Then	repeat	steps	9	to	11	with	the	file
/etc/pam.d/system-auth.

How	it	works...
Properly	configuring	the	authentication	requirements	for	local	accounts	is	a	bit	of
a	fractured	experience.	First,	there's	the	traditional	Unix	password	files
(/etc/passwd	and	/etc/groups)	and	the	shadow-utils	package,	which	adds
shadowing	support	(/etc/shadow).	Together,	these	form	the	core	database	for
local	account	credentials.	In	addition,	similar	to	most	other	modern	Linux	systems,
CentOS	uses	PAM,	a	collection	of	pluggable	authentication	modules.	The	PAM
stack	is	configured	by	default	to	lookup	account	information	in	the	shadow	file,
but	it	also	provides	additional	functionality	that	PAM-aware	programs	can
leverage,	such	as	password-strength	checking.	As	an	administrator,	you're
responsible	for	configuring	these	services	so	that	they	work	properly	in	tandem
and	operate	within	the	acceptable	security	guidelines	set	by	your	organization.

In	this	recipe,	we	first	updated	the	password	aging	related	controls	found	in
/etc/logins.def:

PASS_MAX_DAYS		90

PASS_MIN_DAYS		0

PASS_MIN_LEN	 	8

PASS_WARN_AGE		15

PASS_MAX_DAYS	defines	how	much	time	can	pass	before	a	password	must	be	
changed.	By	setting	the	value	to	90,	a	user	must	change	their	password	at	least	
once	every	three	months	(90	days.	PASS_MIN_DAYS	specifies	how	many	days	a	
user	must	wait	to	change	a	new	password.	Since	this	value	is	0,	a	user	can	change	
their	password	any	time	they	want-even	several	times	a	day	if	they	like.
PASS_WARN_AGE	defines	how	many	days	in	advance	a	user	will	be	notified	of	their	
password's	pending	expiration	as	PASS_MAX_DAYS	approaches.

Note

PASS_MIN_LEN	is	supposed	to	set	the	minimum	password	length,	but	you'll	find	
PAM's	password	complexity	requirements	supersede	this,	making	the	setting	pretty	
much	worthless.

Utilities	such	as	useradd	use	these	settings	as	the	defaults	when	creating	entries	
in	the	password	and	shadow	files.	They	aren't	applied	retroactively	to	existing

users	so	we	need	to	use	chage	to	update	their	accounts:

chage	--maxdays	90	--mindays	0	--warndays	15	tboronczyk

chage	can	set	the	minimum	and	maximum	age	of	a	user's	password	and	the	
notification	window	for	pending	expirations,	but	note	the	absence	of	a	minimum	
length	requirement.

We	can	also	use	chage	to	make	a	user's	password	expire	immediately	so	that	they	
must	specify	a	new	one	the	next	time	they	log	in.	To	do	so,	we	provide	the	--
lastdays	argument	with	a	value	of	0:

chage	--lastdays	0	tboronczyk

Tip

If	you	have	more	than	a	handful	of	accounts,	you	may	want	to	automate	using	
chage	with	some	basic	shell	scripting.	Here's	a	series	of	commands	piped	
together	that	update	all	of	the	existing	user	accounts	in	an	automated	fashion:

getent	shadow	|	awk	-F	:	'substr($2,	0,	1	==	"$"	{	print	$1	}'	|

xargs	-n	1	chage	--maxdays	90	--mindays	0		

--warndays	15

This	works	by	retrieving	the	contents	of	the	shadow	file	and	using	awk	to	split	
each	record	using	:	as	the	field	separator.	awk	looks	at	the	value	in	the	second	
field	(the	encrypted	password	to	see	if	it	begins	with	$,	indicating	the	account	has	
a	password,	to	filter	out	disabled	accounts	and	system	accounts	without	a	
password.	The	username	from	each	matching	record	is	then	piped	to	xargs	which	
then	feeds	the	names	one	at	a	time	to	chage.

As	the	PAM	module	pam_pwquality	checks	the	complexity	of	passwords,	we	
specify	our	password	complexity	requirements	in	the	module's	configuration	file,	
/etc/security/pwquality.conf.	It	gauges	the	quality	of	a	password	using	a	
credit	system	where	each	character	credits	a	point	towards	the	password's	total	
score.	This	score	then	must	meet	or	exceed	the	value	we	gave	for	minlen.

The	page	at	http://wpollock.com/AUnix2/PAM-Help.htm	has	a	good	explanation	
of	how	pam_pwquality	calculates	a	password's	complexity.	It	explains	the	
algorithm	as	follows:

http://wpollock.com/AUnix2/PAM-Help.htm

Add	one	for	each	character	in	the	password	regardless	of	the	type	of	the
character
Add	one	to	that	for	each	lowercase	letter	used,	up	to	a	maximum	of	lcredit
Add	one	to	that	for	each	uppercase	letter	used,	up	to	a	maximum	of	ucredit
Add	one	to	that	for	each	digit	used,	up	to	a	maximum	of	dcredit
Add	one	to	that	for	each	symbol	used,	up	to	a	maximum	of	ocredit

The	page	also	presents	a	few	complexity	calculations	for	different	passwords	and
is	worth	reading.

Then	we	updated	the	password-auth	and	system-auth	files	to	lock	a	user's
account	after	three	unsuccessful	login	attempts.	Different	authentication	stacks
need	to	be	configured	because	different	login	methods	will	invoke	a	different
authentication	stack	(that	is,	a	logging	in	over	SSH	as	opposed	to	logging	in
locally):

auth	 	required	 	pam_env.so

auth	 	required	 	pam_faillock.so	preauth	silent	audit	deny=3	

	unlock_time=600

auth	 	sufficient	 	pam_unix.so	nullok	try_first_pass

auth			[default=die]	pam_faillock.so	authfail	audit	deny=3

	unlock_time=600

auth	 	requisite	 	pam_succeed_if.so	uid	>=	1000	quiet_success

auth	 	required		 	pam_deny.so

account		required	 	pam_unix.so

account		required	 	pam_faillock.so

account		sufficient	pam_localuser.com

account		sufficient	pam_succeed_if.so	uid	<	1000	quiet

account		required	 	pam_permit.so

The	pam_faillock	module	is	added	at	multiple	positions	in	the	authentication	
stack.	The	first	appearance	in	the	auth	block	performs	a	precheck	(preauth	to	
see	if	the	account	is	already	locked	out	The	second	appearance	tallies	the	failed	
attempt	(authfail.	The	argument	specified	by	deny	is	the	number	of	failed	
attempts	permitted	before	locking	the	account.	unlock_time	specifies	how	much	
time	the	module	should	wait	(in	seconds	before	unlocking	the	account	so	that	
another	login	attempt	can	be	made.	As	the	example	specifies	600	seconds,	a	user	
will	have	to	wait	10	minutes	for	the	lockout	to	expire.	The	module's	appearance	in	
the	account	block	denies	authentication	to	the	locked	account.

The	faillock	command	is	used	to	view	the	number	of	failed	login	attempts	and
to	unlock	an	account.	To	see	the	failed	attempts,	invoke	the	command	using	the	--
user	argument	to	specify	the	account's	username:

faillock	--user	tboronczyk

To	manually	unlock	the	account	before	unlock_time	has	elapsed,	invoke	the
command	with	the	--reset	argument:

faillock	--user	tboronczyk	--reset

See	also
Refer	to	the	following	resources	for	more	information	on	how	user	accounts	are
authenticated	and	how	to	enforce	password	restrictions:

The	chage	man	page	(man	1	chage)
The	shadow	file	man	page	(man	5	shadow)
The	pam_faillock	man	page	(man	8	pam_faillock)
Linux	Documentation	Project:	Putting	the	Shadow	suite	to	use
(http://tldp.org/HOWTO/Shadow-Password-HOWTO-7.html)
The	Linux-PAM	System	Administrator's	Guide	(http://www.linux-
pam.org/Linux-PAM-html/Linux-PAM_SAG.html)
RHEL	Security	Guide:	Password	Security
(https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html-
single/Security_Guide/index.html#sec-Password_Security)

http://tldp.org/HOWTO/Shadow-Password-HOWTO-7.html
http://www.linux-pam.org/Linux-PAM-html/Linux-PAM_SAG.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Security_Guide/index.html#sec-Password_Security

Setting	default	permissions	for	new
files	and	directories
Linux's	permissions	system	governs	whether	a	user	can	enter	a	directory	or	read,
write,	or	execute	a	file.	By	setting	the	permission	bits	on	files	and	directories,
access	can	be	granted	or	revoked	to	different	users	and	groups	of	users.	However,
it's	possible	for	a	user	to	create	a	file	and	expect	others	in	their	group	to	access	it,
but	the	initial	file	permissions	prevents	this.	To	help	avoid	this	situation,	this
recipe	teaches	you	how	to	set	the	default	permissions	for	new	files	and	directories
by	specifying	a	mask	value.

Getting	ready
This	recipe	requires	a	CentOS	system	and	administrative	access,	either	provided
by	logging	in	with	the	root	account	or	by	using	sudo.

How	to	do	it...
Follow	these	steps	to	specify	the	default	permissions	for	new	files	and
directories:

1. To	set	the	mask	value	globally,	open	the	/etc/profile	file:

vi	/etc/profile

2. At	the	end	of	the	file,	add	the	following	directive	(adjusting	the	value	as
desired).	When	finished,	save	and	close	the	file:

umask	0007

3. To	override	the	global	mask	and	set	the	mask	on	a	per-user	basis,	open	the
user's	~/.bashrc	file:

vi	/home/tboronczyk/.bashrc

4. At	the	end	of	the	file,	add	the	following	(again	adjusting	the	value	as
necessary).	Then	save	and	close	the	file:

umask	0007

5. To	temporarily	set	the	mask	only	for	the	duration	of	your	session,	execute	the
umask	command	at	the	command	prompt:

umask	0007

Note

You	can	execute	umask	at	the	command	prompt	without	providing	a	mask
value	to	see	what	your	current	mask	value	is.

How	it	works...
This	recipe	presents	three	ways	a	mask	value	can	be	set,	which	is	responsible	for
determining	what	permissions	are	set	on	newly	created	files	and	directories.
However,	to	understand	how	the	mask	works,	you	need	to	understand	the
traditional	read,	write,	and	execute	permission	system.

Directories	and	files	in	the	Linux	file	system	are	owned	by	a	user	and	group,	and
they	are	assigned	a	set	of	permissions	that	describe	who	can	access	it.	When	a
user	tries	to	access	a	resource,	the	system	compares	its	ownership	information
with	requesting	user	and	determines	if	the	requested	access	should	be	granted
according	to	the	permissions.

The	three	permissions	are	read,	write,	and	execute.	Since	access	to	each	can	be
only	one	of	the	two	values	(allowed	or	disallowed),	and	because	such	binary
options	can	be	represented	with	1	for	yes	and	0	for	no,	a	sequence	of	1's	and	0's
can	be	viewed	as	a	bit	pattern	where	each	permission	is	given	a	different	position
in	the	sequence.	The	following	figure	shows	how	a	list	of	binary	yes's	and	no's
can	be	converted	to	a	human-friendly	value:

Binary	values	represent	whether	a	user	has	permission	to	access	a	resource

From	the	file	or	directory's	perspective,	there	are	three	types	of	users.	The	user	is
either	the	file's	owner,	a	member	of	the	owning	group,	or	neither	(everyone	else).

The	resource	is	given	a	set	of	permissions	for	each	type	of	users,	as	shown	in	the
following	figure:

The	full	permission	set	of	a	file	or	directory	includes	the	three	types	of	users

This	is	the	logic	behind	the	traditional	Unix	permission	system,	but	don't	worry	if	
this	seems	intimidating	at	first.	Determining	the	permissions	for	a	class	of	users	is	
really	just	a	matter	of	addition.	Start	with	0	for	no	access	at	all.	To	allow	read	
access,	add	4.	For	write	access,	add	2.	For	execute,	add	1.	These	values	come	
from	viewing	the	value	of	the	permission	in	the	bit	string	as	a	binary	number,	but	
they	are	easy	enough	to	memorize.	Thus,	to	allow	all	access,	we	add	4	+	2	+	1	
which	equals	7.	To	allow	only	read	and	execute	access,	4		+	1	equals	5.	The	
more	you	work	with	permissions,	the	more	you'll	come	to	recognize	certain	
combinations	automatically.

When	a	file	is	created,	the	system	begins	with	666	as	a	default	value,	giving	read	
and	write	access	to	all	three	classes	of	users.	Directories	start	with	777	since	the	
executable	permission	on	a	directory	is	what	allows	a	user	to	traverse	into	it.	The	
system	then	subtracts	the	creating	user's	umask	value	and	the	result	determines	
what	permissions	will	be	assigned	to	the	resource	when	it's	created.

Suppose	we	create	a	new	directory	and	our	umask	value	is	0027.	The	system	
subtracts	7	from	the	all	other	users'	field	and	2	from	the	group's	field.	7	-	7	is	0,	
and	7	-	2	is	5,	so	the	default	permission	for	a	new	directory	is	750.

Because	we	start	with	one	bit	less	in	the	default	value	for	files,	it's	possible	to	end
up	with	a	negative	permission	number.	If	umask	masks	out	all	of	the	permissions
using	the	value	7,	but	the	starting	value	is	666	for	files,	6	-	7	gives	-1.	It	doesn't
make	sense	to	go	beyond	0	so	the	system	treats	it	as	0.	So,	a	mask	of	0027	gives	us
650	for	the	file's	permissions.

The	/etc/profile	and	~/.bashrc	files	are	executed	whenever	a	user	logs	in	to
configure	their	session's	environment.	Calling	umask	in	profile	has	the	effect	of
setting	the	mask	for	all	users.	.bashrc	is	executed	after	profile	and	is	user
specific;	so,	its	call	to	umask	overrides	the	previously	set	value,	setting	the	mask
for	that	specific	user.

See	also
Refer	to	the	following	resources	for	more	information	about	umask:

Wikipedia:	Umask	(http://unix.stackexchange.com/questions/102075/why-
are-666-the-default-file-creation-permissions)
Why	are	666	the	default	file	creation	permissions?
(https://en.wikipedia.org/wiki/Umask)
Controlling	file	permissions	with	umask
(http://linuxzoo.net/page/sec_umask.html)

http://unix.stackexchange.com/questions/102075/why-are-666-the-default-file-creation-permissions
https://en.wikipedia.org/wiki/Umask
http://linuxzoo.net/page/sec_umask.html

Running	binaries	as	a	different	user
Every	program	on	CentOS	runs	within	the	environment	of	a	user	account
regardless	of	whether	the	program	is	executed	by	a	user	or	run	as	an	automated
system	process.	However,	sometimes	we	want	the	program	to	run	with	different
restrictions	and	access	those	rights	the	account	is	allowed.	For	example,	a	user
should	be	able	to	use	the	passwd	command	to	reset	their	password.	The	command
needs	write	access	to	/etc/passwd	but	we	don't	want	the	user	running	the
command	to	have	such	access.	This	recipe	teaches	you	how	setting	a	program's
SUID	and	SGID	permission	bits	allows	it	to	execute	within	the	environment	of	a
different	user.

Getting	ready
This	recipe	requires	a	CentOS	system.	Administrative	privileges	are	also
required,	either	by	logging	in	with	the	root	account	or	by	the	use	of	sudo.

How	to	do	it...
Follow	these	steps	to	allow	a	program	to	execute	as	a	different	user:

1. Identify	the	file's	owner	and	group	details	using	the	ls	command.	The	third
field	in	its	output	lists	the	owner	and	the	fourth	field	lists	the	group:

ls	-l	myscript.sh

The	-l	option	displays	the	file	listing	in	long-form	which	includes
ownership	information

2. If	necessary,	change	the	file's	ownership	using	chown	so	that	the	owner	is	the
one	whose	environment	you	want	the	script	to	execute	in:

chown	newuser:newgroup	myscript.sh

3. Set	the	SUID	bit	to	allow	the	program	to	run	as	if	it	were	invoked	by	its

owner:

chmod	u+s	myscript.sh

4. Set	the	SGID	bit	to	allow	the	program	to	run	as	if	it	were	invoked	by	a
member	of	its	group:

chmod	g+s	myscript.sh

How	it	works...
When	a	file's	SUID	and	SGID	bits	are	set,	the	program	runs	within	the
environment	of	its	owner	or	group	instead	of	the	user	who	invoked	it.	This	is
usually	done	with	administrative	programs	that	an	unprivileged	user	should	have
access	to	but	the	program	itself	requires	administrative	permissions	to	function
properly.

The	bits	are	set	using	chown	with	u	set	to	target	the	SUID	bit.	A	script	with	the
SUID	bit	set	will	execute	with	the	privileges	its	owner	has.	g	is	set	to	target	the
SGID	bit	which	allows	the	script	to	execute	with	the	privileges	of	a	member	of	its
group.	Intuitively,	+	sets	the	bit	and	-	removes	the	bit,	later	allowing	the	program
to	execute	in	the	invoking	user's	environment.

chmod	u-s	myscript.sh

chmod	g-s	myscript.sh

SUID	and	SGID	may	be	set	numerically	as	well-the	value	for	SUID	is	4	and	the
value	for	SGID	is	2.	These	can	be	summed	together	and	appear	as	the	left-most
digit	in	the	numeric	permission	value.	For	example,	the	following	sets	the	SUID
bit,	the	read,	write,	and	execute	bits	for	the	file's	owner;	read,	write,	and	execute
bits	for	group	members;	and	read	and	execute	bits	for	everyone	else:

chmod	4775	myscript.sh

However,	the	numeric	approach	requires	you	to	specify	all	of	the	file's
permissions.	If	you	need	to	do	that	and	want	to	set	the	SUID	or	SGID	bits	at	the
same	time,	it's	not	a	problem.	Otherwise,	it's	probably	more	convenient	to	use	+	or
- to	add	or	subtract	the	indented	bits.

Setting	bits	using	mnemonic	characters	with	chmod	also	works	with	the	standard
permissions.	u,	g,	and	a	target	the	desired	bits	for	its	owner	(u	for	user),	group	(g
for	group),	and	everybody	else	(a	for	all).	The	characters	for	read	access	is	r,
write	w,	and	execute	x.	Here	are	a	few	examples	using	mnemonic	characters:

Allow	the	file's	owner	to	execute	the	file:

chmod	o+x	myscript.sh

Allow	a	group	member	to	read	the	file:

chmod	g+r	myfile.txt

Prevent	everyone	who	is	not	the	owner	or	a	member	of	the	group	from
writing	to	the	file:

chmod	a-w	readonly.txt

See	also
Refer	to	the	following	resource	for	more	information	about	chmod	and	setting	the
SUID	and	SGID	bits.

The	chmod	man	page	(https://linux.die.net/man/1/chmod)
How	to	set	the	SetUID	and	SetGID	bit	for	files	in	Linux	and	Unix
(http://linuxg.net/how-to-set-the-setuid-and-setgid-bit-for-files-in-linux-and-
unix/)
Wikipedia:	Setuid	(https://en.wikipedia.org/wiki/Setuid)

https://linux.die.net/man/1/chmod
http://linuxg.net/how-to-set-the-setuid-and-setgid-bit-for-files-in-linux-and-unix/
https://en.wikipedia.org/wiki/Setuid

Working	with	SELinux	for	greater
security
This	recipe	shows	you	the	basics	of	working	with	Security-Enhanced	Linux
(SELinux),	a	kernel	extension	that	adds	an	extra	layer	of	security	to	your	CentOS
installation.	Because	it	runs	at	the	kernel	level,	SELinux	can	control	access
beyond	the	reach	of	the	traditional	filesystem	permissions,	including	restricting
running	processes	and	other	resources.

Unfortunately,	some	administrators	disable	SELinux	because	admittedly	it	can	be
a	source	of	frustration.	They're	comfortable	with	the	user/group/all	and
read/write/execute	approach	and	suddenly	find	themselves	at	a	loss	when
SELinux	blocks	something	that	seems	as	it	should	be	available.	However,	the
extra	layer	of	security	that	SELinux	provides	is	worth	the	effort	of	investigating
such	problems	and	adjusting	its	policies	if	necessary.

Getting	ready
This	recipe	requires	a	CentOS	system.	Administrative	privileges	are	also
required,	either	by	logging	in	with	the	root	account	or	through	the	use	of	sudo.
The	demonstrated	commands	come	from	the	policycoreutils-python	package,
so	be	sure	to	install	the	package	first	using	the	yum	install	policycoreutils-
python	command.

How	to	do	it...
This	collection	of	commands	will	introduce	you	to	working	with	SELinux	in
various	contexts,	which	are	as	follows:

Use	sestatus	to	verify	whether	SELinux	is	enabled	and	to	see	what	policy
is	loaded:

SELinux	is	enabled	on	this	system	and	currently	enforcing	the	targeted
policy

Use	id	-Z	to	see	which	SELinux	account,	role,	and	domain	your	account	is
mapped	to.
Use	ls	-Z	to	see	the	security	context	of	a	file	or	directory:

Both	id	and	ls	can	display	security	context	related	information

Use	semodule	-l	to	review	the	list	of	loaded	policy	modules	in	the	current
policy.	The	output	can	be	quite	lengthy	and	you	may	find	it	beneficial	to
paginate	it	using	less	or	more:

semodule	-l	|	less

Use	semodule	-d	and	provide	a	module's	name	to	disable	a	specific	policy
module:

semodule	-d	mysql

You	can	verify	that	the	module	is	disabled	by	reviewing	the	list	of	policy	modules
with	semodule	-l	again.	The	word	disabled	should	appear	to	the	right	of	the
module	name.

Use	semodule	-e	to	enable	a	specific	policy	module:

semodule	-e	mysql

Use	semanage	boolean	to	selectively	enable	or	disable	features	of	an
active	module.	The	-l	argument	outputs	list	of	available	features	with	their

current	and	default	values:

semanage	boolean	-l	|	less

Use	-m	followed	by	--on	or	--off	and	the	feature	name	to	affect	the	desired
feature:

semanage	boolean	-m	--on	deny_ptrace

semanage	boolean	-l	shows	which	features	of	a	policy	module	can	be
toggled	on	and	off

How	it	works...
SELinux	views	the	system	in	terms	of	objects,	subjects,	domains,	and	types.	An	
object	is	any	resource	whether	it's	a	file,	directory,	network	port,	memory	space,	
and	so	on.	A	subject	is	anything	that	acts	on	an	object,	such	as	a	user	or	a	running	
program.	A	domain	is	the	environment	in	which	the	subject	operates,	or	in	other	
words	the	collection	of	resources	available	to	the	subject.	Types	are	simply	
categories	that	identify	the	purpose	of	an	object.	Within	this	framework,	SELinux's	
security	policies	organize	objects	into	roles	and	roles	into	domains.

Domains	are	granted	or	denied	access	to	types.	A	user	is	allowed	to	open	a	
specific	file,	for	example,	because	they	belong	to	a	role	in	a	domain	that	has	
permission	to	open	that	type	of	object.	To	decide	whether	a	user	has	the	ability	to	
do	something,	SELinux	maps	the	system's	user	accounts	to	one	of	the	users	(and	
roles	and	domains	in	its	own	database.	By	default,	accounts	map	to	SELinux's	
unconfined_u	user	which	is	assigned	the	unconfined_r	role	and	operates	in	the	
unconfined_t	domain.

This	recipe	showed	us	that	id	-Z	can	be	used	to	retrieve	the	user,	role,	and	
domain	that	our	user	account	maps	to	and	ls	-Z	retrieves	a	file's	security	
labeling.	Of	course,	the	values	displayed	by	the	commands	are	different	depending	
on	the	file.	For	example,	the	binary	file	/bin/cp	executes	as	the	system_u	user,	
is	a	member	of	the	object_r	role,	and	is	in	the	bin_t	domain.

The	sestatus	command	outputs	basic	status	information	about	SELinux,	such	as	
whether	it's	enabled,	enforcing	its	policies,	and	how	it's	enforcing	them.	SELinux	
can	run	in	enforcing	mode,	in	which	it	actively	enforces	its	policies,	or	in	
permissive	mode,	in	which	it	will	not	prevent	any	actions	but	will	log	a	message	
if	an	action	would	have	been	prevented	by	the	policy.	You	can	set	SELinux	to	
permissive	mode	with	setenforce	0.

The	semodule	command	is	used	to	manage	policy	modules.	For	the	sake	of	
keeping	everything	organized,	a	policy	is	a	collection	of	modules	and	each	module	
is	concerned	with	a	specific	program	or	activity.	There	are	dedicated	modules	for	
the	most	common	applications,	such	as	MySQL,	Apache	HTTP	server,	and	SSHd,	
which	describe	which	domains	have	access	to	which	types.	This	recipe	showed	
us	how	we	can	enable	or	disable	these	modules	using	the	-e	and	-d	arguments	to

semodule:

semodule	-d	mysql

semodule	-e	mysql

Finally,	the	recipe	presented	the	semanage	command,	which	manages	various
aspects	of	SELinux.	We	saw	its	boolean	subcommand,	using	it	to	list	the	specific
protections	we	can	toggle	on	or	off.

It	probably	goes	without	saying	that	while	SELinux	does	a	great	job	in	protecting
your	system	by	adding	an	extra	layer	of	access	controls,	fully	understanding	it	and
writing	custom	policies	is	a	serious	undertaking.	Entire	books	have	been	written
on	this	subject	and	there	is	a	plethora	of	resources	available	online.	The	SELinux
Users	and	Administrator's	Guide	that	is	part	of	the	Red	Hat	Enterprise	Linux	7
documentation	and	a	three-part	series	introducing	the	basic	concepts	of	SELinux
by	DigitalOcean	are	great	starting	points,	and	I've	listed	their	URLs	here.	I	also
recommend	the	book	SELinux	by	Example:	Using	Security	Enhanced	Linux	by
David	Caplan,	Karl	MacMillan,	and	Frank	Mayer.

See	also
Refer	to	the	following	resources	for	more	information	on	working	with	and	better
understanding	SELinux:

Wikipedia:	Security-Enhanced	Linux
(https://en.wikipedia.org/wiki/Security-Enhanced_Linux)
SELinux	Project	Wiki	(http://selinuxproject.org/page/Main_Page)
RHEL7	SELinux	User's	and	Administrator's	Guide
(https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/SELinux_Users_and_Administrators_Guide/part_I-
SELinux.html)
CentOS	Wiki:	SELinux	(http://wiki.centos.org/HowTos/SELinux)
An	Introduction	to	SELinux	on	CentOS	7
(http://www.digitalocean.com/community/tutorials/an-introduction-to-
selinux-on-centos-7-part-1-basic-concepts)

https://en.wikipedia.org/wiki/Security-Enhanced_Linux
http://selinuxproject.org/page/Main_Page
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SELinux_Users_and_Administrators_Guide/part_I-SELinux.html
http://wiki.centos.org/HowTos/SELinux
http://www.digitalocean.com/community/tutorials/an-introduction-to-selinux-on-centos-7-part-1-basic-concepts

Chapter	4.	Software	Installation
Management
This	chapter	contains	the	following	recipes:

Registering	the	EPEL	and	Remi	repositories
Prioritizing	repositories	using	the	Priorities	plugin
Automating	software	updates	with	yum-cron
Verifying	installed	RPM	packages
Compiling	a	program	from	source

Introduction
This	chapter	presents	recipes	for	managing	the	installation	of	software	on	your
CentOS	system.	You'll	learn	how	to	add	new	package	repositories	to	provide	a
wider	selection	of	software	than	what's	found	in	the	main	CentOS	repositories,
and	also	how	to	prioritize	the	repositories	to	control	those	from	which	a	package
is	installed.	You'll	also	learn	how	to	automate	software	updates	to	keep	up	with
the	latest	security	patches	and	bug	fixes,	and	how	to	verify	the	installed	packages
to	make	sure	a	malicious	user	hasn't	tampered	with	your	software.	Finally,	you'll
learn	a	skill	that's	slowly	fading	but	is	essential	if	you	want	to	modify	the	open
source	software	on	your	system:	how	to	compile	software	from	source.

Registering	the	EPEL	and	Remi
repositories
A	clean	CentOS	installation	will	have	the	main	supported	repositories	enabled,
from	which	we	can	install	a	wide	variety	of	software.	We	can	also	register	third-
party	repositories	to	make	additional	(or	newer)	software	available	to	us.	This
recipe	teaches	you	how	to	add	two	such	repositories,	specifically	the	popular
Extra	Packages	for	Enterprise	Linux	(EPEL)	and	Remi	repositories.

Getting	ready
This	recipe	requires	a	CentOS	system	with	a	working	network	connection.
Administrative	privileges	are	also	required,	either	by	logging	in	with	the	root
account	or	through	the	use	of	sudo.

How	to	do	it...
To	register	the	EPEL	repository,	install	the	epel-release	package:

yum	install	epel-release

To	register	and	enable	the	REMI	repository,	follow	these	steps:

1. Download	the	repository's	configuration	package:

curl	-O	http://rpms.famillecollet.com/enterprise/remi-

release-7.rpm

2. Install	the	downloaded	package:

yum	install	remi-release-7.rpm

3. Delete	the	file	since	it's	no	longer	needed:

rm	remi-release-7.rpm

4. Open	the	Remi	repository's	configuration	file:

	vi	/etc/yum.repos.d/remi.repo	

5. Locate	the	enabled	option	in	the	[remi]	section	and	change	it's	value	to	1	to
enable	it:

enabled=1

6. Save	your	changes	and	close	the	file.

How	it	works...
The	EPEL	repository	hosts	software	packages	that	complement	those	in	the	
official	CentOS	repositories.	It	can	be	automatically	configured	by	installing	the	
epel-release	package	available	in	the	official	repositories:

yum	install	epel-release

Remi	is	a	popular	third-party	repository	providing	newer	versions	of	software	
found	in	the	official	repositories.	We	downloaded	the	configuration	package	for	
the	repository	from	the	project's	server	using	curl:

curl	-O	http://rpms.famillecollet.com/enterprise/remi-release-

7.rpm

We	used	the	-O	argument	(an	uppercase	letter	O,	not	zero	so	that	the	file	will	be	
saved	to	disk,	otherwise	its	contents	would	be	dumped	to	the	screen.	The	recipe	
didn't	identify	a	specific	directory	you	should	download	the	file	to.	You	can	
download	it	to	your	home	directory,	or	even	/tmp	if	you	like,	since	the	file	isn't	
needed	after	the	package	is	installed.

After	the	package	is	downloaded,	we	can	install	it	using	yum:

yum	install	remi-release-7.rpm

Note

Many	times	there	are	alternative	ways	to	accomplish	the	same	task.	For	instance,	
the	rpm	command	can	also	be	used	to	install	the	package	after	it	is	downloaded:

rpm	-iv	remi-release-7.rpm

The	-i	argument	installs	the	package	and	-v	instructs	rpm	to	be	verbose	in	its	
output	so	we	can	see	it's	activities.

The	remi-release	package	installs	the	configurations	for	three	Remi	
repositories:	the	Remi,	Safe	Remi,	and	Remi's	PHP	7	repositories.	Safe	Remi	is	
enabled	by	default	because	its	packages	are	considered	safe	to	use	with	the	
official	CentOS-Base	repository.	However,	the	Remi	repository	is	disabled	so	we	
need	to	edit	/etc/yum.repos.d/remi.repo:

The	Remi	repository	is	enabled	by	updating	its	configuration	file

REMI	is	popular	for	providing	newer	releases	of	PHP.	If	you	want	to	upgrade	
your	existing	PHP	installation	with	a	version	found	in	Remi	you	can	enable	the	
desired	section	in	remi.repo	or	in	remi-php70.repo.

After	you've	installed	the	EPEL	repository	and	installed	and	enabled	the	Remi	
repository,	you	can	ask	yum	to	list	the	available	repositories.	The	EPEL	and	Remi	
repositories	should	appear	in	its	output:

yum	repolist

The	EPEL	and	Remi	repositories	are	enabled	and	ready	to	go!

Tip

Remi	uses	the	same	package	names	as	those	found	in	the	official	CentOS
repositories.	Like	Remi,	the	IUS	repository	provides	newer	versions	of	software
found	in	the	official	repositories,	but	uses	different	package	names.	Some
managed	service	providers	recommend	using	IUS	over	Remi	because	they	update
servers	nightly	and	the	differing	package	names	help	prevent	unplanned	upgrades.
If	you're	contracted	with	such	a	provider	and	not	using	the	Priorities	plugin
(discussed	in	the	next	recipe),	be	sure	to	heed	their	advice.	More	information	on
IUS	can	be	found	at	their	website,	https://ius.io/.

https://ius.io/

See	also
For	more	information	on	the	EPEL	and	Remi	repositories,	refer	to	the	following
resources:

Fedora	Project:	EPEL	(http://fedoraproject.org/wiki/EPEL)
Remi's	RPM	repository	(http://rpms.famillecollet.com/)
Install	EPEL	and	additional	repositories	on	CentOS	and	Red	Hat
(http://www.rackspace.com/knowledge_center/article/install-epel-and-
additional-repositories-on-centos-and-red-hat)

http://fedoraproject.org/wiki/EPEL
http://rpms.famillecollet.com/
http://www.rackspace.com/knowledge_center/article/install-epel-and-additional-repositories-on-centos-and-red-hat

Prioritizing	repositories	using	the
Priorities	plugin
Although	package	managers	make	installing	and	updating	software	an	almost
trivial	task,	there	can	still	be	some	pain	points	if	we're	not	careful.	For	example,
we	can	configure	multiple	repositories,	including	third-party	repositories	not
maintained	by	CentOS,	and	the	version	of	a	package	in	one	repository	can	conflict
with	the	same	in	another.	This	recipe	uses	the	Priorities	plugin	to	prioritize	the
repositories	we	use	to	help	avoid	such	pitfalls.

Getting	ready
This	recipe	requires	a	CentOS	system	with	a	working	network	connection.
Administrative	privileges	are	also	required,	either	by	logging	in	with	the	root
account	or	through	the	use	of	sudo.

How	to	do	it...
Follow	these	steps	to	prioritize	which	repositories	yum	downloads	software	from:

1. Open	the	/etc/yum.conf	file	with	your	text	editor.	Locate	the	plugins
option	and	verify	that	its	value	is	set	to	1	to	enable	plugin	support.	Update	the
value	if	necessary:

plugins	=	1

2. Install	the	yum-plugin-priorities	package:

yum	install	yum-plugin-priorities

3. To	set	a	repository's	priority,	open	its	respective	configuration	file	found
under	/etc/yum.repos.d.	Add	the	priority	option	as	a	new	entry	within
each	desired	section:

priority=10

4. When	you're	finished,	save	and	close	the	repository's	configuration	file.

The	CentOS-Base	repository	is	given	a	relatively	high	priority	for	base
packages

How	it	works...
In	this	recipe,	we	installed	the	Priorities	plugin	and	prioritized	our	repositories	by	
updating	their	configuration	files.	By	prioritizing	one	repository	over	another,	we	
can	more	easily	control	the	packages	and	software	versions	installed	on	our	
system.

First,	we	checked	to	make	sure	Yum's	plugin	support	is	enabled.	We	opened	its	
configuration	file	at	/etc/yum.conf	and	verified	the	value	of	the	plugins	
option:

plugins	=	1

Next,	we	installed	the	yum-plugin-priorities	package:

yum	install	yum-plugin-priorities

Priorities	comes	with	its	own	minimal	configuration	file	at	/etc/yum/plugins/
priorities.conf.	There,	the	enabled	option	let's	us	toggle	whether	the	plugin	is	
active	or	not.	This	means	we	can	prioritize	the	repositories	as	we	like,	but	
temporarily	disable	prioritization	for	any	reason	without	removing	and	then	re-
adding	priority	values	in	the	repositories'	configuration	files:

enabled	=	1

The	last	step	is	to	edit	the	repositories'	configuration	files	found	in	the	/etc/
yum.repos.d	directory.	Each	repository	has	its	own	file,	for	example,	the	
CentOS-Base	repository's	file	is	/etc/yum.repos.d/CentOS-Base.repo,	which	
configures	details	about	connections	and	security	keys	for	each	channel.	To	
prioritize	our	repositories,	we	simply	open	the	desired	files	and	add	a	new	line	
for	the	priority	option	in	the	desired	sections:

priority	=	10

Priorities	are	assigned	as	a	number	in	the	range	of	1	to	99,	where	1	is	the	highest	
priority	and	99	is	the	lowest	priority.	Any	repository	or	channel	we	don't	
explicitly	set	a	priority	for	will	default	to	priority	99.	Repositories	that	are	meant	
to	work	together	(like	EPEL	and	Remi	can	be	assigned	the	same	priority.

Note

Don't	use	consecutive	priority	numbers,	like	1,	2,	3....	Setting	priorities	as
multiples	of	5	or	10,	for	example	5,	10,	15...	or	10,	20,	30...	allows	you	to	later
add	additional	repositories	without	re-prioritizing	existing	ones.

When	priorities	are	assigned	and	enabled	and	when	we	try	to	install	or	update	a
package	which	is	found	in	multiple	repositories,	the	package	will	be	retrieved
from	whichever	repository	that	has	the	highest	priority.	In	this	way,	we	can	control
if	a	third-party	repository	can	replace	important	base	packages,	or	if	updates	from
supported	CentOS	repositories	can	replace	third-party	packages	on	a	highly-
customized	system.

See	also
Refer	to	the	CentOS	Wiki's	yum-plugin-priorities	article	for	more
information	on	the	Priorities	plugin	at
https://wiki.centos.org/PackageManagement/Yum/Priorities.

https://wiki.centos.org/PackageManagement/Yum/Priorities

Automating	software	updates	with
yum-cron
We	know	the	importance	of	staying	on	top	of	any	security	alerts	and	applying
important	updates,	but	it	can	be	a	tedious	and	time-consuming	task	to	make	sure	all
of	the	software	on	your	CentOS	system	is	updated,	especially	when	you're
managing	more	than	one	server.	This	recipe	shows	you	how	to	automate	the	update
process	ensuring	your	system	stays	up	to	date	without	the	need	for	daily
interaction.

Getting	ready
This	recipe	requires	a	CentOS	system	with	a	working	network	connection.
Administrative	privileges	are	also	required,	either	by	logging	in	with	the	root
account	or	through	the	use	of	sudo.

How	to	do	it...
To	automate	software	updates	using	yum-cron,	perform	the	following	steps:

1. Install	the	yum-cron	package:

yum	install	yum	yum-cron

2. Start	and	enable	the	service:

systemctl	start	yum-cron

systemctl	enable	yum-cron

3. Perform	a	system	update	to	ensure	everything	is	up	to	date	before	yum-cron
takes	over:

yum	update

How	it	works...
Our	first	action	step	was	to	install	the	yum-cron	package,	but	you'll	notice	that	the	
invocation	also	updates	Yum	itself.	Although	we	only	have	to	specify	yum-cron,	
including	yum	works	around	a	particular	versioning	bug	(you	can	read	the	bug	
report	at	https://bugzilla.redhat.com/show_bug.cgi?id=1293713:

yum	install	yum	yum-cron

The	package	installs	the	yum-cron	command	and	a	daily	cron	job	to	trigger	it	and	
a	systemctl	unit	used	to	enable	and	disable	updating.	Starting	the	service	with	
systemctl	results	in	the	creation	of	a	special	lock	file.	Cron	runs	the	daily	cron	
job	every	day	to	invoke	yum-cron,	which	checks	whether	the	lock	file	exists.	If	
the	file	exists,	then	it	knows	it	should	check	for	updates.	Otherwise,	it	knows	daily	
updating	is	disabled	(the	service	is	stopped	and	does	nothing.

The	yum-cron.config	configuration	file	in	/etc/yum	can	be	used	to	modify	the	
general	behavior	of	yum-cron.	The	most	important	option	is	update_cmd	because	
it	lets	us	specify	what	type	of	update	to	perform.	It's	possible	for	yum-cron	to	
perform	different	update	strategies,	and	if	you	want	to	perform	a	more	targeted	
update	beyond	the	default	then	you	can	change	the	value	of	the	update_cmd	
option.

Servers	that	fill	different	roles	may	require	different	update	strategies;	for	
example,	you	might	want	to	apply	only	critical	security	updates	on	a	production	
server	and	leave	the	other	software	installed	at	their	specific	versions.	Comments	
in	the	configuration	file	list	what	values	are	valid	for	update_cmd	and	what	they	
mean.	default	performs	a	general	system-wide	update,	whereas	a	value	such	
as	security	only	applies	security-related	updates:

update_cmd	=	security

Also	of	interest	in	yum-cron.conf	is	the	emit_via	option.	The	stdio	value	
means	any	logging	messages	that	may	be	generated	by	yum-cron	will	be	passed	
through	a	standard	output.	Usually,	this	is	captured	by	cron	and	written	to
/var/log/cron.	Cron	can	be	configured	to	e-mail	the	output,	but	you	can	also	
specifically	configure	yum-cron	to	e-mail	the	messages.	If	you	want	the	output	
sent	to	you	by	yum-cron,	change	the	value	of	emit_via	to	email	and	the	value	of

https://bugzilla.redhat.com/show_bug.cgi?id=1293713

email_to	to	your	e-mail	address:

emit_via	=	email

email_to	=	tboronczyk@example.com

yum-cron's	configuration	file	lets	us	specify	a	specific	update	policy	and
notification	options

See	also
Refer	to	the	following	resources	for	more	information	on	automating	software
updates:

Configure	automatic	updates	(http://www.certdepot.net/rhel7-configure-
automatic-updates)
Enabling	automatic	updates	in	CentOS	7	and	RHEL	7
(http://linuxaria.com/howto/enabling-automatic-updates-in-centos-7-and-
rhel-7)

http://www.certdepot.net/rhel7-configure-automatic-updates
http://linuxaria.com/howto/enabling-automatic-updates-in-centos-7-and-rhel-7

Verifying	installed	RPM	packages
It's	been	said	the	safest	system	is	one	that's	"powered	off,	cast	in	a	block	of
concrete,	and	sealed	in	a	lead-lined	room	with	armed	guards."	(Gene	Spafford)
Your	CentOS	system	is	probably	concrete-free,	which	means	it's	at	the	risk	of
attack.	This	recipe	shows	you	how	to	audit	your	system	using	rpm	to	make	sure	its
installed	software	hasn't	been	compromised	by	an	attacker.

Getting	ready
This	recipe	requires	a	CentOS	system	with	a	working	network	connection.
Administrative	privileges	are	also	required,	either	by	logging	in	with	the	root
account	or	through	the	use	of	sudo.

How	to	do	it...
It	is	important	to	first	make	a	backup	of	the	RPM	database	at	/var/lib/rpm.
There	are	many	ways	to	do	this,	but	for	the	sake	of	this	example,	we'll	make	an
ISO	image	of	the	directory	which	you	can	then	archive	or	burn	to	disc:

1. Install	the	genisoimage	and	wodim	packages	for	the	necessary	tools	to
create	ISO	images	and	to	burn	them	to	disc:

yum	install	genisoimage	wodim

2. Create	the	ISO	image	with	genisoimage:

genisoimage	-o	rpm-db-bckup.iso	-R	-v	/var/lib/rpm

If	desired,	burn	the	image	with	wodim:

wodim	-v	dev=/dev/cdrom	rpm-db-bckup.iso

You	can	delete	the	ISO	file	after	burning	it	to	disc	if	you	have	no	plans	to	use	it	in
the	future.

When	the	time	comes	to	verify	your	system,	follow	these	steps:

1. Make	the	backup	database	available.	If	you've	burned	the	ISO	file	to	disc,
and	assuming	that	it's	located	at	/dev/cdrom,	use	mount	like	this:

mount	/media	/dev/cdrom

2. If	the	backup	is	an	ISO	file,	use	mount	like	this:

mount	-o	loop	rpm-db-bckup.iso	/media

3. Verify	the	integrity	of	the	installed	rpm	package	against	the	backup	copy	of
the	database.	rpm	returns	a	list	of	the	files	that	are	different	from	the	original
package,	so	a	successful	audit	should	have	no	output:

rpm	-V	--dbpath=/media	rpm

4. Verify	the	integrity	of	all	of	the	packages	installed	on	the	system:

rpm	-Va	--dbpath=/media

How	it	works...
An	attacker	can	alter	files	and	replace	programs	with	malicious	copies	on	your	
system.	Luckily,	we	can	identify	these	changes	using	rpm	to	verify	the	integrity	of	
files	installed	from	a	package.	But	to	do	this,	we	also	need	a	database	that	we	can	
trust.	The	integrity	of	the	database	used	to	compare	file	details	is	important	
because	a	smart	attacker	may	also	think	to	make	changes	there	as	well.	It's	
important	to	make	a	read-only	backup	of	the	database	regularly,	perhaps	before	
and	after	every	time	you	install	a	new	package	or	install	updates.	Then	you	can	
compare	the	state	of	the	system's	software	against	a	trusted	backup	and	be	fully	
confident	with	the	results.

You	can	back	up	to	any	medium	you	wish:	a	removable	USB	thumb	drive,	a	
writable	CD	or	DVD	disc,	remote	storage,	or	even	a	high-capacity	tape	cartridge.	
The	important	thing	is	that	it's	trustworthy.	The	recipe	demonstrated	making	a	
backup	of	the	/var/lib/rpm	database	as	an	ISO	file,	which	can	be	burned	to	disc	
or	copied	around	as-is	and	mounted	read-only	when	needed.

genisoimage	-o	rpm-db-bckup.iso	-R	-v	/var/lib/rpm

Note

Long-time	Linux	users	may	remember	the	mkisofs	and	cdrecord	programs.	
genisoimage	and	cdrecord	are	clones,	and	the	former	still	exists	in	CentOS	in	
the	form	of	symlinks	pointing	to	genisoimage	and	cdrecord.

The	-o	argument	gives	the	name	of	the	ISO	file	that	will	be	created.	-R	creates	the	
indexes	necessary	to	preserve	the	length	and	casing	of	the	filenames	in	our	image,	
and	-v	indicates	that	genisoimage	should	be	verbose	so	that	we	can	see	its	
progress.	When	it's	finished,	we'll	have	the	rpm-db-backup.iso	file.

Note

rpm-db-bckup.iso	is	a	suitable	name	if	you're	going	to	burn	the	file	to	disc	and	
delete	it.	If	you	plan	on	archiving	the	ISO	file	instead,	you'll	want	to	consider	
including	a	timestamp	in	the	name	of	when	the	backup	was	taken	so	that	you	can	
keep	things	organized.	For	example,	the	following	command	uses	date	to	include	
the	date	and	time	in	the	filename:

genisoimage	-o	rpm-db-bckup-$(date	+"%Y-%m-%d_%H%M".iso	-R	-v

/var/lib/rpm

Next,	the	recipe	showed	how	to	use	wodim	to	burn	the	ISO	to	disc:

wodim	-v	dev=/dev/cdrom	rpm-db-bckup.iso

The	-v	argument	puts	wodim	in	verbose	mode	and	the	dev	argument	identifies	the	
CD/DVD	drive.	The	recipe	assumed	that	/dev/cdrom	is	the	appropriate	device	
and	you	may	need	to	modify	the	command	depending	on	your	system's	
configuration.

To	make	the	trusted	database	available,	we	mounted	the	disc	or	ISO	file.	To	mount	
the	disc,	we	would	place	the	disc	in	the	drive	and	issue	the	following	command	
(/dev/cdrom	is	the	device	and	/media	is	the	mount	point	its	filesystem	will	be	
made	available	on:

mount	/dev/cdrom	/media

To	mount	an	ISO	file,	we	issue	the	following	command	instead:

mount	-o	loop	rpm-db-bckup.iso	/media

After	the	trusted	database	was	made	available,	we	used	rpm	with	the	-V	option,	
which	verifies	an	installed	package.	By	default,	rpm	uses	the	files	in
/var/lib/rpm	as	the	database,	so	we	used	the	--dbpath	option	to	override	this	
and	instead	point	to	our	trusted	copy:

rpm	-V	-dbpath=/media	rpm

While	we	can	provide	one	or	more	package	names	to	check,	the	-a	option	will	
verify	all	of	the	packages	installed	on	the	system:

rpm	-Va	--dbpath=/media

rpm	runs	through	a	series	of	tests,	checking	the	size	of	files	and	their	permissions,	
and	reports	those	that	fail	one	or	more	tests.	No	output	means	the	files	installed	on	
your	system	are	exactly	as	they	were	when	they	were	first	installed	by	the	
package(s.	Otherwise,	rpm	displays	a	dot	for	those	tests	that	pass	and	one	of	the	
following	mnemonic	indicators	to	show	which	tests	fail:

S:	The	size	of	the	file	has	changed
M:	The	file's	permissions	have	changed
5:	The	MD5	checksum	of	the	file	does	not	match	the	expected	checksum
L:	The	symlink	has	changed
D:	The	device	has	changed
U:	The	user	owner	of	the	file	has	changed
G:	The	owning	group	of	the	file	has	changed
T:	The	file's	timestamp	has	changed

rpm	will	also	report	if	a	file	is	missing.

However,	not	all	discrepancies	are	bad.	It's	up	to	us	to	know	what	changes	are
acceptable	or	not.	Changes	to	a	configuration	file,	for	example,	may	be
acceptable,	but	changes	to	a	binary	utility	are	certainly	an	indication	of	trouble.
rpm	differentiates	configuration	files	by	listing	c	next	to	the	test	results,	which
helps	us	differentiate	them	from	other	types	of	files:

Differences	are	reported	when	verifying	the	integrity	of	this	system's	packages

See	also
Refer	to	the	following	resources	for	more	information	on	verifying	the	integrity	of
installed	software:

The	rpm	manual	page	(man	8	rpm)
Verifying	files	with	Red	Hat's	RPM	(http://www.sans.org/security-
resources/idfaq/rpm.php)
wodim	cannot	open	SCSI	drive
(http://www.linuxquestions.org/questions/linux-software-2/wodim-
cdrecord-cannot-open-scsi-drive-4175544944/)

http://www.sans.org/security-resources/idfaq/rpm.php
http://www.linuxquestions.org/questions/linux-software-2/wodim-cdrecord-cannot-open-scsi-drive-4175544944/

Compiling	a	program	from	source
Modern-day	package	managers	make	it	easy	to	install	software;	with	just	a	single
command,	we	can	install	a	program	and	its	dependencies	from	any	of	our
configured	repositories.	Yet	an	important	value	in	the	Linux	community	and	free
software	movement	is	the	ability	to	modify	your	software	as	you	see	fit	(perhaps
you	want	to	fix	a	bug	or	add	a	new	feature).	For	software	written	in	a	compiled
language,	such	as	C,	this	often	means	modifying	the	program's	source	code	and
compiling	the	code	into	an	executable	binary.	This	recipe	walks	you	through
compiling	and	installing	the	GNU	Hello	program.

Getting	ready
This	recipe	requires	a	CentOS	system	with	a	working	network	connection.	An
unprivileged	user	account	capable	of	escalating	its	privileges	using	sudo	should
also	be	available.

How	to	do	it...
Perform	the	following	steps	to	compile	and	install	the	program	from	the	source
code:

1. Using	sudo	to	elevate	your	account's	privileges,	install	the	gcc	package:

sudo	yum	install	gcc

2. Download	the	GNU	Hello	source	code:

curl	ftp://ftp.gnu.org/gnu/hello/hello-2.10.tar.gz	|	tar	-	zx

3. Enter	the	project's	directory:

cd	hello-2.10

4. Run	the	configure	script	using	the	--help	argument	to	view	the	project's
build	options.	The	output	can	be	quite	lengthy	and	you	may	find	it	beneficial
to	paginate	the	content	using	less:

./configure	--help	|	less

5. Run	the	configure	script	again,	this	time	specifying	any	desired	build
options	to	generate	a	Makefile	file:

./configure	--prefix=/usr/local

6. Invoke	make	which	uses	Makefile	as	a	guide	to	compile	the	project:

make

7. Using	sudo	to	again	escalate	your	privileges,	install	the	program	and	its
supporting	files:

sudo	make	install

8. Now,	we	can	run	the	hello	program	to	display	a	friendly	greeting:

hello

How	it	works...
This	recipe	taught	you	the	canonical	configure,	make,	and	make	install	route
of	compiling	and	installing	software	from	the	source	code.

The	minimal	CentOS	installation	does	not	include	a	C	compiler	(a	program	that
translates	source	code	written	in	the	C	programming	language	into	a	binary,
machine-executable	format),	so	the	first	thing	we	did	was	install	the	GNU
Compiler	Collection.	Because	the	package	will	be	installed	system-wide,
elevated	privileges	were	needed	for	yum:

sudo	yum	install	gcc

Note

Since	the	GNU	Hello	project	is	written	in	C	and	includes	a	pregenerated
configure	script,	gcc	is	all	we	need.	There	may	be	other	projects	though	for
which	you'll	need	additional	software,	such	as	autoconf,	to	generate	a
configure	scripts,	or	compiler	support	for	other	languages	like	Fortran,	C++,
Objective-C,	and	Go.	For	a	more	capable	build	environment,	consider	installing
the	Development	Tools	package	group:

sudo	yum	groupinstall	"Development	Tools"

Next,	we	downloaded	a	copy	of	the	project's	source	code	from	its	FTP	server.
The	code	is	distributed	as	a	compressed	archive	which	we	retrieved	using	curl.
We	omitted	the	-O	argument	that	we	used	in	previous	recipes	but	piped	the	output
directly	to	tar	to	decompress	it.	This	results	in	the	creation	of	a	directory	named
hello-2.10	that	contains	the	project's	source	code:

curl	ftp://ftp.gnu.org/gnu/hello/hello-2.10.tar.gz	|	tar	-zx

Quite	often,	a	project	will	include	several	informative	text	files,	so	feel	free	to
look	around	at	the	directory's	content.	Some	common	files	are:

README:	This	gives	a	general	overview	of	the	project	(name,	version,
description,	and	so	on)
CHANGELOG:	This	lists	the	changes	made	in	each	release
INSTALL:	This	contains	installation	instructions

LICENCE:	This	contains	license	information	governing	the	use	and
distribution	of	the	project's	code

If	the	project	uses	the	GNU	Autotools	build	system	(which	GNU	Hello	uses),	we
can	expect	to	find	a	configure	script	in	the	collection	of	source	files.	The	job	of
configure	is	to	scan	our	system's	build	environment	to	ensure	that	any	necessary
tools	and	dependencies	are	available	and	to	generate	the	Makefile	file.
Makefile	will	contain	instructions	that	compile	and	install	the	program,	and	any
options	we	pass	to	configure	ultimately	find	their	way	into	Makefile.

To	see	what	options	are	available	to	us,	we	first	ran	configure	with	--help:

./configure	--help	|	less

Some	of	the	options	may	be	unique	to	the	project	while	others	are	more	general,
having	to	do	with	setting	paths	and	such	as	used	in	later	parts	of	the	build	process.
Some	important	general	options	are	as	follows:

--prefix:	The	base	hierarchy	in	which	the	program	and	its	files	will	be
installed
--disable-FEATURE:	This	compiles	the	program	without	enabling	the	target
feature	that	would	otherwise	be	enabled
--enable-FEATURE:	This	compiles	the	program	with	the	optional	target
feature	enabled
--with-PACKAGE:	This	links	to	a	specific	library	needed	for	some	feature

The	second	time	we	ran	configure,	we	did	so	providing	the	--prefix	option:

./configure	--prefix=/usr/local

The	prefix	value	of	/usr/local	means	that	this	directory	will	be	prefixed	to	the	
various	paths	where	the	different	files	will	be	installed	to.	For	example,	when	we	
install	the	program,	the	compiled	hello	file	is	copied	to	PREFIX/bin,	which	is	
/usr/local/bin,	the	project's	manual	page	will	be	installed	under
PREFIX/share/man,	which	is	/usr/local/share/man,	and	so	on.

Note

This	recipe	installs	GNU	Hello	as	a	system-wide	accessible	program.	But	don't

forget,	you	can	use	the	--prefix	option	to	compile	and	install	files	to	personal
directories	too:

./configure	--prefix=/home/tboronczyk/.personal

Once	configure	generated	Makefile,	we	executed	those	statements	with	make	to
compile	the	project:

make

By	default,	make	looks	for	a	file	named	Makefile	in	the	current	directory	to	run.
If	for	whatever	reason	the	target	script	is	named	differently,	we	can	tell	make
which	file	to	use	with	its	-f	option:

make	-f	./Makefile

Also,	Makefile	files	often	contain	several	sets	of	instructions	or	targets.	Some
common	targets	are	as	follows:

all:	Compiles	the	program
check:	Runs	any	test	suites	that	accompany	the	project	to	verify	its	proper
functioning
clean:	Deletes	any	intermediate	files	created	during	the	compilation	process
distclean:	Deletes	the	files	created	during	the	configuration	process	or
compilation	process,	leaving	only	those	files	in	the	original	distribution
dist:	Creates	an	archive	to	distribute	the	program
install:	Installs	the	compiled	program	and	any	other	necessary	files	to	their
final	home	on	the	system
uninstall:	Deletes	files	that	were	installed	by	install

The	default	target	if	none	are	provided	is	all.

Ideally,	we	don't	want	to	compile	software	as	root	because	it's	possible	for	a	
Makefile	to	create	arbitrary	files	in	any	location,	something	which	can	be	taken	
advantage	of	by	an	attacker.	Executing	the	file	as	a	standard	user	blocks	this	attack	
vector	simply	because	the	unprivileged	account	doesn't	have	write-access	to	
sensitive	directories.	This	is	why	we	used	sudo	only	for	the	install	target	when	
we	moved	the	program	and	its	files	to	the	directories	under	/usr/local.

See	also
Refer	to	the	following	resources	for	more	information	on	building	software:

GNU	Hello	(http://www.gnu.org/software/hello)
RHEL7	Developer	Guide	(https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/index.html)
Autotools	Mythbuster	(http://autotools.io/)
CentOS	Wiki:	Set	up	an	RPM	Build	Environment
(http://wiki.centos.org/HowTos/SetupRpmBuildEnvironment)

http://www.gnu.org/software/hello
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/index.html
http://autotools.io/
http://wiki.centos.org/HowTos/SetupRpmBuildEnvironment

Chapter	5.	Managing	Filesystems	and
Storage
This	chapter	contains	the	following	recipes:

Viewing	the	size	of	files	and	available	storage
Setting	storage	limits	for	users	and	groups
Creating	a	RAM	disk
Creating	a	RAID
Replacing	a	device	in	a	RAID
Creating	a	new	LVM	volume
Removing	an	existing	LVM	volume
Adding	storage	and	growing	an	LVM	volume
Working	with	LVM	snapshots

Introduction
The	recipes	in	this	chapter	focus	on	leveraging	your	CentOS	system's	storage	to
maintain	availability,	increase	reliability,	and	to	keep	your	data	safe	against
inevitable	disk	failures.	You'll	learn	how	to	determine	how	much	space	your	files
take	up	and	how	much	storage	is	still	available.	Then,	you'll	see	how	to	put	limits
in	place	to	ensure	that	users	use	the	system's	storage	resources	equitably.	We'll
also	create	a	RAM	disk,	a	memory-based	low	latency	storage	for	frequently
accessed	data.	Then	you'll	learn	how	to	create	and	manage	RAID	arrays	to
provide	reliable	storage,	and	how	to	work	with	LVM	volumes	to	allocate	logical
drives	from	storage	pools	to	better	utilize	your	system's	total	storage	capacity.

Viewing	the	size	of	files	and	available
storage
Programs	and	services	can	behave	unexpectedly	or	stop	working	entirely	when
storage	space	runs	tight,	so	it's	important	to	know	how	much	space	is	available	on
our	system.	This	recipe	introduces	a	handful	of	commands	used	to	determine	how
large	your	files	and	directories	are	and	how	much	storage	is	used	and	is	available.

Getting	ready
This	recipe	requires	a	working	CentOS	system.	Administrative	privileges	may	be
needed	depending	on	the	permissions	of	the	directories	and	files	you	want	to
inspect.

How	to	do	it...
To	display	the	storage	capacity	of	a	mounted	filesystem,	use	the	df
command:

df	-h	/

To	view	the	size	of	a	file,	use	the	ls	command:

ls	-sh	file.txt

To	determine	the	size	of	a	directory	(the	sum	of	sizes	of	all	of	its	files),	use
the	du	command:

du	-sh	~

How	it	works...
The	df	command	returns	information	about	how	much	free	space	is	available	on	a
mounted	filesystem.	The	preceding	example	asked	for	details	about	the	root
filesystem.

df	-h	/

The	-h	argument	formats	the	information	in	a	human-readable	format,	listing	the
values	as	megabytes,	gigabytes,	and	so	on,	as	opposed	to	block	counts.	When
invoked	without	any	arguments,	df	displays	its	information	in	512-byte	block
counts	for	all	mounted	filesystems.	We	can	specify	one	or	more	mount	points	with
this	command,	in	which	case	df	reports	only	on	those	filesystems.

Values	presented	as	megabytes	and	gigabytes	are	more	informative	than	when	
given	in	block	counts

The	output's	first	column,	labeled	Filesystem,	and	the	last,	labeled	Mounted	on,	
identifies	the	filesystem	and	mount	point	it's	been	made	available	on,	respectively.	
The	Size	column	shows	the	total	amount	of	space	the	filesystem	provides.	The	
Used	column	shows	how	much	of	that	space	is	occupied	and	the	Avail	column	
shows	how	much	is	still	available.	Use%	shows	how	much	space	is	occupied	as	a	
percentage.

While	df	gives	us	a	high-level	view	of	our	overall	storage	usage,	to	view	the	size	
of	individual	files	we	can	use	ls.	The	command	supports	a	large	number	of	
arguments	that	show	meta	information	for	files	and	directories,	such	as	their

ownership	details,	create	time,	and	size.

This	recipe	used	the	-s	argument	to	return	the	file's	size	and	-h	to	again	display	
the	value	in	a	human-readable	format:

ls	-hs	filename.txt

If	you	use	ls	to	show	the	size	of	a	directory,	it	will	likely	report	4.0	K	regardless	
of	which	directory	you	choose.	This	is	because	directories	aren't	really	containers	
holding	files	like	we	usually	imagine;	a	directory	is	really	a	special	file	that	
contains	an	index	listing	the	files	that	are	within	it.	This	index	occupies	a	block's	
worth	of	storage.	ls	reports	the	amount	of	space	the	directory	occupies	as	a	file,	
not	the	sum	of	the	sizes	of	its	files.

To	view	the	total	size	of	all	of	the	files	in	a	directory,	which	is	usually	what	we	
want	when	talking	about	directory	size,	we	need	to	use	the	du	command:

du	-hs	~

The	-s	argument	prints	only	the	value	for	the	current	directory	and	-h	formats	the	
value	in	a	human-readable	format.	Without	any	arguments,	du	also	displays	512-
byte	block	counts	for	all	files	and	directories	within	the	current	directory.	
However,	directories	are	treated	as	containers	so	the	values	reflect	the	block	
count	of	all	of	their	contained	files.	We	can	also	list	one	or	more	files	or	
directories,	in	which	case	du	reports	back	only	on	those	targets.	By	targeting	all	of	
the	files/directories	within	a	directory	and	piping	the	output	through	sort,	we	can	
use	du	to	identify	targets	that	consume	the	most	storage:

du	-hs	./*	|	sort	-hr

sort's	-h	argument	organizes	the	human-readable	numbers	correctly	(for	example,	
4.0K	is	less	than	3M	even	though	3	is	less	than	4	in	a	numerical	sort	and	-r	
reverses	the	order	to	display	the	largest	entries	first:

Sorting	can	help	identify	what	consumes	the	most	storage

See	also
For	more	information	on	the	commands	mentioned	in	this	recipe,	refer	to	their
respective	man	pages:

The	df	manual	page	(man	1	df)
The	du	manual	page	(man	1	du)
The	ls	manual	page	(man	1	ls)

Setting	storage	limits	for	users	and
groups
Imposing	limits	on	the	amount	of	storage	a	user	can	consume	is	an	effective	way	to
manage	resources	and	ensure	they	are	made	available	to	everyone	fairly,
especially	in	a	multiuser	environment.	This	recipe	shows	you	how	to	enable
quotas	and	set	limits	by	users	and	groups.

Getting	ready
This	recipe	requires	a	CentOS	system	with	administrative	privileges	provided	by
logging	in	with	the	root	account	or	using	sudo.	It	assumes	/home	mounts	its	own
filesystem.

How	to	do	it...
Follow	these	steps	to	set	up	quotas	and	specify	storage	limits:

1. Open	the	/etc/fstab	file	for	editing:

vi	/etc/fstab

2. To	enable	user	quotas,	which	enforce	usage	limits	based	on	user	accounts,
add	uquota	to	the	mount	options	for	/home.	For	group	quotas,	add	gquota.
Both	uquota	and	gquota	can	be	given	together	to	enable	both:

/dev/mapper/centos-home	/home	xfs	defaults,uquota,gquota	0		0

3. Save	your	changes	and	close	the	file.
4. Reboot	the	system:

shutdown	-r	+5	'Reboot	required	for	system	maintenance'

5. When	the	system	reboots,	launch	the	xfs_quota	shell	in	expert	mode:

xfs_quota	-x	/home

6. Set	limits	for	a	user	account	using	the	limit	command:

limit	bsoft=5g	bhard=6g	tboronczyk

7. Use	the	quota	command	to	verify	that	the	user's	limits	have	been	set:

quota	-h	tboronczyk

8. Set	limits	for	a	group	using	limit	-g:

limit	-g	bsoft=20g	bhard=21g	users

9. Use	quota	-g	to	verify	that	the	group's	limits	have	been	set:

quota	-gh	users

10. Type	quit	or	press	Ctrl	+	D	to	exit	the	shell:

quit

How	it	works...
Quotas	are	not	enabled	by	default	and	must	be	enabled	explicitly	in	the
filesystem's	mount	options;	so,	we	updated	/etc/fstab	and	added	the	uquota
and/or	gquota	option	for	/home:

/dev/mapper/centos-home	/home	xfs	defaults,uquota,gquota	0	0

We	should	never	unmount	a	filesystem	that's	in	use	because	we	don't	want	to	risk
corrupting	or	losing	data.	So,	it's	important	that	no	one	else	is	logged	in	when	we
remount	/home.	If	you're	logged	in	as	root	and	you're	certain	you're	the	only	user
logged	in,	you	can	remount	the	filesystem	with	umount	immediately	followed	by
mount.	But	if	others	are	logged	on,	it's	best	to	perform	a	reboot	as	the	recipe
suggests.	When	the	system	reboots,	it	will	have	automatically	mounted	/home	and
the	quota	options	will	be	in	effect:

shutdown	-r	+5	'Reboot	required	for	server	maintenance'

Next,	we	ran	xfs_quota	as	an	interactive	shell	to	enter	commands	to	manage	our
quotas.	We	used	the	-x	argument	to	start	the	shell	in	expert	mode	(the	commands
we	need	to	manage	quotas	are	only	available	in	expert	mode)	and	gave	the
filesystem's	mount	point	on	which	we're	going	to	set	quotas:

xfs_quota	-x	/home

Note

The	traditional	quota	utilities	can	be	used	to	manage	basic	quotas,	but	xfs_quota
lets	us	take	advantage	of	the	additional	quota	functionality	unique	to	XFS.	For
example,	using	xfs_quota	we	can	also	manage	project	quotas.

The	two	commands	with	the	most	interest	for	us	are	limit	and	quota.	limit	is
used	to	set	the	quota	limits	and	quota	is	used	to	report	the	quota	information.

We	can	set	four	limits	with	limit.	They	are	as	follows:

isoft:	This	sets	a	soft	limit	on	the	number	of	inodes	used
ihard:	This	sets	a	hard	limit	on	the	number	of	inodes	used
bsoft:	This	sets	a	soft	limit	on	the	number	of	blocks	used

bhard:	This	sets	a	hard	limit	on	the	number	of	blocks	used

An	inode	is	a	data	structure	used	by	filesystems	to	track	files	and	directories.	
Each	file	and	directory	are	represented	by	an	inode,	so	setting	a	limit	on	the	
number	of	inodes	a	user	can	have	essentially	limits	the	number	of	files/directories	
they	can	have.

Blocks	represent	the	physical	storage,	and	setting	a	quota	on	the	number	of	blocks	
for	a	user	limits	the	amount	of	storage	space	their	files	can	consume.	The	typical	
block	size	is	512	bytes,	meaning	two	blocks	are	used	to	store	1	KB	of	data.	The	
recipe's	examples	set	a	soft	block	limit	of	5	GB	for	the	user	account	and	a	hard	
limit	of	6	GB.	The	suffixes	k,	m,	and	g	are	used	to	specify	values	as	kilobytes,	
megabytes,	and	gigabytes,	respectively:

limit	bsoft=5g	bhard=5500m	tboronczyk

Note

Commands	can	be	run	in	xfs_quota	without	entering	the	interactive	shell	by	using	
-c:

xfs_quota	-x	-c	'limit	-u	bsoft=5g	tboronczyk'	/home

A	hard	limit	specifies	a	value	that	the	user	absolutely	cannot	surpass.	For	
example,	a	user	with	a	hard	limit	of	100	inodes	and	having	99	files	will	only	be	
able	to	create	one	more	file.	An	attempt	to	create	a	file	beyond	that	will	be	met	
with	an	error.

On	the	other	hand,	a	soft	limit	defines	a	limit	a	user	can	surpass	for	a	small	amount	
of	time.	Once	the	limit	is	exceeded,	the	user	enters	a	grace	period.	A	user	with	a	
soft	block	limit	of	5	GB	will	be	able	to	consume	more	than	5	GB	of	storage,	but	
only	for	a	certain	amount	of	time.	If	they're	still	violating	the	limit	by	the	end	of	the	
grace	period,	the	soft	limit	will	be	treated	as	a	hard	limit	and	they	won't	be	able	to	
save	any	more	data.

Note

The	grace	period	is	7	days	by	default.	We	can	change	this	with	the	timer	
command,	using	-i	to	change	the	inodes	timer	and	-b	to	change	the	block	timer:	
timer	-b	3d	tboronczyk

To	review	the	current	quotas,	the	quota	command	is	used.	-h	presents	the	values
in	human-readable	values:

quota	-h	tboronczyk

The	default	output	shows	the	filesystem	and	its	mount	point	and	the	user's	block
quota	details:	the	number	of	blocks	consumed	(under	the	Blocks	header),	soft	limit
(Quota),	hard	limit	(Limit),	and	the	elapsed	time	of	a	soft-limit	violation's	grace
period	(Warn/Time).	-i	will	retrieve	the	same	information	for	inode	quotas,	and
-b	and	-i	can	be	used	together	to	display	both	sets	of	information	at	the	same
time:

quota	-bih	tboronczyk

Block	and	inode	quotas	can	be	displayed	at	the	same	time

The	limit	and	quota	commands	all	default	to	working	with	a	user's	quota,	
although	we	can	explicitly	manage	a	user's	quota	using	the	-u	argument.	To	
manage	a	group's	quota,	we	use	-g:

quota	-gh	users

As	mentioned	earlier,	xfs_quota	also	allows	us	to	manage	project	quotas.	These	
are	essentially	limits	placed	on	specific	directories	that	are	enforced	regardless	of	
user	or	group	ownership.	To	use	project	quotas,	use	the	pquota	mount	option:

/dev/mapper/centos-home	/home	xfs	defaults,uquota,pquota	0	0

Note

Project	quotas	and	group	quotas	cannot	be	used	together;	mount	will	fail	to	mount	
the	filesystem	if	both	pquota	and	gquota	are	given.	Depending	on	the	filesystem,	
this	may	prevent	your	system	from	booting.

Next,	create	the	file	/etc/projid.	Each	line	is	an	entry	made	up	of	an	arbitrary
project	name	and	a	unique	ID	number	separated	by	a	colon:

echo	"my_project:42"	>>	/etc/projid

Then,	create	the	file	/etc/projects.	Its	entries	are	made	up	of	the	project	ID,	a
separating	colon,	and	the	project's	directory.	Together,	the	projects	and	projid
files	define	the	relationship	between	the	project's	name	and	its	directory:

echo	"42:/home/dev/project"	>>	/etc/projects

With	the	two	configuration	files	in	place,	the	final	step	is	to	initialize	the	project's
quota	tracking	in	xfs_quota	using	project	-c:

project	-c	my_project

With	the	initial	setup	steps	complete,	you	can	use	the	limit	and	quota	commands
to	manage	the	project's	quotas	using	the	-p	argument:

limit	-p	bsoft=10g	bhard=11g	my_project

See	also
Refer	to	the	following	resources	for	more	information	on	working	with	quotas:

The	xfs_quota	manual	page	(man	8	xfs_quota)
Enable	User	and	Group	Disk	Quota	on	CentOS	7
(http://www.linuxtechi.com/enable-user-group-disk-quota-on-centos-7-rhel-
7/)

http://www.linuxtechi.com/enable-user-group-disk-quota-on-centos-7-rhel-7/

Creating	a	RAM	disk
This	recipe	teaches	you	how	to	take	advantage	of	RAM's	low	latency	using	a
RAM	disk,	a	section	of	memory	made	available	as	if	it	were	a	standard	storage
device.	RAM	disks	often	store	volatile	data	that	is	constantly	read	and	updated	in
memory.	For	example,	on	desktop	systems	they're	used	for	storing	a	browser's
cache	to	speed	up	web	surfing.	In	server	environments,	RAM	disks	can	store
cache	data	for	high-load	proxy	services	to	reduce	latency.

Getting	ready
This	recipe	requires	a	CentOS	system	with	administrative	privileges	provided	by
logging	in	with	the	root	account	or	using	sudo.

How	to	do	it...
Perform	the	following	steps	to	create	and	use	a	RAM	disk:

1. Check	whether	there	is	sufficient	memory	available	for	the	RAM	disk	using
free	command	(a	practical	RAM	disk	will	need	to	be	smaller	than	the
amount	of	free	memory):

free	-h

2. Use	mount	to	mount	a	tmpfs	filesystem	at	the	desired	mount	point,	giving	the
target	size	as	a	mount	option:

mount	-t	tmpfs	-o	size=512M	tmpfs	/mnt

3. When	the	RAM	disk	is	no	longer	needed,	unmount	the	filesystem:

umount	/mnt

How	it	works...
Whenever	we	access	data	on	a	hard	drive,	its	motors	must	first	spin	up	the	storage
platters	and	position	the	magnetic	head	at	the	correct	location.	These	mechanical
actions	make	access	painfully	slow	compared	to	accessing	data	already	resident
in	system	memory	(RAM).	Exact	measurements	depend	on	the	individual	system
and	its	hardware,	but	disk	access	takes	somewhere	in	the	neighborhood	of	10
milliseconds	or	10,000,000	nanoseconds.	Memory	access	only	takes	about	200
nanoseconds,	so	it's	safe	to	say	accessing	RAM	is	at	least	10,000	times	faster	than
disk	even	as	a	low	estimate.

Before	creating	the	RAM	disk,	you	should	first	review	the	amount	of	free	memory
available	on	your	system	using	the	free	command:

free	-h

free	command	responds	with	how	much	memory	is	available	and	how	much
memory	is	in	use.	The	-h	argument	formats	the	output	in	a	human-readable	format
(listing	the	values	in	megabytes	and	gigabytes	instead	of	bytes).	We	can	see
numbers	for	RAM,	swap	disks,	and	any	special	buffers	used	by	the	kernel,	but
we're	really	interested	in	the	amount	of	used	and	free	memory	listed	by	the	Mem
and	Swap	entries.	A	low	amount	of	free	memory	and	a	high	amount	of	used	swap	is
an	indication	that	we	probably	won't	have	sufficient	memory	for	a	practical	RAM
disk:

With	only	1	GB	of	RAM,	this	system	has	resources	to	support	only	a	relatively	
small	RAM	disk

Next,	we	used	mount	to	make	the	desired	amount	of	memory	available	at	the	given	
mount	point.	The	recipe	used	/mnt,	but	you're	free	to	use	whatever	mount	point	
you	see	fit:

mount	-t	tmpfs	-o	size=512M	tmpfs	/mnt

The	invocation	specifies	tmpfs	as	the	mount	device	and	/mnt	as	the	mount	point.
-t	specifies	the	underlying	filesystem,	in	this	case,	tmpfs	and	-o	specifies	our
mount	options	for	the	filesystem.	A	list	of	possible	options	for	the	tmpfs
filesystem	can	be	found	in	the	mount	man	page,	but	the	most	important	option	is
size,	which	sets	the	desired	size	of	the	filesystem.

Note

It's	possible	to	specify	a	value	for	size	that's	greater	than	the	amount	of	available
RAM	but	most	of	the	time	this	isn't	desirable.	The	extra	data	is	marshaled	to	swap
once	RAM	is	exhausted	and	this	will	increase	latency,	negating	the	benefits	of
using	a	RAM	disk	in	the	first	place.

Remember,	RAM	disks	serve	as	low	latency	temporary	storage	for	volatile	data.
Because	its	data	is	stored	in	memory,	the	contents	of	the	disk	are	lost	when	either
the	system	shuts	down	or	the	disk	is	unmounted.	Never	store	persistent	data	to
your	RAM	disk.

See	also
Refer	to	the	following	resources	for	more	information	about	RAM	disks:

The	mount	manual	page	(man	8	mount)
How	to	create	a	RAM	disk	in	Linux	(http://www.jamescoyle.net/how-
to/943-create-a-ram-disk-in-linux)
What	is	/dev/shm	and	its	practical	usage?
(http://www.cyberciti.biz/tips/what-is-devshm-and-its-practical-usage.html)

http://www.jamescoyle.net/how-to/943-create-a-ram-disk-in-linux
http://www.cyberciti.biz/tips/what-is-devshm-and-its-practical-usage.html

Creating	a	RAID
In	this	recipe,	you'll	learn	how	to	configure	a	redundant	array	of	disks	(RAID).
Configuring	an	array	of	disks	to	provide	redundant	storage	is	an	excellent	way	to
protect	your	data	from	drive	failures.	For	example,	if	your	data	resides	on	a	single
disk	and	that	drive	fails,	then	the	data	is	lost.	You'll	have	to	replace	the	drive	and
restore	the	data	from	your	latest	backup.	But	if	two	disks	are	in	a	RAID-1
configuration,	your	data	is	mirrored	and	can	still	be	accessed	from	the	working
drive	when	the	other	fails.	The	failure	doesn't	impact	access	to	the	data	and	you
can	replace	the	faulty	drive	at	a	more	convenient	time.

Getting	ready
This	recipe	requires	a	working	CentOS	system	and	elevated	privileges.	It	assumes
that	at	least	two	new	disks	have	been	installed	(identified	as	/dev/sdb	and
/dev/sdc)	and	we	will	partition	and	configure	them.

How	to	do	it...
Perform	the	following	steps	to	create	a	RAID:

1. Use	lsblk	to	identify	the	new	storage	devices.
2. Launch	cfdisk	to	partition	the	first	drive:

cfdisk	-z	/dev/sdb

cfdisk	presents	a	user-friendly	interface	for	partitioning	storage	devices

3. To	create	a	single	partition	that	occupies	the	entire	disk,	use	the	left	and	right
arrow	keys	to	select	New	and	press	Enter.	Then	select	Primary	and	accept
the	default	size.

4. Select	Write	and	confirm	the	action	by	typing	yes	when	prompted.	Select
Quit	to	exit	cfdisk.

5. Repeat	steps	1	to	4	to	partition	the	second	drive.
6. Install	the	mdadm	package:

yum	install	mdadm

7. Use	mdadm	-C	to	create	a	new	array	using	the	two	partitions.	The	following

example	creates	a	RAID-1	(mirroring)	configuration:

mdadm	-C	md0	-l	1	-n	2	/dev/sdb1	/dev/sdc1

8. Use	the	-D	option	to	examine	the	RAID:

mdadm	-D	/dev/md/md0

9. Format	the	RAID	using	the	XFS	filesystem	with	mkfs.xfs:

mkfs.xfs	/dev/md/md0

10. Mount	the	RAID	for	use:

mount	/dev/md/md0	/mnt

How	it	works...
There	are	many	ways	to	configure	disks	to	work	together,	especially	when	it
comes	to	things	like	data	mirroring,	striping,	and	parity	checking.	Some
configurations	are	implemented	at	the	hardware	level	and	others	can	be
implemented	using	software.	This	recipe	used	mdadm	to	set	up	multiple	disks	in	a
RAID	configuration,	specifically	RAID-1.

The	Storage	Networking	Industry	Association	has	standardized	several	different
RAID	configurations.	Some	of	the	more	common	configurations	are	as	follows:

RAID-0:	Data	is	distributed	evenly	across	two	or	more	disks.	This
configuration	offers	no	redundancy,	and	the	failure	of	a	single	disk	in	the
array	will	result	in	data	loss.	However,	it	offers	increased	performance	since
data	can	be	read	and	written	to	different	disks	simultaneously.
RAID-1:	Data	is	duplicated	between	disks.	Write	activity	is	slower	because
the	same	data	must	be	written	to	each	disk,	but	this	configuration	offers
excellent	redundancy;	the	data	remains	accessible	as	long	as	there	is	at	least
one	functioning	disk.
RAID-5:	Blocks	of	data	and	parity	information	are	split	between	two	or
more	disks.	If	a	member	of	the	array	fails,	parity	information	on	another	disk
can	be	used	to	reconstruct	the	missing	data.	Write	performance	is	slower,	but
read	performance	is	increased	since	data	can	be	read	simultaneously	from
different	disks.	This	configuration	can	withstand	the	failure	of	a	single	disk,
although	the	failure	of	a	second	disk	will	result	in	data	loss.
RAID-6:	This	configuration	is	similar	to	RAID-5,	but	maintains	an	extra
parity	block.	The	array	can	withstand	two	disk	failures	before	data	is	lost.

There	are	other	standard	configurations	as	well	(RAID-2,	RAID-3,	and	so	on),
and	even	non-standard	configurations,	but	these	are	rarely	used	in	practice.	As
with	everything	in	life,	there	are	trade-offs	between	the	different	RAID
configurations,	and	selecting	the	right	configuration	for	you	will	depend	on	how
you	want	to	balance	redundancy,	fault-tolerance,	and	latency.

lsblk	prints	information	for	the	block	devices	(storage	disks)	attached	to	our
CentOS	system,	and	it	should	be	relatively	easy	to	identify	the	names	of	the	new
devices	simply	by	looking	at	the	drive	sizes	and	lack	of	partitions.	This	recipe
assumes	that	the	new	devices	are	/dev/sdb	and	/dev/sdc;	you'll	need	to	use

whatever	is	appropriate	for	your	system	when	invoking	the	cfdisk	and	mdadm
commands:

Several	unconfigured	drives	are	installed	on	the	system

A	new	primary	partition	is	created	on	each	disk	that	occupies	its	entire	capacity.	
The	recipe	uses	cfdisk,	a	program	that	offers	a	console-based	graphical	interface	
to	manipulate	partitions.	However,	there	are	other	partitioning	utilities	installed	in	
CentOS	that	you	can	use	instead	if	you're	comfortable	with	them,	such	as	fdisk,	
sfdisk,	and	parted.

Once	the	disks	are	partitioned,	we're	ready	to	configure	the	RAID.	The	mdadm	
program	used	to	set	up	and	administer	RAIDs	is	installed	using	yum:

yum	install	mdadm

mdadm	-C	creates	a	new	RAID	configuration	and	requires	a	name	to	identify	it.	
md0	is	used	in	the	recipe	which	results	in	creating	the	device	/dev/md/md0.	The	
other	arguments	describe	the	desired	configuration:

mdadm	-C	md0	-l	1	-n	2	/dev/sdb1	/dev/sdc1

The	-l	(a	lower-case	L	option	specifies	the	standard	RAID	level,	in	this	case	1	
(the	number	1	represents	RAID-1.	If	you	wanted	to	set	up	RAID-5	instead,	you'd	
use	-l	5.	The	-n	option	specifies	the	number	of	partitions	the	RAID	will	use,	and	
then	we	list	the	partitions.	The	recipe	configures	two	partitions,	/dev/sdb1	and

/dev/sdc1.

mdadm	-D	displays	information	for	a	given	array	that's	useful	in	examining	the
configuration	and	verifying	its	health.	The	output	lists	details	such	as	the	RAID
level,	available	storage	size,	which	partitions	make	up	the	array,	whether	any
partitions/devices	are	failing,	resync	status,	and	other	useful	information:

mdadm	-D	/dev/md/md0	

mdadm	displays	the	status	of	the	new	RAID	configuration

Note

mdadm	-E	retrieves	information	for	one	or	more	partitions	that	make	up	the	array:	

mdadm	-E	/dev/sdb1	/dev/sdc1

Next,	the	storage	space	is	formatted	with	an	XFS	filesystem	using	the	mkfs.xfs
command:

mkfs.xfs	/dev/md/md0

Finally,	the	RAID-backed	storage	space	is	ready	for	use.	The	recipe	demonstrates
mounting	it	manually	with	the	mount	command,	although	you	can	also	add	an	entry
to	/etc/fstab	for	the	filesystem	to	be	mounted	automatically	whenever	the
system	boots	up.

See	also
For	more	information	on	setting	up	RAIDs,	refer	to	the	following	resources:

The	cfdisk	manual	page	(man	8	cfdisk)
The	mdadm	manual	page	(man	8	mdadm)
The	mkfs.xfs	manual	page	(man	8	mkfs.xfs)
Linux	RAID	Wiki:	Linux	RAID
(https://raid.wiki.kernel.org/index.php/Linux_Raid)
Mdadm	Cheat	Sheet	(http://www.ducea.com/2009/03/08/mdadm-cheat-
sheet/)
Introduction	to	RAID	(http://www.tecmint.com/understanding-raid-setup-in-
linux/)
Standard	RAID	levels
(https://en.wikipedia.org/wiki/Standard_RAID_levels)

https://raid.wiki.kernel.org/index.php/Linux_Raid
http://www.ducea.com/2009/03/08/mdadm-cheat-sheet/
http://www.tecmint.com/understanding-raid-setup-in-linux/
https://en.wikipedia.org/wiki/Standard_RAID_levels

Replacing	a	device	in	a	RAID
When	an	array	member	fails,	it's	important	to	replace	it	as	soon	as	possible
because	the	failure	of	additional	drives	increases	the	chance	of	data	loss.	This
recipe	teaches	you	how	to	properly	replace	a	bad	drive	and	rebuild	the	array.

Getting	ready
This	recipe	requires	a	CentOS	system	with	administrative	privileges	provided	by
logging	in	with	the	root	account	or	using	sudo.	It	assumes	that	a	RAID-1
configuration	has	been	set	up	as	described	in	the	previous	recipe	and	the	drive
that	will	be	replaced	is	/dev/sdb.

How	to	do	it...
Follow	these	steps	to	replace	a	failed	disk	in	a	RAID:

1. Mark	the	failed	partition	as	faulty	with	mdadm	using	the	-f	option:

mdadm	/dev/md/md0	-f	/dev/sdb1

2. Remove	the	partition	from	the	RAID's	configuration	with	-r:

mdadm	/dev/md/md0	-r	/dev/sdb1

3. Physically	replace	the	faulty	disk.
4. Partition	the	new	drive	with	cfdisk:

cfdisk	-z	/dev/sdb

5. Use	the	-a	option	to	add	the	partition	to	the	RAID:

mdadm	/dev/md/md0	-a	/dev/sdb1

How	it	works...
It's	important	to	replace	bad	members	as	soon	you	become	aware	of	the	failure	
because,	depending	on	the	fault	tolerance	of	your	configuration,	the	failure	of	a	
second	device	may	result	in	full	data	loss.

A	member	must	be	marked	faulty	before	we	can	safely	remove	it,	so	the	first	step	
is	to	fail	the	partition.	To	do	this,	we	used	mdadm.	The	-f	argument	specifies	the	
partition	we	want	failed:

mdadm	/dev/md/md0	-f	/dev/sdb1

Then,	to	remove	the	partition	from	the	RAID,	we	used	the	-r	argument:

mdadm	/dev/md/md0	-r	/dev/sdb1

Now	that	the	device	is	no	longer	in	use,	we	can	replace	the	physical	drive.	
Whether	the	drive	can	be	hot-swapped	while	the	system	is	running	or	if	a	system	
shutdown	is	necessary	depends	on	your	hardware.

Once	the	replacement	partition	was	ready,	we	added	it	to	the	RAID	with	the	-a	
argument.	The	RAID	will	begin	to	rebuild	itself,	distributing	data	and	parity	
information	to	the	new	partition,	as	soon	as	the	partition	is	added:

mdadm	/dev/md/md0	-a	/dev/sdb1

The	last	recipe	showed	how	the	-D	(and	-E	argument	of	mdadm	is	used	to	retrieve	
status	information	about	the	RAID.	You	can	review	the	output	to	monitor	the	
rebuild's	progress,	but	a	more	concise	report	is	available	via	/proc/mdstat.	The	
contents	show	the	speed	at	which	the	rebuild	is	being	processed	and	estimate	the	
time	it	will	take	for	it	to	complete.	Using	watch	to	repeatedly	display
/proc/mdstat,	you	can	create	a	make-shift	dashboard	to	monitor	the	process:

watch	-n	10	-x	cat	/proc/mdstat

The	estimated	time	for	this	RAID's	rebuild	to	complete	is	about	an	hour	and	a
half

See	also
Refer	to	the	following	resources	for	more	information	on	replacing	failed	drives
in	a	RAID:

The	mdadm	manual	page	(man	8	mdadm)
Replacing	a	failed	hard	drive	in	a	software	RAID
(https://www.howtoforge.com/replacing_hard_disks_in_a_raid1_array)
Five	tips	to	speed	up	RAID	re-building	and	re-syncing
(http://www.cyberciti.biz/tips/linux-raid-increase-resync-rebuild-
speed.html)

https://www.howtoforge.com/replacing_hard_disks_in_a_raid1_array
http://www.cyberciti.biz/tips/linux-raid-increase-resync-rebuild-speed.html

Creating	a	new	LVM	volume
Logical	Volume	Manager	(LVM)	abstracts	data	storage	away	from	the	physical
hardware,	which	lets	us	configure	the	partitions	on	one	or	more	physical	drives	to
act	as	one	logical	device.	We	also	have	the	freedom	to	later	add	or	remove
physical	partitions	and	grow	or	shrink	the	logical	device.	This	recipe	show's	you
how	to	create	a	new	LVM	group	and	a	logical	device	from	the	group's	storage.

Getting	ready
This	recipe	requires	a	working	CentOS	system	and	elevated	privileges.	It	assumes
that	at	least	two	new	disks	have	been	installed	(identified	as	/dev/sdb	and
/dev/sdc)	and	we	will	partition	and	configure	them.

How	to	do	it...
Perform	these	steps	to	set	up	a	new	LVM	group	and	create	a	volume:

1. Use	lsblk	to	identify	the	new	storage	devices.

Note

You	can	set	up	LVM	with	RAID	storage	as	well.	Skip	to	step	5	and	replace
the	partitions	with	RAID	devices	(for	example,	/dev/md/md0)	in	the	given
commands.

2. Launch	cfdisk	to	partition	the	first	drive	and	create	a	single	partition	that
occupies	the	entire	disk:

cfdisk	-z	/dev/sdb

3. Repeat	step	2	to	partition	the	second	drive.
4. Use	pvcreate	to	register	the	new	partitions	as	physical	volumes:

pvcreate	/dev/sdb1	/dev/sdc1

5. Verify	that	the	physical	volumes	are	listed	in	the	output	of	pvs:

pvs

6. Using	vgcreate,	group	the	physical	volumes	to	form	a	volume	group:

vgcreate	vg0	/dev/sdb1	/dev/sdc1

7. Verify	that	the	group	is	listed	in	the	output	of	vgs:

vgs

8. Using	lvcreate,	create	a	logical	volume	from	the	storage	pool	provided	by
the	volume	group:

lvcreate	-n	myvol	-L	500G	vg0

9. Format	the	volume	using	the	XFS	filesystem:

mkfs.xfs	/dev/vg0/myvol

10. Mount	the	volume	for	use:

mount	/dev/vg0/myvol	/mnt

How	it	works...
LVM	is	another	approach	to	configure	multiple	storage	units	to	work	together,	
focusing	on	pooling	their	resources	together	in	a	flexible	way.	These	units	can	be	
disk	partitions,	as	well	as	RAID	arrays,	and	so	the	generic	term	volume	is	used.

The	recipe	starts	with	the	assumption	that	we	have	two	new	disks	as	our	storage	
volumes	and	provides	steps	for	identifying	the	devices	and	partitioning	them	using	
lsblk	and	cfdisk.	It	uses	/dev/sdb	and	/dev/sdc	as	the	devices,	but	you	
should	use	whatever	is	appropriate	for	your	system.	Once	the	disks	are	
partitioned,	we're	ready	to	register	the	partitions	as	physical	volumes	with	
pvcreate.	The	term	physical	volume	describes	storage	available	as	a	physical	
partition	or	RAID.

pvcreate	/dev/sdb1	/dev/sdc1

Next,	the	physical	volumes	are	grouped	as	a	volume	group	using	vgcreate.	The	
recipe	created	a	volume	group	name	vg0	using	the	sdb1	and	sdc2	partitions.

vgcrate	vg0	/dev/sdb1	/dev/sdc1

The	desired	name	for	the	volume	group	is	passed	first	to	vgcreate,	followed	by	
the	physical	volumes	we	want	to	group	together.	If	sdb1	and	sdc1	both	have	a	
capacity	of	1	TB	each,	their	storage	is	combined	and	the	volume	group	will	have	
2	TB.	If	we	were	to	later	add	a	500	GB	volume	to	the	group,	the	group's	storage	
capacity	would	increase	to	2.5	TB.

The	pvs	and	vgs	commands	return	basic	information	about	physical	volumes	or	
volume	groups,	respectively,	and	the	recipe	uses	them	to	verify	that	each	
registration	was	successful.	pvs	reports	the	physical	volumes	that	are	registered	
and	which	group	they	are	assigned	to,	any	attributes,	and	their	storage	capacity.	
vgs	lists	the	groups,	the	number	of	physical	volumes	that	make	up	each	group's	
pool,	the	number	of	logical	volumes	using	storage	from	the	group,	and	the	groups'	
capacities.

pvs	and	vgs	are	used	to	review	the	status	of	physical	volumes	and	volume	
groups

A	new	logical	volume	is	created	from	the	pooled	storage	of	the	volume	group	
using	the	lvcreate	command:

lvcreate	-n	myvol	-L	500G	vg0

The	-n	option	provides	the	name	for	the	logical	volume	and	-L	provides	the	
amount	of	storage	to	allocate	the	volume	from	the	pool.	The	final	argument	is	the	
name	of	the	volume	group	used	to	support	the	volume.	The	values	given	in	the	
recipe's	example	creates	a	volume	named	myvol	with	a	capacity	of	500	GB	
backed	by	the	vg0	group.	Logical	volumes	are	organized	under	/dev	by	group,	so	
the	volume	is	available	as	/dev/vg0/myvol.

Finally,	the	volume	is	formatted	with	the	XFS	filesystem	using	mkfs.xfs:

mkfs.xfs	/dev/vg0/myvol

The	logical	volume	is	now	ready	for	use	and	can	be	mounted	manually	with	mount	
and/or	an	entry	can	be	made	in	/etc/fstab	to	mount	the	volume	automatically	at	
system	boot	time.

See	also
For	more	information	on	getting	started	with	LVM,	refer	to	the	following
resources:

The	lvcreate	manual	page	(man	8	lvcreate)
The	pvcreate	manual	page	(man	8	pvcreate)
The	vgcreate	manual	page	(man	8	vgcreate)
Linux	Partition	HOWTO	(http://tldp.org/HOWTO/Partition/index.html)
LVM	made	easy	(http://www.tuxradar.com/content/lvm-made-easy)
Manage	LVM	volumes	with	System	Storage	Manager
(http://xmodulo.com/manage-lvm-volumes-centos-rhel-7-system-storage-
manager.html)

http://tldp.org/HOWTO/Partition/index.html
http://www.tuxradar.com/content/lvm-made-easy
http://xmodulo.com/manage-lvm-volumes-centos-rhel-7-system-storage-manager.html

Removing	an	existing	LVM	volume
The	flexibility	of	LVM	allows	us	to	allocate	the	pooled	storage	of	physical
volumes	however	we	see	fit.	This	recipe	shows	us	how	to	delete	a	logical	volume
and	free	its	storage	back	to	the	volume	group	for	use	by	other	logical	volumes.

Getting	ready
This	recipe	requires	a	CentOS	system	with	administrative	privileges	provided	by
logging	in	with	the	root	account	or	using	sudo.	It	assumes	that	a	logical	volume
has	been	created	as	described	in	the	preceding	recipe.

How	to	do	it...
Perform	the	following	steps	to	remove	an	LVM	volume:

1. Unmount	the	filesystem	with	umount:

	umount	/mnt	

2. Open	/etc/fstab	and	verify	that	there	isn't	an	entry	to	automatically	mount
the	filesystem.	If	there	is,	remove	the	entry,	save	your	changes,	and	close	the
file.

3. Use	lvremove	to	delete	the	logical	volume:

lvremove	vg0/myvol

4. Review	the	output	of	vgs	to	verify	the	removal.

How	it	works...
Deleting	a	volume	frees	its	storage	back	to	the	volume	group,	which	can	then	be
used	to	create	new	logical	volumes	or	support	growing	an	existing	volume.	This
recipe	taught	you	how	to	destroy	a	logical	volume	using	the	lvremove	command.

Because	a	volume	can't	be	freed	if	it's	in	use,	the	first	step	is	to	make	sure	that	its
filesystem	is	unmounted.	If	the	filesystem	is	mounted	automatically,	its	entry	in
/etc/fstab	should	also	be	removed.

Next,	lvremove	is	invoked	with	the	name	of	the	logical	volume	to	free	it:

lvremove	vg0/myvol

Note

You	can	delete	all	of	the	volumes	from	a	pool	by	providing	just	the	pool	name:

lvremove	vg0

The	recipe	suggests	checking	the	output	of	vgs	to	verify	that	the	logical	volume
was	removed.	In	the	output,	the	number	of	logical	volumes	under	the	#LV	column
should	have	decreased	and	the	amount	of	free	space	under	the	VFree	column
increased	appropriately.

See	also
Refer	to	the	following	resources	for	more	information	on	removing	a	volume:

The	lvremove	manual	page	(man	8	lvremove)
The	vgs	manual	page	(man	8	vgs)

Adding	storage	and	growing	an	LVM
volume
The	size	of	logical	volumes	doesn't	need	to	be	fixed	and	we're	free	to	allocate
more	storage	for	one	from	its	volume	group.	This	recipe	teaches	us	how	to	add
more	storage	to	the	group	and	then	grow	the	size	of	the	logical	volume	to	take
advantage	of	it.

Getting	ready
This	recipe	requires	a	CentOS	system	with	administrative	privileges	provided	by
logging	in	with	the	root	account	or	using	sudo.	It	assumes	that	a	new	disk	has
been	installed	and	partitioned	(identified	as	/dev/sdd1)	and	a	logical	group	and
volume	have	been	configured	as	described	in	previous	recipes.

How	to	do	it...
Follow	these	steps	to	add	storage	and	increase	the	size	of	an	LVM	volume:

1. Register	the	new	partition	as	a	physical	volume:

pvcreate	/dev/sdd1

2. Review	the	output	of	pvs	to	confirm	that	the	volume	was	registered:

pvs

3. Use	vgextend	to	add	the	physical	volume	to	the	desired	volume	group:

vgextend	vg0	/dev/sdd1

4. Review	the	output	of	vgs	to	confirm	that	the	volume	was	added	to	the	group:

vgs

5. Use	lvextend	to	increase	the	size	of	the	desired	logical	volume:

lvextend	vg0/myvol	-L+500G

6. Review	the	output	of	lvs	to	confirm	the	new	capacity:

lvs

7. Expand	the	filesystem	with	xfs_grow	to	use	the	new	capacity:

xfs_grow	-d	/mnt

Note

An	XFS	filesystem	must	be	mounted	to	expand	its	size;	if	it's	not	already
mounted,	you'll	need	to	do	so	before	executing	xfs_grow.

8. Confirm	the	new	size	of	the	filesystem	using	df:

df	-h	/mnt

How	it	works...
The	recipe	assumed	that	a	new	partition	has	been	prepared,	which	was	then	
registered	as	a	physical	volume	using	the	pvcreate	command.	Then	the	physical	
volume	was	assigned	to	the	vg0	volume	group	using	vgextend,	increasing	the	
group's	available	storage:

vgextend	vg0	/dev/sdd1

lvextend	was	invoked	to	grow	the	size	of	a	logical	volume,	vg0/myvol:

lvextend	vg0/myvol	-L+500G

The	-L	argument	specifies	the	amount	of	storage	to	allocate	from	the	pool.	It's	
value	can	be	an	absolute	value,	for	example,	-L	500G,	in	which	case	the	volume	
will	be	resized	to	have	that	much	capacity.	A	relative	value	can	also	be	used	to	
increase	the	volume's	current	capacity	by	some	amount.	The	recipe	used	-L+500G	
to	grow	the	size	of	the	logical	volume	by	an	additional	500	GB.

Note

You	will	receive	an	error	if	you	provide	a	value	for	-L	less	than	the	logical	
volume's	current	capacity	because	lvextend	only	increases	the	capacity	of	a	
volume.	The	lvreduce	command	is	used	to	reduce	the	size	of	logical	volumes:

lvreduce	vg0/myvol	-L	500GB

Given	a	straight	value,	-L	specifies	the	total	capacity	for	the	volume.	In	the	
preceding	command,	the	capacity	for	vg0/myvol	is	reduced	to	500GB.	Given	a	
relative	value,	for	example	-L-500GB,	lvreduce	reduces	the	volume's	capacity	
by	the	specified	amount.

When	finished,	the	logical	volume's	capacity	can	be	confirmed	by	inspecting	the	
output	of	the	lvs	command.	The	command	reports	the	logical	volumes	that	exist	
and	to	which	group	they	are	assigned,	their	attributes,	storage	capacity,	and	other	
statistics.

The	capacity	of	the	logical	volume	has	increased	but	the	filesystem	needs	to	be	
resized	to	use	it

Finally,	the	filesystem	needs	to	be	expanded	to	make	use	of	the	additional	space	
available	to	it	with	xfs_growfs.	Filesystems	must	be	mounted	for	the	utility	to	
work,	and	the	recipe	assumes	that	it's	mounted	at	/mnt.	The	-d	argument	instructs	
xfs_grow	to	increase	the	size	of	the	filesystem	as	much	as	possible	(the	entire	
size	of	the	volume.

xfs_growfs	-d	/mnt

Alternatively,	you	can	give	a	specific	size	with	-D.	Its	value	is	given	in	block	
counts,	so	some	math	will	be	required	to	grow	the	filesystem	to	the	desired	size.	
For	example,	let's	say	you	have	a	1	TB	filesystem	and	the	block	size	is	4,096	
bytes	(the	default.	The	block	count	will	be	268,435,456	blocks.	If	you	want	to	
grow	the	filesystem	an	additional	500	GB,	the	target	block	count	will	be	
399507456:

xfs_growfs	-D	399507456	/mnt

To	make	life	a	little	easier,	here's	a	table	that	presents	block	counts	for	common	
sizes:

These	block	counts	can	be	used	with	xfs_growfs	to	grow	an	XFS	filesystem

While	it's	possible	to	reduce	the	size	of	a	logical	volume,	it's	only	possible	to
grow	an	XFS	filesystem.	If	you	want	to	reduce	the	size	of	an	XFS-supported
volume	you'll	have	to	move	its	data	to	a	safe	location,	remove	and	recreate	the
logical	volume	with	a	smaller	size,	and	later	move	the	data	back.

See	also
Refer	to	the	following	resources	for	more	information	on	growing	an	LVM
volume:

The	xfs_growfs	manual	page	(man	8	xfs_growfs)
Linux	guide	to	the	XFS	filesystem
(http://landoflinux.com/linux_xfs_filesystem_introduction.html)
Extend/Reduce	LVM's	in	Linux	(http://www.tecmint.com/extend-and-reduce-
lvms-in-linux/)
How	to	grow	an	XFS-formatted	disk
(http://superuser.com/questions/1000092/how-to-grow-xfs-formated-
disk/1001486#1001486)

http://landoflinux.com/linux_xfs_filesystem_introduction.html
http://www.tecmint.com/extend-and-reduce-lvms-in-linux/
http://superuser.com/questions/1000092/how-to-grow-xfs-formated-disk/1001486#1001486

Working	with	LVM	snapshots
A	logical	volume,	also	called	a	linear	volume,	is	just	one	type	of	volume	we	can
create;	LVM	also	lets	us	create	snapshot	volumes.	A	snapshot	volume	is
associated	with	a	logical	volume	and	keeps	track	of	changes	made	to	the	logical
volume's	data.	We	can	then	merge	the	snapshot	back	into	the	logical	volume	to	roll
back	the	data.	This	recipe	will	show	you	how	to	do	just	that.

Getting	ready
This	recipe	requires	a	CentOS	system	with	administrative	privileges	provided	by
logging	in	with	the	root	account	or	using	sudo.	It	assumes	that	a	logical	volume
has	been	configured	and	sufficient	storage	exists	in	its	volume	group	for	the
snapshot.

How	to	do	it...
The	following	commands	show	you	how	to	work	with	LVM	snapshots.	Before	you
begin,	you	should	verify	that	there	is	sufficient	storage	available	in	the	volume
group	to	support	the	snapshot	using	vgs.

1. Use	lvcreate	-s	to	create	a	snapshot	volume:

lvcreate	-s	-L	100M	-n	myvolsnap	vg0/myvol

2. A	snapshot	volume	may	be	deleted	using	lvremove:

lvremove	vg0/myvolsnap

3. A	snapshot	volume	may	be	mounted	and	accessed	with	mount:

mount	-o	ro	/dev/vg0/myvolsnap	/mnt

4. To	restore	a	logical	volume	to	the	state	it	was	in	when	the	snapshot	was
made,	make	sure	neither	are	mounted	and	use	lvconvert:

lvconvert	-v	--merge	vg0/myvolsnap

How	it	works...
This	recipe	presented	commands	to	create	a	snapshot	volume	which	then	tracks	
the	changes	made	to	a	logical	volume	and	to	merge	the	snapshot	back	into	the	
logical	volume.

Snapshots	are	created	using	the	lvcreate	command	with	the	-s	flag.	-n	gives	the	
name	for	the	snapshot	and	-L	specifies	how	much	storage	will	be	allocated	for	it	
from	the	volume	group.	The	final	argument	is	the	logical	volume	the	snapshot	is	
created	from:

lvcreate	-s	-L	100M	-n	myvolsnap	vg0/myvol

The	values	given	in	the	example	create	a	snapshot	of	vg0/myvol	named	
myvolsnap	with	a	capacity	of	100	MB.	Storage	for	the	snapshot	volume	is	
allocated	from	the	same	group	as	its	logical	volume	so	that	there	should	be	
sufficient	storage	to	support	the	snapshot.	Luckily,	snapshot	volumes	don't	copy	all	
of	the	data	from	the	original	volume.	Instead,	they	use	a	copy-on-write	strategy	
where	only	the	differences	are	recorded	to	the	snapshot	when	the	data	is	modified.

If	the	deltas	exceed	the	snapshot	volume's	capacity,	LVM	won't	be	able	to	continue	
to	record	changes	and	the	snapshot	will	no	longer	be	valid.	For	this	reason,	you	
should	periodically	monitor	the	snapshot's	storage	usage	and	either	resize	the	
snapshot	or	discard	the	snapshot	and	create	a	new	one	with	a	larger	capacity	if	
necessary.	As	with	other	volumes,	lvremove	is	used	to	delete	snapshot	volumes:

lvremove	vg0/myvolsnap

A	snapshot	can	also	be	mounted	and	accessed	like	other	logical	volumes.	LVM	
transparently	reads	unmodified	data	from	the	original	logical	volume	so	that	the	
data	appears	as	a	full	copy.	Depending	on	the	your	reasons	for	creating	a	snapshot,	
you	may	want	to	use	the	ro	mount	option	to	mount	the	volume	read-only	to	prevent	
inadvertent	changes	from	being	introduced:

mount	-o	ro	/dev/vg0/myvolsnap	/mnt

lvconvert	is	used	to	change	a	volume's	type	and	other	characteristics.	You	
should	unmount	both	the	logical	and	snapshot	volumes	before	calling	lvconvert	
so	that	the	merge	process	can	begin	immediately.	Otherwise,	LVM	will	schedule

the	process	to	begin	after	both	have	been	unmounted	and	either	the	logical	or
snapshot	volume	is	mounted	again.

To	revert	the	logical	volume's	data,	we	target	its	snapshot	volume	and	use	the	--
merge	option:

lvconvert	-v	--merge	vg0/myvolsnap

Merging	the	snapshot	volume's	data	to	its	logical	volume	rolls	back	the	changes	to
the	logical	volume's	data,	basically	restoring	it	to	the	state	it	was	in	at	the	time	the
snapshot	was	created.	When	finished,	the	snapshot	is	automatically	deleted.	-v
puts	lvconvert	into	verbose	mode,	which	is	useful	to	monitor	its	progress	and	to
know	when	the	merge	is	complete	and	the	snapshot	has	been	deleted.

See	also
Refer	to	the	following	resources	for	more	information	on	working	with	snapshots:

The	lvconvert	manual	page	(man	8	lvconvert)
How	to	take	a	snapshot	logical	volume	and	restore
(http://www.tecmint.com/take-snapshot-of-logical-volume-and-restore-in-
lvm/)
How	to	take	volume	snapshots	(http://www.unixarena.com/2013/08/linux-
lvm-how-to-take-volume-snapshot.html)

http://www.tecmint.com/take-snapshot-of-logical-volume-and-restore-in-lvm/
http://www.unixarena.com/2013/08/linux-lvm-how-to-take-volume-snapshot.html

Chapter	6.	Allowing	Remote	Access
This	chapter	contains	the	following	recipes:

Running	commands	remotely	through	SSH
Configuring	a	more	secure	SSH	login
Securely	connecting	to	SSH	without	a	password
Restricting	SSH	access	by	user	or	group
Protecting	SSH	with	Fail2ban
Confining	sessions	to	a	chroot	jail
Configuring	TigerVNC
Tunneling	VNC	connections	through	SSH

Introduction
The	recipes	in	this	chapter	will	help	you	provide	remote	access	to	your	CentOS
system	in	a	security-conscious	way.	You'll	learn	how	to	execute	commands	on	a
remote	system	through	SSH,	configure	the	OpenSSH	SSH	server	to	increase
security	surrounding	remote	logins,	and	use	key-based	authentication	to	connect.
You'll	also	learn	how	to	allow	or	deny	access	to	different	users,	configure
Fail2ban	to	automatically	block	suspected	IP	addresses	to	protect	your	server
from	brute	force	attacks	better,	and	restrict	users	to	a	chroot	jail	once	they've
logged	in.	The	concluding	recipes	show	you	how	to	provide	remote	access	to	a
complete	desktop	environment	using	VNC,	and	how	to	secure	that	access	by
tunneling	VNC	traffic	through	an	SSH	tunnel.

Running	commands	remotely	through
SSH
This	recipe	shows	you	how	to	execute	one-shot	commands	on	a	remote	system
through	Secure	Shell	(SSH).	Having	the	ability	to	run	commands	without
establishing	a	full	interactive	session	can	be	convenient	because	you	can	avoid
running	a	second	terminal;	everything	can	be	done	directly	from	the	same
command	line.

Getting	ready
This	recipe	requires	a	remote	system	running	the	OpenSSH	server	and	a	local
computer	with	the	OpenSSH	SSH	client	installed	(both	should	be	installed	by
default	on	CentOS).	The	examples	assume	that	the	remote	system	is	configured
with	the	IP	address	192.168.56.100.	Also,	you	will	need	a	user	account
available	on	the	remote	system.

How	to	do	it...
The	following	examples	show	you	how	to	run	commands	on	a	remote	system	from
your	local	system	through	SSH:

To	execute	a	command	remotely,	use	ssh	and	specify	the	hostname	or	IP
address	of	the	target	system	followed	by	the	command	and	its	arguments:

ssh	192.168.56.100	uname	-a

To	execute	the	command	as	a	different	user,	provide	a	username	with	the
remote	system's	address:

ssh	tboronczyk@192.168.56.100	id	-un

If	the	remote	command	requires	sudo,	supply	ssh	with	the	-t	argument:

ssh	-t	192.168.56.100	sudo	mount	/mnt

Use	the	-X	argument	to	forward	the	remote	system's	X11	display	to	execute	a
graphical	program:

ssh	-X	192.168.56.100	gnome-calculator

Use	quotes	when	you	execute	a	complex	command,	for	example,	a	series	of
commands	or	when	using	I/O	redirection.	This	avoids	ambiguity	between	the
local	and	remote	shells:

ssh	192.168.56.100	"tar	tvzf	archive.tgz	>	contents.txt"

You	can	pipe	input	from	the	local	system	to	remote	commands	that	read	from
stdin:

cat	foo.txt	|	ssh	192.168.56.100	"cat	>	foo.txt"

How	it	works...
ssh	is	used	mainly	to	log	in	to	a	remote	system	and	access	an	interactive	shell
because	it's	possible	that	many	people	don't	know	that	commands	can	be	executed
remotely	without	a	shell.	This	recipe	presented	several	examples	that	illustrate
how	you	can	use	ssh	to	run	remote	commands,	each	of	which	follow	this	general
invocation	pattern:

ssh	[options]	[user@]host	command

Anything	provided	after	the	remote	host	is	accepted	as	the	command	to	execute
remotely	by	ssh	as	demonstrated	in	the	following	two	examples.	The	first	invokes
uname	to	print	information	about	the	remote	system	such	as	the	kernel,	processor,
and	operating	system,	and	the	second	runs	id	to	display	the	username	of	the
current	effective	user	ID:

ssh	192.168.56.100	uname	-a

ssh	tboronczyk@192.168.56.100	id	-un

ssh	doesn't	launch	an	interactive	shell	when	running	these	commands	as	there's	no
reason	for	it	to	allocate	a	tty/pseudo-terminal;	it	acts	as	the	shell	itself	and	routes
input	and	output	between	the	remote	and	local	systems.	However,	some	commands
require	a	terminal	to	function	properly.	For	example,	sudo	uses	the	terminal	to
ensure	the	user's	password	isn't	printed	on	the	screen	as	they	type	it.	Without	a
terminal,	sudo	refuses	to	run	and	reports	back	that	you	must	have	a	tty	to
run	sudo.	We	can	provide	the	-t	argument	when	executing	such	commands	to
force	ssh	to	allocate	a	remote	terminal	resource:

ssh	-t	192.168.56.100	sudo	mount	/mnt

The	-X	argument	forwards	the	X11	display	and	allows	us	to	run	graphical
programs.	The	program	appears	as	if	it	were	running	in	our	local	desktop
environment,	although	in	reality	it's	running	on	the	remote	system:

ssh	-X	192.168.56.100	"gnome-calculator"

Graphical	applications	can	be	run	using	X11	forwarding

To	make	sure	an	invocation	is	interpreted	how	you	intend,	you	may	need	to	quote	
commands.	This	is	especially	true	when	using	I/O	redirection	or	when	you	are	
running	multiple	commands.	To	see	why,	consider	the	following	example:

ssh	192.168.56.100	"tar	tvzf	archive.tgz	>	contents.txt"

tar	outputs	a	list	of	files	in	the	archive	which	is	then	redirected	to	create	the	
contents.txt	file.	Everything	happens	remotely—tar	runs	on	the	remote	system	
and	the	new	file	is	created	on	the	remote	system.

Now,	here's	the	same	invocation	but	without	quoting:

ssh	192.168.56.100	tar	tvzf	archive.tgz	>	contents.txt

tar	still	executes	remotely,	but	the	local	shell	interprets	the	redirect	and
contents.txt	is	created	on	the	local	system.

I/O	redirection	is	possible	in	both	directions.	That	is,	we	can	pipe	input	from	the
local	system	to	the	remote	system's	stdin:

cat	foo.txt	|	ssh	192.168.56.100	"cat	>	foo.txt"

In	this	example,	foo.txt	is	read	by	cat	and	the	contents	are	piped	to	the	remote
system.	There,	a	remotely	running	instance	of	cat	will	be	waiting	to	read	the
input.	When	it	detects	the	end	of	the	transmission,	cat	outputs	what	it	received,
which	is	then	redirected	to	create	foo.txt	on	the	remote	system.	In	essence,
we've	just	made	a	copy	of	foo.txt	from	the	local	system	to	the	remote	system.

See	also
Refer	to	the	following	resources	for	more	information	on	running	commands
remotely	through	SSH:

The	ssh	manual	page	(man	1	ssh)
Piping	with	SSH	(http://linux.icydog.net/ssh/piping.php)
Commandlinefu.com	SSH	commands
(http://www.commandlinefu.com/commands/matching/ssh/c3No/sort-by-
votes)

http://linux.icydog.net/ssh/piping.php
http://www.commandlinefu.com/commands/matching/ssh/c3No/sort-by-votes

Configuring	a	more	secure	SSH	login
SSH	is	considered	a	secure	alternative	to	older	protocols,	such	as	Telnet,	rsh,	and
rlogin,	because	it	encrypts	the	connection	between	the	client	and	server.	This
encryption	protects	the	traffic	from	any	ne'er-do-wells	who	may	be	eavesdropping
on	the	network.	However,	your	system	can	still	fall	victim	to	the	denial	of	service
attacks	or	a	malicious	user	who	takes	advantage	of	an	idle	session	that	was
carelessly	left	unattended.	This	recipe	takes	the	first	steps	in	hardening	SSH	by
updating	the	server's	configuration	to	increase	security	surrounding	remote	logins.

Getting	ready
This	recipe	requires	a	CentOS	system	running	the	OpenSSH	server.
Administrative	privileges	are	also	required,	either	by	logging	in	with	the	root
account	or	through	the	use	of	sudo.

How	to	do	it...
Follow	these	steps	to	increase	the	security	of	your	SSH	logins:

1. Open	the	SSH	server's	configuration	file	with	your	text	editor:

vi	/etc/ssh/sshd_config

2. Locate	the	LoginGraceTime	option.	Uncomment	it	and	change	its	value	to	30
seconds	to	limit	the	amount	of	time	users	are	given	to	provide	their
credentials:

LoginGraceTime	30

3. Find	and	uncomment	the	PrintLastLog	option	and	change	its	value	to	yes	to
show	the	user	the	time	and	location	of	their	last	login:

PrintLastLog	yes

4. Uncomment	the	Banner	option	and	set	its	value	to	/etc/banner	to	display	a
login	warning	to	users:

Banner	/etc/banner

5. Save	your	changes	and	close	the	configuration	file.
6. Create	the	/etc/banner	file	with	the	following	(or	similar)	verbiage:

This	computer	system	is	for	authorized	use	only.	All

activity	is

logged	and	monitored.	Users	accessing	this		system	without

authority,	or	in	excess	of	their	authority,		may	be	subject

to

criminal,	civil,	and	administrative		action.	Continuing	to

use

this	system	indicates	your	consent	to	these	terms	and

conditions

of	use.

7. Restart	the	SSH	server	for	the	configuration	changes	to	take	effect:

systemctl	restart	sshd.service

8. To	automatically	log	out	sessions	after	10	minutes	of	inactivity,	create	the
/etc/profile.d/timeout.sh	file	with	the	following:

export	TMOUT=600

How	it	works...
The	first	option	we	adjusted	in	the	SSH	server's	configuration	file	was
LoginGraceTime,	to	determine	how	long	a	user	is	allowed	to	enter	their
username	and	password.	By	default,	the	connection	attempt	times	out	if	the	user
doesn't	provide	their	credentials	within	two	minutes.	We	reduced	this	time	to	30
seconds,	but	you	can	set	a	more	appropriate	value	if	you	find	this	not	to	be	long
enough:

LoginGraceTime	30

Then,	setting	the	PrintLastLog	option's	value	to	yes	causes	the	time	and	location
of	the	user's	last	log	in	to	be	displayed.	This	is	helpful	because	an	unknown	time
or	location	can	alert	a	user	if	their	account	has	been	compromised	and	is	being
used	for	unauthorized	access:

PrintLastLog	yes

Next,	we	configured	a	login	banner.	A	strongly-worded	warning	isn't	likely	to
deter	a	malicious	user,	but	many	organizations	require	them	to	be	prominently
displayed	when	a	user	logs	in	for	legal	reasons.	Such	messages	are	considered	to
be	sufficient	notification	in	some	jurisdictions	to	inform	users	that	their	actions	are
monitored	and	they	should	have	no	expectations	of	privacy	for	what	they	do	on	the
system.	This	gives	the	organization	better	legal	standing	to	prosecute	any	abuse.

To	display	the	warning	before	the	login	prompt,	we	set	Banner	with	the	path	to	a
file	containing	our	message.	Then	we	created	the	file	with	the	desired	text:

Banner	/etc/banner

The	user	is	presented	with	a	banner	message	before	logging	in	to	the	remote

system

Note

nroff	can	be	used	to	justify	the	banner's	text:

(echo	-e	".ll	75\n.pl	0\n.nh";	cat	|	nroff	>	/etc/banner	

cat	reads	text	from	stdin	(press	Ctrl	+	D	when	you're	finished	and	both	the	
echo'd	instructions	and	the	text	are	piped	to	nroff	for	formatting.

	.ll	tells	nroff	to	set	the	line	length	at	75	characters.	It's	a	good	idea	to	use	a	
value	less	than	80	because	the	traditional	terminal	displays	80	characters	per	line.

.pl	sets	the	page	length,	and	setting	it	0	prevents	nroff	from	adding	additional	
whitespace	after	the	text	in	an	attempt	to	fill	the	length	of	some	imaginary	printed	
page.

.nh	prevents	nroff	from	hyphenating	words	at	the	end	of	a	line.

If	you	want	to	display	the	banner	after	the	user	logs	in	instead	of	before,	you	can	
use	the	message	of	the	day	file	instead.	In	this	case,	uncomment	the	PrintMotd	
option	and	set	its	value	to	yes	and	then	save	your	text	in	/etc/motd.

Finally,	we	created	the	/etc/profile.d/timeout.sh	file	to	set	the	TMOUT	
environment	variable.	Setting	TMOUT	under	/etc/profile.d	applies	it	globally	to	
all	users	when	they	log	in.	To	target	individual	users	instead,	or	if	you	want	to	
override	the	global	value	for	specific	users,	you	can	place	the	export	in	their	
~/.bash_profile	file:

export	TMOUT=600

Now	with	the	variable	set,	bash	automatically	closes	the	user's	session	if	it's	been	
inactive	for	the	specified	amount	of	time	with	the	message	timed	out	waiting	
for	input:	auto-logout.	The	value	is	given	in	seconds,	with	the	recipe's	
example	closing	idle	sessions	after	10	minutes.

See	also
Refer	to	the	following	resources	for	more	information	on	tightening	security	on
SSH	logins:

The	sshd_config	manual	page	(man	5	sshd_config)
RHEL	7	System	Administrator's	Guide:	OpenSSH
(https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-
OpenSSH.html)
CentOS	Wiki:	Securing	OpenSSH
(https://wiki.centos.org/HowTos/Network/SecuringSSH)
Should	I	use	a	login	banner?	(http://serverfault.com/questions/24376/should-
i-use-a-login-banner-and-if-so-what-should-it-say)

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-OpenSSH.html
https://wiki.centos.org/HowTos/Network/SecuringSSH
http://serverfault.com/questions/24376/should-i-use-a-login-banner-and-if-so-what-should-it-say

Securely	connecting	to	SSH	without	a
password
This	recipe	teaches	you	how	to	generate	a	key	pair	and	set	up	key-based
authentication	for	SSH	sessions,	allowing	you	to	secretly	connect	to	a	remote
system	without	using	a	password.	Key-based	authentication	is	considered	more
secure	than	using	a	password	because	a	weak	password	can	be	easy	to	guess	and
a	strong	password	can	be	easy	to	forget	and	more	likely	to	be	written	down.	In
either	case,	an	attacker	has	a	fairly	good	chance	of	discovering	a	user's	password.
With	key-based	authentication,	a	user	must	supply	the	correct	private	key	file,
which	is	practically	impossible	to	crack	or	spoof.

Getting	ready
This	recipe	requires	a	remote	system	running	the	OpenSSH	server	and	a	local
computer	with	the	OpenSSH	SSH	client	installed.	Its	examples	assume	that	the
remote	system	is	configured	with	the	IP	address	192.168.56.100.	Also,	you	will
need	an	available	user	account	on	the	remote	system.

How	to	do	it...
Follow	these	steps	to	set	up	key-based	authentication	for	SSH	sessions:

1. On	the	local	computer,	use	the	ssh-keygen	command	to	create	a	pair	of
authentication	keys.	Accept	the	default	path/filename	for	the	keys	and	leave
the	passphrase	empty:

ssh-keygen	-b	3072	-C	"Timothy	Boronczyk"

2. Create	the	.ssh	directory	if	it	doesn't	already	exist	in	your	remote	home
directory:

ssh	192.168.56.100	"mkdir	-m	700	.ssh"

3. Append	the	contents	of	id_rsa.pub	to	.ssh/authorized_keys	on	the
remote	system:

cat	.ssh/id_rsa.pub	|	ssh	192.168.56.100	"cat	>>

	.ssh/authorized_keys"

4. Secure	the	authorized_keys	file's	permissions:

ssh	192.168.56.100	"chmod	640	.ssh/authorized_keys"

5. Verify	that	you	can	connect	to	the	remote	system	without	providing	a
password:

ssh	192.168.56.100

6. Repeat	steps	2	through	5	for	any	additional	remote	systems	you	want	to	log	in
to	using	key-based	authentication.

How	it	works...
Key-based	authentication	is	considered	more	secure	than	using	passwords	
because	it's	nearly	impractical	to	crack	a	suitable	encryption	key	while	brute	
forcing	a	password	is	trivial.	This	recipe	used	the	OpenSSH	suite's	ssh-keygen	
program	to	generate	a	new	pair	of	keys,	which	we	then	used	to	authenticate	our	
SSH	session:

ssh-keygen	-b	3072	-C	"Timothy	Boronczyk"

-C	embeds	a	brief	comment	in	the	key	which	is	useful	for	identifying	the	owner	or	
purpose	of	a	key	and	-b	sets	the	number	of	bits	used	for	the	key's	modulus.	The	
more	bits	used,	the	larger	the	number	that	can	be	represented,	which	means	greater	
resistance	to	cracking	attacks.	If	-b	isn't	provided,	the	default	value	is	2,048	bits.	
Based	on	the	estimates	of	the	rate	at	which	computing	power	increases,	2,048	is	
generally	thought	to	be	suitable	until	around	the	year	2030	(researchers	developed	
a	successful	attack	against	1,024-bit	keys	in	2010.	A	3,072-bit	key	is	considered	
suitable	beyond	2030.

We	accepted	the	suggested	~/.ssh/id_rsa	value	as	the	name	of	the	output	file	
when	prompted	(this	is	where	ssh	looks	for	our	private	identity	key	by	default	
when	we	connect	to	a	remote	server.	We	also	didn't	provide	a	passphrase.	If	we	
were	to	give	one,	then	the	key	would	be	encrypted	and	we'd	need	to	provide	the	
password	to	decrypt	the	key	every	time	we	wanted	to	use	it.

When	ssh-keygen	is	finished,	the	private	key	id_rsa	and	the	public	key
id_rsa.pub	can	be	found	in	the	.ssh	directory:

The	pair	of	keys	is	generated	for	password-less	authentication

Then,	we	created	the	.ssh	directory	in	our	home	directory	on	the	remote	system.	
You	can	execute	the	mkdir	command	while	being	logged	in	to	the	remote	system,	
otherwise	you	can	execute	the	command	remotely	through	SSH:

ssh	192.168.56.100	"mkdir	-m	700	.ssh"

Next,	we	added	the	public	key	to	.ssh/authorized_keys	on	the	remote	system:

cat	.ssh/id_rsa.pub	|	ssh	192.168.56.100	"cat	>>	

.ssh/authorized_keys"

Because	proper	permissions	help	ensure	the	security	of	your	keys,	ssh	won't	
consider	them	safe	to	use	if	the	permissions	are	too	lax.	The	permissions	on	the	
.ssh	directory	should	be	read,	write,	and	execute	permissions	only	for	the	owner	
(700,	read	permissions	for	the	owner	and	group,	and	write	permissions	for	the	
owner	(640	on	authorized_keys.	A	simple	chmod	call	ensures	that	everything	
is	correct:

ssh	192.168.56.100	"chmod	640	.ssh/authorized_keys"

When	we	connect,	ssh	sees	the	id_rsa	file	and	sends	our	private	key	as	part	of
the	connection	request.	The	server	checks	for	the	corresponding	public	key	in	the
authorized_keys	file,	and	if	everything	matches	up	then	we're	authorized	and
logged	in.

See	also
Refer	to	the	following	resources	for	more	information	on	using	key-based
authentication	with	OpenSSH:

RHEL	7	System	Administrator's	Guide:	OpenSSH
(https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-
OpenSSH.html)
SSH	password	versus	key	authentication
(http://security.stackexchange.com/questions/33381/ssh-password-vs-key-
authentication)

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-OpenSSH.html
http://security.stackexchange.com/questions/33381/ssh-password-vs-key-authentication

Restricting	SSH	access	by	user	or
group
Depending	on	the	role	of	your	system	and	which	user	accounts	are	configured	on
it,	you	may	not	want	all	of	its	registered	users	to	have	access	through	SSH.	This
recipe	shows	you	how	to	configure	the	SSH	server	to	restrict	remote	user	access
by	explicitly	granting	or	denying	the	users	access.

Getting	ready
This	recipe	requires	a	CentOS	system	running	the	OpenSSH	server.
Administrative	privileges	are	also	required,	either	by	logging	in	with	the	root
account	or	through	the	use	of	sudo.

How	to	do	it...
Follow	these	steps	to	restrict	users'	SSH	access:

1. Open	the	SSH	server's	configuration	file	with	your	text	editor:

vi	/etc/ssh/sshd_config

2. Find	the	PermitEmptyPasswords	option.	Uncomment	it	and	set	its	value	to
no	to	disallow	accounts	with	empty	passwords:

PermitEmptyPasswords	no

3. To	disallow	remote	access	with	the	root	account,	locate	and	uncomment	the
PermitRootLogin	option	and	set	its	value	to	no:

PermitRootLogin	no

4. Deny	remote	access	for	specific	user	accounts	by	adding	an	entry	for
DenyUsers.	The	option's	value	should	be	a	space-separated	list	of
usernames	you	want	to	deny:

DenyUsers	bbarrera	jbhuse	mbutterfield

5. Deny	remote	access	for	users	who	are	members	of	a	specific	group	by
adding	an	entry	for	DenyGroups:

DenyGroups	users	noremote

6. Add	an	AllowUsers	entry	to	deny	access	to	everyone	except	those	in	the	list
of	permitted	users:

AllowUsers	abell	tboronczyk

7. Add	an	AllowGroups	entry	to	deny	access	to	everyone	except	those	in	the
list	of	permitted	groups:

AllowGroups	itadmin	remote

8. Save	your	changes	and	close	the	file.
9. Restart	the	SSH	server	for	the	changes	to	take	effect:

systemctl	restart	sshd.service

How	it	works...
First,	we	uncommented	PermitEmptyPasswords	and	set	its	value	to	no.	This	
prevents	user	accounts	that	don't	have	a	password	from	being	used	to	log	in	over	
SSH:

PermitEmptyPasswords	no

Passwords	are	the	first	level	of	defense	in	protecting	ourselves	from	malicious	
attacks	using	compromised	user	accounts.	Without	a	strong	password,	anyone	can	
log	in	simply	by	knowing	the	username.	This	is	a	scary	thought	because	usernames	
can	be	easily	guessed	and	sometimes	are	even	publicly	available	in	the	form	of	e-
mail	addresses	and	so	on.

Next,	we	uncommented	the	PermitRootLogin	option	and	set	its	value	to	no.	This	
prevents	root	from	establishing	an	SSH	session	directly:

PermitRootLogin	no

Such	restrictions	were	of	critical	importance	when	protocols	such	as	Telnet	were	
used	because	the	username	and	password	were	often	sent	across	the	network	in	
plain	text—an	attacker	could	easily	monitor	the	network	traffic	and	capture	the	
password.	However,	even	though	SSH	makes	this	concern	moot	by	encrypting	its	
traffic,	the	password	is	still	vulnerable	from	brute	force	cracking	attacks.	For	this	
reason,	it's	wise	to	require	users	to	authenticate	using	their	unprivileged	account	
first	and	then	use	su	or	sudo	to	elevate	their	privileges	when	necessary	(refer	to	
Chapter	3,	User	and	Permission	Management.

The	recipe	then	presented	the	DenyUsers,	DenyGroups,	AllowUsers,	and	
AllowGroups	options	as	a	way	to	restrict	SSH	access	on	a	larger	scale.

The	DenyUsers	option	prohibits	specific	users	from	logging	in.	While	other	user	
accounts	will	be	able	to	access	the	system	remotely,	the	users	listed	under	
DenyUsers	will	see	the	message	Permission	Denied.	The	recipe's	example	
denies	access	to	the	users	bbarrera,	jbhuse,	and	mbutterfield:

DenyUsers	bbarrera	jbhuse	mbutterfield

The	DenyGroups	option	works	similarly,	but	denies	users	based	on	their	group

membership;	the	following	example	denies	access	to	anyone	who's	a	member	of	
the	users	group	or	the	noremote	group:

DenyGroups	users	noremote

The	denial	options	are	useful	for	blacklisting	a	small	number	of	users.	To	block	
all	users	except	for	a	select	few,	we	use	the	allow	options.	AllowUsers	denies	
access	to	everyone	except	those	specified.	AllowGroups	is	its	counterpart	
allowing	only	those	users	who	are	members	of	the	specified	group:

AllowUsers	abell	tboronczyk

AllowGroups	itadmin	remote

The	options	can	also	have	values	that	use	*	and	?	as	wildcards.	*	matches	zero	or	
more	characters	and	?	matches	a	single	character.	For	example,	the	following	
denies	all	users:

DenyUsers	*

Note

AllowUsers	and	AllowGroups	deny	all	users/groups	except	the	ones	they	list.	Be	
careful	if	you	depend	on	SSH	to	administer	your	servers	because	it's	very	easy	to	
block	yourself	with	these.	Before	logging	out	of	your	current	SSH	session,	check	
that	you	can	successfully	log	in	using	a	second	terminal.	If	there's	a	problem,	
you'll	still	be	logged	in	with	the	first	session	and	will	able	to	fix	the	issue.

See	also
Refer	to	the	following	for	more	information	on	restricting	remote	SSH	access:

The	sshd_config	manual	page	(man	5	sshd_config)
RHEL	7	System	Administrator's	Guide:	OpenSSH
(https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-
OpenSSH.html)
SSH	how	to	deny	all	users	except	for	one?
(http://www.linuxquestions.org/questions/linux-security-4/howto-sshd-deny-
all-users-except-for-one-368752/)

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-OpenSSH.html
http://www.linuxquestions.org/questions/linux-security-4/howto-sshd-deny-all-users-except-for-one-368752/

Protecting	SSH	with	Fail2ban
A	determined	attacker	may	try	to	brute	force	a	user's	password	to	gain	access	or
attempt	repeated	logins	to	consume	network	and	system	resources	as	part	of	a
denial	of	service	attack.	Fail2ban	can	help	protect	you	from	such	attacks	by
monitoring	a	server's	log	files,	identifying	suspicious	activity,	and	automatically
banning	the	IP	addresses	responsible	for	the	activity.	This	recipe	teaches	you	how
to	install	Fail2ban	to	safeguard	your	system.

Getting	ready
This	recipe	requires	a	CentOS	system	running	the	OpenSSH	server.
Administrative	privileges	are	also	required,	either	by	logging	in	with	the	root
account	or	through	the	use	of	sudo.	The	fail2ban	package	is	hosted	by	the	EPEL
repository;	if	the	repository	is	not	already	registered,	refer	to	the	Registering	the
EPEL	and	Remi	repositories	recipe	in	Chapter	4,	Software
Installation	Management.

How	to	do	it...
Follow	these	steps	to	protect	your	system	with	Fail2ban:

1. Install	the	fail2ban	package:

yum	install	fail2ban

2. Create	the	jail	configuration	file	/etc/fail2ban/jail.local	using	the
following	contents:

[sshd]

enabled=true

bantime=86400

maxretry=5

3. Start	the	Fail2ban	service	and	enable	its	automatic	start-up	when	the	system
boots:

systemctl	start	fail2ban.service

systemctl	enable	fail2ban.service

4. To	view	the	sshd	jail's	status,	use	fail2ban-client	with	the	status
command:

fail2ban-client	status	sshd

How	it	works...
You've	learned	how	to	install	Fail2ban	and	configure	automated	IP	blocking	after	
several	failed	login	attempts.	You	also	learned	how	to	manually	ban	and	unban	
addresses	using	fail2ban-client.

A	Fail2ban	jail	configuration	brings	together	filter	and	action	definitions	to	
perform	an	activity	whenever	certain	patterns	are	observed	in	a	server's	log	file.	
Filters	specify	the	pattern	definitions	for	identifying	interesting	log	entries,	for	
example,	repeated	authentication	failures.	Actions,	on	the	other	hand,	define	the	
commands	that	run	when	a	filter	is	matched.	Fail2ban	is	shipped	with	several	
predefined	filters	for	common	servers	such	as	Apache,	MySQL,	Sendmail,	and	
SSH,	and	several	predefined	actions	such	as	managing	iptable	entries	to	block	and	
unblock	IP	addresses,	sending	e-mail	notifications,	and	triggering	DNS	updates.

There	are	several	jails	defined	in	/etc/fail2ban/jail.conf.	To	activate	the	
sshd	jail,	we	created	the	jail.local	file	with	entries	that	override	and	extend	
the	default	jail	definition:

[sshd]

enabled=true

bantime=86400

maxretry=5

Intuitively,	the	enabled	option	enables	or	disables	the	jail.	maxretry,	which	we	
set	to	5,	is	the	number	of	failed	login	attempts	permitted	before	Fail2ban	enacts	
the	ban.	bantime	sets	how	long	the	ban	will	last,	which	we	set	to	86400	seconds.	
With	this	configuration,	users	are	allowed	up	to	5	failed	attempts	before	their	IP	
address	is	banned	for	24	hours.

The	existing	definition	from	jail.conf	already	identifies	the	default	port	and	the	
log	file	location.	If	you're	running	SSH	on	a	nonstandard	port,	you	can	override	
the	original	definition's	setting	using	port.	The	location	of	the	SSH's	log	file	can	
be	overridden	with	logfile.

fail2ban-client	is	used	to	interact	with	the	Fail2ban	service.	Its	status	
command	outputs	information	about	the	service's	current	state,	and	if	status	is	
followed	by	a	jail	name	then	status	information	about	the	jail	is	returned	instead.

Perhaps	of	particular	interest	in	the	jail's	status	is	a	list	of	IP	addresses	that	have
been	banned:

fail2ban-client	status	sshd

The	jail's	status	output	presents	the	list	of	banned	addresses

The	client	also	has	get	and	set	commands	to	inspect	and	update	various	
properties	of	the	running	service.	For	example,	get	sshd	bantime	returns	the	
configured	ban	duration.	set	sshd	bantime	temporarily	updates	the
duration	until	the	service	is	restarted.

You	can	manually	ban	an	IP	address	by	setting	the	jail's	banip	property:

fail2ban-client	set	sshd	banip	10.25.30.107

To	manually	unban	an	address,	set	unbanip:

fail2ban-client	set	sshd	unbanip	10.25.30.107

Being	able	to	manually	unban	addresses	is	important	in	case	a	legitimate	address	
is	banned	for	some	reason.	If	there	are	addresses	that	should	never	be	blocked,	
perhaps	a	test	integration	server	executing	failed	logins	on	purpose,	or	perhaps	an	
administrator's	computer,	you	can	identify	them	using	the	ignoreip	option	in	your	
jail.local	configuration	file	and	Fail2ban	will	avoid	banning	those	addresses:

ignoreip=10.25.30.107

See	also
Refer	to	the	following	resources	for	more	information	on	Fail2ban:

The	fail2ban-client	manual	page	(man	1	fail2ban-client)
Fail2ban	Wiki	(http://www.fail2ban.org/wiki/index.php/Main_Page)
Permanently	ban	repeat	offenders	with	Fail2ban
(http://stuffphilwrites.com/2013/03/permanently-ban-repeat-offenders-
fail2ban/)
Monitoring	the	Fail2ban	log	(http://www.the-art-of-
web.com/system/fail2ban-log/)

http://www.fail2ban.org/wiki/index.php/Main_Page
http://stuffphilwrites.com/2013/03/permanently-ban-repeat-offenders-fail2ban/
http://www.the-art-of-web.com/system/fail2ban-log/

Confining	sessions	to	a	chroot	jail
This	recipe	teaches	you	how	to	set	up	a	chroot	jail.	A	chroot	call	changes	the
user's	view	of	the	filesystem	hierarchy	by	setting	a	particular	path	as	the	root;	for
the	user,	the	path	appears	as	/	and	they	are	unable	to	traverse	beyond	it.	This
creates	a	sandbox	or	jail,	confining	the	user	to	a	small	branch	of	the	real
hierarchy.	Chroot	jails	are	commonly	used	for	security	purposes,	for	example,
user	containment	and	honeypots	and	also	for	application	testing	and	in	recovery
procedures.

Getting	ready
This	recipe	requires	a	CentOS	system	running	the	OpenSSH	server.
Administrative	privileges	are	also	required,	either	by	logging	in	with	the	root
account	or	through	the	use	of	sudo.

How	to	do	it...
Follow	these	steps	to	configure	a	chroot	jail	and	confine	users	to	it:

1. Download	the	cpchroot	script	needed	to	copy	commands	and	their
dependencies	into	the	chroot	environment:

curl	-Lo	~/cpchroot	tinyurl.com/zyzozdp

2. Make	the	script	executable	using	chmod:

chmod	+x	~/cpchroot

3. Create	the	/jail	directory	and	its	subdirectories	to	mimic	a	root	filesystem:

mkdir	-p	/jail/{dev,home,usr/{bin,lib,lib64,share}}

cd	/jail

ln	-s	usr/bin	bin

ln	-s	usr/lib	lib

ln	-s	usr/lib64	lib64

4. Execute	the	chroot	script	to	copy	the	desired	programs	and	commands:

~/cpchroot	/jail	bash	cat	cp	find	grep	less	ls

	mkdir	mv	pwd	rm	rmdir

5. Copy	the	terminfo	database:

cp	-R	/usr/share/terminfo	/jail/usr/share

6. Create	the	special	device	files	under	/jail/dev	using	mknod:

cd	/jail/dev

mknod	null	c	1	3

mknod	zero	c	1	5

mknod	random	c	1	8

7. Create	a	group	for	chroot'd	users:

groupadd	sandbox

8. Open	the	/etc/ssh/sshd_config	file	with	your	text	editor	and	add	the
following	to	the	end	of	the	file:

	Match	Group	sandbox

	ChrootDirectory	/jail

9. Save	your	changes	and	close	the	configuration	file.
10. Restart	the	SSH	server	for	the	changes	to	take	effect:

systemctl	restart	sshd.service

To	create	a	new	chroot'd	user,	create	the	user	with	useradd	and	assign	them	to	the
sandbox	group:

useradd	-s	/bin/bash	-m	-G	sandbox	rdiamond

Then,	move	their	home	directory	to	reside	under	the	chroot	jail:

mv	/home/rdiamond	/jail/home

To	chroot	an	existing	user,	assign	them	to	the	sandbox	group	and	move	their	home
directory	to	the	jail:

usermod	-G	sandbox	bbarrera

mv	/home/bbarrera	/jail/home

How	it	works...
Identifying	and	copying	dependencies	is	tedious	and	error-prone	if	done	manually.	
So,	I've	written	a	helper	script	to	automate	the	process	of	finding	and	cloning	
programs	with	their	dependencies	into	the	jail.	Our	first	steps	were	to	download	
the	script	using	curl	and	then	make	it	executable	using	chmod:

curl	-Lo	~/cpchroot	tinyurl.com/zyzozdp

chmod	+x	~/cpchroot

The	script	is	hosted	on	GitHub,	but	its	direct	URL	was	prohibitively	long	so	I	
used	a	URL-shortening	service	to	shorten	the	address.	We	need	to	provide	-L	for	
curl	to	follow	any	redirects	(the	service	responds	with	a	redirect	to	GitHub	and	
-o	sets	the	name	of	the	download,	in	this	case	cpchroot,	in	your	home	directory.

Note

If	you're	having	problems	because	of	the	URL-shortening	service,	you	can	find	the	
direct	link	by	visiting	https://gist.github.com/tboronczyk/00d77b1baafd13daab3b,	
clicking	on	the	Raw	button,	and	then	copying	the	URL	that	appears	in	your	
browser's	address	bar.

Next,	we	created	the	/jail	directory	containing	a	directory	structure	that	mimics	
the	root	filesystem.	When	a	user	logs	in	and	is	chroot'd,	they	and	everything	they	
do	will	be	contained	to	/jail.	They	will	not	be	able	to	traverse	outside	that	
directory,	so	we	need	to	replicate	the	directory	layout	the	programs	expect:

mkdir	-p	/jail/{dev,home,usr/{bin,lib,lib64,share}}

cd	/jail

ln	-s	usr/bin	bin

ln	-s	usr/lib	lib

ln	-s	usr/lib64	lib64

We	used	mkdir	with	the	-p	option	and	took	advantage	of	shell	expansion	to	create	
most	of	the	layout	with	a	single	command.	CentOS	sets	up	its	top-level	/bin,
/lib,	and	/lib64	directories	as	symbolic	links	to	the	corresponding	directories	
under	/usr,	which	we	duplicated	using	ln	within	the	/jail	directory.	The	final	
layout	looks	like	the	following	one	presented:

https://gist.github.com/tboronczyk/00d77b1baafd13daab3b

The	layout	of	the	sandbox	root	mimics	that	of	the	host's	root	filesystem

Next,	we	used	the	script	to	copy	the	desired	commands	to	the	jail.	The	script	does	
the	hard	work	of	finding	each	program's	binary	and	identifies	all	of	the	libraries	it	
depends	on,	and	then	it	copies	everything	into	the	appropriate	location	in	the	
sandboxed	filesystem:

~/cpchroot	/jail	bash	cat	cp	find	grep	less	ls	mkdir	mv	pwd	rm	

rmdir

Its	first	argument	is	the	directory	acting	as	our	chroot'd	root,	and	then	following	
that	is	a	list	of	one	or	more	programs	we	want	to	make	available	to	the	user.	The	
recipe	provides	a	dozen	programs	as	an	example,	and	you	should	feel	free	to	add	
or	omit	some	as	you	see	fit.	At	a	minimum,	you	need	a	shell	(bash.	I	recommend	
that	you	include	at	least	ls	and	pwd	so	that	the	user	can	navigate.

Then,	we	copied	the	terminfo	database	to	the	jail:

cp	-R	/usr/share/terminfo	/jail/usr/share/

Some	programs,	such	as	screen,	less,	and	vi,	use	the	terminfo	database	to	
make	sure	their	output	displays	correctly.	The	database	is	a	collection	of	files	that	
describe	the	capabilities	of	different	terminal	types,	such	as	the	number	of	lines	
per	screen,	how	to	clear	the	screen,	what	colors	are	supported,	and	so	on.	If	this	
information	isn't	accessible,	users	will	be	warned	that	the	terminal	is	not	
fully	functional	and	the	output	may	be	garbled.

To	finish	making	the	jail,	we	created	the	/dev/null,	/dev/zero,	and
/dev/random	devices	with	the	mknod	command:

cd	/jail/dev/

mknod	null	c	1	3

mknod	zero	c	1	5

mknod	random	c	1	8

mknod	is	used	to	create	special	files	such	as	character	files	and	block	files.	These	
files	are	special	because	they	can	generate	data	(as	is	the	case	with	null	and	
zero	or	represent	physical	devices	and	receive	data.	Both	null	and	zero	are	
character	files,	as	indicated	by	the	letter	c,	since	we	read	from	them	one	character	
at	a	time.	Block	files,	on	the	other	hand,	operate	with	several	characters	at	a	time.	
A	physical	storage	disk	is	often	represented	as	a	block	device.

We	also	need	to	provide	a	major	and	minor	number	when	creating	a	character	or	
block	device.	These	values	are	predefined	and	understood	by	the	kernel	as	to	how	
the	device	file	should	behave.	1	and	3	are	the	major	and	minor	numbers	that	define	
a	null	device.	1	and	5	define	the	file	as	a	null	byte	source.	You	can	see	the	full	list	
of	major	and	minor	number	assignments	in	the	Linux	Allocated	Device	document	
listed	in	this	recipe's	See	also	section.

After	the	chroot	environment	was	set	up,	we	turned	our	attention	to	configure	the
SSH	server.	First,	we	created	the	sandbox	group,	which	can	be	assigned	to	any
user	we	want	contained:

groupadd	sandbox

Next,	we	added	a	Match	block	to	the	SSH	server's	configuration	file	targeting	the
new	group:

Match	Group	sandbox

	ChrootDirectory	/jail

Match	starts	a	new	conditional	section	in	the	configuration	file	that	applies	only
when	its	condition	is	matched.	In	this	case,	we're	matching	the	user's	group	to
sandbox.	When	the	user	is	a	member	of	the	group,	the	ChrootDirectory	option
is	applied	and	it	sets	/jail	as	the	user's	root	directory.	Now	when	a	user
connects,	anything	they	do	will	be	confined	to	the	chroot	jail,	including	actions
that	happen	automatically	such	as	launching	an	interactive	shell	(bash).

Bash	tries	to	place	the	user	in	their	home	directory	after	signing	in.	However,	if
their	home	directory	isn't	accessible,	the	user	will	see	the	error	message	Could
not	chdir	to	home	directory	and	find	themselves	in	the	root	directory.	To
avoid	this,	we	moved	their	home	directory	into	the	jail:

mv	/home/jbhuse	/jail/home/

Note

You	might	be	tempted	to	specify	the	home	directory	when	creating	a	new	user,	as
follows:

useradd	-m	-D	/jail/home/jbhuse	-G	sandbox	jbhuse

Unfortunately,	this	doesn't	work.	The	home	directory	is	created	in	the	desired
location,	the	user	is	chroot'd,	and	the	path	is	viewed	in	relation	to	/jail	so	that
bash	looks	for	/jail/jail/home/jbhuse.	This	is	why	the	recipe	demonstrates
moving	the	home	directory	as	a	second	step.	The	entry	in	/etc/passwd	stays,
/home/jbhuse	is	interpreted	as	/jail/home/jbhuse,	and	all	is	right	with	the
world.

See	also
Refer	to	the	following	for	more	information	on	setting	up	chroot	environments:

The	sshd_config	manual	page	(man	5	sshd_config)
How	to	Configure	SFTP	with	Chroot	(http://www.unixmen.com/configure-
sftp-chroot-rhel-centos-7)
Safely	identify	dependencies	for	chrooting
(http://zaemis.blogspot.com/2016/02/safely-identify-dependencies-for-
chroot.html)
Linux	allocated	devices
(https://www.kernel.org/doc/Documentation/devices.txt)

http://www.unixmen.com/configure-sftp-chroot-rhel-centos-7
http://zaemis.blogspot.com/2016/02/safely-identify-dependencies-for-chroot.html
https://www.kernel.org/doc/Documentation/devices.txt

Configuring	TigerVNC
Virtual	Network	Computing	(VNC)	works	by	capturing	the	display's	frame	buffer
and	making	it	available	across	the	network.	This	recipe	shows	you	how	to	install
TigerVNC	and	configure	it	to	provide	remote	users	access	to	their	graphical
desktop	environment	as	if	they	were	physically	in	front	of	the	system.

Getting	ready
This	recipe	requires	two	systems,	a	CentOS	system	to	host	the	VNC	server
(remote	system)	and	a	local	computer	with	a	VNC	client	to	connect	to	it.	It
assumes	that	the	remote	system	is	running	the	OpenSSH	SSH	server	and	a
graphical	desktop	environment	such	as	GNOME	or	KDE.	Administrative
privileges	are	required	on	the	remote	server,	either	by	logging	in	with	the	root
account	or	through	the	use	of	sudo.	The	local	computer	is	expected	to	have	a	VNC
client	installed.

How	to	do	it...
Follow	these	steps	to	install	and	configure	TigerVNC:

1. On	the	remote	system,	install	the	TigerVNC	server	package:

yum	install	tigervnc-server

2. Copy	the	example	unit	file	provided	with	the	package	to
/etc/systemd/system,	adjusting	its	name	to	include	the	username	of	the
person	using	VNC:

cp	/usr/lib/systemd/system/vncserver@.service

	/etc/systemd/system/vncserver-tboronczyk@.service

3. Open	the	new	unit	file	with	your	text	editor:

vi	/etc/systemd/system/vncserver-tboronczyk@.service

4. Replace	the	<USER>	placeholder	that	appears	in	the	[Service]	section's
ExecStart	and	PIDFile	entries:

ExecStart=/usr/sbin/runuser	-l	tboronczyk	-c	"/usr/bin/

vncserver	%i"

PIDFile=/home/tboronczyk/.vnc/%H%i.pid

5. Save	your	changes	and	close	the	file.
6. Repeat	steps	2	to	5	for	each	user	who	will	use	VNC	to	connect	to	their

desktop.
7. Reload	systemd's	configuration	to	make	it	aware	of	the	new	unit	files:

systemctl	daemon-reload

8. Open	ports	5900	through	5903	in	the	system's	firewall	to	accept	incoming
VNC	requests:

firewall-cmd	--zone=public	--permanent	--add-service=vnc-	

server

firewall-cmd	--reload

9. The	users	using	VNC	should	set	the	password	they'll	use	to	authenticate	with
the	VNC	server	using	vncpasswd:

vncpasswd

10. When	a	user	wants	to	connect,	specify	a	display	number	after	@	in	the	unit's

name	when	starting	TigerVNC:

systemctl	start	vncserver-tboronczyk@:1.service

11. Stop	the	server	when	it's	not	in	use:

systemctl	stop	vncserver-tboronczyk@.service

How	it	works...
Along	with	the	VNC	server,	the	tigervnc-server	package	installs	a	systemd
unit	file	to	start	and	stop	the	server.	However,	there's	some	configuration	we	need
to	attend	to	before	using	it	because	the	server	runs	under	the	user's	account	to
obtain	their	desktop.

When	TigerVNC	starts,	it	connects	to	the	X	server	and	logs	in	to	the	user's	desktop
just	as	if	the	user	was	sitting	in	front	of	the	system	itself.	This	means	each	user
needs	their	own	instance	of	the	server	running	and	we	need	to	configure	it	for	each
user.	We	made	a	copy	of	the	original	unit	file	found	under
/usr/lib/systemd/system,	one	for	each	user.

cp	/usr/lib/systemd/system/vncserver@.service	

/etc/systemd/system/		

	vncserver-tboronczyk@.service

The	name	of	the	copied	file	contains	the	username	so	that	we	can	keep	everything
organized.	They're	placed	under	/etc/systemd/system	because	systemd	looks
in	/etc/systemd	for	units	before	searching	/usr/lib/systemd	(in	fact,	many
entries	in	/etc/systemd	are	symbolic	links	to	their	original	files	under
/usr/lib/systemd).	So,	placing	the	copies	there	lets	us	keep	the	original	intact
and	safeguards	us	from	loosing	our	configuration	in	the	event	of	an	upgrade	where
the	original	until	file	is	replaced.

This	system	has	VNC	access	configured	for	several	users

We	replaced	any	occurrence	of	the	<USER>	placeholder	under	the	[SERVICE]
section	in	each	configuration	file	with	the	appropriate	username:

ExecStart=/usr/sbin/runuser	-l	tboronczyk	-c	"/usr/bin/vncserver	

%i"

PIDFile=/home/tboronczyk/.vnc/%H%i.pid

The	command	specified	in	the	ExecStart	entry	is	invoked	when	we	start	the	
server	using	systemctl	start;	it	uses	runuser	to	run	TigerVNC	under	the	user's	
account.	The	-l	(lowercase	L	argument	provides	the	username	and	-c	specifies	
the	command	and	its	arguments	that	runuser	will	execute.	The	PIDFile	entry	
specifies	the	directory	in	which	the	running	process	will	keep	track	of	its	process	
ID.

Note

Dan	Walsh,	the	author	of	runuser,	wrote	a	blog	entry	entitled	runuser	vs	su	
detailing	the	backstory	behind	the	command.	You	can	read	it	online	at
http://danwalsh.livejournal.com/55588.html.

The	@	symbol	appearing	in	the	filename	has	special	significance	to	systemd.	
Anything	after	it	and	before	the	file	suffix	is	passed	to	the	commands	in	the	unit	
file	replacing	%i.	This	lets	us	pass	limited	information	to	the	server,	for	example,	
the	display	number	for	TigerVNC	to	run	on.	When	we	start	the	server	as	shown	in	
the	recipe,	:1	is	given	after	@.	The	value	is	parsed	by	systemd	and	TigerVNC	is	
started	on	display	1.	If	we	use	:2,	the	server	will	start	on	display	2.	We	can	start	
multiple	instances	of	TigerVNC	for	different	users	or	even	for	the	same	user	as	
long	as	the	display	is	different	for	each:

systemctl	start	vncserver-tboronczyk@:1.service

Traffic	for	the	display's	corresponding	port	should	be	allowed	by	the	firewall.	
Display	0	uses	port	5900,	display	1	uses	port	5901,	display	2	uses	port	5902,	and	
so	on.	If	you're	using	FirewallD,	the	predefined	vnc-server	service	opens	ports	
5900-5903:

firewall-cmd	--zone=public	--permanent	--add-service=vnc-server

If	you	need	additional	ports	or	if	you	don't	need	to	open	the	entire	range,	you	can	
open	just	what	you	need	using	--add-port:

firewall-cmd	--zone=public	--permanent	--add-port=5901/tcp

http://danwalsh.livejournal.com/55588.html

The	user	needs	to	set	a	VNC	password	using	vncpasswd	before	they	can	connect
to	the	display.	The	password	must	be	at	least	six	characters	long,	although	only	the
first	eight	characters	are	significant.	Moreover,	the	password	is	stored	in	the
user's	~/.vnc/	directory.	In	the	light	of	these	issues,	it's	recommended	that	the
user	doesn't	use	the	same	password	as	their	account	password.	It's	also	wise	to
run	the	VNC	server	only	when	needed	since	anyone	who	knows	the	display
number	and	password	can	connect	to	it.

The	user	also	needs	a	VNC	client	to	connect	from	their	local	computer.	CentOS
users	can	install	the	tigervnc	package	to	use	TigerVNC's	client.	Other	popular
clients	are	Vinagre	for	Ubuntu,	RealVNC	for	TightVNC	on	Windows,	and	Chicken
of	the	VNC	for	OS	X:

yum	install	tigervnc

The	IP	address	or	hostname	for	the	remote	system	and	the	display	(port)	that	VNC
is	running	are	needed	to	establish	the	connection.	They	can	be	provided	in
different	ways	depending	on	the	client,	but	the	standard	format	accepted	by	most
clients	appends	the	display	to	the	system's	address,	for	example,
192.168.56.100:1.	The	user	will	then	be	prompted	for	their	password,	and	if	all
goes	well	they'll	be	connected	to	the	remote	display:

A	user	prepares	to	connect	to	a	remote	display	using	VNC

See	also
Refer	to	the	following	resources	for	more	information	on	running	TigerVNC	and
how	systemd	uses	@	in	filenames:

TigerVNC	(http://tigervnc.org/)
RHEL	7	System	Administrator's	Guide:	TigerVNC
(https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-
TigerVNC.html)
ArchWiki:	TigerVNC	(https://wiki.archlinux.org/index.php/TigerVNC)
The	@	symbol	and	systemctl	(http://superuser.com/questions/393423/the-
symbol-and-systemctl-and-vsftpd/393429#393429)
Understanding	Systemd	Units	and	Unit	Files
(https://www.digitalocean.com/community/tutorials/understanding-systemd-
units-and-unit-files)

http://tigervnc.org/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-TigerVNC.html
https://wiki.archlinux.org/index.php/TigerVNC
http://superuser.com/questions/393423/the-symbol-and-systemctl-and-vsftpd/393429#393429
https://www.digitalocean.com/community/tutorials/understanding-systemd-units-and-unit-files

Tunneling	VNC	connections	through
SSH
The	previous	recipe	showed	you	how	to	give	remote	access	to	the	user's	desktop
through	VNC.	However,	there	are	clearly	some	security	concerns	if	the	service	is
running	on	an	untrusted	network.	Only	the	display	number	and	password	are
required	to	connect,	and	the	password	can	be	relatively	easy	for	a	malicious	user
to	crack	given	that	only	the	first	eight	characters	are	significant.	Moreover,	the
traffic	is	unencrypted	and	it	may	be	snooped.	To	help	mitigate	these	risks,	this
recipe	teaches	you	how	to	route	the	VNC	connection	through	an	encrypted	SSH
tunnel.

Getting	ready
This	recipe	requires	two	systems,	a	CentOS	system	hosting	the	VNC	server
(remote	system)	and	a	local	computer	with	a	VNC	client	to	connect	to	it.	It
assumes	that	the	remote	system	is	running	the	OpenSSH	SSH	server	and
TigerVNC	server	and	is	configured	with	the	IP	address	192.168.56.100.	It	also
assumes	that	you	have	administrative	privileges.	The	VNC	server	should	be
configured	as	described	in	the	previous	recipe.	The	local	computer	should	have
the	OpenSSH	SSH	client	(ssh)	and	a	VNC	client	installed.

How	to	do	it...
Follow	these	steps	to	route	VNC	connections	through	an	encrypted	SSH	tunnel:

1. On	the	remote	server,	open	a	vncserver@.service	configuration	file	using
your	text	editor:

vi	/etc/systemd/system/vncserver-tboronczyk@.service

2. Locate	the	ExecStart	entry	and	add	the	-localhost	argument	to	the
vncserver	command	invoked	by	runuser:

			ExecStart=/usr/sbin/runuser	-l	tboronczyk	-c	

"/usr/bin/vncserver

-localhost	%i"

3. Save	your	change	and	close	the	file.
4. Repeat	steps	1	to	3	as	necessary	for	the	other	users'	configuration	files.
5. Reload	systemd's	configuration	to	make	it	aware	of	the	updates:

systemctl	daemon-reload

6. Start	the	VNC	server:

systemctl	start	vncserver-tboronczyk@:1.service

7. On	your	local	system,	establish	an	SSH	session	to	the	server	with	-L	to
define	the	tunnel:

ssh	-L	5901:localhost:5901	192.168.56.100

8. Connect	to	the	tunnel's	local	endpoint	(localhost:1)	using	a	VNC	client.

How	it	works...
This	recipe	showed	you	how	to	secure	VNC	by	tunneling	its	traffic	through	SSH.
We	configured	the	TigerVNC	server	to	only	accept	connections	from	its	localhost
and	then	set	up	a	tunnel	on	the	local	client	side	to	route	traffic	through	an	SSH
connection.	This	helps	mitigate	some	of	the	aforementioned	security	risks	because
proper	authentication	is	needed	to	establish	the	tunnel	and	encrypt	the	VNC	traffic.

First,	you	edited	the	ExecStart	command	in	the	unit	files	used	to	start	instances
of	the	VNC	server.	The	-localhost	argument	to	vncserver	instructs	the	server
to	communicate	only	with	the	local	system;	any	incoming	connections	originating
from	the	network	will	be	refused:

ExecStart=/usr/sbin/runuser	-l	tboronczyk	-c	"/usr/bin/vncserver	

-localhost	%i"

On	the	client	side,	the	user	now	needs	to	establish	an	SSH	tunnel	using	ssh	before	
they	can	connect	to	the	remote	display:

ssh	-L	5901:localhost:5901	192.168.56.100

The	-L	argument	defines	the	tunnel	as	local-port:target-host:target-port.	
The	target	host	and	port	represent	the	final	destination	in	relation	to	the	server	ssh	
is	connected	to.	For	example,	we	know	that	the	recipe	is	running	the	user's	
desktop	on	display	1	which	uses	port	5901.	We	also	know	that	TigerVNC	server	
is	running	on	192.168.56.100	but	configured	to	listen	only	to	its	localhost.	This	
means,	we	need	to	connect	to	localhost:5901	from	192.168.56.100.	Thus,	
localhost:5901	is	the	target	in	relation	to	that	system.

Once	the	user	has	an	established	tunnel,	they	can	minimize	the	session's	terminal.
(Don't	close	it!	ssh	is	connected	to	the	remote	system	while	also	listening	on	the	
local	port	(also	5901.	On	the	remote	server,	ssh	has	established	a	second	
connection	to	the	target	host	and	port.	The	VNC	client	will	connect	to	the	local	
port	by	using	the	address	localhost:1	where	the	traffic	is	then	routed	through	the	
SSH	tunnel	to	the	remote	server	and	then	forwarded	to	the	final	destination.

The	remote	system	acts	as	a	gateway	as	traffic	travels	through	it	from	the	client's	
tunnel	to	the	final	destination.	Keep	in	mind,	unless	a	tunnel	to	the	target	has	also

been	created	on	the	remote	server,	the	second	leg	of	the	data's	journey	is	not
encrypted.	This	isn't	a	concern	for	this	recipe	because	the	remote	and	target	hosts
are	the	same.	If	your	final	destination	is	anything	other	than	localhost,	ensure	that
the	network	is	trusted	or	create	a	second	tunnel.

Note

Routing	traffic	with	SSH	in	this	fashion	can	be	done	to	secure	other	services	as
well,	for	example,	NFS,	FTP,	HTTP,	POP3,	and	SMTP.	The	overall	process	is	the
same:	configure	the	server	to	listen	locally	and	then	establish	the	tunnel	on	the
client.

See	also
Refer	to	the	following	resources	to	learn	more	about	SSH	tunneling:

The	ssh	manual	page	(man	1	ssh)
Securing	network	traffic	with	SSH
(https://security.berkeley.edu/resources/best-practices-how-
articles/securing-network-traffic-ssh-tunnels)
SSH	tunneling	made	easy	(http://www.revsys.com/writings/quicktips/ssh-
tunnel.html)

https://security.berkeley.edu/resources/best-practices-how-articles/securing-network-traffic-ssh-tunnels
http://www.revsys.com/writings/quicktips/ssh-tunnel.html

Chapter	7.	Working	with	Databases
This	chapter	contains	the	following	recipes:

Setting	up	a	MySQL	database
Backing	up	and	restoring	a	MySQL	database
Configuring	MySQL	replication
Setting	up	a	MySQL	cluster
Setting	up	a	MongoDB	database
Backing	up	and	restoring	a	MongoDB	database
Configuring	a	MongoDB	replica	set
Setting	up	an	OpenLDAP	directory
Backing	up	and	restoring	an	OpenLDAP	directory

Introduction
This	chapter	focuses	on	three	databases.	First,	you'll	learn	how	to	install	one	of
the	most	widely	used	relational	database	servers,	MySQL.	You'll	also	learn	how
to	set	up	master-slave	replication	to	maintain	mirror	copies	of	your	MySQL
databases,	and	how	to	stand	up	a	MySQL	cluster	to	provide	scalable,	high-
availability	data	storage.	Next,	we'll	move	to	the	world	of	NoSQL	databases.
You'll	learn	how	to	install	the	popular	document-oriented	database	server
MongoDB,	and	how	to	configure	a	MongoDB	replica	set	(replication).	Then	you'll
learn	how	to	set	up	an	LDAP	directory	server	using	OpenLDAP.	For	each	of	these
databases,	the	chapter	also	has	recipes	to	show	you	how	to	perform	basic	backup
and	restore	tasks	to	keep	your	data	safe.

Setting	up	a	MySQL	database
This	recipe	shows	you	how	to	perform	a	basic	installation	of	the	popular	MySQL
database	server	on	CentOS.	MySQL	is	the	second	most	widely	used	database
system	today,	which	is	found	across	many	different	industries	providing	data
storage	for	everything	from	dynamic	websites	to	large-scale	data	warehouses.

Getting	ready
This	recipe	requires	a	CentOS	system	with	a	working	network	connection	and
administrative	privileges	either	using	the	root	account	or	sudo.

How	to	do	it...
Follow	these	steps	to	install	MySQL	and	create	a	new	database:

1. Download	the	repository	configuration	package	for	the	Oracle-maintained
MySQL	repository:

curl	-LO	dev.mysql.com/get/mysql57-community-release-el7-

7.noarch.rpm

2. Install	the	downloaded	package:

yum	install	mysql57-community-release-el7-7.noarch.rpm

3. Now	that	the	MySQL	repository	is	registered,	install	the	mysql-community-
server	package:

yum	install	mysql-community-server

4. Start	the	MySQL	server	and	enable	it	to	start	automatically	whenever	the
system	reboots:

systemctl	start	mysqld.service

systemctl	enable	mysqld.service

5. Open	port	3306	in	the	system's	firewall	to	allow	outside	connections	to
MySQL:

firewall-cmd	--zone=public	--permanent	--add-service=mysql

firewall-cmd	--reload

6. Retrieve	the	temporary	password	for	MySQL's	root	user	from	the	server's
log	file:

grep	"temporary	password"	/var/log/mysqld.log

7. Set	a	new	password	for	root	using	mysqladmin.	When	the	program	prompts
for	the	current	password,	enter	the	temporary	password	found	in	the	logs:

mysqladmin	-u	root	-p	password

8. Use	mysql	to	connect	to	the	MySQL	server	using	the	root	account:

mysql	-u	root	-p

9. To	create	a	new	database,	execute	a	CREATE	DATABASE	statement:

CREATE	DATABASE	packt;

10. Execute	a	CREATE	USER	statement	to	create	a	MySQL	user	account	for
working	with	the	database:

CREATE	USER	"tboronczyk"@"localhost"	IDENTIFIED		BY

"P@$$W0rd";

11. Execute	a	GRANT	statement	to	assign	the	appropriate	privileges	to	the	account
for	the	new	database:

GRANT	CREATE,	DROP,	ALTER,	LOCK	TABLES,	INDEX,		INSERT,

UPDATE,

SELECT,	DELETE	ON	packt.*	TO

"tboronczyk"@"localhost";

12. Execute	FLUSH	PRIVILEGES	to	instruct	MySQL	to	rebuild	its	privileges
cache:

FLUSH	PRIVILEGES;

13. Exit	the	MySQL	client	and	return	to	the	terminal:

exit

How	it	works...
We	began	by	downloading	the	package	that	registers	the	Oracle-maintained	
MySQL	repository	on	our	system.	MySQL	is	installed	from	the	Oracle	repository,	
because	the	CentOS	repositories	install	MariaDB	instead.	After	a	series	of	
acquisitions	between	2008	and	2010,	the	MySQL	codebase	and	trademark	became	
the	property	of	Oracle.	Widespread	concern	over	Oracle's	stewardship	and	the	
future	of	MySQL	prompted	one	of	the	original	developers	of	MySQL	to	fork	the	
project	and	start	MariaDB.	In	2014,	the	Red	Hat	and	CentOS	repositories	
replaced	MySQL	as	the	default	database	with	MariaDB	(welcome	to	the	world	of	
open-source	politics.

Note

MariaDB's	goal	is	to	remain	a	free,	open-source	project	under	the	GNU	GPL	
license	and	to	be	an	"enhanced,	drop-in	replacement"	for	MySQL.	For	now,	
differences	between	the	two	are	negligible	to	the	casual	user.	But	in	the	world	of	
forked	replacements,	it's	mainly	the	programming	interfaces	and	communication	
protocols	that	remain	compatible.	Core	functionality	may	remain	the	same	
initially,	but	new	features	are	added	independently	as	time	goes	on	and	the	
products'	feature	sets	begin	to	diverge.	MariaDB	acknowledges	this	with	a	jump	
in	versioning	numbers.	MariaDB	5.1	offers	the	same	features	as	MySQL	5.1,	as	
does	MariaDB	5.5	for	MySQL	5.5.	However,	MariaDB	doesn't	plan	to	implement	
all	of	MySQL	5.6's	features	and	changed	their	version	number	to	10.0.	For	those	
keeping	score	at	home,	the	Oracle-maintained	repository	hosts	MySQL	5.7	at	the	
time	of	this	writing.	The	CentOS	repositories	currently	offer	MariaDB	5.5.

The	server	that	hosts	the	package	assumes	that	people	download	the	file	using	a	
web	browser	and	issues	a	redirect	to	begin	the	download.	Since	we're	using	
curl,	we	supplied	the	-L	argument	to	follow	the	redirects	to	reach	the	actual	
package:

curl	-LO	dev.mysql.com/get/mysql57-community-release-el7-

7.noarch.rpm

Next,	we	installed	the	downloaded	package.	Once	the	repository	is	registered,	
we're	able	to	install	MySQL	with	the	mysql-community-server	package.	The	
package	installs	the	server	binaries,	and	the	client	utilities	to	work	with	MySQL

are	installed	as	dependencies:

yum	install	mysql57-community-release-el7-7.noarch.rpm

yum	install	mysql-community-server

MySQL	maintains	its	own	user	accounts	and	its	administrative	user	is	named	
root.	Just	like	CentOS's	root	user,	you	shouldn't	use	the	account	for	regular	
activities;	it	should	be	reserved	for	administrative	tasks	such	as	creating	new	
users,	granting	privileges,	and	flushing	the	server's	caches.	Other	less-privileged	
accounts	should	be	used	for	everyday	activities.	To	protect	the	root	account,	its	
password	is	randomly	generated	the	first	time	we	start	the	MySQL	server.	We	
needed	to	search	the	log	file	where	MySQL	recorded	the	password	so	that	we	can	
set	a	new	password	of	our	own	choosing:

grep	"temporary	password"	/var/log/mysqld.log

Knowing	the	temporary	password,	we	used	mysqladmin	to	change	it.	The	-u	
option	gives	the	username	of	the	MySQL	account,	-p	prompts	us	for	the	account's	
password,	and	password	is	the	utility's	subcommand	used	to	change	passwords.	
We	entered	the	temporary	password	when	prompted	for	the	original	and	then	we	
were	asked	to	enter	and	confirm	the	new	password:

mysqladmin	-u	root	-p	password

Note

A	random	default	password	for	root	is	a	new	behavior	starting	with	MySQL	5.6,	
which	writes	the	password	to	/root/.mysql_secret,	whereas	5.7	writes	it	to	
the	log	file.	In	older	versions,	and	thus	MariaDB	since	5.5	is	installed	by	the	
CentOS	repositories,	the	password	is	empty.	The	validate_password	plugin	is	
also	activated	in	MySQL	5.7.	It	requires	the	password	to	be	eight	characters	or	
more	with	at	least	one	number,	one	upper	and	one	lowercase	character,	and	one	
special	character	(that	is,	punctuation.	Consider	these	requirements	when	
choosing	root's	new	password.

The	temporary	password	is	needed	to	set	root's	permanent	password

There	are	several	clients	that	we	can	use	to	connect	to	MySQL	and	interact	with	
our	databases.	This	recipe	used	mysql	since	it	will	have	been	installed	by	default	
as	a	dependency.	Again,	-u	identifies	the	account's	username	and	-p	prompts	us	
for	its	password:

mysql	-u	root	-p

When	running	in	interactive	mode,	the	client	displays	the	prompt	mysql>	at	which	
we	submit	our	SQL	statements.	After	each	query,	the	client	displays	the	server's	
response,	how	long	the	statement	took	to	execute,	and	if	the	server	reported	any	
errors	or	warnings.

We	issued	a	CREATE	DATABASE	statement	at	the	prompt	to	create	the	new	database	
named	packt:

CREATE	DATABASE	packt;

Then	we	created	a	new	user	account	with	CREATE	USER	to	avoid	using	root	for	
our	day-to-day	work.	The	account	is	named	tboronczyk	and	is	allowed	to	
authenticate	from	the	localhost:

CREATE	USER	"tboronczyk"@"localhost"	IDENTIFIED	BY	"P@$$w0rd";

A	system's	hostname	or	IP	address	can	replace	localhost	if	the	account	will	
connect	to	the	server	from	a	different	system.	MySQL	treats	each	username	and	
hostname	pair	to	be	separate	accounts	though,	for	example

tboronczyk@localhost	and	tboronczyk@	192.168.56.100	are	different
accounts	and	can	have	different	privileges	assigned	to	them.

Note

You	can	use	wildcards	in	the	hostname	to	create	an	account	that	can	connect	from
multiple	systems.	The	%	wildcard	matches	zero	or	more	characters,	so	it	can	be
used	to	represent	any	system:

CREATE	USER	"tboronczyk"@"%"	IDENTIFIED	BY	"P@$$w0rd";

New	accounts	are	created	without	any	privileges,	so	we	must	assign	them	by
executing	a	GRANT	statement:

GRANT	CREATE,	DROP,	ALTER,	LOCK	TABLES,	INSERT,	UPDATE,	SELECT,	

DELETE	ON	packt.*	TO	"tboronczyk"@"localhost";

The	statement	assigns	the	following	privileges	to	the	user	for	all	tables	(denoted
by	*)	in	the	packt	database:

CREATE:	This	allows	the	user	to	create	databases	and	tables
DROP:	This	allows	the	user	to	delete	entire	tables	and	databases
ALTER:	This	allows	the	user	to	change	the	definition	of	an	existing	table
LOCK	TABLES:	This	allows	the	user	to	lock	a	table	for	exclusive	read	or
write	access
INDEX:	This	allows	the	user	to	create	table	indexes
INSERT:	This	allows	the	user	to	add	records	to	a	table
UPDATE:	This	allows	the	user	to	update	records	in	a	table
SELECT:	This	allows	the	user	to	retrieve	records	from	a	table
DELETE:	This	allows	the	user	to	delete	records	from	a	table

A	full	list	of	privileges	and	what	they	permit	a	user	to	do	can	be	found	in	the
official	MySQL	documentation	online	at
http://dev.mysql.com/doc/refman/5.7/en/grant.html.

Next,	we	instructed	MySQL	to	rebuild	its	privileges	cache	using	FLUSH
PRIVILEGES:

	FLUSH	PRIVILEGES;	

http://dev.mysql.com/doc/refman/5.7/en/grant.html

When	MySQL	starts	up,	it	caches	the	user	and	permissions	information	in	memory
(you'll	recall	from	Chapter	5,	Managing	Filesystems	and	Storage,	that	reading
from	memory	is	much	faster	than	reading	from	disk)	and	then	checks	the	cache
every	time	a	user	performs	an	action	to	verify	if	they	have	sufficient	privileges.
We	need	to	tell	MySQL	to	update	its	cache	whenever	we	create	or	delete	a	user
account	or	grant	or	revoke	an	account's	privileges,	or	else	our	changes	will	go
unnoticed	until	the	next	time	MySQL	starts.

When	using	mysql	to	connect	to	MySQL,	you	may	frequently	invoke	it	with
additional	options.	A	common	option	is	-h,	which	identifies	the	hostname	or	IP
address	of	the	remote	server	if	MySQL	is	running	on	a	different	system.	-e
executes	a	statement	directly	instead	of	launching	mysql	in	interactive	mode.
Also,	to	work	with	a	specific	database,	the	name	can	be	given	either	after	the	rest
of	the	command	or	you	can	use	-D	to	specify	it.	The	following	example
demonstrates	all	of	these	by	connecting	to	the	MySQL	server	on	192.168.56.100
and	executing	a	SELECT	statement	against	its	sakila	database:

mysql	-u	tboronczyk	-p	-h	192.168.56.100	-D	sakila	-e	"SELECT	

last_name,	first_name	FROM	actor"

See	also
Refer	to	the	following	resources	for	more	information	on	working	with	MySQL:

The	mysql	manual	page	(man	1	mysql)
MySQL	5.7	reference	manual	(http://dev.mysql.com/doc/refman/5.7/en)
Jump	Start	MySQL	(http://www.amazon.com/Jump-Start-MySQL-Timothy-
Boronczyk/dp/0992461286)
MySQL	Tutorial	(http://www.mysqltutorial.org/)

http://dev.mysql.com/doc/refman/5.7/en
http://www.amazon.com/Jump-Start-MySQL-Timothy-Boronczyk/dp/0992461286
http://www.mysqltutorial.org/

Backing	up	and	restoring	a	MySQL
database
This	recipe	shows	you	how	to	back	up	your	MySQL	databases	using	mysqldump.
The	utility	connects	to	the	MySQL	server,	queries	the	structure	of	the	database	and
its	data,	and	outputs	the	data	in	the	form	of	SQL	statements.	The	backup	can	then
be	used	to	restore	the	database	or	populate	a	new	database	with	the	data.

Getting	ready
This	recipe	requires	a	running	MySQL	server	and	access	to	either	MySQL's	root
user	or	another	user	with	the	necessary	privileges	to	perform	the	backup.

How	to	do	it...
Follow	these	steps	to	make	a	backup	of	a	MySQL	database:

1. Connect	to	the	MySQL	database	you	want	to	back	up:

mysql	-u	root	-p	packt

2. Execute	a	FLUSH	TABLES	statement	to	set	the	database's	tables	read-only:

FLUSH	TABLES	WITH	READ	LOCK;

3. Open	a	second	terminal,	leaving	the	first	one	active	with	the	mysql	client
still	running.

4. In	the	new	terminal,	use	mysqldump	to	export	the	table	definitions	and	data:

mysqldump	-u	root	-p	packt	>	backup.sql

5. Return	to	the	first	terminal	once	the	backup	is	complete	and	exit	mysql	to
unlock	the	tables.

Because	the	backup	consists	of	SQL	statements,	you	can	recreate	the
database	by	importing	the	statements	with	mysql:

mysql	-u	root	-p	packt	<	backup.sql

How	it	works...
The	consequences	of	lost	data	can	range	from	mild	irritation	to	serious	economic	
repercussions,	so	it's	important	to	protect	yourself	with	backups.	Just	think	what	
would	happen	if	your	bank	lost	all	of	your	financial	records!	The	more	important	
your	data	is	to	you	and	the	more	difficult	it	is	to	be	recreated	if	it	were	to	be	lost,	
the	more	important	it	is	to	have	backups	in	case	something	bad	happens.

Prior	to	making	the	backup,	we	connected	to	the	server	and	executed	FLUSH	
TABLES.	The	statement	forces	MySQL	to	finalize	any	data	updates	that	may	be	
pending	and	then	sets	the	tables	read-only	to	prevent	modifications	to	the	data	
while	the	backup	is	in	progress.	This	ensures	that	the	data	in	our	backup	is	
consistent:

FLUSH	TABLES	WITH	READ	LOCK;

The	tables	remain	read-only	until	we	release	the	lock,	either	by	executing	an	
UNLOCK	TABLES	statement	or	by	terminating	the	connection	to	the	MySQL	server,	
so	we	left	the	current	session	running	and	opened	a	second	terminal	to	perform	the	
backup.	While	the	tables	are	read-only,	any	queries	that	retrieve	data	will	execute,	
but	those	that	update	or	insert	data	will	be	blocked.

Note

Consider	setting	up	MySQL	replication	as	described	in	the	Configuring	MySQL	
replication	recipe	and	then	back	up	the	slave's	copy	of	the	database	to	avoid	any	
downtime.	Stop	replication	on	the	slave,	use	mysqldump	to	export	the	data,	and	
then	resume	replication.	The	master's	tables	don't	need	to	be	locked	and	any	
changes	made	on	the	master	while	replication	is	suspended	will	be	replicated	
once	the	slave	comes	back	online.

Then,	we	used	mysqldump	to	export	all	of	the	table	definitions	and	data	from	the	
database:

mysqldump	-u	root	-p	packt	>	backup.sql

Keep	yourself	organized	by	including	the	date	in	your	backup	filenames:

mysqldump	-u	root	-p	packt	>	backup-$(date	+%F).sql

mysqldump	queries	the	database	to	retrieve	the	data,	so	whichever	account	we	use
to	perform	the	backup,	it	must	have	the	necessary	privileges.	What	exactly	those
permissions	are,	ultimately	depends	on	your	database's	schema.	For	example,	the
account	needs	the	SHOW	VIEW	privilege	if	your	database	uses	views.	The	same
holds	true	for	the	account	used	to	restore	the	database.	You	should	keep	this	in
mind	if	you	want	to	use	dedicated	accounts	for	your	backup	and	restore	activities.

To	back	up	only	certain	tables,	you	can	list	them	after	the	database.	For	example,
the	following	backs	up	the	customers	and	addresses	tables:

mysqldump	-u	root	-p	packt	customers	addresses	>	backup.sql

There	are	also	several	options	you	can	provide	to	mysqldump	that	affect	what	it
includes	in	the	backup.	Here's	a	list	of	some	of	the	more	commonly	used	ones:

--no-add-drop-table:	This	does	not	include	a	DROP	TABLE	statement
before	any	CREATE	TABLE	statements	in	the	output.	Without	dropping	a	table
first,	the	import	process	may	fail	on	the	CREATE	TABLE	statement	when	the
backup	is	restored	on	a	system	that	already	has	the	tables	defined.
--events:	This	exports	the	definitions	for	any	stored	events	associated	with
the	database.
--hex-blob:	This	outputs	binary	values	using	the	hexadecimal	notation.	This
can	help	protect	against	certain	byte	sequences	being	incorrectly	interpreted,
causing	a	restore	to	fail.
--tables:	This	backs	up	only	the	specific	tables.	This	is	an	alternate	way	of
specifying	tables	instead	of	listing	them	after	the	database	name.
--routines:	This	exports	the	definitions	for	any	stored	procedures
associated	with	the	database.
--where:	This	is	a	WHERE	condition	used	to	return	only	specific	rows.	For
example,	--tables	customers	--where	"last_name	LIKE	'B%'"	will
only	export	rows	from	the	customers	table	for	customers	whose	last	name
starts	with	B.

You	can	find	a	complete	list	of	options	in	the	online	documentation	at
http://dev.mysql.com/doc/refman/5.7/en/mysqldump.html.

http://dev.mysql.com/doc/refman/5.7/en/mysqldump.html

See	also
Refer	to	the	following	resources	for	more	information	on	making	backups	with
mysqldump:

The	mysqldump	manual	page	(man	1	mysqldump)
MySQL	5.7	Reference	Manual:	mysqldump
(http://dev.mysql.com/doc/refman/5.7/en/mysqldump.html)
Backup	and	Restore	MySQL	Database	Using	mysqldump
(http://www.thegeekstuff.com/2008/09/backup-and-restore-mysql-database-
using-mysqldump)

http://dev.mysql.com/doc/refman/5.7/en/mysqldump.html
http://www.thegeekstuff.com/2008/09/backup-and-restore-mysql-database-using-mysqldump

Configuring	MySQL	replication
This	recipe	teaches	you	how	to	configure	MySQL's	master-slave	replication	to
maintain	mirror	copies	of	your	databases	in	near	real	time.

To	replicate	data,	the	master	MySQL	server	records	details	about	any	changes	that
take	place	(inserts,	updates,	and	so	on)	to	a	file	known	as	the	binary	log.	Each
slave	server	connects	to	the	master's	system,	reads	the	information	from	the	log
file,	and	then	duplicates	the	change	to	maintain	their	own	local	copy	of	the
database.	Each	slave	server	is	responsible	for	itself,	which	means	we	can	bring	a
slave	down	for	maintenance	without	affecting	the	availability	of	the	master.	Once
it	comes	back	online,	the	slave	resumes	replication	from	where	it	left	off.

Replication	can	be	useful	in	many	situations.	For	example,	if	a	full	copy	of	the
database	is	maintained	on	a	slave,	you	can	swap	out	the	master	server	with	little
effort	for	a	failover	or	disaster-recovery	situation.	For	environments	where
scalability	and	performance	are	a	concern,	write	operations	can	be	performed	by
the	master	while	intensive	read	operations	can	be	handled	by	a	collection	of	read-
only	slaves	behind	a	load	balancer.

Getting	ready
This	recipe	demonstrates	how	to	configure	MySQL	replication	using	two	systems.
The	first	system	is	the	master	MySQL	server,	which	we'll	assume	has	the	IP
address	192.168.56.100.	The	second	system	is	the	slave	server	and	has	the
address	192.168.56.101.	You'll	need	administrative	access	on	both	systems
either	using	the	root	account	or	sudo	to	complete	the	configuration.

Both	systems	should	have	MySQL	installed	as	discussed	by	the	earlier	Setting	up
a	MySQL	database	recipe.	If	you're	setting	up	replication	after	one	or	more
databases	have	already	been	created	on	the	master,	follow	the	Backing	up	and
restoring	a	MySQL	database	recipe	to	back	them	up	and	import	them	to	the	slave
before	configuring	replication.	This	ensures	that	replication	starts	with	all
databases	in	sync.

How	to	do	it...
Follow	these	steps	to	configure	master-slave	replication	for	MySQL:

1. Use	your	text	editor	to	open	the	master	MySQL	server's	configuration	file	at
/etc/my.cnf:

vi	/etc/my.cnf

2. In	the	[mysqld]	section,	add	a	new	entry	for	the	server-id	option	and	set
its	value	to	1:

server-id	=	1

3. Locate	the	log_bin	option	and	uncomment	it:

log_bin

4. Save	your	changes	and	close	the	configuration	file.
5. Restart	the	server	so	that	the	changes	will	take	effect:

systemctl	restart	mysqld.service

6. Connect	to	the	master	server	using	mysql	and	create	a	new	account	for
slaves	to	use.	The	account	requires	the	REPLICATION	SLAVE	privilege:

CREATE	USER	"slave"@"192.168.56.101"	IDENTIFIED	BY

"S3CR3t##";

GRANT	REPLICATION	SLAVE	ON	*.*	TO	"slave"@"192.168.56.101";

FLUSH	PRIVILEGES;

7. Execute	SHOW	MASTER	STATUS	to	determine	the	master's	current	position	in
writing	to	the	binary	log.	Note	the	values	returned	for	File	and	Position,	as
the	information	will	be	required	to	configure	the	slave:

SHOW	MASTER	STATUS;

The	master's	status	includes	the	name	of	the	log	file	and	the	server's	write
position

8. Use	your	editor	to	open	the	slave's	configuration	file.	Add	a	new	entry	for	the
server-id	option	and	set	its	value	to	2:

server-id	=	2

9. Add	an	entry	for	the	read-only	option:

read-only

10. Save	your	changes	and	close	the	file.
11. Restart	the	slave	for	the	changes	to	take	effect:

systemctl	restart	mysqld.service

12. To	configure	communication	with	the	master,	connect	to	the	slave	using
mysql,	and	execute	a	CHANGE	MASTER	statement.	The	values	should	reflect
those	returned	by	SHOW	MASTER	STATUS	in	step	7:

CHANGE	MASTER	TO

	MASTER_HOST	=	"192.168.56.100",

	MASTER_USER	=	"slave",

	MASTER_PASSWORD	=	"S3CR3t##",			

	MASTER_LOG_FILE	=	"localhost-bin.000003",

	MASTER_LOG_POS	=	1235;

13. Start	the	replication	process	by	executing	START	SLAVE	on	the	slave	system:

START	SLAVE;

14. Execute	SHOW	SLAVE	STATUS	to	verify	replication	is	running.	The	values
returned	for	Slave_IO_Running	and	Slave_SQL_Running	should	both	be
Yes:

SHOW	SLAVE	STATUS\G

SHOW	SLAVE	STATUS	returns	a	fair	amount	of	information-listed	as	a	table,
column	wrapping	makes	the	output	impossible	to	read.	Using	\G	to	execute
the	statement	(as	opposed	to	the	semicolon)	will	make	mysql	display	the
results	vertically	which,	in	this	case,	is	much	more	readable.

15. To	stop	replication,	execute	STOP	SLAVE	on	the	slave	system.

How	it	works...
Configuration	began	in	the	master's	/etc/my.cnf	file,	where	we	added	the
server-id	option	to	give	the	server	a	numeric	identifier.	Each	server	in	the
replication	setup	uses	this	value	to	identify	itself	to	the	others,	so	it	must	be	unique
across	the	environment.	Then,	we	uncommented	the	log_bin	option	to	instruct	the
server	to	record	the	details	of	each	change	to	the	binary	log.

The	master	server's	configuration	file	sets	the	server	identifier	and	enables
logging

Next,	we	created	a	dedicated	account	on	the	master	server	and	granted	it	the
REPLICATION	SLAVE	privilege.	The	slave	will	use	this	account	to	connect	to	the
master	and	read	from	the	log:

CREATE	USER	"slave"@"192.168.56.101"	IDENTIFIED	BY	"S3CR3t##";

GRANT	REPLICATION	SLAVE	ON	*.*	TO	"slave"@"192.168.56.101";

Finally,	we	executed	SHOW	MASTER	STATUS	command.	The	values	of	File	and
Position	in	the	result	identify	the	name	of	the	binary	log	file	and	the	server's
current	position	in	it.	As	the	master	writes	to	the	log,	the	position	increases	and
the	suffix	attached	to	the	log's	filename	changes	when	the	log	files	are	rotated.	We
need	to	know	the	current	position	so	we	can	configure	the	slave	to	begin
reading/replicating	from	that	point	onward.

On	the	slave,	we	set	the	server's	unique	identifier	and	added	the	read-only
option	in	the	configuration	file.	If	someone	were	to	make	a	change	in	the	slave's
database	that	conflicts	with	an	incoming	update	from	the	binary	log,	then
replication	would	break.	The	read-only	option	is	a	safeguard	that	prevents	users
from	updating	the	slave	databases	directly,	ensuring	all	updates	come	from	the
master.

Next,	we	set	up	the	slave's	replication	process	using	CHANGE	MASTER	statement.
The	CHANGE	MASTER	statement	identifies	the	master,	sets	the	username	and
password	the	slave	will	use	to	connect,	and	identifies	the	name	of	the	log	and	the
current	position	to	start	replicating	from:

CHANGE	MASTER	TO

	MASTER_HOST	=	"192.168.56.100",

	MASTER_USER	=	"slave",

	MASTER_PASSWORD	=	"S3CR3t##",			

	MASTER_LOG_FILE	=	"localhost-bin.000003",

	MASTER_LOG_POS	=	1235;

Replication	is	started	with	START	SLAVE	and	stopped	with	STOP	SLAVE.	The
SHOW	SLAVE	STATUS	returns	information	about	the	current	state	of	replication:

We	can	check	the	slave's	status	to	see	whether	replication	is	running	without	
any	issues

MySQL	creates	two	background	processes	when	replication	is	running-one	
communicates	with	the	master	(the	IO	process	and	the	other	executes	the	SQL	
statements	to	maintain	the	local	database	(the	SQL	process.	The
Slave_IO_Running	value	shows	whether	the	communication	process	is	running	
or	not,	while	the	value	of	Slave_SQL_Running	reflects	whether	or	not	the	
execution	process	is	running.	Both	values	should	be	Yes	when	replication	is	
running.

If	there's	a	problem	with	replication,	the	Last_IO_Error	and	Last_SQL_Error	
entries	will	report	any	errors	thrown	for	their	respective	processes.	You	can	also	
tell	how	far	behind	the	slave	is	from	the	master	by	comparing	the	values	of	the	
Master_Log_File	and	Read_Master_Log_Pos	fields	with	what	the	SHOW	
MASTER	STATUS	returns.

The	current	configuration	enables	the	slave	to	replicate	every	database	from	the

master,	but	we	can	also	restrict	replication	to	certain	databases	by	adding	the
replicate-do-db	entries	in	the	slave's	my.cnf	file.	Multiple	entries	may	be
given,	which	will	have	one	entry	per	database:

replicate-do-db	=	packt

replicate-do-db	=	acme

replicate-do-db	=	sakila

Alternatively,	we	can	use	the	replicate-ignore-db	option	to	replicate
everything	except	specific	databases:

replicate-ignore-db	=	mysql

Replication	can	be	filtered	at	the	table-level	as	well,	targeting	and	ignoring
specific	tables	in	a	database	using	the	replicate-do-table	and	replicate-
ignore-table	options:

replicate-do-table	=	acme.customers

replicate-do-table	=	acme.addresses

See	also
Refer	to	the	following	resources	for	more	information	on	replicating	MySQL
databases:

MySQL	5.7	Reference	Manual:	Replication
(http://dev.mysql.com/doc/refman/5.7/en/replication.html)
MySQL	Replication	on	RHEL	7	(https://www.youtube.com/watch?
v=kIfRXshR2zc)
MySQL	High	Availability	Architectures
(http://skillachie.com/2014/07/25/mysql-high-availability-architectures)
Replication	Tips	and	Tricks	in	MySQL	(http://www.linux-
mag.com/id/1661/)

http://dev.mysql.com/doc/refman/5.7/en/replication.html
https://www.youtube.com/watch?v=kIfRXshR2zc
http://skillachie.com/2014/07/25/mysql-high-availability-architectures
http://www.linux-mag.com/id/1661/

Standing	up	a	MySQL	cluster
This	recipe	guides	you	through	the	process	of	setting	up	a	MySQL	cluster.
Clustered	databases	meet	the	challenges	of	scalability	and	high-availability	by
partitioning	the	data	across	multiple	systems	and	maintaining	replicas	to	avoid
single	points	of	failure.

The	members	of	a	cluster	are	referred	to	as	nodes.	There	are	three	node	types	in	a
MySQL	cluster:	data	nodes,	API	nodes,	and	the	management	node.	Data	nodes	are
responsible	for	storing	data.	Users	and	processes	then	connect	to	an	API	node	to
access	the	database.	The	management	node	manages	the	cluster	as	a	whole.
Although	multiple	nodes	can	be	installed	on	the	same	system,	for	example,	both	an
API	node	and	a	data	node	may	be	hosted	on	the	same	system.	However,	hosting
multiple	data	nodes	on	the	same	system	is	obviously	not	a	good	idea	because	it
negates	MySQL's	efforts	to	distribute	the	data.

Getting	ready
This	recipe	demonstrates	how	to	deploy	a	MySQL	cluster	using	four	systems.	The
first	system	will	host	the	management	node	and	we'll	assume	that	it	has	the	IP
address	192.168.56.100.	The	second	system	will	host	the	API	node	and	have	the
address	192.168.56.101.	The	remaining	systems	will	be	configured	with	data
nodes	and	use	the	addresses	192.168.56.102	and	192.168.56.103.	You'll	need
administrative	access	on	all	four	systems	either	using	the	root	account	or	sudo.

How	to	do	it...
Follow	these	steps	to	set	up	a	clustered	MySQL	database:

1. Download	the	cluster	archive	from	the	MySQL	website	and	extract	its
packages	using	tar:

curl	-L	dev.mysql.com/get/Downloads/MySQL-Cluster-7.4/

	MySQL-Cluster-gpl-7.4.10-1.el7.x86_64.rpm-bundle.tar	|

tar		x

2. On	each	system,	install	perl-Data-Dumper	and	replace	the	installed
mariadb-libs	package	with	the	downloaded	MySQL-Cluster-shared
package:

yum	install	perl-Data-Dumper	MySQL-Cluster-shared-gpl-*.rpm

yum	erase	mariadb-libs

3. Install	the	MySQL-Cluster-server	and	MySQL-Cluster-client	packages
on	each	system:

yum	install	MySQL-Cluster-{server,client}-gpl-*.rpm

4. On	the	system	hosting	the	management	node,	create	the	/var/lib/mysql-
cluster	directory:

mkdir	/var/lib/mysql-cluster

5. Create	the	cluster's	configuration	file	for	the	management	node	at
/var/lib/mysql-cluster/config.ini	as	follows:

[ndbd	default]

NoOfReplicas	=	2

DataMemory	=	100M

IndexMemory	=	10M

ServerPort	=	2202

[ndb_mgmd]

hostname	=	192.168.56.100

[mysqld]

hostname	=	192.168.56.101

[ndbd]

hostname	=	192.168.56.102

[ndbd]

hostname	=	192.168.56.103

6. Start	the	management	node:

ndb_mgmd	-f	/var/lib/mysql-cluster/config.ini

7. Open	port	1186	in	the	management	node	system's	firewall:

firewall-cmd	--zone=public	--permanent	--add-port=1186/tcp

firewall-cmd	--reload

8. On	each	data	node's	system,	create	the	file	/etc/my.cnf	using	the	following:

[mysql_cluster]

ndb-connectstring	=	192.168.56.100

9. Start	each	data	node:

ndbd

10. Open	port	2202	in	the	data	nodes'	systems'	firewall:

firewall-cmd	--zone=public	--permanent	--add-port=2202/tcp

firewall-cmd	--reload

11. Create	/etc/my.cnf	on	the	system	hosting	the	API	node	using	the	following:

[mysqld]

ndbcluster

default-storage-engine	=	ndbcluster

[mysql_cluster]

ndb-connectstring	=	192.168.56.100

12. Start	MySQL	server	as	the	API	node:

mysqld_safe	&

13. Retrieve	the	root	account's	temporary	password	that	was	created	when	the
MySQL	server	was	installed.	It's	recorded	in	/root/.mysql_secret:

cat	/root/.mysql_secret

14. Set	a	new	password	for	the	root	account	using	mysqladmin.	When	prompted
for	the	current	password,	enter	the	one	identified	in	the	previous	step:

mysqladmin	-u	root	-p	password

15. Open	port	3306	in	the	API	node	system's	firewall:

firewall-cmd	--zone=public	--permanent	--add-service=mysql

firewall-cmd	--reload

16. Verify	the	status	of	the	cluster	using	the	ndb_mgm	client	on	the	system	hosting

the	management	node:

ndb_mgm	-e	SHOW

How	it	works...
This	recipe	taught	you	how	to	set	up	a	MySQL	clustered	database	with	two	data	
nodes:	one	API	node	and	one	management	node.	The	management	node	consists	of	
the	ndb_mgmd	process	that	provides	configuration	information	to	the	other	nodes	
and	monitors	them.	On	the	data	nodes,	the	ndbd	process	handles	the	storage,	
partitioning,	and	replication	of	the	clustered	data.	A	MySQL	server	aware	of	the	
management	node	and	the	data	nodes	acts	as	the	API	node	through	which	users	can	
work	with	the	clustered	database.

The	packages	available	in	the	Oracle-maintained	repository	are	built	without	
support	for	Network	Database	(NDB,	so	we	first	downloaded	an	archive	from	
the	MySQL	website	that	has	packages	which	will	install	a	version	of	MySQL	that	
supports	NDB/clustering:

curl	-L	dev.mysql.com/get/Downloads/MySQL-Cluster-7.4/MySQL-	

Cluster-gpl-7.4.10-1.el7.x86_64.rpm-bundle.tar	|	tar	x

MySQL	abstracts	the	details	of	exactly	how	data	is	physically	organized	and	
manipulated,	delegating	this	to	its	various	storage	engines.	Different	engines	have	
different	abilities.	Since	the	NDB	engine	is	the	one	that	implements	clustering,	we	
need	a	build	that	supports	the	engine.	Instead	of	writing	curl's	output	to	a	file	as	
we've	done	in	other	recipes,	this	time	we	piped	the	output	directly	to	tar	with	the	
x	argument	to	expand	the	archive	on	the	fly.

Afterwards,	we	installed	the	perl-Data-Dumper	package	from	the	CentOS	
repository	and	replaced	the	mariadb-libs	package	already	installed	with	the	just	
downloaded	MySQL-Cluster-shared	package	on	each	system:

yum	install	perl-Data-Dumper	MySQL-Cluster-shared-gpl-*.rpm

yum	erase	mariadb-libs

The	MySQL-Cluster-shared	package	provides	the	shared	libraries	used	by	other	
programs	to	work	with	MySQL.	These	libraries	replace	the	MariaDB	version	
installed	from	the	CentOS	repositories	by	default	and	save	us	from	experiencing	
library	conflicts	that	would	prevent	a	clean	install.	Since	it's	no	longer	needed	
afterwards,	we	uninstalled	the	mariadb-libs	package.

Some	of	the	post-installation	steps	performed	by	Yum	after	it	installs	the	MySQL-
Cluster-server	package	are	scripted	in	Perl	and	use	Perl's	Data::Dumper	
module.	This	makes	the	Perl-Data-Dumper	package	a	dependency	for	the	
MySQL-Cluster-server	package.	However,	a	bug	causes	Yum	to	miss	this,	so	
we	installed	the	package	ourselves	so	that	the	MySQL-Cluster-server	package's	
installation	will	proceed	smoothly.	It	wouldn't	prevent	the	package	from	installing,	
but	it	would	have	required	us	to	complete	some	additional	configuration	steps	
manually.

With	the	requirements	in	place,	we	then	installed	the	MySQL-Cluster-server	and	
MySQL-Cluster-client	packages	on	each	system:

yum	install	MySQL-Cluster-{server,client}-gpl-*.rpm

Configuration	for	the	overall	cluster	is	pretty	much	centralized	with	the	
management	node	in	/var/lib/mysql-cluster/config.ini.	The	file	is	
divided	into	several	sections,	the	first	being	[ndb	default],	which	provides	the	
default	configuration	values	that	should	be	used	for	the	cluster.	The	values	here	
apply	to	each	node	of	the	cluster	unless	overridden	by	a	more	specific	directive	in	
the	respective	node's	configuration	section:

[ndbd	default]

NoOfReplicas	=	2

DataMemory	=	100M

IndexMemory	=	10M

ServerPort	=	2202

The	NoOfReplicas	option	sets	the	number	of	replicas	in	the	cluster.	Its	value	may	
be	set	to	1	or	2,	although	2	is	the	recommended	value.	Recall	that	not	only	a	
clustered	database	is	partitioned	across	the	data	nodes	but	it	is	also	replicated;	
each	node	hosts	a	partition	typically	1/n	the	size	of	the	database	(where	n	is	the	
number	of	data	nodes	and	also	a	replica	of	the	other	nodes.	The	cluster	can	still	
function	if	a	system	goes	offline	because	its	data	is	still	available	in	the	replica.	A	
value	of	1	for	NoOfReplicas	means	that	there	would	be	only	one	copy	of	the	
database	(no	replica	and	the	availability	of	the	database	depends	on	all	data	
nodes	being	up.

The	data	nodes	hold	their	working	copy	of	the	database	in	RAM	to	reduce	latency	
while	periodically	syncing	the	data	to	disk.	The	DataMemory	option	specifies	how

much	RAM	should	be	reserved	for	the	data	by	the	nodes	and	IndexMemory
specifies	how	much	memory	should	be	reserved	for	primary	keys	and	unique	
indexes.	Whatever	values	you	provide,	be	sure	that	sufficient	resources	are	
available	to	avoid	RAM	swapping.

The	ServerPort	option	specifies	the	port	number	the	nodes	will	use	to
communicate	with	one	another.	By	default,	MySQL	would	dynamically	allocate	
ports	to	make	it	easier	to	run	multiple	nodes	on	the	same	system,	but	since	this	
recipe	runs	each	node	on	its	own	host	system	and	we	need	to	know	the	port	to	
allow	traffic	through	the	firewall,	we	specified	the	port	ourselves.

The	subsequent	sections	in	the	configuration	use	the	hostname	option	to	specify
the	addresses	at	which	the	management	node	(via	the	[ndb_mgmtd]	section,	the
API	node	(the	[mysqld]	section,	and	the	data	nodes	(the	[ndbd]	section	are
running.	As	made	evident	by	the	multiple	[ndbd]	sections,	multiple	sections	of	the
same	type	will	appear	if	there	is	more	than	one	node	of	that	type	running	in	the	
cluster:

[ndb_mgmd]

hostname	=	192.168.56.100

[mysqld]

hostname	=	192.168.56.101

[ndbd]

hostname	=	192.168.56.102

[ndbd]

hostname	=	192.168.56.103

On	the	remaining	systems,	/etc/my.cnf	is	created	as	the	configuration	file	used
by	the	data	nodes	and	the	API	node.	Each	includes	a	[mysql_cluster]	section,
which	gives	the	ndb-connectstring	option:

[mysql_cluster]

ndb-connectstring	=	192.168.56.100

The	ndb-connectstring	option	specifies	the	address	of	the	system	that	hosts	the
management	node.	As	the	data	and	API	nodes	come	online,	they	communicate	with	
the	manager	to	receive	their	configuration	information.	If	your	cluster	has	more	
than	one	management	node,	the	additional	nodes	can	be	listed	in	the	connection	
string	separated	by	commas:

ndb-connectstring	=	

"192.168.56.100,192.168.56.105,192.168.56.106"

Additionally,	the	API	node's	configuration	includes	the	[mysqld]	section.	It
includes	the	ndbcluster	option	to	enable	the	NDB	engine	and	the	default-
storage-engine	option	instructing	MySQL	to	use	NDB	to	manage	all	new	tables
unless	otherwise	specified	in	the	table's	CREATE	TABLE	statement:

[mysqld]

ndbcluster

default-storage-engine	=	ndbcluster

When	a	user	or	process	creates	a	new	table	with	the	CREATE	TABLE	statement,
they	can	specify	which	of	MySQL's	storage	engines	should	be	used	to	manage	its
data	with	the	ENGINE	directive,	for	example:

CREATE	TABLE	users	(

	id	INTEGER	UNSIGNED	NOT	NULL	PRIMARY	KEY,

	first_name	VARCHAR(50)	NOT	NULL	DEFAULT	'',

	last_name	VARCHAR(50)	NOT	NULL	DEFAULT	''

ENGINE	=	NDBCluster;

The	default	engine	is	InnoDB	engine.	However,	only	data	in	NDB-managed	tables	
make	their	way	to	the	cluster.	If	a	table	is	managed	by	another	engine,	the	data	
resides	locally	on	the	API	node	and	is	not	available	to	other	nodes	in	the	cluster.	
To	prevent	unexpected	problems	and	any	confusion	this	can	cause,	we	changed	the	
default	engine	so	that	tables	will	use	the	NDB	engine	when	the	ENGINE	directive	
isn't	provided.

The	order	in	which	nodes	are	started	when	bringing	up	the	MySQL	cluster	is	
important,	since	one	node	may	depend	on	the	others.	The	management	node	is	
started	first,	followed	by	the	data	nodes,	and	then	the	API	node.

The	password	for	MySQL's	root	account	on	the	API	node	is	randomly	generated	
the	first	time	the	server	is	started,	and	it	is	written	to	the	/root/.mysql_secret	
file,	just	as	we	used	mysqladmin	to	change	it	in	the	Setting	up	a	MySQL	
database	recipe:

cat	/root/.mysql_secret

mysqladmin	-u	root	-p	password

The	SHOW	command	sent	to	the	ndb_mgm	client	on	the	management	node's	system
allows	us	to	view	the	status	of	the	cluster	and	ensure	everything	is	up	and	running
as	it	should	be.	The	client	can	be	invoked	in	interactive	mode,	or	commands	can
be	passed	to	it	directly	using	the	-e	argument:

ndb_mgm	-e	SHOW

The	status	of	the	MySQL	cluster	can	be	viewed	using	the	ndb_mgm	client

See	also
Refer	to	the	following	resources	for	more	information	on	working	with	MySQL
clusters:

MySQL	Reference	Manual:	MySQL	Cluster	Core	Concepts
(http://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-basics.html)
MySQL	Reference	Manual:	MySQL	Cluster	Installation
(http://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-installation.html)
MySQL	Reference	Manual:	MySQL	Cluster	Nodes,	Node	Groups,	Replicas,
and	Partitions	(http://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-nodes-
groups.html)
MySQL	Reference	Manual:	Online	Backup	of	MySQL	Cluster
(http://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-backup.html)
Set	Up	a	MySQL	Cluster	the	Easy	Way	(http://youtube.com/watch?
v=64jtbkuPtvc)
High	Availability	MySQL	Cookbook	by	Alex	Davies
(https://www.packtpub.com/big-data-and-business-intelligence/high-
availability-mysql-cookbook)

http://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-basics.html
http://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-installation.htm
http://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-nodes-groups.html
http://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-backup.html
http://youtube.com/watch?v=64jtbkuPtv
https://www.packtpub.com/big-data-and-business-intelligence/high-availability-mysql-cookbook

Setting	up	a	MongoDB	database
Although	relational	databases	have	dominated	the	world	of	data	storage,	there
have	always	been	other	systems	that	specialize	in	alternative	ways	of	working
with	data,	for	example	document	and	object-oriented	databases,	key-value
databases,	and	hierarchical	databases.	The	popularity	of	these	alternative
databases	has	experienced	a	resurgence	thanks	to	the	recent	NoSQL	and	Big	Data
movements.	This	recipe	teaches	you	how	to	install	MongoDB,	a	modern
document-oriented	database	system.

Getting	ready
This	recipe	requires	a	CentOS	system	with	a	working	network	connection	and
administrative	privileges	by	either	using	the	root	account	or	sudo.	It	also
assumes	you	have	registered	the	EPEL	repository	(see	the	Registering	the	EPEL
and	Remi	repositories	recipe	in	Chapter	4,	Software	Installation	Management).

How	to	do	it…
Follow	these	steps	to	install	MongoDB	and	create	a	new	database:

1. Install	the	mongodb-server	and	mongodb	packages	from	the	EPEL
repository:

yum	install	mongodb-server	mongodb

2. Open	/etc/mongod.conf	with	your	text	editor:

vi	/etc/mongod.conf

3. Locate	the	auth	entry	and	uncomment	it,	making	sure	its	value	is	true:

#	Run	with/without	security

auth	=	true

4. Locate	the	bind-ip	option	and	comment	it	out:

	#	Comma	separated	list	of	ip	addresses	to	listen	on	

	#	bind_ip	=	127.0.0.1

5. Save	your	changes	to	the	configuration	file	and	close	it.
6. Start	the	MongoDB	server	and	enable	it	to	start	automatically	whenever	the

system	reboots:

systemctl	start	mongod.service

systemctl	enable	mongod.service

7. Open	port	27017	in	the	system's	firewall:

firewall-cmd	--zone=public	--permanent	--add-port=27017/tcp

firewall-cmd	--reload

8. Connect	to	the	MongoDB	server	with	mongo:

mongo

9. Set	admin	as	the	active	database:

use	admin

10. Execute	createUser()	to	create	a	new	user	for	managing	user	accounts:

db.createUser({

	user:	"admin",

	pwd:	"P@$$W0rd",

	roles:	[{	role:	"userAdminAnyDatabase",	db:	"admin"	}]

})

11. Authenticate	yourself	using	the	newly	created	admin	account:

db.auth({	user:	"admin",	pwd:	"P@$$W0rd"	})

12. Set	packt	as	the	active	database:

use	packt

13. Create	a	user	account	for	working	with	the	database:

db.createUser({

	user:	"tboronczyk",

	pwd:	"S3CR3t##",

	roles:	[{	role:	"readWrite",	db:	"packt"	}]

})

14. Exit	the	client	and	return	to	the	terminal:

exit

How	it	works...
MongoDB	is	the	most	popular	in	its	class	of	databases	and	is	used	by	many	high-
profile	companies,	including	eBay,	Craigslist,	SAP,	and	Yandex.	The	necessary	
packages	are	available	in	the	EPEL	repository;	mongodb-server	contains	the	
MongoDB	server	application	and	the	mongodb	package	contains	the	client	and	
other	utilities	for	working	with	the	server	and	databases:

yum	install	mongodb-server	mongodb

MongoDB	runs	without	security	enabled	by	default	and	anyone	may	perform	any	
action	against	any	database.	To	prevent	this,	we	enabled	security	by	
uncommenting	the	auth	option	in	MongoDB's	configuration	file
(/etc/mongod.conf.	Once	security	is	enabled,	users	must	authenticate	
themselves	before	they	can	work	with	a	database,	and	the	server	verifies	that	the	
account	has	the	right	to	perform	the	requested	action:

auth	=	true

The	current	configuration	permits	MongoDB	to	listen	for	connections	only	on	the	
loop-back	interface	(127.0.0.1,	so	we	also	commented	out	the	bind_ip	option:

#	bind_ip	=	127.0.0.1

Left	unbound,	MongoDB	will	be	accessible	via	all	of	the	system's	addresses.	
Alternatively,	if	the	system	has	multiple	addresses	(perhaps	the	system	has	
multiple	interfaces	or	you've	implemented	the	Binding	multiple	addresses	to	a	
single	Ethernet	device	recipe	in	Chapter	2,	Networking	and	you	want	MongoDB	
to	respond	on	only	one	of	them,	you	can	leave	the	option	active	with	the	desired	IP	
address	as	its	value.

After	updating	the	configuration	file,	we	started	the	server	and	opened	
MongoDB's	default	port	in	the	system's	firewall	to	allow	remote	connections:

firewall-cmd	--zone=public	--permanent	--add-port=27017/tcp	

firewall-cmd	--reload

Next,	we	used	the	mongo	client	to	establish	a	connection	to	the	MongoDB	server	
running	on	the	localhost:

mongo

We	set	admin	as	the	active	database	and	executed	the	createUser()	method	to
create	an	administrator	account	dedicated	to	managing	MongoDB's	database
users:

use	admin

db.createUser({

	user:	"admin",

	pwd:	"P@$$W0rd",

	roles:	[{	role:	"userAdminAnyDatabase",	db:	"admin"	}]

})

The	createUser()	method	accepts	a	document	with	properties	listing	the	new
account's	username	(user),	password	(pwd),	and	roles	(roles)	and	adds	it	to	the
system.users	collection	in	the	active	database	(admin).	User	accounts	are
stored	at	the	database	level	and	the	database	storing	a	user's	details	is	known	as
that	user's	authentication	database.	Users	may	work	with	other	databases,	but	they
must	authenticate	against	their	authentication	database	first.	Even	if	their
usernames	are	the	same,	accounts	created	in	different	databases	are	considered
separate	and	may	have	different	permissions.

The	roles	property	is	an	array	of	objects,	each	listing	a	role	that	the	user	is	a
member	of	when	they	work	with	the	given	database.	In	the	case	of	admin,	the	user
is	a	member	of	the	userAdminAnyDatabase	role.	MongoDB's	permission	system
is	based	on	role-based	access	control	(RBAC).	The	focus	of	RBAC	is	on	users
and	what	roles	they	play	as	opposed	to	granting	individual	permissions	to	each
account.	Permissions	are	assigned	to	a	role	and	then	user	accounts	are	given
membership	in	the	role	inheriting	its	permissions.

userAdminAnyDatabase	is	a	built-in	role	configured	with	the	necessary
permissions	to	create	and	delete	user	accounts,	assign	membership	in	a	role,	and
manage	user	passwords	for	any	database.	MongoDB	ships	with	several
predefined	roles	besides	userAdminAnyDatabase.	They	include	the	following:

dbAdmin:	These	users	are	responsible	for	administering	the	database
userAdmin:	These	users	are	responsible	for	administering	other	users
read:	These	are	users	that	only	read	documents	from	the	database
readWrite:	These	are	users	who	read	documents	and	also	need	write	access
to	insert/modify	them

dbOwner:	These	are	users	who	own	the	database	(combines	the	dbAdmin,
userAdmin,	and	readWrite	roles)

There	are	also	the	backup	and	restore	roles	for	users	responsible	for
performing	database	backups,	roles	for	managing	MongoDB	clusters,	and
additional	global	versions	of	some	of	the	aforementioned	roles,	such	as
readAnyDatabase,	for	users	who	need	read-access	to	all	of	MongoDB's
databases.	A	complete	list	of	roles	can	be	found	in	the	official	documentation
online	at	https://docs.mongodb.com/manual/reference/built-in-roles/.

Note

The	principles	of	least	privilege	encourage	us	to	avoid	over-using	the	global
roles;	it's	better	to	create	users	that	work	with	their	own	databases.	If	an	account
needs	to	work	with	a	database	outside	its	authentication	database,	multiple	roles
can	be	assigned	as	follows:

	db.createUser({

	user:	"tboronczyk",

	pwd:	"S3CR3t##",

	roles:	[

	{	role:	"read",	db:	"admin"	},

	{	role:	"readWrite",	db:	"packt"	},

	{	role:	"readWrite",	db:	"acme"	}

]

	})

Next,	we	used	the	new	admin	user	to	create	a	new	user	for	the	packt	database
(and	to	create	the	packt	database	itself	as	a	side	effect):

db.auth("admin",	"P@$$W0rd")

use	packt

db.createUser({

	user:	"tboronczyk",

	pwd:	"S3CR3t##",

	roles:	[{	role:	"readWrite",	db:	"packt"	}]

}

Databases	and	collections	are	implicitly	created	by	MongoDB	when	the	first	
document	is	inserted,	and	since	MongoDB	stores	new	users	in	the	active	database,	
setting	packt	as	the	active	database	and	creating	a	user	is	enough	to	trigger	its	
creation.

https://docs.mongodb.com/manual/reference/built-in-roles/

The	auth()	method	assumes	that	the	active	database	is	the	authentication	database
for	the	provided	credentials.	In	this	instance,	authentication	is	successful	because
admin	was	already	the	active	database;	attempting	to	authenticate	as	admin	after
switching	to	packt	would	fail.	However,	the	identity	persists	after	authentication
until	the	next	time	we	call	auth()	or	we	exit	the	client.	So,	even	though	we
switched	databases,	we're	still	operating	within	the	roles	and	privileges	of	the
admin	database's	admin	user.

Although	the	recipe	connected	to	the	server	with	a	bare	mongo	invocation,	the
active	database	can	be	specified	on	the	command	line.	mongo	also	offers	several
options,	for	example,	to	connect	to	a	MongoDB	server	running	on	a	different
system	and	provide	authentication	credentials.	--host	identifies	the	remote
hostname	or	IP	address	where	MongoDB	is	running,	and	the	--username	and	--
password	options	allow	you	to	provide	your	account's	authentication	details:

mongo	--host	192.168.56.100	--username	tboronczyk	--password	""	

packt

If	the	database	is	given	in	the	invocation	when	--username	and	--password	are
used	as	well,	MongoDB	assumes	that	the	database	is	the	account's	authentication
database.	If	the	account	belongs	to	another	database,	its	authentication	database
can	be	given	using	the	--authenticationDatabase	option:

mongo	--authenticationDatabase	admin	--username	admin	--password	

	""		packt

The	--password	option	expects	a	value,	but	MongoDB	will	prompt	you	for	a
password	when	its	value	is	empty.	I	suggest	that	you	use	an	empty	string	("")	for
the	value,	as	I	have	done	here,	to	force	the	password	prompt.

Note

Never	enter	a	password	as	part	of	a	command's	invocation	for	security	reasons.
The	password	may	appear	in	the	output	of	ps	while	the	command	is	running	and
will	also	appear	in	your	shell's	history.

See	also
Refer	to	the	following	resources	for	more	information	on	working	with
MongoDB:

The	MongoDB	manual	(http://docs.mongodb.org/manual)
MongoDB	Manual:	Role-Based	Access	Control
(http://docs.mongodb.org/manual/core/authorization)
MongoDB	Tutorial	for	Beginners	(http://www.youtube.com/watch?v=W-
WihPoEbR4)
Wikipedia:	Role-based	access	control	(https://en.wikipedia.org/wiki/Role-
based_access_control)

http://docs.mongodb.org/manual
http://docs.mongodb.org/manual/core/authorization
http://www.youtube.com/watch?v=W-WihPoEbR4
https://en.wikipedia.org/wiki/Role-based_access_control

Backing	up	and	restoring	a	MongoDB
database
This	recipe	teaches	you	how	to	back	up	a	MongoDB	database	using	the
mongodump	utility	and	restore	it	using	mongorestore.

Getting	ready
This	recipe	requires	a	running	MongoDB	server	and	access	to	a	user	account	with
membership	in	the	userAdmin	role.

How	to	do	it...
Follow	these	steps	to	back	up	a	MongoDB	database:

1. Connect	to	MongoDB	as	a	user	with	membership	in	the	userAdmin	role:

mongo	--username	admin	--password	""	admin

2. Create	an	account	with	membership	in	the	backup	and	restore	roles	to	be
used	for	creating	and	restoring	backups:

db.createUser({

	user:	"backupusr",

	pwd:	"B@CK&4th",

	roles:	[

	{	role:	"backup",	db:	"admin"	},

	{	role:	"restore",	db:	"admin"	}

]

})

3. Use	mongodump	on	the	command-line	to	export	a	MongoDB	database:

mongodump	--authenticationDatabase	admin	--username

backupusr

	--password	""	--db	packt

4. To	restore	a	database	from	the	backup	made	by	mongodump,	use	the
mongorestore	program:

mongorestore	--authenticationDatabase	admin	--username

backupusr

	--password	""	--drop	--db	packt	dump/packt

How	it	works...
The	account	used	to	make	a	backup	must	have	the	privileges	assigned	to	the
backup	role	and	the	restore	account	must	have	those	assigned	to	the	restore	role.
So,	we	connected	to	the	MongoDB	server	and	created	an	account	with
membership	in	both	roles	prior	to	using	the	utilities:

db.createUser({

	user:	"backupusr",

	pwd:	"B@CK&4th",

	roles:	[

	{	role:	"backup",	db:	"admin"	},

	{	role:	"restore",	db:	"admin"	}

]

})

The	new	account	is	then	used	with	mongodump	to	back	up	our	database:

mongodump	--authenticationDatabase	admin	--username	backupusr	

	--password	""	--db	packt

The	preceding	invocation	exports	everything	in	the	packt	database	as	specified	
by	the	--db	argument.	If	--db	is	not	given,	mongodump	exports	all	of	the	available	
databases	except	for	the	server's	local	database.	It's	possible	to	export	just	a	
specific	collection	from	the	database	using	the	--collection	argument:

mongodump	--db	packt	--collection	authors

By	default,	mongodump	creates	a	local	directory	named	dump	to	organize	the	
exported	data.	Within	dump	exists	a	directory	for	each	exported	database	and	
within	that	are	two	files	for	each	collection.	The	first	file	is	a	BSON	file,	a	binary	
JSON-like	format	used	because	it	offers	a	richer	set	of	data	types	than	JSON	does.	
For	example,	JSON	doesn't	define	a	date	type.	Whereas	JSON	offers	only	a	single	
numeric	type,	BSON	supports	32	and	64-bit	integers	and	doubles.	The	second	file	
is	a	metadata	JSON	file	that	stores	details	about	the	collection,	such	as	any	
collection	options	or	index	definitions.

Note

mongodump	will	overwrite	any	existing	files	if	the	dump	directory	already	exists.	
To	avoid	problems,	you	can	specify	a	different	location	with	the				--out

argument:

	mongodump	--db	packt	--out	dump-$(date	+%F)

The	exported	collection	data	is	organized	by	database	in	the	dump	directory

The	path	to	the	collection	files	is	then	given	to	mongorestore	to	import	the	data
dumped	by	mongodump.	The	database	to	which	the	collections	will	be	inserted	is
named	using	the	--db	argument:

mongorestore	--authenticationDatabase	admin	--username	backupusr	

	--password	""	--drop	--db	packt	dump/packt

mongorestore	only	inserts	the	data;	if	documents	with	the	same	_id	field	already	
exist	in	a	collection	then	those	records	are	skipped,	not	updated.	This	may	or	may	
not	be	desired	depending	on	the	circumstances.	So	to	be	sure	that	the	restored	data	
matches	what	was	exported,	the	--drop	argument	is	used,	which	instructs	
mongorestore	to	drop	the	existing	collection	first	before	importing	the	backup.

Apart	from	mongodump	and	mongorestore,	there	is	also	mongoexport	and	
mongoimport.	mongoexport	exports	a	collection's	data	to	either	a	JSON	or	CSV	
file	and	mongoimport	imports	data	from	these	formats.	Keep	in	mind	however	
that	JSON's	type	system	(and	certainly	"types"	in	CSV	is	less	granular	than	
BSON's	and	some	fidelity	can	be	lost.	For	reliable	backups,	mongodump	and

mongorestore	are	preferred.

The	default	export	format	of	mongoexport	is	JSON.	To	export	a	collection's	data
to	CSV	instead,	use	the	--csv	argument:

mongoexport	--db	packt	--collection	titles	--csv	--out	titles.csv

Specific	fields	can	be	targeted	for	export	as	well	by	providing	a	comma-separated
list	of	names	using	the	--fields	argument:

mongoexport	--db	packt	--collection	titles	--fields	isbn,title,	

	authors,year,language,pages	--csv	--out	titles.csv

Some	arguments	worth	noting	when	importing	data	with	mongoimport	are	--
type,	which	specifies	the	import	file's	type	(either	JSON	for	CSV),	--
headerline	-	to	skip	the	first	row	of	data	in	the	case	of	column	headers	in	a	CSV
file,	--fields	-	to	import	only	specific	fields	from	the	file,	and	--upsert,	which
performs	an	upsert	action	on	existing	documents	instead	of	skipping	them:

mongoimport	--db	packt	--collection	titles	--fields	isbn,title,

	authors	--type	csv	--upsert	<	titles.csv

See	also
Refer	to	the	following	resources	for	more	information	on	backing	up	and	restoring
MongoDB	databases:

The	mongodump	manual	page	(man	1	mongodump)
The	mongorestore	manual	page	(man	1	mongorestore)
The	mongoexport	manual	page	(man	1	mongoexport)
The	mongoimport	manual	page	(man	1	mongoimport)
MongoDB	Manual:	MongoDB	Backup	Methods
(http://docs.mongodb.org/manual/core/backups)
BSON:	Binary	JSON	(http://bsonspec.org/)

http://docs.mongodb.org/manual/core/backups
http://bsonspec.org/

Configuring	a	MongoDB	replica	set
This	recipe	teaches	you	how	to	configure	replication	using	MongoDB	replica	sets.

When	replication	is	performed	using	replica	sets,	one	installation	of	MongoDB
identifies	as	the	primary	server	while	others	in	the	cluster	are	secondaries.	The
primary	server	accepts	writes,	which	are	replicated	to	the	secondaries,	while	the
secondaries	service	read	requests.	If	the	primary	server	goes	down,	the	secondary
servers	automatically	call	a	quorum	and	promote	one	of	the	secondaries	to	fill	the
primary's	role.	The	old	primary	rejoins	the	cluster	when	it	comes	back	on	line.
This	configuration	provides	redundancy,	distributed	read/write	access,	and
automatic	failover	for	high-availability.

Getting	ready
This	recipe	demonstrates	configuring	replica	sets	using	three	systems.	The	first
system	will	be	the	cluster's	primary	server	and	we	assume	that	its	IP	address	is
192.168.56.100.	The	other	two	systems	will	be	secondary	servers	using	the
addresses	192.168.56.102	and	192.168.56.103.	MongoDB	should	be	installed
on	all	three	systems.	You'll	also	need	administrative	access	to	complete	the
configuration	and	access	to	a	user	account	with	membership	in	the	userAdmin
role.

MongoDB	replication	relies	on	hostnames.	Before	you	begin	this	recipe,	make
sure	that	the	systems	are	accessible	to	one	another	by	the	hostname.	If	the	systems
are	inaccessible	and	you	are	unable	to	add	the	necessary	records	to	your
network's	DNS,	you	can	override	local	resolution	for	the	hosts	in	question	by
adding	entries	to	/etc/hosts,	similarly	to	the	following:

192.168.56.100	benito	benito.localdomain

192.168.56.101	javier	javier.localdomain

192.168.56.102	geomar	geomar.localdomain

How	to	do	it...
Follow	these	steps	to	configure	replication	using	MongoDB	replica	sets:

1. On	the	primary	system,	navigate	to	/var/lib/mongodb	and	use	openssl	to
create	a	shared	secret.	This	secret	serves	as	the	password	each	server	will
use	to	authenticate	itself	as	a	member	of	the	replication	cluster:

cd	/var/lib/mongodb

openssl	rand	756	-base64	-out	rs0.key

2. Secure	the	file's	permissions;	it	should	be	owned	by	mongodb	and	only
readable	by	its	owner:

chown	mongodb.mongodb	rs0.key

chmod	600	rs0.key

3. Open	/etc/mongod.conf	with	your	text	editor:

vi	/etc/mongod.conf

4. Locate	the	replSet	option,	uncomment	it,	and	assign	it	the	value	rs0:

#	Arg	is	<setname>[/<optionalseedhostlist>]

replSet	=	rs0

5. Uncomment	the	keyFile	option	and	provide	the	path	to	the	file	containing	the
shared	password:

#	Private	key	for	cluster	authentication

keyFile	=	/var/lib/mongodb/rs0.key

6. Save	your	changes	and	close	the	file.
7. Restart	the	MongoDB	server:

systemctl	restart	mongod.service

8. Copy	the	shared	secret	to	each	of	the	secondary	systems:

scp	rs0.key	192.168.56.101:/var/lib/mongodb/rs0.key

scp	rs0.key	192.168.56.102:/var/lib/mongodb/rs0.key

9. Repeat	steps	2-7	on	each	of	the	other	secondary	systems.
10. Connect	to	the	primary	MongoDB	server	and	create	an	account	with

membership	in	the	clusterManager	role	to	be	used	for	configuring	and
managing	the	replica	cluster:

db.createUser({

	user:	"repladmin",

	pwd:	"dupl1C@t3",

	roles:	[{	role:	"clusterManager",	db:	"admin"	}]

})

11. Authenticating	yourself	using	the	repladmin	user:

db.auth("repladmin",	"dupl1C@t3")

12. Use	the	rs.initiate()	method	to	initialize	the	cluster:

rs.initiate()

13. Register	the	secondary	members	using	rs.add():

rs.add("192.168.56.101")

rs.add("192.168.56.102")

How	it	works...
Clusters	must	contain	an	odd	number	of	servers	because	there	has	to	be	a	majority	
vote	to	approve	a	secondary's	proposal	to	take	on	the	role	of	primary	if	the	
primary	server	becomes	unavailable.	Three	servers	were	used,	which	is	the	
minimum	number	for	a	cluster	that	provides	proper	redundancy	and	availability.

Cluster	members	identify	themselves	to	one	another	using	a	shared	replica	set	
name	and	password,	which	we	provide	in	each	server's	mongod.conf	
configuration	file.	The	name	is	specified	using	the	replSet	option:

replSet	=	rs0

The	password	value	can	be	anything	up	to	1,024	characters.	For	security	reasons,	
a	long	random	string	is	preferred	for	resistance	against	brute	force	and	dictionary	
attacks.	We	can	generate	such	values	using	openssl	rand:

openssl	rand	756	-base64	-out	rs0.key

rand	generates	the	number	of	random	bytes	we	request,	in	this	case	756	bytes.	-
base64	encodes	them	using	the	Base64	encoding	scheme	to	represent	the	bytes	
safely	as	plain	text.	Encoding	incurs	some	overhead,	and	Base64	encodes	three	
bytes	as	four	characters	and	pads	the	result	when	less	than	three	bytes	are	
available.	So,	Base64-encoding	the	765	random	bytes	results	in	1,024	characters	
of	text	suitable	for	our	needs.

The	resulting	key	file	containing	the	password	is	copied	to	each	system.	Its	
ownership	is	set	to	the	system's	mongodb	user	and	access	permissions	to	the	file	
are	revoked	for	everyone	except	that	user:

chown	mongodb.mongodb	rs0.key

chmod	600	rs0.key

The	file	is	specified	in	the	configuration	file	using	the	keyFile	option:

keyFile	=	/var/lib/mongodb/rs0.key

Management	of	the	cluster	requires	permissions	assigned	to	the	clusterManager	
role,	so	we	then	created	an	account	with	membership	in	that	role,	and	then	we	
authenticated	ourselves	using	the	new	account:

db.createUser({

	user:	"repladmin",

	pwd:	"dupl1C@t3",

	roles:	[{	role:	"clusterManager",	db:	"admin"	}]

})

db.auth("repladmin",	"dupl1C@t3")

We	started	the	cluster	using	rs.initiate()	on	the	primary	server	and	then
registered	the	secondary	servers	using	rs.add():

rs.initiate()

rs.add("192.168.56.101")

rs.add("192.168.56.102")

After	rs.initiate()	is	invoked,	you'll	notice	the	mongo	client's	prompt	changes
to	rs0:primary	to	notify	us	that	we're	connected	to	the	primary	server	in	the	rs0
replication	group.	If	you	were	to	log	in	to	a	secondary	server,	the	prompt	would
read	rs0:secondary.

Alternatively,	the	cluster	can	be	configured	by	passing	an	object	that	specifies	the
secondary	servers	as	an	argument	to	rs.initiate().	The	object's	_id	property
is	the	name	of	the	set	and	the	members	property	is	an	array	of	secondary	hosts:

rs.initiate({

	_id	:	"rs0",

	members	:	[

	{_id	:	0,	host	:	"192.168.56.100"},

	{_id	:	1,	host	:	"192.168.56.101"},

	{_id	:	2,	host	:	"192.168.56.102"}

]

})

See	also
Refer	to	the	following	resources	for	more	information	on	working	with	MongoDB
replica	sets:

MongoDB	Manual:	Replication
(http://docs.mongodb.org/manual/core/replication-introduction)
MongoDB	Replication	and	Replica	Sets	(http://www.youtube.com/watch?
v=CsvbG9tykC4)

http://docs.mongodb.org/manual/core/replication-introduction
http://www.youtube.com/watch?v=CsvbG9tykC4

Setting	up	an	OpenLDAP	directory
This	recipe	teaches	you	how	to	install	OpenLDAP,	an	open-source	implementation
of	an	X.500	directory	server.	The	X.500	series	of	protocols	was	developed	in	the
late	1980s	to	support	the	storage	and	lookup	of	names,	e-mail	addresses,	computer
systems,	and	other	entities	in	a	hierarchical	fashion.	Each	entry	is	a	node	in	a
directory	information	tree	(DIT)	and	is	identified	by	its	distinguished	name	(DN).
Information	about	the	entry	is	represented	as	key/value	pairs	known	as	attributes.

Getting	ready
This	recipe	requires	a	CentOS	system	with	a	working	network	connection	and
administrative	privileges	either	by	using	the	root	account	or	sudo.

How	to	do	it...
Follow	these	steps	to	set	up	an	OpenLDAP	directory:

1. Install	the	openldap-server	and	openldap-clients	packages:

yum	install	openldap-servers	openldap-clients

2. Copy	the	database	configuration	file	included	with	OpenLDAP	to	the	server's
data	directory.	Ensure	the	file	is	owned	by	the	ldap	user:

cp	/usr/share/openldap-servers/DB_CONFIG.example

/var/lib/ldap/DB_CONFIG

chown	ldap.ldap	/var/lib/ldap/DB_CONFIG

3. Use	slappasswd	to	generate	a	password	hash	for	OpenLDAP's	Manager
account.	Enter	the	desired	password	when	prompted:

slappasswd

4. Start	the	LDAP	server	and	optionally	enable	it	to	start	automatically
whenever	the	system	reboots:

systemctl	start	slapd.service

systemctl	enable	slapd.service

5. Open	port	389	in	the	system's	firewall	to	allow	outside	connections	to	the
server:

firewall-cmd	--zone=public	--permanent	--add-service=ldap

firewall-cmd	--reload

6. Create	the	file	config.ldif	using	the	following	content.	The	DIT's	suffix	is
based	on	the	domain	ldap.example.com	and	the	value	for	olcRootPW	is	the
password	hash	obtained	in	step	3:

dn:	olcDatabase={2}hdb,cn=config

changetype:	modify

replace:	olcSuffix

olcSuffix:	dc=ldap,dc=example,dc=com

-

replace:	olcRootDN

olcRootDN:	cn=Manager,dc=ldap,dc=example,dc=com

-

add:	olcRootPW

olcRootPW:	{SSHA}cb0i4Kwzvd5tBlxEtwB50myPIUKI3bkp

dn:	olcDatabase={1}monitor,cn=config

changetype:	modify

replace:	olcAccess

olcAccess:	{0}to	*	by	dn.base="gidNumber=0+uidNumber=0,

	cn=peercred,cn=external,cn=auth"	read	by	dn.base="cn=

	Manager,dc=ldap,dc=example,dc=com"	read	by	*	none

7. Invoke	ldapmodify	to	execute	the	operations	in	config.ldif:

ldapmodify	-Y	EXTERNAL	-H	ldapi:///	-f	config.ldif

8. Use	ldapadd	to	import	the	cosine,	inetorgperson,	and	nis	schemas	found
in	/etc/openldap/schema:

cd	/etc/openldap/schema

ldapadd	-Y	EXTERNAL	-H	ldapi:///	-f	cosine.ldif

ldapadd	-Y	EXTERNAL	-H	ldapi:///	-f	inetorgperson.ldif

ldapadd	-Y	EXTERNAL	-H	ldapi:///	-f	nis.ldif

9. Create	the	file	root.ldif	with	the	following	content:

dn:	dc=ldap,dc=example,dc=com

objectClass:	dcObject

objectClass:	organization

o:	My	Company's	LDAP	Database

10. Use	ldapadd	to	import	root.ldif,	authenticating	yourself	with	the	Manager
account:

ldapadd	-D	"cn=Manager,dc=ldap,dc=example,dc=com"	-W	-H

	ldapi:///	-f	root.ldif

How	it	works...
We	first	installed	the	openldap-server	package,	which	contains	the	LDAP
server	(slapd)	and	some	supporting	utilities,	and	the	openldap-clients
package,	which	installed	the	basic	utilities	used	for	working	with	the	directory
server:

yum	install	openldap-servers	openldap-clients

OpenLDAP	uses	the	Berkeley	DB	(BDB/HDB)	database	for	backend	data	storage,
indexing,	and	caching.	The	database	is	configured	separately	from	the	directory
server	and	an	example	configuration	file	is	installed	along	with	the	server.	We
copied	the	example	into	the	server's	data	directory	but	left	it	with	its	default
values;	the	defaults	are	fine	to	start	with	although	you'll	want	to	review	the
settings	periodically	after	you	deploy	OpenLDAP	to	ensure	the	best	performance
(man	5	slapd-bdb	provides	descriptions	of	the	file's	configuration	options):

cp	/usr/share/openldap-servers/DB_CONFIG.example	

	/var/lib/ldap/DB_CONFIG

The	directory's	administrative	user	Manager	doesn't	have	an	assigned	password	at	
first.	OpenLDAP	expects	the	password	to	be	hashed	so	we	created	a	suitable	
value	using	slappasswd:

slappasswd

The	default	hashing	algorithm	used	by	slappasswd	is	salted	SHA	(SSHA	as	
indicated	by	the	{SSHA}	prefix	in	its	output.	It's	possible	to	hash	the	password	
using	a	different	algorithm	if	required	by	specifying	it	using	the	-h	argument.	The	
possible	values	are	{CRYPT},	{MD5},	{SMD5}	(salted	MD5,	{SHA},	or	{SSHA}.	
The	salted	algorithms	are	preferred	over	their	nonsalted	counterparts	because	the	
randomly	generated	salt	slappasswd	incorporates	into	the	hash	makes	the	hash	
resistant	to	rainbow	attacks.

OpenLDAP	has	deprecated	its	file-based	configuration	approach	in	favor	of	
online	configuration,	storing	parameters	in	a	config	DIT	so	that	they	can	be	
updated	without	needing	to	restart	the	directory	server	for	the	changes	to	take	
effect.	So	after	starting	the	server,	we	wrote	the	necessary	operations	to	
config.ldif	that	will	make	our	updates	and	then	executed	them	as	a	batch	with

ldapmodify:

ldapmodify	-Y	EXTERNAL	-H	ldapi://	-f	config.ldif

The	-H	argument	provides	one	or	more	URIs	for	the	servers	we	want	to	connect	
to.	We	can	specify	the	transport	protocol,	hostname	or	IP	address,	and	port,	but	the	
URI	is	not	a	full	RFC-4516	style	LDAP	URI	(other	components	such	as	the	base	
DN	are	given	using	other	arguments.	The	supported	protocols	are	ldap,	ldaps	
(LDAP	over	SSL,	and	ldapi	(LDAP	over	IPC/unix-socket.	No	hostname	is	
required	to	access	the	local	host,	so	just	ldapi://	is	used.

The	-Y	argument	specifying	EXTERNAL	as	the	authentication	mechanism	allows	the	
use	of	mechanisms	external	to	the	server's	SASL	methods.	When	paired	with	
ldapi,	EXTERNAL	uses	our	login	session's	username	to	authenticate	us.

The	default	behavior	for	ldapmodify	is	to	read	input	from	STDIN,	but	the	-f	
argument	can	specify	an	input	file	instead.	Since	the	statements	are	rather	verbose,	
using	an	input	file	is	a	great	idea	because	you	can	review	them	for	any	mistakes	
beforehand.	If	you	do	want	to	provide	them	via	STDIN	however,	I	recommend	that	
you	use	the	-c	argument	to	run	ldapmodify	in	"continuous	mode".	The	program	
terminates	when	it	encounters	an	error	by	default,	but	in	continuous	mode	it	will	
keep	running.	This	will	give	you	the	opportunity	to	resubmit	the	operation	if	
there's	a	problem,	without	reconnecting:

ldapmodify	-Y	EXTERNAL	-H	ldapi:///	-c

Our	first	operation	changed	the	DIT's	suffix	from	the	default	dc=my-
domain,dc=com	to	something	more	appropriate.	The	recipe	uses
ldap.example.com	for	example	purposes,	but	of	course	you	may	substitute	your	
own	domain	accordingly:

dn:	olcDatabase={2}hdb,cn=config

changetype:	modify

replace:	olcSuffix

olcSuffix:	dc=ldap,dc=example,dc=com

The	suffix	is	stored	in	the	olcSuffix	attribute	of	the	olcDatabase={2}hdb,cn=	
config	entry	and	represents	the	top	level	of	the	DIT.	Traditionally,	the	suffix	is	
based	on	a	domain	name	and	is	expressed	as	a	series	of	domain	components	(DC),

so	the	domain	ldap.example.com	becomes	dc=ldap,dc=example,dc=com.

The	suffix	appears	in	a	few	other	places,	so	we	needed	to	update	those	as	well	-
the	olcRootDN	attribute,	which	lists	the	name	of	the	DIT's	administrative	user,	and
in	the	permission	statement	in	olcAccess	that	grants	access	to	Manager	and	the
system's	root	account.	Additionally,	we	added	the	olcRootPW	attribute	that	stores
the	Manager's	password	hash.	We	don't	have	to	specify	the	DN	multiple	times	for
attributes	on	same	entry.	Rather,	we	can	separate	the	operations	with	a	single
hyphen:

replace:	olcRootDN

olcRootDN:	cn=Manager,dc=ldap,dc=example,dc=com

-

add:	olcRootPW

olcRootPW:	{SSHA}3NhShraRoA+MaOGSrjWTzK3fX0AIq+7P

dn:	olcDatabase={1}monitor,cn=config

changetype:	modify

replace:	olcAccess

olcAccess:	{0}to	*	by	dn.base="gidNumber=0+uidNumber=0,

	cn=peercred,cn=external,cn=auth"	read	by	dn.base="cn=

	Manager,dc=ldap,dc=example,dc=com"	read	by	*	none

Next,	we	imported	the	cosine,	nis,	and	inetorgperson	schemas.	Creating	new	
schemas	from	scratch	can	be	a	daunting	task	as	a	fair	amount	of	planning	is	
required	to	identify	what	types	are	needed	and	what	PEN/OIDs	should	be	
allocated.	Importing	these	schemas	provided	with	OpenLDAP	gives	us	access	to	
various	useful	predefined	types:

ldapadd	-Y	EXTERNAL	-H	ldapi:///	-f	cosine.ldif

ldapadd	-Y	EXTERNAL	-H	ldapi:///	-f	inetorgperson.ldif

ldapadd	-Y	EXTERNAL	-H	ldapi:///	-f	nis.ldif

cosine	defines	a	standard	X.500	directory	services	schema	that	was	originally	
developed	for	the	COSINE	PARADISE	Project	and	is	outlined	in	RFC-4524.	It	
gives	us	types	such	as	document	and	domain	objects	and	attributes	such	as	host,	
mail,	and	documentAuthor.	inetorgperson	defines	the	inetOrgPerson	class,	
a	person	object	that	attempts	to	"meet	the	requirements	found	in	today's	Internet	
and	intranet	directory	service	deployments"	as	described	by	RFC-2798	and	RFC-
4524.	nis	defines	a	Network	Information	Services	schema	with	user	and	host	
attributes	useful	for	setting	up	centralized	authentication,	such	as	uidNumber,	
gidNumber,	ipNetworkNumber,	and	ipNetmaskNumber.

If	you	look	at	the	contents	of	these	files,	you'll	find	that	object	identifiers	(OIDs)
play	an	important	role	in	schema	definitions,	providing	globally	unique
identification	of	various	object	classes	and	attributes.	OIDs	are	a	string	of
numbers	separated	by	dots,	read	left	to	right,	with	each	position	representing	a
level	in	the	distributed	hierarchy.	Top	levels	of	the	hierarchy	are	maintained	by
various	standards	bodies	and	registry	authorities,	and	Internet	Assigned	Numbers
Authority	(IANA)	allows	individuals	to	register	for	their	own	branch	under	the
OID	1.3.6.1.4.1.	For	example,	1.3.6.1.4.1.4203	is	assigned	to	the
OpenLDAP	project.

Finally,	we	need	to	define	the	domain	component	object	(dcObject)	first.	This
object	is	the	root	of	our	local	branch	of	the	directory	under	which	future	entries
can	be	added.	If	your	experience	centers	mostly	on	working	with	relational
databases	such	as	MySQL	or	with	modern	NoSQL	databases	such	as	MongoDB,
you	can	think	of	dcObject	as	the	database:

dn:	dc=ldap,dc=example,dc=com

objectClass:	dcObject

objectClass:	organization

o:	My	Company's	LDAP	Database

While	using	ldapadd	to	import	the	definition,	we	provided	the	-D	argument	to
specify	the	Manager	account	and	-W	to	be	prompted	for	the	account's	password:

ldapadd	-D	"cn=Manager,dc=ldap,dc=example,dc=com"	-W	-H	ldapi:///

-f	root.ldif

See	also
Refer	to	the	following	resources	for	more	information	on	working	with
OpenLDAP:

The	ldapmodify	manual	page	(man	1	ldapmodify)
OpenLDAP	(http://www.openldap.org/)
Understanding	the	LDAP	Protocol,	Data	Hierarchy,	and	Entry	Components
(http://www.digitalocean.com/community/tutorials/understanding-the-ldap-
protocol-data-hierarchy-and-entry-components)
How	to	Use	LDIF	Files	to	Make	Changes	to	an	OpenLDAP	System
(http://www.digitalocean.com/community/tutorials/how-to-use-ldif-files-to-
make-changes-to-an-openldap-system)
How	to	Get	Your	Own	LDAP	OID
(http://ldapwiki.willeke.com/wiki/How%20To%20Get%20Your%20Own%20LDAP%20OID

http://www.openldap.org/
http://www.digitalocean.com/community/tutorials/understanding-the-ldap-protocol-data-hierarchy-and-entry-components
http://www.digitalocean.com/community/tutorials/how-to-use-ldif-files-to-make-changes-to-an-openldap-system
http://ldapwiki.willeke.com/wiki/How%20To%20Get%20Your%20Own%20LDAP%20OID

Backing	up	and	restoring	an
OpenLDAP	database
This	recipe	teaches	you	how	to	back	up	an	OpenLDAP	database	by	exporting	the
directory	to	an	LDIF	file,	which	can	then	be	imported	later	to	restore	the	database.

Getting	ready
This	recipe	requires	a	CentOS	system	with	a	working	network	connection	and
administrative	privileges	either	using	the	root	account	or	sudo.

How	to	do	it...
To	back	up	an	LDAP	directory,	export	the	directory	using	the	slapcat	utility:

slapcat	-b	"dc=ldap,dc=example,dc=com"	-l	backup.ldif

To	rebuild	the	directory	from	an	export,	follow	these	steps:

1. Stop	the	LDAP	server:

service	stop	slapd.service

2. Import	the	file	using	slapadd:

slapadd	-f	backup.ldif

3. Ensure	the	data	files	are	owned	by	the	ldap	user:

chown	-R	ldap.ldap	/var/lib/ldap/*

4. Restart	the	LDAP	server:

service	restart	slapd.service

How	it	works...
slapcat	exports	the	LDAP	database's	contents	to	LDIF-formatted	output.	The	
content	is	sent	to	STDOUT	by	default,	so	you	should	either	capture	it	using	the	
shell's	redirect	operators	(>	or	>>	or	using	the	command's	-l	(lowercase	L	
argument,	which	specifies	the	name	of	an	output	file:

slapcat	-b	"dc=ldap,dc=example,dc=com"	-l	backup.ldif

The	suffix	of	the	targeted	directory	is	given	using	the	-b	argument.	If	there	are	any	
subordinate	directories,	they'll	be	exported	as	well	by	default.	To	eliminate	
subordinates	from	the	export	and	to	export	only	the	top-level	directory	contents,	
use	the	-g	argument:

slapcat	-b	"dc=ldap,dc=example,dc=com"	-g	-l	backup.ldif

slapcat	returns	entries	in	the	order	it	encounters	them	while	scanning	the	
database.	This	means	it's	possible	for	an	object's	definition	to	appear	in	the	export	
after	that	of	an	entity	who's	attributes	reference	it.	This	isn't	a	problem	for	
slapadd	because	of	how	it	imports	data	as	opposed	to	ldapadd,	so	the	former	
utility	should	be	used	to	restore	the	directory.	Otherwise	you'll	have	to	edit	the	file	
to	ensure	the	ordering	won't	pose	a	problem;	something	I'm	sure	you'll	agree	isn't	
appealing	given	the	format's	verbosity:

slapadd	-f	backup.ldif

When	performing	exports	and	imports,	the	LDAP	server	should	not	be	running.	
This	makes	any	write	actions	impossible	during	the	process	to	guarantee	the	
integrity	and	consistency	of	the	data.

slapadd	writes	files	directly	to	the	server's	data	directory	so	that	the	files	will	be	
owned	by	root	(the	user	account	used	to	run	slapadd,	so	their	ownership	needs	
to	be	set	to	ldap	after	the	import	but	before	the	server	is	started	so	that	the	
process	can	access	them:

chown	-R	ldap.ldap	/var/lib/ldap/*

See	also
Refer	to	the	following	resources	for	more	information	on	working	with
OpenLDAP	backups:

OpenLDAP	FAQ-O-Matic:	How	do	I	backup	my	directory
(http://www.openldap.org/faq/data/cache/287.html)
OpenLDAP	Administrator's	Guide:	Maintenance
(http://www.openldap.org/doc/admin24/maintenance.html)

http://www.openldap.org/faq/data/cache/287.html
http://www.openldap.org/doc/admin24/maintenance.html

Chapter	8.	Managing	Domains	and
DNS
This	chapter	contains	the	following	recipes:

Setting	up	BIND	as	a	resolving	DNS	server
Configuring	BIND	as	an	authoritative	DNS	server
Writing	a	reverse	lookup	zone	file
Setting	up	a	slave	DNS	server
Configuring	rndc	to	control	BIND

Introduction
In	this	chapter,	you'll	find	recipes	that	cover	working	with	BIND	in	various
capacities	to	manage	your	domain	infrastructure	better.	You'll	learn	how	to
configure	BIND	as	a	resolving	DNS	server	capable	of	caching	lookup	results
which	can	help	reduce	latency,	and	also	how	to	configure	BIND	as	an
authoritative	DNS	server	to	provide	authoritative	responses	publicly	for	your
domain	or	for	resources	on	your	private	intranet.	Also	discussed	are	handling
reverse	lookup	requests	and	ensuring	your	resources	remain	accessible	by
configuring	redundant,	secondary	authoritative	DNS	servers	that	perform
master/slave-style	transfers	of	zone	records.	Finally,	you'll	learn	how	to	set	up
and	use	rndc,	a	very	useful	administration	client	for	BIND	servers.

Setting	up	BIND	as	a	resolving	DNS
server
This	recipe	teaches	you	how	to	set	up	a	resolving	DNS	server	using	BIND.	
Domain	Name	Service	(DNS	is	the	unsung	workhorse	of	the	Internet,	which	
translates	memorable	names	such	as	facebook.com	and	google.com	to	IP	
addresses	such	as	172.217.18.238	and	31.13.76.68.

Communication	across	the	Internet	uses	IP	addresses	to	identify	systems,	but	
numbers	are	hard	for	people	to	remember.	For	example,	it's	easier	for	us	to	
remember	google.com	than	172.217.18.238	(or	the	IPv6	address
2607:f8b0:4006:80e::200e.	So,	when	you	type	google.com	in	your	browser's	
address	bar,	your	system	queries	a	DNS	server	to	resolve	the	name	to	its	IP	
address	and	then	requests	the	page	from	the	web	server	at	that	address.	When	you	
write	an	e-mail,	a	DNS	server	retrieves	the	IP	address	of	the	recipient's	mail	
server	before	the	message	is	sent.

A	resolving	DNS	server	maintained	by	your	service	provider	is	probably	the	first	
server	to	receive	such	lookup	requests	and	it	will	respond	immediately	if	it	
already	happens	to	know	the	address.	If	not,	it	contacts	the	DNS	servers	in	the	
requested	domain's	parent	zone	and	receives	either	a	referral	to	the	authoritative	
DNS	server	of	the	requested	domain	or	to	servers	in	the	next	zone	in	the	DNS	
hierarchy.	If	the	request	reaches	the	top	of	the	hierarchy	without	being	referred	to	
an	authoritative	server,	then	the	domain	doesn't	exist.	Otherwise,	the	authoritative	
server	sends	the	address	back	to	your	resolving	server.	The	resolver	then	caches	
the	response	so	that	future	lookups	will	complete	faster.

Depending	on	your	network	and	how	many	servers	are	involved	in	resolving	an	
address,	DNS	lookups	can	become	a	significant	source	of	latency.	Address	
records	should	be	found	within	the	first	one	or	two	hops,	and	the	resolving	server	
should	be	physically	close	to	the	user	for	best	performance.	Because	of	this,	
setting	up	a	local	DNS	server	to	cache	lookup	results	can	greatly	improve	how	
users	experience	the	speed	of	your	network.

Getting	ready
This	recipe	requires	a	CentOS	system	with	a	working	network	connection.	It
assumes	that	the	system	is	configured	with	the	IP	address	192.168.56.10.
Administrative	privileges	are	also	required,	either	by	logging	in	with	the	root
account	or	through	the	use	of	sudo.

How	to	do	it...
Follow	these	steps	to	install	BIND	as	a	resolving	DNS	server:

1. Install	the	bind	and	bind-util	packages:

yum	install	bind	bind-utils

2. Open	BIND's	configuration	file	at	/etc/named.conf	with	your	text	editor:

vi	/etc/named.conf

3. Find	the	listen-on	option	inside	the	braces	of	options.	Update	its	list	to
reflect	the	system's	IP	addresses	BIND	will	use:

listen-on	port	53	{	127.0.0.1;	192.168.56.10;	};

4. Change	the	value	of	listen-on-v6	similarly	if	you	want	to	service	IPv6
requests.	Otherwise,	update	the	value	to	none:

listen-on-v6	port	53	{	none;	}

5. Update	the	allow-query	option	with	the	list	of	IP	addresses	that	BIND	is
allowed	to	accept	requests	from:

allow-query	{	localhost;	192.168.56.0/24;	};

6. Save	your	changes	to	the	configuration	file	and	close	it.
7. Start	BIND	with	systemctl,	optionally	enable	it	to	start	automatically	when

the	system	reboots:

systemctl	start	named.service

systemctl	enable	named.service

8. Enable	FirewallD's	dns	service	to	open	port	53	to	TCP	and	UDP	traffic:

firewall-cmd	--zone=public	--permanent	--add-service=dns

firewall-cmd	--reload

9. Request	a	lookup	using	dig	to	test	the	configuration:

dig	@192.168.56.10	google.com	A

How	it	works...
BIND	is	configured	as	a	resolving	DNS	server	by	default	but	we	still	want	to
update	a	few	options	to	define	how	it	accepts	lookup	requests.	The	first	change	is
to	the	listen-on*	options	found	in	the	options	section	which	specify	the	port
and	network	interface	BIND	listens	on	for	requests.	listen-on	applies	to	IPv4
networks	and	listen-on-v6	applies	to	IPv6.	In	both	cases,	the	standard	port	for
DNS	traffic	is	port	53:

listen-on	port	53	{	127.0.0.1;	192.168.56.10;	};

listen-on-v6	port	53	{	none;	}

Next,	we	updated	the	allow-query	option,	providing	a	whitelist	of	systems	that
BIND	may	accept	requests	from.	Addresses	can	be	provided	individually	or
written	in	CIDR	notation:

allow-query	{	localhost;	92.168.56.0/24;	}

Using	the	predefined	values	such	as	any,	localhost,	localnets,	and	none	is
also	acceptable.	Intuitively,	any	represents	all	addresses,	allowing	BIND	to	listen
on	all	of	the	system's	configured	addresses	or	accept	requests	from	any	source,
whereas	none	disallows	everything.	localhost	represents	all	of	the	system's
addresses	and	localnets	represents	all	addresses	on	all	of	the	networks	the
system	is	a	member	of.

Note

Be	careful	that	the	local	in	localhost	and	localnets	doesn't	give	you	a	false
sense	of	security.	If	your	system	is	connected	to	multiple	networks,	for	example,	a
public	network	(such	as	the	Internet)	and	a	private	internal	network,	both	of	them
are	considered	local.	Allowing	access	from	untrusted	networks	is	a	serious	risk
without	the	necessary	security	measures	in	place	because	an	open	DNS	server	can
be	abused	by	malicious	users	intent	on	carrying	out	several	types	of	denial	of
service	attacks.

After	BIND's	configuration	is	updated	and	it's	up	and	running,	we	can	test
everything	by	sending	a	lookup	request	with	dig	and	inspect	the	response:

dig	@192.168.56.10	google.com	A

Requests	can	be	sent	to	a	specific	DNS	server	with	dig	by	providing	the	targeted
server's	address	prefixed	by	@.	If	a	DNS	server	isn't	given	in	the	invocation,	dig
will	send	the	request	to	the	servers	listed	in	your	system's	/etc/resolve.conf
file.

After	the	address	of	the	DNS	server,	we	gave	the	resource	name	we're	interested
in	followed	by	the	desired	record	type.	In	the	preceding	example,	the	Address	(A)
record	for	google.com	is	sought.	Other	types	can	be	queried	too,	such	as	the
Name	Server	(NS)	and	Mail	Exchange	(MX)	records.

dig	queries	the	DNS	servers	and	displays	their	response

The	response	from	dig	is	organized	into	several	sections.	The	ANSWER	
SECTION	shows	the	A	record	we	requested.	The	AUTHORITY	SECTION	lists	
the	authoritative	DNS	servers	configured	for	the	requested	domain,	and	the	
ADDITIONAL	SECTION	shows	the	IP	addresses	of	the	authoritative	servers.	
Various	metadata	is	included	throughout,	such	as	which	flags	were	set	in	the	
request,	which	DNS	server	was	queried,	and	how	long	the	lookup	took	to	
complete.

When	you're	satisfied	with	the	testing	results,	you	can	configure	the	systems	on

your	network	to	use	the	new	DNS	server.	This	is	typically	done	by	adding	a	
nameserver	entry	in	each	system's	/etc/resolv.conf	file	that	provides	the	
DNS	server's	address:

nameserver	192.168.56.10

resolv.conf	may	be	dynamically	generated	depending	on	how	the	system's	
interfaces	are	configured.	If	this	is	the	case,	any	changes	you	make	in	the	file	will	
be	overwritten.	You'll	need	to	inspect	the	interfaces'	configuration	files	(for	
example,	/etc/sysconf/network-scripts/ifcfg-enp0s3,	and	if	PEERDNS	is	
set	to	yes	then	resolv.conf	is	maintained	by	the	network	manager.	Add	the	DNS	
entry	in	the	interface's	configuration	and	the	DNS	server's	address	will	make	its	
way	into	resolve.conf	the	next	time	the	interface	is	brought	up:

DNS=192.168.56.10

Bounce	the	interface	after	updating	the	configuration	for	the	change	to	take	effect	
and	verify	the	contents	of	resolve.conf:

ifdown	enp0s3	&&	ifup	enp0s3

cat	/etc/resolv.conf

Resolving	DNS	servers	are	sometimes	called	recursive	servers	because	they	send	
lookup	requests	to	each	level	in	the	zone	hierarchy	until	they	find	an	answer.	
Forwarding	DNS	servers	function	similarly	to	resolving/recursive	servers,	in	that	
both	types	accept	lookup	requests	and	cache	the	results	for	expediency;	however,	
forwarding	servers	send	their	requests	to	another	DNS	server	and	wait	for	the	
response,	delegating	the	resolution	process	instead	of	tracking	down	the	answer	
itself.	This	can	offload	a	lot	of	the	network	chatter	produced	by	a	resolving	DNS	
server	trying	to	service	a	request.

To	configure	BIND	to	run	as	a	forwarding	DNS	server,	open	/etc/named.conf	
again	and	add	the	forwarders	and	forward	options	to	the	options	block:

forwarders	{	8.8.8.8;	8.8.4.4;	};

forward	only;

The	forwarders	option	provides	a	list	of	DNS	servers	responsible	for	resolving	
lookup	requests.	The	example	identifies	Google's	public	DNS	servers	but	your	
service	provider	should	also	maintain	public	DNS	servers	that	you	can	use	if	you

prefer.

forward	only	forces	BIND	to	forward	requests	to	the	responsible	servers	listed
in	forwarders.	Only	when	the	responsible	server	fails	to	return	an	address	or	a
referral,	will	BIND	contact	the	root	servers	for	the	domain's	authoritative	DNS
servers	and	service	the	request	itself.	Recursion	isn't	completely	turned	off	on	a
forwarding	server	but	it	is	greatly	reduced.

See	also
The	following	resources	will	provide	you	with	more	information	on	how	DNS
works	and	how	to	configure	BIND:

The	dig	manual	page	(man	1	dig)
An	Introduction	to	DNS	Terminology
(http://www.digitalocean.com/community/tutorials/an-introduction-to-dns-
terminology-components-and-concepts)
DNS	for	Rocket	Scientists	(http://www.zytrax.com/books/dns/)
How	DNS	Works	(http://howdns.works/)
BIND	9	Administrator	Reference	Manual
(http://www.isc.org/downloads/bind/doc/)
RHEL	7	Networking	Guide:	BIND
(https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-BIND.html)
DNS	&	BIND	by	Cricket	Liu	and	Paul	Albitz
(http://shop.oreilly.com/product/9780596100575.do)

http://www.digitalocean.com/community/tutorials/an-introduction-to-dns-terminology-components-and-concepts
http://www.zytrax.com/books/dns/
http://howdns.works/
http://www.isc.org/downloads/bind/doc/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-BIND.html
http://shop.oreilly.com/product/9780596100575.do

Configuring	BIND	as	an	authoritative
DNS	server
A	benefit	to	hierarchical	structures	is	that	the	responsibility	for	subordinate	nodes	
can	be	delegated.	Although	the	Internet	Corporation	for	Assigned	Names	and	
Numbers	(ICANN	has	authority	over	the	DNS	directory,	it	delegates	the	
responsibility	to	accredited	registrars	for	top-level	domains,	such	as	com,	net,	
and	org,	and	delegates	to	the	appropriate	governmental	agencies	for	country	top-
level	domains,	such	as	ca,	de,	and	es.	Registrars	delegate	responsibility	to	you	
when	you	register	a	domain	and	you	may	further	delegate	the	responsibility	for	
your	subdomains	however	you	please.	Each	boundary	formed	by	delegating	
responsibility	creates	what	is	known	as	a	DNS	zone.

This	recipe	teaches	you	how	to	configure	BIND	to	operate	as	an	authoritative	
DNS	server	for	your	zone.	If	you	recall	the	previous	recipe's	discussion	on	how	a	
DNS	request	propagates,	you'll	remember	that	authoritative	servers	have	the	final	
say	for	a	resolution.	This	is	because	its	information	comes	from	outside	the	DNS	
system,	from	an	administrator	who	manually	configures	the	zone's	information.	
You'll	also	learn	how	to	write	a	zone	file	with	information	such	as	mapping	
hostnames	to	IP	addresses,	which,	I	promise,	isn't	as	scary	as	it	might	look	at	first	
glance.

Getting	ready
This	recipe	requires	a	CentOS	system	with	BIND	configured	as	a	resolving	DNS
server,	as	described	in	the	previous	recipe	(BIND's	configuration	will	be	updated
to	operate	as	an	authoritative	server).	Administrative	privileges	are	also	required,
either	by	logging	in	with	the	root	account	or	through	the	use	of	sudo.

Following	the	advice	of	RFC-2606	(Reserved	Top	Level	DNS	Names),	I'll	use
the	example.com	domain	for	illustration.	If	you	have	your	own	domain	name	then
feel	free	to	substitute.	Also	for	the	sake	of	illustration,	the	recipe	will	reflect	a
network	of	various	servers	that	handle	the	different	services	one	commonly	finds
in	a	domain,	such	as	e-mail	servers	and	web	servers.	The	systems	are	as	follows:

ns1:	Hosts	the	domain's	primary	authoritative	DNS	server	with	the	IP
address	192.168.56.10	(this	is	the	system	we'll	be	working	on)
ns2:	Hosts	a	secondary	authoritative	DNS	server	with	the	address
192.168.56.20

mail:	Hosts	the	primary	e-mail	server	with	the	address	192.168.56.12
mail2:	Hosts	a	secondary	e-mail	server	with	the	address	192.168.56.22
www:	Hosts	a	web	and	FTP	server	with	the	address	192.168.56.100

How	to	do	it...
Follow	these	steps	to	configure	BIND	as	an	authoritative	DNS	server:

1. Open	/etc/named.conf	with	your	text	editor:

vi	/etc/named.conf

2. Verify	that	the	listen-on*	and	allow-query	options	are	configured	as
described	in	the	previous	recipe:

listen-on	port	52	{	127.0.0.1;	192.168.56.10;	};

listen-on-v6	port	52	{	none;	};

allow-query	{	192.168.56.0/24;	};

3. Change	the	value	of	the	recursion	option	to	no	to	disable	BIND's	recursive
lookup	behavior	completely:

recursion	no;

4. At	the	end	of	the	file,	add	the	following	zone	configuration:

zone	"example.com."	in	{

	type	master;

	file	"/var/named/zones/example.com.fwd";

	allow-transfer	{	none;	};

};

5. Save	your	changes	and	close	the	file.
6. Create	the	/var/named/zones	directory:

mkdir	/var/named/zones

7. Create	the	zone	file	/var/named/zones/example.com.fwd	with	the
following	content	(our	discussion	in	How	it	works...	will	help	you
understand	the	meaning	of	each	record):

$TTL	1d

$ORIGIN	example.com.

;	start	of	authority	resource	record

@							IN	SOA	 	ns1	hostmaster.example.com.	(

	2016041501	;	serial

	12h	 	;	refresh

	5m		 	;	retry

	2w		 	;	expire

	3h)	 	;	negative	TTL

;	nameserver	records

	IN	NS	 	ns1

	IN	NS	 	ns2

ns1	 	IN	A	 	192.168.56.10	

ns2	 	IN	A	 	192.168.56.20

;	mail	records

@	 	IN	MX	 	10	mail

	IN	MX				20	mail2

mail	 	IN	A	 	192.168.56.12

mail2	 	IN	A	 	192.168.56.22

;	webserver	records

@			 	IN	A	 	192.168.56.100

www	 	IN	CNAME	@

ftp	 	IN	CNAME	@

8. Ensure	that	the	directory	and	zone	file	have	the	correct	ownership	and	access
permissions:

chown	root.named	/var/named/zones

chmod	750	/var/named/zones

chmod	640	/var/named/zones/*

9. Restart	BIND	for	the	configuration	changes	to	take	effect:

systemctl	restart	named.service

10. Request	a	lookup	using	dig	to	test	the	configuration:

dig	@192.168.56.10	example.com	SOA

How	it	works...
The	only	records	an	authoritative	DNS	server	should	serve	are	those	with
authoritative	information	about	its	zones,	so	we	began	by	disabling	recursion	in
BIND's	configuration	file.	When	disabled,	BIND	won't	forward	requests	or	try	to
resolve	a	lookup	request	for	non-authoritative	records:

recursion	off;

Then	we	added	a	short	section	at	the	end	of	the	configuration	file	that	specifies
how	the	BIND	server	should	function	for	the	example.com.	zone:

zone	"example.com."	in	{

	type	master;

	file	"/var/named/zones/example.com.fwd";

	allow-transfer	{	none;	};

};

The	section	starts	with	the	keyword	zone	to	denote	a	zone	configuration	and	is	
followed	by	the	zone's	name	given	as	a	fully	qualified	domain	name	(FQDN.	
FQDNs	always	end	with	a	dot	because	they	include	all	of	the	delegated	paths,	
including	the	root.	Since	the	root	of	the	DNS	system	doesn't	have	a	name,	its	
separator	appears	as	a	trailing	dot.	Thus,	example.com.	is	fully	qualified	but	
example.com	is	not.	(Some	people	misuse	the	term	FQDN	when	they're	really	
talking	about	partially	qualified	domain	names.	This	is	one	of	my	irrational	pet	
peeves	so	consider	yourself	warned.

Note

Thinking	about	how	you	navigate	the	filesystem	can	help	you	understanding	the	
difference	between	the	fully	qualified	and	partially	qualified	names.	Navigation,	
when	the	absolute	(fully	qualified	path	/var/named	is	given,	begins	at	the	root	of	
the	filesystem,	descends	into	the	var	directory,	and	then	into	named.	The	root	
directory	has	no	name	other	than	its	separator.	However,	the	relative	(partially	
qualified	path	var/named	doesn't	start	with	the	separator.	Its	navigation	begins	
where	the	current	directory	happens	to	be	at	the	moment.	Domain	names	are	
similar,	but	they	list	traverse	the	hierarchy	backwards	toward	the	root,	and	the	dot	
is	used	as	a	separator	instead	of	a	slash.

The	type	master	option	specifies	this	server	as	the	zone's	primary	authoritative	
DNS	server.	A	common	deployment	strategy	sets	up	several	authoritative	servers	
in	a	master/slave	configuration.	An	administrator	updates	the	zone	information	on	
the	primary,	which	is	identified	as	the	master;	the	information	is	then	transferred	to	
one	or	more	slaves	acting	as	secondary	authoritative	DNS	servers.	You'll	learn	
how	to	set	this	up	in	the	Setting	up	a	slave	DNS	server	recipe,	but	for	now	we'll	
only	focus	on	the	primary	server.

The	allow-transfers	option	lists	the	slave	systems	this	server	is	allowed	to	
respond	to	when	a	request	is	received	for	zone	information	transfers,	but	since	we	
don't	(yet	have	a	secondary	authoritative	DNS	server	configured,	we've	used	
none	to	disable	transfers.	This	helps	to	protect	us	from	a	specific	type	of	denial	of	
service	attack.	Resource	records	are	small	enough	to	fit	in	a	UDP	packet	or	two	
during	normal	lookup	activity,	but	zone	transfers	transmit	all	of	the	records	in	bulk	
over	TCP.	Malicious	users	repeatedly	sending	transfer	requests	in	quick	
succession	can	saturate	your	network.

The	zone's	information	is	stored	in	a	text	file	known	as	a	zone	file	whose	location	
is	given	with	the	file	option.	The	convention	followed	in	this	chapter	places	the	
files	in	a	zone	directory	under	/var/named	and	uses	fwd	and	rev	as	file	
extensions	to	indicate	whether	the	file	is	a	forward	lookup	or	a	reverse	lookup	
zone	file.	Thus,	our	file	is	saved	as	/var/named/zones/example.com.fwd.

This	recipe's	file	is	a	forward	zone	file	because	it	maps	names	to	their	IP	
addresses.	A	reverse	lookup	zone	maps	the	inverse	relationship,	which	is	
addresses	to	names.	They	are	discussed	in	the	Writing	a	reverse	lookup	zone	file	
recipe.

Note

I've	seen	a	handful	of	different	conventions	followed	when	it	comes	to	naming	
zone	files.	Some	administrators	use	zon	or	zone	as	the	file's	extension.	Some	will	
separate	the	zone	files	in	the	directories	named	fwd-zone	and	rev-zone.	
Honestly,	it	really	doesn't	matter	what	you	do	as	long	as	you	stay	consistent	
systemctl	restart	named.servicent	and	your	files	are	well	organized.

$TTL	is	the	first	directive	given	in	the	zone	file	and	gives	the	default	length	of	time	
a	resolving	DNS	server	may	cache	records	it	receives	from	the	authoritative

server.	Specific	records	may	provide	their	own	TTL,	which	overrides	this	default
value:

$TTL	14400

The	$ORIGIN	directive	provides	the	FQDN	identifying	the	zone.	Any	@	appearing
in	the	file	will	be	replaced	by	the	value	of	$ORIGIN:

$ORIGIN	example.com.

The	remaining	entries	are	collectively	called	resource	records	and	are	made	up	of
a	series	of	fields	in	the	order	name	ttl	class	type	values.	The	name	field
gives	the	name	of	the	resource	that	owns	the	record.	If	blank,	its	value	defaults	to
the	name	used	in	the	previous	record.	ttl	is	also	optional,	defaulting	to	the	value
of	$TTL.	And	for	our	purposes,	class	will	always	be	IN	because	we're	writing
the	Internet	resource	records.	The	other	classes	are	CH	for	Chaos	and	HS	for
Hesiod	but	they	aren't	in	widespread	use.

The	first	record	in	the	file	must	be	the	start	of	authority	(SOA)	record	which
identifies	that	this	server	is	the	authoritative	DNS	server	for	the	zone.	The	values
for	a	SOA	record	are	the	name	of	the	primary	authoritative	server	for	the	zone	(we
supplied	ns1),	an	e-mail	address	for	the	person	responsible	for	the	zone
(hostmaster.example.com.),	a	serial	number	(2016041501),	refresh	duration
(12h),	retry	duration	(5m),	expiration	duration	(2w),	and	the	length	of	time	negative
responses	(sent	when	the	requested	record	doesn't	exist)	from	the	server	can	be
cached	(3h).	Records	are	usually	written	as	single-line	entries,	but	parentheses
permit	us	to	split	the	record	over	several	lines:

;	start	of	authority	resource	record

@							IN	SOA	 	ns1	hostmaster.example.com.	(

	2016041501	;	serial

	12h	 	;	refresh

	5m		 	;	retry

	2w		 	;	expire

	3h)	 	;	negative	TTL

The	@	variable	that	would	normally	appear	in	the	e-mail	addresses	is	changed	to	a	
dot	in	hostmaster.example.com.	because	@	has	special	meaning	in	zone	files.	
Also	notice	which	names	are	fully	qualified.	Names	that	aren't	fully	qualified	will	
have	the	FQDN	appended	automatically,	so	ns1	is	understood	as

ns1.example.com..	If	the	e-mail	address's	domain	part	wasn't	fully	qualified
then	hostmaster.example.com	would	be	treated	as
hostmaster.example.com.example.com.,	which	certainly	isn't	what	we	want.

Values	beyond	that	in	the	SOA	record	are	primarily	of	interest	to	the	slave	DNS
servers.	The	refresh	value	informs	the	slave	how	often	it	should	try	to	refresh	its
copy	of	the	zone	file.	The	retry	duration	tells	the	slave	how	long	it	should	wait
between	connection	attempts	if	the	master	is	unreachable,	and	the	expiry	value
specifies	how	long	the	slave	can	satisfy	lookup	requests	as	an	authoritative	server
with	its	copy	of	the	zone	file	if	contact	with	the	master	is	completely	lost.	The
negative	TTL	is	the	length	of	time	a	resolver	should	cache	negative	responses
from	a	DNS	server,	for	example,	NXDOMAIN	and	NODATA	responses.

The	serial	number	is	an	arbitrary	that	10-digit	value	slaves	can	use	to	differentiate
this	version	of	the	zone	file	from	previous	versions.	Anytime	you	update	the	file,
you	must	also	update	the	serial	number.	A	popular	convention	is	to	use	the	current
date	followed	by	a	sequence	counter.	For	example,	April	15,	2016	is	written	as
20160415	and	then	two	additional	digits	are	added	to	identify	multiple	updates
during	the	same	day	(2016041501,	2016041502,	2016041503,	and	so	on).

Next,	we	gave	the	NS	records	that	identify	the	zone's	authoritative	DNS	servers.
The	SOA	and	NS	records	are	mandatory	in	every	zone	file:

;	nameserver	records

	IN	NS	 	ns1

	IN	NS	 	ns2

ns1	 	IN	A		 	192.168.56.10	

ns2	 	IN	A		 	192.168.56.20

The	NS	records	identify	the	names	of	the	authoritative	servers.	In	the	preceding	
example,	we	defined	n1	and	n2	as	the	zone's	authoritative	DNS	servers	which	are	
understood	as	ns1.example.com.	and	ns2.example.com.	since	they	are	not	
fully	qualified.	The	A	records	map	a	name	to	its	address	(AAAA	is	used	for	IPv6	
addresses.	The	records	we	wrote	in	the	example	say	ns1.example.com.	can	be	
reached	at	192.168.56.10	and	ns2.example.com.	can	be	reached	at	
192.168.56.20.

Note

The	NS	records	belong	to	the	zone	but	I	left	the	first	field	of	the	NS	records	blank
since	the	field	defaults	to	the	name	used	in	the	last	record.	In	this	case,	the	name
happens	to	be	@	from	the	SOA	record	(which	is	$ORIGIN).	Any	of	the	following
alternatives	mean	the	same	and	are	equally	acceptable:

@	IN	NS	n1

$ORIGIN	IN	NS	n1

example.com.	IN	NS	n1

However,	be	careful	because	the	MX	records	also	belong	to	the	zone.	As	we	begin
the	next	set	of	records,	the	last	name	is	ns2	from	that	server's	A	record.	This
means	the	first	MX	record	must	provide	either	@,	$ORIGIN,	or	example.com..

The	MX	records	define	the	names	of	the	servers	responsible	for	handling	e-mail	for
the	zone.	The	mailers	are	assigned	a	relative	preference	and	a	client	will	try	to
communicate	with	the	mail	server	with	the	lowest	preference	first.	If	the	server	is
unreachable,	the	client	attempts	to	connect	to	the	next	lowest	until	it	exhausts	the
list:

;	mail	records

@	 	IN	MX	 	10	mail

	IN	MX	 	20	mail2

mail	 	IN	A	 	192.168.56.12

mail2	 	IN	A	 	192.168.56.22

Our	configuration	defines	the	principal	mail	server	mail.example.com.	with	the
IP	address	192.168.56.12	and	a	relative	preference	of	10.	The	second	server,
perhaps	a	backup	in	the	event	of	an	outage,	is	mail2.example.com.	at
192.168.56.22	with	a	preference	of	20.

Last,	we	defined	records	that	identify	our	zone's	web	server	and	other	aliases	for
the	system:

;	webserver	records

@			 	IN	A	 	192.168.56.100

www	 	IN	CNAME	@

ftp	 	IN	CNAME	@

The	ubiquity	of	www	appearing	at	the	beginning	of	URLs	has	waned	since	the	good	
old	days	of	the	dot-com	era.	Still,	many	zones	resolve	the	addresses	both	with	and	
without	www	to	the	same	IP.	Our	configuration	does	the	same,	returning

192.168.56.100	for	lookups	of	both	example.com	or	www.example.com.	This
is	accomplished	by	creating	the	A	record	that	maps	the	domain	to	the	web	server's
address	and	then	a	Canonical	Name	(CNAME)	record	that	aliases	www	to	the
domain's	A	record.	Our	configuration	also	aliases	ftp	to	the	A	record	so	that	users
can	upload	their	site's	files	to	the	web	server	using	the	address
ftp.example.com.

See	also
Refer	to	the	following	resources	for	more	information	on	running	a	DNS	server
and	managing	your	domain:

BIND	9	Administrator	Reference	Manual
(http://www.isc.org/downloads/bind/doc)
Five	Basic	Mistakes	Not	to	Make	in	DNS
(http://archive.oreilly.com/pub/a/sysadmin/2007/04/26/5-basic-mistakes-
not-to-make-in-dns.html)
BIND	for	the	Small	LAN	(http://www.madboa.com/geek/soho-bind)
RFC-1034:	Domain	Concepts	and	Facilities
(https://tools.ietf.org/html/rfc1034)
RFC-1035:	Domain	Names-Implementation	and	Specification
(https://tools.ietf.org/html/rfc1035)
RFC-1912:	Common	DNS	Operational	and	Configuration	Errors
(https://tools.ietf.org/html/rfc1912)

http://www.isc.org/downloads/bind/doc
http://archive.oreilly.com/pub/a/sysadmin/2007/04/26/5-basic-mistakes-not-to-make-in-dns.html
http://www.madboa.com/geek/soho-bind
https://tools.ietf.org/html/rfc1034
https://tools.ietf.org/html/rfc1035
https://tools.ietf.org/html/rfc1912

Writing	a	reverse	lookup	zone	file
Until	now	we've	treated	DNS	requests	as	forward	facing	lookups,	translating
resource	names	like	www.example.com	to	an	IP	address.	However,	services	can
also	ask	a	DNS	server	to	resolve	information	in	the	opposite	direction	by
providing	an	IP	address	and	want	to	know	what	name	it's	associated	with.
Reverse	lookups	such	as	these	are	especially	useful	for	logging	or	authentication
and	security	purposes.	For	example,	a	system	can	query	a	DNS	server	to	verify
that	a	client	really	is	connecting	from	the	system	they	claim.	To	accommodate	such
requests,	this	recipe	shows	you	how	to	write	a	reverse	lookup	zone	file.

Getting	ready
This	recipe	requires	a	CentOS	system	with	BIND	installed	and	configured	as
described	in	the	previous	recipes.	Administrative	privileges	are	also	required,
either	by	logging	in	with	the	root	account	or	through	the	use	of	sudo.

How	to	do	it...
Follow	these	steps	to	add	a	reverse	lookup	zone:

1. Open	BIND's	configuration	file:

vi	/etc/named.conf

2. Add	the	following	zone	entry:

zone	"56.168.192.in-addr.arpa."	in	{

	type	master;

	file	"/var/named/zones/example.com.rev";

	allow-transfer	{	none;	};

};

3. Save	your	changes	and	close	the	configuration	file.
4. Create	the	/etc/named/zones/example.com.rev	file	with	the	following

content:

$TTL	1d

$ORIGIN	56.168.192.in-addr.arpa.

;	start	of	authority

@	 	IN	SOA		ns1.example.com.	hostmaster.example.com.	(

	2016041501	;	serial

	12h	 	;	refresh

	5m		 	;	retry

	2w		 	;	expire

	3h)	 	;	error	TTL

;	nameservers

	IN	NS	 	ns1.example.com.

	IN	NS	 	ns2.example.com.

10		IN	PTR		ns1.example.com.

20		IN	PTR		ns2.example.com.

;	mail	servers

12		IN	PTR		mail.example.com.

22		IN	PTR		mail2.example.com.

;	web	servers

100	IN	PTR		example.com.

100	IN	PTR		www.example.com.

100	IN	PTR		ftp.example.com.

5. Ensure	that	the	zone	file	has	the	correct	ownership	and	access	permissions:

chown	root.named	/var/named/zones/example.com.rev

chmod	640	/var/named/zones/example.com.rev

6. Restart	BIND	for	the	configuration	changes	to	take	effect:

systemctl	restart	named.service

7. Perform	a	reverse	DNS	lookup	using	dig	to	test	the	zone:

dig	@192.168.56.10	-x	192.168.56.100

How	it	works...
Reverse	lookup	zones	are	just	like	any	other	zones	defined	by	a	zone	file.	So,
hopefully	nothing	in	this	recipe	came	as	a	big	surprise	to	you.	Nevertheless,	there
are	still	a	few	points	worth	reviewing.

First,	the	zone's	name	is	constructed	by	combining	the	network's	address	with	the
special	domain	in-addr.arpa,	which	is	used	to	define	reverse-mapped	IP
addresses	(ip6.arpa	is	used	for	IPv6).	The	order	of	the	address's	octets	is
reversed	to	maintain	consistency	with	domain	names	that	read	from	the	most
specific	to	the	most	broad.	Thus,	56.168.192.in-addr.arpa.	is	the	FQDN	for
reverse	lookups	on	addresses	in	the	192.168.56/24	address	space:

zone	"56.168.192.in-addr.arpa."	in	{

	type	master;

	file	"/etc/named/zones/example.com.rev";

	allow-transfer	{	none;	};

};

Note

This	recipe	names	the	zone	file	as	example.com.rev	so	that	it	will	sort	alongside
the	forward	zone	file	example.com.fwd	in	directory	listings.	Other	conventions
might	name	the	file	as	56.168.192.in-addr.arpa.zone.	Again,	regardless	of
whatever	convention	you	choose,	the	key	thing	is	to	be	consistent.

Keep	in	mind	the	expansion	and	substitution	rules	we've	discussed	when	writing	a
reverse	zone	file,	most	importantly	that	partially	qualified	names	are	interpreted	in
the	context	of	$ORIGIN.	We	can	get	away	writing	just	the	primary	authoritative
DNS	server's	hostname	in	a	forward	lookup	zone's	SOA	record,	but	we	need	to
make	sure	that	the	names	are	fully	qualified	in	a	reverse	file	to	prevent	them	from
being	treated	as	ns1.56.168.192.in-addr.arpa.:

;	start	of	authority

@	 	IN	SOA		ns1.example.com.	hostmaster.example.com.	(

	2016041501	;	serial

	12h	 	;	refresh

	5m		 	;	retry

	2w		 	;	expire

	3h)	 	;	error	TTL

A	pointer	record	(PTR)	relates	an	IP	address	back	to	a	resource	name.	Apart	from
the	SOA	and	NS	records	(as	they	are	mandatory	records	in	any	zone	file),	the	only
other	type	of	record	that	can	appear	in	a	reverse	file	is	PTR.	A	consequence	of	this
is	that	multiple	records	are	needed	to	correctly	inverse	any	aliases	created	with
the	CNAME	records	in	the	forward	file.	Since	we	used	www	and	ftp	as	aliases	for
example.com.,	which	resolve	to	192.168.56.100,	three	records	for	the	address
appears	in	the	reverse	zone	file	as	follows:

100	IN	PTR		example.com.

100	IN	PTR		www.example.com.

100	IN	PTR		ftp.example.com.

We	can	test	the	zone	configuration	with	dig	using	the	-x	argument:

dig	@192.168.56.10	-x	192.168.56.100

-x	lets	dig	know	that	we're	performing	a	reverse	lookup.	We	provide	the	IP
address	as	we	would	normally	write	it	and	dig	will	reverse	its	octets	and	append
the	in-addr.arpa	domain	for	us	when	it	sends	the	request.

See	also
Refer	to	the	following	resources	for	more	information	on	working	with	reverse
zones	and	lookups:

BIND	9	Administrator	Reference	Manual
(http://www.isc.org/downloads/bind/doc/)
DNS	Reverse	Mapping	(http://www.zytrax.com/books/dns/ch3/)
Classless	in-addr.arpa.	delegation
(http://www.indelible.org/ink/classless)

http://www.isc.org/downloads/bind/doc/
http://www.zytrax.com/books/dns/ch3/
http://www.indelible.org/ink/classless

Setting	up	a	slave	DNS	server
Redundancy	is	important	to	ensure	key	services	remain	available	in	the	event	of
an	issue.	As	DNS	is	one	of	the	most	critical	components	of	a	network,	whether	it's
a	private	intranet	or	the	public	Internet,	having	only	one	authoritative	DNS	server
is	unwise.	In	fact,	IANA's	Technical	Requirements	for	Authoritative	Name
Servers	document	states	that	there	must	be	a	minimum	of	two	different
authoritative	name	servers	for	the	zone.	This	recipe	shows	you	how	to	configure	a
second	BIND	installation	to	act	as	a	secondary	authoritative	server	that	receives
its	zone	information	from	the	primary	in	a	master/slave	configuration.	A	lookup
request	can	then	be	satisfied	by	either	server	and	be	considered	an	authoritative
response.

Getting	ready
This	recipe	requires	two	CentOS	systems	with	BIND	installed	and	configured	as
described	in	earlier	recipes.	Use	the	network	described	by	the	Configuring	BIND
as	an	authoritative	DNS	server	recipe.	This	recipe	assumes	that	the	system	to
serve	as	the	master	is	configured	as	192.168.56.10	and	the	slave	is
192.168.56.20.	Administrative	privileges	are	also	required,	either	by	logging	in
with	the	root	account	or	through	the	use	of	sudo.

How	to	do	it...
Follow	these	steps	to	configure	BIND	as	a	secondary	authoritative	DNS	server
that	receives	its	zone	information	from	the	primary:

1. On	the	system	running	the	slave	instance	of	BIND,	open	named.conf	and
configure	the	example.com.	zone	as	follows:

zone	"example.com."	in	{

	type	slave;

	file	"/var/named/slaves/example.com.fwd";

	masters	{	192.168.56.10;	};

	allow-transfer	{	none;	};

	notify	no;

};

2. Configure	its	reverse	zone	as	follows:

zone	"56.168.192.in-addr.arpa."	in	{

	type	slave;

	file	"/var/named/slaves/example.com.rev";

	masters	{	192.168.56.10;	};

	allow-transfer	{	none;	};

	notify	no;

};

3. Save	your	changes	and	close	the	file.
4. Restart	the	slave	for	the	configuration	changes	to	take	effect:

systemctl	restart	named.service

5. On	the	system	running	the	master	instance	of	BIND,	open	named.conf.
6. Update	the	example.com.	zone's	allow-transfer	entry	with	the	addresses

of	the	slave.	The	zone's	configuration	should	look	like	this:

zone	"example.com."	in	{

	type	master;

	file	"/var/named/zones/example.com.fwd";

	allow-transfer	{	192.168.56.20;	};

};

7. Make	the	same	change	to	the	reverse	zone	configuration:

zone	"56.168.192.in-addr.arpa."	in	{

	type	master;

	file	"/var/named/zones/example.com.rev";

	allow-transfer	{	192.168.56.20;	};

};

8. Save	the	changes	and	close	the	file.
9. Restart	the	master	for	the	configuration	changes	to	take	effect:

systemctl	restart	named.service

10. On	the	slave,	test	the	configuration	using	dig	to	request	a	zone	transfer:

dig	@192.168.56.10	example.com.	AXFR

How	it	works...
Slave	servers	request	a	zone	transfer	when	notified	by	the	primary	authoritative
DNS	server	that	the	zone's	records	have	changed	and	when	the	copy	of	the	zone
file	maintained	by	the	slave	expires	according	to	the	SOA	record.	In	this	recipe,	we
began	with	two	systems	running	BIND	and	edited	their	configurations	to	allow	the
transfer.	We	began	on	the	system	targeted	as	the	slave,	configuring	both	the
forward	and	reverse	lookup	zones	we've	worked	with	earlier:

zone	"example.com."	in	{

	type	slave;

	file	"/var/named/slaves/example.com.fwd";

	masters	{	192.168.56.10;	};

	allow-transfer	{	none;	};

	notify	no;

};

zone	"56.168.192.in-addr.arpa."	in	{

	type	slave;

	file	"/var/named/slaves/example.com.rev";

	masters	{	192.168.56.10;	};

	allow-transfer	{	none;	};

	notify	no;

};

The	type	slave	option	instructs	this	server	to	act	as	a	secondary	server	for	the	
zone.	Since	designating	the	master	and	slave	is	done	on	a	per-zone	basis,	it's	
possible	for	the	same	instance	of	BIND	to	be	the	master	for	one	zone	and	a	slave	
for	another.	The	masters	option	provides	the	address	of	the	primary	server.

The	file	option	provides	the	location	where	BIND	will	write	the	transferred	
zone	information.	Not	only	is	it	good	for	the	organization	to	keep	the	transferred	
zones	separate	from	any	primary	zone	files	on	the	system,	but	it's	also	good	for	
security.	BIND	needs	write	permissions	to	the	directory	to	save	the	transferred	
files,	but	the	primary	zone	files	should	be	read-only	to	anyone	except	the	
administrator	(that	is,	root	as	a	safeguard	from	any	tampering.	Our	configuration	
saves	them	to	/var/named/slaves,	which	was	created	when	we	installed	the	
bind	package	and	already	has	the	appropriate	permissions.

The	allow-transfers	option	lists	the	systems	this	server	is	allowed	to	respond	
to	for	zone	transfer	requests.	To	protect	ourselves	from	possible	abuse,	we	set	the

value	to	none,	which	disallows	transfers	from	the	secondary	server.	All	transfers
will	be	serviced	by	the	primary	authoritative	DNS	server,	and	even	then	it	will
only	send	them	to	the	slave.

BIND	sends	a	notification	to	the	secondary	authoritative	servers	listed	in	a	zone's
NS	records	each	time	the	zone	is	reloaded.	There's	no	reason	for	the	slave	to	send
a	notification	to	other	secondaries	(if	you	configure	more	than	one	slave)	because
they	are	already	notified	by	the	primary,	so	we	turned	off	this	behavior	with
notify	no.

However,	if	you	want	you	can	send	notifications	to	other	servers	along	with	those
listed	in	the	zone	file	with	the	also-notify	option.	This	is	useful	if	you	have
additional	secondary	servers	which	you	don't	want	to	make	public	with	NS
records	or	if	you	want	to	notify	some	other	automated	process.	Simply	provide	the
addresses	of	the	servers	you	want	to	notify	with	also-notify:

also-notify	{	192.168.56.200;	192.168.68.200;	};

To	notify	only	those	servers	listed	in	also-notify	and	not	the	secondary
authoritative	servers,	set	notify	to	explicit:

also-notify	{	192.168.56.200;	192.168.68.200;	};

notify	explicit;

Next,	we	updated	the	master's	configuration,	giving	the	slave's	address	with
allow-transfers	to	permit	the	master	to	respond	to	zone	transfer	requests	from
the	slave:

zone	"example.com."	in	{

	type	master;

	file	"/var/named/zones/example.com.fwd";

	allow-transfer	{	192.168.56.20;	};

};

After	restarting	BIND	for	our	changes	take	effect,	we	can	test	the	configuration	by	
using	dig	to	request	a	zone	transfer	from	the	master	while	on	the	slave	system:

dig	@192.168.56.10	example.com.	AXFR

Note

Remember	to	increment	the	serial	number	in	the	SOA	record	whenever	you	update
a	zone	configuration.	The	slave	checks	the	serial	before	updating	its	zone
information	and	won't	update	it	if	the	value	hasn't	changed.

See	also
Refer	to	the	following	resources	for	more	information	on	configuring	and	working
with	zone	transfers:

BIND	9	Administrator	Reference	Manual
(http://www.isc.org/downloads/bind/doc/)
DNS	for	Rocket	Scientists	(http://www.zytrax.com/books/dns/)
Technical	requirements	for	authoritative	name	servers
(http://www.iana.org/help/nameserver-requirements)
How	the	AXFR	protocol	works	(http://cr.yp.to/djbdns/axfr-notes.html)
A	Pattern	for	DNS	Architecture	(http://www.allgoodbits.org/articles/view/5)
Securing	an	Internet	Name	Server	(http://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=52493)

http://www.isc.org/downloads/bind/doc/
http://www.zytrax.com/books/dns/
http://www.iana.org/help/nameserver-requirements
http://cr.yp.to/djbdns/axfr-notes.html
http://www.allgoodbits.org/articles/view/5
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=52493

Configuring	rndc	to	control	BIND
rndc	is	the	client	utility	for	managing	BIND	servers.	However,	before	you	can	use
it,	both	rndc	and	BIND	need	to	be	configured.	This	recipe	shows	you	how	to
configure	them	and	then	shows	you	a	few	commands	for	managing	the	server's
cache.

Getting	ready
This	recipe	requires	a	CentOS	system	with	BIND	installed	and	configured	as
described	in	the	previous	recipes.	Administrative	privileges	are	also	required,
either	by	logging	in	with	the	root	account	or	through	the	use	of	sudo.

How	to	do	it...
Follow	these	steps	to	configure	rndc:

1. Use	the	rndc-confgen	utility	to	generate	the	necessary	key	file:

rndc-confgen	-a	-c	/etc/rndc.key

2. Create	the	/etc/rndc.conf	file	with	the	following	content:

	include	"/etc/rndc.key";

	options	{

	default-key	"rndc-key";

	default-server	127.0.0.1;

	default-port	953;

	};

3. Ensure	the	correct	ownership	and	access	permissions	for	rndc.key	and
rndc.conf:

chown	root.named	/etc/rndc*

chmod	640	/etc/rndc*

4. Open	/etc/named.conf	and	add	the	following	configuration	settings	after
the	closing	brace	of	the	options	block:

	include	"/etc/rndc.key";

	controls	{

	inet	127.0.0.1	port	953	allow	{	127.0.0.1;	}	keys	

{

	"rndc-key";	};

	};

5. Restart	BIND	for	the	configuration	changes	to	take	effect:

systemctl	restart	named.service

6. Test	the	configuration	by	using	rndc	to	request	BIND's	status:

rndc	status

How	it	works...
Communication	between	rndc	and	BIND	requires	a	shared	key	for	authorization.
So,	first	we	used	rndc-confgen	to	create	one.	In	a	normal	operation	without
arguments,	the	program	generates	the	key	and	necessary	configuration	fragments
and	dumps	everything	to	the	screen.	You	can	cut	and	paste	sections	of	the	output
into	the	appropriate	files,	but	if	you	only	have	access	with	a	terminal	and
keyboard	then	this	could	prove	difficult.	Instead,	we	ran	the	program	with	-a	for	it
to	generate	the	key's	definition	and	dump	it	to	its	own	configuration	file	and	we'll
type	the	other	configuration	pieces	manually.	The	-c	argument	simply	specifies
our	desired	name	for	the	key	definition's	file:

rndc-confgen	-a	-c	/etc/rndc.key

Note

Some	people	report	that	rndc-confgen	appears	to	crash	on	their	system.	If	you
experience	this,	the	most	likely	reason	is	that	it's	waiting	for	sufficient	data	to
generate	the	secret,	but	the	entropy	pool	for	/dev/random	is	starved	which	causes
rndc-confgen	to	wait.	Terminate	the	process	and	try	again	using	-r	to	specify
/dev/urandom	as	an	alternate	source:

rndc-confgen	-a	-c	/etc/rndc.key	-r	/dev/urandom

A	quick	peek	inside	/etc/rndc.key	reveals	the	key's	definition	as	follows:

key	"rndc-key"	{

	algorithm	hmac-md5;

	secret	"YBmUKeobRMlAOUjCqMcb6g==";

};

rndc	uses	a	configuration	file	of	its	own.	So,	next	we	created	/etc/rndc.conf:

include	"/etc/rndc.key";

options	{

	default-key	"rndc-key";

	default-server	127.0.0.1;

	default-port	953;

};

We	include	the	key	definition	from	rndc.key	and	specify	it	as	the	default	key	for

rndc	to	use.	We	also	specified	the	local	loopback	address	as	the	default	server	
and	953	as	the	default	port.	With	these	configuration	options,	rndc	attempts	to	
connect	to	the	locally	running	BIND	server	without	the	need	for	us	to	provide	
extra	arguments	at	the	command	line.

Last,	we	BIND	to	allow	and	authenticate	rndc's	connection	requests.	So,	we	again	
include	the	key	definition	and	add	a	controls	block	in	named.conf:

include	"/etc/rndc.key";

controls	{

			inet	127.0.0.1	port	953	allow	{127.0.0.1;}	keys	{"rndc-

key";};

};

The	inet	statement	specifies	which	addresses	are	allowed	to	connect	and	the	
keys	they	need	to	authenticate.	The	first	address	lists	which	address	BIND	will	
listen	on	for	connection	requests.	The	configuration	is	intentionally	restrictive	for	
the	sake	of	security	and	only	allows	us	to	use	rndc	locally—BIND	listens	on	the	
local	address	and	services	commands	sent	from	the	local	address.

If	you	want	to	use	rndc	for	remote	administration,	I	recommend	you	against	
opening	access	and	instead	use	SSH	to	log	into	the	remote	system	and	it's	copy	of	
rndc.	BIND's	control	channel	remains	closed	to	anyone	up	to	no	good,	you	don't	
need	to	distribute	copies	of	the	key	file,	and	communication	between	the	two	
systems	is	encrypted:

ssh	192.168.56.10	rndc	status

Note

You	can	save	typing	by	creating	an	alias:

alias	rndc-ns1="ssh	192.168.56.10	rndc"	rndc-ns1	status

When	invoked	without	a	subcommand,	rndc	displays	a	usage	message	
enumerating	the	actions	we	can	perform.	The	status	command	outputs	BIND's	
current	status	including	how	many	zones	are	configured,	if	any	zone	transfers	are	
in	progress,	and	in	the	case	of	a	resolving	DNS	server,	how	many	queries	it's	
currently	trying	to	resolve	through	recursion:

rndc	status

rndc	is	used	to	manage	BIND	DNS	servers

You	may	find	the	flush	command	useful	if	you're	running	a	resolving	DNS	server.	
It	removes	all	of	the	cached	lookup	information	from	BIND's	cache.	If	you	want	to	
clear	only	the	records	related	to	a	particular	domain,	you	can	use	flushname:

rndc	flushname	google.com

The	reload	and	refresh	commands	are	useful	with	authoritative	servers.	The	
reload	command	causes	BIND	to	reparse	zone	files	after	they've	been	updated	
without	restarting	the	server.	Unless	a	specific	zone	is	given,	all	zones	will	be	
reloaded:

rndc	reload	example.com.

In	the	case	of	slave	DNS	servers,	we	can	force	BIND	to	update	its	copy	of	a	zone	
file	if	it's	stale	using	the	refresh	command:

rndc	refresh	example.com.

See	also
Refer	to	the	following	resources	for	more	information	on	using	rndc:

The	rndc	manual	page	(man	8	rndc)
RHEL	7	Networking	Guide:	BIND
(https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-BIND.html)

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-BIND.html

Chapter	9.	Managing	E-mails
This	chapter	contains	the	following	recipes:

Configuring	Postfix	to	provide	SMTP	services
Adding	SASL	to	Postfix	with	Dovecot
Configuring	Postfix	to	use	TLS
Configuring	Dovecot	for	secure	POP3	and	IMAP	access
Targeting	spam	with	SpamAssassin
Routing	messages	with	Procmail

Introduction
In	this	chapter,	you'll	find	recipes	to	help	you	set	up	and	secure	e-mail	services	for
your	domain.	You'll	learn	how	to	set	up	Postfix	to	run	as	an	SMTP	server	and	then
learn	how	to	configure	it	to	support	SASL	authentication	and	TLS	encryption.
Then	we'll	configure	Dovecot	which	will	provide	users	access	to	their	e-mail
over	the	POP3	and	IMAP	protocols.	Finally,	you'll	learn	how	to	set	up
SpamAssassin	and	Procmail	to	reduce	the	amount	of	spam	that	makes	it	way	to
your	inbox.

Configuring	Postfix	to	provide	SMTP
services
This	recipe	teaches	you	how	to	configure	Postfix	as	a	basic	e-mail	server	for	your	
domain.	E-mail	is	one	of	the	oldest	Internet	services	and	has	become	one	its	most	
pervasive	services.	Moreover,	e-mail	can	be	one	of	the	most	difficult	services	to	
manage.

Using	the	Simple	Mail	Transport	Protocol	(SMTP,	an	e-mail	message	passes	
through	many	processes	from	its	starting	point	on	its	way	to	your	inbox.	When	
someone	writes	you	a	message,	they	use	an	e-mail	client	to	compose	the	message.	
The	client	sends	the	message	to	their	mail	server	which	looks	up	the	MX	records	
for	your	domain	and	relays	the	message	to	your	mail	server	for	delivery.	Once	the	
message	is	received	by	your	mail	server,	it's	delivered	to	your	mail	directory	on	
the	server.	At	least	that's	the	basic	idea.	A	message	can	be	relayed	by	any	number	
of	intermediate	servers	between	the	sender's	server	and	your	mail	server;	servers	
can	be	configured	to	send	mail,	receive	mail,	or	both.	Different	protocols	are	used	
to	retrieve	the	messages	from	the	server	(POP3	and	IMAP	than	those	used	to	send	
them,	and	trying	to	stay	one	step	ahead	of	spammers	can	add	a	fair	amount	of	
complexity.

Note

Because	of	the	complexity	of	the	e-mail	ecosystem	and	being	a	mail	server	
administrator	is	often	more	than	a	full-time	job,	I	can	only	present	to	you	the	
basics.	Later	recipes	will	teach	you	how	to	add	authentication	and	encryption	to	
your	setup,	there	will	still	be	much	to	explore	and	learn.	I	strongly	recommend	that	
you	take	advantage	of	the	additional	resources	mentioned	in	the	See	also	section	
after	each	recipe.

Getting	ready
This	recipe	requires	a	CentOS	system	with	a	working	network	connection.
Administrative	privileges	are	also	required,	either	by	logging	in	with	the	root
account	or	through	the	use	of	sudo.	You'll	want	to	have	a	couple	of	user	accounts
available	on	the	system	for	testing	purposes	as	well.

Because	MX	records	are	used	to	resolve	the	mail	server's	address	during	the
delivery	process,	it's	assumed	that	you	have	either	completed	the	previous
chapter's	recipes	or	have,	otherwise,	configured	your	own	DNS	records.	The	IP
address	192.168.56.20	is	used	here	in	keeping	with	the	example	network
outlined	in	the	Configuring	BIND	as	an	authoritative	DNS	server	recipe	in
Chapter	8,	Managing	Domains	and	DNS.

How	to	do	it...
Follow	these	steps	to	set	up	Postfix:

1. Use	a	text	editor	to	open	Postfix's	configuration	file
/etc/postfix/main.cf:

vi	/etc/postfix/main.cf

2. Find	the	example	myhostname	parameters.	Delete	the	leading	#	character	to
uncomment	one	of	the	examples	and	update	its	value	with	your	qualified
hostname:

myhostname	=	mail.example.com

3. Locate	the	example	mydomain	parameter	and	uncomment	and	edit	it,	setting
your	domain	name	as	its	value:

	mydomain	=	example.com	

4. Find	the	inet_interfaces	parameters.	Place	an	#	in	front	of	the	localhost
entry	to	comment	it	out	and	then	uncomment	the	all	entry:

inet_interfaces	=	all

#inet_interfaces	=	$myhostname

#inet_interfaces	=	$myhostname,	localhost

#inet_interfaces	=	localhost

5. Find	the	mydestination	parameters	and	comment	out	the	first	entry.
Uncomment	the	one	that	includes	$mydomain	in	its	list:

#mydestination	=	$myhostname,	localhost.$mydomain,		localhost

mydestination	=	$myhostname,	localhost.$mydomain,		localhost,

$mydomain

#mydestination	=	$myhostname,	localhost.$mydomain,

localhost,

#							$mydomain	mail.$mydomain,	www.$mydomain,

ftp.$mydomain

6. Find	the	example	mynetworks	parameters.	Uncomment	one	of	the	entries	and
edit	it	so	that	the	value	reflects	your	network:

mynetworks	=	192.168.56.0/24,	127.0.0.0/8

7. Find	the	example	home_mailbox	parameters	and	uncomment	the	entry	with

the	Maildir/	value:

home_mailbox	=	Maildir/

8. Save	your	changes	and	close	the	file.
9. Start	the	Postfix	server	and	optionally	enable	it	to	start	automatically

whenever	the	system	reboots:

systemctl	start	postfix.service

systemctl	enable	postfix.service

10. Open	port	25	in	the	system's	firewall	to	allow	outside	connections	to	Postfix:

firewall-cmd	--zone=public	--permanent	--add-service=smtp

firewall-cmd	--reload

How	it	works...
CentOS	systems	have	Postfix	installed	by	default,	using	it	as	a	local	mail	transfer	
agent.	To	reconfigure	it	to	act	as	our	domain's	mail	server,	we	updated	several	
parameters	in	its	configuration	file,	/etc/postfix/main.cf.

First,	we	updated	the	myhostname	parameter	to	provide	our	system's	qualified	
domain	name	(the	hostname	and	domain	name:

myhostname	=	mail.example.com

Note

Comments	in	the	configuration	file	refer	to	a	FQDN,	but	we	know	better	because	
FQDNs	require	a	trailing	dot.	If	you	do	provide	a	true	FQDN	as	the	value,	Postfix	
will	fail	to	start	stating	that	the	parameter's	value	is	bad.

The	mydomain	parameter	specifies	the	domain	that	this	system	is	a	member	of	and	
that	Postfix	is	handling	e-mail	for.	Although	Postfix	will	try	to	determine	the	
domain	name	based	on	the	system's	qualified	hostname,	it's	not	a	bad	idea	to	
explicitly	define	it	with	mydomain	to	be	certain	it's	correct:

mydomain	=	example.com

The	inet_interface	parameter	identifies	the	network	interfaces	that	Postfix	will	
listen	on	for	connections.	The	original	configuration	accepts	connections	only	
from	the	localhost;	so	we	updated	it	to	listen	on	all	interfaces,	although	you	may	
want	to	specify	something	more	specific	if	your	system	is	connected	to	multiple	
networks:

inet_interfaces	=	all

The	mydestination	parameter	lists	the	zones	for	which	Postfix	will	accept	mail	
for	final	delivery.	We	changed	the	original	configuration	to	include	our	domain:

mydestination	=	$myhostname,	localhost.$mydomain,	localhost,	

$mydomain

If	necessary,	you	should	add	other	values	to	the	list	to	identify	all	of	the	system's	
hostnames,	similar	to	what's	shown	in	the	last	example,	mydestination,	in	the

set.	This	is	important	to	prevent	Postfix	from	trying	to	relay	messages	to	itself,	
thinking	they're	destined	for	a	different	domain	when	they're	really	not:

mydestination	=	$myhostname,	localhost.$mydomain,	localhost,	

	$mydomain,	mail.$mydomain,	www.$mydomain,	ftp.$mydomain

The	mynetworks	parameter	identifies	the	trusted	networks	Postfix	can	relay	
messages	for.	This	is	the	first	line	of	defense	against	spammers	abusing	your	mail	
server	because	Postfix	will	refuse	to	accept	messages	for	delivery	if	they're	not	
for	our	domain	and	if	they're	received	from	a	system	outside	one	of	the	trusted	
networks:

mynetworks	=	192.168.56.0/24,	127.0.0.0/8

Finally,	we	set	the	messages'	delivery	destination	using	the	home_mailbox	
parameter:

home_mailbox	=	Maildir/

Messages	are	traditionally	appended	to	the	user's	file	in	/var/spool/mail	in	
what	is	known	as	the	mbox	format.	The	Maildir	format	stores	messages	
individually	in	a	subdirectory	in	the	user's	Maildir	directory.	Postfix	delivers	mail	
to	the	spool	by	default.	We	can	convert	messages	between	the	two	formats,	but	
choosing	Maildir	now	makes	things	a	bit	easier	when	we	configure	user	access	
over	IMAP	in	a	later	recipe.

Once	Postfix	is	restarted,	we	can	send	a	test	message	to	verify	that	the	server's	
configuration	is	correct.	There	are	several	ways	to	do	this	of	course.	The	easiest	
is	to	use	a	command-line	e-mail	client	such	as	mailx	to	send	the	message.	mailx	
isn't	installed	by	default	but	is	available	via	yum:

yum	install	mailx

Invoke	mailx	to	send	a	message.	The	-s	argument	provides	the	message's	subject	
and	-r	provides	the	sender's	address	(your	own	e-mail	address.	Then	the	
recipient's	address	follows	after	the	arguments:

mailx	-r	abell@example.com	-s	"Test	email"	tboronczyk@example.com

mailx	reads	the	message	from	stdin.	A	simple	"hello	world"	or	"this	is	a	test"	
should	be	sufficient	for	testing	purposes;	when	you're	done	typing,	type	a	period

on	its	own	line	or	press	Ctrl	+	D:

If	all	goes	well,	mailx	sends	the	mail	to	Postfix	for	delivery	which	in	turn
delivers	it	to	the	user's	mail	directory	in	/home/<username>/Maildir/new.
Check	the	directory	and	output	the	file's	contents	to	make	sure	the	message	was
delivered:

ls	/home/tboronczyk/Maildir/new

cat	

/home/tboronczyk/Maildir/new/146284221.Vfd00I188f5ceM9593.mail

Received	messages	are	delivered	to	the	user's	Maildir	directory

Alternatively,	we	can	connect	directly	to	Postfix	using	a	Telnet	client.	Typing	raw	
commands	to	send	an	e-mail	is	slightly	more	involved	than	sending	one	using	
mailx,	but	is	preferred	because	it	offers	you	more	flexibility	and	greater	
visibility	into	how	Postfix	responds.	This	can	prove	invaluable	when	trying	to	
troubleshoot	a	problem.

No	Telnet	client	is	installed	by	default,	so	first	you'll	need	to	use	yum	to	install

telnet:

yum	install	telnet

Then	use	telnet	to	connect	to	the	server	on	port	25,	the	port	reserved	for	SMTP:

telnet	mail.example.com	25

The	MAIL	FROM	command	is	used	to	provide	the	sender's	e-mail	address	and	RCPT	
TO	to	provide	the	recipient's	address.	After	each	is	entered,	Postfix	should	
respond	with	a	250	Ok	status:

MAIL	FROM:	tboronczyk@example.com

250	2.1.0	Ok

RCPT	TO:	abell@example.com

250	2.1.0	Ok

DATA	begins	the	message's	content.	Postfix	accepts	everything	we	type	as	the	
message	until	we	type	a	single	period	on	its	own	line:

DATA

352	End	data	with	<CR><LF>.<CR><LF>

Subject:	Test	email

Hello	world!	This	is	a	test.

.

250	2.0.0	Ok:	queued	as	705486E22E

Then,	to	close	the	connection,	type	QUIT:

QUIT

221	2.0.0	Bye

Connection	closed	by	foreign	host.

See	also
Refer	to	the	following	resources	for	more	information	on	working	with	Postfix:

RHEL	7	System	Administrator's	Guide:	Mail	Transport	Agents
(https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/s1-
email-mta.html)
RFC-5321:	Simple	Mail	Transport	Protocol
(https://tools.ietf.org/html/rfc5321)
Mbox	vs	Maildir:	Mail	Storage	Formats	(http://www.linuxmail.info/mbox-
maildir-mail-storage-formats/)
Setup	a	Local	Mail	Server	in	CentOS	7	(http://www.unixmen.com/setup-a-
local-mail-server-in-centos-7)

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/s1-email-mta.html
https://tools.ietf.org/html/rfc5321
http://www.linuxmail.info/mbox-maildir-mail-storage-formats/
http://www.unixmen.com/setup-a-local-mail-server-in-centos-7

Adding	SASL	to	Postfix	with	Dovecot
If	a	mail	server	relays	a	message	to	another	domain	(that	is,	the	recipient's	address
is	not	in	our	domain)	and	the	message	originates	from	outside	our	network,	the
server	is	known	as	an	open	relay.	Spammers	are	constantly	on	the	lookout	for
open	relays	because	such	permissive	behavior	is	easy	to	take	advantage	of,	and
Postfix	tries	to	protect	us	by	default	by	only	relaying	messages	that	come	from	our
network.	Unfortunately,	it's	not	practical	to	restrict	legitimate	users	from	sending
e-mail	through	the	server	only	when	they're	on	our	network.	This	recipe	teaches
you	how	to	add	Simple	Authentication	and	Security	Layer	(SASL)	authentication
to	Postfix's	configuration	using	Dovecot.	Postfix	will	then	happily	relay	messages
for	our	users	authenticated	users,	regardless	of	their	network	location,	while	still
refusing	to	do	so	for	anyone	else.

Getting	ready
This	recipe	requires	a	CentOS	system	with	Postfix	configured	as	described	in	the
previous	recipe.	Administrative	privileges	are	also	required,	either	by	logging	in
with	the	root	account	or	through	the	use	of	sudo.

How	to	do	it...
Follow	these	steps	to	secure	Postfix	to	SASL:

1. Install	the	dovecot	package:

yum	install	dovecot

2. Open	the	/etc/dovecot/conf.d/10-master.conf	file	with	your	text
editor:

vi	/etc/dovecot/conf.d/10-master.conf

3. Locate	the	unix_listener	section	for
/var/spool/postfix/private/auth.	Uncomment	the	section	by	removing
the	leading	#	characters:

#	Postfix	smtp-auth

unix_listener	/var/spool/postfix/private/auth	{

mode	=	0666

}

4. Update	mode	to	0660	and	add	the	parameters	user	and	group	to	the	section
with	the	value	postfix:

#	Postfix	smtp-auth

unix_listener	/var/spool/postfix/private/auth	{

	mode	=	0660

	user	=	postfix

	group	=	postfix

}

5. Save	your	changes	and	close	the	file.
6. Open	the	/etc/dovecot/conf.d/10-auth.conf	file	with	your	text	editor:

vi	/etc/dovecot/conf.d/10-auth.conf

7. Locate	the	auth_mechanisms	option	and	add	login	to	its	value:

auth_mechanisms	=	plain	login

8. Save	the	changes	and	close	the	file.
9. Start	the	Dovecot	server	and	optionally	enable	it	to	start	automatically

whenever	the	system	reboots:

systemctl	start	dovecot.service

systemctl	enable	dovecot.service

10. Open	the	/etc/postfix/main.cf	file	with	your	text	editor:

vi	/etc/postfix/main.cf

11. At	the	end	of	the	configuration	file,	add	the	following	options	and	values:

smtpd_sasl_auth_enable	=	yes

smtpd_sasl_type	=	dovecot

smtpd_sasl_path	=	private/auth

smtpd_sasl_security_options	=	noanonymous

12. Save	the	changes	and	close	the	file.
13. Restart	Postfix:

systemctl	restart	postfix.service

How	it	works...
Dovecot	is	a	primarily	a	mail	retrieval	server	offering	users	access	to	their	e-mail
using	the	POP	and	IMAP	protocols,	and	it	also	allows	Postfix	to	hook	into	its
SASL	authentication	mechanism.	We'll	need	a	retrieval	server	for	users	to	fetch
their	e-mail	from	the	system,	and	Dovecot	and	Postfix	integrate	nicely,	so
choosing	Dovecot	over	other	options	makes	sense.

Dovecot's	configuration	is	organized	into	various	files,	each	file	addressing	a
particular	feature	or	bit	of	functionality.	For	this	recipe,	we	needed	to	update	the
master	configuration	file	/etc/dovecot/conf.d/10-master.conf	and	the
authentication	configuration	file	/etc/dovecot/conf.d/10-auth.conf.

In	10-master.conf,	we	located	the	unix_listener	parameter	that	defines	the
SMTP	authentication	service	that	will	be	shared	with	Postfix.	Uncommenting	it
will	create	the	socket	file	/var/spool/postfix/private/auth	over	which
Dovecot	and	Postfix	will	communicate.	We	then	updated	the	mode	parameter	and
added	the	user	and	group	parameters	to	secure	the	socket's	ownership	and	access
permissions:

unix_listener	/var/spool/postfix/private/auth	{

	mode	=	0660

	user	=	postfix

	group	=	postfix

}

In	10-auth.conf,	we	located	the	auth_mechanism	parameter	and	added	login
to	its	value.	This	parameter	sets	the	list	of	mechanisms	Dovecot	uses,	and	login
is	the	mechanism	used	specifically	for	SMTP	authentication:

auth_mechanisms	=	plain	login

plain	allows	users	to	provide	their	username	and	password	in	plain	text.	login
is	also	considered	a	plain	text	mechanism,	but	don't	worry;	you'll	learn	how	to
secure	that	in	the	next	recipe.

The	final	bit	of	configuration	involves	adding	the	necessary	SASL-related
parameters	to	Postfix's	main.cf	file:

smtpd_sasl_auth_enable	=	yes

smtpd_sasl_type	=	dovecot

smtpd_sasl_path	=	private/auth

smtpd_sasl_security_options	=	noanonymous

smtpd_sasl_auth_enable	enables	SASL	authentication	and	smtpd_sasl_type	
informs	Postfix	that	it	will	be	using	Dovecot's	authentication	service.	The	
smtpd_sasl_path	parameter	specifies	the	path	to	the	socket	file	that	is	used	to	
communicate	with	Dovecot	relative	to	Postfix's	working	directory.
smtpd_sasl_security_options	prohibits	anonymous	connections	and	requires	
everyone	to	be	authenticated.

Postfix	expects	the	username	and	password	to	be	Base64	encoded	so	that	we	need	
to	encode	them	before	we	can	test	our	configuration	with	Telnet.	base64	can	be	
used,	but	be	careful	not	to	introduce	a	trailing	newline	when	you	provide	the	
original	values.	After	invoking	base64,	you	can	enter	your	username	or	password	
on	stdin	and	immediately	press	Ctrl	+	D	twice,	but	do	not	press	Enter.	You	may	
want	to	redirect	base64's	output	to	a	separate	file	you	can	dump	later	to	more	
readily	distinguish	the	encoded	value	from	the	original,	since	they'll	appear	to	run	
together	in	the	terminal	without	the	newline:

base64	>	./username

tboronczyk

base64	>	./password

P@$$W0rd

cat	./username	./password

Note

Despite	the	hassle	of	"newline	vigilance",	this	approach	is	better	than	piping	the	
value	as	follows:

echo	-n	tboronczyk	|	base64

The	command's	invocation	will	be	retained	in	your	shell's	history.	While	this	is	
fine	for	usernames,	sensitive	data	such	as	passwords	should	never	be	provided	on	
the	command	line	as	part	of	a	command	for	this	very	reason.

After	connecting	to	the	server	with	telnet	on	port	25,	send	the	AUTH	LOGIN	
command	to	initiate	the	authentication.	Postfix	should	respond	with	
VXNlcm5hbWU6	which	is	the	Base64	encoded	value	for	Username::

AUTH	LOGIN

334	VXNlcm5hbWU6

Provide	your	encoded	username	and	press	Enter.	Postfix	then	responds	with
UGFzc3dvcmQ6,	which,	as	you	probably	have	already	guessed,	is	the	encoded
version	of	Password:.	After	you	provide	the	encoded	password,	you'll	be
informed	if	the	authentication	was	successful:

The	authentication	exchange	expects	credentials	to	be	Base64	encoded

See	also
Refer	to	the	following	resources	for	more	information	on	Postfix,	Dovecot,	and
SASL:

The	Dovecot	Homepage	(http://www.dovecot.org/)
RFC	4422:	Simple	Authentication	and	Security	Layer
(https://tools.ietf.org/html/rfc4422)
Postfix	SASL	How-To	(http://www.postfix.org/SASL_README.html)
25,	465,	587...	What	Port	Should	I	Use?	(http://blog.mailgun.com/25-465-
587-what-port-should-i-use/)

http://www.dovecot.org/
https://tools.ietf.org/html/rfc4422
http://www.postfix.org/SASL_README.html
http://blog.mailgun.com/25-465-587-what-port-should-i-use/

Configuring	Postfix	to	use	TLS
Implementing	authentication	for	mail	relaying	is	an	important	step	in	securing	your
mail	server.	But	as	you	learned	in	the	previous	recipe,	the	user's	name	and
password	are	sent	in	clear	text.	Base64-encoding	encodes	binary	data	using	only
ASCII	characters,	which	allows	for	non-ASCII	characters	in	a	user's	password
for	example,	but	encoding	isn't	encryption.	If	traffic	between	the	user's	mail	client
and	the	server	happens	over	an	untrusted	network,	a	malicious	user	can	easily
capture	the	credentials	and	masquerade	as	the	user.	This	recipe	further	secures
Postfix	by	configuring	Transport	Layer	Security	(TLS)	encryption	to	protect	the
communication	from	eavesdropping.

Getting	ready
This	recipe	requires	a	CentOS	system	with	Postfix	configured	as	described	in
previous	recipes.	Administrative	privileges	are	also	required,	either	by	logging	in
with	the	root	account	or	through	the	use	of	sudo.

How	to	do	it...
Follow	these	steps	to	configure	Postfix	to	use	TLS:

1. Generate	a	new	key	file	and	security	certificate	with	openssl:

openssl	req	-newkey	rsa:2048	-nodes	\

-keyout	/etc/pki/tls/private/mail.example.key	\

-x509	-days	730	-subj	"/CN=mail.example.com"	-text	\

-out	/etc/pki/tls/certs/mail.example.pem

2. Use	your	text	editor	to	open	the	/etc/postfix/main.cf	file:

vi	/etc/postfix/main.cf

3. At	the	end	of	the	file,	add	the	following	options	and	values:

smtpd_tls_security_level	=	may

smtpd_tls_cert_file	=	/etc/pki/tls/certs/mail.example.pem

smtpd_tls_key_file	=	/etc/pki/tls/private/mail.example.key

4. Save	your	changes	and	close	the	file.
5. Restart	Postfix:

systemctl	restart	postfix.service

How	it	works...
An	encryption	key	and	a	security	certificate	that	confirms	the	ownership	of	the	key
are	needed	for	SSL/TLS	communications.	A	self-signed	certificate	is	sufficient	for
personal	use	or	for	use	with	services	on	a	private	network,	so	this	recipe	shows
us	how	to	generate	this	ourselves	using	openssl:

openssl	req	-newkey	rsa:2048	-nodes	\	

-keyout	/etc/pki/tls/private/mail.example.key	\

-x509	-days	730	-subj	"/CN=mail.example.com"	-text	\

-out	/etc/pki/tls/certs/mail.example.pem

The	req	option	makes	a	new	certificate	request	and	-newkey	asks	openssl	to	
generate	a	new	private	key	and	to	use	that	key	when	it	signs	the	certificate	(this	is	
what	we	mean	when	we	say	self-signed	certificate.	rsa:2048	says	the	key	will	
be	a	2,048-bit	RSA	key.	2,048-bit	keys	are	generally	considered	sufficiently	
resistant	against	attacks	until	around	the	year	2030	based	on	estimates	of	the	rate	
at	which	computing	power	increases.	3,072-bit	keys	are	considered	suitable	
beyond	that.	-nodes	prevents	the	key	file	from	being	encrypted	with	a	passphrase.	
It's	important	not	to	encrypt	the	key	file	with	a	passphrase	because	Postfix	needs	
to	access	the	key.	If	it	were	encrypted,	we'd	need	to	provide	the	passphrase	to	
decrypt	the	key	every	time	we	start	Postfix.

-x509	specifies	that	the	certificate	will	be	an	X.509	certificate	(the	type	used	by	
SSL	and	TLS	connections	and	-days	sets	the	certificate's	expiration	date	to	a	
number	of	days	in	the	future,	in	this	case	730	days	(3	years.	-subj	is	used	to	
specify	the	value	for	the	certificate's	CN	(common	name	field,	which	should	be	
the	hostname	or	the	IP	address	of	the	system	the	certificate	identifies.	
Alternatively,	you	can	omit	the	argument	and	openssl	will	prompt	you	
interactively	for	values	for	a	number	of	other	fields	as	well.	Finally,	the	-text	
argument	specifies	that	the	certificate	should	be	encoded	as	text	as	this	is	the	
format	Postfix	expects:

More	identifying	information	can	be	embedded	within	a	certificate

A	self-signed	certificate	basically	says,	here's	my	encryption	key.	You	know	it's
mine	because	I	said	so.	If	your	system's	services	are	intended	for	public
consumption,	you'll	most	likely	need	to	invest	in	a	certificate	signed	by	a	trusted
Certificate	Authority	(CA).	Trusted	certificates	say,	you	can	trust	the	key	is	mine
because	a	mutual	friend	will	vouch	for	me.	To	obtain	a	trusted	certificate,	you
need	a	certificate	signing	request	(CSR):

openssl	req	-new	-newkey	rsa:2048	-nodes	\

-keyout	mail.example.key	-out	mail.example.csr

Then,	you	send	your	money	and	the	CSR	to	the	CA.	After	a	short	wait,	you'll	
receive	your	certificate.

Note

By	depending	on	the	CA	and	the	specifics	of	the	request,	trusted	certificates	can	
become	quite	expensive.	And	trust	isn't	what	it	used	to	be	either.	A	scandal	
erupted	when	it	was	uncovered	that	employees	at	a	prominent	CA	were	signing	
forged	certificates,	reportedly	for	internal	testing	purposes.	One	can	only	wonder

at	the	lack	of	oversight	given	to	the	Web	of	trust.	Hopefully,	the	worst	is	behind	us.
Browser	vendors	are	starting	to	push	for	stricter	guidelines	and	more	auditing.
There	are	also	projects	such	as	Let's	Encrypt	which	enable	secure	trusted
certificates	to	be	automatically	generated	for	free.

Next,	we	added	the	necessary	configuration	parameters	to	Postfix's	main.cf	file:

	smtpd_tls_security_level	=	may

	smtpd_tls_cert_file	=	/etc/pki/tls/certs/mail.example.pem

	smtpd_tls_key_file	=	/etc/pki/tls/private/mail.example.key

smtp_tls_security_level	configures	Postfix's	enforcing	behavior	in	relation	to
the	encrypted	connection.	may	enables	opportunistic	TLS—the	server	advertises
that	encryption	and	clients	can	take	advantage	of	it	but	its	use	is	not	required.	You
may	also	set	the	parameter	to	encrypt	to	make	the	use	of	encryption	mandatory.

smtpd_tls_cert_file	and	smtpd_tls_key_file	specify	the	paths	to	the	self-
signed	certificate	and	the	encryption	key	we	generated	earlier,	respectively.	If
you're	using	trusted	certificates	then	you'll	also	need	to	provide	the
smtpd_tls_CAfile	parameter	with	a	value	that	identifies	the	signing	CA's	public
certificate.

If	you	find	that	negotiating	the	secure	connection	is	slow,	there	are	a	few	tuning
parameters	you	can	try.	For	example,	we	can	explicitly	specify	the	source	of
entropy	that	Postfix	is	using	with	tls_random_source:

	tls_random_source	=	dev:/dev/urandom

Also,	we	can	cache	details	of	the	encrypted	session	between	the	server	and	mail
client.	The	smtpd_tls_session_cache_database	parameter	defines	the	file	in
which	Postfix	will	store	the	cached	details	and
smtpd_tls_session_cache_timeout	specifies	how	long	the	session	can	be
cached.	This	reduces	the	overhead	of	establishing	a	new	session	each	time	the
client	connects:

	smtpd_tls_session_cache_database	=

			btree:/var/lib/postfix/smtpd_tls_cache

	smtpd_tls_session_cache_timeout	=	3600s

To	test	the	configuration,	you	can	connect	using	telnet	and	issue	the	STARTTLS
command.	Postfix	should	respond	that	it's	ready	to	start	negotiating	the	secure
connection:

STARTTLS

220	Ready	to	start	TLS

See	also
Refer	to	the	following	resources	for	working	with	Postfix	and	TLS:

Postfix	TLS	Support	(http://www.postfix.org/TLS_README.html)
Wikipedia:	Public	Key	Infrastructure
(https://en.wikipedia.org/wiki/Public_key_infrastructure)
OpenSSL	Essentials:	Working	with	SSL	Certificates,	Private	Keys,	and	CSRs
(https://www.digitalocean.com/community/tutorials/openssl-essentials-
working-with-ssl-certificates-private-keys-and-csrs)

http://www.postfix.org/TLS_README.html
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://www.digitalocean.com/community/tutorials/openssl-essentials-working-with-ssl-certificates-private-keys-and-csrs

Configuring	Dovecot	for	secure	POP3
and	IMAP	access
When	you	check	your	e-mail,	the	e-mail	program	connects	to	your	mail	server	to
see	if	there	are	any	new	messages	in	your	mail	directory.	If	its	configured	to	used
the	Post	Office	Protocol	(POP3),	it	downloads	the	messages	locally	and	deletes
them	from	the	server.	If	it's	configured	to	use	Internet	Message	Access	Protocol
(IMAP),	the	mail	remains	on	the	server	and	you	manage	it	remotely.

Dovecot	handles	both	protocols	out	of	the	box.	Since	we've	already	installed
Dovecot	for	its	SASL	functionality,	we	could	just	open	the	standard	ports	for
POP3	and	IMAP	traffic	in	the	system's	firewall	and	be	done.	However,	the
connections	would	be	unencrypted	and	information	would	be	transmitted	across
the	network	in	plain	text.	This	recipe	teaches	you	how	to	secure	these	connections
with	SSL.

Getting	ready
This	recipe	requires	a	CentOS	system	with	Postfix	and	Dovecot	configured	as
described	in	previous	recipes.	Administrative	privileges	are	also	required,	either
by	logging	in	with	the	root	account	or	through	the	use	of	sudo.

How	to	do	it...
Follow	these	steps	to	configure	access	to	Dovecot:

1. Open	/etc/dovecot/dovecot.conf	with	your	text	editor:

vi	/etc/dovecot/dovecot.conf

2. Locate	the	protocols	parameter.	Remove	the	leading	#	character	and	set	its
value	to	imaps	pop3s:

protocols	=	imaps	pop3s

3. Save	the	changes	and	close	the	file.
4. Open	/etc/dovecot/conf.d/10-ssl.conf	with	your	text	editor:

vi	/etc/dovecot/conf.d/10-ssl.conf

5. Locate	the	ssl	parameter	and	set	its	value	to	yes:

	ssl	=	yes

6. Locate	the	ssl_cert	and	ssl_key	parameters.	Update	their	values	with	the
paths	to	your	certificate	and	key	files	(note	that	both	paths	are	preceded	with
<):

ssl_cert	=	</etc/pki/tls/certs/mail.example.pem

ssl_key	=	</etc/pki/tls/private/mail.example.key

7. Save	the	changes	and	close	the	file.
8. Restart	Dovecot	for	the	changes	to	take	effect:

systemctl	restart	dovecot.service

9. Open	port	993	for	IMAP	over	SSL	and	port	995	for	POP3	over	SSL	in	the
firewall:

firewall-cmd	--permanent	--add-service=imaps	\

--add-service=pop3s

firewall-cmd	--reload

How	it	works...
Dovecot	makes	it	easy	to	secure	the	traffic	for	POP3	and	IMAP	connections;	in	
fact,	configuring	it	only	took	a	few	seconds.	We	first	edited	the	protocols	
parameter	/etc/dovecot/dovecot.conf	to	let	Dovecot	know	that	we	want	these	
protocols	to	be	secured:

protocols	=	imaps	pop3s

Then	we	updated	/etc/dovecot/conf.d/10-ssl.conf	to	enable	SSL	to	use	the	
ssl	parameter	and	to	identify	a	certificate	and	encryption	key	using	ssl_cert	and	
ssl_key.	Since	Postfix	and	Dovecot	are	running	on	the	same	system	and	we	
already	generated	a	key	and	certificate	for	Postfix,	we	can	reference	the	same	files	
in	Dovecot's	configuration.	Dovecot	uses	the	leading	<	in	front	of	the	paths	to	
specify	that	it	should	use	the	file's	content	for	the	parameter's	value	and	not	the	
literal	string	itself:

ssl	=	yes

ssl_cert	=	</etc/pki/tls/certs/mail.example.pem

ssl_key	=	</etc/pki/tls/private/mail.example.key

Dovecot	will	still	allow	non-SSL	access	to	POP	and	IMAP	(on	ports	110	and	143,	
respectively	from	connections	originating	from	the	localhost,	but	once	we	restart	
it	for	the	configuration	changes	to	take	effect,	all	other	users	will	need	to	use	SSL	
to	access	their	messages.

We	can	use	mailx	to	test	the	configuration.	First,	we'll	check	POP3:

mailx	-f	pop3s://tboronczyk@mail.example.com

The	-f	argument	specifies	the	directory	that	mailx	will	read	from	to	retrieve	our	
messages.	Given	as	a	URI,	the	value	instructs	mailx	to	read	the	default	directory	
for	our	user	on	the	mail.example.com	system	using	POP3	over	SSL	(pop3s.

The	command	is	the	same	to	check	IMAP	apart	from	changing	the	URI's	protocol:

mailx	-f	imaps://tboronczyk@mail.example.com

Because	we're	using	a	self-signed	certificate,	mailx	will	complain	that	the	
certificate	has	not	been	marked	as	trusted	by	the	user	and	prompt	us	whether	we

want	to	continue.	Respond	with	y	to	this	and	you'll	then	be	prompted	for	the	user's
password.	mailx	then	displays	the	user's	inbox.	Exit	the	program	by	entering	quit
at	the	prompt:

mailx	can	be	used	to	test	our	configuration	of	POP3	and	IMAP	over	SSL

Note

If	mailx	complains	that	it's	missing	the	nss-config-dir	variable,	you	can	define
it	on	the	command	line	using	-S.	The	value	should	be	a	path	to	the	certificate
databases	that	mailx	can	use	to	verify	certificate	trust:

mailx	-S	nss-config-dir=/etc/pki/nssdb	\

-f	pop3s://tboronczyk@mail.example.com

When	we	first	configured	Postfix,	we	adjusted	its	home_mailbox	parameter	to
store	messages	in	separate	directories.	I	acknowledged	this	was	optional	at	that
time	but	it	would	make	things	easier	and	cleaner	when	we	set	up	retrieval	access.
If	you	didn't	set	home_mailbox	at	that	time,	incoming	messages	are	appended	to
the	user's	mail	spool	file	under	/var/spool/mail	and	some	additional
configuration	is	necessary	for	Dovecot	to	access	them.	These	changes	can	be
made	in	/etc/dovecot/conf.d/10-mail.conf.

Alternatively,	you	can	convert	the	spool	file	to	separate	messages	in	a	Maildir
directory	at	this	time.	First,	install	the	mb2md	package:

yum	install	ftp://ftp.pbone.net/mirror/atrpms.net/el7-	

	x86_64/atrpms/stable/mb2md-3.20-2.at.noarch.rpm

Open	the	/etc/postfix/main.cf	file	and	locate	the	home_mailbox	parameter.
Remove	the	leading	#	character	from	the	entry	with	the	value	Maildir/:

home_mailbox	=	Maildir/

Save	your	changes	and	then	restart	Postfix	for	the	update	to	take	effect.	Then,	for
each	account,	invoke	mb2md	to	convert	the	spool	file.	The	utility	needs	to	be	run	as
the	target	user,	so	use	su	to	temporarily	switch	to	that	user's	context:

su	-l	-c	"mb2md	-m"	tboronczyk

See	also
Refer	to	the	following	resources	for	more	information	on	the	different	topics
discussed	in	this	recipe,	including	Dovecot,	POP3,	and	IMAP.

The	mailx	manual	page	(man	1	mailx)
The	Dovecot	Homepage	(http://www.dovecot.org/)
RFC	3501:	Internet	Message	Access	Protocol
(https://tools.ietf.org/html/rfc3501)
RFC	1939:	Post	Office	Protocol	(https://tools.ietf.org/html/rfc1939)
Converting	Mbox	Mailboxes	to	Maildir	format	(http://batleth.sapienti-
sat.org/projects/mb2md/)

http://www.dovecot.org/
https://tools.ietf.org/html/rfc3501
https://tools.ietf.org/html/rfc1939
http://batleth.sapienti-sat.org/projects/mb2md/

Targeting	spam	with	SpamAssassin
Some	estimates	propose	that	over	90%	of	all	e-mail	is	unsolicited	advertisements
(spam)!	Regardless	of	whether	these	estimates	are	correct	or	not,	there's	no
denying	that	spam	is	a	huge	problem.	Unwanted	messages	cause	extra	load	on	mail
servers,	consume	storage	space,	and	can	even	be	a	security	risk.	Also,	while	there
have	been	many	attempts	to	legally	manage	spam,	such	attempts	have	largely
failed.

This	recipe	teaches	you	how	to	set	up	SpamAssassin	to	identify	spam	messages.
SpamAssassin	filters	incoming	messages	by	checking	for	various	spam	hallmarks,
such	as	missing	headers	and	invalid	return	addresses,	and	uses	heuristics	to
analyze	the	message	content.	Each	check	contributes	to	the	message's	overall	spam
score,	and	if	this	score	exceeds	the	defined	threshold	then	the	message	is	labeled
spam.

Getting	ready
This	recipe	requires	a	CentOS	system	with	Postfix	configured	as	described	in	the
previous	recipe.	Administrative	privileges	are	also	required,	either	by	logging	in
with	the	root	account	or	through	the	use	of	sudo.

How	to	do	it...
Follow	these	steps	to	identify	spam	using	SpamAssassin:

1. Install	the	spamassassin	package:

yum	install	spamassassin

2. Start	SpamAssassin	and	optionally	enable	it	to	start	automatically	whenever
the	system	reboots:

systemctl	start	spamassassin.service

systemctl	enable	spamassassin.service

3. Create	SpamAssassin's	Bayesian	classifier	database:

sa-learn	--sync

4. Create	an	unprivileged	system	user	account	that	Postfix	can	use	to
communicate	with	SpamAssassin:

useradd	-r	-s	/sbin/nologin	spamd

5. Open	Postfix's	master.cf	file	for	editing:

vi	/etc/postfix/master.cf

6. Locate	the	line	that	defines	the	smtp	service	and	append	the	-o	argument
specifying	spamassassin	as	a	content	filter:

smtp	inet	n	-	n	-	-	smtpd	-o	content_filter=spamassassin

7. At	the	end	of	the	configuration	file,	add	the	definition	for	the	spamassassin
filter:

spamassassin	unix	-	n	n	-	-	pipe	user=spamd	

argv=/usr/bin/spamc	-e	

	/usr/sbin/sendmail	-oi	-f	${sender}		${recipient}

8. Save	your	changes	and	close	the	file.
9. Restart	Postfix	for	the	updates	to	the	configuration	to	take	effect:

systemctl	restart	postfix.service

How	it	works...
The	initial	installation	of	SpamAssassin	is	pretty	straightforward.	We	installed	the
spamassassin	package	and	started	and	enabled	the	spamassassin	service	which
runs	the	spamd	daemon.	The	client	program	spamc	is	used	to	communicate	with
the	daemon,	and	the	rest	of	the	recipe's	steps	focused	on	configuring	Postfix	to	use
spamc	to	score	the	e-mail	message.

We	created	a	new	user	account	named	spamd	for	Postfix	to	use	when	it	invokes
spamc.	The	account	is	intended	to	be	a	noninteractive	system	account,	so	we
provided	the	-r	argument.	This	causes	no	home	directory	to	be	created	and	the
account's	user	ID	to	be	assigned	a	value	less	than	100.	The	-s	argument	gives
/sbin/nologin	as	the	account's	shell	to	prevent	someone	from	logging	in	using
the	account:

useradd	-r	-s	/sbin/nologin	spamd

For	Postfix	to	pass	messages	to	SpamAssassin,	we	need	to	define	a	new
spamassassin	service	in	its	master.cf	configuration	file	and	ask	Postfix	to	use
the	service	as	a	content	filter.	The	organization	of	master.cf	is	much	different
from	the	configuration	files	we've	seen	before—each	line	defines	a	process	in	the
mail	delivery	pipeline	and	certain	properties	about	it.

The	first	active	entry	in	the	file	is	for	the	smtp	service	and	looks	like	this:

smtp	inet	n	-	n	-	-	smtpd

The	first	column	is	the	name	of	the	service	and	the	second	column	specifies	how	
the	service	will	communicate.	For	example,	inet	signifies	that	the	process	uses	a	
TCP/IP	socket	while	unix	signifies	that	it	uses	a	local	unix-domain	socket.	The	
next	three	columns	indicate	whether	the	process	is	private	(only	accessible	to	
Postfix,	runs	without	administrative	privileges,	and	is	chrooted.	Their	values	can	
be	y	for	yes,	n	for	no,	or	-	for	Postfix's	default	value.	The	remaining	columns	
provide	a	wakeup	timer	for	processes	that	run	at	time	intervals,	the	limit	for	the	
number	of	instances	that	can	be	running	at	the	same	time,	and	the	command	that's	
invoked	to	provide	the	service.

To	set	our	spamassassin	service	as	a	filter,	we	updated	the	smtp	service's

command	with	the	-o	option	to	set	the	content_filter	parameter	with	the	name
of	our	service:

smtp	inet	n	-	n	-	-	smtpd	-o	content_filter=spamassassin

Then	we	defined	the	spamassassin	service	at	the	bottom	of	the	file:

spamassassin	unix	-	n	n	-	-	pipe	user=spamd	argv=/usr/bin/spamc	-

e		

/usr/sbin/sendmail	-oi	-f	${sender}	${recipient}

The	pipe	command	is	part	of	Postfix's	delivery	system	with	the	purpose	of	piping	
messages	to	external	processes.	The	user	argument	specifies	the	name	of	the	user	
account	the	invoked	process	will	run	under	and	argv	is	the	command	and	its	
arguments	that	will	be	run.	Our	definition	references	the	spamd	user	we	created	
earlier	and	pipes	the	message	to	the	spamc	client.

After	the	message	is	reviewed	by	spamd,	spamc	returns	the	message	to	stdout	by	
default.	To	avoid	losing	the	message,	we	pipe	the	output	to	another	process	to	
deliver	the	message.	-e	instructs	spamc	to	pipe	the	output	for	handling,	in	this	
case	to	a	program	named	sendmail.

Sendmail	is	another	mail	server	that's	quite	older	than	Postfix.	It	dominated	the	e-
mail	landscape	for	decades,	and	as	such	many	programs	attempt	to	interface	with	
it	to	send	mail.	This	instance	of	sendmail	is	actually	Postfix's	Sendmail	
compatibility	interface	which	allows	other	processes	to	think	they're	calling	
Sendmail	when	in	fact	they're	really	working	with	Postfix.	The	-oi	argument	for	
sendmail	instructs	the	mail	server	to	treat	lines	with	a	single	dot	as	regular	input	
and	not	interpret	it	as	the	end	of	the	message.	The	-f	argument	sets	the	from	
address	of	the	message	to	the	value	of	${sender},	a	special	variable	populated	
by	Postfix	with	the	sender's	e-mail	address,	and	the	message	is	sent	to
${recipient},	the	recipient's	e-mail	address.

To	test	the	configuration,	we	can	send	an	e-mail	message	with	the	following	
subject—it's	a	known	value	that	SpamAssassin	always	marks	as	spam:

XJS*C4JDBQADN1.NSBN3*2IDNEN*GTUBE-STANDARD-ANTI-UBE-TEST-	

EMAIL*C.34X

An	e-mail	is	sent	with	a	known	signature	in	the	subject	line	to	test
SpamAssassin

When	you	check	the	message	in	your	inbox,	you'll	notice	that	SpamAssassin	will
have	prepended	[SPAM]	to	the	subject	line,	allowing	you	to	easily	identify
unwanted	messages.	It	also	adds	additional	headers	to	the	message	that
summarizes	its	findings	that	lead	it	to	the	conclusion	that	the	message	is	spam:

SpamAssassin	updates	a	message's	subject	line	and	adds	additional	headers	to	
explain	why	it	thinks	the	message	is	spam

Keep	in	mind	that	the	world	of	spam	is	constantly	in	flux;	programmers	are	
working	hard	to	build	better	spam	filters,	but	spammers	are	working	just	as	hard	
to	find	ways	to	circumvent	them.	For	this	reason,	it's	important	to	keep	
SpamAssassin's	database	up	to	date.	A	cron	job	is	added	when	SpamAssassin	is	
installed	that	will	update	its	database	daily,	but	you	can	also	run	an	update	
manually	any	time	you	like	by	running:

sa-update

If	SpamAssassin	is	falsely	identifying	a	large	amount	of	legitimate	messages	as	
spam	or	vice	versa,	you	can	train	it's	Bayesian	classifier	to	better	identify

unwanted	messages	using	sa-learn.	We	can	provide	a	collection	of	messages	we
know	are	spam	and	identify	them	as	such	with	the	--spam	argument,	and	good
messages	with	--ham	for	the	program	to	study:

sa-learn	--ham	/home/tboronczyk/Maildir/cur

sa-learn	--spam	/home/tboronczyk/Mail/.Spam

sa-learn	keeps	track	of	the	messages	it's	seen.	If	you	have	previously	indicated
that	a	message	is	spam	and	then	later	use	it	as	ham,	the	program	will	remove	it
from	its	spam	database,	and	vice	versa	if	you	indicate	an	e-mail	is	good	but	later
decide	it	should	be	used	as	spam.

See	also
Refer	to	the	following	resources	for	more	information	on	working	with
SpamAssassin:

The	sa-learn	manual	page	(man	1	sa-learn)
SpamAssassin	Home	Page	(http://spamassassin.apache.org/)
Rum	SpamAssassin	with	Postfix	(http://howto.gumph.org/content/run-
spamassassin-with-postfix/)
Stop	Spam	on	your	Postfix	Server	with	SpamAssassin
(https://www.linux.com/learn/stop-spam-your-postfix-server-spamassassin)
Bayes	Theorem	Explained	Like	You're	Five
(https://www.youtube.com/watch?v=2Df1sDAyRvQ)

http://spamassassin.apache.org/
http://howto.gumph.org/content/run-spamassassin-with-postfix/
https://www.linux.com/learn/stop-spam-your-postfix-server-spamassassin
https://www.youtube.com/watch?v=2Df1sDAyRvQ

Routing	messages	with	Procmail
Depending	on	your	preferences,	tagging	messages	as	spam	may	not	be	enough.
Maybe	you'll	want	to	set	up	a	rule	in	your	e-mail	client	that	moves	any	unwanted
messages	from	your	inbox	to	a	dedicated	spam	directory.	Or	maybe	you	want	such
routing	to	happen	automatically	on	the	server.	We	can	configure	this	using
Procmail,	a	mail	filtering	and	delivery	agent.

In	this	recipe,	we'll	look	at	how	to	configure	Procmail	to	route	messages.	We'll
scan	incoming	mail,	looking	for	a	special	header	that	SpamAssassin	adds	to
messages	if	it	thinks	they're	spam	and	then	deliver	them	to	a	separate	directory
instead	of	the	inbox.

Getting	ready
This	recipe	requires	a	CentOS	system	with	Postfix	configured	as	described	in	the
previous	recipes.	Administrative	privileges	are	also	required,	either	by	logging	in
with	the	root	account	or	through	the	use	of	sudo.

How	to	do	it...
Follow	these	steps	to	set	up	Procmail	to	route	messages:

1. Create	the	/etc/procmailrc	file	with	the	following	content:

MAILDIR=$HOME/Maildir

DEFAULT=$MAILDIR/new

INCLUDERC=/etc/mail/spamassassin/spamassassin-spamc.rc

:0

* ^X-Spam-Status:	Yes

.Spam

2. Create	each	user's	spam	directory:

echo	Spam	>>	/home/tboronczyk/Maildir/subscriptions

mkdir	/home/tboronczyk/Maildir/.Spam

3. If	you	created	the	user's	spam	directory	as	root,	fix	the	directory	and
subscription	file's	ownership	and	permissions:

chown	tboronczyk	/home/tboronczyk/Maildir/subscriptions

chmod	0600	/home/tboronczyk/Maildir/subscriptions

chown	tboronczyk.tboronczyk	/home/tboronczyk/Maildir/.Spam

chmod	0700	/home/tboronczyk/Maildir/.Spam

4. Open	Postfix's	main.cf	configuration	file	with	your	editor:

vi	/etc/postfix/main.cf

5. Locate	the	example	mailbox_command	parameters.	Uncomment	the	second
example	and	correct	its	path	to	the	procmail	executable:

mailbox_command	=	/bin/procmail	-a	"$EXTENSION"

6. Save	the	changes	and	close	the	file.
7. Restart	Postfix	for	the	updated	configuration	to	take	effect:

systemctl	restart	postfix.service

How	it	works...
Like	Postfix,	Procmail	is	installed	by	default	on	CentOS	systems.	However,	we	
need	to	create	its	configuration	file	for	it	to	be	useful	to	us.	The	main	configuration	
file	is	/etc/procmailrc	and	we	start	it	by	defining	the	MAILDIR,	DEFAULT,	and	
INCLUDERC	variables.

MAILDIR=$HOME/Maildir

DEFAULT=$MAILDIR/new

INCLUDERC=/etc/mail/spamassassin/spamassassin-spamc.rc

MAILDIR	provides	the	location	of	the	user's	mail	directory.	procmailrc	is	a	
global	configuration	file	and	we	use	$HOME	to	denote	the	user's	home	directory	in	
which	Maildir	resides.	DEFAULT	provides	the	default	location	for	incoming	mail,	
which	is	the	mail	directory's	new	directory.

INCLUDERC	gives	the	name	of	other	files	that	should	be	included	when	Procmail	
processes	the	configuration	file.	In	this	case,	SpamAssassin	installs	a	
configuration	file	to	integrate	with	Procmail	which	we	reference.

The	second	part	of	the	configuration	appears	as	a	cryptic	incantation—the	
definition	of	a	matching	rule.	In	Procmail	parlance,	they're	called	recipes:

:0

*	^X-Spam-Status:	Yes

.Spam

More	than	one	rule	can	be	given	in	the	configuration	file,	in	which	case	they	are	
processed	in	the	order	in	which	they	appear,	top	to	bottom.

All	rules	begin	with	:0	and	contain	conditions	followed	by	an	action.	Here,	the	
condition	starts	with	*	to	specify	a	regular	expression	pattern	that	Procmail	will	
search	the	message	and	its	headers	for.	The	action	line	then	lists	the	directory	that	
matching	messages	will	be	delivered	to.	If	it's	given	as	a	relative	path,	the	
directory	considered	will	be	relative	to	$MAILDIR.	Thus,	the	rule	asks	Procmail	to	
route	any	messages	flagged	with	the	X-Spam-Status	header	by	SpamAssassin	to	
the	user's	Maildir/.Spam	directory.

The	original	Maildir	specification	only	allows	the	new,	cur,	and	tmp	directories,

but	others	have	augmented	it	to	support	additional	directories.	The	user	can	either
create	their	spam	directory	through	their	e-mail	client	over	IMAP,	in	which	case
all	of	the	details	are	worked	out	by	Dovecot.	Alternatively,	we	can	create	it	for
them	in	the	filesystem.	When	we	create	a	directory	manually,	the	subscriptions
file	must	list	the	additional	directories,	one	entry	per	line,	for	them	to	be	visible	in
the	user's	mail	client.	The	directories	themselves	are	then	named	with	a	leading
dot:

echo	Spam	>>	/home/tboronczyk/Maildir/subscriptions

mkdir	/home/tboronczyk/Maildir/.Spam

Procmail	also	allows	for	per-user	actions	as	well.	For	example,	if	only	one	user
wants	to	have	flagged	messages	moved	to	their	spam	folder,	the	matching	rule	can
be	moved	from	the	global	configuration	under	/etc	to	a	file	named	.procmailrc
in	their	home	directory.	It's	still	recommended	that	you	keep	the	variable
definitions	in	the	global	configuration	so	that	they'll	be	available	to	all	users,	as
Procmail	executes	the	global	file	first	and	then	the	user's	local	.procmailrc	if	it's
available.

Various	flags	can	be	given	after	:0	that	modify	how	Procmail	behaves	or	how	the
rule	is	interpreted.	For	example,	Procmail	only	search	the	message's	headers	by
default.	To	search	the	message's	body,	we	need	to	provide	the	B	flag.	The
following	rule	is	an	example	that	searches	the	message's	body	for	the	text	"Hello
World"	and	routes	the	matching	messages	to	/dev/null:

:0	B

* Hello	World

/dev/null

Some	flags	you	may	find	useful	are:

H:	Search	the	message's	headers
B:	Search	the	message's	body
D:	Match	the	regular	expression	in	a	case-sensitive	manner
e:	Only	execute	the	rule	if	the	rule	immediately	preceding	it	was	unsuccessful
c:	Create	a	copy	of	the	message
h:	Only	send	the	message's	header	to	a	piped	program
b:	Only	send	the	message's	body	to	a	piped	program

If	the	action	begins	with	|	then	the	value	is	interpreted	as	a	command	and	the
message	is	piped	to	it.	Here's	an	example	that	sends	a	copy	of	any	messages
received	from	the	human	resources	department	to	the	printer	by	piping	it	through
lpr:

:0	c

* ^From:	hr-dept@example.com

|	lpr

If	the	action	begins	with	!	then	the	value	is	seen	as	an	e-mail	and	the	message	is
forwarded.	This	example	routes	an	e-mail	from	a	known	recipient	to	a	personal	e-
mail	account	instead:

:0

* ^From:	secret-admirer@example.com

! tboronczyk@another-example.com

See	also
Refer	to	the	following	resources	for	more	information	on	Procmail:

The	procmail	manual	page	(man	1	procmail)
The	procmailrc	file	manual	page	(man	5	procmailrc)
Timo's	Promail	tips	and	recipes
(http://www.netikka.net/tsneti/info/proctips.php)

http://www.netikka.net/tsneti/info/proctips.php

Chapter	10.	Managing	Web	Servers
This	chapter	contains	the	following	recipes:

Installing	Apache	HTTP	Server	and	PHP
Configuring	name-based	virtual	hosting
Configuring	Apache	to	serve	pages	over	HTTPS
Enabling	overrides	and	performing	URL	rewriting
Installing	NGINX	as	a	load	balancer

Introduction
This	chapter	contains	recipes	for	working	with	the	Apache	HTTP	Server	to	serve
websites.	You'll	first	learn	how	to	install	the	server	as	well	as	PHP,	a	very
common	server-side	scripting	engine	used	to	generate	dynamic	web	content.	Then
you'll	see	how	to	serve	multiple	sites	with	the	same	server	instance	using	name-
based	virtual	hosting,	encrypt	the	connection	and	serve	content	over	HTTPS,	and
how	to	rewrite	incoming	URLs	on	the	fly.	We'll	finish	with	looking	at	NGINX	and
its	use	as	a	reverse	proxy	to	decrease	load	on	the	server	while	at	the	same	time
speeding	up	access	to	our	sites	for	the	user.

Installing	Apache	HTTP	Server	and
PHP
You	may	have	heard	the	acronym	LAMP	which	stands	for	Linux,	Apache,	MySQL,	
and	PHP.	It	refers	to	the	popular	pairing	of	technologies	for	providing	websites	
and	web	applications.	This	recipe	teaches	you	how	to	install	the	Apache	HTTP	
Server	(Apache	for	short	and	configure	it	to	work	with	PHP	to	serve	dynamic	
web	content.

First	released	over	twenty	years	ago,	Apache	was	one	of	the	first	web	servers	and	
it	continues	to	be	one	of	the	most	popular.	Its	task	in	the	LAMP	stack	is	to	interact	
with	the	user	by	responding	to	their	requests	for	web	resources.	Perhaps	one	of	its	
selling	points	is	its	design	that	allows	its	functionality	to	be	expanded	with	
modules.	Many	modules	exist,	from	mod_ssl,	which	adds	HTTPS	support	to	
mod_rewrite,	which	allows	you	to	modify	the	request	URL	on	the	fly.

PHP	is	a	scripting	language	for	creating	dynamic	web	content.	It	works	behind	the	
scenes	and	the	output	of	a	script	is	usually	served	by	Apache	to	satisfy	a	request.	
PHP	was	commonly	installed	as	a	module	(mod_php	that	embedded	the	
language's	interpreter	into	Apache's	processing,	but	nowadays,	running	PHP	as	a	
standalone	process	is	preferred.	This	is	the	approach	we'll	take	in	this	recipe.

Getting	ready
This	recipe	requires	a	CentOS	system	with	a	working	network	connection.	It
assumes	that	the	system	is	configured	with	the	IP	address	192.168.56.100.
Administrative	privileges	are	also	required,	either	by	logging	in	with	the	root
account	or	through	the	use	of	sudo.

Note	that	the	official	CentOS	repositories	install	PHP	5.4.	The	Remi	repositories
offer	5.5,	5.6,	and	7.0	if	you	want	to	install	a	newer	release.	To	install	one	of	the
5.x	versions,	open	the	/etc/yum.repos.d/remi.repo	file,	locate	the	enabled
option	in	the	[remi-php55]	or	[remi-php56]	section	and	set	its	value	to	1.	For
7.0,	update	the	enabled	option	found	in	/etc/yum.repos.d/remi-php70.repo.

Note

What	happened	to	PHP	6?	It's	a	long	story....	The	team	of	volunteers	developing
PHP	was	working	on	version	6,	but	the	initiative	faced	many	hurdles	and	was
eventually	shelved.	To	prevent	confusion	between	the	latest	release	and	any	blog
postings	that	were	written	about	PHP	6,	it	was	decided	that	its	version	number
would	be	bumped	to	7.	In	short,	PHP	6	did	exist	but	never	achieved	a	proper
release	status	and	most	of	the	cool	features	planned	for	6	made	it	into	PHP	5.3,
5.4,	and	7.0.

How	to	do	it...
Follow	these	steps	to	install	Apache	HTTP	Server	and	PHP:

1. Install	the	httpd	and	php-fpm	packages:

yum	install	httpd	php-fpm

2. Open	Apache's	configuration	file	with	your	text	editor:

vi	/etc/httpd/conf/httpd.conf

3. Locate	the	ServerName	option.	Remove	#	appearing	at	the	start	of	the	line	to
uncomment	it	and	then	change	the	option's	value	to	reflect	your	server's
hostname	or	IP	address:

ServerName	192.168.56.100:80

4. Find	the	DirectoryIndex	option	and	add	index.php	to	the	list:

	<IfModule	dir_module>

			DirectoryIndex	index.html	index.php

	</IfModule>

5. At	the	end	of	the	file,	add	the	following	configuration:

	<IfModule	proxy_fcgi_module>

	ProxyPassMatch	^/(.*\.php)$	

			fcgi://127.0.0.1:9000/var/www/html/$1

	</IfModule>

6. Save	your	changes	to	the	configuration	and	close	the	file.
7. Verify	that	mod_proxy	(listed	as	proxy_module)	and	mod_proxy_fcgi

(proxy_fcgi_module)	extension	modules	are	enabled:

httpd	-M	|	grep	proxy

8. Both	modules	should	appear	in	the	output.
9. Start	Apache	and	PHP's	FPM	service	and	enable	them	to	start	automatically

when	your	system	reboots:

systemctl	start	httpd.service	php-fpm.service

systemctl	enable	httpd.service	php-fpm.service

10. Open	port	80	in	the	system's	firewall	to	allow	HTTP	requests	through:

firewall-cmd	--zone=public	--permanent	--add-service=http

firewall-cmd	--reload

How	it	works...
There	are	several	ways	to	integrate	PHP	with	Apache's	HTTP	server	to	generate	
dynamic	web	content.	Historically,	using	Apache's	mod_php	module	was	the	way	
to	go,	but	now	the	preferred	approach	is	to	run	PHP	as	a	separate	process,	which	
the	web	server	communicates	with	using	the	FastCGI	protocol.	So,	we	installed	
the	httpd	package	for	the	Apache	HTTP	Server	and	the	php-fpm	package	for	the	
PHP	interpreter	and	its	process	manager:

yum	install	httpd	php-fpm

The	PHP	FastCGI	Process	Manager	(FPM	is	included	in	the	core	PHP	
distributions	as	of	version	5.3.	Separating	PHP	from	Apache	encourages	a	more	
scalable	architecture,	and	using	a	persistent	PHP	process	reduces	CPU	overhead	
because	a	new	interpreter	doesn't	have	to	be	spawned	for	each	request.

Apache's	main	configuration	file	is	/etc/httpd/conf/httpd.conf,	in	which	we	
updated	the	ServerName	option	to	reflect	our	server's	hostname	or	IP	address.	
While	this	step	isn't	strictly	necessary,	if	we	don't	set	the	option	then	the	server	
will	write	warning	messages	to	its	log	files.	Besides,	it's	useful	for	the	server	to	
be	able	to	identify	itself:

ServerName	192.168.56.100:80

Next,	we	updated	for	the	DirectoryIndex	option	by	adding	index.php	to	its	list	
of	values.	When	the	user	requests	a	resource	that	resolves	to	a	directory,	the	
server	will	look	in	that	directory	for	a	file	that	matches	one	of	the	names	in	the	
DirectoryIndex	list.	If	found,	Apache	will	return	that	file	to	satisfy	the	request.	
This	behavior	is	what	allows	visitors	to	access	a	website's	home	page	with	a	URL	
such	as	www.example.com	rather	than	www.example.com/index.html:

DirectoryIndex	index.html	index.php

The	order	in	which	files	are	listed	is	significant.	For	example,	if	both
index.html	and	index.php	exist	in	the	directory	then	index.html	will	be	
returned	because	it's	listed	before	index.php	in	the	option's	list.

Then	we	navigated	to	the	end	of	the	file	to	add	the	following	proxy	configuration.	
If	the	regular	expression	of	ProxyPassMatch	matches	the	incoming	request	then

the	server	retrieves	the	given	URL	and	returns	that	content	instead:

	<IfModule	proxy_fcgi_module>

			ProxyPassMatch	^/(.*\.php)$	

fcgi://127.0.0.1:9000/var/www/html/$1

	</IfModule>

Regular	expressions	are	written	using	a	special	notation	that	describes	how	to
match	text.	Most	characters	are	matched	literally,	but	some	have	special	meaning:

.:	This	matches	any	character.	The	pattern	bu.	matches	against	the	text	bud,
bug,	bun,	bus,	and	so	on.
+:	This	matches	the	preceding	element	one	or	more	times.	The	pattern	fe+t
matches	fet,	feet,	and	feeet	and	so	on	but	not	ft.
*:	This	optionally	matches	the	preceding	element	any	number	of	times.	The
pattern	fe*t	matches	ft,	fet,	feet,	feeet,	and	so	on.
?:	This	optionally	matches	the	preceding	element	once.	The	pattern	colou?r
matches	color	and	colour.
^:	This	anchors	the	match	to	the	beginning	of	the	line.	The	pattern	^abc	only
matches	abc	if	abc	appears	at	the	beginning	of	the	text	(^	has	special
significance	when	used	in	[]).
$:	This	anchors	the	match	to	the	end	of	the	line.	The	pattern	xyz$	only
matches	xyz	if	xyz	appears	at	the	end	of	the	line.
[]:	This	matches	any	of	the	characters	given	within	the	brackets.	The
pattern	co[lr]d	matches	cold	and	cord.	When	the	first	character	in	[]	is	^
then	the	list	is	negated;	co[^lr]d	matches	coed	but	not	cold	or	cord.
():	This	groups	elements	and	captures	matches.	The	pattern	jump(ed)?
matches	jump	and	jumped.

If	you	want	any	of	these	special	characters	to	be	matched	literally	then	you	should	
escape	them	with	a	leading	backslash,	for	example	foo\.html	will	match	
foo.html	instead	of	fooahtml,	foobhtml,	and	so	on.

Special	numeric	variables	like	$1	and	$2	contain	the	value	of	any	captured	
matches.	The	order	in	which	they	are	populated	are	the	order	in	which	the	
parentheses	capture	a	match,	thus	(foo\.(html	sets	$1	to	foo	and	$2	to	html.

With	this	understanding,	you	should	now	be	able	to	decipher	that	the	regular

expression	̂ /(.*\.php$	captures	the	path	and	filename	of	the	requested	
resource	that	end	with	the	extension	.php.	The	$1	variable	represents	the	captured	
path,	so	a	request	for	/about/staff.php	will	be	proxied
as	fcgi://127.0.0.1:9000/var/www/html/about	/staff.php	where	PHP's	
Fast-CGI	listener	is	listening	to	the	local	interface	on	port	9000.

Apache's	functionality	is	often	extended	through	modules,	and	as	a	safeguard	it's	a	
good	practice	to	wrap	module-specific	configuration	options	in	an	IfModule	
block.	The	opening	of	such	blocks	contain	the	name	of	the	module	and	appear	in	
angle	brackets	<	>.	The	block's	closing	appears	as	</IfModule>	just	like	closing	
an	HTML	element.

The	directory	out	of	which	the	server	serves	files	from	is	set	by	the	option	
DocumentRoot.	The	default	value	is	/var/www/html,	so	any	files	we	place	there	
or	in	a	subdirectory	within	it	will	be	accessible.	As	an	example	to	illustrate	this,	
the	distribution	includes	a	sample	index.html	file,	which	we	can	use	to	verify	
that	the	server	is	running	correctly;	copy	the
/usr/share/httpd/noindex/index.html	file	to	/var/www/html:

cp	/usr/share/httpd/noindex/index.html	/var/www/html

Then,	open	your	browser	and	navigate	to	the	domain	or	IP	address	of	the	system.	
You	should	see	the	welcome	page:

You	can	copy	Apache's	default	index	page	to	the	web	directory	to	test	whether
the	server	is	up	and	running

For	PHP,	you	need	to	place	a	PHP	file	where	it	can	be	read	by	the	Fast-CGI
service.	The	proxy	URL	is	fcgi://127.0.0.1:9000/var/www/html/$1,	so	that
we	can	place	our	PHP	files	in	/var/www/html	as	well.

Create	the	info.php	file	with	the	following	content:

	<?php

	phpinfo();

Now	save	the	file	and	then	navigate	to	the	page	in	your	browser.	You	should	see
the	output	of	PHP's	phpinfo()	function	providing	detailed	information	on	how
PHP	is	configured	and	which	of	its	modules	are	available:

PHP	reports	information	about	its	environment	and	the	request

Note

For	security	purposes,	it's	recommended	that	you	delete	the	welcome	index.html	
file	if	you	copied	it	over	and	the	info.php	script	after	you	verify	everything

works.	The	information	they	present	can	give	malicious	users	more	information
about	the	set	up	of	your	web	server	than	you'd	like	them	to	have.

See	also
Refer	to	the	following	resources	for	more	information	on	working	with	Apache
and	PHP:

Apache	HTTP	Server	Project	(http://httpd.apache.org/)
The	PHP	home	page	(http://php.net/)
Apache	mod_proxy_fcgi	documentation
(http://httpd.apache.org/docs/current/mod/mod_proxy_fcgi.html)
Httpd	Wiki:	PHP-FPM	(http://wiki.apache.org/httpd/PHP-FPM)
RFC-2616:	HTTP/1.1	(http://www.rfc-base.org/txt/rfc-2616.txt)

http://httpd.apache.org/
http://php.net/
http://httpd.apache.org/docs/current/mod/mod_proxy_fcgi.html
http://wiki.apache.org/httpd/PHP-FPM
http://www.rfc-base.org/txt/rfc-2616.txt

Configuring	name-based	virtual
hosting
As	you	may	recall	from	our	discussions	surrounding	DNS	in	Chapter	8,	Managing
Domains	and	DNS	a	user's	browser	needs	to	translate	a	website's	hostname	to	its
IP	address	via	DNS	lookups	before	it	can	connect	and	retrieve	the	desired	web
content.	You	may	also	recall	that	this	doesn't	have	to	be	a	one-to-one	mapping-
more	than	one	site	can	resolve	to	the	same	IP	address.	Apache	is	flexible	enough
so	that	the	same	server	can	serve	more	than	one	site	by	a	configuration	known	as
name-based	virtual	hosting.

This	recipe	teaches	you	how	to	set	up	name-based	virtual	hosting.	Each	site	has
it's	own	configuration	(often	kept	in	its	own	configuration	file	for	better
organization).	Based	on	the	site	name	that	appears	in	the	request,	Apache	then
selects	from	the	available	configurations	to	properly	serve	the	desired	site.

Getting	ready
This	recipe	requires	a	CentOS	system	with	a	working	network	connection	and
running	Apache	as	described	in	the	previous	recipe.	Because	we'll	be	connecting
to	the	server	via	a	domain	name	instead	of	an	IP	address,	you'll	need	to	make	sure
the	name	resolves	to	the	correct	address	by	updating	your	DNS	records	or	adding
entries	to	/etc/hosts	first.	Administrative	privileges	are	also	required,	either	by
logging	in	with	the	root	account	or	through	the	use	of	sudo.

How	to	do	it...
Follow	these	steps	to	set	up	name-based	virtual	hosting:

1. Open	Apache's	configuration	file	with	your	text	editor:

vi	/etc/httpd/conf/httpd.conf

2. At	the	bottom	of	the	file,	add	the	following	Include	option:

Include	sites/*.conf

3. Save	the	updated	configuration	and	close	the	file.
4. Create	the	sites	directory	referenced	in	the	configuration:

mkdir	/etc/httpd/sites

5. Create	a	virtual	host	configuration	file	within	the	new	sites	directory	for
your	first	site:

vi	/etc/httpd/sites/www.example.conf

6. Add	the	following	code	to	the	site's	configuration	file:

	<VirtualHost	*:80>

	ServerName	www.example.com

	DocumentRoot	"/var/www/example.com/www/html"

	<IfModule	proxy_fcgi_module>

	ProxyPassMatch	^/(.*\.php)$	

fcgi://127.0.0.1:9000/var/www/example.com/www/html/$1

			</IfModule>

	</VirtualHost>

7. Save	your	changes	and	close	the	file.
8. Create	the	site's	document	root	referenced	in	the	configuration	options:

mkdir	-p	/var/www/example.com/www/html

9. Repeat	steps	4-8	for	each	additional	site	you	will	be	hosting,	using	the	host
or	domain	name	to	create	a	unique	directory	path	for	each	site.

10. Restart	the	HTTP	server	for	the	configuration	changes	to	take	effect:

systemctl	restart	httpd.service

How	it	works...
Configuring	Apache	to	serve	multiple	domains	is	a	matter	of	creating	a
VirtualHost	definition	for	each	site.	This	recipe	organizes	the	definitions	in
their	own	file	under	the	directory	/etc/httpd/sites	and	then	references	them	in
the	main	httpd.conf	configuration	file	using	an	Include	directive:

Include	sites/*.conf

How	you	organize	your	sites	is	up	to	you.	This	recipe	uses	a	scheme	where	each
site	is	served	from	a	path	based	on	the	domain	name	followed	by	the	subdomain
rooted	in	/var/www.	The	path	/var/www/example.com/www/html	contains	the
files	for	the	site	at	www.example.com.	Files	for	the	site	at	web.example.com
would	be	placed	in	/var/www/example.com/web/html.	The	html	directory	is
simply	the	web-accessible	root	for	the	site.	By	including	it	instead	of	serving	files
out	of	example.com/www	directly,	we	can	place	any	supporting	files	outside	the
root	which	aren't	mean	to	be	accessed	directly	(for	example,	a	script	with
configuration	options	for	a	PHP	website),	but	still	keep	them	organized	with	the
rest	of	the	site's	files.

Note

Naming	the	publicly	accessible	directory	root	html	is	a	convention,	but	its	one
that	I	find	outdated	since	more	than	just	HTML	files	are	often	served.	I	often	name
my	own	root	directories	public	or	public_files	and	update	their	references	in
the	configuration	file	accordingly.

Each	definition	for	a	virtual	host	is	contained	within	a	VirtualHost	block.	The
opening	provides	the	IP	address	of	the	interface	on	which	the	server	is	listening
followed	by	the	port	number.	*	indicates	that	the	definition	applies	to	all	of	the
system's	interfaces	and	80	is	the	default	port	for	HTTP	traffic:

	<VirtualHost	*:80>

Options	that	don't	appear	explicitly	in	the	definition	are	assumed	to	have	the	same
settings	as	found	in	the	main	configuration,	so	at	a	minimum,	the	ServerName	and
DocumentRoot	options	need	to	be	defined	to	make	the	definition	unique.	If	you're

using	PHP,	you'll	want	to	provide	the	ProxyPassMatch	option	as	well	so	that	the
requests	are	mapped	to	the	correct	PHP	files:

	<VirtualHost	*:80>

	ServerName	www.example.com

	DocumentRoot	"/var/www/example.com/www/html"

	<IfModule	proxy_fcgi_module>

			ProxyPassMatch	^/(.*\.php)$	

fcgi://127.0.0.1:9000/var/www/		

	example.com/www/html/$1

			</IfModule>

	</VirtualHost>

Note

The	order	in	which	the	virtual	host	definitions	are	loaded	is	somewhat	important;
the	first	one	loaded	acts	as	the	default	and	will	handle	any	requests	that	do	not
match	any	of	the	virtual	hosts	definitions.	Prefixing	the	configuration	files
numerically,	for	example	10-www.example.conf,	can	help	you	control	the
loading	order.

Each	request	is	logged	to	/var/log/httpd/access_log	and	any	errors	are
logged	to	error_log.	Of	course,	this	is	fine	if	you're	only	serving	one	site.	But
when	serving	multiple	sites,	you	may	find	it	beneficial	to	route	log	entries	to
different	files	for	different	sites.	The	CustomLog	option	names	a	file	where	the
access	and	general	logging	messages	are	written	to	and	the	format	of	the	entries.
ErrorLog	specifies	the	file	where	the	error	messages	are	written.	Both	of	these
options	can	appear	in	a	virtual	host's	configuration:

	<VirtualHost	*:80>

	ServerName	www.example.com

	DocumentRoot	"/var/www/example.com/www/html"

	CustomLog	"/var/log/httpd/example.com/www/access_log"	"%h	

%u	

	%t	"%r"	%>s	%b"

	ErrorLog		"/var/log/httpd/example.com/www/error_log"

	<IfModule	proxy_fcgi_module>

			ProxyPassMatch	^/(.*\.php)$	

fcgi://127.0.0.1:9000/var/www/

	example.com/www/html/$1

			</IfModule>

	</VirtualHost>

The	second	argument	to	CustomLog	can	be	the	format	string	itself	or	an	alias	that
represents	the	format	string.	Format	strings	simply	define	what	details	are
contained	in	the	logged	messages.

There's	a	slew	of	format	specifiers	available	which	are	all	documented	in	the
Apache	HTTPd	Server's	documentation.	Here's	a	list	of	some	of	the	more	common
ones	you	may	use,	while	you	can	find	a	complete	list	online	at
http://httpd.apache.org/docs/current/mod/mod_log_config.html#formats):

%b:	This	is	the	size	of	the	response	(in	bytes)	served	back	to	the	client
%D:	This	is	the	time	taken	to	process	the	request	in	milliseconds	(%T
represents	the	time	taken	in	seconds)
%h:	This	is	the	IP	or	hostname	of	the	requesting	system
%H:	This	is	the	protocol	used	to	make	the	request
%m:	This	is	the	method	used	to	make	the	request
%q:	This	is	the	query	string	portion	of	the	requested	URI
%r:	This	is	the	first	line	of	the	request
%>s:	This	is	the	request's	final	status	code	(%s	represents	the	initial	status	for
requests	that	are	redirected)
%t:	This	is	the	time	when	the	request	was	received
%u:	This	is	the	username	for	authenticated	requests	when	the	request	was
received
%v:	This	is	the	name	of	the	server	(ServerName)	handling	the	request

The	LogFormat	option	names	a	format	string	with	an	alias.	For	example,	the	
httpd.conf	file	uses	LogFormat	to	define	strings	named	as	common	and	
combined,	which	can	be	used	elsewhere.	It's	a	good	idea	to	define	your	own	alias	
for	your	virtual	host	logging	and	use	the	alias	in	the	individual	configuration	files	
rather	than	having	cryptic	format	strings	scattered	about.	In	httpd.conf,	simply	
add	your	custom	LogFormat	entry	in	the	same	area	as	the	common	and	combined	
entries:

LogFormat	"%v	%h	%u	%t	"%r"	%>s	%b"	vhostcommon

Then,	you	can	reference	the	alias	in	your	sites'	configuration	files:

CustomLog	"/var/www/example.com/www/logs/access_log"	vhostcommon

After	making	the	changes,	restart	Apache	for	the	configuration	to	take	effect.

http://httpd.apache.org/docs/current/mod/mod_log_config.html#formats

Whatever	their	destination,	make	sure	the	ownership/permissions	your	security	
context	allow	Apache	runs	to	write	to	the	log	file.	If	the	logs	reside	under
/var/log/httpd	then	creating	the	necessary	subdirectories	should	be	sufficient.	
The	server	will	create	the	log	files	itself	when	it	starts:

mkidr	-p	/var/log/httpd/example.com/www

However,	if	you	wish	to	keep	the	logs	in	another	directory,	perhaps	such	as
/var/www/example.com/www/logs,	the	server	may	be	blocked	from	writing	to	
them.	SELinux	is	enabled	regardless	of	the	filesystem	permissions	appearing	sane.	
To	fix	the	situation,	first	verify	the	security	context	with	ls	-Z:

ls	-Z	/var/www/example.com/www	|	grep	logs

drwxr-xr-x.	apache	apache	

unconfined_u:object_r:httpd_sys_content_		

t:s0	logs

In	this	case,	the	logs	directory	is	owned	by	the	apache	user,	which	Apache	runs	
under,	and	the	permissions	on	the	directory	should	allow	the	server	to	create	the	
log	files.	However,	we	can	also	see	that	the	directory	has	inherited	the	label	that	
identifies	it	as	web	content	as	indicated	by	httpd_sys_content_t.	To	fix	the	
problem,	we	need	to	relabel	the	directory	for	logging	purposes	using	chcon:

chcon	-Rv	--type=httpd_log_t	/var/www/example.com/www/logs

See	also
Refer	to	the	following	resources	for	more	information	on	working	with	virtual
hosting:

Apache	Virtual	Host	documentation
(http://httpd.apache.org/docs/current/vhosts/)
Apache	mod_log_config	documentation
(http://httpd.apache.org/docs/current/mod/mod_log_config.html)
VirtualHost	examples
(http://httpd.apache.org/docs/current/vhosts/examples.html)
CentOS	Wiki:	SELinux	HowTo	(https://wiki.centos.org/HowTos/SELinux)

http://httpd.apache.org/docs/current/vhosts/
http://httpd.apache.org/docs/current/mod/mod_log_config.html
http://httpd.apache.org/docs/current/vhosts/examples.html
https://wiki.centos.org/HowTos/SELinux

Configuring	Apache	to	serve	pages
over	HTTPS
HTTP	traffic	is	sent	in	plain	text	across	the	network.	In	an	untrusted	environment,
a	malicious	user	can	monitor	and	capture	the	traffic	to	spy	on	what	sites	you're
visiting	and	what	content	you're	reading.	While	such	snooping	isn't	interesting	if
the	victim	is	just	reading	the	daily	news	or	watching	cat	videos	on	YouTube,	the
user's	credit	card	number,	shipping	address,	and	other	details	could	be	snagged	if
an	e-commerce	transaction	were	to	take	place	unencrypted.	To	support	encrypted
traffic,	Apache	supports	HTTPS.	This	recipe	will	teach	you	how	to	configure
HTTPS	support	and	protect	your	users'	traffic	from	prying	eyes	no	matter	how
benign	the	content	is.

Getting	ready
This	recipe	requires	a	CentOS	system	with	a	working	network	connection.	It
assumes	that	the	system	is	configured	with	the	IP	address	192.168.56.100	and	is
running	Apache	as	described	in	the	previous	recipes.	Administrative	privileges
are	also	required,	either	by	logging	in	with	the	root	account	or	through	the	use	of
sudo.

How	to	do	it...
Follow	these	steps	to	serve	pages	over	HTTPS:

1. Generate	a	new	key	file	and	security	certificate	using	openssl:

openssl	req	-newkey	rsa:2048	-nodes	\

-keyout	/etc/pki/tls/private/www.example.key	\

-x509	-days	730	-subj	"/CN=www.example.com"	-text	\

-out	/etc/pki/tls/certs/www.example.pem

2. Install	the	server's	SSL	module:

yum	install	mod_ssl

3. Open	the	/etc/httpd/conf.d/ssl.conf	file	with	your	text	editor:

vi	/etc/httpd/conf.d/ssl.conf

4. Locate	the	SSLCertificateFile	option	and	update	its	value	to	point	to	the
self-signed	certificate	file:

SSLCertificateFile	/etc/pki/tls/certs/www.example.pem

5. Locate	the	SSLCertificateKeyFile	option	and	update	it	to	point	to	the
encryption	key:

SSLCertificateKeyFile	/etc/pki/tls/private/www.example.key

6. Save	your	changes	and	close	the	file.
7. Restart	the	server	for	the	updated	configuration	to	take	effect:

systemctl	restart	httpd

8. Open	port	443	in	the	firewall	to	allow	HTTPS	traffic:

firewall-cmd	--zone=public	--permanent	--add-service=https

firewall-cmd	--reload

How	it	works...
The	Apache	HTTP	Server	comes	with	a	default	SSL/TLS	configuration	contained
within	a	catch-all	virtual	host	definition	in	/etc/httpd/conf.d/ssl.conf.	With
most	of	the	configuration	already	done	for	us,	all	that's	left	is	to	install	the	SSL
module,	generate	a	new	key	and	certificate,	and	update	the	configuration	to	point
to	our	files.

First,	we	generated	a	new	encryption	key	and	signing	certificate.	If	you've	already
read	the	Configuring	Postfix	to	use	TLS	recipe	in	Chapter	9,	Managing	E-mails,
then	you	already	know	that	the	key	is	needed	for	secured	communication	and	the
certificate	confirms	the	ownership	of	the	key:

openssl	req	-newkey	rsa:2048	-nodes	\

-keyout	/etc/pki/tls/private/www.example.key	\

-x509	-days	730	-subj	"/CN=www.example.com"	-text	\

-out	/etc/pki/tls/certs/www.example.pem

The	recipe	generates	a	self-signed	certificate	which	is	sufficient	for	personal	use	
and	intranet	sites.	The	req	option	creates	a	new	certificate	and	-newkey	generates	
a	new	private	key.	The	key	is	a	2048-bit	RSA	key	and	itself	is	not	encrypted	(-
nodes,	so	we	don't	need	to	provide	a	passphrase	to	decrypt	the	key	every	time	
we	start	the	web	server.	The	certificate	is	an	X.509	certificate	(-x509	and	is	
valid	for	3	years	(-days	730.	The	certificate's	CN	field	must	match	the	domain	
name	of	the	site	it	will	be	used	for.

In	the	configuration	file,	the	SSLCertificateFile	option	specifies	the	file	that	
contains	the	certificate	file	and	the	key	is	identified	using	
SSLCertificateKeyFile:

SSLCertificateFile	/etc/pki/tls/certs/www.example.pem	

SSLCertificateKeyFile	/etc/pki/tls/private/www.example.key

The	server	determines	which	virtual	host	configuration	to	use	to	handle	a	request	
by	looking	at	the	site's	name	in	the	incoming	request.	However,	the	original	
HTTPS	implementation	encrypted	the	request	in	its	entirety	between	the	web	
client	and	server,	including	the	site's	hostname,	which	raised	a	chicken	and	egg	
problem.	The	server	needed	to	know	which	certificate	to	serve	and	couldn't	know	
it	without	reading	the	request,	and	the	client	wanted	a	certificate	that	matched	the

site's	domain	before	it	would	even	send	the	request.	It	was	impossible	to	use	TLS
with	name-based	virtual	hosting	and	any	encrypted	site	required	its	own	dedicated
IP	address.

RFC-3546	(Transport	Layer	Security	Extensions)	modified	the	protocol	so	that	the
hostname	could	be	sent	unencrypted.	This	allowed	the	server	to	select	the	correct
certificate	to	satisfy	the	client	and	opened	the	door	for	using	TLS	with	virtual
hosting.	It	took	approximately	ten	years	for	the	major	browsers	to	support	the
change	but	we're	pretty	much	there	now	Internet	Explorer	as	of	version	7,	Mozilla
Firefox	as	of	version	2,	and	Google	Chrome	as	of	version	6	support	what	is
known	as	Server	Name	Indication	(SNI).

To	server	your	virtual	hosts	over	HTTPS,	each	site	will	need	its	own	certificate
and	key.	Then,	add	the	SSLEngine,	SSLCertificateFile,	and
SSLCertificateKeyFile	options	to	the	host's	configuration.	The	port	number
also	needs	to	be	changed	in	the	configuration	to	443,	the	default	port	for	HTTPS
traffic:

	<VirtualHost	*:443>

	ServerName	www.example.com

	DocumentRoot	"/var/www/example.com/www/html"

	CustomLog	"/var/log/httpd/example.com/www/access_log"	

common

	ErrorLog		"/var/log/httpd/example.com/www/error_log"

	SSLEngine	on

	SSLCertificateFile	/etc/pki/tls/certs/www.example.pem

	SSLCertificateKeyFile	/etc/pki/tls/private/www.example.key

	<IfModule	proxy_fcgi_module>

			ProxyPassMatch	^/(.*\.php)$	

fcgi://127.0.0.1:9000/var/www/

	example.com/www/html/$1

			</IfModule>

	</VirtualHost>

Although	self-signed	certificates	are	adequate	for	personal	use	and	private	
network/intranet	sites,	most	likely	you'll	want	to	use	a	trusted	certificate	for	sites	
accessible	on	a	larger	scale.	However,	depending	on	the	Certificate	Authority	and	
the	specifics	of	your	request,	purchasing	a	trusted	certificate	can	be	expensive.	If	
you	need	only	a	basic	trusted	certificate,	then	you	might	want	to	investigate	
whether	Let's	Encrypt	will	meet	your	needs.	Let's	Encrypt	is	a	project	offering	an

automated,	self-service	model	for	generating	trusted	certificates	for	free.

To	use	Let's	Encrypt,	you'll	need	to	install	the	certbot	package	available	in	the
EPEL	repository	(refer	to	the	Registering	the	EPEL	and	Remi	repositories	recipe
in											Chapter	4,	Software	Installation	Management	if	you	haven't	already
enabled	the	repository).	Then	run	the	certbot	certonly	command	and	follow
the	prompts	to	request	your	certificate.	Full	instructions	can	be	found	online	in	the
Let's	Encrypt/Certbot	User	Guide	at			
http://letsencrypt.readthedocs.io/en/latest/using.html.

Note

There	are	a	few	caveats	to	Let's	Encrypt.	First,	the	certificates	are	only	valid	for
three	months;	you'll	need	to	request	a	new	certificate	every	90	days.	It	also	won't
generate	certificates	for	IP	addresses.	Also,	it	rate	limits	requests	which,	although
necessary	to	help	prevent	abuse,	causes	issues	for	those	using	a	dynamic	DNS
service	such	as	DynDNS	or	NoIP	to	make	their	sites	accessible.	For	Let's	Encrypt
to	be	a	viable	option	for	you,	you'll	need	a	proper	domain	and	access	to	the	web
system	to	automate	the	renewal.	If	you're	running	a	home	server	or	using	a	shared
hosting	provider,	then	Let's	Encrypt	is	probably	not	for	you.

http://letsencrypt.readthedocs.io/en/latest/using.html

See	also
Refer	to	the	following	resources	for	working	with	HTTPS:

SSL/TLS	Strong	Encryption:	How-To
(http://httpd.apache.org/docs/2.4/ssl/ssl_howto.html)
How	to	create	an	SSL	Certificate	for	Apache	on	CentOS	7
(http://www.digitalocean.com/community/tutorials/how-to-create-an-ssl-
certificate-on-apache-for-centos-7)
How	to	secure	Apache	with	Let's	Encrypt	on	CentOS	7
(https://www.digitalocean.com/community/tutorials/how-to-secure-apache-
with-let-s-encrypt-on-centos-7)

http://httpd.apache.org/docs/2.4/ssl/ssl_howto.html
http://www.digitalocean.com/community/tutorials/how-to-create-an-ssl-certificate-on-apache-for-centos-7
https://www.digitalocean.com/community/tutorials/how-to-secure-apache-with-let-s-encrypt-on-centos-7

Enabling	overrides	and	performing
URL	rewriting
This	recipe	teaches	you	how	to	use	mod_rewrite.	I	mentioned	mod_rewrite
earlier;	it	is	a	module	for	Apache	that	allows	us	to	modify	the	URL	and	resolve	it
to	different	resources.	There	are	many	reasons	one	would	want	to	do	this.	For
example,	perhaps	you	moved	some	files	and	their	URL	changed,	but	you	don't
want	any	links	that	exist	elsewhere	still	pointing	to	the	old	destinations	to	be
broken.	You	can	write	a	rewrite	rule	that	matches	the	old	locations	and	updates	the
URL	on	the	fly	to	successfully	satisfy	the	request.	Another	example	is	SEO;	you
may	have	long,	unfriendly	canonical	URLs	for	a	resource	but	want	something
shorter	and	more	memorable.	The	friendly	URLs	can	be	mapped	to	the	canonical
URL	behind	the	scenes.

Getting	ready
This	recipe	requires	a	CentOS	system	with	a	working	network	connection.	It
assumes	that	the	system	is	configured	with	the	IP	address	192.168.56.100	and	is
running	Apache	as	described	in	the	previous	recipes.	Administrative	privileges
are	also	required,	either	by	logging	in	with	the	root	account	or	through	the	use	of
sudo.

How	to	do	it...
Follow	these	steps	to	perform	URL	rewriting:

1. Open	the	/etc/httpd/conf/httpd.conf	file	with	your	text	editor:

vi	/etc/httpd/conf/httpd.conf

2. Locate	the	Directory	section	that	defines	various	options	for	your	document
root.	Find	its	AllowOverrides	option	and	update	the	value	from	None	to
All:

	<Directory	"/var/www/html">

	...

	AllowOverrides	All

	...

	</Directory>

3. Save	your	changes	and	close	the	file.
4. Restart	Apache	for	the	configuration	update	to	take	effect:

systemctl	restart	httpd

5. Verify	that	the	mod_rewrite	module	(identified	as	rewrite_module)	is
available:

httpd	-M	|	grep	rewrite

6. Create	a	file	named	.htaccess	in	your	document	root:

	vi	/var/www/html/.htaccess	

7. In	the	.htaccess	file,	add	RewriteEngine	to	turn	on	the	URL	rewriting
engine:

RewriteEngine	on

8. Add	Rewrite	rules	that	describe	the	desired	redirects.	For	example,	the
following	rule	redirects	all	requests	without	a	file	extension	to	a	PHP	file	of
the	given	name:

RewriteRule	^/?([A-Z]+)$	$1.php	[NC,L]

9. Save	and	close	the	file.

How	it	works...
The	.htaccess	files	are	supplemental	configuration	files	that	reside	in	the	sites'
directory	structure.	When	configured,	Apache	searches	for	an	.htaccess	file	and
applies	the	option	settings	in	it	while	satisfying	a	request.	Of	course,	searching
and	loading	configuration	values	for	each	request	does	have	a	slight	performance
impact,	but	its	trade-off	increases	flexibility.	For	example,	the	server	doesn't	need
to	be	restarted	for	configuration	changes	in	an	.htaccess	file	to	take	effect.	In	a
shared-hosting	environment,	savvy	clients	can	tweak	the	server's	behavior	for
their	own	sites	without	asking	a	server	administrator	or	requiring	access	to	the
main	configuration	files	in	/etc/httpd	(which	may	contain	sensitive
configuration	values).	Even	web	applications	that	rely	on	specific	server	features
might	include	an	.htaccess	file	with	the	necessary	configuration	to	make	its
deployment	easier.

Apache	doesn't	allow	the	use	of	the	.htaccess	files	to	override	the	server's
configuration	by	default.	To	enable	it,	we	need	to	update	the	AllowOverrides
option	in	the	appropriate	context	and	then	restart	the	server.	This	recipe	made	the
change	in	the	section	that	applies	to	the	web	root	directory:

	<Directory	"/var/www/html">

	...

	AllowOverrides	All

	...

	</Directory>

Note

If	you're	using	virtual	hosting,	be	sure	to	put	the	AllowOverrides	option	in	your	
site's	configuration	file.

A	value	of	None	causes	the	server	to	ignore	any	.htaccess	files.	Apart	from	that,	
not	all	options	are	allowed	in	an	.httaccess	file.	The	most	common	ones	found	
in	the	files	pertain	to	rewriting	requests	or	directory-specific	access.	Those	that	
can	appear	are	grouped	under	different	categories	and	we	can	specify	the	category	
of	options	that	will	be	allowed	to	be	overridden.	The	possible	group	names	are	as	
follows:

AuthConfig:	This	allows	overriding	the	authorization	options
(AuthUserFile,	AuthDBMUserFile,	and	so	on)
FileInfo:	This	allows	overriding	request-related	options	(ErrorDocument,
Redirect,	RewriteRule,	and	so	on)
Indexes:	These	allow	index-related	options	to	be	overridden
(DirectoryIndex,	IndexOptions,	and	so	on)
Limit:	This	allows	the	access	options	to	be	overridden	(Allow,	Deny,	and
Order)
All:	This	allows	overriding	all	of	the	option	groups

Since	AllowOverrides	applies	to	the	directory	level,	it's	possible	to	allow	or
deny	different	overrides	in	different	directories.	For	example,	overriding	can	be
disabled	across	a	site,	but	then	the	authorization	options	can	be	overridden	for	a
private	directory	so	that	the	specific	authorization	databases	can	be	specified:

	<Directory	"/var/www/html">

			AllowOverrides	None

	</Directory>

	<Directory	"/var/www/html/priv">

			AllowOverrides	AuthConfig

	</Directory>

Note

Even	if	you	have	full	control	over	Apache	and	you	want	to	place	everything	in	the	
main	httpd.conf	files	for	performance	reasons,	allowing	rewrite	options	to	be	
overridden	with	FileInfo	lets	you	devise	and	troubleshoot	your	rules	without	
restarting	the	server	after	each	change.	You	can	then	migrate	the	rules	to	the	main	
configuration	file	once	you're	certain	they're	correct,	and	turn	off	overrides.

rewrite_module	injects	itself	into	the	server's	request	handling	workflow	and	
can	change	what	the	requested	URL	looks	like	on	the	fly,	given	what	we	provide	
in	our	ruleset.	Although	the	module	is	installed	by	default,	we	still	need	to	
explicitly	enable	URL	rewriting	with	RewriteEngine	on.	Beyond	that,	the	two	
most	important	rewrite	options	are	RewriteRule	and	RewriteCond.

The	RewriteRule	option	specifies	a	regular	expression	against	which	the	URL	is	
compared.	If	it	matches,	then	the	given	substitution	takes	place.	Positional

variables	such	as	$1	can	be	used	in	the	substitution	to	reference	captured	pattern
matches.	In	our	recipe,	the	rule	matches	the	path	(such	as	/about	or	/contactus)
and	rewrites	it	to	direct	the	user	to	a	PHP	script	of	the	same	name	(about.php	or
contact.php),	thus	hiding	the	fact	that	we're	using	PHP	from	our	users:

	RewriteRule	^/?([A-Z]+)$	$1.php	[NC,L]

We	also	can	provide	flags	that	affect	how	the	request	is	returned.	The	NC	flag,	for
example,	performs	the	pattern	matching	case	insensitively.	The	L	flag	stops	the
engine	and	returns	the	URL	without	any	further	rule	processing.	Also	common	are
R,	which	forces	a	redirect	(an	HTTP	status	code	is	usually	given,	for	example
R=301),	and	QSA,	which	appends	the	query	string	from	the	original	URL	to	the	new
URL.

The	RewriteCond	option	gives	a	condition	that	must	pass	before	evaluating	a
RewriteRule.	The	condition	is	a	mix	of	regular	expression	matching,	variables,
and	test	operators.	Special	variables	are	available	which	we	can	use	to	reference
pieces	of	the	URL,	such	as	the	hostname	(%{HTTP_HOST}),	the	requested	file	(%
{REQUEST_FILENAME}),	and	the	query	string	(%{QUERY_STRING}),	or	details
about	the	environment/request,	such	as	cookies	(%{HTTP_COOKIE})	and	user	agent
strings	(%{HTTP_USER_AGENT}).	The	-d	operator	tests	whether	the	path	is	a
directory,	-f	tests	whether	the	path	is	a	file,	and	!	negates	the	match.
RewriteCond	can	also	accept	a	handful	of	flags,	such	as	NC	flag	to	make
comparison	without	regard	to	case	sensitivity	and	the	OR	flag	to	join	multiple
options	in	an	or	relationship	(multiple	options	are	implicitly	treated	as	and).

A	very	common	rewrite	that	uses	both	RewriteCond	and	RewriteRule	is	one	that
directs	the	user	to	a	main	index.php	file	when	the	request	doesn't	match	an
existing	file	or	directory.	This	is	used	a	lot	with	web	applications	that	route	all
requests	through	a	central	control	point:

	RewriteCond	%{REQUEST_FILENAME}	!-f

	RewriteCond	%{REQUEST_FILENAME}	!-d

	RewriteRule	^(.*)	index.php	[L,QSA]

The	first	RewriteCond	option	checks	whether	the	request	is	for	an	existing	file
and	the	second	checks	the	same	for	an	existing	directory.	If	the	request	is	neither

for	a	file	nor	a	directory,	then	the	RewriteRule	option	maps	the	request	to
index.php.	Any	query	string	that	may	be	present	is	included	and	it's	marked	as
the	last	action,	so	no	further	rewriting	will	be	performed.

Many	people	jokingly	refer	to	rewriting	as	black	magic.	Indeed,	it's	impressive
how	powerful	mod_rewrite	is	and	how	it	transforms	requests,	and	it	can	be
frustrating	when	you	can't	seem	to	figure	out	the	proper	incantation	to	make	your
rule	work	as	desired.	In	this	case,	you	may	want	to	turn	on	logging	to	gain	insight
into	how	the	engine	views	the	request.	To	enable	logging,	use	the	RewriteLog
option	to	specify	a	log	file	where	messages	can	be	written	to,	and	use
RewriteLogLevel	to	specify	the	verbosity.	Typically,	a	value	of	5	for
RewriteLogLevel	is	sufficient.	They	can	be	added	to	your	.htaccess	file	and
removed	later	after	you're	confident	that	your	rules	are	correct:

	RewriteLog	/var/log/httpd/rewrite_log

	RewriteLogLevel	5

See	also
Refer	to	the	following	resources	for	more	information	on	rewriting	URLs:

Apache	mod_rewrite	documentation
(http://httpd.apache.org/docs/current/mod/mod_rewrite.html)
URL	rewriting	guide
(http://httpd.apache.org/docs/2.0/misc/rewriteguide.html)
URL	rewriting	for	the	fearful	(https://24ways.org/2013/url-rewriting-for-the-
fearful)

http://httpd.apache.org/docs/current/mod/mod_rewrite.html
http://httpd.apache.org/docs/2.0/misc/rewriteguide.html
https://24ways.org/2013/url-rewriting-for-the-fearful

Installing	NGINX	as	a	load	balancer
High	traffic	websites	can	be	distributed	to	different	servers,	either	to	better	spread
out	the	workload	or	to	achieve	redundancy.	Each	server	in	the	cluster	of	systems
would	have	their	own	copy	of	the	website	or	web	application's	files	and	be
capable	of	satisfying	the	user's	request.	The	trick	then	is	to	route	the	user's	request
to	one	of	these	servers	in	an	orderly	fashion.	There	are	different	approaches	to
this,	but	a	common	one	is	to	set	up	a	load	balancer	or	reverse	proxy	server.

NGINX	is	somewhat	newer	to	the	scene	than	Apache;	written	a	little	over	a
decade	ago	specifically	to	handle	high-load	connections,	it	can	function	as	a	web
server,	proxy,	cache,	and	load-balancer.	In	this	recipe,	we'll	see	how	to	set	up
NGINX	as	a	load	balancer	to	proxy	requests	between	the	client	and	a	cluster	of
Apache	servers.

Getting	ready
This	recipe	requires	a	CentOS	system	with	a	working	network	connection.	It
assumes	that	you	have	other	systems	configured	with	Apache	to	serve	a	website	as
described	in	the	earlier	recipes;	we'll	refer	to	these	systems	using	the	IP	addresses
192.168.56.20	and	192.168.56.30.	The	package	for	NGINX	is	hosted	by	the
EPEL	repository;	if	the	repository	is	not	already	registered,	refer	to	the
Registering	the	EPEL	and	Remi	repositories	recipe	in	Chapter	4,	Software
Installation	Management.	Administrative	privileges	are	also	required,	either	by
logging	in	with	the	root	account	or	through	the	use	of	sudo.

How	to	do	it...
Follow	these	steps	to	set	up	reverse	proxy	using	NGINX:

1. Install	the	nginx	package	from	the	EPEL	repository:

yum	install	nginx

2. Open	the	NGINX	server's	configuration	file	with	your	text	editor:

vi	/etc/nginx/nginx.conf

3. Within	the	http	block,	add	a	new	upstream	block	to	identify	the	servers	in
your	cluster:

	upstream	cluster	{

	server	192.168.56.20;

	server	192.168.56.30;

	}

4. Find	the	location	block	and	add	a	proxy_pass	option	that	references	the
upstream	block:

	location	/	{

	proxy_pass	http://cluster;

	}

5. Save	your	changes	to	the	configuration	and	close	the	file.
6. Start	the	server	and	enable	it	to	start	automatically	when	your	system

reboots:

systemctl	start	nginx.service

systemctl	enable	nginx.service

7. Open	port	80	in	the	system's	firewall	to	allow	HTTP	requests	through:

firewall-cmd	--zone=public	--permanent	--add-service=http

firewall-cmd	--reload

How	it	works...
As	usual,	we	began	by	installing	the	program's	package,	this	time	nginx.	The
package	is	available	in	the	EPEL	repository.	Once	installed,	we	updated	its
configuration,	identifying	the	servers	in	our	cluster	and	then	proxying	requests.
First,	we	added	an	upstream	block:

	upstream	cluster	{

	server	192.168.56.20;

	server	192.168.56.30;

	}

cluster	is	simply	a	name	we	assigned	to	this	group	of	servers	so	that	we	can
refer	to	the	group	by	name.	You	can	have	multiple	upstream	blocks	if	you	are
balancing	multiple	clusters.	Each	server	entry	within	it	gives	the	IP	address	or
hostname	of	one	of	the	systems	running	the	site.

Next,	we	found	the	main	location	block	and	added	a	proxy_pass	parameter.
proxy_pass	will	forward	the	incoming	request	to	one	of	the	systems	in	our
cluster	group	and	return	the	response	to	satisfy	the	request:

	location	/	{

	proxy_pass	http://cluster;

	}

Communication	between	NGINX	and	the	hosting	web	servers	is	done	over	http
since	that's	the	protocol	specified	in	the	value	for	proxy_pass.	This	is	fine
because	the	clustered	systems	would	be	running	behind	the	load	balancer	on	a
trusted	network.	If	your	site	is	to	be	served	over	HTTPS,	it's	NGINX	that	will
need	to	handle	the	TLS	negotiation	as	it's	the	public	server	point	seen	by	the
client;	the	client	is	unaware	of	anything	behind	the	balancer.

To	configure	NGINX	to	handle	HTTPS	requests,	within	the	server	block	update
the	listen	options	to	listen	on	port	443.	Then	add	entries	with	the
ssl_certificate	and	ssl_certificate_key	options	to	identify	the	certificate
and	key,	respectively:

	server	{

	#	listen	80	default_server;

	#	listen	[::]:80	default_server;

	listen	443	ssl	default_server;

	listen	[::]:443	ssl	default_server;

	ssl_certificate	/etc/pki/tls/certs/www.example.pem;

	ssl_certificate_key	/etc/pki/tls/private/www.example.key;

	...

	}

Once	the	changes	are	made	and	the	configuration	file	is	saved,	open	port	443	in
your	firewall	and	restart	NGINX:

firewall-cmd	--zone=public	--permanent	--add-service=https

firewall-cmd	--reload

systemctctl	restart	nginx.service

Round-robin	is	the	default	approach	for	load	balancing.	This	means	the	first
request	is	proxied	to	the	first	server	in	the	cluster,	then	next	to	the	second	server,
and	so	on.	When	NGINX	reaches	the	end	of	the	list,	it	starts	again	from	the	top	of
the	list,	proxying	the	next	request	to	the	first	server.	There	are	other	strategies	we
can	use,	for	example,	weighted	balancing.

To	perform	weighted	balancing,	we	assign	a	weight	to	any	of	the	servers	and	it
will	handle	that	number	of	requests	per	iteration.	Here,	the	first	server	will	handle
five	requests	before	NGINX	proxies	anything	to	the	second	server:

	upstream	cluster	{

	server	192.168.56.20	weight=5;

	server	192.168.56.30;

	}

When	using	load	balancing,	remember	that	any	one	web	server	isn't	guaranteed	to	
receive	the	next	request	sent	by	a	user.	If	you're	balancing	access	to	a	web	
application	that	uses	sessions,	this	can	be	problematic.	You	may	want	to	consider	
storing	session	data	on	a	central	system	that	each	web	server	has	access	to,	
perhaps	using	a	database	such	as	Redis	or	Memcache.

Note

I	recommend	that	you	avoid	any	balancing	strategy	that	relies	on	session

persistence.	The	post	at	http://www.chaosincomputing.com/2012/05/sticky-
sessions-are-evil	offers	a	good	overview	of	their	problems.

http://www.chaosincomputing.com/2012/05/sticky-sessions-are-evil

See	also
Refer	to	the	following	resources	for	more	information	on	working	with	NGINX
and	load	balancing:

The	NGINX	website	(https://www.nginx.com/)
How	to	install	NGINX	on	CentOS	7
(https://www.digitalocean.com/community/tutorials/how-to-install-nginx-on-
centos-7)
Configuring	HTTPS	servers
(http://nginx.org/en/docs/http/configuring_https_servers.html)
Using	NGINX	as	a	load	balancer
(http://nginx.org/en/docs/http/load_balancing.html)
How	to	store	PHP	sessions	in	Memcache
(http://www.scalescale.com/tips/nginx/store-php-sessions-memcached)

https://www.nginx.com/
https://www.digitalocean.com/community/tutorials/how-to-install-nginx-on-centos-7
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/load_balancing.html
http://www.scalescale.com/tips/nginx/store-php-sessions-memcached

Chapter	11.	Safeguarding	Against
Threats
This	chapter	contains	the	following	recipes:

Sending	messages	to	Syslog
Rotating	log	files	with	logrotate
Using	Tripwire	to	detect	modified	files
Using	ClamAV	to	fight	viruses
Checking	for	rootkits	with	chkrootkit
Using	Bacula	for	network	backups

Introduction
From	logging	your	system's	activities	to	sniffing	out	rootkits,	this	chapter	presents
recipes	to	help	protect	the	investment	you've	made	in	your	system	and	its	data
against	various	threats.	First,	you'll	learn	how	to	set	up	a	central	log	server	using
Syslog,	and	then,	how	to	rotate	log	files	to	make	sure	that	they	don't	grow	out	of
control.	Then,	we'll	look	at	how	Tripwire	is	used	to	detect	system	intrusion	by
checking	if	changes	have	been	made	to	important	system	files.	This	chapter	also
contains	recipes	for	setting	up	ClamAV	and	chkrootkit	to	keep	your	system	free	of
viruses,	Trojans,	rootkits,	and	other	malware.	We'll	finish	with	how	to	set	up	a
centralized	backup	server	using	Bacula	to	safeguard	your	data	from	everyday
threats	such	as	accidental	deletion	and	hardware	failures.

Sending	messages	to	Syslog
Syslog	is	a	process	that	listens	for	messages	from	other	applications	and	writes
them	to	its	log	files,	providing	a	common	service	to	handle	all	logging	activity.
Messages	can	also	be	sent	to	a	running	instance	of	Syslog	on	a	remote	system
acting	as	a	centralized	log	server	for	your	entire	network.	Apart	from
convenience,	centralized	logging	can	be	useful	for	security	reasons	and	also
because	it's	harder	for	an	attacker	to	cover	their	tracks	when	it's	logged	to	a
second	system.	In	this	recipe,	you'll	learn	how	to	configure	local	and	remote
instances	of	Syslog	to	run	your	own	log	server.

Getting	ready
This	recipe	requires	two	CentOS	systems	with	working	network	connections.	The
recipe	will	refer	to	the	first	system	as	the	local	system	and	assume	that	it	is
configured	with	the	IP	address	192.168.56.100	and	the	hostname	benito.	The
second	system,	referred	to	as	the	remote	system,	is	assumed	to	have	the	address
192.168.56.35	and	the	hostname	logs.	The	systems	should	be	able	to	access
each	other	by	the	hostnames;	so,	you	will	need	to	add	the	appropriate	DNS
records	or	override	entries	in	the	systems'	/etc/hosts	files.	Administrative
privileges	are	also	required	either	by	logging	in	with	the	root	account	or	through
the	use	of	sudo.

How	to	do	it...
To	forward	log	messages	from	the	local	system	to	the	remote	system,	perform	the
following	steps	on	the	local	system:

1. Open	Syslog's	configuration	file	using	your	text	editor:

vi	/etc/rsyslog.conf

2. At	the	end	of	the	file,	add	the	following	rule:

.		@logs.example.com

3. Save	the	change	and	close	the	configuration	file.
4. Restart	Syslog	for	the	updated	configuration	to	take	effect:

systemctl	restart	rsyslog

Then,	to	accept	incoming	log	messages,	perform	the	following	steps	on	the	remote
system:

1. Open	Syslog's	configuration	file	using	your	text	editor:

vi	/etc/rsyslog.conf

2. Locate	the	$ModLoad	directive	responsible	for	loading	the	imudp	module	and
uncomment	it	by	removing	the	leading	#	character.	Uncomment	the
$UDPServerRun	directive	that	immediately	follows	it	as	well:

$ModLoad	imudp

$UDPServerRun	514

3. Save	the	changes	and	close	the	configuration	file.
4. Restart	Syslog	for	the	updated	configuration	to	take	effect:

systemctl	restart	rsyslog

5. Open	the	firewall	to	UDP	traffic	on	port	514:

firewall-cmd	--zone=public	--permanent	--add-port=514/udp

firewall-cmd	--reload

How	it	works...
Syslog	receives	messages	through	several	logging	facilities,	and	each	message	has
an	assigned	priority/severity.	Messages	can	be	filtered	based	on	their	facility	and
priority	so	that	the	desired	messages	are	relayed	while	the	rest	are	discarded.	A
list	of	facilities	and	priorities	are	both	outlined	in	RFC-5424	(the	Syslog
protocol),	and	Rsyslog	(the	version	of	Syslog	available	in	CentOS)	implements
most	of	them.

Facilities	offer	a	broad	categorization	designed	to	organize	messages	by	the	type
of	service	that	generates	them.	You	can	think	of	them	as	channels,	where	a
message	that	logs	a	user's	failed	login	attempt	can	be	sent	over	the	auth	channel
separate	from	messages	logging	the	restart	of	a	service	sent	over	the	daemon
channel.	Rsyslog's	facilities	are	the	following:

auth:	Security	and	authorization-related	messages
cron:	Messages	from	cron
daemon:	Messages	from	system	daemons
kern:	Messages	from	the	Linux	kernel
lpr:	Messages	from	the	system's	printer	services
mail:	Messages	from	the	system's	mail	services
news:	Messages	from	NTTP	services
syslog:	Messages	generated	by	Syslog	itself
user:	User-level	messages
uucp:	Messages	from	UUCP	services
local0-local7:	User-level	facilities	for	messages	that	aren't	handled	by	the
other	facilities

Priorities	indicate	the	severity	of	the	message,	for	example,	a	situation	that
generates	an	error	message	is	more	severe	than	one	generating	an	informational	or
debugging	message.	Rsyslog's	priorities	are	as	follows:

emerg,	panic:	The	system	is	unusable
alert:	Immediate	action	is	required
crit:	A	critical	event	happened
err,	error:	An	error	happened
warn,	warning:	A	significant	condition	is	encountered

notice:	Notice	messages
info:	Informational	messages
debug:	Debugging	messages

The	rules	in	Syslog's	configuration	file	specify	where	a	log	is	written	to	and	they	
are	made	up	of	two	parts—the	first	part	is	a	pattern	that	identifies	a	facility	and	
priority.	It	consists	of	both	the	facility	and	priority	names	separated	by	a	dot,	for	
example,	auth.warn	or	local2.debug.	More	than	one	facility	can	be	separated	
by	commas,	as	in	auth,daemon,cron.warn.	Additionally,	*	can	be	used	as	a	
wildcard	to	match	all	facilities	or	priorities.	auth.*	represents	messages	coming	
through	the	auth	facility	of	any	priority,	*.warn	represents	messages	with	a	
priority	of	warn	or	above	from	any	facility,	and	*.*	represents	all	messages	
regardless	of	facility	or	priority.

Messages	that	match	the	pattern	are	processed	by	the	rule's	second	part,	the	action.	
Usually,	the	action	is	the	location	of	a	file	that	the	message	is	written	to,	but	it	can	
also	discard	the	message	(use	~	as	the	location,	send	the	message	to	a	named	pipe	
to	be	handled	by	an	external	process	(prefix	the	location	with	|,	or	forward	the	
message	to	another	system	(give	a	hostname	as	the	location	prefixed	with	@.

Since	Rsyslog	is	installed,	the	service's	configuration	file	is
/etc/rsyslogd.conf.	On	the	local	system	we	added	the	following	rule:

.		@logs.example.com

This	rule	matches	all	messages	and	sends	them	to	the	server	logs.example.com.	
One	@	means	messages	will	be	sent	using	UDP	while	two	means	they	will	be	sent	
using	TCP:

.		@@archive.example.com

Then,	we	uncommented	the	following	configuration	on	the	remote	system:

$ModLoad	imudp

$UDPServerRun	514

$ModLoad	loads	a	Syslog	module,	in	this	case	imudp,	which	handles	incoming	
messages	over	UDP.	The	$UDPServerRun	directive	specifies	the	port	which	the	
module	listens	to	for	the	messages.	Traditionally,	Syslog	messages	are	sent	to	port

514.

Note

Syslog	can	be	configured	to	transmit	messages	using	TCP,	but	unless	you	have
specific	need	to	do	so,	I	recommend	that	you	use	UDP.	UDP	is	less	reliable,	but
TCP	entails	more	overhead	and	can	result	in	more	severe	network	congestion
during	heavy	logging	events.

The	configuration	file	contains	rules	to	direct	messages	to	different	files	based	
on	their	facility	and	priorities

Many	applications	are	capable	of	sending	messages	to	Syslog,	even	if	they	write	
to	their	own	log	files	by	default.	Some	programs	do	so	when	given	an	appropriate	
argument	on	the	command	line,	for	example,	MySQL	accepts	the	--syslog	
argument.	Others,	such	as	BIND	and	Apache,	require	changes	in	their	
configuration	files.	Even	the	shell	scripts	you	write	can	send	messages	to	Syslog	
using	the	logger	command	as	follows:

logger	-n	logs.example.com	-p	user.notice	"Test	notice"

logger	accepts	several	arguments	and	then	the	log	message.	-n	specifies	the
server	where	the	message	is	sent	(messages	are	sent	to	the	local	system's	Syslog
instance	when	not	provided)	and	-p	specifies	the	facility	and	priority	for	the
message.

See	also
Refer	to	the	following	resources	for	more	information	on	working	with	Syslog:

The	Rsyslog	website	(http://www.rsyslog.com/)
Basic	configuration	of	Rsyslog	(https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/s1-
basic_configuration_of_rsyslog.html)
RFC5424:	The	Syslog	protocol	(http://www.rfc-base.org/txt/rfc-5424.txt)

http://www.rsyslog.com/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/s1-basic_configuration_of_rsyslog.html
http://www.rfc-base.org/txt/rfc-5424.tx

Rotating	log	files	with	logrotate
Log	files	are	important	because	they	provide	better	insight	into	what	is	happening
on	a	system.	The	debugging	and	error	messages	in	a	log	can	be	used	to	track	down
the	source	of	a	problem	and	resolve	it	quickly.	Authentication	messages	maintain	a
record	of	who	accessed	the	system	and	when,	and	repeated	authentication	failures
can	be	a	sign	that	an	attacker	is	trying	to	gain	unauthorized	access.	However,	the
usefulness	of	logs	typically	diminishes	with	age,	and	chatty	applications	that
generate	a	lot	of	log	entries	could,	if	left	unchecked,	easily	consume	all	of	the
system's	storage	resources.	This	recipe	will	show	you	how	to	rotate	the	log	files
to	prevent	the	files	from	growing	out	of	control	and	stale	logs	from	wasting	space.

Getting	ready
This	recipe	requires	a	CentOS	system	with	a	working	network	connection.
Administrative	privileges	are	also	required	either	by	logging	in	with	the	root
account	or	through	the	use	of	sudo.

How	to	do	it...
Follow	these	steps	to	configure	log	file	rotation	using	logrotate:

1. Create	the	/etc/logrotate.d/example	file:

vi	/etc/logrotate.d/example

2. Write	the	following	contents	to	the	file:

/var/log/example.log	{

	monthly

	rotate	4

	missingok

	notifempty

	create	0600	root	root

	postrotate

			kill	-HUP	$(cat	/var/run/example.pid)

	endscript

}

3. Save	your	update	and	close	the	file.

How	it	works...
logrotate	rotates	the	log	files	by	renaming	them	as	sequential	backups	and	
creating	a	new	file	for	the	application	to	write	to.	While	rotating	example.log,	it	
renames	example.log	to	example.log.1.	If	example.log.1	exists,	it	renames	
that	file	to	example.log.2	first	(and	so	on	for	the	other	enumerated	files.

For	the	sake	of	this	example,	this	recipe	created	a	new	configuration	to	rotate	the	
/var/log/example.log	file.	The	main	configuration	file	of	logrotate	is
/etc/logrotate.conf,	while	additional	files	can	be	placed	in	the
/etc/logrotate.d	directory.	You'll	want	to	check	logrotate.d	to	see	if	
rotation	for	the	application's	logs	you	want	to	manage	is	already	configured	(many	
packages	will	drop	a	configuration	file	there	as	a	courtesy.	You	can	then	update	
the	configuration	if	the	package	maintainer's	configuration	doesn't	suit	your	needs.	
Directives	in	the	main	file	set	the	global	behavior,	which	is	overridden	on	a	per-
configuration	basis	by	the	additional	files	in	logrotate.d.

The	configuration	supplies	the	name	of	the	targeted	log	file	followed	by	a	braced	
set	of	directives	that	specifies	how	logrotate	should	manage	the	file.	*	can	be	
used	as	a	wildcard	to	match	multiple	files	which	is	useful	when	an	application	
writes	to	more	than	one	log	file.	For	example,	the	Apache	HTTP	server	logs	
messages	to	access_log	and	error_log	in	/var/log/http.	So	it's	configuration	
targets	the	log	files	as	follows:

/var/log/http/*log	{

...

}

The	monthly	directive	instructs	logrotate	to	rotate	the	files	on	a	monthly	basis.	
Other	options	are	daily,	weekly,	and	yearly.	Alternatively,	you	can	instruct	
logrotate	to	manage	files	based	on	their	size—the	size	directive	specifies	a	
size	and	logrotate	will	rotate	those	files	that	are	larger	than	that.

size	30k

If	a	value	is	given	without	a	unit,	the	given	value	is	understood	as	bytes.	
logrotate	also	supports	k	for	kilobytes,	M	for	megabytes,	and	G	for	gigabytes.

The	rotate	directive	specifies	how	many	log	files	to	keep	in	the	rotation.	In	our
scenario,	four	files	are	allowed;	so,	example.log.3	overwrites	example.log.4
and	there	is	no	example.log.5.	The	missingok	directive	lets	logrotate	know
that	it's	okay	to	go	on	if	a	log	file	doesn't	exist	(its	default	behavior	is	to	raise	an
error).	Also,	the	notifempty	directive	instructs	logrotate	to	skip	rotating	if	the
file	is	empty.	The	create	directive	instructs	logrotate	to	create	a	new	log	file
after	renaming	the	original	and	supplies	the	mode,	user,	and	group	for	the	new	file:

rotate	4

missingok

notifempty

create	0600	root	root

Rotated	log	files	are	numbered	in	sequence

Note

The	content	of	the	original	example.log.4	file	doesn't	have	to	be	lost.	One
option	is	to	use	the	mail	directive	to	instruct	logrotate	to	e-mail	its	contents	to
you	before	overwriting	it.

mail	tboronczyk@example.com

Personally	though,	I	recommend	using	mail	only	if	the	file	is	relatively	small
since	sending	a	large	file	can	cause	undue	strain	on	the	mail	server.	Also,	a	log
file	that	contains	sensitive	information	shouldn't	be	transmitted	by	e-mail.	For
sensitive	logs	and	larger	files,	I	recommend	using	prerotate	to	invoke	scp	or
another	utility	to	copy	the	file	elsewhere	before	the	rotation.

prerotate

	scp	/var/log/example.log.4	

storage@archive.example.com:example.log-$	(date	+%F)

endscript

We	can	specify	external	actions	to	be	performed	before	and	after	the	log	files	are
rotated.	The	prerotate	directive	supplies	a	set	of	shell	commands	that	will	be
executed	before	the	rotation	process	begins,	and	the	postrotate	directive
supplies	commands	that	will	be	run	after	rotation.	Both	directives	use	endscript
to	mark	the	end	of	the	command	set	as	shown	in	the	preceding	tip	and	in	the
recipe's	configuration.	The	configuration	invokes	kill	to	send	the	hang-up	signal
(HUP)	to	the	example	process	which	would	reload	that	daemon.	Some	programs
might	be	confused	if	the	log	file	they're	writing	to	is	moved	and	recreated,	and
reloading	it	causes	the	program	to	reopen	its	connection	to	the	log	file	so	that	it
can	continue	logging:

postrotate

			kill	-HUP	$(cat	/var/run/example.pid)

endscript

logrotate	is	run	daily	via	cron,	so	once	you've	created/adjusted	your	rotation's
configuration	you	should	be	finished.	The	next	time	logrotate	runs,	it	will	pick
up	the	update	as	it	re-reads	all	of	the	configuration	files.

See	also
Refer	to	the	following	resources	for	more	information	on	working	with
logrotate:

The	logrotate	manual	page	(man	8	logrotate)
Manage	Linux	log	files	with	Logrotate
(http://www.techrepublic.com/article/manage-linux-log-files-with-logrotate)
How	to	manage	system	logs	(http://www.tecmint.com/manage-linux-system-
logs-using-rsyslogd-and-logrotate/)

http://www.techrepublic.com/article/manage-linux-log-files-with-logrotate
http://www.tecmint.com/manage-linux-system-logs-using-rsyslogd-and-logrotate/

Using	Tripwire	to	detect	modified
files
This	recipe	shows	you	how	to	set	up	Tripwire,	an	auditing	tool	for	detecting
changes	made	to	files	on	your	system.	Most	often,	Tripwire	is	positioned	as	an
intrusion	detection	system	because	the	unexpected	modification	of	important
configuration	files	is	usually	a	sign	of	intrusion	or	malicious	activity.	Being	able
to	monitor	for	such	changes	gives	you	the	ability	to	detect	and	put	a	stop	to
malicious	activity	in	a	timely	manner	should	it	occur.

Getting	ready
This	recipe	requires	a	CentOS	system	with	a	working	network	connection.	The
tripwire	package	is	found	in	the	EPEL	repository,	so	the	repository	must	be
registered	as	discussed	in	Chapter	4,	Software	Installation	Management.
Administrative	privileges	are	also	required,	either	by	logging	in	with	the	root
account	or	through	the	use	of	sudo.

How	to	do	it...
Follow	these	steps	to	monitor	for	system	intrusions	using	Tripwire:

1. Install	the	tripwire	package	from	the	EPEL	repository:

yum	install	tripwire

2. Run	tripwire-setup-keyfiles	to	generate	Tripwire's	keyfiles	and
configuration	and	policy	files:

tripwire-setup-keyfiles

You	will	be	prompted	to	provide	a	passphrase	for	the	site	keyfile	and	local
keyfiles	and	then	to	give	the	site	passphrase	again	to	sign	the	configuration
and	policy	files	that	are	generated.

3. Initialize	Tripwire's	database.	You	will	be	prompted	to	provide	your	local
passphrase:

tripwire	--init	2>output.txt

4. Review	warnings	in	the	output	to	identify	files	that	are	defined	in	the	policy
but	do	not	exist	on	your	system:

cat	output.txt

5. Comment	out	the	entries	in	/etc/tripwire/twpol.txt	that	reference	the
nonexisting	files	in	output.txt.	If	all	of	the	warnings	in	output.txt	were
caused	by	nonexisting	files,	then	you	can	automate	this	step	as	follows:

for	f	in	$(grep	"Filename:"	output.txt	|	cut	-f2	-d:);	do

sed	-i	"s|\($f\)	|#\\1|g"	/etc/tripwire/twpol.txt

done

6. Regenerate	the	signed	policy	file.	Provide	the	password	for	the	site	keyfile
when	prompted:

twadmin	--create-polfile	-S	/etc/tripwire/site.key

	/etc/tripwire/twpol.txt

7. Delete	the	original	database	and	initialize	a	new	one.	This	time,	the	process
should	finish	without	generating	any	warnings:

rm	/var/lib/tripwire/benito.twd

tripwire	--init

How	it	works...
Tripwire	audits	your	system	to	detect	which	files	have	changed.	The	idea	behind	
this	is,	if	an	attacker	gains	access	to	your	system,	they'll	inevitably	create	or	
modify	keyfiles	to	secure	their	presence.	However,	it	would	be	trivial	for	an	
attacker	to	modify	Tripwire's	policy	files	to	create	the	illusion	that	nothing	has	
changed;	so,	the	configuration	and	policy	files	are	signed	with	a	keyfile.	The	
configuration	file,	policy	file,	and	the	keyfile	are	all	generated	when	we	run:

tripwire-setup-keyfiles

Because	the	default	policy	tries	to	be	as	comprehensive	as	possible	for	most	
users,	there	will	be	entries	that	aren't	applicable	to	our	CentOS	system.	If	we	
were	to	run	with	the	unmodified	defaults	then	Tripwire	would	report	the	missing	
files,	and	sifting	through	the	list	of	false	positives	would	make	it	more	difficult	to	
identify	if	someone	deleted	a	file	of	legitimate	concern.	Rather	than	reviewing	the	
policy	file	manually,	especially	if	you're	not	an	expert	and	familiar	with	some	of	
the	files,	the	best	approach	is	to	run	an	initial	scan	on	a	system	that	is	known	to	be	
clean	and	then	let	Tripwire	report	the	nonexistent	files.	This	will	help	save	time	
as	we	try	to	tailor	the	policy	to	our	system.

Initializing	Tripwire's	database	is	done	using	tripwire	--init.	The	program	
will	scan	the	system,	comparing	the	filesystem	with	what	it	knows	about	in	the	
policy	file	and	collect	statistics	on	the	files	that	do	exist.	These	statistics	are	
stored	in	the	database	as	a	baseline	metric	for	comparison	the	next	time	Tripwire	
runs	to	see	if	there	have	been	changes.	The	recipe	redirected	the	error	output	
containing	the	list	of	missing	files	to	a	separate	text	file	for	two	reasons:	the	list	
will	be	lengthy	and	it's	sometimes	easier	to	page	through	a	file	than	scroll	the	
terminal	session,	and	we	can	script	the	process	of	customizing	the	policy	based	on	
that	output:

tripwire	--init	2>output.txt

sed	is	the	traditional	search-and-replace	workhorse	and	grep	is	great	for	finding	
and	extracting	lines	of	interest,	so	we	can	use	these	two	tools	to	update	the	policy	
/etc/tripwire/twpol.txt.	First,	we	need	to	know	what	the	messages	in	
output.txt	look	like:

cat	output.txt

Nonexistent	files	generate	a	warning	when	initializing	the	Tripwire	database

Note

If	all	of	the	warnings	in	the	output	file	are	related	to	nonexistent	files	then	it's	safe
to	automate	updating	the	policy.	This	is	why	we	then	carefully	reviewed	the
contents	before	continuing.

We	use	grep	to	target	the	lines	containing	Filename:	and	then	use	cut	to	split	the
line	on	the	colon	and	capture	the	second	part—the	name	of	the	nonexistent	file.
The	for	loop	captures	each	filename	and	assigns	it	to	the	variable	f,	which	we
can	then	reference	in	our	pattern	to	sed.	The	pattern	performs	a	global	search	and
replace,	using	capturing	parentheses	and	numeric	back	references	to	overwrite	the
filename	with	a	leading	#:

for	f	in	$(grep	"Filename:"	output.txt	|	cut	-f2	-d:);	do

	sed	-i	"s|\($f\)	|#\\1|g"	/etc/tripwire/twpol.txt;

done

Note

It's	important	there	is	a	space	in	the	search	space	after	the	filename	to	make	sure
we	only	match	the	entire	file.	For	example,	we	want	to	avoid	a	scenario	where
/etc/rc.d	will	also	match	/etc/rc.d/init	because	of	the	common	prefix.

An	unsigned,	plain-text	copy	of	the	policy	is	stored	at
/etc/tripwire/twpol.txt.	After	we	make	our	changes,	we	want	to	create	a
signed	policy	file	which	is	used	by	Tripwire	for	the	security	reasons	mentioned
earlier.	This	is	done	with	twadmin	and	the	--create-policy	argument.	The	-S
argument	provides	the	command	with	the	path	to	our	signing	key	and	then	we
supply	the	plain-texted	copy	of	the	policy	as	the	input:

twadmin	--create-polfile	-S	/etc/tripwire/site.key

/etc/tripwire/twpol.txt

twadmin	will	sign	the	policy	and	write	the	result	to	/etc/tripwire/tw.pol.
After	the	policy	file	has	been	modified	we	can	then	reinitialize	the	database.	In
fact,	any	time	the	policy	file	is	updated	you	should	regenerate	the	database,	which
is	stored	in	/var/lib/tripwire	and	is	named	using	the	system's	hostname:

rm	/var/lib/tripwire/benito.twd

tripwire	--init

To	scan	the	system	for	violations,	run	Tripwire	with	the	--check	option:

tripwire	--check

Tripwire	reports	its	findings	after	a	scan	is	performed

Of	course,	to	be	effective,	a	scan	must	be	performed	at	least	once	a	day.	For	this	
reason,	a	cron	job	is	installed	in	/etc/cron.daily	by	the	tripwire	package	
which	runs	a	Tripwire	scan.	Depending	on	how	cron	is	configured,	the	output	of	
the	scan	will	probably	be	e-mailed	by	cron	to	the	system's	root	user	(and	will	
most	likely	end	up	in	/var/spool/mail/root.	You	can	edit
/etc/cron.daily/tripwire-check	so	that	the	output	is	e-mailed	to	you	
instead:

test	-f	/etc/tripwire/tw.cfg	&&	/usr/sbin/tripwire	--check	|	

/bin/mailx	-s	"Tripwire	Report"	tboronczyk@example.com	2>&1

You	can	also	configure	Tripwire	to	send	e-mails	itself	if	you	prefer.	First,	you'll	
want	to	ensure	that	Tripwire	can	send	mail	to	your	address.	Issue	the	following	to	
send	a	test	message	and	then	check	to	make	sure	it	arrives	in	your	inbox:

tripwire	--test	--email	tboronczyk@example.com

Note

You	can	use	supply	the	--email-report	option	when	running	a	manual	scan	to	
have	Tripwire	send	its	results	to	your	e-mail.

tripwire	--check	--email-report

By	default,	Tripwire	will	attempt	to	send	the	e-mail	via	sendmail	(or	Postfix's	
sendmail	interface.	If	you	need	to	send	the	mail	through	an	SMTP	server	instead,	
review	the	Email	Notification	Variables	section	in	man	4	twconfig.

Specifying	the	destination	e-mail	address	is	a	bit	more	involved	in	Tripwire's	
configuration.	The	tests	defined	in	the	Tripwire	policy	file	are	grouped	into	
rulesets,	which	allows	files	to	be	grouped	together	in	a	logical	fashion.	For	
example,	there	is	a	ruleset	that	tests	the	integrity	of	the	Tripwire	binaries	
themselves,	which	is	separate	from	the	ruleset	that	tests	system	administration	
programs.	Each	ruleset	can	have	a	defined	e-mail	address	to	send	notifications	to,	
which	is	great	for	flexibility	where	one	administrator	should	be	notified	of

modifications	to	one	set	of	files	and	another	admin	should	be	notified	about
others:

(

	rulename	=	"Tripwire	Binaries",

	emailto	=	tboronczyk@example.com,

	severity	=	$(SIG_HI)

)

If	you're	the	only	administrator,	repeatedly	specifying	the	same	address	can	be
tedious.	A	better	approach	would	define	the	e-mail	address	as	a	global	variable
and	then	let	the	creative	use	of	sed	come	to	the	rescue.

First,	edit	twpol.txt	to	include	the	variable	assignment	for	your	e-mail	address
in	the	global	variable	definitions	section:

@@section	GLOBAL

TWROOT=/usr/sbin;

TWBIN=/usr/sbin;

TWPOL=/"/etc/tripwire";

TWD="/var/lib/tripwire";

TWSKEY="/etc/tripwire";

TWLKEY="/etc/tripwire";

TWREPORT="/var/lib/tripwire/report";

HOSTNAME=benito;

EMAILADDR="tboronczyk@example.com";

Save	the	change	and	close	the	file.	Then,	knowing	each	ruleset	contains	a
severity	directive,	we	can	use	a	replacement	pattern	to	insert	the	mailto
directive:

sed	-i	"s|\(\+\)\(severity	=	\)|\\1mailto	=	

\$(EMAILADDR),\n\\1\\2|g"	

	/etc/tripwire/twpol.txt

The	end	result	should	include	the	emailto	directive	in	each	ruleset's	definition:

(

	rulename	=	"Tripwire	Binaries",

	emailto	=	$(EMAILADDR),

	severity	=	$(SIG_HI)

)

After	you	inspect	the	results,	resign	the	policy	file	and	reinitialize	the	database.

See	also
Refer	to	the	following	resources	for	more	information	on	working	with	Tripwire:

Introduction	to	Tripwire	(man	8	twintro)
Tripwire	configuration	manual	page	(man	4	twconfig)
Tripwire	policy	manual	page	(man	4	twpolicy)
Intrusion	detection	with	Tripwire
(http://www.akadia.com/services/tripwire.html)
How	to	set	up	and	use	Tripwire	(http://www.linuxjournal.com/article/8758)

http://www.akadia.com/services/tripwire.html
http://www.linuxjournal.com/article/8758

Using	ClamAV	to	fight	viruses
The	threat	from	viruses,	Trojans,	and	other	forms	of	malware	is	real.	They	have
grown	exponentially	in	both	quantity	and	in	sophistication,	and	antivirus	software
have	had	to	adopt	sophisticated	detection	methods.	While	there's	no	guarantee	that
your	system	will	not	fall	victim	to	these	unwanted	bits	of	code,	remaining	mindful
when	using	the	Internet	and	sharing	files,	implementing	common-sense	security
policies,	and	using	an	up-to-date	antivirus	program	can	go	a	long	way	in
protecting	you.	This	recipe	will	show	you	how	to	install	ClamAV,	the
professional-grade	open-source	antivirus	program,	keep	its	threat	database	up	to
date,	and	scan	your	system.

Getting	ready
This	recipe	requires	a	CentOS	system	with	a	working	network	connection.	The
ClamAV	packages	can	be	found	in	the	EPEL	repository,	so	the	repository	must	be
registered	as	discussed	in	Chapter	4,	Software	Installation	Management.
Administrative	privileges	are	also	required	either	by	logging	in	with	the	root
account	or	through	the	use	of	sudo.

How	to	do	it...
Follow	these	steps	to	install	ClamAV	and	scan	for	viruses	and	Trojans:

1. Install	the	clamav	and	clamav-update	packages	from	the	EPEL	repository:

yum	install	clamav	clamav-update

2. Open	the	freshclam	configuration	file	with	your	text	editor:

vi	/etc/freshclam.conf

3. Locate	the	Example	line	and	add	an	#	to	the	start	of	its	line	to	comment	it	out:

#	Comment	or	remove	the	line	below

#Example

4. Save	the	update	and	close	the	file.
5. Run	freshclam	to	update	the	scanner's	threat	database:

freshclam

6. Create	a	systemd	service	file	to	manage	the	freshclam	daemon	for
automate	updates:

vi	/lib/systemd/system/freshclam.service

7. Use	the	following	for	the	file's	content:

[Unit]

Description	=	freshclam	daemon	to	update	clamav

After	=	network.target

[Service]

Type	=	forking

ExecStart	=	/usr/bin/freshclam	-d

Restart	=	on-failure

[Install]

WantedBy=multi-user.target

8. Force	systemd	to	reload	its	services:

systemctl	daemon-reload

9. Start	the	new	freshclam	service	and	enable	it	to	start	when	the	system
reboots:

systemctl	start	freshclam.service

systemctl	enable	freshclam.service

10. Scan	the	files	in	your	home	directory	for	threats	using	clamscan:

clamscan	-ir	/home/tboronczyk

How	it	works...
First,	we	installed	the	clamav	and	clamav-update	packages.	The	clamav	
package	contains	the	virus	scanner	while	clamav-update	contains	the	freshclam	
program,	which	updates	ClamAV's	virus	definitions	to	keep	it	up	to	date:

yum	install	clamav	clamav-update

freshclam	reads	its	configuration	from	/etc/freshclam.conf.	The	file	contains	
a	line	with	the	word	Example	to	prevent	users	from	using	the	defaults	blindly	and	
we	must	remove	it	or	comment	it	out	before	we	can	use	freshclam.	The	defaults	
settings	are	fine	for	our	purposes	and	this	is	more	of	an	annoyance	than	anything	
else,	but	it	does	force	us	to	look	at	the	file	and	see	what	behavior	can	be	tweaked.	
Each	directive	is	commented	with	an	explanation	and	what	the	default	behavior	is.

Then,	we	ran	freshclam	to	update	the	scanner's	databases:

freshclam

Note

The	process	outputs	its	progress	to	the	terminal	and	you	may	see	several	error	
messages.	For	example,	it	may	report	that	it	was	unable	to	download	a	daily	file.	
Don't	panic;	freshclam	will	try	several	mirrors.	As	long	as	it	reports	that	
main.cvd,	daily.cvd,	and	bytecode.cvd	are	up	to	date	when	it's	finished	you	
know	you	have	the	latest	definitions.

We	can	run	freshclam	any	time	we	want	to	make	sure	the	definition	databases	are	
up	to	date,	but	it	would	be	inconvenient	to	have	to	always	run	it	manually.	When	
launched	with	the	-d	argument,	freshclam	will	run	in	the	daemon	mode	and	
periodically	check	for	updates	throughout	the	day	(every	two	hours	by	default.	To	
keep	things	clean,	we	created	a	service	file	to	run	freshclam	and	registered	it	
with	systemd:

[Unit]

Description	=	freshclam	clamav	update	daemon

After	=	network.target

[Service]

Type	=	forking

ExecStart	=	/usr/bin/freshclam	-d

Restart	=	on-failure

[Install]

WantedBy=multi-user.target

The	[Unit]	section	defines	the	basic	attributes	of	the	service,	such	as	its
description	and	that	it	relies	on	a	network	connection.	The	[Service]	section
defines	the	service	itself,	ExecStart	will	run	freshclam	with	the	-d	argument,
Type	lets	systemd	know	that	the	process	will	fork	and	run	in	the	background	as	a
daemon,	and	Restart	will	have	systemd	monitor	the	service	and	restart	it
automatically	if	it	crashes.	The	[Install]	section	defines	how	it	will	be	linked
when	we	run	systemctl	enable.

Note

The	system	file's	content	is	pretty	basic	and	can	be	used	as	a	starting	point	for
other	custom	services	you	write.

Scanning	files	for	threats	is	done	with	clamscan:

clamscan	-ir	/home/tboronczyk

The	-i	argument	instructs	the	scanner	to	only	output	infected	files	as	opposed	to
the	name	of	every	file	it	scans.	-r	triggers	a	recursive	scan,	descending	into
subdirectories.	The	path	given	can	be	an	individual	file	to	scan	or	a	directory,	in
this	case,	our	home	directory:

ClamAV	provides	a	summary	of	its	scan	results

Note

You	can	use	EICAR's	test	files	from	http://www.eicar.org/85-0-Download.html	to
verify	if	ClamAV	is	working.	Read	their	intended	use	page	for	more	information	at
http://www.eicar.org/86-0-Intended-use.html.

ClamAV	is	generally	used	in	two	ways—as	a	scanner	to	examine	existing	files	to
detect	threats	or	as	a	filter	to	detect	threats	in	a	stream	of	data	in	real	time.	The
easiest	way	to	schedule	a	reoccurring	scan	is	by	setting	up	a	cron	job.

To	create	a	personal	cron	job	that	runs	clamav	to	scan	your	home	directory,	use
crontab:

crontab	-e

crontab	will	launch	your	default	editor	for	you	to	enter	the	job	schedule.	Then
crontab	will	automatically	activate	the	job	after	you	save	the	schedule	and	close
the	file.

An	example	schedule	that	runs	clamscan	every	day	at	3:00	a.m.	might	look	as
follows:

0	3	*	*	* clamscan	>>	$HOME/clamscan.log

The	first	five	columns	specify	the	time	when	the	job	should	run.	The	first	column	
is	the	time's	minutes,	the	second	is	hours,	the	third	is	the	day	of	the	month,	the	
fourth	is	the	month,	and	last	is	the	day	of	the	week	when	the	job	will	run.	*	is	used	
as	a	shorthand	to	indicate	the	entire	range,	thus	the	example	will	run	every	day	of	
every	month.	More	information	can	be	found	in	the	man	page	outlining	the	format	
of	the	crontab	file	(man	5	crontab.

On	a	server	system,	ClamAV	is	often	run	as	a	real-time	scanner	as	a	mail	filter.	
Messages	are	received	by	the	mail	server,	for	example	Postfix,	and	passed	off	to	
ClamAV	for	scanning.	Assuming	that	you're	running	Postfix,	as	discussed	in	
Chapter	9,	Managing	E-mails,	here's	what	you'll	need	to	do	to	set	up	ClamAV	and	
Postfix	to	work	together.

First,	we	need	to	install	some	additional	packages.	The	clamav-scanner-
systemd	package	will	install	the	functionality	we	need	to	run	clamscan	as	a

http://www.eicar.org/85-0-Download.html
http://www.eicar.org/86-0-Intended-use.html

daemon	so	that	it's	always	available	and	the	clamav-milter-systemd	package	
installs	a	mail	filter	that	acts	as	a	proxy	between	Postfix	and	the	scanner:

yum	install	clamav-scanner-systemd	clamav-milter-systemd

Then,	edit	the	configuration	file	/etc/clamd.d/scan.conf.	Comment	out	the	
Example	line	and	uncomment	the	LocalSocket	option:

LocalSocket	/var/run/clamd.scan/clamd.sock

The	value	given	with	LocalSocket	is	the	socket	file	used	by	the	scanner	daemon	
for	communicating	with	outside	processes.

Next,	edit	the	/etc/mail/clamav-milter.conf	file,	which	is	the	configuration	
file	for	the	clamav-milter	mail	filter.	Comment	out	the	Example	line,	uncomment	
the	first	MilterSocket	directive,	and	add	the	ClamdSocket	directive.	The	value	
for	ClamdSocket	should	be	the	same	as	the	LocalSocket	in	scan.conf	but	
prefixed	with	unix:	to	denote	that	it's	a	Unix	socket:

MilterSocket	/var/run/clamav-milter/clamav.socket

ClamdSocket	unix:/var/run/clamd.scan/clamd.sock

Start	and	enable	the	scanner	daemon	and	the	filter	services:

system	start	clamd@scan.service	clamav-milter.service

system	enable	clamd@scan.service	clamav-milter.service

Finally,	open	/etc/postfix/main.cnf	and	add	an	smtpd_milters	entry	which	
lets	Postfix	know	about	the	filter:

smtpd_milters=unix:/var/run/clamav-milter/clamav.socket

Don't	forget	to	restart	Postfix	after	updating	its	configuration:

systemctl	restart	postfix.service

See	also
Refer	to	the	following	resources	for	more	information	on	working	with	ClamAV:

ClamAV	documentation	(http://www.clamav.net/documents/installing-
clamav)
European	Institute	for	Computer	Anti-Virus	Research	(http://www.eicar.org/)

http://www.clamav.net/documents/installing-clamav
http://www.eicar.org/

Checking	for	rootkits	with	chkrootkit
In	the	unfortunate	event	that	an	attacker	gains	access	to	your	system,	one	of	the	first
things	they'll	do	is	try	to	hide	their	intrusion	while	preserving	access	for	as	long	as
possible,	perhaps	by	installing	a	rootkit.	A	rootkit	is	a	program	that	runs	stealthily
and	gives	the	attacker	administrator	access.	They	embed	themselves	in	the	Linux
kernel	to	prevent	detection,	and	there	are	even	rootkits	that	can	hide	in	a	system
firmware's	dedicated	memory	allowing	an	attacker	to	control	the	system	even
when	it's	powered	down.	This	recipe	shows	you	how	to	check	your	system	for
rootkits	using	chkrootkit.

Getting	ready
This	recipe	requires	a	CentOS	system	with	a	working	network	connection.
Administrative	privileges	are	also	required,	either	by	logging	in	with	the	root
account	or	through	the	use	of	sudo.

How	to	do	it...
Follow	these	steps	to	use	chkrootkit	to	check	for	rootkits:

1. Install	the	gcc	and	glibc-static	packages	that	are	needed	to	compile
chkrootkit	binaries:

yum	install	gcc	glibc-static

2. Download	chkrootkit	source	code:

			curl	-O	

ftp://ftp.pangeia.com.br/pub/seg/pac/chkrootkit.tar.gz

3. Extract	the	downloaded	source	code	archive	and	enter	into	the	code's
directory:

tar	xzvf	chkrootkit.tar.gz

cd	chkrootkit-0.50

4. Run	make	to	compile	chkrootkit's	binary	components:

make

5. chkrootkit	requires	netstat	to	conduct	its	network	tests	which	is	available
in	the	net-tools	package:

yum	install	net-tools

6. Run	chkrootkit	to	scan	for	rootkits:

./chkrootkit

How	it	works...
chkrootkit	consists	of	a	shell	script	and	a	small	collection	of	compiled	utilities
distributed	as	source	code	so	we	need	to	compile	it.	This	means	you'll	need	a
compiler	installed	on	your	system.	Minimally,	gcc	will	suffice.	Also,	we	need	to
install	the	glibc-static	package	because	the	project's	Makefile	builds	a
statically	compiled	binary—all	of	the	binaries'	dependencies	are	compiled	in;	it
doesn't	dynamically	reference	the	copy	of	the	system's	shared	libraries:

yum	install	gcc	glibc-static

The	source	code	for	chkrootkit	is	available	on	the	project's	website.	The	link	used
in	the	recipe	is	a	direct	link	to	the	latest	source	archive	and	is	downloaded	using
curl:

curl	-O	ftp://ftp.pangeia.com.br/pub/seg/pac/chkrootkit.tar.gz

Once	the	download	is	complete,	building	chkrootkit's	is	a	matter	of	extracting	the
archive,	entering	into	the	newly	created	directory,	and	running	make:

make

When	you	learned	how	to	compile	a	program	from	source	code	in	the	Compiling	a
program	from	source	recipe	of	Chapter	4,	Software	Installation	Management,
you	used	the	common	configure,	make,	and	make	install	approach.	However,
chkrootkit	doesn't	ship	with	a	configure	script	and	its	Makefile	doesn't	contain	an
install	target.	All	we	need	to	do	here	to	kick	off	the	compilation	process	is
invoke	make	itself.

chkrootkit	runs	a	series	of	tests	to	check	for	known	rootkit	signatures.	Some	of
these	tests	use	its	compiled	utilities	while	others	use	common	system	utilities.	One
of	its	network	tests	checks	which	ports	are	open	using	netstat,	which	is	not
installed	by	default	on	CentOS	but	is	available	in	the	net-tools	package.	So,
before	we	can	use	chkrootkit,	we	need	to	install	this	dependency:

	yum	install	net-tools

Once	everything	is	installed,	we	can	execute	the	chkrootkit	script.	When	run
without	any	arguments,	chkrootkit	executes	all	of	its	tests.	Otherwise,	we	can

specify	one	or	more	tests	and	only	those	will	run.	The	-l	(lowercase	L)	argument
will	display	a	list	of	possible	tests:

./chkrootkit	-l

See	also
Refer	to	the	following	resources	for	more	information	on	working	with	chkrootkit:

The	chkrootkit	website	(http://www.chkrootkit.org)
Chkrootkit:	check	your	system	for	hidden	rootkits
(https://www.youtube.com/watch?v=IdvdUv0Nsq4)

http://www.chkrootkit.org
https://www.youtube.com/watch?v=IdvdUv0Nsq4

Using	Bacula	for	network	backups
The	fact	of	the	matter	is	that	we	are	living	in	a	world	that	is	becoming	increasingly
dependent	on	data.	Also,	from	accidental	deletion	to	a	catastrophic	hard	drive
failure,	there	are	many	threats	to	the	safety	of	your	data.	The	more	important	your
data	is	and	the	more	difficult	it	is	to	recreate	if	it	were	lost,	the	more	important	it
is	to	have	backups.	So,	this	recipe	shows	you	how	you	can	set	up	a	backup	server
using	Bacula	and	how	to	configure	other	systems	on	your	network	to	backup	their
data	to	it.

Getting	ready
This	recipe	requires	at	least	two	CentOS	systems	with	working	network
connections.	The	first	system	is	the	local	system	which	we'll	assume	has	the
hostname	benito	and	the	IP	address	192.168.56.41.	The	second	system	is	the
backup	server.	You'll	need	administrative	access	on	both	systems,	either	by
logging	in	with	the	root	account	or	through	the	use	of	sudo.

How	to	do	it...
Perform	the	following	steps	on	your	local	system	to	install	and	configure	the
Bacula	file	daemon:

1. Install	the	bacula-client	package:

	yum	install	bacula-client

2. Open	the	file	daemon's	configuration	file	with	your	text	editor:

	vi	/etc/bacula/bacula-fd.conf

3. In	the	FileDaemon	resource,	update	the	value	of	the	Name	directive	to	reflect
the	system's	hostname	with	the	suffix	-fd:

	FileDaemon	{	

			Name	=	benito-fd	

	...	

	}

4. Save	the	changes	and	close	the	file.
5. Start	the	file	daemon	and	enable	it	to	start	when	the	system	reboots:

	systemctl	start	bacula-fd.service	

	systemctl	enable	bacula-fd.service	

6. Open	the	firewall	to	allow	TCP	traffic	through	to	port	9102:

			firewall-cmd	--zone=public	--permanent	--add-

port=9102/tcp	

	firewall-cmd	--reload

7. Repeat	steps	1-6	on	each	system	that	will	be	backed	up.

Perform	the	following	steps	on	the	system	designated	as	the	backup	server	to
install	and	configure	the	Bacula	director,	storage,	and	file	daemons.

1. Install	the	bacula-console,	bacula-director,	bacula-storage,	and
bacula-client	packages:

yum	install	bacula-console	bacula-director	bacula-storage

	bacula-client

2. Re-link	the	catalog	library	to	use	SQLite	database	storage:

alternatives	--config	libbaccats.so

3. Type	2	when	asked	to	provide	the	selection	number.
4. Create	the	SQLite	database	file	and	import	the	table	schema:

	/usr/libexec/bacula/create_sqlite3_database	

	/usr/libexec/bacula/make_sqlite3_tables	

5. Open	the	director's	configuration	file	with	your	text	editor:

vi	/etc/bacula/bacula-dir.conf

6. In	the	Job	resource	where	Name	has	the	value	BackupClient1,	change	the
value	of	the	Name	directive	to	reflect	one	of	the	local	systems.	Then	add	a
Client	directive	with	a	value	that	matches	that	system's	FileDaemonName:

	Job	{	

	Name	=	"BackupBenito"	

	Client	=	benito-fd	

	JobDefs	=	"DefaultJob"	

	}

7. Duplicate	the	Job	resource	and	update	its	directive	values	as	necessary	so
that	there	is	a	Job	resource	defined	for	each	system	to	be	backed	up.

8. For	each	system	that	will	be	backed	up,	duplicate	the	Client	resource	where
the	Name	directive	is	set	to	bacula-fd.	In	the	copied	resource,	update	the
Name	and	Address	directives	to	identify	that	system:

	Client	{	

	Name	=	bacula-fd	

	Address	=	localhost	

	...	

	}	

	Client	{	

	Name	=	benito-fd	

	Address	=	192.168.56.41	

	...	

	}	

	Client	{	

	Name	=	javier-fd	

	Address	=	192.168.56.42	

	...	

	}

9. Save	your	changes	and	close	the	file.
10. Open	the	storage	daemon's	configuration	file:

	vi	/etc/bacula/bacula-sd.conf	

11. In	the	Device	resource	where	Name	has	the	value	FileStorage,	change	the
value	of	the	Archive	Device	directive	to	/bacula:

	Device	{	

	Name	=	FileStorage	

	Media	Type	=	File	

	Archive	Device	=	/bacula	

	...

12. Save	the	update	and	close	the	file.
13. Create	the	/bacula	directory	and	assign	it	the	proper	ownership:

	mkdir	/bacula	

	chown	bacula:bacula	/bacula

14. If	you	have	SELinux	enabled,	reset	the	security	context	on	the	new	directory:

	restorecon	-Rv	/bacula

15. Start	the	director	and	storage	daemons	and	enable	them	to	start	when	the
system	reboots:

	systemctl	start	bacula-dir.service	bacula-sd.service	

	bacula-fd.service	

	systemctl	enable	bacula-dir.service	bacula-sd.service	

	bacula-fd.service

16. Open	the	firewall	to	allow	TCP	traffic	through	to	ports	9101-9103:

			firewall-cmd	--zone=public	--permanent	--add-

port=9101-9103/tcp	

	firewall-cmd	-reload

17. Launch	Bacula's	console	interface:

	bconsole	

18. Enter	label	to	create	a	destination	for	the	backup.	When	prompted	for	the
volume	name,	use	Volume0001	or	a	similar	value.	When	prompted	for	the
pool,	select	the	File	pool:

	label	

19. Enter	quit	to	leave	the	console	interface.

How	it	works
Configuring	Bacula	can	be	a	daunting	task	for	the	most	part	because	of	the	suite's
distributed	architecture	and	the	level	of	flexibility	it	offers	in	organizing	and
scheduling	backup	and	restore	jobs.	However,	once	everything	is	up	and	running,
I'm	sure	you'll	have	peace	of	mind	knowing	that	your	data	is	safe	from	accidents
and	disasters.

Bacula	is	made	up	of	several	components.	In	this	recipe,	our	efforts	were	centered
on	three	daemons—the	director,	the	file	daemon,	and	the	storage	daemon.	The	file
daemon	is	installed	on	each	of	the	client	systems	to	be	backed	up	and	listens	for
connections	from	the	director.	The	director	connects	to	each	file	daemon	as
scheduled	and	tells	it	which	files	to	backup	and	where	to	copy	them	to	(the	storage
daemon).	The	storage	daemon	receives	the	backed	up	data	and	writes	it	to	the
backup	medium,	for	example,	the	disk	or	tape	drive.

First,	we	installed	the	file	daemon	with	the	bacula-client	package	on	our	client
systems.	Then	we	edited	the	file	daemon's	configuration	file	found	at
/etc/bacula/bacula-fd.conf	to	specify	the	name	of	the	process.	The
convention	is	to	add	the	suffix	-fd	to	the	system's	hostname:

	FileDaemon	{	

	Name	=	benito-fd	

	FDPort	=	9102	

	WorkingDirectory	=	/var/spool/bacula	

	Pid	Directory	=	/var/run	

	Maximum	Concurrent	Jobs	=	20	

	}

After	the	update	is	made	to	the	configuration,	we	started	the	service	and	opened	
the	appropriate	port	in	the	system	firewall.	The	file	daemon	is	now	listening,	
waiting	for	the	director	to	connect	and	tell	it	what	it	needs	to	do.

On	the	backup	server,	we	installed	the	bacula-director,	bacula-storage,	and	
bacula-client	packages.	This	gives	us	the	director	and	storage	daemon,	and	
another	file	daemon.	The	file	daemon's	purpose	here	on	the	backup	server	is	to	
backup	Bacula's	catalog:

This	image	reproduced	from	Bacula's	documentation	shows	how	the	different
applications	relate	to	one	another

Bacula	maintains	a	database	of	metadata	about	previous	backup	jobs	called	the
catalog,	which	can	be	managed	by	MySQL,	PostgreSQL,	or	SQLite.	SQLite	is	an
embedded	database	library,	meaning	the	program	using	it	links	against	the	SQLite
library	and	manages	its	own	database	files.	To	support	multiple	databases,
Bacula's	code	is	written	so	that	all	the	database	access	routines	are	contained	in
separate	shared	libraries	with	a	different	library	for	each	database.	Then,	when
Bacula	wants	to	interact	with	a	database,	it	does	so	through	libbaccats.so,	a
fake	library	that	is	nothing	more	than	a	symbolic	link	pointing	to	one	of	the
specific	database	libraries.	This	let's	Bacula	support	different	databases	without
requiring	us	to	recompile	its	source	code.

To	create	the	symbolic	link,	we	used	alternatives	and	select	the	real	library
that	we	want	to	use:

	alternatives	--config	libbaccats.so

Then,	we	initialized	the	database's	schema	using	the	scripts	that	come	with
Bacula:

	/usr/libexec/bacula/create_sqlite3_database	

	/usr/libexec/bacula/make_sqlite3_tables

Bacula	supports	multiple	databases	without	recompiling

Note

This	recipe	took	advantage	of	Bacula's	SQLite	support	because	it's	convenient	and	
doesn't	require	additional	effort	to	set	up.	If	you	want	to	use	MySQL,	install

MySQL	as	discussed	in	Chapter	7,	Working	with	Databases,	create	a	dedicated
MySQL	user	for	Bacula	to	use,	and	then	initialize	the	schema	with	the	following
scripts:

/usr/libexec/bacula/grant_mysql_privileges

	/usr/libexec/bacula/create_mysql_database

	/usr/libexec/bacula/make_mysql_tables

You'll	also	need	to	review	Bacula's	configuration	files	to	provide	Bacula	with	the	
required	MySQL	credentials.

Different	resources	are	defined	in	the	director's	configuration	file	at
/etc/bacula/bacula-dir.conf,	many	of	which	consist	not	only	of	their	own	
values	but	also	reference	to	other	resources.	For	example,	the	FileSet	resource	
specifies	which	files	are	included	or	excluded	in	backups	and	restores,	while	a	
Schedule	resource	specifies	when	backups	should	be	made.	A	JobDef	resource	
can	contain	various	configuration	directives	that	are	common	to	multiple	backup	
jobs	and	also	reference	particular	FileSet	and	Schedule	resources.	Client	
resources	identify	the	names	and	addresses	of	systems	running	file	daemons,	and	a	
Job	resource	will	pull	together	a	JobDef	and	Client	resource	to	define	the	
backup	or	restore	task	for	a	particular	system.	Some	resources	define	things	at	a	
more	granular	level	and	are	used	as	building	blocks	to	define	other	resources,	
creating	complex	definitions	in	a	flexible	manner.

Tip

The	default	resource	definitions	define	basic	backup	and	restore	jobs	sufficient	
for	this	recipe.	You'll	want	to	study	the	configuration	and	see	how	the	different	
resources	fit	together	so	you	can	tweak	them	to	better	suit	your	backup	needs.

This	image,	reproduced	from	Bacula's	documentation	shows,	how	the	different
resources	relate	to	one	another

To	get	started,	we	customized	the	existing	backup	Job	by	changing	its	name	and
client.	Then	we	customized	the	existing	Client	resource	by	changing	its	name	and
address	to	point	to	a	specific	system	running	a	file	daemon.	The	pair	of	Job	and
Client	resources	were	duplicated,	a	pair	for	each	system	we're	backing	up.
Notice	that	we	also	left	a	default	Client	resource	that	defines	bacula-fd	for	the
localhost.	This	is	the	file	daemon	that's	local	to	the	backup	server	and	will	be	the
target	for	things	such	as	restore	jobs	and	catalog	backups:

	Job	{	

	Name	=	"BackupBenito"	

	Client	=	benito-fd	

	JobDefs	=	"DefaultJob"	

	}	

	Job	{	

	Name	=	"BackupJavier"	

	Client	=	javier-fd	

	JobDefs	=	"DefaultJob"	

	}	

	Client	{	

	Name	=	bacula-fd	

	Address	=	localhost	

	...	

	}	

	Client	{	

			Name	=	benito-fd

	Address	=	192.168.56.100	

	...	

	}	

	Client	{	

	Name	=	javier-fd	

	Address	=	192.168.56.100	

	...	

	}

Tip

If	you	have	a	lot	of	client	systems	or	a	lot	of	job	definitions,	you	can	stay	better
organized	by	defining	these	resources	in	their	own	files	and	read	them	into
bacula-dir.conf.	Create	the	directory	/etc/bacula/config.d,	and	place	the
individual	configuration	files	there.	Then	add	the	following	line	to	bacula-

dir.conf	to	read	them:

@|"find	/etc/bacula/config.d	-name	'*.conf'	f	-exec	echo	@{}	\;"

To	complete	the	setup,	we	need	to	label	a	backup	volume.	This	task,	as	with	most	
others,	is	performed	through	bconsole,	a	console	interface	to	the	Bacula	director.

We	used	the	label	command	to	define	a	label	for	the	backup	volume,	and	when	
prompted	for	the	pool,	we	assigned	the	labeled	volume	to	the	File	pool.	In	a	way	
very	similar	to	how	logical	volumes	work	(refer	to	Chapter	5,	Managing	
Filesystems	and	Storage,	an	individual	device	or	storage	unit	is	allocated	as	a	
volume	and	the	volumes	are	grouped	into	storage	pools.	If	a	pool	contains	two	
volumes	backed	by	tape	drives	for	example,	and	one	of	the	drives	is	full,	the	
storage	daemon	will	write	the	backup	data	to	the	tape	that	has	space	available.	
Even	though	in	our	configuration	we're	storing	the	backup	to	disk,	we	still	need	to	
create	a	volume	as	the	destination	for	data	to	be	written	to.

At	this	point,	you	should	consider	which	backup	strategy	works	best	for	you.	A	
full	backup	is	a	complete	copy	of	your	data,	a	differential	backup	captures	only	
the	files	that	have	changed	since	the	last	full	backup,	and	an	incremental	backup	
copies	the	files	that	have	changed	since	the	last	backup	(regardless	of	the	type	of	
backup.	Commonly,	administrators	employ	a	combination	of	these,	perhaps	
making	a	full	backup	at	the	start	of	the	week	and	then	differential	or	incremental	
backups	each	day	thereafter.	This	saves	storage	space	because	the	differential	and	
incremental	backups	are	smaller	and	also	convenient	when	the	need	to	restore	a	
file	arises,	because	a	limited	number	of	backups	need	to	be	searched	for	the	file.

Another	consideration	is	the	expected	size	of	each	backup	and	how	long	it	will	
take	for	the	backup	to	run	to	completion.	Full	backups	obviously	take	longer	to	
run,	and	in	an	office	with	9-5	working	hours,	Monday	through	Friday,	it	may	not	
be	possible	to	run	a	full	backup	during	the	evenings.	Performing	a	full	backup	on	
Fridays	gives	the	backup	time	over	the	weekend	to	run.	Smaller,	incremental	
backups	can	be	performed	on	the	other	days	when	time	is	lesser.

Still	another	point	that	is	important	in	your	backup	strategy	is	how	long	the	
backups	will	be	kept	and	where	they	will	be	kept.	This	touches	on	a	larger	issue,	
disaster	recovery.	If	your	office	burns	down,	a	year's	worth	of	backups	will	be	of	
no	use	if	they	were	sitting	in	the	office's	IT	closet.	At	one	employer,	we	kept	the

last	full	backup	and	last	day's	incremental	on	a	disk	on	site.	These	were	then	
duplicated	to	tape	and	shipped	off	site.

Regardless	of	the	strategy	you	choose	to	implement,	your	backups	are	only	as	
good	as	your	ability	to	restore	data	from	them.	You	should	periodically	test	your	
backups	to	make	sure	you	can	restore	your	files.

To	run	a	backup	job	on	demand,	enter	run	in	bconsole.	You'll	be	prompted	with	
a	menu	to	select	one	of	the	current	configured	jobs.	You'll	then	be	presented	with	
the	job's	options,	such	as	what	level	of	backup	will	be	performed	(full,	
incremental,	or	differential,	it's	priority,	and	when	it	will	run.	You	can	type	yes	
or	no	to	accept	or	cancel	it	or	mod	to	modify	a	parameter.	Once	accepted,	the	job	
will	be	queued	and	assigned	a	job	ID.

To	restore	files	from	a	backup,	use	the	restore	command.	You'll	be	presented	
with	a	list	of	options	allowing	you	to	specify	which	backup	the	desired	files	will	
be	retrieved	from.	Depending	on	your	selection,	the	prompts	will	be	different.	
Bacula's	prompts	are	rather	clear,	so	read	them	carefully	and	it	will	guide	you	
through	the	process.

Apart	from	the	run	and	restore	commands,	another	useful	command	is	status.	
It	will	allow	you	to	see	the	current	status	of	the	Bacula	components,	if	there	are	
any	jobs	currently	running,	and	which	jobs	have	completed.	A	full	list	of	
commands	can	be	retrieved	by	typing	help	in	bconsole.

bconsole	is	a	console	interface	to	the	Bacula	director

See	also
Refer	to	the	following	resources	for	more	information	on	working	with	Bacula:

Bacula	documentation	(http://blog.bacula.org/documentation/)
How	to	use	Bacula	on	CentOS	7
(https://www.digitalocean.com/community/tutorial_series/how-to-use-
bacula-on-centos-7)
Bacula-Web	(a	web-based	reporting	and	monitoring	tool	for	Bacula)
(http://www.bacula-web.org/)

http://blog.bacula.org/documentation/
https://www.digitalocean.com/community/tutorial_series/how-to-use-bacula-on-centos-7
http://www.bacula-web.org/

Chapter	12.	Virtualization
This	chapter	contains	the	following	recipes:

Creating	a	new	virtual	machine
Cloning	a	virtual	machine
Adding	storage	to	a	virtual	machine
Connecting	USB	peripherals	to	a	guest	system
Configuring	a	guest's	network	interface

Introduction
The	recipes	in	this	chapter	focus	on	running	a	second	operating	system	as	a	guest
using	virtualization	on	your	CentOS	system.	You'll	learn	how	to	setup	the	virtual
machine	to	install	a	guest	operating	system,	properly	create	a	copy	of	the	machine
through	cloning,	and	add	additional	storage	resources.	You'll	also	learn	how	to
share	access	to	USB	peripherals	attached	to	the	host	system	and	configure	the
guest's	virtual	network	interface	to	access	the	network.

Creating	a	new	virtual	machine
This	recipe	teaches	you	how	to	install	the	KVM	virtualization	software	and	create
a	new	virtual	machine.	Virtualization	allows	us	to	take	advantage	of	the	hardware
resources	available	to	us	by	running	multiple	operating	systems	on	the	same
physical	system.	The	primary	operating	system	is	installed	"bare-metal"	and	is
known	as	the	host	OS.	Then,	special	software	is	installed	that	allows	the	host	to
provide	emulation	or	direct	access	to	hardware	resources.	The	resources	are
partitioned	as	virtual	machines	and	several	guest	operating	systems	can	then	be
installed	and	run	on	top	of	the	host,	each	in	their	own	virtual	machine.

Getting	ready
This	recipe	requires	a	CentOS	system	with	a	working	network	connection	and	a
graphical	user	interface	installed	(refer	to	the	Installing	the	GNOME	desktop	and
Installing	the	KDE	Plasma	desktop	recipes	in	Chapter	1,	Getting	Started	with
CentOS).	Administrative	privileges	are	also	required,	either	by	logging	in	with
the	root	account	or	through	the	use	of	sudo.

How	to	do	it...
Follow	these	steps	to	install	a	guest	operating	system:

1. Install	the	necessary	virtualization	packages	using	package	groups:

yum	groupinstall	"Virtualization	Platform"

	"Virtualization	Client"	"Virtualization	Tools"

2. Launch	the	Virtual	Machine	Manager	application:

	virt-manager

3. Create	a	new	virtual	machine	by	selecting	New	Virtual	Machine	from	the
File	menu.	This	opens	the	New	VM	wizard.

4. Select	the	desired	installation	method	and	click	on	Forward.	For	this	recipe,
we'll	choose	the	Local	install	media	option:

The	New	VM	wizard	collects	the	necessary	details	to	create	a	new	machine

5. Select	the	media	source.	If	the	media	is	a	CD	or	DVD,	select	the	Use
CDROM	or	DVD	option.	If	the	media	is	an	ISO	file,	select	the	Use	ISO
image	option	and	specify	the	path	to	the	image	file.	Then,	click	on	Forward:

The	new	machine	will	use	an	ISO	file	as	its	installation	media

6. Set	the	amount	of	RAM	and	the	number	of	CPUs	that	you	want	to	allocate	to
the	virtual	machine	and	then	click	on	Forward:

1	GB	of	RAM	and	1	CPU	are	allocated	to	the	virtual	machine

7. Specify	the	storage	capacity	that	will	be	allocated	to	the	machine	and	then
click	on	Forward:

The	machine	is	set	up	with	8	GB	of	storage

8. Provide	a	name	to	identify	the	virtual	machine	and	click	on	Finish:

The	wizard	is	ready	to	create	the	virtual	machine	and	boot	the	installation
media

9. The	virtual	machine	will	automatically	start	and	boot	from	the	specified

installation	media.	You	can	now	proceed	with	installing	your	guest	operating
system	in	the	machine	as	if	it	were	a	physical	system:

An	operating	system	can	be	installed	on	the	virtual	machine	the	same	way
as	a	physical	system

How	it	works...
The	necessary	software	is	installed	by	installing	three	package	groups;	the	
Virtualization	Platform	group	installs	the	base	virtualization	libraries,	the	
Virtualization	Client	package	installs	client	programs	for	creating	and	
managing	virtual	machines,	and	the	Virtualization	Tools	package	installs	
utilities	for	maintaining	the	machines:

yum	groupinstall	"Virtualization	Platform"	

"Virtualization	Client"		"Virtualization	Tools"

After	installing	the	software,	we	used	the	Virtual	Machine	Manager	to	create	a	
machine.	The	machine	defines	a	virtual	system,	specifying	what	resources	are	
available	to	the	guest	and	how	the	guest	may	access	them.	Under	the	GNOME	
desktop	environment,	the	manager	is	launched	from	the	System	Tools	category	of	
the	Applications	menu.	In	KDE,	it's	found	via	the	Kickoff	Application	Launcher	
under	Applications	|	System	Tools.	The	manager	can	also	be	launched	from	the	
command	line	with	virt-manager:

virt-manager

Note

A	new	virtual	machine	can	be	created	on	the	command	line	as	well,	using	virt-
install	and	specifying	the	resource	allocations	as	arguments.	This	is	especially	
useful	if	you	want	to	script	the	process	of	spinning	up	new	guests.

The	manager's	new	VM	makes	it	easy	to	create	a	new	virtual	machine	definition	
by	prompting	us	for	the	necessary	resource	allocations.	For	instance,	we're	asked	
to	provide	the	amount	of	RAM,	the	number	of	CPUs,	and	the	amount	of	storage	
space	to	make	available	to	the	guest.	After	we	provide	the	values,	it	creates	the	
machine	and	starts	it,	booting	from	the	specified	installation	media	to	install	the	
guest	operating	system.	From	there,	installing	the	operating	system	is	the	same	as	
if	you	were	installing	it	on	a	physical	system.

To	boot	a	virtual	machine,	select	the	desired	machine	from	the	available	list	so	
that	it's	highlighted	and	then	click	on	the	play	arrow	icon	in	the	manager's	tool	bar.	
Alternatively,	right-click	on	the	list	entry	and	select	Run	from	the	context	menu.	
This	powers	on	the	machine	and	its	status	changes	to	Running.	When	you're

finished,	you	can	power	the	machine	off	by	clicking	on	the	power	switch	icon	in
the	tool	bar	or	on	one	of	the	Shut	Down	options	from	the	context	menu.	The
machine's	status	changes	to	Shut	off.	To	interact	with	the	guest	while	it's	running,
double-click	on	the	entry	or	highlight	it	and	then	click	on	the	Open	icon	in	the
manager's	tool	bar.

Note

Scrollbars	will	appear	on	the	side	and	bottom	of	the	window	if	the	guest's	display
is	too	large	to	show	in	its	entirety.	Scaling	it	to	fit	within	the	window	can	improve
your	experience.	To	adjust	the	display's	presentation,	select	Display	from	View.

See	also
Refer	to	the	following	resources	for	more	information	on	working	with	virtual
machines:

The	virt-install	manual	page	(man	1	virt-install)
The	KVM	website	(http://www.linux-kvm.org/page/Main_Page)
RHEL	7	Virtualization	Deployment	and	Administration	Guide
(https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide/
Best	practices	for	KVM
(http://www.ibm.com/support/knowledgecenter/linuxonibm/liaat/liaatbpkickoff.htm

http://www.linux-kvm.org/page/Main_Page
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide/
http://www.ibm.com/support/knowledgecenter/linuxonibm/liaat/liaatbpkickoff.htm

Cloning	a	virtual	machine
Since	a	virtual	machine	is	ultimately	nothing	more	than	data	files,	these	can	easily
be	copied	and	shared.	This	is	useful	because	you	can	set	up	a	gold	server	exactly
how	you	want	it	and	then	make	copies	that	are	used	for	different	purposes.
However,	using	the	cp	command	isn't	the	way	to	go	about	it.	This	recipe	shows
you	the	correct	way	to	duplicate	a	machine	with	a	process	called	cloning.

Getting	ready
This	recipe	requires	a	virtual	machine	set	up	as	described	in	the	previous	recipe.
While	the	cloning	process	doesn't	require	administrative	privileges	per	se,
privileges	may	be	needed	to	access	the	machine's	files	depending	on	where	they
are	located.	By	default,	the	files	are	stored	at	/var/lib/libvirt/images,	which
requires	administrative	access.

How	to	do	it...
Follow	these	steps	to	clone	a	virtual	machine:

1. Make	sure	the	machine	you	want	to	clone	is	not	running.
2. In	Virtual	Machine	Manager,	right-click	on	the	desired	machine	in	the	list	of

available	machines	and	select	Clone	from	the	context	menu.	This	opens	the
Clone	Virtual	Machine	dialog:

The	Clone	Virtual	Machine	dialog	makes	it	easy	to	clone	a	machine	image

3. Specify	a	unique	name	for	the	new	image	and	click	on	the	Clone	button.	This
will	create	a	standalone	copy	of	the	virtual	machine	and	selected	storage.

How	it	works...
This	recipe	used	Virtual	Machine	Manager	to	create	a	copy	of	a	machine	known
as	a	clone.	The	machine	should	be	cloned	in	this	manner	instead	of	simply	copying
the	underlying	files,	because	the	cloning	process	also	updates	various	identifiers
that	should	be	unique	between	machines,	such	as	the	MAC	address	of	the	network
interface.

Note

The	virt-clone	command	can	be	used	to	clone	a	guest	on	the	command-line.	For
more	information,	refer	to	the	program's	man	page	using	man	1	virt-clone.

If	you	want	to	update	various	aspects	of	the	cloned	machine	before	booting	it,	you
can	use	tools	such	as	virt-sysprep	and	virt-configure.	These	programs
mount	the	machine's	disk	image	in	a	chrooted	environment,	perform	the	requested
modifications,	and	then	unmount	the	image.	virt-sysprep	is	installed	via
libguestfs-tools-c:

	yum	install	libguestfs-tools-c	

To	view	a	list	of	the	available	maintenance	actions	virt-sysprep	can	perform,
invoke	the	program	using	--list-operations.	Each	option	will	be	displayed
along	with	a	brief	description	of	what	it	does.	To	perform	an	operation,	use	the	--
operation	argument	followed	by	one	or	more	of	the	operation	labels,	separated
by	commas.	For	example,	the	following	command	clears	the	bash	history	for	any
accounts	on	the	system	and	deletes	any	files	that	may	be	in	/tmp.	The	-a	argument
provides	the	path	to	the	machine's	disk	image:

virt-sysprep	-a	/var/lib/virt/images/Ubuntu-clone.qcow2	

--operations	bash-history,tmp-files

Depending	on	what	the	original	machine	image	was	used	for,	you	may	find	the
following	cleanup	operations	useful	as	well:

ca-certificates:	This	deletes	any	CA	certificates
logfiles:	This	deletes	log	files
ssh-hostkeys:	This	deletes	the	SSH	host	keys

ssh-userdir:	This	deletes	the	users'	.ssh	directories
user-account:	This	deletes	all	user	accounts	except	for	root

There	is	some	overlap	in	the	functionality	of	virt-sysprep	and	virt-
customize;	however,	virt-customize	performs	more	general	customization
operations,	while	virt-sysprep's	actions	focus	more	on	cleaning	up	an	image.
virt-customize	can	do	things	like	move	and	set	the	system's	hostname,	reset
passwords,	and	install	and	uninstall	packages.

To	reset	the	system's	hostname,	use	the	--hostname	argument	and	provide	the
desired	name:

virt-customize	-a	/var/lib/virt/images/Ubuntu-clone.qcow2	

--hostname	ubuntu2

The	--install	and	--uninstall	arguments	add	and	remove	packages	and
specify	one	or	more	package	names	separated	by	commas:

virt-customize	-a	/var/lib/virt/images/Ubuntu-clone.qcow2	

--install	build-essential

Some	arguments	you	may	find	useful	for	virt-customize	are	as	follows:

--chmod:	This	changes	file	permissions
--copy:	This	creates	a	copy	of	a	file	or	directory
--delete:	This	removes	a	file	or	directory
--mkdir:	This	creates	a	new	directory
--move:	This	moves	a	file	or	directory	to	a	new	destination
--password:	This	updates	a	user's	password
--run-command:	This	runs	a	command	on	the	image

See	also
Refer	to	the	following	resources	for	more	information	on	cloning	and	customizing
virtual	machines:

The	virt-clone	manual	page	(man	1	virt-clone)
The	virt-configure	manual	page	(man	1	virt-configure)
The	virt-sysprep	manual	page	(man	1	virt-sysprep)
How	to	clone	a	KVM	virtual	machine	and	reset	the	VM
(http://www.unixarena.com/2015/12/how-to-clone-a-kvm-virtual-machines-
and-reset-the-vm.html)

http://www.unixarena.com/2015/12/how-to-clone-a-kvm-virtual-machines-and-reset-the-vm.html

Adding	storage	to	a	virtual	machine
Even	if	you're	not	a	data	hoarder,	the	time	will	probably	come	when	you	need	to
add	additional	storage	to	a	guest	system.	No	worries!	This	is	easy	to	do!	This
recipe	teaches	you	how	to	add	and	modify	the	virtual	hardware	attached	to	a
machine.

Getting	ready
This	recipe	requires	a	virtual	machine	set	up	as	described	in	the	previous	recipes.

How	to	do	it...
Follow	these	steps	to	add	storage	to	a	virtual	machine:

1. Make	sure	the	virtual	machine	you	want	to	modify	is	not	running.
2. Open	the	virtual	machine	by	double-clicking	on	the	desired	entry	in	the	list	of

available	machines.
3. Either	click	on	the	lightbulb	icon	in	the	menu	bar	or	select	Details	from	View

to	show	the	virtual	machine's	hardware	details:

The	machine's	virtual	hardware	is	displayed	and	resources	can	be	added,
modified,	and	removed

4. Click	on	the	Add	Hardware	button	in	the	bottom-left	corner	of	the	window
to	open	the	Add	New	Virtual	Hardware	window.

5. Select	Storage	from	the	list	of	possible	resources.	Specify	the	desired
storage	space	to	allocate	for	the	new	disk	and	click	on	Finish:

A	virtual	8	GB	storage	drive	is	added	to	the	machine

6. Leave	the	hardware	view	by	either	clicking	on	the	computer	icon	in	the	menu
bar	or	selecting	Console	from	View.

How	it	works...
This	recipe	showed	you	where	to	configure	the	virtual	hardware	definitions	
associated	with	a	machine.	To	increase	the	storage	available	to	a	guest	operating	
system,	we	navigated	to	this	view	and	added	a	new	virtual	drive.	The	storage	
device	can	be	created	through	the	interface,	as	shown	in	the	recipe,	or	an	existing	
drive	file	can	be	selected	and	attached	to	the	system.

Note

If	you	are	creating	a	new	disk,	you	will	want	to	partition,	format,	and	mount	the	
storage	so	it	can	be	used.	You	may	find	the	recipes	discussed	in	Chapter	5,	
Managing	Filesystems	and	Storage	helpful.

Other	hardware	can	be	managed	via	the	hardware	view	as	well.	Most	notably,	you	
can	add	and	configure	new	network	interfaces	and	allocate	additional	RAM	and	
CPU	resources.	Increasing	the	RAM/CPU	might	be	done	to	run	resource-intensive	
processes	on	the	system—it's	better	to	allocate	a	smaller	amount	first	and	then	
increase	the	resources	when	the	need	arises.

Another	useful	configuration	is	to	change	the	display	server.	By	default,	the	
display	is	configured	to	use	SPICE,	a	more	robust	protocol	than	VNC.	A	SPICE	
server	is	built	into	the	virtualization	platform	so	that	you	can	connect	to	the	virtual	
machine	using	a	SPICE	client	to	access	its	display,	even	if	the	guest	is	only	
running	a	console	display	(refer	to	https://www.spice-space.org/	to	find	a	SPICE	
client.	If	you	want	to	connect	using	VNC	instead,	select	the	Display	Spice	entry	
in	the	hardware	list	and	set	its	Type	to	VNC	server.	Change	the	Address	value	to	
All	interfaces	to	accept	connections	from	outside	the	localhost,	specify	a	
connection	password,	and	then	click	on	the	Apply	button.

The	display's	label	in	the	hardware	list	will	change	to	Display	VNC:

https://www.spice-space.org/

Users	can	connect	to	a	virtual	system's	display	using	a	SPICE	or	VNC	client

See	also
Refer	to	the	following	resources	for	more	information	on	working	with	virtual
hardware:

RHEL	7	Virtualization	Deployment	and	Administration	Guide:	Storage	Pools
		(https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide/chap-
Storage_pools.html)
Storage	management	(http://libvirt.org/storage.html)

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide/chap-Storage_pools.html
http://libvirt.org/storage.html

Connecting	USB	peripherals	to	a
guest	system
This	recipe	teaches	you	how	to	share	the	USB	devices	that	are	connected	to	the
host	system	with	a	virtual	machine.	This	means	you	can	use	your	USB	printers,
webcams,	and	storage	devices	from	your	guest	operating	system.

Getting	ready
This	recipe	requires	a	virtual	machine	set	up	as	described	in	the	previous	recipes.

How	to	do	it...
Follow	these	steps	to	connect	USB	peripherals	to	a	guest	system:

1. Make	sure	the	virtual	machine	you	want	to	modify	is	not	running.
2. Attach	the	USB	device	to	the	physical	system.
3. Open	the	virtual	machine	by	double-clicking	on	the	desired	entry	in	the	list	of

available	machines.
4. Show	the	virtual	machine's	hardware	details	by	clicking	on	the	lightbulb	icon

in	the	menu	bar	or	selecting	Details	from	View.
5. Click	on	the	Add	Hardware	button	to	open	the	Add	New	Virtual	Hardware

window.
6. Select	USB	HOST	Device	from	the	list	of	resources.
7. Select	the	desired	USB	device	and	then	click	on	the	Finish	button:

USB	devices	attached	to	the	host	system	can	be	assigned	to	the	virtual
machines

8. Leave	the	hardware	view	by	either	clicking	on	the	computer	icon	in	the	menu
bar	or	selecting	Console	from	View.

9. Start	the	virtual	machine	and	verify	that	the	USB	device	is	available.

How	it	works...
USB	devices	attached	to	the	host	system	can	be	allocated	to	a	virtual	machine	
through	the	hardware	details.	We	selected	the	USB	Host	Device	category,	which	
displayed	all	of	the	devices	currently	registered	with	the	host	from	which	we	can	
make	our	selection.	There	are	a	couple	of	items	to	be	aware	of	when	using	USB	
devices	in	your	guest	system.	First,	only	the	USB	1.1	protocol	is	supported.	This	
isn't	an	issue	for	most	peripherals,	such	as	webcams,	printers,	and	USB	
microphones,	where	transfer	speed	isn't	much	of	a	concern.	It	may	be	a	concern	if	
you	intend	to	attach	a	USB	storage	device	and	transfer	large	amounts	of	data.	
Second,	the	device	must	be	plugged	in	and	accessible	by	the	host	before	starting	
the	virtual	machine.	This	is	because	the	virtualization	platform	running	on	the	host	
is	responsible	for	provisioning	access	to	the	guest.

Note

This	recipe	showed	you	how	to	assign	a	USB	device	connected	to	the	host	system	
to	a	guest.	If	you're	accessing	your	virtual	machine	remotely	with	a	SPICE	client,	
you	can	plug	in	USB	devices	to	your	local	machine	and	redirect	them	to	the	
remote	guest	using	USB	redirection.	More	information	can	be	found	in	the	RHEL	7	
Virtualization	Deployment	and	Administration	Guide.

See	also
Refer	to	the	following	resources	for	more	information	on	sharing	USB	devices:

RHEL	7	Virtualization	Deployment	and	Administration	Guide:	USB	Devices
				(https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide/sect-
Guest_virtual_machine_device_configuration-USB_devices.html)
USB	pass-through	with	libvirt	and	KVM
(https://david.wragg.org/blog/2009/03/usb-pass-through-with-libvirt-and-
kvm.html)

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide/sect-Guest_virtual_machine_device_configuration-USB_devices.html
https://david.wragg.org/blog/2009/03/usb-pass-through-with-libvirt-and-kvm.html

Configuring	a	guest's	network
interface
This	recipe	teaches	you	how	to	configure	the	virtual	network	interface's	behavior.
By	changing	the	interface's	behavior,	you	can	provide	the	guest	direct	access	or
filtered	access	to	the	network,	and	even	set	up	a	local	network	visible	only	to	the
host	system	and	other	guests.

Getting	ready
This	recipe	requires	a	CentOS	system	with	a	working	network	connection.	It	also
requires	a	virtual	machine	set	up	as	described	in	the	previous	recipes.

How	to	do	it...
Follow	these	steps	to	configure	a	guest's	network	interface:

1. Make	sure	that	the	virtual	machine	you	want	to	modify	is	not	running.
2. Open	the	virtual	machine	by	double-clicking	on	the	desired	entry	in	the	list	of

available	machines.
3. View	the	virtual	machine's	hardware	details	by	clicking	on	the	lightbulb	icon

in	the	menu	bar	or	selecting	Details	from	View.
4. Specify	the	desired	Network	source	(NAT	or	Host	device).
5. If	selecting	a	host	device,	specify	the	desired	mode	(Bridged,	VEPA,	Private,

or	Passthrough):

The	virtual	network	interface	can	be	configured	to	handle	the	guest's
traffic	in	different	ways

6. Click	on	the	Apply	button	to	save	your	configuration.
7. Leave	the	hardware	view	by	either	clicking	on	the	computer	icon	in	the	menu

bar	or	selecting	Console	from	View.
8. Start	the	virtual	machine	and	proceed	to	configuring	the	guest's	networking	as

necessary.

How	it	works...
Managing	a	guest's	network	connectivity	is	a	matter	of	specifying	the	behavior	of
the	virtual	machine's	network	adaptor.	To	do	this	correctly,	we	need	to	first
understand	what	the	behaviors	are	from	the	options	that	are	available	to	us.

The	first	option	is	Network	Address	Translation	(NAT)	and	that	is	the	default
for	new	virtual	machines.	The	virtualization	platform	provides	a	virtual	network
interface	to	the	guest	and	handles	all	of	its	traffic.	The	platform	marshals	the
traffic	through	the	host's	physical	interface,	acting	very	much	like	a	router	between
the	guest	and	host.

The	second	option	is	to	tie	the	virtual	interface	directly	to	the	host's	physical
interface.	There	are	four	sharing	modes,	which	are	as	follows:

Bridged:	The	virtualization	platform	connects	the	guest	and	host	interfaces,
giving	the	guest	direct	access	to	the	Internet.	The	guest	needs	to	obtain	its
own	IP	address	and	has	full	access	to	the	network.
VEPA:	This	is	for	use	with	VEPA-capable	network	devices	(special
hardware	requirements	must	be	met).
Private:	The	platform	creates	private	network,	routing	packets	so	that	virtual
machines	on	the	same	host	can	communicate	with	one	another	and	the
external	network,	but	connections	coming	in	from	the	network	can't	reach	the
virtual	machines.
Passthrough:	The	host's	interface	is	shared	directly	(additional	technical
requirements	must	be	met).

The	documentation	and	terminology	are	quite	technical,	given	the	nature	of	the	
subject.	Moreover,	many	people	who	are	not	networking	experts	often	have	
trouble	deciding	the	correct	configuration.	In	my	experience,	there're	two	common	
scenarios	in	which	non-networkers	use	virtualization-local	virtualization	to	
provide	an	alternate	environment	and	virtualization	to	provision	multiple	server	
systems.	If	you're	using	your	virtual	machine	as	a	typical	desktop	system	where	
users	need	Internet	access	to	read	e-mail	and	surf	the	Web,	use	NAT	networking	
and	configure	the	guest	to	use	DHCP.	If	you're	running	the	machines	as	servers,	
share	the	host's	adaptor	in	the	Bridged	mode	and	configure	the	guest	with	a	static	
IP	address.

See	also
Refer	to	the	following	resources	for	more	information	on	configuring	the	virtual
network	interface:

libvirt	Virtualization	API:	Networking
(http://wiki.libvirt.org/page/Networking)
RHEL	7	Virtualization	Deployment	and	Administration	Guide:	Network
Configuration	(https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide/chap-
Network_configuration.html)

http://wiki.libvirt.org/page/Networking
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide/chap-Network_configuration.html

	CentOS 7 Server Deployment Cookbook
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Why subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Sections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Conventions
	Reader feedback
	Customer support
	Errata
	Piracy
	Questions
	1. Getting Started with CentOS
	Introduction
	Installing CentOS using Anaconda in graphics mode
	Getting ready
	How to do it...
	How it works...
	See also
	Installing CentOS using Anaconda in text mode
	Getting ready
	How to do it...
	How it works...
	See also
	Coordinating multiple installations using Kickstart
	Getting ready
	How to do it...
	How it works...
	See also
	Running a cloud image with Amazon Web Services' EC2
	Getting ready
	How to do it...
	How it works...
	See also
	Installing a container image from the Docker Registry
	Getting ready
	How to do it...
	How it works...
	See also
	Installing the GNOME desktop
	Getting ready
	How to do it...
	How it works...
	See also
	Installing the KDE Plasma desktop
	Getting ready
	How to do it...
	How it works...
	See also
	2. Networking
	Introduction
	Setting a static IP address
	Getting ready
	How to do it...
	How it works...
	See also
	Binding multiple addresses to a single Ethernet device
	Getting ready
	How to do it...
	How it works...
	See also
	Bonding two Ethernet devices
	Getting ready
	How to do it...
	How it works...
	See also
	Configuring the network firewall with FirewallD
	Getting ready
	How to do it...
	How it works...
	See also
	Configuring the network firewall using iptables
	Getting ready
	How to do it...
	How it works...
	See also
	Installing a DHCP server
	Getting ready
	How to do it...
	How it works...
	See also
	Configuring an NFS server to share a filesystem
	Getting ready
	How to do it...
	How it works...
	See also
	Configuring an NFS client to use a shared filesystem
	Getting ready
	How to do it...
	How it works...
	See also
	Serving Windows shares with Samba
	Getting ready
	How to do it...
	How it works...
	See also
	3. User and Permission Management
	Introduction
	Escalating privileges with sudo
	Getting ready
	How to do it...
	How it works...
	See also
	Enforcing password restrictions
	Getting ready
	How to do it...
	How it works...
	See also
	Setting default permissions for new files and directories
	Getting ready
	How to do it...
	How it works...
	See also
	Running binaries as a different user
	Getting ready
	How to do it...
	How it works...
	See also
	Working with SELinux for greater security
	Getting ready
	How to do it...
	How it works...
	See also
	4. Software Installation Management
	Introduction
	Registering the EPEL and Remi repositories
	Getting ready
	How to do it...
	How it works...
	See also
	Prioritizing repositories using the Priorities plugin
	Getting ready
	How to do it...
	How it works...
	See also
	Automating software updates with yum-cron
	Getting ready
	How to do it...
	How it works...
	See also
	Verifying installed RPM packages
	Getting ready
	How to do it...
	How it works...
	See also
	Compiling a program from source
	Getting ready
	How to do it...
	How it works...
	See also
	5. Managing Filesystems and Storage
	Introduction
	Viewing the size of files and available storage
	Getting ready
	How to do it...
	How it works...
	See also
	Setting storage limits for users and groups
	Getting ready
	How to do it...
	How it works...
	See also
	Creating a RAM disk
	Getting ready
	How to do it...
	How it works...
	See also
	Creating a RAID
	Getting ready
	How to do it...
	How it works...
	See also
	Replacing a device in a RAID
	Getting ready
	How to do it...
	How it works...
	See also
	Creating a new LVM volume
	Getting ready
	How to do it...
	How it works...
	See also
	Removing an existing LVM volume
	Getting ready
	How to do it...
	How it works...
	See also
	Adding storage and growing an LVM volume
	Getting ready
	How to do it...
	How it works...
	See also
	Working with LVM snapshots
	Getting ready
	How to do it...
	How it works...
	See also
	6. Allowing Remote Access
	Introduction
	Running commands remotely through SSH
	Getting ready
	How to do it...
	How it works...
	See also
	Configuring a more secure SSH login
	Getting ready
	How to do it...
	How it works...
	See also
	Securely connecting to SSH without a password
	Getting ready
	How to do it...
	How it works...
	See also
	Restricting SSH access by user or group
	Getting ready
	How to do it...
	How it works...
	See also
	Protecting SSH with Fail2ban
	Getting ready
	How to do it...
	How it works...
	See also
	Confining sessions to a chroot jail
	Getting ready
	How to do it...
	How it works...
	See also
	Configuring TigerVNC
	Getting ready
	How to do it...
	How it works...
	See also
	Tunneling VNC connections through SSH
	Getting ready
	How to do it...
	How it works...
	See also
	7. Working with Databases
	Introduction
	Setting up a MySQL database
	Getting ready
	How to do it...
	How it works...
	See also
	Backing up and restoring a MySQL database
	Getting ready
	How to do it...
	How it works...
	See also
	Configuring MySQL replication
	Getting ready
	How to do it...
	How it works...
	See also
	Standing up a MySQL cluster
	Getting ready
	How to do it...
	How it works...
	See also
	Setting up a MongoDB database
	Getting ready
	How to do it…
	How it works...
	See also
	Backing up and restoring a MongoDB database
	Getting ready
	How to do it...
	How it works...
	See also
	Configuring a MongoDB replica set
	Getting ready
	How to do it...
	How it works...
	See also
	Setting up an OpenLDAP directory
	Getting ready
	How to do it...
	How it works...
	See also
	Backing up and restoring an OpenLDAP database
	Getting ready
	How to do it...
	How it works...
	See also
	8. Managing Domains and DNS
	Introduction
	Setting up BIND as a resolving DNS server
	Getting ready
	How to do it...
	How it works...
	See also
	Configuring BIND as an authoritative DNS server
	Getting ready
	How to do it...
	How it works...
	See also
	Writing a reverse lookup zone file
	Getting ready
	How to do it...
	How it works...
	See also
	Setting up a slave DNS server
	Getting ready
	How to do it...
	How it works...
	See also
	Configuring rndc to control BIND
	Getting ready
	How to do it...
	How it works...
	See also
	9. Managing E-mails
	Introduction
	Configuring Postfix to provide SMTP services
	Getting ready
	How to do it...
	How it works...
	See also
	Adding SASL to Postfix with Dovecot
	Getting ready
	How to do it...
	How it works...
	See also
	Configuring Postfix to use TLS
	Getting ready
	How to do it...
	How it works...
	See also
	Configuring Dovecot for secure POP3 and IMAP access
	Getting ready
	How to do it...
	How it works...
	See also
	Targeting spam with SpamAssassin
	Getting ready
	How to do it...
	How it works...
	See also
	Routing messages with Procmail
	Getting ready
	How to do it...
	How it works...
	See also
	10. Managing Web Servers
	Introduction
	Installing Apache HTTP Server and PHP
	Getting ready
	How to do it...
	How it works...
	See also
	Configuring name-based virtual hosting
	Getting ready
	How to do it...
	How it works...
	See also
	Configuring Apache to serve pages over HTTPS
	Getting ready
	How to do it...
	How it works...
	See also
	Enabling overrides and performing URL rewriting
	Getting ready
	How to do it...
	How it works...
	See also
	Installing NGINX as a load balancer
	Getting ready
	How to do it...
	How it works...
	See also
	11. Safeguarding Against Threats
	Introduction
	Sending messages to Syslog
	Getting ready
	How to do it...
	How it works...
	See also
	Rotating log files with logrotate
	Getting ready
	How to do it...
	How it works...
	See also
	Using Tripwire to detect modified files
	Getting ready
	How to do it...
	How it works...
	See also
	Using ClamAV to fight viruses
	Getting ready
	How to do it...
	How it works...
	See also
	Checking for rootkits with chkrootkit
	Getting ready
	How to do it...
	How it works...
	See also
	Using Bacula for network backups
	Getting ready
	How to do it...
	How it works
	See also
	12. Virtualization
	Introduction
	Creating a new virtual machine
	Getting ready
	How to do it...
	How it works...
	See also
	Cloning a virtual machine
	Getting ready
	How to do it...
	How it works...
	See also
	Adding storage to a virtual machine
	Getting ready
	How to do it...
	How it works...
	See also
	Connecting USB peripherals to a guest system
	Getting ready
	How to do it...
	How it works...
	See also
	Configuring a guest's network interface
	Getting ready
	How to do it...
	How it works...
	See also

