LS Lazs

Faghatketab.ir

FaEII"E'tKF.'tab N

C++20
Quick Syntax
Reference

A Pocket Guide to the Language,
APIs, and Library

Fourth Edition
Mikael Olsson

ApPress’

C++20 Quick Syntax
Reference

A Pocket Guide to the
Language, APIs, and Library

Fourth Edition

Mikael Olsson

Apress’

C++20 Quick Syntax Reference: A Pocket Guide to the Language,
APIs, and Library

Mikael Olsson
Hammarland, Finland

ISBN-13 (pbk): 978-1-4842-5994-8 ISBN-13 (electronic): 978-1-4842-5995-5
https://doi.org/10.1007/978-1-4842-5995-5

Copyright © 2020 by Mikael Olsson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or
audio rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484259948.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5995-5

Table of Contents

About the AUthOrccccmmnnmmmnsssmnssss s xiii
About the Technical ReVIEWETccsssesssssssassssnsssnsssassssassssnsssansssnsssas Xv
Introduction........cccccmnsemmmnsnmmsssnsmssssnmsssnsmsssnsssssns s ssnn s nnnnsnnnnnns Xvii
Chapter 1: Hello WOrld.......ccccceeimnsssssmmmsnmmmssmsssssssssssssssssssssssssssnssssssssnss 1
ChooSing @n IDE..........cccoivernerinenenee s s e s s 1
Creating @ ProjECtccvvvererrrerrere s 2
Adding @ SOUICE FilBcvecercerererirrere e serese e s s e ses e sse s ss e e s e saesnesassessesaens 2
Selecting Language Standard.............coucevrennnnninncnnnne e 2
Ly o0 o 3
Using the Standard NameSpPaCe...........ccovererrrmrerenesesernesese s 4
INTEIIISENSE ... e 4
Chapter 2: Compile and Run.........ccccminsnmmnmmnssssnnmmssssssnsmsssssssssssssssssnss 5
Visual Studio Compilationccecvverevnininienn s s saens 5
Console COMPIIALIONccvcevevrrrrere e e 5
0] 0111 T S 6
Chapter 3: Variablesccussmmmmssmssmsssmsssmssssssssssssssss s ssssssnsssnsssnsnas 7
DT B 0T 7
Declaring Variables ... e sessssessssssenns 8
AsSigning Variables..........cccvvvviiinns s 8
Variable SCOPEocevererr e e 9
0T T [<] g 1 0TS 10

ii

TABLE OF CONTENTS

Signed and UnsSigned INTEGEISccvvverrrerieresensessersessssessessessessssessessessessssessesses 1
NUMEKIC LITBIAIS.....c.ceeeeereecr e 12
Floating-Point TYPES......cccvcririnnrrine s s sesse s 13
Literal SUFFIXES ...covreerrererreerenese s s 14
CHAN TYPE c.vveeeree e r e 14
BOOI TYPR...eeeee et e 16

Chapter 4: 0peratorscccccemmnimnmmmmssssssssnnmmssmmsssssssssssssssssssssssssssnees 1 7

Arithmetic OPErators.........cvvrevvrrrriere s s s sresae e s sae s 17
AsSIgNMENt OPEratorscccccrrcerire e 18
Increment and Decrement OPerators.........ccovvnvniniennsnsnes s 18
Comparison OPEratorscovvirrierenn s eas 19
LOGiCal OPEIatOrS......cccecerrererrsesrse s 19
Bitwise OPEIatorsccccvvererererrerieresissessese s ses s sessesse s ssesessessessessssessesnens 20
0PErator PrECEUBNCEcvceveereererererrersesessersessessssessessessesessessessesssssssessessessssensesses 20
Chapter 5: POINterS......ccccmrnmmnnsnmmssssnsnmssssssnssssssssssssssssnnsssssssnnssssssnnnnes 23
Creating POINTEIScccccvrerrcscr sttt 23
Dereferencing POINEISoocoererereercrree e 24
Pointing t0 @ POINTEN.......covcerrerree e 25
Dynamic AHIOCALIONccoveerrnerrrenersse s 25
10 1 T 26

Chapter 6: ReferencCesccccurrirmmmmmsssssssssnmmssmsssssssssssssssssssssssssssneees 29

iv

Creating REfErENCES.ccvvverrrerrere st sere e s s sae s sresae e s nnennes 29
References and POINTEIS..........ccoeerereecrnerere e 30
Reference and Pointer GUIdEliNe...........cooooreereennccrrere e 30
Rvalue REFEIEINCE ..o ereserese s 30

TABLE OF CONTENTS

Chapter 7: Arrays......cceemmmmmsssnnmmmsssnsmssssssssmsssssssssssssssssesssssnssssssnnnnnss 33
Array Declaration and Allocation............cccccvvrrernnninnnsnsne s 33
Array ASSIGNMENT ... e 33
MultidimenSionN@l AFTAYSc.ccecverenerrenerenesesesessese s ses e sessesesessesenns 34
DYNAMIC AITAYS ...evveeerreserrssesessessssese s sesse s e sss e srs e sssss s s e sessessssesessasessssessnns 35
L 1T O 35
VBCION ... 36

Chapter 8: Strings.......ccccrrrssnmnmmmssssnnnmmssssnsnsssssssnssssssssssessssssnssssssnnnnes 39
String COMDINING ..cccveerirecrcrer e e 39
Escape Characters ... s ssesnens 40
SHNG COMPATE ... e 41
SriNG FUNCHIONS......ccecvececcccer e 4
StriNG ENCOINGS ...cvevviierereriesir e s sne e s sae s 42
String FOrmatting........cccveerrerenrrniererr s s s s s s se s saesnes 43

Chapter 9: Conditionalscccerrnssnnnnmnssssnnsmssssssssssssssnssesssssnssessssnnnnes 45
If STAtEMENT ... s 45
SWItCh STAteMENt ... s 46
TErnary OPEIatOrcccoeoereeeererere s ne e 47
INLIALIZEIS. ...veecree e 47

Chapter 10: LOOPS.....cuusemmmmmssssnnnmssssssnnmsssssnssssssssssnsssssssnsssssssnnnsssssnnnnss 49
L L1 0o o RS 49
DO-WHIlE LOOPeiirierie it r s s s sa e s s s s 50
0] I o SO OSSR UTSRRN 50
Break and CONtINUE.........c..co e e 52
GO0 StAtEMENTceeeee e 52

TABLE OF CONTENTS

Chapter 11: FUNCLIONScovreemminnssnnmnmmssssssnmmssssssnsssssssssesssssssssssssnnnnes 53
Defining FUNCLIONSccvcrerecrr e 53
Calling FUNCLIONSccocereririir s 53
FUNCLION PArameters..........ccoveeierenerenesenese s s senns 54
Default Parameter VAIUES.........ccovveererernesrnesessse s ssssessssses e ssssesenns 54
Function OVerloading........cccevvvrrrinesnsinsessess s sesse e ssssesse e ssesessessessessssessessens 55
Return Statement...........cooviinrn 55
Forward Declaration.............coueeeerenerenesenenesese s 56
Pass DY VAIUE ... s s 57
PasS by REFEIEINCEcccveverercreree s 58
PaSS DY AUUIESSoeeerreerieerisesere s 58
Return by Value, Reference, or AdAressc.ccoovvervvrerennsensenesesessessessessssessessens 59
INlINE FUNCHIONS......coviiiiciirirs s 60
Auto and DECHYPE......ceivircircie e 61
Returning MURiple VAIUEScovcrvrennrinsere st sss e s 63
Lambda FUNCLIONS.........coceeerreereer e 66

Chapter 12: ClasSSeSuuueumrmssssnnmmsssssnnsssssssnnnssssssnnnssssssnnnssssssnnssssssnnnnss 1
Class MEthods........ccvurernenrninnrese s 71
INlNE MELNOSccovrciiri s 72
(00 =T 02 €T 0 72
Accessing Object MEMDEIS ... 73
Forward DecClaration............ccoveceerenerencrensenesese s seens 74

Chapter 13: Constructorsccciumssmmmmmmssssssnmsssssssnmssssssnsssssssnnnsssssnnnnss 75
Constructor OVerloadingcooueevrererenerssmsessesese s sesseses e ssssesenns 76
ThiIS KEYWOIDvceevreeerreerrnsesssess s sss s s e s e s e s s e s e ssssessssssessssessnssssnssnnes 77
Field INtialization ... 77

TABLE OF CONTENTS

Default CoNSTIUCION ..o s 78
DL (1 (o] S 79
Special Member FUNGLIONS ... 79
Object INtIAliZationccccvveerererere e 80
Direct INtializationcovcvveseresern s 81
Value INitialization ... 81
0])V LT V= [1] R 82
New INItAlIZAtIONcccoveeeee s 82
Aggregate Initialization ... —————— 83
Uniform INitialization...........ccoveeerenresrncre e 83
Designated INItIAliZErS.........ccoovveverenersnerneser s s 85
Chapter 14: Inheritance........cccovvvnmnsssessnmnnmmmmmsssssssss 87
0 oo 3 3T RS 87
DOWNCASHING ..o s 88
ConStructor INNEILANCEcccoererereerere s 89
Multiple INNEFHTANCEcccvverererr e 90
Chapter 15: OVerridingccccceeermsssssssssnmsmmsmsssssssssssssssssssssssssssssnnsnnss 93
Hiding Derived MemBbErs..........cccvvernrnnnesnresenese s s 93
Overriding Derived MEMDEISccvvcernineneserese s 94
Base Class SCOPING......cccvvrrerererrerieressesessesessessssessessessssessessessessssessessessssessessens 96
Pure Virtual FUNCHIONS ..o 96
Chapter 16: AcCeSS LeVeIS.......ccusmmmsammssnmssansssansssansssnsssassssassssnsssansssans 99
Private ACCESS......ccururererirrtset et 99
Protected ACCESSocvrreetrestrestre s 100
PUDIIC ACCESScurestressres st 101

vii

TABLE OF CONTENTS

Access Level GUIAEINEccccocverermiircrerissssse s sessssssssesens 101
Friend Classes and FUNCLIONSc.cooveerenerenneneseseress e enes 102
Public, Protected, and Private INheritanceccccceeevercevvrsereevcercenreeserenens 104
[T] (=1 gl Y . | 105
STAtiC FIeldSccereecerce e s 105
Static METNOUS ... e 106
Static Local Variables...........ccovinninsssss s 107
Static Global Variables ... 107
Chapter 18: ENUM TYPES ..cvvrrsrsmerrrsssnnnsmssssssnsssssssnssssssssnnsssssssnnssssssnns 109
ENUM EXAMPIE ..ot e 109
Enum Constant ValUes ..o 110
ENUM SCOPE ...ttt e e e s 111
Weakly TYpPed ENUMScovooveercerereieserere e s se e s s snas 111
Enum Constant TYPE......cccvvererrrinieniere s sis s e s ses s s ssssessessessssessessees 113
Chapter 19: Structs and Unions........cccceemmmmmmmmmmssssssssssmsssssssssssssssnnns 115
SHTUCTS e ———— 115
Struct INtIalization ... 115
0 T o 117
ANONYMOUS UNION ..o ses e s e e sesssssnssnens 118
Chapter 20: Operator Overloadingccusceemmmssssnnnnmssssannnsssssansnssssnnns 121
Binary Operator OVerloading...........cvveeenenernsesrsesessse e sessesessesessenes 122
Unary Operator OVErloading.........ccveeveverreriererissensessessesessesessesessessessessssessessees 122
Comparison Operator OVErloading.........ceevrererenserieresesserseressssessessessessssessessens 123
Overloadable OPerators ... e 126

viii

TABLE OF CONTENTS

Chapter 21: Custom CONVErSioNSccccussseemsesssssnssssssssnssssssssnsnssssnnns 127
Implicit Conversion CONSIIUCIOL.........ccccoeecerrcerrerer e 127
Explicit Conversion CONSIrUCLONccvcvveriernsnsne s 129
Conversion OPErators.......c.civriereninsnses s s s e 129
Explicit Conversion OPerators ... s ens 130

Chapter 22: NameSPaCeS.....xusssssssssssssssssssssssssssnsssassssnssssnsssassssnsssns 133
Accessing Namespace MEmDErS..........cocvvvvrernrnieneses s sesseenes 134
Nesting NameESPACEScccvveereririirnir s s sa e s s n 134
IMPOorting NaMESPACESc.cccvcrrrere e 135
Namespace Member IMPort ... 135
NameSPACE Ali@S........cccvcrvrernninrir e e s 136
TYPE AlIAS ... ne e 136
Including Namespace MEMDErScocvvvirernrnine e 137

Chapter 23: Constantsccccermrrmmmmmmssssssnnnnmssmmssssssssssssssssssssssssssees 1 39

Constant Variables ... sessssns 139
CoNStant POINTENS........ccvuriererererrsesssse s s sesnans 139
Constant REfEIENCES.ccvveererereree e 140
Constant ODJECTSveeerreerrerrere e e 140
Constant Methodsccccervsrnesmninne e s 141
Constant Return Type and Parameters.........couvvvvverennsnienennsensessesesessenensens 142
CoNStaNt FIEldScccocvereriicrerisee s 142
CONSLANT EXPrESSIONS.....cvveruerrererrerersersesersersessssessessessessssessessesssssssessesssssssensessens 143
Immediate FUNCHONS ..o s 146
Constant GUIAEIINE...........cocrreererrereree e 146

ix

TABLE OF CONTENTS

Chapter 24: PreproCeSSOr....uuueermrsssssssssssssssssssssssnssssssssnnsssssssnnnsssssnns 147
INCIUAING SOUICE FlES.....couveeereecricerire ettt e 148
DL 113 3OS 148
UNAETINE ... 149
Predefined MaCIOS.........ccvvererirernsesesesrssse s 149
MaCTO FUNCHIONS ..o s 150
Conditional Compilationccccvrerernrrrerierssersere s s sseenens 152
Compile if DEfiNEM......cccvvererrererrerere e rerre s s s see s s e saesae e e e nnesnens 153
L (] ST 153
T ST 154
Pragma.........cooieniienerne s r s s 154
ALHDULES .o 154

Throwing EXCEPLioNS.......ccccvvrviiiirrrir st sne e 157
Try-Catch Statement.........c.oocrnnr 157
Rethrowing EXCEPLiONSccovvvvrienennsnrc s 159
NOEXCEPE SPECITIEr.....ccviererer e ——————— 159
EXCEPLON ClaSS....ccciiveiiriirerieninsene st sss s 160
Chapter 26: Type CONVErSiONSucsssssssasssssssssnsssasssssssssnsssassssnsssns 161
IMPIICIt CONVEISIONS.cccvcererrerersererrerersere e sse s sae e s sae e s e s saeses e s e sneees 161
EXPIICIt CONVEISIONS.....ccceverrerrerererersestssessessessssessessesssssssessessessssessessesssssssessenes 162
O . T 162

B3] £ LT 0 T O 163
Reinterpret Cast ... s 163

TABLE OF CONTENTS

(001 T R 164
C-Style and New-Style Casts......c.ccccvrrerrinrernrenniesere e sesse e 165
DYNAMIC CaST......coereeereecrerere e 165
Dynamic or StatiC Cast.........c.coovrernrrrrererese s 167
Chapter 27: Smart Pointerscccusmmmmnssemmmmmsssssnnmmssssmmmsssssnmnnnan 169
UNIQUE POINTENceeveeree e 169
Shared POINTETcccovriirrrr s 170
Weak Shared POINE ..o sesssnans 171
Chapter 28: Templates........ccscerssensssnnsssnsssassssnssssnsssassssassssnsssassssanssns 173
Function Templates........ccccvriinnninnnsn s 173
Calling Function Templatescccvoeerrenrenerene e 174
Multiple Template Parameters ..o 175
Class TEMPIALESc.evvvvrierirr e 176
NON-type Parameters.........cccocvviiniinnnnniersis s s s s sse s 177
Default Types and ValUESccvcvverieenirinsinne s s se s s ssesseas 178
Class Template Specialization.............ccccvverrevnrenserieresesserserese s sessssessensens 178
Function Template Specializationccccocvinvnvnininnnsnn e 179
Variable Templates......ccccviiiinn s 180
Variadic Templates......cccevvvrininennsr e 181
FOIO EXPrESSIONScvcerveeressiserrssesssessssesesss e srs e sssseses s sssssssssesnssssessssessssssessans 182
{0 (0T 0 OO 184
Abbreviated Function Templates.........ccccvcvveverirvnrnne s 186
Template Lambdas.........cccovirvnninnsnne e 187

TABLE OF CONTENTS

Chapter 29: Headersccccsrrssssmensrssssnnnssssssssssssssssnssssssssnssssssssnnnsssssnns 189
Why USE HEAUEISceeeerecir i s 189
USING HEAUEIS.......coececerercrre it s 190
What to Include in HE@ders.........ccceveeerenerrscreresereses s 190
INNE VariabIES........coerreerineriree s 194
INCIUAE GUANTScocrerriiicririse s 195
MOUUIES ... s 196

1T = 199

xii

About the Author

Mikael Olsson is a professional web entrepreneur, programmer, and
author. He works for an R&D company in Finland where he specializes in
software development.

In his spare time, he writes books and creates websites that summarize
various fields of interest. The books he writes are focused on teaching
their subject in the most efficient way possible, by explaining only what is
relevant and practical without any unnecessary repetition or theory.

xiii

About the Technical Reviewer

Marc Gregoire is a software engineer from Belgium. He graduated from
the University of Leuven, Belgium, with a degree in “Burgerlijk ingenieur
in de computerwetenschappen” (equivalent to a master of science degree
in computer engineering). The year after, he received the cum laude degree
of master in artificial intelligence at the same university. After his studies,
Marc started working for a software consultancy company called Ordina
Belgium. As a consultant, he worked for Siemens and Nokia Siemens
Networks on critical 2G and 3G software running on Solaris for telecom
operators. This required working on international teams stretching from
South America and the United States to Europe, the Middle East, and Asia.
Currently, Marc works for Nikon Metrology on industrial 3D laser scanning
software.

Introduction

The C++ programming language is a general-purpose multiparadigm
language created by Bjarne Stroustrup. The development of the language
started in 1979 under the name “C with classes.” As the name implies,

it was an extension of the C language with the additional concept

of classes. Stroustrup wanted to create a better C that combined the
power and efficiency of C with high-level abstractions to better manage
large development projects. The resulting language was renamed C++
(pronounced “C-plus-plus”) in 1983. As a deliberate design feature, C++
maintains compatibility with C, and so most C code can easily be made to
compile in C++.

The introduction of C++ became a major milestone in the software
industry as a widely successful language for both system and application
development. System programming involves software that controls
the computer hardware directly, such as drivers, operating systems,
and software for embedded microprocessors. These areas remain the
core domain of the language, where resources are scarce and come at a
premium. C++ is also widely used for writing applications, which run on
top of system software, especially high-performance software such as
games, databases, and resource-demanding desktop applications. Despite
the introduction of many modern, high-level languages in this domain—
such as Java, C#, and Python—C++ still holds its own and overall remains
one of the most popular and influential programming languages in use
today.

There are several reasons for the widespread adoption of C++. The
foremost reason was the rare combination of high-level and low-level
abstractions from the hardware. The low-level efficiency was inherited

xvii

INTRODUCTION

from C, and the high-level constructs came in part from a simulation
language called Simula. This combination makes it possible to write C++
software with the strength of both approaches. Another strong point of the
language is that it does not impose a specific programming paradigm on its
users. It is designed to give the programmer a lot of freedom by supporting
many different programming styles or paradigms, such as procedural,
object-oriented, and generic programming.

C++is updated and maintained by the C++ standards committee. In
1998, the first international standard was published, known informally as
C++98. The language has since undergone five more revisions with further
improvements, including C++03, C++11, C++14, C++17, and most recently
C++20, which is the latest ISO standard for the C++ programming language
released in 2020.

xviii

CHAPTER 1

Hello World

Choosing an IDE

To begin developing in C++, you need a text editor and a C++ compiler.
You can get both at the same time by installing an Integrated Development
Environment (IDE) that includes support for C++. A good choice is
Microsoft's Visual Studio Community Edition, which is a free version of
Visual Studio that is available from Microsoft’s website.! The C++ compiler
that comes with this IDE has good support for the C++17 standard and
includes many features of C++20 as of the 2019 version. If you are running
the Visual Studio installer on Windows, make sure to select the “Desktop
development with C++” workload to enable development in C++.

Visual Studio is available on Windows and Mac, and there is a
lightweight version called Visual Studio Code which can also be run on
Linux. Two other popular cross-platform IDEs include NetBeans and
Eclipse CDT. Alternatively, you can develop using a simple text editor
such as Notepad, although this is less convenient than using an IDE. If you
choose to use a simple text editor, just create an empty document with a
.cpp file extension and open it in the editor of your choice.

'http://visualstudio.microsoft.com

© Mikael Olsson 2020
M. Olsson, C++20 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5995-5_1

https://doi.org/10.1007/978-1-4842-5995-5_1#DOI
http://visualstudio.microsoft.com

CHAPTER 1 HELLO WORLD

Creating a Project

After installing Visual Studio 2019, go ahead and launch the program. You then
need to create a project, which will manage the C++ source files and other
resources. Go to File » New » Project in Visual Studio to display the Create a
new project window. From there, select the C++ language from the drop-down
list to view only the C++ project templates. Then select the Empty Project
template and click the Next button. At the next screen, you can configure the
name and location of the project if you want to. When you are finished, click
the Create button to let the wizard create your empty project.

Adding a Source File

You have now created a C++ project. In the Solution Explorer pane (choose
View » Solution Explorer), you can see that the project consists of three
empty folders: Header Files, Resource Files, and Source Files. Right-click
the Source Files folder and choose Add » New Item. From the Add New
Item dialog box, choose the C++ File (.cpp) type. Give this source file the
name MyApp and click the Add button. An empty .cpp file will now be
added to your project and opened for you.

Selecting Language Standard

To enable the latest features of the C++ language outlined in this book, it
is necessary to manually change the language standard setting for your
project. You can do this by first going to Project » Properties to bring up
the Property pages. From there, navigate to Configuration Properties »
C/C++ » Language » C++ Language Standard. Select the latest standard
from the drop-down list (std:c++latest). Click OK and the project will now
be configured to compile with the latest supported C++20 features.

CHAPTER 1 HELLO WORLD

Hello World

The first thing to add to the source file is the main() function. This is the entry
point of the program, and the code inside of the curly brackets is executed
when the program runs. The brackets, along with their content, are referred to
as a code block, or just a block.

int main() {}

The first application will simply output the text "Hello World" to the
screen. Before this can be done, the iostream header needs to be included.
This header provides input and output functionality for the program, and
it is one of the standard library files that comes with all C++ compilers.

The #include directive effectively replaces the line with everything in the
specified header before the file is compiled into an executable.

#include <iostream>
int main() {}

With iostreamincluded, you gain access to several new functions.
These are all located in the standard namespace called std, which you
can examine by using a double colon, also called the scope resolution
operator (: :). After typing this in Visual Studio, the IntelliSense window
will automatically open, displaying the namespace contents. Among the
members, you find the cout stream. This is the standard output stream in
C++ which can be used to print text to a console window. It uses two less
than signs, collectively known as the insertion operator (<<), to indicate
what to output. The string can then be specified, delimited by double
quotes, and followed by a semicolon. The semicolon is used in C++ to
mark the end of a statement.

CHAPTER 1 HELLO WORLD

#include <iostream>

int main()
{

std::cout << "Hello World";
}

Using the Standard Namespace

To make things a bit easier, you can add a using directive to specify that this
code file uses the standard namespace. You then no longer have to prefix cout
with the namespace (std: :) since it is used by default.

#include <iostream>
using namespace std;

int main()
{

cout << "Hello World";

}

IntelliSense

When writing code in Visual Studio, a window called InfelliSense will pop

up wherever there are multiple predetermined alternatives from which to
choose. This window can also be brought up manually at any time by pressing
Ctrl+Space to provide quick access to any code entities you are able to use
within your program. This is a very powerful feature that you should learn to
make good use of.

CHAPTER 2

Compile and Run

Visual Studio Compilation

Continuing from the last chapter, the Hello World program is now
complete and ready to be compiled and run. You can do this by going to
the Debug menu and clicking Start Without Debugging (Ctrl+F5). Visual
Studio then compiles and runs the application, which displays the text in a
console window.

Console Compilation

As an alternative to using an IDE, you can also compile source files from a
terminal window as long as you have a C++ compiler.! For example, on a Linux
machine, you can use the GNU C++ compiler, which is available on virtually
all UNIX systems, including Linux and the BSD family, as part of the GNU
Compiler Collection (GCC). This compiler can also be installed on Windows
by downloading MinGW or on the Mac as part of the Xcode development
environment.

'www.stroustrup.com/compilers.html

© Mikael Olsson 2020
M. Olsson, C++20 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5995-5_2

https://doi.org/10.1007/978-1-4842-5995-5_2#DOI
http://www.stroustrup.com/compilers.html

CHAPTER2 COMPILE AND RUN

To use the GNU compiler, you type its name g++ in a terminal window
and give it the input and output file names as arguments. It then produces
an executable file, which when run gives the same result as the one
compiled in Visual Studio.

g++ MyApp.cpp -o MyApp
./MyApp
Hello World

Comments

Comments are used to insert notes into the source code. They have no
effect on the end program and are meant only to enhance the readability
of the code, both for you and for other developers. C++ has two kinds of
comment notations: single-line and multiline. The single-line comment
starts with // and extends to the end of the line.

// single-line comment

The multiline comment may span more than one line and is delimited
by /* and */.

/* multi-line
comment */

Keep in mind that whitespace characters—such as spaces and tabs—are
generally ignored by the compiler. This gives you a lot of freedom in how to
format your code.

CHAPTER 3

Variables

Variables are used for storing data in memory during program execution.

Data Types

Depending on the type of data you need to store, there are several kinds
of built-in data types. These are often called fundamental data types or
primitives. The integer (whole number) types are short, int, long, and
long long. The float, double, and long double types are floating-point
(real number) types. The char type holds a single character, and the bool
type contains either a true or false value.

Data Type Size (Byte) Description

char 1 Integer or character

short 2 Integer

int 4 Integer

Long 4or8 Integer

long long 8 Integer

float 4 Single-precision floating number
double 8 Double-precision floating number
long double 8ori16 Floating-point number

bool 1 Boolean value

© Mikael Olsson 2020

M. Olsson, C++20 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5995-5_3

https://doi.org/10.1007/978-1-4842-5995-5_3#DOI

CHAPTER 3 VARIABLES

In C++, the exact size and range of primitive data types are not defined
by the standard. Instead, they are dependent on the system for which the
program is compiled. The sizes shown in the previous table are found
on most 32-bit systems and are given in C++ bytes. A byte in C++ is the
minimum addressable unit of memory which is guaranteed to be at least 8
bits, but might also be 16 or 32 bits depending on the system. By definition,
a char in C++ is 1 byte in size. Furthermore, the int type will be 32 bits in
size on 32-bit and 64-bit systems. Each integer type in the table must be
at least as large as the one preceding it. The same applies to floating-point
types, where each one must provide at least as much precision as the
preceding one.

Declaring Variables

To declare (create) a variable, you start with the data type you want the
variable to hold followed by an identifier, which is the name of the variable.
The name can consist of letters, numbers, and underscores, but it cannot
start with a number. It also cannot contain spaces or special characters and
must not be a reserved keyword.

int myInt; // correct

int 32Int; // incorrect (starts with number)

int Int 32; // incorrect (contains space)

int Int@32; // incorrect (contains special character)
int new; // incorrect (reserved keyword)

Assigning Variables

To assign a value to a declared variable, you use an equals sign, which is
called the assignment operator (=).

myInt = 50;

CHAPTER 3 VARIABLES

The declaration and assignment can be combined into a single
statement. When a variable is assigned a value, it then becomes defined.

int myInt = 50;

At the same time that the variable is declared, there are two alternative
ways of assigning, or initializing, it by enclosing the value in either
parentheses or braces. These examples are equivalent to the previous
statement.

int myInt2(50); // direct initialization
int myInt3{50}; // uniform initialization

If you need to create more than one variable of the same type, there is a
shorthand way of doing this using the comma operator (,).

int x =1,y =2, z;

Once a variable has been defined (declared and assigned), you can use
it by simply referencing the variable’s name, for example, to print it. Note
the use of the endl stream manipulator token here to add a line break to
the output stream.

cout << x << y << endl; // "12"

Variable Scope

The scope of a variable refers to the region of code within which it is possible
to use that variable. Variables in C++ may be declared both globally and
locally. A global variable is declared outside of any code blocks and is
accessible from anywhere after it has been declared. A local variable, on

the other hand, is declared inside of a function and will only be accessible
within that function after it has been declared. The lifetime of a local variable
is also limited. A global variable will remain allocated for the duration of

the program, while a local variable will be destroyed when its function has
finished executing.

CHAPTER 3 VARIABLES

int globalvar; // global variable
int main() { int localvar; } // local variable

The default values for these variables are also different. Global variables
are automatically initialized to zero by the compiler, whereas local variables
are not initialized at all. Uninitialized local variables will therefore contain
whatever garbage is already present in that memory location.

int globalVar; // initialized to 0

int main()

{

int localVar; // uninitialized

}

Using uninitialized variables is a common programming mistake that
can produce unexpected results. It is therefore a good idea to always give
your local variables an initial value when they are declared.

int main()

{

int localVar = 0; // initialized to 0

}

Integer Types

There are four integer types you can use depending on how large a number
you need the variable to hold.

char myChar = 0; // -128 to +127

short myShort = 0; // -32768 to +32767
int myInt = 0; // -2"31 to +2"31-1
long myLong = 0; // -2"31 to +2"31-1

10

CHAPTER 3 VARIABLES

C++11 standardized a fifth integer type, long long, which is guaranteed
to be at least 64 bits large. Many compilers started to support this data type
well before the C++11 standard was complete, including the Microsoft C++

compiler.
long long myL2 = 0; // -2"63 to +2"63-1

To determine the exact size of a data type, you can use the sizeof
operator. This operator returns the number of bytes that a data type
occupies in the system you are compiling for.

cout << sizeof(myChar) // 1 byte (per definition)
<< sizeof(myShort) // 2
<< sizeof(myInt) // 4
<< sizeof(myLong) // 4
<< sizeof(myL2); // 8

Fixed-sized integer types were added in C++11. These types belong
to the std namespace and can be included through the cstdint standard
library header.

#include <cstdint>
using namespace std;

int8 t myInt8 = 0; // 8 bits
int16_t myInt16 = 0; // 16 bits
int32_t myInt32 = 0; // 32 bits
int64_t myInt64 = 0; // 64 bits

Signed and Unsigned Integers

By default, all integer types are signed and may therefore contain both
positive and negative values. To explicitly declare a variable as signed, use
the signed keyword.

11

CHAPTER 3 VARIABLES

signed char myChar = 0; // -128 to +127

signed short myShort = 0; // -32768 to +32767
signed int myInt = 0; // -2"31 to +2"31-1
signed long mylLong = 0; // -2"31 to +2"31-1
signed long long myL2 = 0; // -2"63 to +2"63-1

If you only need to store positive values, you can declare integer types
as unsigned to double their upper range.

unsigned char myChar = 0; // 0 to 255
unsigned short myShort = 0; // 0 to 65535
unsigned int myInt = 0; // 0 to 2"32-1
unsigned long mylong = 0; // 0 to 2"32-1
unsigned long long mylL2 = 0; // 0 to 2"64-1

The signed and unsigned keywords may be used as stand-alone types,
which are short for signed int and unsigned int.

unsigned ulnt; // unsigned int
signed sInt; // signed int

Similarly, the short and long data types are abbreviations of short
int and long int.

short myShort; // short int
long mylong; // long int

Numeric Literals

In addition to standard decimal notation, integers can also be assigned

by using octal or hexadecimal notation. Octal literals use the prefix 0 and
hexadecimal literals start with Ox. Both numbers shown here represent the
same number, which in decimal notation is 50.

int myOct = 062; // octal notation (0)
int myHex = 0x32; // hexadecimal notation (0x)

12

CHAPTER 3 VARIABLES

As of C++14, there is a binary notation as well, which uses 0b as its prefix.
This version of the standard also added a digit separator ('), which can make
it easier to read long numbers. The following binary number represents 50 in
decimal notation.

int myBin = 0b0011'0010; // binary notation (Ob)

Floating-Point Types

The floating-point types can store real numbers with different levels of
precision.

float myFloat; /1 ~7 digits
double myDouble; // ~15 digits
long double mylLD; // typically same as double

The precision shown here refers to the total number of digits in the
number. A float can accurately represent about 7 digits, whereas a double
can handle around 15. Trying to assign more than seven digits to a float
means that the least significant digits will get rounded off.

myFloat = 12345.678; // rounded to 12345.68

Floats and doubles can be assigned by using either decimal or exponential
notation. Exponential (scientific) notation is used by adding E or e followed by
the decimal exponent.

myFloat = 3e2; // 3*10"2 = 300

As of C++17, the base may be specified as a hexadecimal value using
the Ox prefix. For such a number, the exponent part may use p instead of e
to have the significant be scaled to the power of 2 rather than 10.

myFloat = OxFp2; // 15*2"2 = 60

13

CHAPTER 3 VARIABLES

Literal Suffixes

An integer literal (constant) is normally treated as an int by the compiler,
or a larger type if needed to fit the value. Suffixes can be added to the literal
to change this evaluation. With integers, the suffix can be a combination of
Uand L, for unsigned and long, respectively. C++11 also added the LL suffix
for the long long type. The order and casing of these letters do not matter.

int i = 10;
long 1 = 10L;
unsigned long ul = 10UL;

A floating-point literal is treated as a double unless otherwise
specified. The F or f suffix can be used to specify that a literal is of the float
type instead. Likewise, the L or 1 suffix specifies the long double type.

float f = 1.23F;
double d = 1.23;
long double 1d = 1.23L;

The compiler implicitly converts literals to whichever type is
necessary, so this type distinction for literals is usually not necessary. If
the F suffix is left out when assigning to a float variable, the compiler may
give a warning since the conversion from double to float involves a loss of
precision.

Char Type

The char type is commonly used to represent ASCII characters. Such
character constants are enclosed in single quotes and can be stored in a
variable of char type.

char ¢ = 'x"; // assigns 120 (ASCII for 'x')

14

CHAPTER 3 VARIABLES

The conversion between the number stored in the char and the
character shown when the char is printed occurs automatically.

cout << c; // prints 'x'

For another integer type to be displayed as a character, it has to be
explicitly cast to char. The recommended way of doing this is to use a
static_cast as illustrated in the following, where the desired type is placed
within angle brackets. Another way to perform the type cast is to use the
legacy C-style cast, by placing the desired data type in parentheses before
the variable or constant that is to be converted.

int 1 = ¢; // assigns 120
cout << 1i; // prints 120

// Prints 'x'
cout << static_cast<char>(i); // C++ new-style cast
cout << (char)i; // C-style cast

There are many ways to represent a character. Typically, ASCII
encoding is used by most C++ compilers. In cases where code portability
is important, this encoding can be assured by placing a u8 prefix before
the char literal. This prefix was added in C++17 and denotes the UTF-8
(Unicode) encoding, of which ASCII is a subset (the first 128 characters).

char ascii = u8'x"'; // use UTF-8 encoding

UTF-16 and UTF-32 encodings can be represented using the char16_t and
char32_t types, respectively, which were added in C++11. For completeness,
C++20 added the char8_t type as well, which is used to represent a UTF-8
character and behaves the same as an unsigned char. The prefix U denotes a
UTF-32 character and the u prefix a UTF-16 character.

15

CHAPTER 3 VARIABLES

char8 t c8 = 'A'; // UTF-8 character
char16 t c16 = u'€'; // UTF-16 character

char32_t c32 U"; // UTF-32 character

Bool Type

The bool type can store a Boolean value, which is a value that can only
be either true or false. These values are specified with the true and false
keywords.

bool b = false;

When used in an integer context, the Boolean value false is converted
to zero and true is converted to one. Conversely, any value other than zero
will be evaluated as true in a Boolean context. Note that the following int to
bool conversion is made explicit, as the truncation would otherwise give a

compiler warning.
int i = false; // 0

int j = true; // 1

bool b = static_cast<bool>(32); // true

16

CHAPTER 4

Operators

Operators are special symbols used to operate on values. The operators
that deal specifically with numbers can be grouped into five types:
arithmetic, assignment, comparison, logical, and bitwise operators.

Arithmetic Operators

The arithmetic operators include the four basic arithmetic operations,
as well as the modulus operator (%), which is used to obtain the division

remainder.
int i =3 + 2; // 5, addition
i=3-2;// 1, subtraction
i=3%*2;// 6, mltiplication
i=37/2;//1, division
i=3%2;// 1, modulus (division remainder)

Notice that the division operator gives an incorrect result. This is
because it operates on two integer values and will therefore truncate the
result and return an integer. To get the correct value, one of the numbers
must be explicitly converted to a floating-point number in one of the

following ways.

float f1 = 3 / 2.0f; // specify as floating-point number
float f2 = 3 / static_cast<float>(2); // C++ new-style cast
float 3 = 3 / (float)2; // C-style cast

© Mikael Olsson 2020

M. Olsson, C++20 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5995-5_4

https://doi.org/10.1007/978-1-4842-5995-5_4#DOI

CHAPTER 4 OPERATORS

Assignment Operators

The next group is the assignment operators. Most important is the
assignment operator (=) itself, which assigns a value to a variable.

int 1 = 0; // assignment

A common use of the assignment and arithmetic operators is to
operate on a variable and then save the result back into that same variable.
These operations can be shortened with the combined assignment

operators.

i+=5; // 1= 1i+5;
i-=5;//1=1-5;
i*=75; // 1= 1i%*5;
i/=5;//1=1/5;
i%=5; // 1= 1%5;

Increment and Decrement Operators

Another common operation is to increment or decrement a variable by
one. This can be simplified with the increment (++) and decrement (--)
operators.

i++; // 1 = i+1;
i--; // 1= 1i-1;
Both of these can be used either before or after a variable.
i++; // post-increment
i--; // post-decrement

++1; // pre-increment
--1i; // pre-decrement

18

CHAPTER 4 OPERATORS

The result on the variable is the same whichever is used. The difference
is that the post operator returns the original value before it changes the
variable, while the pre operator changes the variable first and then returns

the value.
int x, y;
X =5; Yy = Xx++; // y=5, x=6
X =5;y =++x; // y=6, x=6

Comparison Operators

The comparison operators compare two values and return true or false.
They are mainly used to specify conditions, which are expressions that
evaluate to true or false.

bool b = (2 == 3); // equal to (false)
b =(2!=3); // not equal to (true)
b =(2>3); // greater than (false)
b =(2<3); // less than (true)
b = (2 >= 3); // greater than or equal to (false)
b = (2 <= 3); // less than or equal to (true)

Logical Operators

The logical operators are often used together with the comparison
operators. “Logical and” (8&) evaluates to true if both the left and right
sides are true, and “logical or” (| |) is true if either the left or right side is
true. For inverting a Boolean result, there is the logical not (!) operator.
Note that for both “logical and” and “logical or,” the right side will not be
evaluated if the result is already determined by the left side. This behavior
is called short-circuiting.

19

CHAPTER 4 OPERATORS

bool b = (true &% false); // logical and (false)
b = (true || false); // logical or (true)
b = I(true); // logical not (false)

Bitwise Operators

The bitwise operators can manipulate individual bits inside an integer. For
example, the “bitwise or” operator (|) makes the resulting bit 1 if the bits
are set on either side of the operator.

int 1 = 5&4; // 101 & 100 = 100 (4) // and
i=514; // 101 | 100 = 101 (5) // or
i=5"4; // 101 "~ 100 = 001 (1) // xor
i=4<1; // 100 << 1 =1000 (8) // left shift
i=4>1; // 100 >> 1 = 10 (2) // right shift
i="4; // ~00000100 = 11111011 (-5) // invert

The bitwise operators also have combined assignment operators.

int i=5; i &= 4; // 101 & 100
i |=4; // 101 | 100

i=5; i "= 4; // 101 * 100
i
i

100 (4) // and
101 (5) // or
001 (1) // xor

i=5; i <<= 1;// 101 << 1 =1010 (10)// left shift
i=5; i >>=1;// 101 >> 1 = 10 (2) // right shift
Operator Precedence

In C++, expressions are normally evaluated from left to right. However,
when an expression contains multiple operators, the precedence of those
operators decides the order in which they are evaluated. The order of
precedence can be seen in the following table, where the operator with
the lowest precedence will be evaluated first. This same basic order also
applies to many other languages, such as C, Java, and C#.

20

CHAPTER 4 OPERATORS

Pre Operator Pre Operator

1 : 10 ===

2 ()[]-->x++x-- 11 &

3 I~ ++X --X *x & (type) sizeof 12 A
co_await new new[] delete delete[]

4 X>* 13 I

5 *1 % 14 &&

6 + - 15 Il

7 << >> 16 ?: = op=throw

co_yield
8 <=> 17 ,
9 <<=>>=

To give an example, “logical and” (8&) binds weaker than relational
operators, which in turn bind weaker than arithmetic operators.

bool b = 2+3 > 1*4 && 5/5 == 1; // true

To make things clearer, parentheses can be used to specify which part
of the expression will be evaluated first. As seen in the table, parentheses
are among the operators with the greatest precedence.

bool b = ((2+3) > (1*4)) && ((5/5) == 1); // true

21

CHAPTER 5

Pointers

A pointer is a variable that contains the memory address of another
variable, function, or object, called the pointee.

Creating Pointers

Pointers are declared as any other variable, except that an asterisk (*) is
placed between the data type and the pointer’s name. The data type used
determines what type of memory it will point to. More than one pointer
can be created in the same statement using the comma operator. The
asterisk must then be placed before each identifier and not after the type.

int* p; // pointer to an integer
int *q; // alternative syntax
int *a, *b, *c; // multiple pointers

A pointer can point to a variable of the same type by prefixing that
variable with an ampersand, in order to retrieve its address and assign it to
the pointer. The ampersand is known as the address-of operator (&).

int i = 10;
p = &i; // address of i assigned to p

© Mikael Olsson 2020 23
M. Olsson, C++20 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5995-5_5

https://doi.org/10.1007/978-1-4842-5995-5_5#DOI

CHAPTER 5 POINTERS

Dereferencing Pointers

The pointer now contains the memory address to the integer variable.
Referencing the pointer will retrieve this address. To obtain the actual
value stored in that address, the pointer must be prefixed with an asterisk,
known as the dereference operator (*).

#include <iostream>
using namespace std;

int main()

{
int i = 10;
int* p = &i;

cout << "Address of i: " << p << endl; // ex. 0017FFi1C
cout << "Value of i: " << *p << endl; // 10

When writing to the pointer, the same method is used. Without the
asterisk, the pointer is assigned a new memory address, and with the
asterisk the actual value of the variable pointed to will be updated.

p = &i; // address of i assigned to p
*p = 20; // value of i changed through p

If a second pointer is created and assigned the value of the first pointer,
it will then get a copy of the first pointer’s memory address.

int* p2 = p; // copy of p (copies address stored in p)

24

CHAPTER 5 POINTERS

Pointing to a Pointer

Sometimes it can be useful to have a pointer that can point to another
pointer. This is done by declaring a pointer with two asterisks and then
assigning it the address of the pointer that it will reference. This way, when
the address stored in the first pointer changes, the second pointer can
follow that change.

int** r = 8p; // pointer to p (assigns address of p)

Referencing the second pointer now gives the address of the first
pointer. Dereferencing the second pointer gives the address of the variable,
and dereferencing it again gives the value of the variable.

cout << "Address of p: " << r << endl; // ex. 0017FF28
cout << "Address of i: " << *r << endl; // ex. 0017FF1C
cout << "Value of i: " << **r << endl; // 20

Dynamic Allocation

One of the main usages of pointers is to allocate memory during runtime—
so-called dynamic allocation. In the examples so far, the programs have
only had as much memory available as was declared for the variables at
compile time. This is referred to as static allocation, and those variables
are stored on the so-called stack. If any additional memory is needed at
runtime, the new operator has to be used. This operator allows for dynamic
allocation of memory, which can only be accessed through pointers and is
stored on the so-called heap. The new operator takes either a primitive data
type or an object type as its argument, and it will return a pointer to the
allocated memory as long as there is sufficient memory available.

int* d = new int; // dynamic allocation

25

CHAPTER 5 POINTERS

An important thing to know about dynamic allocation is that the
allocated memory will not be released like the rest of the program memory
when it is no longer required. Instead, it has to be manually released
with the delete keyword. This allows you to control the lifetime of a
dynamically allocated object, but it also means that you are responsible for
deleting it once it is no longer needed. Forgetting to delete memory that
has been allocated with the new keyword will give the program memory
leaks, because that memory will stay allocated until the program shuts
down.

delete d; // release allocated memory

In modern C++, the use of the so-called smart pointers is preferred
over regular pointers as they remove the need for manually deleting
dynamically allocated memory. These pointers will be covered in a later
chapter.

Null Pointer

A pointer should be set to null when it is not assigned to a valid address.
Such a pointer is called a null pointer. Doing this will allow you to check
whether the pointer can be safely dereferenced, because a valid pointer
will never be null. In the early days before C++11, the constant NULL or the
integer zero was used to symbolize the null pointer. The NULL constant

is defined in the cstdio standard library file, which is included through
iostream.

int* g
int* h

0; // null pointer (unused pointer)
NULL; // null pointer

C++11 introduced the now preferred keyword nullptr to specify
a null pointer, in order to distinguish between zero and a null pointer.
The advantage of using nullptr is that unlike an integer zero, nullptr

26

CHAPTER 5 POINTERS

will not implicitly convert to an integer type. The literal has its own type,
std::nullptr t, which can only be implicitly converted to pointer and bool

types.

#include <iostream> // include nullptr t type

int main()
{
int* p = nullptr; // ok
int i = nullptr; // error
bool b = (bool) nullptr; // false
std::nullptr_t mynull = nullptr; // ok

As seen earlier, a dynamically allocated object is accessed through a
pointer and can be unallocated with the delete keyword. A point to keep
in mind is that after deletion, the pointer will point to a now inaccessible
memory location. Trying to dereference such a pointer will cause a
runtime error.

int* m = new int; // allocate memory for object
delete m; // deallocate memory
*m = 5; // error: write access violation

To help prevent this, the deleted pointer should be set to null. Note
that trying to delete an already deleted null pointer is safe. However, if the
pointer has not been set to null, attempting to delete it again will cause
memory corruption and possibly crash the program.

delete m;
m = nullptr; // mark as null pointer
delete m; // safe

27

CHAPTER 5 POINTERS

Since you may not always know whether a pointer is valid, a check
should be made whenever a pointer is dereferenced to make sure that it is
not null.

if (m != nullptr) { *m = 5; } // check for valid pointer
if (m) { *m = 5; } // alternative

28

CHAPTER 6

References

References allow programmers to create new names for a variable. They
provide a simpler and safer alternative to pointers that should be used in
favor of pointers whenever possible.

Creating References

Areference is declared in the same way as a regular variable, except that
an ampersand is appended between the data type and the variable name.
Furthermore, at the same time as the reference is declared, it must be
initialized with a variable of the specified type.

int x = 5;

int& r = x; // r is an alias to x

int &s = x; // alternative syntax
int& t; // error: must be initialized

Once the reference has been assigned, or seated, it can never be
reseated to another variable. The reference has in effect become an
alias for the variable and can be used exactly as though it were the
original variable.

r = 10; // assigns value to r/x

© Mikael Olsson 2020
M. Olsson, C++20 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5995-5_6

https://doi.org/10.1007/978-1-4842-5995-5_6#DOI

CHAPTER6 REFERENCES

References and Pointers

A reference is similar to a pointer that always points to the same thing.
However, while a pointer is a variable that points to another variable or
object, a reference is only an alias and does not have an address of its own.

int* ptr = &r; // ptr assigned address to x

Reference and Pointer Guideline

Generally, whenever a pointer does not need to be reassigned, a reference
should be used instead, because a reference is safer than a pointer since it
must always refer to something. This means that there is no need to check
if a reference refers to null, as should be done with pointers. It is possible
for a reference to be invalid—for example, when a reference refers to a null
pointer—but it is much easier to avoid this kind of mistake with references
than it is with pointers.

int* ptr = nullptr; // null pointer
intd& ref = *ptr;
ref = 10; // error: invalid memory access

Rvalue Reference

With C++11 came a new kind of reference called an rvalue reference.

This reference can bind and modify temporary objects (rvalues), such as
literal values and function return values. An rvalue reference is formed by
placing two ampersands after the type.

int8& ref = 1 + 2; // rvalue reference

30

CHAPTER 6 REFERENCES

The rvalue reference extends the lifetime of the temporary object and
allows it to be used like an ordinary variable.

ref += 3;
cout << ref; // "6"

The benefit of rvalue references is that they allow unnecessary
copying to be avoided when dealing with temporary objects. This offers
greater performance, particularly when handling larger types, such as
strings and objects.

31

CHAPTER 7

Arrays

An array is a data structure used for storing a collection of values that all
have the same data type.

Array Declaration and Allocation

To declare an array, you start as you would a normal variable declaration,
but in addition you append a set of square brackets following the array’s
name. The brackets contain the number of elements in the array.

int myArray[3]; // integer array with 3 elements

The default values for these elements are the same as for variables—
elements in global arrays are initialized to their default values and
elements in local arrays remain uninitialized.

Array Assignment

To assign values to the elements, you can reference them one at a time by
placing the element’s index inside the square brackets, starting with zero.

myArray[0] = 1;
myArray[1] = 2;

myArray[2]

1]
w
-

© Mikael Olsson 2020 33
M. Olsson, C++20 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5995-5_7

https://doi.org/10.1007/978-1-4842-5995-5_7#DOI

CHAPTER 7 ARRAYS

Alternatively, you can assign values at the same time as the array is
declared by enclosing the values in curly brackets. If the specified array
length is larger than the number of values, the remaining values will be
initialized to zero. The array length may optionally be left out to let the
array size be decided by the number of values assigned.

int myArray[3] = { 1, 2, 3 };
int myArray[] = { 1, 2, 3 };

Once the array elements are initialized, they can be accessed by
referencing the index of the element you want.

int x = myArray[o0]; // 1

Multidimensional Arrays

Arrays can be made multidimensional by adding more sets of square
brackets. As with single-dimensional arrays, they can either be filled in one
at a time or all at once during the declaration.

int myArray[2][2] = { {0, 1}, { 2,3} };
myArray[0][0] = 0;
myArray[0][1] = 1;

The extra curly brackets are optional, but including them is good
practice since it makes the code easier to understand.

int myArray[2][2] = { 0, 1, 2, 3 }; // alternative

34

CHAPTER7 ARRAYS

Dynamic Arrays

Because the previous arrays are made up of static (nondynamic) memory,
their size must be determined before execution. Therefore, the size needs
to be a constant value. In order to create an array with a size that is not
known until runtime, you need to use dynamic memory, which is allocated
with the new keyword and must be assigned to a pointer.

int* p = new int[3]; // dynamically allocated array

An array in C++ behaves as a constant pointer to the first element in
the array. The referencing of array elements can therefore be made just
as well with pointer arithmetic. By incrementing the pointer by one, you
move to the next element in the array, because changes to a pointer’s
address are implicitly multiplied by the size of the pointer’s data type.

*(p+1) = 10; // p[1] = 10;

Array Size

Just as with any other pointer, it is possible to exceed the valid range of an
array and thereby rewrite some adjacent memory. This should always be
avoided since it can lead to unexpected results or crash the program.

int myArray[2] = { 1, 2 };
myArray[2] = 3; // error: out of bounds

To determine the length of a regular (statically allocated) array, you
can use the std::size function.

#include <iostreamy> // std::size
int main()

{

int myArray[2] = { 1, 2 };

int length = std::size(myArray); // 2
}

35

CHAPTER 7 ARRAYS

This method cannot be used for dynamically allocated arrays. The only
way to determine the size of such an array is through the variable used in
its allocation.

int size = 3;
int* p = new int[size]; // dynamically allocated array

When you are done using a dynamic array, you must remember to
delete it. This is done using the delete keyword with an appended set of
square brackets.

delete[] p; // release allocated array
p = nullptr; // mark pointer as unused

Vector

A vector is a container class representing a resizable array. The element
type of the vector is specified in angle brackets after the class name,
because vector is a so-called template class.

#include <vector> // std::vector
using namespace std;

int main()
{

vector<int> myVector;

}

Vectors are preferable to dynamic arrays as they have a number of
advantages including the ability to grow and shrink automatically as
needed. Vectors will also implicitly deallocate themselves when they go
out of scope, so there is no need to manually delete them. The following
example illustrates how to assign, change, and read elements of a vector.

36

#include <vector>

using namespace std;

int main()

{

vector<inty> v;

// Assign

three elements with value two

v.assign(3, 2); // [2, 2, 2]

// Add 4 at last position
v.push_back(4); // [2, 2, 2, 4]

// Change
v[o] = 1;

// Change
v.at(2) =

// Remove

v.erase(v.

// Remove

first element
/l [1, 2, 2, 4]

second element (bound checked)
3; // (1, 2, 3, 4]

second element
begin()+1); // [1, 3, 4]

last element

v.pop_back(); // [1, 3]

// Get vector length
int len = v.size(); // 2

// Print first and second elements
cout << v.at(0) << v[1]; // "13"

CHAPTER 7

ARRAYS

37

CHAPTER 8

Strings

The string class in C++ is used to store string values. Before a string can
be declared, the string header must be included. The standard namespace
can also be used since the string class is part of that namespace.

#include <string>
using namespace std;

Strings can then be declared like any other data type. To assign a string
value to a string variable, delimit the literals by double quotes and assign
them to the variable. The initial value can also be assigned through either
direct or uniform initialization at the same time as the string is declared.

string h = "Hello";
string w ("Hi"); // direct initialization
string u {"Hey"}; // uniform initialization

String Combining

The plus sign, known as the concatenation operator (+) in this context, is
used to combine two strings. It has an accompanying assignment operator
(+=) to append a string.

string a = "Hello";

string b = "World";

string c =a + " " + b; // Hello World
a += b; // HelloWorld

© Mikael Olsson 2020 39
M. Olsson, C++20 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5995-5_8

https://doi.org/10.1007/978-1-4842-5995-5_8#DOI

CHAPTER 8 STRINGS

The concatenation operator will work as long as one of the strings it
operates on is a C++ string. A string literal is by default a C-style string
which consists of an array of char elements. The letter s can be appended
to a string literal to instead represent it as the std::string type.

string d = "Hello" + "World"; // error, no C++ string
string e = "Hello" + "World"s; // ok
string f = e + "Again"; // ok

String literals will also be implicitly combined if the plus sign is left off.

string g = "Hel" "lo"; // ok

Escape Characters

A backslash notation is used to write special characters, such as the

newline character \n.
string s = "Hello\nWorld";

These special characters are called escape characters, and they are
described in the following table.

Character Meaning Character Meaning

\n Newline \f Form feed
\t Horizontal tab \a Alert sound
\v Vertical tab \' Single quote
\b Backspace \" Double quote
\r Carriage return \\ Backslash
\O Null character

40

CHAPTER 8 STRINGS

Additionally, any one of the 128 ASCII characters can be expressed
by writing a backslash followed by the ASCII code for that character,
represented as either an octal or hexadecimal number.

string oct

"\053"; // octal '+'
"\x02B"; // hexadecimal '+'

string hex

As of C++11, escape characters can be ignored by adding an R before
the string along with a set of parentheses within the double quotes. This is
called a raw string literal and can be used, for instance, to make file paths
more readable.

string escaped = "c:\\Windows\\System32\\cmd.exe";
string raw = R"(c:\Windows\System32\cmd.exe)";

String Compare

The way to compare two strings is simply by using the equal to operator
(==). This will not compare the memory addresses of the strings, as is the
case with C strings.

string s = "Hello";
bool b = (s == "Hello"); // true

String Functions

The string class has a lot of functions. Among the most useful ones are the
length and size functions, which both return the number of characters in
the string. Their return type is size_t, which is an unsigned data type used
to hold the size of an object. This is simply an alias for one of the built-in

41

CHAPTER 8 STRINGS

data types, but which one it is defined as varies between compilers. The
alias is defined in the cstddef standard library header, which is included
through iostream.

string s = "Hello";
s.length(); // 5, length of string
i = s.size(); // 5, same as length()

size t i

Another useful function is substr (substring), which requires two
parameters. The second parameter is the number of characters to return,
starting from the position specified in the first parameter.

s.substr(0,2); // "He"

A single character from a string can also be extracted or changed by
using the array notation.

char c = s[o]; // 'H'

String Encodings

A string enclosed within double quotes produces an array of the char type,
which can only hold 256 unique symbols. To support larger character sets,
the wide character type wchar_t is provided. Its size can vary between
compilers so it is not platform independent. String literals of this type are
created by prepending the string with a capital L. The resulting array can
be stored using the wstring class. This class works like the basic string
class but uses the wchar_t character type instead.

wstring s1 = L"Hello";
wchar_t *s2 = L"Hello"; // C-style string

42

CHAPTER 8 STRINGS

Fixed-size character types were introduced in C++11, namely,
char16_t and char32_t. These types provide definite representations of
the UTF-16 and UTF-32 encodings, respectively. UTF-16 string literals
are prefixed with u and can be stored using the u16string class. Likewise,
UTE-32 string literals are prefixed with U and are stored in the u32string
class. The prefix u8 was also added to represent a UTF-8 encoded string
literal. A string consisting of UTF-8 literals can be stored in the u8string
type added in C++20.

string s3 = "Compiler-defined encoding";
u8string s4 = u8"UTF-8 string";
uléstring s5 = u"UTF-16 string";
u32string s6 = U"UTF-32 string";

Specific Unicode characters can be inserted into a string literal using
the escape character \u followed by a hexadecimal number representing
the character.

u8string s7 = u8"Asterisk: \u002A"; // "Asterisk: *"

String Formatting

C++20 introduced the std::format function as a more convenient and
type-safe way to format strings compared with legacy string formatting
functions such as the printf family inherited from C. The first argument to
this function is the string to be formatted. Curly brackets ({}) appearing in
the string will be replaced by successive arguments to the function as seen
here.

// "1 plus 2 equals 3"
string f = std::format("1 plus 2 equals {}", 1+2);

43

CHAPTER 8 STRINGS

The curly brackets can include a number to specify which argument it
will be replaced by.

// "5 is more than zero"
string f = std::format("{1} is more than {0}", "zero", 5);

44

CHAPTER 9

Conditionals

Conditional statements are used to execute different code blocks based on

different conditions.

If Statement

The if statement will execute only if the expression inside the parentheses
is evaluated to true. In C++, this does not have to be a Boolean expression.
It can be any expression that evaluates to a number, in which case zero is
false and all other numbers are true.

if (x < 1) {
cout << x <<« " < 1";

To test for other conditions, the if statement can be extended by any
number of else if clauses.

else if (x » 1) {
cout << x << " > 1";

© Mikael Olsson 2020 45
M. Olsson, C++20 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5995-5_9

https://doi.org/10.1007/978-1-4842-5995-5_9#DOI

CHAPTER9 CONDITIONALS

The if statement can have one else clause at the end, which will
execute if all previous conditions are false.

else {
cout << x << " == 1",

}

As for the curly brackets, they can be left out if only a single statement
needs to be executed conditionally. However, it is considered good
practice to include them since they improve readability.

if (x < 1)
cout << x <«
else if (x > 1)
cout << x << " > 1";
else

< 1";

cout << x <« " == 1";

Switch Statement

The switch statement checks for equality between an integer and a series
of case labels and then passes execution to the matching case. It may
contain any number of case clauses as well as a default label for handling
all other cases.

switch (x)
{

case 0: cout << x <<

is 0"; break;

case 1: cout << x <«
default: cout << x <«

is 1"; break;
is not 0 or 1"; break;

46

CHAPTER9 CONDITIONALS

Note that the statements after each case label end with the break
keyword to skip the rest of the switch. If the break is left out, execution will
fall through to the next case, which can be useful if several cases need to be
evaluated in the same way.

Ternary Operator

In addition to the if and switch statements, there is the ternary operator
(?:), which can replace a single if/else clause. This operator takes three
expressions. If the first one is true, then the second expression is evaluated
and returned, and if it is false, the third one is evaluated and returned.

X = (x < 0.5) 20 : 1; // ternary operator (?:)

C++ allows expressions to be used as stand-alone code statements.
Because of this, the ternary operator cannot just be used as an expression,
but also as a statement.

(x < 0.5) ? x=0:x=1; // alternative syntax

The programming term expression refers to code that evaluates to a
value, whereas a statement is a code segment that ends with a semicolon or
a closing curly bracket.

Initializers

It is preferable to keep the scope of a variable limited to the section of
code where the variable is used. This way, the variable is prevented
from cluttering up the namespace unnecessarily or causing potential
name clashes later on in the code. To assist with this, C++17 introduced
the ability to declare and initialize a locally scoped variable for an if

47

CHAPTER9 CONDITIONALS

statement, by adding an initializer before the condition. This reduces the
scope of the variable so that it is only visible within the body of the if
statement and any accompanying else clauses.

int a =2, b = 3;

/...

if (int sum = a+b; sum == 5) {
is 5";

cout << sum <<

Switch statements may also use an initializer as of C++17. Like the if
statement, this feature helps avoid potential name clashes by limiting the
scope of the variable to within the switch statement.

switch (int sum = a+b; sum) {
case 5: cout << sum << " is 5"; break;

48

CHAPTER 10

Loops

There are three looping structures available in C++, all of which are used
to execute a specific code block multiple times. Just as with the conditional
if statement, the curly brackets for the loops can be left out if there is only
one statement in the code block.

While Loop

The while loop runs through the code block only if its condition is true
and will continue looping for as long as the condition remains true.
Bear in mind that the condition is only checked at the start of each

iteration (loop).
int i = 0;
while (i < 10) {
cout << i++; // 0-9

© Mikael Olsson 2020
M. Olsson, C++20 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5995-5_10

https://doi.org/10.1007/978-1-4842-5995-5_10#DOI

CHAPTER 10 LOOPS

Do-while Loop

The do-while loop works in the same way as the while loop, except that
it checks the condition after the code block. It will therefore always run
through the code block at least once, in contrast with the while loop.
Notice that this loop ends with a semicolon.

int j = 0;
do {

cout << j++; // 0-9
} while (j < 10);

For Loop

The for loop is used to run through a code block a set number of times.
It uses three parameters. The first one initializes a counter and is always
executed once before the loop. This counter variable is limited in scope
to the for loop and is not accessible after the loop. The second parameter
holds the condition for the loop and is checked before each iteration.
Lastly, the third parameter contains the increment of the counter and is
executed at the end of each loop.

for (int k = 0; k < 10; ++k) {
cout << k; // 0-9
}

The for loop has several variations. For instance, the first and third
parameters can be split into several statements by using the comma
operator.

for (int k = 0, m = 0; k < 5; ++k, m--) {
cout << k+m; // "00000"

}

50

CHAPTER 10

LOOPS

There is also the option of leaving out any one of the parameters. The

following are a couple of examples of this.

for (55) {
// infinite loop
}

for (int i=0; i<10;) {
// increment i inside of loop

}

int counter = 0;

for (; counter<10; ++counter) {
/...

}

// make counter usable outside of loop

C++11 introduced a range-based for loop syntax for iterating through

arrays and other container types. At each iteration, the next element in the

array is bound to the specified variable, in this case a reference variable,

and the loop continues until it has gone through the entire array.

int 3[3] = {1) 2, 3};
for (int &i : a) {
cout << i; // "123"

}

C++20 extended the range-based for loop by allowing it to include

an initializer. This is useful for keeping scopes tight when iterating over a

temporary container that is only needed for the duration of the loop.

for (int a[3] = {1, 2, 3}; int &i : a) {

cout << i; // "123"

}

51

CHAPTER 10 LOOPS

Break and Continue

There are two jump statements that can be used inside loops: break and
continue. The break keyword ends the loop structure, and continue skips
the rest of the current iteration and continues at the beginning of the next
iteration.

for (int i = 0; i < 10; i++)

{
if (i == 5) break; // end loop
if (i == 3) continue; // start next iteration
cout << 1i; // "0124"

}

Goto Statement

A third jump statement that may be useful to know about is goto, which
performs an unconditional jump to a specified label. This instruction is
generally never used since it tends to make the flow of execution difficult
to follow.

goto mylLabel; // jump to label
myLabel: // label declaration

52

CHAPTER 11

Functions

Functions are reusable code blocks that will only execute when called.

Defining Functions

A function can be created by typing void followed by the function’s name,
a set of parentheses, and a code block. The void keyword means that

the function will not return a value. A common naming convention for
functions is to name them in the same way as variables—a descriptive
name with each word initially capitalized, except for the first one.

#include <iostream>
using namespace std;

void myFunction()

{

cout << "Hello World";

}

Calling Functions

The previous function will simply print out a text message when it is called.
To invoke it from the main function, specify the function’s name followed
by a set of parentheses.

© Mikael Olsson 2020
M. Olsson, C++20 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5995-5_11

https://doi.org/10.1007/978-1-4842-5995-5_11#DOI

CHAPTER 11 FUNCTIONS

int main()
{
myFunction(); // "Hello World"

}

Function Parameters

The parentheses that follow the function name are used to pass arguments
to the function. To do this, you must first add the corresponding
parameters to the function declaration in the form of a comma-separated
list.

void myFunction(string a, string b)

{

cout << a <<

<< b;

A function can be defined to take any number of parameters, and those
parameters can have any data types. Just ensure that the function is called
with the same types and number of arguments.

myFunction("Hello", "World"); // "Hello World"

To be precise, parameters appear in function definitions, while
arguments appear in function calls. However, the two terms are sometimes
wrongly used.

Default Parameter Values

It is possible to specify default values for parameters by assigning them a
value inside the parameter list.

54

CHAPTER 11 FUNCTIONS

void myFunction(string a, string b = "Earth")

{

cout << a <«

<< b;

Then, if that argument is unspecified when the function is called, the
default value will be used instead. For this to work, it is important that the
parameters with default values are to the right of those without default
values.

myFunction("Hello"); // "Hello Earth"

Function Overloading

A function in C++ can be defined multiple times with different parameters.
This is a powerful feature called function overloading, and it allows

a function to handle a variety of arguments without the programmer
needing to be aware of using different functions.

void myFunction(string a, string b) { cout << a << " " << b; }
void myFunction(string a) { cout << a; }
void myFunction(int a) { cout << a; }

Return Statement

A function can return a value. The void keyword is then replaced with the
data type the function will return, and the return keyword must be added
to the function’s body followed by an argument of the specified return
type. Keep in mind that all branches in the function must return a value.

int getSum(int a, int b)
{

return a + b;

}

55

CHAPTER 11 FUNCTIONS

Return is a jump statement that causes the function to exit and
return the specified value to the place where the function was called. For
example, the previously defined function can be used with the output

stream since the function evaluates to an integer.
cout << getSum(5, 10); // "15"

The return statement can also be used in void functions to exit before
the end of the function block is reached.

void dummy() { return; }

Note that although the main function is set to return an integer type, it
does not have to explicitly return a value. This is because the compiler will
automatically add a return O statement to the end of the main function.

int main() { return o0; }

Forward Declaration

An important point to keep in mind in C++ is that functions must be
declared before they can be called. This does not mean that the function
has to be implemented before it is called. It only means that the function’s
header needs to be specified at the beginning of the source file, so that the
compiler knows that the function exists. This kind of forward declaration is
known as a prototype.

void myFunction(int a); // prototype
int main()

{

myFunction(0);

}

void myFunction(int a) {} // definition

56

CHAPTER 11 FUNCTIONS

The parameter names in the prototype do not need to be included.
Only the data types must be specified. However, including the names
serves as a kind of documentation, and they will also show up in
IntelliSense, so it is a good practice to include them.

void myFunction(int);

Pass by Value

In C++, variables of both primitive and object data types are by default
passed by value. This means that only a copy of the value or object is
passed to the function. Therefore, changing the parameter in any way will
not affect the original, and passing a large object will be slow.

#include <iostream>
#include <vector>
using namespace std;

void change(int i) { i = 10; }
void change(vector<int> a) { a.at(0) = 5; }

int main()

{
int x = 0; // value type
change(x); // copy of x is passed
cout << x; // "o"

vector<int> v { 3 }; // reference type
change(v); // object copy is passed
cout << v.at(o); // "3"

57

CHAPTER 11 FUNCTIONS

Pass by Reference

Alternatively, to instead pass a variable by reference, you just need to add
an ampersand before the parameter’s name in the function’s definition.
When arguments are passed by reference, both primitive and object data
types can be changed, and the changes will affect the original variable.

void change(int& i) { i = 10; }

int main()

{
int x = 0; // value type
change(x); // reference is passed
cout << x; // "10"

}

Pass by Address

As an alternative to passing by reference, arguments may also be passed by
address using pointers. This passing technique serves the same purpose as
passing by reference, but uses pointer syntax instead.

void change(int* i) { *i = 10; }

int main()

{
int x = 0; // value type
change(&x); // address is passed
cout << x; // 10

}

One difference is that pointers can be null, whereas references cannot.
So if the function should not allow null arguments, it is preferable to use
pass by reference.

58

CHAPTER 11 FUNCTIONS

Return by Value, Reference, or Address

In addition to passing variables by value, reference, or address, a variable
may also be returned in one of these ways. Normally, a function returns by
value, in which case a copy of the value is returned to the caller.

int byval(int i) { return i + 1; }

int main()
{

int a = 10;

cout << byval(a); // "11"
}

To return by reference instead, an ampersand is placed after the
function’s return type. The function must then return a variable and may
not return an expression or literal, as can be done when using return by
value. The variable returned should never be a local variable, because the
memory to these variables is released when the function ends. Instead,
return by reference is commonly used to return an argument that has also
been passed to the function by reference.

int& byRef(int& i) { return i; }

int main()
{

int a = 10;

cout << byRef(a); // "10"
}

To return by address, you append the dereference operator (*) to the
function’s return type. This return technique has the same two restrictions
as when returning by reference—the address of a variable must be
returned and the returned variable must not be local to the function.

59

CHAPTER 11 FUNCTIONS
int* byAdr(int* i) { return i; }

int main()
{

int a = 10;

cout << *byAdr(&a); // "10"
}

If a function returns a pointer, it may not be clear whether the function
has allocated some memory dynamically and where this memory should
be deallocated. For this reason, it is preferable to return by reference
instead or to use smart pointers which are covered in a later chapter.

Inline Functions

A point to keep in mind when using functions is that every time a function
is called, a small performance overhead occurs. To potentially remove
this overhead, you can recommend that the compiler inline the calls to a
specific function by using the inline function modifier. This keyword is
best suited to small functions that are called inside loops. It should not be
used on larger functions since inlining these can severely increase the size
of the code, which will instead decrease performance.

inline int myInc(int i) { return ++i; }

Note that the inline keyword is only a recommendation. The
compiler may, in its attempts to optimize the code, choose to ignore
this recommendation, and it may also inline functions that do not have
the inline modifier. Modern compilers are very good at automatically
determining which functions to inline.

60

CHAPTER 11 FUNCTIONS

Auto and Decltype

Two keywords were introduced in C++11: auto and decltype. Both of
these keywords are used for type deduction during compilation. The auto
keyword works as a placeholder for a type and instructs the compiler to
automatically deduce the type of the variable based on its initializer.

auto i = 5; // int
auto d = 3.14; // double
auto b = false; // bool

The auto keyword translates to the core type of the initializer, which
means that any reference and constant specifiers are dropped.

const int& iRef = i;
auto myAuto = iRef; // int

Dropped specifiers can be manually reapplied as needed. The
ampersand here creates a regular (lvalue) reference.

const auto& myRef = iRef; // const int&

Alternatively, two ampersands can be used. This normally designates
an rvalue reference, but in the case of auto, it makes the compiler
automatically deduce either an rvalue or an lvalue reference, based on
the given initializer.

int i = 15
auto8& a = i; // int& (lvalue reference)
auto8& b = 2; // int8& (rvalue reference)

The auto specifier may be used anywhere a variable is declared and
initialized. For instance, the type of the following for loop iterator is set to
auto, since the compiler can easily deduce the type. Note that the iterator is
specified as a reference. This gives better performance as it prevents copies
from being made when looping over elements of a potentially large object.

61

CHAPTER 11 FUNCTIONS

#include <iostream>

#include <vector>

using namespace std;

/...

vector<int> myVector { 1, 2, 3 };

for (auto& x : myVector) { cout << x; } // "123"

Prior to C++11 there was no range-based for loop or auto specifier.
Iterating over a vector then required a more verbose syntax, such as the
one shown here.

for(vector<int>::size type i = 0; i != myVector.size(); i++) {
cout << myVector[i]; // "123"

The decltype specifier works similar to auto, except that it deduces
the exact declared type of a given expression, including references. This
expression is specified in parentheses.

int i = 1;

int& myRef = i;

auto a = myRef; // int
decltype(myRef) b = myRef; // int8&

In C++14, auto may be used as the expression for decltype. The
keyword auto is then replaced with the initializing expression, allowing the
exact type of the initializer to be deduced.

decltype(auto) c = myRef; // int8&

Using auto is often the simpler choice when an initializer is available.
decltype is mainly used to forward function return types, without having
to consider whether it is a reference or value type.

decltype(5) getFive() { return 5; } // int

62

CHAPTER 11 FUNCTIONS

C++11 added a trailing return type syntax, which allows a function’s
return value to be specified after the parameter list, following an arrow
(->). This enables the parameters to be used when deducing the return
type with decltype. The use of auto in this context just means that the
trailing return type syntax is being used.

auto getValue(int x) -> decltype(x) { return x; } // int

The ability to use auto for return type deduction was added in C++14.
This enabled the core return type to be deduced directly from the return
statement.

auto getValue(int x) { return x; } // int

Moreover, auto can be used together with decltype to deduce the
exact type following the rules of decltype. This is mainly useful in the
context of generic programming with templates, when there are types that
are not known until runtime.

decltype(auto) getRef(int& x) { return x; } // int8&

The main use for type deduction is to reduce the verbosity of the code
and improve readability, particularly when declaring complicated types
where the type is either difficult to know or difficult to write. Keep in mind
that in modern IDEs, you can hover the mouse cursor over a variable to
check its type, even if the type has been automatically deduced.

Returning Multiple Values

A convenient way to return multiple values from a function is to use a
tuple. Tuples are objects that pack elements of different types into a single
object.

63

CHAPTER 11 FUNCTIONS

#include <tuple>
#include <iostream>
using namespace std;

tuple<int, double, char> getTuple()
{

return tuple<int, double, char>(5, 1.2, 'b');

}

The function can be simplified using the auto keyword and the
std: :make_tuple function. This function automatically deduces the types
based on the provided arguments and returns a tuple.

auto getTuple()
{

return make tuple(5, 1.2, 'b");

}

Individual tuple elements can be extracted with the std: :get function.
Angle brackets (<>) are used to specify the index for the element to be
retrieved. Alternatively, the type name can be used to retrieve the element
if there is only one element of that type.

int main()
{
auto mytuple = getTuple();
cout << get<o>(mytuple) // "s"
<< get<char>(mytuple); // "b"

Another way to unpack a tuple is with the std: : tie function, which
will bind one or more tuple elements to the provided arguments. The
std: :ignore placeholder can be used to skip certain elements of the tuple.

64

CHAPTER 11 FUNCTIONS

int main()

{
int i;
double d;
// Unpack tuple into variables
tie(i, d, ignore) = getTuple();
cout << i<« " "« d; // "5 1.2"

A feature called structured bindings was added in C++17, providing
special language support for packing and unpacking tuple-like objects.
With this introduction, the std: :make_tuple function is replaced with the

following more concise code.

auto getTuple()

{
return tuple(5, 1.2, 'b');

}

Unpacking the elements is likewise simplified and no longer requires
the std: : tie function. Note that the variables are declared automatically.

int main()

{
auto [i, d, c] = getTuple();
cout << i; // "s5"

}

65

CHAPTER 11 FUNCTIONS

Lambda Functions

C++11 adds the ability to create lambda functions, which are unnamed
function objects. This provides a compact way to define functions at their
point of use, without having to create a named function or function object
somewhere else. The following example creates alambda that accepts two
int arguments and returns their sum.

auto sum = [](int x, int y) -> int
{

return x + y;

};
cout << sum(2, 3); // "5"

Including the return type is optional if the compiler can deduce the
return value from the lambda. In C++11, this required the lambda to
contain just a single return statement, whereas C++14 extended return
type deduction to any lambda function. Note that the arrow (->) is also
omitted when leaving out the return type.

auto sum = [](int x, int y) { return x +vy; };

C++11 requires lambda parameters to be declared with concrete types.
This requirement was relaxed in C++14, allowing lambdas to use auto type
deduction. These are called generic lambda expressions.

auto sum = [](auto x, auto y) { return x +y; };

Lambdas are typically used for specifying simple functions that are
only referenced once, often by passing the function object as an argument
to another function. This can be done using a function wrapper with a
matching parameter list and return type, as in the following example.

66

CHAPTER 11 FUNCTIONS

#include <iostream>
#include <functional>
using namespace std;

void call(int arg, function<void(int)> func) {
func(arg);

}

int main() {

auto printSquare = [](int x) { cout << x*x; };
call(2, printSquare); // "4"

}

All lambdas start with a set of square brackets, called the capture
clause. This clause specifies variables from the surrounding scope that
can be used within the lambda body. This effectively passes additional
arguments to the lambda, without the need to specify these in the
parameter list of the function wrapper. The previous example can therefore
be rewritten in the following way.

void call(function<void()> func) { func(); }

int main() {

int i = 2;

auto printSquare = [i]() { cout << i*i; };
call(printSquare); // "4"

}

The variable here is captured by value, and so a copy is used within
the lambda. Variables can also be captured by reference using the familiar
ampersand prefix. Note that the lambda here is defined and called in the
same statement.

67

CHAPTER 11 FUNCTIONS

int a = 1;
[8a](int x) { a += x; }(2);
cout << a; // "3"

It is possible to specify a default capture mode at the start of the
capture clause, to indicate how any unspecified variable used inside the
lambda is to be captured. A [=] means that such variables are captured
by value and [&] captures them by reference. Variables captured by value
are normally constant, but the mutable specifier can be used to allow such
variables to be modified.

inta=1, b=1;
[&, b]() mutable { b++; a += b; }();
cout << a << b; // "31"

As of C++14, variables may also be initialized inside the lambda
capture clause. Such variables will be type deduced as if they were
declared with auto. Note that the parameter list following the capture
clause may be omitted, as done here, provided that it is empty and the
mutable specifier is not used.

int a = 1;

[8 b =2] { a +=b; }();
cout << a; // "3"

A lambda that does not capture any variables is called stateless. C++20
added the ability to make stateless lambdas default constructible and
assignable, making the following example valid.

auto x = [] { return 3; };

// Default construct new lambda of same type
decltype(x) y; // valid in C++20

68

CHAPTER 11 FUNCTIONS

// Make copy of lambda
auto copy = x;

// Assign copy to x since they have same type
x = copy; // valid in C++20

Another feature introduced in C++20 was the ability to use lambdas
in unevaluated contexts, most notably as the expression for a decltype
specifier.

// Default construct inlined lambda
decltype([]{ return 3; }) a; // valid in C++20

69

CHAPTER 12

Classes

A class is a template used to create objects. To define a class, you use the
keyword class followed by a name, a code block, and a semicolon.

A common naming convention for classes is to use mixed case, meaning
that each word is initially capitalized.

class MyRectangle {};

Class members can be declared inside the class; the two main kinds
are fields and methods. Fields are variables and they hold the state of the
object. Methods are functions and they define what the object can do.

class MyRectangle
{
int x, y;

};

Class Methods

A method belonging to a class is normally declared as a prototype

inside of the class, and the actual implementation is placed after the
class’s definition. The method’s name outside the class then needs to be
prefixed with the class name and the scope resolution operator in order to
designate to which class the method definition belongs.

© Mikael Olsson 2020
M. Olsson, C++20 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5995-5_12

https://doi.org/10.1007/978-1-4842-5995-5_12#DOI

CHAPTER 12 CLASSES

class MyRectangle
{

int x, y;
int getArea();
};

int MyRectangle::getArea() { return x * y; }

Inline Methods

If the method is short and you want to recommend to the compiler that the
method’s code should be inserted (inlined) into the caller’s code, one way
to do this is to include the inline keyword in the method’s definition.

inline int MyRectangle::getArea() { return x * y; }

A more convenient way is to simply define the method inside of the
class. This will implicitly recommend to the compiler that the method
should be inlined.

class MyRectangle
{

int x, y;

int getArea() { return x * y; }
};

Object Creation

The class definition is now complete. In order to use it, you first have to
create an object of the class, also called an instance. This can be done in
the same way that variables are declared.

72

CHAPTER 12 CLASSES

int main()
{

MyRectangle r; // object creation

}

Accessing Object Members

Before the members that this object contains can be accessed, they need to
be declared as public in the class definition, by using the public keyword
followed by a colon. Without this keyword, the members will have private
access by default, making them inaccessible outside of the class definition.

class MyRectangle
{
public:
int x, y;
int getArea() { return x * y; }
};

The members of this object can now be reached using the dot operator
(.) after the instance name.

r.x = 10,
r.y = 5;
int z = r.getArea(); // 50 (5*10)

Any number of objects can be created based on a class, and each one
of them will have its own set of fields and methods.

MyRectangle r2; // another instance of MyRectangle
r2.x = 25; // not same as r.x

73

CHAPTER 12 CLASSES

When using an object pointer, the arrow operator (->) allows access to
the object’s members. This operator behaves like the dot operator, except
that it dereferences the pointer first. It is used exclusively with pointers to
objects.

MyRectangle r;

MyRectangle *p = &r; // object pointer
I.X = 2;

r.y = 3;

p->getArea(); // 6 (2*3)
(*p).getArea(); // alternative syntax

Forward Declaration

Classes, just like functions, must be declared before they can be
referenced. If a class definition does not appear before the first reference to
that class, a class prototype can be specified above the reference instead.

class MyClass; // class prototype

This forward declaration allows the class to be referenced in any
context that does not require the class to be fully defined.

class MyClass; // class prototype

/...

MyClass* p; // allowed

MyClass f(MyClass&); // allowed

MyClass o; // error, definition required
sizeof(MyClass); // error, definition required

Note that even with a prototype, you still cannot create an object of a
class before it has been defined.

74

CHAPTER 13

Constructors

In addition to fields and methods, a class can contain a constructor. This

is a special kind of method used to construct, or instantiate, the object. It
always has the same name as the class and does not have a return type. To
be accessible from another class, the constructor needs to be declared in a
section marked with the public access modifier.

class MyRectangle

{
public:
int x, y;
MyRectangle();
};
MyRectangle: :MyRectangle() { x = 10; y = 5; }

When a new instance of this class is created, the constructor method
will be called, which in this case assigns default values to the fields.

int main()

{
MyRectangle s;

}

© Mikael Olsson 2020
M. Olsson, C++20 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5995-5_13

https://doi.org/10.1007/978-1-4842-5995-5_13#DOI

CHAPTER 13 CONSTRUCTORS

Constructor Overloading

As with any other function or method, the constructor can be overloaded.
This will allow an object to be created with different argument lists.

class MyRectangle

{

public:
int x, y;
MyRectangle();
MyRectangle(int, int);

}s

MyRectangle: :MyRectangle() { x = 10; y = 5; }
MyRectangle: :MyRectangle(int a, int b) { x = a; y = b; }

With the two constructors defined here, the object can be initialized
either with no arguments or with two arguments used to assign the fields.

// Calls parameterless constructor
MyRectangle r;

// Calls constructor accepting two integers
MyRectangle t(2,3);

C++11 added the ability for constructors to call other constructors
Using this feature, called constructor delegation, the parameterless
constructor created earlier is redefined here to call the second constructor.

MyRectangle: :MyRectangle() : MyRectangle(10, 5) {}

76

CHAPTER 13 CONSTRUCTORS

This Keyword

Inside the constructor, as well as in any other methods belonging to the
object—so-called instance methods—a special keyword called this can be
used. This is a pointer to the current instance of the class. It can be useful
if, for example, the constructor’s parameter names are the same as the field
names. The fields can then still be accessed by using the this pointer, even
though they are overshadowed by the parameters.

MyRectangle: :MyRectangle(int x, int y)
{

this->x

X3
this->y = y;

}

Field Initialization

As an alternative to assigning fields inside the constructor, fields may also
be assigned by using the constructor initializer list. This list starts with a
colon after the constructor parameters, followed by calls to the field’s own
constructors.

MyRectangle: :MyRectangle(int a, int b) : x(a), y(b) {}

Fields can also be assigned an initial value in their class definition, a
convenient feature that was added in C++11. This is the recommended way
of assigning default values to fields. The value is automatically assigned
when a new instance is created, before the constructor is run. As such, this
assignment can be used to specify a default value for a field that may be
overridden in the constructor.

77

CHAPTER 13 CONSTRUCTORS

class MyRectangle

{
public:
int x = 10;
int y = 5;
};

Recall that a reference must be set at the same time as it is declared.
Therefore, a reference field cannot be set in the body of the constructor,
but must be initialized either in the class definition or in the constructor
initializer list.

class Foo
{
public:
int x;
int& refi = x;
int& ref2;
Foo();
}s
Foo::Foo() : ref2(x) {}

Default Constructor

If no constructors are defined for a class, the compiler will automatically
create a default parameterless constructor when the program compiles.
Because of this, a class can be instantiated even if no constructor has been
implemented. The default constructor will only allocate memory for the
object. It will not initialize the fields. In contrast to global variables, fields
in C++ are not automatically initialized to their default values. The fields
will contain whatever garbage is left in their memory locations until they
are explicitly assigned values.

78

CHAPTER 13 CONSTRUCTORS

Destructor

In addition to constructors, a class can also have an explicitly defined
destructor. The is used to release any resources allocated by the object. It is
called automatically before an object is destroyed, either when the object
passes out of scope or when it is explicitly deleted for objects created with
the new operator. The name of the destructor is the same as the class name,
but preceded by a tilde (*). A class may only have one destructor, and it
never takes any arguments or returns anything.

class Semaphore

{
bool *sem;

public:
Semaphore() { sem = new bool; }
~Semaphore() { delete sem; }

b

Special Member Functions

The default constructor and the destructor are both special member
functions that the compiler will automatically provide for any class that
does not explicitly define them. Four other special functions are the move
constructor, the move assignment operator, the copy constructor, and

the copy assignment operator. With the C++11 standard came ways of
controlling whether to allow these special member functions through the
delete and default specifiers. The delete specifier forbids the calling of a
function, whereas the default specifier explicitly states that the compiler-
generated default will be used.

79

CHAPTER 13 CONSTRUCTORS

class A

{

public:
// Explicitly include default constructor
A() = default;

// Explicitly include default destructor
~A() = default;

// Disable move constructor
A(A88) noexcept = delete;

// Disable move assignment operator
A% operator=(A8&) noexcept = delete;

// Disable copy constructor
A(const A&) = delete;

// Disable copy assignment operator
A3 operator=(const A&) = delete;

};

Object Initialization

C++ provides a number of different ways to create objects and initialize
their fields. The following class will be used to illustrate these methods.

class MyClass
{
public:
int i;
MyClass() = default;
MyClass(int x) : i(x) {}
};

80

CHAPTER 13 CONSTRUCTORS

Direct Initialization

The object creation syntax that has been used so far is called direct
initialization. This syntax can include a set of parentheses that are used
to pass arguments to a constructor in the class. If the parameterless
constructor is used, the parentheses are left off.

// Direct initialization
MyClass a(5);
MyClass b;

Value Initialization

An object can also be value initialized. The object is then created by using
the class name followed by a set of parentheses. The parentheses can
supply constructor arguments or remain empty to construct the object
using the parameterless constructor. A value initialization creates only

a temporary object, which is destroyed at the end of the statement. To
preserve the object, it must either be copied to another object or assigned
to a reference. Assigning the temporary object to a reference will maintain
the object until that reference goes out of scope.

// Value initialization
const MyClass& a = MyClass();
MyClass8& b = MyClass(); // alternative

A value-initialized object is almost identical to one created by using
default initialization. A minor difference is that non-static fields will
in some cases be initialized to their default values when using value
initialization.

81

CHAPTER 13 CONSTRUCTORS

Copy Initialization

If an existing object is assigned to an object of the same type when it is
declared, the new object will be copy initialized. This means that each
member of the existing object will be copied to the new object.

// Copy initialization
MyClass a = MyClass(); // copy temporary object to a
MyClass b = a; // copy object a to b

This works because of the implicit copy constructor that the compiler
provides, which is called for these kinds of assignments. The copy
constructor takes a single argument, usually a const reference of its own
type, and then constructs a copy of the specified object. Note that this
behavior is different from many other languages, such as Java and C#.

In those languages, initializing an object with another object will only
copy the object’s reference and not create a new object copy. The copy
constructor can be user defined, allowing the developer to decide how the
object members should be copied.

New Initialization

An object can be initialized through dynamic memory allocation by using
the new keyword. Dynamically allocated memory must be used through a
pointer or reference. The new operator returns a pointer, so to assign it to a
reference, it needs to be dereferenced first. Keep in mind that dynamically
allocated memory must be explicitly freed once it is no longer needed.

// New initialization

MyClass* a = new MyClass(); // object pointer
MyClass& b = *new MyClass(); // object reference
/1 ...

delete a;

delete 8b;

82

CHAPTER 13 CONSTRUCTORS

Aggregate Initialization

There is a syntactical shortcut available when initializing an object called
aggregate initialization. This syntax allows fields to be set by using a curly
bracket-enclosed list of initializers, in the same way as can be done with
arrays. Aggregate initialization can only be used when the class type does
not include any constructors, virtual functions, or base classes. The fields
must also be public, unless they are declared as static. Each field will be set
in the order they appear in the class.

// Aggregate initialization
MyClass a = { 2 }; // i is 2

Uniform Initialization

The uniform initialization was introduced in C++11 to provide a consistent
way to initialize types that work the same for any type. This syntax looks
the same as aggregate initialization, without the use of the equals sign.

// Uniform initialization
MyClass a { 3 }; // i is 3

This initialization syntax works not just for classes but for any type,
including primitives, strings, arrays, and standard library containers such
as vector.

#include <string>
#include <vector>
using namespace std;

int main()

{
inti{1};
string s { "Hello" };

83

CHAPTER 13 CONSTRUCTORS

intal] {1, 2}
int *p = new int [2] { 1, 2 };
vector<string> box { "one", "two" };

}

Uniform initialization can be used to call a constructor. This is done
automatically by passing along the proper arguments for that constructor
within the curly brackets.

// Call parameterless constructor
MyClass b {};

// Call copy constructor
MyClass c { b };

A class can define an initializer-list constructor. This constructor is
called during uniform initialization and takes priority over other forms of
construction, provided that the type specified for the initializer list
template matches the type of the curly bracket-enclosed list of arguments.
The argument list can be any length, but all elements must be of the same
type. In the following example, the type of initializer_list is int, and so the
integer list used to construct this object is passed to the constructor. These
integers are then displayed using a range-based for loop.

#include <iostream>
using namespace std;

class NewClass

{
public:
NewClass(initializer list<int>);

}s

84

NewClass::NewClass(initializer list<int> args)

{
for (auto x : args)
cout <« x << " "3
}
int main()
{

NewClass a { 1, 2, 3 }; // "1 2 3"

}

Designated Initializers

The C++20 standard introduced designated initializers, allowing any non-

CHAPTER 13

CONSTRUCTORS

static field to be assigned by name in a brace-enclosed initialization list.

Fields that are left unspecified will be assigned their default value, as seen

in the following example.

class TestClass

{
public:
int a = 1;
int b = 2;
};
int main()
{

TestClass o1 { .a
TestClass 02 { .a
TestClass 03 { .b

}

3, .b=4}; //

5%}; // ok, a
6 }; // ok, a

85

CHAPTER 13 CONSTRUCTORS

Designated initializers can be used together with both uniform and
aggregate initialization. All designated fields must appear in the order of
their declaration in the class, and mixing designated and nondesignated
initializers is not allowed.

int main()

{
TestClass o4 { .b
TestClass o5 { .a

0, .a=11}; // error, out of order
5, 3 }; // error, designated and non-
designated

86

CHAPTER 14

Inheritance

Inheritance allows a class to acquire the members of another class. In the
following example, Square inherits from Rectangle. This is specified after
the class name by using a colon followed by the public keyword and the
name of the class to inherit from.

class Rectangle
{
public:
int x, y;
int getArea() { return x * y; }
}s
class Square : public Rectangle {};

Rectangle here becomes a base class of Square, which in turn
becomes a derived class of Rectangle. In addition to its own members,
Square gains all accessible members in Rectangle, except for its
constructors and destructor.

Upcasting

An object can be upcast to its base class, because it contains everything
that the base class contains. An upcast is performed by assigning the object
to either a reference or a pointer of its base class type. In the following
example, a Square object is upcast to Rectangle. When using Rectangle’s

© Mikael Olsson 2020
M. Olsson, C++20 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5995-5_14

https://doi.org/10.1007/978-1-4842-5995-5_14#DOI

CHAPTER 14 INHERITANCE

interface, the Square object will be viewed as a Rectangle, so only
Rectangle’s members can be accessed.

Square s;
Rectangle& r
Rectangle* p

s; // reference upcast
&s; // pointer upcast

A derived class can be used anywhere a base class is expected.
For example, a Square object can be passed as an argument to a function
that expects a Rectangle object. The derived object will then implicitly be
upcast to its base type.

void setXY(Rectangled 1)
{

Ir.X

r.y
}

int main()
{
Square s;
setXY(s);
}

2;
3;

Downcasting

A Rectangle reference or pointer that points to a Square object can be
downcast back to a Square object. This downcast has to be made explicit
since downcasting an actual Rectangle to a Square is not allowed and may
crash the program at runtime.

Squared a
Square* b

static_cast<Squared>(r); // reference downcast
static_cast<Square*>(p); // pointer downcast

88

CHAPTER 14 INHERITANCE

Constructor Inheritance

To make sure the fields in the base class are properly initialized, the
parameterless constructor of the base class is automatically called when
an object of the derived class is created.

#include <iostream>
using namespace std;

class B1

{

public:

int x;

B1() : x(5) {}
};

class D1 : public B1 {};

int main()

{
D1 d; // calls parameterless constructors of D1 and Bl
cout << d.x; // "5"

}

If there is no default constructor in the base class, the derived class
must call an appropriate base class constructor. The call to the base
constructor can be made explicitly from the derived constructor, by
placing it in the constructor’s initializer list. This allows arguments to be
passed along to the base constructor.

class B2

{

public:

int x;

B2(int a) : x(a) {}
}s

89

CHAPTER 14 INHERITANCE

class D2 : public B2

{
public:
D2(int i) : B2(i) {} // call base constructor

};

An alternative solution in this case is to inherit the constructor. As of
C++11, this can be done through a using statement.

class D2 : public B2

{
public:
using B2::B2; // inherit all constructors from B2
inty{o};
};
int main()
{

D2 d(3); // call inherited B2 constructor
cout << d.x; // "3"

}

Note that the base class constructor cannot initialize fields defined in
the derived class. Therefore, any fields declared in the derived class should
initialize themselves. This is done here using the uniform notation.

Multiple Inheritance

C++ allows a derived class to inherit from more than one base class. This
is called multiple inheritance. The base classes are then specified in a
comma-separated list.

90

CHAPTER 14 INHERITANCE

class Person {};
class Employee {};

class Teacher: public Person, public Employee {};

Multiple inheritance is not commonly used since most real-world
relationships can be better described by single inheritance. It also tends to

significantly increase the complexity of the code.

91

CHAPTER 15

Overriding

A new method in a derived class can redefine a method in a base class in

order to give it a new implementation.

Hiding Derived Members

In the following example, Rectangle’s getArea method is redeclared in
Triangle with the same signature. The signature includes the name,
parameter list, and return type of the method.

class Rectangle
{
public:
int x, y;
Rectangle(int x, int y) : x(x), y(y) {}
double getArea() { return x * y; }
};
class Triangle : public Rectangle
{
public:
Triangle(int a, int b) : Rectangle(a,b) {}
double getArea() { return x *y / 2; }
};

© Mikael Olsson 2020
M. Olsson, C++20 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5995-5_15

https://doi.org/10.1007/978-1-4842-5995-5_15#DOI

CHAPTER 15 OVERRIDING

Ifa Triangle object is created and the getArea method is invoked,
then Triangle’s version of the method will get called.

Triangle t { 2,3 }; // uniform initialization
t.getArea(); // 3 (2*3/2) calls Triangle's version

However, if the Triangle is upcast to a Rectangle, then Rectangle’s
version will get called instead.

Rectangle& r = t; // upcast
r.getArea(); // 6 (2*3) calls Rectangle's version

That is because the redefined method has only hidden the inherited
method. This means that Triangle’s implementation is redefined
downward in the class hierarchy to any child classes of Triangle, but not
upward to the base class.

Overriding Derived Members

In order to redefine a method upward in the class hierarchy—what is
called overriding—the method needs to be declared with the virtual
modifier in the base class. This modifier allows the method to be
overridden in derived classes.

class Rectangle
{
public:
int x, y;
virtual int getArea() { return x *y; }

s

Calling the getArea method from Rectangle’s interface will now
invoke Triangle’s implementation. This is called polymorphism—when
a method call causes a different method to be executed depending on the

94

CHAPTER 15 OVERRIDING

type of object that invokes the method. Note that polymorphism requires
the use of references or pointers.

Triangle t { 2,3 };
Rectangle& r = t;
r.getArea(); // 3 (2*3/2) calls Triangle's version

C++11 added the override specifier, which indicates that a method is
intended to replace an inherited method. Using this specifier allows the
compiler to check that there is a virtual method with that same signature.
This prevents the possibility of accidentally creating a new virtual method
in a derived class. It is recommended to always include this specifier when
overriding methods.

class Triangle : public Rectangle
{
public:
virtual double getArea() override { return x *y / 2; }

b

Another specifier introduced in C++11 is final. This specifier prevents
avirtual method from being overridden in derived classes. It also prevents
derived classes from using that same method signature.

class Base
{
virtual void foo() final {}
};
class Derived : public Base
{
void foo() {} // error: Base::foo marked as final
};

95

CHAPTER 15 OVERRIDING

The final specifier can also be applied to a class to prevent any class
from inheriting it.

class B final {};
class D : B {}; // error: B marked as final

Base Class Scoping

It is still possible to access a redefined method from a derived class by
typing the class name followed by the scope resolution operator. This
is called base class scoping and can be used to allow access to redefined
methods that are any number of levels deep in the class hierarchy.

class Triangle : public Rectangle
{
public:
Triangle(int a, int b) { x =a; y =b; }
int getArea() override { return Rectangle::getArea() / 2; }

};

Pure Virtual Functions

Sometimes a base class knows that all derived classes must implement

a certain method, but the base class cannot provide a default
implementation for that method. The base class can then declare the
method as a pure virtual function, by assigning it the value zero, in order to
force deriving classes to implement this method.

class Shape

{
public:
virtual double getArea() = 0; // pure virtual function

};

96

CHAPTER 15 OVERRIDING

A class with one or more pure virtual functions is called an abstract
class since it is incomplete and therefore cannot be instantiated. Abstract
classes are mainly used for upcasting, so that deriving classes can use its
interface through a pointer or reference type.

#include <iostream>
class Rectangle : public Shape
{
public:
int x =1, y = 2;
virtual int getArea() override { return x * y; }

s

void printArea(Shaped s) {
std::cout << s.getArea();

}

int main()

{
Rectangle r;
printArea(); // "2"

}

A class consisting of only pure virtual functions is known as an
interface. Such a class is functionally the same as an interface in other
languages such as C# or Java.

97

CHAPTER 16

Access Levels

Every class member has an accessibility level that determines where the
member will be visible. There are three of them available in C++: public,
protected, and private. The default access level for class members is
private. To change the access level for a section of a class, an access
modifier is used, followed by a colon. Every field or method that comes
after this label will have the specified access level, until another access
level is set or the class declaration ends.

class MyClass
{

int myPrivate;

public:

int myPublic;

void publicMethod();
b5

Private Access

All members regardless of their access level are accessible in the class in
which they are declared, which is called the enclosing class. This is the
only place where private members can be accessed.

© Mikael Olsson 2020
M. Olsson, C++20 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5995-5_16

https://doi.org/10.1007/978-1-4842-5995-5_16#DOI

CHAPTER 16 ACCESS LEVELS

class MyClass
{

// Unrestricted access
public: int myPublic;

// Defining or derived class only
protected: int myProtected;

// Defining class only
private: int myPrivate;

void test()

{
myPublic = 0; // allowed

myProtected = 0; // allowed
myPrivate = 0; // allowed

}
b

Protected Access

A protected member can also be accessed from inside a derived class, but
it cannot be reached from an unrelated class.

class MyChild : public MyClass

{
void test()
{
myPublic = 0; // allowed
myProtected = 0; // allowed
myPrivate = 0; // inaccessible
}
};

100

CHAPTER 16 ACCESS LEVELS

Public Access

Public access gives unrestricted access from anywhere in the code.

class OtherClass

{
void test(MyClass& c)

{
c.myPublic = 0; // allowed
c.myProtected = 0; // inaccessible
c.myPrivate = 0; // inaccessible

}
};

Access Level Guideline

As a guideline, when choosing an access level, it is generally best to use the
most restrictive level possible. This is because the more places a member
can be accessed, the more places it can be accessed incorrectly, which
makes the code harder to debug. Using restrictive access levels will also
make it easier to modify the class without breaking the code for any other
programmers using that class.

When coding in the real world, fields should always be private and
only exposed through public or protected getter and setter methods. This
makes it easier to ensure that fields are accessed correctly, as the setter
can check that the assigned value is valid for the specific field. By leaving
out either the getter or setter method, a field may also be restricted to only
write or read access from outside the class.

101

CHAPTER 16 ACCESS LEVELS

class Person

{

private:
int age;

public:
// Setter
void setAge(int a)
{
if (age > 200) age = 200;
else if (age < 0) age = 0;
else age = a;
}
// Getter
int getAge()
{
return age;
}
};

Friend Classes and Functions

A class can be allowed to access the private and protected members of
another class by declaring that class a friend. This is done by using the
friend modifier. The friend is allowed to access all members in the class
where the friend is defined, but not the other way around.

class MyClass
{

int myPrivate;

102

CHAPTER 16 ACCESS LEVELS

// Give OtherClass access
friend class OtherClass;

s

class OtherClass

{
void test(MyClass& c) {

c.myPrivate = 0; // allowed

}
};

Likewise, a method of another class may be marked as a friend to allow
it to access all members in the defining class.

class MyClass;
class OtherClass

{
public:
void test(MyClass& c);
void test2(MyClass& c);
b
class MyClass
{

int myPrivate;
friend void OtherClass::test(MyClass8);
};
void OtherClass::test(MyClass& c) {
c.myPrivate = 0; // allowed

}

void OtherClass::test2(MyClass& c) {
c.myPrivate = 0; // not allowed

}

103

CHAPTER 16 ACCESS LEVELS

A global function can also be declared as a friend to a class in order to
gain the same level of access.

class MyClass
{

int myPrivate;

// Give myFriend access
friend void myFriend(MyClass& c);

b

void myFriend(MyClass& c) {
c.myPrivate = 0; // allowed

}

Public, Protected, and Private Inheritance

When a class is inherited in C++, it is possible to change the access level
of the inherited members. Public inheritance allows all members to keep
their original access level. Protected inheritance reduces the access of
public members to protected. Private inheritance restricts all inherited
members to private access.

class MyChild : private MyClass

{
// myPublic is private

// myProtected is private
// myPrivate is private

};

Private is the default inheritance level, although public inheritance is
the one that is nearly always used.

104

CHAPTER 17

Static

The static keyword is used to create class members that exist in only

one copy, which belongs to the class itself. These members are shared
among all instances of the class. This is different from instance (non-static)
members, which are created as new copies for each new object.

Static Fields

A static field (class field) is initialized outside of the class declaration. This
initialization will take place only once, and the static field will then remain
initialized throughout the life of the application.

class MyCircle

{

public:
double r; // instance field (one per object)
static double pi; // static field (only one copy)

b5
double MyCircle::pi = 3.14159;

To access a static member from outside the class, the name of the class
is used followed by the scope resolution operator and the static member’s
name. This means that there is no need to create an instance of a class in
order to access its static members.

© Mikael Olsson 2020 105
M. Olsson, C++20 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5995-5_17

https://doi.org/10.1007/978-1-4842-5995-5_17#DOI

CHAPTER 17 STATIC

int main()
{

double p = MyCircle::pi;
}

There are two exceptions to the rule that all fields must be initialized
outside of the class. First exception is if the static field is of an integral
or enum type and it is declared as a constant, using the const modifier.
Second exception is if the field uses the inline modifier, a feature which
was introduced in C++17.

class MyClass

{
static inline double myDouble = 1.23;
static const int myInt = 1;

};

Static Methods

In addition to fields, methods can also be declared as static, in which
case they can also be called without having to create an instance of the
class. However, because a static method is not part of any instance, it
cannot use instance members as it does not have an implicit this pointer.
Methods should therefore only be declared static if they perform a
generic function that is independent of any instance variables. Instance
methods, in contrast to static methods, can use both static and instance

members.

class MyCircle

{
public:
double r;
static inline double pi = 3.14159;

106

CHAPTER 17 STATIC

double getArea() { return pi * r * r; }
static double newArea(double a) { return pi * a * a; }

s

int main()

{

double a = MyCircle::newArea(1);

}

Static Local Variables

Local variables inside a function can be declared as static to make the
function remember the variable for the lifetime of the application. A static
local variable is only initialized once when execution first reaches the
declaration, and that declaration is then ignored every subsequent time
the execution passes through.

void myFunc()

{

static int count = 0; // holds # of calls to function
count++;

}

Static Global Variables

One last place where the static keyword can be applied is to global
variables. This will limit the accessibility of the variable to only the current
source file and can therefore be used to help avoid naming conflicts.

// Only visible within this source file
static int myGlobal;

107

CHAPTER 17 STATIC

This application of static is seldom used. The preferred way to limit
code entities to a single source file is to enclose them in an unnamed
namespace.

namespace

{

// Only visible within this source file
int myGlobal;

}

108

CHAPTER 18

Enum Types

An enum is a user-defined type consisting of a fixed list of named
constants. In the following example, the enumeration type is called Color,
and it contains three constants: red, green, and blue.

enum class Color { red, green, blue };

The Color type can be used to create variables that may hold one of
these constant values. Enum class constants must be prefixed with the

enum name as seen here.

int main()

{

Color c = Color::red;

Enum Example

The switch statement provides a good example of when enumerations can
be useful. Compared to using ordinary constants, the enumeration has the
advantage in that it allows the programmer to clearly specify what values a
variable should be allowed to contain.

© Mikael Olsson 2020 109
M. Olsson, C++20 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5995-5_18

https://doi.org/10.1007/978-1-4842-5995-5_18#DOI

CHAPTER 18 ENUM TYPES

switch(c)

{
case Color::red: break;
case Color::green: break;
case Color::blue: break;

Enum Constant Values

Usually, there is no need to know the underlying values that the constants
represent, but in some cases, it can be useful. By default, the first constant
in the enum list has the value zero, and each successive constant is one
value higher.

enum class Color

{
red, // 0
green, // 1
blue // 2
15

These default values can be overridden by assigning values to the
constants. The values can be computed and do not have to be unique. A
constant that is not assigned a value will have a value one higher than the
previous assigned enum value.

enum class Color
{
red =5, // 5
green = red, // 5
blue = green + 2, // 7
yellow // 8

};

110

CHAPTER 18 ENUM TYPES

Enum Scope

An enum does not have to be declared globally. It can also be placed
within a class as a class member or locally within a function.

class MyClass
{

enum class Color { red, green, blue };
};

void myFunction()

{

enum class Color { red, green, blue };

}

Weakly Typed Enums

The enum class type described so far was introduced in C++11 to provide
a safer alternative to the weakly typed enum inherited from C. This legacy
enum is defined in the same way as the enum class, but without the class
keyword.

// Weakly typed enum
enum Speed

{

fast,

normal,

slow

};

With this weakly typed enum, the specified constants do not belong
within the scope of the enum name. Such an enum constant can therefore
be referenced even without qualifying it with the enum name.

111

CHAPTER 18 ENUM TYPES

Speed s1 = fast;

Speed s2 = Speed::normal;

It is preferable to use enum classes rather than weakly typed enums
because of their type safety and because their constants are scoped to the
enum name. Since enum classes are strongly typed, they will not implicitly
convert to integer types.

// Weakly typed enum

enum Speed { fast, normal, slow };
Speed s = fast;

if (s == fast) {} // ok

if (s ==0) {} // ok

// Strongly typed enum

enum class Color { red, green, blue };
Color c = Color::red;

if (c == Color::red) {} // ok

if (c == 0) {} // error

C++20 added the ability to import an enum class into the local scope
with a using statement. This avoids needless repetition of the enum class
name, by making the enum class members accessible like regular enum
members within a specific scope. Be sure not to import enums into a too

large scope, else the main advantage of using strongly typed enums is lost.

#include <iostream>
using namespace std;
enum class Color { red, green, blue };
void colorPrint(Color c)
{
// Import enum members to local scope
using enum Color;
switch (c)

112

CHAPTER 18 ENUM TYPES

case red: cout << "red";
case green: cout << "green";
case blue: cout << "blue";

Enum Constant Type

The underlying integer type of the regular enum is not defined by the
standard and may vary between implementations. In contrast, an enum
class always uses the int type by default. For both types of enums, the type
can be overridden to another integer type, as in the following example.

// Enum with constant type set to unsigned short
enum class MyEnum : unsigned short {};

113

CHAPTER 19

Structs and Unions

Structs

A struct in C++ is equivalent to a class, except that members of a struct
default to public access, instead of private access as in classes. By
convention, structs are used instead of classes to represent simple data
structures that mainly contain public fields.

struct Point

{
int x, y; // public

};
class Point

{

int x, y; // private

b

Struct Initialization

To declare objects of a struct, you use the normal declaration syntax.

Point p, q; // object declarations

© Mikael Olsson 2020 115
M. Olsson, C++20 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5995-5_19

https://doi.org/10.1007/978-1-4842-5995-5_19#DOI

CHAPTER 19 STRUCTS AND UNIONS

Another alternative syntax sometimes used with structs (and classes)
is to declare the objects when the struct is defined by placing the object
names before the final semicolon. This position is known as the declarator
list and can contain a comma-separated sequence of declarators.

struct Point
{
int x, y;
} r, s; // object declarations

When using object declarations, the name of the struct may optionally
be omitted. This is called an anonymous struct.

struct
{
int x, y;

}r,s;

Aggregate initialization is also commonly used with structs, since this
syntactical shortcut only works for the aggregate types: array, class, struct,
and union. For this initialization to work, the type must not include any
private or protected non-static fields.

int main()

{
// Aggregate initialization
Point p ={ 2, 3 };

}

For compilers supporting C++11 or later versions, the uniform
initialization syntax is preferred, as it removes the distinction between
initialization of aggregate and non-aggregate types.

116

CHAPTER 19 STRUCTS AND UNIONS

int main()

{
// Uniform initialization
Point q { 2, 3 };

}

Union

Although similar to struct, the union type is different in that all fields share
the same memory position. Therefore, the size of a union is the size of

the largest field it contains. For example, in the following case, this is the
integer field, which is four bytes large.

union Mix

{
char ¢; // 1 byte

short s; // 2 bytes
int i; // 4 bytes
}om;

This means that the union type can be used to store only one value at a
time, because changing one field will overwrite the values of the others.

int main()

{

OxFF; // set first 8 bits
0; // reset first 16 bits

The benefit of a union, in addition to efficient memory usage, is that
it provides multiple ways of viewing the same memory location. For
example, the following union has three data members that allow access to
the same group of four bytes in multiple ways.

117

CHAPTER 19 STRUCTS AND UNIONS

union Mix

{
char c[4]; // 4 bytes
struct { short hi, lo; } s; // 4 bytes
int i; // 4 bytes

}om;

The integer field will access all four bytes at once. With the struct, two
bytes can be viewed at a time, and by using the char array, each byte can
be referenced individually.

int main()

{
// Set i = 11111111 00000000 11110000 00001111
m.i=0xFFOOFOOF;
m.s.lo; // 11111111 00000000

m.s.hi; // 11110000 00001111
m.c[3]; // 11111111

m.c[2]; // 00000000

m.c[1]; // 11110000

m.c[o]; // 00001111

Anonymous Union

A union type can be declared without a name for the type or the object.
This is called an anonymous union and defines an unnamed object whose
members can be accessed directly from the scope where the object is
declared. Unlike regular unions, an anonymous union cannot contain
methods or nonpublic members.

118

CHAPTER 19 STRUCTS AND UNIONS

int main()

{

union { short s; }; // defines an unnamed union object
s = 15;

An anonymous union that is declared globally must be made static.

static union {};

119

CHAPTER 20

Operator Overloading

Operator overloading allows operators to be redefined and used where
one or both of the operands are of a user-defined class. When it’s done
correctly, this can simplify the code and make user-defined types as easy to
use as the primitive types.

In the following example, there is a class called MyNum with an integer
field and a constructor for setting that field. The class also has a method
that adds two MyNum objects and returns the result as a new object.

class MyNum
{
int val;
public:
MyNum(int i) : val(i) {}

MyNum add(const MyNum 8a) const {
return MyNum(val + a.val);
}
};

As seen here, two MyNum instances can be added together using this
method.

MyNum a = MyNum(10),
b = MyNum(5);
MyNum c = a.add(b);
© Mikael Olsson 2020 121

M. Olsson, C++20 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5995-5_20

https://doi.org/10.1007/978-1-4842-5995-5_20#DOI

CHAPTER 20 OPERATOR OVERLOADING

Binary Operator Overloading

What operator overloading does is simplify this syntax and thereby provide
a more intuitive interface for the class. To convert the add method to an
overload for the addition sign, replace the name of the method with the
operator keyword followed by the operator that is to be overloaded. The
whitespace between the keyword and the operator can optionally be left
out.

MyNum operator + (const MyNum &a) const {
return MyNum(val + a.val);

}

Since the class now overloads the addition sign, this operator can be
used to perform the needed calculation.

MyNum ¢ = a + b;

Keep in mind that the operator is simply an alternative syntax for
calling the actual method.

MyNum d = a.operator+(b);

Unary Operator Overloading

Addition is a binary operator, because it takes two operands. The first
operand is the object from which the method is called, and the second
operand is that which is passed to the method. When overloading a unary
operator, such as prefix increment (++), there is no need for a method
parameter since these operators only affect the object from which they are
called. With unary operators, a reference of the same type as the object
should always be returned. This is because, when using a unary operator
on an object, programmers expect the result to return the same object
and not just a copy. On the other hand, when using a binary operator,

122

CHAPTER 20 OPERATOR OVERLOADING

programmers expect a copy of the result to be returned, and therefore
return by value should be used.

// Increment prefix
MyNum& operator++()
{

++val;

return *this;

}

Not all unary operators should return by reference. The two postfix
operators—post-increment and post-decrement—should instead return
by value, because the postfix operations are expected to return the state of
the object before the increment or decrement occurs. Note that the postfix
operators have an unused int parameter specified. This parameter is used
to distinguish them from the prefix operators.

// Increment postfix
MyNum operator++(int)
{
MyNum t = MyNum(val);
++val;
return t;

}

Comparison Operator Overloading

The three-way comparison operator (<=>) was added in C++20 to provide
a simple way to overload the four comparison operators ¢, >, <=, and >=.
When used on a whole number type, as in the following example, the
operator returns an object representing either equal, less, or greater.

123

CHAPTER 20 OPERATOR OVERLOADING

#include <compare> // std::strong_ordering
class Length

{
public:
int i;
std::strong_ordering operator<=>(const Length& right) const {
return i <=> right.i;
}
};

With this operator defined, the compiler automatically generates all
four comparison operators based on this method.

int main()

{
Length n1 { 1}, n2 { 2 };
bool b = n1 < n2; // true

}

The following example illustrates how the resulting object from the
three-way comparison operator can be used.

#include <compare>
#include <iostream>

int main()
{
int x = 5;
auto result = x <=> 0;
if (result > 0) { // true
cout << "5 > 0";
}
}

124

CHAPTER 20 OPERATOR OVERLOADING

Another feature of C++20 is that the compiler will generate the
inequality operator (! =) if the equality operator (==) is defined. As to
be expected, the inequality operator returns the inverse of the equality
operator.

class Length
{
public:
int i;
bool operator==(const Length& other) const {
return i == other.i;

}
};

int main()

{
Length m1 { 2 }, m2 { 2 };
bool b1 = m1 == m2; // false
bool b2 = m1 != m2; // true

}

Any of the four comparison operators (<, >, <=, and >=), as well as equal
to (==) and the three-way comparison operator (<=>), can be explicitly
defaulted. This will make the compiler automatically implement the
specified comparison method, which will compare the fields of the class
in the order in which they are defined, stopping early when a non-equal
result is found. The return type, the type of ordering, is automatically
deduced based on the return type of the three-way comparison operator.

If the operator is defaulted, as seen in the following, the compiler will
generate all six of the comparison operators (<, >, <=, >=, ==, and !=).

125

CHAPTER 20 OPERATOR OVERLOADING

#include <compare>

class Point

{
int x, y;
public:

auto operator<=>(const Point8) const = default;

};

int main()

{

Point p1 { 1, 10 }, p2 { 2, 0 };
bool b = p1 < p2; // true (pl.x < p2.x)

}

Overloadable Operators

C++ allows overloading almost all operators in the language. As can be

seen in the following table, most operators are of the binary type. Only a

few of them are unary, and some special operators cannot be categorized

as either. There are also some operators that cannot be overloaded at all.

Binary Operators Unary Operators
+-*%/% + -~ &K 4 -
= 4= -= ¥= [= 9= Special operators

= M= |= <<= »>= () [] delete new

& | ~ << >> && ||

-> _>* ,

Not overloadable

JKouo 70 # ## sizeof typeid alignof
noexcept

126

CHAPTER 21

Custom Conversions

Custom type conversions can be defined to allow an object to be
constructed from or converted to another type. In the following example,
there is a class called MyNum with a single integer field. With conversion
constructors, it is possible to allow integer types to be implicitly converted
to this object’s type.

class MyNum
{

int value;

};

Implicit Conversion Constructor

For this type of conversion to work, a constructor needs to be added that
takes a single parameter of the desired type, in this case an int.

class MyNum
{
public:
MyNum(int i) : value(i) {}
private:
int value;

};

© Mikael Olsson 2020 127
M. Olsson, C++20 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5995-5_21

https://doi.org/10.1007/978-1-4842-5995-5_21#DOI

CHAPTER 21 CUSTOM CONVERSIONS

When an integer is assigned to an object of MyNum type, this
constructor will implicitly be called to perform the type conversion.

MyNum a = 5; // implicit conversion

This means that any constructor that takes exactly one argument can
be used both for constructing objects and for performing implicit type
conversions to that object type.

MyNum b(5); // object construction
MyNum ¢ = 5; // implicit conversion

These conversions will work not only for the specific parameter type
but also for any type that can be implicitly converted to it. For example, a
char can be implicitly converted to an int and can therefore be implicitly
changed into a MyNum object as well.

MyNum d = 'H'; // implicit conversion (char->int->MyNum)

When using braced initializers, even constructors with multiple
parameters can be converting constructors. In the following example, an
integer list is implicitly converted to a Point.

class Point

{
public:

Point(int x, int y) : x(x), y(y) {}
private:
int x, y;

};

int main()

{
Point p = { 1,2 };

}

128

CHAPTER 21 CUSTOM CONVERSIONS

Explicit Conversion Constructor

To help prevent potentially unintended object type conversions, it is
possible to disable the implicit use of converting constructors. The
explicit constructor modifier is then applied, which specifies that the
constructor may only be used for object construction and not for type

conversion.

class MyNum
{
public:
int value;
explicit MyNum(int i) { value = i; }
};

The explicit constructor syntax or an explicit conversion must be used
when creating an object of this type.

MyNum a = 5; // error

MyNum b(5); // allowed

MyNum c = MyNum(5); // allowed

MyNum d = static_cast<MyNum>(5); // allowed

Conversion Operators

Custom conversion operators allow conversions to be specified in the
other direction: from the object’s type to another type. The operator
keyword is then used, followed by the target type, a set of parentheses,
and a method body. The body returns a value of the target type, in this
case int.

129

CHAPTER 21 CUSTOM CONVERSIONS

class MyNum
{
public:
int value;
operator int() { return value; }

b

When objects of this class are evaluated in an int context, this
conversion operator will be called to perform the type conversion.

MyNum a { 5 };
inti=a; //5

Explicit Conversion Operators

The C++11 standard added explicit conversion operators to the language.
Similar to explicit constructors, the inclusion of the explicit keyword
prevents the conversion operator from being implicitly called.

class True
{
public:
explicit operator bool() const {
return true;
}
};

This class provides a Boolean value that prevents its objects from
mistakenly being used in a mathematical context through the bool
conversion operator. In the next example, the first comparison results in a
compilation error since the bool conversion operator cannot be implicitly
called. The second comparison is allowed because the conversion
operator is explicitly called through the type cast.

130

CHAPTER 21 CUSTOM CONVERSIONS

True a, b;
if (a == b) {} // error
if (static_cast<bool>(a) == static_cast<bool>(b)) {} // allowed

Bear in mind that contexts requiring a bool value, such as the
condition for an if statement, count as explicit conversions.

if (a) {} // allowed

131

CHAPTER 22

Namespaces

Namespaces are used to avoid naming conflicts by allowing entities, such
as classes and functions, to be grouped under a separate scope. In the
following code, there are two classes that belong to the global scope. Since
both classes share the same name and scope, the code will not compile.

class Table {};
class Table {}; // error: class type redefinition

One way to solve this problem is to rename one of the conflicting
classes. Another solution is to group one or both of them under a different
namespace by enclosing each in a namespace block. The classes then
belong to different scopes and so will no longer cause a naming conflict.

namespace furniture

{
class Table {};

}

namespace html

{
class Table {};

}

© Mikael Olsson 2020 133
M. Olsson, C++20 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5995-5_22

https://doi.org/10.1007/978-1-4842-5995-5_22#DOI

CHAPTER 22 NAMESPACES

Accessing Namespace Members

To access a member of a namespace from outside that namespace, you
must specify the member’s fully qualified name. This means that the
member name has to be prefixed with the namespace it belongs to,
followed by the scope resolution operator.

int main()

{
furniture::Table fTable;

html::Table hTable;
}

Nesting Namespaces

It is possible to nest namespaces any number of levels deep to further
structure code entities.

namespace furniture

{

namespace wood { class Table {}; }

}

As of C++17, the nesting of namespaces can be shortened in the
following manner.

namespace furniture::wood { class Table {}; }

Ensure that the nested namespace members are qualified with the full

namespace hierarchy when using them from another namespace.

furniture::wood::Table fTable;

134

CHAPTER 22 NAMESPACES

Importing Namespaces

To avoid having to specify the namespace every time one of its members is
used, the namespace can be imported into the global or local scope with
the help of a using directive. This directive includes the using namespace
keywords followed by the namespace to be imported. It can be placed
either locally or globally. Locally, the directive will only be in scope until
the end of the code block, while at the global scope, it will apply to the
whole source file following its declaration.

using namespace html; // global namespace import

int main()
{

using namespace html; // local namespace import

}

Keep in mind that importing a namespace into the global scope
defeats the main purpose of using namespaces, which is to avoid naming
conflicts. Such conflicts, however, are mainly an issue in projects that use
several independently developed code libraries.

Namespace Member Import

If you want to avoid both typing the fully qualified name and importing
the whole namespace, there is a third alternative available. That is to only
import the specific members that are needed from the namespace. This
is done by declaring one member at a time in a using declaration, which
consists of the using keyword followed by the fully qualified namespace
member to be imported.

using html::Table; // import a single namespace member

135

CHAPTER 22 NAMESPACES

Namespace Alias

Another way to shorten the fully qualified name is to create a namespace
alias. The namespace keyword is then used followed by an alias name, to
which the fully qualified namespace is assigned.

namespace myAlias = furniture::wood; // namespace alias

This alias can then be used instead of the namespace qualifier that it
represents.

myAlias::Table fTable;

Note that namespace aliases, as well as using directives and using
declarations, may be declared either globally or locally.

Type Alias

Aliases can also be created for types. A type alias is defined with a using
statement. With this syntax, the keyword using is followed by the alias
name and then assigned the type.

using MyType = furniture::wood::Table;
The alias can then be used as a synonym for the specified type.
MyType t;

Before using statements were introduced in C++11, type aliases
were defined with typedef. In such a statement, the typedef keyword is
followed by the type name and then the alias name. Both methods for
declaring aliases are equivalent, but the using statement is preferred as it is
considered easier to read than the typedef statement.

typedef furniture::wood::Table MyType;

136

CHAPTER 22 NAMESPACES

Aliases should be used with care since they may obfuscate the code.
However, if used properly, a type alias can simplify a long or confusing type
name. Another function they provide is the ability to change the definition
of a type from a single location.

Including Namespace Members

Keep in mind that in C++ merely importing a namespace does not provide
access to the members included in that namespace. In order to access the
namespace members, the prototypes also have to be made available, for
example, by using the appropriate #include directives.

// Include input/output prototypes
#include <iostream>

// Import standard library namespace to global scope
using namespace std;

137

CHAPTER 23

Constants

A constant is a variable that has a value that cannot be changed once the
constant has been assigned. This allows the compiler to enforce that the
variable’s value is not changed anywhere in the code by mistake.

Constant Variables

A variable can be made into a constant by adding the const keyword
either before or after the data type. This modifier means that the variable
becomes read-only, and it must therefore be assigned a value at the same
time as it is declared. Attempting to change the value anywhere else results
in a compile-time error.

const int var = 5;
int const var2 = 10; // alternative order

Constant Pointers

When it comes to pointers, const can be used in two ways. First, the
pointer can be made constant, which means that it cannot be changed to
point to another location.

int myPointee;
int* const p = &myPointee; // pointer constant

© Mikael Olsson 2020 139
M. Olsson, C++20 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5995-5_23

https://doi.org/10.1007/978-1-4842-5995-5_23#DOI

CHAPTER 23 CONSTANTS

Second, the pointee can be declared constant. This means that the
variable pointed to cannot be modified through this pointer.

const int* q = &myPointee; // pointee constant

It is possible to declare both the pointer and the pointee as constant
to make them both read-only. Reading the type from right to left makes it

easier to understand, so in this case: r is a const pointer to a const int.
const int* const r = &myPointee; // pointer & pointee constant

Note that constant variables may not be pointed to by a non-constant
pointer. This prevents programmers from accidentally rewriting a constant
variable using a pointer.

const int myConst = 3;
int* s = 8&myConst; // error: const to non-const assignment

Constant References

References can be declared constant in the same way as pointers. However,
since reseating a reference is never allowed, declaring the reference as
const would be redundant. It only makes sense to protect the referee from
changing.

const int& y = myPointee; // referee constant

Constant Objects

Just as with variables, pointers, and references, objects can also be
declared constant. Take the following class as an example.

140

CHAPTER 23 CONSTANTS

class MyClass
{
public:
int x;
void setX(int a) { x = a; }
};

A constant object of this class cannot be reassigned to another
instance. The const-ness of an object also affects its fields and prevents
them from being changed.

const MyClass a, b;
a =b; // error: object is const
a.x = 10; // error: object field is const

Constant Methods

Because of this last restriction, a non-constant method cannot be called on
a constant object since such methods are allowed to change the object’s
fields.

a.setX(2); // error: cannot call non-const method

They may only call constant methods, which are methods that are
marked with the const modifier before the method body.

int getX() const { return x; } // constant method

This const modifier means that the method is not allowed to modify
the state of the object and can therefore safely be called from a constant
object of the class. More specifically, the const modifier applies to the this
pointer that is implicitly passed to the method. This effectively restricts
the method from modifying the object’s fields or calling any non-constant
methods in the class.

141

CHAPTER 23 CONSTANTS

Constant Return Type and Parameters

In addition to making a method constant, the return type and method
parameters may also be made read-only. For example, if a field is returned
by reference instead of by value from a constant method, it is important
that it is returned as a constant in order to maintain the const-ness of the
object. Not all C++ compilers will be able to catch this subtle mistake.

const int& getX() const { return x; }

Objects should always be passed to and returned from functions and
methods by const reference. This improves performance as it prevents
unnecessary copies from being made.

Constant Fields

Both static and instance fields in a class can be declared constant. A
constant instance field must be assigned its value using either in-class
initializers or the constructor initialization list.

class MyClass

{
public:
int a;
const int b;
const int c = 3;
MyClass() : a(1), b(2) {}
};

A constant static field has to be defined outside of the class declaration, in
the same way as non-constant static fields. The exception to this is when the
constant static field is either inline or of an integer data type. Such a field may
also be initialized within the class at the same time as the field is declared.

142

CHAPTER 23 CONSTANTS

class MyClass

{

public:
const static double c1;
const inline static double c2 = 1.23;
const static int c3 = 5;

}s

const double MyClass::c1 = 1.23;

Constant Expressions

The keyword constexpr was introduced in C++11 to indicate a constant
expression. Like const it can be applied to variables to make them
constant, causing a compilation error if any code attempts to modify the
value.

constexpr int myConst = 5;
myConst = 3; // error: variable is const

Unlike const variables, which may be assigned at runtime, a constant
expression variable will always be computed at compile time. Such a
variable can therefore be used whenever a compile-time constant is
needed, such as in array or enum declarations. Prior to C++11, this was
only allowed for constant integer and enumeration types.

int myArray[myConst + 1]; // allowed

Functions and class constructors may also be defined as constant
expressions, which is not allowed with const. Using constexpr on a
function limits what the function is allowed to do. In short, the function
can only reference other constexpr functions and global constexpr
variables.

143

CHAPTER 23 CONSTANTS

constexpr int getDefaultSize(int multiplier)
{

return 3 * multiplier;

}

The return value for a constexpr function is guaranteed to be
evaluated at compile time only when its arguments are constant
expressions, and the return value is used where a compile-time constant is
necessary.

// Compile-time evaluation
int myArray[getDefaultSize(10)];

If the function is called without constant arguments, it returns a value
at runtime just like a regular function.

// Runtime evaluation
int mul = 10;
int size = getDefaultSize(mul);

As of C++17, alambda expression is implicitly constexpr if it satisfies
the conditions of a constexpr function. Such a lambda may therefore also

be used in a compile-time context.

auto answer = [](int i) { return 10+i; };
constexpr int reply = answer(32); // "42"

Constructors can be declared with constexpr, to construct a constant
expression object. Such a constructor must be trivial.

class Circle

{
public:
int r;
constexpr Circle(int x) : r(x) {}

}s

144

CHAPTER 23 CONSTANTS

When called with a constant expression argument, the result will be
a compile-time generated object with read-only fields. With any other
arguments, it will behave as an ordinary constructor.

// Compile-time object
constexpr Circle c1(5);

// Runtime object
int x = 5;
Circle c2(x);

One additional use for constexpr was added in C++17: the ability
to evaluate conditional statements at compile time. This feature allows
branches of an if statement to be discarded at compile time based on a
constant condition, potentially reducing compilation time as well as the
size of the compiled file.

constexpr int debug = 0;
if constexpr(debug) {
// Discarded if condition is false

Up until C++17, virtual functions could not be defined as constexpr.
This restriction was lifted in C++20, allowing such virtual functions to be
called within a constant expression. Note that a constexpr virtual function
can override a non-constexpr virtual function, as seen in the following
example.

struct Parent {
virtual int num() const = 0;

b

struct Child: public Parent {
constexpr virtual int num() const { return 3; }

};

145

CHAPTER 23 CONSTANTS

constexpr Child c;
static_assert(c.num() == 3, "num is not 3");

The static_assert declaration seen here is used to make an assertion at
compile time. If the assertion fails, which occurs when the condition evaluates
to false, the compiler halts compilation and displays the error message.

Immediate Functions

As mentioned previously, the return value of a constexpr function is not
always required to be evaluated at compile time. For such a purpose,
C++20 introduced immediate functions. An immediate function is defined
using the consteval keyword, which designates that the function must
always return a compile-time constant. Such a function can be used in a
context requiring a constant expression, as seen in the following example.

consteval int doubleIt(int i) {
return 2*i;

}

constexpr int a = doubleIt(10); // ok

int x = 10;

int b = doubleIt(x); // error: call does not produce a constant

Constant Guideline

In general, it is a good idea to always declare variables as constants if
they do not need to be modified. This ensures that the variables are not
changed anywhere in the program by mistake, which in turn will help
prevent bugs. There is also a performance gain by allowing the compiler
the opportunity to hard-code constant expressions into the compiled
program. This allows the expression to be evaluated only once—during
compilation—rather than every time the program runs.

146

CHAPTER 24

Preprocessor

The preprocessor is a text substitution tool that modifies the source code

before the compilation takes place. This modification is done according to the

preprocessor directives that are included in the source files. The directives are

easily distinguished from other programming code in that they start with a

hash sign (#). They must always appear as the first non-whitespace character

on a line, and they do not end with a semicolon. The following table shows

the preprocessor directives available in C++ along with their functions.

Directive Description
#include File include
#define Macro definition
#undef Macro undefined
#ifdef If macro defined
#ifndef If macro not defined
#if If

#elif Else if

#else Else

#endif End if

#line Set line number
#error Abort compilation
#pragma Set compiler option

© Mikael Olsson 2020

147

M. Olsson, C++20 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5995-5_24

https://doi.org/10.1007/978-1-4842-5995-5_24#DOI

CHAPTER 24 PREPROCESSOR

Including Source Files

The #include directive inserts the contents of a file into the current source
file. Its most common use is to include header files, both user-defined and
library ones. Library header files are enclosed between angle brackets (<>).
This tells the preprocessor to search for the header in the default directory
where it is configured to look for standard header files.

#include <iostream> // search library directory

Header files that you create for your own program are enclosed
within double quotes (""). The preprocessor will then search for the file
in the same directory as the current file. If the header is not found there,
the preprocessor will then search in the directories where it has been
configured to look for header files, and after that it will look in the default
folder for standard header files.

#include "MyFile.h" // search current, configured and default
directories

The double-quoted form can also be used to specify an absolute or
relative path to the file, although specifying paths like this is discouraged.

#include "C:\MyFile.h" // absolute path
#include "..\MyFile.h" // relative path

Define

Another important directive is #define, which is used to create compile-
time constants, also called macros. After this directive, the name of the
constant is specified followed by what it will be replaced by.

#define PI 3.14 // macro definition

148

CHAPTER 24 PREPROCESSOR

The preprocessor will go through and change any occurrences of this
constant with whatever comes after it in its definition until the end of the
line.

double d = PI; // d = 3.14

By convention, macros are named using uppercase letters with each
word separated by an underscore. That way they are easy to spot when
reading the source code.

Undefine

A #define directive should not be used to directly override a previously
defined macro. Doing so will produce a compiler warning. In order to
change a macro, it first needs to be undefined using the #undef directive.
Attempting to undefine a macro that is not currently defined will not
generate a warning.

#undef PI // undefine
#undef PI // allowed

Predefined Macros

There are a number of macros that are predefined by the compiler. To
distinguish them from user-defined macros, their names typically begin
and end with two underscores. The following table lists some of the more
useful predefined macros.

149

CHAPTER 24 PREPROCESSOR

Directive Description

_ FILE Name and path of the current source file
__LINE Current line number

_ DATE__ Compilation date in MMM DD YYYY format
__TIME__ Compilation time in HH:MM:SS format
__func__ Name of the current function; added in C++11

A common use for predefined macros is to provide debugging
information. To give an example, the following error message includes the

file name and line number where the message occurs.

cout << "Error in " << _ FILE__ << " at line " << __ LINE_;

Macro Functions

Macros can be made to take arguments. This allows them to define
compile-time functions. For example, the following macro function gives
the square of its argument.

#define SQUARE(x) ((x)*(x))

The macro function is called just as if it were a regular C++ function.
Keep in mind that for this kind of function to work, the arguments must be
known at compile time.

int x = SQUARE(2); // 4

Note the extra parentheses in the macro definition. They are used to
avoid problems with operator precedence. Without the parentheses, the
following example would give an incorrect result, as the multiplication
would then be carried out before the addition.

150

CHAPTER 24 PREPROCESSOR
#tdefine SQUARE(X) x*x

int main()
{

int x = SQUARE(2+1); // 1+1*1+1 = 3
}

To break a macro function across several lines, you use the backslash
character. This will escape the newline character that marks the end of a
preprocessor directive. For this to work, there must not be any whitespace
after the backslash.

#tdefine MAX(a,b) \
(a)>(b) 2\
(a): (b)

Although macros can be powerful, they tend to make the code more
difficult to read and debug. Macros should therefore only be used when
they are absolutely necessary and should always be kept short. C++ code—
such as constant variables, enum classes, and constexpr functions—can
often accomplish the same goal more efficiently and safely than #define
directives can.

#define DEBUG 0
const bool debug = 0;

#define FORWARD 1

#define STOP 0

#define BACKWARD -1

enum class dir { forward = 1, stop = 0, backward = -1 };

#define MAX(a,b) (a)>(b) ? (a): (b)
constexpr int max(int a, int b) { return a>b ? a:b; }

151

CHAPTER 24 PREPROCESSOR

Conditional Compilation

The directives used for conditional compilation can include or exclude
part of the source code if a certain condition is met. First, there is the #if
and #endif directives, which specify a section of code that will be included
only if the condition after the #if directive is true. Note that this condition

must evaluate to a constant expression.
#define DEBUG_LEVEL 3

#if DEBUG_LEVEL > 2
/] ...
#endif

Just as with the C++ if statement, any number of #elif (else if)
directives and one final #else directive can be included.

#if DEBUG_LEVEL > 2
/...

#elif DEBUG LEVEL ==
/! ...

#else

/...

#endif

Conditional compilation also provides a useful means of temporarily
commenting out large blocks of code for testing purposes. This often
cannot be done with the regular multiline comment since they cannot be
nested.

#if o
/* Removed from compilation */
#endif

152

CHAPTER 24 PREPROCESSOR

Compile if Defined

Sometimes, a section of code should be compiled only if a certain macro
has been defined, irrespective of its value. For this purpose, two special
operators can be used: defined and !defined (not defined).

#define DEBUG

#if defined DEBUG
/...

#elif !defined DEBUG
/...

#endif

The same effect can also be achieved using the directives #ifdef and
#ifndef, respectively. For instance, the #ifdef section is compiled only
if the specified macro has been previously defined. Note that a macro is
considered defined even if it has not been given a value.

#ifdef DEBUG
/...
#endif

#ifndef DEBUG
/] ...
#endif

Error

When the #error directive is encountered, the compilation is aborted. This
directive can be useful to determine whether a certain line of code is being
compiled. It can optionally take a parameter that specifies the description
of the generated compilation error.

#error Compilation aborted

153

CHAPTER 24 PREPROCESSOR

Line

A less commonly used directive is #1ine, which can change the line
number that is displayed when an error occurs during compilation.
Following this directive, the line number will as usual be increased by

one for each successive line. The directive can take an optional string
parameter that sets the file name that will be shown when an error occurs.

#line 5 "myapp.cpp"

Pragma

The last standard directive is #pragma, or pragmatic information. This
directive is used to specify options to the compiler, and as such, they are
vendor specific. To give an example, #pragma message can be used with
many compilers to output a string to the build window. Another common
argument for this directive is warning, which changes how the compiler
handles warnings.

// Show compiler message
#pragma message("Hello Compiler")

// Disable warning 4507
#pragma warning(disable : 4507)

Attributes

A new standardized syntax was introduced in C++11 for providing
compiler-specific information in the source code, so-called attributes.
Attributes are placed within double square brackets and may, depending
on the attribute, be applied to any code entities. To give an example, a

154

CHAPTER 24 PREPROCESSOR

standard attribute added in C++14 is [[deprecated]], which indicates that
the use of a code entity has become discouraged.

// Mark as deprecated
[[deprecated]] void foo() {}

This attribute allows the compiler to emit a warning whenever such an
entity is used. A message can be included in this warning to describe why
the entity has been deprecated.

[[deprecated("foo() is unsafe, use bar() instead")]]
void foo() {}

Another example is the [[noreturn]] attribute, which specifies to the
compiler that a function will not return to the calling function. This may
be the case for functions that loop forever, throw exceptions, or exit the
application.

[[noreturn]] void f()
{

exit(0); // terminate program

}

The compiler may use this attribute for making optimizations as well
as providing a warning that any statement following a call to this function
will be unreachable.

155

CHAPTER 25

Exception Handling

Exception handling allows developers to deal with unexpected situations
that may occur in a program.

Throwing Exceptions

When a function encounters a situation that it cannot recover from, it can
generate an exception to signal the caller that the function has failed. This
is done using the throw keyword followed by whatever it is the function
wants to signal. When this statement is reached, the function will stop
executing and the exception will propagate up to the caller where it can be
caught, using a try-catch statement.

double divide(double x, double y)

{
if (y == 0) throw 0;
return x / vy;

}

Try-Catch Statement

The try-catch statement consists of a try block containing code that
may cause exceptions and one or more catch clauses to handle them.
In the previous case, an integer is thrown so a catch block needs to be
included that handles this type of exception. The thrown exception will

© Mikael Olsson 2020 157
M. Olsson, C++20 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5995-5_25

https://doi.org/10.1007/978-1-4842-5995-5_25#DOI

CHAPTER 25 EXCEPTION HANDLING

get passed as an argument to this exception handler, where it can be used
to determine what has gone wrong with the function. Note that when the
exception has been handled, the execution will then continue running
after the try-catch blocks and not after the throw statement.

try {
divide(10,0);
}
catch(const int& e) {
cout << "Error code: " << e;

An exception handler can catch a thrown expression by value, by
reference, or by pointer. However, catching by value should be avoided
since this causes an extra copy to be made. Catching by const reference
is generally preferable. If the code in the try block can throw more types
of exceptions, then more catch clauses need to be added to handle them
as well. Keep in mind that only the handler that matches the thrown
expression will be executed, and the handlers are tried in the order they
appear in the code.

catch(const char& e) {
cout << "Error char: " << e;

To catch all types of exceptions, an ellipsis (. . .) can be used as the
parameter of catch. This default handler must be placed as the last catch
statement since no handler placed after it will ever be executed.

catch(...) { cout << "Error"; }

158

CHAPTER 25 EXCEPTION HANDLING

Rethrowing Exceptions

If an exception handler cannot recover from an exception, it can be
rethrown by using the throw keyword with no argument specified. This
will pass the exception up the call stack until another try-catch block is
encountered. Be careful however, because if an exception is never caught,

the program will terminate with a runtime error.

int main()
{

try {
try { throw 0; }

catch(...) { throw; } // rethrow exception
}

catch(...) { throw; } // runtime error

}

Noexcept Specifier

The noexcept specifier indicates that a function is intended not to throw
any exceptions. The main benefit of using noexcept is that it enables
certain compiler optimizations, because the specifier allows the program
to terminate without unwinding the call stack if for any reason an
exception still occurs.

void foo() noexcept {} // must not throw exceptions
void bar() {} // may throw exceptions

Since C++11, the noexcept specifier may also be used as a compile-
time operator to check if a function is declared to not throw any
exceptions. Note that as of C++17, the exception specification has become
a part of the type system, so the noexcept property needs to be included
when binding a function pointer to such a function.

159

CHAPTER 25 EXCEPTION HANDLING

void(*pFunc)() noexcept = foo; // function pointer
pFunc(); // call function through pointer
cout << noexcept(pFunc); // "1" (true)

In this example, pFunc is a pointer to a function that takes zero
arguments and returns void.

Exception Class

As previously mentioned, any data type can be thrown in C++. However,
the standard library does provide a base class called exception, which
is specifically designed to declare objects to be thrown. More specific
exceptions can be created by deriving from this base class or from other
exception classes available in the standard library. The exception class
is defined in the exception header file and is located under the std
namespace. As seen in the following code, the class can be constructed
with a string that becomes the exception’s description.

#include <exception>
using namespace std;

void makeError()

{

throw exception("My Error Description™);

}

When catching this exception, the object’s function called what can be
used to retrieve the description.

try {
makeError();

}

catch (const exception& e) {
cout << e.what(); // "My Error Description”

}

160

CHAPTER 26

Type Conversions

Converting an expression from one type to another is known as type
conversion. This can be done implicitly or explicitly.

Implicit Conversions

An implicit conversion is performed automatically by the compiler when
an expression needs to be converted into one of its compatible types. For
example, any conversions between the primitive data types can be done
implicitly.

long a = 5; // int implicitly converted to long
double b = a; // long implicitly converted to double

These implicit primitive conversions can be further grouped into two
kinds: promotion and demotion. Promotion occurs when an expression
gets implicitly converted into a larger type, and demotion occurs when
converting an expression to a smaller type. Because a demotion can result
in the loss of precision, these conversions will generate a warning on most
compilers. If the potential information loss is intentional, the warning can

be suppressed by using an explicit cast.

// Promotion
long a = 5; // int promoted to long
double b = a; // long promoted to double

© Mikael Olsson 2020 161
M. Olsson, C++20 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5995-5_26

https://doi.org/10.1007/978-1-4842-5995-5_26#DOI

CHAPTER 26 TYPE CONVERSIONS

// Demotion
int c = 10.5; // warning: possible loss of data
bool d = c; // warning: possible loss of data

Explicit Conversions

The first explicit cast is the one inherited from C, commonly called the
C-style cast. The desired data type is simply placed in parentheses to the
left of the expression that needs to be converted. This cast should be
avoided in modern C++ code.

int ¢ = (int)10.5; // double demoted to int
char d = (char)c; // int demoted to char

C++ Casts

The C-style cast is suitable for most conversions between the primitive
data types. However, when it comes to conversions between objects and
pointers, it can be too powerful. In order to get greater control over the
different types of conversions possible, C++ introduced four new casts,
called named casts or new-style casts. These casts are static, reinterpret,
const, and dynamic cast.

static_cast<new_type> (expression)
reinterpret cast<new_type> (expression)
const_cast<new_type> (expression)
dynamic_cast<new type> (expression)

As seen here, their format is to include the cast’s name with the
new type enclosed in angle brackets followed by the expression to be
converted in parentheses. These casts allow more precise control over

how a conversion should be performed, which in turn makes it easier

162

CHAPTER 26 TYPE CONVERSIONS

for the compiler to catch conversion errors. In contrast, the C-style cast
includes the static, reinterpret, and const cast in one operation. That
cast is therefore more likely to execute subtle conversion errors if used
incorrectly.

Static Cast

The static cast performs conversions between compatible types. It is
similar to the C-style cast, but more restrictive. For example, the C-style
cast would allow an integer pointer to point to a char.

char c
int *p

10; // 1 byte
(int*)&c; // 4 bytes

Since this results in a four-byte pointer pointing to one byte of
allocated memory, writing to this pointer will either cause a runtime error
or overwrite some adjacent memory.

*p = 5; // runtime error: stack corruption

In contrast to the C-style cast, the static cast will allow the compiler
to check that the pointer and pointee data types are compatible, which
allows the programmer to catch this incorrect pointer assignment during
compilation.

int *q = static_cast<int*>(&c); // compile-time error

Reinterpret Cast

To force the pointer conversion, in the same way as the C-style cast does in
the background, the reinterpret cast would be used instead.

int *r = reinterpret cast<int*>(&c); // forced conversion

163

CHAPTER 26 TYPE CONVERSIONS

This cast handles conversions between certain unrelated types, such as
from one pointer type to another incompatible pointer type. It will simply
perform a binary copy of the data without altering the underlying bit
pattern. Note that the result of such a low-level operation is system specific
and therefore not portable. It should be used with caution if it cannot be
avoided altogether.

Const Cast

The third C++ cast is the const cast. This one is primarily used to add or
remove the const modifier of a variable.

const int myConst = 5;
int *nonConst = const_cast<int*>(&myConst); // removes const

Although the const cast allows the value of a constant to be changed,
doing so is still invalid code that may cause a runtime error. This could
occur, for example, if the constant was located in a section of read-only
memory.

*nonConst = 10; // potential runtime error

Const cast is instead used mainly when there is a function that takes
a non-constant pointer argument, even though it does not modify the
pointee.

void print(int *p) { std::cout << *p; }

The function can then be passed a constant variable by using a const
cast.

print(&myConst); // error: cannot convert const int* to int*
print(nonConst); // allowed

164

CHAPTER 26 TYPE CONVERSIONS

C-Style and New-Style Casts

Keep in mind that the C-style cast can also remove the const modifier, but
again since it does this conversion behind the scenes, the C++ casts are
preferable. Another reason to use the C++ casts is that they are easier to
find in the source code than the C-style casts. This is important because
casting errors can be difficult to discover. A third reason for using the

C++ casts is that they are unpleasant to write. Since explicit conversions

in many cases can be avoided, this was done intentionally so that
programmers would look for a different solution.

Dynamic Cast

The fourth and final C++ cast is the dynamic cast. This cast is only used
to convert object pointers and object references into other pointers or
reference types in the inheritance hierarchy. It is the only cast that makes
sure that the object pointed to can be converted, by performing a runtime
check that the pointer refers to a complete object of the destination type.
For this runtime check to be possible, the object must be polymorphic.
That is, the class must define or inherit at least one virtual function.
This is because the compiler will only generate the needed runtime type
information for such objects.

In the following code segment, a MyChild pointer is converted into
a MyBase pointer using a dynamic cast. This derived-to-base conversion
succeeds, because the Child object includes a complete Base object.

class MyBase { public: virtual void test() {} };
class MyChild : public MyBase {};

int main()

{
MyChild *child = new MyChild();

165

CHAPTER 26 TYPE CONVERSIONS

MyBase *base = dynamic_cast<MyBase*>(child); // ok
/1 ...
delete child;

}

The next example attempts to convert a MyBase pointer into a MyChild
pointer. Since the MyBase object does not contain a complete MyChild
object, this pointer conversion will fail. To indicate this, the dynamic cast
returns a null pointer. This gives programmers a convenient way to check
whether a conversion has succeeded during runtime.

MyBase *base = new MyBase();

MyChild *child = dynamic_cast<MyChild*>(base);

if (child == nullptr) cout << "Null pointer returned";
delete base;

If a reference is converted instead of a pointer, the dynamic cast will
then fail by throwing a bad_cast exception. This needs to be handled using
a try-catch statement.

#include <exception>
#include <iostream>
using namespace std;

class MyBase { public: virtual void test() {} };
class MyChild : public MyBase {};

int main()

{

MyBase *base = new MyBase();

try {
MyChild &child = dynamic_cast<MyChild&> (*base);

}

166

CHAPTER 26 TYPE CONVERSIONS

catch(const bad cast 8e) {
cout << e.what(); // "bad dynamic_cast"

}

delete base;

Dynamic or Static Cast

The advantage of using a dynamic cast is that it allows the programmer
to check whether a conversion has succeeded during runtime. The
disadvantage is that there is a performance overhead associated with
doing this check. For this reason, using a static cast would have been
preferable in the first example, because a derived-to-base conversion will

never fail.
MyBase *base = static_cast<MyBase*>(child); // ok

However, in the second example, the conversion may either succeed
or fail. It will fail if the MyBase object contains a MyBase instance, and it will
succeed if it contains a MyChild instance. In some situations, this may not
be known until runtime. When this is the case, a dynamic cast is a better
choice than a static cast.

// Succeeds for a MyChild object
MyChild *child = dynamic_cast<MyChild*>(base);

If the base-to-derived conversion had been performed using a static
cast instead of a dynamic cast, the conversion would not have failed.
It would have returned a pointer that referred to an incomplete object.
Dereferencing such a pointer can lead to runtime errors.

// Allowed, but invalid
MyChild *child = static_cast<MyChild*>(base);

167

CHAPTER 27

Smart Pointers

Several smart pointer classes were added in C++11 for managing
dynamically allocated memory and resources in general. By using these
container classes, instead of raw pointers, it is no longer necessary to
manually delete objects created with the new keyword. This simplifies
coding by helping to prevent memory leaks.

Unique Pointer

The first smart pointer that we look at is the unique pointer (std: :unique_
ptr), which simply acts as a container for a raw pointer. It replaces another
deprecated smart pointer named auto_ptr, which was removed in C++17.
Consider the following example on how to use a unique pointer.

#include <memory> // include smart pointers
#include <iostream>
using namespace std;

struct Foo

{
int val;
Foo() { cout << "1"; }
~Foo() { cout << "3"; }

};

© Mikael Olsson 2020 169
M. Olsson, C++20 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5995-5_27

https://doi.org/10.1007/978-1-4842-5995-5_27#DOI

CHAPTER 27 SMART POINTERS

int main()

{
unique_ptr<Foo> p(new Foo()); // "1"
p->val = 2;
cout << p->val; // "2"

/7 "3"

The output of this code is "123" as the pointer is created, used, and
then destroyed automatically when it goes out of scope. Note that the
smart pointer is created not through assignment but instead by passing a
raw pointer to its constructor. Once created, however, the smart pointer is
used just as a regular pointer, in this case with the arrow operator (->) to
dereference the pointer and access the member of the object in a single
operation.

As the name implies, a unique pointer has exclusive ownership of the
object it points to and therefore cannot be copied. It can, however, transfer
ownership to another unique pointer using the std: :move function. After
completing such a transfer, the original pointer will automatically be set to
nullptr.

unique ptr<Foo> ul(new Foo());
unique_ptr<Foo> u2 = ul; // compile-time error
unique_ptr<Foo> u3 = move(ul); // transfers ownership

Shared Pointer

In cases where shared ownership of a dynamically allocated object is
necessary, there is the shared pointer (std: :shared ptr). Unlike the
unique pointer, a shared pointer can be copied. The memory to the object
will not be deallocated until the last remaining shared pointer owning the
object is destroyed, either by going out of scope or by resetting the pointer
to nullptr manually.

170

CHAPTER 27 SMART POINTERS

shared ptr<Foo> si(new Foo());

shared ptr<Foo> s2 = s1; // extends ownership

s1 = nullptr; // reset pointer

s2 = nullptr; // reset last pointer and delete memory

As of C++14, the use of the new keyword is discouraged in most
circumstances. Instead, the std: :make_unique and std: :make_shared
functions are recommended when allocating dynamic memory.

make_unique<Foo>();
make_shared<int>(10);

unique_ptr<Foo> u
shared_ptr<int> s

Both of these helper methods perform value initialization. Since C++20
there are also methods available for doing default initialization. This
avoids unnecessary initialization in situations where the initial value is not
needed. Type deduction is used here to avoid having to type the type twice.

auto u2

make_unique for overwrite<Foo>();

auto s2 = make_shared for overwrite<int>(10);

Weak Shared Pointer

A weak shared pointer (std: :weak_ptr) can be created from a shared
pointer. Unlike the shared pointer, a weak shared pointer is non-owning,
meaning that the object will be cleaned up when all shared pointers go
out of scope, regardless of any weak shared pointers. In order to access
the referenced object, a weak shared pointer must first be converted into a
shared pointer using the lock method. Here is an example to illustrate.

#include <memory>
#include <iostream>
using namespace std;

void observe(weak ptr<int> weak)

171

CHAPTER 27 SMART POINTERS

{

shared _ptr<int> s = weak.lock();
if (s != nullptr) {
cout << "Pointer is
}
else {
cout << "Pointer has expired" << endl;

}
}

int main()

{
shared ptr<int> s = make shared<int>(5);
weak ptr<int> w = s; // copy pointer without ownership
observe(w); // "Pointer is 5"

<< *s << endl;

s = nullptr; // delete managed object
observe(w); // "Pointer has expired"

172

CHAPTER 28

Templates

Templates provide a way to make a class, function, or variable operate with
different data types without having to rewrite the code for each type.

Function Templates

This example shows a function that swaps two integer arguments.

void swap(int& a, int& b)

{
int tmp = a;
a = b;
b = tmp;

}

To convert this method into a function template that can work with
any type, the first step is to add a template parameter declaration before
the function. This declaration includes the template keyword followed by
the keyword typename and the name of the template type parameter, both
enclosed between angle brackets. The name of the template parameter
may be anything, but it is common to name it with a capital T.

template<typename T>

© Mikael Olsson 2020 173
M. Olsson, C++20 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5995-5_28

https://doi.org/10.1007/978-1-4842-5995-5_28#DOI

CHAPTER 28 TEMPLATES

Alternatively, the keyword class can be used instead of typename.
They are equivalent in this context.

template<class T>

The second step in creating a function template is to replace the data
type that will be made generic with the template type parameter.

template<class T>
void swap(T& a, T& b)

{
T tmp = a;
a = b;
b = tmp;

}

Calling Function Templates

The function template is now complete. To use it, you can call swap as if it
were a regular function, but with the desired template argument specified
in angle brackets before the function arguments. Behind the scenes, the
compiler will instantiate a new function with this template parameter filled
in, and it is this generated function that will be called from this line.

inta=1, b =2;
swap<int>(a,b); // calls int version of swap

Every time the function template is called with a new type, the
compiler will instantiate another function using the template.

bool c = true, d = false;
swap<bool>(c,d); // calls bool version of swap

174

CHAPTER 28 TEMPLATES

In this example, the swap function template may also be called
without specifying the template parameter. This is because the compiler
can automatically determine the type, because the function template’s
arguments use the template type. However, if this is not the case, or if
there is a need to force the compiler to select a specific instantiation of
the function template, the template parameter would then need to be
explicitly specified within angle brackets.

inte=1, f=2;
swap(e,f); // calls int version of swap

Multiple Template Parameters

Templates can be defined to accept more than one template parameter by
adding them between the angle brackets separated by commas.

template<class T, class U>
void swap(T& a, U& b)

{
T tmp = a;
a = b;
b = tmp;
}

The second template parameter in this example allows swap to be
called with two arguments of different types.

int main()

{
int a = 1;
long b = 2;

swap<int, long>(a,b);
swap(a,b); // alternative

175

CHAPTER 28 TEMPLATES

Class Templates

Class templates allow class members to use template parameters as types.
They are created in the same way as function templates.

template<class T>
class MyBox
{
public:
T a, b;
MyBox(const T& x, const T& y) : a(x), b(y) {}
};

The compiler can deduce the template type parameters if they are
based on the arguments passed to a constructor of the class.

int main()

{
// Without type deduction
MyBox<int> box(1, 2); // MyBox<int>

// With type deduction
MyBox box(2.1, 3.2); // MyBox<double>

}

Another point to remember when using class templates is that if a
method is defined outside of the class template, that definition must also
be preceded by the template declaration.

template<class T>
class MyBox

{
public:
T a, b;
void swap();

}s

176

CHAPTER 28 TEMPLATES

template<class T>
void MyBox<T>::swap()

{
T tmp = a;
a = b;
b = tmp;

}

Notice that the template parameter is included in the swap template
function definition after the class name qualifier. This specifies that the
function’s template parameter is the same as the template parameter of
the class.

Non-type Parameters

In addition to type parameters, both class and function templates can also
have regular function-like parameters. As an example, the unsigned int
template parameter is used to specify the size of an array.

template<class T, unsigned int N>
class MyBox

{
public:

T store[N];
};

When this class template is instantiated, both a type and an integer
have to be included.

MyBox<int, 5> box;

177

CHAPTER 28 TEMPLATES

Default Types and Values

Class and function template parameters can be given default values and

types.

template<class T = int, int N = 5>

To use these defaults, the angle brackets just need to be left empty
when instantiating the class template.

MyBox<> box;

Class Template Specialization

If there is a need to define a different implementation for a template

when a specific type is passed as the template parameter, a template
specialization can be declared. For example, in the following class
template, there is a print method that outputs the value of a class template
field.

#include <iostream>

template<class T>
class MyBox
{
public:
T a;
void print() { std::cout << a; }
};

When the template parameter is a bool, the method should print
out “true” or “false” instead of “1” or “0”. One way to do this is to create a
class template specialization. A reimplementation of the class template is
then created where the template parameter list is empty. Instead, a bool

178

CHAPTER 28 TEMPLATES

specialization parameter is placed after the class template’s name, and
this data type is used instead of the template parameter throughout the
implementation.

template<>
class MyBox<bool>
{
public:
bool a;
void print() { std::cout << (a ? "true" : "false"); }

};

When this class template is instantiated with a bool template type, this
template specialization will be used instead of the standard one.

int main()

{
MyBox<bool> box { true };
box.print(); // "true"

}

Note that there is no inheritance of members from the standard
template to the specialized template. The whole class will have to be
redefined.

Function Template Specialization

Since there is only one function that is different between the templates in
the previous example, a better alternative is to create a function template
specialization. This kind of specialization looks very similar to the class
template specialization, but is only applied to a single function instead of
the whole class.

179

CHAPTER 28 TEMPLATES

#include <iostream>

template<class T>
class MyBox
{
public:
T a;
template<class T> void print() {
std::cout << a;
}
template<> void print<bool>() {
std::cout << (a ? "true" : "false");
}
};

This way, only the print method has to be redefined and not the whole
class.

int main()

{
MyBox<bool> box = { true };

box.print<bool>(); // "true"
}

Notice that the template parameter has to be specified when the
specialized function is invoked. This is not the case with the class template
specialization.

Variable Templates

In addition to function and class templates, C++14 allows variables to be
templated. This is achieved using the regular template syntax.

template<class T>
constexpr T pi = T(3.1415926535897932384626433L);

180

CHAPTER 28 TEMPLATES

Together with the constexpr specifier, this template allows the value
of the variable to be computed at compile time for a given type, without
having to type cast the value.

int 1 = pikint>; // 3
float f = pi<float>; // 3.14...

Variadic Templates

C++11 allows template definitions to take a variable number of type
arguments. To illustrate, consider the following function, which returns the
sum of any number of ints passed to it.

#include <iostream>
#include <initializer list>
using namespace std;

int sum(initializer list<int> numbers)

{
int total = 0;
for(auto& i : numbers) { total += i; }
return total;

}

The initializer list type indicates that the function accepts a
brace-enclosed list as its argument, so the function must be called in this
manner.

int main()

{
cout << sum({1, 2, 3}); // "6"

}

181

CHAPTER 28 TEMPLATES

The next example changes this function into a variadic template
function. Such a function is traversed recursively rather than iteratively, so
once the first argument has been handled, the function calls itself with the
remaining arguments.

The variadic template parameter is specified using the ellipsis (.. .)
operator, followed by a name. This defines a so-called parameter pack.

The parameter pack is bound to a parameter in the function (... rest)
and then unpacked into separate arguments (rest ...)when the function
calls itself recursively.

int sum() { return 0; } // end condition

template<class To, class ... Ts>
decltype(auto) sum(To first, Ts ... rest)

{

return first + sum(rest ...);

}

This variadic template function can be called as a regular function,
with any number of arguments. In contrast to the previously defined
variadic function, this template function accepts arguments of any type.

int main()

{

cout << sum(1, 1.5, true); // "3.5"

}

Fold Expressions

C++17 introduced fold expressions, which make it possible to apply a
binary operator to all elements of a parameter pack in one statement.
This allows the previous variadic template function to be written more
concisely and without the use of recursion.

182

CHAPTER 28 TEMPLATES

template<class... T>

decltype(auto) sum(T... args)

{
// Unpacks to: a1 + (a2 + (a3 + a4))...
return (args + ...);

}

A unary right fold is here performed in the return statement,
expanding the parameter pack starting from the left and applying the
binary operator to all arguments before returning the result. Parameter
packs may also be unpacked from right to left, by placing the ellipsis to the
left of the parameter pack, as shown in the following example using the
subtraction operator.

#include <iostream>
using namespace std;

template<class... T>
decltype(auto) difference(T... args)

{
// Unpacks to: ...(a1 - a2) - a3

return (... - args);

}

int main()

{

cout << difference(5, 2, 1); // "2" (5-2-1)

}

183

CHAPTER 28 TEMPLATES

Concepts

A concept is a named set of constraints that limit what template arguments
may be used with a template. They were introduced in C++20 to allow
template arguments to be type-checked at compile time. The following
example defines a concept named Mylntegral which requires the type to
be convertible to a whole number type. The is_integral v class template
used here is part of the standard library, and it is evaluated as true if T is an
integral type.

#include <concepts>

#include <type traits>

// Concept declaration

template <class T>

concept MyIntegral = std::is_integral v<T>;

This concept can be applied to constrain template arguments, such
as for the following function template. Any template argument used
to initialize this function template must satisfy the requirement of the
concept, or else the compilation will fail.

template<MyIntegral T>
bool is positive(T a)

{

return a > 0;

}

int main()

{
is_positive(5); // ok, int satisfies MyIntegral
is positive("Hi"); // error, string does not satisfy MyIntegral

}

184

CHAPTER 28 TEMPLATES

The standard library includes a number of predefined concepts that
should be used in favor of user-defined ones whenever possible. In this
example, the standard concept std::integral performs the same function
as “MylIntegral,” so the preceding function template can be redefined as
follows.

#include <concepts>
template<std: :integral T>
bool is positive(T a)

{

return a > 0O;

}

There are two ways to express a concept. The first way is in the form of
a conditional expression, which was the form used for the integral concept
defined earlier. The following example makes use of the integral concept
and also adds a second constraint to make sure the type is signed and not
unsigned. Note that this constraint makes use of the fact that constructing
an unsigned type with a negative value returns a positive value, because
the unsigned type cannot represent the negative value.

template <class T>
concept Signed Integral = std::integral<T> && T{-1} < T{0};

The second way to define a concept is to use a requires clause. This
clause defines objects of the types to be tested and then a list of one
or more constraints. Each constraint consists of an expression in curly
brackets followed by the expected return type. If all constraints are true,
the compiler will allow the type. For instance, the following concept
declares that the type must implement both the equal to and not equal to
operators and that the result of these operations must be convertible to a
bool.

185

CHAPTER 28 TEMPLATES

template<class T>
concept Equal = requires(T a, T b)
{
{a==>b} -> bool;
{al=b} -> bool;
}s

template<Equal T>
bool areEqual(T x, T y)

{
return x == y;
}
int main()
{
areEqual(1, 1); // true
}

Abbreviated Function Templates

Function templates can be abbreviated as of C++20 by using the auto
placeholder type. When auto appears in the parameter list, the function
automatically becomes a function template and the auto parameter
becomes its template parameter. Applying a concept to such a function is
done by adding the name of the concept before the type in the parameter
list. Bear in mind that abbreviated function templates are not supported in
Visual Studio 2019 as of version 16.3.

#include <concepts>
bool is positive(std::integral auto a)

{

return a > 0;

}

186

CHAPTER 28 TEMPLATES

int main()

{
is_positive(2); // calls int version
is positive(3L); // calls long version

}

Template Lambdas

With C++14 generic lambdas were introduced, which meant that
parameters declared as auto became template parameters. The following
example defines a generic lambda that returns the size of a vector.

#include <iostream>

#include <vector>

using namespace std;

int main()

{
vector<int> v { 1, 2, 3 };
auto get size = [](const autod v) { return size(v); };
cout << get size(v); // 3

}

It would be preferable to restrict this lambda to only work with vector
types. This ability was added in C++20 by allowing full use of template
parameters in lambdas.

auto get size = []<typename T>(vector<T> const& v) { return
size(v); };

187

CHAPTER 29

Headers

When a project grows, it is common to split the code up into different source
files. When this happens, the interface and implementation are generally
separated. The interface is placed in a header file, which commonly has

the same name as the source file and an .h file extension. This header file
contains forward declarations for the source file entities that need to be
accessible to other compilation units in the project. A compilation unit
consists of a source file (.cpp) and any included header files (.h or .hpp).

Why Use Headers

C++ requires everything to be declared before it can be used. It is not
enough to simply compile the source files in the same project. For
example, if a function is placed in MyFunc. cpp, and a second file named
MyApp.cpp in the same project tries to call it, the compiler will report that it
cannot find the function.

// MyFunc.cpp
void myFunc() {}

// MyApp.cpp
int main()

{

myFunc(); // error: myFunc identifier not found

}

© Mikael Olsson 2020 189
M. Olsson, C++20 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5995-5_29

https://doi.org/10.1007/978-1-4842-5995-5_29#DOI

CHAPTER 29 HEADERS

To make this work, the function’s prototype has to be included in
MyApp.cpp.

// MyApp.cpp
void myFunc(); // prototype

int main()
{
myFunc(); // ok

}

Using Headers

This can be made more convenient if the prototype is placed in a header
file named MyFunc.h, and this header is included in MyApp . cpp through the
use of the #include directive. This way if any changes are made to MyFunc.
cpp or MyFunc.h, there is no need to update the prototypes in MyApp . cpp.
Furthermore, any source file that wants to use the shared code in MyFunc.
cpp can just include this one header.

// MyFunc.h
void myFunc(); // prototype

// MyApp.cpp
#include "MyFunc.h"

What to Include in Headers

As far as the compiler is concerned, there is no difference between a
header file and a source file. The distinction is only conceptual. The key
idea is that the header should contain the interface of the implementation
file—that is, the code that other source files will need to use. This may
include, for instance, shared constants, macros, and type aliases. Headers

190

CHAPTER 29 HEADERS

should not include using namespace directives, because that would force
the namespace inclusion upon everyone using the header.

// MyApp.h - Interface
#define DEBUG 0

const double E = 2.72;

using ulong = unsigned long;

As already mentioned, the header can contain prototypes of the shared
functions defined in the source file.

void myFunc(); // prototype

Additionally, shared classes are typically specified in the header, while
their methods are implemented in the source file.

// MyApp.h
class MyClass
{
public:
void myMethod();
}s

// MyApp.cpp
void MyClass::myMethod() {}

As with functions, it is necessary to forward declare global variables
before they can be referenced in a compilation unit outside the one
containing their definition. This is done by placing the shared variable
in the header and marking it with the keyword extern. This keyword
indicates that the variable is initialized in another compilation unit.
Functions are extern by default, so function prototypes do not need to
include this specifier. Keep in mind that global variables and functions
may be declared externally multiple times in a program, but they may be
defined only once.

191

CHAPTER 29 HEADERS

// MyApp.h
extern int myGlobal;

// MyApp.cpp
int myGlobal = o;

It should be noted that the use of shared global variables is
discouraged. This is because the larger a program becomes, the more
difficult it is to keep track of which functions access and modify these
variables. The preferred method is to instead pass variables to functions
only as needed, in order to minimize the scope of those variables.

The header should not include any executable statements, with two
exceptions. First, if a shared class method or global function is declared as
inline, that function must be defined in the header. Otherwise, calling the
inline function from another source file will give an unresolved external
error. Note that the inline modifier suppresses the single definition rule
that normally applies to code entities.

// MyApp.h
inline void inlineFunc() {}

class MyClass
{
public:
void inlineMethod() {}
};

The second exception is shared templates. When encountering
a template instantiation, the compiler needs to have access to the
implementation of that template, in order to create an instance of it with
the type arguments filled in. The declaration and implementation of
templates are therefore generally put into the header file all together.

192

CHAPTER 29 HEADERS

// MyApp.h
template<class T>
class MyTemp { /* ... */ };

// MyApp.cpp
MyTemp<int> o;

Instantiating a template with the same type in many compilation units
leads to significant redundant work done by the compiler and linker. To
prevent this, C++11 introduced extern template declarations. A template
instantiation marked as extern signals to the compiler not to instantiate
the template in this compilation unit.

// MyApp.cpp
MyTemp<int> b; // instantiation is done here

// MyFunc.cpp
extern MyTemp<int> a; // suppress redundant instantiation

If a header requires other headers, it is common to include those files
as well, to make the header stand-alone. This ensures that everything
needed is included in the correct order, solving potential dependency
problems for every source file that requires the header.

// MyApp.h
#include <stddef.h> // include size t
void mySize(std::size t);

Note that since headers mainly contain declarations, any extra headers
included should not affect the size of the program, although they may slow
down compilation.

193

CHAPTER 29 HEADERS

Inline Variables

As of C++17, variables may be specified as inline, in addition to functions
and methods. This allows constant and static variables to be defined in

a header file, because the inline modifier removes the single definition
rule that would normally prevent this. Once an inline variable has been
defined, all compilation units referencing that header will use the same
definition.

// MyApp.h
struct MyStruct
{
static const int a;
inline static const int b = 10; // alternative
}s

inline int const MyStruct::a = 10;

The constexpr keyword implies inline, so a variable declared as
constexpr may also be initialized in a header file. However, such a variable
must be initialized to a compile-time constant.

struct MyStruct {
static constexpr int a = 10;

};

An inline variable is not restricted to only constant expressions, as
seen in the following example where the inline variable is initialized to a
random value between 1 and 6. This value is guaranteed to be the same
for all compilation units using this header, even though the value is not set
until runtime.

194

CHAPTER 29 HEADERS

#include <cstdlib> // rand, srand
#include <ctime> // time

struct MyStruct {
static const int die;

};

inline const int MyStruct::die =
(srand((unsigned)time(0)), rand()%6+1); // 1-6

Note the use of the comma operator here, which evaluates the left
expression first and then evaluates and returns the right expression. The
left expression uses the current time to seed the random number generator
with the srand function. The right expression retrieves a random integer
with the rand function and formats the integer into the 1-6 range.

Include Guards

An important point to bear in mind when using header files is that a
shared code entity may only be defined once. Consequently, including the
same header file more than once will likely result in compilation errors. A
common way to prevent this is to use a so-called include guard. An include
guard is created by enclosing the whole header in an #ifndef section that
checks for a macro specific to that header file. Only when the macro is not
defined is the file included. The macro is then defined, which effectively
prevents the file from being included again.

// MyApp.h
#ifndef MYAPP_H
#define MYAPP_H
/1 ...

#endif // MYAPP_H

195

CHAPTER 29 HEADERS

Most compilers also support the nonstandard #pragma once directive,
which serves the same purpose as include guards but with less code. Just
place the directive in the header file to make sure it can only be included

once.
#pragma once

Before including a header file, it may also be a good idea to check if
it exists. For this purpose, C++17 added the __has_include preprocessor
expression, which evaluates to true if the header file is found.

#if _ has_include("myapp.h™)
#include "myapp.h"
#endif

Modules

A module is a set of one or more source code files that are compiled
independently and can then be imported into another compilation unit.
They were introduced in C++20 to remove common issues associated with
using header files, such as header-order dependencies, naming collisions,
and multiple inclusions of the same header file. Furthermore, as modules
only need to be compiled once, they can reduce compilation times,
especially for large projects.

To enable experimental support for modules in Visual Studio 2019
(version 16.3), right-click the project in the Solution Explorer and choose
Properties. From there, select All Configurations from the Configuration
drop-down list and then enable module support under Configuration
Properties » C/C++ » Language » Enable C++ Modules (experimental).
Next, add a new file called ModInterface.ixx to the project by right-clicking
the Source Files folder in the Solution Explorer and going to Add » New
item.

196

CHAPTER 29 HEADERS

The ixx file extension is required for module interface units in Visual
Studio. Some other compilers, such as GCC (GNU Compiler Collection),
use a cppm file extension instead. An export module declaration is placed
in the file to specify the name of the module.

// ModInterface.ixx
export module mymodule; // declare module name

Only code entities explicitly marked with export will be visible to
source files using the module, which in the following example is the
getValue function. All other code entities will be internal to the module
and will not influence source code outside the module. This is a big
advantage compared with header files, as headers may include code that
inadvertently affect other parts of the code.

// ModInterface.ixx

export module mymodule;

#define VALUE 5

int hidden() { return VALUE; }

export int getValue() { return hidden(); }

Optionally, the implementation of the module can be separated from
the interface unit into one or more module implementation units. Such an
implementation file cannot export any names. Any code entities it declares
will be visible across the entire module, but not outside the module to
which it belongs. The implementation file itself may use any file extension.

// ModInterface.ixx
export module mymodule;
export int getValue();

// ModImplementation.cpp
module mymodule; // unit belongs to mymodule

197

CHAPTER 29 HEADERS

#define VALUE 5
int hidden() { return VALUE; }
int getValue() { return hidden(); }

To get the ixx file to compile, right-click the file in the Solution Explorer
and click Properties. From the Properties window, change the Item Type of
the file to C/C++ Compiler and click OK. You will then be able to manually
compile the file by right-clicking it and selecting Compile in the Solution
Explorer.

With the module ready and compiled, it can be imported into any
source file to make use of its functionality. The import declaration must
appear at the global scope of the file importing the module.

// MyApp.cpp

import mymodule; // import module
#include <iostream>

using namespace std;

int main()

{
cout << getValue() << endl; // "5"

}

Some standard library headers, such as iostream and vector, can be
imported as if they were modules. This is not supported in Visual Studio
2019 (version 16.3). Keep in mind that an import declaration ends with a
semicolon, unlike the include directive.

import <iostream>;
import <vector>;

198

Index

A

Access levels
class declaration, 99
friend classes and
functions, 102-104
global function, 104
guidelines, 101

inheritance (public, protected/

private), 104
private members, 99
protected member, 100
public access, 101
Aggregate
initialization, 83, 116
Arithmetic operators, 17
Arrays, 33
assignment, 33
declaration/
allocation, 33
delete keyword, 36
dynamic memory, 35
multi/single-dimensional
arrays, 34
std::size function, 35-36
vector, 36-37
Assignment operator
(+=), 18,39

© Mikael Olsson 2020

Base class scoping, 96
Binary operator
overloading, 122
Bitwise operator (), 20
Booleantype, 16

C

Classes
access object
members, 73-74
definition, 71
forward declaration, 74
inline keyword, 72
instance, 72
methods, 71
object creation, 72
Comments, 6
Comparison operators
(<, >, <=/>=), 19, 123-126
Concatenation operator (+), 39
Conditional statements
if statement, 45
initializers, 48
switch statement, 46
ternary operator, 47

M. Olsson, C++20 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5995-5

https://doi.org/10.1007/978-1-4842-5995-5#DOI

INDEX

field initialization, 77-78
inheritance, 89-90

Console compilation, 5
Constants

expressions
compilation error, 143
conditional statements, 145
functions and class
constructors, 143
integer and enumeration
types, 143
lambda expression, 144
object, 144
return value, 144
runtime evaluation, 144
static_assert declaration, 146
virtual functions, 145
fields, 142
guideline, 146
immediate function, 146
methods, 141
objects, 140
pointers, 139-140
references, 140
return type and method
parameters, 142
variables, 139

Constructors

aggregate initialization, 83
copy, 82

declaration, 75

default parameter, 78
default values, 75
designated initializers, 85
destructor, 79

direct initialization, 81

200

instance methods, 77
new initialization, 82
object initialization, 80
overloading, 76
special member functions, 79
this keyword, 77
uniform initialization, 83-84
value object, 81
Conversions
explicit constructor, 129
implicit constructor, 128-129
MyNum class, 127
operators
explicit constructors, 130-131
object declaration, 129-130
Copy initialization, 82

D

Data types/primitives, 7-8
Decltype keywords, 61-63
Designated initializers, 85-86
Direct initialization, 81
Downcasting, 88

Dynamic arrays, 35

E

Enumeration (enum)
constants, 109
constant values, 110
integer type, 113

scope, 111

switch statement, 109

weakly typed enum, 111-113
Escape characters, 40-41
Exception handling, 157

exception class, 160

noexcept specifier, 159

rethrown, 159

throw keyword, 157

try-catch statement, 157-158

F

Floating-point types, 13
Fold expressions, 182
Functions
auto keyword, 61-63
calling, 53
capture clause, 67
decltype, 62-64
default values, 55
definition, 53
forward declaration, 56-57
inline function, 60
lambda function, 66-69
multiple values, 63-65
overloading, 55
parameters, 54
pass by address, 58
pass by reference, 58
pass by value, 57
prototype, 56
returns by value/reference/
address, 59

INDEX

return statement, 55-56
structured bindings, 65

G

Generic lambdas, 187
GNU Compiler Collection
(GCQ), 5,197

H

Header files (.h/.hpp), 189
constexpr keyword, 194
getValue function, 197
global variables and

functions, 191
guards, 195-196
inline variables, 194-195
modules, 196-198
namespace directives, 191
shared functions/
templates, 191-192
template instantiation, 193

Hello World
header, resource/source files, 2
integrated development

environment, 1

IntelliSense, 4

language standard selection, 2

project creation, 2

scope resolution operator, 3

source file, 3-4

standard namespace, 4
Hiding derived members, 93-94

201

INDEX

,J,K
Increment (++)/decrement (--)
operators, 18
Inequality operator (!=), 125
Inheritance
access levels, 104
constructor, 89-90
downcasting, 88
multiple inheritance, 91
public keyword, 87
upcasting, 87-88
Instantiate, see Constructors
intx=1,y=2, 29
Integrated Development
Environment (IDE), 1

L

Lambda function
capture clause, 67-68
decltype specifier, 69
generic lambda
expressions, 66
int arguments/returns, 66
parameter list and return
type, 66-67
stateless, 68
Logical operators (&&, ||/!), 19
Looping structures
break/continue keyword, 52
do-while, 50
for, 50
goto statement, 52
while loop, 49

202

Multiple inheritance, 91

N

Namespaces
access members, 134
aliases, 136
classes and functions, 133
importing, 135
member import, 135
nesting, 134
prototypes, 137
scopes, 133
type alias, 136
Nested namespace members, 134
NetBeans/Eclipse CDT, 1
NULL pointer, 26-28, 30

O

Octal/hexadecimal notation, 12
Noexcept specifier, 159
Operator overloading
binary, 122
comparison operator, 123-126
MyNum objects and returns, 121
overloadable operators, 126
postfix operators, 123
unary operators, 122-123
user-defined types, 121
Operators
increment (++)/
decrement (--), 18

assignment(=), 18
bitwise (|), 20
arithmetic operators, 17
comparison, 19
logical operators, 19
precedence, 20-21
types, 17

Overriding
base class scoping, 96
derived classes, 94-96
getArea method, 94

hiding derived members, 93-94

polymorphism, 94
pure virtual functions, 96

P,Q

Perfix/postfix
operators, 123
Pointers
asterisk (*), 23
dereference operator (*), 24
constants, 139, 140
dynamic allocation, 25-26
NULL constant, 26-28
pass by address, 58
pointee, 23
point-pointer, 25
references, 30
static allocation, 25
Preprocessor
attributes, 155
conditional compilation, 152
directives, 147

INDEX

error message/directive, 150, 153

defined/!defined
(#ifdef/#ifndef), 153

line number, 154

macro functions, 148, 150-151

pragma, 154

predefined macros, 149

source file, 148

undefine directive, 149

R

References
declaration, 29
pointer, 30
rvalue, 30-31
Rethrown exceptions, 159

S

Signed and unsigned integers, 12-13
Single-line comment, 6
Smart pointers
classes, 169
pointers (see Pointers)
shared pointer
(std::shared_ptr), 170-171
unique pointer
(std::unique ptr), 169-170
weak shared pointer
(std::weak_ptr), 171-172
Source file (.cpp), see Header
files (.h/.hpp)
Static keyword

203

INDEX

Static keyword (cont.)
field (class field), 105-106
global variables, 107
local variables, 107
methods, 106-107
std::get function, 64
std::make_tuple function, 64-65
std::tie function, 64-65
Strings
combining string, 39-40
compare option, 41
declaration, 39
direct/uniform initialization, 39
encoding, 42
escape characters, 40-41
length and size functions, 41
size_t/cstddef header, 41-42
substr (substring), 42
std::format function, 43
Structs
aggregate initialization, 116
anonymous, 116
data structure, 115
declaration syntax, 115
initialization, 115-116
uniform initialization, 116

T

Templates, 173
abbreviated function
templates, 186
calling function, 174
class templates, 176-177

204

concepts, 184-186
default values and types, 178
fold expressions, 182
function, 173
generic lambdas, 187
multiple parameters, 175
non-type parameters, 177
parameter declaration, 173
specialization
class template, 178-179
function, 179-180
swap function, 175
type parameters, 174
variables, 180-181
variadic templates, 181-182
Ternary operator, 47
Throwing exceptions, 157
Try-catch statement, 157-158
Type conversions
casts, 162
const cast, 164
C-style/new-style casts, 165
dynamic cast, 165-167
explicit cast, 162
implicit conversion, 161
named cast/new-style
casts, 162
polymorphic, 165
promotion and
demotion, 161
reinterpret cast, 163
static cast, 163
static/dynamic cast, 167
try-catch statement, 166

U

Unary operators, 122-123
Unicode characters, 43
Uniform initialization, 83-84
Union type

anonymous, 118

benefit of, 117

integer field, 117-118
Unique pointer (std::unique ptr),

169-170

\"

Value initialization, 81
Variables
assignment operator (=), 8
bool type, 16
char type, 14

INDEX

data types, 7

declaration, 8

direct/uniform initialization, 9

floating-point types, 13

integer types, 10-11

literal suffixes, 14

numeric literals, 12

scope of, 9-10

signed and unsigned
keywords, 12-13

Variadic template, 181-182
Vectors, 36-37
Visual Studio, 1, 5

W, XY, Z

Weak shared pointer

(std::weak_ptr), 171-172

205

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Hello World
	Choosing an IDE
	Creating a Project
	Adding a Source File
	Selecting Language Standard
	Hello World
	Using the Standard Namespace
	IntelliSense

	Chapter 2: Compile and Run
	Visual Studio Compilation
	Console Compilation
	Comments

	Chapter 3: Variables
	Data Types
	Declaring Variables
	Assigning Variables
	Variable Scope
	Integer Types
	Signed and Unsigned Integers
	Numeric Literals
	Floating-Point Types
	Literal Suffixes
	Char Type
	Bool Type

	Chapter 4: Operators
	Arithmetic Operators
	Assignment Operators
	Increment and Decrement Operators
	Comparison Operators
	Logical Operators
	Bitwise Operators
	Operator Precedence

	Chapter 5: Pointers
	Creating Pointers
	Dereferencing Pointers
	Pointing to a Pointer
	Dynamic Allocation
	Null Pointer

	Chapter 6: References
	Creating References
	References and Pointers
	Reference and Pointer Guideline
	Rvalue Reference

	Chapter 7: Arrays
	Array Declaration and Allocation
	Array Assignment
	Multidimensional Arrays
	Dynamic Arrays
	Array Size
	Vector

	Chapter 8: Strings
	String Combining
	Escape Characters
	String Compare
	String Functions
	String Encodings
	String Formatting

	Chapter 9: Conditionals
	If Statement
	Switch Statement
	Ternary Operator
	Initializers

	Chapter 10: Loops
	While Loop
	Do-while Loop
	For Loop
	Break and Continue
	Goto Statement

	Chapter 11: Functions
	Defining Functions
	Calling Functions
	Function Parameters
	Default Parameter Values
	Function Overloading
	Return Statement
	Forward Declaration
	Pass by Value
	Pass by Reference
	Pass by Address
	Return by Value, Reference, or Address
	Inline Functions
	Auto and Decltype
	Returning Multiple Values
	Lambda Functions

	Chapter 12: Classes
	Class Methods
	Inline Methods
	Object Creation
	Accessing Object Members
	Forward Declaration

	Chapter 13: Constructors
	Constructor Overloading
	This Keyword
	Field Initialization
	Default Constructor
	Destructor
	Special Member Functions
	Object Initialization
	Direct Initialization
	Value Initialization
	Copy Initialization
	New Initialization
	Aggregate Initialization
	Uniform Initialization
	Designated Initializers

	Chapter 14: Inheritance
	Upcasting
	Downcasting
	Constructor Inheritance
	Multiple Inheritance

	Chapter 15: Overriding
	Hiding Derived Members
	Overriding Derived Members
	Base Class Scoping
	Pure Virtual Functions

	Chapter 16: Access Levels
	Private Access
	Protected Access
	Public Access
	Access Level Guideline
	Friend Classes and Functions
	Public, Protected, and Private Inheritance

	Chapter 17: Static
	Static Fields
	Static Methods
	Static Local Variables
	Static Global Variables

	Chapter 18: Enum Types
	Enum Example
	Enum Constant Values
	Enum Scope
	Weakly Typed Enums
	Enum Constant Type

	Chapter 19: Structs and Unions
	Structs
	Struct Initialization
	Union
	Anonymous Union

	Chapter 20: Operator Overloading
	Binary Operator Overloading
	Unary Operator Overloading
	Comparison Operator Overloading
	Overloadable Operators

	Chapter 21: Custom Conversions
	Implicit Conversion Constructor
	Explicit Conversion Constructor
	Conversion Operators
	Explicit Conversion Operators

	Chapter 22: Namespaces
	Accessing Namespace Members
	Nesting Namespaces
	Importing Namespaces
	Namespace Member Import
	Namespace Alias
	Type Alias
	Including Namespace Members

	Chapter 23: Constants
	Constant Variables
	Constant Pointers
	Constant References
	Constant Objects
	Constant Methods
	Constant Return Type and Parameters
	Constant Fields
	Constant Expressions
	Immediate Functions
	Constant Guideline

	Chapter 24: Preprocessor
	Including Source Files
	Define
	Undefine
	Predefined Macros
	Macro Functions
	Conditional Compilation
	Compile if Defined
	Error
	Line
	Pragma
	Attributes

	Chapter 25: Exception Handling
	Throwing Exceptions
	Try-Catch Statement
	Rethrowing Exceptions
	Noexcept Specifier
	Exception Class

	Chapter 26: Type Conversions
	Implicit Conversions
	Explicit Conversions
	C++ Casts

	Static Cast
	Reinterpret Cast
	Const Cast
	C-Style and New-Style Casts
	Dynamic Cast
	Dynamic or Static Cast

	Chapter 27: Smart Pointers
	Unique Pointer
	Shared Pointer
	Weak Shared Pointer

	Chapter 28: Templates
	Function Templates
	Calling Function Templates
	Multiple Template Parameters
	Class Templates
	Non-type Parameters
	Default Types and Values
	Class Template Specialization
	Function Template Specialization
	Variable Templates
	Variadic Templates
	Fold Expressions
	Concepts
	Abbreviated Function Templates
	Template Lambdas

	Chapter 29: Headers
	Why Use Headers
	Using Headers
	What to Include in Headers
	Inline Variables
	Include Guards
	Modules

	Index

