

DevOps	with	Kubernetes

	

	

	

	

	

	

	

	

	

	

Accelerating	software	delivery	with	container	orchestrators

	

	

	

	

	

	

	

	

	

	

Hideto	Saito
Hui-Chuan	Chloe	Lee
Cheng-Yang	Wu

	

BIRMINGHAM	-	MUMBAI

DevOps	with	Kubernetes

Copyright	©	2017	Packt	Publishing

	

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval
system,	or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written
permission	of	the	publisher,	except	in	the	case	of	brief	quotations	embedded	in
critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy
of	the	information	presented.	However,	the	information	contained	in	this	book	is
sold	without	warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt
Publishing,	and	its	dealers	and	distributors	will	be	held	liable	for	any	damages
caused	or	alleged	to	be	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of
the	companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of
capitals.	However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this
information.

	

First	published:	October	2017

	

Production	reference:	1121017

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham

B3	2PB,	UK.

ISBN	978-1-78839-664-6

	

www.packtpub.com

http://www.packtpub.com

Credits

Authors

Hideto	Saito

Hui-Chuan	Chloe	Lee

Cheng-Yang	Wu

Copy	Editors

Laxmi	Subramanian

Safis	Editing

Reviewer

Guang	Ya	Liu

Project	Coordinator

Shweta	H	Birwatkar

Proofreader

Safis	Editing

Commissioning	Editor

Gebin	George

Acquisition	Editor

Chandan	Kumar

Indexer

Pratik	Shirodkar

Content	Development	Editor

Dattatraya	More

Graphics

Tania	Dutta

Technical	Editor

Jovita	Alva

Production	Coordinator

Shantanu	Zagade

About	the	Authors
Hideto	Saito	has	around	20	years	of	experience	in	the	computer	industry.	In
1998,	while	working	for	Sun	Microsystems	Japan,	he	was	impressed	with
Solaris	OS,	OPENSTEP,	and	Sun	Ultra	Enterprise	10000	(AKA	StarFire).	Then,
he	decided	to	pursue	the	UNIX	and	MacOS	X	operation	systems.

In	2006,	he	relocated	to	southern	California	as	a	software	engineer	to	develop
products	and	services	running	on	Linux	and	MacOS	X.	He	was	especially
renowned	for	his	quick	Objective-C	coding	when	he	was	drunk.

He	is	also	an	enthusiastic	fan	of	Japanese	anime,	drama,	and	motor	sports,	and
loves	Japanese	Otaku	culture.

	

	

	

Hui-Chuan	Chloe	Lee	is	a	DevOps	and	software	developer.	She	has	worked	in
the	software	industry	on	a	wide	range	of	projects	for	over	5	years.	As	a
technology	enthusiast,	Chloe	loves	trying	and	learning	new	technologies,	which
makes	her	life	happier	and	more	fulfilled.	In	her	free	time,	she	enjoys	reading,
traveling,	and	spending	time	with	the	people	she	loves.

	

	

	

Cheng-Yang	Wu	has	been	tackling	infrastructure	and	system	reliability	since	he
received	his	master’s	degree	in	computer	science	from	the	National	Taiwan
University.	His	laziness	prompted	him	to	master	DevOps	skills	to	maximize	his
efficiency	at	work	in	order	to	squeeze	in	writing	code	for	fun.	He	enjoys	cooking

as	it's	just	like	working	with	software—a	perfect	dish	always	comes	from
balanced	flavors	and	fine-tuned	tastes.

About	the	Reviewer
Guang	Ya	Liu	is	a	Senior	Software	Architect	in	IBM	CSL	(China	System	Lab)
and	now	focuses	on	cloud	computing,	data	center	operating	systems	and
container	technology,	he	is	also	a	Member	of	IBM	Academy	of	Technology.	He
used	to	be	a	OpenStack	Magnum	Core	Member	from	2015	to	2017,	and	now	act
as	Kubernetes	Member	and	Apache	Mesos	Committer	&	PMC	Member.	Guang
Ya	is	also	the	organizer	for	Mesos,	Kubernetes	and	OpenStack	Xi'an	Meetup	and
successfully	held	many	meetups	for	those	open	source	projects	in	China.	He	also
holds	two	US	patents	related	to	cloud	and	six	publised	IPs.	Visit	his	GitHub
here:	https://github.com/gyliu513.

https://github.com/gyliu513

www.PacktPub.com
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.co
m.	Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.Packt
Pub.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook
copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.	At	www.PacktPub.c
om,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up	for	a	range	of
free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books	and
eBooks.

https://www.packtpub.com/mapt

Get	the	most	in-demand	software	skills	with	Mapt.	Mapt	gives	you	full	access	to
all	Packt	books	and	video	courses,	as	well	as	industry-leading	tools	to	help	you
plan	your	personal	development	and	advance	your	career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Customer	Feedback
Thanks	for	purchasing	this	Packt	book.	At	Packt,	quality	is	at	the	heart	of	our
editorial	process.	To	help	us	improve,	please	leave	us	an	honest	review	on	this
book's	Amazon	page	at	https://www.amazon.com/dp/1788396642.

If	you'd	like	to	join	our	team	of	regular	reviewers,	you	can	email	us	at
customerreviews@packtpub.com.	We	award	our	regular	reviewers	with	free	eBooks	and
videos	in	exchange	for	their	valuable	feedback.	Help	us	be	relentless	in
improving	our	products!

https://www.amazon.com/dp/1788396642

Table	of	Contents
Preface

What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Conventions
Reader	feedback
Customer	support

Downloading	the	example	code
Downloading	the	color	images	of	this	book
Errata
Piracy
Questions

1.	 Introduction	to	DevOps
Software	delivery	challenges

Waterfall	and	physical	delivery
Agile	and	electrical	delivery
Software	delivery	on	the	cloud
Continuous	Integration
Continuous	Delivery

Configuration	management
Infrastructure	as	code
Orchestration

Trend	of	microservices
Modular	programming
Package	management
MVC	design	pattern
Monolithic	application
Remote	Procedure	Call
RESTful	design
Microservices

Automation	and	tools
Continuous	Integration	tool
Continuous	Delivery	tool
Monitoring	and	logging	tool
Communication	tool
Public	cloud

Summary
2.	 DevOps	with	Container

Understanding	container
Resource	isolation
Linux	container	concept
Containerized	delivery
Getting	started	with	container

Installing	Docker	for	Ubuntu
Installing	Docker	for	CentOS
Installing	Docker	for	macOS

Container	life	cycle
Docker	basics
Layer,	image,	container,	and	volume
Distributing	images
Connect	containers

Working	with	Dockerfile
Writing	your	first	Dockerfile
Dockerfile	syntax
Organizing	a	Dockerfile

Multi-containers	orchestration
Piling	up	containers
Docker	Compose	overview
Composing	containers

Summary
3.	 Getting	Started	with	Kubernetes

Understanding	Kubernetes
Kubernetes	components

Master	components
API	server	(kube-apiserver)
Controller	Manager	(kube-controller-manager)
etcd
Scheduler	(kube-scheduler)

Node	components
Kubelet
Proxy	(kube-proxy)
Docker

Interaction	between	Kubernetes	master	and	nodes
Getting	started	with	Kubernetes

Preparing	the	environment
kubectl

Kubernetes	resources
Kubernetes	objects

Namespace
Name
Label	and	selector
Annotation
Pods
ReplicaSet	(RS)	and	ReplicationController	(RC)
Deployments
Services
Volumes
Secrets
ConfigMap
Using	ConfigMap	via	volume
Using	ConfigMap	via	environment	variables

Multi-containers	orchestration
Summary

4.	 Working	with	Storage	and	Resources
Kubernetes	volume	management

Container	volume	lifecycle
Sharing	volume	between	containers	within	a	pod
Stateless	and	stateful	applications
Kubernetes	Persistent	Volume	and	dynamic	provisioning

Persistent	Volume	claiming	the	abstraction	layer
Dynamic	Provisioning	and	StorageClass

A	problem	case	of	ephemeral	and	persistent	setting
Replicating	pods	with	a	Persistent	Volume	using	StatefulSet
Persistent	Volume	example

Elasticsearch	cluster	scenario
Elasticsearch	master	node
Elasticsearch	master-eligible	node
Elasticsearch	data	node
Elasticsearch	coordinating	node

Kubernetes	resource	management
Resource	Quality	of	Service
Configuring	the	BestEffort	pod
Configuring	as	the	Guaranteed	pod
Configuring	as	Burstable	pod
Monitoring	resource	usage

Summary
5.	 Network	and	Security

Kubernetes	networking
Docker	networking
Container-to-container	communications
Pod-to-pod	communications

Pod	communication	within	the	same	node
Pod	communication	across	nodes

Pod-to-service	communications
External-to-service	communications

Ingress
Network	policy
Summary

6.	 Monitoring	and	Logging
Inspecting	a	container

Kubernetes	dashboard
Monitoring	in	Kubernetes

Application
Host
External	resources
Container
Kubernetes
Getting	monitoring	essentials	for	Kubernetes

Hands-on	monitoring
Meeting	Prometheus
Deploying	Prometheus
Working	with	PromQL
Discovering	targets	in	Kubernetes
Gathering	data	from	Kubernetes
Seeing	metrics	with	Grafana

Logging	events
Patterns	of	aggregating	logs

Collecting	logs	with	a	logging	agent	per	node
Running	a	sidecar	container	to	forward	logs

Ingesting	Kubernetes	events
Logging	with	Fluentd	and	Elasticsearch

Extracting	metrics	from	logs
Summary

7.	 Continuous	Delivery

Updating	resources
Triggering	updates
Managing	rollouts
Updating	DaemonSet	and	StatefulSet

DaemonSet
StatefulSet

Building	a	delivery	pipeline
Choosing	tools

Steps	explained
env
script
after_success
deploy

Gaining	deeper	understanding	of	pods
Starting	a	pod

Liveness	and	readiness	probes
Init	containers

Terminating	a	pod
Handling	SIGTERM

SIGTERM	is	not	forwarded	to	the	container	process
SIGTERM	doesn't	invoke	the	termination	handler

Container	lifecycle	hooks
Placing	pods

Summary
8.	 Cluster	Administration

Kubernetes	namespaces
Default	namespaces
Create	a	new	namespace

Context
Create	a	context
Switch	the	current	context

ResourceQuota
Create	a	ResourceQuota	for	a	namespace

Request	pods	with	default	compute	resource	limits
Delete	a	namespace

Kubeconfig
Service	account
Authentication	and	authorization

Authentication
Service	account	authentication
User	account	authentication

Authorization
Attribute-based	access	control	(ABAC)
Role-based	access	control	(RBAC)

Roles	and	ClusterRoles
RoleBinding	and	ClusterRoleBinding

Admission	control
Namespace	life	cycle
LimitRanger
Service	account
PersistentVolumeLabel
DefaultStorageClass
ResourceQuota
DefaultTolerationSeconds

Taints	and	tolerations
PodNodeSelector
AlwaysAdmit
AlwaysPullImages
AlwaysDeny
DenyEscalatingExec
Other	admission	controller	plugins

Summary
9.	 Kubernetes	on	AWS

Introduction	to	AWS
Public	cloud
API	and	infrastructure	as	code
AWS	components

VPC	and	subnet
Internet	gateway	and	NAT-GW
Security	group
EC2	and	EBS
Route	53
ELB
S3

Setup	Kubernetes	on	AWS
Install	kops
Run	kops
Kubernetes	cloud	provider

L4	LoadBalancer
L7	LoadBalancer	(ingress)

StorageClass
Maintenance	Kubernetes	cluster	by	kops

Summary
10.	 Kubernetes	on	GCP

Introduction	to	GCP
GCP	components

VPC
Subnets
Firewall	rules
VM	instance
Load	balancing

Health	check
Backend	service
Creating	a	LoadBalancer

Persistent	Disk
Google	Container	Engine	(GKE)

Setting	up	your	first	Kubernetes	cluster	on	GKE
Node	pool
Multi	zone	cluster
Cluster	upgrade
Kubernetes	cloud	provider

StorageClass
L4	LoadBalancer
L7	LoadBalancer	(ingress)

Summary
11.	 What's	Next

Exploring	the	possibilities	of	Kubernetes
Mastering	Kubernetes

Job	and	CronJob
Affinity	and	anti-affinity	between	pods	and	nodes
Auto-scaling	of	pods
Prevention	and	mitigation	of	pod	disruptions
Kubernetes	federation
Cluster	add-ons

Kubernetes	and	communities
Kubernetes	incubator
Helm	and	charts

Gravitating	towards	a	future	infrastructure
Docker	swarm	mode

Amazon	EC2	container	service
Apache	Mesos

Summary

Preface
This	book	walks	you	through	a	journey	of	learning	fundamental	concept	and
useful	skills	for	DevOps,	containers	and	Kubernetes.

What	this	book	covers
Chapter	1,	Introduction	to	DevOps,	walks	you	through	the	evolution	from	the	past
to	what	we	call	DevOps	today	and	the	tools	that	you	should	know.	Demand	for
people	with	DevOps	skills	has	been	growing	rapidly	over	the	last	few	years.	It
has	accelerated	software	development	and	delivery	speed	and	has	also	helped
business	agility.

Chapter	2,	DevOps	with	Container,	helps	you	learn	the	fundamentals	and	container
orchestration.	With	the	trend	of	microservices,	container	has	been	a	handy	and
essential	tool	for	every	DevOps	because	of	its	language	agnostic	isolation.

Chapter	3,	Getting	Started	with	Kubernetes,	explores	the	key	components	and	API
objects	in	Kubernetes	and	how	to	deploy	and	manage	containers	in	a	Kubernetes
cluster.	Kubernetes	eases	the	pain	of	container	orchestration	with	a	lot	of	killer
features,	such	as	container	scaling,	mounting	storage	systems,	and	service
discovery.

Chapter	4,	Working	with	Storage	and	Resources,	describes	volume	management
and	also	explains	CPU	and	memory	management	in	Kubernetes.	Container
storage	management	can	be	hard	in	a	cluster.

Chapter	5,	Network	and	Security,	explains	how	to	allow	inbound	connection	to
access	Kubernetes	services	and	how	default	networking	works	in	Kubernetes.
External	access	to	our	services	is	necessary	for	business	needs.

Chapter	6,	Monitoring	and	Logging,	shows	you	how	to	monitor	a	resource's	usage
at	application,	container,	and	node	level	using	Prometheus.	This	chapter	also
shows	how	to	collect	logs	from	your	applications,	as	well	as	Kubernetes	with
Elasticsearch,	Fluentd,	and	Kibana	stack.	Ensuring	a	service	is	up	and	healthy	is
one	of	the	major	responsibilities	of	DevOps.

Chapter	7,	Continuous	Delivery,	explains	how	to	build	a	Continuous	Delivery
pipeline	with	GitHub/DockerHub/TravisCI.	It	also	explains	how	to	manage
updates,	eliminate	the	potential	impact	when	doing	rolling	updates,	and	prevent
possible	failure.	Continuous	Delivery	is	an	approach	to	speed	up	your	time-to-

market.

Chapter	8,	Cluster	Administration,	describes	how	to	solve	the	preceding	problems
with	the	Kubernetes	namespace	and	ResourceQuota	and	how	to	do	access
control	in	Kubernetes.	Setting	up	administrative	boundaries	and	access	control	to
Kubernetes	cluster	are	crucial	to	DevOps.

Chapter	9,	Kubernetes	on	AWS,	explains	AWS	components	and	shows	how	to
provision	Kubernetes	on	AWS.	AWS	is	the	most	popular	public	cloud.	It	brings
the	infrastructure	agility	and	flexibility	to	our	world.

Chapter	10,	Kubernetes	on	GCP,	helps	you	understand	the	difference	between	GCP
and	AWS,	and	the	benefit	of	running	containerized	applications	in	hosted	service
from	Kubernetes’	perspective.	Google	Container	Engine	in	GCP	is	a	managed
environment	for	Kubernetes.

Chapter	11,	What’s	Next?,	introduces	other	similar	technologies,	such	as	Docker
Swarm	mode,	Amazon	ECS,	and	Apache	Mesos	and	you’ll	have	an
understanding	of	which	the	best	approach	is	for	your	business.	Kubernetes	is
open.	This	chapter	will	teach	you	how	to	get	in	touch	with	Kubernetes
community	to	learn	ideas	from	others.

What	you	need	for	this	book
This	book	will	guide	you	through	the	methodology	of	software	development	and
delivery	with	Docker	container	and	Kubernetes	using	macOS	and	public	cloud
(AWS	and	GCP).	You	will	need	to	install	minikube,	AWSCLI,	and	the	Cloud
SDK	to	run	the	code	samples	present	in	this	book.

Who	this	book	is	for
This	book	is	intended	for	DevOps	professionals	with	some	software
development	experience	who	are	willing	to	scale,	automate,	and	shorten
software	delivery	to	the	market.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between
different	kinds	of	information.	Here	are	some	examples	of	these	styles	and	an
explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file
extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown
as	follows:	"Mount	the	downloaded	WebStorm-10*.dmg	disk	image	file	as	another
disk	in	your	system."

Any	command-line	input	or	output	is	written	as	follows:

$	sudo	yum	-y	-q	install	nginx

$	sudo	/etc/init.d/nginx	start

Starting	nginx:	

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the
screen,	for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	"The
shortcuts	in	this	book	are	based	on	the	Mac	OS	X	10.5+	scheme."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think
about	this	book-what	you	liked	or	disliked.	Reader	feedback	is	important	for	us
as	it	helps	us	develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	email	feedback@packtpub.com,	and	mention	the
book's	title	in	the	subject	of	your	message.	If	there	is	a	topic	that	you	have
expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a	book,	see
our	author	guide	at	www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things
to	help	you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at	http:/
/www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	http://www.pack
tpub.com/support	and	register	to	have	the	files	emailed	directly	to	you.	You	can
download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	email	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPublis
hing/DevOpswithKubernetes.	We	also	have	other	code	bundles	from	our	rich	catalog	of
books	and	videos	available	at	https://github.com/PacktPublishing/.	Check	them	out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/DevOpswithKubernetes
https://github.com/PacktPublishing/

Downloading	the	color	images	of	this
book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the
screenshots/diagrams	used	in	this	book.	The	color	images	will	help	you	better
understand	the	changes	in	the	output.	You	can	download	this	file	from	https://www.
packtpub.com/sites/default/files/downloads/DevOpswithKubernetes_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/devOpswithkubernetes_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,
mistakes	do	happen.	If	you	find	a	mistake	in	one	of	our	books-maybe	a	mistake
in	the	text	or	the	code-we	would	be	grateful	if	you	could	report	this	to	us.	By
doing	so,	you	can	save	other	readers	from	frustration	and	help	us	improve
subsequent	versions	of	this	book.	If	you	find	any	errata,	please	report	them	by
visiting	http://www.packtpub.com/submit-errata,	selecting	your	book,	clicking	on	the
Errata	Submission	Form	link,	and	entering	the	details	of	your	errata.	Once	your
errata	are	verified,	your	submission	will	be	accepted	and	the	errata	will	be
uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the	Errata
section	of	that	title.

To	view	the	previously	submitted	errata,	go	to	https://www.packtpub.com/books/content/sup
port	and	enter	the	name	of	the	book	in	the	search	field.	The	required	information
will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/su%20target=

Piracy
Piracy	of	copyrighted	material	on	the	internet	is	an	ongoing	problem	across	all
media.	At	Packt,	we	take	the	protection	of	our	copyright	and	licenses	very
seriously.	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
internet,	please	provide	us	with	the	location	address	or	website	name
immediately	so	that	we	can	pursue	a	remedy.	Please	contact	us	at
copyright@packtpub.com	with	a	link	to	the	suspected	pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you
valuable	content.

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
questions@packtpub.com,	and	we	will	do	our	best	to	address	the	problem.

Introduction	to	DevOps
Software	delivery	cycle	has	been	getting	shorter	and	shorter,	while	on	the	other
hand,	application	size	has	been	getting	bigger	and	bigger.	Software	developers
and	IT	operators	are	under	the	pressure	to	find	a	solution	to	this.	There	is	a	new
role,	called	DevOps,	which	is	dedicated	to	support	software	building	and
delivery.

This	chapter	covers	the	following	topics:

How	has	software	delivery	methodology	changed?
What	is	microservice,	and	why	do	people	adopt	this	architecture?
How	does	DevOps	support	to	build	and	deliver	the	application	to	the	user?

Software	delivery	challenges
Building	a	computer	application	and	delivering	it	to	the	customer	has	been
discussed	and	has	evolved	over	time.	It	is	related	to	Software	Development	Life
Cycle	(SDLC);	there	are	several	types	of	processes,	methodologies,	and
histories.	In	this	section,	we	will	describe	its	evolution.

Waterfall	and	physical	delivery
Back	in	the	1990s,	software	delivery	was	adopted	by	a	physical	method,	such	as
a	floppy	disk	or	a	CD-ROM.	Therefore,	SDLC	was	a	very	long-term	schedule,
because	it	was	not	easy	to	(re)deliver	to	the	customer.

At	that	moment,	a	major	software	development	methodology	was	a	waterfall
model,	which	has	requirements/design/implementation/verification/maintenance
phases	as	shown	in	the	following	diagram:

In	this	case,	we	can't	go	back	to	the	previous	phase.	For	example,	after	starting
or	finishing	the	Implementation	phase,	it	is	not	acceptable	to	go	back	to	the
Design	phase	(to	find	a	technical	expandability	issue,	for	example).	This	is
because	it	will	impact	the	overall	schedule	and	cost.	The	project	tends	to	proceed
and	complete	to	release,	then	it	goes	to	the	next	release	cycle	including	a	new
design.

It	perfectly	matches	the	physical	software	delivery	because	it	needs	to	coordinate
with	logistics	management	that	press	and	deliver	the	floppy/CD-ROM	to	the
user.	Waterfall	model	and	physical	delivery	used	to	take	a	year	to	several	years.

Agile	and	electrical	delivery
A	few	years	later,	the	internet	became	widely	accepted,	and	then	software
delivery	method	also	changed	from	physical	to	electrical,	such	as	online
download.	Therefore,	many	software	companies	(also	known	as	dot-com
companies)	tried	to	figure	out	how	to	shorten	the	SDLC	process	in	order	to
deliver	the	software	that	can	beat	the	competitors.

Many	developers	started	to	adopt	new	methodologies	such	as	incremental,
iterative,	or	agile	models	and	then	deliver	to	the	customer	faster.	Even	if	new
bugs	are	found,	it	is	now	easier	to	update	and	deliver	to	the	customer	as	a	patch
by	electrical	delivery.	Microsoft	Windows	update	was	also	introduced	since
Windows	98.

In	this	case,	the	software	developer	writes	only	a	small	logic	or	module,	instead
of	the	entire	application	in	one	shot.	Then,	it	delivers	to	the	QA,	and	then	the
developer	continues	to	add	a	new	module	and	finally	delivers	it	to	the	QA	again.

When	the	desired	modules	or	functions	are	ready,	it	will	be	released	as	shown	in
the	following	diagram:

This	model	makes	the	SDLC	cycle	and	the	software	delivery	faster	and	also	easy
to	be	adjust	during	the	process,	because	the	cycle	is	from	a	few	weeks	to	a	few
months	which	is	small	enough	to	make	a	quick	adjustment.

Although	this	model	is	currently	favoured	by	the	majority,	at	that	moment,

application	software	delivery	meant	software	binary,	such	as	EXE	program
which	is	designed	to	be	installed	and	run	on	the	customer's	PC.	On	the	other
hand,	the	infrastructure	(such	as	server	and	network)	is	very	static	and	set	up
beforehand.	Therefore,	SDLC	doesn't	tend	to	include	these	infrastructures	in	the
scope	yet.

Software	delivery	on	the	cloud
A	few	years	later,	smartphones	(such	as	iPhone)	and	wireless	technology	(such
as	Wi-Fi	and	4G	network)	became	widely	accepted,	and	software	application
also	changed	from	binary	to	the	online	service.	The	web	browser	is	the	interface
of	the	application	software,	which	need	not	be	installed	anymore.	On	the	other
hand,	infrastructure	becomes	dynamic,	since	the	application	requirement	keeps
changing	and	the	capacity	needs	to	grow	as	well.

Virtualization	technology	and	Software	Defined	Network	(SDN)	make	the
server	machine	dynamic.	Now,	cloud	services	such	as	Amazon	Web	Services
(AWS)	and	Google	Cloud	Platform	(GCP)	can	be	easy	to	create	and	manage
dynamic	infrastructures.

Now,	infrastructure	is	one	of	the	important	components	and	being	within	a	scope
of	Software	Development	Delivery	Cycle,	because	the	application	is	installed
and	runs	on	the	server	side,	rather	than	a	client	PC.	Therefore,	software	and
service	delivery	cycle	takes	between	a	few	days	to	a	few	weeks.

Continuous	Integration
As	discussed	previously,	the	surrounding	software	delivery	environment	keeps
changing;	however,	the	delivery	cycle	is	getting	shorter	and	shorter.	In	order	to
achieve	rapid	delivery	with	higher	quality,	the	developer	and	QA	start	to	adopt
some	automation	technologies.	One	of	the	popular	automation	technologies	is
Continuous	Integration	(CI).	CI	contains	some	combination	of	tools,	such	as
Version	Control	Systems	(VCS),	build	server,	and	testing	automation	tools.

VCS	helps	the	developer	to	maintain	program	source	code	onto	the	central
server.	It	prevents	overwriting	or	conflict	with	other	developers'	code	and	also
preserves	the	history.	Therefore,	it	makes	it	easier	to	keep	the	source	code
consistent	and	deliver	to	the	next	cycle.

The	same	as	VCS,	there	is	a	centralized	build	servers	that	connects	VCS	to
retrieve	the	source	code	periodically	or	automatically	when	the	developer
updates	the	code	to	VCS,	and	then	trigger	a	new	build.	If	the	build	fails,	it
notifies	the	developer	in	a	timely	manner.	Therefore,	it	helps	the	developer	when
someone	commits	the	broken	code	into	the	VCS.

Testing	automation	tools	are	also	integrated	with	build	server	that	invoke	the	unit
test	program	after	the	build	succeeds,	then	notifies	the	result	to	the	developer	and
QA.	It	helps	to	identify	when	somebody	writes	a	buggy	code	and	stores	to	VCS.

The	entire	flow	of	CI	is	as	shown	in	the	following	diagram:

CI	helps	both	the	developer	and	the	QA	not	only	to	increase	the	quality,	but	also
to	shorten	archiving	an	application	or	module	package	cycle.	In	an	age	of
electrical	delivery	to	the	customer,	CI	is	more	than	enough.	However,	because

delivery	to	the	customer	means	to	deploy	to	the	server.

Continuous	Delivery
CI	plus	deployment	automation	is	the	ideal	process	for	the	server	application	to
provide	a	service	to	customers.	However,	there	are	some	technical	challenges
that	need	to	be	resolved.	How	to	deliver	a	software	to	the	server?	How	to
gracefully	shutdown	the	existing	application?	How	to	replace	and	rollback	the
application?	How	to	upgrade	or	replace	if	the	system	library	also	needs	to
change?	How	to	modify	the	user	and	group	settings	in	OS	if	needed?	and	so	on.

Because	the	infrastructure	includes	the	server	and	network,	it	all	depends	on	an
environment	such	as	Dev/QA/staging/production.	Each	environment	has
different	server	configuration	and	IP	address.

Continuous	Delivery	(CD)	is	a	practice	that	could	be	achieved;	it	is	a
combination	of	CI	tool,	configuration	management	tool,	and	orchestration	tool:

Configuration	management
The	configuration	management	tool	helps	to	configure	an	OS	including	the	user,
group,	and	system	libraries,	and	also	manages	multiple	servers	that	keep
consistent	with	the	desired	state	or	configuration	if	we	replace	the	server.

It	is	not	a	scripting	language,	because	scripting	language	performs	to	execute	a
command	based	on	the	script	line	by	line.	If	we	execute	the	script	twice,	it	may
cause	some	error,	for	example,	attempt	to	create	the	same	user	twice.	On	the
other	hand,	configuration	management	looks	at	the	state,	so	if	user	is	created
already,	the	configuration	management	tool	doesn't	do	anything.	But	if	we	delete
a	user	accidentally	or	intentionally,	the	configuration	management	tool	will
create	the	user	again.

It	also	supports	to	deploy	or	install	your	application	to	the	server.	Because	if	you
tell	the	configuration	management	tool	to	download	your	application,	then	set	it
up	and	run	the	application,	it	tries	to	do	so.

In	addition,	if	you	tell	the	configuration	management	tool	to	shut	down	your
application,	then	download	and	replace	to	a	new	package	if	available,	and	then
restart	the	application,	it	keeps	up	to	date	with	the	latest	version.

Of	course,	some	of	the	users	want	to	update	the	application	only	when	it	is
required,	such	as	blue-green	deployments.	The	configuration	management	tool
allows	you	to	trigger	to	execute	manually	too.

Blue-green	deployments	is	a	technique	that	prepares	the	two	sets	of
application	stack,	then	only	one	environment	(example:	blue)	is
servicing	to	the	production.	Then	when	you	need	to	deploy	a	new
version	of	application,	deploy	to	the	other	side	(example:	green)
then	perform	the	final	test.	Then	if	it	works	fine,	change	the	load
balancer	or	router	setting	to	switch	the	network	flow	from	blue	to
green.	Then	green	becomes	a	production,	while	blue	becomes
dormant	and	waiting	for	the	next	version	deployment.

Infrastructure	as	code
The	configuration	management	tool	supports	not	only	OS	or	Virtual	Machine,
but	also	cloud	infrastructure.	If	you	need	to	create	and	configure	a	network,
storage,	and	Virtual	Machine	on	the	cloud,	it	requires	some	of	the	cloud
operations.

But	the	configuration	management	tool	helps	to	automate	the	setup	cloud
infrastructure	by	configuration	file,	as	shown	in	the	following	diagram:

Configuration	management	has	some	advantage	against	maintaining	an
operation	manual	Standard	Operation	Procedure	(SOP).	For	example,
maintaining	a	configuration	file	using	VCS	such	as	Git,	you	can	trace	the	history
of	how	the	environment	setting	has	changed.

It	is	also	easy	to	duplicate	the	environment.	For	example,	you	need	an	additional
environment	on	cloud.	If	you	follow	the	traditional	approach,	(that	is,	to	read	the
SOP	document	to	operate	the	cloud),	it	always	has	a	potential	human	error	and
operation	error.	On	the	other	hand,	we	can	execute	the	configuration
management	tool	that	creates	an	environment	on	cloud	quickly	and
automatically.

Infrastructure	as	code	may	or	may	not	be	included	in	the	CD
process,	because	infrastructure	replacement	or	update	cost	is

higher	than	just	replacing	an	application	binary	on	the	server.

Orchestration
The	orchestration	tool	is	also	categorized	as	one	of	the	configuration
management	tools.	However	its	more	intelligent	and	dynamic	when	configuring
and	allocating	the	cloud	resources.	For	example,	orchestration	tool	manages
several	server	resources	and	networks,	and	then	when	the	administrator	wants	to
increase	the	application	instances,	orchestration	tool	can	determine	an	available
server	and	then	deploy	and	configure	the	application	and	network	automatically.

Although	orchestration	tool	is	beyond	the	SDLC,	it	helps	Continuous	Delivery
when	it	needs	to	scale	the	application	and	refactor	the	infrastructure	resource.

Overall,	the	SDLC	has	been	evolved	to	achieve	rapid	delivery	by	several
processes,	tools,	and	methodologies.	Eventually,	software	(service)	delivery
takes	anywhere	from	a	few	hours	to	a	day.	While	at	the	same	time,	software
architecture	and	design	has	also	evolved	to	achieve	large	and	rich	applications.

Trend	of	microservices
Software	architecture	and	design	also	keep	evolving,	based	on	the	target
environment	and	volume	of	the	application's	size.

Modular	programming
When	the	application	size	is	getting	bigger,	developers	tried	to	divide	by	several
modules.	Each	module	should	be	independent	and	reusable,	and	should	be
maintained	by	different	developer	teams.	Then,	when	we	start	to	implement	an
application,	the	application	just	initializes	and	uses	these	modules	to	build	a
larger	application	efficiently.

The	following	example	shows	what	kind	of	library	Nginx	(https://www.nginx.com)
uses	on	CentOS	7.	It	indicates	that	Nginx	uses	OpenSSL,	POSIX	thread	library,	PCRE	the
regular	expression	library,	zlib	the	compression	library,	GNU	C	library,	and	so	on.
So,	Nginx	didn't	reinvent	to	implement	SSL	encryption,	regular	expression,	and
so	on:

$	/usr/bin/ldd	/usr/sbin/nginx

		linux-vdso.so.1	=>		(0x00007ffd96d79000)

		libdl.so.2	=>	/lib64/libdl.so.2	(0x00007fd96d61c000)

		libpthread.so.0	=>	/lib64/libpthread.so.0			

		(0x00007fd96d400000)

		libcrypt.so.1	=>	/lib64/libcrypt.so.1			

		(0x00007fd96d1c8000)

		libpcre.so.1	=>	/lib64/libpcre.so.1	(0x00007fd96cf67000)

		libssl.so.10	=>	/lib64/libssl.so.10	(0x00007fd96ccf9000)

		libcrypto.so.10	=>	/lib64/libcrypto.so.10			

		(0x00007fd96c90e000)

		libz.so.1	=>	/lib64/libz.so.1	(0x00007fd96c6f8000)

		libprofiler.so.0	=>	/lib64/libprofiler.so.0	

		(0x00007fd96c4e4000)

			libc.so.6	=>	/lib64/libc.so.6	(0x00007fd96c122000)

			...

The	ldd	command	is	included	in	the	glibc-common	package	on	CentOS.

https://www.nginx.com

Package	management
Java	language	and	several	lightweight	programming	languages	such	as	Python,
Ruby,	and	JavaScript	have	their	own	module	or	package	management	tool.	For
example,	Maven	(http://maven.apache.org)	for	Java,	pip	(https://pip.pypa.io)	for	Python,
RubyGems	(https://rubygems.org)	for	Ruby	and	npm	(https://www.npmjs.com)	for
JavaScript.

Package	management	tool	allows	you	to	register	your	module	or	package	to	the
centralized	or	private	repository,	and	also	allows	to	download	the	necessary
packages.	The	following	screenshot	shows	Maven	repository	for	AWS	SDK:

When	you	add	some	particular	dependencies	to	your	application,	Maven
downloads	the	necessary	packages.	The	following	screenshot	is	the	result	you
get	when	you	add	aws-java-sdk	dependency	to	your	application:

http://maven.apache.org
https://pip.pypa.io
https://rubygems.org
https://www.npmjs.com

Modular	programming	helps	you	to	increase	software	development	speed	and
reduce	it	to	reinvent	the	wheel,	so	it	is	the	most	popular	way	to	develop	a
software	application	now.

However,	applications	need	more	and	more	combination	of	modules,	packages,
and	frameworks,	as	and	when	we	keep	adding	a	feature	and	logic.	This	makes
the	application	more	complex	and	larger,	especially	server-side	applications.
This	is	because	it	usually	needs	to	connect	to	a	database	such	as	RDBMS,	as
well	as	an	authentication	server	such	as	LDAP,	and	then	return	the	result	to	the
user	by	HTML	with	the	appropriate	design.

Therefore,	developers	have	adopted	some	software	design	patterns	in	order	to
develop	an	application	with	a	bunch	of	modules	within	an	application.

MVC	design	pattern
One	of	the	popular	application	design	patterns	is	Model	View	and	Controller
(MVC).	It	defines	three	layers.	View	layer	is	in	charge	of	user	interface	(UI)
input	output	(I/O).	Model	layer	is	in	charge	of	data	query	and	persistency	such
as	load	and	store	to	database.	Then,	the	Controller	layer	is	in	charge	of	business
logic	that	is	halfway	between	View	and	Model:

There	are	some	frameworks	that	help	developers	to	make	MVC	easier,	such	as
Struts	(https://struts.apache.org/),	SpringMVC	(https://projects.spring.io/spring-framework/),
Ruby	on	Rails	(http://rubyonrails.org/),	and	Django	(https://www.djangoproject.com/).	MVC
is	one	of	the	successful	software	design	pattern	that	is	used	for	the	foundation	of
modern	web	applications	and	services.

MVC	defines	a	border	line	between	every	layer	which	allows	many	developers
to	jointly	develop	the	same	application.	However,	it	causes	side	effects.	That	is,
the	size	of	the	source	code	within	the	application	keeps	getting	bigger.	This	is
because	database	code	(Model),	presentation	code	(View),	and	business	logic
(Controller)	are	all	within	the	same	VCS	repository.	It	eventually	makes	impact
on	the	software	development	cycle,	which	gets	slower	again!	It	is	called
monolithic,	which	contains	a	lot	of	code	that	builds	a	giant	exe/war	program.

https://struts.apache.org/
https://projects.spring.io/spring-framework/
http://rubyonrails.org/
https://www.djangoproject.com/

Monolithic	application
There	is	no	clear	measurement	of	monolithic	application	definition,	but	it	used	to
have	more	than	50	modules	or	packages,	more	than	50	database	tables,	and	then
it	needs	more	than	30	minutes	to	build.	When	it	needs	to	add	or	modify	one
module,	it	affects	a	lot	of	code,	therefore	developers	try	to	minimize	the
application	code	change.	This	hesitation	causes	worse	effects	such	that
sometimes	the	application	even	dies	because	no	one	wants	to	maintain	the	code
anymore.

Therefore,	the	developer	starts	to	divide	monolithic	applications	in	to	small
pieces	of	application	and	connect	via	the	network.

Remote	Procedure	Call
Actually,	dividing	an	application	in	to	small	pieces	and	connecting	via	the
network	has	been	attempted	back	in	the	1990s.	Sun	Microsystems	introduced
Sun	RPC	(Remote	Procedure	Call).	It	allows	you	to	use	the	module	remotely.
One	of	popular	Sun	RPC	implementers	is	Network	File	System	(NFS).	CPU
OS	versions	are	independent	across	NFS	client	and	NFS	server,	because	they	are
based	on	Sun	RPC.

The	programming	language	itself	also	supports	RPC-style	functionality.	UNIX
and	C	language	have	the	rpcgen	tool.	It	helps	the	developer	to	generate	a	stub
code,	which	is	in	charge	of	network	communication	code,	so	the	developer	can
use	the	C	function	style	and	be	relieved	from	difficult	network	layer
programming.

Java	has	Java	Remote	Method	Invocation	(RMI)	which	is	similar	to	Sun	RPC,
but	for	Java,	RMI	compiler	(rmic)	generates	the	stub	code	that	connects	remote
Java	processes	to	invoke	the	method	and	get	a	result	back.	The	following
diagram	shows	Java	RMI	procedure	flow:

Objective	C	also	has	distributed	object	and	.NET	has	remoting,	so	most	of	the
modern	programming	languages	have	the	capability	of	Remote	Procedure	Call
out	of	the	box.

These	Remote	Procedure	Call	designs	have	the	benefit	to	divide	an	application
into	multiple	processes	(programs).	Individual	programs	can	have	separate
source	code	repositories.	It	works	well	although	machine	resource	(CPU,
memory)	was	limited	during	1990s	and	2000s.

However,	it	was	designed	and	intended	to	use	the	same	programming	language
and	also	designed	for	client/server	model	architecture,	instead	of	a	distributed
architecture.	In	addition,	there	was	less	security	consideration;	therefore,	it	is	not
recommended	to	use	over	a	public	network.

In	the	2000s,	there	was	an	initiative	web	services	that	used	SOAP	(HTTP/SSL)
as	data	transport,	using	XML	as	data	presentation	and	service	definition	Web
Services	Description	Language	(WSDL),	then	used	Universal	Description,
Discovery,	and	Integration	(UDDI)	as	the	service	registry	to	look	up	a	web
services	application.	However,	as	the	machine	resources	were	not	rich	and	due	to
the	complexity	of	web	services	programming	and	maintainability,	it	is	not
widely	accepted	by	developers.

RESTful	design
Go	to	2010s,	now	machine	power	and	even	the	smartphone	have	plenty	of	CPU
resource,	in	addition	to	network	bandwidth	of	a	few	hundred	Mbps	everywhere.
So,	the	developer	starts	to	utilize	these	resources	to	make	application	code	and
system	structure	as	easy	as	possible	making	the	software	development	cycle
quicker.

Based	on	hardware	resources,	it	is	a	natural	decision	to	use	HTTP/SSL	as	RPC
transport,	but	from	having	experience	with	web	services	difficulty,	the	developer
makes	it	simple	as	follows:

By	making	HTTP	and	SSL/TLS	a	standard	transport
By	using	HTTP	method	for	Create/Load/Upload/Delete	(CLUD)
operation,	such	as	GET/POST/PUT/DELETE
By	using	URI	as	the	resource	identifier	such	as:	user	ID	123	as	/user/123/
By	using	JSON	as	the	standard	data	presentation

It	is	called	RESTful	design,	and	that	has	been	widely	accepted	by	many
developers	and	become	de	facto	standard	of	distributed	applications.	RESTful
application	allows	any	programming	language	as	it	is	HTTP-based,	so	the
RESTful	server	is	Java	and	client	Python	is	very	natural.

It	brings	freedom	and	opportunities	to	the	developer	that	its	easy	to	perform	code
refactoring,	upgrade	a	library	and	even	switch	to	another	programming	language.
It	also	encourages	the	developer	to	build	a	distributed	modular	design	by
multiple	RESTful	applications,	which	is	called	microservices.

If	you	have	multiple	RESTful	applications,	there	is	a	concern	on	how	to	manage
multiple	source	code	on	VCS	and	how	to	deploy	multiple	RESTful	servers.
However,	Continuous	Integration,	and	Continuous	Delivery	automation	makes	a
lower	bar	to	build	and	deploy	a	multiple	RESTful	server	application	easier.

Therefore,	microservices	design	is	getting	popular	for	web	application
developers.

Microservices
Although	the	name	is	micro,	it	is	actually	heavy	enough	compared	to	the
applications	from	1990s	or	2000s.	It	uses	full	stack	of	HTTP/SSL	server	and
contains	entire	MVC	layers.	The	microservices	design	should	care	about	the
following	topics:

Stateless:	This	doesn't	store	user	session	to	the	system,	which	helps	to	scale
out	easier.
No	shared	datastore:	The	microservice	should	own	the	datastore	such	as
database.	It	shouldn't	share	with	the	other	application.	It	helps	to
encapsulate	the	backend	database	that	is	easy	to	refactor	and	update	the
database	scheme	within	a	single	microservice.
Versioning	and	compatibility:	The	microservice	may	change	and	update
the	API	but	should	define	a	version	and	it	should	have	backward
compatibility.	This	helps	to	decouple	between	other	microservices	and
applications.
Integrate	CI/CD:	The	microservice	should	adopt	CI	and	CD	process	to
eliminate	management	effort.

There	are	some	frameworks	that	can	help	to	build	the	microservice	application
such	as	Spring	Boot	(https://projects.spring.io/spring-boot/)	and	Flask	(http://flask.pocoo.org).
However,	there	are	a	lot	of	HTTP-based	frameworks,	so	the	developer	can	feel
free	to	try	and	choose	any	preferred	framework	or	even	programming	language.
This	is	the	beauty	of	the	microservice	design.

The	following	diagram	is	a	comparison	between	monolithic	application	design
and	microservices	design.	It	indicates	that	microservice	(also	MVC)	design	is	the
same	as	monolithic,	which	contains	interface	layer,	business	logic	layer,	model
layer,	and	datastore.

But	the	difference	is	that	the	application	(service)	is	constructed	by	multiple
microservices	and	that	different	applications	can	share	the	same	microservice
underneath:

https://projects.spring.io/spring-boot/)
http://flask.pocoo.org)

The	developer	can	add	the	necessary	microservice	and	modify	an	existing
microservice	with	the	rapid	software	delivery	method	that	won't	affect	an
existing	application	(service)	anymore.

It	is	a	breakthrough	to	an	entire	software	development	environment	and
methodology	that	is	getting	widely	accepted	by	many	developers	now.

Although	Continuous	Integration	and	Continuous	Delivery	automation	process
helps	to	develop	and	deploy	multiple	microservices,	the	number	of	resources	and
complexity,	such	as	Virtual	Machine,	OS,	library,	and	disk	volume	and	network
can't	compare	with	monolithic	applications.

Therefore,	there	are	some	tools	and	roles	that	can	support	these	large	automation
environments	on	the	cloud.

Automation	and	tools
As	discussed	previously,	automation	is	the	best	practice	to	achieve	rapid
software	delivery	and	solves	the	complexity	to	manage	many	microservices.
However,	automation	tools	are	not	an	ordinary	IT/infrastructure	applications
such	as	Active	Directory,	BIND	(DNS),	and	Sendmail	(MTA).	In	order	to
achieve	automation,	there	is	an	engineer	who	should	have	both	developer	skill
set	to	write	a	code,	especially	scripting	language,	and	infrastructure	operator
skill	set	such	as	VM,	network,	and	storage.

DevOps	is	a	clipped	compound	of	development	and	operations	that	can	have	an
ability	to	make	automation	processes	such	as	Continuous	Integration,
Infrastructure	as	code,	and	Continuous	Delivery.	DevOps	uses	some	DevOps
tools	to	make	these	automation	processes.

Continuous	Integration	tool
One	of	the	popular	VCS	tools	is	Git	(https://git-scm.com).	The	developer	uses	Git	to
check-in	and	check-out	the	code	all	the	time.	There	are	some	hosting	Git	service:
GitHub	(https://github.com)	and	Bitbucket	(https://bitbucket.org).	It	allows	you	to	create
and	save	your	Git	repositories	and	collaborate	with	other	users.	The	following
screenshot	is	a	sample	pull	request	on	GitHub:

The	build	server	has	a	lot	of	variation.	Jenkins	(https://jenkins.io)	is	one	of	well-
established	applications,	which	is	the	same	as	TeamCity	(https://www.jetbrains.com/tea
mcity/).	In	addition	to	build	server,	you	also	have	hosted	services,	the	Software	as
a	Service	(SaaS)	such	as	Codeship	(https://codeship.com)	and	Travis	CI	(https://travis-ci.
org).	SaaS	has	the	strength	to	integrate	with	other	SaaS	tools.

Build	server	is	capable	of	invoking	an	external	command	such	as	a	unit	test
program;	therefore,	build	server	is	a	key	tool	within	CI	pipeline.

https://git-scm.com
https://github.com)
https://bitbucket.org
https://jenkins.io
https://www.jetbrains.com/teamcity/)
https://codeship.com)
https://travis-ci.org)

The	following	screenshot	is	a	sample	build	using	Codeship;	it	checks	out	the
code	from	GitHub	and	invokes	Maven	to	build	(mvn	compile)	and	unit	testing	(mvn
test):

Continuous	Delivery	tool
There	are	a	variety	of	configuration	management	tools	such	as	Puppet	(https://puppe
t.com),	Chef	(https://www.chef.io),	and	Ansible	(https://www.ansible.com),	which	are	the
most	popular	in	configuration	management.

AWS	OpsWorks	(https://aws.amazon.com/opsworks/)	provides	a	managed	Chef	platform.
The	following	screenshot	is	a	Chef	recipe	(configuration)	of	installation	of
Amazon	CloudWatch	Log	agent	using	AWS	OpsWorks.	It	automates	to	install
CloudWatch	Log	agent	when	launching	an	EC2	instance:

AWS	CloudFormation	(https://aws.amazon.com/cloudformation/)	helps	to	achieve
infrastructure	as	code.	It	supports	the	automation	for	AWS	operation,	for
example,	to	perform	the	following	functions:

1.	 Creating	a	VPC.
2.	 Creating	a	subnet	on	VPC.

https://puppet.com
https://www.chef.io
https://www.ansible.com
https://aws.amazon.com/opsworks/
https://aws.amazon.com/cloudformation/)

3.	 Creating	an	internet	gateway	on	VPC.
4.	 Creating	a	routing	table	to	associate	a	subnet	to	the	internet	gateway.
5.	 Creating	a	security	group.
6.	 Creating	a	VM	instance.
7.	 Associating	a	security	group	to	a	VM	instance.

The	configuration	of	CloudFormation	is	written	by	JSON	as	shown	in	the
following	screenshot:

It	supports	parameterize,	so	it	is	easy	to	create	an	additional	environment	with
different	parameters	(for	example,	VPC	and	CIDR)	using	a	JSON	file	with	the
same	configuration.	In	addition,	it	supports	the	update	operation.	So,	if	there	is	a
need	to	change	a	part	of	the	infrastructure,	there's	no	need	to	recreate.
CloudFormation	can	identify	a	delta	of	configuration	and	perform	only	the
necessary	infrastructure	operations	on	behalf	of	you.

AWS	CodeDeploy	(https://aws.amazon.com/codedeploy/)	is	also	a	useful	automation	tool.

https://aws.amazon.com/codedeploy/)

But	focus	on	software	deployment.	It	allows	the	user	to	define.	The	following
are	some	actions	onto	the	YAML	file:

1.	 Where	to	download	and	install.
2.	 How	to	stop	the	application.
3.	 How	to	install	the	application.
4.	 After	installation,	how	to	start	and	configure	an	application.

The	following	screenshot	is	an	example	of	AWS	CodeDeploy	configuration	file
appspec.yml:

Monitoring	and	logging	tool
Once	you	start	to	manage	some	microservices	using	a	cloud	infrastructure,	there
are	some	monitoring	tools	that	help	you	to	manage	your	servers.

Amazon	CloudWatch	is	the	built-in	monitoring	tool	on	AWS.	No	agent
installation	is	needed;	it	automatically	gathers	some	metrics	from	AWS	instances
and	visualizes	for	DevOps.	It	also	supports	to	set	an	alert	based	on	the	criteria
that	you	set.	The	following	screenshot	is	an	Amazon	CloudWatch	metrics	for
EC2	instance:

Amazon	CloudWatch	also	supports	to	gather	an	application	log.	It	requires
installing	an	agent	on	EC2	instance;	however,	centralized	log	management	is
useful	when	you	need	to	start	managing	multiple	microservice	instances.

ELK	is	a	popular	combination	of	stack	that	stands	for	Elasticsearch	(https://www.ela

https://www.elastic.co/products/elasticsearch

stic.co/products/elasticsearch),	Logstash	(https://www.elastic.co/products/logstash),	and	Kibana	(ht
tps://www.elastic.co/products/kibana).	Logstash	helps	to	aggregate	the	application	log	and
transform	to	JSON	format	and	then	send	to	Elasticsearch.

Elasticsearch	is	a	distributed	JSON	database.	Kibana	can	visualize	the	data,
which	is	stored	on	Elasticsearch.	The	following	example	is	a	Kibana,	which
shows	Nginx	access	log:

https://www.elastic.co/products/logstash
https://www.elastic.co/products/kibana

Grafana	(https://grafana.com)	is	another	popular	visualization	tool.	It	used	to	be
connected	with	time	series	database	such	as	Graphite	(https://graphiteapp.org)	or
InfluxDB	(https://www.influxdata.com).	Time	series	database	is	designed	to	store	the
data,	which	is	flat	and	de-normalized	numeric	data	such	as	CPU	usage	and
network	traffic.	Unlike	RDBMS,	time	series	database	has	some	optimization	to
save	the	data	space	and	faster	query	for	numeric	data	history.	Most	of	DevOps
monitoring	tools	are	using	time	series	database	in	the	backend.

The	following	example	is	a	Grafana	that	shows	Message	Queue	Server
statistics:

https://grafana.com
https://graphiteapp.org)
https://www.influxdata.com)

Communication	tool
Once	you	start	to	use	several	DevOps	tools	as	we	saw	earlier,	you	need	to	go
back	and	forth	to	visit	several	consoles	to	check	whether	CI	and	CD	pipelines
work	properly	or	not.	For	example,	consider	the	following	points:

1.	 Merge	the	source	code	to	GitHub.
2.	 Trigger	the	new	build	on	Jenkins.
3.	 Trigger	AWS	CodeDeploy	to	deploy	the	new	version	of	the	application.

These	events	need	to	be	tracked	by	time	sequence,	and	if	there	are	some
troubles,	DevOps	needs	to	discuss	it	with	the	developer	and	QA	to	handle	the
cases.	However,	there	are	some	over-communication	needs,	because	DevOps
needs	to	capture	the	event	one	by	one	and	then	explain,	probably	via	e-mail.	It	is
not	efficient	and	in	the	meantime	the	issue	is	still	going	on.

There	are	some	communication	tools	that	help	to	integrate	these	DevOps	tools
and	anyone	can	join	to	look	at	the	event	and	comment	to	each	other.	Slack	(https://
slack.com)	and	HipChat	(https://www.hipchat.com)	are	the	most	popular	communication
tools.

These	tools	support	to	integrate	to	SaaS	services	so	that	DevOps	can	see	the
event	on	the	single	chat	room.	The	following	screenshot	is	a	Slack	chat	room
that	integrates	with	Jenkins:

https://slack.com
https://www.hipchat.com

Public	cloud
CI	CD	and	automation	work	can	be	achieved	easily	when	used	with	cloud
technology.	Especially	public	cloud	API	helps	DevOps	to	come	up	with	many	CI
CD	tools.	Public	cloud	such	as	Amazon	Web	Services	(https://aws.amazon.com)	and
Google	Cloud	Platform	(https://cloud.google.com)	provides	some	APIs	to	DevOps	to
control	the	cloud	infrastructure.	DevOps	can	be	a	relief	from	capacity	and
resource	limitation,	just	pay	as	you	go	whenever	the	resource	is	needed.

Public	cloud	will	keep	growing	the	same	way	as	software	development	cycle	and
architecture	design;	these	are	best	friends	and	the	important	key	to	achieve	your
application/service	to	success.

The	following	screenshot	is	a	web	console	for	Amazon	Web	Services:

Google	Cloud	Platform	also	has	a	web	console	as	shown	here:

https://aws.amazon.com)
https://cloud.google.com)

Both	cloud	services	have	a	free	trial	period	that	DevOps	engineer	can	use	to	try
and	understand	the	benefits	of	cloud	infrastructure.

Summary
In	this	chapter,	we	have	discussed	the	history	of	software	development
methodology,	programming	evolution	and	DevOps	tools.	These	methodologies
and	tools	support	quicker	software	delivery	cycle.	Microservice	design	also
helps	continuous	software	update.	However,	microservice	makes	complexity	of
environment	management.

The	next	chapter	will	describe	the	Docker	container	technology,	which	helps	to
compose	microservice	application	and	manage	it	in	a	more	efficient	and
automated	way.

DevOps	with	Container
We	are	already	familiar	with	a	lot	of	DevOps	tools	that	help	us	automate	tasks
and	manage	configuration	at	different	stages	of	application	delivery,	but
challenges	still	exist	as	applications	become	more	micro	and	diverse.	In	this
chapter,	we	will	add	another	swiss	army	knife	to	our	tool	belt,	namely	Container.
In	doing	so,	we	will	seek	to	acquire	the	following	skills:

Container	concepts	and	fundamentals
Running	Docker	applications
Building	Docker	applications	with	Dockerfile
Orchestrating	multiple	containers	with	Docker	Compose

Understanding	container
The	key	feature	of	container	is	isolation.	In	this	section,	we	will	elaborate	how
container	achieves	it	and	why	it	matters	in	the	software	development	life	cycle	to
help	establish	a	proper	understanding	of	this	powerful	tool.

Resource	isolation
When	an	application	launches,	it	consumes	CPU	time,	occupies	memory	space,
links	to	its	dependent	libraries,	and	may	write	to	disk,	transmit	packets,	and
access	other	devices.	Everything	it	uses	up	is	a	resource,	and	is	shared	by	all	the
programs	on	the	same	host.	The	idea	of	container	is	to	isolate	resources	and
programs	to	separate	boxes.

You	may	have	heard	such	terms	as	para-virtualization,	Virtual	Machines
(VMs),	BSD	jails,	and	Solaris	containers,	which	can	also	isolate	the	resources	of
a	host.	However,	since	their	designs	differ,	they	are	fundamentally	distinct	but
provide	a	similar	isolation	concept.	For	example,	the	implementation	of	a	VM	is
for	virtualizing	the	hardware	layer	with	a	hypervisor.	If	you	want	to	run	an
application	on	a	Virtual	Machine,	you	have	to	install	a	full	operating	system
first.	In	other	words,	the	resources	are	isolated	between	guest	operating	systems
on	the	same	hypervisor.	In	contrast,	container	is	built	on	top	of	Linux	primitives,
which	means	it	can	only	run	in	an	operating	system	with	those	capabilities.	BSD
jails	and	Solaris	containers	also	work	in	a	similar	fashion	on	other	operating
systems.	The	isolation	relationship	of	container	and	VMs	is	illustrated	in	the
following	diagram.	Container	isolates	an	application	at	the	OS-layer,	while	VM-
based	separation	is	achieved	by	the	operating	system.

Linux	container	concept
Container	comprises	several	building	blocks,	the	two	most	important	being
namespaces	and	cgroups	(control	groups).	Both	of	them	are	Linux	kernel
features.	Namespaces	provide	logical	partitions	of	certain	kinds	of	system
resources,	such	as	mounting	point	(mnt),	process	ID	(PID),	network	(net),	and	so
on.	To	explain	the	concept	of	isolation,	let's	look	at	some	simple	examples	on	the
pid	namespace.	The	following	examples	are	all	from	Ubuntu	16.04.2	and	util-
linux	2.27.1.

When	we	type	ps	axf,	we	will	see	a	long	list	of	running	processes:

$	ps	axf

		PID	TTY						STAT			TIME	COMMAND

				2	?								S						0:00	[kthreadd]

				3	?								S						0:42		_	[ksoftirqd/0]

				5	?								S<					0:00		_	[kworker/0:0H]

				7	?								S						8:14		_	[rcu_sched]

				8	?								S						0:00		_	[rcu_bh]

ps	is	a	utility	to	report	current	processes	on	the	system.	ps	axf	is	to
list	all	processes	in	forest.

Now	let's	enter	a	new	pid	namespace	with	unshare,	which	is	able	to	disassociate	a
process	resource	part-by-part	to	a	new	namespace,	and	check	the	processes
again:

$	sudo	unshare	--fork	--pid	--mount-proc=/proc	/bin/sh

$	ps	axf

		PID	TTY						STAT			TIME	COMMAND

				1	pts/0				S						0:00	/bin/sh

				2	pts/0				R+					0:00	ps	axf

You	will	find	the	pid	of	the	shell	process	at	the	new	namespace	becoming	1,	with
all	other	processes	disappearing.	That	is	to	say,	you	have	created	a	pid	container.
Let's	switch	to	another	session	outside	the	namespace,	and	list	the	processes
again:

$	ps	axf	//	from	another	terminal

		PID	TTY			COMMAND

		...

		25744	pts/0	_	unshare	--fork	--pid	--mount-proc=/proc				

		/bin/sh

		25745	pts/0				_	/bin/sh

		3305		?					/sbin/rpcbind	-f	-w

		6894		?					/usr/sbin/ntpd	-p	/var/run/ntpd.pid	-g	-u		

		113:116

				...

You	can	still	see	the	other	processes	and	your	shell	process	within	the	new
namespace.

With	the	pid	namespace	isolation,	processes	in	different	namespaces	cannot	see
each	other.	Nonetheless,	if	one	process	eats	up	a	considerable	amount	of	system
resources,	such	as	memory,	it	could	cause	the	system	to	run	out	of	memory	and
become	unstable.	In	other	words,	an	isolated	process	could	still	disrupt	other
processes	or	even	crash	a	whole	system	if	we	don't	impose	resource	usage
restrictions	on	it.

The	following	diagram	illustrates	the	PID	namespaces	and	how	an	out-of-
memory	(OOM)	event	can	affect	other	processes	outside	a	child	namespace.
The	bubbles	are	the	process	in	the	system,	and	the	numbers	are	their	PID.
Processes	in	the	child	namespace	have	their	own	PID.	Initially,	there	is	still	free
memory	available	in	the	system.	Later,	the	processes	in	the	child	namespace
exhaust	the	whole	memory	in	the	system.	The	kernel	then	starts	the	OOM	killer
to	release	memory,	and	the	victims	may	be	processes	outside	the	child
namespace:

In	light	of	this,	cgroups	is	utilized	here	to	limit	resource	usage.	Like	namespaces,
it	can	set	constraint	on	different	kinds	of	system	resources.	Let's	continue	from
our	pid	namespace,	stress	the	CPU	with	yes	>	/dev/null,	and	monitor	it	with	top:

$	yes	>	/dev/null	&	top

$	PID	USER		PR		NI				VIRT			RES			SHR	S		%CPU	%MEM				

TIME+	COMMAND

		3	root		20			0				6012			656			584	R	100.0		0.0		

		0:15.15	yes

		1	root		20			0				4508			708			632	S			0.0		0.0																			

		0:00.00	sh

		4	root		20			0			40388		3664		3204	R			0.0		0.1		

		0:00.00	top

Our	CPU	load	reaches	100%	as	expected.	Now	let's	limit	it	with	the	CPU
cgroup.	Cgroups	are	organized	as	directories	under	/sys/fs/cgroup/	(switch	to	the
host	session	first):

$	ls	/sys/fs/cgroup

blkio								cpuset			memory												perf_event

cpu										devices		net_cls											pids

cpuacct						freezer		net_cls,net_prio		systemd

cpu,cpuacct		hugetlb		net_prio	

Each	of	the	directories	represents	the	resources	they	control.	It's	pretty	easy	to
create	a	cgroup	and	control	processes	with	it:	just	create	a	directory	under	the
resource	type	with	any	name,	and	append	the	process	IDs	you'd	like	to	control	to
tasks.	Here	we	want	to	throttle	the	CPU	usage	of	our	yes	process,	so	create	a	new
directory	under	cpu	and	find	out	the	PID	of	the	yes	process:

$	ps	x	|	grep	yes

11809	pts/2				R					12:37	yes

				

$	mkdir	/sys/fs/cgroup/cpu/box	&&	\

		echo	11809	>	/sys/fs/cgroup/cpu/box/tasks

We've	just	added	yes	into	the	newly	created	CPU	group	box,	but	the	policy
remains	unset,	and	processes	still	run	without	restriction.	Set	a	limit	by	writing
the	desired	number	into	the	corresponding	file	and	check	the	CPU	usage	again:

$	echo	50000	>	/sys/fs/cgroup/cpu/box/cpu.cfs_quota_us

$	PID	USER		PR		NI				VIRT			RES			SHR	S		%CPU	%MEM				

	TIME+	COMMAND

				3	root		20			0				6012			656			584	R		50.2		0.0					

				0:32.05	yes

				1	root		20			0				4508		1700		1608	S			0.0		0.0		

				0:00.00	sh

				4	root		20			0			40388		3664		3204	R			0.0		0.1		

				0:00.00	top

The	CPU	usage	is	dramatically	reduced,	meaning	that	our	CPU	throttle	works.

These	two	examples	elucidate	how	Linux	container	isolates	system	resources.
By	putting	more	confinements	in	an	application,	we	can	definitely	build	a	fully
isolated	box,	including	filesystem	and	networks,	without	encapsulating	an
operating	system	within	it.

Containerized	delivery
To	deploy	applications,	the	configuration	management	tool	is	often	used.	It's	true
that	it	works	well	with	its	modular	and	code-based	configuration	design	until	the
application	stacks	grow	complex	and	diverse.	Maintaining	a	large	configuration
manifest	base	is	complicated.	When	we	want	to	change	one	package,	we'll	have
to	deal	with	entangled	and	fragile	dependencies	between	the	system	and
application	packages.	It's	not	uncommon	that	some	applications	break
inadvertently	after	upgrading	an	unrelated	package.	Moreover,	upgrading	the
configuration	management	tool	itself	is	also	a	challenging	task.

In	order	to	overcome	such	a	conundrum,	immutable	deployments	with	pre-baked
VM	images	are	introduced.	That	is,	whenever	we	have	any	update	on	the	system
or	application	packages,	we'll	build	a	full	VM	image	against	the	change	and
deploy	it	accordingly.	It	solves	a	certain	degree	of	package	problems	because	we
are	now	able	to	customize	runtimes	for	applications	that	cannot	share	the	same
environments.	Nevertheless,	doing	immutable	deployment	with	VM	images	is
costly.	From	another	point	of	view,	provisioning	a	VM	for	the	sake	of	isolating
applications	rather	than	insufficient	resources	results	in	inefficient	resource
utilization,	not	to	mention	the	overhead	of	booting,	distributing,	and	running	a
bloating	VM	image.	If	we	want	to	eliminate	such	inefficiency	by	sharing	VM	to
multiple	applications,	we'll	soon	realize	that	we	will	run	into	further	trouble,
namely,	resource	management.

Container,	here,	is	a	jigsaw	piece	that	snugly	fits	the	deployment	needs.	A
manifest	of	a	container	can	be	managed	within	VCS,	and	built	into	a	blob	image;
no	doubt	the	image	can	be	deployed	immutably	as	well.	This	enables	developers
to	abstract	from	actual	resources,	and	infrastructure	engineers	can	escape	from
their	dependency	hell.	Besides,	since	we	only	need	to	pack	up	the	application
itself	and	its	dependent	libraries,	its	image	size	would	be	significantly	smaller
than	a	VM's.	Consequently,	distributing	a	container	image	is	more	economical
than	a	VM's.	Additionally,	we	have	already	known	that	running	a	process	inside
a	container	is	basically	identical	to	running	it	on	its	Linux	host	and	as	such
almost	no	overhead	will	be	produced.	To	summarize,	container	is	lightweight,
self-contained,	and	immutable.	This	also	gives	a	clear	border	to	distinguish

responsibilities	between	applications	and	infrastructure.

Getting	started	with	container
There	are	many	mature	container	engines	such	as	Docker	(https://www.docker.com)
and	rkt	(https://coreos.com/rkt)	that	have	already	implemented	features	for	production
usages,	so	you	don't	need	to	start	building	one	from	scratch.	Besides,	the	Open
Container	Initiative	(https://www.opencontainers.org),	an	organization	formed	by
container	industry	leaders,	has	framed	some	container	specifications.	Any
implementation	of	those	standards,	regardless	of	the	underlying	platform,	should
have	similar	properties	as	OCI	aims	to	provide,	with	seamless	experience	of
containers	across	a	variety	of	operating	systems.	In	this	book,	we	will	use	the
Docker	(community	edition)	container	engine	to	fabricate	our	containerized
applications.

https://www.docker.com
https://coreos.com/rkt
https://www.opencontainers.org

Installing	Docker	for	Ubuntu
Docker	requires	a	64-bit	version	of	Yakkety	16.10,	Xenial	16.04LTS,	and	Trusty
14.04LTS.	You	can	install	Docker	with	apt-get	install	docker.io,	but	it	usually
updates	more	slowly	than	the	Docker	official	repository.	Here	are	the	installation
steps	from	Docker	(https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/#install-docke
r-ce):

1.	 Make	sure	you	have	the	packages	to	allow	apt	repositories;	get	them	if	not:

$	sudo	apt-get	install	apt-transport-https	ca-certificates	curl	software-

properties-common

2.	 Add	Docker's	gpg	key	and	verify	if	its	fingerprint	matches	9DC8	5822	9FC7	DD38
854A	E2D8	8D81	803C	0EBF	CD88:

$	curl	-fsSL	https://download.docker.com/linux/ubuntu/gpg	|	sudo	apt-key	add	-

$	sudo	apt-key	fingerprint	0EBFCD88	

3.	 Set	up	the	repository	of	amd64	arch:

$	sudo	add-apt-repository	"deb	[arch=amd64]	

https://download.docker.com/linux/ubuntu	$(lsb_release	-cs)	stable"	

4.	 Update	the	package	index	and	install	Docker	CE:

	$	sudo	apt-get	update	

	$	sudo	apt-get	install	docker-ce

https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/#install-docker-ce

Installing	Docker	for	CentOS
CentOS	7	64-bit	is	required	to	run	Docker.	Similarly,	you	can	get	the	Docker
package	from	CentOS's	repository	via	sudo	yum	install	docker.	Again,	the
installation	steps	from	Docker	official	guide	(https://docs.docker.com/engine/installation/linu
x/docker-ce/centos/#install-using-the-repository)	are	as	follows:

1.	 Install	the	utility	to	enable	yum	to	use	the	extra	repository:

				$	sudo	yum	install	-y	yum-utils		

2.	 Set	up	Docker's	repository:

$	sudo	yum-config-manager	--add-repo	

https://download.docker.com/linux/centos/docker-ce.repo	

3.	 Update	the	repository	and	verify	if	the	fingerprint	matches:

060A	61C5	1B55	8A7F	742B	77AA	C52F	EB6B	621E	9F35:

				$	sudo	yum	makecache	fast			

4.	 Install	Docker	CE	and	start	it:

$	sudo	yum	install	docker-ce

$	sudo	systemctl	start	docker	

https://docs.docker.com/engine/installation/linux/docker-ce/centos/#install-using-the-repository

Installing	Docker	for	macOS
Docker	wraps	a	micro	Linux	moby	with	the	hypervisor	framework	to	build	a
native	application	on	macOS,	which	means	we	don't	need	third-party
virtualization	tools	to	develop	Docker	in	Mac.	To	benefit	from	the	Hypervisor
framework,	you	must	upgrade	your	macOS	to	10.10.3	or	above.

Download	the	Docker	package	and	install	it:

https://download.docker.com/mac/stable/Docker.dmg

Likewise,	Docker	for	Windows	requires	no	third-party	tools.	Check
here	for	the	installation	guide:	https://docs.docker.com/docker-for-windows/inst
all

Now	you	are	in	Docker.	Try	creating	and	running	your	first	Docker	container;
run	it	with	sudo	if	you	are	on	Linux:

$	docker	run	alpine	ls

bin	dev	etc	home	lib	media	mnt	proc	root	run	sbin	srv	sys	tmp	usr	var

You	will	see	that	you're	under	a	root	directory	instead	of	your	current	one.	Let's
check	the	processes	list	again:

$	docker	run	alpine	ps	aux

PID			USER					TIME			COMMAND

1	root							0:00	ps	aux

It	is	isolated,	as	expected.	You	are	all	ready	to	work	with	container.

Alpine	is	a	Linux	distribution.	Since	it's	really	small	in	size,	many
people	use	it	as	their	base	image	to	build	their	application
container.

https://download.docker.com/mac/stable/Docker.dmg
https://docs.docker.com/docker-for-windows/install

Container	life	cycle
Using	containers	is	not	as	intuitive	as	the	tools	that	we	are	used	to	work	with.	In
this	section,	we	will	go	through	Docker	usages	from	the	most	fundamental	ideas
to	the	extent	that	we	are	able	to	benefit	from	containers.

Docker	basics
When	docker	run	alpine	ls	is	executed,	what	Docker	did	behind	the	scenes	is:

1.	 Find	the	image	alpine	locally.	If	not	found,	Docker	will	try	to	find	and	pull	it
from	the	public	Docker	registry	to	the	local	image	storage.

2.	 Extract	the	image	and	create	a	container	accordingly.
3.	 Execute	the	entry	point	defined	in	the	image	with	commands,	which	are	the

arguments	after	the	image	name.	In	this	example,	it	is	ls.	The	entry	point	by
default	is	/bin/sh	-c	on	the	Linux-based	Docker.

4.	 When	the	entry	point	process	is	exited,	the	container	then	exits.

An	image	is	an	immutable	bundle	of	codes,	libraries,	configurations,	and
everything	needed	to	run	an	application.	A	container	is	an	instance	of	an	image,
which	would	actually	be	executed	during	runtime.	You	can	use	the	docker	inspect
IMAGE	and	docker	inspect	CONTAINER	commands	to	see	the	difference.

Sometimes	when	we	need	to	enter	a	container	for	checking	the	image	or
updating	something	inside,	we'll	use	the	option	-i	and	-t	(--interactive	and	--tty).
Besides,	option	-d	(--detach)	enables	you	to	run	a	container	in	detached	mode.	If
you	would	like	to	interact	with	a	detached	container,	exec	and	attach	commands
can	do	us	a	favor.	The	exec	command	allows	us	run	a	process	in	a	running
container,	and	attach	works,	as	per	its	literal	meaning.	The	following	example
demonstrates	how	to	use	them:

$	docker	run	alpine	/bin/sh	-c	"while	:;do	echo		

		'meow~';sleep	1;done"

meow~

meow~

...

Your	Terminal	should	be	flooded	with	meow~	now.	Switch	to	another	Terminal	and
run	docker	ps,	a	command	to	get	the	status	of	containers,	to	find	out	the	name	and
ID	of	the	meowing	container.	Both	the	name	and	ID	here	are	generated	by
Docker,	and	you	can	access	a	container	with	either	of	them.	As	a	matter	of
convenience,	the	name	can	be	assigned	upon	create	or	run	with	the	--name	flag:

$	docker	ps

CONTAINER	ID				IMAGE				(omitted)					NAMES

d51972e5fc8c				alpine						...								zen_kalam

				

$	docker	exec	-it	d51972e5fc8c	/bin/sh

/	#	ps

PID			USER					TIME			COMMAND

		1	root							0:00	/bin/sh	-c	while	:;do	echo		

		'meow~';sleep	1;done

		27	root							0:00	/bin/sh

		34	root							0:00	sleep	1

		35	root							0:00	ps

		/	#	kill	-s	2	1

		$	//	container	terminated

Once	we	get	in	the	container	and	inspect	its	processes,	we	will	see	two	shells:
one	is	meowing	and	another	one	is	where	we	are.	Kill	it	with	kill	-s	2	1	inside
the	container	and	we'll	see	the	whole	container	stopped	as	the	entry	point	is
exited.	Finally,	let's	list	the	stopped	containers	with	docker	ps	-a,	and	clean	them
up	with	docker	rm	CONTAINER_NAME	or	docker	rm	CONTAINER_ID.	Since	Docker	1.13,	the
docker	system	prune	command	has	been	introduced,	which	helps	us	clean	up
stopped	containers	and	occupied	resources	with	ease.

Layer,	image,	container,	and	volume
We	know	that	an	image	is	immutable;	a	container	is	ephemeral,	and	we	know
how	to	run	an	image	as	a	container.	Nevertheless,	there's	still	a	missing	step	on
packing	an	image.

An	image	is	a	read-only	stack	that	consists	of	one	or	more	layers,	and	a	layer	is	a
collection	of	files	and	directories	in	the	filesystem.	To	improve	the	disk	size
usage,	layers	are	not	locked	to	only	one	image	but	shared	among	images;	which
means	that	Docker	simply	stores	only	one	copy	of	a	base	image	locally
regardless	of	how	many	images	are	derived	from	it.	You	can	utilize	the	docker
history	[image]	command	to	understand	how	an	image	is	built.	For	example,
there's	only	one	layer	in	an	Alpine	Linux	image	if	you	type	docker	history	alpine.

Whenever	a	container	is	created,	it	adds	a	writable	layer	on	top	of	the	base
image.	Docker	adopts	the	copy-on-write	(COW)	strategy	on	the	layer.	That	is	to
say,	a	container	reads	against	the	layers	of	the	base	image	where	the	target	files
are	stored,	and	copies	the	file	to	its	own	writable	layer	if	the	file	is	modified.
Such	an	approach	prevents	containers	created	from	the	same	image	intervening
with	each	other.	The	docker	diff	[CONTAINER]	command	shows	the	difference
between	the	container	and	its	base	image	in	terms	of	filesystem	states.	For
example,	if	/etc/hosts	in	the	base	image	is	modified,	Docker	copies	the	file	to	the
writable	layer,	and	it	will	also	be	the	only	one	file	in	the	output	of	docker	diff.

The	following	diagram	illustrates	the	hierarchical	structure	of	Docker's	images:

It's	important	to	note	that	data	in	the	writable	layer	is	deleted	along	with	its

container.	To	persist	data,	you	commit	the	container	layer	with	the	docker	commit
[CONTAINER]	command	as	a	new	image,	or	mount	data	volumes	into	a	container.

A	data	volume	allows	a	container's	reading	and	writing	to	bypass	Docker's
filesystem,	and	it	can	be	on	a	host's	directory	or	other	storages,	such	as	Ceph	or
GlusterFS.	Therefore,	any	disk	I/O	against	the	volume	can	operate	at	native
speeds	depending	on	the	underlying	storage.	Since	the	data	is	persistent	outside	a
container,	it	can	be	reused	and	shared	by	multiple	containers.	Mounting	a
volume	is	done	by	specifying	the	-v(--volume)	flag	at	docker	run	or	docker	create.	The
following	example	mounts	a	volume	under	/chest	in	the	container,	and	leaves	a
file	there.	Afterwards,	we	use	docker	inspect	to	locate	the	data	volume:

$	docker	run	--name	demo	-v	/chest	alpine	touch	/chest/coins

$	docker	inspect	demo

...

"Mounts":	[

		{

				"Type":	"volume",

					"Name":(hash-digits),

					"Source":"/var/lib/docker/volumes/(hash-	

						digits)/_data",

						"Destination":	"/chest",

						"Driver":	"local",

						"Mode":	"",

							...

$	ls	/var/lib/docker/volumes/(hash-digits)/_data

						coins

The	default	tty	path	of	moby	Linux	provided	by	Docker	CE	on
macOS	is	under:
~/Library/Containers/com.docker.docker/Data/com.docker.driver.amd64-

linux/tty.
You	can	attach	to	it	with	screen.

One	use	case	of	data	volumes	is	sharing	data	between	containers.	To	do	so,	we
first	create	a	container	and	mount	volumes	on	it,	and	then	mount	one	or	more
containers	and	reference	the	volume	with	--volumes-from	flag.	The	following
examples	create	a	container	with	a	data	volume,	/share-vol.	Container	A	can	put	a
file	into	it,	and	container	B	can	read	it	as	well:

$	docker	create	--name	box	-v	/share-vol	alpine	nop

c53e3e498ab05b19a12d554fad4545310e6de6950240cf7a28f42780f382c649

$	docker	run	--name	A	--volumes-from	box	alpine	touch	/share-vol/wine

$	docker	run	--name	B	--volumes-from	box	alpine	ls	/share-vol

wine

In	addition,	data	volumes	can	be	mounted	under	a	given	host	path,	and	of	course

the	data	inside	is	persistent:

$	docker	run	--name	hi	-v	$(pwd)/host/dir:/data	alpine	touch	/data/hi

$	docker	rm	hi

$	ls	$(pwd)/host/dir

hi

Distributing	images
Registry	is	a	service	that	stores,	manages,	and	distributes	images.	Public
services,	such	as	Docker	Hub	(https://hub.docker.com)	and	Quay	(https://quay.io),
converge	all	kinds	of	pre-built	images	of	popular	tools,	such	as	Ubuntu	and
Nginx,	and	custom	images	from	other	developers.	The	Alpine	Linux	we	have
used	many	times	is	actually	pulled	from	Docker	Hub	(https://hub.docker.com/_/alpine).
Absolutely,	you	can	upload	your	tool	onto	such	services	and	share	with	everyone
as	well.

If	you	need	a	private	registry,	but	for	some	reason	you	don't	want	to
subscribe	to	paid	plans	of	registry	service	providers,	you	can
always	set	up	one	on	your	own	with	registry	(https://hub.docker.com/_/regi
stry).

Before	provisioning	a	container,	Docker	will	try	to	locate	the	specified	image	in
a	rule	indicated	in	the	image	name.	An	image	name	consists	of	three	sections
[registry/]name[:tag],	and	it's	resolved	with	the	following	rules:

If	the	registry	field	is	left	out,	search	for	the	name	on	Docker	Hub
If	the	registry	field	is	a	registry	server,	search	the	name	for	it
You	can	have	more	than	one	slash	in	a	name
The	tag	defaults	to	latest	if	it's	omitted

For	example,	an	image	name	such	as	gcr.io/google-containers/guestbook:v3	instructs
Docker	to	download	v3	of	google-containers/guestbook	from	gcr.io.	Likewise,	if	you
want	to	push	an	image	to	a	registry,	tag	your	image	in	the	same	manner	and	push
it.	To	list	the	images	you	currently	own	in	the	local	disk,	use	docker	images,	and
remove	an	image	with	docker	rmi	[IMAGE].	The	following	example	shows	how	to
work	between	different	registries:	Download	an	nginx	image	from	Docker	Hub,
tag	it	to	a	private	registry	path,	and	push	it	accordingly.	Notice	that	though	the
default	tag	is	latest,	you	have	to	tag	and	push	it	explicitly.

$	docker	pull	nginx

Using	default	tag:	latest

latest:	Pulling	from	library/nginx

ff3d52d8f55f:	Pull	complete

...

https://hub.docker.com
https://quay.io
https://hub.docker.com/_/alpine
https://hub.docker.com/_/registry

Status:	Downloaded	newer	image	for	nginx:latest

				

$	docker	tag	nginx	localhost:5000/comps/prod/nginx:1.14

$	docker	push	localhost:5000/comps/prod/nginx:1.14

The	push	refers	to	a	repository	[localhost:5000/comps/prod/nginx]

...

8781ec54ba04:	Pushed

1.14:	digest:	sha256:(64-digits-hash)	size:	948

$	docker	tag	nginx	localhost:5000/comps/prod/nginx

$	docker	push	localhost:5000/comps/prod/nginx

The	push	refers	to	a	repository	[localhost:5000/comps/prod/nginx]

...

8781ec54ba04:	Layer	already	exists

latest:	digest:	sha256:(64-digits-hash)	size:	948

Most	registry	services	ask	for	authentications	if	you	are	going	to	push	images.
The	docker	login	is	designed	for	this	purpose.	Sometimes	you	may	receive	an	image
not	found	error	when	attempting	to	pull	an	image,	even	though	the	image	path	is
valid.	It's	very	likely	that	you	are	unauthorized	with	the	registry	that	keeps	the
image.	To	resolve	this	problem,	log	in	first:

$	docker	pull	localhost:5000/comps/prod/nginx

Pulling	repository	localhost:5000/comps/prod/nginx

Error:	image	comps/prod/nginx:latest	not	found

$	docker	login	-u	letme	-p	in	localhost:5000

Login	Succeeded

$	docker	pull	localhost:5000/comps/prod/nginx

Pulling	repository	localhost:5000/comps/prod/nginx

...

latest:	digest:	sha256:(64-digits-hash)	size:	948

In	addition	to	distributed	images	via	the	registry	service,	there	are	options	to
dump	images	as	a	TAR	archive,	and	import	them	back	into	the	local	repository:

docker	commit	[CONTAINER]:	Commits	the	changes	of	the	container	layer	into	a
new	image
docker	save	--output	[filename]	IMAGE1	IMAGE2	...:	Saves	one	or	more	images	to	a
TAR	archive
docker	load	-i	[filename]:	Loads	a	tarball	image	into	the	local	repository
docker	export	--output	[filename]	[CONTAINER]:	Exports	a	container's	filesystem	as
a	TAR	archive
docker	import	--output	[filename]	IMAGE1	IMAGE2:	Imports	a	filesystem	tarball

The	commit	command	with	save	and	export	looks	pretty	much	the	same.	The	main
difference	is	that	a	saved	image	preserves	files	in-between	layers	even	if	they	are
to	be	deleted	eventually;	on	the	other	hand,	an	exported	image	squashes	all
intermediate	layers	into	one	final	layer.	Another	difference	is	that	a	saved	image

keeps	metadata	such	as	layer	histories,	but	those	are	not	available	at	the	exported
one.	As	a	result,	the	exported	image	is	usually	smaller	in	size.

The	following	diagram	depicts	the	relationship	of	states	between	container	and
images.	The	captions	on	the	arrows	are	the	corresponding	sub-commands	of
Docker:

Connect	containers
Docker	provides	three	kinds	of	networks	to	manage	communications	within
containers	and	between	the	hosts,	namely	bridge,	host,	and	none.

$	docker	network	ls

NETWORK	ID										NAME																DRIVER														SCOPE

1224183f2080								bridge														bridge														local

801dec6d5e30								host																host																local

f938cd2d644d								none																null																local

By	default,	every	container	is	connected	to	the	bridge	network	upon	creation.	In
this	mode,	every	container	is	allocated	a	virtual	interface	as	well	as	a	private	IP
address,	and	the	traffic	going	through	the	interface	is	bridged	to	the	host's	docker0
interface.	Also,	other	containers	within	the	same	bridge	network	can	connect	to
each	other	via	their	IP	address.	Let's	run	one	container	that	is	feeding	a	short
message	over	port	5000,	and	observe	its	configuration.	The	--expose	flag	opens	the
given	ports	to	the	world	outside	a	container:

$	docker	run	--name	greeter	-d	--expose	5000	alpine	\

/bin/sh	-c	"echo	Welcome	stranger!	|	nc	-lp	5000"

2069cbdf37210461bc42c2c40d96e56bd99e075c7fb92326af1ec47e64d6b344

$	docker	exec	greeter	ifconfig

eth0						Link	encap:Ethernet		HWaddr	02:42:AC:11:00:02

inet	addr:172.17.0.2		Bcast:0.0.0.0		Mask:255.255.0.0

...

Here	the	container	greeter	is	allocated	with	IP	172.17.0.2.	Now	run	another
container	connecting	to	it	with	this	IP	address:

$	docker	run	alpine	telnet	172.17.0.2	5000

Welcome	stranger!

Connection	closed	by	foreign	host

The	docker	network	inspect	bridge	command	gives	configuration
details,	such	as	subnet	segments	and	the	gateway	information.

On	top	of	that,	you	can	group	some	containers	into	one	user-defined	bridge
network.	It's	also	the	recommended	way	to	connect	multiple	containers	on	a
single	host.	The	user-defined	bridge	network	slightly	differs	from	the	default
one,	the	major	difference	being	that	you	can	access	a	container	from	other
containers	with	its	name	rather	than	IP	address.	Creating	a	network	is	done	by

docker	network	create	[NW-NAME],	and	attaching	containers	to	it	is	done	by	the	flag	--
network	[NW-NAME]	at	the	time	of	creation.	The	network	name	of	a	container	defaults
to	its	name,	but	it	can	be	given	another	alias	name	with	the	--network-alias	flag	as
well:

$	docker	network	create	room

b0cdd64d375b203b24b5142da41701ad9ab168b53ad6559e6705d6f82564baea

$	docker	run	-d	--network	room	\

--network-alias	dad	--name	sleeper	alpine	sleep	60

b5290bcca85b830935a1d0252ca1bf05d03438ddd226751eea922c72aba66417

$	docker	run	--network	room	alpine	ping	-c	1	sleeper

PING	sleeper	(172.18.0.2):	56	data	bytes

...

$	docker	run	--network	room	alpine	ping	-c	1	dad

PING	dad	(172.18.0.2):	56	data	bytes

...

The	host	network	works	literally	according	to	its	name;	every	connected
container	shares	the	host's	network,	but	it	loses	the	isolation	property	at	the	same
time.	The	none	network	is	a	completely	separated	box.	Regardless	of	ingress	or
egress,	traffic	is	isolated	inside	as	there	is	no	network	interface	attached	to	the
container.	Here	we	attach	a	container	that	listens	on	port	5000	to	the	host	network,
and	communicates	with	it	locally:

$	docker	run	-d	--expose	5000	--network	host	alpine	\

/bin/sh	-c	"echo	im	a	container	|	nc	-lp	5000"

ca73774caba1401b91b4b1ca04d7d5363b6c281a05a32828e293b84795d85b54

$	telnet	localhost	5000

im	a	container

Connection	closed	by	foreign	host

If	you	are	using	Docker	CE	for	macOS,	the	host	means	the	moby
Linux	on	top	of	the	hypervisor	framework.

The	interaction	between	the	host	and	three	network	modes	are	shown	in	the
following	diagram.	Containers	in	the	host	and	bridge	networks	are	attached	with
proper	network	interfaces	and	communicate	with	containers	within	the	same
network	as	well	as	the	outside	world,	but	the	none	network	is	kept	away	from	the
host	interfaces.

Other	than	sharing	the	host	network,	the	flag	-p(--publish)	[host]:[container],	on
creating	a	container,	also	allows	you	to	map	a	host	port	to	a	container.	This	flag
implies	-expose,	as	you'll	need	to	open	a	container's	port	in	any	case.	The
following	command	launches	a	simple	HTTP	server	at	port	80.	You	can	view	it
with	a	browser	as	well.

$	docker	run	-p	80:5000	alpine	/bin/sh	-c	\

"while	:;	do	echo	-e	'HTTP/1.1	200	OK\n\ngood	day'|nc	-lp	5000;	done"

				

$	curl	localhost

good	day

Working	with	Dockerfile
When	assembling	an	image,	whether	by	a	Docker	commit	or	export,	optimizing
the	outcome	in	a	managed	way	is	a	challenge,	let	alone	integrating	with	a	CI/CD
pipeline.	On	the	other	hand,	Dockerfile	represents	the	building	task	in	the	form	of
as-a-code,	which	significantly	reduces	the	complexities	of	building	a	task	for	us.
In	this	section,	we	will	describe	how	to	map	Docker	commands	into	a	Dockerfile
and	go	a	step	further	to	optimizing	it.

Writing	your	first	Dockerfile
A	Dockerfile	consists	of	a	series	of	text	instructions	to	guide	the	Docker	daemon
to	form	a	Docker	image.	Generally,	a	Dockerfile	is	and	must	be	starting	with	the
directive	FROM,	and	follows	zero	or	more	instructions.	For	example,	we	may	have
an	image	built	from	the	following	one	liner:

docker	commit	$(\

docker	start	$(\

docker	create	alpine	/bin/sh	-c				\

"echo	My	custom	build	>	/etc/motd"	\

))

It	roughly	equates	to	the	following	Dockerfile:

./Dockerfile:

FROM	alpine

RUN	echo	"My	custom	build"	>	/etc/motd

Obviously,	building	with	a	Dockerfile	is	more	concise	and	clear.

The	docker	build	[OPTIONS]	[CONTEXT]	command	is	the	only	one	command	associated
with	building	tasks.	A	context	can	be	a	local	path,	URL,	or	stdin;	which	denotes
the	location	of	the	Dockerfile.	Once	a	build	is	triggered,	the	Dockerfile,	alongside
everything	under	the	context,	will	be	sent	to	the	Docker	daemon	beforehand,	and
then	the	daemon	will	start	to	execute	instructions	in	the	Dockerfile	sequentially.
Every	execution	of	instructions	results	in	a	new	cache	layer,	and	the	ensuing
instruction	is	executed	at	the	new	cache	layer	in	the	cascade.	Since	the	context
will	be	sent	to	somewhere	that	is	not	guaranteed	to	be	a	local	path,	it's	a	good
practice	to	put	the	Dockerfile,	codes,	the	necessary	files,	and	a	.dockerignore	file	in
an	empty	folder	to	make	sure	the	resultant	image	encloses	only	the	desired	files.

The	.dockerignore	file	is	a	list	indicating	which	files	under	the	same	directory	can
be	ignored	during	the	building	time,	and	it	typically	looks	like	the	following	file:

./.dockerignore:

#	ignore	.dockerignore,	.git

.dockerignore	

.git

#	exclude	all	*.tmp	files	and	vim	swp	file	recursively

**/*.tmp

**/[._]*.s[a-w][a-z]

...

Generally,	docker	build	will	try	to	find	a	file	named	Dockerfile	under	the	context	to
start	a	build;	but	sometimes	we	may	like	to	give	it	another	name	for	some
reason.	The	-f(--file)	flag	is	for	this	purpose.	Also,	another	useful	flag,	-t(--tag),
is	able	to	give	an	image	of	one	or	more	repository	tags	after	an	image	is	built.
Say	we	want	to	build	a	Dockerfile	named	builder.dck	under	./deploy	and	label	it	with
the	current	date	and	the	latest	tag,	the	command	will	be:

$	docker	build	-f	deploy/builder.dck		\

-t	my-reg.com/prod/teabreak:$(date	+"%g%m%d")	\

-t	my-reg.com/prod/teabreak:latest	.

Dockerfile	syntax
The	building	blocks	of	a	Dockerfile	are	a	dozen	or	more	directives;	most	of	them
are	a	counterpart	of	the	functions	of	docker	run/create	flags.	Here	we	list	the	most
essential	ones:

FROM	<IMAGE>[:TAG|[@DIGEST]:	This	is	to	tell	the	Docker	daemon	which	image	the
current	Dockerfile	is	based	on.	It's	also	the	one	and	only	instruction	that	must
be	in	a	Dockerfile,	which	means	that	you	can	have	a	Dockerfile	that	contains
only	one	line.	Like	all	the	other	image-relevant	commands,	the	tag	defaults
to	the	latest	if	unspecified.
RUN:

RUN	<commands>

RUN	["executable",	"params",	"more	params"]

The	RUN	instruction	runs	one	line	of	a	command	at	the	current	cache	layer,
and	commits	out	the	outcome.	The	main	discrepancy	between	the	two
forms	is	in	how	the	command	is	executed.	The	first	one	is	called	shell
form,	which	actually	executes	commands	in	the	form	of	/bin/sh	-c
<commands>;	the	other	form	is	called	exec	form,	and	it	treats	the	command
with	exec	directly.

Using	the	shell	form	is	similar	to	writing	shell	scripts,	thus	concatenating
multiple	commands	by	shell	operators	and	line	continuation,	condition
tests,	or	variable	substitutions	are	totally	valid.	But	bear	in	mind	that
commands	are	not	processed	by	bash	but	sh.

The	exec	form	is	parsed	as	a	JSON	array,	which	means	that	you	have	to
wrap	texts	with	double	quotes	and	escape	reserved	characters.	Besides,	as
the	command	is	not	processed	by	any	shell,	the	shell	variables	in	the
array	will	not	be	evaluated.	On	the	other	hand,	if	the	shell	doesn't	exist	in
the	base	image,	you	can	still	use	the	exec	form	to	invoke	executables.

CMD:

CMD	["executable",	"params",	"more	params"]

CMD	["param1","param2"]

CMD	command	param1	param2	...:

The	CMD	sets	default	commands	for	the	built	image;	it	doesn't	run	the
command	during	build	time.	If	arguments	are	supplied	at	Docker	run,	the
CMD	configurations	here	are	overridden.	The	syntax	rule	of	CMD	is	almost
identical	to	RUN;	the	first	form	is	the	exec	form,	and	the	third	one	is	the
shell	form,	which	is	the	prepend	a	/bin/sh	-c	as	well.	There	is	another
directive	in	which	ENTRYPOINT	interacts	with	CMD;	three	forms	of	CMD	actually
would	be	a	prepend	with	ENTRYPOINT	when	a	container	starts.	There	can	be
many	CMD	directives	in	a	Dockerfile,	but	only	the	last	one	will	take	effect.

ENTRYPOINT:

ENTRYPOINT	["executable",	"param1",	"param2"]

ENTRYPOINT	command	param1	param2

These	two	forms	are,	respectively,	the	exec	form	and	the	shell	form,	and
the	syntax	rules	are	the	same	as	RUN.	The	entry	point	is	the	default
executable	for	an	image.	That	is	to	say,	when	a	container	spins	up,	it	runs
the	executable	configured	by	the	ENTRYPOINT.	When	the	ENTRYPOINT	is
combined	with	CMD	and	docker	run	arguments,	writing	in	a	different	form
would	lead	to	very	diverse	behavior.	Here	are	the	organized	rules	of	their
combinations:

If	the	ENTRYPOINT	is	in	shell	form,	then	the	CMD	and	Docker	run	arguments
would	be	ignored.	The	command	will	become:

					/bin/sh	-c	entry_cmd	entry_params	...					

If	the	ENTRYPOINT	is	in	exec	form	and	the	Docker	run	arguments	are
specified,	then	the	CMD	commands	are	overridden.	The	runtime
command	would	be:

						entry_cmd	entry_params	run_arguments

If	the	ENTRYPOINT	is	in	exec	form	and	only	CMD	is	configured,	the	runtime
command	would	become	the	following	for	the	three	forms:

		entry_cmd	entry_parms	CMD_exec	CMD_parms

		entry_cmd	entry_parms	CMD_parms

		entry_cmd	entry_parms	/bin/sh	-c	CMD_cmd	

		CMD_parms			

ENV:

ENV	key	value

ENV	key1=value1	key2=value2	...	

The	ENV	instruction	sets	environment	variables	for	the	consequent
instructions	and	the	built	image.	The	first	form	sets	the	key	to	the	string
after	the	first	space,	including	special	characters.	The	second	form	allows
us	to	set	multiple	variables	in	a	line,	separated	with	spaces.	If	there	are
spaces	in	a	value,	either	enclose	it	with	double	quotes	or	escape	the	space
character.	Moreover,	the	key	defined	with	ENV	also	takes	effect	on
variables	in	the	same	documents.	See	the	following	examples	to	observe
the	behavior	of	ENV:

				FROM	alpine

				ENV	key	wD	#	aw

				ENV	k2=v2	k3=v\	3	\

								k4="v	4"

				ENV	k_${k2}=$k3	k5=\"K\=da\"

				

				RUN	echo	key=$key	;\

							echo	k2=$k2	k3=$k3	k4=$k4	;\

							echo	k_\${k2}=k_${k2}=$k3	k5=$k5

		

And	the	output	during	the	Docker	build	would	be:

				...

				--->	Running	in	738709ef01ad

				key=wD	#	aw

				k2=v2	k3=v	3	k4=v	4

				k_${k2}=k_v2=v	3	k5="K=da"

				...

LABEL	key1=value1	key2=value2	...:	The	usage	of	LABEL	resembles	ENV,	but	a	label
is	stored	only	in	the	metadata	section	of	the	images	and	is	used	by	other
host	programs	instead	of	programs	in	a	container.	It	deprecates	the	maintainer
instruction	in	the	following	form:

LABEL	maintainer=johndoe@example.com

And	we	can	filter	objects	with	labels	if	a	command	has	the	-f(--filter)
flag.	For	example,	docker	images	--filter	label=maintainer=johndoe@example.com
queries	out	the	images	labeled	with	the	preceding	maintainer.

EXPOSE	<port>	[<port>	...]:	This	instruction	is	identical	to	the	--expose	flag	at

docker	run/create,	exposing	ports	at	the	container	created	by	the	resulting
image.
USER	<name|uid>[:<group|gid>]:	The	USER	instruction	switches	the	user	to	run	the
subsequent	instructions.	However,	it	cannot	work	properly	if	the	user
doesn't	exist	in	the	image.	Otherwise,	you	have	to	run	adduser	before	using
the	USER	directive.
WORKDIR	<path>:	This	instruction	sets	the	working	directory	to	a	certain	path.
The	path	would	be	created	automatically	if	the	path	doesn't	exist.	It	works
like	cd	in	a	Dockerfile,	as	it	takes	both	relative	and	absolute	paths	and	can	be
used	multiple	times.	If	an	absolute	path	is	followed	by	a	relative	path,	the
result	would	be	relative	to	the	previous	path:

				WORKDIR	/usr

				WORKDIR	src

				WORKDIR	app

				RUN	pwd

				--->	Running	in	73aff3ae46ac

				/usr/src/app

				--->	4a415e366388

		

Also,	environment	variables	set	with	ENV	take	effect	on	the	path.

COPY:

COPY	<src-in-context>	...	<dest-in-container>

COPY	["<src-in-context>",...	"<dest-in-container>"]

This	directive	copies	the	source	to	a	file	or	a	directory	in	the	building
container.	The	source	could	be	files	or	directories,	as	could	be	the
destination.	The	source	must	be	within	the	context	path,	as	only	files
under	the	context	path	will	be	sent	to	the	Docker	daemon.	Additionally,
COPY	makes	use	of	.dockerignore	to	filter	files	that	would	be	copied	into	the
building	container.	The	second	form	is	for	a	use	case	where	the	path
contains	spaces.

ADD:

ADD	<src	>	...	<dest	>

ADD	["<src>",...	"<dest	>"]

ADD	is	quite	analogous	to	COPY	in	terms	of	functionality:	moving	files	into
an	image.	More	than	copying	files,	<src>	can	also	be	URL	or	a

compressed	file.	If	<src>	is	a	URL,	ADD	will	download	it	and	copy	it	into
the	image.	If	<src>	is	inferred	as	a	compressed	file,	it	will	be	extracted
into	<dest>	path.

VOLUME:

VOLUME	mount_point_1	mount_point_2

VOLUME	["mount	point	1",	"mount	point	2"]

The	VOLUME	instruction	creates	data	volumes	at	the	given	mount	points.
Once	it	has	been	declared	during	build	time,	any	change	in	the	data
volume	at	consequent	directives	would	not	persist.	Besides,	mounting
host	directories	in	a	Dockerfile	or	docker	build	isn't	doable	because	of
portability	issues:	there's	no	guarantee	that	the	specified	path	would	exist
in	the	host.	The	effect	of	both	syntax	forms	is	identical;	they	only	differ
in	syntax	parsing;	The	second	form	is	a	JSON	array,	so	characters	such	as
"\"	should	be	escaped.

ONBUILD	[Other	directives]:	ONBUILD	allows	you	to	postpone	some	instructions	to
later	builds	in	the	derived	image.	For	example,	we	may	have	the	following
two	Dockerfiles:

				---	baseimg	---

				FROM	alpine

				RUN	apk	add	--no-update	git	make

				WORKDIR	/usr/src/app

				ONBUILD	COPY	.	/usr/src/app/

				ONBUILD	RUN	git	submodule	init	&&	\

														git	submodule	update	&&	\

														make

				---	appimg	---

				FROM	baseimg

				EXPOSE	80

				CMD	["/usr/src/app/entry"]

The	instruction	then	would	be	evaluated	in	the	following	order	on	docker
build:

				$	docker	build	-t	baseimg	-f	baseimg	.

				FROM	alpine

				RUN	apk	add	--no-update	git	make

				WORKDIR	/usr/src/app

				$	docker	build	-t	appimg	-f	appimg	.

				COPY	.	/usr/src/app/

				RUN	git	submodule	init			&&	\

								git	submodule	update	&&	\

								make

				EXPOSE	80

				CMD	["/usr/src/app/entry"]	

Organizing	a	Dockerfile
Even	though	writing	a	Dockerfile	is	the	same	as	composing	a	building	script,	there
are	some	more	factors	we	should	consider	to	build	efficient,	secure,	and	stable
images.	Moreover,	a	Dockerfile	itself	is	also	a	document,	and	keeping	its
readability	eases	management	efforts.

Say	we	have	an	application	stack	that	consists	of	application	codes,	a	database,
and	cache,	we'll	probably	start	from	a	Dockerfile,	such	as	the	following:

FROM	ubuntu

ADD	.	/app

RUN	apt-get	update		

RUN	apt-get	upgrade	-y

RUN	apt-get	install	-y	redis-server	python	python-pip	mysql-server

ADD	db/my.cnf	/etc/mysql/my.cnf

ADD	db/redis.conf	/etc/redis/redis.conf

RUN	pip	install	-r	/app/requirements.txt

RUN	cd	/app	;	python	setup.py

CMD	/app/start-all-service.sh

The	first	suggestion	is	making	a	container	dedicated	to	one	thing	and	one	thing
only.	So,	we'll	remove	the	installation	and	configuration	at	both	mysql	and	redis	in
this	Dockerfile	at	the	beginning.	Next,	the	code	is	moved	into	the	container	with
ADD,	which	means	we	will	very	likely	move	the	whole	code	repository	into	the
container.	Usually	there	are	lots	of	files	that	are	not	directly	relevant	to	the
application,	including	VCS	files,	CI	server	configurations,	or	even	build	caches,
and	we	probably	wouldn't	like	to	pack	them	into	an	image.	Thus,	using	a
.dockerignore	to	filter	out	those	files	is	suggested	as	well.	Incidentally,	due	to	the
ADD	instruction,	we	could	do	more	than	just	add	files	into	a	build	container.	Using
COPY	is	preferred	in	general,	unless	there	is	a	real	need	not	to	do	so.	Now	our
Dockerfile	is	simpler,	as	shown	in	the	following	code:

FROM	ubuntu

COPY	.	/app

RUN	apt-get	update		

RUN	apt-get	upgrade	-y

RUN	apt-get	install	-y	python	python-pip

RUN	pip	install	-r	/app/requirements.txt

RUN	cd	/app	;	python	setup.py

CMD	python	app.py

While	building	an	image,	the	Docker	engine	will	try	to	reuse	the	cache	layer	as

much	as	possible,	which	notably	reduces	the	build	time.	In	our	Dockerfile,	we
have	to	go	through	whole	updating	and	dependency	installation	processes	as
long	as	there's	any	update	in	our	repository.	To	benefit	from	building	caches,
we'll	re-order	the	directives	based	on	a	rule	of	thumb:	run	less	frequent
instructions	first.

Additionally,	as	we've	described	before,	any	change	to	the	container	filesystem
results	in	a	new	image	layer.	Even	though	we	deleted	certain	files	in	the
consequent	layer,	those	files	are	still	occupied	image	sizes	as	they	are	still	being
kept	at	intermediate	layers.	Therefore,	our	next	step	is	to	minimize	the	image
layers	by	simply	compacting	multiple	RUN	instructions.	Moreover,	to	keep	the
readability	of	the	Dockerfile,	we	tend	to	format	the	compacted	RUN	with	the	line
continuation	character,	"\".

In	addition	to	working	with	the	building	mechanisms	of	Docker,	we'd	also	like	to
write	a	maintainable	Dockerfile	to	make	it	more	clear,	predictable,	and	stable.
Here	are	some	suggestions:

Use	WORKDIR	instead	of	inline	cd,	and	use	absolute	path	for	WORKDIR
Explicitly	expose	the	required	ports
Specify	a	tag	for	the	base	image
Use	the	exec	form	to	launch	an	application

The	first	three	suggestions	are	pretty	straightforward,	aimed	at	eliminating
ambiguity.	The	last	one	is	about	how	an	application	is	terminated.	When	a	stop
request	from	the	Docker	daemon	is	sent	to	a	running	container,	the	main	process
(PID	1)	will	receive	a	stop	signal	(SIGTERM).	If	the	process	is	not	stopped	after	a
certain	period	of	time,	the	Docker	daemon	will	send	another	signal	(SIGKILL)	to
kill	the	container.	The	exec	form	and	shell	form	differ	here.	In	the	shell	form,	the
PID	1	process	is	"/bin/sh	-c",	not	the	application.	Further,	different	shells	don't
handle	signals	in	the	same	way.	Some	forward	the	stop	signal	to	child	processes
while	some	do	not.	The	shell	at	Alpine	Linux	doesn't	forward	them.	As	a	result,
to	stop	and	clean	up	our	application	properly,	using	the	exec	form	is	encouraged.
Combining	those	principles,	we	have	the	following	Dockerfile:

FROM	ubuntu:16.04

RUN	apt-get	update	&&	apt-get	upgrade	-y		\

&&	apt-get	install	-y	python	python-pip

ENTRYPOINT	["python"]

CMD	["entry.py"]

EXPOSE	5000

WORKDIR	/app

COPY	requirements.txt	.

RUN	pip	install	-r	requirements.txt

COPY	.	/app	

There	are	still	other	practices	to	make	a	Dockerfile	better,	including	starting	from
a	dedicated	and	smaller	base	image	such	as	Alpine-based	ones	rather	than
generic	purpose	distributions,	using	users	other	than	root	for	security,	and
removing	unnecessary	files	in	the	RUN	in	which	they	are	joined.

Multi-containers	orchestration
As	we	pack	more	and	more	applications	into	isolated	boxes,	we'll	soon	realize
that	we	need	a	tool	that	is	able	to	help	us	tackle	many	containers	simultaneously.
In	this	section,	we'll	move	a	step	up	from	spinning	up	simply	one	single
container	to	orchestrating	containers	in	a	band.

Piling	up	containers
Modern	systems	are	usually	built	as	a	stack	made	up	of	multiple	components
that	are	distributed	over	networks,	such	as	application	servers,	caches,	databases,
message	queues,	and	so	on.	Meanwhile,	a	component	itself	is	also	a	self-
contained	system	with	many	sub-components.	What's	more,	the	trend	of
microservices	introduces	additional	degrees	of	complexity	into	such	entangled
relationships	between	systems.	From	this	fact,	even	though	container	technology
gives	us	a	certain	degree	of	relief	regarding	deployment	tasks,	launching	a
system	is	still	difficult.

Say	we	have	a	simple	application	called	kiosk,	which	connects	to	a	Redis	to
manage	how	many	tickets	we	currently	have.	Once	a	ticket	is	sold,	it	publishes
an	event	through	a	Redis	channel.	The	recorder	subscribes	the	Redis	channel	and
writes	a	timestamp	log	into	a	MySQL	database	upon	receiving	any	event.

For	the	kiosk	and	the	recorder,	you	can	find	the	code	as	well	as	the	Dockerfiles
here:	https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter2.	The	architecture
is	as	follows:

We	know	how	to	start	those	containers	separately,	and	connect	them	to	each
other.	Based	on	what	we	have	discussed	before,	we	would	first	create	a	bridge
network,	and	run	the	containers	inside:

https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter2

				

$	docker	network	create	kiosk

$	docker	run	-d	-p	5000:5000	\

																	-e	REDIS_HOST=lcredis	--network=kiosk	kiosk-example	

$	docker	run	-d	--network-alias	lcredis	--network=kiosk	redis

$	docker	run	-d	-e	REDIS_HOST=lcredis	-e	MYSQL_HOST=lmysql	\

-e	MYSQL_ROOT_PASSWORD=$MYPS	-e	MYSQL_USER=root	\

--network=kiosk	recorder-example

$	docker	run	-d	--network-alias	lmysql	-e	MYSQL_ROOT_PASSWORD=$MYPS	\	

	--network=kiosk	mysql:5.7	

Everything	works	well	so	far.	However,	if	next	time	we	want	to	launch	the	same
stack	again,	our	applications	are	very	likely	to	start	up	prior	to	the	databases,	and
they	might	fail	if	any	incoming	connection	requests	any	change	against	the
databases.	In	other	words,	we	have	to	consider	the	startup	order	in	our	startup
scripts.	Additionally,	scripts	are	also	inept	with	problems	such	as	how	to	deal
with	a	random	components	crash,	how	to	manage	variables,	how	to	scale	out
certain	components,	and	so	on.

Docker	Compose	overview
Docker	Compose	is	the	very	tool	that	enables	us	to	run	multiple	containers	with
ease,	and	it's	a	built-in	tool	in	the	Docker	CE	distribution.	All	it	does	is	read
docker-compose.yml	(or	.yaml)	to	run	defined	containers.	A	docker-compose	file	is	a
YAML-based	template,	and	it	typically	looks	like	this:

version:	'3'

services:

		hello-world:

				image:	hello-world

Launching	it	is	pretty	simple:	save	the	template	to	docker-compose.yml	and	use	the
docker-compose	up	command	to	start	it:

$	docker-compose	up

Creating	network	"cwd_default"	with	the	default	driver

Creating	cwd_hello-world_1

Attaching	to	cwd_hello-world_1

hello-world_1		|

hello-world_1		|	Hello	from	Docker!

hello-world_1		|	This	message	shows	that	your	installation	appears	to	be	working	

correctly.

...

cwd_hello-world_1	exited	with	code	0

		

Let's	see	what	docker-compose	did	behind	the	up	command.

Docker	Compose	is	basically	a	medley	of	Docker	functions	for	multiple
containers.	For	example,	the	counterpart	of	docker	build	is	docker-compose	build;	the
previous	one	builds	a	Docker	image,	and	so	the	later	one	builds	Docker	images
listed	in	the	docker-compose.yml.	But	there's	one	thing	that	needs	to	be	pointed	out:
the	docker-compose	run	command	is	not	the	correspondent	of	docker	run;	it's	running
a	specific	container	from	the	configuration	in	the	docker-compose.yml.	In	fact,	the
closest	command	to	docker	run	is	docker-compose	up.

The	docker-compose.yml	file	consists	of	configurations	of	volumes,	networks,	and
services.	Besides,	there	should	be	a	version	definition	to	indicate	which	version
of	the	docker-compose	format	is	used.	With	such	an	understanding	of	the	template
structure,	what	the	previous	hello-world	example	does	is	quite	clear;	it	creates	a
service	called	hello-world	and	it	is	created	by	the	image	hello-world:latest.

Since	there	is	no	network	defined,	docker-compose	would	create	a	new	network	with
a	default	driver	and	connect	services	to	the	same	network	as	shown	in	lines	1	to
3	of	the	example's	output.

Additionally,	the	network	name	of	a	container	would	be	the	service's	name.	You
may	notice	that	the	name	displayed	in	the	console	slightly	differs	from	its
original	one	in	the	docker-compose.yml.	It's	because	Docker	Compose	tries	to	avoid
name	conflicts	between	containers.	As	a	result,	Docker	Compose	runs	the
container	with	the	name	it	generated,	and	makes	a	network-alias	with	the	service
name.	In	this	example,	both	"hello-world"	and	"cwd_hello-world_1"	are	resolvable	to
other	containers	within	the	same	network.

Composing	containers
As	Docker	Compose	is	the	same	as	Docker	in	many	aspects,	it's	more	efficient	to
understand	how	to	write	a	docker-compose.yml	with	examples	than	start	from	docker-
compose	syntaxes.	Here	let's	go	back	to	the	kiosk-example	earlier	and	start	with	a
version	definition	and	four	services:

version:	'3'

services:

		kiosk-example:

		recorder-example:

		lcredis:

		lmysql:

The	docker	run	arguments	for	the	kiosk-example	are	pretty	simple,	including	a
publishing	port	and	an	environment	variable.	On	the	Docker	Compose	side,	we
fill	the	source	image,	publishing	port,	and	environment	variables	accordingly.
Because	Docker	Compose	is	able	to	handle	docker	build,	it	would	build	images	if
those	images	cannot	be	found	locally.	We	are	very	likely	to	want	to	leverage	it	to
further	decrease	the	effort	of	image	management:

kiosk-example:

		image:	kiosk-example

		build:	./kiosk

		ports:

		-	"5000:5000"

		environment:

				REDIS_HOST:	lcredis

Converting	the	Docker	run	of	the	recorder-example	and	redis	in	the	same	manner,
we	have	a	template	like	this:

version:	'3'

services:

		kiosk-example:

				image:	kiosk-example

				build:	./kiosk

				ports:

				-	"5000:5000"

				environment:

						REDIS_HOST:	lcredis

		recorder-example:

				image:	recorder-example

				build:	./recorder

				environment:

						REDIS_HOST:	lcredis

						MYSQL_HOST:	lmysql

						MYSQL_USER:	root

						MYSQL_ROOT_PASSWORD:	mysqlpass

		lcredis:

				image:	redis

				ports:

				-	"6379"

For	the	MySQL	part,	it	requires	a	data	volume	to	keep	its	data	as	well	as
configurations.	Therefore,	in	addition	to	the	lmysql	section,	we	add	volumes	at	the
level	of	services	and	an	empty	map	mysql-vol	to	claim	a	data	volume:

		lmysql:

			image:	mysql:5.7

			environment:

					MYSQL_ROOT_PASSWORD:	mysqlpass

			volumes:

			-	mysql-vol:/var/lib/mysql

			ports:

			-	"3306"

volumes:

		mysql-vol:

Combining	all	of	preceding	configurations,	we	have	the	final	template,	as
follows:

docker-compose.yml

version:	'3'

services:

		kiosk-example:

				image:	kiosk-example

				build:	./kiosk

				ports:

				-	"5000:5000"

				environment:

						REDIS_HOST:	lcredis

		recorder-example:

				image:	recorder-example

				build:	./recorder

				environment:

						REDIS_HOST:	lcredis

						MYSQL_HOST:	lmysql

						MYSQL_USER:	root

						MYSQL_ROOT_PASSWORD:	mysqlpass

		lcredis:

				image:	redis

				ports:

				-	"6379"

		lmysql:

				image:	mysql:5.7

				environment:

						MYSQL_ROOT_PASSWORD:	mysqlpass

				volumes:

				-	mysql-vol:/var/lib/mysql

				ports:

				-	"3306"

volumes:

		mysql-vol:	

This	file	is	put	in	the	root	folder	of	a	project.	The	corresponding	file	tree	is
shown	here:

├──	docker-compose.yml

├──	kiosk

│			├──	Dockerfile

│			├──	app.py

│			└──	requirements.txt

└──	recorder

				├──	Dockerfile

				├──	process.py

				└──	requirements.txt		

Lastly,	run	docker-compose	up	to	check	if	everything	is	fine.	And	we	can	check	if
our	kiosk	is	up	by	sending	a	GET	/tickets	request.

Writing	a	template	for	Docker	Compose	is	nothing	more	than	this.	We	are	now
able	to	run	an	application	in	the	stack	with	ease.

Summary
Starting	from	the	very	primitive	elements	of	Linux	container	to	Docker	tool
stacks,	we	went	through	every	aspect	of	containerizing	an	application,	including
packing	and	running	a	Docker	container,	writing	a	Dockerfile	for	code-based
immutable	deployment,	and	manipulating	multi-containers	with	Docker
Compose.	However,	our	abilities	gained	in	this	chapter	only	allow	us	to	run	and
connect	containers	within	the	same	host,	which	limits	the	possibility	to	build
larger	applications.	As	such,	in	the	next	chapter,	we'll	meet	Kubernetes,
unleashing	the	power	of	Container	beyond	the	limits	of	scale.

Getting	Started	with	Kubernetes
We've	learned	the	benefits	that	containers	can	bring	us,	but	what	if	we	need	to
scale	out	our	services	for	business	needs?	Is	there	a	way	to	build	services	across
multiple	machines	without	dealing	with	cumbersome	network	and	storage
settings?	Also,	is	there	any	other	easy	way	to	manage	and	roll	out	our
microservices	by	different	service	cycle?	That's	how	Kubernetes	comes	into
play.	In	this	chapter,	we'll	learn:

Kubernetes	concept
Kubernetes	components
Kubernetes	resources	and	their	configuration	file
How	to	launch	the	kiosk	application	by	Kubernetes

Understanding	Kubernetes
Kubernetes	is	a	platform	for	managing	application	containers	across	multiple
hosts.	It	provides	lots	of	management	features	for	container-oriented
applications,	such	as	auto	scaling,	rolling	deployment,	compute	resource,	and
volume	management.	Same	as	the	nature	of	containers,	it's	designed	to	run
anywhere,	so	we're	able	to	run	it	on	a	bare	metal,	in	our	data	center,	on	the
public	cloud,	or	even	hybrid	cloud.

Kubernetes	considers	most	of	the	operational	needs	for	application	containers.
The	highlights	are:

Container	deployment
Persistent	storage
Container	health	monitoring
Compute	resource	management
Auto-scaling
High	availability	by	cluster	federation

Kubernetes	is	a	perfect	match	for	microservices.	With	Kubernetes,	we	can	create
a	Deployment	to	rollout,	rollover,	or	roll	back	selected	containers	(Chapter	7,
Continous	Delivery).	Containers	are	considered	as	ephemeral.	We	can	mount	the
volume	into	a	container	to	preserve	the	data	in	a	single	host	world.	In	the	cluster
world,	a	container	might	be	scheduled	to	run	on	any	host.	How	do	we	make	the
volume	mounting	work	as	permanent	storage	seamlessly?	Kubernetes	Volumes
and	Persistent	Volumes	are	introduced	to	solve	that	problem	(Chapter	4,	Working
with	Storage	and	Resources).	The	lifetime	of	containers	might	be	short.	They
may	be	killed	or	stopped	anytime	when	they	exceed	the	limit	of	resource,	how
do	we	ensure	our	services	always	serve	a	certain	number	of	containers?
ReplicationController	or	ReplicaSet	in	Kubernetes	will	ensure	a	certain
number	of	group	of	containers	are	up.	Kubernetes	even	supports	liveness	probe
to	help	you	define	your	application	health.	For	better	resource	management,	we
can	also	define	the	maximum	capacity	on	Kubernetes	nodes	and	the	resource
limit	for	each	group	of	containers	(a.k.a	pod).	Kubernetes	scheduler	will	then
select	a	node	that	fulfills	the	resource	criteria	to	run	the	containers.	We'll	learn

this	in	Chapter	4,	Working	with	Storage	and	Resources.	Kubernetes	provides	an
optional	horizontal	pod	auto-scaling	feature.	With	this	feature,	we	could	scale	a
pod	horizontally	by	resource	or	custom	metrics.	For	those	advanced	readers,
Kubernetes	is	designed	with	high	availability	(HA).	We	are	able	to	create
multiple	master	nodes	from	preventing	single	point	of	failure.

Kubernetes	components
Kubernetes	includes	two	major	players:

Masters:	The	Master	is	the	heart	of	Kubernetes,	which	controls	and
schedules	all	the	activities	in	the	cluster
Nodes:	Nodes	are	the	workers	that	run	our	containers

Master	components
The	master	includes	the	API	server,	Controller	Manager,	scheduler,	and	etcd.	All
the	components	can	run	on	different	hosts	with	clustering.	However,	from	a
learning	perspective,	we'll	make	all	the	components	run	on	the	same	node.

Master	components

API	server	(kube-apiserver)
The	API	server	provides	an	HTTP/HTTPS	server,	which	provides	a	RESTful
API	for	all	the	components	in	the	Kubernetes	master.	For	example,	we	could
GET	resource	status,	such	as	pod,	POST	to	create	a	new	resource	and	also	watch
a	resource.	API	server	reads	and	updates	etcd,	which	is	Kubernetes'	backend	data
store.

Controller	Manager	(kube-controller-
manager)
The	Controller	Manager	controls	lots	of	different	things	in	the	cluster.
Replication	Controller	Manager	ensures	all	the	ReplicationControllers	run	on	the
desired	container	amount.	Node	Controller	Manager	responds	when	the	nodes	go
down,	it	will	then	evict	the	pods.	Endpoint	Controller	is	used	to	associate	the
relationship	between	services	and	pods.	Service	Account	and	Token	Controller
are	used	to	control	default	account	and	API	access	tokens.

etcd
etcd	is	an	open	source	distributed	key-value	store	(https://coreos.com/etcd).
Kubernetes	stores	all	the	RESTful	API	objects	here.	etcd	is	responsible	for
storing	and	replicating	data.

https://coreos.com/etcd

Scheduler	(kube-scheduler)
Scheduler	decides	which	node	is	suitable	for	pods	to	run	on,	according	to	the
resource	capacity	or	the	balance	of	the	resource	utilization	on	the	node.	It	also
considers	spreading	the	pods	in	the	same	set	to	different	nodes.

Node	components
Node	components	need	to	be	provisioned	and	run	on	every	node,	which	report
the	runtime	status	of	the	pod	to	the	master.

Node	components

Kubelet
Kubelet	is	a	major	process	in	the	nodes,	which	reports	node	activities	back	to
kube-apiserver	periodically,	such	as	pod	health,	node	health,	and	liveness	probe.
As	the	preceding	graph	shows,	it	runs	containers	via	container	runtimes,	such	as
Docker	or	rkt.

Proxy	(kube-proxy)
Proxy	handles	the	routing	between	pod	load	balancer	(a.k.a.	service)	and	pods,	it
also	provides	the	routing	from	outside	to	service.	There	are	two	proxy	modes,
userspace	and	iptables.	Userspace	mode	creates	large	overhead	by	switching
kernel	space	and	user	space.	Iptables	mode,	on	the	other	hand,	is	the	latest
default	proxy	mode.	It	changes	iptables	NAT	in	Linux	to	achieve	routing	TCP
and	UDP	packets	across	all	containers.

Docker
As	described	in	Chapter	2,	DevOps	with	Container,	Docker	is	a	container
implementation.	Kubernetes	uses	Docker	as	a	default	container	engine.

Interaction	between	Kubernetes
master	and	nodes
In	the	following	graph,	the	client	uses	kubectl	to	send	requests	to	the	API
server;	API	server	responds	to	the	request,	pushes	and	pulls	the	object
information	from	etcd.	Scheduler	determines	which	node	should	be	assigned	to
do	the	tasks	(for	example,	run	pods).	Controller	Manager	monitors	the	running
tasks	and	responds	if	any	undesired	state	occurs.	On	the	other	hand,	the	API
server	fetches	the	logs	from	pods	by	kubelet,	and	is	also	a	hub	between	other
master	components.

Interaction	between	master	and	nodes

Getting	started	with	Kubernetes
In	this	section,	we	will	learn	how	to	set	up	a	small	single-node	cluster	at	the
start.	Then	we'll	get	to	learn	how	to	interact	with	Kubernetes	via	its	command-
line	tool--kubectl.	We	will	go	through	all	the	important	Kubernetes	API	objects
and	their	expression	in	YAML	format,	which	is	the	input	to	kubectl,	then	kubectl
will	send	the	request	to	the	API	server	accordingly.

Preparing	the	environment
The	easiest	way	to	start	is	running	minikube	(https://github.com/kubernetes/minikube),
which	is	a	tool	to	run	Kubernetes	on	a	single	node	locally.	It	supports	to	run	on
Windows,	Linux,	and	macOS.	In	the	following	example,	we'll	run	on	macOS.
Minikube	will	launch	a	VM	with	Kubernetes	installed.	Then	we'll	be	able	to
interact	with	it	via	kubectl.

Note	that	minikube	is	not	suitable	for	production	or	any	heavy	load	environment.
There	are	some	limitations	by	its	single	node	nature.	We'll	learn	how	to	run	a
real	cluster	in	Chapter	9,	Kubernetes	on	AWS	and	Chapter	10,	Kubernetes	on	GCP
instead.

Before	installing	minikube,	we'll	have	to	install	Homebrew	(https://brew.sh/)	and
VirtualBox	(https://www.virtualbox.org/)	first.	Homebrew	is	a	useful	package	manager
in	macOS.	We	can	easily	install	Homebrew	via	the	/usr/bin/ruby	-e	"$(curl	-fsSL	ht
tps://raw.githubusercontent.com/Homebrew/install/master/install)"	command,	and
download	VirtualBox	from	the	Oracle	website	and	click	to	install	it.

Then	it's	time	to	start!	We	can	install	minikube	via	brew	cask	install	minikube:

//	install	minikube

#	brew	cask	install	minikube

==>	Tapping	caskroom/cask

==>	Linking	Binary	'minikube-darwin-amd64'	to	'/usr/local/bin/minikube'.

...

minikube	was	successfully	installed!

After	minikube	is	installed,	we	now	can	start	the	cluster:

//	start	the	cluster

#	minikube	start

Starting	local	Kubernetes	v1.6.4	cluster...

Starting	VM...

Moving	files	into	cluster...

Setting	up	certs...

Starting	cluster	components...

Connecting	to	cluster...

Setting	up	kubeconfig...

Kubectl	is	now	configured	to	use	the	cluster.

This	will	launch	a	Kubernetes	cluster	locally.	At	the	time	of	writing,	the	latest
version	is	v.1.6.4	minikube.	Proceed	to	start	a	VM	named	minikube	in

https://github.com/kubernetes/minikube
https://brew.sh/
https://www.virtualbox.org/
https://raw.githubusercontent.com/Homebrew/install/master/install)

VirtualBox.	Then	it	will	be	setting	up	kubeconfig,	which	is	a	configuration	file	to
define	the	context	and	authentication	settings	of	the	cluster.

With	kubeconfig,	we're	able	to	switch	to	different	clusters	via	the	kubectl	command.
We	could	use	the	kubectl	config	view	command	to	see	current	settings	in	kubeconfig:

apiVersion:	v1

				

#	cluster	and	certificate	information

clusters:

-	cluster:

			certificate-authority-data:	REDACTED

			server:	https://35.186.182.157

		name:	gke_devops_cluster

-	cluster:

			certificate-authority:	/Users/chloelee/.minikube/ca.crt

			server:	https://192.168.99.100:8443

		name:	minikube

				

#	context	is	the	combination	of	cluster,	user	and	namespace

contexts:

-	context:

			cluster:	gke_devops_cluster

			user:	gke_devops_cluster

		name:	gke_devops_cluster

-	context:

			cluster:	minikube

			user:	minikube

		name:	minikube

current-context:	minikube

kind:	Config

preferences:	{}

				

#	user	information

users:

-	name:	gke_devops_cluster

user:

		auth-provider:

			config:

				access-token:	xxxx

				cmd-args:	config	config-helper	--format=json

				cmd-path:	/Users/chloelee/Downloads/google-cloud-sdk/bin/gcloud

				expiry:	2017-06-08T03:51:11Z

				expiry-key:	'{.credential.token_expiry}'

				token-key:	'{.credential.access_token}'

			name:	gcp

				

#	namespace	info

-	name:	minikube

user:

	client-certificate:	/Users/chloelee/.minikube/apiserver.crt

	client-key:	/Users/chloelee/.minikube/apiserver.key

Here	we	know	we're	currently	using	minikube	context	with	the	same	name	of
cluster	and	user.	Context	is	a	combination	of	authentication	information	and
cluster	connection	information.	You	could	use	kubectl	config	use-context	$context	to
force	switch	the	context	if	you	have	more	than	one	context.

In	the	end,	we'll	need	to	enable	kube-dns	addon	in	minikube.	kube-dns	is	a	DNS
service	in	Kuberentes:

//	enable	kube-dns	addon

#	minikube	addons	enable	kube-dns

kube-dns	was	successfully	enabled

kubectl
kubectl	is	the	command	to	control	Kubernetes	cluster	manager.	The	most	general
usage	is	to	check	the	version	of	cluster:

//	check	Kubernetes	version

#	kubectl	version

Client	Version:	version.Info{Major:"1",	Minor:"6",	GitVersion:"v1.6.2",	

GitCommit:"477efc3cbe6a7effca06bd1452fa356e2201e1ee",	GitTreeState:"clean",	

BuildDate:"2017-04-19T20:33:11Z",	GoVersion:"go1.7.5",	Compiler:"gc",	

Platform:"darwin/amd64"}

Server	Version:	version.Info{Major:"1",	Minor:"6",	GitVersion:"v1.6.4",	

GitCommit:"d6f433224538d4f9ca2f7ae19b252e6fcb66a3ae",	GitTreeState:"clean",	

BuildDate:"2017-05-30T22:03:41Z",	GoVersion:"go1.7.3",	Compiler:"gc",	

Platform:"linux/amd64"}	

We	then	know	our	server	version	is	up	to	date,	which	is	the	latest	at	the	time	of
writing—version	1.6.4.	The	general	syntax	of	kubectl	is:

kubectl	[command]	[type]	[name]	[flags]	

The	command	indicates	the	operation	you	want	to	perform.	If	you	just	type	kubectl
help	in	the	Terminal,	it	will	show	the	supported	commands.	type	means	the
resource	type.	We'll	learn	major	resource	types	in	the	next	section.	name	is	how
we	name	our	resources.	It's	always	good	practice	to	have	clear	and	informational
naming	along	the	way.	For	the	flags,	if	you	type	kubectl	options,	it	will	show	all
the	flags	you	could	pass	on.

kubectl	comes	in	handy	and	we	could	always	add	--help	to	get	more	detailed
information	for	the	specific	command.	For	example:

//	show	detailed	info	for	logs	command	

kubectl	logs	--help	

Print	the	logs	for	a	container	in	a	pod	or	specified	resource.	If	the	pod	has	only	one	

container,	the	container	name	is	

optional.	

	

Aliases:	

logs,	log	

	

Examples:	

		#	Return	snapshot	logs	from	pod	nginx	with	only	one	container	

		kubectl	logs	nginx	

	

		#	Return	snapshot	logs	for	the	pods	defined	by	label			

		app=nginx	

		kubectl	logs	-lapp=nginx	

	

		#	Return	snapshot	of	previous	terminated	ruby	container	logs			

		from	pod	web-1	

		kubectl	logs	-p	-c	ruby	web-1	

...	

We	then	get	the	full	supported	option	in	the	kubectl	logs	command.

Kubernetes	resources
Kubernetes	objects	are	the	entries	in	the	cluster,	which	are	stored	in	etcd.	They
represent	the	desired	state	of	your	cluster.	When	we	create	an	object,	we	send	the
request	to	API	Server	by	kubectl	or	RESTful	API.	API	Server	will	store	the	state
into	etcd	and	interact	with	other	master	components	to	ensure	the	object	exists.
Kubernetes	uses	namespace	to	isolate	the	objects	virtually,	according	to	different
teams,	usages,	projects,	or	environments.	Every	object	has	its	own	name	and
unique	ID.	Kubernetes	also	supports	labels	and	annotation	to	let	us	tag	our
objects.	Labels	especially	could	be	used	to	group	the	objects	together.

Kubernetes	objects
Object	spec	describes	the	desired	state	of	Kubernetes	objects.	Most	of	the	time,
we	write	an	object	spec,	and	send	the	spec	to	the	API	Server	via	kubectl.
Kubernetes	will	try	to	fulfill	that	desired	state	and	update	object	status.

Object	spec	could	be	written	in	YAML	(http://www.yaml.org/)	or	JSON	(http://www.json.
org/).	YAML	is	more	common	in	the	Kubernetes	world.	We'll	use	YAML	format
to	write	object	specs	in	the	rest	of	this	book.	The	following	code	block	shows	a
YAML-formatted	spec	fragment:

apiVersion:	Kubernetes	API	version	

kind:	object	type	

metadata:		

		spec	metadata,	i.e.	namespace,	name,	labels	and	annotations	

spec:	

		the	spec	of	Kubernetes	object	

http://www.yaml.org/
http://www.json.org/
http://www.json.org/)

Namespace
Kubernetes	namespace	is	considered	to	be	an	isolation	as	multiple	virtual
clusters.	Objects	in	different	namespaces	are	invisible	to	each	other.	This	is
useful	when	different	teams	or	projects	are	sharing	the	same	cluster.	Most	of	the
resources	are	under	a	namespace	(a.k.a.	namespaced	resources);	however,	some
generic	resources,	such	as	nodes	or	namespace	itself,	don't	belong	to	any
namespace.	Kubernetes	has	three	namespaces	by	default:

default
kube-system
kube-public

Without	explicitly	assigning	namespace	to	the	namespaced	resource,	it	will	be
located	in	the	namespace	under	current	context.	If	we	never	add	a	new
namespace,	a	default	namespace	will	be	used.

Kube-system	namespaces	are	used	by	the	objects	created	by	the	Kubernetes
system,	such	as	addon,	which	are	the	pods	or	services	that	implement	cluster
features,	such	as	dashboard.	Kube-public	namespaces	are	newly	introduced	in
Kubernetes	1.6,	which	is	used	by	a	beta	controller	manager	(BootstrapSigner	https
://kubernetes.io/docs/admin/bootstrap-tokens),	putting	the	signed	cluster	location
information	into	the	kube-public	namespace,	so	this	information	could	be	visible	to
authenticated/unauthenticated	users.

In	the	following	sections,	all	the	namespaced	resources	will	be	located	in	a
default	namespace.	Namespace	is	also	very	important	for	resource	management
and	role.	We'll	introduce	more	in	Chapter	8,	Cluster	Administration.

https://kubernetes.io/docs/admin/bootstrap-tokens

Name
Every	object	in	Kubernetes	owns	its	own	name.	Object	name	in	one	resource	is
uniquely	identified	within	the	same	namespace.	Kubernetes	uses	object	name	as
part	of	a	resource	URL	to	API	Server,	so	it	must	be	the	combination	of	lower
case	of	alphanumeric	characters,	dash	and	dot,	less	than	254	characters.	Besides
object	name,	Kubernetes	also	assigns	a	unique	ID	(UID)	to	every	object	to
distinguish	historical	occurrences	of	similar	entities.

Label	and	selector
Labels	are	a	set	of	key/pair	values,	used	to	attach	to	objects.	Labels	are	designed
to	specify	meaningful,	identifying	information	for	the	object.	Common	usage	is
micro-service	name,	tier,	environment,	and	software	version.	Users	could	define
meaningful	labels	that	could	be	used	with	selector	later.	Labels	syntax	in	object
spec	is:

labels:	

		$key1:	$value1	

		$key2:	$value2	

Along	with	label,	label	selector	is	used	to	filter	the	set	of	objects.	Separated	by
commas,	multiple	requirements	will	be	joined	by	the	AND	logical	operator.	There
are	two	ways	to	filter:

Equality-based	requirement
Set-based	requirement

Equality-based	requirement	supports	the	operator	of	=,	==,	and	!=.	For	example,	if
selector	is	chapter=2,version!=0.1,	the	result	will	be	object	C.	If	requirement	is
version=0.1,	the	result	will	be	object	A	and	object	B.	If	we	write	the	requirement
in	supported	object	spec,	it'll	be	as	follows:

selector:	

		$key1:	$value1	

Selector	example

Set-based	requirement	supports	in,	notin,	and	exists	(for	key	only).	For	example,

if	requirement	is	chapter	in	(3,	4),version,	then	object	A	will	be	returned.	If
requirement	is	version	notin	(0.2),	!author_info,	the	result	will	be	object	A	and
object	B.	The	following	is	an	example	if	we	write	to	the	object	spec	that
supports	set-based	requirement:

selector:	

		matchLabels:		

				$key1:	$value1	

		matchExpressions:	

{key:	$key2,	operator:	In,	values:	[$value1,	$value2]}	

The	requirements	of	matchLabels	and	matchExpressions	are	combined	together.	It
means	the	filtered	objects	need	to	be	true	on	both	requirements.

We	will	learn	along	the	way	in	this	chapter	with	ReplicationController,	Service,
ReplicaSet,	and	Deployment.

Annotation
Annotation	is	a	set	of	user-specified	key/value	pairs,	used	for	specifying	non-
identifying	metadata.	With	annotation	acts	such	as	normal	tagging,	for	example,
a	user	could	add	timestamp,	commit	hash,	or	build	number	to	annotation.	Some
of	the	kubectl	commands	support	the	--record	option	to	record	the	commands	that
make	the	changes	to	the	objects	to	the	annotation.	Another	use	case	of
annotation	is	storing	the	configuration,	such	as	Kubernetes	Deployments	(https://ku
bernetes.io/docs/concepts/workloads/controllers/deployment)	or	Critical	Add-On	pods	(https://core
os.com/kubernetes/docs/latest/deploy-addons.html).	Annotation	syntax	is	as	follows	in	the
metadata	section:

annotations:	

		$key1:	$value1	

		$key2:	$value2	

Namespace,	name,	label,	and	annotation	are	located	in	the
metadata	section	of	object	spec.	Selector	is	located	in	the	spec
section	of	selector-supported	resources,	such	as
ReplicationController,	service,	ReplicaSet,	and	Deployment.

https://kubernetes.io/docs/concepts/workloads/controllers/deployment
https://coreos.com/kubernetes/docs/latest/deploy-addons.html

Pods
Pod	is	the	smallest	deployable	unit	in	Kubernetes.	It	can	contain	one	or	more
containers.	Most	of	the	time,	we	just	need	one	container	per	pod.	In	some	special
cases,	more	than	one	container	is	included	in	the	same	pod,	such	as	Sidecar
containers	(http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html).	The
containers	in	the	same	pod	run	in	a	shared	context,	on	the	same	node,	sharing	the
network	namespace	and	shared	volumes.	Pod	is	also	designed	as	mortal.	When	a
pod	dies	for	some	reasons,	such	as	getting	killed	by	Kubernetes	controller	when
lacking	resources,	it	won't	recover	by	itself.	Instead,	Kubernetes	uses	controllers
to	create	and	manage	the	desired	state	of	pods	for	us.

We	could	use	kubectl	explain	<resource>	to	get	the	detailed	description	for	the
resource	by	command	line.	It	will	show	up	the	fields	that	the	resource	supports:

//	get	detailed	info	for	`pods`	

#	kubectl	explain	pods	

DESCRIPTION:	

Pod	is	a	collection	of	containers	that	can	run	on	a	host.	This	resource	is	created	by	

clients	and	scheduled	onto	hosts.	

	

FIELDS:	

			metadata		<Object>	

					Standard	object's	metadata.	More	info:	

					http://releases.k8s.io/HEAD/docs/devel/api-	

					conventions.md#metadata	

	

			spec		<Object>	

					Specification	of	the	desired	behavior	of	the	pod.	

					More	info:	

					http://releases.k8s.io/HEAD/docs/devel/api-

					conventions.md#spec-and-status	

	

			status		<Object>	

					Most	recently	observed	status	of	the	pod.	This	data	

					may	not	be	up	to	date.	

					Populated	by	the	system.	Read-only.	More	info:	

					http://releases.k8s.io/HEAD/docs/devel/api-

					conventions.md#spec-and-status	

	

			apiVersion		<string>	

					APIVersion	defines	the	versioned	schema	of	this	

					representation	of	an	

					object.	Servers	should	convert	recognized	schemas	to	

					the	latest	internal	

					value,	and	may	reject	unrecognized	values.	More	info:	

					http://releases.k8s.io/HEAD/docs/devel/api-

					conventions.md#resources	

	

			kind		<string>	

http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html

					Kind	is	a	string	value	representing	the	REST	resource		

					this	object	represents.	Servers	may	infer	this	from	

					the	endpoint	the	client	submits	

					requests	to.	Cannot	be	updated.	In	CamelCase.	More	

									info:	

					http://releases.k8s.io/HEAD/docs/devel/api-

					conventions.md#types-kinds	

In	the	following	example,	we'll	show	how	to	create	two	containers	in	a	pod,	and
demonstrate	how	they	access	each	other.	Please	note	that	it's	neither	a
meaningful	nor	classic	Sidecar	pattern	example.	Those	are	used	in	very	specific
scenarios.	The	following	is	just	an	example	of	how	we	access	other	containers
within	a	pod:

//	an	example	for	creating	co-located	and	co-scheduled	container	by	pod

#	cat	3-2-1_pod.yaml

apiVersion:	v1

kind:	Pod

metadata:

		name:	example

spec:

		containers:

		-	name:	web

				image:	nginx

		-	name:	centos

				image:	centos

				command:	["/bin/sh",	"-c",	"while	:	;do	curl	http://localhost:80/;	sleep	10;	

done"]

Containers	inside	a	Pod	are	visible	via	localhost

This	spec	will	create	two	containers,	web	and	centos.	Web	is	a	nginx	container	(https
://hub.docker.com/_/nginx/).	Expose	container	port	80	by	default,	since	centos	shares
the	same	context	with	nginx,	when	doing	curl	in	http://localhost:80/,	it	should	be	able
to	access	nginx.

Next,	using	the	kubectl	create	command	to	launch	the	pod	-f	option	lets	kubectl
know	using	the	data	in	the	file:

https://hub.docker.com/_/nginx/
http://localhost:80/

//	create	the	resource	by	`kubectl	create`	-	Create	a	resource	by	filename	or	stdin

#	kubectl	create	-f	3-2-1_pod.yaml

pod	"example"	created		

Adding	--record=true	at	the	end	of	the	kubectl	command	when	we
create	the	resources.	Kubernetes	will	add	the	latest	command	while
creating	or	updating	this	resource.	Therefore,	we	won't	forget
which	resources	are	created	by	which	spec.

We	could	use	the	kubectl	get	<resource>	command	to	get	the	current	status	of	the
object.	In	this	case,	we	use	the	kubectl	get	pods	command.

//	get	the	current	running	pods	

#	kubectl	get	pods

NAME						READY					STATUS														RESTARTS			AGE

example			0/2							ContainerCreating			0										1s

Add	--namespace=$namespace_name	could	access	the	object	in	different
namespaces.	The	following	is	an	example	to	check	the	pods	in	the
kube-system	namespace,	which	is	used	by	system-type	pods:

#	kubectl	get	pods	--namespace=kube-system

NAME	READY	STATUS	RESTARTS	AGE

kube-addon-manager-minikube	1/1	Running	2	3d

kube-dns-196007617-jkk4k	3/3	Running	3	3d

kubernetes-dashboard-3szrf	1/1	Running	1	3d

Most	of	the	objects	have	their	short	names,	which	come	in	handy
when	we	use	kubectl	get	<object>	to	list	their	status.	For	example,
pods	could	be	called	po,	services	could	be	called	svc,	and
deployment	could	be	called	deploy.	Type	kubectl	get	to	know	more.

The	status	of	our	example	pod	is	ContainerCreating.	In	this	phase,	Kubernetes	has
accepted	the	request,	trying	to	schedule	the	pod	and	pulling	down	the	image.
Zero	containers	are	currently	running.	After	waiting	a	moment,	we	could	get	the
status	again:

//	get	the	current	running	pods

#	kubectl	get	pods

NAME						READY					STATUS				RESTARTS			AGE

example			2/2							Running			0										3s		

We	can	see	two	containers	are	currently	running.	Uptime	is	three	seconds.	Using

kubectl	logs	<pod_name>	-c	<container_name>	could	get	stdout	for	the	container,	similar
to	docker	logs	<container_name>:

//	get	stdout	for	centos

#	kubectl	logs	example	-c	centos

<!DOCTYPE	html>

<html>

<head>

<title>Welcome	to	nginx!</title>

...

Centos	in	the	pod	shares	the	same	networking	with	nginx	via	localhost!
Kubernetes	creates	a	network	container	along	with	the	pod.	One	of	the	functions
in	the	network	container	is	to	forward	the	traffic	between	containers	within	a
pod.	We'll	learn	more	in	Chapter	5,	Network	and	Security.

If	we	specify	labels	in	pod	spec,	we	could	use	the	kubectl	get	pods	-l
<requirement>	command	to	get	the	pods	that	are	satisfying	the
requirements.	For	example,	kubectl	get	pods	-l	'tier	in	(frontend,
backend)'.	Additionally,	if	we	use	kubectl	pods	-owide,	it	will	list	down
which	pod	is	running	on	which	nodes.

We	could	use	kubectl	describe	<resource>	<resource_name>	to	get	the	detailed
information	of	a	resource:

//	get	detailed	information	for	a	pod

#	kubectl	describe	pods	example

Name:				example

Namespace:		default

Node:				minikube/192.168.99.100

Start	Time:		Fri,	09	Jun	2017	07:08:59	-0400

Labels:				<none>

Annotations:		<none>

Status:				Running

IP:				172.17.0.4

Controllers:		<none>

Containers:		

At	this	point,	we	know	which	node	this	pod	is	running	on,	in	minikube	we	only
get	a	single	node	so	it	won't	make	any	difference.	In	the	real	cluster
environment,	knowing	which	node	is	useful	for	troubleshooting.	We	didn't
associate	any	labels,	annotations,	and	controllers	for	it:

web:

				Container	ID:				

	docker://a90e56187149155dcda23644c536c20f5e039df0c174444e	0a8c8		7e8666b102b

			Image:				nginx

			Image	ID:				

docker://sha256:958a7ae9e56979be256796dabd5845c704f784cd422734184999cf91f24c2547

			Port:

			State:				Running

						Started:				Fri,	09	Jun	2017	07:09:00	-0400

			Ready:				True

			Restart	Count:		0

			Environment:		<none>

			Mounts:

						/var/run/secrets/kubernetes.io/serviceaccount	from	

						default-token-jd1dq	(ro)

					centos:

					Container	ID:		

docker://778965ad71dd5f075f93c90f91fd176a8add4bd35230ae0fa6c73cd1c2158f0b

					Image:				centos

					Image	ID:				

docker://sha256:3bee3060bfc81c061ce7069df35ce090593bda584d4ef464bc0f38086c11371d

					Port:

					Command:

							/bin/sh

							-c

							while	:	;do	curl	http://localhost:80/;	sleep	10;	

							done

						State:				Running

							Started:				Fri,	09	Jun	2017	07:09:01	-0400

						Ready:				True

						Restart	Count:		0

						Environment:		<none>

						Mounts:

										/var/run/secrets/kubernetes.io/serviceaccount	from	default-token-jd1dq	(ro)

In	the	containers	section,	we'll	see	there	are	two	containers	included	in	this	pod.
Their	states,	images,	and	restart	count:

Conditions:

		Type				Status

		Initialized			True

		Ready			True

		PodScheduled			True

A	pod	has	a	PodStatus,	which	including	a	map	of	array	represents	as	PodConditions.
The	possible	key	for	PodConditions	are	PodScheduled,	Ready,	Initialized,	and
Unschedulable.	Value	will	be	true,	false,	or	unknown.	If	the	pod	is	not	created
accordingly,	PodStatus	will	give	us	a	brief	view	of	which	part	failed:

Volumes:

		default-token-jd1dq:

			Type:		Secret	(a	volume	populated	by	a	Secret)

			SecretName:		default-token-jd1dq

			Optional:		false

Pod	is	associated	with	a	service	account	that	provides	an	identity	for	processes
that	are	running	a	pod.	It's	controlled	by	service	account	and	token	controller	in
API	Server.

It	will	mount	a	read	only	volume	to	each	container	under

/var/run/secrets/kubernetes.io/serviceaccount	in	a	pod	that	contains	a	token	for	API
access.	Kubernetes	creates	a	default	service	account.	We	could	use	the	kubectl	get
serviceaccounts	command	to	list	them:

QoS	Class:		BestEffort

Node-Selectors:		<none>

Tolerations:		<none>

We	don't	assign	any	selectors	to	this	pod	yet.	QoS	means	Resource	Quality	of
Service.	Toleration	is	used	to	restrict	how	many	pods	that	can	use	a	node.	We
will	learn	more	in	Chapter	8,	Cluster	Administration:

Events:

		FirstSeen		LastSeen		Count		From						SubObjectPath				Type					

		Reason				Message

		---------		--------		-----		----						-------------				------	

		--		------				-------

		19m				19m				1		default-scheduler								Normal				Scheduled		

		Successfully	assigned	example	to	minikube

		19m				19m				1		kubelet,	minikube		spec.containers{web}		

		Normal				Pulling				pulling	image	"nginx"

		19m				19m				1		kubelet,	minikube		spec.containers{web}		

		Normal				Pulled				Successfully	pulled	image	"nginx"

		19m				19m				1		kubelet,	minikube		spec.containers{web}		

		Normal				Created				Created	container	with	id	

		a90e56187149155dcda23644c536c20f5e039df0c174444e0a8c87e8666b102b

		19m				19m				1		kubelet,	minikube		spec.containers{web}			

		Normal				Started				Started	container	with	id		

	a90e56187149155dcda23644c536c20f5e039df0c174444e0a8c87e86	

	66b102b

		19m				19m				1		kubelet,	minikube		spec.containers{centos}		

		Normal				Pulling				pulling	image	"centos"

		19m				19m				1		kubelet,	minikube		spec.containers{centos}		

		Normal				Pulled				Successfully	pulled	image	"centos"

		19m				19m				1		kubelet,	minikube		spec.containers{centos}		

		Normal				Created				Created	container	with	id	

	778965ad71dd5f075f93c90f91fd176a8add4bd35230ae0fa6c73cd1c	

	2158f0b

		19m				19m				1		kubelet,	minikube		spec.containers{centos}		

		Normal				Started				Started	container	with	id	

	778965ad71dd5f075f93c90f91fd176a8add4bd35230ae0fa6c73cd1c	

	2158f0b	

By	seeing	events,	we	could	know	what	the	steps	are	for	Kubernetes	to	run	a
node.	First,	scheduler	assigns	the	task	to	a	node,	here	it	is	named	minikube.	Then
kubelet	on	minikube	starts	pulling	the	first	image	and	creates	a	container
accordingly.	Then	kubelet	pulls	down	the	second	container	and	runs.

ReplicaSet	(RS)	and
ReplicationController	(RC)
A	pod	is	not	self-healing.	When	a	pod	encounters	failure,	it	won't	recover	on	its
own.	ReplicaSet	(RS)	and	ReplicationController	(RC)	therefore	come	into
play.	Both	ReplicaSet	and	ReplicationController	will	ensure	a	specified	number
of	replica	pods	are	always	up	and	running	in	the	cluster.	If	a	pod	crashes	for	any
reason,	ReplicaSet	and	ReplicationController	will	request	to	spin	up	a	new	Pod.

After	the	latest	Kubernetes,	ReplicationController	is	replaced	by	ReplicaSet
gradually.	They	share	the	same	concept,	just	using	different	requirements	for	the
pod	selector.	ReplicationController	uses	equality-based	selector	requirements
while	ReplicaSet	uses	set-based	selector	requirements.	ReplicaSet	usually	is	not
created	by	users,	but	by	Kubernetes	Deployments	objects,	while
ReplicationController	is	created	by	users	ourselves.	In	this	section,	we'll	explain
the	concept	for	RC	first	by	walking	through	examples,	which	is	much	easier	to
understand.	Then	we'll	bring	in	ReplicaSet	at	the	end.

ReplicationController	with	desired	count	2

Let's	say	we'd	like	to	create	a	ReplicationController	object,	with	desired	count	two.

It	means	we	will	always	have	two	pods	in	service.	Before	we	write	the	spec	for
ReplicationController,	we'll	have	to	decide	pod	template	first.	Pod	template	is
similar	to	the	spec	of	pod.	In	ReplicationController,	labels	in	the	metadata
section	are	required.	ReplicationController	uses	pod	selector	to	select	which
pods	it	manages.	Labels	allow	ReplicationController	to	distinguish	whether	all
the	pods	matching	the	selectors	are	all	on	track.

In	this	example,	we'll	create	two	pods	with	the	labels	project,	service,	and	version,
as	shown	in	the	preceding	figure:

//	an	example	for	rc	spec

#	cat	3-2-2_rc.yaml

apiVersion:	v1

kind:	ReplicationController

metadata:

		name:	nginx

spec:

		replicas:	2

		selector:

			project:	chapter3

			service:	web

			version:	"0.1"

		template:

			metadata:

				name:	nginx

				labels:

					project:	chapter3

					service:	web

					version:	"0.1"

		spec:

				containers:

			-	name:	nginx

					image:	nginx

					ports:

				-	containerPort:	80

//	create	RC	by	above	input	file

#	kubectl	create	-f	3-2-2_rc.yaml

replicationcontroller	"nginx"	created		

Then	we	can	use	kubectl	to	get	current	RC	status:

//	get	current	RCs

#	kubectl	get	rc

NAME						DESIRED			CURRENT			READY					AGE

nginx					2									2									2									5s		

It	shows	we	have	two	desired	pods,	we	currently	have	two	pods	and	two	pods
are	ready.	How	many	pods	do	we	have	now?

//	get	current	running	pod

#	kubectl	get	pods

NAME										READY					STATUS				RESTARTS			AGE

nginx-r3bg6			1/1							Running			0										11s

nginx-sj2f0			1/1							Running			0										11s		

It	shows	we	have	two	pods	up	and	running.	As	described	previously,
ReplicationController	manages	all	the	pods	matching	the	selector.	If	we	create	a
pod	with	the	same	label	manually,	in	theory,	it	should	match	the	pod	selector	of
the	RC	we	just	created.	Let's	try	it	out:

//	manually	create	a	pod	with	same	labels

#	cat	3-2-2_rc_self_created_pod.yaml

apiVersion:	v1

kind:	Pod

metadata:

		name:	our-nginx

		labels:

			project:	chapter3

			service:	web

			version:	"0.1"

spec:

		containers:

	-	name:	nginx

			image:	nginx

			ports:

		-	containerPort:	80

//	create	a	pod	with	same	labels	manually

#	kubectl	create	-f	3-2-2_rc_self_created_pod.yaml	

pod	"our-nginx"	created		

Let's	see	if	it's	up	and	running:

//	get	pod	status

#	kubectl	get	pods

NAME										READY					STATUS								RESTARTS			AGE

nginx-r3bg6			1/1							Running							0										4m

nginx-sj2f0			1/1							Running							0										4m

our-nginx					0/1							Terminating			0										4s		

It's	scheduled,	and	ReplicationController	catches	it.	The	amount	of	pods
becomes	three,	which	exceeds	our	desired	count.	The	pod	is	eventually	killed:

//	get	pod	status

#	kubectl	get	pods

NAME										READY					STATUS				RESTARTS			AGE

nginx-r3bg6			1/1							Running			0										5m

nginx-sj2f0			1/1							Running			0										5m		

ReplicationController	makes	sure	pods	are	in	desired	state

If	we	want	to	scale	on	demand,	we	could	simply	use	kubectl	edit	<resource>
<resource_name>	to	update	the	spec.	Here	we'll	change	replica	count	from	2	to	5:

//	change	replica	count	from	2	to	5,	default	system	editor	will	pop	out.	Change	

`replicas`	number

#	kubectl	edit	rc	nginx

replicationcontroller	"nginx"	edited		

Let's	check	RC	information:

//	get	rc	information

#	kubectl	get	rc

NAME						DESIRED			CURRENT			READY					AGE

nginx					5									5									5									5m						

We	have	five	pods	now.	Let's	check	how	RC	works:

//	describe	RC	resource	`nginx`

#	kubectl	describe	rc	nginx

Name:				nginx

Namespace:		default

Selector:		project=chapter3,service=web,version=0.1

Labels:				project=chapter3

											service=web

											version=0.1

Annotations:		<none>

Replicas:		5	current	/	5	desired

Pods	Status:		5	Running	/	0	Waiting	/	0	Succeeded	/	0	Failed

Pod	Template:

		Labels:		project=chapter3

											service=web

											version=0.1

		Containers:

			nginx:

			Image:				nginx

			Port:				80/TCP

			Environment:		<none>

			Mounts:				<none>

		Volumes:				<none>

Events:

		FirstSeen		LastSeen		Count		From						SubObjectPath		Type						

		Reason						Message

---------		--------		-----		----						-------------		--------		------						-------

34s				34s				1		replication-controller						Normal				SuccessfulCreate		Created	pod:	

nginx-r3bg6			

34s				34s				1		replication-controller						Normal				SuccessfulCreate		Created	pod:	

nginx-sj2f0			

20s				20s				1		replication-controller						Normal				SuccessfulDelete		Deleted	pod:	

our-nginx

15s				15s				1		replication-controller						Normal				SuccessfulCreate		Created	pod:	

nginx-nlx3v

15s				15s				1		replication-controller						Normal				SuccessfulCreate		Created	pod:	

nginx-rqt58

15s				15s				1		replication-controller						Normal				SuccessfulCreate		Created	pod:	

nginx-qb3mr		

By	describing	the	command;	we	can	learn	the	spec	of	RC,	also	the	events.	At	the
time	we	created	nginx	RC,	it	launched	two	containers	by	spec.	Then	we	created
another	pod	manually	by	another	spec,	named	our-nginx.	RC	detected	that	pod
matches	its	pod	selector.	Then	the	amount	exceeded	our	desired	count,	so	it
evicted	it.	Then	we	scaled	out	the	replicas	to	five.	RC	detected	that	it	didn't
fulfill	our	desired	state,	launching	three	pods	to	fill	the	gap.

If	we	want	to	delete	an	RC,	simply	use	the	kubectl	command	by	kubectl	delete
<resource>	<resource_name>.	Since	we	have	a	configuration	file	on	hand,	we	could
also	use	kubectl	delete	-f	<configuration_file>	to	delete	the	resources	listing	in	the
file:

//	delete	a	rc

#	kubectl	delete	rc	nginx

replicationcontroller	"nginx"	deleted

//	get	pod	status

#	kubectl	get	pods

NAME										READY					STATUS								RESTARTS			AGE

nginx-r3bg6			0/1							Terminating			0										29m		

The	same	concept	is	brought	to	ReplicaSet.	The	following	is	RS	version	of	3-2-
2.rc.yaml.	Two	major	differences	are:

The	apiVersion	is	extensions/v1beta1	at	the	time	of	writing
Selector	requirement	is	changed	set-based	requirement,	with	matchLabels	and
matchExpressions	syntax

Following	the	same	steps	with	the	preceding	example	should	work	exactly	the
same	between	RC	and	RS.	This	is	just	an	example;	however,	we	shouldn't	create

RS	on	our	own,	while	it	should	be	always	managed	by	Kubernetes	deployment
object.	We'll	learn	more	in	the	next	section:

//	RS	version	of	3-2-2_rc.yaml	

#	cat	3-2-2_rs.yaml

apiVersion:	extensions/v1beta1

kind:	ReplicaSet

metadata:

		name:	nginx

spec:

		replicas:	2

		selector:

			matchLabels:

					project:	chapter3

			matchExpressions:

				-	{key:	version,	operator:	In,	values:	["0.1",	"0.2"]}

			template:

					metadata:

							name:	nginx

								labels:

									project:	chapter3

									service:	web

									version:	"0.1"

					spec:

							containers:

								-	name:	nginx

										image:	nginx

										ports:

									-	containerPort:	80

Deployments
Deployment	is	the	best	primitive	to	manage	and	deploy	our	software	in
Kubernetes	after	version	1.2.	It	supports	gracefully	deploying,	rolling	updating,
and	rolling	back	pods	and	ReplicaSets.	We	define	our	desired	update	of	the
software	by	deployment	declaratively,	and	then	deployment	will	do	it	for	us
progressively.

Before	deployment,	ReplicationController	and	kubectl	rolling-
update	were	the	major	way	to	implement	rolling-update	for	the
software,	which	is	more	imperative	and	slower.	Deployment	now
becomes	the	major	high-level	object	to	manage	our	application.

Let's	have	a	glimpse	of	how	it	works.	In	this	section,	we'll	get	a	taste	of	how
deployment	is	created,	how	to	perform	rolling-update	and	rollback.	Chapter	7,
Continuous	Delivery	has	more	information	with	practical	examples	about	how
we	integrate	with	deployments	into	our	continuous	delivery	pipeline.

First,	we	could	use	the	kubectl	run	command	to	create	a	deployment	for	us:

//	using	kubectl	run	to	launch	the	Pods

#	kubectl	run	nginx	--image=nginx:1.12.0	--replicas=2	--port=80

deployment	"nginx"	created

				

//	check	the	deployment	status

#	kubectl	get	deployments

NAME						DESIRED			CURRENT			UP-TO-DATE			AVAILABLE			AGE

nginx					2									2									2												2											4h		

Before	Kubernetes	1.2,	the	kubectl	run	command	would	create	pods
instead.

There	are	two	pods	that	are	deployed	by	deployment:

//	check	if	pods	match	our	desired	count

#	kubectl	get	pods

NAME																					READY					STATUS								RESTARTS			AGE

nginx-2371676037-2brn5			1/1							Running							0										4h

nginx-2371676037-gjfhp			1/1							Running							0										4h		

The	relationship	in	deployments,	ReplicaSets,	and	pods

If	we	delete	one	of	the	pods,	the	replaced	pod	will	be	scheduled	and	launched
immediately.	That's	because	deployments	creates	a	ReplicaSet	behind	the	scenes,
which	will	ensure	the	number	of	replicas	is	matched	with	our	desired	count.	In
general,	deployments	manage	ReplicaSets,	ReplicaSets	manage	pods.	Note	that
we	shouldn't	manually	manipulate	ReplicaSets	that	deployments	managed,	just
like	there	is	no	sense	to	change	pods	directly	if	they're	managed	by	ReplicaSets:

//	list	replica	sets

#	kubectl	get	rs

NAME															DESIRED			CURRENT			READY					AGE

nginx-2371676037			2									2									2									4h						

We	could	also	expose	the	port	for	deployment	by	the	kubectl	command:

//	expose	port	80	to	service	port	80

#	kubectl	expose	deployment	nginx	--port=80	--target-port=80

service	"nginx"	exposed

				

//	list	services

#	kubectl	get	services

NAME									CLUSTER-IP			EXTERNAL-IP			PORT(S)			AGE

kubernetes			10.0.0.1					<none>								443/TCP			3d

nginx								10.0.0.94				<none>								80/TCP				5s		

Deployments	can	be	created	by	spec	as	well.	The	previous	deployments	and
service	launched	by	kubectl	can	be	converted	to	the	following	spec:

//	create	deployments	by	spec

#	cat	3-2-3_deployments.yaml

apiVersion:	apps/v1beta1

kind:	Deployment

metadata:

		name:	nginx

spec:

		replicas:	2

		template:

			metadata:

				labels:

					run:	nginx

			spec:

				containers:

				-	name:	nginx

						image:	nginx:1.12.0

						ports:

					-	containerPort:	80

kind:	Service

apiVersion:	v1

metadata:

		name:	nginx

		labels:

			run:	nginx

spec:

		selector:

			run:	nginx

		ports:

				-	protocol:	TCP

						port:	80

						targetPort:	80

						name:	http

				

//	create	deployments	and	service

#	kubectl	create	-f	3-2-3_deployments.yaml

deployment	"nginx"	created

service	"nginx"	created		

For	performing	rolling	update,	we'll	have	to	add	rolling	update	strategy.	There
are	three	parameters	used	to	control	the	process:

Parameters Description Default
value

minReadySeconds

Warm-up	time.	How	long	a	newly	created	pod	is
considered	to	be	available.	By	default,	Kubernetes	assumes
the	application	will	be	available	once	it	is	successfully
launched.

0

maxSurge
How	many	pods	can	be	surged	when	doing	rolling	update
process. 25%

maxUnavailable
How	many	pods	can	be	unavailable	when	doing	rolling
update	process. 25%

	

The	minReadySecond	is	an	important	setting.	If	our	application	is	not	available
immediately	when	the	pod	is	up,	pods	are	rolling	too	fast	without	proper	waiting.
Although	all	the	new	pods	are	up,	the	application	might	be	still	warming	up;
there	are	chances	a	service	outage	might	occur.	In	the	following	example,	we'll
add	the	configuration	into	the	Deployment.spec	section:

//	add	to	Deployments.spec,	save	as	3-2-3_deployments_rollingupdate.yaml

minReadySeconds:	3			

strategy:

		type:	RollingUpdate

		rollingUpdate:

			maxSurge:	1

			maxUnavailable:	1		

It	indicates	that	we	allow	one	of	the	pods	to	be	unavailable	at	a	time	and	one
more	pod	could	be	launched	when	rolling	the	pods.	The	warm-up	time	before
proceeding	to	the	next	operation	will	be	three	seconds.	We	can	use	either	kubectl
edit	deployments	nginx	(edit	directly)	or	kubectl	replace	-f	3-2-
3_deployments_rollingupdate.yaml	to	update	the	strategy.

Let's	say	we	want	to	simulate	new	software	rollout,	from	nginx	1.12.0	to	1.13.1.
We	still	could	use	the	preceding	two	commands	to	change	image	version,	or	use
kubectl	set	image	deployment	nginx	nginx=nginx:1.13.1	to	trigger	the	update.	If	we	use
kubectl	describe	to	check	what's	going	on,	we	will	see	deployments	have	triggered
rolling	updates	on	ReplicaSets	by	deleting/creating	pods:

//	check	detailed	rs	information

#	kubectl	describe	rs	nginx-2371676037			

Name:				nginx-2371676037			

Namespace:		default

Selector:		pod-template-hash=2371676037			,run=nginx

Labels:				pod-template-hash=2371676037			

											run=nginx

Annotations:		deployment.kubernetes.io/desired-replicas=2

														deployment.kubernetes.io/max-replicas=3

														deployment.kubernetes.io/revision=4

														deployment.kubernetes.io/revision-history=2

Replicas:		2	current	/	2	desired

Pods	Status:		2	Running	/	0	Waiting	/	0	Succeeded	/	0	Failed

Pod	Template:

		Labels:		pod-template-hash=2371676037			

											run=nginx

Containers:

nginx:

Image:				nginx:1.13.1

Port:				80/TCP

...

Events:

FirstSeen		LastSeen		Count		From						SubObjectPath		Type				Reason						Message

---------		--------		-----		----						-------------		--------		------						-------

3m				3m				1		replicaset-controller						Normal				SuccessfulCreate		Created	pod:	

nginx-2371676037-f2ndj

3m				3m				1		replicaset-controller						Normal				SuccessfulCreate		Created	pod:	

nginx-2371676037-9lc8j

3m				3m				1		replicaset-controller						Normal				SuccessfulDelete		Deleted	pod:	

nginx-2371676037-f2ndj

3m				3m				1		replicaset-controller						Normal				SuccessfulDelete		Deleted	pod:	

nginx-2371676037-9lc8j

Illustration	of	deployments

The	preceding	figure	shows	the	illustration	of	the	deployment.	At	a	certain	point
of	time,	we	have	two	(desired	count)	and	one	(maxSurge)	pods.	After	launching
each	new	pod,	Kubernetes	will	wait	three	(minReadySeconds)	seconds	and	then
performs	the	next	action.

If	we	use	the	command	kubectl	set	image	deployment	nginx	nginx=nginx:1.12.0	to
previous	version	1.12.0,	deployments	will	do	the	rollback	for	us.

Services
Service	in	Kubernetes	is	an	abstraction	layer	for	routing	traffic	to	a	logical	set	of
pods.	With	service,	we	don't	need	to	trace	the	IP	address	of	each	pod.	Service
usually	uses	label	selector	to	select	the	pods	that	it	needs	to	route	to	(in	some
cases	service	is	created	without	selector	in	purpose).	The	service	abstraction	is
powerful.	It	enables	the	decoupling	and	makes	communication	between	micro-
services	possible.	Currently	Kubernetes	service	supports	TCP	and	UDP.

Service	doesn't	care	how	we	create	the	pod.	Just	like	ReplicationController,	it
only	cares	that	the	pods	match	its	label	selectors,	so	the	pods	could	belong	to
different	ReplicationControllers.	The	following	is	an	illustration:

Service	maps	pods	via	label	selector

In	the	graph,	all	the	pods	match	the	service	selector,	so	service	will	be
responsible	to	distribute	the	traffic	into	all	the	pods	without	explicit	assignment.

Service	types

There	are	four	types	of	services:	ClusterIP,	NodePort,	LoadBalancer,	and
ExternalName.

LoadBalancer	includes	the	features	of	NodePort	and	ClusterIP

ClusterIP

ClusterIP	is	the	default	service	type.	It	exposes	the	service	on	a	cluster-internal
IP.	Pods	in	the	cluster	could	reach	the	service	via	the	IP	address,	environment
variables,	or	DNS.	In	the	following	example,	we'll	learn	how	to	use	both	native
service	environment	variables	and	DNS	to	access	the	pods	behind	services	in	the
cluster.

Before	starting	a	service,	we'd	like	to	create	two	sets	of	RC	shown	in	the	figure:

//	create	RC	1	with	nginx	1.12.0	version

#	cat	3-2-3_rc1.yaml

apiVersion:	v1

kind:	ReplicationController

metadata:

		name:	nginx-1.12

spec:

		replicas:	2

		selector:

			project:	chapter3

			service:	web

			version:	"0.1"

template:

			metadata:

				name:	nginx

				labels:

						project:	chapter3

						service:	web

						version:	"0.1"

			spec:

		containers:

	-	name:	nginx

			image:	nginx:1.12.0

			ports:

		-	containerPort:	80

//	create	RC	2	with	nginx	1.13.1	version

#	cat	3-2-3_rc2.yaml

apiVersion:	v1

kind:	ReplicationController

metadata:

		name:	nginx-1.13

spec:

		replicas:	2

		selector:

				project:	chapter3

				service:	web

				version:	"0.2"

	template:

		metadata:

		name:	nginx

		labels:

			project:	chapter3

			service:	web

			version:	"0.2"

spec:

		containers:

-	name:	nginx

		image:	nginx:1.13.1

		ports:

	-	containerPort:	80		

Then	we	could	make	our	pod	selector,	targeting	project	and	service	labels:

//	simple	nginx	service	

#	cat	3-2-3_service.yaml

kind:	Service

apiVersion:	v1

metadata:

		name:	nginx-service

spec:

		selector:

			project:	chapter3

			service:	web

		ports:

		-	protocol:	TCP

				port:	80

				targetPort:	80

				name:	http

				

//	create	the	RCs	

#	kubectl	create	-f	3-2-3_rc1.yaml

replicationcontroller	"nginx-1.12"	created	

#	kubectl	create	-f	3-2-3_rc2.yaml

replicationcontroller	"nginx-1.13"	created

				

//	create	the	service

#	kubectl	create	-f	3-2-3_service.yaml

service	"nginx-service"	created		

Since	service	object	might	create	a	DNS	label,	service	name	must
follow	the	combination	of	characters	a-z,	0-9,	or	-	(hyphen).	A
hyphen	at	the	beginning	or	end	of	a	label	is	not	allowed.

Then	we	could	use	kubectl	describe	service	<service_name>	to	check	the	service
information:

//	check	nginx-service	information

#	kubectl	describe	service	nginx-service

Name:						nginx-service

Namespace:				default

Labels:						<none>

Annotations:				<none>

Selector:				project=chapter3,service=web

Type:						ClusterIP

IP:						10.0.0.188

Port:						http		80/TCP

Endpoints:				172.17.0.5:80,172.17.0.6:80,172.17.0.7:80	+	1	more...

Session	Affinity:		None

Events:						<none>

One	service	could	expose	multiple	ports.	Just	extend	.spec.ports	list
in	the	service	spec.

We	can	see	it's	a	ClusterIP	type	service,	assigned	internal	IP	is	10.0.0.188.
Endpoints	show	we	have	four	IPs	behind	the	service.	Pod	IP	could	be	found	by
the	kubectl	describe	pods	<pod_name>	command.	Kubernetes	creates	an	endpoints
object	along	with	a	service	object	for	routing	the	traffic	to	matching	pods.

When	the	service	is	created	with	selectors,	Kubernetes	will	create	corresponding
endpoints	entries	and	keep	updating,	which	will	tell	the	destination	that	service
routes	into:

//	list	current	endpoints.	Nginx-service	endpoints	are	created	and	pointing	to	the	ip	

of	our	4	nginx	pods.

#	kubectl	get	endpoints

NAME												ENDPOINTS																																															AGE

kubernetes						10.0.2.15:8443																																										2d

nginx-service			172.17.0.5:80,172.17.0.6:80,172.17.0.7:80	+	1	more...			10s		

ClusterIP	could	be	defined	within	your	cluster,	though	most	of	the
time	we	don't	explicitly	use	IP	address	to	access	clusters.	Using
.spec.clusterIP	could	do	the	work.

By	default,	Kubernetes	will	expose	seven	environment	variables	for	each
service.	In	most	cases,	the	first	two	will	be	used	for	using	kube-dns	addon	to	do

service	discovery	for	us:

${SVCNAME}_SERVICE_HOST

${SVCNAME}_SERVICE_PORT

${SVCNAME}_PORT

${SVCNAME}_PORT_${PORT}_${PROTOCAL}

${SVCNAME}_PORT_${PORT}_${PROTOCAL}_PROTO

${SVCNAME}_PORT_${PORT}_${PROTOCAL}_PORT

${SVCNAME}_PORT_${PORT}_${PROTOCAL}_ADDR

In	the	following	example,	we'll	use	${SVCNAME}_SERVICE_HOST	in	another	pod	to	check
if	we	could	access	our	nginx	pods:

The	illustration	of	accessing	ClusterIP	via	environment	variables	and	DNS	names

We'll	then	create	a	pod	called	clusterip-chk	to	access	nginx	containers	via	nginx-
service:

//	access	nginx	service	via	${NGINX_SERVICE_SERVICE_HOST}

#	cat	3-2-3_clusterip_chk.yaml

apiVersion:	v1

kind:	Pod

metadata:

		name:	clusterip-chk

spec:

		containers:

		-	name:	centos

				image:	centos

				command:	["/bin/sh",	"-c",	"while	:	;do	curl				

http://${NGINX_SERVICE_SERVICE_HOST}:80/;	sleep	10;	done"]		

We	could	check	the	stdout	of	cluserip-chk	pod	via	the	kubectl	logs	command:

//	check	stdout,	see	if	we	can	access	nginx	pod	successfully

#	kubectl	logs	-f	clusterip-chk

%	Total				%	Received	%	Xferd		Average	Speed			Time				Time					Time		Current

																																					Dload		Upload			Total			Spent				Left		Speed

100			612		100			612				0					0			156k						0	--:--:--	--:--:--	--:--:--		199k

	...

<title>Welcome	to	nginx!</title>

				...		

This	abstraction	level	decouples	the	communication	between	pods.	Pods	are
mortal.	With	RC	and	service,	we	can	build	robust	services	without	caring
whether	one	pod	might	influence	all	micro-services.

With	kube-dns	addon	enabled,	the	pods	in	the	same	cluster	and	same	namespace
with	services	could	access	services	via	services	DNS	records.	Kube-dns	creates
DNS	records	for	newly	created	services	by	watching	the	Kubernetes	API.	The
DNS	format	for	the	cluster	IP	is	$servicename.$namespace,	and	the	port	is
$portname$protocal.$servicename.$namespace.	The	spec	of	the	clusterip_chk	pod	will	be
similar	with	environment	variables	one.	Just	changing	the	URL	to	http://nginx-ser
vice.default:_http_tcp.nginx-service.default/	in	our	previous	example,	and	they
should	work	exactly	the	same!

NodePort

If	the	service	is	set	as	NodePort,	Kubernetes	will	allocate	a	port	within	a	certain
range	on	each	node.	Any	traffic	going	to	nodes	on	that	port	will	be	routed	to	the
service	port.	Port	number	could	be	user-specified.	If	not	specified,	Kubernetes
will	randomly	choose	a	port	from	range	30000	to	32767	without	collision.	On
the	other	hand,	if	specified,	the	user	should	be	responsible	to	manage	the
collision	by	themselves.	NodePort	includes	the	feature	of	ClusterIP.	Kubernetes
assigns	an	internal	IP	to	the	service.	In	the	following	example,	we'll	see	how	we
create	a	NodePort	service	and	leverage	it:

//	write	a	nodeport	type	service

#	cat	3-2-3_nodeport.yaml

kind:	Service

http://nginx-service.default:_http_tcp.nginx-service.default/

apiVersion:	v1

metadata:

		name:	nginx-nodeport

spec:

		type:	NodePort

		selector:

				project:	chapter3

				service:	web

		ports:

				-	protocol:	TCP

						port:	80

						targetPort:	80

				

//	create	a	nodeport	service

#	kubectl	create	-f	3-2-3_nodeport.yaml

service	"nginx-nodeport"	created		

Then	you	should	be	able	to	access	the	service	via	http://${NODE_IP}:80.	Node	could
be	any	node.	The	kube-proxy	watches	any	update	of	service	and	endpoints,	and
updates	iptables	rules	accordingly	(if	using	default	iptables	proxy-mode).

If	you're	using	minikube,	you	could	access	the	service	via	the
minikube	service	[-n	NAMESPACE]	[--url]	NAME	command.	In	this	example,
it's	minikube	service	nginx-nodeport.

LoadBalancer

This	type	is	only	usable	with	cloud	provider	support,	such	as	Google	Cloud
Platform	(Chapter	10,	Kubernetes	on	GCP)	and	Amazon	Web	Service	(Chapter	9,
Kubernetes	on	AWS).	By	creating	LoadBalancer	service,	Kubernetes	will
provision	a	load	balancer	by	the	Cloud	provider	to	the	service.

ExternalName	(kube-dns	version	>=	1.7)

Sometimes	we	leverage	different	services	in	the	cloud.	Kubernetes	is	flexible
enough	to	be	hybrid.	ExternalName	is	one	of	the	bridges	to	create	a	CNAME	for
external	endpoints	into	the	cluster.

Service	without	selectors

Service	uses	selectors	to	match	the	pods	to	direct	the	traffic.	However,
sometimes	you	need	to	implement	a	proxy	to	be	the	bridge	between	Kubernetes
cluster	and	another	namespace,	another	cluster,	or	external	resources.	In	the
following	example,	we'll	demonstrate	how	to	implement	a	proxy	for	http://www.goo
gle.com	in	your	cluster.	It's	just	an	example	while	the	source	of	the	proxy	might	be

http://www.google.com

the	endpoint	of	your	databases	or	other	resources	in	the	cloud:

Illustration	of	how	service	without	selector	works

The	configuration	file	is	similar	to	the	previous	one,	just	without	the	selector
section:

//	create	a	service	without	selectors

#	cat	3-2-3_service_wo_selector_srv.yaml

kind:	Service

apiVersion:	v1

metadata:

		name:	google-proxy

spec:

		ports:

				-	protocol:	TCP

						port:	80

						targetPort:	80

				

//	create	service	without	selectors

#	kubectl	create	-f	3-2-3_service_wo_selector_srv.yaml

service	"google-proxy"	created		

No	Kubernetes	endpoint	will	be	created	since	there	is	no	selector.	Kubernetes
doesn't	know	where	to	route	the	traffic	since	no	selector	could	match	the	pods.
We'll	have	to	create	that	on	our	own.

In	the	Endpoints	object,	the	source	addresses	can't	be	DNS	name,	so	we'll	use
nslookup	to	find	the	current	Google	IP	from	the	domain,	and	add	them	into
Endpoints.subsets.addresses.ip:

//	get	an	IP	from	google.com

#	nslookup	www.google.com

Server:				192.168.1.1

Address:		192.168.1.1#53

				

Non-authoritative	answer:

Name:		google.com

Address:	172.217.0.238

				

//	create	endpoints	for	the	ip	from	google.com

#	cat	3-2-3_service_wo_selector_endpoints.yaml

kind:	Endpoints

apiVersion:	v1

metadata:

		name:	google-proxy

subsets:

		-	addresses:

						-	ip:	172.217.0.238

				ports:

						-	port:	80

				

//	create	Endpoints

#	kubectl	create	-f	3-2-3_service_wo_selector_endpoints.yaml

endpoints	"google-proxy"	created		

Let's	create	another	pod	in	the	cluster	to	access	our	Google	proxy:

//	pod	for	accessing	google	proxy

#	cat	3-2-3_proxy-chk.yaml

apiVersion:	v1

kind:	Pod

metadata:

		name:	proxy-chk

spec:

		containers:

		-	name:	centos

				image:	centos

				command:	["/bin/sh",	"-c",	"while	:	;do	curl	-L	

http://${GOOGLE_PROXY_SERVICE_HOST}:80/;	sleep	10;	done"]

				

//	create	the	pod

#	kubectl	create	-f	3-2-3_proxy-chk.yaml

pod	"proxy-chk"	created		

Let's	check	the	stdout	from	the	pod:

//	get	logs	from	proxy-chk

#	kubectl	logs	proxy-chk

%	Total				%	Received	%	Xferd		Average	Speed			Time				Time					Time		Current

																																					Dload		Upload			Total			Spent				Left		Speed

100			219		100			219				0					0			2596						0	--:--:--	--:--:--	--:--:--		2607

100			258		100			258				0					0			1931						0	--:--:--	--:--:--	--:--:--		1931

<!doctype	html><html	itemscope=""	itemtype="http://schema.org/WebPage"	lang="en-CA">

	...		

Hurray!	We	can	now	confirm	the	proxy	works.	The	traffic	to	the	service	will	be
routed	to	the	endpoints	we	specified.	If	it	doesn't	work,	make	sure	you	add	the
proper	inbound	rules	to	the	network	of	your	external	resources.

Endpoints	don't	support	DNS	as	source.	Alternatively,	we	could	use
ExternalName,	which	doesn't	have	selectors	either.	It	requires	kube-dns	version
>=	1.7.

In	some	use	cases,	users	need	neither	load	balancing	nor	proxy
functionalities	for	the	service.	In	that	case,	we	can	set	CluterIP	=

"None"	as	so-called	headless	services.	For	more	information,	please
refer	to	https://kubernetes.io/docs/concepts/services-networking/service/#headless-serv
ices.

https://kubernetes.io/docs/concepts/services-networking/service/#headless-services

Volumes
A	container	is	ephemeral,	so	is	its	disk.	We	either	use	the	docker	commit	[CONTAINER]
command	or	mount	data	volumes	into	a	container	(Chapter	2,	DevOps	with
Container).	In	Kubernetes'	world,	volume	management	becomes	critical,	since
pods	might	run	on	any	node.	Also,	ensuring	that	containers	in	the	same	pod
could	share	the	same	files	becomes	extremely	hard.	This	is	a	large	topic	in
Kubernetes.	Chapter	4,	Working	with	Storage	and	Resources	introduces	volume
management.

Secrets
Secret,	just	like	its	name,	is	an	object	that	stores	the	secrets	in	key-value	format
for	providing	sensitive	information	to	pods,	which	could	be	a	password,	access
key,	or	token.	Secret	is	not	landed	to	the	disk;	instead,	it's	stored	in	a	per-node
tmpfs	filesystem.	Kubelet	on	the	mode	will	create	a	tmpfs	filesystem	to	store
secret.	Secret	is	not	designed	to	store	large	amounts	of	data	due	to	storage
management	consideration.	The	current	size	limit	of	one	secret	is	1MB.

We	can	create	a	secret	based	on	a	file,	directory,	or	specified	literal	value	by
launching	kubectl	to	create	a	secret	command	or	by	spec.	There	are	three	types
of	secret	format:	generic	(or	opaque,	if	encoded),	docker	registry,	and	TLS.

Generic/opaque	is	the	text	that	we'll	use	in	our	application.	Docker	registry	is
used	to	store	the	credential	of	a	private	docker	registry.	TLS	secret	is	used	to
store	the	CA	certificate	bundle	for	cluster	administration.

The	docker-registry	type	of	secret	is	also	called	imagePullSecrets,
which	is	used	to	pass	the	password	of	a	private	docker	registry	via
kubelet	when	pulling	the	image.	This	comes	in	handy	so	that	we
don't	need	to	do	docker	login	for	each	provisioned	node.	The
command	is	kubectl	create	secret	docker-registry	<registry_name>	--
docker-server=<docker_server>	--docker-username=<docker_username>	--docker-
password=<docker_password>	--docker-email=<docker_email>

We'll	start	with	a	generic-type	of	example	to	show	how	it	works:

//	create	a	secret	by	command	line

#	kubectl	create	secret	generic	mypassword	--from-file=./mypassword.txt

secret	"mypassword"	created		

The	options	for	creating	secrets	based	on	directory	and	literal
value	are	pretty	similar	with	the	file	ones.	If	specifying	a	directory
after	--from-file,	the	files	in	the	directory	will	be	iterated,	the	file
name	will	be	the	secret	key	if	its	a	legal	secret	name,	and	other
non-regular	files	will	be	ignored	subdirectories,	symlinks,	devices,
pipes.	On	the	other	hand,	--from-literal=<key>=<value>	is	the	option	if
you	want	to	specify	plain	text	directly	from	the	command,	for

example,	--from-literal=username=root.

Here,	we	create	a	secret	name	mypassword	from	the	file	mypassword.txt.	By	default,
the	key	of	the	secret	is	the	file	name,	which	is	equivalent	to	the	--from-
file=mypassword=./mypassword.txt	option.	We	could	append	multiple	--from-file	as
well.	Using	the	kubectl	get	secret	<secret_name>	-o	yaml	command	could	check	out
the	detailed	information	of	the	secret:

//	get	the	detailed	info	of	the	secret

#	kubectl	get	secret	mypassword	-o	yaml

apiVersion:	v1

data:

		mypassword:	bXlwYXNzd29yZA==

kind:	Secret

metadata:

		creationTimestamp:	2017-06-13T08:09:35Z

		name:	mypassword

		namespace:	default

		resourceVersion:	"256749"

		selfLink:	/api/v1/namespaces/default/secrets/mypassword

		uid:	a33576b0-500f-11e7-9c45-080027cafd37

type:	Opaque		

We	can	see	the	type	of	the	secret	becomes	Opaque	since	the	text	has	been
encrypted	by	kubectl.	It's	base64	encoded.	We	could	use	a	simple	bash	command
to	decode	it:

#	echo	"bXlwYXNzd29yZA=="	|	base64	--decode

mypassword		

There	are	two	ways	for	a	pod	to	retrieve	the	secret.	The	first	one	is	by	file,	and
the	second	one	is	by	environment	variable.	The	first	method	is	implemented	by
volume.	The	syntax	is	adding	containers.volumeMounts	in	container	specs,	and
adding	a	volumes	section	with	secret	configuration.

Retrieving	secret	via	files

Let's	see	how	to	read	secrets	from	files	inside	a	pod	first:

//	example	for	how	a	Pod	retrieve	secret	

#	cat	3-2-3_pod_vol_secret.yaml	

apiVersion:	v1	

kind:	Pod	

metadata:	

		name:	secret-access	

spec:	

		containers:	

		-	name:	centos	

				image:	centos	

				command:	["/bin/sh",	"-c",	"cat	/secret/password-example;	done"]	

				volumeMounts:	

						-	name:	secret-vol	

								mountPath:	/secret	

								readOnly:	true	

		volumes:	

				-	name:	secret-vol	

						secret:	

								secretName:	mypassword	

								#	items	are	optional	

								items:	

								-	key:	mypassword		

										path:	password-example	

	

//	create	the	pod	

#	kubectl	create	-f	3-2-3_pod_vol_secret.yaml	

pod	"secret-access"	created	

The	secret	file	will	be	mounted	in	/<mount_point>/<secret_name>	without	specifying
itemskey	and	path,	or	/<mount_point>/<path>	in	the	pod.	In	this	case,	it's	under
/secret/password-example.	If	we	describe	the	pod,	we	can	find	there	are	two	mount
points	in	this	pod.	First	is	the	read-only	volume	storing	our	secret,	the	second
one	stores	the	credentials	to	communicate	with	API	servers,	which	is	created	and
managed	by	Kubernetes.	We'll	learn	more	in	Chapter	5,	Network	and	Security:

#	kubectl	describe	pod	secret-access

...

Mounts:

						/secret	from	secret-vol	(ro)

						/var/run/secrets/kubernetes.io/serviceaccount	from	default-token-jd1dq	(ro)

...		

We	can	delete	a	secret	by	using	the	kubectl	delete	secret	<secret_name>	command.

After	describing	the	pod,	we	can	find	a	FailedMount	event,	since	the	volume	no
longer	exists:

#	kubectl	describe	pod	secret-access

...

FailedMount		MountVolume.SetUp	failed	for	volume	"kubernetes.io/secret/28889b1d-5015-

11e7-9c45-080027cafd37-secret-vol"	(spec.Name:	"secret-vol")	pod	"28889b1d-5015-11e7-

9c45-080027cafd37"	(UID:	"28889b1d-5015-11e7-9c45-080027cafd37")	with:	secrets	

"mypassword"	not	found

...		

Same	idea,	if	the	pod	is	generated	before	a	secret	is	created,	the	pod	will
encounter	failure	as	well.

We	will	now	learn	how	to	create	a	secret	by	command	line.	Next	we'll	briefly
introduce	its	spec	format:

//	secret	example

#	cat	3-2-3_secret.yaml	

apiVersion:	v1	

kind:	Secret	

metadata:		

		name:	mypassword	

type:	Opaque	

data:		

		mypassword:	bXlwYXNzd29yZA==

Since	the	spec	is	plain	text,	we	need	to	encode	the	secret	by	our	own	echo	-n
<password>	|	base64.	Please	note	that	the	type	here	becomes	Opaque.	Following	along
it	should	work	the	same	as	the	one	we	create	via	command	line.

Retrieving	secret	via	environment	variables

Alternatively,	we	could	use	environment	variables	to	retrieve	secret,	which	is
more	flexible	to	use	for	short	credentials,	such	as	a	password.	This	way,
applications	are	able	to	use	environment	variables	to	retrieve	database	passwords
without	tackling	files	and	volumes:

Secret	should	always	be	created	before	the	pods	that	need	it.
Otherwise	the	pods	won't	get	launched	successfully.

//	example	to	use	environment	variable	to	retrieve	the	secret

#	cat	3-2-3_pod_ev_secret.yaml

apiVersion:	v1

kind:	Pod

metadata:

		name:	secret-access-ev

spec:

		containers:

		-	name:	centos

				image:	centos

				command:	["/bin/sh",	"-c",	"while	:	;do	echo	$MY_PASSWORD;	sleep	10;	done"]

				env:

							-	name:	MY_PASSWORD

									valueFrom:

										secretKeyRef:

											name:	mypassword

											key:	mypassword

				

//	create	the	pod	

#	kubectl	create	-f	3-2-3_pod_ev_secret.yaml

pod	"secret-access-ev"	created	

The	declaration	is	under	spec.containers[].env[].	We'll	need	the	secret	name	and
the	key	name.	Both	are	mypassword	in	this	case.	The	example	should	work	the	same
with	the	one	retrieving	via	files.

ConfigMap
ConfigMap	is	a	mean	that	is	able	to	leave	your	configuration	outside	of	a	Docker
image.	It	injects	the	configuration	data	as	key-values	pairs	into	pods.	Its
properties	are	similar	to	secret,	more	specifically,	secret	is	used	to	store	sensitive
data,	such	as	password,	and	ConfigMap	is	used	to	store	insensitive	configuration
data.

Same	as	secret,	ConfigMap	could	be	based	on	a	file,	directory,	or	specified
literal	value.	With	similar	syntax/command	with	secrets,	ConfigMap	uses	kubectl
create	configmap	instead:

//	create	configmap

#	kubectl	create	configmap	example	--from-file=config/app.properties	--from-

file=config/database.properties

configmap	"example"	created		

Since	two	config	files	are	located	in	the	same	folder	name	config,	we	could	pass	a
config	folder	instead	of	specifying	the	files	one	by	one.	The	equivalent	command
to	create	is	kubectl	create	configmap	example	--from-file=config	in	this	case.

If	we	describe	the	ConfigMap,	it	will	show	current	information:

//	check	out	detailed	information	for	configmap

#	kubectl	describe	configmap	example

Name:				example

Namespace:		default

Labels:				<none>

Annotations:		<none>

				

Data

====

app.properties:

name=DevOps-with-Kubernetes

port=4420

				

database.properties:

endpoint=k8s.us-east-1.rds.amazonaws.com

port=1521		

We	could	use	kubectl	edit	configmap	<configmap_name>	to	update	the	configuration
after	creation.

We	also	could	use	literal	as	the	input.	The	equivalent	commands
for	the	preceding	example	will	be	kubectl	create	configmap	example	--
from-literal=app.properties.name=name=DevOps-with-Kubernetes	which	is	not
always	so	practical	when	we	have	many	configurations	in	an	app.

Let's	see	how	to	leverage	it	inside	a	pod.	There	are	two	ways	to	use	ConfigMap
inside	a	pod	too:	by	volume	or	environment	variables.

Using	ConfigMap	via	volume
Similar	to	previous	examples	in	the	secret	section,	we	mount	a	volume	with
syntax	configmap,	and	add	volumeMounts	inside	a	container	template.	The	command
in	centos	will	loop	to	cat	${MOUNTPOINT}/$CONFIG_FILENAME:

cat	3-2-3_pod_vol_configmap.yaml

apiVersion:	v1

kind:	Pod

metadata:

		name:	configmap-vol

spec:

		containers:

				-	name:	configmap

						image:	centos

						command:	["/bin/sh",	"-c",	"while	:	;do	cat	/src/app/config/database.properties;	

sleep	10;	done"]

						volumeMounts:

								-	name:	config-volume

										mountPath:	/src/app/config

		volumes:

				-	name:	config-volume

						configMap:

						name:	example

				

//	create	configmap

#	kubectl	create	-f	3-2-3_pod_vol_configmap.yaml

pod	"configmap-vol"	created

				

//	check	out	the	logs

#	kubectl	logs	-f	configmap-vol

endpoint=k8s.us-east-1.rds.amazonaws.com

port=1521		

We	then	could	use	this	method	to	inject	our	non-sensitive	configuration	into	the
pod.

Using	ConfigMap	via	environment
variables
For	using	ConfigMap	inside	a	pod,	you'll	have	to	use	configMapKeyRef	as	the	value
source	in	the	env	section.	It	will	populate	whole	ConfigMap	pairs	to	environment
variables:

#	cat	3-2-3_pod_ev_configmap.yaml

apiVersion:	v1

kind:	Pod

metadata:

		name:	config-ev

spec:

		containers:

		-	name:	centos

				image:	centos

				command:	["/bin/sh",	"-c",	"while	:	;do	echo	$DATABASE_ENDPOINT;	sleep	10;				

			done"]

	env:

								-	name:	MY_PASSWORD

										valueFrom:

											secretKeyRef:

												name:	mypassword

												key:	mypassword

				

//	create	configmap

#	kubectl	create	-f	3-2-3_pod_ev_configmap.yaml

pod	"configmap-ev"	created

				

//	check	out	the	logs

#	kubectl	logs	configmap-ev

endpoint=k8s.us-east-1.rds.amazonaws.com	port=1521		

The	Kubernetes	system	itself	also	leverages	ConfigMap	for	doing	some
authentication.	For	example,	kube-dns	uses	it	to	put	client	CA	files.	You	could
check	the	system	ConfigMap	by	adding	--namespace=kube-system	when	describing
ConfigMaps.

Multi-containers	orchestration
In	this	section,	we'll	revisit	our	ticketing	service:	a	kiosk	web	service	as
frontend,	providing	interface	for	get/put	tickets.	There	is	a	Redis	acting	as	cache,
to	manage	how	many	tickets	we	have.	Redis	also	acts	as	a	publisher/subscriber
channel.	Once	a	ticket	is	sold,	kiosk	will	publish	an	event	into	it.	Subscriber	is
called	recorder,	which	will	write	a	timestamp	and	record	it	to	the	MySQL
database.	Please	refer	to	the	last	section	in	Chapter	2,	DevOps	with	Container	for
the	detailed	Dockerfile	and	Docker	compose	implementation.	We'll	use
Deployment,	Service,	Secret,	Volume,	and	ConfigMap	objects	to	implement	this	example	in
Kubernetes.	Source	code	can	be	found	at	https://github.com/DevOps-with-Kubernetes/exampl
es/tree/master/chapter3/3-3_kiosk.

An	example	of	kiosk	in	Kubernetes	world

We'll	need	four	kinds	of	pods.	Deployment	is	the	best	choice	to	manage/deploy
the	pods.	It	will	reduce	the	pain	when	we	do	the	deployment	in	the	future	by	its
deployment	strategy	feature.	Since	kiosk,	Redis,	and	MySQL	will	be	accessed	by
other	components,	we'll	associate	services	to	their	pods.	MySQL	acts	as	a
datastore,	for	the	simplicity,	we'll	mount	a	local	volume	to	it.	Please	note	that
Kubernetes	offers	a	bunch	of	choices.	Please	check	out	the	details	and	examples

https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter3/3-3_kiosk

in	Chapter	4,	Working	with	Storage	and	Resources.	Sensitive	information	such	as
our	MySQL	root	and	user	password,	we'll	want	them	to	be	stored	in	secrets.	The
other	insensitive	configuration,	such	as	DB	name	or	DB	username,	we'll	leave	to
ConfigMap.

We'll	launch	MySQL	first,	as	recorder	depends	on	it.	Before	creating	MySQL,
we'll	have	to	create	corresponding	secret	and	ConfigMap	first.	To	create	secret,	we
need	to	generate	base64	encrypted	data:

//	generate	base64	secret	for	MYSQL_PASSWORD	and	MYSQL_ROOT_PASSWORD

#	echo	-n	"pass"	|	base64

cGFzcw==

#	echo	-n	"mysqlpass"	|	base64

bXlzcWxwYXNz

Then	we're	able	to	create	the	secret:

#	cat	secret.yaml

apiVersion:	v1

kind:	Secret

metadata:

		name:	mysql-user

type:	Opaque

data:

		password:	cGFzcw==

#	MYSQL_ROOT_PASSWORD

apiVersion:	v1

kind:	Secret

metadata:

		name:	mysql-root

type:	Opaque

data:

		password:	bXlzcWxwYXNz

				

//	create	mysql	secret

#	kubectl	create	-f	secret.yaml	--record

secret	"mysql-user"	created

secret	"mysql-root"	created

Then	we	come	to	our	ConfigMap.	Here,	we	put	database	user	and	database	name
as	an	example:

#	cat	config.yaml

kind:	ConfigMap

apiVersion:	v1

metadata:

		name:	mysql-config

data:

		user:	user

		database:	db

				

//	create	ConfigMap

#	kubectl	create	-f	config.yaml	--record

configmap	"mysql-config"	created		

Then	it's	time	to	launch	MySQL	and	its	service:

//	MySQL	Deployment

#	cat	mysql.yaml

apiVersion:	apps/v1beta1

kind:	Deployment

metadata:

		name:	lmysql

spec:

		replicas:	1

		template:

			metadata:

				labels:

						tier:	database

						version:	"5.7"

				spec:

						containers:

						-	name:	lmysql

								image:	mysql:5.7

								volumeMounts:

									-	mountPath:	/var/lib/mysql

											name:	mysql-vol

								ports:

									-	containerPort:	3306

								env:

									-	name:	MYSQL_ROOT_PASSWORD

											valueFrom:

												secretKeyRef:

													name:	mysql-root

													key:	password

											-	name:	MYSQL_DATABASE

													valueFrom:

														configMapKeyRef:

															name:	mysql-config

															key:	database

												-	name:	MYSQL_USER

														valueFrom:

															configMapKeyRef:

																name:	mysql-config

																key:	user

												-	name:	MYSQL_PASSWORD

														valueFrom:

															secretKeyRef:

															name:	mysql-user

															key:	password

					volumes:

			-	name:	mysql-vol

				hostPath:

					path:	/mysql/data

kind:	Service

apiVersion:	v1

metadata:

		name:	lmysql-service

spec:

		selector:

			tier:	database

	ports:

		-	protocol:	TCP

				port:	3306

				targetPort:	3306

				name:	tcp3306		

We	can	put	more	than	one	spec	into	a	file	by	adding	three	dashes	as	separation.
Here	we	mount	hostPath	/mysql/data	into	pods	with	the	path	/var/lib/mysql.	In	the
environment	section,	we	leverage	the	syntax	of	secret	and	ConfigMap	by
secretKeyRef	and	configMapKeyRef.

After	creating	MySQL,	Redis	would	be	the	next	good	candidate,	since	it	is
others'	dependency,	but	it	needs	no	prerequisite:

//	create	Redis	deployment

#	cat	redis.yaml

apiVersion:	apps/v1beta1

kind:	Deployment

metadata:

		name:	lcredis

spec:

		replicas:	1

		template:

			metadata:

				labels:

					tier:	cache

					version:	"3.0"

			spec:

					containers:

					-	name:	lcredis

							image:	redis:3.0

							ports:

						-	containerPort:	6379

minReadySeconds:	1

strategy:

		type:	RollingUpdate

		rollingUpdate:

		maxSurge:	1

		maxUnavailable:	1

kind:	Service

apiVersion:	v1

metadata:

		name:	lcredis-service

spec:

		selector:

			tier:	cache

		ports:

		-	protocol:	TCP

				port:	6379

				targetPort:	6379

				name:	tcp6379

					

//	create	redis	deployements	and	service

#	kubectl	create	-f	redis.yaml

deployment	"lcredis"	created

service	"lcredis-service"	created		

Then	it	would	be	a	good	time	to	start	kiosk:

#	cat	kiosk-example.yaml

apiVersion:	apps/v1beta1

kind:	Deployment

metadata:

		name:	kiosk-example

spec:

		replicas:	5

		template:

			metadata:

				labels:

					tier:	frontend

					version:	"3"

				annotations:

					maintainer:	cywu

		spec:

			containers:

			-	name:	kiosk-example

					image:	devopswithkubernetes/kiosk-example

					ports:

					-	containerPort:	5000

					env:

				-	name:	REDIS_HOST

						value:	lcredis-service.default

	minReadySeconds:	5

	strategy:

		type:	RollingUpdate

		rollingUpdate:

				maxSurge:	1

				maxUnavailable:	1

kind:	Service

apiVersion:	v1

metadata:

		name:	kiosk-service

spec:

		type:	NodePort

		selector:

			tier:	frontend

	ports:

			-	protocol:	TCP

					port:	80

					targetPort:	5000

					name:	tcp5000

				

//	launch	the	spec

#	kubectl	create	-f	kiosk-example.yaml

deployment	"kiosk-example"	created

service	"kiosk-service"	created				

Here,	we	expose	lcredis-service.default	to	environment	variables	to	kiosk	pods,
which	is	the	DNS	name	that	kube-dns	creates	for	Service	object	(referred	to	as
service	in	this	chapter).	Thus,	kiosk	could	access	Redis	host	via	environment
variables.

In	the	end,	we'll	create	recorder.	Recorder	doesn't	expose	any	interface	to	others,
so	it	doesn't	need	a	Service	object:

#	cat	recorder-example.yaml

apiVersion:	apps/v1beta1

kind:	Deployment

metadata:

		name:	recorder-example

spec:

		replicas:	3

		template:

			metadata:

				labels:

					tier:	backend

					version:	"3"

				annotations:

					maintainer:	cywu

			spec:

				containers:

				-	name:	recorder-example

						image:	devopswithkubernetes/recorder-example

						env:

					-	name:	REDIS_HOST

							value:	lcredis-service.default

					-	name:	MYSQL_HOST

							value:	lmysql-service.default

					-	name:	MYSQL_USER

							value:	root

					-	name:	MYSQL_ROOT_PASSWORD

							valueFrom:

								secretKeyRef:

										name:	mysql-root

										key:	password

minReadySeconds:	3

strategy:

		type:	RollingUpdate

		rollingUpdate:

			maxSurge:	1

			maxUnavailable:	1

//	create	recorder	deployment

#	kubectl	create	-f	recorder-example.yaml

deployment	"recorder-example"	created		

Recorder	needs	to	access	both	Redis	and	MySQL.	It	uses	root	credential	that	is
injected	via	secret.	Both	endpoints	for	Redis	and	MySQL	are	accessed	via
service	DNS	name	<service_name>.<namespace>.

We	then	could	check	deployment	objects:

//	check	deployment	details

#	kubectl	get	deployments

NAME															DESIRED			CURRENT			UP-TO-DATE			AVAILABLE			AGE

kiosk-example						5									5									5												5											1h

lcredis												1									1									1												1											1h

lmysql													1									1									1												1											1h

recorder-example			3									3									3												3											1h		

As	expected,	we	have	four	deployment	objects	with	different	desired	count	for
pods.

As	we	expose	kiosk	as	NodePort,	we	should	be	able	to	access	its	service

endpoint	and	see	if	it	works	properly.	Assume	we	have	a	node,	IP	is
192.168.99.100,	and	the	NodePort	that	Kubernetes	allocates	is	30520.

If	you're	using	minikube,	minikube	service	[-n	NAMESPACE]	[--url]	NAME
could	help	you	access	service	NodePort	via	your	default	browser:

//	open	kiosk	console

#	minikube	service	kiosk-service

Opening	kubernetes	service	default/kiosk-service	in	default	browser...

Then	we	could	know	the	IP	and	the	port.

We	could	then	create	and	a	get	ticket	by	POST	and	GET	/tickets:

//	post	ticket

#	curl	-XPOST	-F	'value=100'	http://192.168.99.100:30520/tickets

SUCCESS

				

//	get	ticket

#	curl	-XGET	http://192.168.99.100:30520/tickets

100		

Summary
In	this	chapter,	we	learned	the	basic	concept	of	Kubernetes.	We	learned
Kubernetes	master	has	kube-apiserver	to	handle	the	requests,	and	controller
managers	are	the	control	center	of	Kubernetes,	for	example,	it	ensures	our
desired	container	amount	is	fulfilled,	controls	the	endpoint	to	associate	pods	and
services,	and	controls	API	access	token.	We	also	have	Kubernetes	nodes,	which
are	the	workers	to	host	the	containers,	receive	the	information	from	master,	and
route	the	traffic	based	on	the	configuration.

We	then	used	minikube	to	demonstrate	basic	Kubernetes	objects,	including	pod,
ReplicaSets,	ReplicationControllers,	deployments,	services,	secrets,	and
ConfigMap.	In	the	end,	we	demonstrated	how	to	combine	all	the	concepts	we've
learned	into	kiosk	application	deployment.

As	we	mentioned	previously,	the	data	inside	containers	will	be	gone	when	a
container	is	gone.	Therefore,	volume	is	extremely	important	to	persist	the	data	in
container	world.	In	the	next	chapter,	we'll	be	learning	how	volume	works	and	its
options,	how	to	use	persistent	volume,	and	so	on.

Working	with	Storage	and	Resources
In	Chapter	3,	Getting	Started	with	Kubernetes	we	introduced	the	basic	function	of
Kubernetes.	Once	you	start	to	deploy	some	containers	by	Kubernetes,	you	need
to	consider	the	application's	data	lifecycle	and	CPU/memory	resource
management.

In	this	chapter,	we	will	discuss	the	following	topics:

How	a	container	behaves	with	volume
Introduce	Kubernetes	volume	functionalities
Best	practice	and	pitfalls	of	Kubernetes	Persistent	Volume
Kubernetes	resource	management

Kubernetes	volume	management
Kubernetes	and	Docker	use	a	local	host	disk	by	default.	The	Docker	application
may	store	and	load	any	data	onto	the	disk,	for	example,	log	data,	temporary	files,
and	application	data.	As	long	as	the	host	has	enough	space	and	the	application
has	necessary	permission,	data	will	exist	as	long	as	a	container	exists.	In	other
words,	when	a	container	is	closed	the	application	exits,	crashes,	and	reassigns	a
container	to	another	host,	and	the	data	will	be	lost.

Container	volume	lifecycle
In	order	to	understand	Kubernetes	volume	management,	you	need	to	understand
the	Docker	volume	lifecycle.	The	following	example	is	how	Docker	behaves
with	a	volume	when	a	container	restarts:

//run	CentOS	Container

$	docker	run	-it	centos

				

#	ls

anaconda-post.log		dev		home		lib64							media		opt			root		sbin		sys		usr

bin																etc		lib			lost+found		mnt				proc		run			srv			tmp		var

					

//create	one	file	(/I_WAS_HERE)	at	root	directory

#	touch	/I_WAS_HERE

#	ls	/

I_WAS_HERE									bin		etc			lib				lost+found		mnt		proc		run			srv		tmp		var

anaconda-post.log		dev		home		lib64		media							opt		root		sbin		sys		usr

				

//Exit	container

#	exit

exit

				

//re-run	CentOS	Container

#	docker	run	-it	centos

			

//previous	file	(/I_WAS_HERE)	was	disappeared

#	ls	/

anaconda-post.log		dev		home		lib64							media		opt			root		sbin		sys		usr

bin																etc		lib			lost+found		mnt				proc		run			srv			tmp		var		

On	Kubernetes,	it	also	needs	to	care	pod	restart.	In	the	case	of	a	resource
shortage,	Kubernetes	may	stop	a	container	and	then	restart	a	container	on	the
same	or	another	Kubernetes	node.

The	following	example	shows	how	Kubernetes	behaves	when	there	is	a	resource
shortage.	One	pod	is	killed	and	restarted	when	an	out	of	memory	error	is
received:

				

//there	are	2	pod	on	the	same	Node

$	kubectl	get	pods

NAME																										READY					STATUS				RESTARTS			AGE

Besteffort																				1/1							Running			0										1h

guaranteed																				1/1							Running			0										1h

				

//when	application	consumes	a	lot	of	memory,	one	Pod	has	been	killed

$	kubectl	get	pods

NAME																										READY					STATUS				RESTARTS			AGE

Besteffort																				0/1							Error					0										1h

guaranteed																				1/1							Running			0										1h

				

//clashed	Pod	is	restarting

$	kubectl	get	pods

NAME																										READY					STATUS													RESTARTS			AGE

Besteffort																				0/1							CrashLoopBackOff			0										1h

guaranteed																				1/1							Running												0										1h

					

//few	moment	later,	Pod	has	been	restarted	

$	kubectl	get	pods

NAME																										READY					STATUS				RESTARTS			AGE

Besteffort																				1/1							Running			1										1h

guaranteed																				1/1							Running			0										1h

		

Sharing	volume	between	containers
within	a	pod
Chapter	3,	Getting	Started	with	Kubernetes	described	that	multiple	containers
within	the	same	Kubernetes	pod	can	share	the	same	pod	IP	address,	network
port,	and	IPC,	therefore,	applications	can	communicate	with	each	other	through
a	localhost	network;	however,	the	filesystem	is	segregated.

The	following	diagram	shows	that	Tomcat	and	nginx	are	in	the	same	pod.	Those
applications	can	communicate	with	each	other	via	localhost.	However,	they	can't
access	each	other's	config	file:

Some	applications	won't	affect	these	scenarios	and	behavior,	but	some
applications	may	have	some	use	cases	that	require	them	to	use	a	shared	directory
or	file.	Therefore,	developers	and	Kubernetes	administrators	need	to	be	aware	of
the	different	types	of	stateless	and	stateful	applications.

Stateless	and	stateful	applications
In	terms	of	stateless	applications,	in	this	case	use	ephemeral	volume.	The
application	on	the	container	doesn't	need	to	preserve	the	data.	Although	stateless
applications	may	write	the	data	onto	the	filesystem	while	a	container	exists,	but
it	is	not	important	in	terms	of	the	application's	lifecycle.

For	example,	the	tomcat	container	runs	some	web	applications.	It	also	writes	an
application	log	under	/usr/local/tomcat/logs/,	but	it	won't	be	affected	if	it	loses	a
log	file.

However,	what	if	you	start	to	analyze	an	application	log?	Need	to	preserve	due
to	auditing	purpose?	In	this	scenario,	Tomcat	can	still	be	stateless,	but	share	the
/usr/local/tomcat/logs	volume	to	another	container	such	as	Logstash	(https://www.elasti
c.co/products/logstash).	Then	Logstash	will	send	a	log	to	the	chosen	analytic	store,
such	as	Elasticsearch	(https://www.elastic.co/products/elasticsearch).

In	this	case,	the	tomcat	container	and	logstash	container	must	be	in	the	same
Kubernetes	pod	and	share	the	/usr/local/tomcat/logs	volume	as	follows:

The	preceding	figure	shows	how	Tomcat	and	Logstash	can	share	the	log	file
using	the	Kubernetes	emptyDir	volume	(https://kubernetes.io/docs/concepts/storage/volumes/#e
mptydir).

Tomcat	and	Logstash	didn't	use	network	via	localhost,	but	share	the	filesystem
between	/usr/local/tomcat/logs	from	the	Tomcat	container	and	/mnt	from	the
Logstash	container	through	Kubernetes	emptyDir	volume:

https://www.elastic.co/products/logstash
https://www.elastic.co/products/elasticsearch
https://kubernetes.io/docs/concepts/storage/volumes/

Let's	create	tomcat	and	logstash	pod,	and	then	see	whether	Logstash	can	see	the
Tomcat	application	log	under	/mnt:

In	this	scenario,	in	the	final	destination	Elasticsearch	must	be	stateful.	In	terms
of	stateful	means	use	Persistent	Volume.	The	Elasticsearch	container	must
preserve	the	data	even	if	the	container	is	restarted.	In	addition,	you	do	not	need
to	configure	the	Elasticsearch	container	within	the	same	pod	as
Tomcat/Logstash.	Because	Elasticsearch	should	be	a	centralized	log	datastore,	it
can	be	separate	from	the	Tomcat/Logstash	pod	and	scaled	independently.

Once	you	determine	that	your	application	needs	a	Persistent	Volume,	there	are
some	different	types	of	volume	and	different	ways	to	manage	Persistent
Volumes.

Kubernetes	Persistent	Volume	and
dynamic	provisioning
Kubernetes	supports	a	variety	of	Persistent	Volume.	For	example,	public	cloud
storage	such	as	AWS	EBS	and	Google	Persistent	Disk.	It	also	supports	network
(distributed)	filesystems	such	as	NFS,	GlusterFS,	and	Ceph.	In	addition,	it	can
also	support	a	block	device	such	as	iSCSI	and	Fibre	Channel.	Based	on
environment	and	infrastructure,	a	Kubernetes	administrator	can	choose	the	best
match	types	of	Persistent	Volume.

The	following	example	is	using	GCP	Persistent	Disk	as	Persistent	Volume.	The
first	step	is	creating	a	GCP	Persistent	Disk	and	naming	it	gce-pd-1.

If	you	use	AWS	EBS	or	Google	Persistent	Disk,	the	Kubernetes
node	must	be	in	the	AWS	or	Google	Cloud	Platform.

Then	specify	the	name	gce-pd-1	in	the	Deployment	definition:

It	will	mount	the	Persistent	Disk	from	GCE	Persistent	Disk	to
/usr/local/tomcat/logs,	which	can	persist	Tomcat	application	logs.

Persistent	Volume	claiming	the
abstraction	layer
Specifying	a	Persistent	Volume	into	a	configuration	file	directly,	which	makes	a
tight	couple	with	a	particular	infrastructure.	In	previous	example,	this	was
Google	Cloud	Platform	and	also	the	disk	name	(gce-pd-1).	From	a	container
management	point	of	view,	pod	definition	shouldn't	be	locked-in	to	the	specific
environment	because	the	infrastructure	could	be	different	based	on	the
environment.	The	ideal	pod	definition	should	be	flexible	or	abstract	the	actual
infrastructure	that	specifies	only	volume	name	and	mount	point.

Therefore,	Kubernetes	provides	an	abstraction	layer	that	associates	between	the
pod	and	the	Persistent	Volume,	which	is	called	the	Persistent	Volume	Claim
(PVC).	It	allows	us	to	decouple	from	the	infrastructure.	The	Kubernetes
administrator	just	needs	to	pre-allocate	a	necessary	size	of	the	Persistent	Volume
in	advance.	Then	Kubernetes	will	bind	between	the	Persistent	Volume	and	PVC:

The	following	example	is	a	definition	of	pod	that	uses	PVC;	let's	reuse	the
previous	example	(gce-pd-1)	to	register	with	Kubernetes	first:

Then,	create	a	PVC	that	associates	with	Persistent	Volume	(pv-1).

Note	that	setting	it	as	storageClassName:	""	means,	that	it	should
explicitly	use	static	provisioning.	Some	of	the	Kubernetes
environments	such	as	Google	Container	Engine	(GKE),	are
already	set	up	with	Dynamic	Provisioning.	If	we	don't	specify
storageClassName:	"",	Kubernetes	will	ignore	the	existing
PersistentVolume	and	allocates	a	new	PersistentVolume	when	creating
the	PersistentVolumeClaim.

Now,	tomcat	setting	has	been	decoupled	from	the	specific	volume	to	"pvc-1":

Dynamic	Provisioning	and
StorageClass
PVC	gives	a	degree	of	flexibility	for	Persistent	Volume	management.	However,
pre-allocating	some	Persistent	Volumes	pools	might	not	be	cost	efficient,
especially	in	a	public	cloud.

Kubernetes	also	helps	this	kind	of	situation	by	supporting	Dynamic	Provision	for
Persistent	Volume.	Kubernetes	administrator	defines	the	provisioner	of	the
Persistent	Volume,	which	is	called	StorageClass.	Then,	the	Persistent	Volume
Claim	asks	StorageClass	to	dynamically	allocate	a	Persistent	Volume	and	then
associates	it	with	the	PVC:

In	the	following	example,	AWS	EBS	is	used	as	the	StorageClass,	and	then,	when
creating	the	PVC,	StorageClass	dynamically	create	EBS	registers	it	with
Kubernetes	Persistent	Volume,	and	then	attaches	to	PVC:

Once	StorageClass	has	been	successfully	created,	create	a	PVC	without	PV,	but
specify	the	StorageClass	name.	In	this	example,	this	would	be	"aws-sc",	as	shown	in
the	following	screenshot:

Then,	PVC	asks	StorageClass	to	create	a	Persistent	Volume	automatically	on	AWS
as	follows:

Note	that	a	Kubernetes	provisioning	tool	such	as	kops	(https://github.com/kubernetes/kop
s)	and	also	Google	Container	Engine	(https://cloud.google.com/container-engine/)	create	a
StorageClass	by	default.	For	example,	kops	sets	up	a	default	StorageClass	as	AWS
EBS	on	an	AWS	environment.	As	well	as	Google	Cloud	Persistent	disk	on	GKE.
For	more	information,	please	refer	to	Chapter	9,	Kubernetes	on	AWS	and	Chapter	10,
Kubernetes	on	GCP:

//default	Storage	Class	on	AWS

$	kubectl	get	sc

NAME												TYPE

default									kubernetes.io/aws-ebs

gp2	(default)			kubernetes.io/aws-ebs

	

			

//default	Storage	Class	on	GKE

$	kubectl	get	sc

NAME																	TYPE

standard	(default)			kubernetes.io/gce-pd			

https://github.com/kubernetes/kops
https://cloud.google.com/container-engine/

A	problem	case	of	ephemeral	and
persistent	setting
You	may	determine	your	application	as	stateless,	because	datastore	function	is
handled	by	another	pod	or	system.	However,	there	are	some	pitfalls	that
sometimes	applications	actually	store	important	files	that	you	aren't	aware	of.
For	example,	Grafana	(https://grafana.com/grafana),	it	connects	time	series	datasources
such	as	Graphite	(https://graphiteapp.org)	and	InfluxDB	(https://www.influxdata.com/time-serie
s-database/),	so	that	people	may	determine	whether	Grafana	is	a	stateless
application.

However,	Grafana	itself	also	uses	databases	to	store	the	user,	organization,	and
dashboard	metadata.	By	default,	Grafana	uses	SQLite3	components	and	stores
the	database	as	/var/lib/grafana/grafana.db.	Therefore,	when	a	container	is
restarted,	the	Grafana	setting	will	be	all	reset.

The	following	example	demonstrates	how	Grafana	behaves	with	ephemeral
volume:

https://grafana.com/grafana
https://graphiteapp.org
https://www.influxdata.com/time-series-database/

Let's	create	a	Grafana	organizations	named	kubernetes	org	as	follows:

Then,	look	at	the	Grafana	directory,	there	is	a	database	file
(/var/lib/grafana/grafana.db)	timestamp	that	has	been	updated	after	creating	a
Grafana	organization:

When	the	pod	is	deleted,	ReplicaSet	will	start	a	new	pod	and	check	whether	a
Grafana	organization	exists	or	not:

It	looks	like	the	sessions	directory	has	disappeared	and	grafana.db	is	also	recreated
by	the	Docker	image	again.	Then	if	you	access	Web	Console,	the	Grafana
organization	will	also	disappear:

How	about	just	using	Persistent	Volume	for	Grafana?	But	using	ReplicaSet	with
Persistent	Volume,	it	doesn't	replicate	(scale)	properly.	Because	all	of	the	pods
attempt	to	mount	the	same	Persistent	Volume.	In	most	cases,	only	the	first	pod
can	mount	the	Persistent	Volume,	then	another	pod	will	try	to	mount,	and	if	it
can't,	it	will	give	up.	This	happens	if	the	Persistent	Volume	is	capable	of	only
RWO	(read	write	once,	only	one	pod	can	write).

In	the	following	example,	Grafana	uses	Persistent	Volume	to	mount
/var/lib/grafana;	however,	it	can't	scale	because	Google	Persistent	Disk	is	RWO:

Even	if	the	Persistent	Volume	has	a	capability	of	RWX	(read	write	many,	many
pods	can	mount	to	read	and	write	simultaneously),	such	as	NFS,	it	won't
complain	if	multiple	pods	try	to	bind	the	same	volume.	However,	we	still	need	to
consider	whether	multiple	application	instances	can	use	the	same	folder/file	or
not.	For	example,	if	it	replicates	Grafana	to	two	or	more	pods,	it	will	be
conflicted	with	multiple	Grafana	instances	that	try	to	write	to	the	same
/var/lib/grafana/grafana.db,	and	then	data	could	be	corrupted,	as	shown	in	the
following	screenshot:

In	this	scenario,	Grafana	must	use	backend	databases	such	as	MySQL	or
PostgreSQL	instead	of	SQLite3	as	follows.	It	allows	multiple	Grafana	instances
to	read/write	Grafana	metadata	properly:

Because	RDBMS	basically	supports	to	connecting	with	multiple	application
instances	via	network,	therefore,	this	scenario	is	perfectly	suited	being	used	by
multiple	pods.	Note	that	Grafana	supports	using	RDBMS	as	a	backend	metadata
store;	however,	not	all	applications	support	RDBMS.

For	the	Grafana	configuration	that	uses	MySQL/PostgreSQL,
please	visit	the	online	documentation	via:
http://docs.grafana.org/installation/configuration/#database.

Therefore,	the	Kubernetes	administrator	carefully	needs	to	monitor	how	an
application	behaves	with	volumes.	And	understand	that	in	some	use	cases,	just
using	Persistent	Volume	may	not	help	because	of	issues	that	might	arise	when
scaling	pods.

If	multiple	pods	need	to	access	the	centralized	volume,	then	consider	using	the
database	as	previously	shown,	if	applicable.	On	the	other	hand,	if	multiple	pods
need	an	individual	volume,	consider	using	StatefulSet.

http://docs.grafana.org/installation/configuration/#database

Replicating	pods	with	a	Persistent
Volume	using	StatefulSet
StatefulSet	was	introduced	in	Kubernetes	1.5;	it	consists	of	a	bond	between	the
pod	and	the	Persistent	Volume.	When	scaling	a	pod	that	increases	or	decreases,
pod	and	Persistent	Volume	are	created	or	deleted	together.

In	addition,	pod	creation	process	is	serial.	For	example,	when	requesting
Kubernetes	to	scale	two	additional	StatefulSet,	Kubernetes	creates	Persistent
Volume	Claim	1	and	Pod	1	first,	and	then	creates	Persistent	Volume	Claim	2
and	Pod	2,	but	not	simultaneously.	It	helps	the	administrator	if	an	application
registers	to	a	registry	during	the	application	bootstrap:

Even	if	one	pod	is	dead,	StatefulSet	preserves	the	position	of	the	pod	(pod	name,
IP	address,	and	related	Kubernetes	metadata)	and	also	the	Persistent	Volume.
Then,	it	attempts	to	recreate	a	container	that	reassigns	to	the	same	pod	and
mounts	the	same	Persistent	Volume.

It	helps	to	keep	the	number	of	pods/Persistent	Volumes	and	the	application
remains	online	using	the	Kubernetes	scheduler:

StatefulSet	with	Persistent	Volume	requires	Dynamic	Provisioning	and
StorageClass	because	StatefulSet	can	be	scalable.	Kubernetes	needs	to	know	how
to	provision	the	Persistent	Volume	when	adding	more	pods.

Persistent	Volume	example
In	this	chapter,	there	are	some	Persistent	Volume	examples	that	have	been
introduced.	Based	on	the	environment	and	scenario,	the	Kubernetes
administrator	needs	to	configure	Kubernetes	properly.

The	following	are	some	examples	that	build	Elasticsearch	clusters	using
different	role	nodes	to	configure	different	types	of	Persistent	Volume.	They	will
help	you	to	decide	how	to	configure	and	manage	the	Persistent	Volume.

Elasticsearch	cluster	scenario
Elasticsearch	is	capable	of	setting	up	a	cluster	by	using	multiple	nodes.	As	of
Elasticsearch	version	2.4,	there	are	several	different	types,	such	as	master,	data,
and	coordinate	nodes	(https://www.elastic.co/guide/en/elasticsearch/reference/2.4/modules-node.ht
ml).	Each	node	has	a	different	role	and	responsibility	in	the	cluster,	therefore	the
corresponding	Kubernetes	configuration	and	Persistent	Volume	should	align
with	the	proper	settings.

The	following	diagram	shows	the	components	and	roles	of	Elasticsearch	nodes.
The	master	node	is	the	only	node	in	the	cluster	that	manages	all	Elasticsearch
node	registration	and	configuration.	It	can	also	have	a	backup	node	(master-
eligible	node)	that	can	serve	as	the	master	node	at	any	time:

Data	nodes	hold	and	operate	datastores	in	Elasticsearch.	And	the	coordinating

https://www.elastic.co/guide/en/elasticsearch/reference/2.4/modules-node.html

node	handles	HTTP	requests	from	other	applications,	and	then	load
balances/dispatches	to	the	data	nodes.

Elasticsearch	master	node
The	master	node	is	the	only	node	in	the	cluster.	In	addition,	other	nodes	need	to
point	to	the	master	node	because	of	registration.	Therefore,	the	master	node
should	use	Kubernetes	StatefulSet	to	assign	a	stable	DNS	name,	such	as	es-
master-1.	Therefore,	we	have	to	use	the	Kubernetes	service	to	assign	DNS	with	a
headless	mode	that	assigns	the	DNS	name	to	the	pod	IP	address	directly.

On	the	other	hand,	if	the	Persistent	Volume	is	not	required,	because	the	master
node	does	not	need	to	persist	an	application's	data.

Elasticsearch	master-eligible	node
The	master-eligible	node	is	a	standby	for	the	master	node,	and	therefore	there's
no	need	to	create	another	Kubernetes	object.	This	means	that	scaling	the	master
StatefulSet	that	assigns	es-master-2,	es-master-3,	and	es-master-N	is	enough.	When
the	master	node	does	not	respond,	there	is	a	master	node	election	within	the
master-eligible	nodes	to	choose	and	elevate	one	node	as	the	master	node.

Elasticsearch	data	node
The	Elasticsearch	data	node	is	responsible	for	storing	the	data.	In	addition,	we
need	to	scale	out	if	greater	data	capacity	and/or	more	query	requests	are	needed.
Therefore,	we	can	use	StatefulSet	with	Persistent	Volume	to	stabilize	the	pod	and
Persistent	Volume.	On	the	other	hand,	there's	no	need	to	have	the	DNS	name,
therefore	no	need	to	setup	Kubernetes	service	for	Elasticsearch	data	node.

Elasticsearch	coordinating	node
The	coordinating	node	is	a	load	balancer	role	in	the	Elasticsearch.	Therefore,	we
need	to	scale	out	to	handle	HTTP	traffic	from	external	sources	and	persisting	the
data	is	not	required.	Therefore,	we	can	use	Kubernetes	ReplicaSet	with	the
Kubernetes	service	to	expose	the	HTTP	to	the	external	service.

The	following	example	shows	the	commands	used	when	we	create	all	of	the
preceding	Elasticsearch	nodes	by	Kubernetes:

In	addition,	the	following	screenshot	is	the	result	we	obtain	after	creating	the
preceding	instances:

In	this	case,	external	service	(Kubernetes	node:30020)	is	an	entry	point	for
external	applications.	For	testing	purposes,	let's	install	elasticsearch-head	(https://gith
ub.com/mobz/elasticsearch-head)	to	visualize	the	cluster	information.

Connect	Elasticsearch	coordination	node	to	install	the	elasticsearch-head	plugin:

https://github.com/mobz/elasticsearch-head

Then,	access	any	Kubernetes	node,	URL	as	http://<kubernetes-
node>:30200/_plugin/head.	The	following	UI	contains	the	cluster	node	information:

The	star	icon	indicates	the	Elasticsearch	master	node,	the	three	black	bullets	are
data	nodes	and	the	white	circle	bullet	is	the	coordinator	node.

In	this	configuration,	if	one	data	node	is	down,	no	service	impact	will	occur,	as
shown	in	the	following	snippet:

//simulate	to	occur	one	data	node	down	

$	kubectl	delete	pod	es-data-0

pod	"es-data-0"	deleted

A	few	moments	later,	the	new	pod	mounts	the	same	PVC,	which	preserved	es-
data-0	data.	And	then	the	Elasticsearch	data	node	registers	to	master	node	again,
after	which	the	cluster	health	is	back	to	green	(normal),	as	shown	in	the
following	screenshot:

Due	to	StatefulSet	and	Persistent	Volume,	the	application	data	is	not	lost	on	es-
data-0.	If	you	need	more	disk	space,	increase	the	number	of	data	nodes.	If	you
need	to	support	more	traffic,	increase	the	number	of	coordinator	nodes.	If	a
backup	of	the	master	node	is	required,	increase	the	number	of	master	nodes	to
make	some	master-eligible	nodes.

Overall,	the	Persistent	Volume	combination	of	StatefulSet	is	very	powerful,	and
can	make	the	application	flexible	and	scalable.

Kubernetes	resource	management
Chapter	3,	Getting	Started	with	Kubernetes	mentioned	that	Kubernetes	has	a
scheduler	that	manages	Kubernetes	node	and	then	determines	where	to	deploy	a
pod.	When	node	has	enough	resources	such	as	CPU	and	memory,	Kubernetes
administrator	can	feel	free	to	deploy	an	application.	However,	once	it	reaches	its
resource	limit,	the	Kubernetes	scheduler	behaves	different	based	on	its
configuration.	Therefore,	the	Kubernetes	administrator	has	to	understand	how	to
configure	and	utilize	machine	resources.

Resource	Quality	of	Service
Kubernetes	has	the	concept	of	Resource	QoS	(Quality	of	Service),	which	helps
an	administrator	to	assign	and	manage	pods	by	different	priorities.	Based	on	the
pod's	setting,	Kubernetes	classifies	each	pod	as:

Guaranteed	pod
Burstable	pod
BestEffort	pod

The	priority	would	be	Guaranteed	>	Burstable	>	BestEffort,	which	means	if	the
BestEffort	pod	and	the	Guaranteed	pod	exist	in	the	same	node,	then	when	one	of
the	pods	consumes	memory	and	to	causes	a	node	resource	shortage,	one	of	the
BestEffort	pods	will	be	terminated	to	save	the	Guaranteed	pod.

In	order	to	configure	Resource	QoS,	you	have	to	set	the	resource	request	and/or
resource	limit	in	the	pod	definition.	The	following	example	is	a	definition	of
resource	request	and	resource	limit	for	nginx:

$	cat	burstable.yml		

apiVersion:	v1	

kind:	Pod	

metadata:	

		name:	burstable-pod	

spec:	

		containers:	

		-	name:	nginx	

				image:	nginx	

				resources:	

						requests:	

								cpu:	0.1	

								memory:	10Mi	

						limits:	

								cpu:	0.5	

								memory:	300Mi	

This	example	indicates	the	following:

Type	of	resource
definition

Resource
name Value Mean

requests cpu 0.1
At	least	10%	of	1	CPU
core

memory 10Mi
At	least	10	Mbytes	of
memory

limits cpu 0.5
Maximum	50	%	of	1	CPU
core

memory 300Mi
Maximum	300	Mbyte	of
memory

For	the	CPU	resource,	acceptable	value	expressions	for	either	cores	(0.1,	0.2	...
1.0,	2.0)	or	millicpu	(100m,	200m	...	1000m,	2000m).	1000	m	is	equivalent	to	1
core.	For	example,	if	Kubernetes	node	has	2	cores	CPU	(or	1	core	with
hyperthreading),	there	are	total	of	2.0	cores	or	2000	millicpu,	as	follows:

If	you	run	the	nginx	example	(requests.cpu:	0.1),	it	occupies	at	least	0.1	core,	as
shown	in	the	following	figure:

As	long	as	the	CPU	has	enough	spaces,	it	may	occupy	up	to	0.5	cores	(limits.cpu:
0.5),	as	shown	in	the	following	figure:

You	can	also	see	the	configuration	by	using	the	kubectl	describe	nodes	command	as
follows:

Note	that	it	shows	a	percentage	that	depends	on	the	Kubernetes	node's	spec	in
the	preceding	example;	as	you	can	see	the	node	has	1	core	and	600	MB	memory.

On	the	other	hand,	if	it	exceeds	the	memory	limit,	the	Kubernetes	scheduler
determines	that	this	pod	is	out	of	memory,	and	then	it	will	kill	a	pod	(OOMKilled):

				

//Pod	is	reaching	to	the	memory	limit

$	kubectl	get	pods

NAME												READY					STATUS				RESTARTS			AGE

burstable-pod			1/1							Running			0										10m

		

	

//got	OOMKilled

$	kubectl	get	pods

NAME												READY					STATUS						RESTARTS			AGE

burstable-pod			0/1							OOMKilled			0										10m

				

//restarting	Pod

$	kubectl	get	pods

NAME												READY					STATUS						RESTARTS			AGE

burstable-pod			0/1							CrashLoopBackOff			0			11m				

	

			

//restarted

$	kubectl	get	pods

NAME												READY					STATUS				RESTARTS			AGE

burstable-pod			1/1							Running			1										12m		

Configuring	the	BestEffort	pod
The	BestEffort	pod	has	the	lowest	priority	in	the	Resource	QoS	configuration.
Therefore,	in	case	of	a	resource	shortage,	this	pod	will	be	the	first	one	to	be
terminated.	The	use	case	of	using	BestEffort	would	be	a	stateless	and
recoverable	application	such	as:

Worker	process
Proxy	or	cache	node

In	the	case	of	a	resource	shortage,	this	pod	should	yield	CPU	and	memory
resource	to	other	higher	priority	pods.	In	order	to	configure	a	pod	as	the
BestEffort	pod,	you	need	to	set	resource	limit	as	0,	or	not	specify	resource	limit.
For	example:

//no	resource	setting

$	cat	besteffort-implicit.yml	

apiVersion:	v1

kind:	Pod

metadata:

		name:	besteffort

spec:

		containers:

		-	name:	nginx

				image:	nginx

	

			

//resource	limit	setting	as	0

$	cat	besteffort-explicit.yml	

apiVersion:	v1

kind:	Pod

metadata:

		name:	besteffort

spec:

		containers:

		-	name:	nginx

				image:	nginx

				resources:

					limits:

						cpu:	0

						memory:	0

Note	that	the	resource	setting	is	inherited	by	the	namespace	default	setting.
Therefore,	if	you	intend	to	configure	the	pod	as	the	BestEffort	pod	using	the
implicit	setting,	it	might	not	configure	as	BestEffort	if	the	namespace	has	a
default	resource	setting	as	follows:

In	this	case,	if	you	deploy	to	the	default	namespace	using	implicit	setting,	it
applies	a	default	CPU	request	as	request.cpu:	0.1	and	then	it	becomes	Burstable.
On	the	other	hand,	if	you	deploy	to	blank-namespace,	apply	request.cpu:	0,	and	then	it
will	become	BestEffort.

Configuring	as	the	Guaranteed	pod
Guaranteed	is	the	highest	priority	in	Resource	QoS.	In	the	case	of	a	resource
shortage,	the	Kubernetes	scheduler	will	try	to	retain	the	Guaranteed	pod	to	the
last.

Therefore,	the	usage	of	a	Guaranteed	pod	would	be	a	mission	critical	node	such
as:

Backend	database	with	Persistent	Volume
Master	node	(such	as	Elasticsearch	master	node	and	HDFS	name	node)

In	order	to	configure	as	the	Guaranteed	pod,	explicitly	set	the	resource	limit	and
resource	request	as	the	same	value,	or	only	set	the	resource	limit.	However,
again,	if	the	namespace	has	default	resource	setting,	it	might	cause	different
results:

$	cat	guaranteed.yml	

apiVersion:	v1

kind:	Pod

metadata:

		name:	guaranteed-pod

spec:

		containers:

			-	name:	nginx

					image:	nginx

					resources:

						limits:

							cpu:	0.3

							memory:	350Mi

						requests:

							cpu:	0.3

							memory:	350Mi

	

			

$	kubectl	get	pods

NAME													READY					STATUS				RESTARTS			AGE

guaranteed-pod			1/1							Running			0										52s

	

			

$	kubectl	describe	pod	guaranteed-pod	|	grep	-i	qos

QoS	Class:		Guaranteed

Because	Guaranteed	pod	has	to	set	resource	limit,	if	you	are	not	100%	sure
about	the	necessary	CPU/memory	resource	of	your	application,	especially
maximum	memory	usage;	you	should	use	Burstable	setting	to	monitor	the

application	behavior	for	a	while.	Otherwise	Kubernetes	scheduler	might
terminate	a	pod	(OOMKilled)	even	if	the	node	has	enough	memory.

Configuring	as	Burstable	pod
The	Burstable	pod	has	a	higher	priority	than	BestEffort,	but	lower	than
Guaranteed.	Unlike	Guaranteed	pod,	resource	limit	setting	is	not	mandatory;
therefore	pod	can	consume	CPU	and	memory	as	much	as	possible	while	node
resource	is	available.	Therefore,	it	is	good	to	be	used	by	any	type	of	application.

If	you	already	know	the	minimal	memory	size	of	an	application,	you	should
specify	request	resource,	which	helps	Kubernetes	scheduler	to	assign	to	the	right
node.	For	example,	there	are	two	nodes	that	have	1	GB	memory	each.	Node	1
already	assigns	600	MB	memory	and	node	2	assigns	200	MB	memory	to	other
pods.

If	we	create	one	more	pod	that	has	a	resource	request	memory	as	500	MB,	then
Kubernetes	scheduler	assigns	this	pod	to	node	2.	However,	if	the	pod	doesn't
have	a	resource	request,	the	result	will	vary	either	node	1	or	node	2.	Because
Kubernetes	doesn't	know	how	much	memory	this	pod	will	consume:

There	is	still	important	behavior	of	Resource	QoS	to	discuss.	The	granularity	of
Resource	QoS	unit	is	pod	level,	not	a	container	level.	This	means,	if	you
configure	a	pod	that	has	two	containers,	you	intend	to	set	container	A	as
Guaranteed	(request/limit	are	same	value),	and	container	B	is	Burstable	(set	only
request).	Unfortunately,	Kubernetes	configures	this	pod	as	Burstable	because

Kubernetes	doesn't	know	what	the	limit	of	container	B	is.

The	following	example	demonstrate	that	failed	to	configure	as	Guaranteed	pod,
it	eventually	configured	as	Burstable:

//	supposed	nginx	is	Guaranteed,	tomcat	as	Burstable...

$	cat	guaranteed-fail.yml	

apiVersion:	v1

kind:	Pod

metadata:

		name:	burstable-pod

spec:

		containers:

		-	name:	nginx

				image:	nginx

				resources:

					limits:

							cpu:	0.3

							memory:	350Mi

					requests:

							cpu:	0.3

							memory:	350Mi

		-	name:	tomcat

				image:	tomcat

				resources:

						requests:

							cpu:	0.2

							memory:	100Mi

			

	

$	kubectl	create	-f	guaranteed-fail.yml	

pod	"guaranteed-fail"	created

		

		

	

//at	the	result,	Pod	is	configured	as	Burstable

$	kubectl	describe	pod	guaranteed-fail	|	grep	-i	qos

QoS	Class:		Burstable

Even	though,	change	to	configure	resource	limit	only,	but	if	container	A	has
CPU	limit	only,	then	container	B	has	memory	limit	only,	then	result	will	also	be
Burstable	again	because	Kubernetes	knows	only	either	limit:

//nginx	set	only	cpu	limit,	tomcat	set	only	memory	limit

$	cat	guaranteed-fail2.yml	

apiVersion:	v1

kind:	Pod

metadata:

		name:	guaranteed-fail2

spec:

		containers:

		-	name:	nginx

				image:	nginx

				resources:

						limits:

							cpu:	0.3

		-	name:	tomcat

				image:	tomcat

				resources:

						requests:

							memory:	100Mi

		

	

	

$	kubectl	create	-f	guaranteed-fail2.yml	

pod	"guaranteed-fail2"	created

	

			

//result	is	Burstable	again

$	kubectl	describe	pod	|grep	-i	qos

QoS	Class:		Burstable

Therefore,	if	you	intend	to	configure	pod	as	Guaranteed,	you	must	set	all
containers	as	Guaranteed.

Monitoring	resource	usage
When	you	start	to	configure	to	set	a	resource	request	and/or	limit,	your	pod	may
not	be	scheduled	to	deploy	by	Kubernetes	scheduler	due	to	insufficient
resources.	In	order	to	understand	allocatable	resources	and	available	resources,
use	the	kubectl	describe	nodes	command	to	see	the	status.

The	following	example	shows	one	node	that	has	600	MB	memory	and	one	core
CPU.	So	allocatable	resources	are	as	follows:

However,	this	node	already	runs	some	Burstable	pod	(use	resource	request)
already	as	follows:

The	available	memory	is	limited	as	approximately	20	MB.	Therefore,	if	you
submit	Burstable	pod	that	request	more	than	20	MB,	it	is	never	scheduled,	as
shown	in	the	following	screenshot:

The	error	event	can	be	captured	by	the	kubectl	describe	pod	command:

In	this	case,	you	need	to	add	more	Kubernetes	nodes	to	support	more	resources.

Summary
In	this	chapter,	we	have	covered	Stateless	and	Stateful	applications	that	use
ephemeral	volume	or	Persistent	Volume.	Both	have	pitfalls	when	an	application
restarts	or	a	pod	scales.	In	addition,	Persistent	Volume	management	on
Kubernetes	has	been	kept	enhanced	to	make	it	easier,	as	you	can	see	from	such
tools	as	StatefulSet	and	Dynamic	Provisioning.

Also,	Resource	QoS	helps	Kubernetes	scheduler	to	assign	a	pod	to	the	right	node
based	on	request	and	limit	based	on	priorities.

The	next	chapter	will	introduce	Kubernetes	network	and	security,	which
configures	pod	and	services	more	easier,	and	makes	them	scalable	and	secure.

Network	and	Security
We've	learned	how	to	deploy	containers	with	different	resources	in	Kubernetes
in	Chapter	3,	Getting	Started	with	Kubernetes,	and	know	how	to	use	volume	to
persist	the	data,	dynamic	provisioning,	and	different	storage	classes.	Next,	we'll
learn	how	Kubernetes	routes	the	traffic	to	make	all	of	this	possible.	Networking
always	plays	an	important	role	in	the	software	world.	We'll	describe	the
networking	from	containers	on	a	single	host,	multiple	hosts	and	finally	to
Kubernetes.

Docker	networking
Kubernetes	networking
Ingress
Network	policy

Kubernetes	networking
There	are	plenty	of	choices	you	can	use	to	implement	networking	in	Kubernetes.
Kubernetes	itself	doesn't	care	how	you	implement	it,	but	you	must	meet	its	three
fundamental	requirements:

All	containers	should	be	accessible	to	each	other	without	NAT,	regardless
of	which	nodes	they	are	on
All	nodes	should	communicate	with	all	containers
The	IP	container	should	see	itself	the	same	way	as	the	others	see	it

Before	getting	into	anything	further,	we'll	first	review	how	does	the	default
container	networking	works.	That's	the	pillar	of	the	network	to	make	all	of	this
possible.

Docker	networking
Let's	review	how	Docker	networking	works	before	getting	into	Kubernetes
networking.	In	Chapter	2,	DevOps	with	Container,	we	learned	three	modes	of
container	networking,	bridge,	none,	and	host.

Bridge	is	the	default	networking	model.	Docker	creates	and	attaches	virtual
Ethernet	device	(also	known	as	veth)	and	assigns	network	namespace	to	each
container.

The	network	namespace	is	a	feature	in	Linux,	which	is	logically
another	copy	of	a	network	stack.	It	has	its	own	routing	tables,	arp
tables,	and	network	devices.	It's	a	fundamental	concept	of
container	networking.

Veth	always	comes	in	a	pair,	one	is	in	network	namespace	and	the	other	is	in	the
bridge.	When	the	traffic	comes	into	the	host	network,	it	will	be	routed	into	the
bridge.	The	packet	will	be	dispatched	to	its	veth,	and	will	go	into	the	namespace
inside	the	container,	as	shown	in	the	following	figure:

Let's	take	a	closer	look.	In	the	following	example,	we'll	use	a	minikube	node	as
the	docker	host.	Firstly,	we'll	have	to	use	minikube	ssh	to	ssh	into	the	node	because

we're	not	using	Kubernetes	yet.	After	we	get	into	the	minikube	node,	let's	launch
a	container	to	interact	with	us:

//	launch	a	busybox	container	with	`top`	command,	also,	expose	container	port	8080	to	

host	port	8000.

#	docker	run	-d	-p	8000:8080	--name=busybox	busybox	top

737e4d87ba86633f39b4e541f15cd077d688a1c8bfb83156d38566fc5c81f469	

Let's	see	the	implementation	of	outbound	traffic	within	a	container.	docker	exec
<container_name	or	container_id>	can	run	a	command	in	a	running	container.	Lets	use
ip	link	list	to	list	down	all	the	interfaces:

//	show	all	the	network	interfaces	in	busybox	container

//	docker	exec	<container_name>	<command>

#	docker	exec	busybox	ip	link	list

1:	lo:	<LOOPBACK,UP,LOWER_UP>	mtu	65536	qdisc	noqueue	qlen	1

			link/loopback	00:00:00:00:00:00	brd	00:00:00:00:00:00

2:	sit0@NONE:	<NOARP>	mtu	1480	qdisc	noop	qlen	1

			link/sit	0.0.0.0	brd	0.0.0.0

53:	eth0@if54:	<BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN>	

				mtu	1500	qdisc	noqueue

			link/ether	02:42:ac:11:00:07	brd	ff:ff:ff:ff:ff:ff		

We	can	see	that	we	have	three	interfaces	inside	the	busybox	container.	One	is	with
ID	53	with	the	name	eth0@if54.	The	number	after	if	is	the	other	interface	ID	in	the
pair.	In	this	case,	the	pair	ID	is	54.	If	we	run	the	same	command	on	the	host,	we
could	see	the	veth	in	the	host	is	pointing	to	the	eth0	inside	the	container:

//	show	all	the	network	interfaces	from	the	host

#	ip	link	list

1:	lo:	<LOOPBACK,UP,LOWER_UP>	mtu	65536	qdisc	noqueue		

			state	UNKNOWN	mode	DEFAULT	group	default	qlen	1

			link/loopback	00:00:00:00:00:00	brd	00:00:00:00:00:00

2:	eth0:	<BROADCAST,MULTICAST,UP,LOWER_UP>	mtu	1500	qdisc	

			pfifo_fast	state	UP	mode	DEFAULT	group	default	qlen		

			1000

			link/ether	08:00:27:ca:fd:37	brd	ff:ff:ff:ff:ff:ff

...

54:	vethfeec36a@if53:	<BROADCAST,MULTICAST,UP,LOWER_UP>	

				mtu	1500	qdisc	noqueue	master	docker0	state	UP	mode		

				DEFAULT	group	default

			link/ether	ce:25:25:9e:6c:07	brd	ff:ff:ff:ff:ff:ff	link-netnsid	5		

We	have	a	veth	on	the	host	named	vethfeec36a@if53.	It	pairs	with	eth0@if54	in	the
container	network	namespace.	The	veth	54	is	attached	to	the	docker0	bridge,	and
eventually	accesses	the	internet	via	eth0.	If	we	take	a	look	at	the	iptables	rules,
we	can	find	a	masquerading	rule	(also	known	as	SNAT)	on	the	host	that	Docker
creates	for	outbound	traffic,	which	will	make	internet	access	available	for
containers:

//	list	iptables	nat	rules.	Showing	only	POSTROUTING	rules	which	allows	packets	to	be	

altered	before	they	leave	the	host.

#	sudo	iptables	-t	nat	-nL	POSTROUTING

Chain	POSTROUTING	(policy	ACCEPT)

target					prot	opt	source															destination

...

MASQUERADE		all		--		172.17.0.0/16								0.0.0.0/0

...		

On	the	other	hand,	for	the	inbound	traffic,	Docker	creates	a	custom	filter	chain
on	prerouting	and	creates	forwarding	rules	in	the	DOCKER	filter	chain	dynamically.
If	we	expose	a	container	port	8080	and	map	it	to	a	host	port	8000,	we	can	see	we're
listening	to	port	8000	on	any	IP	address	(0.0.0.0/0),	which	will	then	be	routed	to
container	port	8080:

//	list	iptables	nat	rules

#	sudo	iptables	-t	nat	-nL

Chain	PREROUTING	(policy	ACCEPT)

target					prot	opt	source															destination

...

DOCKER					all		--		0.0.0.0/0												0.0.0.0/0												ADDRTYPE	match	dst-type	

LOCAL

...

Chain	OUTPUT	(policy	ACCEPT)

target					prot	opt	source															destination

DOCKER					all		--		0.0.0.0/0											!127.0.0.0/8										ADDRTYPE	match	dst-type	

LOCAL

...

Chain	DOCKER	(2	references)

target					prot	opt	source															destination

RETURN					all		--		0.0.0.0/0												0.0.0.0/0

...

DNAT							tcp		--		0.0.0.0/0												0.0.0.0/0												tcp	dpt:8000	

to:172.17.0.7:8080

...		

Now	we	know	how	packet	goes	in/out	of	containers.	Let's	have	a	look	at	how
containers	in	a	pod	communicates	with	each	other.

Container-to-container
communications
Pods	in	Kubernetes	have	their	own	real	IP	addresses.	Containers	within	a	pod
share	network	namespace,	so	they	see	each	other	as	localhost.	This	is
implemented	by	the	network	container	by	default,	which	acts	as	a	bridge	to
dispatch	the	traffic	for	every	container	in	a	pod.	Let's	see	how	this	works	in	the
following	example.	Let's	use	the	first	example	from	Chapter	3,	Getting	Started	with
Kubernetes,	which	includes	two	containers,	nginx	and	centos	inside	one	pod:

#cat	5-1-1_pod.yaml

apiVersion:	v1

kind:	Pod

metadata:

		name:	example

spec:

		containers:

			-	name:	web

					image:	nginx

			-	name:	centos

					image:	centos

					command:	["/bin/sh",	"-c",	"while	:	;do	curl	http://localhost:80/;	sleep	10;	

done"]

		

		

//	create	the	Pod

#kubectl	create	-f	5-1-1_pod.yaml

pod	"example"	created		

Then,	we	will	describe	the	pod	and	see	its	container	ID:

#	kubectl	describe	pods	example

Name:							example

Node:							minikube/192.168.99.100

...

Containers:

		web:

				Container	ID:	docker://	

d9bd923572ab186870284535044e7f3132d5cac11ecb18576078b9c7bae86c73

				Image:								nginx

...

centos:

				Container	ID:	docker:	

//f4c019d289d4b958cd17ecbe9fe22a5ce5952cb380c8ca4f9299e10bf5e94a0f

				Image:								centos

...		

In	this	example,	web	is	with	container	ID	d9bd923572ab	and	centos	is	with	container

ID	f4c019d289d4.	If	we	go	into	the	node	minikube/192.168.99.100	using	docker	ps,	we
can	check	how	many	containers	Kubernetes	actually	launches	since	we're	in
minikube,	which	launches	lots	of	other	cluster	containers.	Check	out	the	latest
launch	time	by	CREATED	column,	where	we	will	find	that	there	are	three	containers
that	have	just	been	launched:

#	docker	ps

CONTAINER	ID								IMAGE																																						COMMAND																		

CREATED													STATUS														PORTS																																						

NAMES

f4c019d289d4								36540f359ca3																															"/bin/sh	-c	'while	:	"			

2	minutes	ago								Up	2	minutes	k8s_centos_example_default_9843fc27-677b-11e7-9a8c-

080027cafd37_1

d9bd923572ab								e4e6d42c70b3																															"nginx	-g	'daemon	off"			

2	minutes	ago								Up	2	minutes	k8s_web_example_default_9843fc27-677b-11e7-9a8c-

080027cafd37_1

4ddd3221cc47								gcr.io/google_containers/pause-amd64:3.0			"/pause"																	

2	minutes	ago								Up	2	minutes		

There	is	an	additional	container	4ddd3221cc47	that	was	launched.	Before	digging
into	which	container	it	is,	let's	check	the	network	mode	of	our	web	container.	We
will	find	that	the	containers	in	our	example	pod	are	running	in	containers	with
mapped	container	mode:

#	docker	inspect	d9bd923572ab	|	grep	NetworkMode

"NetworkMode":	

"container:4ddd3221cc4792207ce0a2b3bac5d758a5c7ae321634436fa3e6dd627a31ca76",		

4ddd3221cc47	container	is	the	so-called	network	container	in	this	case,	which	holds
network	namespace	to	let	web	and	centos	containers	join.	Containers	in	the	same
network	namespace	share	the	same	IP	address	and	same	network	configuration.
This	is	the	default	implementation	in	Kubernetes	to	achieve	container-to-
container	communications,	which	is	mapped	to	the	first	requirement.

Pod-to-pod	communications
Pod	IP	addresses	are	accessible	from	other	pods	no	matter	which	nodes	they're
on.	This	fits	the	second	requirement.	We'll	describe	the	pods'	communication
within	the	same	node	and	across	nodes	in	the	upcoming	section.

Pod	communication	within	the	same
node
Pod-to-pod	communication	within	the	same	node	goes	through	the	bridge	by
default.	Let's	say	we	have	two	pods,	which	have	their	own	network	namespaces.
When	pod1	wants	to	talk	to	pod2,	the	packet	passes	through	pod1's	namespace	to
the	corresponding	veth	pair	vethXXXX	and	eventually	goes	to	the	bridge.	The
bridge	then	broadcasts	the	destination	IP	to	help	the	packet	find	its	way,
vethYYYY	responses.	The	packet	then	arrives	at	pod2:

However,	Kubernetes	is	all	about	clusters.	How	does	traffic	get	routed	when	the
pods	are	in	different	nodes?

Pod	communication	across	nodes
According	to	the	second	requirement,	all	nodes	must	communicate	with	all
containers.	Kubernetes	delegates	the	implementation	to	the	container	network
interface	(CNI).	Users	could	choose	different	implementations,	by	L2,	L3,	or
overlay.	Overlay	networking	is	one	of	the	common	solutions,	known	as	packet
encapsulation.	It	wraps	a	message	before	leaving	the	source,	gets	delivered,	and
unwraps	the	message	at	the	destination.	This	leads	to	a	situation	where	overlay
increases	the	network	latency	and	complexity.	As	long	as	all	the	containers	can
access	each	other	across	nodes,	you're	free	to	use	any	technology,	such	as	L2
adjacency	or	L3	gateway.	For	more	information	about	CNI,	refer	to	its	spec	(https:
//github.com/containernetworking/cni/blob/master/SPEC.md):

Let's	say	we	have	a	packet	from	pod1	to	pod4.	The	packet	leaves	from	container
interface	and	reaches	to	the	veth	pair,	then	passes	through	the	bridge	and	node's
network	interface.	Network	implementation	comes	into	play	in	step	4.	As	long	as

https://github.com/containernetworking/cni/blob/master/SPEC.md

the	packet	could	be	routed	to	the	target	node,	you	are	free	to	use	any	options.	In
the	following	example,	we'll	launch	minikube	with	the	--network-plugin=cni	option.
With	CNI	enabled,	the	parameters	will	be	passed	through	kubelet	in	the	node.
Kubelet	has	a	default	network	plugin,	but	you	could	probe	any	supported	plugin
when	it	starts	up.	Before	starting	minikube,	you	could	use	minikube	stop	first	if	it's
been	started	or	minikube	delete	to	delete	the	whole	cluster	thoroughly	before	doing
anything	further.	Although	minikube	is	a	single	node	environment,	which	might
not	completely	represent	the	production	scenario	we'll	encounter,	this	just	gives
you	a	basic	idea	of	how	all	of	this	works.	We	will	learn	the	deployment	of
networking	options	in	the	real	world	in	Chapter	9,	Kubernetes	on	AWS	and	Chapter	1
0,	Kubernetes	on	GCP.

//	start	minikube	with	cni	option

#	minikube	start	--network-plugin=cni

...

Kubectl	is	now	configured	to	use	the	cluster.		

When	we	specify	the	network-plugin	option,	it	will	use	the	directory	specified	in	--
network-plugin-dir	for	plugins	on	startup.	In	the	CNI	plugin,	the	default	plugin
directory	is	/opt/cni/net.d.	After	the	cluster	comes	up,	let's	log	in	to	the	node	and
see	the	setting	inside	via	minikube	ssh:

#	minikube	ssh

$	ifconfig	

...

mybridge		Link	encap:Ethernet		HWaddr	0A:58:0A:01:00:01

										inet	addr:10.1.0.1		Bcast:0.0.0.0		

										Mask:255.255.0.0

...		

We	will	find	that	there	is	one	new	bridge	in	the	node,	and	if	we	create	the
example	pod	again	by	5-1-1_pod.yml,	we	will	find	that	the	IP	address	of	the	pod
becomes	10.1.0.x,	which	is	attaching	to	mybridge	instead	of	docker0.

#	kubectl	create	-f	5-1-1_pod.yaml

pod	"example"	created

#	kubectl	describe	po	example

Name:							example

Namespace:		default

Node:							minikube/192.168.99.100

Start	Time:	Sun,	23	Jul	2017	14:24:24	-0400

Labels:											<none>

Annotations:						<none>

Status:											Running

IP:									10.1.0.4		

Why	is	that?	That's	because	we	specify	that	we'll	use	CNI	as	the	network	plugin,

and	docker0	will	not	be	used	(also	known	as	container	network	model	or
libnetwork).	CNI	creates	a	virtual	interface,	attaches	it	to	the	underlay	network,
and	sets	the	IP	address	and	routes	and	maps	it	to	the	pods'	namespace	eventually.
Let's	take	a	look	at	the	configuration	located	at	/etc/cni/net.d/:

#	cat	/etc/cni/net.d/k8s.conf

{

		"name":	"rkt.kubernetes.io",

		"type":	"bridge",

		"bridge":	"mybridge",

		"mtu":	1460,

		"addIf":	"true",

		"isGateway":	true,

		"ipMasq":	true,

		"ipam":	{

				"type":	"host-local",

				"subnet":	"10.1.0.0/16",

				"gateway":	"10.1.0.1",

				"routes":	[

						{

							"dst":	"0.0.0.0/0"

						}

]

		}

}

In	this	example,	we	use	the	bridge	CNI	plugin	to	reuse	the	L2	bridge	for	pod
containers.	If	the	packet	is	from	10.1.0.0/16,	and	its	destination	is	to	anywhere,
it'll	go	through	this	gateway.	Just	like	the	diagram	we	saw	earlier,	we	could	have
another	node	with	CNI	enabled	with	10.1.2.0/16	subnet,	so	that	ARP	packets
could	go	out	to	the	physical	interface	on	the	node	that	the	target	pod	is	located	at.
It	then	achieves	pod-to-pod	communication	across	nodes.

Let's	check	the	rules	in	iptables:

//	check	the	rules	in	iptables	

#	sudo	iptables	-t	nat	-nL

...	

Chain	POSTROUTING	(policy	ACCEPT)

target					prot	opt	source															destination

KUBE-POSTROUTING		all		--		0.0.0.0/0												0.0.0.0/0												/*	kubernetes	

postrouting	rules	*/

MASQUERADE		all		--		172.17.0.0/16								0.0.0.0/0

CNI-25df152800e33f7b16fc085a		all		--		10.1.0.0/16										0.0.0.0/0												/*	

name:	"rkt.kubernetes.io"	id:	

"328287949eb4d4483a3a8035d65cc326417ae7384270844e59c2f4e963d87e18"	*/

CNI-f1931fed74271104c4d10006		all		--		10.1.0.0/16										0.0.0.0/0												/*	

name:	"rkt.kubernetes.io"	id:	

"08c562ff4d67496fdae1c08facb2766ca30533552b8bd0682630f203b18f8c0a"	*/		

All	the	related	rules	have	been	switched	to	10.1.0.0/16	CIDR.

Pod-to-service	communications
Kubernetes	is	dynamic.	Pods	are	created	and	deleted	all	the	time.	The
Kubernetes	service	is	an	abstraction	to	define	a	set	of	pods	by	label	selectors.	We
normally	use	the	service	to	access	pods	instead	of	specifying	a	pod	explicitly.
When	we	create	a	service,	an	endpoint	object	will	be	created,	which	describes	a
set	of	pod	IPs	that	the	label	selector	in	that	service	has	selected.

In	some	cases,	endpoint	object	will	not	be	created	with	service
creation.	For	example,	services	without	selectors	will	not	create	a
corresponding	endpoint	object.	For	more	information,	refer	to	the
service	without	selectors	section	in	Chapter	3,	Getting	Started	with
Kubernetes.

Then,	how	does	traffic	get	from	pod	to	the	pod	behind	service?	By	default,
Kubernetes	uses	iptables	to	perform	the	magic	by	kube-proxy.	This	is	explained	in
the	following	figure.

Let's	reuse	the	3-2-3_rc1.yaml	and	3-2-3_nodeport.yaml	examples	from	Chapter	3,
Getting	Started	with	Kubernetes,	to	observe	the	default	behavior:

//	create	two	pods	with	nginx	and	one	service	to	observe	default	networking.	Users	are	

free	to	use	any	other	kind	of	solution.

#	kubectl	create	-f	3-2-3_rc1.yaml

replicationcontroller	"nginx-1.12"	created

#	kubectl	create	-f	3-2-3_nodeport.yaml

service	"nginx-nodeport"	created		

Let's	observe	iptable	rules	and	see	how	this	works.	As	shown	next,	our	service	IP
is	10.0.0.167,	two	pods	IP	addresses	underneath	are	10.1.0.4	and	10.1.0.5.

//	kubectl	describe	svc	nginx-nodeport

Name:													nginx-nodeport

Namespace:								default

Selector:									project=chapter3,service=web

Type:													NodePort

IP:															10.0.0.167

Port:													<unset>					80/TCP

NodePort:									<unset>					32261/TCP

Endpoints:								10.1.0.4:80,10.1.0.5:80

...		

Let's	get	into	minikube	node	by	minikube	ssh	and	check	its	iptable	rules:

#	sudo	iptables	-t	nat	-nL

...

Chain	KUBE-SERVICES	(2	references)

target					prot	opt	source															destination

KUBE-SVC-37ROJ3MK6RKFMQ2B		tcp		--		0.0.0.0/0												10.0.0.167											/*	

default/nginx-nodeport:	cluster	IP	*/	tcp	dpt:80

KUBE-NODEPORTS		all		--		0.0.0.0/0												0.0.0.0/0												/*	kubernetes	

service	nodeports;	NOTE:	this	must	be	the	last	rule	in	this	chain	*/	ADDRTYPE	match	

dst-type	LOCAL

				

Chain	KUBE-SVC-37ROJ3MK6RKFMQ2B	(2	references)

target					prot	opt	source															destination

KUBE-SEP-SVVBOHTYP7PAP3J5		all		--		0.0.0.0/0												0.0.0.0/0												/*	

default/nginx-nodeport:	*/	statistic	mode	random	probability	0.50000000000

KUBE-SEP-AYS7I6ZPYFC6YNNF		all		--		0.0.0.0/0												0.0.0.0/0												/*	

default/nginx-nodeport:	*/

Chain	KUBE-SEP-SVVBOHTYP7PAP3J5	(1	references)

target					prot	opt	source															destination

KUBE-MARK-MASQ		all		--		10.1.0.4													0.0.0.0/0												/*	default/nginx-

nodeport:	*/

DNAT							tcp		--		0.0.0.0/0												0.0.0.0/0												/*	default/nginx-

nodeport:	*/	tcp	to:10.1.0.4:80

Chain	KUBE-SEP-AYS7I6ZPYFC6YNNF	(1	references)

target					prot	opt	source															destination

KUBE-MARK-MASQ		all		--		10.1.0.5													0.0.0.0/0												/*	default/nginx-

nodeport:	*/

DNAT							tcp		--		0.0.0.0/0												0.0.0.0/0												/*	default/nginx-

nodeport:	*/	tcp	to:10.1.0.5:80

...		

The	key	point	here	is	that	the	service	exposes	the	cluster	IP	to	outside	traffic

from	the	target	KUBE-SVC-37ROJ3MK6RKFMQ2B,	which	links	to	two	custom	chains	KUBE-SEP-
SVVBOHTYP7PAP3J5	and	KUBE-SEP-AYS7I6ZPYFC6YNNF	with	statistic	mode	random	probability
0.5.	This	means,	iptables	will	generate	a	random	number	and	tune	it	based	on	the
probability	distribution	0.5	to	the	destination.	These	two	custom	chains	have	the
DNAT	target	set	to	the	corresponding	pod	IP.	The	DNAT	target	is	responsible	for
changing	the	packets'	destination	IP	address.	By	default,	conntrack	is	enabled	to
track	the	destination	and	source	of	connection	when	the	traffic	comes	in.	All	of
this	results	in	a	routing	behavior.	When	the	traffic	comes	to	service,	iptables	will
randomly	pick	one	of	the	pods	to	route,	and	modify	the	destination	IP	from
service	IP	to	real	pod	IP,	and	un-DNAT	to	go	all	the	way	back.

External-to-service	communications
The	ability	to	serve	external	traffic	to	Kubernetes	is	critical.	Kubernetes	provides
two	API	objects	to	achieve	this:

Service:	External	network	LoadBalancer	or	NodePort	(L4)
Ingress:	HTTP(S)	LoadBalancer	(L7)

For	ingress,	we'll	learn	more	in	the	next	section.	We'll	focus	on	L4	first.	Based
on	what	we've	learned	about	pod-to-pod	communication	across	nodes,	how	the
packet	goes	in	and	out	between	service	and	pod.	The	following	figure	shows
how	it	works.	Let's	say	we	have	two	services,	one	service	A	has	three	pods	(pod
a,	pod	b,	and	pod	c)	and	another	service	B	gets	only	one	pod	(pod	d).	When	the
traffic	comes	in	from	LoadBalancer,	the	packet	will	be	dispatched	to	one	of	the
nodes.	Most	of	the	cloud	LoadBalancer	itself	is	not	aware	of	pods	or	containers.
It	only	knows	about	the	node.	If	the	node	passes	the	health	check,	then	it	will	be
the	candidate	for	the	destination.	Assume	that	we	want	to	access	service	B,	it
currently	only	has	one	pod	running	on	one	node.	However,	LoadBalancer	sends
the	packet	to	another	node	that	doesn't	have	any	of	our	desired	pods	running.
The	traffic	route	will	look	like	this:

The	packet	routing	journey	will	be:

1.	 LoadBalancer	will	choose	one	of	the	nodes	to	forward	the	packet.	In	GCE,
it	selects	the	instance	based	on	a	hash	of	the	source	IP	and	port,	destination
IP	and	port,	and	protocol.	In	AWS,	it's	based	on	a	round-robin	algorithm.

2.	 Here,	the	routing	destination	will	be	changed	to	pod	d	(DNAT)	and	forward
it	to	the	other	node	similar	to	pod-to-pod	communication	across	nodes.

3.	 Then,	comes	service-to-pod	communication.	The	packet	arrives	at	pod	d
with	the	response	accordingly.

4.	 Pod-to-service	communication	is	manipulated	by	iptables	as	well.
5.	 The	packet	will	be	forwarded	to	the	original	node.
6.	 The	source	and	destination	will	be	un-DNAT	to	LoadBalancer	and	client,

and	sent	all	the	way	back.

In	Kubernetes	1.7,	there	is	a	new	attribute	in	service	called
externalTrafficPolicy.	You	can	set	its	value	to	local,	then	after	the
traffic	goes	into	a	node,	Kubernetes	will	route	the	pods	on	that
node,	if	any.

Ingress
Pods	and	services	in	Kubernetes	have	their	own	IP;	however,	it	is	normally	not
the	interface	you'd	provide	to	the	external	internet.	Though	there	is	service	with
node	IP	configured,	the	port	in	the	node	IP	can't	be	duplicated	among	the
services.	It	is	cumbersome	to	decide	which	port	to	manage	with	which	service.
Furthermore,	the	node	comes	and	goes,	it	wouldn't	be	clever	to	provide	a	static
node	IP	to	external	service.

Ingress	defines	a	set	of	rules	that	allows	the	inbound	connection	to	access
Kubernetes	cluster	services.	It	brings	the	traffic	into	the	cluster	at	L7,	allocates
and	forwards	a	port	on	each	VM	to	the	service	port.	This	is	shown	in	the
following	figure.	We	define	a	set	of	rules	and	post	them	as	source	type	ingress	to
the	API	server.	When	the	traffic	comes	in,	the	ingress	controller	will	then	fulfill
and	route	the	ingress	by	the	ingress	rules.	As	shown	in	the	following	figure,
ingress	is	used	to	route	external	traffic	to	the	kubernetes	endpoints	by	different
URLs:

Now,	we	will	go	through	an	example	and	see	how	this	works.	In	this	example,
we'll	create	two	services	named	nginx	and	echoserver	with	ingress	path	/welcome	and
/echoserver	configured.	We	can	run	this	in	minikube.	The	old	version	of	minikube

doesn't	enable	ingress	by	default;	we'll	have	to	enable	it	first:

//	start	over	our	minikube	local

#	minikube	delete	&&	minikube	start

				

//	enable	ingress	in	minikube

#	minikube	addons	enable	ingress

ingress	was	successfully	enabled	

				

//	check	current	setting	for	addons	in	minikube

#	minikube	addons	list

-	registry:	disabled

-	registry-creds:	disabled

-	addon-manager:	enabled

-	dashboard:	enabled

-	default-storageclass:	enabled

-	kube-dns:	enabled

-	heapster:	disabled

-	ingress:	enabled	

Enabling	ingress	in	minikube	will	create	an	nginx	ingress	controller	and	a
ConfigMap	to	store	nginx	configuration	(refer	to	https://github.com/kubernetes/ingress/blob/ma
ster/controllers/nginx/README.md),	and	a	RC	and	service	as	default	HTTP	backend	for
handling	unmapped	requests.	We	could	observe	them	by	adding	--namespace=kube-
system	in	the	kubectl	command.	Next,	let's	create	our	backend	resources.	Here	is
our	nginx	Deployment	and	Service:

#	cat	5-2-1_nginx.yaml

apiVersion:	apps/v1beta1

kind:	Deployment

metadata:

		name:	nginx

spec:

		replicas:	2

		template:

				metadata:

				labels:

						project:	chapter5

						service:	nginx

				spec:

						containers:

							-	name:	nginx

									image:	nginx

									ports:

								-	containerPort:	80

kind:	Service

apiVersion:	v1

metadata:

		name:	nginx

spec:

		type:	NodePort

		selector:

				project:	chapter5

				service:	nginx

		ports:

				-	protocol:	TCP

						port:	80

https://github.com/kubernetes/ingress/blob/master/controllers/nginx/README.md)

						targetPort:	80

//	create	nginx	RS	and	service

#	kubectl	create	-f	5-2-1_nginx.yaml

deployment	"nginx"	created

service	"nginx"	created

We'll	then	create	another	service	with	RS:

//	another	backend	named	echoserver

#	cat	5-2-1_echoserver.yaml

apiVersion:	apps/v1beta1

kind:	Deployment

metadata:

		name:	echoserver

spec:

		replicas:	1

		template:

				metadata:

					name:	echoserver

					labels:

						project:	chapter5

						service:	echoserver

			spec:

					containers:

					-	name:	echoserver

							image:	gcr.io/google_containers/echoserver:1.4

						ports:

					-	containerPort:	8080

kind:	Service

apiVersion:	v1

metadata:

		name:	echoserver

spec:

		type:	NodePort

		selector:

				project:	chapter5

				service:	echoserver

		ports:

				-	protocol:	TCP

						port:	8080

						targetPort:	8080

				

//	create	RS	and	SVC	by	above	configuration	file

#	kubectl	create	-f	5-2-1_echoserver.yaml

deployment	"echoserver"	created

service	"echoserver"	created		

Next,	we'll	create	the	ingress	resource.	There	is	an	annotation	named
ingress.kubernetes.io/rewrite-target.	This	is	required	if	the	service	requests	are
coming	from	the	root	URL.	Without	a	rewrite	annotation,	we'll	get	404	as
response.	Refer	to	https://github.com/kubernetes/ingress/blob/master/controllers/nginx/configuration.
md#annotations	for	more	supported	annotation	in	nginx	ingress	controller:

#	cat	5-2-1_ingress.yaml

apiVersion:	extensions/v1beta1

kind:	Ingress

https://github.com/kubernetes/ingress/blob/master/controllers/nginx/configuration.md#annotations

metadata:

		name:	ingress-example

		annotations:

				ingress.kubernetes.io/rewrite-target:	/

spec:

		rules:

		-	host:	devops.k8s

				http:

					paths:

				-	path:	/welcome

						backend:

							serviceName:	nginx

							servicePort:	80

				-	path:	/echoserver

						backend:

							serviceName:	echoserver

							servicePort:	8080

				

//	create	ingress

#	kubectl	create	-f	5-2-1_ingress.yaml

ingress	"ingress-example"	created

In	some	cloud	providers,	service	LoadBalancer	controller	is
supported.	It	could	be	integrated	with	ingress	via	the
status.loadBalancer.ingress	syntax	in	the	configuration	file.	For	more
information,	refer	to	https://github.com/kubernetes/contrib/tree/master/service-loa
dbalancer.

Since	our	host	is	set	to	devops.k8s,	it	will	only	return	if	we	access	it	from	that
hostname.	You	could	either	configure	the	DNS	record	in	the	DNS	server,	or
modify	the	hosts	file	in	local.	For	simplicity,	we'll	just	add	a	line	with	the	ip
hostname	format	in	the	host	file:

//	normally	host	file	located	in	/etc/hosts	in	linux

#	sudo	sh	-c	"echo	`minikube	ip`	devops.k8s	>>	/etc/hosts"		

Then	we	should	be	able	to	access	our	service	by	the	URL	directly:

#	curl	http://devops.k8s/welcome

...

<title>Welcome	to	nginx!</title>

...

//	check	echoserver	

#	curl	http://devops.k8s/echoserver

CLIENT	VALUES:

client_address=172.17.0.4

command=GET

real	path=/

query=nil

request_version=1.1

request_uri=http://devops.k8s:8080/		

The	pod	ingress	controller	dispatches	the	traffic	based	on	the	URL	path.	The

https://github.com/kubernetes/contrib/tree/master/service-loadbalancer

routing	path	is	similar	to	external-to-service	communication.	The	packet	hops
between	nodes	and	pods.	Kubernetes	is	pluggable.	Lots	of	third-party
implementation	is	going	on.	We	only	scratch	the	surface	here	while	iptables	is
just	a	default	and	common	implementation.	Networking	evolves	a	lot	in	every
single	release.	At	the	time	of	this	writing,	Kubernetes	had	just	released	version
1.7.

Network	policy
Network	policy	works	as	a	software	firewall	to	the	pods.	By	default,	every	pod
could	communicate	with	each	other	without	any	boundaries.	Network	policy	is
one	of	the	isolations	you	could	apply	to	the	pods.	It	defines	who	can	access
which	pods	in	which	port	by	namespace	selector	and	pod	selector.	Network
policy	in	a	namespace	is	additive,	and	once	a	pod	has	policy	on,	it	denies	any
other	ingress	(also	known	as	default	deny	all).

Currently,	there	are	multiple	network	providers	that	support	network	policy,	such
as	Calico	(https://www.projectcalico.org/calico-network-policy-comes-to-kubernetes/),	Romana	(htt
ps://github.com/romana/romana),	Weave	Net	(https://www.weave.works/docs/net/latest/kube-addon/#n
pc),	Contiv	(http://contiv.github.io/documents/networking/policies.html)	and	Trireme	(https://github
.com/aporeto-inc/trireme-kubernetes).	Users	are	free	to	choose	any	options.	For
simplicity,	we're	going	to	use	Calico	with	minikube.	To	do	that,	we'll	have	to
launch	minikube	with	the	--network-plugin=cni	option.	Network	policy	is	still	pretty
new	in	Kubernetes	at	this	point.	We're	running	Kubernetes	version	v.1.7.0	with
v.1.0.7	minikube	ISO	to	deploy	Calico	by	self-hosted	solution	(http://docs.projectcalic
o.org/v1.5/getting-started/kubernetes/installation/hosted/).	First,	we'll	have	to	download	a
calico.yaml	(https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installati
on/hosted/calico.yaml)	file	to	create	Calico	nodes	and	policy	controller.	etcd_endpoints
needs	to	be	configured.	To	find	out	the	IP	of	etcd,	we	need	to	access	localkube
resources.

//	find	out	etcd	ip

#	minikube	ssh	--	"sudo	/usr/local/bin/localkube	--host-ip"

2017-07-27	04:10:58.941493	I	|	proto:	duplicate	proto	type	registered:	

google.protobuf.Any

2017-07-27	04:10:58.941822	I	|	proto:	duplicate	proto	type	registered:	

google.protobuf.Duration

2017-07-27	04:10:58.942028	I	|	proto:	duplicate	proto	type	registered:	

google.protobuf.Timestamp

localkube	host	ip:		10.0.2.15		

The	default	port	of	etcd	is	2379.	In	this	case,	we	modify	etcd_endpoint	in	calico.yaml
from	http://127.0.0.1:2379	to	http://10.0.2.15:2379:

//	launch	calico

#	kubectl	apply	-f	calico.yaml

configmap	"calico-config"	created

secret	"calico-etcd-secrets"	created

https://www.projectcalico.org/calico-network-policy-comes-to-kubernetes/
https://github.com/romana/romana)
https://www.weave.works/docs/net/latest/kube-addon/#npc)
http://contiv.github.io/documents/networking/policies.html)
https://github.com/aporeto-inc/trireme-kubernetes
http://docs.projectcalico.org/v1.5/getting-started/kubernetes/installation/hosted/
https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.yaml)

daemonset	"calico-node"	created

deployment	"calico-policy-controller"	created

job	"configure-calico"	created

				

//	list	the	pods	in	kube-system

#	kubectl	get	pods	--namespace=kube-system

NAME																																								READY					STATUS				RESTARTS			AGE

calico-node-ss243																											2/2							Running			0										1m

calico-policy-controller-2249040168-r2270			1/1							Running			0										1m		

Let's	reuse	5-2-1_nginx.yaml	as	the	example:

#	kubectl	create	-f	5-2-1_nginx.yaml

replicaset	"nginx"	created

service	"nginx"	created

//	list	the	services

#	kubectl	get	svc

NAME									CLUSTER-IP			EXTERNAL-IP			PORT(S)								AGE

kubernetes			10.0.0.1					<none>								443/TCP								47m

nginx								10.0.0.42				<nodes>							80:31071/TCP			5m

We	will	find	that	our	nginx	service	has	IP	10.0.0.42.	Let's	launch	a	simple	bash
and	use	wget	to	see	if	we	can	access	our	nginx:

#	kubectl	run	busybox	-i	-t	--image=busybox	/bin/sh

If	you	don't	see	a	command	prompt,	try	pressing	enter.

/	#	wget	--spider	10.0.0.42	

Connecting	to	10.0.0.42	(10.0.0.42:80)		

The	--spider	parameter	is	used	to	check	whether	the	URL	exists.	In	this	case,
busybox	can	access	nginx	successfully.	Next,	let's	apply	a	NetworkPolicy	to	our
nginx	pods:

//	declare	a	network	policy

#	cat	5-3-1_networkpolicy.yaml

kind:	NetworkPolicy

apiVersion:	networking.k8s.io/v1

metadata:

		name:	nginx-networkpolicy

spec:

		podSelector:

		matchLabels:

				service:	nginx

		ingress:

	-	from:

			-	podSelector:

						matchLabels:

							project:	chapter5		

We	can	see	some	important	syntax	here.	The	podSelector	is	used	to	select	pods,
which	should	match	the	labels	of	the	target	pod.	Another	one	is
ingress[].from[].podSelector,	which	is	used	to	define	who	can	access	these	pods.	In
this	case,	all	the	pods	with	project=chapter5	labels	are	eligible	to	access	the	pods

with	server=nginx	labels.	If	we	go	back	to	our	busybox	pod,	we're	unable	to
contact	nginx	anymore	because	right	now,	the	nginx	pod	has	NetworkPolicy	on.
By	default,	it	is	deny	all,	so	busybox	won't	be	able	to	talk	to	nginx:

//	in	busybox	pod,	or	you	could	use	`kubectl	attach	<pod_name>	-c	busybox	-i	-t`	to	

re-attach	to	the	pod	

#	wget	--spider	--timeout=1	10.0.0.42

Connecting	to	10.0.0.42	(10.0.0.42:80)

wget:	download	timed	out		

We	could	use	kubectl	edit	deployment	busybox	to	add	the	label	project=chaper5	into
busybox	pods.

Refer	to	the	labels	and	selectors	section	in	Chapter	3,	Getting	Started
with	Kubernetes	if	you	forget	how	to	do	so.

After	that,	we	can	contact	nginx	pod	again:

//	inside	busybox	pod

/	#	wget	--spider	10.0.0.42	

Connecting	to	10.0.0.42	(10.0.0.42:80)		

With	the	help	of	the	preceding	example,	we	have	an	idea	how	to	apply	network
policy.	We	could	also	apply	some	default	polices	to	deny	all	or	allow	all	by
tweaking	the	selector	to	select	nobody	or	everybody.	For	example,	deny	all
behavior	could	be	achieved	as	follows:

#	cat	5-3-1_np_denyall.yaml

apiVersion:	networking.k8s.io/v1

kind:	NetworkPolicy

metadata:

		name:	default-deny

spec:

		podSelector:		

This	way,	all	pods	that	don't	match	labels	will	deny	all	other	traffic.
Alternatively,	we	could	create	a	NetworkPolicy	whose	ingress	is	listed	from
everywhere.	Then	the	pods	running	in	this	namespace	could	be	accessed	by
anyone	else.

#	cat	5-3-1_np_allowall.yaml

apiVersion:	networking.k8s.io/v1

kind:	NetworkPolicy

metadata:

		name:	allow-all

spec:

		podSelector:

		ingress:

		-	{}		

Summary
In	this	chapter,	we	have	learned	how	containers	communicate	with	each	other	as
it	is	essential,	and	we	introduced	how	pod-to-pod	communication	works.	Service
is	an	abstraction	to	route	the	traffic	to	any	of	the	pods	underneath,	if	label
selectors	match.	We	learned	how	service	works	with	pod	by	iptables	magic.	We
got	to	know	how	packet	routes	from	external	to	a	pod	and	the	DNAT,	un-DAT
tricks.	We	also	learned	new	API	objects	such	as	ingress,	which	allow	us	to	use
the	URL	path	to	route	to	different	services	in	the	backend.	In	the	end,	another
object	NetworkPolicy	was	introduced.	It	provides	a	second	layer	of	security,	acting
as	a	software	firewall	rule.	With	network	policy,	we	can	make	certain	pods
communicate	only	with	certain	pods.	For	example,	only	data	retrieval	service
can	talk	to	the	database	container.	All	of	these	things	make	Kubernetes	more
flexible,	secure,	and	powerful.

Until	now,	we've	learned	the	basic	concepts	of	Kubernetes.	Next,	we'll	get	a
clearer	understanding	of	what	is	happening	inside	your	cluster	by	monitoring
cluster	metrics	and	analyzing	applications	and	system	logs	for	Kubernetes.
Monitoring	and	logging	tools	are	essential	for	every	DevOps,	which	also	play	an
extremely	important	role	in	dynamic	clusters	such	as	Kubernetes.	So	we'll	get	an
insight	into	the	activities	of	the	cluster,	such	as	scheduling,	deployment,	scaling,
and	service	discovery.	The	next	chapter	will	help	you	better	understand	the	act	of
operating	Kubernetes	in	the	real	world.

Monitoring	and	Logging
Monitoring	and	logging	are	a	crucial	part	of	a	site's	reliability.	We've	learned
how	to	leverage	various	controllers	to	take	care	of	our	application,	and	about
utilizing	service	together	with	Ingress	to	serve	our	web	applications.	Next,	in	this
chapter,	we'll	learn	how	to	keep	track	of	our	application	by	means	of	the
following	topics:

Getting	status	snapshot	of	a	container
Monitoring	in	Kubernetes
Converging	metrics	from	Kubernetes	by	Prometheus
Concepts	of	logging	in	Kubernetes
Logging	with	Fluentd	and	Elasticsearch

Inspecting	a	container
Whenever	our	application	behaves	abnormally,	we	will	definitely	want	to	know
what	happened,	using	all	means,	such	as	checking	logs,	resource	usage,
processes	watchdog,	or	even	getting	into	the	running	host	directly	to	dig
problems	out.	In	Kubernetes,	we	have	kubectl	get	and	kubectl	describe	that	can
query	deployment	states,	which	will	help	us	determine	if	an	application	has
crashed	or	works	as	desired.

Further,	if	we	want	to	know	what	is	going	on	from	the	outputs	of	an	application,
we	also	have	kubectl	logs	that	redirects	a	container's	stdout	to	our	Terminal.	For
CPU	and	memory	usage	stats,	there's	also	a	top-like	command	we	can	employ,
kubectl	top.	kubectl	top	node,	which	gives	an	overview	of	the	resource	usages	of
nodes,	and	kubectl	top	pod	<POD_NAME>	which	displays	per-pod	usage:

#	kubectl	top	node

NAME								CPU(cores)			CPU%						MEMORY(bytes)		MEMORY%			

node-1						42m										4%								273Mi											12%							

node-2						152m									15%							1283Mi										75%							

				

#	kubectl	top	pod	mypod-name-2587489005-xq72v

NAME																									CPU(cores)			MEMORY(bytes)			

mypod-name-2587489005-xq72v			0m											0Mi												

To	use	kubectl	top,	you'll	need	Heapster	deployed	in	your	cluster.
We'll	discuss	this	later	in	the	chapter.

What	if	we	leave	something	such	as	logs	inside	a	container	and	they	are	not	sent
out	anywhere?	We	know	there's	a	docker	exec	execute	command	inside	a	running
container,	but	it's	unlikely	that	we	have	access	to	nodes	every	time.	Fortunately,
kubectl	allows	us	to	do	the	same	thing	with	the	kubectl	exec	command.	Its	usage	is
similar	to	the	Docker	one.	For	example,	we	can	run	a	shell	inside	the	container
in	a	pod	like	this:

$	kubectl	exec	-it	mypod-name-2587489005-xq72v	/bin/sh

/	#	

/	#	hostname

mypod-name-2587489005-xq72v		

It's	pretty	much	the	same	as	logging	onto	a	host	by	SSH,	and	it	enables	us	to

troubleshoot	with	tools	we	are	familiar	with,	as	we've	done	in	non-container
worlds.

Kubernetes	dashboard
In	addition	to	the	command-line	utility,	there	is	a	dashboard	that	aggregates
almost	every	information	we	have	just	discussed	on	a	decent	web-UI:

It's	in	fact	a	general	purpose	graphical	user	interface	of	a	Kubernetes	cluster,	as	it
also	allows	us	to	create,	edit,	and	delete	resources.	Deploying	it	is	quite	easy;	all
we	need	to	do	is	apply	a	template:

$	kubectl	create	-f	\	

https://raw.githubusercontent.com/kubernetes/dashboard/v1.6.3/src/deploy/kubernetes-da

shboard.yaml		

This	template	is	for	the	Kubernetes	cluster	with	RBAC	(role-based	access
control)	enabled.	Check	the	dashboard's	project	repository	(https://github.com/kubernet
es/dashboard)	if	you	need	other	deployment	options.	Regarding	RBAC,	we'll	talk
about	this	in	Chapter	8,	Cluster	Administration.	Many	managed	Kubernetes
services,	such	as	Google	Container	Engine,	pre-deployed	the	dashboard	in	the
cluster	so	that	we	don't	need	to	install	it	on	our	own.	To	determine	whether	the
dashboard	exists	in	our	cluster	or	not,	use	kubectl	cluster-info.

https://raw.githubusercontent.com/kubernetes/dashboard/v1.6.3/src/deploy/kubernetes-dashboard.yaml
https://github.com/kubernetes/dashboard

We'll	see	kubernetes-dashboard	is	running	at	...	if	it's	installed.	The	service	for
the	dashboard	deployed	with	the	default	template	or	provisioned	by	cloud
providers	is	usually	ClusterIP.	In	order	to	access	it,	we'll	need	to	establish	a
proxy	between	our	terminal	and	Kubernetes'	API	server	with	kubectl	proxy.	Once
the	proxy	is	up,	we	are	then	able	to	access	the	dashboard	at
http://localhost:8001/ui.	The	port	8001	is	the	default	port	of	kubectl	proxy.

As	with	kubectl	top,	you'll	need	Heapster	deployed	in	your	cluster	to
see	the	CPU	and	memory	stats.

Monitoring	in	Kubernetes
Since	we	now	know	how	to	examine	our	applications	in	Kubernetes,	it's	quite
natural	that	we	should	have	a	mechanism	to	do	so	constantly	to	detect	any
incident	at	the	first	occurrence.	To	put	it	another	way,	we	need	a	monitoring
system.	A	monitoring	system	collects	metrics	from	various	sources,	stores	and
analyzes	data	received,	and	then	responds	to	exceptions.	In	a	classical	setup	of
application	monitoring,	we	would	gather	metrics	from,	at	the	very	least,	three
different	layers	of	our	infrastructure	to	ensure	our	service's	availability	as	well	as
quality.

Application
The	data	we're	concerned	with	at	this	level	involves	the	internal	states	of	an
application,	which	can	help	us	determine	what's	going	on	inside	our	service.	For
example,	the	following	screenshot	is	from	Elasticsearch	Marvel	(https://www.elastic.c
o/guide/en/marvel/current/introduction.html),	called	Monitoring	from	version	5	onward),
which	is	a	monitoring	solution	for	an	Elasticsearch	cluster.	It	brings	together	the
information	about	our	cluster,	particularly	Elasticsearch	specific	metrics:

In	addition,	we	would	leverage	profiling	tools	in	conjunction	with	tracing	tools
to	instrument	our	program,	which	augments	dimensions	that	enables	us	to
inspect	our	service	in	a	finer	granularity.	Especially	nowadays,	an	application
might	be	composed	of	dozens	of	services	in	a	distributed	way.	Without	utilizing
tracing	tools,	such	as	OpenTracing	(http://opentracing.io)	implementations,
identifying	performance	culprits	can	be	extremely	difficult.

https://www.elastic.co/guide/en/marvel/current/introduction.html
http://opentracing.io

Host
Collecting	tasks	at	the	host	level	is	usually	performed	by	agents	provided	by	the
monitoring	framework.	The	agent	extracts	and	sends	out	comprehensive	metrics
about	a	host	such	as	loads,	disks,	connections,	or	stats	of	processes	that	assist	in
determining	a	host's	health.

External	resources
Aside	from	the	aforementioned	two	components,	we	also	need	to	check
dependent	components'	statuses.	For	instance,	say	we	have	an	application	that
consumes	a	queue	and	executes	corresponding	tasks;	we	should	also	take	care
about	the	metrics,	such	as	the	queue	length	and	the	consuming	rate.	If	the
consuming	rate	is	low	and	the	queue	length	keeps	growing,	our	application	is
supposedly	hitting	trouble.

These	principles	also	apply	to	containers	on	Kubernetes,	as	running	a	container
on	a	host	is	almost	identical	to	running	a	process.	Nonetheless,	due	to	the	fact
that	there	is	a	subtle	distinction	between	the	way	containers	on	Kubernetes	and
on	traditional	hosts	utilize	resources,	we	still	need	to	take	the	differences	into
consideration	when	employing	a	monitoring	strategy.	For	instance,	containers	of
an	application	on	Kubernetes	would	spread	across	multiple	hosts,	and	also	would
not	always	be	on	the	same	hosts.	It	would	be	grueling	to	produce	a	consistent
recording	of	one	application	if	we	are	still	adopting	the	host-centric	monitoring
approach.	Therefore,	rather	than	observing	resource	usages	at	the	host	level	only,
we	should	pile	a	container	layer	to	our	monitoring	stack.	Moreover,	since
Kubernetes	is,	in	reality,	the	infrastructure	to	our	applications,	we	absolutely
should	take	it	into	account	as	well.

Container
As	mentioned,	metrics	collected	at	the	container	level	and	what	we	get	at	the
host	level	are	pretty	much	the	same	thing,	particularly	the	usage	of	system
resources.	Notwithstanding	the	seeming	redundancy,	it's	the	very	key	which
facilitates	us	to	resolve	difficulties	on	monitoring	moving	containers.	The	idea	is
quite	simple:	what	we	need	to	do	is	attach	logical	information	to	metrics,	such	as
pod	labels	or	their	controller	name.	In	this	way,	metrics	coming	out	from
containers	across	distinct	hosts	could	be	meaningfully	grouped.	Consider	the
following	diagram;	say	we	want	to	know	how	many	bytes	transmitted	(tx)	on
App	2,	we	could	sum	up	tx	metrics	over	the	App	2	label	and	it	yields	20	MB:

Another	difference	is	that	metrics	on	CPU	throttling	are	reported	at	container
level	only.	If	performance	issues	are	encountered	at	a	certain	application	but	the
CPU	resource	on	the	host	is	spare,	we	can	check	if	it's	throttled	with	the
associated	metrics.

Kubernetes
Kubernetes	is	responsible	for	managing,	scheduling,	and	orchestrating	our
applications.	Accordingly,	once	an	application	has	crashed,	Kubernetes	is
certainly	one	of	the	first	places	we	would	want	to	look.	In	particular,	when	the
crash	happens	after	rolling	out	a	new	deployment,	the	state	of	associated	objects
would	be	reflected	instantly	on	Kubernetes.

To	sum	up,	components	that	should	be	monitored	are	illustrated	in	the	following
diagram:

Getting	monitoring	essentials	for
Kubernetes
For	every	layer	of	the	monitoring	stack,	we	can	always	find	a	counterpart
collector.	For	instance,	at	the	application	level,	we	can	dump	metrics	manually;
at	the	host	level,	we	would	install	a	metrics	collector	on	every	box;	as	for
Kubernetes,	there	are	APIs	for	exporting	the	metrics	that	we	are	interested	in,
and,	at	the	very	least,	we	have	kubectl	at	hand.

When	it	comes	to	the	container	level	collector,	what	options	do	we	have?
Perhaps	installing	the	host	metrics	collector	inside	the	image	of	our	application
does	the	job,	but	we'll	soon	realize	that	it	could	make	our	container	way	too
clumsy	in	terms	of	size	as	well	as	resource	utilizations.	Fortunately,	there's
already	a	solution	for	such	needs,	namely	cAdvisor	(https://github.com/google/cadvisor),
the	answer	to	the	container	level	metrics	collector.	Briefly	speaking,	cAdvisor
aggregates	the	resource	usages	and	performance	statistics	of	every	running
container	on	a	machine.	Notice	that	the	deployment	of	cAdvisor	is	one	per	host
instead	of	one	per	container,	which	is	more	reasonable	for	containerized
applications.	In	Kubernetes,	we	don't	even	care	about	deploying	cAdvisor,	as	it
has	already	been	embedded	into	kubelet.

cAdvisor	is	accessible	via	port	4194	on	every	node.	Prior	to	Kubernetes	1.7,	the
data	gathered	by	cAdvisor	was	able	to	be	collected	via	the	kubelet	port
(10250/10255)	as	well.	To	access	cAdvisor,	we	can	access	the	instance	port	4194	or
through	kubectl	proxy	at	http://localhost:8001/api/v1/nodes/<nodename>:4194/proxy/	or
access	http://<node-ip>:4194/	directly.

The	following	screenshot	is	from	the	cAdvisor	Web	UI.	You	will	see	a	similar
page	once	connected.	For	viewing	the	metrics	that	cAdvisor	grabbed,	visit	the
endpoint,	/metrics.

https://github.com/google/cadvisor

>

Another	important	component	in	the	monitoring	pipeline	is	Heapster	(https://github.
com/kubernetes/heapster).	It	retrieves	monitoring	statistics	from	every	node,
specifically	kubelet	on	nodes	processing,	and	writes	to	external	sinks	afterward.
It	also	exposes	aggregated	metrics	via	the	REST	API.	The	function	of	Heapster
sounds	rather	redundant	with	cAdvisor,	but	they	play	different	roles	in	the
monitoring	pipeline	in	practice.	Heapster	gathers	cluster-wide	statistics;
cAdvisor	is	a	host-wide	component.	That	is	to	say,	Heapster	empowers	a
Kubernetes	cluster	with	the	basic	monitoring	ability.	The	following	diagram
illustrates	how	it	interacts	with	other	components	in	a	cluster:

As	a	matter	of	fact,	it's	unnecessary	to	install	Heapster	if	your	monitoring

https://github.com/kubernetes/heapster

framework	offers	a	similar	tool	that	also	scrapes	metrics	from	kubelet.	However,
since	it's	a	default	monitoring	component	in	Kubernetes'	ecosystem,	many	tools
rely	on	it,	such	as	kubectl	top	and	the	Kubernetes	dashboard	mentioned	earlier.

Before	deploying	Heapster,	check	if	the	monitoring	tool	you're	using	is
supported	as	a	Heapster	sink	in	this	document:	https://github.com/kubernetes/heapster/blob/
master/docs/sink-configuration.md.

If	not,	we	can	just	have	a	standalone	setup	and	make	the	dashboard	and	kubectl
top	work	by	applying	this	template:

$	kubectl	create	-f	\

				https://raw.githubusercontent.com/kubernetes/heapster/master/deploy/kube-

config/standalone/heapster-controller.yaml		

Remember	to	apply	this	template	if	RBAC	is	enabled:

$	kubectl	create	-f	\	

https://raw.githubusercontent.com/kubernetes/heapster/master/deploy/kube-

config/rbac/heapster-rbac.yaml

After	Heapster	is	installed,	the	kubectl	top	command	and	the	Kubernetes
dashboard	should	display	resource	usages	properly.

While	cAdvisor	and	Heapster	focus	on	physical	metrics,	we	also	want	the	logical
states	of	objects	being	displayed	on	our	monitoring	dashboard.	kube-state-
metrics	(https://github.com/kubernetes/kube-state-metrics)	is	the	very	piece	that	completes
our	monitoring	stack.	It	watches	Kubernetes	masters	and	transforms	the	object
statues	we	see	from	kubectl	get	or	kubectl	describe	to	metrics	in	Prometheus	format
(https://prometheus.io/docs/instrumenting/exposition_formats/).	As	long	as	the	monitoring
system	supports	this	format,	we	can	scrape	the	states	into	the	metrics	storage	and
be	alerted	on	events	such	as	unexplainable	restart	counts.	To	install	kube-state-
metrics,	first	download	the	templates	inside	the	kubernetes	folder	under	the	project
repository(https://github.com/kubernetes/kube-state-metrics/tree/master/kubernetes),	and	then
apply	them:

$	kubectl	apply	-f	kubernetes

Afterwards,	we	can	view	the	states	inside	a	cluster	in	the	metrics	on	its	service
endpoint:

http://kube-state-metrics.kube-system:8080/metrics

https://github.com/kubernetes/heapster/blob/master/docs/sink-configuration.md
https://github.com/kubernetes/kube-state-metrics
https://prometheus.io/docs/instrumenting/exposition_formats/
https://github.com/kubernetes/kube-state-metrics/tree/master/kubernetes

Hands-on	monitoring
So	far,	we've	learned	lots	of	principles	to	fabricate	an	impervious	monitoring
system	in	Kubernetes	toward	a	robust	service,	and	it's	time	to	implement	a
pragmatic	one.	Because	the	vast	majority	of	Kubernetes	components	expose
their	instrumented	metrics	on	a	conventional	path	in	Prometheus	format,	we	are
free	to	use	any	monitoring	tool	with	which	we	are	acquainted	as	long	as	the	tool
understands	the	format.	In	this	section,	we'll	set	up	an	example	with	an	open-
source	project,	Prometheus	(https://prometheus.io),	which	is	a	platform-independent
monitoring	tool.	Its	popularity	in	Kubernetes'	ecosystem	is	for	not	only	its
powerfulness	but	also	for	its	being	backed	by	the	Cloud	Native	Computing
Foundation	(https://www.cncf.io/),	who	also	sponsors	the	Kubernetes	project.

https://prometheus.io
https://www.cncf.io/

Meeting	Prometheus
The	Prometheus	framework	comprises	several	components,	as	illustrated	in	the
following	diagram:

As	with	all	other	monitoring	frameworks,	Prometheus	relies	on	agents	scraping
out	statistics	from	the	components	of	our	system,	and	those	agents	are	the
exporters	at	the	left	of	the	diagram.	Besides	this,	Prometheus	adopts	the	pull
model	on	metrics	collecting,	which	is	to	say	that	it's	not	receiving	metrics
passively,	but	actively	pulls	data	back	from	the	metrics'	endpoints	on	exporters.
If	an	application	exposes	a	metric's	endpoint,	Prometheus	is	able	to	scrape	that
data	as	well.	The	default	storage	backend	is	an	embedded	LevelDB,	and	can	be
switched	to	other	remote	storages	such	as	InfluxDB	or	Graphite.	Prometheus	is
also	responsible	for	sending	alerts	according	to	pre-configured	rules	to	Alert
manager.	Alert	manager	handles	alarm	sending	tasks.	It	groups	alarms
received	and	dispatches	them	to	tools	that	actually	send	messages,	such	as	email,
Slack,	PagerDuty,	and	so	on.	In	addition	to	alerts,	we	would	also	like	to	visualize
collected	metrics	for	getting	a	quick	overview	of	our	system,	and	Grafana	is
what	comes	in	handy	here.

Deploying	Prometheus
The	templates	we've	prepared	for	this	chapter	can	be	found	here:
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter6

Under	6-1_prometheus	are	manifests	for	this	section,	including	a	Prometheus
deployment,	exporters,	and	related	resources.	They'll	be	settled	at	a	dedicated
namespace,	monitoring,	except	components	required	to	work	in	kube-system
namespaces.	Please	review	them	carefully,	and	now	let's	create	resources	in	the
following	order:

$	kubectl	apply	-f	monitoring-ns.yml

$	kubectl	apply	-f	prometheus/config/prom-config-default.yml

$	kubectl	apply	-f	prometheus		

Usages	of	resources	are	confined	to	a	relatively	low	level	at	provided	setups.	If
you'd	like	to	use	them	in	a	more	formal	way,	adjusting	parameters	according	to
actual	requirements	is	recommended.	After	the	Prometheus	server	is	up,	we	can
connect	to	its	Web-UI	at	port	9090	by	kubectl	port-forward.	We	can	use	NodePort	or
Ingress	to	connect	to	the	UI	if	modifying	its	service	(prometheus/prom-svc.yml)
accordingly.	The	first	page	we	will	see	when	entering	the	UI	is	Prometheus'
expression	browser,	where	we	build	queries	and	visualize	metrics.	Under	the
default	settings,	Prometheus	will	collect	metrics	from	itself.	All	valid	scraping
targets	can	be	found	at	path	/targets.	To	speak	to	Prometheus,	we	have	to	gain
some	understanding	of	its	language:	PromQL.

https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter6

Working	with	PromQL
PromQL	has	three	data	types:	instant	vector,	range	vector,	and	scalar.	An	instant
vector	is	a	time	series	of	data	sampled;	a	range	vector	is	a	set	of	time	series
containing	data	within	a	certain	time	range;	a	scalar	is	a	numeric	floating	value.
Metrics	stored	inside	Prometheus	are	identified	with	a	metric	name	and	labels,
and	we	can	find	the	name	of	any	collected	metric	with	the	drop-down	list	next	to
the	Execute	button	on	the	expression	browser.	If	we	query	Prometheus	with
metric	names,	say	http_requests_total,	we'll	get	lots	of	results	as	instant	vectors
match	the	name	but	with	different	labels.	Likewise,	we	can	also	query	a
particular	set	of	labels	only	with	{}	syntax.	For	example,	the	query
{code="400",method="get"}	means	that	we	want	any	metric	that	has	the	label	code,
method	equals	to	400,	and	get	respectively.	Combining	names	and	labels	in	a	query
is	also	valid,	such	as	http_requests_total{code="400",method="get"}.	PromQL	grants	us
the	detective	ability	to	inspect	our	applications	or	systems	from	all	kinds	of	clues
so	long	as	related	metrics	are	collected.

In	addition	to	the	basic	queries	just	mentioned,	there's	so	much	more	to	PromQL,
such	as	querying	labels	with	regex	and	logical	operators,	joining	and	aggregating
metrics	with	functions,	and	even	performing	operations	between	different
metrics.	For	instance,	the	following	expression	gives	us	the	total	memory
consumed	by	a	kube-dns	deployment	in	the	kube-system	namespace:

sum(container_memory_usage_bytes{namespace="kube-system",	pod_name=~"kube-dns-

(\\d+)-.*"})	/	1048576

More	detailed	documents	can	be	found	at	Prometheus'	official	site	(https://prometheu
s.io/docs/querying/basics/),	and	it	certainly	should	help	you	to	unleash	the	power	of
Prometheus.

https://prometheus.io/docs/querying/basics/

Discovering	targets	in	Kubernetes
Since	Prometheus	only	pulls	metrics	from	endpoints	it	knows,	we	have	to
explicitly	tell	it	where	we'd	like	to	collect	data	from.	Under	the	path	/config	is	the
page	that	lists	current	configured	targets	to	pull.	By	default,	there	would	be	one
job	that	collects	the	current	metrics	about	Prometheus	itself,	and	it's	in	the
conventional	scraping	path,	/metrics.	We	would	see	a	very	long	text	page	if
connecting	to	the	endpoint:

$	kubectl	exec	-n	monitoring	prometheus-1496092314-jctr6	--	\

wget	-qO	-	localhost:9090/metrics

				

#	HELP	go_gc_duration_seconds	A	summary	of	the	GC	invocation	durations.

#	TYPE	go_gc_duration_seconds	summary

go_gc_duration_seconds{quantile="0"}	2.4032e-05

go_gc_duration_seconds{quantile="0.25"}	3.7359e-05

go_gc_duration_seconds{quantile="0.5"}	4.1723e-05

...

This	is	just	the	Prometheus	metrics	format	we've	mentioned	several	times.	Next
time	when	we	see	any	page	like	this,	we	will	know	it's	a	metrics	endpoint.

The	default	job	to	scrape	Prometheus	is	configured	as	a	static	target.	However,
with	the	fact	that	containers	in	Kubernetes	are	created	and	destroyed
dynamically,	it's	really	troublesome	to	find	out	the	exact	address	of	a	container,
let	alone	set	it	on	Prometheus.	In	some	cases,	we	may	utilize	service	DNS	as	a
static	metrics	target,	but	this	still	cannot	solve	all	cases.	Fortunately,	Prometheus
helps	us	overcome	the	problem	with	its	ability	to	discover	services	inside
Kubernetes.

To	be	more	specific,	it's	able	to	query	Kubernetes	about	the	information	of
running	services,	and	adds	or	deletes	them	to	the	target	configuration
accordingly.	Four	kinds	of	discovery	mechanisms	are	currently	supported:

The	node	discovery	mode	creates	one	target	per	node,	and	the	target	port
would	be	kubelet's	port	by	default.
The	service	discovery	mode	creates	a	target	for	every	service	object,	and	all
defined	ports	in	a	service	would	become	a	scraping	target.
The	pod	discovery	mode	works	in	a	similar	way	to	the	service	discovery

role,	that	is,	it	creates	targets	per	pod	and	for	each	pod	it	exposes	all	the
defined	container	ports.	If	there	is	no	port	defined	in	a	pod's	template,	it
would	still	create	a	scraping	target	with	its	address	only.
The	endpoints	mode	discovers	endpoint	objects	created	by	a	service.	For
example,	if	a	service	is	backed	by	three	pods	with	two	ports	each,	then	we'll
have	six	scraping	targets.	In	addition,	for	a	pod,	not	only	ports	that	expose
to	a	service	but	also	other	declared	container	ports	would	be	discovered.

The	following	diagram	illustrates	four	discovery	mechanisms:	the	left	ones	are
the	resources	in	Kubernetes,	and	those	in	the	right	list	are	targets	created	in
Prometheus:

Generally	speaking,	not	all	exposed	ports	are	served	as	a	metrics	endpoint,	so	we
certainly	don't	want	Prometheus	to	grab	everything	in	our	cluster	but	collect
marked	resources	only.	To	achieve	this,	Prometheus	utilizes	annotations	on
resource	manifests	to	distinguish	which	targets	are	to	be	grabbed.	The	annotation
format	is	as	follows:

On	pod:	If	a	pod	is	created	by	a	pod	controller,	remember	to	set
Prometheus	annotations	in	the	pod	spec	rather	than	in	the	pod	controller:

prometheus.io/scrape:	true	indicates	that	this	pod	should	be	pulled.
prometheus.io/path:	Set	this	annotation	to	the	path	that	exposes	metrics;	it
only	needs	to	be	set	if	the	target	pod	is	using	a	path	other	than	/metrics.

prometheus.io/port:	If	the	defined	port	is	different	from	the	actual	metrics
port,	override	it	with	this	annotation.

On	service:	Since	endpoints	are	mostly	not	created	manually,	endpoint
discovery	uses	the	annotations	inherited	from	a	service.	That	is	to	say,
annotations	on	services	effect	service	and	endpoint	discovery	modes
simultaneously.	As	such,	we'd	use	prometheus.io/scrape:	'true'	to	denote
endpoints	created	by	a	service	that	are	to	be	scraped,	and	use
prometheus.io/probe:	'true'	to	tag	a	service	with	metrics.	Moreover,
prometheus.io/scheme	designates	whether	http	or	https	is	used.	Other	than	that,
the	path	and	port	annotations	also	work	here.

The	following	template	snippet	indicates	Prometheus'	endpoint	discovery	role,
but	the	service	discovery	role	to	create	targets	on	pods	is	selected	at:	9100/prom.

apiVersion:	v1	

kind:	Service	

metadata:	

		annotations:	

				prometheus.io/scrape:	'true'	

				prometheus.io/path:	'/prom'	

...	

spec:	

		ports:	

	-	port:	9100	

The	template	prom-config-k8s.yml	under	our	example	repository	contains	the
configuration	to	discover	Kubernetes	resources	for	Prometheus.	Apply	it	with:

$	kubectl	apply	-f	prometheus/config/prom-config-k8s.yml		

Because	it's	a	ConfigMap,	it	takes	seconds	to	become	consistent.	Afterwards,
reload	Prometheus	by	sending	a	SIGHUP	to	the	process:

$	kubectl	exec	-n	monitoring	${PROM_POD_NAME}	--	kill	-1	1

The	provided	template	is	based	on	this	example	from	Prometheus'	official
repository;	you	can	find	out	more	usages	here:

https://github.com/prometheus/prometheus/blob/master/documentation/examples/prometheus-kubernetes.y
ml

Also,	the	document	page	describes	in	detail	how	the	Prometheus	configuration
works:

https://github.com/prometheus/prometheus/blob/master/documentation/examples/prometheus-kubernetes.yml

https://prometheus.io/docs/operating/configuration/

https://prometheus.io/docs/operating/configuration/

Gathering	data	from	Kubernetes
The	steps	for	implementing	the	five	monitoring	layers	discussed	earlier	in
Prometheus	are	quite	clear	now:	installing	exporters,	annotating	them	with
appropriate	tags,	and	then	collecting	them	on	auto-discovered	endpoints.

The	host	layer	monitoring	in	Prometheus	is	done	by	the	node	exporter	(https://githu
b.com/prometheus/node_exporter).	Its	Kubernetes	manifest	can	be	found	under	the
examples	for	this	chapter,	and	it	contains	one	DaemonSet	with	a	scrape
annotation.	Install	it	with:

$	kubectl	apply	-f	exporters/prom-node-exporter.yml

Its	corresponding	configuration	will	be	created	by	a	pod	discovery	role.

The	container	layer	collector	should	be	cAdvisor,	and	it	has	already	been
installed	in	kubelet.	Consequently,	discovering	it	with	the	node	mode	is	the	only
thing	what	we	need	to	do.

Kubernetes	monitoring	is	done	by	kube-state-metrics,	which	was	also	introduced
previously.	One	even	better	thing	is	that	it	comes	with	Prometheus	annotations,
and	this	means	that	we	don't	need	to	do	anything	additional	to	configure	it.

Up	to	this	point,	we've	already	set	up	a	strong	monitoring	stack	based	on
Prometheus.	With	respect	to	the	application	and	external	resources	monitoring,
there	are	extensive	exporters	in	the	Prometheus	ecosystem	to	support	monitoring
various	components	inside	our	system.	For	instance,	if	we	need	statistics	of	our
MySQL	database,	we	could	just	install	MySQL	Server	Exporter	(https://github.com/pr
ometheus/mysqld_exporter),	which	offers	comprehensive	and	useful	metrics.

In	addition	to	those	metrics	already	described,	there	are	some	other	useful
metrics	from	Kubernetes	components	that	play	a	significant	part	in	a	variety	of
aspects:

Kubernetes	API	server:	The	API	server	exposes	its	state	at	/metrics,	and
this	target	is	enabled	by	default.
kube-controller-manager:	This	component	exposes	metrics	on	port	10252,

https://github.com/prometheus/node_exporter
https://github.com/prometheus/mysqld_exporter

but	it's	invisible	on	some	managed	Kubernetes	services	such	as	Google
Container	Engine	(GKE).	If	you're	on	a	self-hosted	cluster,	applying
"kubernetes/self/kube-controller-manager-metrics-svc.yml"	creates	endpoints	for
Prometheus.
kube-scheduler:	It	uses	port	10251,	and	it's	not	visible	on	clusters	by	GKE
as	well.	"kubernetes/self/kube-scheduler-metrics-svc.yml"	is	the	template	for
creating	a	target	to	Prometheus.
kube-dns:	There	are	two	containers	in	a	kube-dns	pod,	dnsmasq	and	sky-dns,
and	their	metrics	ports	are	10054	and	10055	respectively.	The	corresponding
template	is	kubernetes/self/	kube-dns-metrics-svc.yml.
etcd:	The	etcd	cluster	also	has	a	Prometheus	metrics	endpoint	on	port	4001.
If	your	etcd	cluster	is	self-hosted	and	managed	by	Kubernetes,	you	can	take
"kubernetes/self/etcd-server.yml"	as	a	reference.
Nginx	ingress	controller:	The	nginx	controller	publishes	metrics	at	port
10254.	But	the	metrics	contain	only	limited	information.	To	get	data	such	as
connection	counts	by	host	or	by	path,	you'll	need	to	activate	the	vts	module
in	the	controller	to	enhance	the	metrics	collected.

Seeing	metrics	with	Grafana
The	expression	browser	has	a	built-in	graph	panel	that	enables	us	to	see	the
visualized	metrics,	but	it's	not	designed	to	serve	as	a	visualization	dashboard	for
daily	routines.	Grafana	is	the	best	option	for	Prometheus.	We've	discussed	how
to	set	up	Grafana	in	Chapter	4,	Working	with	Storage	and	Resources,	and	we	also
provide	templates	in	the	repository	for	this	chapter;	both	options	do	the	job.

To	see	Prometheus	metrics	in	Grafana,	we	have	to	add	a	data	source	first.	The
following	configurations	are	required	to	connect	to	our	Prometheus	server:

Type:	"Prometheus"
Url:	http://prometheus-svc.monitoring:9090
Access:	proxy

Once	it's	connected,	we	can	import	a	dashboard	to	see	something	in	action.	On
Grafana's	sharing	page	(https://grafana.com/dashboards?dataSource=prometheus)	are	rich	off-
the-shelf	dashboards.	The	following	screenshot	is	from	the	dashboard	#1621:

https://grafana.com/dashboards?dataSource=prometheus

Because	the	graphs	are	drawn	by	data	from	Prometheus,	we	are	capable	of
plotting	any	data	with	which	we	are	concerned	as	long	as	we	master	PromQL.

Logging	events
Monitoring	with	quantitative	time	series	of	a	system	status	enables	us	to	briskly
dig	out	which	components	in	our	system	failed,	but	it's	still	inadequate	to
diagnose	with	the	root	cause	under	syndromes.	As	a	result,	a	logging	system	that
gathers,	persists,	and	searches	logs	is	certainly	helpful	for	uncovering	the	reason
why	something	went	wrong	by	means	of	correlating	events	with	the	anomalies
detected.

In	general,	there	are	two	main	components	in	a	logging	system:	the	logging
agent	and	the	logging	backend.	The	former	is	an	abstract	layer	to	a	program.	It
gathers,	transforms,	and	dispatches	logs	to	the	logging	backend.	A	logging
backend	warehouses	all	logs	received.	As	with	monitoring,	the	most	challenging
part	of	building	a	logging	system	for	Kubernetes	is	ascertaining	how	to	gather
logs	from	containers	to	a	centralized	logging	backend.	Typically,	there	are	three
ways	to	send	out	logs	to	a	program:

Dumping	everything	to	stdout/stderr
Writing	log	files
Sending	logs	to	a	logging	agent	or	logging	the	backend	directly;	programs
in	Kubernetes	are	also	able	to	emit	logs	in	the	same	manner	so	long	as	we
understand	how	log	streams	flow	in	Kubernetes

Patterns	of	aggregating	logs
For	programs	that	log	to	a	logging	agent	or	backend	directly,	whether	they	are
inside	Kubernetes	or	not	doesn't	matter	on	the	whole,	as	they	technically	don't
output	logs	through	Kubernetes.	As	for	other	cases,	we'd	use	the	following	two
patterns	to	centralize	logs.

Collecting	logs	with	a	logging	agent
per	node
We	know	messages	we	retrieved	via	kubectl	logs	are	streams	redirected	from
stdout/stderr	of	a	container,	but	it's	obviously	not	a	good	idea	to	collect	logs	with
kubectl	logs.	Actually,	kubectl	logs	gets	logs	from	kubelet,	and	kubelet	aggregates
logs	to	the	host	path,	/var/log/containers/,	from	the	container	engine	underneath.

Therefore,	setting	up	logging	agents	on	every	node	and	configuring	them	to	tail
and	forward	log	files	under	the	path	are	just	what	we	need	for	converging
standard	streams	of	running	containers,	as	shown	in	the	following	diagram:

In	practice,	we'd	also	configure	a	logging	agent	to	tail	logs	from	the	system	and
Kubernetes,	components	under	/var/log	on	masters	and	nodes	such	as:

kube-proxy.log

kube-apiserver.log

kube-scheduler.log

kube-controller-manager.log

etcd.log

Aside	from	stdout/stderr,	if	logs	of	an	application	are	stored	as	files	in	the
container	and	persisted	via	the	hostPath	volume,	a	node	logging	agent	is	capable
of	passing	them	to	a	node	likewise.	However,	for	each	exported	log	file,	we	have
to	customize	their	corresponding	configurations	in	the	logging	agent	so	that	they
can	be	dispatched	correctly.	Moreover,	we	also	need	to	name	log	files	properly	to

prevent	any	collision	and	take	care	of	log	rotation	on	our	own,	which	makes	it	an
unscalable	and	unmanageable	logging	mechanism.

Running	a	sidecar	container	to
forward	logs
Sometimes	it's	just	difficult	to	modify	our	application	to	write	logs	to	standard
streams	rather	than	log	files,	and	we	wouldn't	want	to	face	the	troubles	brought
about	by	logging	to	hostPath	volumes.	In	such	a	situation,	we	could	run	a	Sidecar
container	to	deal	with	logging	within	only	one	pod.	In	other	words,	each
application	pod	would	have	two	containers	sharing	the	same	emptyDir	volume	so
that	the	Sidecar	container	can	follow	logs	from	the	application	container	and
send	them	outside	their	pod,	as	shown	in	the	following	diagram:

Although	we	don't	need	to	worry	about	management	of	log	files	anymore,	chores
such	as	configuring	logging	agents	for	each	pod	and	attaching	metadata	from
Kubernetes	to	log	entries	still	takes	extra	effort.	Another	choice	is	leveraging	the
Sidecar	container	to	outputting	logs	to	standard	streams	instead	of	running	a
dedicated	logging	agent	like	the	following	pod;	the	application	container
unremittingly	writes	messages	to	/var/log/myapp.log,	and	the	Sidecar	tails	myapp.log
in	the	shared	volume.

---6-2_logging-sidecar.yml---	

apiVersion:	v1	

kind:	Pod	

metadata:	

		name:	myapp	

spec:	

		containers:	

		-	image:	busybox	

				name:	application	

				args:	

					-	/bin/sh	

					-	-c	

					-	>	

						while	true;	do	

								echo	"$(date)	INFO	hello"	>>	/var/log/myapp.log	;	

								sleep	1;	

						done	

				volumeMounts:	

				-	name:	log	

						mountPath:	/var/log	

		-	name:	sidecar	

				image:	busybox	

				args:	

					-	/bin/sh	

					-	-c	

					-	tail	-fn+1	/var/log/myapp.log	

				volumeMounts:	

				-	name:	log	

						mountPath:	/var/log	

		volumes:	

		-	name:	log	

emptyDir:	{}		

Now	we	can	see	the	written	log	with	kubectl	logs:

$	kubectl	logs	-f	myapp	-c	sidecar

Tue	Jul	25	14:51:33	UTC	2017	INFO	hello

Tue	Jul	25	14:51:34	UTC	2017	INFO	hello

...

Ingesting	Kubernetes	events
The	event	messages	we	saw	at	the	output	of	kubectl	describe	contain	valuable
information	and	complement	the	metrics	gathered	by	kube-state-metrics,	which
allows	us	to	know	what	exactly	happened	to	our	pods	or	nodes.	Consequently,	it
should	be	part	of	our	logging	essentials	together	with	system	and	application
logs.	In	order	to	achieve	this,	we'll	need	something	to	watch	Kubernetes	API
servers	and	aggregate	events	into	a	logging	sink.	And	there	is	eventer	that	does
what	we	need	to	events.

Eventer	is	part	of	Heapster,	and	it	currently	supports	Elasticsearch,	InfluxDB,
Riemann,	and	Google	Cloud	Logging	as	its	sink.	Eventer	can	also	output	to
stdout	directly	in	case	the	logging	system	we're	using	is	not	supported.

Deployment	of	eventer	is	similar	to	deploying	Heapster,	except	for	the	container
startup	commands,	as	they	are	packed	in	the	same	image.	The	flags	and	options
for	each	sink	type	can	be	found	here:	(https://github.com/kubernetes/heapster/blob/master/docs
/sink-configuration.md).

Example	templates	we	provided	for	this	chapter	also	include	eventer,	and	it's
configured	to	work	with	Elasticsearch.	We'll	describe	it	in	the	next	section.

https://github.com/kubernetes/heapster/blob/master/docs/sink-configuration.md

Logging	with	Fluentd	and
Elasticsearch
Thus	far	we've	discussed	various	conditions	on	the	logging	we	may	encounter	in
the	real	world,	and	it's	time	to	roll	up	our	sleeves	to	fabricate	a	logging	system
with	what	we	have	learned.

The	architecture	of	a	logging	system	and	a	monitoring	system	are	pretty	much
the	same	in	some	ways--collectors,	storages,	and	the	user-interface.	The
corresponding	components	we're	going	to	set	up	are	Fluentd/eventer,
Elasticsearch,	and	Kibana,	respectively.	Templates	for	this	section	can	be	found
under	6-3_efk,	and	they'd	be	deployed	to	the	namespace	monitoring	from	the
previous	part.

Elasticsearch	is	a	powerful	text	search	and	analysis	engine,	which	makes	it	an
ideal	choice	for	persisting,	processing,	and	analyzing	logs	from	everything
running	in	our	cluster.	The	Elasticsearch	template	for	this	chapter	uses	a	very
simple	setup	to	demonstrate	the	concept.	If	you'd	like	to	deploy	an	Elasticsearch
cluster	for	production	use,	leveraging	the	StatefulSet	controller	and	tuning
Elasticsearch	with	the	proper	configuration,	as	we	discussed	in	Chapter	4,	Working
with	Storage	and	Resources,	is	recommended.	Let's	deploy	Elasticsearch	with
the	following	template	(https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter6
/6-3_efk/):

$	kubectl	apply	-f	elasticsearch/es-config.yml

$	kubectl	apply	-f	elasticsearch/es-logging.yml

Elasticsearch	is	ready	if	there's	a	response	from	es-logging-svc:9200.

The	next	step	is	setting	up	a	node	logging	agent.	As	we'd	run	it	on	every	node,
we	definitely	want	it	as	light	as	possible	in	terms	of	resource	usages	of	a	node,
hence	Fluentd	(www.fluentd.org)	is	opted	for.	Fluentd	features	in	lower	memory
footprints,	which	makes	it	a	competent	logging	agent	for	our	needs.
Furthermore,	since	the	logging	requirement	in	the	containerized	environment	is
very	focused,	there	is	a	sibling	project,	Fluent	Bit	(fluentbit.io),	which	aims	to

https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter6/6-3_efk/
http://www.fluentd.org

minimize	the	resource	usages	by	trimming	out	functions	that	wouldn't	be	used
for	its	target	scenario.	In	our	example,	we	would	use	the	Fluentd	image	for
Kubernetes	(https://github.com/fluent/fluentd-kubernetes-daemonset)	to	conduct	the	first
logging	pattern	we	mentioned	previously.

The	image	is	already	configured	to	forward	container	logs	under
/var/log/containers	and	logs	of	certain	system	components	under	/var/log.	We	are
absolutely	able	to	further	customize	its	logging	configuration	if	need	be.	Two
templates	are	provided	here:	fluentd-sa.yml	is	the	RBAC	configuration	for	the
Fluentd	DaemonSet,	fluentd-ds.yml:

$	kubectl	apply	-f	fluentd/fluentd-sa.yml

$	kubectl	apply	-f	fluentd/fluentd-ds.yml		

Another	must-have	logging	component	is	eventer.	Here	we	prepared	two
templates	for	different	conditions.	If	you're	on	a	managed	Kubernetes	service
where	Heapster	is	already	deployed,	the	template	for	a	standalone	eventer,
eventer-only.yml,	is	used	in	this	case.	Otherwise,	consider	the	template	of	running
Heapster	in	combination	with	eventer	in	the	same	pod:

$	kubectl	apply	-f	heapster-eventer/heapster-eventer.yml

or

$	kubectl	apply	-f	heapster-eventer/eventer-only.yml

To	see	logs	emitted	to	Elasticsearch,	we	can	invoke	the	search	API	of
Elasticsearch,	but	there's	a	better	option,	namely	Kibana,	a	web	interface	that
allows	us	to	play	with	Elasticsearch.	The	template	for	Kibana	is
elasticsearch/kibana-logging.yml	under	https://github.com/DevOps-with-Kubernetes/examples/tree/
master/chapter6/6-3_efk/.

$	kubectl	apply	-f	elasticsearch/kibana-logging.yml		

Kibana	in	our	example	is	listening	to	port	5601.	After	exposing	the	service	out	of
your	cluster	and	connecting	to	it	with	any	browser,	you	can	start	to	search	logs
from	Kubernetes.	The	index	name	of	the	logs	sent	out	by	eventer	is	heapster-*,
and	it's	logstash-*	for	logs	forwarded	by	Fluentd.	The	following	screenshot	shows
what	a	log	entry	looks	like	in	Elasticsearch.

The	entry	is	from	our	earlier	example,	myapp,	and	we	can	find	that	the	entry	is
already	tagged	with	handy	metadata	on	Kubernetes.

https://github.com/fluent/fluentd-kubernetes-daemonset
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter6/6-3_efk/

Extracting	metrics	from	logs
The	monitoring	and	logging	system	we	built	around	our	application	on	top	of
Kubernetes	is	shown	in	the	following	diagram:

The	logging	part	and	the	monitoring	part	look	like	two	independent	tracks,	but
the	value	of	the	logs	is	much	more	than	a	collection	of	short	texts.	They	are
structured	data	and	emitted	with	timestamps	as	usual;	as	such,	the	idea	to
transform	logs	into	time-series	data	is	promising.	However,	although	Prometheus
is	extremely	good	at	processing	time-series	data,	it	cannot	ingest	texts	without
any	transformation.

An	access	log	entry	from	HTTPD	looks	like	this:

10.1.8.10	-	-	[07/Jul/2017:16:47:12	0000]	"GET	/ping	HTTP/1.1"	200	68.

It	consists	of	the	request	IP	address,	time,	method,	handler,	and	so	on.	If	we
demarcate	log	segments	by	their	meanings,	counted	sections	can	then	be
regarded	as	a	metric	sample	like	this:	"10.1.8.10":	1,	"GET":	1,	"/ping":	1,	"200":	1.

Tools	such	as	mtail	(https://github.com/google/mtail)	and	Grok	Exporter	(https://github.com/f
stab/grok_exporter)	count	log	entries	and	organize	those	numbers	to	metrics	so	that
we	can	further	process	them	in	Prometheus.

https://github.com/google/mtail
https://github.com/fstab/grok_exporter

Summary
At	the	start	of	this	chapter,	we	described	how	to	get	the	status	of	running
containers	quickly	by	means	of	built-in	functions	such	as	kubectl.	Then	we
expanded	the	discussion	to	concepts	and	principles	of	monitoring,	including	why
it	is	necessary	to	do	monitoring,	what	to	monitor,	and	how	to	monitor.
Afterwards,	we	built	a	monitoring	system	with	Prometheus	as	the	core,	and	set
up	exporters	to	collecting	metrics	from	Kubernetes.	The	fundamentals	of
Prometheus	were	also	introduced	so	that	we	can	leverage	metrics	to	gain	more
understanding	of	our	cluster	as	well	as	the	applications	running	inside.	On	the
logging	part,	we	mentioned	common	patterns	of	logging	and	how	to	deal	with
them	in	Kubernetes,	and	deployed	an	EFK	stack	to	converge	logs.	The	system
we	built	in	this	chapter	facilitates	the	reliability	of	our	service.	Next,	we	are
advancing	to	set	up	a	pipeline	to	deliver	our	product	continuously	in	Kubernetes.

Continuous	Delivery
Topics	we've	discussed	so	far	enable	us	to	run	our	services	in	Kubernetes.	With
the	monitoring	system,	we've	gained	more	confidence	in	our	service.	The	next
thing	we'd	like	to	achieve	to	set	our	service	on	course	is	how	to	deliver	our	latest
features	as	well	as	ameliorations	to	our	service	continuously	in	Kubernetes,	and
we'll	learn	it	with	the	following	topics	in	this	chapter:

Updating	Kubernetes	resources
Setting	up	a	delivery	pipeline
Techniques	to	improve	the	deployment	process

Updating	resources
The	property	of	Continuous	Delivery	is	as	what	we	described	in	Chapter	1,
Introduction	to	DevOps,	a	set	of	operations	including	the	Continuous
Integration	(CI)	and	ensuing	deployment	tasks.	The	CI	flow	comprises
elements	like	version	control	systems,	buildings,	and	different	levels	of
automated	tests.	Tools	to	implement	CI	functions	are	usually	at	the	application
layer	which	can	be	independent	to	underlying	infrastructure,	but	when	it	comes
to	achieving	deployment,	understanding	and	dealing	with	infrastructure	is
inevitable	since	the	deployment	tasks	are	tightly	bound	to	the	platform	that	our
application	is	running	on.	In	the	environment	that	software	runs	on	physical	or
virtual	machines,	we'd	utilize	configuration	management	tools,	orchestrators,
and	scripts	to	deploy	our	software.	However,	if	we're	running	our	service	on	an
application	platform	like	Heroku,	or	even	in	the	Serverless	pattern,	designing	the
deployment	pipeline	would	be	a	totally	different	story.	All	in	all,	the	goal	of
deployment	tasks	is	about	making	sure	our	software	works	properly	in	the	right
places.	In	Kubernetes,	it's	about	how	to	rightly	update	resources,	in	particular,
pods.

Triggering	updates
In	Chapter	3,	Getting	Started	with	Kubernetes,	we've	discussed	the	rolling	update
mechanism	of	pods	of	a	Deployment.	Let's	recap	what'd	happen	after	the	update
process	is	triggered:

1.	 The	Deployment	creates	a	new	ReplicaSet	with	0	pod	according	to	the
updated	manifest.

2.	 The	new	ReplicaSet	is	scaled	up	gradually	while	the	previous	ReplicaSet	keeps
shrinking.

3.	 The	process	ends	after	all	the	old	pods	are	replaced.

Such	a	mechanism	is	done	automatically	by	Kubernetes,	and	it	exempts	us	from
supervising	the	updating	process.	To	trigger	it,	all	we	need	to	do	is	inform
Kubernetes	that	the	pod	specification	of	a	Deployment	is	updated,	that	is	to	say,
modifying	the	manifest	of	one	resource	in	Kubernetes.	Suppose	we	have	a
Deployment	my-app	(see	ex-deployment.yml	under	the	example	directory	for	this
section),	we	can	modify	the	manifest	with	the	sub	commands	of	kubectl	as
follows:

kubectl	patch:	Patches	a	manifest	of	an	object	partially	according	to	the	input
JSON	parameter.	If	we'd	like	to	update	the	image	of	my-app	from	alpine:3.5	to
alpine:3.6,	it'd	be:

$	kubectl	patch	deployment	my-app	-p	'{"spec":{"template":{"spec":

{"containers":[{"name":"app","image":"alpine:3.6"}]}}}}'

kubectl	set:	Makes	changes	to	certain	properties	of	an	object.	This	is	a
shortcut	to	change	some	properties	directly,	image	of	a	Deployment	is	one
of	the	properties	it	supports:

$	kubectl	set	image	deployment	my-app	app=alpine:3.6

kubectl	edit:	Opens	an	editor	and	dumps	the	current	manifest	so	that	we	can
edit	it	interactively.	The	modified	one	would	take	effect	immediately	after
being	saved.
kubectl	replace:	Replaces	one	manifest	with	another	submitted	template	file.

If	a	resource	is	not	created	yet	or	contains	properties	that	can't	be	changed,
it	yields	errors.	For	instance,	there	are	two	resources	in	our	example
template	ex-deployment.yml,	namely	the	Deployment	my-app	and	its	Service	my-
app-svc.	Let's	replace	them	with	a	new	specification	file:

$	kubectl	replace	-f	ex-deployment.yml

deployment	"my-app"	replaced

The	Service	"my-app-svc"	is	invalid:	spec.clusterIP:	Invalid	value:	"":	field	

is	immutable

$	echo	$?

1

After	they	are	replaced,	we'd	see	the	error	code	would	be	1	even	though
the	result	is	expected,	that	is,	updating	the	Deployment	rather	than	the
Service.	Such	behavior	should	be	noticed	especially	when	composing
automation	scripts	for	the	CI/CD	flow.

kubectl	apply:	Applies	the	manifest	file	anyway.	In	other	words,	if	a	resource
exists	in	Kubernetes,	then	it'd	be	updated,	otherwise	it'd	be	created.	When
kubectl	apply	is	used	to	create	resources,	it's	roughly	equal	to	kubectl	create	--
save-config	in	functionality.	The	applied	specification	file	would	be	saved	to
the	annotation	field	kubectl.kubernetes.io/last-applied-	configuration
accordingly,	and	we	can	manipulate	it	with	sub	commands	edit-last-applied,
set-last-applied,	and	view-last-applied.	For	example,	we	can	view	the	template
we've	submitted	previously,	no	matter	what	the	actual	content	of	ex-
deployment.yml	become	with:

$	kubectl	apply	-f	ex-deployment.yml	view-last-applied

The	saved	manifest	information	would	exactly	be	the	same	as	what	we've
sent,	unlike	the	one	we	retrieve	via	kubectl	get	-o	yaml/json	which	contains
an	object's	live	status,	in	addition	to	specifications.

Although	in	this	section	we	only	focus	on	manipulating	a	Deployment,	but	the
commands	here	also	work	for	updating	all	other	Kubernetes	resources	like
Service,	Role,	and	so	on.

Changes	to	ConfigMap	and	secret	usually	take	seconds	to	propagate
to	pods.

The	recommended	way	to	interact	with	an	Kubernetes'	API	server	is	by	kubectl.
If	you're	under	a	confined	environment,	there	are	also	REST	APIs	for
manipulating	resources	of	Kubernetes.	For	example,	the	kubectl	patch	command
we	used	before	would	become	as	follows:

$	curl	-X	PATCH	-H	'Content-Type:	application/strategic-merge-patch+json'	--data	

'{"spec":{"template":{"spec":{"containers":[{"name":"app","image":"alpine:3.6"}]}}}}'	

'https://$KUBEAPI/apis/apps/v1beta1/namespaces/default/deployments/my-app'

Here	the	variable	$KUBEAPI	is	the	endpoint	of	the	API	server.	See	API	references
for	more	information:	https://kubernetes.io/docs/api-reference/v1.7/.

https://kubernetes.io/docs/api-reference/v1.7/

Managing	rollouts
Once	the	rollout	process	is	triggered,	Kubernetes	would	silently	complete	all
tasks	behind	the	backdrop.	Let's	try	some	hands-on	experiments.	Again,	the
rolling	update	process	won't	be	triggered	even	if	we've	modified	something	with
the	commands	mentioned	earlier,	unless	the	associated	pod's	specification	is
changed.	The	example	we	prepared	is	a	simple	script	that	would	respond	to	any
request	with	its	hostname	and	the	Alpine	version	it	runs	on.	We	first	create	the
Deployment,	and	check	its	response	in	another	Terminal	constantly:

$	kubectl	apply	-f	ex-deployment.yml

deployment	"my-app"	created

service	"my-app-svc"	created

$	kubectl	proxy

Starting	to	serve	on	127.0.0.1:8001

//	switch	to	another	terminal	#2

$	while	:;	do	curl	localhost:8001/api/v1/proxy/namespaces/default/services/my-app-

svc:80/;	sleep	1;	

done

my-app-3318684939-pwh41-v-3.5.2	is	running...

my-app-3318684939-smd0t-v-3.5.2	is	running...

...

Now	we	change	its	image	to	another	version	and	see	what	the	responses	are:

$	kubectl	set	image	deployment	my-app	app=alpine:3.6

deployment	"my-app"	image	updated

//	switch	to	terminal	#2

my-app-99427026-7r5lr-v-3.6.2	is	running...

my-app-3318684939-pwh41-v-3.5.2	is	running...

...

Messages	from	version	3.5	and	3.6	are	interleaved	until	the	updating	process
ends.	To	immediately	determine	the	status	of	updating	processes	from
Kubernetes	rather	than	polling	the	service	endpoint,	there's	kubectl	rollout	for
managing	the	rolling	update	process,	including	inspecting	the	progress	of
ongoing	updates.	Let's	see	the	acting	rollout	with	sub	command	status:

$	kubectl	rollout	status	deployment	my-app

Waiting	for	rollout	to	finish:	3	of	5	updated	replicas	are	available...

Waiting	for	rollout	to	finish:	3	of	5	updated	replicas	are	available...

Waiting	for	rollout	to	finish:	4	of	5	updated	replicas	are	available...

Waiting	for	rollout	to	finish:	4	of	5	updated	replicas	are	available...

deployment	"my-app"	successfully	rolled	out

At	this	moment,	the	output	at	Terminal	#2	should	be	all	from	version	3.6.	The
sub	command	history	allows	us	to	review	previous	changes	of	the	deployment:

$	kubectl	rollout	history	deployment	my-app

REVISION				CHANGE-CAUSE

1											<none>

2											<none>		

However,	the	CHANGE-CAUSE	field	doesn't	show	any	useful	information	that	helps	us
to	know	the	detail	of	the	revision.	To	leverage	it,	add	a	flag	--record	after	every
command	that	leads	to	a	change,	such	as	what	we've	introduced	earlier.
Certainly,	kubectl	create	also	support	the	record	flag.

Let's	make	some	change	to	the	Deployment,	say,	modifying	the	environment
variable	DEMO	of	pods	of	my-app.	As	it	causes	a	change	in	the	pod's	specification,	a
rollout	would	start	right	away.	This	sort	of	behavior	allows	us	to	trigger	an
update	without	building	a	new	image.	For	simplicity's	sake,	we	use	patch	to
modify	the	variable:

$	kubectl	patch	deployment	my-app	-p	'{"spec":{"template":{"spec":{"containers":

[{"name":"app","env":[{"name":"DEMO","value":"1"}]}]}}}}'	--record

deployment	"my-app"	patched

$	kubectl	rollout	history	deployment	my-app

deployments	"my-app"

REVISION				CHANGE-CAUSE

1											<none>

2											<none>

3											kubectl	patch	deployment	my-app	--

patch={"spec":{"template":{"spec":{"containers":

[{"name":"app","env":[{"name":"DEMO","value":"1"}]}]}}}}	--record=true		

The	CHANGE-CAUSE	of	REVISION	3	notes	the	committed	command	clearly.	Nonetheless,
only	the	command	would	be	recorded,	which	means	any	modification	by
edit/apply/replace	wouldn't	be	marked	down	explicitly.	If	we'd	like	to	get	the
manifest	of	former	versions,	we	could	retrieve	the	saved	configuration	as	long	as
our	changes	are	made	with	apply.

For	all	kinds	of	reasons,	sometimes	we	want	to	roll	back	our	application	even	if
the	rollout	is	successful	to	a	certain	extent.	It	can	be	achieved	by	the	sub
command	undo:

$	kubectl	rollout	undo	deployment	my-app

deployment	"my-app"	rolled	back

The	whole	process	is	basically	identical	to	updating,	that	is,	applying	the

previous	manifest,	and	performing	a	rolling	update.	Also,	we	can	utilize	the	flag
--to-revision=<REVISION#>	to	rollback	to	a	specific	version,	but	only	retained
revisions	are	able	to	be	rolled	back.	Kubernetes	determines	how	many	revisions
it	would	keep	according	to	the	revisionHistoryLimit	parameter	in	Deployment
objects.

The	progress	of	an	update	is	controlled	by	kubectl	rollout	pause	and	kubectl	rollout
resume.	As	their	names	indicate,	they	should	be	used	in	pairs.	The	pause	of	a
Deployment	implicates	not	only	stopping	of	an	ongoing	rollout,	but	also	freezing
any	rolling	updates	even	if	the	specification	is	modified	unless	it's	resumed.

Updating	DaemonSet	and	StatefulSet
Kubernetes	supports	various	ways	to	orchestrate	pods	for	different	kinds	of
workloads.	In	addition	to	Deployments,	there	are	DaemonSet	and	StatefulSet	for
long-running,	non-batch	workloads.	As	pods	they	spawned	have	more	constraint
than	Deployments,	we	should	know	caveats	on	handling	their	updates

DaemonSet
DaemonSet	is	a	controller	designed	for	system	daemons	as	its	name	suggests.
Consequently,	a	DaemonSet	launches	and	maintains	exactly	one	pod	per	node,	this
is	to	say,	the	total	number	of	pods	by	a	DaemonSet	is	adhered	to	a	number	of	nodes
in	a	cluster.	Due	to	such	limitations,	updating	a	DaemonSet	is	not	as	straightforward
as	updating	a	Deployment.	For	instance,	Deployment	has	a	maxSurge	parameter
(.spec.strategy.rollingUpdate.maxSurge)	that	controls	how	many	redundant	pods	over
desired	numbers	can	be	created	during	updates.	But	we	can't	employ	the	same
strategy	for	the	pod	as	a	DaemonSet	usually	occupies	host's	resources	like	ports.	It
could	result	in	errors	if	we	have	two	or	more	system	pods	simultaneously	on	a
node.	As	such,	the	update	is	in	the	form	that	a	new	pod	is	created	after	the	old
pod	is	terminated	on	a	host.

Kubernetes	implements	two	update	strategies	for	DaemonSet,	namely	OnDelete	and
rollingUpdate.	An	example	demonstrates	how	to	write	a	template	of	DaemonSet	is	at
7-1_updates/ex-daemonset.yml.	The	update	strategy	is	set	at	path
.spec.updateStrategy.type,	and	its	default	is	OnDelete	in	Kubernetes	1.7,	and	it
becomes	rollingUpdate	since	Kubernetes	1.8:

OnDelete:	Pods	are	only	updated	after	they	are	deleted	manually.
rollingUpdate:	It	actually	works	like	OnDelete	but	the	deletion	of	pods	is
performed	by	Kubernetes	automatically.	There	is	one	optional	parameter
.spec.updateStrategy.rollingUpdate.maxUnavailable,	which	is	akin	to	the	one	in
Deployment.	Its	default	value	is	1,	which	means	Kubernetes	replaces	one
pod	at	a	time	node	by	node.

The	trigger	of	the	rolling	update	process	is	identical	to	a	Deployment's.
Moreover,	we	can	also	utilize	kubectl	rollout	to	manage	rollouts	of	our	DaemonSet.
But	pause	and	resume	are	not	supported.

Rolling	updates	for	DaemonSet	are	only	available	at	Kubernetes	1.6
and	onward.

StatefulSet
The	updating	of	StatefulSet	and	DaemonSet	are	pretty	much	the	same	--	they	don't
create	redundant	pods	during	an	update,	and	their	update	strategies	also	behave
in	a	similar	way.	There	is	also	a	template	file	at	7-1_updates/ex-statefulset.yml	for
practice.	The	option	of	update	strategy	is	set	at	path	.spec.updateStrategy.type:

OnDelete:	Pods	are	only	updated	after	they	are	manually	deleted.
rollingUpdate:	Like	every	rolling	update,	Kubernetes	deletes	and	creates	pods
in	a	controlled	fashion.	But	Kubernetes	knows	the	order	matters	in
StatefulSet,	so	it	would	replace	pods	in	reverse	ordinal.	Say	we	have	three
pods	in	a	StatefulSet,	and	they	are	my-ss-0,	my-ss-1,	my-ss-2	respectively.	The
update	order	is	then	starting	from	my-ss-2	to	my-ss-0.	The	deletion	process
does	not	respect	the	pod	management	policy,	that	is	to	say,	even	if	we	set
the	pod	management	policies	to	Parallel,	the	updating	would	still	be
performed	one	by	one.

The	only	parameter	for	type	rollingUpdate	is	partition
(.spec.updateStrategy.rollingUpdate.partition).	If	it's	specified,	any	pod	with
its	ordinal	less	than	the	partition	number	would	keep	its	current	version
and	wouldn't	be	updated.	For	instance,	if	we	set	it	to	1	in	a	StatefulSet
with	3	pods,	only	pod-1	and	pod-2	would	be	updated	after	a	rollout.	This
parameter	allows	us	to	control	the	progress	at	certain	degrees	and	it's
particularly	handy	for	scenarios	such	as	waiting	for	data	synchronization,
testing	the	release	with	a	canary,	or	maybe	we	just	want	to	stage	an
update.

Pod	management	policies	and	rolling	updates	are	two	features
implemented	in	Kubernetes	1.7	and	later.

Building	a	delivery	pipeline
Implementing	a	continuous	delivery	pipeline	for	containerized	applications	is
quite	simple.	Let's	remember	what	we	have	learnt	about	Docker	and	Kubernetes
so	far	and	organize	them	into	the	CD	pipeline.	Suppose	we've	done	our	code,
Dockerfile,	and	corresponding	Kubernetes	templates.	To	deploy	them	to	our
cluster,	we'd	go	through	the	following	steps:

1.	 docker	build:	Produces	an	executable	immutable	artifact.
2.	 docker	run:	Verifies	if	the	build	works	with	some	simple	test.

	

3.	 docker	tag:	Tags	the	build	with	meaningful	versions	if	it's	good.
4.	 docker	push:	Moves	the	build	to	the	artifacts	repository	for	distribution.
5.	 kubectl	apply:	Deploys	the	build	to	a	desired	environment.
6.	 kubectl	rollout	status:	tracks	the	progress	of	deployment	tasks.

That's	all	for	a	simple	but	viable	delivery	pipeline.

Choosing	tools
To	make	the	pipeline	ship	builds	continuously,	we	need	at	least	three	kinds	of
tools,	namely	version	control	systems,	build	servers,	and	a	repository	for	storing
container	artifacts.	In	this	section,	we	will	set	a	reference	CD	pipeline	based	on
the	SaaS	tools	we've	introduced	in	previous	chapters.	They	are	GitHub	(https://gith
ub.com),	Travis	CI	(https://travis-	ci.org),	and	Docker	Hub	(https://hub.docker.com),	all	of
them	are	free	to	open	source	projects.	There	are	numerous	alternatives	for	each
tool	we	used	here,	like	GitLab	for	VCS,	or	hosting	a	Jenkins	for	CI.	The
following	diagram	is	our	CD	flow	based	on	the	three	services	earlier:

>

The	workflow	begins	from	committing	codes	into	a	repository	on	GitHub,	and
the	commit	would	invoke	a	build	job	on	Travis	CI.	Our	Docker	image	is	built	at
this	stage.	Meanwhile,	we	often	run	different	levels	of	tests	on	the	CI	server	to
ensure	that	the	quality	of	build	is	solid.	Further,	as	running	an	application	stack
by	Docker	Compose	or	Kubernetes	is	easier	than	ever,	we	are	capable	of	running
tests	involving	many	components	in	a	build	job.	Afterwards,	the	verified	image
is	tagged	with	identifiers	and	pushed	to	the	public	Docker	Registry	service,
Docker	Hub.

No	blocks	in	our	pipeline	are	dedicated	to	deployment	tasks.	Instead,	we	rely	on
Travis	CI	to	deploy	our	builds.	As	a	matter	of	fact,	the	deployment	task	is	merely
applying	Kubernetes	templates	on	certain	builds	after	the	image	is	pushed.
Finally,	the	delivery	is	finished	after	the	rolling	update	process	by	Kubernetes
ends.

https://github.com
https://travis-ci.org
https://hub.docker.com

Steps	explained
Our	example,	my-app	is	a	web	service	that	echoes	OK	constantly,	and	the	code	as
well	as	the	files	for	deployment	are	committed	in	our	repository	over	in	GitHub
here:	(https://github.com/DevOps-with-Kubernetes/my-app).

Before	configuring	our	builds	on	Travis	CI,	let's	create	an	image	repository	at
Docker	Hub	first	for	later	use.	After	signing	in	to	Docker	Hub,	press	the	huge
Create	Repository	at	top-right,	and	then	follow	the	steps	on	screen	to	create	one.
Image	registry	of	my-app	for	pushing	and	pulling	is	at	devopswithkubernetes/my-app	(http
s://hub.docker.com/r/devopswithkubernetes/my-app/).

Connecting	Travis	CI	with	a	GitHub	repository	is	quite	simple,	all	we	need	to	do
is	authorize	Travis	CI	to	access	our	GitHub	repositories,	and	enable	Travis	CI	to
build	the	repository	at	the	profile	page	(https://travis-ci.org/profile).

The	definition	of	a	job	in	Travis	CI	is	configured	in	a	file	.travis.yml	placed	under
the	same	repository.	It's	a	YAML	format	template	consisting	of	blocks	of	shell
scripts	that	tell	what	Travis	CI	should	do	during	a	build.	Explanations	on	blocks
of	our	.travis.yml	(https://github.com/DevOps-with-Kubernetes/my-app/blob/master/.travis.yml)	are
the	following:

https://github.com/DevOps-with-Kubernetes/my-app
https://hub.docker.com/r/devopswithkubernetes/my-app/
https://travis-ci.org/profile
https://github.com/DevOps-with-Kubernetes/my-app/blob/master/.travis.yml

env
This	section	defines	environment	variables	that	are	visible	throughout	a	build:

DOCKER_REPO=devopswithkubernetes/my-app					

BUILD_IMAGE_PATH=${DOCKER_REPO}:b${TRAVIS_BUILD_NUMBER}

RELEASE_IMAGE_PATH=${DOCKER_REPO}:${TRAVIS_TAG}

RELEASE_TARGET_NAMESPACE=default		

Here	we	set	some	variables	that	might	be	changed	like	the	namespace	and	the
docker	registry	path	to	where	the	built	image	is	going.	Besides,	there're	also
metadata	about	a	build	passed	from	Travis	CI	in	the	form	of	environment
variables,	and	they	are	documented	here:	https://docs.travis-ci.com/user/environment-variable
s/#Default-Environment-	Variables.	For	example,	TRAVIS_BUILD_NUMBER	represents	the	number
of	the	current	build,	and	we	use	it	as	an	identifier	to	distinguish	our	images
across	builds.

The	other	one	source	of	environment	variables	is	configured	manually	on	Travis
CI.	Because	the	variables	configured	there	would	be	hidden	publicly,	we	stored
some	sensitive	data	such	as	credentials	to	Docker	Hub	and	Kubernetes	there:

Every	CI	tool	has	own	best	practices	to	deal	with	secrets.	For	instance,	some	CI
tools	also	allow	us	to	save	variables	in	the	CI	server,	but	they	would	still	be
printed	in	the	building	logs,	so	we're	unlikely	to	save	secrets	in	the	CI	server	in
such	cases.

https://docs.travis-ci.com/user/environment-variables/#Default-Environment-Variables

script
This	section	is	where	we	run	builds	and	tests:

docker	build	-t	my-app	.

docker	run	--rm	--name	app	-dp	5000:5000	my-app

sleep	10

CODE=$(curl	-IXGET	-so	/dev/null	-w	"%{http_code}"	localhost:5000)

'[${CODE}	-eq	200]	&&	echo	"Image	is	OK"'

docker	stop	app		

As	we're	on	Docker,	the	build	is	only	one	line	of	script.	Our	test	is	quite	simple
as	well--launching	a	container	with	the	built	image	and	making	some	requests
against	it	to	determine	its	correctness	and	integrity.	Definitely,	we	can	do
everything	such	as	adding	unit	tests,	doing	the	multi-stage	build,	or	running	an
automated	integration	test	to	better	the	resultant	artifacts	in	this	stage.

after_success
This	block	is	executed	only	if	the	previous	stage	ends	without	any	error.	Once	it
comes	here,	we	are	good	to	publish	our	image:

docker	login	-u	${CI_ENV_REGISTRY_USER}	-p	"${CI_ENV_REGISTRY_PASS}"

docker	tag	my-app	${BUILD_IMAGE_PATH}

docker	push	${BUILD_IMAGE_PATH}

if	[[${TRAVIS_TAG}	=~	^rel.*$]];	then

		docker	tag	my-app	${RELEASE_IMAGE_PATH}

		docker	push	${RELEASE_IMAGE_PATH}

fi

Our	image	tag	trivially	uses	the	build	number	on	Travis	CI,	but	using	the	hash	of
a	commit,	or	version	numbers	to	tag	an	image	is	common,	too.	However,	using
the	default	tag	latest	is	strongly	discouraged	as	it	could	result	in	version
confusion	such	as	running	two	different	images	but	they	have	the	same	name.
The	last	conditional	block	is	publishing	the	image	on	certain	branch	tags,	and	it's
not	actually	needed,	for	we	just	want	to	keep	building	and	releasing	on	a
separate	track.	Remember	to	authenticate	to	Docker	Hub	before	pushing	an
image.

Kubernetes	decides	whether	the	image	should	be	pulled	by	the
imagePullPolicy:	https://kubernetes.io/docs/concepts/containers/images/#updating-ima
ges.

Because	we	set	our	project	deploys	to	actual	machines	only	on	a	release,	a	build
may	stop	and	be	returned	at	that	moment.	Let's	see	the	log	of	this	build:	https://travi
s-	ci.org/DevOps-with-Kubernetes/my-app/builds/268053332.	The	log	retains	scripts	that	Travis
CI	executed	and	outputs	from	every	line	of	the	script:

As	we	can	see,	our	build	is	successful,	so	the	image	is	then	published	here:

https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://travis-ci.org/DevOps-with-Kubernetes/my-app/builds/268053332

https://hub.docker.com/r/devopswithkubernetes/my-app/tags/.

The	build	refers	to	tag	b1,	and	we	can	run	it	outside	the	CI	server	now:

$	docker	run	--name	test	-dp	5000:5000	devopswithkubernetes/my-app:b1

72f0ef501dc4c86786a81363e278973295a1f67555eeba102a8d25e488831813

$	curl	localhost:5000

OK

https://hub.docker.com/r/devopswithkubernetes/my-app/tags/

deploy
Although	we	can	achieve	a	fully	automated	pipeline	from	end	to	end,	we'd	often
encounter	situations	to	hold	up	deploying	builds	due	to	business	reasons.	As
such,	we	tell	Travis	CI	to	run	deployment	scripts	only	when	we	release	a	new
version.

To	manipulate	resources	in	our	Kubernetes	cluster	from	Travis	CI,	we'll	need	to
grant	Travis	CI	sufficient	permissions.	Our	example	uses	a	service	account	cd-
agent	under	RBAC	mode	to	create	and	update	our	deployments	on	behalf	of	us.
Later	chapters	will	have	more	descriptions	on	RBAC.	The	templates	for	creating
the	account	and	permissions	are	at:	https://github.com/DevOps-with-Kubernetes/examples/tree/
master/chapter7/7-	2_service-account-for-ci-tool.	The	account	is	created	under	namespace	cd,
and	it's	authorized	to	create	and	modify	most	kinds	of	resources	across
namespaces.

Here	we	use	a	service	account	that	is	able	to	read	and	modify	most
resources	across	namespaces,	including	secrets	of	the	whole
cluster.	Due	to	security	concerns,	its	always	encouraged	to	restrict
permissions	of	a	service	account	to	resources	the	account	actually
used,	or	it	could	be	a	potential	vulnerability.

Because	Travis	CI	sits	outside	our	cluster,	we	have	to	export	credentials	from
Kubernetes	so	that	we	can	configure	our	CI	job	to	use	them.	Here	we	provide	a
simple	script	to	help	export	those	credentials.	The	script	is	at:	https://github.com/DevO
ps-with-	Kubernetes/examples/blob/master/chapter7/get-sa-token.sh.

$./get-sa-token.sh	--namespace	cd	--account	cd-agent

API	endpoint:

https://35.184.53.170

ca.crt	and	sa.token	exported

$	cat	ca.crt	|	base64

LS0tLS1C...

$	cat	sa.token

eyJhbGci...

Corresponding	variables	of	exported	API	endpoint,	ca.crt,	and	sa.token	are
CI_ENV_K8S_MASTER,	CI_ENV_K8S_CA,	and	CI_ENV_K8S_SA_TOKEN	respectively.	The	client
certificate	(ca.crt)	is	encoded	to	base64	for	portability,	and	it	will	be	decoded	at

https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter7/7-2_service-account-for-ci-tool
https://github.com/DevOps-with-Kubernetes/examples/blob/master/chapter7/get-sa-token.sh

our	deployment	script.

The	deployment	script	(https://github.com/DevOps-with-Kubernetes/my-	app/blob/master/deploym
ent/deploy.sh)	downloads	kubectl	first,	and	configures	kubectl	with	environment
variables	accordingly.	Afterwards,	the	image	path	of	the	current	build	is	filled	in
the	deployment	template,	and	the	templates	are	applied.	Finally,	after	the	rollout
is	finished,	our	deployment	is	done.

Let's	see	the	entire	flow	in	action.

As	soon	as	we	publish	a	release	at	GitHub:

https://github.com/DevOps-with-Kubernetes/my-app/releases/tag/rel.0.3

Travis	CI	starts	to	build	our	job	right	after	that:

The	built	image	is	pushed	onto	Docker	Hub	after	a	while:

https://github.com/DevOps-with-Kubernetes/my-app/blob/master/deployment/deploy.sh
https://github.com/DevOps-with-Kubernetes/my-app/releases/tag/rel.0.3

At	this	point,	Travis	CI	should	start	to	run	deployment	tasks,	let's	see	the
building	log	to	know	the	status	of	our	deployment:

https://travis-ci.org/DevOps-with-Kubernetes/my-app/builds/268107714

As	we	can	see,	our	application	has	rolled	out	successfully,	and	it	should	start	to
welcome	everyone	with	OK:

$	kubectl	get	deployment

NAME						DESIRED			CURRENT			UP-TO-DATE			AVAILABLE			AGE

my-app				3									3									3												3											30s

$	kubectl	proxy	&

$	curl	localhost:8001/api/v1/namespaces/default/services/my-app-svc:80/proxy/

OK

The	pipeline	we	built	and	demonstrated	in	this	section	is	a	classical	flow	to
deliver	codes	continuous	in	Kubernetes.	Nonetheless,	as	the	work	style	and
cultures	vary	from	team	to	team,	designing	a	tailor-made	continuously	delivery
pipeline	for	your	team	rewards	efficiency	boosts.

https://travis-ci.org/DevOps-with-Kubernetes/my-app/builds/268107714

Gaining	deeper	understanding	of
pods
Although	the	birth	and	the	death	are	merely	a	wink	during	a	pod's	lifetime,	they
are	the	most	fragile	point	of	a	service.	Common	situations	in	the	real	world	such
as	routing	requests	to	an	unready	box,	or	brutally	cutting	all	in-flight	connections
to	a	terminating	machine,	are	all	what	we	want	to	avoid.	As	a	result,	even
Kubernetes	takes	care	of	most	things	for	us,	and	we	should	know	how	to
configure	it	correctly	to	gain	more	confident	in	deploying.

Starting	a	pod
By	default,	Kubernetes	transfers	a	pod's	state	to	Running	as	soon	as	a	pod
launches.	If	the	pod	is	behind	a	service,	the	endpoint	controller	registers	an
endpoint	to	Kubernetes	immediately.	Later	on	kube-proxy	observes	the	change
of	endpoints	and	add	rules	to	iptables	accordingly.	Requests	from	the	outside
world	now	go	to	pods.	Kubernetes	makes	the	pod	registration	lightning	fast,	so
the	changes	are	that	the	request	goes	to	pods	prior	to	an	application's	readiness,
especially	on	bulky	software.	On	the	other	hand,	if	a	pod	fails	while	running,	we
should	have	an	automatic	way	to	remove	it	instantly.

The	minReadySeconds	field	of	Deployment	and	other	controllers	doesn't
postpone	a	pod	from	becoming	ready.	Instead,	it	delays	a	pod	from
becoming	available,	which	is	meaningful	during	a	rollout	process:
a	rollout	is	successful	only	when	all	pods	are	available.

Liveness	and	readiness	probes
A	probe	is	an	indicator	to	a	container's	health.	It	judges	the	health	through
periodically	performing	a	diagnostic	action	against	a	container	via	kubelet:

Liveness	probe:	Indicates	whether	a	container	is	alive	or	not.	If	a	container
fails	on	this	probe,	kubelet	kills	it	and	may	restart	it	based	on	the
restartPolicy	of	a	pod.
Readiness	probe:	Indicates	whether	a	container	is	ready	for	incoming
traffic.	If	a	pod	behind	a	service	is	not	ready,	its	endpoint	won't	be	created
until	the	pod	is	ready.

retartPolicy	tells	how	Kubernetes	treats	a	pod	on	failures	or
terminations.	It	has	three	modes:	Always,	OnFailure,	or	Never.	Default
is	set	to	Always.

Three	kinds	of	action	handlers	can	be	configured	to	perform	against	a	container:

exec:	Executes	a	defined	command	inside	the	container.	Considered	to	be
successful	if	the	exit	code	is	0.
tcpSocket:	Tests	a	given	port	via	TCP,	successful	if	the	port	is	opened.
httpGet:	Performs	an	HTTP	GET	to	the	IP	address	of	target	container.	Headers	in
the	request	to	be	sent	is	customizable.	This	check	is	considered	to	be
healthy	if	the	status	code	satisfies:	400	>	CODE	>=	200.

Additionally,	there	are	five	parameters	to	define	a	probe's	behavior:

initialDelaySeconds:	How	long	kubelet	should	be	waiting	for	before	the	first
probing.
successThreshold:	A	container	is	considered	to	be	healthy	when	getting
consecutive	times	of	probing	successes	passed	this	threshold.
failureThreshold:	Same	as	preceding	but	defines	the	negative	side.
timeoutSeconds:	The	time	limitation	of	a	single	probe	action.
periodSeconds:	Intervals	between	probe	actions.

The	following	code	snippet	demonstrates	the	usage	of	a	readiness	probe,	the	full

template	is	here:	https://github.com/DevOps-with-	Kubernetes/examples/blob/master/chapter7/7-3_on
_pods/probe.yml

...

					containers:

						-	name:	main

								image:	devopswithkubernetes/my-app:b5

								readinessProbe:

										httpGet:

												path:	/

												port:	5000

										periodSeconds:	5

										initialDelaySeconds:	10

										successThreshold:	2

										failureThreshold:	3	

										timeoutSeconds:	1

								command:

...

How	the	probe	behaves	is	illustrated	in	the	following	diagram:

The	upper	timeline	is	a	pod's	real	readiness,	and	another	line	below	is	its
readiness	from	Kubernetes'	view.	The	first	probing	executes	10	seconds	after	the
pod	is	created,	and	the	pod	is	regarded	as	ready	after	2	probing	successes.	A	few
seconds	later,	the	pod	goes	out	of	service	due	to	an	unknown	reason,	and	it
becomes	unready	after	the	next	three	failures.	Try	to	deploy	the	preceding
example	and	observe	its	output:

...

Pod	is	created	at	1505315576

starting	server	at	1505315583.436334

1505315586.443435	-	GET	/	HTTP/1.1

1505315591.443195	-	GET	/	HTTP/1.1

1505315595.869020	-	GET	/from-tester

1505315596.443414	-	GET	/	HTTP/1.1

1505315599.871162	-	GET	/from-tester

stopping	server	at	1505315599.964793

1505315601	readiness	test	fail#1

1505315606	readiness	test	fail#2

1505315611	readiness	test	fail#3

...

In	our	example	file,	there	is	another	pod	tester	which	is	constantly	making

https://github.com/DevOps-with-Kubernetes/examples/blob/master/chapter7/7-3_on_pods/probe.yml

requests	to	our	service,	and	the	log	entries	/from-tester	in	our	service	is	caused	by
the	tester	thereof.	From	tester's	activity	logs,	we	can	observe	that	the	traffic	from
the	tester	is	stopped	after	our	service	becomes	unready:

$	kubectl	logs	tester

1505315577	-	nc:	timed	out

1505315583	-	nc:	timed	out

1505315589	-	nc:	timed	out

1505315595	-	OK

1505315599	-	OK

1505315603	-	HTTP/1.1	500

1505315607	-	HTTP/1.1	500

1505315612	-	nc:	timed	out

1505315617	-	nc:	timed	out

1505315623	-	nc:	timed	out

...

Since	we	didn't	configure	the	liveness	probe	in	our	service,	the	unhealthy
container	wouldn't	be	restarted	unless	we	kill	it	manually.	Therefore,	in	general,
we	would	use	both	probes	together	so	as	to	make	the	healing	process	automated.

Init	containers
Even	though	initialDelaySeconds	allows	us	to	block	a	pod	for	some	time	prior	to
receiving	traffic,	it's	still	limited.	Imagine	that	if	our	application	is	serving	a	file
that	fetches	from	somewhere	upon	initializing,	the	ready	time	might	differ	a	lot
depending	on	the	file	size.	Hence,	the	Init	containers	come	in	handy	here.

Init	containers	are	one	or	more	containers	that	start	prior	to	application
containers	and	run	one	by	one	to	completion	in	order.	If	any	container	fails,	it's
subject	to	the	restartPolicy	of	a	pod	and	starts	over	again,	till	all	containers	exited
with	code	0.

Defining	Init	containers	is	akin	to	regular	containers:

...

spec:

		containers:

		-	name:	my-app

				image:	<my-app>

		initContainers:

		-	name:	init-my-app

				image:	<init-my-app>

...

They	only	differ	in:

Init	containers	don't	have	readiness	probes	as	they'd	run	to	completion
The	port	defined	in	init	containers	wouldn't	be	captured	by	the	service	in
front	of	the	pod
The	request/limit	of	resources	are	calculated	with	max(sum(regular	containers),
max(init	containers)),	which	means	if	one	of	init	containers	sets	a	higher
resource	limit	than	other	init	containers	as	well	as	the	sum	of	resource	limit
of	all	regular	containers,	Kubernetes	schedules	the	pod	according	to	the	init
container's	resource	limit

The	usefulness	of	init	containers	is	more	than	blocking	the	application
containers.	For	instance,	we	can	utilize	them	to	configure	an	image	by	sharing	an
emptyDir	volume	to	Init	containers	and	application	containers,	instead	of	building
another	image	that	only	runs	awk/sed	on	the	base	image,	mounts	and	consume
secrets	in	an	Init	container	rather	than	in	application	containers.

Terminating	a	pod
The	sequence	of	shutdown	events	is	similar	to	events	while	starting	a	pod.	After
receiving	a	deletion	invocation,	Kubernetes	sends	SIGTERM	to	the	pod	to	be	deleted,
and	the	pod's	state	becomes	Terminating.	Meanwhile,	Kubernetes	removes	the
endpoint	of	that	pod	to	stop	further	requests	if	the	pod	is	backing	a	service.
Occasionally,	there	are	pods	that	aren't	quitting	at	all.	It	could	be	the	pods	don't
honor	SIGTERM,	or	simply	because	their	tasks	aren't	completed.	Under	such
circumstances,	Kubernetes	would	send	a	SIGKILL	to	forcibly	kill	those	pods	after
the	termination	periods.	The	period	length	is	set	at
.spec.terminationGracePeriodSeconds	under	pod	specification.	Nonetheless,	even
though	Kubernetes	has	mechanisms	to	reclaim	such	pods	anyway,	we	still	should
make	sure	our	pods	can	be	closed	properly.

Besides,	like	in	starting	a	pod,	here	we	also	need	to	take	care	of	a	case	that	might
affect	our	service,	that	is,	the	process	which	is	serving	requests	in	a	pod	closed
prior	to	the	corresponding	iptables	rules	are	entirely	removed.

Handling	SIGTERM
Graceful	termination	is	not	a	new	idea,	it's	a	common	practice	in	programming,
and	especially	important	for	business-	critical	missions.

The	implementation	principally	includes	three	steps:

1.	 Add	a	handler	to	capture	termination	signals.
2.	 Do	everything	required	in	the	handler,	such	as	returning	resources,	releasing

distribution	locks,	or	closing	connections.
3.	 Program	shutdown.	Our	previous	example	demonstrates	the	idea:	closing

the	controller	thread	on	SIGTERM	in	the	handler	graceful_exit_handler.	The	code
can	be	found	here	(https://github.com/DevOps-with-Kubernetes/my-app/blob/master/app.py).

As	a	matter	of	fact,	common	pitfalls	that	fail	a	graceful	exit	are	not	on	the
program	side:

https://github.com/DevOps-with-Kubernetes/my-app/blob/master/app.py

SIGTERM	is	not	forwarded	to	the
container	process
In	Chapter	2,	DevOps	with	Container,	we've	learned	that	there	are	two	forms	to
invoke	our	program	when	writing	a	Dockerfile,	namely	the	shell	form	and	the
exec	form,	and	the	shell	to	run	the	shell	form	commands	is	default	to	/bin/sh	on
Linux	containers.	Let's	see	the	following	example	(https://github.com/DevOps-with-	Kube
rnetes/examples/tree/master/chapter7/7-3_on_pods/graceful_docker):

---	Dockerfile.shell-sh	---

FROM	python:3-alpine

EXPOSE	5000

ADD	app.py	.

CMD	python	-u	app.py

We	know	that	the	signal	sent	to	a	container	would	be	caught	by	the	PID	1	process
inside	the	container,	so	let's	build	and	run	it.

$	docker	run	-d	--rm	--name	my-app	my-app:shell-sh

8962005f3722131f820e750e72d0eb5caf08222bfbdc5d25b6f587de0f6f5f3f	

$	docker	logs	my-app

starting	server	at	1503839211.025133

$	docker	kill	--signal	TERM	my-app

my-app

$	docker	ps	--filter	name=my-app	--format	'{{.Names}}'

my-app

Our	container	is	still	there.	Let's	see	what	happened	inside	the	container:

$	docker	exec	my-app	ps

PID			USER					TIME				COMMAND

1					root						0:00		/bin/sh	-c	python	-u	app.py

5					root						0:00		python	-u	app.py

6					root						0:00		ps		

The	PID	1	process	is	the	shell	itself,	and	it	doesn't	forward	our	signal	to	the	sub
process	apparently.	In	this	example,	we're	using	Alpine	as	the	base	image	which
uses	ash	as	the	default	shell.	If	we	execute	anything	with	/bin/sh,	it's	linked	to	ash
actually.	Similarly,	the	default	shell	in	Debian	family	is	dash,	which	doesn't
forward	signals	as	well.	There	is	still	a	shell	that	forwards	signals,	such	as	bash.
To	leverage	bash,	we	can	either	install	an	extra	shell,	or	switch	the	base	image	to
distributions	that	use	bash.	But	both	of	them	are	rather	cumbersome.

https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter7/7-3_on_pods/graceful_docker

Instead,	there	are	still	options	to	fix	the	signal	problem	without	using	bash.	One	is
running	our	program	with	exec	in	the	shell	form:

CMD	exec	python	-u	app.py

Our	process	will	replace	the	shell	process	and	thus	become	the	PID	1	process.
Another	choice	and	also	the	recommended	one	is	writing	Dockerfile	in	EXEC
form:

CMD	["python",	"-u",	"app.py"]	

Let's	try	the	example	again	with	the	one	in	EXEC	form:

---Dockerfile.exec-sh---

FROM	python:3-alpine

EXPOSE	5000

ADD	app.py	.

CMD	["python",	"-u",	"app.py"]

$	docker	run	-d	--rm	--name	my-app	my-app:exec-sh

5114cabae9fcec530a2f68703d5bc910d988cb28acfede2689ae5eebdfd46441

$	docker	exec	my-app	ps

PID			USER					TIME			COMMAND

1					root							0:00		python	-u	app.py

5					root							0:00		ps

$	docker	kill	--signal	TERM	my-app	&&	docker	logs	-f	my-app

my-app

starting	server	at	1503842040.339449

stopping	server	at	1503842134.455339	

The	EXEC	form	works	like	a	charm.	As	we	can	see,	the	processes	in	the
container	is	what	we	would	anticipate,	and	our	handler	now	receives	SIGTERM
correctly.

SIGTERM	doesn't	invoke	the
termination	handler
In	some	cases,	the	termination	handler	of	a	process	is	not	triggered	by	SIGTERM.
For	instance,	sending	a	SIGTERM	to	nginx	actually	causes	a	fast	shutdown.	To
gracefully	close	a	nginx	controller,	we	have	to	send	SIGQUIT	with	nginx	-s	quit
instead.

The	full	list	of	supported	actions	on	the	signal	of	nginx	is	listed
here:	http://nginx.org/en/docs/control.html.

Now	another	problem	arises--how	do	we	send	signals	other	than	SIGTERM	to	a
container	on	deleting	a	pod?	We	can	modify	the	behavior	of	our	program	to	trap
SIGTERM,	but	there's	nothing	we	can	do	about	a	popular	tool	like	nginx.	For
such	a	situation,	the	life	cycle	hook	is	capable	of	solving	the	problem.

http://nginx.org/en/docs/control.html

Container	lifecycle	hooks
Lifecycle	hooks	are	event-aware	actions	performs	against	a	container.	They
work	like	a	single	Kubernetes	probing	action,	but	they'll	only	be	fired	at	least
once	per	event	during	a	container's	lifetime.	Right	now,	there	are	two	events
supported:

PostStart:	Executes	right	after	a	container	is	created.	Since	this	hook	and	the
entry	point	of	a	container	are	fired	asynchronously,	there	is	no	guarantee
that	the	hook	would	be	executed	before	the	container	starts.	As	such,	we're
unlikely	to	use	it	to	initialize	resources	for	a	container.
PreStop:	executes	right	before	sending	SIGTERM	to	a	container.	One	difference
to	PostStart	hook	is	that	the	PreStop	hook	is	a	synchronous	call,	in	other
words,	SIGTERM	is	only	sent	after	a	PreStop	hook	exited.

So,	our	nginx	shutdown	problem	is	able	to	be	trivially	solved	with	a	PreStop	hook:

...

					containers:

					-	name:	main

							image:	nginx

							lifecycle:

								preStop:

									exec:

										command:	["nginx",	"-s",	"quit"]

...	

Additionally,	an	important	property	of	hooks	is	they	could	affect	the	state	of	a
pod	in	certain	ways:	a	pod	won't	be	running	unless	its	PostStart	hook	exited
successfully;	a	pod	is	set	to	terminating	immediately	on	deletion,	but	SIGTERM
won't	be	sent	unless	the	PreStop	hook	exited	successfully.	Therefore,	for	the	case
we	mentioned	earlier,	the	container	quits	before	its	iptables	rules	are	removed,
we	can	resolve	it	by	the	PreStop	hook.	The	following	figure	illustrates	how	to	use
the	hook	to	eliminate	the	unwanted	gap:

The	implementation	is	just	adding	a	hook	that	sleeps	for	few	seconds:

...

					containers:

					-	name:	main

							image:	my-app

							lifecycle:

								preStop:

									exec:

											command:	["/bin/sh",	"-c",	"sleep	5"]

...

Placing	pods
Most	of	time	we	don't	really	care	about	which	node	our	pods	is	running	on	as
scheduling	pods	is	a	fundamental	feature	of	Kubernetes.	Nevertheless,
Kubernetes	is	not	aware	of	factors	such	as	geographical	location	of	a	node,
availability	zones,	or	machine	types	when	scheduling	a	pod.	Moreover,	at	times
we'd	like	to	deploy	pods	that	run	testing	builds	in	an	isolated	instance	group.	As
such,	to	complete	the	scheduling,	Kubernetes	provides	different	levels	of
affinities	that	allows	us	to	actively	assign	pods	to	certain	nodes.

The	node	selector	of	a	pod	is	the	simplest	way	to	place	pods	manually.	It's
similar	to	pod	selectors	of	service.	A	pod	would	only	be	put	on	nodes	with
matching	labels.	The	field	is	set	at	.spec.nodeSelector.	For	example,	the	following
snippet	of	a	pod	spec	schedules	the	pod	to	nodes	with	label	purpose=sandbox,disk=ssd.

...

				spec:

						containers:

						-	name:	main

								image:	my-app

						nodeSelector:

								purpose:	sandbox

								disk:	ssd

...

Checking	labels	on	nodes	is	the	same	as	how	we	check	other	resources	in
Kubernetes:

$	kubectl	describe	node	gke-my-cluster-ins-49e8f52a-lz4l

Name:							gke-my-cluster-ins-49e8f52a-lz4l

Role:

Labels:			beta.kubernetes.io/arch=amd64

										beta.kubernetes.io/fluentd-ds-ready=true

										beta.kubernetes.io/instance-type=g1-small

										beta.kubernetes.io/os=linux

										cloud.google.com/gke-nodepool=ins

										failure-domain.beta.kubernetes.io/region=us-		

										central1

										failure-domain.beta.kubernetes.io/zone=us-

										central1-b

										kubernetes.io/hostname=gke-my-cluster-ins-	

										49e8f52a-lz4l

...	

As	we	can	see,	there	are	already	labels	on	our	node.	Those	labels	are	set	by
default,	and	the	default	labels	are	as	follows:

kubernetes.io/hostname

failure-domain.beta.kubernetes.io/zone

failure-domain.beta.kubernetes.io/region

beta.kubernetes.io/instance-type

beta.kubernetes.io/os

beta.kubernetes.io/arch

If	we'd	like	to	label	a	node	to	make	our	example	pods	scheduled,	we	can	either
update	the	manifest	of	the	node	or	use	the	shortcut	command	kubectl	label:

$	kubectl	label	node	gke-my-cluster-ins-49e8f52a-lz4l	\

		purpose=sandbox	disk=ssd

node	"gke-my-cluster-ins-49e8f52a-lz4l"	labeled

$	kubectl	get	node	--selector	purpose=sandbox,disk=ssd

NAME																															STATUS				AGE							VERSION

gke-my-cluster-ins-49e8f52a-lz4l			Ready					5d								v1.7.3

Aside	from	placing	pods	to	a	node,	a	node	is	able	to	reject	pods	as	well,	that	is,
taints	and	tolerations,	and	we	will	learn	it	at	the	next	chapter.

Summary
In	this	chapter,	we've	discussed	topics	not	only	on	building	a	continuous	delivery
pipeline,	but	also	on	techniques	to	strengthen	our	every	deployment	task.	The
rolling	update	of	pods	is	a	powerful	tool	that	performs	updates	in	a	controlled
fashion.	To	trigger	a	rolling	update,	what	we	need	to	do	is	update	the	pod's
specification.	Although	the	update	is	managed	by	Kubernetes,	we	can	still
control	it	with	kubectl	rollout.

Later	on,	we	fabricated	an	extensible	continuous	delivery	pipeline	by
GitHub/DockerHub/Travis-CI.	Next,	we	moved	our	steps	to	learn	more	about	the	life	of
pods	to	prevent	any	possible	failure,	including	using	the	readiness	and	liveness
probe	to	protect	a	pod,	initializing	a	pod	with	Init	containers,	handling	SIGTERM
properly	by	writing	Dockerfile	in	the	exec	form,	leveraging	life	cycle	hooks	to
stall	a	pod's	readiness	as	well	as	its	termination	for	the	iptables	rules	to	be
removed	at	the	right	timing,	and	assigning	pods	to	specific	nodes	with	node
selectors.

In	the	next	chapter,	we'll	learn	how	to	segment	our	cluster	with	logical
boundaries	to	share	resource	more	stable	and	secure	in	Kubernetes.

Cluster	Administration
We've	learned	most	of	our	basic	DevOps	skills	with	Kubernetes	in	previous
chapters,	from	how	to	containerize	our	application	to	deploying	our
containerized	software	into	Kubernetes	seamlessly	via	continuous	deployment.
Now,	it's	time	to	have	a	deeper	insight	into	how	to	administer	a	Kubernetes
cluster.

In	this	chapter,	we'll	learn:

How	to	utilize	namespaces	to	set	administrative	boundaries
Using	kubeconfig	to	switch	between	multiple	clusters
Kubernetes	authentication
Kubernetes	authorization

While	minikube	is	a	fairly	simple	environment,	we	will	use	the	Google
Container	Engine	(GKE)	and	self-hosted	cluster	in	AWS	as	the	example,
instead	of	minikube	in	this	chapter.	For	the	detailed	setting,	please	refer	to	Chapter	
9,	Kubernetes	on	AWS,	and	Chapter	10,	Kubernetes	on	GCP.

Kubernetes	namespaces
Kubernetes	has	a	namespace	concept	to	divide	the	resources	from	a	physical
cluster	to	multiple	virtual	clusters.	In	this	way,	different	groups	could	share	the
same	physical	cluster	with	isolation.	Each	namespace	provides:

A	scope	of	names;	object	name	in	each	namespace	is	unique
Policies	to	ensure	trusted	authentication
Ability	to	set	up	resource	quotas	for	resource	management

Namespaces	are	ideal	for	different	teams	or	projects	in	the	same	company,	so
different	groups	can	have	their	own	virtual	clusters,	which	have	the	resource
isolation	but	share	the	same	physical	cluster.	Resources	in	one	namespace	are
invisible	from	other	namespaces.	Different	resource	quotas	could	be	set	to
different	namespaces	and	provide	different	levels	of	QoS.	Note	that	not	all
objects	are	in	a	namespace,	such	as	nodes	and	Persistent	Volumes,	which	belong
to	entire	clusters.

Default	namespaces
By	default,	Kubernetes	has	three	namespaces:	default,	kube-system	and	kube-public.
The	default	namespace	contains	the	objects	which	are	created	without	specifying
any	namespace,	and	kube-system	contains	the	objects	which	are	created	by
Kubernetes	systems,	usually	used	by	the	system	components,	such	as	Kubernetes
dashboard	or	Kubernetes	DNS.	The	kube-public	is	newly	introduced	in	1.6,	which
intends	to	locate	the	resources	that	everybody	can	access.	It	mainly	focuses	on
public	ConfigMap	now,	such	as	cluster	info.

Create	a	new	namespace
Let's	see	how	to	create	a	namespace.	A	namespace	is	also	a	Kubernetes	object.
We	could	just	specify	the	kind	as	a	namespace	like	other	objects.	Below	is	the
example	to	create	one	namespace,	project1:

//	configuration	file	of	namespace

#	cat	8-1-1_ns1.yml

apiVersion:	v1

kind:	Namespace

metadata:

name:	project1

	

			

//	create	namespace	for	project1

#	kubectl	create	-f	8-1-1_ns1.yml

namespace	"project1"	created

			

	

//	list	namespace,	the	abbreviation	of	namespaces	is	ns.	We	could	use	`kubectl	get	ns`	

to	list	it	as	well.

#	kubectl	get	namespaces

NAME										STATUS				AGE

default							Active				1d

kube-public			Active				1d

kube-system			Active				1d

project1						Active				11s

Then	let's	try	to	start	two	nginx	containers	via	deployment	in	project1	namespace:

//	run	a	nginx	deployment	in	project1	ns

#	kubectl	run	nginx	--image=nginx:1.12.0	--replicas=2	--port=80	--namespace=project1	

When	we	list	pods	by	kubectl	get	pods,	we'll	see	nothing	in	our	cluster.	Why?
Because	Kubernetes	uses	the	current	context	to	decide	which	namespace	is
current.	If	we	don't	explicitly	specify	namespace	in	the	context	or	kubectl
command	line,	the	default	namespace	will	be	used:

//	We'll	see	the	Pods	if	we	explicitly	specify	--namespace

#	kubectl	get	pods	--namespace=project1

NAME																					READY					STATUS				RESTARTS			AGE

nginx-3599227048-gghvw			1/1							Running			0										15s

nginx-3599227048-jz3lg			1/1							Running			0										15s		

You	could	use	--namespace	<namespace_name>,	--namespace=<namespace_name>,
-n	<namespace_name>	or	-n=<namespace_name>	to	specify	the	namespace	for
a	command.	To	list	the	resources	across	namespaces,	use	--all-
namespaces	parameter.

Another	way	is	changing	the	current	context	to	point	to	the	desired	namespace
rather	than	the	default	namespace.

Context
Context	is	a	concept	of	the	combination	of	cluster	information,	a	user	for
authentication	and	a	namespace.	For	example,	the	following	is	the	context
information	for	one	of	our	clusters	in	GKE:

-	context:

cluster:	gke_devops-with-kubernetes_us-central1-b_cluster

user:	gke_devops-with-kubernetes_us-central1-b_cluster

name:	gke_devops-with-kubernetes_us-central1-b_cluster		

We	could	use	the	kubectl	config	current-context	command	to	see	the	current
context:

#	kubectl	config	current-context

gke_devops-with-kubernetes_us-central1-b_cluster

To	list	all	config	info	including	contexts,	you	could	use	the	kubectl
config	view	command;	to	checkout	what	context	is	currently	in	use,
use	kubectl	config	get-contexts	command.

Create	a	context
The	next	step	is	to	create	a	context.	As	in	the	preceding	example,	we'll	need	to
set	a	user	and	cluster	name	for	the	context.	If	we	don't	specify	those,	the	empty
value	will	be	set.	The	command	to	create	a	context	is:

$	kubectl	config	set-context	<context_name>	--namespace=<namespace_name>	--cluster=

<cluster_name>	--user=<user_name>		

Multiple	contexts	could	be	created	in	the	same	cluster.	The	following	is	an
example	of	how	to	create	a	context	for	project1	in	my	GKE	cluster	gke_devops-with-
kubernetes_us-central1-b_cluster:

//	create	a	context	with	my	GKE	cluster

#	kubectl	config	set-context	project1	--namespace=project1	--cluster=gke_devops-with-

kubernetes_us-central1-b_cluster	--user=gke_devops-with-kubernetes_us-central1-

b_cluster

Context	"project1"	created.		

Switch	the	current	context
Then	we	could	switch	the	context	by	the	use-context	sub-command:

#	kubectl	config	use-context	project1

Switched	to	context	"project1".		

After	the	context	is	switched,	every	command	we	invoke	via	kubectl	is	under	the
project1	context.	We	don't	need	to	explicitly	specify	the	namespace	to	see	our
pods:

//	list	pods

#	kubectl	get	pods

NAME																					READY					STATUS				RESTARTS			AGE

nginx-3599227048-gghvw			1/1							Running			0										3m

nginx-3599227048-jz3lg			1/1							Running			0										3m		

ResourceQuota
By	default,	pods	in	Kubernetes	are	resource-unbounded.	Then	the	running	pods
might	use	up	all	the	compute	or	storage	resources	in	a	cluster.	ResourceQuota	is
a	resource	object	that	allows	us	to	restrict	the	resource	consumption	that	a
namespace	could	use.	By	setting	up	the	resource	limit,	we	could	reduce	the	noisy
neighbor	symptom.	The	team	working	for	project1	won't	use	up	all	the	resources
in	the	physical	cluster.

Then	we	can	ensure	the	quality	of	service	for	other	teams	working	in	other
projects	which	share	the	same	physical	cluster.	There	are	three	kinds	of	resource
quotas	supported	in	Kubernetes	1.7.	Each	kind	includes	different	resource
names,	(https://kubernetes.io/docs/concepts/policy/resource-quotas):

Compute	resource	quota	(CPU,	memory)
Storage	resource	quota	(requested	storage,	Persistent	Volume	Claims)
Object	count	quotas	(pods,	RCs,	ConfigMaps,	services,	LoadBalancers)

Created	resources	won't	be	affected	by	newly	created	resource	quotas.	If	the
resource	creation	request	exceeds	the	specified	ResourceQuota,	the	resources
won't	be	able	to	start	up.

https://kubernetes.io/docs/concepts/policy/resource-quotas

Create	a	ResourceQuota	for	a
namespace
Now,	let's	learn	the	syntax	of	ResourceQuota.	Below	is	one	example:

#	cat	8-1-2_resource_quota.yml

apiVersion:	v1

kind:	ResourceQuota

metadata:

		name:	project1-resource-quota

spec:

		hard:#	the	limits	of	the	sum	of	memory	request

			requests.cpu:	"1"															#	the	limits	of	the	sum			

			of	requested	CPU

			requests.memory:	1Gi												#	the	limits	of	the	sum		

			of	requested	memory									

			limits.cpu:	"2"											#	the	limits	of	total	CPU		

			limits

			limits.memory:	2Gi								#	the	limits	of	total	memory	

			limit	

			requests.storage:	64Gi				#	the	limits	of	sum	of	

			storage	requests	across	PV	claims

			pods:	"4"																	#	the	limits	of	pod	number			

The	template	is	like	other	objects,	just	this	kind	becomes	ResourceQuota.	The	quota
we	specified	is	valid	across	the	pods	which	are	in	a	succeeded	or	failed	state
(that	is,	non-terminal	state).	There	are	several	resource	constraints	that	are
supported.	In	the	preceding	example,	we	demonstrate	how	to	set	compute
ResourceQuota,	storage	ResourceQuota	and	object	CountQuota.	Any	time,	we
could	still	use	the	kubectl	command	to	check	the	quota	we	set:	kubectl	describe
resourcequota	<resource_quota_name>.

Right	now	let's	modify	our	existing	nginx	Deployment	by	the	command	kubectl
edit	deployment	nginx,	changing	replica	from	2	to	4	and	save.	Let's	list	the	state	now.

#	kubectl	describe	deployment	nginx

Replicas:									4	desired	|	2	updated	|	2	total	|	2	available	|	2	unavailable

Conditions:

		Type																		Status						Reason

		----																		------						------

		Available													False	MinimumReplicasUnavailable

		ReplicaFailure		True		FailedCreate		

It	indicates	some	pods	failed	on	creation.	If	we	check	the	corresponding
ReplicaSet,	we	could	find	out	the	reason:

#	kubectl	describe	rs	nginx-3599227048

...

Error	creating:	pods	"nginx-3599227048-"	is	forbidden:	failed	quota:	project1-

resource-quota:	must	specify	limits.cpu,limits.memory,requests.cpu,requests.memory		

Since	we've	specified	the	request	limits	on	memory	and	CPU,	Kubernetes
doesn't	know	the	default	request	limits	on	the	newly	desired	three	pods.	We
could	see	the	original	two	pods	are	still	up	and	running,	since	the	resource	quota
doesn't	apply	to	existing	resources.	We	now	then	use	kubectl	edit	deployment	nginx
to	modify	container	specs	as	follows:

Here,	we	specify	the	requests	and	limits	for	CPU	and	memory	in	the	pod	spec.	It
indicates	the	pod	can't	exceed	the	specified	quota,	otherwise	it	will	be	unable	to
start:

//	check	the	deployment	state

#	kubectl	get	deployment

NAME						DESIRED			CURRENT			UP-TO-DATE			AVAILABLE			AGE

nginx					4									3									2												3											2d		

Available	pods	become	four	instead	of	two,	but	still	not	equal	to	our	desired	four.
What	went	wrong?	If	we	take	a	step	back	and	check	our	resource	quota,	we	can
find	we've	used	all	the	quota	of	pods.	Since	Deployments	use	the	rolling	update
deployment	mechanism	by	default,	it'll	require	pod	numbers	larger	than	four,
which	is	exact	object	limit	we	set	earlier:

#	kubectl	describe	resourcequota	project1-resource-quota

Name:													project1-resource-quota

Namespace:								project1

Resource										Used		Hard

--------										----		----

limits.cpu								900m		4

limits.memory					900Mi	4Gi

pods														4					4

requests.cpu						300m		4

requests.memory			450Mi	16Gi

requests.storage		0					64Gi		

After	modifying	the	pods	quota	from	4	to	8	by	kubectl	edit	resourcequota	project1-
resource-quota	command,	the	Deployment	has	sufficient	resource	to	launch	the
pods.	Once	the	Used	quota	exceeds	the	Hard	quota,	the	request	will	be	rejected	by
the	ResourceQuota	admission	controller,	otherwise,	the	resource	quota	usage
will	be	updated	to	ensure	sufficient	resource	allocation.

Since	ResourceQuota	won't	affect	already	created	resources,
sometimes	we	might	need	to	tweak	the	failed	resources,	such	as
deleting	an	empty	change	set	of	RS	or	scale	up	and	down
Deployment,	in	order	to	let	Kubernetes	create	new	pods	or	RS
which	will	soak	the	latest	quota	limits.

Request	pods	with	default	compute
resource	limits
We	could	also	specify	default	resource	requests	and	limits	for	a	namespace.
Default	setting	will	be	used	if	we	don't	specify	the	requests	and	limits	during	pod
creation.	The	trick	is	using	LimitRange	resource	object.	A	LimitRange	object	contains
a	set	of	defaultRequest	(request)	and	default	(limits).

LimitRange	is	controlled	by	the	LimitRanger	admission	controller
plugin.	Be	sure	you	enable	it	if	you	launch	a	self-hosted	solution.
For	more	information,	check	out	the	admission	controller	section	in
this	chapter.

Below	is	an	example	where	we	set	cpu.request	as	250m	and	limits	as	500m,
memory.request	as	256Mi	and	limits	as	512Mi:

#	cat	8-1-3_limit_range.yml

apiVersion:	v1

kind:	LimitRange

metadata:

		name:	project1-limit-range

spec:

		limits:

	-	default:

				cpu:	0.5

				memory:	512Mi

			defaultRequest:

				cpu:	0.25

				memory:	256Mi

			type:	Container

//	create	limit	range

#	kubectl	create	-f	8-1-3_limit_range.yml

limitrange	"project1-limit-range"	created		

When	we	launch	pods	inside	this	namespace,	we	don't	need	to	specify	the	cpu	and
memory	requests	and	limits	anytime,	even	if	we	have	a	total	limitation	set	inside
ResourceQuota.

The	unit	of	CPU	is	core,	which	is	an	absolute	quantity.	It	can	be	an
AWS	vCPU,	a	GCP	core	or	a	hyperthread	on	a	machine	with
hyperthreading	processor	equipped.	The	unit	of	memory	is	a	byte.

Kubernetes	uses	the	first	alphabet	or	power-of-two	equivalents.
For	example,	256M	would	be	written	as	256,000,000,	256	M	or
244	Mi.

Additionally,	we	can	set	minimum	and	maximum	CPU	and	memory	values	for	a
pod	in	LimitRange.	It	acts	differently	as	default	values.	Default	values	are	only
used	if	a	pod	spec	doesn't	contain	any	requests	and	limits.	The	minimum	and
maximum	constraint	is	used	for	verifying	if	a	pod	requests	too	much	resource.
The	syntax	is	spec.limits[].min	and	spec.limits[].max.	If	the	request	exceeds	the
minimum	and	maximum	values,	forbidden	will	be	thrown	from	the	server.

limits:	

			-	max:	

						cpu:	1	

						memory:	1Gi	

					min:	

						cpu:	0.25	

						memory:	128Mi	

				type:	Container	

Quality	of	service	for	pods:	There	are	three	QoS	classes	for	pods	in
Kubernetes:	Guaranteed,	Burstable	and	BestEffort.	It's	tied
together	with	the	namespace	and	resource	management	concept	we
learned	above.	We	also	learned	QoS	in	Chapter	4,	Working	with
Storage	and	Resources.	Please	refer	to	the	last	section	Kubernetes
Resource	Management	in	Chapter	4,	Working	with	Storage	and
Resources	for	recap.

Delete	a	namespace
Just	like	any	other	resources,	deleting	a	namespace	is	kubectl	delete	namespace
<namespace_name>.	Please	be	aware	that	if	a	namespace	is	deleted,	all	the	resources
associated	with	that	namespace	will	be	evicted.

Kubeconfig
Kubeconfig	is	a	file	that	you	can	use	to	switch	multiple	clusters	by	switching
context.	We	can	use	kubectl	config	view	to	view	the	setting.	The	following	is	an
example	of	a	minikube	cluster	in	a	kubeconfig	file.

#	kubectl	config	view

apiVersion:	v1

clusters:		

-	cluster:

				certificate-authority:	/Users/k8s/.minikube/ca.crt

				server:	https://192.168.99.100:8443

		name:	minikube

contexts:

-	context:

				cluster:	minikube

				user:	minikube

		name:	minikube

current-context:	minikube

kind:	Config

preferences:	{}

users:

-	name:	minikube

		user:

				client-certificate:	/Users/k8s/.minikube/apiserver.crt

				client-key:	/Users/k8s/.minikube/apiserver.key

Just	like	what	we	learned	previously.	We	could	use	kubectl	config	use-context	to
switch	the	cluster	to	manipulate.	We	could	also	use	kubectl	config	--kubeconfig=
<config	file	name>	to	specify	which	kubeconfig	file	we'd	like	to	use.	Only	the
specified	file	will	be	used.	We	could	also	specify	kubeconfig	files	by	the
environment	variable	$KUBECONFIG.	In	this	way,	config	files	could	be	merged.	For
example,	the	following	command	will	merge	kubeconfig-file1	and	kubeconfig-file2:

#	export	KUBECONFIG=$KUBECONFIG:	kubeconfig-file1:	kubeconfig-file2		

You	might	find	we	didn't	do	any	specific	setting	previously.	Then	where	does	the
output	of	kubectl	config	view	come	from?	By	default,	it	exists	under
$HOME/.kube/config.	This	file	will	be	loaded	if	none	of	the	preceding	are	set.

Service	account
Unlike	normal	users,	service	account	is	used	by	processes	inside	a	pod	to
contact	the	Kubernetes	API	server.	By	default,	a	Kubernetes	cluster	creates
different	service	accounts	for	different	purposes.	In	GKE,	there	are	bunch	of
service	accounts	that	have	been	created:

//	list	service	account	across	all	namespaces

#	kubectl	get	serviceaccount	--all-namespaces

NAMESPACE					NAME																									SECRETS			AGE

default							default																						1									5d

kube-public			default																						1									5d

kube-system			namespace-controller									1									5d

kube-system			resourcequota-controller					1									5d

kube-system			service-account-controller			1									5d

kube-system			service-controller											1									5d

project1						default																						1									2h

...		

Kubernetes	will	create	a	default	service	account	in	each	namespace,	which	will
be	used	if	no	service	account	is	specified	in	pod	spec	during	pod	creation.	Let's
take	a	look	at	how	the	default	service	account	acts	for	our	project1	namespace:

#	kubectl	describe	serviceaccount/default

Name:							default

Namespace:		project1

Labels:											<none>

Annotations:						<none>

Image	pull	secrets:					<none>

Mountable	secrets:						default-token-nsqls

Tokens:																	default-token-nsqls		

We	could	see	a	service	account	is	basically	using	mountable	secrets	as	a	token.
Let's	dig	into	what	contents	are	inside	the	token:

//	describe	the	secret,	the	name	is	default-token-nsqls	here

#	kubectl	describe	secret	default-token-nsqls

Name:							default-token-nsqls

Namespace:		project1

Annotations:		kubernetes.io/service-account.name=default

														kubernetes.io/service-account.uid=5e46cc5e-	

														8b52-11e7-a832-42010af00267

Type:	kubernetes.io/service-account-token

Data

====

ca.crt:					#	the	public	CA	of	api	server.	Base64	encoded.

namespace:		#	the	name	space	associated	with	this	service	account.	Base64	encoded

token:						#	bearer	token.	Base64	encoded

The	secret	will	be	automatically	mounted	to	the	directory
/var/run/secrets/kubernetes.io/serviceaccount.	When	the	pod	accesses	the	API	server,
the	API	server	will	check	the	cert	and	token	to	do	the	authentication.	The
concept	of	a	service	account	will	be	with	us	in	the	following	sections.

Authentication	and	authorization
Authentication	and	authorization	are	important	from	DevOps'	point	of	view.
Authentication	verifies	users	and	checks	if	the	users	are	really	who	they
represent	themselves	to	be.	Authorization,	on	the	other	hand,	checks	what
permission	levels	users	have.	Kubernetes	supports	different	authentication	and
authorization	modules.

The	following	is	an	illustration	that	shows	how	the	Kubernetes	API	server
processes	the	access	control	when	it	receives	a	request.

Access	control	in	API	server

When	the	request	comes	to	API	server,	firstly,	it	establishes	a	TLS	connection	by
validating	the	clients'	certificate	with	the	certificate	authority	(CA)	in	the	API
server.	The	CA	in	the	API	server	is	usually	at	/etc/kubernetes/,	and	the	clients'
certificate	is	usually	at	$HOME/.kube/config.	After	the	handshake,	it	goes	to	the
authentication	stage.	In	Kuberentes,	authentication	module	are	chain-based.	We
could	use	more	than	one	authentication	and	authorization	modules.	When	the
request	comes,	Kubernetes	will	try	all	the	authenticators	one	by	one	until	it
succeeds.	If	the	request	fails	on	all	authentication	modules,	it	will	be	rejected	as
HTTP	401	Unauthorized.	Otherwise,	one	of	the	authenticators	verifies	the	user's
identity	and	the	requests	are	authenticated.	Then	Kubernetes	authorization
modules	will	come	into	play.	It	will	verify	if	the	user	has	the	permission	to	do
the	action	that	they	request	to	do	by	a	set	of	policies.	Authorization	modules	are
also	chain-based.	It	keeps	trying	every	module	until	it	succeeds.	If	the	request
fails	on	all	the	modules,	it'll	get	a	HTTP	403	Forbidden	response.	Admission
control	is	a	set	of	configurable	plugins	in	an	API	server	that	determine	if	a

request	is	admitted	or	denied.	At	this	stage,	if	the	request	doesn't	pass	through
one	of	the	plugins,	then	the	request	is	denied	immediately.

Authentication
By	default,	a	service	account	is	token-based.	When	you	create	a	service	account
or	a	namespace	with	default	service	account,	Kubernetes	creates	the	token	and
stores	it	as	a	secret	which	is	encoded	by	base64,	and	mounts	the	secret	as	a
volume	into	the	pod.	Then	the	processes	inside	the	pod	have	the	ability	to	talk	to
the	cluster.	The	user	account,	on	the	other	hand,	represents	a	normal	user,	who
might	use	kubectl	to	manipulate	the	resource	directly.

Service	account	authentication
When	we	create	a	service	account,	a	signed	bearer	token	will	be	created
automatically	by	the	Kubernetes	service	account	admission	controller	plugin.

In	Chapter	7,	Continuous	Delivery,	in	the	example	that	we	demonstrated	how	to	do
the	deployment	of	my-app,	we	created	a	namespace	named	cd,	and	we	used	the
script	get-sa-token.sh	(https://github.com/DevOps-with-Kubernetes/examples/blob/master/chapter7/ge
t-sa-token.sh)	to	export	the	token	for	us.	Then	we	create	a	user	mysa	via	kubectl	config
set-credentials	<user>	--token=$TOKEN	command:

#	kubectl	config	set-credentials	mysa	--token=${CI_ENV_K8S_SA_TOKEN}		

Next,	we	set	the	context	to	bind	with	user	and	namespace:

#	kubectl	config	set-context	myctxt	--cluster=mycluster	--user=mysa		

Finally,	we	set	our	context	myctxt	as	default	context:

#	kubectl	config	use-context	myctxt		

When	the	service	account	sends	a	request,	the	token	will	be	verified	by	the	API
server	to	check	if	the	requester	is	eligible	and	it	is	what	it	claims	to	be.

https://github.com/DevOps-with-Kubernetes/examples/blob/master/chapter7/get-sa-token.sh

User	account	authentication
There	are	several	implementations	for	user	account	authentication.	From	client
certificates,	bearer	tokens,	static	files	to	OpenID	connect	tokens.	You	can	choose
more	than	one	as	authentication	chains.	Here,	we'll	demonstrate	how	client
certificates	works.

In	Chapter	7,	Continuous	Delivery	we've	learned	how	to	export	cert	and	token	for
service	account.	Now,	let's	learn	how	to	do	it	for	a	user.	Assume	we	are	still
inside	project1	namespace,	and	we	want	to	create	a	user	for	our	new	DevOps
member	Linda,	who	will	help	us	to	do	the	Deployment	for	my-app.

First,	we'll	generate	a	private	key	by	OpenSSL	(https://www.openssl.org):

//	generate	a	private	key	for	Linda

#	openssl	genrsa	-out	linda.key	2048		

Next,	we'll	create	a	certificate	sign	request	(.csr)	for	Linda:

//	making	CN	as	your	username

#	openssl	req	-new	-key	linda.key	-out	linda.csr	-subj	"/CN=linda"		

Now,	linda.key	and	linda.csr	should	be	located	in	the	current	folder.	For	approving
the	sign	request,	we'll	need	to	locate	the	CA	of	our	Kubernetes	cluster.

In	minikube,	it's	under	~/.minikube/.	For	other	self-hosted	solutions,
normally	it's	under	/etc/kubernetes/.	If	you	use	kops	to	deploy	the
cluster,	the	location	is	under	/srv/kubernetes,	where	you	could	find
the	path	in	/etc/kubernetes/manifests/kube-apiserver.manifest	file.

Assume	we	have	ca.crt	and	ca.key	under	the	current	folder,	we	could	generate	the
cert	by	our	sign	request.	Using	the	-days	parameter	we	could	define	the	expired
date:

//	generate	the	cert	for	Linda,	this	cert	is	only	valid	for	30	days.

#	openssl	x509	-req	-in	linda.csr	-CA	ca.crt	-CAkey	ca.key	-CAcreateserial	-out	

linda.crt	-days	30

Signature	ok

subject=/CN=linda

Getting	CA	Private	Key		

https://www.openssl.org

After	we	have	cert	signed	by	our	cluster,	we	could	set	a	user	in	the	cluster.

#	kubectl	config	set-credentials	linda	--client-certificate=linda.crt	--client-

key=linda.key

User	"linda"	set.		

Remember	the	concept	of	context:	it's	the	combination	of	cluster	information,	a
user	for	authentication	and	a	namespace.	Now,	we'll	set	a	context	entry	in
kubeconfig.	Remember	to	replace	your	cluster	name,	namespace	and	user	from	the
following	example:

#	kubectl	config	set-context	devops-context	--cluster=k8s-devops.net	--

namespace=project1	--user=linda

Context	"devops-context"	modified.		

Now,	Linda	should	have	zero	permission:

//	test	for	getting	a	pod	

#	kubectl	--context=devops-context	get	pods

Error	from	server	(Forbidden):	User	"linda"	cannot	list	pods	in	the	namespace	

"project1".	(get	pods)		

Linda	now	passes	the	authentication	stage	while	Kubernetes	knows	she	is	Linda.
However,	to	make	Linda	have	the	permission	to	do	the	Deployment,	we	need	to
set	up	the	polices	in	authorization	modules.

Authorization
Kubernetes	supports	several	authorization	modules.	At	the	time	we're	writing,	it
supports:

ABAC
RBAC
Node	authorization
Webhook
Custom	modules

Attribute-based	access	control	(ABAC)	was	the	major	authorization	mode
before	role-based	access	control	(RBAC)	was	introduced.	Node	authorization
is	used	by	kubelet	to	make	a	request	to	the	API	server.	Kubernetes	supports
webhook	authorization	mode	to	establish	a	HTTP	callback	with	an	external
RESTful	service.	It'll	do	a	POST	whenever	it	faces	an	authorization	decision.
Another	common	way	is	you	could	implement	your	in-house	module	by
following	along	the	pre-defined	authorizer	interface.	For	more	implementation
information,	refer	to	https://kubernetes.io/docs/admin/authorization/#custom-modules.	In	this
section,	we'll	describe	more	details	for	ABAC	and	RBAC.

https://kubernetes.io/docs/admin/authorization/#custom-modules

Attribute-based	access	control
(ABAC)
ABAC	allows	admin	to	define	a	set	of	user	authorization	polices	into	a	file	with
one	JSON	per	line	format.	The	major	drawback	of	ABAC	mode	is	the	policy	file
has	to	exist	when	launching	the	API	server.	Any	change	in	the	file	requires
restarting	the	API	server	with	--authorization-policy-file=<policy_file_name>
command.	Another	authorization	method	RBAC	was	introduced	since
Kubernetes	1.6.	which	is	more	flexible	and	doesn't	require	restarting	the	API
server.	RBAC	has	now	become	the	most	common	authorization	mode.

The	following	is	an	example	of	how	ABAC	works.	The	format	of	the	policy	file
is	one	JSON	object	per	line.	The	configuration	file	of	the	policy	is	similar	to	our
other	configuration	files.	Just	with	different	syntax	in	spec.	There	are	four	main
properties	in	ABAC:

Properties	type Supported	values

Subject-matching user,	group

Resource-matching apiGroup,	namespace,	and	resource

Non-resource-
matching

Used	for	non-resource	type	requests,	such	as	/version,	/apis,
/cluster

readonly true	or	false

	

The	following	are	some	examples:

{"apiVersion":	"abac.authorization.kubernetes.io/v1beta1",	"kind":	"Policy",	"spec":	

{"user":"admin",	"namespace":	"*",	"resource":	"*",	"apiGroup":	"*"}}	

{"apiVersion":	"abac.authorization.kubernetes.io/v1beta1",	"kind":	"Policy",	"spec":	

{"user":"linda",	"namespace":	"project1",	"resource":	"deployments",	"apiGroup":	"*",	

"readonly":	true}}	

{"apiVersion":	"abac.authorization.kubernetes.io/v1beta1",	"kind":	"Policy",	"spec":	

{"user":"linda",	"namespace":	"project1",	"resource":	"replicasets",	"apiGroup":	"*",	

"readonly":	true}}	

In	the	preceding	example,	we	have	a	user	admin	who	could	access	everything.
Another	user	named	linda	who	can	only	read	the	Deployment	and	ReplicaSets	in
the	namespace	project1.

Role-based	access	control	(RBAC)
RBAC	was	in	beta	in	Kubernetes	1.6,	which	is	enabled	by	default.	In	RBAC,
admin	creates	several	Roles	or	ClusterRoles,	which	define	the	fine-grained
permissions	that	specifies	a	set	of	resources	and	actions	(verbs)	that	roles	could
access	and	manipulate.	After	that,	admin	grants	the	Role	permission	to	users	by
RoleBinding	or	ClusterRoleBindings.

If	you're	running	a	minikube,	add	--extra-
config=apiserver.Authorization.Mode=RBAC	when	doing	minikube	start.	If
you're	running	self-hosted	cluster	on	AWS	via	kops,	adding	--
authorization=rbac	when	launching	the	cluster.	Kops	launches	API
server	as	a	pod;	using	kops	edit	cluster	command	could	modify	the
spec	of	the	containers.

Roles	and	ClusterRoles
A	Role	in	Kubernetes	is	bound	within	a	namespace,	a	ClusterRole,	on	the	other
hand,	is	cluster-wide.	The	following	is	an	example	of	Role,	which	could	do	all	the
operations,	including	get,	watch,	list,	create,	update,	delete,	patch	to	the	resources
Deployment,	ReplicaSet	and	pods.

#	cat	8-5-2_role.yml

kind:	Role

apiVersion:	rbac.authorization.k8s.io/v1beta1

metadata:

		namespace:	project1

		name:	devops-role

rules:

-	apiGroups:	["",	"extensions",	"apps"]

		resources:

				-	"deployments"

				-	"replicasets"

				-	"pods"

		verbs:	["*"]

The	apiVersion	is	still	v1beta1	at	the	time	we	wrote	the	book.	If	it	happens	that	the
API	version	changes,	Kubernetes	will	throw	the	error	and	remind	you	to	change.
In	apiGroups,	an	empty	string	indicates	the	core	API	group.	The	API	group	is	part
of	the	RESTful	API	call.	The	core	indicates	original	API	call	path,	such	as
/api/v1.	The	newer	REST	path	has	the	group	name	and	API	version	in	it,	such	as
/apis/$GROUP_NAME/$VERSION;	for	looking	up	API	groups	you'd	like	to	use,	check	out
API	References	at	https://kubernetes.io/docs/reference.	Under	resources	you	could	add
the	resources	you'd	like	to	grant	the	access	to,	and	under	verbs	lists	an	array	of
actions	that	this	role	could	perform.	Let's	get	into	a	more	advanced	example	for
ClusterRoles,	which	we	used	in	previous	chapter	as	Continuous	Delivery	role:

#	cat	cd-clusterrole.yml

apiVersion:	rbac.authorization.k8s.io/v1beta1

kind:	ClusterRole

metadata:

		name:	cd-role

rules:

-	apiGroups:	["extensions",	"apps"]

		resources:

		-	deployments

		-	replicasets

		-	ingresses

		verbs:	["*"]

	-	apiGroups:	[""]

		resources:

		-	namespaces

https://kubernetes.io/docs/reference

		-	events

		verbs:	["get",	"list",	"watch"]

	-	apiGroups:	[""]

		resources:

		-	pods

		-	services

		-	secrets

		-	replicationcontrollers

		-	persistentvolumeclaims

		-	jobs

		-	cronjobs

		verbs:	["*"]

ClusterRole	is	cluster-wide.	Some	resources	don't	belong	to	any	namespace,	such
as	nodes,	only	could	be	controlled	by	ClusterRole.	The	namespaces	it	could	access
depends	on	the	namespaces	field	in	ClusterRoleBinding	it	associates	with.	We	could
see	we	grant	the	permission	to	allow	this	role	read	and	write	Deployments,
ReplicaSets	and	ingresses	in	both	extensions	and	apps	groups.	In	the	core	API
group,	we	grant	only	access	for	namespace	and	events,	and	all	permission	for
other	resources,	such	as	pods	and	services.

RoleBinding	and	ClusterRoleBinding
A	RoleBinding	is	used	to	bind	a	Role	or	ClusterRole	to	a	list	of	users	or	service
accounts.	If	a	ClusterRole	is	bound	with	a	RoleBinding	instead	of	a	ClusterRoleBinding,
it'll	be	only	granted	the	permissions	within	the	namespace	that	RoleBinding
specified.	The	following	is	an	example	of	RoleBinding	spec:

#	cat	8-5-2_rolebinding_user.yml		

kind:	RoleBinding

apiVersion:	rbac.authorization.k8s.io/v1beta1

metadata:

		name:	devops-role-binding

		namespace:	project1

subjects:

-	kind:	User

		name:	linda

		apiGroup:	[""]

roleRef:

		kind:	Role

		name:	devops-role

		apiGroup:	[""]

In	this	example,	we	bind	a	Role	with	a	user	by	roleRef.	Kubernetes	supports
different	kind	of	roleRef;	we	could	replace	the	kind	from	Role	to	ClusterRole	here:

roleRef:

kind:	ClusterRole

name:	cd-role

apiGroup:	rbac.authorization.k8s.io	

Then	cd-role	can	only	access	the	resources	in	namespace	project1.

On	the	other	hand,	a	ClusterRoleBinding	is	used	to	grant	permission	in	all
namespace.	Let's	review	what	we	did	in	Chapter	7,	Continuous	Delivery.	We	first
created	a	service	account	named	cd-agent,	then	create	a	ClusterRole	named	cd-role.
At	the	end,	we	created	a	ClusterRoleBinding	for	cd-agent	and	cd-role.	We	then	used
cd-agent	to	do	the	Deployment	on	our	behalf:

#	cat	cd-clusterrolebinding.yml

apiVersion:	rbac.authorization.k8s.io/v1beta1

kind:	ClusterRoleBinding

metadata:

		name:	cd-agent

roleRef:

		apiGroup:	rbac.authorization.k8s.io

		kind:	ClusterRole

			name:	cd-role

subjects:

-	apiGroup:	rbac.authorization.k8s.io

		kind:	User

		name:	system:serviceaccount:cd:cd-agent		

The	cd-agent	is	bound	with	a	ClusterRole	via	ClusterRoleBinding,	so	it	can	have	the
permission	specified	in	cd-role	across	namespaces.	Since	a	service	account	is
created	in	a	namespace,	we'll	need	to	specify	its	full	name	including	namespace:

system:serviceaccount:<namespace>:<serviceaccountname>	

Let's	launch	the	Role	and	RoleBinding	via	8-5-2_role.yml	and	8-5-2_rolebinding_user.yml:

#	kubectl	create	-f	8-5-2_role.yml

role	"devops-role"	created

#	kubectl	create	-f	8-5-2_rolebinding_user.yml

rolebinding	"devops-role-binding"	created		

Now,	we	don't	get	forbidden	anymore:

#	kubectl	--context=devops-context	get	pods

No	resources	found.

What	about	if	Linda	wants	to	list	namespaces,	is	it	allowed?:

#	kubectl	--context=devops-context	get	namespaces

Error	from	server	(Forbidden):	User	"linda"	cannot	list	namespaces	at	the	cluster	

scope.	(get	namespaces)		

The	answer	is	no,	since	Linda	is	not	granted	permission	for	listing	namespaces.

Admission	control
Admission	control	takes	place	before	Kubernetes	processes	the	request	and	after
authentication	and	authorization	are	passed.	It's	enabled	when	launching	API
server	by	adding	--admission-control	parameter.	Kubernetes	recommends	officially
to	have	the	following	plugins	with	the	cluster	if	the	cluster	version	is	>=	1.6.0.

--admission-

control=NamespaceLifecycle,LimitRanger,ServiceAccount,PersistentVolumeLabel,DefaultStorageClass,DefaultTolerationSeconds,ResourceQuota

		

The	following	introduces	the	usage	of	these	plugins,	and	why	should	we	need
them.	For	more	latest	information	about	supported	admission	control	plugins,
please	visit	official	document	https://kubernetes.io/docs/admin/admission-controllers.

https://kubernetes.io/docs/admin/admission-controllers

Namespace	life	cycle
As	we	learned	earlier,	when	a	namespace	is	deleted,	all	objects	in	that
namespace	will	be	evicted	as	well.	This	plugin	ensures	no	new	object	creation
requests	could	be	made	in	the	namespace	that	is	terminating	or	non-existed.	It
also	prevents	Kubernetes	native	namespaces	from	deletion.

LimitRanger
This	plugin	ensures	LimitRange	could	work	properly.	With	LimitRange,	we	could	set
default	requests	and	limits	in	a	namespace,	which	will	be	used	when	launching	a
pod	without	specifying	the	requests	and	limits.

Service	account
The	service	account	plugin	must	be	added	if	you	use	service	account	objects.	For
more	information	about	service	account,	revisit	again	service	account	section	in
this	chapter.

PersistentVolumeLabel
PersistentVolumeLabel	adds	labels	to	newly-created	PV,	based	on	the	labels	provided
by	the	underlying	cloud	provider.	This	admission	controller	has	been	deprecated
from	1.8.

DefaultStorageClass
This	plugin	ensures	default	storage	classes	could	work	expectedly	if	no
StorageClass	is	set	in	a	Persistent	Volume	Claim.	Different	provisioning	tools	with
different	cloud	providers	will	leverage	DefaultStorageClass	(such	as	GKE	uses
Google	Cloud	Persistent	Disk).	Be	sure	you	have	this	enabled.

ResourceQuota
Just	like	the	LimitRange,	if	you're	using	the	ResourceQuota	object	to	administer
different	level	of	QoS,	this	plugin	must	be	enabled.	The	ResourceQuota	should
be	always	be	put	at	the	end	of	the	admission	control	plugin	list.	As	we
mentioned	in	the	ResourceQuota	section,	if	used	quota	is	less	than	hard	quota,
resource	quota	usage	will	be	updated	to	ensure	cluster	have	the	sufficient
resource	for	accepting	request.	Putting	it	into	the	end	of	admission	controller	list
could	prevent	the	request	from	increasing	quota	usage	prematurely	if	it
eventually	gets	rejected	by	the	following	controllers.

DefaultTolerationSeconds
Before	introducing	this	plugin,	we	have	to	learn	what	taints	and	tolerations	are.

Taints	and	tolerations
Taints	and	toleration	are	used	to	prevent	a	set	of	pods	from	scheduling	running
on	some	nodes.	Taints	are	applied	to	nodes,	while	tolerations	are	specified	to
pods.	The	value	of	taints	could	be	NoSchedule	or	NoExecute.	If	pods	running	one
tainted	node	have	no	matching	toleration,	the	pods	will	be	evicted.

Let's	say	we	have	two	nodes:

#	kubectl	get	nodes

NAME																												STATUS				AGE							VERSION		

ip-172-20-56-91.ec2.internal	Ready	6h	v1.7.2

ip-172-20-68-10.ec2.internal	Ready	29m	v1.7.2

Let's	run	a	nginx	pod	now	by	kubectl	run	nginx	--image=nginx:1.12.0	--replicas=1	--
port=80	command.

The	pod	is	running	on	the	first	node	ip-172-20-56-91.ec2.internal:

#	kubectl	describe	pods	nginx-4217019353-s9xrn

Name:							nginx-4217019353-s9xrn

Node:							ip-172-20-56-91.ec2.internal/172.20.56.91

Tolerations:				node.alpha.kubernetes.io/notReady:NoExecute	for	300s

node.alpha.kubernetes.io/unreachable:NoExecute	for	300s		

By	the	pod	description,	we	can	see	there	are	two	default	tolerations	attached	to
the	pod.	It	means	if	the	node	is	not	ready	or	unreachable	yet,	wait	for	300	s
before	the	pod	is	evicted	from	the	node.	These	two	tolerations	are	applied	by
DefaultTolerationSeconds	admission	controller	plugin.	We'll	talk	about	this	later.
Next,	we'll	set	a	taint	to	the	first	node:

#	kubectl	taint	nodes	ip-172-20-56-91.ec2.internal	experimental=true:NoExecute

node	"ip-172-20-56-91.ec2.internal"	tainted		

Since	we	set	the	action	as	NoExecute,	and	experimental=true	doesn't	match	any
tolerations	on	our	pod,	the	pod	will	be	removed	from	the	node	immediately	and
reschedule.	Multi-taints	could	be	applied	to	a	node.	The	pods	must	match	all	the
tolerations	in	order	to	run	on	that	node.	The	following	is	an	example	that	could
pass	the	tainted	node:

#	cat	8-6_pod_tolerations.yml

apiVersion:	v1

kind:	Pod

metadata:

		name:	pod-with-tolerations

spec:

		containers:

		-	name:	web

				image:	nginx

		tolerations:

		-	key:	"experimental"

				value:	"true"

				operator:	"Equal"

				effect:	"NoExecute"		

Other	than	Equal	operator,	we	could	use	Exists	as	well.	In	that	case,	we	don't	need
to	specify	the	value.	As	long	as	the	key	presents	and	effect	matches,	then	the	pod
is	eligible	to	run	on	that	tainted	node.

The	DefaultTolerationSeconds	plugin	is	used	to	set	those	pods	without	any	toleration
set.	It	will	then	apply	for	the	default	toleration	for	the	taints	notready:NoExecute	and
unreachable:NoExecute	for	300	s.	If	you	don't	want	this	behavior	to	occur	in	the
cluster,	disabling	this	plugin	could	work.

PodNodeSelector
This	plugin	is	used	to	set	node-selector	annotation	to	the	namespace.	When	the
plugin	is	enabled,	passing	along	a	configuration	file	with	--admission-control-
config-file	command	using	the	following	format:

podNodeSelectorPluginConfig:

		clusterDefaultNodeSelector:	<default-node-selectors-		

		labels>

		namespace1:	<namespace-node-selectors-labels-1>

		namespace2:	<namespace-node-selectors-labels-2>

Then	the	node-selector	annotation	will	be	applied	to	namespace.	The	pods	on	that
namespace	will	then	run	on	those	matched	nodes.

AlwaysAdmit
This	always	admits	all	the	requests,	its	possible	to	use	for	test	only.

AlwaysPullImages
Pull	policy	defines	the	behavior	when	kubelet	pulling	the	images.	The	default
pull	policy	is	IfNotPresent,	that	is,	it	will	pull	the	image	if	it	is	not	present	locally.
If	this	plugin	is	enabled,	the	default	pull	policy	will	become	Always,	which	is,
always	pull	the	latest	image.	This	plugin	also	brings	another	benefit	if	your
cluster	is	shared	by	different	teams.	Whenever	a	pod	is	scheduled,	it'll	always
pull	the	latest	image	whether	the	image	exists	locally	or	not.	Then	we	can	ensure
pod	creation	request	always	go	through	authorization	check	against	the	image.

AlwaysDeny
This	always	denies	all	the	requests.	It	may	only	be	used	for	testing	only.

DenyEscalatingExec
This	plugin	denies	any	kubectl	exec	and	kubectl	attach	command	to	be	escalated
privilege	mode.	Pods	with	privilege	mode	have	the	access	of	host	namespace,
which	could	become	a	security	risk.

Other	admission	controller	plugins
There	are	many	more	other	admission	controller	plugins	we	could	use,	such	as
NodeRestriciton	to	limit	kubelet's	permission,	ImagePolicyWebhook	to	establish
a	webhook	to	control	the	access	of	the	images,	SecurityContextDeny	for
controlling	the	privilege	for	a	pod	or	a	container.	Please	refer	to	official
documents	at	(https://kubernetes.io/docs/admin/admission-controllers)	to	find	out	other
plugins.

https://kubernetes.io/docs/admin/admission-controllers/)

Summary
In	this	chapter,	we	learned	what	is	namespace	and	context	and	how	do	they
work,	how	to	switch	between	physical	cluster	and	virtual	cluster	by	setting	the
context.	We	then	learned	about	the	important	object—service	account,	which
provides	to	identify	the	processes	running	within	a	pod.	Then	we	get	to	know
how	to	control	access	flow	in	Kubernetes.	We	learned	what	the	difference	are
between	authentication	and	authorization,	and	how	they	work	in	Kubernetes.	We
also	learn	how	to	leverage	RBAC	to	have	fine-grained	permission	to	users.	At
the	end,	we	learned	a	couple	of	admission	controller	plugins,	which	are	the	last
goalkeepers	in	the	access	control	flow.

AWS	is	the	most	major	player	in	public	IaaS	providers.	We've	used	it	lots	as	self-
hosted	cluster	examples	in	this	chapter.	In	next	chapter	Chapter	9,	Kubernetes	on
AWS,	we'll	finally	learn	how	to	deploy	the	cluster	on	AWS	and	basic	concept
when	using	AWS.

Kubernetes	on	AWS
Using	Kubernetes	on	the	public	cloud	is	flexible	and	scalable	for	your
application.	AWS	is	one	of	the	popular	services	in	the	public	cloud	industry.	In
this	chapter,	you	will	know	what	AWS	is	and	how	to	set	up	Kubernetes	on	AWS
along	with	the	following	topics:

Understanding	the	public	cloud
Using	and	understanding	AWS	components
Kubernetes	setup	and	management	by	kops
Kubernetes	cloud	provider

Introduction	to	AWS
When	you	run	your	application	on	the	public	network,	you	need	an	infrastructure
such	as	networks,	Virtual	Machines,	and	storage.	Obviously,	companies	borrow
or	build	their	own	data	center	to	prepare	those	infrastructures,	and	then	hire	data
center	engineers	and	operators	to	monitor	and	manage	those	resources.

However,	purchasing	and	maintaining	those	assets	need	a	large	capital	expense;
you	also	need	an	operation	expense	for	data	center	engineers/operators.	You	also
need	a	read	time	to	fully	set	up	those	infrastructures,	such	as	buying	a	server,
mounting	to	a	data	center	rack,	cabling	a	network,	and	then	the	initial
configuration/installation	of	the	OS,	and	so	on.

Therefore,	rapidly	allocating	an	infrastructure	with	appropriate	resource	capacity
is	one	of	the	important	factors	that	dictates	that	success	of	your	business.

To	make	infrastructure	management	easier	and	quicker,	there	is	a	lot	of
technology	helps	for	data	centers.	Such	as,	for	virtualization,	Software	Defined
Network	(SDN),	Storage	Area	Network	(SAN),	and	so	on.	But	combining	this
technology	has	some	sensitive	compatibility	issues	and	is	difficult	to	stabilize;
therefore	it	is	required	to	hire	experts	in	this	industry,	which	makes	operation
costs	higher	eventually.

Public	cloud
There	are	some	companies	that	have	provided	an	online	infrastructure	service.
AWS	is	a	well	known	service	that	provides	online	infrastructure,	which	is	called
cloud	or	public	cloud.	Back	in	the	year	2006,	AWS	officially	launched	the
Virtual	Machine	service,	which	was	called	Elastic	Computing	Cloud	(EC2),	an
online	object	store	service,	which	was	called	Simple	Storage	Service	(S3)	and
an	online	messaging	queue	service,	which	was	called	Simple	Queue	Service
(SQS).

These	services	are	simple	enough,	but	from	a	data	center	management	point	of
view,	they	relieve	infrastructure	pre-allocation	and	reduce	read	time,	because	of
pay-as-you-go	pricing	models	(paying	hourly	or	yearly	for	usage	to	AWS).
Therefore,	AWS	is	getting	so	popular	that	many	companies	have	switched	from
their	own	data	centers	to	the	public	cloud.

An	antonym	of	the	public	cloud,	your	own	data	center	is	called	on-
premises.

API	and	infrastructure	as	code
One	of	the	unique	benefits	of	using	a	public	cloud	instead	of	on-premises	data
centers	that	public	cloud	provides	an	API	to	control	infrastructure.	AWS
provides	command-line	tools	(AWS	CLI)	to	control	AWS	infrastructure.	For
example,	after	signing	up	to	AWS	(https://aws.amazon.com/free/),	then	install	AWS	CLI
(http://docs.aws.amazon.com/cli/latest/userguide/installing.html),	then	if	you	want	to	launch	one
Virtual	Machine	(EC2	instance),	use	AWS	CLI	as	follows:

As	you	can	see,	it	takes	only	just	a	few	minutes	to	access	your	Virtual	Machine
after	signing	up	to	AWS.	On	the	other	hand,	what	if	you	set	up	your	own	on
premise	data	center	from	scratch?	The	following	diagram	is	a	high-level
comparison	on	if	you	use	on	premise	data	centers	or	if	you	use	the	public	cloud:

https://aws.amazon.com/free/
http://docs.aws.amazon.com/cli/latest/userguide/installing.html

As	you	can	see,	the	public	cloud	is	too	simple	and	quick;	this	is	why	public
cloud	is	flexible	and	convenient	for	not	only	emerging,	but	also	permanent
usage.

AWS	components
AWS	has	some	components	to	configure	network	and	storage.	These	are
important	to	understand	how	the	public	cloud	works	and	also	important	to	know
how	to	configure	Kubernetes.

VPC	and	subnet
On	AWS,	first	of	all	you	need	to	create	your	own	network;	it	is	called	Virtual
Private	Cloud	(VPC)	and	uses	a	SDN	technology.	AWS	allows	you	to	create
one	or	more	VPC	on	AWS.	Each	VPC	may	connect	with	each	other	as	required.
When	you	create	a	VPC,	just	define	one	network	CIDR	block	and	AWS	region.
For	example,	CIDR	10.0.0.0/16	on	us-east-1.	No	matter	if	you	have	access	to	a
public	network	or	not,	you	can	define	any	network	address	range	(between	/16	to
/28	netmask	range).	VPC	creation	is	very	quick,	once	done	to	create	a	VPC,	and
then	you	need	to	create	one	or	more	subnets	within	VPC.

In	the	following	example,	one	VPC	is	created	via	the	AWS	command	line:

//specify	CIDR	block	as	10.0.0.0/16

//the	result,	it	returns	VPC	ID	as	"vpc-66eda61f"

$	aws	ec2	create-vpc	--cidr-block	10.0.0.0/16

{

		"Vpc":	{

			"VpcId":	"vpc-66eda61f",	

			"InstanceTenancy":	"default",	

			"Tags":	[],	

			"State":	"pending",	

			"DhcpOptionsId":	"dopt-3d901958",	

			"CidrBlock":	"10.0.0.0/16"

		}

}

Subnet	is	a	logical	network	block.	It	must	belong	to	one	VPC	and	in	addition,
belong	to	one	availability	zone.	For	example,	VPC	vpc-66eda61f	and	us-east-1b.
Then	the	network	CIDR	must	be	within	VPC's	CIDR.	For	example,	if	VPC
CIDR	is	10.0.0.0/16	(10.0.0.0	-	10.0.255.255)	then	one	subnet	CIDR	could	be
10.0.1.0/24	(10.0.1.0	-	10.0.1.255).

In	the	following	example,	two	subnets	are	created	(us-east-1a	and	us-east-1b)	onto
vpc-66eda61f:

//1st	subnet	10.0."1".0/24	on	us-east-1"a"	availability	zone

$	aws	ec2	create-subnet	--vpc-id	vpc-66eda61f	--cidr-block	10.0.1.0/24	--availability-

zone	us-east-1a

{

		"Subnet":	{

				"VpcId":	"vpc-66eda61f",	

				"CidrBlock":	"10.0.1.0/24",	

				"State":	"pending",	

				"AvailabilityZone":	"us-east-1a",	

				"SubnetId":	"subnet-d83a4b82",	

				"AvailableIpAddressCount":	251

		}

}

				

//2nd	subnet	10.0."2".0/24	on	us-east-1"b"

$	aws	ec2	create-subnet	--vpc-id	vpc-66eda61f	--cidr-block	10.0.2.0/24	--availability-

zone	us-east-1b

{

			"Subnet":	{

				"VpcId":	"vpc-66eda61f",	

				"CidrBlock":	"10.0.2.0/24",	

				"State":	"pending",	

				"AvailabilityZone":	"us-east-1b",	

				"SubnetId":	"subnet-62758c06",	

				"AvailableIpAddressCount":	251

			}

}

Let's	make	the	first	subnet	a	public	facing	subnet	and	the	second	subnet	a	private
subnet.	This	means	the	public	facing	subnet	can	be	accessible	from	the	internet,
which	allows	it	to	have	a	public	IP	address.	On	the	other	hand,	a	private	subnet
can't	have	a	public	IP	address.	To	do	that,	you	need	to	set	up	gateways	and
routing	tables.

In	order	to	make	high	availability	for	public	networks	and	private
networks,	it	is	recommended	to	create	at	least	four	subnets	(two
public	and	two	private	on	different	availability	zones).
But	to	simplify	examples	that	are	easy	to	understand,	these
examples	create	one	public	and	one	private	subnet.

Internet	gateway	and	NAT-GW
In	most	cases,	your	VPC	needs	to	have	a	connection	with	the	public	internet.	In
this	case,	you	need	to	create	an	IGW	(internet	gateway)	to	attach	to	your	VPC.

In	the	following	example,	an	IGW	is	created	and	attached	to	vpc-66eda61f:

//create	IGW,	it	returns	IGW	id	as	igw-c3a695a5

$	aws	ec2	create-internet-gateway	

{

			"InternetGateway":	{

						"Tags":	[],	

						"InternetGatewayId":	"igw-c3a695a5",	

						"Attachments":	[]

			}

}

			

	

//attach	igw-c3a695a5	to	vpc-66eda61f

$	aws	ec2	attach-internet-gateway	--vpc-id	vpc-66eda61f	--internet-gateway-id	igw-

c3a695a5		

Once	the	IGW	is	attached,	then	set	a	routing	table	(default	gateway)	for	a	subnet
that	points	to	the	IGW.	If	a	default	gateway	points	to	an	IGW,	this	subnet	is	able
to	have	a	public	IP	address	and	access	from/to	the	internet.	Therefore,	if	the
default	gateway	doesn't	point	to	IGW,	it	is	determined	as	a	private	subnet,	which
means	no	public	access.

In	the	following	example,	a	routing	table	is	created	that	points	to	IGW	and	is	set
to	the	first	subnet:

//create	route	table	within	vpc-66eda61f

//it	returns	route	table	id	as	rtb-fb41a280

$	aws	ec2	create-route-table	--vpc-id	vpc-66eda61f

{

		"RouteTable":	{

			"Associations":	[],	

			"RouteTableId":	"rtb-fb41a280",	

			"VpcId":	"vpc-66eda61f",	

			"PropagatingVgws":	[],	

			"Tags":	[],	

			"Routes":	[

					{

						"GatewayId":	"local",	

						"DestinationCidrBlock":	"10.0.0.0/16",	

							"State":	"active",	

							"Origin":	"CreateRouteTable"

					}

]

		}

}

	

//then	set	default	route	(0.0.0.0/0)	as	igw-c3a695a5

$	aws	ec2	create-route	--route-table-id	rtb-fb41a280	--gateway-id	igw-c3a695a5	--

destination-cidr-block	0.0.0.0/0

{

		"Return":	true

}

	

			

//finally,	update	1st	subnet	(subnet-d83a4b82)	to	use	this	route	table

$	aws	ec2	associate-route-table	--route-table-id	rtb-fb41a280	--subnet-id	subnet-

d83a4b82

{

		"AssociationId":	"rtbassoc-bf832dc5"

}

			

	

//because	1st	subnet	is	public,	assign	public	IP	when	launch	EC2

$	aws	ec2	modify-subnet-attribute	--subnet-id	subnet-d83a4b82	--map-public-ip-on-

launch		

On	the	other	hand,	the	second	subnet,	although	a	private	subnet,	does	not	need	a
public	IP	address,	however,	a	private	subnet	sometimes	needs	to	access	the
internet.	For	example,	download	some	packages	and	access	the	AWS	service
access.	In	this	case,	we	still	have	an	option	to	connect	to	the	internet.	It	is	called
Network	Address	Translation	Gateway	(NAT-GW).

NAT-GW	allows	private	subnets	to	access	the	public	internet	through	NAT-GW.
Therefore,	NAT-GW	must	be	located	at	a	public	subnet,	and	the	private	subnet
routing	table	points	to	NAT-GW	as	a	default	gateway.	Note	that	in	order	to
access	NAT-GW	on	the	public	network,	it	needs	Elastic	IP	(EIP)	attached	to	the
NAT-GW.

In	the	following	example,	a	NAT-GW	is	created:

//allocate	EIP,	it	returns	allocation	id	as	eipalloc-56683465

$	aws	ec2	allocate-address	

{

		"PublicIp":	"34.233.6.60",	

		"Domain":	"vpc",	

		"AllocationId":	"eipalloc-56683465"

}

		

						

//create	NAT-GW	on	1st	public	subnet	(subnet-d83a4b82

//also	assign	EIP	eipalloc-56683465

$	aws	ec2	create-nat-gateway	--subnet-id	subnet-d83a4b82	--allocation-id	eipalloc-

56683465

{

		"NatGateway":	{

			"NatGatewayAddresses":	[

				{

					"AllocationId":	"eipalloc-56683465"

				}

],	

			"VpcId":	"vpc-66eda61f",	

			"State":	"pending",	

			"NatGatewayId":	"nat-084ff8ba1edd54bf4",	

			"SubnetId":	"subnet-d83a4b82",	

			"CreateTime":	"2017-08-13T21:07:34.000Z"

		}

}		

Unlike	an	IGW,	AWS	charges	you	an	additional	hourly	cost	for
Elastic	IP	and	NAT-GW.	Therefore,	if	you	wish	to	save	costs,
launch	an	NAT-GW	only	while	accessing	the	internet.

Creating	NAT-GW	takes	a	few	minutes,	then	once	NAT-GW	is	created,	update	a
private	subnet	routing	table	that	point	to	NAT-GW,	and	then	any	EC2	instances
are	able	to	access	the	internet,	but	again,	due	to	no	public	IP	address	on	the
private	subnet,	there	is	no	chance	of	access	from	the	public	internet	to	the	private
subnet	EC2	instances.

In	the	following	example,	an	update	routing	table	for	the	second	subnet	points	to
NAT-GW	as	the	default	gateway:

//as	same	as	public	route,	need	to	create	a	route	table	first

$	aws	ec2	create-route-table	--vpc-id	vpc-66eda61f

{

		"RouteTable":	{

				"Associations":	[],	

				"RouteTableId":	"rtb-cc4cafb7",	

				"VpcId":	"vpc-66eda61f",	

				"PropagatingVgws":	[],	

				"Tags":	[],	

				"Routes":	[

							{

									"GatewayId":	"local",	

									"DestinationCidrBlock":	"10.0.0.0/16",	

									"State":	"active",	

									"Origin":	"CreateRouteTable"

							}

]

		}

}

			

	

//then	assign	default	gateway	as	NAT-GW

$	aws	ec2	create-route	--route-table-id	rtb-cc4cafb7	--nat-gateway-id	nat-

084ff8ba1edd54bf4	--destination-cidr-block	0.0.0.0/0

{

		"Return":	true

}

	

			

//finally	update	2nd	subnet	that	use	this	routing	table

$	aws	ec2	associate-route-table	--route-table-id	rtb-cc4cafb7	--subnet-id	subnet-

62758c06

{

		"AssociationId":	"rtbassoc-2760ce5d"

}

Overall,	there	are	two	subnets	that	have	been	configured	as	public	subnet	and
private	subnet.	Each	subnet	has	a	default	route	to	use	IGW	and	NAT-GW	as
follows.	Note	that	ID	varies	because	AWS	assigns	a	unique	identifier:

Types	of
subnet

CIDR
block

Subnet
ID

Route
table
ID

Default
gateway

Assign	Public	IP
while	EC2	launches

Public 10.0.1.0/24 subnet-

d83a4b82

rtb-

fb41a280

igw-c3a695a5

(IGW) Yes

Private 10.0.2.0/24 subnet-

62758c06

rtb-

cc4cafb7

nat-

084ff8ba1edd54bf4

(NAT-GW)
No	(default)

Technically,	you	can	still	assign	a	public	IP	to	private	subnet	EC2
instance,	but	there	is	no	default	gateway	to	the	internet	(IGW).
Therefore,	a	public	IP	will	just	be	wasted	and	absolutely	not	have
connectivity	from	the	internet.

Now	if	you	launch	an	EC2	instance	on	the	public	subnet,	it	becomes	public
facing,	so	you	can	serve	your	application	from	this	subnet.

On	the	other	hand,	if	you	launch	an	EC2	instance	on	the	private	subnet,	it	can
still	access	to	the	internet	through	NAT-GW,	but	there	will	be	no	access	from	the
internet.	However,	it	can	still	access	it	from	the	public	subnet's	EC2	instances.
So	you	can	deploy	internal	services	such	as	database,	middleware,	and
monitoring	tools.

Security	group
Once	VPC	and	subnets	with	related	gateways/routes	are	ready,	you	can	create
EC2	instances.	However,	at	least	one	access	control	needs	to	be	created
beforehand,	which	is	called	a	security	group.	It	can	define	a	firewall	rule	that
ingress	(incoming	network	access)	and	egress	(outgoing	network	access).

In	the	following	example,	a	security	group	and	a	rule	for	public	subnet	hosts	are
created	that	allows	ssh	from	your	machine's	IP	address,	as	well	as	open
HTTP(80/tcp)	world-wide:

When	you	define	a	security	group	for	public	subnet,	it	is	highly
recommended	it	to	be	reviewed	by	a	security	expert.	Because	once
you	deploy	an	EC2	instance	onto	the	public	subnet,	it	has	a	public
IP	address	and	then	everyone	including	crackers	and	bots	are	able
to	access	your	instances	directly.

				

//create	one	security	group	for	public	subnet	host	on	vpc-66eda61f

$	aws	ec2	create-security-group	--vpc-id	vpc-66eda61f	--group-name	public	--

description	"public	facing	host"

{

		"GroupId":	"sg-7d429f0d"

}

	

			

//check	your	machine's	public	IP	(if	not	sure,	use	0.0.0.0/0	as	temporary)

$	curl	ifconfig.co

107.196.102.199

	

			

//public	facing	machine	allows	ssh	only	from	your	machine

$	aws	ec2	authorize-security-group-ingress	--group-id	sg-7d429f0d	--protocol	tcp	--

port	22	--cidr	107.196.102.199/32

	

			

//public	facing	machine	allow	HTTP	access	from	any	host	(0.0.0.0/0)

$	aws	ec2	authorize-security-group-ingress	--group-id	sg-d173aea1	--protocol	tcp	--

port	80	--cidr	0.0.0.0/0		

Next,	create	a	security	group	for	a	private	subnet	host,	that	allows	ssh	from	the
public	subnet	host.	In	this	case,	specifing	a	public	subnet	security	group	ID	(sg-
7d429f0d)	instead	of	a	CIDR	block	is	convenient:

//create	security	group	for	private	subnet

$	aws	ec2	create-security-group	--vpc-id	vpc-66eda61f	--group-name	private	--

description	"private	subnet	host"

{

			"GroupId":	"sg-d173aea1"

}

		

	

	

//private	subnet	allows	ssh	only	from	ssh	bastion	host	security	group

//it	also	allows	HTTP	(80/TCP)	from	public	subnet	security	group

$	aws	ec2	authorize-security-group-ingress	--group-id	sg-d173aea1	--protocol	tcp	--

port	22	--source-group	sg-7d429f0d

	

			

//private	subnet	allows	HTTP	access	from	public	subnet	security	group	too

$	aws	ec2	authorize-security-group-ingress	--group-id	sg-d173aea1	--protocol	tcp	--

port	80	--source-group	sg-7d429f0d

Overall,	there	are	two	security	groups	that	have	been	created	as	follows:

Name Security	group
ID Allow	ssh	(22/TCP) Allow	HTTP

(80/TCP)

Public sg-7d429f0d
Your	machine
(107.196.102.199)

0.0.0.0/0

Private sg-d173aea1 public	sg	(sg-7d429f0d) public	sg	(sg-7d429f0d)

EC2	and	EBS
EC2	is	one	important	service	in	AWS	that	you	can	launch	a	VM	on	your	VPC.
Based	on	hardware	spec	(CPU,	memory,	and	network),	there	are	several	types	of
EC2	instances	that	are	available	on	AWS.	When	you	launch	an	EC2	instance,
you	need	to	specify	VPC,	subnet,	security	group,	and	ssh	keypair.	Therefore,	all
of	these	must	be	created	beforehand.

Because	of	previous	examples,	the	only	last	step	is	ssh	keypair.	Let's	make	an
ssh	keypair:

//create	keypair	(internal_rsa,	internal_rsa.pub)

$	ssh-keygen	

Generating	public/private	rsa	key	pair.

Enter	file	in	which	to	save	the	key	(/Users/saito/.ssh/id_rsa):	/tmp/internal_rsa

Enter	passphrase	(empty	for	no	passphrase):	

Enter	same	passphrase	again:	

Your	identification	has	been	saved	in	/tmp/internal_rsa.

Your	public	key	has	been	saved	in	/tmp/internal_rsa.pub.

				

	

			

//register	internal_rsa.pub	key	to	AWS

$	aws	ec2	import-key-pair	--key-name=internal	--public-key-material	"`cat	

/tmp/internal_rsa.pub`"

{

			"KeyName":	"internal",	

			"KeyFingerprint":		

	"18:e7:86:d7:89:15:5d:3b:bc:bd:5f:b4:d5:1c:83:81"

}	

//launch	public	facing	host,	using	Amazon	Linux	on	us-east-1	(ami-a4c7edb2)

$	aws	ec2	run-instances	--image-id	ami-a4c7edb2	--instance-type	t2.nano	--key-name	

internal	--security-group-ids	sg-7d429f0d	--subnet-id	subnet-d83a4b82

				

//launch	private	subnet	host

$	aws	ec2	run-instances	--image-id	ami-a4c7edb2	--instance-type	t2.nano	--key-name	

internal	--security-group-ids	sg-d173aea1	--subnet-id	subnet-62758c06		

After	a	few	minutes,	check	the	EC2	instances	status	on	the	AWS	web	console;	it
shows	a	public	subnet	host	that	has	a	public	IP	address.	On	the	other	hand,	a
private	subnet	host	doesn't	have	a	public	IP	address:

//add	private	keys	to	ssh-agent

$	ssh-add	-K	/tmp/internal_rsa

Identity	added:	/tmp/internal_rsa	(/tmp/internal_rsa)

$	ssh-add	-l

2048	SHA256:AMkdBxkVZxPz0gBTzLPCwEtaDqou4XyiRzTTG4vtqTo	/tmp/internal_rsa	(RSA)

				

//ssh	to	the	public	subnet	host	with	-A	(forward	ssh-agent)	option

$	ssh	-A	ec2-user@54.227.197.56

The	authenticity	of	host	'54.227.197.56	(54.227.197.56)'	can't	be	established.

ECDSA	key	fingerprint	is	SHA256:ocI7Q60RB+k2qbU90H09Or0FhvBEydVI2wXIDzOacaE.

Are	you	sure	you	want	to	continue	connecting	(yes/no)?	yes

Warning:	Permanently	added	'54.227.197.56'	(ECDSA)	to	the	list	of	known	hosts.

				

											__|		__|_)

											_|		(/			Amazon	Linux	AMI

										___|___|___|

				

				https://aws.amazon.com/amazon-linux-ami/2017.03-release-notes/

				2	package(s)	needed	for	security,	out	of	6	available

				Run	"sudo	yum	update"	to	apply	all	updates.

Now	you	are	in	the	public	subnet	host	(54.227.197.56),	but	this	host	also	has	an
internal	(private)	IP	address,	because	this	host	is	deployed	in	the	10.0.1.0/24
subnet	(subnet-d83a4b82),	therefore	the	private	address	range	must	be	10.0.1.1	-
10.0.1.254:

$	ifconfig	eth0

eth0						Link	encap:Ethernet		HWaddr	0E:8D:38:BE:52:34		

										inet	addr:10.0.1.24		Bcast:10.0.1.255						

										Mask:255.255.255.0

Let's	install	nginx	web	server	on	the	public	host	as	follows:

$	sudo	yum	-y	-q	install	nginx

$	sudo	/etc/init.d/nginx	start

Starting	nginx:																																												[OK]

Then,	go	back	to	your	machine	and	check	the	website	for	54.227.197.56:

$	exit

logout

Connection	to	52.227.197.56	closed.

	

			

//from	your	machine,	access	to	nginx

$	curl	-I	54.227.197.56

HTTP/1.1	200	OK

Server:	nginx/1.10.3

...

Accept-Ranges:	bytes		

In	addition,	within	the	same	VPC,	there	is	reachability	for	other	availability
zones,	therefore	you	can	ssh	from	this	host	to	the	private	subnet	host	(10.0.2.98).

Note	that	we	are	using	the	ssh	-A	option	that	forwards	a	ssh-agent,	so	there	is	no
need	to	create	a	~/.ssh/id_rsa	file:

[ec2-user@ip-10-0-1-24	~]$	ssh	10.0.2.98

The	authenticity	of	host	'10.0.2.98	(10.0.2.98)'	can't	be	established.

ECDSA	key	fingerprint	is	1a:37:c3:c1:e3:8f:24:56:6f:90:8f:4a:ff:5e:79:0b.

Are	you	sure	you	want	to	continue	connecting	(yes/no)?	yes

				Warning:	Permanently	added	'10.0.2.98'	(ECDSA)	to	the	list	of	known	hosts.

				

											__|		__|_)

											_|		(/			Amazon	Linux	AMI

										___|___|___|

				

https://aws.amazon.com/amazon-linux-ami/2017.03-release-notes/

2	package(s)	needed	for	security,	out	of	6	available

Run	"sudo	yum	update"	to	apply	all	updates.

[ec2-user@ip-10-0-2-98	~]$	

In	addition	to	EC2,	there	is	an	important	functionality,	which	is	disk
management.	AWS	provides	a	flexible	disk	management	service	called	Elastic
Block	Store	(EBS).	You	may	create	one	or	more	persistent	data	storage	that	can
attach	to	an	EC2	instance.	From	an	EC2	point	of	view,	EBS	is	one	of	HDD/SSD.
Once	you	terminate	(delete)	an	EC2	instance,	EBS	and	its	contents	may	remain
and	then	reattach	to	another	EC2	instance.

In	the	following	example,	one	volume	that	has	40	GB	capacity	is	created;	and
then	attached	to	a	public	subnet	host	(instance	ID	i-0db344916c90fae61):

//create	40GB	disk	at	us-east-1a	(as	same	as	EC2	host	instance)

$	aws	ec2	create-volume	--availability-zone	us-east-1a	--size	40	--volume-type	

standard

{

				"AvailabilityZone":	"us-east-1a",	

				"Encrypted":	false,	

				"VolumeType":	"standard",	

				"VolumeId":	"vol-005032342495918d6",	

				"State":	"creating",	

				"SnapshotId":	"",	

				"CreateTime":	"2017-08-16T05:41:53.271Z",	

				"Size":	40

}

	

			

//attach	to	public	subnet	host	as	/dev/xvdh

$	aws	ec2	attach-volume	--device	xvdh	--instance-id	i-0db344916c90fae61	--volume-id	

vol-005032342495918d6

{

				"AttachTime":	"2017-08-16T05:47:07.598Z",	

				"InstanceId":	"i-0db344916c90fae61",	

				"VolumeId":	"vol-005032342495918d6",	

				"State":	"attaching",	

				"Device":	"xvdh"

}

After	attaching	the	EBS	volume	to	the	EC2	instance,	the	Linux	kernel
recognizes	/dev/xvdh	as	specified,	and	then	you	need	to	do	partitioning	in	order	to
use	this	device,	as	follows:

In	this	example,	we	made	one	partition	as	/dev/xvdh1,	so	you	can	create	a
filesystem	as	ext4	format	on	/dev/xvdh1	and	then	you	can	mount	to	use	this	device
on	an	EC2	instance:

After	unmounting	the	volume,	you	can	feel	free	to	detach	this	volume	and	then
re-attach	it	whenever	needed:

//detach	volume

$	aws	ec2	detach-volume	--volume-id	vol-005032342495918d6

{

				"AttachTime":	"2017-08-16T06:03:45.000Z",	

				"InstanceId":	"i-0db344916c90fae61",	

				"VolumeId":	"vol-005032342495918d6",	

				"State":	"detaching",	

				"Device":	"xvdh"

}

Route	53
AWS	also	provides	a	hosted	DNS	service	called	Route	53.	Route	53	allows	you
to	manage	your	own	domain	name	and	associated	FQDN	to	an	IP	address.	For
example,	if	you	want	to	have	a	domain	name	k8s-devops.net,	you	can	order
through	Route	53	to	register	your	DNS	domain.

The	following	screenshot	shows	ordering	a	domain	name	k8s-devops.net;	it	may
take	a	few	hours	to	complete	registration:

Once	registration	is	completed,	you	may	receive	a	notification	email	from	AWS,
and	then	you	can	control	this	domain	name	via	the	AWS	command	line	or	a	web
console.	Let's	add	one	record	(FQDN	to	IP	address)	that	associate	public.k8s-
devops.net	with	the	public	facing	EC2	host	public	IP	address	54.227.197.56.	To	do
that,	get	a	hosted	zone	ID	as	follows:

$	aws	route53	list-hosted-zones	|	grep	Id

"Id":	"/hostedzone/Z1CTVYM9SLEAN8",			

Now	you	get	a	hosted	zone	id	as	/hostedzone/Z1CTVYM9SLEAN8,	so	let's	prepare	a	JSON
file	to	update	the	DNS	record	as	follows:

//create	JSON	file

$	cat	/tmp/add-record.json	

{

		"Comment":	"add	public	subnet	host",

		"Changes":	[

			{

					"Action":	"UPSERT",

					"ResourceRecordSet":	{

							"Name":	"public.k8s-devops.net",

							"Type":	"A",

							"TTL":	300,

							"ResourceRecords":	[

									{

										"Value":	"54.227.197.56"

									}

]

					}

			}

]

}

				

	

			

//submit	to	Route53

$	aws	route53	change-resource-record-sets	--hosted-zone-id	/hostedzone/Z1CTVYM9SLEAN8	

--change-batch	file:///tmp/add-record.json	

				

//a	few	minutes	later,	check	whether	A	record	is	created	or	not

$	dig	public.k8s-devops.net

				

;	<<>>	DiG	9.8.3-P1	<<>>	public.k8s-devops.net

;;	global	options:	+cmd

;;	Got	answer:

;;	->>HEADER<<-	opcode:	QUERY,	status:	NOERROR,	id:	18609

;;	flags:	qr	rd	ra;	QUERY:	1,	ANSWER:	1,	AUTHORITY:	0,	ADDITIONAL:	0

				

;;	QUESTION	SECTION:

;public.k8s-devops.net.							IN				A

				

;;	ANSWER	SECTION:

public.k8s-devops.net.		300			IN				A					54.227.197.56		

Looks	good,	so	now	access	the	nginx	through	the	DNS	name	public.k8s-devops.net:

$	curl	-I	public.k8s-devops.net

HTTP/1.1	200	OK

Server:	nginx/1.10.3

...		

ELB
AWS	provides	a	powerful	software	based	load	balancer	called	Elastic	Load
Balancer	(ELB).	It	allows	you	to	load	balance	network	traffic	to	one	or	multiple
EC2	instances.	In	addition,	ELB	can	offload	SSL/TLS	encryption/decryption	and
also	supports	multi-availability	zone.

In	the	following	example,	an	ELB	is	created	and	associated	with	a	public	subnet
host	nginx	(80/TCP).	Because	ELB	also	needs	a	security	group,	create	a	new
security	group	for	ELB	first:

$	aws	ec2	create-security-group	--vpc-id	vpc-66eda61f	--group-name	elb	--description	

"elb	sg"

{

		"GroupId":	"sg-51d77921"

}

$	aws	ec2	authorize-security-group-ingress	--group-id	sg-51d77921	--protocol	tcp	--

port	80	--cidr	0.0.0.0/0

	

				

$	aws	elb	create-load-balancer	--load-balancer-name	public-elb	--listeners	

Protocol=HTTP,LoadBalancerPort=80,InstanceProtocol=HTTP,InstancePort=80	--subnets	

subnet-d83a4b82	--security-groups	sg-51d77921

{

			"DNSName":	"public-elb-1779693260.us-east-	

				1.elb.amazonaws.com"

}

		

	

	

$	aws	elb	register-instances-with-load-balancer	--load-balancer-name	public-elb	--

instances	i-0db344916c90fae61

	

			

$	curl	-I	public-elb-1779693260.us-east-1.elb.amazonaws.com

HTTP/1.1	200	OK

Accept-Ranges:	bytes

Content-Length:	3770

Content-Type:	text/html

...		

Let's	update	the	Route	53	DNS	record	public.k8s-devops.net	that	points	to	ELB.	In
this	case,	ELB	already	has	an	A	record,	therefore	use	a	CNAME	(alias)	that	points	to
ELB	FQDN:

$	cat	change-to-elb.json	

{

		"Comment":	"use	CNAME	to	pointing	to	ELB",

		"Changes":	[

				{

						"Action":	"DELETE",

						"ResourceRecordSet":	{

								"Name":	"public.k8s-devops.net",

								"Type":	"A",

								"TTL":	300,

								"ResourceRecords":	[

										{

											"Value":	"52.86.166.223"

										}

]

						}

				},

				{

						"Action":	"UPSERT",

						"ResourceRecordSet":	{

								"Name":	"public.k8s-devops.net",

								"Type":	"CNAME",

								"TTL":	300,

								"ResourceRecords":	[

										{

											"Value":	"public-elb-1779693260.us-east-											

1.elb.amazonaws.com"

										}

]

						}

				}

]

}

	

			

$	dig	public.k8s-devops.net

				

;	<<>>	DiG	9.8.3-P1	<<>>	public.k8s-devops.net

;;	global	options:	+cmd

;;	Got	answer:

;;	->>HEADER<<-	opcode:	QUERY,	status:	NOERROR,	id:	10278

;;	flags:	qr	rd	ra;	QUERY:	1,	ANSWER:	3,	AUTHORITY:	0,	ADDITIONAL:	0

				

;;	QUESTION	SECTION:

;public.k8s-devops.net.							IN				A

				

;;	ANSWER	SECTION:

public.k8s-devops.net.		300			IN				CNAME	public-elb-1779693260.us-east-

1.elb.amazonaws.com.

public-elb-1779693260.us-east-1.elb.amazonaws.com.	60	IN	A	52.200.46.81

public-elb-1779693260.us-east-1.elb.amazonaws.com.	60	IN	A	52.73.172.171

				

;;	Query	time:	77	msec

;;	SERVER:	10.0.0.1#53(10.0.0.1)

;;	WHEN:	Wed	Aug	16	22:21:33	2017

;;	MSG	SIZE		rcvd:	134

				

$	curl	-I	public.k8s-devops.net

HTTP/1.1	200	OK

Accept-Ranges:	bytes

Content-Length:	3770

Content-Type:	text/html

...		

S3
AWS	provides	a	useful	object	data	store	service	called	Simple	Storage	Service
(S3).	It	is	not	like	EBS,	no	EC2	instance	can	mount	as	a	file	system.	Instead,	use
AWS	API	to	transfer	a	file	to	the	S3.	Therefore,	AWS	can	make	availability
(99.999999999%)	and	multiple	instances	can	access	it	at	the	same	time.	It	is
good	to	store	non-throughput	and	random	access	sensitive	files	such	as
configuration	files,	log	files,	and	data	files.

In	the	following	example,	a	file	is	uploaded	from	your	machine	to	AWS	S3:

//create	S3	bucket	"k8s-devops"

$	aws	s3	mb	s3://k8s-devops

make_bucket:	k8s-devops

	

			

//copy	files	to	S3	bucket

$	aws	s3	cp	add-record.json	s3://k8s-devops/

upload:	./add-record.json	to	s3://k8s-devops/add-record.json								

$	aws	s3	cp	change-to-elb.json	s3://k8s-devops/

upload:	./change-to-elb.json	to	s3://k8s-devops/change-to-elb.json		

	

			

//check	files	on	S3	bucket

$	aws	s3	ls	s3://k8s-devops/

2017-08-17	20:00:21								319	add-record.json

2017-08-17	20:00:28								623	change-to-elb.json		

Overall,	we've	discussed	how	to	configure	AWS	components	around	VPC.	The
following	diagram	shows	a	major	component	and	relationship:

Setup	Kubernetes	on	AWS
We've	discussed	some	AWS	components	that	are	quite	easy	to	set	up	networks,
virtual	machines,	and	storage.	Therefore,	there	are	a	variety	of	ways	to	set	up
Kubernetes	on	AWS	such	as	kubeadm	(https://github.com/kubernetes/kubeadm),	kops	(http
s://github.com/kubernetes/kops),	and	kubespray	(https://github.com/kubernetes-incubator/kubespray).
One	of	the	recommended	ways	to	set	up	Kubernetes	is	using	kops,	which	is	a
production	grade	setup	tool	and	supports	a	lot	of	configuration.	In	this	chapter,
we	will	use	kops	to	configure	Kubernetes	on	AWS.	Note	that	kops	stands	for
Kubernetes	operations.

https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kops
https://github.com/kubernetes-incubator/kubespray

Install	kops
First	of	all,	you	need	to	install	kops	to	your	machine.	Linux	and	macOS	are
supported.	Kops	is	a	single	binary,	so	just	copy	the	kops	command	to	/usr/local/bin
as	recommended.	After	that,	create	an	IAM	user	and	role	for	kops	that	handles	the
kops	operation.	For	details,	follow	the	official	documentation	(https://github.com/kube
rnetes/kops/blob/master/docs/aws.md).

https://github.com/kubernetes/kops/blob/master/docs/aws.md

Run	kops
Kops	needs	an	S3	bucket	that	stores	the	configuration	and	status.	In	addition,	use
Route	53	to	register	the	Kubernetes	API	server	name,	and	etcd	server	name	to
the	domain	name	system.	Therefore,	use	S3	bucket	and	use	the	Route	53	that
we've	created	in	the	previous	section.

Kops	supports	a	variety	of	configurations,	such	as	deploying	to	public	subnets,
private	subnets,	using	different	types	and	number	of	EC2	instances,	high
availability,	and	overlaying	networks.	Let's	configure	Kubernetes	with	a	similar
configuration	of	network	in	the	previous	section	as	follows:

Kops	has	an	option	to	reuse	existing	VPC	and	subnets.	However,	it
behaves	tricky	and	may	encounter	some	issues	based	on	settings;	it
is	recommended	to	create	a	new	VPC	by	kops.	For	details,	you	may
find	a	document	at	https://github.com/kubernetes/kops/blob/master/docs/run_in_exi
sting_vpc.md.

Parameter Value Means

--name
my-cluster.k8s-

devops.net Set	up	my-cluster	under	k8s-devops.net	domain

--state s3://k8s-devops Use	k8s-devops	S3	bucket

--zones us-east-1a Deploy	on	us-east-1a	Availability	Zone

--cloud aws Use	AWS	as	cloud	provider

--network-

cidr
10.0.0.0/16 Create	new	VPC	with	CIDR	10.0.0.0/16

https://github.com/kubernetes/kops/blob/master/docs/run_in_existing_vpc.md

--master-

size

t2.large Use	EC2	t2.large	instance	for	master

--node-size t2.medium Use	EC2	t2.medium	instance	for	nodes

--node-count 2 Set	up	two	nodes

--networking calico Use	Calico	for	overlay	network

--topology private
Set	up	both	public	and	private	subnet,	and	deploy
master	and	node	to	private

--ssh-

puglic-key
/tmp/internal_rsa.pub Use	/tmp/internal_rsa.pub	for	bastion	host

--bastion Create	ssh	bastion	server	on	public	subnet

--yes Immediately	to	execute

	

Therefore,	run	the	following	to	run	kops:

$	kops	create	cluster	--name	my-cluster.k8s-devops.net	--state=s3://k8s-devops	--zones	

us-east-1a	--cloud	aws	--network-cidr	10.0.0.0/16	--master-size	t2.large	--node-size	

t2.medium	--node-count	2	--networking	calico	--topology	private	--ssh-public-key	

/tmp/internal_rsa.pub	--bastion	--yes

				

I0818	20:43:15.022735			11372	create_cluster.go:845]	Using	SSH	public	key:	

/tmp/internal_rsa.pub

...

I0818	20:45:32.585246			11372	executor.go:91]	Tasks:	78	done	/	78	total;	0	can	run

I0818	20:45:32.587067			11372	dns.go:152]	Pre-creating	DNS	records

I0818	20:45:35.266425			11372	update_cluster.go:247]	Exporting	kubecfg	for	cluster

Kops	has	set	your	kubectl	context	to	my-cluster.k8s-devops.net

				

Cluster	is	starting.		It	should	be	ready	in	a	few	minutes.		

It	may	take	around	5	to	10	minutes	to	fully	complete	after	seeing	the	preceding

messages.	This	is	because	it	requires	us	to	create	the	VPC,	subnet,	and	NAT-GW,
launch	EC2s,	then	install	Kubernetes	master	and	node,	launch	ELB,	and	then
update	Route	53	as	follows:

Once	complete,	kops	updates	~/.kube/config	on	your	machine	points	to	your
Kubernetes	API	Server.	Kops	creates	an	ELB	and	sets	the	corresponding	FQDN
record	on	Route	53	as	https://api.<your-cluster-name>.<your-domain-name>/,	therefore,
you	may	run	the	kubectl	command	from	your	machine	directly	to	see	the	list	of
nodes	as	follows:

$	kubectl	get	nodes

NAME																										STATUS									AGE							VERSION

ip-10-0-36-157.ec2.internal			Ready,master			8m								v1.7.0

ip-10-0-42-97.ec2.internal				Ready,node					6m								v1.7.0

ip-10-0-42-170.ec2.internal			Ready,node					6m								v1.7.0

		

Hooray!	It	took	just	a	few	minutes	to	set	up	AWS	Infrastructure	and	Kubernetes
on	the	AWS	from	scratch.	Now	you	can	deploy	pod	through	the	kubectl
command.	But	you	may	want	to	ssh	to	the	master/node	to	see	what	is	going	on.

However,	due	to	security	reasons,	if	you	specify	--topology	private,	you	can	ssh	to
only	the	bastion	host.	Then	ssh	to	master/node	host	using	a	private	IP	address.
This	is	similar	to	the	previous	section	that	ssh	to	public	subnet	host,	then	ssh	to

the	private	subnet	host	using	ssh-agent	(-A	option).

In	the	following	example,	we	ssh	to	the	bastion	host	(kops	creates	Route	53
entry	as	bastion.my-cluster.k8s-devops.net)	and	then	ssh	to	master	(10.0.36.157):

>

Kubernetes	cloud	provider
While	setting	up	Kubernetes	by	kops,	it	also	configures	Kubernetes	cloud
provider	as	AWS.	Which	means	when	you	use	the	Kubernetes	service	with
LoadBalancer,	it	will	use	ELB.	It	also	uses	Elastic	Block	Store	(EBS)	as	its
StorageClass.

L4	LoadBalancer
When	you	make	the	Kubernetes	service	public	to	the	external	world,	using	ELB
makes	much	more	sense.	Setting	service	type	as	LoadBalancer	will	invoke	ELB
creation	and	associate	it	with	nodes:

$	cat	grafana.yml	

apiVersion:	apps/v1beta1

kind:	Deployment

metadata:

		name:	grafana

spec:

		replicas:	1

		template:

			metadata:

				labels:

					run:	grafana

			spec:

				containers:

						-	image:	grafana/grafana

								name:	grafana

								ports:

									-	containerPort:	3000

apiVersion:	v1

kind:	Service

metadata:

		name:	grafana

spec:

		ports:

				-	port:	80

						targetPort:	3000

		type:	LoadBalancer

		selector:

				run:	grafana

		

	

	

$	kubectl	create	-f	grafana.yml	

deployment	"grafana"	created

service	"grafana"	created

	

			

$	kubectl	get	service

NAME									CLUSTER-IP							EXTERNAL-IP								PORT(S)								AGE

grafana						100.65.232.120			a5d97c8ef8575...			80:32111/TCP			11s

kubernetes			100.64.0.1							<none>													443/TCP								13m

	

			

$	aws	elb	describe-load-balancers	|	grep	a5d97c8ef8575	|	grep	DNSName

									"DNSName":	"a5d97c8ef857511e7a6100edf846f38a-1490901085.us-east-

1.elb.amazonaws.com",			

As	you	can	see,	ELB	has	been	created	automatically	and	the	DNS	is

a5d97c8ef857511e7a6100edf846f38a-1490901085.us-east-1.elb.amazonaws.com,	so	now	you	can
access	Grafana	at	http://a5d97c8ef857511e7a6100edf846f38a-1490901085.us-east-
1.elb.amazonaws.com.

You	may	use	awscli	to	update	Route	53	to	assign	a	CNAME	such	as
grafana.k8s-devops.net.	Alternatively,	the	Kubernetes	incubator
project	external-dns	(https://github.com/kubernetes-incubator/external-dns)	can
automate	to	update	Route	53	in	this	situation.

https://github.com/kubernetes-incubator/external-dns)

L7	LoadBalancer	(ingress)
As	of	kops	version	1.7.0,	it	doesn't	set	up	the	ingress	controller	out	of	the	box
yet.	However,	kops	provides	some	add-ons	(https://github.com/kubernetes/kops/tree/master/a
ddons)	that	expand	the	features	of	Kubernetes.	One	of	the	add-ons	ingress-nginx	(
https://github.com/kubernetes/kops/tree/master/addons/ingress-nginx)	uses	a	combination	of	AWS
ELB	and	nginx	to	achieve	the	Kubernetes	ingress	controller.

In	order	to	install	the	ingress-nginx	add-on,	type	the	following	command	to	set	up
the	ingress	controller:

$	kubectl	create	-f	

https://raw.githubusercontent.com/kubernetes/kops/master/addons/ingress-

nginx/v1.6.0.yaml

namespace	"kube-ingress"	created

serviceaccount	"nginx-ingress-controller"	created

clusterrole	"nginx-ingress-controller"	created

role	"nginx-ingress-controller"	created

clusterrolebinding	"nginx-ingress-controller"	created

rolebinding	"nginx-ingress-controller"	created

service	"nginx-default-backend"	created

deployment	"nginx-default-backend"	created

configmap	"ingress-nginx"	created

service	"ingress-nginx"	created

deployment	"ingress-nginx"	created

After	that,	deploy	nginx	and	echoserver	using	the	NodePort	service	as	follows:

$	kubectl	run	nginx	--image=nginx	--port=80

deployment	"nginx"	created

$	

$	kubectl	expose	deployment	nginx	--target-port=80	--type=NodePort

service	"nginx"	exposed

$	

$	kubectl	run	echoserver	--image=gcr.io/google_containers/echoserver:1.4	--port=8080

deployment	"echoserver"	created

$	

$	kubectl	expose	deployment	echoserver	--target-port=8080	--type=NodePort

service	"echoserver"	exposed

				

//	URL	"/"	point	to	nginx,	"/echo"	to	echoserver

$	cat	nginx-echoserver-ingress.yaml	

apiVersion:	extensions/v1beta1

kind:	Ingress

metadata:

		name:	nginx-echoserver-ingress

spec:

		rules:

		-	http:

						paths:

https://github.com/kubernetes/kops/tree/master/addons
https://github.com/kubernetes/kops/tree/master/addons/ingress-nginx

						-	path:	/

								backend:

										serviceName:	nginx

										servicePort:	80

						-	path:	/echo

								backend:

										serviceName:	echoserver

										servicePort:	8080

		

	

	

//check	ingress

$	kubectl	get	ing	-o	wide

NAME																							HOSTS					ADDRESS																																																																	

PORTS					AGE

nginx-echoserver-ingress			*									a1705ab488dfa11e7a89e0eb0952587e-28724883.us-

east-1.elb.amazonaws.com			80								1m	

After	a	few	minutes,	the	ingress	controller	associates	the	nginx	service	and
echoserver	service	with	the	ELB.	When	you	access	the	ELB	server	with	URI	"/"
it	shows	the	nginx	screen	as	follows:

On	the	other	hand,	if	you	access	the	same	ELB,	but	use	the	URI	"/echo",	it	shows
echoserver	as	follows:

Compared	to	the	standard	Kubernetes	LoadBalancer	service,	one	LoadBalancer
service	consumes	one	ELB.	On	the	other	hand,	using	the	nginx-ingress	addon,	it
can	consolidate	multiple	Kubernetes	NodePort	services	onto	the	single	ELB.
This	will	help	to	build	your	RESTful	service	easier.

StorageClass
As	we	discussed	in	Chapter	4,	Working	with	Storage	and	Resources,	there	is	a
StorageClass	that	can	dynamically	allocate	Persistent	Volume.	Kops	sets	up
provisioner	as	aws-ebs,	which	uses	EBS:

$	kubectl	get	storageclass

NAME												TYPE

default									kubernetes.io/aws-ebs			

gp2	(default)			kubernetes.io/aws-ebs			

				

$	cat	pvc-aws.yml	

apiVersion:	v1

kind:	PersistentVolumeClaim

metadata:

		name:	pvc-aws-1

spec:

		storageClassName:	"default"

		accessModes:

				-	ReadWriteOnce

		resources:

			requests:

					storage:	10Gi

	

			

$	kubectl	create	-f	pvc-aws.yml	

persistentvolumeclaim	"pvc-aws-1"	created

				

$	kubectl	get	pv

NAME																																							CAPACITY			ACCESSMODES			RECLAIMPOLICY			

STATUS				CLAIM															STORAGECLASS			REASON				AGE

pvc-94957090-84a8-11e7-9974-0ea8dc53a244			10Gi							RWO											Delete										

Bound					default/pvc-aws-1			default																		3s		

This	creates	EBS	volume	automatically	as	follows:

$	aws	ec2	describe-volumes	--filter	Name=tag-value,Values="pvc-51cdf520-8576-11e7-

a610-0edf846f38a6"

{

		"Volumes":	[

				{

						"AvailabilityZone":	"us-east-1a",	

						"Attachments":	[],	

						"Tags":	[

							{

...

],	

							"Encrypted":	false,	

							"VolumeType":	"gp2",	

							"VolumeId":	"vol-052621c39546f8096",	

							"State":	"available",	

							"Iops":	100,	

							"SnapshotId":	"",	

							"CreateTime":	"2017-08-20T07:08:08.773Z",	

							"Size":	10

							}

]

			}

Overall,	the	Kubernetes	cloud	provider	for	AWS	is	utilized	to	map	ELB	to
Kubernetes	services	and	also	EBS	to	Kubernetes	Persistent	Volume.	It	is	a	great
benefit	to	use	AWS	for	Kubernetes	as	there	is	no	need	to	pre-allocate	or	buy
either	a	physical	LoadBalancer	or	storage,	just	pay	as	you	go;	it	creates
flexibility	and	scalability	for	your	business.

Maintenance	Kubernetes	cluster	by
kops
When	you	need	to	change	the	Kubernetes	configuration,	such	as	the	number	of
nodes	and	even	EC2	instance	type,	kops	can	support	this	kind	of	use	case.	For
example,	if	you	want	to	change	Kubernetes	node	instance	type	from	t2.medium	to
t2.micro,	and	also	decrease	number	from	2	to	1	due	to	cost	saving,	you	need	to
modify	the	kops	node	instance	group	(ig)	setting	as	follows:

$	kops	edit	ig	nodes	--name	my-cluster.k8s-devops.net	--state=s3://k8s-devops			

It	launches	vi	editor	and	you	can	change	the	setting	for	kops	node	instance	group
as	follows:

apiVersion:	kops/v1alpha2

kind:	InstanceGroup

metadata:

	creationTimestamp:	2017-08-20T06:43:45Z

	labels:

		kops.k8s.io/cluster:	my-cluster.k8s-devops.net

	name:	nodes

spec:

	image:	kope.io/k8s-1.6-debian-jessie-amd64-hvm-ebs-2017-	

	05-02

	machineType:	t2.medium

	maxSize:	2

	minSize:	2

	role:	Node

	subnets:

		-	us-east-1a		

In	this	case,	change	machineType	to	t2.small,	and	maxSize/minSize	to	the	1	and	then	save
it.	After	that,	run	the	kops	update	command	to	apply	settings:

$	kops	update	cluster	--name	my-cluster.k8s-devops.net	--state=s3://k8s-devops	--yes	

				

I0820	00:57:17.900874				2837	executor.go:91]	Tasks:	0	done	/	94	total;	38	can	run

I0820	00:57:19.064626				2837	executor.go:91]	Tasks:	38	done	/	94	total;	20	can	run

...

Kops	has	set	your	kubectl	context	to	my-cluster.k8s-devops.net

Cluster	changes	have	been	applied	to	the	cloud.

				

Changes	may	require	instances	to	restart:	kops	rolling-update	cluster		

As	you	see	in	the	preceding	message,	you	need	to	run	the	kops	rolling-update
cluster	command	to	reflect	to	the	existing	instances.	It	may	take	a	few	minutes	to

replace	the	existing	instance	to	the	new	instance:

$	kops	rolling-update	cluster	--name	my-cluster.k8s-devops.net	--state=s3://k8s-devops	

--yes

NAME														STATUS					NEEDUPDATE		READY	MIN			MAX			NODES

bastions										Ready							0											1					1					1					0

master-us-east-1a	Ready							0											1					1					1					1

nodes													NeedsUpdate	1											0					1					1					1

I0820	01:00:01.086564				2844	instancegroups.go:350]	Stopping	instance	"i-

07e55394ef3a09064",	node	"ip-10-0-40-170.ec2.internal",	in	AWS	ASG	"nodes.my-

cluster.k8s-devops.net".		

Now	the	Kubernetes	node	instance	has	been	decreased	from	2	to	1	as	follows:

$	kubectl	get	nodes

NAME																										STATUS									AGE							VERSION

ip-10-0-36-157.ec2.internal			Ready,master			1h								v1.7.0

ip-10-0-58-135.ec2.internal			Ready,node					34s							v1.7.0		

Summary
In	this	chapter,	we	have	discussed	public	cloud.	AWS	is	the	most	popular	public
cloud	service	and	it	gives	the	API	to	control	AWS	infrastructure
programmatically.	We	can	achieve	automation	and	infrastructure	as	code	easily.
Especially,	kops	brings	us	to	ultra-fast	AWS	and	Kubernetes	setup	from	scratch.
Both	Kubernetes	and	kops	development	are	quite	active.	Please	keep	monitoring
those	projects,	which	will	have	more	functionality	and	configuration	in	the	near
future.

The	next	chapter	will	introduce	Google	Cloud	Platform	(GCP),	which	is
another	popular	public	cloud	service.	Google	Container	Engine	(GKE)	is	the
hosted	Kubernetes	service	that	makes	using	Kubernetes	much	easier.

Kubernetes	on	GCP
Google	Cloud	Platform	(GCP)	is	getting	popular	in	the	public	cloud	industry
that	is	provided	by	Google.	GCP	has	similar	concepts	as	AWS	such	as	VPC,
Compute	Engine,	Persistent	Disk,	Load	Balancing,	and	several	managed
services.	In	this	chapter,	you	will	learn	about	GCP	and	how	to	set	up	Kubernetes
on	GCP	through	the	following	topics:

Understanding	GCP
Using	and	understanding	GCP	components
Using	Google	Container	Engine	(GKE),	the	hosted	Kubernetes	service

Introduction	to	GCP
GCP	was	officially	launched	in	2011.	But	not	like	AWS;	at	the	beginning,	GCP
provided	PaaS	(Platform	as	a	Service)	first.	So	you	can	deploy	your
application	directly,	instead	of	launching	VM.	After	that,	keep	enhance
functionality	that	supports	a	variety	of	services.

The	most	important	service	for	Kubernetes	users	is	GKE,	which	is	a	hosted
Kubernetes	service.	So	you	can	get	some	relief	from	Kubernetes	installation,
upgrade,	and	management.	It	has	a	pay–as–you–go	style	approach	to	use	the
Kubernetes	cluster.	GKE	is	also	a	very	active	service	that	keeps	providing	new
versions	of	Kubernetes	in	a	timely	manner,	and	also	keeps	coming	up	with	new
features	and	management	tools	for	Kubernetes	as	well.

Let's	take	a	look	at	what	kind	of	foundation	and	services	are	provided	by	GCP
and	then	explore	GKE.

GCP	components
GCP	provides	a	web	console	and	command-line	interface	(CLI).	Both	are	easy
and	straightforward	to	control	GCP	infrastructure,	but	Google	accounts	(such	as
Gmail)	are	required.	Once	you	have	a	Google	account,	go	to	the	GCP	sign	up
page	(https://cloud.google.com/free/)	to	set	up	your	GCP	account	creation.

If	you	want	to	control	via	CLI,	you	need	to	install	Cloud	SDK	(https://cloud.google.co
m/sdk/gcloud/),	which	is	similar	to	AWS	CLI	that	you	can	use	to	list,	create,	update,
and	delete	GCP	resources.	After	installing	Cloud	SDK,	you	need	to	configure	it
with	the	following	command	to	associate	it	to	a	GCP	account:

$	gcloud	init

https://cloud.google.com/free/
https://cloud.google.com/sdk/gcloud/

VPC
VPC	in	GCP	is	quite	a	different	policy	compared	with	AWS.	First	of	all,	you
don't	need	to	set	CIDR	prefix	to	VPC,	in	other	words,	you	cannot	set	CIDR	to
VPC.	Instead,	you	just	add	one	or	some	subnets	to	the	VPC.	Because	subnet	is
always	coming	with	certain	CIDR	blocks,	therefore,	GCP	VPC	is	identified	as	a
logical	group	of	subnets,	and	subnets	within	VPC	can	communicate	with	each
other.

Note	that	GCP	VPC	has	two	modes,	either	auto	or	custom.	If	you	choose	auto,
it	will	create	some	subnets	on	each	region	with	predefined	CIDR	blocks.	For
example,	if	you	type	the	following	command:

$	gcloud	compute	networks	create	my-auto-network	--mode	auto

It	will	create	11	subnets	as	shown	in	the	following	screenshot	(because,	as	of
August,	2017,	GCP	has	11	regions):

Auto	mode	VPC	is	probably	good	to	start	with.	However,	in	auto	mode,	you
can't	specify	CIDR	prefix	and	11	subnets	from	all	regions	might	not	fit	with	your
use	case.	For	example,	if	you	want	to	integrate	to	your	on–premise	data	center
via	VPN,	or	want	to	create	subnets	from	a	particular	region	only.

In	this	case,	choose	custom	mode	VPC,	then	you	can	create	subnets	with	desired
CIDR	prefix	manually.	Type	the	following	command	to	create	custom	mode
VPC:

//create	custom	mode	VPC	which	is	named	my-custom-network

$	gcloud	compute	networks	create	my-custom-network	--mode	custom		

Because	custom	mode	VPC	won't	create	any	subnets	as	shown	in	the	following
screenshot,	let's	add	subnets	onto	this	custom	mode	VPC:

Subnets
Subnet	in	GCP,	its	always	across	multiple	zones	(availability	zone)	within
region.	In	other	words,	you	can't	create	subnets	on	a	single	zone	like	AWS.	You
always	need	to	specify	entire	regions	when	creating	a	subnet.

In	addition,	there	are	no	significant	concepts	of	public	and	private	subnets	such
as	AWS	(combination	of	route	and	internet	gateway	or	NAT	gateway	to
determine	as	a	public	or	private	subnet).	This	is	because	all	subnets	in	GCP	have
a	route	to	internet	gateway.

Instead	of	subnet	level	access	control,	GCP	uses	host	(instance)	level	access
control	using	network	tags	to	ensure	the	network	security.	It	will	be	described	in
more	detail	in	the	following	section.

It	might	make	network	administrators	nervous,	however,	GCP	best	practice
brings	you	much	more	simplified	and	scalable	VPC	administration,	because	you
can	add	subnets	anytime	to	expand	entire	network	blocks.

Technically,	you	can	launch	VM	instance	to	set	up	as	a	NAT
gateway	or	HTTP	proxy,	and	then	create	a	custom	priority	route	for
the	private	subnet	that	points	to	the	NAT/proxy	instance	to	achieve
an	AWS–like	private	subnet.
Please	refer	to	the	following	online	document	for	details:
https://cloud.google.com/compute/docs/vpc/special-configurations

One	more	thing,	an	interesting	and	unique	concept	of	GCP	VPC	is	that	you	can
add	different	CIDR	prefix	network	blocks	to	the	single	VPC.	For	example,	if	you
have	custom	mode	VPC	then	add	the	following	three	subnets:

subnet-a	(10.0.1.0/24)	from	us-west1
subnet-b	(172.16.1.0/24)	from	us-east1
subnet-c	(192.168.1.0/24)	from	asia-northeast1

The	following	commands	will	create	three	subnets	from	three	different	regions
with	different	CIDR	prefix:

https://cloud.google.com/compute/docs/vpc/special-configurations

$	gcloud	compute	networks	subnets	create	subnet-a	--network=my-custom-network	--

range=10.0.1.0/24	--region=us-west1

$	gcloud	compute	networks	subnets	create	subnet-b	--network=my-custom-network	--

range=172.16.1.0/24	--region=us-east1

$	gcloud	compute	networks	subnets	create	subnet-c	--network=my-custom-network	--

range=192.168.1.0/24	--region=asia-northeast1		

The	result	will	be	the	following	web	console.	If	you	are	familiar	with	AWS
VPC,	you	won't	believe	these	combinations	of	CIDR	prefixes	within	a	single
VPC!	This	means	that,	whenever	you	need	to	expand	a	network,	you	can	feel
free	to	assign	another	CIDR	prefix	to	add	to	the	VPC.

Firewall	rules
As	mentioned	previously,	GCP	firewall	rule	is	important	to	achieve	network
security.	But	GCP	firewall	is	more	simple	and	flexible	than	AWS	security	group
(SG).	For	example,	in	AWS,	when	you	launch	an	EC2	instance,	you	have	to
assign	at	least	one	SG	that	is	tight	coupling	with	EC2	and	SG.	On	the	other	hand,
in	GCP,	you	can't	assign	any	firewall	rules	directly.	Instead,	firewall	rule	and
VM	instance	are	loosely	coupled	via	network	tag.	Therefore,	there	is	no	direct
association	between	firewall	rule	and	VM	instance.	The	following	diagram	is	a
comparison	between	AWS	security	group	and	GCP	firewall	rule.	EC2	requires
security	group,	on	the	other	hand,	GCP	VM	instance	just	sets	a	tag.	This	is
regardless	of	whether	the	corresponding	firewall	has	the	same	tag	or	not.

For	example,	create	a	firewall	rule	for	public	host	(use	network	tag	public)	and
private	host	(use	network	tag	private)	as	given	in	the	following	command:

//create	ssh	access	for	public	host

$	gcloud	compute	firewall-rules	create	public-ssh	--network=my-custom-network	--

allow="tcp:22"	--source-ranges="0.0.0.0/0"	--target-tags="public"

					

//create	http	access	(80/tcp	for	public	host)

$	gcloud	compute	firewall-rules	create	public-http	--network=my-custom-network	--

allow="tcp:80"	--source-ranges="0.0.0.0/0"	--target-tags="public"

	

				

//create	ssh	access	for	private	host	(allow	from	host	which	has	"public"	tag)

$	gcloud	compute	firewall-rules	create	private-ssh	--network=my-custom-network	--

allow="tcp:22"	--source-tags="public"	--target-tags="private"

				

//create	icmp	access	for	internal	each	other	(allow	from	host	which	has	either	

"public"	or	"private")

$	gcloud	compute	firewall-rules	create	internal-icmp	--network=my-custom-network	--

allow="icmp"	--source-tags="public,private"

It	creates	four	firewall	rules	as	shown	in	the	following	screenshot.	Let's	create
VM	instances	to	use	either	the	public	or	private	network	tag	to	see	how	it	works:

VM	instance
VM	instance	in	GCP	is	quite	similar	to	AWS	EC2.	You	can	choose	from	a
variety	of	machine	(instance)	types	that	have	different	hardware	configurations.
As	well	as	OS	images	that	are	Linux	or	Windows–based	OS	or	your	customized
OS,	you	can	choose.

As	mentioned	when	talking	about	firewall	rules,	you	can	specify	zero	or	more
network	tags.	A	tag	is	not	necessary	to	be	created	beforehand.	This	means	you
can	launch	VM	instances	with	network	tags	first,	even	though	a	firewall	rule	is
not	created.	It	is	still	valid,	but	no	firewall	rule	is	applied	in	this	case.	Then
create	a	firewall	rule	to	have	a	network	tag.	Eventually	a	firewall	rule	will	be
applied	to	the	VM	instances	afterwards.	This	is	why	VM	instances	and	firewall
rules	are	loosely	coupled,	which	provides	flexibility	to	the	user.

Before	launching	a	VM	instance,	you	need	to	create	a	ssh	public	key	first,	the
same	as	AWS	EC2.	The	easiest	way	to	do	this	is	to	run	the	following	command
to	create	and	register	a	new	key:

//this	command	create	new	ssh	key	pair

$	gcloud	compute	config-ssh

				

//key	will	be	stored	as	~/.ssh/google_compute_engine(.pub)

$	cd	~/.ssh

$	ls	-l	google_compute_engine*

-rw-------		1	saito		admin		1766	Aug	23	22:58	google_compute_engine

-rw-r--r--		1	saito		admin			417	Aug	23	22:58	google_compute_engine.pub		

Now	let's	get	started	to	launch	a	VM	instance	on	GCP.

Deploy	two	instances	on	both	subnet-a	and	subnet-b	as	public	instances	(use	the
public	network	tag)	and	then	launch	another	instance	on	the	subnet-a	as	private
instance	(with	a	private	network	tag):

//create	public	instance	("public"	tag)	on	subnet-a

$	gcloud	compute	instances	create	public-on-subnet-a	--machine-type=f1-micro	--

network=my-custom-network	--subnet=subnet-a	--zone=us-west1-a	--tags=public

	

	

//create	public	instance	("public"	tag)	on	subnet-b

$	gcloud	compute	instances	create	public-on-subnet-b	--machine-type=f1-micro	--

network=my-custom-network	--subnet=subnet-b	--zone=us-east1-c	--tags=public

	

			

//create	private	instance	("private"	tag)	on	subnet-a	with	larger	size	(g1-small)

$	gcloud	compute	instances	create	private-on-subnet-a	--machine-type=g1-small	--

network=my-custom-network	--subnet=subnet-a	--zone=us-west1-a	--tags=private

	

			

//Overall,	there	are	3	VM	instances	has	been	created	in	this	example	as	below

$	gcloud	compute	instances	list

NAME																																											ZONE											MACHINE_TYPE		

PREEMPTIBLE		INTERNAL_IP		EXTERNAL_IP						STATUS

public-on-subnet-b																													us-east1-c					f1-micro																			

172.16.1.2			35.196.228.40				RUNNING

private-on-subnet-a																												us-west1-a					g1-small																			

10.0.1.2					104.199.121.234		RUNNING

public-on-subnet-a																													us-west1-a					f1-micro																			

10.0.1.3					35.199.171.31				RUNNING		

You	can	log	in	to	those	machines	to	check	whether	a	firewall	rule	works	as
expected.	First	of	all,	you	need	to	add	a	ssh	key	to	the	ssh-agent	on	your
machine:

$	ssh-add	~/.ssh/google_compute_engine

Enter	passphrase	for	/Users/saito/.ssh/google_compute_engine:	

Identity	added:	/Users/saito/.ssh/google_compute_engine	

(/Users/saito/.ssh/google_compute_engine)		

Then	check	whether	an	ICMP	firewall	rule	can	reject	from	external,	because
ICMP	allows	only	public	or	private	tagged	hosts,	so	it	must	not	allow	ping	from
your	machine	as	shown	in	the	following	screenshot:

On	the	other	hand,	the	public	host	allows	ssh	from	your	machine,	because
public-ssh	rule	allows	any	(0.0.0.0/0).

Of	course,	this	host	can	ping	and	ssh	to	private	hosts	on	subnet-a	(10.0.1.2)
through	a	private	IP	address,	because	of	the	internal-icmp	rule	and	private-ssh	rule.

Let's	ssh	to	a	private	host	and	then	install	tomcat8	and	tomcat8-examples	package	(it
will	install	the	/examples/	application	to	Tomcat).

Remember	that	subnet-a	is	10.0.1.0/24	CIDR	prefix,	but	subnet-b	is	172.16.1.0/24
CIDR	prefix.	But	within	the	same	VPC,	there	is	connectivity	with	each	other.
This	is	a	great	benefit	and	advantage	of	using	GCP	whereby	you	can	expand	a
network	address	block	whenever	you	need.

Now,	install	nginx	to	public	hosts	(public-on-subnet-a	and	public-on-subnet-b):

//logout	from	VM	instance,	then	back	to	your	machine

$	exit

				

//install	nginx	from	your	machine	via	ssh

$	ssh	35.196.228.40	"sudo	apt-get	-y	install	nginx"

$	ssh	35.199.171.31	"sudo	apt-get	-y	install	nginx"

	

			

//check	whether	firewall	rule	(public-http)	work	or	not

$	curl	-I	http://35.196.228.40/

HTTP/1.1	200	OK

Server:	nginx/1.10.3

Date:	Sun,	27	Aug	2017	07:07:01	GMT

Content-Type:	text/html

Content-Length:	612

Last-Modified:	Fri,	25	Aug	2017	05:48:28	GMT

Connection:	keep-alive

ETag:	"599fba2c-264"

Accept-Ranges:	bytes		

However,	at	this	moment,	you	can't	access	Tomcat	on	a	private	host.	Even	if	it
has	a	public	IP	address.	This	is	because	a	private	host	doesn't	have	any	firewall
rule	that	allows	8080/tcp	yet:

$	curl	http://104.199.121.234:8080/examples/

curl:	(7)	Failed	to	connect	to	104.199.121.234	port	8080:	Operation	timed	out		

Moving	forward,	not	to	just	creating	a	firewall	rule	for	Tomcat	but	will	also	be
setting	up	a	LoadBalancer	to	configure	both	nginx	and	Tomcat	access	from	a
single	LoadBalancer.

Load	balancing
GCP	provides	several	types	of	load	balancers	as	follows:

Layer	4	TCP	LoadBalancer
Layer	4	UDP	LoadBalancer
Layer	7	HTTP(S)	LoadBalancer

Layer	4,	both	TCP	and	UDP,	LoadBalancers	are	similar	to	AWS	Classic	ELB.
On	the	other	hand,	Layer	7	HTTP(S)	LoadBalancer	has	content	(context)	based
routing.	For	example,	URL	/img	will	forward	to	instance-a,	everything	else	will
forward	to	instance-b.	So,	it	is	more	like	an	application	level	LoadBalancer.

AWS	also	provides	Application	Load	Balancer	(ALB	or	ELBv2),
which	is	quite	similar	to	GCP	Layer	7	HTTP(S)	LoadBalancer.	For
details,	please	visit	https://aws.amazon.com/blogs/aws/new-aws-application-load-b
alancer/.

In	order	to	set	up	LoadBalancer,	unlike	AWS	ELB,	there	are	several	steps
needed	to	configure	some	items	beforehand:

Configuration
item Purpose

Instance	group Determine	group	of	VM	instances	or	VM	template	(OS	image).

Health	check Set	health	threshold	(interval,	timeout,	and	so	on)	to	determine
instance	group	health	status.

Backend
service

Set	load	threshold	(maximum	CPU	or	request	per	second)	and
session	affinity	(sticky	session)	to	the	instance	group	and	also
associate	to	health	check.

https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/

url-maps
(LoadBalancer)

This	is	an	actual	place	holder	to	represent	an	L7	LoadBalancer	that
associates	backend	services	and	target	HTTP(S)	proxy

Target
HTTP(S)
proxy

This	is	a	connector	that	makes	relationships	between	frontend
forwarding	rules	to	LoadBalancer

Frontend
forwarding	rule

Associate	IP	address	(ephemeral	or	static),	port	number	to	the	target
HTTP	proxy

External	IP
(static) (Optional)	Allocate	static	external	IP	address	for	LoadBalancer

	

The	following	diagram	is	for	all	the	preceding	components'	association	that
constructs	L7	LoadBalancer:

Let's	set	up	an	instance	group	first.	In	this	example,	there	are	three	instance
groups	to	create.	One	for	private	host	Tomcat	instance	(8080/tcp)	and	another
two	instance	groups	for	public	HTTP	instances	per	zones.

To	do	that,	execute	the	following	command	to	group	three	of	them:

//create	instance	groups	for	HTTP	instances	and	tomcat	instance

$	gcloud	compute	instance-groups	unmanaged	create	http-ig-us-west	--zone	us-west1-a

$	gcloud	compute	instance-groups	unmanaged	create	http-ig-us-east	--zone	us-east1-c

$	gcloud	compute	instance-groups	unmanaged	create	tomcat-ig-us-west	--zone	us-west1-a

				

//because	tomcat	uses	8080/tcp,	create	a	new	named	port	as	tomcat:8080

$	gcloud	compute	instance-groups	unmanaged	set-named-ports	tomcat-ig-us-west	--zone	

us-west1-a	--named-ports	tomcat:8080

	

			

//register	an	existing	VM	instance	to	correspond	instance	group

$	gcloud	compute	instance-groups	unmanaged	add-instances	http-ig-us-west	--instances	

public-on-subnet-a	--zone	us-west1-a

$	gcloud	compute	instance-groups	unmanaged	add-instances	http-ig-us-east	--instances	

public-on-subnet-b	--zone	us-east1-c

$	gcloud	compute	instance-groups	unmanaged	add-instances	tomcat-ig-us-west	--instances	

private-on-subnet-a	--zone	us-west1-a		

Health	check
Let's	set	standard	settings	by	executing	the	following	commands:

//create	health	check	for	http	(80/tcp)	for	"/"

$	gcloud	compute	health-checks	create	http	my-http-health-check	--check-interval	5	--

healthy-threshold	2	--unhealthy-threshold	3	--timeout	5	--port	80	--request-path	/

				

//create	health	check	for	Tomcat	(8080/tcp)	for	"/examples/"

$	gcloud	compute	health-checks	create	http	my-tomcat-health-check	--check-interval	5	-

-healthy-threshold	2	--unhealthy-threshold	3	--timeout	5	--port	8080	--request-path	

/examples/		

Backend	service
First	of	all,	we	need	to	create	a	backend	service	that	specifies	health	check.	And
then	add	each	instance	group	with	threshold	with	CPU	utilization	that	utilizes	up
to	80%	and	max	capacity	as	100%	for	both	HTTP	and	Tomcat:

//create	backend	service	for	http	(default)	and	named	port	tomcat	(8080/tcp)

$	gcloud	compute	backend-services	create	my-http-backend-service	--health-checks	my-

http-health-check	--protocol	HTTP	--global

$	gcloud	compute	backend-services	create	my-tomcat-backend-service	--health-checks	my-

tomcat-health-check	--protocol	HTTP	--port-name	tomcat	--global

		

//add	http	instance	groups	(both	us-west1	and	us-east1)	to	http	backend	service

$	gcloud	compute	backend-services	add-backend	my-http-backend-service	--instance-group	

http-ig-us-west	--instance-group-zone	us-west1-a	--balancing-mode	UTILIZATION	--max-

utilization	0.8	--capacity-scaler	1	--global

$	gcloud	compute	backend-services	add-backend	my-http-backend-service	--instance-group	

http-ig-us-east	--instance-group-zone	us-east1-c	--balancing-mode	UTILIZATION	--max-

utilization	0.8	--capacity-scaler	1	--global

	

			

//also	add	tomcat	instance	group	to	tomcat	backend	service

$	gcloud	compute	backend-services	add-backend	my-tomcat-backend-service	--instance-

group	tomcat-ig-us-west	--instance-group-zone	us-west1-a	--balancing-mode	UTILIZATION	

--max-utilization	0.8	--capacity-scaler	1	--global		

Creating	a	LoadBalancer
The	LoadBalancer	needs	to	bind	both	my-http-backend-service	and	my-tomcat-backend-
service.	In	this	scenario,	only	/examples	and	/examples/*	will	be	the	forwarded	traffic
to	my-tomcat-backend-service.	Other	than	that,	every	URI	forwards	traffic	to	my-http-
backend-service:

//create	load	balancer(url-map)	to	associate	my-http-backend-service	as	default

$	gcloud	compute	url-maps	create	my-loadbalancer	--default-service	my-http-backend-

service

				

//add	/examples	and	/examples/*	mapping	to	my-tomcat-backend-service

$	gcloud	compute	url-maps	add-path-matcher	my-loadbalancer	--default-service	my-http-

backend-service	--path-matcher-name	tomcat-map	--path-rules	/examples=my-tomcat-

backend-service,/examples/*=my-tomcat-backend-service

	

			

//create	target-http-proxy	that	associate	to	load	balancer(url-map)

$	gcloud	compute	target-http-proxies	create	my-target-http-proxy	--url-map=my-

loadbalancer

	

			

//allocate	static	global	ip	address	and	check	assigned	address

$	gcloud	compute	addresses	create	my-loadbalancer-ip	--global

$	gcloud	compute	addresses	describe	my-loadbalancer-ip	--global

address:	35.186.192.6

	

			

//create	forwarding	rule	that	associate	static	IP	to	target-http-proxy

$	gcloud	compute	forwarding-rules	create	my-frontend-rule	--global	--target-http-proxy	

my-target-http-proxy	--address	35.186.192.6	--ports	80

If	you	don't	specify	an	--address	option,	it	will	create	and	assign	an
ephemeral	external	IP	address.

Finally,	LoadBalancer	has	been	created.	However,	one	missing	configuration	is
remaining.	Private	hosts	don't	have	any	firewall	rules	to	allow	Tomcat	traffic
(8080/tcp).	This	is	why	when	you	see	LoadBalancer	status,	healthy	status	of	my-
tomcat-backend-service	is	kept	down	(0).

In	this	case,	you	need	to	add	one	more	firewall	rule	that	allows	connection	from
LoadBalancer	to	a	private	subnet	(use	the	private	network	tag).	According	to
GCP	documentation	(https://cloud.google.com/compute/docs/load-balancing/health-checks#https_ssl
_proxy_tcp_proxy_and_internal_load_balancing),	health	check	heart	beat	will	come	from
address	range	130.211.0.0/22	and	35.191.0.0/16:

//add	one	more	Firewall	Rule	that	allow	Load	Balancer	to	Tomcat	(8080/tcp)

$	gcloud	compute	firewall-rules	create	private-tomcat	--network=my-custom-network	--

source-ranges	130.211.0.0/22,35.191.0.0/16	--target-tags	private	--allow	tcp:8080		

After	a	few	minutes,	my-tomcat-backend-service	healthy	status	will	be	up	(1);	now
you	can	access	LoadBalancer	from	a	web	browser.	When	access	to	/	it	should
route	to	my-http-backend-service,	which	has	nginx	application	on	public	hosts:

On	the	other	hand,	if	you	access	/examples/	URL	with	the	same	LoadBalancer	IP

https://cloud.google.com/compute/docs/load-balancing/health-checks#https_ssl_proxy_tcp_proxy_and_internal_load_balancing

address,	it	will	route	to	my-tomcat-backend-service,	which	is	a	Tomcat	application	on
a	private	host,	as	shown	in	the	following	screenshot:

Overall,	there	are	some	steps	needed	to	be	performed	to	set	up	LoadBalancer,
but	it	is	useful	to	integrate	different	HTTP	applications	onto	a	single
LoadBalancer	to	deliver	your	service	efficiently	with	minimum	resources.

Persistent	Disk
GCE	also	has	a	storage	service	called	Persistent	Disk	(PD)	that	is	quite	similar
to	AWS	EBS.	You	can	allocate	desired	size	and	types	(either	standard	or	SSD)
on	each	zone	and	attach/detach	to	VM	instances	anytime.

Let's	create	one	PD	and	then	attach	to	the	VM	instance.	Note	that	when	attaching
PD	to	the	VM	instance,	both	must	be	sat	in	the	same	zones.	This	limitation	is	the
same	as	AWS	EBS.	So	before	creating	PD,	check	the	VM	instance	location	once
again:

$	gcloud	compute	instances	list

NAME																																											ZONE											MACHINE_TYPE		

PREEMPTIBLE		INTERNAL_IP		EXTERNAL_IP						STATUS

public-on-subnet-b																													us-east1-c					f1-micro																			

172.16.1.2			35.196.228.40				RUNNING

private-on-subnet-a																												us-west1-a					g1-small																			

10.0.1.2					104.199.121.234		RUNNING

public-on-subnet-a																													us-west1-a					f1-micro																			

10.0.1.3					35.199.171.31				RUNNING		

Let's	choose	us-west1-a	and	then	attach	it	to	public-on-subnet-a:

//create	20GB	PD	on	us-west1-a	with	standard	type

$	gcloud	compute	disks	create	my-disk-us-west1-a	--zone	us-west1-a	--type	pd-standard	

--size	20

	

			

//after	a	few	seconds,	check	status,	you	can	see	existing	boot	disks	as	well

$	gcloud	compute	disks	list

NAME																																											ZONE											SIZE_GB		TYPE									

STATUS

public-on-subnet-b																													us-east1-c					10							pd-standard		

READY

my-disk-us-west1-a																													us-west1-a					20							pd-standard		

READY

private-on-subnet-a																												us-west1-a					10							pd-standard		

READY

public-on-subnet-a																													us-west1-a					10							pd-standard		

READY

				

//attach	PD(my-disk-us-west1-a)	to	the	VM	instance(public-on-subnet-a)

$	gcloud	compute	instances	attach-disk	public-on-subnet-a	--disk	my-disk-us-west1-a	--

zone	us-west1-a

		

	

	

//login	to	public-on-subnet-a	to	see	the	status

$	ssh	35.199.171.31

Linux	public-on-subnet-a	4.9.0-3-amd64	#1	SMP	Debian	4.9.30-2+deb9u3	(2017-08-06)	

x86_64

				

The	programs	included	with	the	Debian	GNU/Linux	system	are	free	software;

the	exact	distribution	terms	for	each	program	are	described	in	the

individual	files	in	/usr/share/doc/*/copyright.

				

Debian	GNU/Linux	comes	with	ABSOLUTELY	NO	WARRANTY,	to	the	extent

permitted	by	applicable	law.

Last	login:	Fri	Aug	25	03:53:24	2017	from	107.196.102.199

saito@public-on-subnet-a:~$	sudo	su

root@public-on-subnet-a:/home/saito#	dmesg	|	tail

[7377.421190]	systemd[1]:	apt-daily-upgrade.timer:	Adding	25min	4.773609s	random	

time.

[7379.202172]	systemd[1]:	apt-daily-upgrade.timer:	Adding	6min	37.770637s	random	

time.

[243070.866384]	scsi	0:0:2:0:	Direct-Access					Google			PersistentDisk			1				PQ:	0	

ANSI:	6

[243070.875665]	sd	0:0:2:0:	[sdb]	41943040	512-byte	logical	blocks:	(21.5	GB/20.0	GiB)

[243070.883461]	sd	0:0:2:0:	[sdb]	4096-byte	physical	blocks

[243070.889914]	sd	0:0:2:0:	Attached	scsi	generic	sg1	type	0

[243070.900603]	sd	0:0:2:0:	[sdb]	Write	Protect	is	off

[243070.905834]	sd	0:0:2:0:	[sdb]	Mode	Sense:	1f	00	00	08

[243070.905938]	sd	0:0:2:0:	[sdb]	Write	cache:	enabled,	read	cache:	enabled,	doesn't	

support	DPO	or	FUA

[243070.925713]	sd	0:0:2:0:	[sdb]	Attached	SCSI	disk		

You	may	see	PD	has	been	attached	at	/dev/sdb.	Similar	to	AWS	EBS,	you	have	to
format	this	disk.	Because	this	is	a	Linux	OS	operation,	the	steps	are	exactly	the
same	as	described	in	Chapter	9,	Kubernetes	on	AWS.

Google	Container	Engine	(GKE)
Overall,	there	are	some	GCP	components	that	have	been	introduced	in	previous
sections.	Now	you	can	start	to	set	up	Kubernetes	on	GCP	VM	instances	using
those	components.	You	can	even	use	kops	that	was	also	introduced	in	Chapter	9,
Kubernetes	on	AWS	too.

However,	GCP	has	a	managed	Kubernetes	service	called	GKE.	Underneath,	it
uses	some	GCP	components	such	as	VPC,	VM	instances,	PD,	firewall	rules,	and
LoadBalancers.

Of	course,	as	usual,	you	can	use	the	kubectl	command	to	control	your	Kubernetes
cluster	on	GKE,	which	is	included	Cloud	SDK.	If	you	don't	install	the	kubectl
command	on	your	machine	yet,	type	the	following	command	to	install	kubectl	via
Cloud	SDK:

//install	kubectl	command

$	gcloud	components	install	kubectl		

Setting	up	your	first	Kubernetes
cluster	on	GKE
You	can	set	up	a	Kubernetes	cluster	on	GKE	using	the	gcloud	command.	It	needs
to	specify	several	parameters	to	determine	some	configurations.	One	of	the
important	parameters	is	network.	You	have	to	specify	which	VPC	and	subnet
you	will	deploy.	Although	GKE	supports	multiple	zones	to	deploy,	you	need	to
specify	at	least	one	zone	for	Kubernetes	master	node.	This	time,	it	uses	the
following	parameters	to	launch	a	GKE	cluster:

Parameter Description Value

--cluster-

version Specify	Kubernetes	version 1.6.7

--machine-type VM	instance	type	for	Kubernetes	Node f1-micro

--num-nodes Initial	number	size	of	Kubernetes	nodes 3

--network Specify	GCP	VPC my-custom-

network

--subnetwork Specify	GCP	Subnet	if	VPC	is	custom	mode subnet-c

--zone Specify	single	zone asia-northeast1-

a

--tags
Network	tags	that	will	be	assigned	to	Kubernetes
nodes

private

In	this	scenario,	you	need	to	type	the	following	command	to	launch	a	Kubernetes
cluster	on	GCP.	It	may	take	a	few	minutes	to	complete	because,	behind	the
scenes,	it	will	launch	several	VM	instances	and	set	up	Kubernetes	master	and
nodes.	Note	that	Kubernetes	master	and	etcd	will	be	fully	managed	by	GCP.	This
means	master	node	and	etcd	don't	consume	your	VM	instances:

$	gcloud	container	clusters	create	my-k8s-cluster	--cluster-version	1.6.7	--machine-

type	f1-micro	--num-nodes	3	--network	my-custom-network	--subnetwork	subnet-c	--zone	

asia-northeast1-a	--tags	private

				

Creating	cluster	my-k8s-cluster...done.																																																															

Created	[https://container.googleapis.com/v1/projects/devops-with-

kubernetes/zones/asia-northeast1-a/clusters/my-k8s-cluster].

kubeconfig	entry	generated	for	my-k8s-cluster.

NAME												ZONE															MASTER_VERSION		MASTER_IP						MACHINE_TYPE		

NODE_VERSION		NUM_NODES		STATUS

my-k8s-cluster		asia-northeast1-a		1.6.7											35.189.135.13		f1-micro						1.6.7									

3										RUNNING

				

//check	node	status

$	kubectl	get	nodes

NAME																																												STATUS				AGE							VERSION

gke-my-k8s-cluster-default-pool-ae180f53-47h5			Ready					1m								v1.6.7

gke-my-k8s-cluster-default-pool-ae180f53-6prb			Ready					1m								v1.6.7

gke-my-k8s-cluster-default-pool-ae180f53-z6l1			Ready					1m								v1.6.7		

Note	that	we	specify	the	--tags	private	option,	so	Kubernetes	node	VM	instance
has	a	network	tag	as	private.	Therefore,	it	behaves	the	same	as	other	regular	VM
instances	that	have	private	tags.	Therefore	you	can't	ssh	from	public	Internet	and
you	can't	HTTP	from	internet	either.	But	you	can	ping	and	ssh	from	another	VM
instance	which	has	a	public	network	tag.

Once	all	nodes	are	ready,	let's	access	Kubernetes	UI,	which	is	installed	by
default.	To	do	that,	use	the	kubectl	proxy	command	to	connect	to	your	machine	as
a	proxy.	Then	access	the	UI	via	proxy:

//run	kubectl	proxy	on	your	machine,	that	will	bind	to	127.0.0.1:8001

$	kubectl	proxy

Starting	to	serve	on	127.0.0.1:8001

	

			

//use	Web	browser	on	your	machine	to	access	to	127.0.0.1:8001/ui/

http://127.0.0.1:8001/ui/

Node	pool
When	launching	the	Kubernetes	cluster,	you	can	specify	the	number	of	nodes
using	the	--num-nodes	option.	GKE	manages	a	Kubernetes	node	as	node	pool.
Which	means	you	can	manage	one	or	more	node	pools	that	attach	to	your
Kubernetes	cluster.

What	if	you	need	to	add	more	nodes	or	delete	some	nodes?	GKE	provides	a
functionality	to	resize	the	node	pool	by	following	the	command	to	change
Kubernetes	node	from	3	to	5:

//run	resize	command	to	change	number	of	nodes	to	5

$	gcloud	container	clusters	resize	my-k8s-cluster	--size	5	--zone	asia-northeast1-a

		

		

//after	a	few	minutes	later,	you	may	see	additional	nodes

$	kubectl	get	nodes

NAME																																												STATUS				AGE							VERSION

gke-my-k8s-cluster-default-pool-ae180f53-47h5			Ready					5m								v1.6.7

gke-my-k8s-cluster-default-pool-ae180f53-6prb			Ready					5m								v1.6.7

gke-my-k8s-cluster-default-pool-ae180f53-f8ps			Ready					30s							v1.6.7

gke-my-k8s-cluster-default-pool-ae180f53-qzxz			Ready					30s							v1.6.7

gke-my-k8s-cluster-default-pool-ae180f53-z6l1			Ready					5m								v1.6.7		

Increasing	the	number	of	nodes	will	help	if	you	need	to	scale	out	your	node
capacity.	However,	in	this	scenario,	it	still	uses	the	smallest	instance	type	(f1-
micro,	which	has	only	0.6	GB	memory).	It	might	not	help	if	a	single	container
needs	more	than	0.6	GB	memory.	In	this	case	you	need	to	scale	up,	which	means
you	need	to	add	a	larger	size	of	VM	instance	type.

In	this	case,	you	have	to	add	another	set	of	node	pools	onto	your	cluster.	Because
within	the	same	node	pool,	all	VM	instances	are	configured	the	same.	So	you
can't	change	the	instance	type	in	the	same	node	pool.

Therefore,	add	a	new	node	pool	that	has	two	new	sets	of	g1-small	(1.7	GB
memory)	VM	instance	type	to	the	cluster.	Then	you	can	expand	Kubernetes
nodes	with	different	hardware	configuration.

By	default,	there	are	some	quotas	that	you	can	create	a	number
limit	of	VM	instances	within	one	region	(for	example,	up	to	eight

cpu	cores	on	us-west1).	If	you	wish	to	increase	this	quota,	you	must
change	your	account	to	be	a	paid	account.	Then	request	quota
change	to	GCP.	For	more	details,	please	read	online
documentation	from	https://cloud.google.com/compute/quotas	and	https://cloud.g
oogle.com/free/docs/frequently-asked-questions#how-to-upgrade.

Run	the	following	command	that	adds	an	additional	node	pool	that	has	two
instances	of	g1-small	instance:

//create	and	add	node	pool	which	is	named	"large-mem-pool"

$	gcloud	container	node-pools	create	large-mem-pool	--cluster	my-k8s-cluster	--

machine-type	g1-small	--num-nodes	2	--tags	private	--zone	asia-northeast1-a

				

//after	a	few	minustes,	large-mem-pool	instances	has	been	added

$	kubectl	get	nodes

NAME																																														STATUS				AGE							VERSION

gke-my-k8s-cluster-default-pool-ae180f53-47h5					Ready					13m							v1.6.7

gke-my-k8s-cluster-default-pool-ae180f53-6prb					Ready					13m							v1.6.7

gke-my-k8s-cluster-default-pool-ae180f53-f8ps					Ready					8m								v1.6.7

gke-my-k8s-cluster-default-pool-ae180f53-qzxz					Ready					8m								v1.6.7

gke-my-k8s-cluster-default-pool-ae180f53-z6l1					Ready					13m							v1.6.7

gke-my-k8s-cluster-large-mem-pool-f87dd00d-9v5t			Ready					5m								v1.6.7

gke-my-k8s-cluster-large-mem-pool-f87dd00d-fhpn			Ready					5m								v1.6.7		

Now	you	have	a	total	of	seven	CPU	cores	and	6.4	GB	memory	in	your	cluster
that	has	more	capacity.	However,	due	to	larger	hardware	types,	Kubernetes
scheduler	will	probably	assign	to	deploy	pod	to	the	large-mem-pool	first,	because	it
has	enough	memory	capacity.

However,	you	may	want	to	preserve	large-mem-pool	node	in	case	a	big	application
needs	large	heap	memory	size	(for	example,	Java	application).	Therefore,	you
may	want	to	differentiate	default-pool	and	large-mem-pool.

In	this	case,	Kubernetes	label	beta.kubernetes.io/instance-type	helps	to	distinguish
instance	type	of	node.	Therefore,	use	nodeSelector	to	specify	a	desired	node	to	the
pod.	For	example,	following	nodeSelector	parameter	will	force	to	use	f1-micro	node
for	nginx	application:

//nodeSelector	specifies	f1-micro

$	cat	nginx-pod-selector.yml	

apiVersion:	v1

kind:	Pod

metadata:

	name:	nginx

spec:

	containers:

	-	name:	nginx

https://cloud.google.com/compute/quotas
https://cloud.google.com/free/docs/frequently-asked-questions#how-to-upgrade

			image:	nginx

	nodeSelector:

		beta.kubernetes.io/instance-type:	f1-micro

	

			

//deploy	pod

$	kubectl	create	-f	nginx-pod-selector.yml	

pod	"nginx"	created

				

//it	uses	default	pool

$	kubectl	get	pods	nginx	-o	wide

NAME						READY					STATUS				RESTARTS			AGE							IP											NODE

nginx					1/1							Running			0										7s								10.56.1.13			gke-my-k8s-cluster-

default-pool-ae180f53-6prb

If	you	want	to	specify	a	particular	label	instead	of
beta.kubernetes.io/instance-type,	use	--node-labels	option	to	create	a
node	pool.	That	assigns	your	desired	label	for	the	node	pool.
For	more	details,	please	read	the	following	online	document:
https://cloud.google.com/sdk/gcloud/reference/container/node-pools/create.

Of	course,	you	can	feel	free	to	remove	a	node	pool	if	you	no	longer	need	it.	To
do	that,	run	the	following	command	to	delete	default-pool	(f1-micro	x	5	instances).
This	operation	will	involve	pod	migration	(terminate	pod	on	default-pool	and	re-
launch	on	large-mem-pool)	automatically,	if	there	are	some	pods	running	at	default-
pool:

//list	Node	Pool

$	gcloud	container	node-pools	list	--cluster	my-k8s-cluster	--zone	asia-northeast1-a

NAME												MACHINE_TYPE		DISK_SIZE_GB		NODE_VERSION

default-pool				f1-micro						100											1.6.7

large-mem-pool		g1-small						100											1.6.7

				

//delete	default-pool

$	gcloud	container	node-pools	delete	default-pool	--cluster	my-k8s-cluster	--zone	

asia-northeast1-a

				

//after	a	few	minutes,	default-pool	nodes	x	5	has	been	deleted

$	kubectl	get	nodes

NAME																																														STATUS				AGE							VERSION

gke-my-k8s-cluster-large-mem-pool-f87dd00d-9v5t			Ready					16m							v1.6.7

gke-my-k8s-cluster-large-mem-pool-f87dd00d-fhpn			Ready					16m							v1.6.7		

You	may	have	noticed	that	all	of	the	preceding	operations	happened	in	a	single
zone	(asia-northeast1-a).	Therefore,	if	asia-northeast1-a	zone	gets	an	outage,	your
cluster	will	be	down.	In	order	to	avoid	zone	failure,	you	may	consider	setting	up
a	multi	zone	cluster.

https://cloud.google.com/sdk/gcloud/reference/container/node-pools/create

Multi	zone	cluster
GKE	supports	multi	zone	cluster	that	allows	you	to	launch	Kubernetes	nodes	on
multiple	zones,	but	limits	within	the	same	region.	In	previous	examples,	it	has
been	provisioned	at	asia-northeast1-a	only,	so	let's	re-provision	a	cluster	that	has
asia-northeast1-a,	asia-northeast1-b	and	asia-northeast1-c	in	a	total	of	three	zones.

It	is	very	simple;	you	just	append	an	--additional-zones	parameter	when	creating	a
new	cluster.

As	of	August,	2017,	there	is	a	beta	feature	that	supports	to	update
existing	clusters	from	single	zones	to	multi	zones.	Use	a	beta
command	as	follows:
$	gcloud	beta	container	clusters	update	my-k8s-cluster	--additional-

zones=asia-northeast1-b,asia-northeast1-c.
To	change	an	existing	cluster	to	multi	zone,	it	may	need	an
additional	SDK	tool	installation,	but	out	of	SLA.

Let's	delete	the	previous	cluster,	and	create	a	new	cluster	with	an	--additional-
zones	option:

//delete	cluster	first

$	gcloud	container	clusters	delete	my-k8s-cluster	--zone	asia-northeast1-a

	

			

//create	a	new	cluster	with	--additional-zones	option	but	2	nodes	only

$	gcloud	container	clusters	create	my-k8s-cluster	--cluster-version	1.6.7	--machine-

type	f1-micro	--num-nodes	2	--network	my-custom-network	--subnetwork	subnet-c	--zone	

asia-northeast1-a	--tags	private	--additional-zones	asia-northeast1-b,asia-northeast1-

c		

In	this	example,	it	will	create	two	nodes	per	zones	(asia-northeast1-a,	b	and	c);
therefore,	a	total	of	six	nodes	will	be	added:

$	kubectl	get	nodes

NAME																																												STATUS				AGE							VERSION

gke-my-k8s-cluster-default-pool-0c4fcdf3-3n6d			Ready					44s							v1.6.7

gke-my-k8s-cluster-default-pool-0c4fcdf3-dtjj			Ready					48s							v1.6.7

gke-my-k8s-cluster-default-pool-2407af06-5d28			Ready					41s							v1.6.7

gke-my-k8s-cluster-default-pool-2407af06-tnpj			Ready					45s							v1.6.7

gke-my-k8s-cluster-default-pool-4c20ec6b-395h			Ready					49s							v1.6.7

gke-my-k8s-cluster-default-pool-4c20ec6b-rrvz			Ready					49s							v1.6.7		

You	may	also	distinguish	node	zone	by	Kubernetes	label	failure-

domain.beta.kubernetes.io/zone	so	that	you	can	specify	desired	zones	to
deploy	a	pod.

Cluster	upgrade
Once	you	start	to	manage	Kubernetes,	you	may	encounter	some	difficulty	when
upgrading	Kubernetes	clusters.	Because	the	Kubernetes	project	is	very
aggressive,	around	every	three	months,	there	is	a	new	release,	such	as	1.6.0
(released	on	March	28th	2017)	to	1.7.0	(released	on	June	29th	2017).

GKE	also	keeps	adding	new	version	support	in	a	timely	manner.	It	allows	us	to
upgrade	both	master	and	nodes	via	the	gcloud	command.	You	can	run	the
following	command	to	see	which	Kubernetes	version	is	supported	by	GKE:

$	gcloud	container	get-server-config

				

Fetching	server	config	for	us-east4-b

defaultClusterVersion:	1.6.7

defaultImageType:	COS

validImageTypes:

-	CONTAINER_VM

-	COS

-	UBUNTU

validMasterVersions:

-	1.7.3

-	1.6.8

-	1.6.7

validNodeVersions:

-	1.7.3

-	1.7.2

-	1.7.1

-	1.6.8

-	1.6.7

-	1.6.6

-	1.6.4

-	1.5.7

-	1.4.9		

So,	you	may	see	the	latest	supported	version	is	1.7.3	on	both	master	and	node	at
this	moment.	Since	the	previous	example	installed	is	version	1.6.7,	let's	update	to
1.7.3.	First	of	all,	you	need	to	upgrade	master	first:

//upgrade	master	using	--master	option

$	gcloud	container	clusters	upgrade	my-k8s-cluster	--zone	asia-northeast1-a	--cluster-

version	1.7.3	--master

Master	of	cluster	[my-k8s-cluster]	will	be	upgraded	from	version	

[1.6.7]	to	version	[1.7.3].	This	operation	is	long-running	and	will	

block	other	operations	on	the	cluster	(including	delete)	until	it	has	

run	to	completion.

				

Do	you	want	to	continue	(Y/n)?		y

				

Upgrading	my-k8s-cluster...done.	

Updated	[https://container.googleapis.com/v1/projects/devops-with-

kubernetes/zones/asia-northeast1-a/clusters/my-k8s-cluster].		

It	takes	around	10	minutes	depending	on	environment,	after	that	you	can	verify
via	the	following	command:

//master	upgrade	has	been	successfully	to	done

$	gcloud	container	clusters	list	--zone	asia-northeast1-a

NAME												ZONE															MASTER_VERSION		MASTER_IP							MACHINE_TYPE		

NODE_VERSION		NUM_NODES		STATUS

my-k8s-cluster		asia-northeast1-a		1.7.3											35.189.141.251		f1-micro						1.6.7	

*							6										RUNNING		

Now	you	can	upgrade	all	nodes	to	version	1.7.3.	Because	GKE	tries	to	perform
rolling	upgrade,	it	will	perform	the	following	steps	per	node	one	by	one:

1.	 Deregister	a	target	node	from	the	cluster.
2.	 Delete	old	VM	instance.
3.	 Provision	a	new	VM	instance.
4.	 Set	up	the	node	with	the	1.7.3	version.
5.	 Register	to	master.

Therefore,	it	takes	much	longer	than	a	master	upgrade:

//node	upgrade	(not	specify	--master)

$	gcloud	container	clusters	upgrade	my-k8s-cluster	--zone	asia-northeast1-a	--cluster-

version	1.7.3	

All	nodes	(6	nodes)	of	cluster	[my-k8s-cluster]	will	be	upgraded	from	

version	[1.6.7]	to	version	[1.7.3].	This	operation	is	long-running	and	will	block	

other	operations	on	the	cluster	(including	delete)	until	it	has	run	to	completion.

				

Do	you	want	to	continue	(Y/n)?		y		

During	rolling	upgrade,	you	can	see	node	status	as	follows	and	it	shows	a	mid
process	of	rolling	update	(two	nodes	have	upgraded	to	1.7.3,	one	node	is
upgrading,	three	nodes	are	pending):

NAME																																												STATUS																								AGE							

VERSION

gke-my-k8s-cluster-default-pool-0c4fcdf3-3n6d			Ready																									37m							

v1.6.7

gke-my-k8s-cluster-default-pool-0c4fcdf3-dtjj			Ready																									37m							

v1.6.7

gke-my-k8s-cluster-default-pool-2407af06-5d28			NotReady,SchedulingDisabled			37m							

v1.6.7

gke-my-k8s-cluster-default-pool-2407af06-tnpj			Ready																									37m							

v1.6.7

gke-my-k8s-cluster-default-pool-4c20ec6b-395h			Ready																									5m								

v1.7.3

gke-my-k8s-cluster-default-pool-4c20ec6b-rrvz			Ready																									1m								

v1.7.3		

Kubernetes	cloud	provider
GKE	also	integrates	Kubernetes	cloud	provider	out	of	box	that	deep	integrate	to
GCP	infrastructure;	for	example	overlay	network	by	VPC	route,	StorageClass	by
Persistent	Disk,	and	Service	by	L4	LoadBalancer.	The	best	part	is	ingress	by	L7
LoadBalancer.	Let's	take	a	look	at	how	it	works.

StorageClass
As	per	as	kops	on	AWS,	GKE	also	sets	up	StorageClass	by	default,	which	uses
Persistent	Disk:

$	kubectl	get	storageclass

NAME																	TYPE

standard	(default)			kubernetes.io/gce-pd			

	

			

$	kubectl	describe	storageclass	standard

Name:							standard

IsDefaultClass:			Yes

Annotations:						storageclass.beta.kubernetes.io/is-default-class=true

Provisioner:						kubernetes.io/gce-pd

Parameters:	type=pd-standard

Events:											<none>		

Therefore,	when	creating	Persistent	Volume	Claim,	it	will	allocate	GCP
Persistent	Disk	as	Kubernetes	Persistent	Volume	automatically.	Regarding
Persistent	Volume	Claim	and	Dynamic	Provisioning,	please	refer	to	Chapter	4,
Working	with	Storage	and	Resources:

$	cat	pvc-gke.yml	

apiVersion:	v1

kind:	PersistentVolumeClaim

metadata:

				name:	pvc-gke-1

spec:

		storageClassName:	"standard"

		accessModes:

				-	ReadWriteOnce

		resources:

				requests:

						storage:	10Gi

	

			

//create	Persistent	Volume	Claim

$	kubectl	create	-f	pvc-gke.yml	

persistentvolumeclaim	"pvc-gke-1"	created

	

			

//check	Persistent	Volume

$	kubectl	get	pv

NAME																																							CAPACITY			ACCESSMODES			RECLAIMPOLICY			

STATUS				CLAIM															STORAGECLASS			REASON				AGE

pvc-bc04e717-8c82-11e7-968d-42010a920fc3			10Gi							RWO											Delete										

Bound					default/pvc-gke-1			standard																	2s

				

//check	via	gcloud	command

$	gcloud	compute	disks	list	

NAME																																																													ZONE															

SIZE_GB		TYPE									STATUS

gke-my-k8s-cluster-d2e-pvc-bc04e717-8c82-11e7-968d-42010a920fc3		asia-northeast1-a		10							

pd-standard		READY		

L4	LoadBalancer
Similar	to	AWS	cloud	provider,	GKE	also	supports	using	L4	LoadBalancer	for
Kubernetes	Service.	Just	specify	Service.spec.type	as	LoadBalancer,	and	then	GKE
will	set	up	and	configure	L4	LoadBalancer	automatically.

Note	that	the	corresponding	firewall	rule	between	L4	LoadBalancer	to
Kubernetes	node	can	be	created	by	cloud	provider	automatically.	It	is	simple	but
powerful	enough	if	you	want	to	expose	your	application	to	the	internet	quickly:

$	cat	grafana.yml	

apiVersion:	apps/v1beta1

kind:	Deployment

metadata:

		name:	grafana

spec:

		replicas:	1

		template:

				metadata:

						labels:

								run:	grafana

				spec:

					containers:

							-	image:	grafana/grafana

									name:	grafana

									ports:

										-	containerPort:	3000

apiVersion:	v1

kind:	Service

metadata:

		name:	grafana

spec:

		ports:

				-	port:	80

						targetPort:	3000

		type:	LoadBalancer

		selector:

				run:	grafana

	

			

//deploy	grafana	with	Load	Balancer	service

$	kubectl	create	-f	grafana.yml	

deployment	"grafana"	created

service	"grafana"	created

				

//check	L4	Load	balancer	IP	address

$	kubectl	get	svc	grafana

NAME						CLUSTER-IP					EXTERNAL-IP					PORT(S)								AGE

grafana			10.59.249.34			35.189.128.32			80:30584/TCP			5m

	

			

//can	reach	via	GCP	L4	Load	Balancer

$	curl	-I	35.189.128.32

HTTP/1.1	302	Found

Location:	/login

Set-Cookie:	grafana_sess=f92407d7b266aab8;	Path=/;	HttpOnly

Set-Cookie:	redirect_to=%252F;	Path=/

Date:	Wed,	30	Aug	2017	07:05:20	GMT

Content-Type:	text/plain;	charset=utf-8		

L7	LoadBalancer	(ingress)
GKE	also	supports	Kubernetes	ingress	that	can	set	up	GCP	L7	LoadBalancer	to
dispatch	HTTP	requests	to	the	target	service	based	on	URL.	You	just	need	to	set
up	one	or	more	NodePort	services	and	then	create	ingress	rules	to	point	to
services.	Behind	the	scenes,	Kubernetes	creates	and	configures	firewall	rules,
health	check,	backend	service,	forwarding	rules,	and	URL	maps	automatically.

Let's	create	same	examples	that	use	nginx	and	Tomcat	to	deploy	to	the
Kubernetes	cluster	first.	These	are	using	Kubernetes	Services	that	bind	to
NodePort	instead	of	LoadBalancer:

At	this	moment,	you	cannot	access	service,	because	there	are	no	firewall	rules
that	allow	access	to	the	Kubernetes	node	from	the	internet	yet.	So,	let's	create
Kubernetes	ingress	that	points	to	these	services.

You	can	use	kubectl	port-forward	<pod	name>	<your	machine	available	port>
<:	service	port	number>	to	access	via	the	Kubernetes	API	server.	For
the	preceding	case,	use	kubectl	port-forward	tomcat-670632475-l6h8q
10080:8080..
After	that,	open	your	web	browser	to	http://localhost:10080/	and	then
you	can	access	Tomcat	pod	directly.

Kubernetes	ingress	definition	is	quite	similar	to	GCP	backend	service	definition

as	it	needs	to	specify	a	combination	of	URL	path,	Kubernetes	service	name,	and
service	port	number.	So	in	this	scenario,	URL	/	and	/*	point	to	nginx	service,
also	URL	/examples	and	/examples/*	point	to	the	Tomcat	service	as	follows:

$	cat	nginx-tomcat-ingress.yaml	

apiVersion:	extensions/v1beta1

kind:	Ingress

metadata:

		name:	nginx-tomcat-ingress

spec:

		rules:

		-	http:

						paths:

						-	path:	/

								backend:

										serviceName:	nginx

										servicePort:	80

						-	path:	/examples

								backend:

										serviceName:	tomcat

										servicePort:	8080

						-	path:	/examples/*

								backend:

										serviceName:	tomcat

										servicePort:	8080

		

	

	

$	kubectl	create	-f	nginx-tomcat-ingress.yaml	

ingress	"nginx-tomcat-ingress"	created		

It	takes	around	10	minutes	to	fully	configure	GCP	components	such	as	health
check,	forwarding	rule,	backend	services,	and	url-maps:

$	kubectl	get	ing

NAME																			HOSTS					ADDRESS											PORTS					AGE

nginx-tomcat-ingress			*									107.178.253.174			80								1m		

You	can	also	check	the	status	on	the	web	console	as	follows:

Once	you	have	completed	the	setup	of	L7	LoadBalancer,	you	can	access	the
public	IP	address	of	LoadBalancer	(http://107.178.253.174/)	to	see	the	nginx	page.
As	well	as	access	to	http://107.178.253.174/examples/	then	you	can	see	tomcat	example
page.

In	the	preceding	steps,	we	created	and	assigned	an	ephemeral	IP	address	for	L7
LoadBalancer.	However,	the	best	practice	to	use	L7	LoadBalancer	is	to	assign	a
static	IP	address	instead,	because	you	can	also	associate	DNS	(FQDN)	to	the
static	IP	address.

To	do	that,	update	ingress	setting	to	add	an	annotation	kubernetes.io/ingress.global-
static-ip-name	to	associate	a	GCP	static	IP	address	name	as	follows:

//allocate	static	IP	as	my-nginx-tomcat

$	gcloud	compute	addresses	create	my-nginx-tomcat	--global

	

			

//check	assigned	IP	address

$	gcloud	compute	addresses	list	

NAME													REGION		ADDRESS									STATUS

my-nginx-tomcat										35.186.227.252		IN_USE

	

			

//add	annotations	definition

$	cat	nginx-tomcat-static-ip-ingress.yaml	

apiVersion:	extensions/v1beta1

kind:	Ingress

metadata:

		name:	nginx-tomcat-ingress

		annotations:

				kubernetes.io/ingress.global-static-ip-name:	my-nginx-	

tomcat

spec:

		rules:

		-	http:

						paths:

						-	path:	/

								backend:

										serviceName:	nginx

										servicePort:	80

						-	path:	/examples

								backend:

										serviceName:	tomcat

										servicePort:	8080

						-	path:	/examples/*

								backend:

										serviceName:	tomcat

										servicePort:	8080

	

			

//apply	command	to	update	Ingress

$	kubectl	apply	-f	nginx-tomcat-static-ip-ingress.yaml	

				

//check	Ingress	address	that	associate	to	static	IP

$	kubectl	get	ing

NAME																			HOSTS					ADDRESS										PORTS					AGE

nginx-tomcat-ingress			*									35.186.227.252			80								48m		

So,	now	you	can	access	ingress	via	a	static	IP	address	as	http://35.186.227.252/
(nginx)	and	http://35.186.227.252/examples/	(Tomcat)	instead.

Summary
In	this	chapter,	we	discussed	Google	Cloud	Platform.	The	basic	concept	is
similar	to	AWS,	but	some	of	the	policies	and	concepts	are	different.	Especially
Google	Container	Engine,	as	it	is	a	very	powerful	service	to	use	Kubernetes	as
production	grade.	Kubernetes	cluster	and	node	management	are	quite	easy,	not
only	the	installation,	but	also	upgrade.	Cloud	provider	is	also	fully	integrated	to
GCP,	especially	Ingress	as	it	can	configure	L7	LoadBalancer	with	one	command.
Therefore,	it	is	highly	recommended	to	try	GKE	if	you	plan	to	use	Kubernetes
on	the	public	cloud.

The	next	chapter	will	provide	a	sneak	preview	to	some	new	features	and
alternative	services	to	against	Kubernetes.

What's	Next
So	far	we	have	gone	through	topics	around	carrying	out	DevOps'	tasks	on
Kubernetes	across	the	board.	Nevertheless,	it's	always	challenging	to	implement
knowledge	under	real-world	circumstances,	hence	you	may	wonder	whether
Kubernetes	is	able	to	solve	particular	problems	that	you	are	currently	facing.	In
this	chapter,	we'll	learn	the	following	topics	to	work	out	with	challenges:

Advanced	Kubernetes	features
Kubernetes	communities
Other	container	orchestrator	frameworks

Exploring	the	possibilities	of
Kubernetes
Kubernetes	is	evolving	day	by	day,	and	it's	at	a	pace	where	it	is	publishing	one
major	version	quarterly.	Aside	from	the	built-in	functions	that	come	with	every
new	Kubernetes	distribution,	contributions	from	the	community	also	play	an
important	role	in	the	ecosystem,	and	we'll	have	a	tour	around	them	in	this
section.

Mastering	Kubernetes
Kubernetes'	objects	and	resources	are	categorized	into	three	API	tracks,	namely,
alpha,	beta,	and	stable	to	denote	their	maturity.	The	apiVersion	field	at	the	head	of
every	resource	indicates	their	level.	If	a	feature	has	a	versioning	such	as
v1alpha1,	it	belongs	to	alpha-level	API,	and	beta	API	is	named	in	the	same	way.
An	alpha-level	API	is	disabled	by	default	and	is	subject	to	change	without
notice.

The	beta-level	API	is	enabled	by	default;	it's	well	tested	and	considered	to	be
stable,	but	the	schema	or	object	semantics	could	be	changed	as	well.	The	rest	of
the	parts	are	the	stable,	generally	available	ones.	Once	an	API	enters	a	stable
stage,	it's	unlikely	to	be	changed	anymore.

Even	though	we've	discussed	concepts	and	practices	about	Kubernetes
extensively,	there	are	still	considerable	features	that	we	haven't	mentioned,	that
deal	with	a	variety	of	workload	as	well	as	scenarios,	and	make	Kubernetes
extremely	flexible.	They	may	or	may	not	apply	to	everyone's	needs	and	are	not
stable	enough	in	particular	cases.	Let's	take	a	brief	look	at	the	popular	ones.

Job	and	CronJob
They	are	also	high-level	pod	controllers,	that	allow	us	to	run	containers	that	will
eventually	terminate.	A	job	ensures	a	certain	number	of	pods	run	to	completion
with	success;	a	CronJob	ensures	that	a	job	is	invoked	at	given	times.	If	we	have
the	need	to	run	batch	workloads	or	scheduled	tasks,	we'd	know	that	there	are
built-in	controllers	that	come	into	play.	Related	information	can	be	found	at:	https:
//kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/.

https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/

Affinity	and	anti-affinity	between
pods	and	nodes
We	know	a	pod	can	be	manually	assigned	to	some	nodes	with	the	node	selector,
and	a	node	can	reject	pods	with	taints.	However,	when	it	comes	to	more	flexible
circumstances,	say,	maybe	we	want	some	pods	to	be	co-located,	or	we	want	pods
to	be	distributed	equally	across	availability	zones,	arranging	our	pods	either	by
node	selectors	or	by	node	taints	may	take	a	great	effort.	Thus,	the	affinity	is
designed	to	solve	the	case:	https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affi
nity-and-anti-affinity.

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity

Auto-scaling	of	pods
Almost	all	modern	infrastructure	supports	auto-scaling	an	instance	group	that
runs	the	application,	so	does	Kubernetes.	The	pod	horizontal	scaler
(PodHorizontalScaler)	is	able	to	scale	pod	replicas	with	CPU/memory	metrics	in	a
controller	such	as	Deployment.	Starting	from	Kubernetes	1.6,	the	scaler	formally
supports	scaling	based	on	custom	metrics,	say	transactions-per-second.	More
information	can	be	found	at	https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autosc
ale/.

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

Prevention	and	mitigation	of	pod
disruptions
We	know	pods	are	volatile,	and	they'd	be	terminated	and	relaunched	across
nodes	as	the	cluster	scales	in	and	out.	If	too	many	pods	of	an	application	are
destroyed	simultaneously,	it	could	result	in	lowering	the	service	level	or	even	the
application	fails.	Especially	when	the	application	is	stateful	or	quorum-based,	it
might	barely	tolerate,	pod	disruptions.	To	mitigate	the	disruption,	we	could
leverage	PodDisruptionBudget	to	inform	Kubernetes	of	how	many	unavailable	pods
at	any	given	time	our	application	can	tolerate	so	that	Kubernetes	is	able	to	take
proper	actions	with	the	knowledge	of	the	applications	on	top	of	it.	For	more
information,	refer	to	https://kubernetes.io/docs/concepts/workloads/pods/disruptions/.

On	the	other	hand,	since	PodDisruptionBudget	is	a	managed	object,	it	still	cannot
preclude	disruptions	caused	by	factors	outside	Kubernetes,	such	as	hardware
failures	of	a	node,	or	node	components	being	killed	by	the	system	due	to
insufficient	memory.	As	such,	we	can	incorporate	tools	such	as	node-problem-
detector	into	our	monitoring	stack	and	properly	configure	the	threshold	on	the
resources	of	a	node,	to	notify	Kubernetes	which	begins	to	drain	the	node	or	evict
excessive	pods	to	prevent	situations	getting	worse.	For	more	detailed	guides	on
node-problem-detector	and	resource	thresholds,	refer	to	the	following	topics:

https://kubernetes.io/docs/tasks/debug-application-cluster/monitor-node-health/
https://kubernetes.io/docs/tasks/administer-cluster/out-of-resource/

https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/tasks/debug-application-cluster/monitor-node-health/
https://kubernetes.io/docs/tasks/administer-cluster/out-of-resource/

Kubernetes	federation
A	federation	is	a	cluster	of	clusters.	In	other	words,	it's	formed	by	multiple
Kubernetes	clusters	and	is	accessible	from	a	single	control	plane.	The	resources
that	are	created	on	a	federation	will	be	synchronized	across	all	connected
clusters.	As	of	Kubernetes	1.7,	resources	that	can	be	federated	include
Namespace,	ConfigMap,	Secret,	Deployment,	DaemonSet,	Service,	and	Ingress.

Capabilities	of	the	federation	to	build	a	hybrid	platform	bring	us	another	level	of
flexibility	when	architecting	our	software.	For	instance,	we	can	federate	clusters
deployed	in	on-premise	data	centers	and	various	public	clouds	together,	to
distribute	workloads	by	cost,	and	utilize	platform-specific	features	while	keeping
the	elasticity	to	move	around.	Another	typical	use	case	is	federating	clusters
scattered	in	different	geographical	locations	to	lower	the	edge	latency	to
customers	across	the	globe.	Moreover,	a	single	Kubernetes	cluster	backed	by
etcd3	supports	5,000	nodes	while	keeping	the	p99	of	API	response	time	less	than
1	second	(on	version	1.6).	If	there	is	a	need	to	have	a	cluster	with	thousands	of
nodes	or	beyond,	we	can	surely	federate	clusters	to	get	there.

The	guide	for	a	federation	can	be	found	at	the	following	link:	https://kubernetes.io/docs
/tasks/federation/set-up-cluster-federation-kubefed/.

https://kubernetes.io/docs/tasks/federation/set-up-cluster-federation-kubefed/

Cluster	add-ons
Cluster	add-ons	are	programs,	that	are	designed	or	configured	to	enhance	a
Kubernetes	cluster,	and	they	are	considered	to	be	inherent	parts	of	Kubernetes.
For	instance,	Heapster,	which	we	used	in	Chapter	6,	Monitoring	and	Logging,	is
one	of	the	add-on	components,	and	so	is	the	node-problem-detector	we
mentioned	earlier.

As	cluster	add-ons	may	be	used	in	some	critical	functions,	some	hosted
Kubernetes	services	such	as	GKE	deploy	the	add-on	manager	to	safeguard	the
state	of	the	add-ons	from	being	modified	or	deleted.	Managed	add-ons	will	be
deployed	with	a	label,	addonmanager.kubernetes.io/mode,	on	the	pod	controller.	If	the
mode	is	Reconcile,	any	modification	to	the	specification	will	be	rolled	back	to	its
initial	state;	the	EnsureExists	mode	only	checks	whether	the	controller	exists,	but
doesn't	check	whether	its	specification	is	modified.	For	instance,	the	following
Deployments	are	deployed	on	a	1.7.3	GKE	cluster	by	default,	and	all	of	them	are
protected	in	the	Reconcile	mode:

If	you'd	like	to	deploy	add-ons	in	your	own	cluster,	they	can	be	found	at:	https://git
hub.com/kubernetes/kubernetes/tree/master/cluster/addons.

https://github.com/kubernetes/kubernetes/tree/master/cluster/addons

Kubernetes	and	communities
When	choosing	an	open	source	tool	to	use,	we	definitely	wonder	how
supportiveness	it	is	after	we	begin	to	use	it.	The	supportiveness	includes	factors
such	as	who	is	leading	the	project,	whether	the	project	is	opinionated,	how	is	the
project's	popularity,	and	so	on.

Kubernetes	originated	from	Google,	and	it's	now	backed	by	the	Cloud	Native
Computing	Foundation	(CNCF,	https://www.cncf.io).	At	the	time	when	Kubernetes
1.0	was	released,	Google	partnered	with	the	Linux	Foundation	to	form	the
CNCF,	and	donated	Kubernetes	as	the	seed	project.	The	CNCF	is	meant	to
promote	the	development	of	containerized,	dynamic	orchestrated,	and
microservices-oriented	applications.

Since	all	projects	under	the	CNCF	is	container-based,	they	certainly	could	work
fluently	with	Kubernetes.	Prometheus,	Fluentd,	and	OpenTracing,	which	we
demonstrated	and	mentioned	in	Chapter	6,	Monitoring	and	Logging,	are	all
member	projects	of	the	CNCF.

https://www.cncf.io

Kubernetes	incubator
Kubernetes	incubator	is	a	process	to	support	projects	for	Kubernetes:

https://github.com/kubernetes/community/blob/master/incubator.md.

Graduated	projects	might	become	a	core	function	of	Kubernetes,	a	cluster	add-
on,	or	an	independent	tool	for	Kubernetes.	Throughout	the	book,	we	have
already	seen	and	used	many	of	them,	including	the	Heapster,	cAdvisor,
dashboard,	minikube,	kops,	kube-state-metrics,	and	kube-problem-detector,
whatever	makes	Kubernetes	better	and	better.	You	can	explore	these	projects
under	Kubernetes	(https://github.com/kubernetes),	or	the	Incubator	(https://github.com/kuberne
tes-incubator).

https://github.com/kubernetes/community/blob/master/incubator.md
https://github.com/kubernetes
https://github.com/kubernetes-incubator

Helm	and	charts
Helm	(https://github.com/kubernetes/helm)	is	a	package	manager,	that	simplifies	the	day-
0	through	day-n	operations	of	running	software	on	Kubernetes.	It's	also	a
graduated	project	from	the	incubator.

As	what	we've	learned	in	Chapter	7,	Continuous	Delivery,	deploying	a
containerized	software	to	Kubernetes	is	basically	writing	manifests.	Nonetheless,
an	application	may	be	built	with	dozens	of	Kubernetes	resources.	If	we're	going
to	deploy	such	an	application	many	times,	the	task	to	rename	the	conflict	parts
could	be	cumbersome.	If	we	introduce	the	idea	of	template	engines	to	solve	the
renaming	hell,	we	will	soon	realize	that	we	should	have	a	place	to	store	the
templates	as	well	as	the	rendered	manifests.	Hence,	the	Helm	is	meant	to	solve
such	annoying	chores.

A	package	in	Helm	is	called	a	chart,	and	it's	a	collection	of	configurations,
definitions,	and	manifests	to	run	an	application.	Charts	contributed	by	the
communities	are	published	here:	https://github.com/kubernetes/charts.	Even	if	we	are	not
going	to	use	it,	we	can	still	find	verified	manifests	for	a	certain	package	there.

Using	Helm	is	quite	simple.	First	get	the	Helm	by	running	the	official
installation	script	here:	https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get.

After	getting	the	Helm	binary	working,	it	fetches	our	kubectl	configurations	to
connect	to	the	cluster.	We'd	need	to	have	a	manager	Tiller	inside	our	Kubernetes
cluster	to	manage	every	deployment	task	from	Helm:

$	helm	init

$HELM_HOME	has	been	configured	at	/Users/myuser/.helm.

				

Tiller	(the	Helm	server-side	component)	has	been	installed	into	your	Kubernetes	

Cluster.

Happy	Helming!		

If	we'd	like	to	initialize	the	Helm	client	without	installing	the	Tiller
to	our	Kubernetes	cluster,	we	can	add	the	--client-only	flag	to	helm
init.	Furthermore,	using	the	--skip-refresh	flag	together	allows	us	to
initialize	the	client	offline.

https://github.com/kubernetes/helm
https://github.com/kubernetes/charts
https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get

The	Helm	client	is	able	to	search	the	available	charts	from	the	command	line:

$	helm	search

NAME																										VERSION					DESCRIPTION

stable/aws-cluster-autoscaler	0.2.1							Scales	worker	nodes	within	autoscaling	

groups.

stable/chaoskube														0.5.0							Chaoskube	periodically	kills	random	pods	in	

you...

...

stable/uchiwa																	0.2.1							Dashboard	for	the	Sensu	monitoring	framework

stable/wordpress														0.6.3							Web	publishing	platform	for	building	blogs	

and	...		

Let's	install	a	chart	from	the	repository,	say	the	last	one,	wordpress:

$	helm	install	stable/wordpress

NAME:			plinking-billygoat

LAST	DEPLOYED:	Wed	Sep		6	01:09:20	2017

NAMESPACE:	default

STATUS:	DEPLOYED

...		

The	deployed	chart	in	Helm	is	a	release.	Here,	we	have	a	release,	plinking-
billygoat,	installed.	Once	the	pods	and	the	services	are	ready,	we	can	connect	to
our	site	and	check	the	result:

The	teardown	of	a	release	also	takes	only	one	line	of	command:

$	helm	delete	plinking-billygoat

release	"plinking-billygoat"	deleted	

Helm	leverages	ConfigMap	to	store	the	metadata	of	a	release,	but
deleting	a	release	with	helm	delete	won't	delete	its	metadata.	To
wholly	clear	these	metadata,	we	could	either	manually	delete	these
ConfigMaps	or	add	the	--purge	flag	when	executing	helm	delete.

In	addition	to	managing	packages	in	our	cluster,	another	value	brought	by	Helm
is	it	is	established	as	a	standard	to	share	packages	and	so	it	allows	us	to	install
popular	software	directly,	such	as	the	Wordpress	we	installed,	rather	than
rewriting	manifests	for	every	software	we	used.

Gravitating	towards	a	future
infrastructure
It's	always	hard	to	tell	whether	a	tool	is	a	right	fit	or	not,	especially	on	opting	for
a	cluster	management	software	to	underpin	business	missions,	because	the
difficulties	and	challenges	with	which	everyone	is	confronted	varies.	Apart	from
objective	concerns	such	as	performance,	stability,	availability,	scalability,	and
usability,	real	circumstances	also	account	for	a	significant	portion	of	the
decision.	For	instance,	perspective	on	choosing	a	stack	for	developing	greenfield
projects	and	for	building	additional	layers	on	top	of	bulky	legacy	systems	could
be	diverse.	Likewise,	operating	services	by	a	highly	cohesive	DevOps	team	and
by	an	organization	working	in	the	old	day	styles	could	also	lead	to	distinct
choices.

In	addition	to	Kubernetes,	there	are	still	other	platforms,	which	also	feature
orchestrating	containers,	and	they	all	provide	some	easy	ways	to	getting	started.
Let's	step	back	and	take	an	overview	over	them	to	find	out	the	best	fit.

Docker	swarm	mode
Swarm	mode	(https://docs.docker.com/engine/swarm/)	is	Docker's	native	orchestrator
integrated	in	the	Docker	engine	since	version	1.12.	As	such,	it	shares	the	same
API	and	user	interface	with	Docker	itself,	including	the	use	of	Docker	Compose
files.	Such	degrees	of	integration	are	considered	to	be	advantages	as	well	as
disadvantages	depending	on	if	one	is	comfortable	with	working	on	a	stack,
where	all	the	components	are	from	the	same	vendor.

A	swarm	cluster	consists	of	managers	and	workers,	where	the	managers	are	part
of	a	consensus	group	to	maintain	the	state	of	a	cluster	while	keeping	high
availability.	Enabling	the	swarm	mode	is	quite	easy.	Roughly	speaking,	it's	only
two	steps	here:	creating	a	cluster	with	docker	swarm	init	and	joining	other
managers	and	workers	with	docker	swarm	join.	Additionally,	Docker	Cloud	(https://cl
oud.docker.com/swarm)	provided	by	Docker	helps	us	bootstrap	a	swam	cluster	on
various	cloud	providers.

Features	that	come	with	the	swarm	mode	are	the	ones	we'd	expect	to	have	in	a
container	platform,	that	is	to	say,	container	lifecycle	managements,	two
scheduling	strategies	(replicated	and	global,	which	resemble	to	Deployment	and
DaemonSet	in	Kubernetes	respectively),	service	discovery,	secret	managements,
and	so	on.	There	is	also	an	ingress	network	that	works	like	the	NodePort	type
service	in	Kubernetes,	but	we'll	have	to	bring	up	something	such	as	nginx	or
Traefik	if	we	need	a	L7	layer	LoadBalancer.

All	in	all,	the	swarm	mode	proffers	an	option	to	orchestrate	containerized
applications	that	works	out	of	the	box	once	one	begins	to	use	Docker.
Meanwhile,	as	it	speaks	the	same	language	with	Docker	and	simple	architecture,
it's	also	considered	to	be	the	easiest	platform	among	all	choices.	Therefore,	it's
indeed	reasonable	to	choose	the	swarm	mode	to	get	something	done	quickly.
However,	its	simplicity	sometimes	leads	to	lack	of	flexibility.	For	example,	in
Kubernetes	we	are	able	to	employ	Blue/Green	deployment	strategy	by	merely
manipulating	selector	and	labels,	but	there	is	no	easy	way	to	do	so	in	the	swarm
mode.	Since	the	swarm	mode	is	still	under	active	development,	such	as	the
function	to	store	configuration	data,	which	is	analogous	to	ConfigMap	in

https://docs.docker.com/engine/swarm/
https://cloud.docker.com/swarm

Kubernetes	is	introduced	in	version	17.06,	we	definitely	could	look	forward	to
the	swarm	mode	becoming	more	powerful	in	the	future	while	retaining	its
simplicity.

Amazon	EC2	container	service
EC2	container	service	(ECS,	https://aws.amazon.com/ecs/)	is	AWS'	answer	to	the
Docker	upsurge.	Unlike	Google	Cloud	Platform	and	Microsoft	Azure,	which
provides	open	source	cluster	managers	such	as	Kubernetes,	Docker	Swarm,	and
DC/OS,	AWS	sticks	to	its	own	way	in	response	to	the	need	of	container	services.

ECS	takes	its	Docker	as	its	container	runtime,	and	it	also	accepts	Docker
Compose	files	in	syntax	version	2.	Moreover,	terminologies	of	ECS	and	Docker
Swarm	mode	are	pretty	much	the	same	thing,	such	as	the	idea	of	task	and
service.	Yet	the	similarities	stop	here.	Although	the	core	functions	of	ECS	is
simple	and	even	rudimentary,	as	a	part	of	AWS,	ECS	fully	utilizes	other	AWS
products	to	enhance	itself	such	as	VPC	for	container	networking,	CloudWatch,
and	CloudWatch	Logs	for	monitoring	and	logging,	Application	LoadBalancer
and	Network	LoadBalancer	with	Target	Groups	for	service	discovering,	Lambda
with	Route	53	for	DNS-based	service	discovering,	CloudWatch	Events	for
CronJob,	EBS	and	EFS	for	data	persistence,	ECR	for	docker	registry,	Parameter
Store	and	KMS	for	storing	configuration	files	and	secrets,	CodePipeline	for
CI/CD,	and	so	forth.	There	is	another	AWS	product,	AWS	Batch	(https://aws.amazon.
com/batch/)	that	is	built	on	top	of	ECS	for	processing	batch	workloads.
Furthermore,	an	open	source	tool	from	AWS	ECS	team,	Blox	(https://blox.github.io),
augments	the	capabilities	to	customize	the	scheduling	that	are	not	shipped	with
ECS,	such	as	the	DaemonSet-like	strategy,	by	wiring	couples	of	AWS	products
up.	From	another	perspective,	if	we	take	AWS	as	an	integral	whole	to	evaluate
ECS,	it's	truly	mighty.

Setting	up	an	ECS	cluster	is	easy:	create	an	ECS	cluster	via	the	AWS	console	or
API	and	join	EC2	nodes	with	the	ECS	agent	to	the	cluster.	The	good	thing	is	that
the	master	side	is	managed	by	AWS	so	that	we	are	free	from	keeping	wary	eye
on	the	master.

Overall,	ECS	is	easy	to	getting	started,	especially	for	people	who	are	familiar
with	Docker	as	well	as	AWS	products.	On	the	other	hand,	if	we	aren't	satisfied
with	the	primitives	currently	provided,	we	have	to	do	some	handworks	either
with	other	AWS	services	mentioned	earlier	or	third-party	solutions	to	get	things

https://aws.amazon.com/ecs/
https://aws.amazon.com/batch/
https://blox.github.io

done,	and	this	could	result	in	undesired	costs	on	those	services	and	efforts	on
configurations	and	maintenances	to	make	sure	every	component	works	together
nicely.	Besides,	ECS	is	only	available	on	AWS,	which	could	also	be	one	concern
that	people	would	take	it	seriously.

Apache	Mesos
Mesos	(http://mesos.apache.org/)	had	been	created	long	before	Docker	set	off	the	trend
of	containers,	and	its	goal	is	to	solve	the	difficulties	regarding	management	of
resources	in	a	cluster	comprising	general	hardware	while	supporting	diverse
workloads.	To	build	such	a	general	platform,	Mesos	makes	use	of	a	two-tier
architecture	to	divide	the	resource	allocation	and	the	task	execution.	As	such,	the
execution	part	can	theoretically	extend	to	any	kind	of	task,	including
orchestrating	Docker	containers.

Even	though	we	talked	about	only	the	name	Mesos	here,	it	is	basically	in	charge
of	one	tier	of	jobs	as	a	matter	of	fact,	and	the	execution	part	is	done	by	other
components	called	Mesos	frameworks.	For	example,	Marathon	(https://mesosphere.git
hub.io/marathon/)	and	Chronos	(https://mesos.github.io/chronos/)	were	two	popular
frameworks	to	deploy	long-running	and	batch-job	tasks	respectively,	and	both	of
them	support	the	Docker	container.	In	this	way,	when	it	comes	to	the	term
Mesos,	it's	referring	to	a	stack	such	as	Mesos/Marathon/Chronos	or
Mesos/Aurora.	In	fact,	under	Mesos'	two-tier	architecture,	it's	viable	to	run
Kubernetes	as	a	Mesos	framework	as	well.

Frankly	speaking,	a	properly	organized	Mesos	stack	and	Kubernetes	are	pretty
much	the	same	in	terms	of	capabilities	except	that	Kubernetes	requires	that
everything	that	is	run	on	it	should	be	containerized	regardless	of	Docker,	rkt,	or	a
hypervisor	container.	On	the	other	hand,	as	Mesos	focuses	on	its	generic
scheduling	and	tends	to	keep	its	core	small,	some	essential	functions	should	be
installed,	tested,	and	operated	separately,	which	could	bring	about	extra	efforts.

DC/OS	(https://dcos.io/)	published	by	Mesosphere	takes	advantages	of	Mesos	to
build	a	full-stack	cluster	management	platform,	which	is	more	comparable	to
Kubernetes	with	respect	to	capabilities.	As	a	one-stop-shop	for	every	solution
built	atop	Mesos,	it	bundles	couples	of	components	to	drive	the	whole	system,
Marathon	for	common	workloads,	Metronome	for	scheduled	jobs,	Mesos-DNS
for	service	discovery,	and	so	forth.	Though	these	building	blocks	seem	to	be
complicated,	DC/OS	greatly	simplified	the	works	on	installations	and
configurations	by	CloudFormation/Terraform	templates,	and	its	package

http://mesos.apache.org/)
https://mesosphere.github.io/marathon/
https://mesos.github.io/chronos/
https://dcos.io/

management	system,	Mesosphere	Universe.	Since	DC/OS	1.10,	Kubernetes	is
officially	integrated	into	DC/OS,	and	it	can	be	installed	via	the	Universe.	Hosted
DC/OS	is	also	available	on	some	cloud	providers	such	as	Microsoft	Azure.

The	following	screenshot	is	the	web	console	interface	of	DC/OS,	which
aggregates	information	from	every	component:

So	far	we	have	discussed	the	community	version	of	DC/OS,	but	some	features
are	only	available	in	the	enterprise	edition.	They	are	mostly	on	security	and
compliance,	and	the	list	can	be	found	at	https://mesosphere.com/pricing/.

https://mesosphere.com/pricing/

Summary
In	this	chapter,	we	have	briefly	discussed	Kubernetes	features	that	applies	to
certain	more	specific	use	cases,	and	guided	where	and	how	to	leverage	the	strong
communities,	including	the	Kubernetes	incubator	and	the	package	manager
Helm.

In	the	end,	we	went	back	to	the	start	and	gave	overview	to	three	other	popular
alternatives	for	the	same	goal:	orchestrating	containers,	so	as	to	leave	the
conclusion	in	your	mind	for	choosing	your	next	generation	infrastructure.

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions

	Introduction to DevOps
	Software delivery challenges
	Waterfall and physical delivery
	Agile and electrical delivery
	Software delivery on the cloud
	Continuous Integration
	Continuous Delivery
	Configuration management
	Infrastructure as code
	Orchestration

	Trend of microservices
	Modular programming
	Package management
	MVC design pattern
	Monolithic application
	Remote Procedure Call
	RESTful design
	Microservices

	Automation and tools
	Continuous Integration tool
	Continuous Delivery tool
	Monitoring and logging tool
	Communication tool
	Public cloud

	Summary

	DevOps with Container
	Understanding container
	Resource isolation
	Linux container concept
	Containerized delivery
	Getting started with container
	Installing Docker for Ubuntu
	Installing Docker for CentOS
	Installing Docker for macOS

	Container life cycle
	Docker basics
	Layer, image, container, and volume
	Distributing images
	Connect containers

	Working with Dockerfile
	Writing your first Dockerfile
	Dockerfile syntax
	Organizing a Dockerfile

	Multi-containers orchestration
	Piling up containers
	Docker Compose overview
	Composing containers

	Summary

	Getting Started with Kubernetes
	Understanding Kubernetes
	Kubernetes components
	Master components
	API server (kube-apiserver)
	Controller Manager (kube-controller-manager)
	etcd
	Scheduler (kube-scheduler)

	Node components
	Kubelet
	Proxy (kube-proxy)
	Docker

	Interaction between Kubernetes master and nodes

	Getting started with Kubernetes
	Preparing the environment
	kubectl
	Kubernetes resources
	Kubernetes objects
	Namespace
	Name
	Label and selector
	Annotation
	Pods
	ReplicaSet (RS) and ReplicationController (RC)
	Deployments
	Services
	Volumes
	Secrets
	ConfigMap
	Using ConfigMap via volume
	Using ConfigMap via environment variables

	Multi-containers orchestration
	Summary

	Working with Storage and Resources
	Kubernetes volume management
	Container volume lifecycle
	Sharing volume between containers within a pod
	Stateless and stateful applications
	Kubernetes Persistent Volume and dynamic provisioning
	Persistent Volume claiming the abstraction layer
	Dynamic Provisioning and StorageClass

	A problem case of ephemeral and persistent setting
	Replicating pods with a Persistent Volume using StatefulSet
	Persistent Volume example
	Elasticsearch cluster scenario
	Elasticsearch master node
	Elasticsearch master-eligible node
	Elasticsearch data node
	Elasticsearch coordinating node

	Kubernetes resource management
	Resource Quality of Service
	Configuring the BestEffort pod
	Configuring as the Guaranteed pod
	Configuring as Burstable pod
	Monitoring resource usage

	Summary

	Network and Security
	Kubernetes networking
	Docker networking
	Container-to-container communications
	Pod-to-pod communications
	Pod communication within the same node
	Pod communication across nodes

	Pod-to-service communications
	External-to-service communications

	Ingress
	Network policy
	Summary

	Monitoring and Logging
	Inspecting a container
	Kubernetes dashboard

	Monitoring in Kubernetes
	Application
	Host
	External resources
	Container
	Kubernetes
	Getting monitoring essentials for Kubernetes

	Hands-on monitoring
	Meeting Prometheus
	Deploying Prometheus
	Working with PromQL
	Discovering targets in Kubernetes
	Gathering data from Kubernetes
	Seeing metrics with Grafana

	Logging events
	Patterns of aggregating logs
	Collecting logs with a logging agent per node
	Running a sidecar container to forward logs

	Ingesting Kubernetes events
	Logging with Fluentd and Elasticsearch

	Extracting metrics from logs
	Summary

	Continuous Delivery
	Updating resources
	Triggering updates
	Managing rollouts
	Updating DaemonSet and StatefulSet
	DaemonSet
	StatefulSet

	Building a delivery pipeline
	Choosing tools
	Steps explained
	env
	script
	after_success
	deploy

	Gaining deeper understanding of pods
	Starting a pod
	Liveness and readiness probes
	Init containers

	Terminating a pod
	Handling SIGTERM
	SIGTERM is not forwarded to the container process
	SIGTERM doesn't invoke the termination handler

	Container lifecycle hooks
	Placing pods

	Summary

	Cluster Administration
	Kubernetes namespaces
	Default namespaces
	Create a new namespace
	Context
	Create a context
	Switch the current context

	ResourceQuota
	Create a ResourceQuota for a namespace
	Request pods with default compute resource limits

	Delete a namespace

	Kubeconfig
	Service account
	Authentication and authorization
	Authentication
	Service account authentication
	User account authentication

	Authorization
	Attribute-based access control (ABAC)
	Role-based access control (RBAC)
	Roles and ClusterRoles
	RoleBinding and ClusterRoleBinding

	Admission control
	Namespace life cycle
	LimitRanger
	Service account
	PersistentVolumeLabel
	DefaultStorageClass
	ResourceQuota
	DefaultTolerationSeconds
	Taints and tolerations

	PodNodeSelector
	AlwaysAdmit
	AlwaysPullImages
	AlwaysDeny
	DenyEscalatingExec
	Other admission controller plugins

	Summary

	Kubernetes on AWS
	Introduction to AWS
	Public cloud
	API and infrastructure as code
	AWS components
	VPC and subnet
	Internet gateway and NAT-GW
	Security group
	EC2 and EBS
	Route 53
	ELB
	S3

	Setup Kubernetes on AWS
	Install kops
	Run kops
	Kubernetes cloud provider
	L4 LoadBalancer
	L7 LoadBalancer (ingress)
	StorageClass

	Maintenance Kubernetes cluster by kops

	Summary

	Kubernetes on GCP
	Introduction to GCP
	GCP components
	VPC
	Subnets
	Firewall rules
	VM instance
	Load balancing
	Health check
	Backend service
	Creating a LoadBalancer

	Persistent Disk

	Google Container Engine (GKE)
	Setting up your first Kubernetes cluster on GKE
	Node pool
	Multi zone cluster
	Cluster upgrade
	Kubernetes cloud provider
	StorageClass
	L4 LoadBalancer
	L7 LoadBalancer (ingress)

	Summary

	What's Next
	Exploring the possibilities of Kubernetes
	Mastering Kubernetes
	Job and CronJob
	Affinity and anti-affinity between pods and nodes
	Auto-scaling of pods
	Prevention and mitigation of pod disruptions
	Kubernetes federation
	Cluster add-ons

	Kubernetes and communities
	Kubernetes incubator
	Helm and charts

	Gravitating towards a future infrastructure
	Docker swarm mode
	Amazon EC2 container service
	Apache Mesos

	Summary

