
 فقط کتاب

مرجع معتبر دانلود کتاب هاي تخصصی

Faghatketab.ir

Ethereum™

by Michael G. Solomon

Ethereum™ For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2019 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River
Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written
permission. Ethereum is a trademark of Ethereum Foundation. All other trademarks are the property of their
respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND
SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL
MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY
SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN
RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION
THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2019936125

ISBN 978-1-119-47412-8 (pbk); ISBN 978-1-119-47411-1 (ebk); ISBN 978-1-119-47406-7 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Contents at a Glance
Introduction . 1

Part 1: Getting to Know Blockchain and Ethereum 5
CHAPTER 1: Introducing Ethereum . 7
CHAPTER 2: Learning about Blockchain . 21
CHAPTER 3:	 Exploring	Use	Cases	for Ethereum . 43

Part 2: Setting Up Your Ethereum Development
Environment . 57
CHAPTER 4:	 Examining	the	Ethereum Ecosystem	and	Development	Lifecycle 59
CHAPTER 5:	 Getting	and	Configuring	Ethereum	Development	Tools 77
CHAPTER 6: Establishing an Ethereum Wallet . 95

Part 3: Building Ethereum Distributed
Blockchain Apps . 107
CHAPTER 7: Building Your First Ethereum Apps . 109
CHAPTER 8: Learning about Smart Contracts . 125
CHAPTER 9:	 Writing	Your	Own	Smart	Contracts	with	Solidity 147

Part 4: Testing and Deploying Ethereum Apps 173
CHAPTER 10:	Testing	Ethereum	Apps . 175
CHAPTER 11:	Deploying	and	Maintaining	Ethereum	Apps . 191
CHAPTER 12:	Integrating	Non-Blockchain	Apps	with Ethereum 205

Part 5: The Part of Tens . 219
CHAPTER 13:	Ten	Free	Ethereum	Resources . 221
CHAPTER 14:	Ten	Design	Principles	for Distributed	Blockchain	Apps 229
CHAPTER 15:	Top	Ten	Ethereum	Projects . 239

Index . 247

Ethereum™

Table of Contents v

Table of Contents
INTRODUCTION . 1

About	This	Book .1
Foolish Assumptions .2
Icons	Used	in	This	Book .2
Beyond	the	Book .2
Where to Go from Here .3

PART 1: GETTING TO KNOW BLOCKCHAIN AND
ETHEREUM . 5

CHAPTER 1: Introducing Ethereum . 7
Describing	Blockchain	Technology . 8
Introducing Ethereum .10
Exploring	Ethereum’s	Consensus,	Mining,	and	Smart	Contracts 11
Buying,	Spending,	and	Trading	Ether .13
Getting	Started	with	DAO	and	ICO .16
Exploring	the	Ethereum	Ecosystem .17
Delving	into	Development	Tools .18
Building Blockchain Apps .18

CHAPTER 2: Learning about Blockchain . 21
Exploring	Distributed	Applications .22

Digging	into	distributed	processing .22
Exploring problems with distributed processing 24
Presenting	some	solutions	to	distributed	processing	problems . . .27

Examining	the	Bitcoin	Solution	to	the	Distributed	Dilemma 28
Describing	Blockchains .30

Examining blockchain details .30
Protecting	blockchain	visibility .31

Building Blockchains .33
Agreeing to add blocks .33
Making	blocks	immutable .34
Reviewing	the	building	process .35
Keeping all blockchains consistent .35

Understanding	How	Blockchains	and	Databases	
Store	Data	Differently .36

Storing data in a traditional database .36
Storing data in a blockchain .38

Effectively	Using	Blockchains .39
Transferring	value	without	trust .39
Reducing	transaction	costs	by	eliminating	middlemen 39

vi Ethereum For Dummies

Increasing	efficiency	through	direct	interaction 40
Maintaining	complete	transaction	history .40
Increasing resilience through replication .41
Providing	transparency .41

CHAPTER 3:	 Exploring	Use	Cases	for Ethereum . 43
Diving	Into	Ethereum	Applications .44
Exploring	Financial	Services .45

Banking .46
Creating Ethereum escrow applications .48
Examining ICOs .48

Establishing	Digital	Identity	Management .49
Managing	individual	and	device	identities .50
Reducing	fraud	and	identity	theft .50
Examining	the	ERC-725	standard	and	beyond 51

Examining	Industry	Applications .51
Healthcare .52
Energy .52
Supply	chain .53

Enabling	Effective	Governance .54
Tax	payment .54
Government	spending .55
Voting .55
Policy	development .55
Notary .56

PART 2: SETTING UP YOUR ETHEREUM
DEVELOPMENT ENVIRONMENT . 57

CHAPTER 4:	 Examining	the	Ethereum Ecosystem	and	
Development Lifecycle . 59
Exploring the Ethereum Blockchain Block Structure 60
Describing	Smart	Contracts .64
Introducing	Solidity,	the	Language	of	Smart	Contracts 66
Working	with	the	Ethereum	Virtual	Machine .67
Fueling Your Code with Gas .68
Surveying	Tools	for	Developing,	Testing,	and	
Deploying	Ethereum	Apps .69

Ethereum blockchain client .70
Development	and	testing	blockchain .71
Compiler and testing framework .72
Source	code	editor/IDE .72

Describing	the	Ethereum	Development	Lifecycle 73
Introducing	Smart	Contract	Development	Tools 74

Table of Contents vii

CHAPTER 5:	 Getting	and	Configuring	Ethereum	
Development Tools . 77
Examining	Why	Multiple	Ethereum	Development	
Tools	Are	Available .78
Downloading,	Installing,	and	Configuring	All	the	Pieces 79

Installing the blockchain client .79
Installing the test blockchain .83
Installing	the	testing	environment .86
Installing	the	IDE .91

CHAPTER 6: Establishing an Ethereum Wallet . 95
Unlocking the Secrets of an Ethereum Wallet .96
Examining	the	Types	of	Ethereum	Wallets .96

Sorting out software wallets .97
Handling hardware wallets .99
Perusing	paper	wallets .99

Choosing an Ethereum Wallet .100
Software wallets .100
Hardware wallets .102
Paper	wallets .103

Installing	MetaMask,	an	Ethereum	Wallet .104

PART 3: BUILDING ETHEREUM DISTRIBUTED
BLOCKCHAIN APPS . 107

CHAPTER 7: Building Your First Ethereum Apps 109
Validating	Your	Ethereum	Development	Environment 110

Creating	a	Truffle	project .110
Editing	the	Truffle	config	file .111

Exploring	the	Ganache	Test	Environment .113
Designing	Simple	Smart	Contracts .115
Coding Your First Smart Contract .116
Running	Your	First	Smart	Contract .118

Writing	your	code .118
Compiling	your	code .119
Deploying	your	code .120
Invoking	your	code’s	functions .122

Paying	as	You	Go .124

CHAPTER 8: Learning about Smart Contracts . 125
Introducing	Supply	Chain	and	Common Challenges 126

Describing	supply	chain .126
Explaining	difficulties	when	implementing	a	supply	chain 127

viii Ethereum For Dummies

Examining	How	Blockchain	Can	Help	Resolve	
Supply	Chain	Problems . .128
Describing	a	Blockchain	Supply	Chain	Solution 129

Paying	for	supply	chain	services .129
Managing	assets	on	the	supply	chain .130

Digging	into	Solidity .132
Describing	Basic	Smart	Contract	Syntax .133

Declaring	valid	compiler	version .134
Commenting	your	code .134
Importing external code .135
Defining	your	smart	contracts .135

Handling	Data	in	Solidity .136
Learning about Computation and Gas .140
Exploring	Access	Modes	and	Visibility	of	Smart	
Contract	Functions	and	Data .142
Controlling Execution Flow . .144
Handling Errors and Exceptions .145

CHAPTER 9: Writing Your Own Smart Contracts
with Solidity . 147
Reviewing	Supply	Chain	Design Specification .148

Payment	token	smart	contract .149
Supply	chain	smart	contract .150

Creating New Smart Contracts .151
ERC-20	token	interface .153
ERC-20	token	smart	contract .154
Supply	chain	smart	contract .155

Coding	Primary	Functions .157
ERC-20	token	functions .157
Supply	chain	functions .160

Using	Events .163
Defining	events .165
Triggering	events .166

Introducing Ownership .168
Designing	for	Security .170
Implementing	Minimal	Functionality .171

PART 4: TESTING AND DEPLOYING ETHEREUM APPS 173

CHAPTER 10: Testing Ethereum Apps . 175
Understanding	Ethereum	dApp	Testing .176

Writing tests from the beginning .176
Choosing the right test blockchain .176
Learning	the	steps	in	the	testing	lifecycle .177
Testing	for	software	quality .177

Table of Contents ix

Deploying	a	dApp	to	a	Test	Ethereum Blockchain 178
Telling	Truffle	to	use	the	Ganache	blockchain 178
Deploying	your	code	to	the	Ganache	blockchain 180

Writing	Tests	for	Ethereum	dApps .181
Testing	using	the	command	line .181
Writing	test	cases	in	JavaScript .185

Logging and Handling Errors .187
Handling	errors	in	Solidity .188
Logging	activity	in	smart	contracts .189

Fixing Bugs in a dApp .190

CHAPTER 11: Deploying and Maintaining Ethereum Apps 191
Test	Blockchain	Options	versus	Live Blockchains 192

Testing	with	the	Ganache	blockchain .192
Deploying	your	code	to	other	test blockchains193

Anticipating	Differences	in	Live	Environments 195
Preparing	Your	Configuration	for	Deploying	to	
Different	Networks .196
Deploying	a	dApp .198

Getting enough ether .199
Compiling	your	code .203
Deploying	your	code .203

CHAPTER 12: Integrating Non-Blockchain Apps
with Ethereum . 205
Comparing	Blockchain	and	Database Storage 206

Locating control .207
Imposing data format .207
Updating data .207
Optimizing performance .208
Protecting	confidentiality .208
Paying	for	storage .208
Providing	integrity	and	transparency .209
Protecting	resilience .209

Contrasting Execution and Flow in Blockchain dApps
and	Traditional	Applications .210
Designing	Goals	for	Incorporating	Blockchain	
into an Existing Application .211

Using existing smart contracts .213
Developing	your	own	smart	contracts .213

Identifying	Interface	Data	and	Transaction Requirements 214
Creating	or	Modifying	Contracts	to	Provide	Data	Interface 215
Testing	Integrated	dApps .215
Deploying	Integrated	dApps .216

x Ethereum For Dummies

PART 5: THE PART OF TENS . 219

CHAPTER 13: Ten Free Ethereum Resources . 221
Exploring	Alternative	Ethereum	Development	Frameworks 222

Managing	you	development	with	Populus 222
Exploring	Ethereum	blockchain	containers with	Cliquebait 222

Selecting	a	Free	Integrated	Development	Environment 223
Developing	Solidity	code	with	Atom .223
Going	online	with	Remix .224
Keeping it simple with EthFiddle .224

Exploring	Ethereum	Clients	and	APIs .226
Swapping	your	Ethereum	client	to	Parity . .226
Interacting	with	Ethereum	by	using	Web3.js 226

Focusing	on	Wallets	and	Security .227
Protecting	your	crypto-assets	in	Mist .227
Securing	your	dApps	with	OpenZeppelin .228

Learning	More	About	Developing	Ethereum	dApps 228

CHAPTER 14:	Ten	Design	Principles	for Distributed	
Blockchain Apps . 229
Designing	for	Trust .230
Enforcing	Consistency .230
Removing	Doubt	through	Transparency .232
Providing	Feedback,	Guidance,	and	Setting	Expectations 233
Handling	Mistakes	with	Class .233
Designing	Functions	that	Focus	on	User	Actions,	Not	Data 234
Storing	Data	Based	on	User	Actions,	Not	Data	Structures 235
Keeping It Simple .236
Expecting	Blockchain	Access	to	Be	Expensive .236
Staying	Out	of	the	User’s	Way .237

CHAPTER 15: Top Ten Ethereum Projects . 239
Predicting	Future	Events	with	Gnosis .240
Crowdsourcing	Event	Predictions	in	Augur .240
Managing	Decentralized	Organizations	with	Aragon 241
Breeding	and	Collecting	Cryptokitties .241
Exchanging	Tokens	with	IDEX .242
Creating	Your	Digital	Identity	with	uPort .243
Sharing	Your	Thoughts	on	the	Blockchain with	EtherTweet 243
Searching for Jobs with EthLance .244
Using	TenX	to	Pay	with	Cryptocurrency .245
Buying	and	Selling	Computing	Power	with	Golem 246

INDEX . 247

Introduction 1

Introduction

Blockchain technology is one of the most talked about disruptive technolo-
gies of the decade, and Ethereum is the most popular blockchain imple-
mentation. Blockchain technology holds the promise of making business

interactions faster, cheaper, and more trustworthy.

Ethereum For Dummies introduces blockchain and Ethereum, covers their effect on
today’s ways of doing business, and teaches you how to design and develop your
own Ethereum decentralized applications. You learn how to set up a development
environment and write smart contracts that create and control transactions on the
Ethereum blockchain.

About This Book
Blockchain technology has the potential to change how business operates.
The unprecedented opportunities blockchain promises to provide include easy
data sharing among large groups, transparency, trusted transactions, and com-
plete historical audit trails. Today, most organizations protect transaction data
as a valued asset, but sharable data could change everything. Sharing trusted
data with many participants in a business process has the potential of revolu-
tionizing how organizations interact with one another, reducing the need
and cost of middlemen and providing unprecedented transparency to business
processes.

Staying current and pertinent means becoming part of this emerging blockchain
business model. Ethereum For Dummies gives you the foundation of blockchain and
Ethereum, and teaches you, in clear language, how to design and write your own
software for the Ethereum blockchain environment.

Foolish Assumptions
I don’t make many assumptions about your experience with blockchain technol-
ogy, application programming, or cryptography, but I do assume the following:

» You have a computer and access to the Internet.

» You know the basics of using your computer and the Internet, and how to
download and install programs.

» You know how to find files on your computer’s disk and how to create folders.

» You’re new to blockchain and you aren’t an experienced software developer. If
you already know how to write software applications, you can skip the
sections on programming basics.

Icons Used in This Book
The Tip icon marks tips (duh!) and shortcuts that you can use to make learning
and using Ethereum and Solidity easier.

Remember icons mark the information that’s especially important to know. To
siphon off the most important information in each chapter, just skim through
these icons.

The Technical Stuff icon marks information of a highly technical nature that you
can normally skip over.

The Warning icon tells you to watch out! It marks important information that may
save you headaches when writing your own blockchain applications.

Beyond the Book
In addition to the material in the print or e-book you’re reading right now, this
product also comes with some access-anywhere goodies on the web. Check out the
free cheat sheet for more on Ethereum and Solidity at www.dummies.com/
 cheatsheet/ethereumfd.

2 Ethereum For Dummies

You’ll find summary information on Ethereum and Solidity tools as well as tips on
how to use them effectively. The cheat sheet is a reference to use over and over as
you gain experience in developing Ethereum decentralize applications.

In addition, if you’d rather download the code you see in this book instead of typ-
ing it, go to www.dummies.com/go/ethereumfd. You can download zip files for
each of the projects you’ll create to develop and test smart contracts.

Where to Go from Here
The Dummies series tells you what you need to know and how to do the things you
need to do to get the results you want. Readers don’t have to read the entire book
to just learn about some topics. For example, if you just want to learn about smart
contracts, you can jump right to Chapters 8 and 9. On the other hand, if you need
to set up your own development environment, read Part 2, which tells you how to
do that with clear, step-by-step instructions.

Introduction 3

1Getting to Know
Blockchain and
Ethereum

IN THIS PART . . .

Get a big-picture overview of the Ethereum blockchain
and how it works.

Discover how blockchain technology addresses
distributed application problems.

Explore use cases that are good fits for blockchain
technology.

CHAPTER 1 Introducing Ethereum 7

Chapter 1
Introducing Ethereum

Blockchain technology is the most disruptive technology introduced in our
generation, and Ethereum is by far the most popular blockchain imple-
mentation in use today. You can’t read many technology articles or blogs

without seeing something about how blockchain changes everything. Although
some claims seem to be a little far-fetched, blockchain technology really is a
game-changer.

Blockchain, which first burst on the scene in 2008, has gained global notoriety for
what it has already changed and what is coming. At first, blockchain was all about
a new type of electronic currency. But now, partially thanks to Ethereum, block-
chain is so much more than a new way to pay for things. It’s a new way to think
about things. It enables people and businesses to conduct business without many
of the obstacles that have existed in trade relations for centuries.

In this book you learn about what blockchain is and why it is viewed as so radical.
You discover how powerful Ethereum is in diverse domains and how you can
 harness its promise and power in your own organizations. If you want to learn
what Ethereum is and how it can work for you without having to trudge through
hundreds of pages of theory and background, this is the book for you.

IN THIS CHAPTER

» Getting to know Ethereum

» Understanding ether and trading

» Exploring DAOs and ICOs

» Setting up an Ethereum development
environment

» Developing blockchain applications

8 PART 1 Getting to Know Blockchain and Ethereum

Describing Blockchain Technology
You learn a lot more about blockchain technology in Chapter 2, but before you
meet Ethereum, you need to know a little of Ethereum’s backstory.

If you already know what blockchain is, this section will be like watching yet
another depiction of why Bruce Wayne became Batman. Feel free to skim it and
move on to the next section. There are only so many ways you can kill Thomas and
Martha Wayne.

Blockchain technology was introduced to support a new type of digital currency
that you can trade in a trustless environment. Traditional currency exchanges
require a trusted third party between the parties. Even if a buyer provides coins or
bills to a seller at the point of transaction, some government provides the guaran-
tee of the currency’s value. There is always a middleman. If the exchange involves
a payment card or check, other financial institutions participate to handle the
transfer of funds between parties.

In 2008, Satoshi Nakamoto published a paper that changed everything. Nakamoto’s
paper described a new way to store and distribute data with verifiable integrity
among a group of nodes that don’t trust one another. You learn more about how
Nakamoto’s proposal works, and about bitcoin, the cryptocurrency proposed in
the paper, in Chapter 2. At this point, the most important takeaway is that this
paper showed how to take the requirement for a trusted (and omnipotent) central
authority out of the mix. Using this new technology, called blockchain, application
developers can create environments in which nodes that do not trust one another
can share data that they can trust.

The idea is based on several concepts that are simple to consider but difficult to
put into practice. First, data is logically presented as a ledger. The data isn’t really
stored that way; you can just think of it as a ledger. A ledger is a way of recording
data as transactions occur. One interesting feature of this ledger is that you can
only add data to it. You can’t change anything after you’ve added it. So, the only
two operations you can perform on this ledger are add and read. We refer to the
“add only” property as the immutability property. In short, blockchains are immu-
table. As you’ll see, immutability is crucial for the technique to work.

Another feature is that data is added to this ledger in blocks. Blocks are collections
of transactions, each with an owner’s address. Addresses are the unique IDs of
accounts in our ledger system. When there are enough transactions to make a new
block, some of the blockchain participants begin a process of adding a new block
to the ledger. Each new block is linked to the previous block, making a chain.
That’s where the term blockchain comes from. A blockchain is basically a bunch of
blocks where each block is connected to its predecessor.

CHAPTER 1 Introducing Ethereum 9

Then, the entire set of blocks, or the entire blockchain, is shared with other
 participants. These participants are called nodes. These nodes communicate with
one another and each stores an exact copy of the blockchain. Many blockchain
networks are made up of thousands of nodes, and keeping all of the copies of the
blockchain in sync (that is, ensuring that every copy is the same) is another
 revolutionary feature of blockchain technology.

Blockchain technology is built on a democracy governance mode. Before any
new block is added to the blockchain, a majority of nodes must agree that the new
block is valid. All nodes agree to accept the majority decision. That’s how
the blockchain stays in sync. Nodes essentially vote on all new blocks. Different
blockchains use different voting methods, but one of the more common ones
requires nodes to solve very hard mathematical puzzles to earn the right to add a
new block to the blockchain. As an incentive for doing the hard work, the node
that solves the puzzle first gets a reward. The reward encourages nodes to pitch in
and help do the hard work of solving verification puzzles.

Part of the puzzle solution involves creating a mathematical hash of the previous
block. By storing the previous block’s hash in the current block, every node can
quickly determine if any block has changed. Each node periodically scans the
blockchain to ensure that nothing has changed. This is how nodes can be sure that
the blockchain is the same across the entire network. And, because no block can
change after it is added to the blockchain, you never have to worry about
 overwriting data.

Putting it all together, a blockchain makes it possible to share a set of data with
many nodes that you don’t trust. You can trust the democracy of the network,
though. As long as you can trust that more than half of the nodes on the blockchain
network are going to be honest, you can trust the blockchain.

The last big advantage to blockchain technology is that you can put rules of oper-
ation in blocks on the blockchain as well. These rules are called smart contracts. A
smart contract is just a program that lives in a blockchain block and governs how
data is added to the blockchain. Because all blockchain data is immutable, even the
smart contract code is immune from changes. That’s how you can exchange cur-
rency without a bank. As long as there are rules that dictate how a currency
exchange is carried out, transaction data can be recorded on the blockchain and be
part of the permanent ledger.

For example, suppose you want to buy a car. You have enough digital currency in
your blockchain account to buy the car, and the car owner has the car’s title stored
in the blockchain. You can offer to buy the car and if the seller accepts your offer,
a smart contract handles the transaction. The smart contract would verify that the
title is owned by the seller and that you have enough money in your account to

10 PART 1 Getting to Know Blockchain and Ethereum

make the purchase. If those two requirements are met, the smart contract would
transfer the sales amount into the seller’s account and transfer the title to your
account. Without any middleman, you have purchased a car and paid for it without
carrying a wad of cash around.

Of course, you really purchased a title to a car. Blockchain handles digital assets.
You still have to physically get the keys and the car from the seller.

Introducing Ethereum
Bitcoin was the first blockchain technology application. It was revolutionary and
defined the first widely used digital currency, called cryptocurrency. The crypto part
of the name refers to the use of cryptographic hashes to ensure the integrity of the
blockchain. The shared ledger literally keeps a copy of every cryptocurrency
 transaction that gets verified by all nodes. Using this approach, bitcoin created a
permanent record of every exchange of their cryptocurrency. And, because account
owners are identified only by an address, bitcoin has always enjoyed a measure of
anonymity.

Although bitcoin addresses aren’t linked directly to people, many exchanges have
records of identities that are related to addresses. At some point, you have to
exchange your cryptocurrency for real currency. That switchover point is where
many law enforcement officials focus when they’re trying to track down criminals
using cryptocurrency.

As bitcoin became more and more popular, researchers began to see more
 applications for blockchain technology beyond cryptocurrency. In 2013, Vitalik
Buterin, the cofounder of Bitcoin Magazine, published a whitepaper that proposed
a new, more functional blockchain implementation. This new proposal was for the
Ethereum blockchain. After gaining interest and attracting technical and financial
support, the Ethereum Foundation, a Swiss non-profit organization, was founded
and became the developer of Ethereum.

Ethereum wasn’t created just to exchange cryptocurrency. In fact, it was designed
from the beginning to be different. The core features of Ethereum are the
smart contract and ether. Ether is the native cryptocurrency that Ethereum
supports, although you can create your own tokens to exchange value in many
other forms. Smart contracts provide an execution environment that ensures
integrity across all nodes. Any code that executes on one node executes the same
way on all nodes. This guarantee makes it possible to deploy a wide range of
applications across untrusted environments.

CHAPTER 1 Introducing Ethereum 11

The foundational guarantees Ethereum provides support many types of value
exchanges without the concern about fraud, censorship, or any involvement by a
third party. When you interact with an Ethereum application, you don’t have to
rely on any intermediary to broker your transactions. You don’t need a bank,
wholesaler, or transaction broker to provide trust. As a result of Ethereum’s
 disintermediation, you can often complete transactions faster, with far lower
 service fees and without requiring approval from external authorities.

Ethereum is a comprehensive, decentralized application platform that expands
the range of capabilities beyond what was possible before blockchain technology.
Whereas legacy solutions to data and process sharing required third-party author-
ities to enforce integrity, Ethereum provides process and data integrity, along
with disintermediation. The possibilities are just beginning to be explored.

Exploring Ethereum’s Consensus,
Mining, and Smart Contracts

Ethereum provides integrity in the way it implements immutability and smart
contracts. Immutability isn’t actually a blockchain guarantee. You can change
data in any block — even after other blocks are added to the blockchain. However,
as soon as you change a block, that block and all subsequent blocks fail integrity
checks and your node is out of sync. Instead of saying that the blockchain is
immutable, it is more accurate to say that any changes (mutations) to the block-
chain are easily and immediately detected.

Ethereum is based on democracy. Each node gets an equal vote. Every time nodes
get a new block to add to the blockchain, they validate the block and its transac-
tions, and then vote whether to accept or reject the block. If several different
blocks are submitted by different nodes, only one of the blocks can receive votes
from a majority. The block that gets more than half of the network node’s votes
gets to join the blockchain as its newest block.

One of the first problems is to determine when a new block is ready for the block-
chain. When too many conflicting blocks are submitted, the voting process slows
down. Ethereum makes it hard to add new blocks to keep the number of new block
collisions low and to make voting faster. Ethereum uses a consensus protocol
called Proof of Work (PoW), which sets the rules for validating and adding new
blocks. PoW makes add blocks to the blockchain difficult but profitable.

12 PART 1 Getting to Know Blockchain and Ethereum

Ethereum defines ether as its cryptocurrency. You can transfer ether between
accounts or earn it by doing the hard work of adding blocks to the Ethereum
blockchain. The Ethereum PoW mechanism requires that nodes find a number
that, when combined with the block’s header data, produces a cryptographic hash
value that matches the current target, which is a value that is adjusted to keep new
block production at a steady rate. Finding a hash value that matches the current
target is hard. You have to try on average more than a quadrillion values to find
the right one. That’s the point. Using a PoW mechanism makes it so hard to submit
a block that fewer blocks are submitted, which reduces the number of collisions.
The node that finds the right value gets a small ether payment for the effort. This
process is called mining, and the node that wins the prize is that block’s miner.

Mining regulates the speed at which new blocks get submitted as candidate blocks,
and results in a number that is easy to validate. Finding the right number to solve
the puzzle is difficult, but verifying the number is fast and easy. Another interest-
ing aspect of mining is that each block’s header contains a hash from the previous
block. Ethereum nodes use the hash to easily detect unauthorized block changes.
If a block changes, the hash result doesn’t match and the block becomes invalid.

Mining is also a way to make money using blockchain technology. Mining has
become competitive, and most of today’s miners invest in high-performance
hardware with multiple GPUs to carry out the complex operations. To keep the
mining process fair, Ethereum uses a complexity value that makes the mining
process even harder as miners get faster. Adjusting the complexity allows
 Ethereum to regulate the new block frequency to an average of one new block
every 14 seconds.

The glue that holds the Ethereum environment together is the smart contract.
Ethereum is much more than just a financial ledger, and smart contracts provide
much of its rich functionality. Each Ethereum node runs a copy of the Ethereum
virtual machine (EVM). The EVM runs smart contract code in a way that guarantees
that smart contracts execute the same way on all nodes and produce the same
output. Running smart contract code is not optional. Smart contracts execute
based on specific rules and cannot be subverted or halted. The EVM smart contract
guarantees provide a stable platform for automated transaction processing that
you can trust. Smart contracts provide the primary power of the Ethereum
environment.

One of the known weaknesses with software is that attackers can sometimes
bypass its controls and carry out unintended actions. That type of attack is more
difficult in Ethereum, primarily due to its smart contract implementation. Attack-
ers can’t directly attack the blockchain and make unauthorized changes because
any such changes will be immediately detected. The next most likely attack vector
is the smart contract interface to the blockchain data. Ethereum guarantees that

CHAPTER 1 Introducing Ethereum 13

smart contract code, which is translated into bytecode before it is written to
the blockchain, executes on every EVM instance the same way. Also, the EVM
determines when code executes and what code executes. Attackers have few
opportunities to leverage smart contract code, which makes Ethereum an even
more secure environment.

Buying, Spending, and Trading Ether
Ethereum runs on ether (ETH), its main cryptocurrency. The majority of all
 existing ether was pre-mined when Ethereum first went live on July 30, 2015.
Miners continually create ether, but the amount of mined ether is less than
30 percent of all ether in existence. The lifecycle of Ethereum transactions requires
that you first acquire ether to participate in Ethereum. Many exchanges support
exchanging legal tender, also called fiat currency, for cryptocurrency, including
ether. You can navigate to https://99bitcoins.com/best-ethereum-exchange-
review-comparison for an independent comparison of several popular exchanges.

Before you can interact with the Ethereum blockchain, you need to create at least
one account. Creating an Ethereum account is essentially just creating a crypto-
graphic private and public key pair, and generating the associated address, which
is based on your public key. The software that handles this process is called an
Ethereum wallet. You learn about different options for Ethereum wallets in
 Chapter 6. You can use a wallet provided by an exchange or a standalone wallet.
After you create your Ethereum account, you’ll need to select an exchange to
 purchase ether.

After you select an exchange, you set up an exchange account and provide a fund-
ing source. Your main funding source is generally a bank account. The most com-
mon way to buy ether is to withdraw funds from your bank account and use that
money to exchange for ether. Figure 1-1 shows the purchase ether web page for
the coinbase.com exchange. Note that the funding source for this account is a
Bank of America account.

You can also purchase ether using cash. A growing number of cryptocurrency
ATMs allow you to exchange cash for different types of cryptocurrency. All you
need is the private key you generated using your Ethereum wallet and cash.
However, you will pay for this convenience. Cryptocurrency ATMs often use
exchange rates that are less favorable than more traditional exchanges. One cur-
rent service, localcoin ATM, works just like a regular ATM. Navigate to https://
localcoinatm.com to see where you can find ATMs and how to use them.
Figure 1-2 shows several steps in the process of purchasing ether with cash from
an ATM.

14 PART 1 Getting to Know Blockchain and Ethereum

After you own ether, you can interact with other Ethereum accounts and send
them some of your ether in exchange for good or services. Or you can simply
hold on to your ether in hopes that is goes up in price. Ether, along with other
cryptocurrencies, fluctuates in price continuously. Many investors buy and sell

FIGURE 1-1:
Purchase

ether using
coinbase.com.

FIGURE 1-2:
Purchasing ether

with cash.

CHAPTER 1 Introducing Ethereum 15

cryptocurrencies as investments, just like trading fiat currencies or commodities.
Figure 1-3 shows the main coinbase.com dashboard with popular cryptocurrency
prices.

At its highest price, ether sold for around $1,400. At the time of this writing, it was
down near $100. Whether cryptocurrency is a good investment depends on your
appetite for risk and belief in its long-term value.

In addition to buying and trading ether, you can spend it just like any other
 currency. Of course, you generally have to buy from a vendor that accepts ether.
Several service providers make it easy to accept payments with ether, such as Pay
with Ether. This company provides the software and the services to make it easy
for vendors of any size to accept ether as payment. Visit www.paywithether.com/
to find out more about this payment option.

There are ways to spend cryptocurrency at vendors that don’t directly accept it.
Several companies are planning to offer Visa cards that you fund with
 cryptocurrency. One company, Wirex, allows users to convert their cryptocurrency
to USD, GPB, or EUR and use their card at any vendor that accepts Visa.

Cryptocurrency is growing rapidly, but only a small number of vendors accept it.
If you really want to pay with ether or other cryptocurrencies, take a look at
TenX. This company offers a popular Visa card funded by cryptocurrency. The card
isn’t available everywhere, but the company expects to increase its availability
over time. Navigate to https://tenx.tech/en for more information on TenX and
their cryptocurrency payment card.

FIGURE 1-3:
Current

 cryptocurrency
prices.

16 PART 1 Getting to Know Blockchain and Ethereum

Getting Started with DAO and ICO
Blockchain technology has given rise to new classes of organizations and
 opportunities. You’ll often hear about decentralized autonomous organization (DAO)
and initial coin offering (ICO). These terms simply describe endeavors that Ethe-
reum makes possible. You’ll read a lot about these terms as you learn more about
Ethereum, so it makes sense to cover them here.

A DAO is an organization that operates only on the rules set forth in its smart
 contracts. In reality, most DAOs require some human interaction, but the majority
of the functionality is automated. For example, assume in just a few years that
autonomous vehicles (driverless cars) are more common. A DAO would be like a
driverless Uber or Lyft car. The car waits for a passenger, and then drives to the
pickup location when someone needs a ride. The autonomous car completes the
trip and the passenger pays with cryptocurrency. The car just earned some money.
However, the car’s maintenance smart contract detects that the brakes need
replacing. So the car drives itself to a mechanic and pays for new brakes, using the
profits of previous rides. The autonomous vehicle does not need human interac-
tion to carry out its primary business function or to get necessary service. The
autonomous vehicle is the same idea as a DAO.

A DAO conducts business and engages in transactions without requiring human
interaction. Today’s DAOs are relatively simple, but it is expected that they will
grow in complexity and eventually replace (or at least compete with) some exist-
ing human-based businesses.

Like all businesses, Ethereum-based or Ethereum-related businesses need
 funding to operate. Many traditional methods for raising funds exist, including
soliciting private investors, securing loans, or selling shares in the company.
In addition, Ethereum opens new options for funding businesses.

Businesses that use Ethereum often create their own tokens, also called coins, that
represents value associated with the business ventures. Businesses sell these
tokens to raise funds to launch the business. These ICOs essentially exchange one
type of currency for a digital item of value. Tokens may represent an expected
future value as ownership in a new venture or current value that entitles the
holder to some benefit. Either way, tokens are similar in some ways to stock
shares. An ICO is a popular method to fund a new blockchain-based business. If
you want to learn more about the most popular ICOs, navigate to www.coindesk.
com/ico-tracker to explore coindesk’s ICO Tracker, shown in Figure 1-4.

CHAPTER 1 Introducing Ethereum 17

Exploring the Ethereum Ecosystem
The Ethereum environment, or ecosystem, is made up of several different parts.
You’ve already learned about most of these pieces, but it helps to put those pieces
together in one place. Starting from the lowest level of the blockchain, Ethereum
is made up of the following components:

» Blockchain: The collection of data blocks that is the core of Ethereum. Each
block contains data and smart contract code, and is cryptographically linked
to its predecessor, creating a chain of blocks.

» EVM: The Ethereum virtual machine, which runs smart contract bytecode.
Each Ethereum node runs an instance of the EVM.

» Wallet: Software, hardware, or physical paper that stores the public and
private keys that correspond to an Ethereum account. The wallet stores the
capability to access crypto-assets on the Ethereum blockchain.

» Exchange: A service the allows its users to exchange fiat currency for
cryptocurrency.

» Development environment: The set of tools to write, compile, and perform
unit tests on smart contract software.

» Testing environment: A simulated Ethereum blockchain used to perform integra-
tion testing on smart contracts and complete decentralized applications (dApps).

» Client interface: The client user interface’s software and libraries used to
interact with Ethereum smart contracts.

You learn much more about the details of each of these components in Chapter 4.

FIGURE 1-4:
coindesk ICO

Tracker.

18 PART 1 Getting to Know Blockchain and Ethereum

Delving into Development Tools
Developing decentralized applications (dApps) for Ethereum requires several
types of tools. Each of these tools provides support for various phases of software
development and is necessary to create dApps for the Ethereum blockchain envi-
ronment. In Chapter 4, you find out the different categories of development tools
and learn about several alternatives for each type of tool.

Tools that you’ll use when developing Ethereum dApps are in the following
categories:

» Blockchain client: When developing Ethereum dApps, you’ll need to imple-
ment a local EVM. A blockchain client launches a local EVM and executes your
smart contract code. It also interacts with your Ethereum blockchain.

» Development and testing blockchain: Deploying to the live Ethereum
blockchain, also called mainnet, is the last step in the development process.
Before deployment, you want to interact with a local version of an Ethereum
blockchain. Because live blockchain access costs ether, you should carry out
development and testing on a local blockchain to avoid costs and errors.

» Compiler and testing framework: After you have a local EVM and local
blockchain, you’ll need a way to interact with your smart contract code and
place it on your test blockchain for test execution. A development and testing
framework provides the tools you need to carry out development and testing
tasks.

» Source code editor/IDE: Although you can use any text editor to write smart
contract source code, an editor or integrated development environment (IDE)
that is designed or extended to support Ethereum smart contract source code
development will be very helpful. IDEs can increase developer efficiency and
make it easier to create good smart contract code.

As you work through the exercises in this book, you’ll learn more about each of
these tools and install an example from each category.

Building Blockchain Apps
The process of building blockchain applications is not radically different from
developing traditional applications. You have a few additional considerations and
a few additional steps. As you work through the chapters in this book, you’ll learn
each of the tasks required to develop effective and efficient blockchain applica-
tions for the Ethereum environment.

CHAPTER 1 Introducing Ethereum 19

The main differences between traditional applications and blockchain applica-
tions is the distributed, transparent nature of the data and the fact that writing
data to the blockchain costs money. Distributed and transparent data means that
you can’t rely on the blockchain to provide any confidentiality. Anything you write
to the blockchain is visible by users on any node. That should affect how you
design your applications and data. Be careful when collecting data from users and
storing it on the blockchain. Always assume that any blockchain data is available
to the public.

The other main difference is that writing to the blockchain costs money. The
development and testing processes normally occur with simulated blockchains
that use only fake cryptocurrency, but live blockchain I/O has a real cost. Most
developers aren’t used to calculating computation and access costs. Because this
is generally a new concept, many developers may put this consideration off until
later in the development cycle. This decision is a mistake. It is always easier and
cheaper to address blockchain access cost problems early in the development
 process. If you wait until the end, any changes will likely have cascading effects
and costs.

As with any good development practices, do everything you can to fully under-
stand what your users want and need. Design your software with the users in
mind and always cater to their needs first. Then make you software meet their
needs in ways that are the most effect and economical. Stick with good software
design and development principles, while incorporating blockchain-specific
 considerations, and you’ll be on your way to developing a good blockchain dApp.

Chapter 2
Learning about
Blockchain

Blockchain technology is basically a distributed ledger that is shared between
lots of computers and can run verifiable software to control how data is
added. Blockchain technology depends on the capability to distribute data

and software to many computers, using a technique called distributed processing.
Distributed processing is the practice of spreading applications across multiple
computers, and is a different way of looking at where data is stored and where
application code is run from the more traditional centralized model.

Software applications have to run somewhere. Today’s applications can run on
endpoint computers and devices, or on servers you connect to through a network.
Regardless of where software runs, the computer or device running it has limited
capacity. Growth has always been a challenge for computing environments, and at
some point, users will probably want services faster than the computer running
an application can handle. That’s where distributed processing comes into play.

In distributed processing, computers work together in teams to solve problems. If
done well, distributed processing can help address the increasing demands that
growth causes. However, it turns out that getting computers to work together in
teams is hard.

IN THIS CHAPTER

» Understanding distributed
applications

» Examining Bitcoin’s solution to the
distributed dilemma

» Building blockchains

» Contrasting blockchains and
databases

» Describing ways to use blockchain

CHAPTER 2 Learning about Blockchain 21

22 PART 1 Getting to Know Blockchain and Ethereum

Fortunately, a really smart researcher found a way to enable groups of computers
that don’t trust each other to work together in a manageable way. This new
approach to distributed processing and data storage is called blockchain technol-
ogy, and it has revolutionized the way people think about distributed processing
and trust.

In this chapter you learn about how cool blockchains are, how they are built, why
they are different from anything in the past, and most importantly, what you can
do with them.

Exploring Distributed Applications
Way back in the early days of computing, it became clear that computers couldn’t
do everything. They could do some things really fast, such as solving math prob-
lems, but even when doing what they do best, computers would eventually run out
of processing capability. The Apollo 11 moon landing almost didn’t happen due to
a computer overload. The navigation computer in the lunar module was getting
radar data too fast and threw 1201 and 1202 alarms. Those alarms basically meant
that the computer couldn’t keep up with the data it was receiving. NASA engineers
quickly determined that the error wasn’t bad enough to abort the mission, so the
landing attempt continued. But for a few seconds, a computer overload almost
caused NASA to scrub the landing.

Rumor has it that a deviation from the official NASA checklist ended up causing
the lunar module 1201 and 1020 program alarms. According to the checklist, the
docking radar should have been turned off once the lunar module undocked from
the command module. The astronauts turned on the landing radar and left the
docking radar on as well in case anything bad happened and they had to return to
the command module. The navigation computer couldn’t handle input from two
radars at once, so it triggered the program alarms.

Digging into distributed processing
One solution to application overload is to split up the computing load among
 multiple computers. What would have happened if the lunar module had been
equipped with two computers? Maybe each one could have handled a different
radar and no errors would have occurred. Of course, computers in 1969 were far
larger and heavier than today’s devices. Adding a second computer at that time
was just too heavy and expensive.

Today things are quite different. Our smartphones are way more powerful than
the computers the astronauts took with them to the moon. And they’re far smaller

and lighter too. Because computers are so small, fast, and affordable, we see dis-
tributed processing all the time in today’s applications. And networks are faster
and cheaper to access. Most applications that run in a web browser or on a mobile
device are distributed. That means part of the program runs in the browser or on
the mobile device, and another part runs on a server.

For instance, when you shop online, your web browser connects to a web server to
fetch a list of products. The web server probably connects to an application server
and a database server to get the data, and then returns it to your web browser. If
you try to fetch more data from the same website, it is highly likely that you’d end
up connecting to a different server. The entire process is transparent because it
appears that you’re running software on one big computer. That’s the beauty of
distributed processing.

Web applications are just one example of distributed processing. Other examples
include specialized servers, such as graphics processing, and parallel processing,
where multiple CPUs or computers split up data and work on each part of the data
at the same time. The goal in each case is the same: allow more users to run an
application than is possible when using a single computer.

Even though parallel processing really is a type of distributed processing, it’s
 generally considered a separate type of computing. In traditional parallel process-
ing, all processors have access to the same area of shared memory. Traditional
distributed processing, however, uses multiple computers, each with its own
 separate memory.

Several popular architectures of distributed systems exist. The difference between
architectures is in which components carry out different types of processing. The
main distributed processing architectures follow:

» Client-server: A capable client computer does much of the work, while relying
on the server only to store and manage shared data. You’ll find this architec-
ture in small offices that run software on workstations connected to a central
database server.

» Three-tier: Simple websites use this approach, in which a client connects to a
server, such as a web server, to get some content. The web server often needs
to get data from a database server, which might also handle some of the
processing.

» n-tier: This architecture is an extension of the three-tier architecture, where
jobs are clearly defined and multiple servers are used for specific tasks. Server
types in an n-tier architecture can include web servers, application servers,
database servers, and other servers that pervade specialized services. Most of
today’s websites, such as shopping sites, are web applications running on
n-tier architecture.

CHAPTER 2 Learning about Blockchain 23

24 PART 1 Getting to Know Blockchain and Ethereum

» Peer-to-peer: In this architecture, all nodes, or participating computing
components, are considered equal. Storage and processing is shared among
nodes. Examples of peer-to-peer networks include file-sharing networks and
the Linux software and updates distribution network.

Figure 2-1 shows the main four distributed processing architectures.

Exploring problems with
distributed processing
Distributed processing all sounds good, but there are problems with distributing
programs and data. First, all computing nodes (computers running parts of a
 distributed application) have to trust one another. That’s not a problem if one
company owns all of the computing nodes, but computers owned by competing
companies simply do not trust one another. How can you trust that your compet-
itor calculated that discount for your customer properly? Or even worse, suppose
that your competitor saw a transaction for one of your customers and decided to
cancel the transaction and then steal your customer? Lots of trust problems arise

FIGURE 2-1:
Distributed
processing

architectures.

when attempting to distribute processing across multiple computing nodes that
are not centrally controlled.

Scheduling and availability are other common problems. If you don’t own and
manage all of the computing nodes, how can you make sure that they are always
available when you need them? Could they be tied up running someone else’s
applications? Or could one or more computing nodes be turned off or unavailable
for some maintenance reason? These are just some of the problems with distrib-
uted processing.

Think of it this way: what if your family grew and you couldn’t fit everyone into
your car anymore? If you couldn’t afford a bigger car, you’d have to do something
to get your family from point A to point B. If your neighbor has no kids and a huge
SUV, that could help solve your problem! All you have to do is get your neighbor to
agree to share the SUV and coordinate your trips with your neighbor. But what if
your neighbor doesn’t want to go where you want to go? How do you solve that
problem? And what if one of the vehicles breaks down? Or what if your neighbor
wants to sleep late on Saturday but your kids have a 7 a.m. game? Coordinating
computers is at least as hard as coordinating cars.

When it comes to distributed processing, four main problems must be solved (and
all of these problems relate directly to trust):

» Launching remote processes: How a process on one computer launches a
process on another computer.

» Communicating between remote processes: How processes running on
different computers communicate and coordinate activities.

» Storing one version of data in multiple locations: How to store and update
data on different computers without running into confusing differences.

» Getting multiple computers to work together: How different computers
handle issues such as resolving conflicts between computers and handling
system load and outages.

Launching remote processes
Distributed processing makes it possible for one computer to spread the comput-
ing load by running part of the application on other computers. That means com-
puter A has to launch part of the application on computer B. Security immediately
becomes a problem. Traditionally, an operating system authenticates users that
log in to that computer and then authorizes those users to run some programs.
When a program run request comes from a different computer, figuring out how
to limit who can run which programs can be difficult.

CHAPTER 2 Learning about Blockchain 25

26 PART 1 Getting to Know Blockchain and Ethereum

Assuming that you resolve the security issues, you have to define a protocol for
how one machine requests that some process runs on another machine. You have
to define what type of message should be sent and what data has to be included so
that the target computer understands what it is being asked to do.

Communicating between remote processes
After computers can remotely launch processes on other computers, distributed
systems have to communicate to work together. That means some process on
machine A has to talk to another process on machine B, formally called inter-
process communication (IPC), to get any work done between the two computers.
The main problem with IPC is that all participating computers have to agree on
the format of messages they want to exchange and the rules to communicate.
Computer B may encounter problems or take longer than expected. In those
cases, it has to be able to communicate back to computer A that things aren’t
going well. And if things do go well, computer B needs to know how to sends its
results back to computer A.

Storing and synchronizing one version
of data in multiple locations
One of the more difficult problems with distributing applications is storing data in
multiple locations and keeping all the copies of data the same. Centralized data
storage is a lot easier because there is only one copy of the data. Suppose Mary’s
checking account balance on computer A is decreased (she bought a large cappuc-
cino at the local coffee shop). At the moment the data is changed, Mary’s checking
account balance stored on computer B is incorrect. If Mary then uses a mobile app
to transfer money into her account and that mobile app happens to be running on
computer B, her balance could be all messed up. If computer B’s balance is con-
sidered to be correct, the cost of the cappuccino hasn’t been deducted from Mary’s
account and she has more money in her account than she should have. If computer
A’s balance is considered correct, there is no record of the deposit and Mary has
less money in her account than she should have.

Getting multiple computers to work together
The last remaining big problem is just getting computers to work together nicely.
Computers work as independently quite well, but it takes effort to get them to
work together. For instance, if two computers store copies of the same data and
both run the same programs, users expect that both computers will keep their
data the same. But if computer A crashes and users change data on computer B
while computer A is down, the data will be different. When computer A boots, its
data will be old and inaccurate, and it becomes difficult to get computers A and B
to coordinate to get their data back in sync.

Even if one of the computers doesn’t crash, anytime users try to change the same
data but on different computers, the two computers must negotiate to see which
change should be allowed. These types of problems happen frequently and make
distributed processing more difficult as you add more computers and users.

Presenting some solutions to distributed
processing problems
Computer scientists have been working on the problems with distributed process-
ing for several decades. No one has completely solved all of the problems, but
there are solutions to each problem you just learned about.

Launching remote processes
Remote Procedure Call (RPC) and Remote Method Invocation (RMI) are just two ways
to define how computer A can launch a process on computer B. These two
approaches simply set the communication rules and message formats for how two
computers can run distributed processes. These aren’t the only solutions to remote
process launching, but they have been around for a while and lay the foundation
for process distribution.

Communicating between remote processes
The capability for processes running on different computer to communicate with
one another is formally called inter-process communication (IPC). IPC is necessary
to get any work done between the two computers. The main problem with IPC is
that all participating computers have to agree on the format for exchanging
 messages and the rules for communication. Different standards, each with its
pros and cons, exist. As with all distributed processing issues, all participating
computing nodes must agree on how and when they communicate and what the
messages look like.

Storing one version of data in multiple locations
Lots of approaches to synchronizing multiple copies of data exist. The biggest
question is how to handle stale copies of data when one copy gets changed. One
method is to mark the unchanged copies as “bad” or “stale” until the changed
copy of data is written to the other copies. This approach raises all kinds of prob-
lems with timing and concurrency. Eventually, two users will update the same
data on different computers at about the same time. A set of rules must be in place
to govern which user wins.

CHAPTER 2 Learning about Blockchain 27

28 PART 1 Getting to Know Blockchain and Ethereum

Other methods for keeping data in sync are to apply locks to data before updates
are allowed and to support merging multiple copies of data. Yet another approach
is to place a timestamp on all data updates and resolve all conflicts by accepting
the earliest change to the data. All existing approaches make developing and using
distributed data applications more difficult, which is why computer scientists
continue to search for a better way.

Getting multiple computers to work together
The last problem has perhaps the fewest standard solutions. In most cases,
 coordination among distributed computing nodes is based on one of two
approaches: temporary dominance or consensus. Temporary dominance means
that one computing node becomes a node with authority and decides a course of
action. Some approaches arbitrarily assign nodes to have decision authority in a
round-robin approach, and others have nodes vote for a leader when they have a
conflict. Either way, this approach depends on granting one computing node the
authority to decide.

The other main approach is to have all participating computing nodes engage in
some game to come up with a decision. When a majority of nodes agree on some
outcome, the group has reached consensus and accepts the majority decision.
Many types of consensus “games” exist, and many are based on having comput-
ers solve puzzles. You learn more about consensus later in this chapter. Consensus
is a major part of the “big solution.”

Examining the Bitcoin Solution
to the Distributed Dilemma

In 2008, Satoshi Nakamoto published “Bitcoin: A Peer-to-Peer Electronic Cash
System.” That paper contained a description of a new system of handling elec-
tronic currency. It described a data structure that consisted of a chain of special
blocks, called a blockchain. This new approach makes it possible for many nodes
that do not trust one another to exchange currency without a central authority.

Satoshi Nakamoto is a fictional name. Even today, we still don’t know who wrote
that paper. The author could be a single person or a group of people. Regardless,
Nakamoto started a revolution in distributed computing.

Nakamoto proposed blockchain — now known as blockchain — technology to
implement the new cryptocurrency called bitcoin. In a few short years, bitcoin has

become a viable currency and blockchain has started changing the way we look at
distributed processing.

One common mistake when you’re new to blockchain is to confuse bitcoin and
blockchain. They were proposed at the same time in the same paper, but they
aren’t the same. Bitcoin is a cryptocurrency that is an implementation of block-
chain technology. Blockchain can be implemented in many ways, not just to sup-
port bitcoin. The subject of this book, Ethereum, is another wildly popular
implementation of blockchain.

Let’s take a look at how blockchain provides a solution to each of the problems
with distributed processing.

» Launching remote processes: Blockchain technology is based on a collection
of computing nodes connected in a peer-to-peer network. That means no
node has more authority than any other node. Each blockchain node runs as
a completely independent computing device and doesn’t support launching
remote processes on other nodes.

» Communicating between remote processes: This one is easy. Remote
processes don’t communicate in blockchain technology because there are no
remote processes.

It looks like we’ve just ignored the first two problems with distributed process-
ing. That’s because blockchain technology is out to solve only a few problems,
not all of them. By ignoring remote processes, blockchain simplifies its
approach to distributed processing and storage.

» Storing one version of data in multiple locations: Perhaps the greatest
contribution of blockchain is how the central data structure is constructed.
A blockchain is an ever-growing chain of blocks, with the blocks linked into a
chain structure. New blocks can be added only if a majority of the nodes agree
to each addition. After a block has been added to the blockchain, it can’t be
modified. This feature solves the problem of keeping old data in sync. The
only problem left to solve is coordinating how the blockchain expands.

» Getting multiple computers to work together: The other large contribution
of blockchain is in defining how peers — nodes that operate at the same
authority — work together. They have to agree on when to add blocks and
under what rules. The blockchain definition sets up these rules in a simple
and straightforward way that makes it hard to break the rules and easy for
everyone else to see if any node did so.

You’ll see that blockchain uses distributed processing to handle data storage and
trust issues, and doesn’t focus on performance.

CHAPTER 2 Learning about Blockchain 29

30 PART 1 Getting to Know Blockchain and Ethereum

Describing Blockchains
At its core, a blockchain is pretty simple: It is a bunch of blocks of data linked into
a chain. All blockchains start with a genesis block. The only thing that makes a
 genesis block special is that it isn’t linked to a previous block. The genesis block
contains header info and contents data. All other blocks also contain header and
contents data, but they also contain a link to their predecessor block.

Each block’s data can have different contents, in different formats. Blockchain
block contents aren’t constrained in the same way as database records are. The
structure of data that you store in each block can be dynamic, to fit the data you’re
storing.

Examining blockchain details
You can think of a blockchain as being a big spreadsheet, except that each row
may have different columns and a different number of columns. Instead of being
identified by row number and column letter, each data value is identified by a key.
That makes it easy to identify data in each block.

At a higher level, a blockchain can be viewed as a big spreadsheet that is shared
with every node in the blockchain network. Every copy of the blockchain is
 identical, and all nodes must agree before any new blocks are added to the
 blockchain (think of adding new rows to the spreadsheet). That way, the blockchain
always stays in sync.

All blocks, except the genesis block, include a previous block link. This link is a
cryptographic hash of the previous block’s header metadata. A cryptographic hash
is a number that uniquely represents a block of data. It is the output of a mathe-
matical function given the data of the block as input. Hash functions make is easy
to calculate a fixed-length number that represents a large amount of input data.
And even though a hash function returns a shorter number than the size of the
input, the returned hash value is unique for data used as input.

Different blockchains use different hash functions. For example, Ethereum uses
the Keccak-256 hash function to calculate the hash value on the previous block.
Ethereum uses that hash value as the link to attach a block to the previous block
on the chain. The link Ethereum uses is the result of the Keccak-256 calculation
of the previous block’s header information and a random number, called the nonce
value. Ethereum nodes compete to be the first to find the right nonce that results
in a hash value matching the current complexity target. Figure 2-2 shows the
blockchain architecture.

Blockchain uses data from a block, along with a nonce, to calculate a hash value
that represents the block. The word nonce means “a number that is used only
once.” A nonce is used to increase the uniqueness of a hash value for a block.
 Calculating a hash on a block using two different nonces will return two different
hashes.

Each Ethereum block contains some header information, including a timestamp,
a block number, a version number, and other descriptive information, and content
data. The content data can be any data that makes up the contents of the block,
which can be plaintext data, encrypted data, or even executable code. A block-
chain, when described only in terms of the blocks, looks like a straightforward
data structure. But the real power of blockchain is how the data structure is cre-
ated, extended, and used in applications.

Current blockchain implementations define blockchains as immutable data struc-
tures, which means that after each block is added to the blockchain, it can never
be changed. This immutability property helps to solve one of the more difficult
problems of storing distributed data in multiple locations. If the blockchain can-
not be changed after a block has been added to the chain, the only remaining
problem with data synchronization is how to control when blocks are added to the
chain. All blockchains have clear rules that control the process of adding blocks.

Protecting blockchain visibility
You can build two types of blockchain: public and private. Your choice depends on
what you’re trying to do with your blockchain. Public blockchains are available to
pretty much anyone, but private blockchains are only available to users authorized
by the blockchain owner, as shown in Figure 2-3.

FIGURE 2-2:
Blockchain

architecture.

CHAPTER 2 Learning about Blockchain 31

32 PART 1 Getting to Know Blockchain and Ethereum

Public blockchain
Anyone can interact with a public blockchain, also called a permissionless blockchain.
All you need is a valid address, and you can read the blockchain and even submit
transactions. This is the most popular type of blockchain, and one that most peo-
ple think of when associating blockchain with cryptocurrency. Public blockchains
ensure that no one organization controls the blockchain because any computer
can become a node and each computer maintains a full copy of the blockchain.

Not all nodes store full copies of blockchain blocks. Full nodes do maintain
 complete copies of the blockchain, but lightweight nodes store just some blocks of
the blockchain. Lightweight nodes often store recent blocks and provide transac-
tion validation services for clients.

Private blockchain
Prior authorization is required before you can access a private blockchain, also
called a permissioned blockchain. Private blockchains are almost always owned by a
single organization or a small group. The blockchain owner requires that each
blockchain user request authorization to interact with the blockchain data and
provide access credentials with each access request. Private blockchains provide
organizations the features of blockchain applications without having to expose all
of their data to the general public.

FIGURE 2-3:
Public versus

private
blockchains.

Building Blockchains
You’ve already learned that blockchains are immutable and all nodes have to agree
before new blocks can be added to the blockchain. Let’s look at how those two
requirements are enforced.

Agreeing to add blocks
The first rule blockchain nodes must agree to is how to allow new blocks to be
added to the blockchain. Because no node has more authority than any other node,
the nodes use consensus to agree to add new blocks. Consensus in this sense simply
means that when enough nodes agree to take some action, that the action is
approved and agreed upon by all nodes. Most consensus strategies use simple
majorities to succeed. So, as long as more than half of nodes agree to take some
action, the action is approved.

Several consensus approaches are in use or proposed:

» Proof of Work: Proof of Work (PoW) is the most popular consensus protocol
used today, and is used by both bitcoin and Ethereum. Proof of Work means
that some nodes compete to try to be the first to solve a mathematical puzzle.
The puzzle is to find a random value to combine with a block’s header, such
that the hash of the combined data matches a pattern. Solving the puzzle is
hard, but verifying the solution to the puzzle is easy. The first node to solve
the puzzle receives a reward for doing the work, and gets to add the new
block to the blockchain. The block, along with the value the winning node
found to solve the puzzle, is sent to all nodes. Each node quickly verifies the
block and then adds it to their local blockchain. Although Proof of Work is the
most popular consensus protocol and works well, it takes enormous comput-
ing power to complete. That means Proof of Work requires computers to use
lots of energy, which produces a lot of heat.

» Proof of Stake: The Proof of Stake (PoS) consensus protocol will likely replace
Proof of Work. The developers of Ethereum already have plans to move to
this protocol. The Proof of Stake protocol provides a similar level of consis-
tency as the current Proof of Work protocol without using so much computing
power (and wasting energy). Each node that wants to compete to add a new
block locks some of its cryptocurrency and submits it as a bet. The “winning”
node that gets to add the new block to the blockchain is chosen based on the
size of the bet and other criteria intended to randomize the selection. The
random part of the selection criteria keeps the richest node from always
adding new blocks.

CHAPTER 2 Learning about Blockchain 33

34 PART 1 Getting to Know Blockchain and Ethereum

» Delegated Proof of Stake: Delegated Proof of Stake (DPoS) is a modified
PoS protocol. Most of the pool of candidate nodes are selected as in the PoS
protocol, but a small number of additional nodes are added to the pool based
on votes. All nodes in the network can vote for some nodes to be included in
the selection pool. The nodes receiving the highest number of votes are added
to the selection pool, and the winner is randomly selected from all nodes in
the pool. DPoS makes PoS fairer and less likely to favor the richest nodes.

» Delegated Byzantine Fault Tolerance (dBFT): The last consensus protocol is
based on a dilemma encountered in all distributed systems: the Byzantine
Generals’ Problem. This problem is a hypothetical situation that makes it easy
to see how hard it is to get a consensus. Suppose nine generals and their
armies from the Byzantine Empire have surrounded Rome and are waiting to
attack. The generals have agreed that they must all attack or retreat in unison.
If any general breaks rank and doesn’t do what the other generals do, they all
will be defeated. In this case, consensus is necessary for survival. Because
generals can communicate only through couriers, any courier could be bribed
or even captured. Either of these actions would cause a message to be lost or
changed. Any general could also be bribed to lie or just become scared and
make the wrong decision. It is difficult for any general to trust that all other
generals agree on any decision. The dBFT protocol ensures that all generals
agree on a single course of action, even when some messages are changed
or lost.

The dBFT protocol is based on groups of nodes electing a delegate to
represent them. Each time a new block is proposed for the blockchain, a
speaker is randomly selected from the delegates. The speaker calculates the
block’s hash and sends that to all other delegates. If at least two-thirds of the
delegates agree with the calculated hash, the block is added to the blockchain.
Otherwise, the block is discarded and the process starts over with new
delegates and a new speaker being selected.

Making blocks immutable
The reason why so much effort is put into ensuring consensus is that after a block
is added to the blockchain, it never changes. Well, that’s the goal. Technically, it
is possible to change blockchain data, but it is very, very hard to do and very easy
for anyone to detect the change. Using POW consensus protocol, the level of effort
alone makes changing blocks pretty close to impossible. Let’s see why.

Before you add a block to the blockchain, you must calculate a cryptographic hash
of the previous block. That is the link to the previous block and the guarantee that
it will never change. When you calculate the hash value of the previous block, that

block’s header (which is part of the data used to calculate the hash value) includes
the hash of its predecessor block. So if anyone ever changes any block, all blocks
in the blockchain after that one are invalid. They’re invalid because the hash
 values for all subsequent blocks don’t match up.

It is easy to validate a blockchain. All you have to do is step through the blockchain,
block by block, and make sure that the hash value stored in each block is the correct
hash of the previous block header. As long as all the hashes match, the blockchain
is valid. That’s why blockchains are called immutable. You can change blockchain
data, but doing so immediately invalidates that copy of the blockchain.

Reviewing the building process
Now that you know about consensus and immutability, let’s look at the steps used
to build a blockchain:

1. Users submit requests to a blockchain node. Requests can be financial
transactions, code to run, documents, or really any data.

2. When a node has enough data to create a new blockchain block, it organizes
the data and adds header information, including block number, timestamp,
and other descriptive details.

3. The complete block is submitted for a consensus decision. Blockchain nodes
carry out the steps in the consensus protocol to determine whether the new
block should be added.

4. Each node validates that the block adheres to all requirements, and then adds
it to their local copy of the blockchain.

Keeping all blockchains consistent
After following these steps, every copy of the blockchain should contain the same
blocks, but it doesn’t always work out that way. Although I’ve said that a block-
chain is just a linked chain of blocks, there is more to it. The blocks in a blockchain
are stored in a tree structure for efficient processing. The actual list of blocks on
the blockchain are stored in the linked (or chained) list called the active chain. If
two separate nodes solve puzzles for two different blocks at about the same time,
they both would transmit their blocks to the entire set of blockchain nodes. Some
nodes would add block A and others would add block B. Now we have a situation
where the blockchain is not the same across the network.

CHAPTER 2 Learning about Blockchain 35

36 PART 1 Getting to Know Blockchain and Ethereum

This can happen in real life but it lasts only for a short while. Within minutes, a
new block is added to the blockchain. The node that solved the puzzle solved it for
its own copy of the blockchain. That means the winning node either depends on
the previous block being block A or block B. Let’s assume this new block is based
on the blockchain that previously ended with block B. When the winning node
sends its block to all other nodes, those nodes with A as the last block will fail to
verify this new block (because the hash was calculated for block B). That block will
be rejected and now there are blockchains of different lengths. Although digging
into the details of blockchain construction is interesting, the topic is beyond the
scope of this book.

Ethereum defines a consistency rule that states when blockchains of different
lengths exist on different nodes, the longest blockchain is the correct block-
chain. So everyone discards the blockchain that ends with block A and uses the
longer blockchain. Block A may go away, but all of its transactions are put back
into the pool to be placed into the next block on the blockchain. So even though
block A didn’t make it on the stable blockchain, its contents may still be in an
upcoming block.

Understanding How Blockchains and
Databases Store Data Differently

Up to now, it may seem that storing data in a blockchain is pretty much the same
as storing it in a database. While the data is at rest (no one is accessing it), that
may be the case. However, big differences exist in how data on a blockchain and
data in a database are stored and used.

Storing data in a traditional database
Traditional databases store data in a central location. Clients connect to that
 central location to read and write data. Regardless of the architecture of the
database, you can generally do four things with data: Create, Read, Update, and
Delete. These are called the CRUD operations:

» Create: Add a new record to a database, possibly with some generated
identifying data.

» Read: Locate an existing database record, generally through a search of key
or index data, and then copy the record into a memory buffer for local access.

» Update: Copy local changes to data back into the original record in the
database. The update operation saves updated data in the database.

» Delete: Locate an existing database record, much like with the read opera-
tion, but then remove the record from the database. A deleted record no
longer exists; you can’t access the previous contents of a deleted record.

Because data in a traditional database is stored in a central location, it is possible
for multiple clients to read data, modify that data locally, and then write the data
back to the database in an update operation. If client A and client B access the
same data at the same time, and both modify that data, only one client can save
his or her changes. For example, if client A saves changes first, then when client
B saves his changes, they will overwrite client A’s changes.

This process illustrates a classic concurrency problem. Database management
systems (DBMSs) have long struggled with this issue. Today’s databases gener-
ally use one of three techniques to avoid having clients overwriting other valid
changes:

» Locking: The DBMS lock a record, or group of records, as the client reads
them. While that client keeps local copies of records, no other clients can
access those records for updating. The client releases locks when he or she is
finished with those records, which allows another client to apply their own
locks. This approach is safe, but makes it hard for many clients to share
common data because it forces clients to wait in line for data to update.

» Timestamp ordering: Each time a client wants to read a record, the DBMS
records the time and compares it to the transaction timestamp and the
record write timestamp. The DBMS compares these timestamps to determine
when it is safe to read the record, and only allows reads when they are safe
from data collisions. In this scenario, trying to read a dirty record (one that is
being updated by another client) could cause your transaction to terminate.
That makes it harder to write user-friendly applications.

» Optimistic concurrency control: The previous two options assume that
collisions will occur. Optimistic concurrency control assumes that collisions
will not occur frequently. Clients can read records any time without restriction.
When a client attempts to write a record, the DBMS compares the previously
read record with the current record in the database. If these differ, another
client has updated the record, and the write fails. If the record has not been
changed, the write succeeds. This concurrency control technique generally
supports the most scalable application design.

CHAPTER 2 Learning about Blockchain 37

38 PART 1 Getting to Know Blockchain and Ethereum

Traditional databases make it easy for applications to share data, carry out CRUD
operations, and maintain data consistency in high-throughput environments.
They don’t do such a good job at maintaining audit trails of data changes. They
also require substantial effort to avoid having a database failure crash the entire
application.

A distinct advantage to storing data in a database is access performance. DBMSs
take advantage of features such as indexes to decrease the time it takes to locate
or sort records. Record access is often one of the critical indicators of overall data-
base application performance. Because DBMSs are optimized for performance,
this storage option works well where users demand quick response and high
throughput.

Storing data in a blockchain
A blockchain handles data differently than a traditional database. One of the big-
gest differences is that a blockchain does not support CRUD operations. The only
database operations are Write, which is the same as Create, followed by populat-
ing data before writing, and Read. After data has been placed in a block and added
to the blockchain, that data cannot change. A blockchain does not have Update and
Delete operations.

The other big difference between blockchain data storage and databases is their
location. A complete copy of the blockchain is stored on every full blockchain
node. Much of the difficulty in maintaining a blockchain network is ensuring that
all blockchain nodes store the same data. Each blockchain implementation has
strict rules for maintaining a synchronized blockchain across the network, and
those rules make detecting differences between nodes easy (and quick).

This distributed storage property of a blockchain makes it extremely resilient,
because the failure of any node or nodes will have a negligible effect on the rest of
the blockchain network.

Blockchain storage was never designed for high-performance situations. The
storage method does support fast traversals through the block tree, but accessing
individual data items within blocks takes some time. Remember that blocks can
contain data in different formats, which must be filtered for searching.

Table 2-1 summarizes the differences between storing data in a database and on a
blockchain.

Effectively Using Blockchains
Blockchain offers some interesting features, but it might not be a good technology
for every situation. Before jumping in and trying to design a blockchain applica-
tion, think about how blockchain may meet some of your design goals but may not
meet others. In this section, we look at some features that blockchain offers.

Transferring value without trust
One of the unique strengths of blockchain technology is that is supports transfer-
ring items of value between entities that do not trust one another. In fact, that’s
the big pull for blockchain. You have to trust only the consensus protocol, not any
other user. Your transactions are carried out in a verifiable and stable manner, so
you can trust that they are being handled properly and securely.

Reducing transaction costs by
eliminating middlemen
Whether you’re considering transferring money from one party to another or pro-
viding a product for payment, nearly all transactions need a middleman, such as
a banker, an importer, a wholesaler, or even a media publisher. Because block-
chain allows entities that don’t trust each other to interact directly, it eliminates

TABLE 2-1	 Differences between Databases and Blockchain
Feature Traditional Database Blockchain

Location One central database copy Each node stores a complete copy
of the blockchain

Operations
supported

Create, Read, Update, Delete
(CRUD)

Read, Write

Performance Optimized for short response
time and high-throughput

Not optimized for performance

Integrity Dependent on DBMS and
application

Consensus and immutability pro-
vide integrity

Transparency As allowed by central DBMS Each node stores a complete copy
of the blockchain

Control Centralized Decentralized

CHAPTER 2 Learning about Blockchain 39

40 PART 1 Getting to Know Blockchain and Ethereum

most middlemen. Blockchain makes it possible for producers to interact directly
with consumers. For instance, artists can offer their art directly to buyers, without
needing a broker or a publisher, and these savings can be passed directly to the
consumer. Although blockchain transaction handling does incur a small cost, it is
generally much less than what middlemen charge. That’s good for producers and
consumers.

Increasing efficiency through
direct interaction
Lower fees aren’t the only benefit of eliminating middlemen. Any time you can
remove one or more steps in a process, you increase efficiency. Greater efficiency
generally means reduced time required for a process to complete. For example,
suppose a musician decides to release her latest single directly to her fans by using
a blockchain delivery model. Her fans can consume the new single the moment it
drops. With a publisher, there is some delay while the content is delivered,
approved, packaged, and then finally released.

Although the delay for digital media may be minimal, blockchain can eliminate
any delays introduced by middlemen. The contrast becomes even clearer when
looking at managing the process of delivering physical goods by using blockchain.
If you buy strawberries from California, have you ever thought about how many
processors stand between you and the grower? Blockchain can reduce the number
of people who participate in the supply chain for pretty much anything.

Maintaining complete transaction history
Another design feature of blockchain is its immutability. Because you can’t
change the data, anything written to the blockchain stays there always. “What
happens in blockchain, stays in blockchain.” That’s good news for any applica-
tion that would benefit from a readily available transaction history. Let’s revisit
the strawberries example. You may go to the grocery store today and buy straw-
berries with a label that says “Fresh from CA.” You really have no way of knowing
whether the strawberries came directly from CA or first from, say, Spain (the
second leading exporter of strawberries.) But with blockchain, you could trace a
pint of strawberries all the way back to the grower. You’d know exactly where
your strawberries came from and when they were picked. This level of transaction
history exists for every transaction in blockchain. You can always find any trans-
action’s complete history.

Increasing resilience through replication
Every full node in any blockchain network must maintain a copy of the entire
blockchain. Therefore, all data on the blockchain is replicated to every full node,
and no node depends on data that another node stores. This feature is a big deal
for resilience. In a blockchain application, several nodes could crash or otherwise
be unavailable without affecting the other users of the application. Fault tolerance
is built into the blockchain architecture. In addition, distributing the entire block-
chain to many nodes owned by many different organizations practically elimi-
nates the possibility of any organization controlling the data.

Any application that benefits from high availability and freedom of ownership
may be a good fit for blockchain. Many database applications go to great lengths
to replicate their data to provide fault tolerance, and blockchain has it built
right in!

Providing transparency
The last main category of blockchain features is directly related to the fact that the
entire blockchain is replicated to every full blockchain node. Every full node can
see the entire blockchain, which provides unparalleled transparency.

The data stored in blocks may be encrypted, although the data itself is available to
any user of any node. To decrypt the data, a user needs the proper decryption
key(s). (If the data is unencrypted, anyone with access to a node or the blockchain
itself can see it.) Blockchain transparency makes it possible to trust the integrity
of the data. Nodes routinely verify the integrity of each block, and therefore, the
whole blockchain. Any modifications to the “immutable” blockchain data become
immediately evident and easy to fix.

CHAPTER 2 Learning about Blockchain 41

Chapter 3
Exploring Use Cases
for Ethereum

Ethereum is a great implementation of blockchain technology, but unlike the
current marketing hype, it doesn’t solve all of the world’s problems.
However, it does solve some problems that have proved to be hard nuts to

crack! The trick is in knowing where Ethereum shines and where is may not be the
best choice. To ease into an understanding of when to use Ethereum, you examine
some successful use cases. In general, blockchain is a good fit when you need to
exchange something in an environment in which the players don’t trust one
another.

First, you need to look at what exchange something means. The traditional defini-
tion is to trade things of value. But in some cases, the exchange implies simply
answering a question. For example, “who are you?” is a valid question. Today,
most answers to that question involve an audible answer that is accompanied by
additional proof, such as a picture ID. Blockchain technology in general, and
 Ethereum in particular, can handle many types of exchanges well.

In this chapter, you discover some of the ways in which Ethereum solves problems
elegantly and provides a solution that just can’t be addressed as cleanly using
non-blockchain approaches. After reading this chapter, you should have a clearer
picture of how Ethereum works as an effective tool in your problem-solving
toolbox.

IN THIS CHAPTER

» Exploring uses for Ethereum
applications

» Describing financial services and ICOs

» Simplifying identity management

» Examining industry applications

» Empowering governance

CHAPTER 3 Exploring Use Cases for Ethereum 43

44 PART 1 Getting to Know Blockchain and Ethereum

Diving Into Ethereum Applications
The first thing that comes to mind when you think of blockchain is probably cryp-
tocurrency. Yes, blockchain does that, but it also does far more. Many personal
and business interactions involve exchanging funds, products, and services. Entire
industries exist to act as brokers that manage the exchanges and provide a level of
mutual trust (that is, both parties of an exchange trust the broker.) The Ethereum
implementation of blockchain can solve many types of problems with exchanges
that involve some type of transfer or exchange among untrusting parties. And the
beauty of Ethereum is that it removes the need for the broker, or middleman.

For example, suppose you want to buy a used car. You have several options that
come with different costs. If you break down all the different options, most of the
cost differences are based on trust. You probably have the highest level of trust for
a dealer who primarily sells new cars and also offers certified pre-owned vehicles
(the term used car has an air of questionable trust.) This trust and assurance make
these types of car the most expensive. You pay a higher price to a dealer who has
invested lots of time and money into building a reputation you can trust.

On the other hand, you could see a car with a “For Sale” sign parked at the grocery
store. Although the car may look good, you have no idea about its owner, condi-
tion, or history. You would be taking on risk because of a lack of trust in the seller,
which is why this kind of transaction is generally cheaper than buying the same
used car from a dealer.

The used car example is one that could benefit from Ethereum. Suppose all car
manufacturers, mechanics, and body shop workers were required to submit infor-
mation to a public Ethereum blockchain whenever a car was serviced or repaired.
Anyone could get the complete history of a car at any time. You wouldn’t have to
trust the seller. If you decide to buy the car, another Ethereum app could allow you
to transfer the agreed-upon purchase price to the seller in exchange for the legal
title. The app would ensure that the transaction is legal and safe, and adheres to
all appropriate laws and regulations. And you don’t have to pay a middlemen to
handle your transaction. You do have to pay a small fee to record your transaction
on the blockchain, but it would be a tiny fraction of a dealer upcharge.

The used car example highlights a small number of ways that Ethereum can help
solve problems. In general, blockchain provides core features that solve four main
problems with exchanges of any type:

» Transparent transactions: No entity “owns” transactions. Anyone with
access to the blockchain can view all transactions. You may not be able to see
the contents of each encrypted transaction, but you can see the address and
the fact that a transaction exists.

In this chapter, I am talking about public blockchains, to which anyone can
add a transaction if they have the right software or pay the right fee. Private
blockchains are not generally visible to the public, and only certain parties
may add transactions to them. You read more about private blockchains
elsewhere in the book.

» Traceable history of all data: Because you can see all transactions, you can
create a trace of every asset from its introduction to the blockchain through
the current time. This feature makes tracing the history of anything recorded
on the blockchain easy.

» Reduced overhead: By eliminating middlemen and brokers, producers and
consumers can interact directly. This direct interaction can greatly increase
efficiency and speed up transaction processing times.

» Lower cost: In addition to making transaction processing more efficient,
Ethereum can lower transaction costs by removing extra processing steps
and handlers. Instead of paying a broker or other middleman to process a
transaction, you have to pay only a small transaction fee to the blockchain.

Ethereum really shines when applications benefit from its core features. In the
next sections, you learn about some of the types of applications that are good fits
for Ethereum. You see how problems that are hard to solve with other technolo-
gies are easy to solve in Ethereum. As you read through these use cases, think of
how Ethereum can solve problems for your organization.

The rest of this chapter focuses on four groups of Ethereum use cases:

» Financial services: Applications that manage financial transactions

» Digital identity management: Applications that associate an identity with a
person or device

» Specific industry vertical applications: Applications that provide or support
services that apply to specific industry vertical markets

» Governance services: Applications that provide services related to govern-
ment agencies

Exploring Financial Services
Financial services are interactions that involve some exchange of currency. The
currency can be legal tender, also called fiat currency, or it can be cryptocurrency,
such as Bitcoin or Ethereum’s default currency, ether (ETH). Ethereum apps do a

CHAPTER 3 Exploring Use Cases for Ethereum 45

46 PART 1 Getting to Know Blockchain and Ethereum

great job of handling pure currency exchanges, or exchanging some currency for a
product or service. Financial services may center on handling payments, but there
are more nuances to the many transactions that involve money.

Banking
Historically, banks or other financial institutions were necessary to conduct trade.
Although physical currency can change hands between individuals, the process
gets more complex when the number of participants grows. For example, if you
want to buy food at the grocery store, you have several options to pay at the reg-
ister: cash, check, and card. All three options involve a bank.

One of the primary services banks provide is serving as an uninterested, trusted
third party to broker transactions. If you trust the person or organization with
whom you’re doing business, you probably don’t need a bank.

Although you don’t have to get cash at a bank, there’s a good chance that at least
some of your cash came from cashing a check someone gave you or withdrawing
money from one of your own accounts. Although banks make getting cash easy
with ATMs and satellite branches, you still have to interact with bank employees
or banking devices at some point.

If you pay with a check or card, you are asking the vendor to trust that your bank
or card-issuing institution will provide money to pay what you owe. No money
changes hands at that point — just a promise. The entire transaction is based on
trust. Only a handful of cards are generally accepted because those are the ones
vendors trust. They believe that the bank or payment card company will follow
through and provide the payment to complete the transaction.

Financial transactions, except those that simply consist of one person handing
cash to another person, involve some middleman to broker the transaction. Ven-
dors generally pay a transaction fee to have the middleman move the money
around. For example, paying with a credit card can add a 2 percent to 5 percent
service charge to the vendor’s cost. Even though you may not see the transaction
fees, rest assured, they are built into the price of goods and services!

Cryptocurrency
Blockchain was initially proposed as a vehicle to implement a cryptocurrency,
Bitcoin. Ethereum also implements cryptocurrencies. The default currency for
Ethereum is ether (ETH), but Ethereum supports many other types of tokens.
Cryptocurrency is currency that is stored exclusively on a blockchain. Users can
access their currency through their blockchain accounts and can transfer units of
cryptocurrency to and from other accounts.

Although this sounds a lot like depositing and withdrawing money from an
account at a bank, there is a huge difference: There is no bank! That’s the beauty
of Ethereum. You establish an Ethereum account, and then add funds in the form
of ETH or any supported token. To do this, you generally have to send fiat cur-
rency to an exchange that will allow you to buy cryptocurrency and then transfer
it to your account.

Exchanges aren’t banks, but it is common to link a traditional bank account to an
exchange account. You have to transfer money from the “outside world” to your
Ethereum account at some point. Linking to a bank isn’t technically required —
some exchanges operate like ATMs. You can deposit cash to purchase ETH or other
tokens directly.

After you have cryptocurrency in your account, you can use it to buy goods and
services from any vendor that accepts it. Let’s say your local grocery store decides
to accept ETH. When you check out, all you have to do is transfer an amount of
ETH from your account to the grocery store’s Ethereum address. You don’t have
to involve a bank at all. The ETH goes directly from your account to the grocery
store’s account. And because you have conducted the transfer using Ethereum,
you don’t have to trust the grocer and the grocer doesn’t have to trust you.

This model cuts out processing middlemen such as the bank or payment card
companies. The cryptocurrency is transferred in real time and you pay a small
transaction fee, currently less than $0.01 USD for a standard transfer, which is far
less than the fees traditional processors charge. The transaction works like a
 person-to-person cash transfer, but you don’t have to carry a wad of cash around
with you all the time.

Real estate
Another rich field for Ethereum in the financial services domain is real estate
transactions. As with banking transactions, Ethereum makes it possible to con-
duct transactions without a broker. Buyers and sellers can exchange currency for
legal title directly.

Ethereum’s smart contracts can validate all aspects of the transaction as it occurs.
The steps that normally require an attorney or a loan processor can happen
 automatically. A buyer can transfer funds to purchase a property after legal
requirements are met, such as validating the title’s availability and filing required
government documents. The seller receive payment for the property at the same
time the title transfers to the buyer.

Ethereum can also go far beyond real estate purchases. Maintaining property
commonly requires many documents and records. Property history is required for
many decisions and can be a prerequisite for satisfying insurance claims.

CHAPTER 3 Exploring Use Cases for Ethereum 47

48 PART 1 Getting to Know Blockchain and Ethereum

Ethereum provides a framework for storing the complete history of a property’s
title as well as its physical history. Ethereum real estate management apps can
keep a transparent log of all property maintenance and ownership details.
 Ethereum makes it easy to search through a property’s history to see if there has
ever been a fire, flooding, or a termite infestation. It can be used also to predict
upcoming maintenance needs.

Rental property owners often have to spend substantial effort keeping track of
upcoming reservations, past renter information, maintenance needs and history,
and profitability assessment over time. Ethereum can help meet all these needs by
storing rental information in a blockchain that is immutable and available to
anyone.

Creating Ethereum escrow applications
Many transactions aren’t as immediate as shopping at the grocery store. In that
situation, you have the groceries with you, you pay for them, and then you leave
with them. Other transactions take some time to resolve. Suppose you order a
hardcopy of this book from your favorite online bookseller. When you complete
your transaction, you’ve paid for the book but you won’t have a physical copy of
the book for at least a day.

Paying for a book up front and then waiting for the delivery isn’t a big deal, but
what about buying something more expensive, such as a diamond ring? You might
be less willing to pay a lot of money up front and then wait for the product. Escrow
accounts provide a way of holding money while a transaction completes. The buyer
places money in an escrow account, and after the seller validates that the money
is in the account, the seller ships the product. When the buyer receives the product,
the money is released to the seller.

Ethereum’s smart contracts can automate escrow accounts and remove the need
for an account manager. The seller and the buyer each interact with the Ethereum
escrow account directly to provide a trusted way of processing payment for trans-
actions that aren’t immediate.

Examining ICOs
Bitcoin provided the first workable alternative currency in the digital realm. It has
been wildly popular and has become more than just an alternative to fiat currency.
Instead of having to constantly exchange fiat currency for cryptocurrency and vice
versa, cryptocurrencies have matured to a point that conversion to another cur-
rency isn’t always necessary.

Many new business ventures have been created that are entirely funded by cryp-
tocurrency. Such initiatives are commonly funded through an initial coin offering
(ICO), which allows investors to purchase tokens specific to a project (the ICO).
ICOs aren’t specific to Ethereum, but many new Ethereum-based ventures start
funding drives through ICOs. The most common Ethereum token standard, and
the one most ICOs use, is ERC-20, which supports core functions that govern how
tokens are created, exchanged, and valued.

The ICO process is similar to an IPO (initial public offering) in more traditional
financial environments. An ICO is a way to state a business venture intention and
invite investors to invest in the new organization through crowdfunding. In turn,
investors own tokens that represent an ownership stake in the new venture. ICOs
are largely unregulated and can be risky. But they also can provide opportunities
to get in on the ground floor of new and exciting opportunities.

Establishing Digital Identity Management
Asserting one’s identity has always been challenging, but doing so in the digital
world has proved to be extremely difficult. The process of asserting an identity is
fairly simple, but executing it well is the problem. Some entity, normally a person,
submits a claim to be the owner of an identity by providing a unique identifier for
the identity. In simple applications, you type your user name to claim to be a cer-
tain user. This is called the identification step.

But you can’t just provide any identity. You have to prove that you own that
 identity by providing additional information. In other words, you have to make
additional claims against the identity, The most common way to do this in many
applications is to provide a password. This is the authentication step. You are
 asking the application to authenticate that you are who you claim to be.

The application then compares the information you provided (password) with
stored information to see whether you provided the correct password. If you did
enter the password that matches, the authentication system accepts your claim
that you own the identity and authorizes you to access the application. More
secure applications use techniques other than, or in addition to, passwords, such
as smart cards, tokens, or biometrics. Regardless of the techniques used, a trusted
authority has to intervene to determine whether an identity claim is valid.

Ethereum apps provide a unique opportunity to help manage identities. Each
Ethereum user account has a unique address and is associated with a unique pair
of keys. These keys allow the owner to access any blockchain resources associated

CHAPTER 3 Exploring Use Cases for Ethereum 49

50 PART 1 Getting to Know Blockchain and Ethereum

with the account. A unique identity can be one of the resources associated with an
account and is identified by the account’s address.

Establishing an identity would require some interaction with a governing author-
ity to verify that you are, in the physical world, who you claim to be. This step is
similar to providing a picture ID and is necessary to keep people from creating
multiple false IDs. After you establish an identity, you can make additional claims
against that identity and provide additional information, such as name, address,
and biometric information. These claims are stored as part of your identity and
provide authentication in a similar way that passwords do. But using Ethereum is
far safer. You don’t have to trust any entity to protect your private information
and only you can access your blockchain data because you control the keys.

Managing individual and device identities
Identities don’t have to be limited to people. Each Ethereum account can represent
an identity, and that identity can refer to a device. If you’re wondering why your
toaster needs an identity, think of all the smart devices on the market today. If you
have the budget, it isn’t hard to have your house lights, refrigerator, stove, heat-
ing, air conditioner, entertainment center, and many other electronic devices on
your home network. Getting all these devices to talk to one another and play nice
can be challenging.

Giving each device a unique identity is a great first step. Just like people, devices
have descriptive attributes that describe their state. Devices have names, func-
tional categories, locations, and permissions. As a simple example, your printer
could detect that it needs more ink and automatically order more. The printer’s
identity would be robust enough to tell the vendor where to send the ink and how
the order will be paid. A real person would have to install the ink cartridges, but
that might be changing as well.

The explosion of Internet-connected devices, called the Internet of Things (IoT), has
raised many questions about securing and managing these devices. Although no
comprehensive solution exists, proposing a straightforward way to manage these
devices as individuals is a good start. And as more and more IoT devices become
more autonomous, having a verifiable identity allows them to operate with mini-
mal oversight or human interaction.

Reducing fraud and identity theft
Ethereum solutions for managing digital identity can help dramatically reduce
fraud and identity theft. The offline world has a few globally accepted identifica-
tions standards. Most people have a driver’s license and many have a passport.

These two forms of ID are issued by government agencies and are accepted as
proof of identity in most situations.

However, these forms of ID do not have a digital counterpart. If an Ethereum
standard for identity management were to be globally accepted, you would be able
to present your digital identity upon demand. Having your identification informa-
tion stored in a blockchain is much more secure. You are the only one that has
access to your identification attributes because you control your own keys. You
wouldn’t have to re-enter identification information and a separate user account
for every website and remote system you access.

In addition to the reduction in data duplication, any changes to your identity
claims would be stored in an immutable block. That makes it virtually impossible
to use someone else’s identity without leaving a clear audit trail leading right to
the attacker.

Examining the ERC-725 standard
and beyond
Fabian Vogelsteller, the creator of the ERC-20 Ethereum token standard, has
 proposed ERC-725, an Ethereum identity standard. ERC-725 is a smart contract
interface that defines how to define, configure, and use identities in Ethereum.
Developers can implement the interface in their own smart contracts to manage
digital identities in Ethereum. Defining the standard as a smart contract interface
allows competing implementations to share the same core functionality and ulti-
mately be compatible with one another. Therefore, an ERC-725 identity should be
usable in a wide range of applications.

ERC-725 isn’t the only effort to standardize digital identity management in
 Ethereum. The uPort initiative defines multiple simple layers, as opposed to the
monolithic approach embraced in ERC-725. The developers of uPort state that
their protocol is more granular and easier to customize due to its layered func-
tional approach. The layered approach makes it easier to customize specific
aspects of the uPort implementation to suit an organization’s specific needs.

Examining Industry Applications
Ethereum use cases don’t have to be generic and apply to multiple domains. Many
vertical markets have specific needs that Ethereum applications can address. In
this section, you learn about three vertical markets that benefit from Ethereum
solutions.

CHAPTER 3 Exploring Use Cases for Ethereum 51

52 PART 1 Getting to Know Blockchain and Ethereum

Healthcare
Healthcare has become one of the most popular topics of conversations ranging
from politics to research to spending. It seems that everyone is interested in
increasing the quality of healthcare while reducing its cost. The availability of
large amounts of digital data have made advances in healthcare possible.

Researchers can analyze large amounts of data to explore new treatment plans,
increase the overall effectiveness of existing drugs and procedures, and identify
cost-saving opportunities. This type of analysis is possible only with access to
vast amounts of patient medical histories. The main problem for researchers is
that a patient’s electronic health record (EHR) is likely stored as fragments across
multiple practices and databases. Although efforts to combine these records are
ongoing, privacy is a growing concern (we’re back to the trust problem) and prog-
ress is slow.

EHR management is a good fit for an Ethereum app. Storing a patient’s EHR in an
Ethereum blockchain can remove the silos of fragmented data without having to
trust each entity that provides or modified parts of the EHR. Storing the EHR in
this way also helps clarify medical services billing and payment. With compre-
hensive medical procedure history all in one place, medical services providers and
insurance companies can see the same view of a patient’s treatment. A full history
makes it easier to figure out what should be billed.

Another advantage that Ethereum apps can provide in the healthcare domain is in
managing pharmaceuticals. Blockchain EHRs provide the information for medical
practitioners to see a full history and a current snapshot of a patient’s prescription
medications. It also allows researchers, auditors, and even pharmaceutical manu-
facturers to examine the effect and possible side effects of their products. Having
EMRs available but protected can provide valuable information to increase the
quality of healthcare services.

Energy
Another vertical market with interesting blockchain opportunities is in energy
management. Smart city planners realize that energy management is a core
requirement for using technology to enhance inhabitants’ quality of life. Just
 collecting data isn’t enough. Smart meters provide real-time information on
energy use and allow energy providers to restrict energy distribution at peak
times. For instance, summertime demands for electricity in hot climates can push
the limits of electricity providers. Smart meters can limit the energy used in single
homes to cumulatively lower the overall energy demand.

Ethereum apps make it easy to give each smart meter an identity and allow it to
autonomously manage the energy it requires to power devices in its home. When
the electricity provider needs to limit overall output, it can contact smart meters
identified in the blockchain and request that each one reduce its electricity use.
The blockchain provides an up-to-date list of participating smart meters and
automatically keeps an audit trail of how well each one manages its energy use.
Storing energy usage data by using a blockchain makes it possible for energy sup-
pliers, manufacturers, and service providers to access the data to identify new
business opportunities. Using a blockchain takes the data out of the silo.

Smart meters aren’t only consumers. As home solar panel installations increase
and the panels become more efficient, the likelihood that a home will produce
more electricity than it uses increases. In addition to autonomously monitoring
energy use, a smart meter with a blockchain identity can also manage energy pro-
duced and delivered to the energy grid. The blockchain history of energy produc-
tion would keep a detailed list of billing offsets that may substantially reduce a
homeowner’s energy bill.

Supply chain
One of the earliest large-scale Ethereum use cases is the management of supply
chains. The process of managing products from the original producer to the con-
sumer is expensive and time consuming. With today’s tracking of goods, consum-
ers have difficulty knowing much about the products they consume. Some
products, such as electronics and appliances, might have descriptive tags that
identify places and times of manufacture, but most of the products we consume
don’t provide that type of information.

Suppose you buy Alaskan salmon at your grocery store. Aside from the trust you
place in your grocer, there isn’t any way to know that the fish really came from
Alaska. Ethereum supply-chain apps can provide consumers with complete infor-
mation that lets them trace their product all the way back to its origin. In the case
of the salmon, the fisherman who caught the fish would create the first entry in
the blockchain. Every transfer of ownership from that point until the salmon ends
up in the grocery store display would be tracked and recorded. A user-friendly
Ethereum app could provide a trace all the way back to the day your fish was
caught. Or, if you become ill after eating a Caesar salad, you could use blockchain
data to find out what farm provided the romaine lettuce.

Implementing supply chain management provides multiple benefits. The first is
transparency. Producers, consumers, and anyone in-between can see how each
fish traveled from the place it was caught to where it was finally purchased.
 Anyone can trace its path and the time it took to get there. Inspectors and

CHAPTER 3 Exploring Use Cases for Ethereum 53

54 PART 1 Getting to Know Blockchain and Ethereum

regulatory auditors can ensure that each participant in the supply chain met
required standards. This increased transparency occurs while eliminating unnec-
essary middlemen. Each transfer in the process occurs between active partici-
pants, not brokers. With Ethereum supply-chain apps, you can track a product all
the way back to its origin and verify the product’s authenticity claims.

Proper tracking of physical products in the blockchain depends on accurately
associating the physical product with the digital identifier. For example, I recently
checked my bag when I flew on a commercial airline. The agent was busily engaged
in a conversation with another agent, and swapped tags with another traveler. His
tag was attached to my bag and vice versa. When I arrived, my bag was nowhere
to be found. After investigating, we found that my tag arrived on the same flight
as me, but it was attached to the wrong bag. My bag had flown to Mexico with the
other gentleman’s tag attached. It took four days to get my bag back. Always
remember that the blockchain only represents the physical world — it isn’t really
the physical world.

Enabling Effective Governance
The last category of potential good use cases for Ethereum apps is in governance.
Governing bodies should be responsible and accountable to the people they gov-
ern. Although this is not always the case, it is the ideal. Equitability, transparency,
and auditability are three characteristics that should describe all government
functions. Ethereum apps can help approach these goals by using foundational
blockchain features to manage governance functions.

Tax payment
Governments fund their operation through taxes. Taxes are crucial to every gov-
ernmental function and of vital interest to every taxpayer. Blockchain technology
allows governments and taxpayers to interact in a way that provides both parties
the transparency and auditability to assess taxes fairly. Taxpayers can record
income and expenses in the blockchain ledger, and governing agencies can use
that information to assess taxes. Taxpayers can also submit payment, or even
accept refunds, through an Ethereum cryptocurrency transfer.

Ethereum-based tax payment maintenance could effectively eliminate the need to
keep detailed records and receipts. Audits would take less time and effort because
all supporting information would already be recorded in the blockchain. Although
the outcome of the audit might not be any more desirable, at least Ethereum might

make the process proceed more smoothly. And because audits would be simpler
and faster, auditing agencies could carry out more audits using blockchain data.

Government spending
Currently, only some details about how governments spend money is made public.
If all government spending were funded by cryptocurrency and recorded on a
blockchain, all transactions would be available for review and audit. Any person
with blockchain access could track payments. Transaction sources and recipients
would either be divulged by the agency creating the payment or noticeably
“secret.” You may not be able to find out who owns a blockchain account that
receives government funds, but you could still see how much cryptocurrency is
transferred to the address. This new level of transparency would encourage politi-
cians to reduce or (one hopes) eliminate secret payments.

Voting
A vote is a classic transfer of choice or approval from one person to another.
Blockchain technology has the potential to greatly simplify the voting process.
You’ve seen how Ethereum apps and standards can help manage digital identities.
In much the same way, Ethereum can support identities in casting votes during an
election. Because casting a vote is a transaction, each vote would be associated
with a unique Ethereum address. The only piece of the puzzle left to address is to
validate the registration of each account as an authorized voter.

Each voter’s identification claims would contain descriptive attributes that iden-
tify the voter’s eligibility and voting district. Any vote cast would be recorded on
the blockchain and become part of the voting record. Calculating election results
would be greatly simplified and the complete immutable record would reduce the
many criticisms encountered in today’s elections.

Policy development
Public policy development in many ways is an extension of the voting issue. The
policy development process generally includes identifying a problem, collecting
input from the community, developing a policy to address the problem, and then
implementing the policy. Ethereum apps to manage interaction with the public
can have multiple beneficial effects. Using blockchain to interact with the public
would make governance functions more transparent and auditable by providing
members of the public with a full record of the input and actions leading up to a
policy change. It should also provide a mechanism for feedback to monitor the
results of new or modified policy.

CHAPTER 3 Exploring Use Cases for Ethereum 55

56 PART 1 Getting to Know Blockchain and Ethereum

Notary
The last governance function that represents a good Ethereum use case is the
notary function. In the real world, a notary provides assurance that a signature on
a document is authentic. In the digital world, an Ethereum account can sign a
 document in a way that associates the digital identity with that document. If an
Ethereum account appends a hash of the document with the author’s private key,
anyone can verify the signature by decrypting the hash with the account’s public
key and then comparing the decrypted value with the hash of the document. If the
two match, that means the account really did sign the document AND it has not
been altered. In this way, an Ethereum app can provide notary services.

2Setting Up Your
Ethereum
Development
Environment

IN THIS PART . . .

Identify each of the components in the Ethereum
ecosystem.

Set up an environment with the tools for developing
Ethereum apps.

Choose the right Ethereum wallet for your needs.

CHAPTER 4 Examining the Ethereum Ecosystem and Development Lifecycle 59

Chapter 4
Examining the
Ethereum Ecosystem
and Development
Lifecycle

The Ethereum blockchain implementation provides a rich environment for
developing decentralized blockchain applications. These decentralized
applications, or dApps, are unique in that the code and data are stored in the

blockchain. Each node executes the code in the same way and guarantees that the
results are the same.

The capability to deploy application code and data across an entire network ensures
that the shared ledger remains the same for all nodes and that changes are allowed
only in specific circumstances. The blockchain doesn’t need an external authority
to determine whether data is valid — the rules that govern the blockchain itself
determine whether new data is valid and can be added to the blockchain.

IN THIS CHAPTER

» Examining the Ethereum blockchain
structure

» Understanding smart contracts and
Solidity

» Paying for blockchain access

» Surveying Ethereum development
tools

» Exploring the Ethereum application
development lifecycle

60 PART 2 Setting Up Your Ethereum Development Environment

In this chapter, you discover the components of an Ethereum dApp. You find out
how code modifies the blockchain, and how to pay for the ability to add data. And
finally, you learn about the Ethereum dApp development process, what tools you
need to develop dApps, and how the pieces fit together.

Exploring the Ethereum Blockchain
Block Structure

Ethereum dApps primarily populate blocks, add them to the blockchain, and query
existing blocks. That sounds pretty simple, right? However, lots and lots of details
are hidden in those simple goals. Before you can start to build blocks and add them
to the blockchain, you need to know a little bit more about the contents of an
Ethereum block and how the chain is built.

I describe only basic block and chain details. The authoritative reference for
 Ethereum internals is the Ethereum yellow paper, at https://ethereum.github.
io/yellowpaper/paper.pdf. You can also find a pretty good third-party detailed
discussion of Ethereum block structure internals at https://ethereum.stack
exchange.com/questions/268/ethereum-block-architecture.

A block is a data structure that contains two main sections: a header and a body.
Transactions are added to the body and then submitted to the blockchain
network. Miners take the blocks and try to solve a mathematical puzzle to win
a prize. Miners are just nodes, or pools of nodes, with enough computational
power to calculate block hashes many times to solve the puzzle. In Ethereum, the
 mining process uses the submitted block header and an arbitrary number called
a nonce (number used once). The miner picks a value for the nonce, which is part
of the block header, and calculates a Keccak-256 hash on the block header. The
result has to match an agreed-upon pattern, which gets more difficult over time
as miners gets faster at mining blocks. If the first mining result doesn’t match
the pattern, the miner picks another nonce and calculates a hash on the new
block header. This process continues until a miner finds a nonce that results in a
hash that matches the pattern.

The miner that finds the solution broadcasts that solution to the rest of the
network. That miner collects a reward, in ETH, for doing the hard work to validate
the block. Because many miners work on blocks at the same time, it’s common for
several miners to solve the hash puzzle at almost the same time. In other block-
chains, these blocks are discarded as orphans. In Ethereum, these blocks are called
uncles. An uncle block is any successfully mined block that arrives after that block

CHAPTER 4 Examining the Ethereum Ecosystem and Development Lifecycle 61

has already been accepted. Ethereum accepts uncle blocks and even provides a
reward to the miner, but the reward is smaller than the one for the accepted block.

Ethereum rewards miners of uncle blocks to reduce mining centralization and to
increase the security of the blockchain. Uncle rewards provide an incentive for
smaller miners to participate. Otherwise, mining would be profitable for only
large pools, which could eventually take over all mining. Encouraging more min-
ers to participate also increases security by increasing the overall work carried out
on the entire blockchain.

The header of a block contains data that describes the block, and the body contains
all the transactions stored in a block. Figure 4-1 shows the contents of an
Ethereum block header.

Each Ethereum block header contains information that defines and describes the
block, and records its place in the blockchain. The block header contains these
fields:

» Previous hash: The hash value of the previous block’s header, where the
previous block is the last block on the blockchain to which the current block
gets added.

FIGURE 4-1:
Ethereum block

header.

62 PART 2 Setting Up Your Ethereum Development Environment

Ethereum uses the Keccak-256 algorithm to produce all hash values. The
National Institute of Standards and Technology (NIST) Secure Hashing
Algorithm 3 (SHA3) is a subset of the Keccak algorithm. Ethereum was
introduced before the SHA-3 standard was finalized, and Keccak-256 does
not follow the SHA-3 official standard.

» Nonce: A number selected that causes the hash value of the current block’s
header to adhere to a specific pattern. If you change this value (or any header
value), the hash of the header changes. You learn more about how Ethereum
uses the nonce value shortly.

» Timestamp: The date and time the current block was created.

» Uncles hash: The hash value of the current block’s list of uncle blocks, which
are stale blocks that were successfully mined but arrived just after the
accepted block was added to the blockchain.

» Beneficiary: The miner’s account that receives the reward for mining the
block.

» Logs bloom: Logging information stored in a Bloom filter (a data structure
useful for quickly finding out if some element is a member of a set).

» Difficulty: The difficulty level used in mining the block.

» Extra data: As the name implies, any extra data used to describe the block.

» Block number: The unique number for the block (assigned sequentially).

» Gas limit: The limit of gas for the block. (You learn about gas later in this
chapter.)

» Gas used: The amount of gas used by transactions in the block.

» Mix hash: A hash value that is combined with the nonce value to show that
the mined nonce meets difficulty requirements. This hash increases the
difficulty for attackers to modify any block.

» State root: The hash value of the root node of the block’s state trie. A trie is a
data structure that efficiently stores data for quick retrieval. The state trie is
used to express information about the state of transactions in the block
without having to look at the transactions.

» Transaction root: The hash value of the root node of the trie that stores all
transactions for the block.

» Receipt root: The hash of the root node of the trie that stores all transaction
receipts for the block.

CHAPTER 4 Examining the Ethereum Ecosystem and Development Lifecycle 63

The body of an Ethereum block is just a list of transactions. Unlike other block-
chain implementations, the number of transactions — and as a result the size of
blocks — isn’t fixed. Every transaction has a processing cost associated with it,
and each block has a limited budget. Ethereum blocks can contain lots of inexpen-
sive transactions or just a few expensive ones or anything in between. Ethereum
designed a lot of flexibility into what blocks can contain. Figure 4-2 shows the
content of an Ethereum transaction.

Ethereum transactions contain the following fields:

» Nonce: Each Ethereum account keeps track of the number of transactions it
executes. This field is the latest transaction, based on the account’s counter.
The network uses the transaction nonce to ensure that transactions for that
particular account are executed in the proper order.

» Signature: The digital signature of the account owner, proving the identity of
the account requesting this transaction.

» Gas price: Unit price that the account is willing to pay to execute this
transaction.

» Gas limit: Maximum total amount you are willing to pay to execute this
transaction.

» To: The address that is the recipient of this transaction. For transfers, the
address is the account that will receive the transfer. For calling functions, the
address is the address of the smart contract.

FIGURE 4-2:
Contents of

an Ethereum
transaction.

64 PART 2 Setting Up Your Ethereum Development Environment

» Value: The total amount of ether you want to send to the recipient.

» Data: The actual data submitted as the transaction body. Each type of
transaction may have different data based on its functionality. For calling
functions, the data may contain parameters.

As users submit transaction requests to nodes, the nodes create transactions and
submit them to the transaction pool. Miners then pick transactions from the pool
and build new blocks. After an Ethereum mining node constructs a block, it starts
the mining process. The first miner to complete the mining process adds the block
to the blockchain and broadcasts the new block to the rest of the network.

You can look at the public Ethereum blockchain at any time by going to Etherscan
at https://etherscan.io/. Etherscan lets you see blockchain statistics as well as
block and transaction details.

Describing Smart Contracts
When you exchange items of value, generally rules govern how the transaction
takes place. In many cases, the rules are simple. For example, you me $1.89, and
I give you a soft drink. Each party can see and validate the other party’s contribu-
tion to the transaction. If you try to give me Monopoly money, you won’t get your
soft drink. Even though this transaction seems simple, there’s more to it than
meets the eye. In most cases, if a soft drink costs $1.89, you’ll have to tender more
than that for it. You’ll have to pay taxes as well. So there’s another participant in
the transaction: the government. Instead of keeping all the money, I have to send
some of it to the government for taxes.

Moving even simple transactions like the soft drink example into the digital world
takes some careful thought. You can’t just send money to people and trust that
they’ll do their part. You need some way to enforce rules and compliance to make
sure that all parties are treated fairly.

Smart contracts help you enforce rules when you exchange anything of value in
Ethereum. The simplest way to describe smart contracts is that they are programs
that execute when certain transactions occur. For example, if you create a soft-
drink-purchase smart contract, that software code will run every time someone
buys a soft drink. The smart contract code is stored in the blockchain, so all nodes
have a copy of it. Also, it doesn’t matter where the software runs: All nodes are
guaranteed to run it the same and get the same results as every other node.

CHAPTER 4 Examining the Ethereum Ecosystem and Development Lifecycle 65

Ethereum smart contracts are Turing complete, which means they can compute
anything that is computable with enough resources. Turing completeness is
important because Ethereum smart contracts aren’t limited in the types of actions
they can carry out. They can carry out any complex algorithms you can design.

The soft-drink smart contract starts with the buyer. Here’s how the exchange
might happen:

» The buyer creates a transaction that sends money to the seller in exchange
for the soft drink.

» The buyer sends the seller’s address as input to the smart contract’s address.

» The smart contract runs to carry out the transaction. It verifies that you have
enough money in your account to pay for the soft drink.

» The smart contract verifies that the seller has the soft drink you want in stock.

» The smart contract deducts funds from the buyer, sends the funds to the
seller, and tells the seller to send the soft drink to the buyer. In the same step,
the smart contract sends the required tax to the tax authority account and
sends the remaining amount to the seller’s account.

The process may seem tedious, but it is straightforward and makes sure each
transaction occurs in the same way. This example is too simple for real-life
exchanges, and I left out some important details. For starters, we assume that the
seller will send the soft drink to the buyer. Real-life exchanges require an extra
layer of protection for both sides. Smart contracts use escrow accounts (see
 Chapter 3) all the time to hold a buyer’s money until the seller delivers the goods
or services.

Smart contracts provide the governance and predictability of Ethereum. Without
them, Ethereum would just be a cool distributed storage technique. But with them,
Ethereum is a stable decentralized platform that supports interactions and
exchanges between untrusting users, including extremely complex transactions.
It is easy to see the steps necessary to buy a soft drink. Other transactions, such as
real estate transactions, are far more complex, have many dependencies and
requirements, and generally involve several people and organizations. Ethereum
smart contracts can help developers create software that eliminates middlemen,
streamlines complex processes, and reduces the overall cost and time required to
complete even the most complex exchanges.

66 PART 2 Setting Up Your Ethereum Development Environment

Introducing Solidity, the Language
of Smart Contracts

Smart contracts are software programs. With enough resources, smart contracts
can do anything any other software can do. You can write Ethereum smart con-
tracts in several languages:

» Mutan: An older smart contract language that was deprecated in 2015.

» LLL: A Lisp-like language, obviously developed to look like the language Lisp.
Although LLL is still supported, it’s not used for many current smart contract
projects.

» Serpent: A language that looks like the Python language. As of September
2017, Serpent is not recommended for current development.

» Bamboo: A relatively new language that focuses on making blockchain state
transitions explicit and avoiding code reentrant issues.

» Viper: Another relatively new language that focuses on security and simplicity.

» Solidity: Currently the most popular smart contract development language.
Solidity looks like the JavaScript language and provides a full-featured
language for developing general-purpose smart contracts.

Solidity is the most popular language for smart contracts, and the one you’re most
likely to encounter. For that reason, I chose to focus on Solidity in this book.

If you’re comfortable with JavaScript, picking up Solidity will be a little easier. If
you don’t know much JavaScript, that’s okay. You’re going to learn the basics of
Solidity from the ground floor. In fact, I start with a program that may look famil-
iar: the ubiquitous “Hello world” program.

You’ll see this code again in Chapter 7, where you dig deeper into each part of this
simple program. For now, take a look at this very simple smart contract code:

pragma solidity ^0.4.25;

contract helloWorld {

 function printHelloWorld () public constant returns (string) {

 return 'Hello world!';

 }

}

CHAPTER 4 Examining the Ethereum Ecosystem and Development Lifecycle 67

That’s what a Solidity smart contract looks like! After the heading, you define your
contract, and then any functions that make up the inner workings of the program.
After you write and test a smart contract, you can deploy it to a blockchain (more
about this in Chapter 7), and then execute it. When you get everything right, your
smart contract will show you the iconic “Hello world!” message.

As you learn more about Solidity, you’ll see that it does look a lot like JavaScript
but also feels a bit like C++ and Python. The developers of Solidity based the lan-
guage on all three languages. It supports inheritance, libraries, and user-defined
types that can be quite complex. It is also a statically typed language, which means
you have to provide explicit datatypes for the variables you create and use.

Above all, Solidity is a smart contract development language. Even though it looks
like other languages, it includes primitives and an orientation designed to interact
with the Ethereum blockchain. In Chapters 8 and 9 you learn a lot more about how
to write to and read from the Ethereum blockchain by using Solidity.

Working with the Ethereum
Virtual Machine

You write smart contract code in Solidity, but it won’t run in its source form.
Almost all programs written in any language have to be translated into a runnable
format. Some languages, such as C++, are compiled languages. When you write a
C++ program, you have to use a compiler to compile the program into an execut-
able that an operating system can run. Other languages, such as Python, are inter-
preted. You run a program that provides a runtime environment, which interprets
your code and executes the commands.

Other languages, such as Java and Solidity, exist in-between compiled and inter-
preted languages. You compile the programs you write in both of these languages,
but you compile your source code to opcode, also called bytecode. Opcode is an
optimized sequence of operations that your language’s runtime environment can
understand. The runtime environment is often referred to as the language’s vir-
tual machine. In Java, programs run in the Java virtual machine (JVM). All Solidity
smart contracts run in the Ethereum virtual machine (EVM).

The EVM is present on all nodes. When you install Ethereum, you get the EVM,
and it runs whenever you run Ethereum. That means any time a smart contract
runs, it runs on all EVMs across the Ethereum network. Ethereum ensures that
smart contracts run the same way on all nodes and get the same results. That’s
how the blockchain remains consistent across all nodes.

68 PART 2 Setting Up Your Ethereum Development Environment

The EVM uses a stack-based architecture, and has its own area in memory for the
code it runs and the data it stores in addition to each smart contract’s local stor-
age. Although the EVM is a Turing complete virtual machine, its execution is lim-
ited by the amount of gas allowed by each smart contract run. That limitation
avoids using excessive computing power for nodes across the Ethereum network
(or bankrupting an account with a programming error or malicious code that tries
to run forever.).

As you can see, running every smart contract on every node in the Ethereum net-
work is a lot of work. Every additional instruction in a smart contract causes thou-
sands of nodes to do more work. To reduce the computation waste on so many
machines, Ethereum includes incentives for using computation resources conser-
vatively and sets upper limits on just how much work a smart contract can carry
out. In the next section you learn about how Ethereum sets these limits.

Fueling Your Code with Gas
A couple of the fields in the block header include the word gas. Those fields refer
to the cryptocurrency cost of accessing the blockchain and executing code. Because
Ethereum storage and processing is distributed across many nodes, individuals
and organizations need an incentive to commit their computing resources to
blockchain operation. Gas is that incentive.

Gas refers to the fee that transaction initiators pay to process their operations.
Ethereum users use ether to pay miners. To keep costs manageable, each transac-
tion has a maximum amount of gas you’re willing to pay. If you set this limit too
low, many miners may pass up your transaction and you may have to wait to get
your transaction into a block. After your transaction is selected by a miner, you
have to pay a small amount of gas for every computational step required to com-
plete the transaction. The good news is that you don’t have to pay the maximum
each time you start a transaction and you get a refund for any gas that isn’t used
in the transaction.

Gas serves several purposes in the Ethereum ecosystem. First, it encourages
developers to create efficient smart contracts, which require less computational
resources than sloppy or unoptimized smart contracts. Any savings of computa-
tional resources are magnified by the thousands of nodes on the Ethereum net-
work. Being conservative lowers costs all around.

Second, gas limits make it harder for malicious users to write code to consume
available network resources. Denial of service (DoS) attacks on Ethereum net-
works could tie up all nodes if unrestrained smart contracts were allowed to run.
Gas allows upper limits to be established that stop DoS attacks in their tracks.

CHAPTER 4 Examining the Ethereum Ecosystem and Development Lifecycle 69

And finally, charging gas for accessing data stored on the blockchain discourages
blockchain growth because it makes developers think through the justification for
putting data on the blockchain. This approach also encourages developers to be
creative when determining how to store context data. Although in many cases it
would be easier to store data in a block, gas cost often leads to other designs that
leverage local storage.

Two main variables are used to calculate the total cost of a transaction:

» Gas used: The total amount of gas that a transaction uses. Each computation
in a smart contract has an associated computation price.

» Gas price: The price, in Ether, of one unit of gas used in the transaction.

The formula for calculating the cost of gas for a transaction is

Total gas cost = Gas used * Gas price

If you’re interested in calculating your own gas usage, every Ethereum operation
and its associated cost (in gas) is listed in the spreadsheet at http://ethereum.
stackexchange.com/q/52/42.

Gas price is expressed in wei units. Wei is a denomination of ether cryptocurrency.
One ether (ETH) equals 1e18 wei (that’s 1,000,000,000,000,000,000 wei). The
current gas price fluctuates, but at the time of this writing, it’s somewhere around
2 Gwei (2,000,000,000 wei).

Ethereum gives both miners and transaction requesters substantial flexibility. If
you request a transaction, you get to set a maximum gas price and total amount of
gas you’re willing to pay. That gives you the ability to limit your cost. Of course, if
your limits are too low, your transaction may never make it to the blockchain.
From the miner perspective, you can cherry-pick the transactions you want to put
into blocks. When cash flow is high, you can choose only the best paying transac-
tions. On the other hand, when things are slower, you have the option to take
lower paying transactions. Regardless, Ethereum lets you choose.

Surveying Tools for Developing, Testing,
and Deploying Ethereum Apps

You use different tools for every phase of the process of developing and deploying
Ethereum dApps. Many tools are available; this section covers a few of the more
popular ones.

70 PART 2 Setting Up Your Ethereum Development Environment

You need multiple tools to address the requirements of the multiple levels involved
in developing Ethereum dApps: source code development, testing, compiling, and
deploying your smart contract code. In this section, I briefly describe some of the
more popular development tools in each of the following categories:

» Ethereum blockchain client: This software runs the Ethereum blockchain
and EVM, making a computer a blockchain node.

» Development and testing blockchain: This tool sets up a local, or non-live,
blockchain to use before deploying code to the live blockchain.

» Compiler and testing framework: A compiler translates source code into
bytecode for the EVM, and testing tools help to identify and fix bugs.

» Source code editor and integrated development environment (IDE):
These tools include editors and suites of tools designed to help developers
write code.

Ethereum blockchain client
The Ethereum blockchain client establishes an Ethereum node, downloads part, or
all, of an Ethereum blockchain, and launches the EVM. Ethereum client software
makes a computer or device an Ethereum node in the blockchain network.

Ethereum clients nodes can be full nodes or light nodes. Full nodes store the entire
Ethereum blockchain, which at the time of this writing is 182.5 GB. You can go to
https://bitinfocharts.com/ to see the current Ethereum blockchain size, along
with lots of other stats for popular blockchains. That’s a lot of storage to dedicate
just to keeping a copy of a blockchain. An alternative to full nodes is to connect to
the blockchain network as a light node. Light nodes store only a portion of the
blockchain. Either way, you need to install Ethereum client software to connect to
the network.

Remember the root hash fields in the Ethereum block header layout shown earlier
in the chapter? Light nodes download and store block headers but don’t fetch all
of the block contents. That reduces the blockchain storage requirement to a point
that small devices, even Raspberry Pi, can become light nodes. The light node
fetches block contents only when to user needs it to complete some task, such as
checking a balance or submitting a new transaction.

All Ethereum clients support the Ethereum standard and implement the EVM. The
main difference between clients is the programming language in which each one

CHAPTER 4 Examining the Ethereum Ecosystem and Development Lifecycle 71

is written. Because all clients provide the same core functionality, the choice is
largely based on your language preference. Table 4-1 lists several Ethereum
blockchain clients.

Development and testing blockchain
One of the strongest features of blockchain technology is that the blockchain is
immutable. Although that’s great for integrity, it makes developing smart con-
tract code more difficult. Software rarely works correctly the first time its written.
The development process is made up of multiple snapshots of software as it
matures to become the final product.

Putting your code on the live Ethereum public blockchain is the last step in the
development process. Before you’re ready to do that, you need a local or non-live
blockchain environment to use while developing and testing. That way, you put
only the final, bug-free (you hope) version of your code on the live blockchain.

You don’t have to use separate tools to create a private blockchain. You can set one
up yourself and configure your Ethereum client to use it instead of the live Ethe-
reum network. If you want to build your own private blockchain from scratch,
check out the resource at souptacular.gitbooks.io/ethereum-tutorials-and-
tips-by-hudson/content/private-chain.html.

Tools in this category provide a development and testing blockchain that you can
use while you add features to your code. Table 4-2 lists the four main Ethereum
development and testing blockchains.

TABLE 4-1	 Ethereum Clients
Name Language Where to Get It

Cpp-ethereum C++ http://ethdocs.org/en/latest/ethereum-clients/
cpp-ethereum

Ethereumjs-lib JavaScript http://ethdocs.org/en/latest/ethereum-clients/
ethereumjs-lib

Geth (go-ethereum) Go htpps://ethereum.github.io/go-ethereum

Parity Rust https://www.parity.io/

Pyethapp Python http://ethdocs.org/en/latest/ethereum-clients/pyethapp

72 PART 2 Setting Up Your Ethereum Development Environment

Compiler and testing framework
The EVM runs bytecode, so you’ll need a compiler to translate your source code
into bytecode. Tools in this category also provide the functionality for monitoring
how your smart contracts execute and identifying bugs. Table 4-3 lists several
Ethereum compilers and testing frameworks.

Source code editor/IDE
You can use any text editor to write smart contract sources code, but several editor
environments are designed to help developers write and manage code. These tools
help you to develop code efficiently. Table 4-4 lists several source code editors and
IDEs that help you develop Ethereum smart contracts in Solidity.

TABLE 4-3	 Ethereum Compilers and Testing Frameworks
Name Description Where to Get It

Truffle Popular suite of tools to manage smart contract
 development, testing, and deployment

truffleframework.com

Solidity compiler
(solc)

Solidity software includes a command-line
 compiler that can be called from IDEs

github.com/ethereum/solidity

Solidity compile
(solcjs)

Solidity compiler written in JavaScript github.com/ethereum/solc-js

Remix Web-based suite of Ethereum development
tools that includes a Solidity compiler

remix.ethereum.org

Populus Web-based IDE for smart contract development github.com/ethereum/populus

Embark Framework for developing dApps for multiple
blockchains

github.com/embark-framework/
embark

TABLE 4-2	 Ethereum Development and Testing Blockchains
Name Description Where to Get It

Ganache Most popular tool with developers for easily
creating a private network

truffleframework.com/ganache

Truffle A suite of development tools that includes its
own private network

truffleframework.com

Cliquebait Uses docker instances to simulate a real
 blockchain network

github.com/f-o-a-m/cliquebait

Local Ethereum
Network

Easy-to-use scripts to set up private block-
chain networks

github.com/ConsenSys/local_
ethereum_network

CHAPTER 4 Examining the Ethereum Ecosystem and Development Lifecycle 73

Describing the Ethereum
Development Lifecycle

Smart contract development generally follows the same process as the traditional
software development lifecycle, but with a few nuances. The basic steps in the
software development lifecycle are as follows:

» Planning: This phase includes gathering specifications and designing
the solution.

» Coding/development: After planning is complete, developers start writing
code to implement the planned solution.

» Testing: Unit testing should occur throughout the coding phase, but after all
coding is complete, the entire software product undergoes testing to ensure
that all the pieces work together as designed. If testers find flaws, you have to
go back at least to the coding phase, and perhaps even to the planning phase,
to make changes to fix the flaws.

» Deployment: After fixing any remaining flaws, the properly functioning
software is released to the production environment. This phase also includes
maintenance activities, which monitor the software and respond to newly
identified flaws or requests for enhancements.

Although the main phases of the software development lifecycle are the same for
smart contract development, the design of blockchain technology raises a few

TABLE 4-4	 Source Code Editors/IDEs
Name Language Where to Get It

Atom Popular IDE with Solidity extensions atom.io

Visual Studio Code Microsoft’s IDE with Solidity extensions marketplace.visualstudio.com/items?
itemName=JuanBlanco.solidity

Vim Solidity Solidity extensions for Vim (a vi-like editor) github.com/tomlion/vim-solidity

Remix Web-based IDE popular with new Solidity
developers

remix.ethereum.org

EthFiddle Web-based IDE focused on simplicity ethfiddle.com

Superblocks Lab Web-based IDE with many built-in
 blockchain integration features

lab.superblocks.com

Pragma Simple web-based IDE that offers
 auto-generated code segments

www.withpragma.com

74 PART 2 Setting Up Your Ethereum Development Environment

issues. First, remember that the blockchain data is immutable. Also, smart
 contracts are deployed to blocks in the blockchain. After you deploy a smart con-
tract, it can never change. That’s good if you want it to stick around forever, but
it can be bad if you find out later that you deployed a smart contract with a bug.
Figure 4-3 shows the smart contract software development life cycle.

Testing is more important when dealing with blockchain technology because
updating smart contracts is awkward and can be difficult. Each new smart con-
tract deployment gets a new address, so you have to ensure that all references to
the old smart contract are updated to refer to the new smart contract. Also, you
have to be careful about how the updated smart contract handles data. If the
changes you made in the smart contract change how it handles data, you’ll have
to figure out how to deal with the data already in the blockchain. Another issue is
that until you deploy a smart contract, you’ll be testing it on a local, or private,
blockchain. Your test environment may not reflect how the real blockchain
operates.

These are just a few issues you’ll encounter when developing for a blockchain. Pay
attention to the quality of your testing activities. Thorough testing takes time, but
it can save a lot more.

Introducing Smart Contract
Development Tools

In the following chapters, you learn how to set up a development environment
and develop smart contracts by using the Solidity language. As you learned in this
chapter, multiple tools are available for each stage of development. Instead of

FIGURE 4-3:
Smart contract

software
development

lifecycle.

CHAPTER 4 Examining the Ethereum Ecosystem and Development Lifecycle 75

covering all the tools, I chose one from each category so you can focus on learning
Solidity. You can use a different tool if you want — all of the ones listed are good
choices.

Here is what you will use:

» Ethereum blockchain client: You’ll use Geth, which is easy to install. Many
tutorials use Geth as their client.

» Development and testing blockchain: Ganache-cli is the chosen develop-
ment and testing blockchain. Ganache-cli makes it easy to set up new
blockchains to test your smart contracts.

» Compiler and testing framework: I chose the Truffle suite, which provides
an effective and easy-to-use collection of tools for compiling and testing your
new smart contracts.

» Source code editor/integrated development environment (IDE): This
choice was the hardest. From so many good options, I chose the Atom
IDE. For your development, try a few alternative editors/IDEs as well to see
which one is your favorite.

In the next chapter, you learn how to download, install, and configure these tools.
Then you’ll be ready to learn how to develop your own smart contracts.

CHAPTER 5 Getting and Configuring Ethereum Development Tools 77

Chapter 5
Getting and Configuring
Ethereum Development
Tools

The most popular language for developing decentralized applications (dApps)
for the Ethereum blockchain is Solidity. Before you can learn how to develop
dApps in Solidity, however, you need to have all the tools installed and

available. Depending on your needs, you can designate a computer to be your
development workstation, or you can use web-based tools to develop code from
any web browser.

For the examples in this book, I chose to use software that installs locally on a
PC. Installing all these tools will give you the ability to write smart contract soft-
ware, compile it, deploy it to a test environment, test it, and finally deploy it to the
real blockchain.

In this chapter you build your own Ethereum development environment. By the
end of the chapter, you’ll be ready to get started developing your own smart con-
tracts and dApps.

IN THIS CHAPTER

» Describing development tool choices

» Downloading Ethereum development
tools

» Installing Ethereum development
tools

» Setting up your Ethereum
development environment

78 PART 2 Setting Up Your Ethereum Development Environment

Examining Why Multiple Ethereum
Development Tools Are Available

The first thing you might notice when building an Ethereum development envi-
ronment is that you have a lot of choices. Overall, many choices are a good thing,
but they make getting started a little more confusing. Remember that Ethereum is
a complete blockchain environment. Running the blockchain is one thing —
developing code for the blockchain is a bigger endeavor and requires more tools.

The Ethereum Foundation is the Swiss non-profit organization that introduced,
and now promotes and supports, the Ethereum platform. Their website, https://
ethereum.org/, is a treasure trove of great information about all facets of
 Ethereum. Ethereum is an open-source project, which means that the source code
for the Ethereum blockchain environment is available to anyone who wants it.
Ethereum can theoretically run on any computing device.

The runtime environment for Ethereum smart contracts, EVM (Ethereum virtual
machine), is implemented in many different languages. Each implementation
allows Ethereum to run on different platforms, giving anyone setting up a new
node choices in how to run the EVM. For example, if performance is the highest
priority, a C++ implementation might be the best choice. But if the capability to
integrate additional functionality with the EVM is a goal, a JavaScript or Python
implementation might be a better choice.

The open-source community is a worldwide group of users and developers who
contribute to projects in which they have a stake. Ethereum users and developers
often engage in rigorous debates about how to best advance the product. These
debates commonly result in different opinions about the best way to meet goals.
One of the more common debates is over which user interface is better. One school
of thought is that a command-line interface (CLI) is the most flexible and the easiest
to script. This type of user interface tends to work best for lower-level utility-type
tools. On the other hand, an integrated graphical user interface (GUI) is more user
friendly and makes tasks such as software development easier. That’s just one
example of why you may see both CLI and GUI versions of tools.

As a result of diverse people contributing to the community, you’ll find multiple
software products that address the needs of each step in the development process.
Several different test network implementations exist because a group in the
 Ethereum community felt that making it easier to set up a test network would
draw more developers to the Ethereum platform. Others focus on integrated
 testing tools. And others decided to extend their favorite editors and IDEs with
extensions that support Solidity.

CHAPTER 5 Getting and Configuring Ethereum Development Tools 79

As you look at the available options in each tool category, remember that each one
is there because a group of Ethereum enthusiasts saw an opportunity to fill a
 feature gap. Although it may take some time, it can be interesting to read through
the features and benefits of some competing products to see how they differ.

If you want to get involved in the Ethereum community, check out the Ethereum
website at https://ethereum.org/. At the bottom of the home page, you’ll see a
Community section with links to various ways to participate.

The tools you’ll install and configure in this chapter are the ones you’ll frequently
see used by other Ethereum developers. You’ll find lots of online tips, tricks, and
tutorials for Ethereum development using these tools. The environment you build
in this chapter will allow you to work through the examples in this book and learn
from other online resources — without having to start over installing new tools.

Downloading, Installing, and
Configuring All the Pieces

Now that you’re ready to build your Ethereum development environment, let’s
dive right in. You’ll learn how to set up a PC running Microsoft Windows to be an
Ethereum development platform. Windows isn’t the only operating system that
supports Ethereum. You can just as easily set up a macOS or Linux computer to
support Ethereum. If you’re running macOS or Linux, each tool in this chapter will
work on your computer, too, although the installation steps might be a little
 different. Each tool’s website will provide detailed instructions for each operating
system.

Installing the blockchain client
Start by installing an Ethereum client. I chose Go Ethereum (Geth) as the
Ethereum client you’ll use in this book. Geth is written in the Go language and
allows you to run a full Ethereum node. Running a full Ethereum node means
you’ll have access to the complete Ethereum blockchain and also run a local
EVM. Geth gives you the capability to mine ETH, create transactions and smart
contracts, and examine any blocks that already exist on the blockchain. All
remaining tools you’ll install in this chapter will depend on Geth to provide the
local EVM and allow access to the blocks on the blockchain.

80 PART 2 Setting Up Your Ethereum Development Environment

The Geth website provides prepackaged installers for Microsoft Windows, macOS,
and Linux operating systems. You can also download the Geth source code and
build it for your own custom environment. If you’re interested in playing around
with devices other than just computers, you can conduct an Internet search and
easily find instructions on setting up Geth on smartphones or a Raspberry Pi.
That’s the beauty of using open-source tools.

Start by downloading and installing Geth, as follows:

1. Launch your browser and navigate to https://ethereum.github.io/
go-ethereum, and then click or tap the Downloads link at the top of
the page.

Your web browser will look like Figure 5-1.

2. Click or tap the Geth button for your operating system.

Because I’m setting up a Microsoft Windows computer in this tutorial, I selected
Geth 1.8.18 for Windows. (When you set up your computer, a newer version of
Geth might be available. You should download and install the latest version of
each tool.)

3. Launch the executable file you just downloaded.

4. Click or tap I Agree to the GNU General Public License.

Always read any license agreement before agreeing to its contents.

5. Select the Development Tools check box, and then click or tap the Next
button.

Make sure that you choose to install the development tools in this window before
continuing. Figure 5-2 shows what the Installation Options window will look like.

FIGURE 5-1:
The Go Ethereum
(Geth) Download

web page.

CHAPTER 5 Getting and Configuring Ethereum Development Tools 81

6. If you want to install Geth to a different folder than the one that’s
displayed, change it to your desired destination folder.

7. Click or tap the Install button to start the installation process.

8. When the installation finishes, click or tap the Close button.

After you’ve installed Geth, you can launch it to start the EVM and synchronize
with the public Ethereum blockchain.

You learn about a few other Geth startup options in Chapter 7, but the only option
you need for now is syncmode, which tells Geth how much of the blockchain to
download. The syncmode option has the following three values. Note that you’ll
be using the light value for the syncmode option:

» full: Download and validate the entire blockchain. This option requires the
most time and disk space but can provide the fastest response because a full
node doesn’t ever have to request missing blocks from other nodes.

» fast: Download and validate the block headers and data for the most recent
1000 transactions. This option is a good choice when you want to conserve
some disk space but also want to store the most recent blocks locally.

» light: Download only the blockchain current state and request any missing
blocks from other nodes as needed. This option allows you to operate
Ethereum with minimal disk space requirements.

For the exercise in this book, you’ll use the light syncmode option for Geth. To
start Geth in light mode, follow these steps:

1. Launch a command prompt or PowerShell prompt.

To launch a command prompt, type cmd in the search bar at the lower-left
corner of your desktop and then click or tap the Command Prompt option.

FIGURE 5-2:
Geth Setup:
Installation

Options window.

82 PART 2 Setting Up Your Ethereum Development Environment

To launch a PowerShell prompt, type PowerShell in the search bar and click
or tap the PowerShell option.

2. Change the current working directory to the Geth install directory.

If you installed Geth to the default location, type the following and then press
Enter:

cd 'C:\Program Files\Geth\'

3. Type the following, and then press Enter:

.\geth --syncmode "light"

This command launches Geth in light mode. Make sure that you type two
dashes before syncmode. Figure 5-3 shows the Geth command to start a light
Ethereum node.

A Geth starts, it establishes a connection with the Ethereum network and begins
synchronizing the current blockchain. Geth provides messages at each stage of its
startup process to let you see what is happening. Figure 5-4 shows what the Geth
messages looks like.

FIGURE 5-3:
Geth light

node startup
command.

FIGURE 5-4:
Geth runtime

messages.

CHAPTER 5 Getting and Configuring Ethereum Development Tools 83

After Geth synchronizes the blockchain, you’re ready to use the Geth blockchain
client to develop and deploy your own dApps.

Installing the test blockchain
When you develop smart contracts and dApps, you don’t want to deploy your code
or data to the live blockchain until you’re sure that everything works correctly.
You have to test your code in some non-live environment. You’ll need a block-
chain to use during the development and testing process. Ethereum clients, Geth
included, connect to the main public Ethereum blockchain by default, but you can
connect to other blockchains as well. You can change the connection settings eas-
ily for development and testing.

Several tools make it easy to create and manage test blockchains. I chose Ganache
for our test blockchain environment. According to the Ganache website (https://
truffleframework.com/ganache), “Ganache is a personal blockchain for Ethe-
reum development you can use to deploy contracts, develop your applications, and
run tests.”

You aren’t limited to the prebuilt Ganache images. Because Ganache is an open-
source product, you can also download the Ganache source code and build it for
your own custom environment.

To download and install Ganache, follow these steps:

1. Launch your browser and navigate to https://truffleframework.com/
ganache.

Your web browser will look like Figure 5-5. Click or tap the Download
(Windows) button to download the Windows installer.

FIGURE 5-5:
The Ganache

Download
web page.

84 PART 2 Setting Up Your Ethereum Development Environment

2. Launch the executable file you just downloaded.

Click or tap the Install button to start the installation process. By default,
Ganache launches when the installation finishes.

3. Accept the default, as shown in Figure 5-6, or click or tap the Analytics
Enabled toggle box to disable Analytics, and then click or tap the
Continue button.

Because this is the first time you’re launching Ganache, you are asked to allow
Google Analytics tracking. You don’t have to do this, but allowing analytics helps
the Ganache development team learn how different people use Ganache.

When Ganache launches, you’ll see the main window with basic server informa-
tion and a list of accounts,. as shown in Figure 5-7. Because the reason to install
Ganache is to create your own blockchain, you’ll need at least one account to
access the blockchain. Ganache creates 10 accounts for you, each with a balance of
100.0 ETH. You can create more accounts and give them all the ETH they need to
test your smart contracts and dApps. Figure 5-7 shows the main Ganache Accounts
window.

That’s all it takes to create your own Ethereum blockchain in Ganache. Of course,
this blockchain is local to your own computer and isn’t distributed to any other
nodes. Because there aren’t any other nodes on this network, there aren’t any
miners. This blockchain is set to automining, which means that any new transac-
tions are processed immediately. That setting makes it easy to test your smart
contracts and dApps without having to pay miners to process your transactions.

FIGURE 5-6:
Support Ganache
Analytics window.

CHAPTER 5 Getting and Configuring Ethereum Development Tools 85

When you’re ready to start developing software for Ethereum, you’ll need to tell
your client and other tools which blockchain to use. Let’s see where your new
Ganache blockchain is located. In Ganache, click or tap the settings (gear) icon in
the upper-right corner to launch the Ganache Settings window. Figure 5-8
 displays the Server tab of the Ganache Settings window.

FIGURE 5-7:
Ganache

Accounts window.

FIGURE 5-8:
Ganache Settings

window’s
Server tab.

86 PART 2 Setting Up Your Ethereum Development Environment

You can see where other tools can find your blockchain. The Hostname, Port
Number, and Network ID values show you what you need any time you want
another tool to use this blockchain. You don’t need these values quite yet, but now
you know where to find them.

Also note the Automine setting, which is enabled by default. Before you deploy
your software to a live blockchain, you can disable this setting and enter a number
of seconds to delay between new blocks being added to the blockchain. Manually
specifying a delay between block creations helps to simulate the effect of miners
that you’ll encounter in a live blockchain. Testing will be more complex but also
more realistic. In Chapter 10, you learn more about carrying out comprehensive
testing.

Before you leave the Settings window, look at the settings on the other tabs
(Accounts & Keys, Chain, Advanced, and About). The Ganache Quickstart guide
has details on these settings at https://truffleframework.com/docs/ganache/
quickstart.

Installing the testing environment
The software development process is made up of multiple steps. In Chapter 4, you
learn about the four main phases of the Ethereum software development lifecycle.
Although the lifecycle has only four phases, many different tasks need to be
accomplished. In addition to just writing source code, you have to compile your
code, deploy it to a test environment, test the code, and measure how well the
code performs against your specifications. Then you need to fix any flaws and
repeat the testing process until you’re satisfied with the code’s operation.

After you complete testing, you need to transition your software from a test envi-
ronment to a live environment. For this transition, you need to submit your smart
contracts to a live blockchain and place any other code where your clients can
access it. All tasks related to testing and deployment should be repeatable and as
automated as possible. A comprehensive testing framework helps to standardize
these tasks and make the entire development process more manageable.

I chose Truffle as the testing environment you’ll use for the examples in this book.
You may have noticed that the test Ethereum network, Ganache, is part of the
Truffle Suite. One of the reasons we chose both Truffle and Ganache is due to the
easy integration of these tools. In the rest of this section you’ll learn how to install
Truffle.

CHAPTER 5 Getting and Configuring Ethereum Development Tools 87

Getting ready to install Truffle
Before you can install Truffle, you have to ensure that your computer meets the
prerequisite. Open your browser and navigate to https://truffleframework.
com/docs/truffle/getting-started/installation to see the Truffle installa-
tion requirements, which are shown in Figure 5-9.

The main requirement for Truffle is to have NodeJS version 5.0 or higher installed.
NodeJS is an open-source project that provides a runtime environment for code
written in JavaScript. JavaScript was originally designed to run in web browsers,
but NodeJS makes it easy to run JavaScript code outside a browser.

It’s easy to find out whether NodeJS is installed. Open a command shell or
 PowerShell window, type the node command, and press Enter. You’ll get a simple
> prompt or an error message telling you that NodeJS is not installed. Figure 5-10
shows the error message you’ll see in Windows PowerShell if you don’t have
NodeJS installed.

FIGURE 5-9:
Truffle

 installation
requirements.

FIGURE 5-10:
Error message in
PowerShell when

NodeJS isn’t
installed.

88 PART 2 Setting Up Your Ethereum Development Environment

If you do have NodeJS installed, skip to the next section, “Downloading and
installing Truffle.” If you don’t have NodeJS installed, follow these steps to down-
load and install it:

1. Launch your browser and navigate to https://nodejs.org/en/.

Your web browser will look like Figure 5-11. The NodeJS website detects your
operating system and suggests the versions for that operating system.
Because I’m using Microsoft Windows, I saw download links for Windows.

2. Click or tap the button for the version you want to install to download
the Windows installer.

You can download the latest version or the latest stable (long term support, or
LTS) version. I chose the LTS version for the examples in this book. (When you
set up your computer, a newer version of NodeJS might be available. You
should download and install the latest version of each available tool.)

If you want to install NodeJS on a computer that isn’t running Microsoft
Windows or want to build your own version of NodeJS, click or tap the Other
Downloads link. This link takes you to a page with options to download source
code or installer packages for multiple operating systems.

3. Launch the executable file you just downloaded.

Click or tap the Next button to start the installation process.

4. Read the End-User License Agreement, accept it, and then click or tap
Next.

FIGURE 5-11:
The NodeJS

Download
web page.

CHAPTER 5 Getting and Configuring Ethereum Development Tools 89

5. Select NodeJS installation options in the next three windows.

Enter the install destination (or accept the default), and then click or tap Next.
In the Custom Setup window that appears, click or tap Next to accept the
defaults. In the next window, click or tap the Automatically Install the
Necessary Tools option and then click or tap Next.

6. To install NodeJS, click or tap Install.

7. To complete the NodeJS part of the installation process, click or tap
Finish.

8. Install the NodeJS tools.

Press any key in the next two windows to run the scripts to install the supple-
mental NodeJS tools.

You can verify that NodeJS is installed with a simple command. Open a command
shell or PowerShell window, type the following command, and press Enter:

node --version

This time when you enter the node command, you should see a message showing
you the installed NodeJS version. Figure 5-12 shows the version message in
 Windows PowerShell.

After you have NodeJS installed, you’re ready to install Truffle.

Downloading and installing Truffle
The NodeJS environment makes it easy to find and download new packages,
including Truffle. The Truffle installation process requires you to enter just a sin-
gle command.

To install Truffle, open a command shell or PowerShell window, type the follow-
ing command, and press Enter:

npm install -g truffle

FIGURE 5-12:
The NodeJS

version message.

90 PART 2 Setting Up Your Ethereum Development Environment

Figure 5-13 shows what this command and the results. Truffle is installed and
almost ready to be used.

Truffle organizes development activities into projects. That way you can work
on multiple projects with different configuration requirements. For example, you
could set up a different testing blockchain for each of several projects. In
Chapter 7, you learn more about configuring projects. Here, let’s look at the basics
of setting up a project in Truffle.

Each Truffle project needs its own folder. The first thing you need to do to set up
a Truffle project is to create a project folder. If you’d rather download the project
files instead of creating a new empty project, go to www.dummies.com/go/
ethereumfd and extract the project archive file to a directory of your choice. To
create a new empty project named myProject, for example, open a command shell
or PowerShell window type the following command, and press Enter:

mkdir myProject

Make the new project folder your current directory by typing the following com-
mand and pressing Enter:

cd myProject

Then, to initialize your new Truffle project, enter this command and then press
Enter:

truffle init

Figure 5-14 shows these commands to initialize a new Truffle project.

That’s it! You now have a new Truffle project named myProject. That’s all you’ll
do at this point. You can use File Explorer or the dir command to look at the
myProject folder to see the files and new folders that Truffle created. You learn
more about how Truffle uses these to define projects when you start writing your
own smart contracts. But for now, you’re ready to install the last tool to complete
your Ethereum development environment.

FIGURE 5-13:
Installing Truffle.

CHAPTER 5 Getting and Configuring Ethereum Development Tools 91

Installing the IDE
Now that all foundational pieces are in place, you’re just about ready to start
 writing code. The most visible part of software development is writing the source
code. Many developers consider writing code to be the first “productive” step in
the software development process, but that is far from the truth. Before you start
writing any code, you should carefully and completely plan and design your
application.

You’ll save yourself far more time in the development process by taking the
time up front to plan. Planning will reduce the number of times you’ll have to
rework your code when what you write the first time doesn’t do everything that
you need it to.

After you have a thorough plan and know what code you need to write to meet all
your application’s goals, you’re ready to start writing the source code that will
become your final application. Although you can use any text editor to write code
in Solidity, many tools are available to make your development activities easier.
An integrated development environment (IDE) is like a super editor. IDEs enable
you to create and edit code as well as provide many supporting features, such as
automatic code completion and syntax help, as you type. A good IDE can save you
lots of time and help you write better code.

FIGURE 5-14:
Initializing a new

Truffle project.

92 PART 2 Setting Up Your Ethereum Development Environment

Use an editor or IDE that you find comfortable. Try out several options before you
settle on the tool you’ll use.

For the exercise in this book, you use Microsoft Visual Studio Code IDE to write
source code. To download and install Visual Studio Code, follow these steps:

1. Launch your browser and navigate to https://code.visualstudio.com/.

Your web browser will look like Figure 5-15.

2. Click or tap the Download for Windows button.

If you want to install Visual Studio Code on a computer that isn’t running
Microsoft Windows, click or tap the down arrow next to the Download for
Windows button. You’ll see a list of links to download a Visual Studio Code
installable file for macOS, Windows, or Linux.

3. Launch the executable file you just downloaded by clicking the Next
button on the Setup — Visual Studio Code window.

4. Read and accept the License Agreement, and then click or tap Next.

5. Select Visual Studio Code installation options in the next three windows.

Enter the install destination (or accept the default), and then click or tap Next.
In the Select Start Menu Folder window, click or tap Next to accept the defaults.
In the next window, if you want to place a shortcut to Visual Studio Code on
your desktop, click or tap the Create a Desktop Icon option. Then click or
tap Next.

FIGURE 5-15:
Microsoft Visual

Studio Code
download
web page.

CHAPTER 5 Getting and Configuring Ethereum Development Tools 93

6. To install Visual Studio code, review your install options (see Figure 5-16)
and then click or tap Install.

Your settings should look similar to the ones in Figure 5-16, with the exception
of the destination location.

7. When Visual Studio Code finishes installing, click or tap Finish to com-
plete the installation process and launch the Visual Studio Code IDE.

Visual Studio (VS) Code IDE is now installed. Figure 5-17 shows the default Visual
Studio Code tabletop and Welcome window. The welcome window contains lots of
helpful information for getting started using the VS Code IDE.

FIGURE 5-16:
Visual Studio

Code install
options window.

FIGURE 5-17:
Visual Studio

Code IDE
desktop.

94 PART 2 Setting Up Your Ethereum Development Environment

If you close the Welcome window, you can always open it again from the Help
menu. It’s the top option in the Help menu.

You have one more step to complete the installation of your Ethereum develop-
ment environment. To get the benefit of VS Code’s syntax highlighting, code
 completion, and other features, you need to add an extension so that VS Code
understands Solidity. The easiest way to add any extension to VS Code is right
from the IDE.

Click or tap the Extensions (square image) icon on the left border of the VS Code
tabletop. In the Search Extensions in Marketplace text box, type Solidity. A list of
extensions that match your search term appears. Find the extension with the title
“Ethereum Solidity Language for Visual Studio Code by Juan Blanco” and click or
tap the green Install button for that extension. When you successfully install the
Solidity extension, your VS Code window will look like Figure 5-18.

Congratulations! You’ve successfully built an Ethereum Solidity application devel-
opment environment. In Chapter 6, you learn how to set up and manage Ethereum
accounts. Then you’ll be ready to start learning how to write your own smart
contracts and dApps for the Ethereum blockchain.

FIGURE 5-18:
Visual Studio

Code IDE with
the Solidity
extension.

Chapter 6
Establishing an
Ethereum Wallet

When most people think of wallets, they think of folded leather cases for
storing money, credit cards, identification, and even pictures. An
Ethereum wallet is pretty much the same thing, except it stores the ways

to access your valuable stuff on the Ethereum blockchain and can be either a
physical or a virtual item.

In the blockchain world, you have to present private keys to access virtual
currency and data. An Ethereum wallet holds the keys that allows you to access
your content on the Ethereum blockchain. Simply put, an Ethereum wallet securely
stores your private encryption keys.

Regardless what you’re planning to do with Ethereum, you need a way to find and
access data in blocks. That’s where a wallet comes in. It stores your private keys,
which allow you to buy and sell crypto-assets and to interact with smart con-
tracts. Without a wallet, you wouldn’t be able do anything other than just look at
Ethereum blockchain blocks.

In this chapter, you discover the different types of Ethereum wallets and look at
popular wallet options so you can select the best wallet for your needs.

IN THIS CHAPTER

» Learning what an Ethereum wallet is

» Comparing Ethereum wallets

» Choosing the best type of Ethereum
wallet

» Installing the MetaMask Ethereum
wallet

CHAPTER 6 Establishing an Ethereum Wallet 95

96 PART 2 Setting Up Your Ethereum Development Environment

Unlocking the Secrets of
an Ethereum Wallet

Everything stored in an Ethereum block has an address so that the owner can find
and access their data in blocks. Data stored in Ethereum blocks can be crypto-
assets, such as ether or other tokens, smart contracts, or any other data. The
address of the data identifies the owner of that data. And when it comes to crypto-
assets, only the owner can access that data. Well, anyone could access encrypted
data, but only the owner can decrypt the data and consume the asset. For more on
crypto-assets, see Chapters 3 and 4.

The person who controls the private key used to encrypt data on the blockchain
controls the data. The only way that you can claim any crypto-asset is to prove
that you control the private key associated with a crypto-asset’s address.

You learn about hashes, keys, and Ethereum’s Keccak-256 algorithm in Chapter 2.
Addresses in Ethereum are the last (rightmost) 20 bytes of the hash of the owner’s
public key. To calculate an address, just calculate the Keccak-256 hash of a public
key, and then copy the rightmost 20 bytes. The resulting value is the address for
that account’s public key. The code to calculate an address from a public key looks
like this:

addr = right(keccak256(pubkey),20)

The only way to protect your crypto-assets is to protect your private keys. You
need some mechanism to store your private key so that you can get to it, but no
one else can. The primary function of a wallet is as a place to store one or more
private keys used to access blockchain data.

The perfect wallet makes it really easy for you to get to your keys and impossible
for anyone else to access your keys. All wallets balance these two goals and strike
some compromise between utility (how easy it is to access your keys) and security
(how safe your keys are from attack).

Examining the Types of Ethereum Wallets
Private keys can be stored in several ways, ranging from very secure to very easy
to access. You should consider how important your private keys are and select a
wallet type that works for you. The main categories of wallets follow:

» Software wallets store private keys in data files, where users can easily
access them.

» Hardware wallet store private keys on a physical chip stored inside a device,
such as a Ledger Nano S.

» Paper wallets are pieces of paper with the keys printed on them.

Sorting out software wallets
Software wallets are programs that store private keys and make it easy for users to
retrieve and use those keys. After setting up your wallet, you can access your keys
by providing a user ID and password or an encrypted file that only you have. Soft-
ware wallets can be further divided into two main categories: hot wallets and cold
wallets.

Hot wallet
A hot wallet is one that stores your keys online. You can easily access your keys,
and your Ethereum assets, from anywhere in the world. All you need is an Internet
connection and access credentials. Although hot wallets are convenient, that con-
venience comes at a cost. If someone steals your access credentials, he or she can
steal your Ethereum assets.

Also, you have to trust the wallet organization that stores your keys. If your wallet
organization is hacked or goes out of business, you could lose everything. If that
organization is a target of an investigation, your information could be divulged or
your Ethereum assets could be frozen. You give up control to get convenience.

Cold wallet
A cold wallet is one in which you store your keys offline. You need to provide your
keys only when you want to access your Ethereum assets. You can store keys
offline in multiple ways, but this approach requires a few extra steps when you
want to buy or sell crypto-assets or interact with smart contracts.

Although cold wallets are a little less convenient, they can be more secure. You
have control over your keys with a cold wallet and can take whatever precautions
you feel are necessary to protect your keys. Using a cold wallet gives you an alter-
native and mitigates the threat of an attacker hacking into your online wallet and
harvesting lots of keys.

CHAPTER 6 Establishing an Ethereum Wallet 97

98 PART 2 Setting Up Your Ethereum Development Environment

With a cold wallet, you’re responsible for protecting your keys. You have to make
sure that every place you store your keys is as secure as possible. If you have a lot
of value stored on the Ethereum blockchain, make sure that your key storage
 locations are as secure as possible and can’t be accessed by anyone but you.

Choosing between hot and cold wallets
How do you decide whether to use a hot wallet or a cold wallet? If you want more
convenience and trust the security of an online wallet vendor, a hot wallet might
be the best choice. Also, if you don’t plan to store anything of great value using a
specific Ethereum account, a hot wallet is easiest and may make the most sense
for that account.

On the other hand, if you distrust online vendors and are comfortable taking
responsibility for securing your key storage, a cold wallet will give you more con-
trol. Or if you plan to store assets with substantial value, you should take respon-
sibility for protecting your own stuff. You will have to sacrifice some convenience,
but losing all your cryptocurrency is inconvenient itself.

Types of wallet client software
After you decide to store your keys in a hot or cold wallet, your next choice is the
type(s) of wallet client software. If you choose an Ethereum software wallet to
store your keys, you need to run that software somewhere. You have several
choices:

» Web wallets: Wallet software that you access by using a web browser.

» Desktop wallets: Software that runs on a desktop or laptop computer. In
most cases, desktop wallets run on computers running Microsoft Windows,
macOS, or Linux.

» Mobile wallets: Ethereum wallets for mobile devices. The most common
wallet software runs on the iOS and Android operating systems for smart-
phones and tablets.

You don’t have to choose just one type of Ethereum wallet. You can use multiple
wallets, depending on your needs. Keys for high-value crypto-assets need to be
protected more carefully, whereas keys for low-value crypto-assets could be
stored online for easier access.

Handling hardware wallets
An Ethereum wallet option that is more secure than most software wallets is a
hardware wallet. A hardware wallet stores private keys on a physical chip. You can
connect the device housing the chip to many different types of computers and
mobile devices, thus providing multiple ways to access the keys. Most hardware
wallets also provide physical buttons to manage access to your keys.

The advantage of a physical wallet is the increased security. You connect your
device to a computer only when you want to access your blockchain assets. When
the device is not connected, your keys are safe inside the physical device. An
attacker would have to physically steal your wallet device and know your access
credentials to get to your keys.

The disadvantage of a physical wallet is the loss of convenience and redundancy.
You must attach your physical wallet to a computer or device every time you want
to access your blockchain assets. If you access assets frequently, this process could
become annoying. Also, if you lose your physical device, you may not ever be able
to recover access to your blockchain assets. For that reason, many physical wallet
users make at least one backup copy of their keys and take extra care to store the
copies in a secure location.

Perusing paper wallets
The last type of wallet can be the most secure. As the name implies, a paper wallet
is literally just a piece of paper. After creating an Ethereum account and generating
keys, one way of storing those keys is by simply printing them on paper. Most key
generation options give you the choice of printing your keys. If you choose that
option, you’ll get a hard copy of the private and public keys, along with a QR code
of each key. Figure 6-1 shows a paper wallet.

FIGURE 6-1:
A paper

Ethereum wallet.

CHAPTER 6 Establishing an Ethereum Wallet 99

100 PART 2 Setting Up Your Ethereum Development Environment

Whenever you want to access your blockchain assets, such as to buy or sell Ether,
you can either type in your private key or scan the QR code. Of course, the software
that you’re using to access Ethereum has to support QR scanning.

Paper wallets are secure only if you keep your paper secret. Carefully guard that
piece of paper. Anyone who can grab the paper, or even take a picture of it, can
steal all of your Ethereum assets. And, just like with hardware wallets, it’s a good
idea to make a backup copy and keep it in a secure location.

Choosing an Ethereum Wallet
You have many choices for Ethereum wallets, and in this section, you learn about
the most popular types. You can use this information to decide which wallet will
best fit your needs.

If, after reading this section, you aren’t sure which one is the best wallet, don’t
worry — choose the one that looks good and start using it. If you decide later to
change to another wallet, the process is easy. And no rule dictates that you can’t
have multiple Ethereum wallets. (It’s not like cramming multiple wallets into
your back pocket!)

Software wallets
As mentioned, software wallets are simply programs that generate, store, and
manage your keys Your options are web wallets, desktop wallets, and mobile wal-
lets. The two primary differences among software wallet options are where they
run and where they store your keys.

Web wallets
Web wallets are popular for casual Ethereum use. They are easy to use and make
access to your keys convenient. To open your wallet, you need only an Internet
connection, a web browser, and your login credentials. Table 6-1 lists popular web
wallets.

Desktop wallets
Desktop wallets are software programs that run on a personal computer. Most
desktop wallets store keys locally, so you need to have access to your computer to
open your wallet. Table 6-2 lists popular desktop wallets.

TABLE 6-1	 Popular Web Wallets
Name Description Pros Cons

MyEtherWallet, www.
myetherwallet.com

Open-source, decentralized
cold wallet. You locally
 control your keys.

Most popular Ethereum
web wallet. Works well
with hardware wallets.

Has been hacked and
may be vulnerable to
phishing attacks.

Coinbase, www.
coinbase.com

Popular cryptocurrency
exchange that provides a
hot wallet as well.

Provides more than just
wallet services. Long
 history handling
cryptocurrency.

Limited tokens and
coins supported. Keys
stored online.

Guarda, https://
guarda.co

Cold wallet that supports
multiple cryptocurrencies
and makes it easy to
transfer funds between
cryptocurrencies. Also
offers a desktop wallet.

One of the first to
support multiple types
of coins and tokens.
Doesn’t store personal
info.

User must manage
local key storage.

TABLE 6-2	 Popular Desktop Wallets
Name Description Pros Cons

Exodus, www.exodus.io First to offer multiple
cryptocurrencies in a single
wallet. Cold wallet with easy
key backup and restore
operations.

Visually appealing
and informative,
easy-to-use interface.

Source code is
not open source.

Mist, https://sourceforge.
net/projects/ethereum-
wallet.mirror

Cold wallet and the official
Ethereum wallet, developed
by those who created
Ethereum.

Created by the
Ethereum
Foundation, officially
endorsed wallet.

Less user friendly
than other
wallets.

MetaMask, https://
metamask.io/

Cold wallet running as a
Firefox or Chrome
extension. Supports easy
switching between test and
live Ethereum networks.

Partially funded by
the Ethereum
Foundation, easy to
use in Chrome. Easy
to switch between
test and live
networks.

Released only as
a Chrome
extension,
making it
possible for
other websites to
see that you have
a wallet installed.

CHAPTER 6 Establishing an Ethereum Wallet 101

102 PART 2 Setting Up Your Ethereum Development Environment

Mobile wallets
Mobile wallets are similar to desktop wallets, but the software runs on mobile
devices. Your keys are commonly stored on the mobile device as well. A mobile
wallet is a good option if you always want your keys with you. The drawback is
that if you lose your mobile device, you could lose access to your Ethereum
assets. (That’s why backups are always good.) Table 6-3 lists popular mobile
wallets.

Hardware wallets
Hardware wallets provide an extra layer of security for your keys because they are
stored on a physical chip inside the device. Most hardware wallets are USB devices.
You access your keys by attaching the wallet device to a computer or a mobile
device, and then running some software to access the keys. Depending on the
device, the software could be web based or running locally on the computer or
mobile device. Several software wallets provide the option to integrate with
 hardware wallets to make key storage even more secure.

Storing your keys on your own device means that you have to take measures
to secure the device. Always be aware of the device’s location and always have
a backup in case the device goes missing. Table 6-4 lists popular hardware
wallets.

TABLE 6-3	 Popular Mobile Wallets
Name Description Pros Cons

Jaxx, https://
jaxx.io/

Cold wallet available on
mobile devices and desktops
(Windows, macOS, Linux).

Multi-platform support.
Stores keys on specified
device.

Code is not open source.
Limited number of coins
and tokens supported.

Coinomi, www.
coinomi.com

Cold wallet for multiple
 cryptocurrencies currently
available for only Android
mobile devices.

Runs on Android, iOS,
and desktops. Extensive
list of supported coins
and tokens. Focus on
privacy.

Code is not open source.

Bread (BRD),
https://
brd.com/

Cold wallet for multiple
 cryptocurrencies that runs
on iOS and Android mobile
devices.

No central server. Easy
to use and fast. Code
is open source.

Limited number of
 supported coins and
tokens. No two-factor
authentication.

Paper wallets
A paper wallet is the simplest type of wallet. After you create an account and gen-
erate your keys, you simply print the keys on a plain piece of paper. Your keys
exist only on the paper you used to print them; you don’t store them using soft-
ware or on a hardware device.

The advantage to a paper wallet is that you have supreme control over your keys
and no one else can touch them. That’s the biggest drawback, too. You have to take
extra precautions to securely store a backup copy in case something happens to
your piece of paper. Table 6-5 lists popular paper wallets.

TABLE 6-4	 Popular Hardware Wallets
Name Description Pros Cons

Ledger Nano S, www.
ledger.com/products/
ledger-nano-s

Secure physical device
that supports multiple
cryptocurrencies and
uses two-factor
authentication.

Small. Most popular
 hardware wallet.
 Hardware designed
for security. Supports
over 700 types of coins
and tokens.

Cost ($59). Requires
client software to
control crypto-assets.

Trezor, https://
trezor.io/

Secure physical device
that supports multiple
cryptocurrencies and
uses two-factor
authentication.

Established reputation.
Physical buttons or
 touchscreen. Supports
nearly 700 types of
coins and tokens.

Cost ($49). Requires a
web wallet to control
some stored
crypto-assets.

KeepKey, www.
keepkey.com

Similar to the Ledger
Nano S and Trezor
 features, but with a
slightly larger screen.

Firmware is open
source. Designed
to meet current
 blockchain
requirements.

Cost ($49). Relative
newcomer. Limited
 number of supported
coins and token types.
Requires Chrome
add-in.

TABLE 6-5	 Popular Hardware Wallets
Name Description Pros Cons

ETHAddress, https://
github.com/ryepdx/
ethaddress.org

Open-source project with source
code you can compile and run on
your own computer to generate
private and public keys.

Open-source code.
Useful for creating
multiple accounts
and keys.

No easy to use
interface. Must
download and run
code or use
Chrome add-in.

MyEtherWallet, www.
myetherwallet.com

Provides the option to print your
keys instead of storing them. The
easiest way to create your own
paper wallet.

Easy-to-use web
interface for creating
accounts and keys.

You must protect
generated keys.

CHAPTER 6 Establishing an Ethereum Wallet 103

104 PART 2 Setting Up Your Ethereum Development Environment

Installing MetaMask, an Ethereum Wallet
The preceding section shows you lots of options for Ethereum wallets. In this sec-
tion, I show you how to set up a MetaMask wallet. You could use any other option,
but MetaMask is a popular wallet that provides some nice ease-of-use options for
developing blockchain apps.

MetaMask is a desktop wallet that runs as an extension to the Chrome, Firefox,
Opera, or Brave web browsers. For these installation steps, I use the Chrome
browser.

To install MetaMask, follow these steps:

1. Launch your browser and navigate to https://metamask.io/.

Your web browser will look like Figure 6-2.

2. On the MetaMask page, click or tap Get Chrome Extension.

If you’re using another browser, select the link to get MetaMask for your
browser.

3. Click or tap the Add to Chrome button and confirm your choice.

4. After MetaMask installs, click or tap the MetaMask icon, and accept the
license agreements.

The MetaMask icon is the fox in the upper-right corner of your web browser

FIGURE 6-2:
The MetaMask

website.

5. In the MetaMask Create Account window, shown in Figure 6-3, enter a
secure password. Click or tap Create.

A screen appears where you can choose from several networks.

6. From the network drop-down list, select Ropsten Test Network.

MetaMask makes it easy to interact with both test networks to develop and
test your apps, and live networks when you’re ready to deploy. Figure 6-4 show
a list of the networks MetaMask supports.

You’ve installed the MetaMask Ethereum wallet. MetaMask automatically creates
an account named Account 1. You can see the private key and QR code for your new
account by clicking or tapping the menu icon and then the Show QR Code option.

You can’t do very much with your wallet just yet, but in Chapter 7 you find out
how to add ether to your account to fuel your blockchain activities.

FIGURE 6-3:
The MetaMask

Create Account
window.

CHAPTER 6 Establishing an Ethereum Wallet 105

106 PART 2 Setting Up Your Ethereum Development Environment

FIGURE 6-4:
The MetaMask

list of supported
networks.

3Building
Ethereum
Distributed
Blockchain Apps

IN THIS PART . . .

Build a simple smart contract in Solidity.

Dig into the Solidity language.

Develop smart contracts that solve problems.

CHAPTER 7 Building Your First Ethereum Apps 109

Chapter 7
Building Your First
Ethereum Apps

The best way to learn how to write apps for the Ethereum blockchain is to
start writing them. You can read about all the components and language
syntax, but until you write some code, it won’t sink in. You’ve already gone

through the steps to set up your development environment, so why not start
using it?

Don’t worry about writing code before you know what you’re doing — you start
with small, simple Solidity apps. And you learn about syntax and process as you
need it. The typos you enter and other issues you encounter will help you learn
faster.

The code you’ll write in this chapter is really simple. That’s okay. You’re going
to learn how to write code in Solidity, and you’re going to start from the very
beginning. Whether you’re new to programming or you already know several
other programming languages, the exercises in this chapter will ensure that
you have a working development environment and know how to write basic
Solidity code.

IN THIS CHAPTER

» Exploring your development
environment

» Coding in Solidity

» Writing smart contracts

» Using blockchain data

110 PART 3 Building Ethereum Distributed Blockchain Apps

Validating Your Ethereum
Development Environment

When you installed the development environment components in Chapter 5, you
installed each piece to operate separately. The Geth Ethereum client connects to
the live Ethereum network by default. However, we don’t want to use the live
Ethereum network for app development and testing. For now, you won’t need to
launch Geth. You’ll use Ganache to provide the blockchain for development and
testing. You looked at the settings page when you installed Ganache to view your
blockchain’s host name, port number, and network ID. But you didn’t do anything
with that information — until now.

Truffle is the framework you’ll use to develop and test your Solidity code. Before
you can start writing code, you need to configure Truffle to use the Ganache
blockchain. You do that by editing the Truffle configuration file.

Creating a Truffle project
Truffle organizes software activities into projects, and stores project files in
 directories. If you did not create a project in Chapter 5, follow the instructions in
the section on installing and downloading Truffle. (If you’d rather download the
project files, go to www.dummies.com/go/ethereumfd.) After initializing the new
project, type dir to see a list of files and directories Truffle created. Figure 7-1
shows a newly initiated Truffle project.

Depending on the version of Truffle you’re running, you may have two files in the
project directory: truffle.js and truffle-config.js. If you open these two files, you’ll
see that their contents are the same. You should always use the configuration file
named truffle-config.js. To keep things simple, if your version of Truffle created
the file truffle.js, just delete it.

You’ll be editing the file named truffle-config.js to configure Truffle to use the
Ganache blockchain.

Because Truffle runs in Windows, macOS, and Linux, it has to handle subtle dif-
ferences between the environments. The Windows operating system looks at a file
with the js extension as an executable file. That means when you type the truffle
command, Windows will find the local truffle.js file and try to execute it. That’s
why Truffle started including the truffle-config.js file as its default configuration
file. Older versions of Truffle still use truffle.js as a default configuration file-
name, but I recommend that you not use it. Always use truffle-config.js or your
own custom filename to avoid conflicts when you try to run Truffle in Windows.

Editing the Truffle config file
You have to edit the Truffle config file to tell Truffle to use the Ganache block-
chain. Follow these steps to hook up Truffle and Ganache:

1. Get the blockchain address from the Ganache settings window.

Launch Ganache, and then click or tap the Settings (gear) icon in the upper-
right corner of the Ganache window. Note the hostname, port number, and
network ID values. Figure 7-2 shows the Ganache settings window with default
values. (You can get the host name and port number also from the main
window.) The RPC SERVER value shows the host name and port number
separated by a colon.

2. Launch Visual Studio Code (VS Code) for your project.

Open a Windows Command prompt or PowerShell (my favorite) and navigate
to your project directory (myProject.) From here, type the following and then
press Enter:

code .

The code command launches VS Code, and the period tells VS Code to use the
current directory as the current project. Figure 7-3 shows what your VS Code
window will look like when you launch it in your myProject directory.

FIGURE 7-1:
Initiating a Truffle

project.

CHAPTER 7 Building Your First Ethereum Apps 111

112 PART 3 Building Ethereum Distributed Blockchain Apps

3. Modify your Truffle project configuration file to reference the Ganache
blockchain.

Click or tap truffle-config.js on the left side of your VS Code window to open
the file. Add the sections shown in Figure 7-4. Then save the file (choose
File ➪ Save or press Ctrl+S).

FIGURE 7-2:
Ganache Settings

window.

FIGURE 7-3:
Visual Studio

Code in
myProject.

When you finish editing the truffle.js file, the uncommented lines (lines that don’t
start with /*, *, or */) should look like this:

module.exports = {
 networks: {
 development: {

host: "127.0.0.1",
port: 7545,
network_id: "*" // Match any network id

 }
 }
};

Exploring the Ganache Test Environment
Before you write any code in Solidity, you should take a look around Ganache.
You’ll be coming back to this component in your development environment from
time to time, so it makes sense to take a few minutes to survey what Ganache
offers. Remember that Ganache is your test blockchain. You’ll need to simulate real
blockchain interactions as you develop and test your code, and Ganache provides
you with an environment that looks real.

FIGURE 7-4:
Modified

Truffle project
configuration file.

CHAPTER 7 Building Your First Ethereum Apps 113

114 PART 3 Building Ethereum Distributed Blockchain Apps

When you launch Ganache, the first thing you’ll see is a list of accounts. By default,
Ganache creates 10 accounts for you, each with a balance of 100 ETH. You can
change this behavior in the Settings ➪ Accounts & Keys window. Every Ethereum
account has a unique address, and every smart contract and transaction on the
blockchain has an address that associates it with an account. So, to interact with
the blockchain, you need an account address (or maybe several). You’ll use the
Ganache-generated accounts to test your code throughout development. Because
your accounts have a balance of ETH, they can pay fees and even transfer crypto-
currency just like real blockchain accounts.

After your code starts carrying out real actions and creating transactions, you’ll be
able to see those results in Ganache as well. The Blocks tab shows all blocks on
your test blockchain, and the Transactions tab lists all transactions in each block.
You haven’t created any blocks (other than the genesis block) or transactions yet,
so there isn’t any substantive data to see right now.

The most important screen for now in Ganache is the Accounts tab, which lists the
accounts you’ll use as you interact with the blockchain, as shown in Figure 7-5.
You’ll see these accounts again in this chapter.

FIGURE 7-5:
Ganache

accounts list.

CHAPTER 7 Building Your First Ethereum Apps 115

Designing Simple Smart Contracts
Designing smart contracts is different than many other types of software
 development. You have to consider many blockchain nuances during all aspects
of software design and development. For example, any time you access the
 blockchain or carry out operations, you have to pay a fee. You’ll learn about paying
for blockchain access later in this chapter, but for now just be aware that a cost is
associated with storage and work, so storing too much data or doing too much
work could cost a lot.

Another thing to consider is that after you deploy code to the blockchain, that code
can’t be changed. If you need to fix a bug or add functionality, you have to tell
everyone to ignore the old code and use new code. (Well, you do if your new code
works on old data. If not, you’ll have to figure out how to bind code version to data
version.) Plus, the entire process of getting your code from your editor out to the
blockchain is a little different than in most development workflows.

Those are just some of the issues you’ll need to keep in mind as you design and
develop blockchain apps. For now, I keep things simple. The steps probably seem
confusing if you’re new to blockchain development, so I won’t throw too much at
you at once.

Your first smart contract is the familiar Hello World program. If you’ve ever writ-
ten software in any language, chances are you wrote a simple program that dis-
played the message Hello World. The Hello World program is a tradition that has
been around since the early days of computing. Writing this simple program will
give you the concrete steps you have to follow for all your development
activities.

You’ll write a smart contract that displays the message Hello World. You might be
surprised at the number of steps to display that simple message, but as your apps
become more complex, you’ll essentially follow the same process.

As you design your own smart contacts, consider what each one must do. Smart
contracts are objects, so you can think about them as a combinations of data and
functionality. Each smart contract can store some data and will always have
actions it can perform. You can think of data as nouns and actions as verbs. Your
HelloWorld smart contact has one data item, helloMessage, and can do one thing,
getHelloMessage(). In Solidity, simple data items are variables and actions are
functions.

That’s all that your HelloWorld smart contract needs to do, so you’re ready to start
coding.

116 PART 3 Building Ethereum Distributed Blockchain Apps

Coding Your First Smart Contract
Your HelloWorld smart contract has only five lines of code. To get started writing
your first smart contract, right-click the Contracts folder in VS Code Explorer, and
then click New File to create a new file in the Contracts folder.

Type HelloWorld.sol in the filename text box and press Enter. VS Code opens your
new file in a new Editor tab. Type the following text in the VS Code editor:

pragma solidity ^0.4.24;

contract HelloWorld {

 string private helloMessage = "Hello world";

 function getHelloMessage() public view returns (string) {

return helloMessage;

 }

}

The semicolons and curly braces may appear to be in random places, but they each
have a purpose. Don’t worry too much about punctuation right now. Just type the
code as shown.

Let’s look at each line of code. The first line is

pragma solidity ^0.4.24;

The first line of every smart contract is (or should be) the version pragma. It tells
Solidity what version of the compiler is expected to be used to compile this smart
contract. Solidity is still a new language, and it changes a little with each version.
In fact, major version updates of the compiler often will not compile all Solidity
written using earlier versions. The version pragma helps to avoid compilation
failures just because you’re using a newer Solidity compiler.

To use the version pragma, you provide the lowest version of the compiler that
should compile this code. In the example, I provided the specific Solidity version,
0.4.24. I could have used 0.4.0, which means “the latest minor version within
the 0.4 major version.” Also note that I added the caret (^) to the beginning of the
version. The caret tells Solidity to allow only minor versions of the compiler in the
0.4 major version range. In other words, don’t use a 0.5.0 compiler.

If you want to see the version of the Solidity compiler that Truffle is using, open a
terminal (in VS Code, click or tap Terminal ➪ New Terminal from the top menu
bar). Type the command truffle version. You’ll see the Truffle and Solidity
compiler versions.

The next line of code defines the smart contract:

contract HelloWorld {

At this point, all you need to provide is the keyword contract and the contract’s
name, HelloWorld.

After defining the smart contract and giving it a name, you define a data item:

string private helloMessage = "Hello world";

You want to store a string in memory, so you define a Solidity variable. You define
the helloMessage variable as a string datatype. You’ll learn about more datatypes
in Chapter 8; for now, we’ll use string. Before finishing this line of code, you
store the value "Hello world" in the helloMessage variable. You need to use this
variable only in the helloMessage function, so you tell Solidity that it is a private
variable.

In the next line, you define the only action, or function, in your smart contract:

function getHelloMessage() public view returns (string) {

The function keyword tells Solidity that you’re going to write some code that
you’ll execute by calling the function’s name, getHelloMessage(). To declare a
function, you provide the function keyword, the function name, who can see it and
use it, the mutability modifier, and what type of data it returns to the caller. Your
function is named getHelloMessage. You want anyone to be able to call it, so you
tell Solidity that it is a public function. The view modifier tells Solidity that this
function will be allowed to only read and return state variables. It cannot modify
the blockchain. And finally, your function will return, or send back, a string to
whatever calls it (returns).

The last line of code does all the real work:

return helloMessage;

This line of code tells the function to return control to the caller and pass the
contents of the helloMessage variable back in the process. The two lines follow-
ing the return statement are just closing curly braces to tell Solidity that the
function and contract have ended. The closing braces are like closing parentheses
when you write. They finish up whatever you’re wrapping in curly braces.

You can save the file at any time by clicking or tapping File ➪ Save on the top menu
bar, or by pressing Ctrl+S. Go ahead and save your first smart contract.

CHAPTER 7 Building Your First Ethereum Apps 117

118 PART 3 Building Ethereum Distributed Blockchain Apps

Running Your First Smart Contract
The only thing left is to make your smart contract display Hello World. To do that,
you have to run your smart contract. Here are the high-level steps for running
code in the Ethereum environment:

1. Write the smart contract source code.

Write the smart contract and any supporting code.

2. Compile the smart contract.

This step creates the bytecode that the EVM executes.

3. Deploy the compiled smart contract to the Ethereum blockchain.

This step writes your smart contract code to a block on the blockchain.

4. Call (invoke) a function in the smart contract.

This step finds your smart contract code and carries out the actions you
request.

Writing your code
You’ve already written the source code for your HelloWorld smart contract, but
that isn’t all you need to do. You also need a way get your code onto the block-
chain. That process is called deploying code (as noted in Step 3 in the preceding
steps). The deploy step runs deployment, or migration, code.

You should go ahead and write it now while you’re still in code editing mode:

1. In VS Code, right-click the Migrations folder in Explorer, and then click
New File to create a new file in the Migrations folder.

2. Type 2_contracts_migration.js in the filename text box and press Enter.

VS Code opens your new file in a new Editor tab.

3. Type the following text in the VS Code editor:

var HelloWorld = artifacts.require("HelloWorld");
module.exports = function(deployer) {
 deployer.deploy(HelloWorld);

};

CHAPTER 7 Building Your First Ethereum Apps 119

We won’t go into many details of this JavaScript code. This file finds the Hello-
World compiled bytecode and calls a deploy function to place the code in a block
on the blockchain. You learn more about deploying smart contracts when you
write more complex smart contracts. For now, just enter the preceding code to set
up your project to deploy your new smart contract.

Compiling your code
You can compile your smart contract code at any time in VS Code by pressing the
F5 key. When the compile starts, VS Code opens a new view at the bottom of your
window with four tabs: Problems, Output, Debug Console, and Terminal. I hope
the compile completes without errors. If you do see errors, go back and make sure
that your code looks exactly like the example HelloWorld smart contract in the
preceding section.

Sometimes you’ll get errors because of a mismatch between compiler versions.
The safest option when learning Solidity is to ensure that your VS Code extension
and Truffle use the same Solidity compiler version. You already know how to find
the Truffle compiler version (type truffle version at a PowerShell prompt). Click
or tap the Output tab in the new view that opened when you started the compile.
It should display the compiler version it uses for compiling code in VS Code. If the
version doesn’t match your Truffle Solidity version, you should change it in VS
Code to match the Solidity version that Truffle uses.

If you need to change the Solidity compiler version that VS Code uses, you can do
that from within VS Code:

1. Find the version of the compiler you need by launching your browser and
navigate to https://github.com/ethereum/solc-bin/tree/gh-pages/bin.

This page lists all Solidity releases.

2. Scroll down until you find a file named soljson-v followed by the version
of the compiler that you want.

In the case of HelloWorld, the version is 0.4.24. You’ll see a list of files for each
version.

3. Find the file that has +commit after the version. Click or tap the descrip-
tion next to the filename.

4. In the next window, copy the complete compiler version.

The version will start with v0. For the HelloWorld smart contract, the version is
v0.4.24+commit.e67f0147.

120 PART 3 Building Ethereum Distributed Blockchain Apps

5. Back in VS Code, click or tap the .vscode folder in Explorer view, and then
click or tap settings.json to open the file in the VS Code editor.

6. Click or tap User Settings in the upper-right window, and scroll down in
the middle window until you see Solidity Configuration.

7. Click or tap Solidity Configuration and then click or tap solidity.
compileUsingRemoteVersion.

8. Type the following three lines in the upper right window (right under the
Place your settings here to overwrite the Default Settings message):

{

 "solidity.compileUsingRemoteVersion": "v0.4.24+commit.e67f0147"
}

Replace v0.4.24+commit.e67f0147 with the compiler version that you copied in
Step 4 above.

9. Save the file and close it (by clicking or tapping the X on the tab for this
file).

Now your VS Code compiler should match the version Truffle uses.

After your smart contract compiles in VS Code, you can proceed to the next step.

Deploying your code
After you have finished writing your smart contract code, it’s time to test it and
eventually place it into production. As mentioned, the process of copying smart
contracts to the blockchain is called deployment. When you deploy smart contracts,
you copy the code into a new block. The new smart contract gets an address and
can be run on the EVM.

Because you’re using the Truffle framework, the process to deploy your smart
contracts is simple. Open the Terminal window (click or tap Terminal in the menu
bar), and type the following:

truffle deploy --reset

Make sure that Ganache is running before you type the deploy command. If you
use Microsoft Windows and Ganache isn’t running, click or tap the Windows
 button and then type Ganache. The Windows Search function should find Ganache
and highlight its shortcut. Click or tap the Ganache shortcut to launch the Ganache
program. Because the purpose of building dApps is to send smart contracts to
the blockchain, a blockchain has to be available.

CHAPTER 7 Building Your First Ethereum Apps 121

Truffle compiles your smart contracts and then uses the JavaScript files in the
Migrations folder of your project to migrate, or deploy, your smart contracts to
the blockchain. Figure 7-6 shows the output of the deploy command. Note that
 Truffle places each smart contract into a block and returns the address of the
smart contract. You’ll use this address to find the smart contract again and invoke
its functions.

This is the first time you’ve interacted with the blockchain. The deployment
 process created a new block and placed your smart contract code into it. To see
this activity, click or tap the Blocks tab in Ganache to see the blocks on your
blockchain.

Each action in the deployment process created a new block with a single transac-
tion. At least four blocks should be on the blockchain now. Figure 7-7 shows the
blocks view in Ganache.

You can see the bytecode for smart contracts, too. Click or tap the Transactions tab
to list the transactions in your blockchain. Click or tap a Contract Creation button
to view the contents of a smart contract. Figure 7-8 shows the contents of a smart
contract in the Ethereum blockchain. TX Data contains the bytecode for the smart
contract.

FIGURE 7-6:
Truffle

 deployment
results.

122 PART 3 Building Ethereum Distributed Blockchain Apps

Invoking your code’s functions
The final step in running smart contract code is to invoke one or more functions
in your smart contract. You have only one function, getHelloMessage(), in your
smart contract, so that’s the one you’ll invoke.

FIGURE 7-7:
Ganache blocks
after deploying

smart contracts.

FIGURE 7-8:
Contents

of a smart
contract block.

CHAPTER 7 Building Your First Ethereum Apps 123

Before you can invoke code in a smart contract, you have to know where it resides
on the blockchain. First, let’s get some information about the smart contract,
including its address from the blockchain. In your Terminal window, launch the
Truffle console. Type the following command and then press Enter:

truffle console

The Truffle console allows you to interact directly with the blockchain. Type the
following command at the Truffle console prompt and then press Enter:

HelloWorld.deployed().then(function(instance) {return instance });

This command goes to the blockchain and reads an instance of the HelloWorld
deployed smart contract. It creates a lot of output, including the bytecode and the
original source code of your smart contract.

Figure 7-9 shows the Terminal window with the results of the preceding com-
mand. Note the deployedBytecode and source values.

Now that you have an instance of your smart contract (that is, a pointer to where
your smart contract is running in memory), you can use it to invoke any of its
functions. Type the following command at the Truffle console prompt, and then
press Enter:

HelloWorld.deployed().then(function(instance) {return instance.

getHelloWorld() });

This command invokes the getHelloMessage() function in the HelloWorld smart
contract and displays the results. You should see the “Hello world” message in the

FIGURE 7-9:
Smart contract

instance
information.

124 PART 3 Building Ethereum Distributed Blockchain Apps

Terminal window. That may seem like a lot of work just to display a message, and
it is. But the process you just learned is one that you’ll use over and over to develop,
test, and deploy smart contracts, regardless of how complex they may be.

Paying as You Go
You may have noticed in Ganache that blocks and transactions each have a Gas
Used value. The Ganache main window also shows the Gas Price and Gas Limit for
the blockchain. You learn a lot more about gas in Chapter 8, but you need to know
a little about transaction costs now, before you start writing bigger and more
functional smart contracts.

Gas is a unit of value in Ethereum. Every operation that a smart contract carries
out costs some number of gas units. For example, you have to pay 30 gas to
 calculate a Keccak256 hash, plus another 6 gas for every 256 bits (not bytes) of
data you want to hash. The amount you pay for operations is called the gas cost.

Charging gas for computation forces smart contract developers to think about
how they write code. You can write inefficient code, but it will cost you. Also, gas
provides a great way to keep malicious code from taking over EVMs. Every
 transaction has a gas limit, and when the EVM reaches that limit, it stops the
contract. Gas limits protect EVMs from many types of denial of service (DoS)
attacks.

Every transaction sets a gas price, which is the highest amount of ETH that
 transaction is willing to pay for each gas unit. Transactions also set a gas limit,
which is the maximum amount of gas the transaction is willing to pay. If the
 execution consumes enough gas to equal the gas limit, the EVM stops execution of
the transaction. That is one reason a transaction may not succeed. Alternatively,
if the gas price is set too low, a transaction may never be added to a block because
miners did not want to waste their processing time on a transaction with too small
of a reward. Miners generally try to mine blocks with transactions that have a high
enough gas price to make the mining process profitable.

The takeaway is that creating transactions in the Ethereum blockchain requires a
fee. That fee is charged in gas units and can be limited to a range with which you
are comfortable. Paying more gas often means getting your transaction processed
quicker, but paying too much wastes money. As you write smart contract code,
pay attention to the operations that incur gas cost. As you learn more about
 Solidity in Chapter 8, you’ll learn ways to write code that conserves operations
that require gas.

Chapter 8
Learning about Smart
Contracts

Smart contracts are the functional part of any blockchain solution. Just like
the objects you learn about in Chapter 7, a blockchain solution is a combina-
tion of data and actions on that data. The data is the content of the blocks on

the blockchain. You already know that after data is added, it stays there forever.
(Although you could technically change blockchain data, doing so without any
other node detecting your change is next to impossible.) Because blockchain data
is immutable, it is important to carefully control how that data is added.

The actions that operate on the blockchain data are the smart contracts. You
already know that smart contracts, like the data, are stored in blocks on the block-
chain. But smart contracts execute on all EVMs and have to work the same way
and produce the same results on all EVMs. Smart contracts govern the way that
data is added to the blockchain and how that data can be used.

In Chapter 7, you wrote a simple smart contract, but it didn’t do anything useful.
The only way to create a smart contract to do anything useful is to identify a real-
world problem and then create a blockchain solution that solves the problem. One
use case that is a good fit for a blockchain solution is supply chain management.

IN THIS CHAPTER

» Describing Supply Chain and its
challenges

» Exploring a blockchain solution to
supply chain

» Handling data and computation in
Solidity

» Coding to limit gas cost

» Controlling execution flow and
responding to errors

CHAPTER 8 Learning about Smart Contracts 125

126 PART 3 Building Ethereum Distributed Blockchain Apps

In this chapter, you learn about some supply chain challenges and how blockchain
can address some of them. You also learn more about Solidity smart contracts by
developing a solution to a current supply chain problem.

Introducing Supply Chain and
Common Challenges

In today’s economy, nearly every product you use or service you consume comes
from some other source. Although you might grow your own vegetables and herbs,
you likely don’t raise livestock as a meat source as well. Everything that you buy
comes from an original producer. In the case of food products, the original producer
could be a grower, a rancher, a fisherman, or a producer of any other type of food.

As society has moved from being self-sufficient to relying on others to supply
products services, consumers have become detached from producers. Geographic
distances, regulations, and the suppliers’ desires for greater reach and higher
profits have given rise to aggregators and middlemen to handle goods. These
middlemen provide benefits to producers and consumers but also require fees for
their services. These fees increase the consumer price, and the processing may
slow down the time it takes for goods to arrive to the market or consumer.

Describing supply chain
Consider what happens when you buy fish. If you live near the coast, you might go
to the docks and purchase fish directly from the fishing boat. However, it is more
likely that you bought the last fish you ate from a market or a restaurant. That
means one or more parties were between the fishermen (the producer) and you
(the consumer). The framework that connects consumers to producers, along with
the system that manages it, is called a supply chain. A supply chain might have only
a single participant between the producer and consumer, or it might contain many
participants along the way. A supply chain manages all assets, along with han-
dling the payments tendered in exchange for the products or services.

In a simple supply chain, fishermen may sell their fish directly to markets near
the docks where their ships bring a fresh catch each day. Consumers shop at the
markets and purchase fish from a single middleman. If you don’t live near a mar-
ket like that, the fish may go to a processor, then to a shipper, then on to a ware-
house, and finally to a retail store, where the consumer purchases the fish. That is
an example of a common supply chain. As consumers demand more options, sup-
ply chains exist to help producers provide the products and services that consum-
ers demand.

Supply chain participants provide value to small and large producers. For the
small producers, an aggregator can collect product from multiple producers and
provide larger shipments to processors or warehouses. Large producers benefit
from having local points of entry into the supply chain, without having to handle
point-to-point shipments to all outlets for their products.

Consumers benefit as well because the supply chain makes available a wide variety
of products from many producers.

Explaining difficulties when implementing
a supply chain
So far, a supply chain sounds like a great way to get products and services to a
wide variety of consumers. And it does do all that. But the current supply chain
approach has obstacles, or limitations. In general, five types of obstacles are
encountered in today’s supply chain implementations, as listed in Table 8-1.

TABLE 8-1	 Supply Chain Obstacles
Obstacle Description

Lack of
transparency

Today’s supply chain participants often manage their own data systems and don’t publish
their internal data. Separately managed data systems makes it difficult to see how items
are processed at each step in the chain.

Lack of
traceability

With limited transparency at each step, the data required for tracing products to their ori-
gin is often not available, making authenticity claims and recall notices for points of origin
difficult or impossible.

Transfer time
lags

Transferring products from one participant to another requires synchronization between
organizations and might not occur in real time. Many transfers occur in batches based on
scheduled operations. This can cause delays at every stage, resulting in cumulative delays
throughout the chain.

Translation
data loss

Each participant receives, manages, and passes along its own core set of data. Even with
decades-old standards, such as Electronic Data Interchange (EDI), some data items might
not be passed along from one participant to another, resulting in granular data loss along
the supply chain. Also, any data that must be re-keyed because it isn’t passed along is sub-
ject to human error.

Nonstandard/
unavailable sta-
tus tracking

Because each participant generally manages its own data, status updates might not be
available at each stage. Some participants might either decline to provide status updates
or provide them in a manner that is incompatible with status updates from other partici-
pants. In the latter case, the status update requestor is required to assimilate status
updates in various formats and harmonize them into meaningful output.

CHAPTER 8 Learning about Smart Contracts 127

128 PART 3 Building Ethereum Distributed Blockchain Apps

The items in Table 8-1 represent just some of the obstacles in supply chain imple-
mentations in production today. These problems tend to be more pronounced as
the complexity of a supply chain increases. But as many markets mature and
become more global, supply chains nearly always become more diverse and com-
plex. Pursuing solutions to these obstacles is important to global commerce.

Examining How Blockchain Can Help
Resolve Supply Chain Problems

Blockchain technology can help address many of the supply chain obstacles. While
no single solution is a perfect fit for any situation, blockchain, and Ethereum is
particular, can help resolve the majority of the shortcomings of today’s supply
chain implementations. Table 8-2 lists the obstacles from the previous section,
and how Ethereum can help resolve each one.

Ethereum provides a level playing field for many uses, including supply chains. In
an environment that includes participants who do not fully trust one another, or
are even competitors, Ethereum makes it possible to conduct business in a fair

TABLE 8-2	 Ethereum Solutions to Supply Chain Obstacles
Obstacle Description

Lack of
transparency

Blockchain technology does not have a central authority. All transactions are published
to the shared blockchain. Any participating node can view transactions and verify their
authenticity.

Lack of
traceability

Because all nodes have access to all transactions on the blockchain, linking transactions is
almost trivial. Any node can easily construct a complete chain of transactions between
the original producer and the final consumer.

Transfer time
lags

Smart contracts provide the capability to assess the current blockchain state and make
decisions on demand. Legacy solutions often require human interaction, which depends
on set working hours. Blockchain introduces the opportunity for smart contracts, not
humans, to make certain decisions immediately. This benefit can remove the need for
human intervention in some types of decisions.

Translation data
loss

Ethereum smart contracts define data needed for each transaction and ensure that all
participants provide the same input. In short, every node uses the same rules — the rules
don’t change from participant to participant as you move along the supply chain.

Non-standard/
unavailable sta-
tus tracking

Instead of each participant responding individually to status update requests, all neces-
sary information is in blocks on the blockchain. Anyone who can access the blockchain
can determine the current status of any digital asset.

manner. Supply chain implementations can be far more comprehensive than just
tracking how products move to the consumer. Participants along the supply chain
can also add their own value.

For example, an elaborate supply chain can operate like a distributed manufactur-
ing or assembly line. High-end corporate aircraft often undergo customizations
after the aircraft leaves the manufacturer but before delivery to the customer. For
example, the aircraft might go to several other companies for interior fitting,
painting, and even aftermarket performance upgrades. Each step likely includes
additional services and products that add to the original aircraft — for a fee.

Ethereum makes it possible to track and control products through multiple steps,
and provides a secure way to provide transparency and traceability for all products
to all parties.

Describing a Blockchain
Supply Chain Solution

You’ve learned about what an Ethereum supply chain solution can do, but you still
need to see how it will operate before you start writing code. For the rest of this
book, you’ll implement a simple supply chain solution in Solidity. This solution
will provide the absolute basic actions you’ll need to track and manage products
and payments from initial production to the final consumer.

Your supply chain solution will consist of two smart contracts. One smart contract
will handle payments and the other will handle the asset tracking and manage-
ment. Because you’ll be focusing on learning about smart contracts, your solution
won’t implement every imaginable supply chain function. But when you’re done,
you’ll appreciate how powerful Ethereum is and, I hope, be motivated to write
your own smart contracts to solve your own problems.

Paying for supply chain services
Each link in a supply chain provides a service. A supply chain participant might
ship goods from one place to another, store goods in a warehouse, add value to
products, or even place goods on shelves at retail locations. Unless your organiza-
tion is a non-profit, the main goal for participating in supply chain is to make
money. That means you’ll have to pay every time a product moves from one par-
ticipant to another.

CHAPTER 8 Learning about Smart Contracts 129

130 PART 3 Building Ethereum Distributed Blockchain Apps

Although you could use traditional payment processing, you’re going to learn how
to do it using Ethereum! The easiest way to send and receive funds in Ethereum is
by using a token. An Ethereum token is a type of cryptocurrency for a particular
dApp. You’ll be creating a supply chain token based on the popular ERC-20 Ethe-
reum token standard.

Although several Ethereum token standards are available, ERC-20 is by far the
most popular. You can see how many tokens exist by navigating to https://
etherscan.io and click or tapping Tokens — ERC-20 Top Tokens. At the time of
this writing, there were more than 155,000 different ERC-20 tokens.

You can think of a token as a college student ID with money in a special account.
To avoid carrying around cash or multiple cards, many college students pay for
things on campus using their IDs. The “college cash” attached to their ID is good
only on campus, but it’s convenient and makes it easy for on-campus vendors to
identify students and offer special pricing.

Your token smart contract will contain all the rules to manage your balance of
cryptocurrency. You’ll write the code to check your balance, transfer funds to
another Ethereum address, and receive funds from another Ethereum address.

Managing assets on the supply chain
The main smart contract for your supply chain will contain the core functions to
manage assets. From a technical sense, Ethereum can’t manage physical assets. It
can manage only digital assets. Think about tracking your bags when you fly on a
commercial airline. Many airlines provide status updates via a mobile app. They
tell you when your bag gets loaded on the airplane and where to pick it up when
you arrive at your destination. However, the airline isn’t tracking your bag —
they’re tracking the tag on your bag. The tag is a generated version of a digital
asset that the airline tracks.

The difference between a physical asset and a digital asset is obvious on one hand
but subtle on the other hand. Continuing the airline luggage example, problems
can occur at the cyber-physical barrier. If the human or device that attaches the
tag to the bag doesn’t get it right, nothing works from there on. When I recently
flew from San Antonio, Texas to Atlanta, Georgie, I arrived but my bag did not.
When the airline baggage representative investigated, we found that my baggage
tag was attached to another traveler’s bag. Because the airline tracks and manages
their tags, they sent the wrong bag (with the right tag) to Atlanta. Unfortunately,
my bag (with the other traveler’s tag attached to it) went to Mexico City. It took
me almost a week to get my bag back.

That story should help point out how important it is to maintain the cyber-physical
relationship. Physical goods have to be associated with a digital asset to be man-
aged in any computing environment. In many cases, that means the entry point of
the supply chain creates a tag or other method of positively identifying the physical
asset. Regardless of the identification option you choose, you’ll need a number or
an identifier that corresponds to a single physical asset. Table 8-3 lists a few
options for associating physical assets with their digital mirror assets.

Your supply chain smart contract assumes that some external device or other
entity creates a trusted digital string or number that uniquely identifies a physical
asset. After you have a digital asset ID, your smart contract will define functions
that will carry out these actions:

» Creating a new supply chain participant: Validates a new participant and
authorizes the participant to become part of the supply chain process.

» Adding a new product to the supply chain: Puts a product into the supply
chain process.

» Transferring ownership of a product to another participant: Carries out
the main action of transferring a product from one supply chain participant to
another.

» Tracking a product: Provides status updates of a product and its history on
the supply chain.

TABLE 8-3	 Connecting Physical Assets to Digital Assets
ID Method Pros Cons

Engraving an identifier
on each product

Unique to each item and difficult
to alter

Expensive and slow

Attaching a printed
label to each product

Unique to each item and useful
for a wide variety of products

Labels can be damaged or lost

Attaching a printed
label to a box of
products

Fast for products managed in
batches

Difficulty handling opened boxes with missing
product

Using a manufacturer-
generated identifier

Integrates with manufacturer’s
data, and fast if identifier can be
scanned

Potentially different formats or locations for
different manufacturers, and depends on
external data provider

Attaching an RFID tag Fast and easy to scan More expensive than printed labels, and tags
can detach

CHAPTER 8 Learning about Smart Contracts 131

132 PART 3 Building Ethereum Distributed Blockchain Apps

Your two smart contracts will work together every time a product transfers from
one participant to another. At the moment a product’s owner changes, the partici-
pants making the transfer will use the ERC-20 token to exchange funds to pay for
the asset. Figure 8-1 show how your supply chain process will work.

Digging into Solidity
Solidity is the language you’ll use to write smart contracts in the examples in this
book. Solidity was proposed by Gavin Wood in August 2014. Although it isn’t the only
language you can use to write smart contracts, it is the most popular language for
writing smart contracts that run in the Ethereum. It enjoys solid support from the
Ethereum community and was developed by the Ethereum project’s Solidity team.

Solidity was designed to be similar to JavaScript and was influenced by a few other
popular programming languages as well, including C++ and Python. The goal of
Solidity is to provide a language that is familiar to web application developers but
targeted at smart contract development. Solidity isn’t intended not as a general-
purpose language but to support blockchain specific operations with code that
runs in the EVM.

Before your code can run in the EVM, you have to compile it. That’s why one of the
components you installed when building your development environment was a
Solidity compiler. You first write your Solidity source code in an editor. Then you
compile it into bytecode, which are the instructions that run in the EVM. After you
deploy your smart contract bytecode, it runs on all Ethereum nodes.

FIGURE 8-1:
Ethereum supply

chain flow.

Because smart contracts run on all nodes, Solidity must enforce determinism, that
is, the results must be the same for all nodes running your smart contract code
with the same input. If you look at the Solidity documentation, you won’t find a
random() function. That omission is specifically to support Solidity’s determin-
ism. Your code gets run first by the node that mines a new block, but then all
nodes verify the block and run the code to ensure that they don’t get a different
result.

In many ways, Solidity is similar to other programming languages. The biggest
differences are in how the programs are run and how Solidity deals with data.
You’ll learn more about Solidity data handling later in this chapter. But for now,
note that Solidity deals with data only in the EVM or the blockchain.

Solidity doesn’t interact with the outside world much, but it is possible. Solidity
supports the concept of an oracle, which is a trusted source of information from
the outside world. Calling an oracle is easy. One problem is being able to trust the
oracle. Another problem is dealing with oracle data that may return different data
each time it’s called. Before using any oracles, you must ensure that the data
source is trustworthy and consistent. It is common for oracles to return data and
some proof of authenticity.

The concept of trust with respect to oracles is just an extension of blockchain trust.
Remember that blockchain technology provides a trusted ledger of data in an envi-
ronment of trustless network nodes. Because trust is such a foundational property
of blockchain, it isn’t surprising that trusting an oracle is an important concern.

Describing Basic Smart Contract Syntax
You’ve already seen a little Solidity syntax. Now it’s time to learn some more.
When you write Solidity source code, you save that code in a file with the exten-
sion .sol. You may recall from Chapter 7 that you stored your Hello World smart
contract in the file HelloWorld.sol.

A Solidity program has several main sections, as follows:

» Pragma: This tells Solidity what versions of the compiler are valid to compile
this file.

» Comments: Developers should use comments for documenting code.

» Import: An import defines an external file that contains code that your smart
contract needs.

» Contract(s): This section is where the body of your smart contract code resides.

CHAPTER 8 Learning about Smart Contracts 133

134 PART 3 Building Ethereum Distributed Blockchain Apps

Declaring valid compiler version
The pragma directive should be the first line of code in a Solidity file. Because the
Solidity language is still maturing, it is common for new compiler versions to
include changes that would fail to compile older programs. The pragma directive
helps avoid compiler failures due to using a newer compiler.

Here is the syntax for the pragma directive:

pragma Solidity <<version number>>;

Here is a sample pragma directive:

pragma Solidity ^0.4.24;

All statements in Solidity end with a semicolon.

The version number starts with a 0, followed by a major build number and a minor
build number. For example, the version number 0.4.24 refers to major build 4 and
minor build 24. The caret symbol (^) before the version number tells Solidity that
it can use the latest build in a major version range. In the preceding example,
Solidity can use a compiler from any build in the version 4 build range. This is a
way to tell readers that your program was written for 0.4.24 but will still compile
for subsequent version 4 builds.

Although using the caret in the pragma directive provides flexibility, it is a better
practice to drop the caret and tell Solidity exactly what compiler version you
expect.

Commenting your code
Adding comments to your code is an extra step that adds a professional look and
feel to your code. A well-commented source code file is easier to read and under-
stand and helps other developers quickly understand what your code is supposed
to do. Even simple comments can cut down on the time required to fix bugs or add
new functionality. Comments can also provide input for utilities to generate doc-
umentation for your smart contracts.

You can use single-line or multiline regular comments. Single-line comments
start with two forward slashes. Multiline comments start with the /* characters
and end with the */ characters. Here is an example of Solidity comments:

// Here is a single line Solidity comment

/* I have a lot more to say with this comment, so I'll

use a multiline comment. The compiler will ignore
everything after the opening comment characters, until
it sees the closing comment characters. */

A third type of Solidity comment is called the Ethereum Natural Specification
(NatSpec) directive. You can use NatSpec to provide information about your code
for documentation generators to use to create formatted documentation the
describes your smart contracts. NatSpec directives start with three forward slashes
and include special tags with data for the documentation. Here is an example of
using NatSpec directives:

/// @title Greeter smart contract
/// @author Joe Programmer
/// @notice This code takes a person's name and says hello
/// @param name The name of the caller
/// @return greeting The greeting with the caller's name

You can find NatSpec documentation and additional information at https://
github.com/ethereum/wiki/wiki/Ethereum-Natural-Specification-Format.

Importing external code
The import section is optional but can be powerful. If your smart contract needs
to refer to code in other files, you’ll have to import those other files first. Import-
ing files makes it as though you copied the other code into the current file. Using
imports helps you avoid actually copying code from one place to another. If you
need to access code, just import the Solidity file that contains it.

The syntax for importing other files is simple. You use the import keyword and
then provide the filename for the file you want to import. For example, to import
the file myToken.sol, use this syntax:

Import 'myToken.sol';

Defining your smart contracts
In the last main section of Solidity, you define the contents of your smart contract.
It starts with the keyword contract and contains all of the functional code in your
smart contract. You can have multiple contract sections in Solidity. That means
a single .sol file can define multiple contracts. Here is an example contract
 section (you might recognize this code from Chapter 7):

contract HelloWorld {
 string private helloMessage = "Hello world";

CHAPTER 8 Learning about Smart Contracts 135

136 PART 3 Building Ethereum Distributed Blockchain Apps

 function getHelloMessage() public view returns (string) {
return helloMessage;

 }
}

Inside the contract section is where you define all of your variables, structures,
events, and functions. There’s a lot more to the contract section of your code, but
for now, you know how to set up a Solidity smart contract. In the next section you
learn more about what goes into the contract section.

Handling Data in Solidity
Solidity is particular about where you can store data. You generally define two
types of variables in Solidity: state variables and local variables. You define state
variables in the contract section, and those variables are available anywhere in
the smart contract. These variables store the state of your smart contract by saving
the values in a block on the blockchain. You define local variables inside functions.
Local variables don’t save their values between function calls. Those values aren’t
stored on the blockchain and go away when the function ends.

Solidity defines three places for storing data:

» Stack: Where Solidity stores local simple variable values defined in functions.

» Memory: An area of memory on each EVM that Solidity uses to store tempo-
rary values. Values stored here are erased between function calls.

» Storage: Where state variables defined in a smart contract reside. These state
variables reside in the smart contract data section on the blockchain.

Variable storage location is one of the more confusing aspects of Solidity. I cover
the basics now, and come back to some finer points in Chapter 9. The Solidity
language doesn’t have a stack keyword but does have memory and storage key-
words. Solidity uses its own defaults, depending on where you define variables
and how you use them, but you can override some of these defaults and also use
the keywords to modify how Solidity treats variables.

Here are a few rules that help keep things straight when learning about storing
data in Solidity:

» State variables are storage by default (values are stored in the blockchain).

» Local variables in functions are memory by default (values are stored tempo-
rarily in memory).

» Structs are storage by default (values are stored in the blockchain).

Solidity can handle different types of data and provides different types of variables
to handle each type. When you define variables, you have to specify the datatype
of the variable. The datatype tells Solidity how much space to allocate for the value
you will store in the variable and how to treat the data. Table 8-4 lists the data
types that Solidity supports.

As your smart contracts become more complex, you’ll probably need to represent
more complex types of data. For example, you might want to define a physical
address type that contains several pieces of information, including street address,
city, state, and postal code.

You also might need to store tables or lists of data. Solidity allows you to create
your own data structures with the struct complex data type. You can also define
arrays that store groups of similar data items. Solidity arrays can be groups of
simple data types or groups of structs. You use structs and arrays in the smart
contracts you write in Chapter 9.

Here is a smart contract that demonstrates some of Solidity’s simple data types.
In this example, you’re using only state variables, which means you’re writing to
the blockchain. Defining all of your variable as state variables is not a good idea
unless you want to store data forever. Data stored to the blockchain requires
expensive operations and shouldn’t be used unless you need to store your data
persistently. For now, you’ll use state variables, but in Chapter 9 you learn how to
define local variables as well.

Open VS Code for the myProject project:

To open VS Code in the myProject project, open a Windows Command prompt or
PowerShell (my favorite) and use the cd command to navigate to your project
directory (myProject.) From here, just enter the following command and press
Enter:

code .

CHAPTER 8 Learning about Smart Contracts 137

138 PART 3 Building Ethereum Distributed Blockchain Apps

Then type the following code. (If you’d rather download the project files, go to
www.dummies.com/go/ethereumfd.)

pragma solidity 0.4.24;

/*

* @title Solidity data types

* @author Michael Solomon

TABLE 8-4	 Solidity Data Types
Data type Comments Example When to use

uint 32-byte (256 bit) unsigned inte-
ger. You can also define smaller
uints as uint8, unit16, . . . up
to uint256 (which is the same
as uint).

uint x = 10;

uint16 x = 44;

To store positive integers.
Using smaller uints (such as
uint8) saves storage space
and processing cost.

int 32-byte (256 bit) signed integer.
You can also define smaller ints
as int8, int16, . . . up to
int256 (which is the same as
int).

int x = -10;

int32 x = 45;

To store integers with negative
and positive values. Using
smaller ints (such as int8)
saves storage space and pro-
cessing cost.

byte A single byte. You can also
define arrays of 1–32 bytes using
the type bytes2, byte3, . . . up
to bytes32.

byte singleChar =
't';

bytes16 msgHello =
'Hello, world!';

To store any number (up to
32) bytes. The bytes datatype
makes it easy to access and
manipulate array contents.

string 32-byte array of characters. This
datatype is most often used to
store strings of UTF-8 characters.

string myString =
"Hello, world!";

To store character strings.
Solidity strings are difficult to
manipulate directly. In most
cases, using bytes is more
convenient.

bool Boolean, or logical, values
(yes/no or true/false).

bool isOK = true; To store yes/no, true/false
values.

address 20 byte Ethereum address. address myAddress; To store an Ethereum address.

mapping A dictionary that relates key to a
value. Mappings provide an easy
method to lookup a value that
corresponds to a key.

mapping (address
=> uint) balances;

To lookup data for a specific
key, such as finding the bal-
ance of an account.

enum Enumerated list of options. enum surveyResult
{ StronglyDis-
agree, Disagree,
Neutral, Agree,
StronglyAgree };

To store meaningful values
from a limited set of choices.

* @notice A simply smart contract to demonstrate simple data types available in

Solidity

*

*/

contract DataTypes {

 uint x = 9;

 int i = -68;

 uint8 j = 17;

 bool isEthereumCool = true;

 address owner = msg.sender; //Ethereum address of the message sender

 bytes32 bMsg = "hello";

 string sMsg = "hello";

 function getStateVariables() public view returns (uint, int, uint8, bool,

address, bytes32, string) {

return (x, i, j, isEthereumCool, owner, bMsg, sMsg);

 }

}

The steps to deploy and test your smart contract are the same as the steps you
learned in Chapter 7. Go to that chapter for details.

Before you can deploy and test your new smart contract, you need to add it to the
migration JavaScript script. In VS Code, open the 2_contracts_migrations.js
file in the Migrations directory. Then add the two lines with comments so your file
looks this:

var HelloWorld = artifacts.require("HelloWorld");

var DataTypes = artifacts.require("DataTypes"); // Add this line

module.exports = function(deployer) {

 deployer.deploy(HelloWorld);

 deployer.deploy(DataTypes);// Add this line

};

Don’t forget to save your file after adding the new text!

Here are the steps you can use to deploy and test your new smart contract:

1. Make sure you have Ganache running.

2. In VS Code, click or tap the Terminal tab, type the following, and then
press Enter:

truffle deploy --reset

CHAPTER 8 Learning about Smart Contracts 139

140 PART 3 Building Ethereum Distributed Blockchain Apps

3. Type truffle console and press Enter.

4. At the Truffle console prompt, type the following and press Enter:

DataTypes.deployed().then(function(instance) {return
instance.getStateVariables() });

Figure 8-2 shows the values that your new smart contract returns. Truffle dis-
plays the return values in an interesting way. Numbers are returned as BigNumber
objects. You can call functions in a BigNumber library to convert them, but for now
just read the values directly. For the numeric returned values, the first value, s: is
the sign of the number, and the third value, c: is the unsigned value the function
returned. Also note that the address and bytes32 values are in hexadecimal format.

Learning about Computation and Gas
One of the difficulties encountered when writing distributed applications is bal-
ancing the workload among participating nodes. The way blockchain technology
is designed, all nodes do the same amount of work. In fact, all nodes duplicate the
same work. This redundancy is necessary to ensure consensus among the nodes.

Workload balance isn’t a problem, but node overload is a big problem. Consider
what would happen if a malicious user submitted a smart contract that consumed
so much computing power that the node running the code couldn’t do anything
else. That would be a denial of service (DoS) attack. And what’s worse, every node
would be required to do the same amount of work. If malicious smart contracts
were allowed to run, they could render the entire blockchain network unusable.

To avoid DoS attacks and to reduce the overall work network nodes have to carry
out, Ethereum introduced the concept of paying for the work required to carry out

FIGURE 8-2:
Smart contract
return values.

a transaction. Ethereum also includes a charge for storing data on the blockchain.
These requirements encourage smart contract developers to use the blockchain
only when necessary, thereby keeping the blockchain from growing unrestrained.
Requiring transaction creators to pay for usage is a way of promoting conservative
use of shared resources.

As you learned earlier, Ethereum measures the work required for operations by
using gas. The amount of work required for each operation is used to calculate the
fee to carry out the operations that make up a transaction. According to the Ethe-
reum Yellow Paper (the formal Ethereum definition), every transaction requires a
minimum of 21,000 gas units to complete.

The Ethereum Yellow Paper contains the formal definition of Ethereum. You can
find the Yellow Paper by opening your browser and navigating to this address:
https://github.com/ethereum/yellowpaper .

Miners are nodes on an Ethereum network that carry out the intensive mathemati-
cal calculations to find a nonce value that satisfies the hash requirements for the
block. You learn about mining, hashes, and nonce values in Chapter 2. Paying gas
provides an incentive to miners to commit their computing power (and electricity)
to the blockchain. Every user that submits a transaction pays a fee in gas, and
miners in turn select transactions they think will be profitable and build new
blocks with those transactions. The miner that is successful in solving the math-
ematical puzzle gets the gas fees for the transactions in that block.

So, who pays all these fees to miners? Well, we all do! Every Ethereum transaction
requires a small processing fee. Although this might sound like the middlemen
that blockchain is supposed to replace, Ethereum fees are tiny compared to exist-
ing systems in use today. However, even a relatively tiny Ethereum gas process
can grow to be not so tiny during times of heavy network congestion.

Calculating gas fees requires several inputs, including gas price, gas limit, and gas
(computation) cost. The user who submits a transaction (that is, initiates some
action that invokes a smart contract) sets the highest acceptable gas price and the
total limit of gas he or she will agree to pay. The total fee is the amount of gas used
in the transaction multiplied by the gas price the miner charges. All of these val-
ues can change from transaction to transaction. Table 8-5 lists the main compo-
nents of gas charges and how they contribute to transaction fees.

If you want to know how much gas will cost, open your browser and navigate to
https://ethgasstation.info. This web page shows gas statistics for recent
Ethereum transactions. Figure 8-2 shows the recommended gas prices at the time
of this writing. Note that a safe low gas price is 2.8 Gwei, the standard gas price
is 4 Gwei, and if you want your transaction picked up quickly, you should set your
gas price to 20 Gwei. 1 ETH is worth 1 billion (1,000,000,000) Gwei, so 4 Gwei is
worth 0.000000004 ETH. At the time of this writing, 1 ETH is worth $89.40 USD,

CHAPTER 8 Learning about Smart Contracts 141

142 PART 3 Building Ethereum Distributed Blockchain Apps

so the standard gas price of 4 Gwei (a standard gas price) is worth $ 0.0000003576.
If a transaction requires a minimum of 21,000 Gwei, a transaction costs at least
0.0000003576 * 21,000 = $0.0075096. That’s less than a penny.

You can find the gas cost for operations in Ethereum in a spreadsheet located at:
https://docs.google.com/spreadsheets/d/1m89CVujrQe5LAFJ8-YAUCc
NK950dUzMQPMJBxRtGCqs/edit#gid=0 .

Although the minimum transaction fee doesn’t look like it is very expensive, the
fees do add up if you waste computation. From a strict cost per computation, it isn’t
hard to pay for your own node to carry out calculations. But what you’re paying for
is transparency and validity among a large number of untrusted participants.

Exploring Access Modes and Visibility of
Smart Contract Functions and Data

You can restrict who can invoke Solidity functions and who can access variable
values. These access keywords are called visibility modifiers. You can use four visi-
bility modifiers when you define functions and variables, as shown in Table 8-6.

TABLE 8-5	 Ethereum Gas Charges
Component Comments

Gas price The highest price per gas unit a transaction originator is willing to pay. Miners use this limit
to determine if the transaction is worth including in a block. If the value is too low, the trans-
action might not be profitable. If too many transactions are selected with very high gas
prices, it might take too long to mine the block and the miner might lose to another node.

Gas limit The total number of gas units the transaction originator is willing to pay. It must be high
enough to allow all operations to complete. If this value is too low, the EVM will terminate
the transaction and undo all of its operations. Also, each block has a gas limit, so miners
can’t just choose the transactions with very high gas limits — they have to choose transac-
tions with gas limits that are cumulatively lower than the block gas limit.

Gas cost The cost of a single operation. For example, the ADD operation costs 3 gas and the MUL
operation costs 5 gas.

Transaction
fee

The total fee for computations in a transaction. The formula is: transaction fee = total gas
cost * gas price.

Unused gas The amount of unused gas returned to the transaction originator if the gas limit for the
transaction is greater than the actual gas cost.

The Solidity compiler automatically creates a getter function for each public
state variable, which provides an easy way to fetch the value of any variable. The
name of the function is the same as the name of the variable. When the getter
function is called, it returns the value stored in the state variable. So if you define
a public state variable of type uint named myVar, the function myVar() will
return a uint that is the current value of myVal.

Solidity visibility modifiers make it possible to write functions and define vari-
ables that are available only to a specific subset of users. You might want some
functions and variable to be available only to other functions in the same contract,
say, for internal maintenance. In other cases, you might want other functions or
variables to be available to anyone. A getter function (function that gets the value
of some data item and returns it) is often a public function. That makes it avail-
able to anyone, while an internal function that manages a contract’s date may be
a private or internal function.

In addition to providing visibility modifiers, you can specify function access mod-
ifiers. Access modifiers restrict how functions are allowed to access state variables.
Older versions of Solidity used a single access modifier, constant, to indicate that
a function did not modify any state variable. Starting with Solidity 0.4.17, two
new access modifiers replace the constant modifier: view and pure. A function
that exceeds its access modifier will result in a compiler error.

Here are the meanings of each access modifier:

» constant: This access modifier, which was deprecated in Solidity 0.4.17, was used
to inform the compiler that the function would not modify any state variables.

» view: This access modifier, introduced in Solidity 0.4.17, is a replacement for
constant and informs the compiler that the function will not modify any
state variables.

TABLE 8-6	 Solidity Visibility Modifiers
Visibility What It Means for Functions What It Means for Variables

public Anyone can call this function. Anyone can access this variable’s value.

external Only external functions can call this
function.

This doesn’t apply to state variables, and
only external functions can access this local
variable’s value.

internal Only functions in this contract and any con-
tract deriving from it can call this function.

Only functions in this contract and any
 contract deriving from it can access this
 variable’s value.

private Only functions in this contract can call this
function.

Only functions in this contract can access
this variable’s value.

CHAPTER 8 Learning about Smart Contracts 143

144 PART 3 Building Ethereum Distributed Blockchain Apps

» pure: This access modifier, introduced in Solidity 0.4.17, is more restrictive
than view and informs the compiler that the function will not even read any
state variables.

Controlling Execution Flow
The simple smart contract code that you’ve seen so far doesn’t do much. It just
executes from the top of the code to the bottom. Programs that do something use-
ful have statements in them that alter the flow of execution based on input and
calculations. Some statements, called conditional statements, enforce conditional
expressions and execute only under certain circumstances. Other statements,
called iteration statements or loops, repeat sections of code a certain number of times.

These types of statement are called flow of execution statements. Solidity implements
many of the flow of executions statements you’ll find in JavaScript. Table 8-7 lists
the conditional and iteration statements in Solidity.

TABLE 8-7	 Solidity Conditional and Iteration Statements
Statement What it does Example

if-else Executes a group of statements if a condition is
true, and optionally executes another set of
statements if the condition is false (else).

numDonuts = purchasedQty;

if (numDonuts >= 12)

 giveDozenPrice = true;

else

 giveDozenPrice = false;

While Executes a group of statements zero or more
times until some condition is true (pre-test
repetition structure.)

numDonuts = 1;

giveDozenPrice = false;

While (numDonuts < purchasedQty)
{

 numDonuts++;

 if (numDonuts >= 12)

giveDozenPrice = true;

break;

}

Handling Errors and Exceptions
The last topic in your introduction to Solidity smart contract development is
knowing how to handle errors and exceptions. By far the best way to handle errors
is to avoid them in the first place. A naïve and unproductive way to handle errors
is to leave it completely up to the user interface. A much better design practice is
to anticipate as many errors and exceptions as possible and design your code to
handle them. If you can envision an error during the design phase, you can develop
code to handle it and even develop a test to ensure that your code handles it
properly.

In versions of Solidity before 0.4.10, the only way to handle an error was to throw
an exception when something bad happened. For example, pre 0.4.10 code to
ensure that a code segment would run only if initiated by the code’s owner might
look like this:

if (msg.sender != owner({ throw(); }))

Statement What it does Example

do-while Executes a group of statements one or more
times until some condition is true (post-test
repetition structure.) Note that a do-while
loop always executes at least once.

numDonuts = 1;

giveDozenPrice = false;

do {

 numDonuts++;

 if (numDonuts >= 12)

giveDozenPrice = true;

break;

} (while numDonuts <
purchasedQty);

for Executes a group of statements zero or more
times until some condition is true (pre-test
repetition structure.) This differs from a while
loop in that the test condition is defined in the
statement.

giveDozenPrice = false;

for (numDonuts=1;
numDonuts<=purchasedDonuts;
numDonuts++) {

 if (numDonuts >= 12)

giveDozenPrice = true;

break;

}

CHAPTER 8 Learning about Smart Contracts 145

146 PART 3 Building Ethereum Distributed Blockchain Apps

If a smart contract ever encountered a throw() function, all changes to state
variables would be undone, the contract would return to the caller passing back an
invalid opcode error, and all remaining gas would be used up. In other words, if
your code encountered a throw() function, you would never get any gas back. And
to make matters worse, you didn’t get anything done for that gas.

Starting with Solidity version 0.4.10, you have more options for handling error
conditions. Current smart contracts can use the revert(), assert(), and
require() functions to proactively handle errors. Table 8-8 lists each of the new
guard functions and what each one does.

Although there is far more to Solidity than what you’ve seen here, you’ve learned
enough to get started writing your own code. Before you know it, you’ll be ready
to create your own Ethereum dApps.

TABLE 8-8	 Error-handling Guard Functions
Function What It Does Example

revert() Undoes all state changes, allows a return value, and refunds
remaining gas to the caller. You should use this function to catch
expected conditions that indicate that a transaction should be
terminated.

if (msg.sender !=
owner({ revert();
}))

assert() Undoes all state changes and uses up all remaining gas — that is,
like the legacy throw() function, does not return unused gas.
You should never encounter this function in properly functioning
code.

assert(msg.sender
== owner);

require() Undoes all state changes, allows a return value, and refunds
remaining gas to the caller. You should use this function to pro-
actively execute code when prerequisite conditions have not
been met.

require(msg.sender
== owner);

CHAPTER 9 Writing Your Own Smart Contracts with Solidity 147

Chapter 9
Writing Your Own Smart
Contracts with Solidity

You learn about the basics of developing Solidity smart contracts for
Ethereum in Chapter 8. You also learn about difficulties encountered with
traditional supply chain applications and how Ethereum can help address

some of those problems. Developing distributed applications, or dApps, for the
Ethereum blockchain may look similar to writing code in other languages, but it
does have specific advantages over non-blockchain environments. However, you
have to approach the software development process a little differently when
working with blockchain.

Before starting to write a dApp for the Ethereum blockchain, make sure that you
understand what your dApp should do and why a blockchain environment is a
good fit. Getting these points cleared up in the beginning can help you avoid mis-
takes that waste time and money. Knowing the tips and tricks of blockchain devel-
opment before you start writing your own dApps will help you develop better
software than just learning as you go.

Ethereum dApps focus on providing some functionality that interacts with data
stored in the blockchain environment. Due to the design of blockchain technology,
each interaction with the blockchain has an associated cost. Understanding how
your dApp will have to pay for blockchain access is critical to getting it right the
first time. In this chapter, you learn how to use Solidity to write effective smart
contracts for the Ethereum blockchain environment.

IN THIS CHAPTER

» Creating your new smart contract

» Developing functions and events

» Protecting ownership and security

» Making your functions work

148 PART 3 Building Ethereum Distributed Blockchain Apps

Reviewing Supply Chain
Design Specification

As you discover in Chapter 8, a supply chain is a framework that connects produc-
ers to consumers and manages how products and services make their way toward
the consumers. In simple cases such as a farmer’s market, consumers buy their
produce directly from the growers. But in most other cases, at least one interme-
diary helps get products from producers to consumers. Intermediaries can provide
transportation, warehousing, retailing, and other value-added services.

Implementing a supply chain solution in a blockchain environment can reduce the
overall cost of providing products and services to consumers and make the entire
process more transparent. If you store every step of a product’s journey on the
blockchain, anyone can track the product along its way.

The first step in developing a supply chain dApp is to look at the data and actions
the dApp will need to provide the required functionality. For your supply chain
dApp to do its job, you need at least four types of data. Here is a list of the types of
data you’ll need:

» Products: This data uniquely identifies a specific product that is eventually
bought by a consumer.

» Participants: This type of data is a description of all supply chain participants,
including manufacturers, suppliers, shippers, and consumers.

» Registrations: This type of data is a snapshot of which participant owns a
product at a specific point in time. Registrations track products along the
supply chain.

» Payment token: Participants use payment tokens to pay one another for
ownership changes of products. For example, a supplier can purchase a
product from a manufacturer and use a payment token to pay the
manufacturer.

To provide minimal functionality, your supply chain dApp needs to include the
following capabilities:

» Initialize tokens: Establish an initial pool of payment tokens.

» Transfer tokens: Move tokens between accounts (that is, pay for products
with tokens).

» Authorize token payments: Allow an account to transfer tokens on behalf of
another account.

CHAPTER 9 Writing Your Own Smart Contracts with Solidity 149

» Create products: Create products and show product details.

» Create participants: Create participants and show participant details.

» Move products along the supply chain: Transfer product ownership to
another participant.

» Track a product: Show a product’s supply chain history.

The data and functionality your supply chain dApp will support fits nicely into two
groups: payment tokens and supply chain. Some of the data and functionality
applies to the supply chain, and other data and functionality applies to paying for
supply chain activity. You’ll separate your data and functionality into two smart
contracts.

Payment token smart contract
The payment token smart contract handles anything related to payments. Your sup-
ply chain participants will buy and sell products by using tokens instead of tradi-
tional currency. Although Ethereum includes its own currency, Ether, you will
implement your own token for supply chain participants to use. Although you
could just have participants pay each other by using Ether, a custom token helps
you to manage the entire process.

Defining your own token helps ensure that you limit supply chain participation to
only valid supply chain participants and can make transfers simpler. Instead of
allowing any Ethereum account to interact with your supply chain, only accounts
that own your tokens can pay for products. Therefore, the only way a participant
can enter the supply chain is to gain the trust of another participant. You have to
either sell your products to an existing participant or exchange some other cur-
rency for your tokens.

Many businesses use the token concept. Arcades often set up their games to use
physical tokens instead of real coins or paper money. You buy tokens using real
currency and then use the tokens to play each game. This approach makes break-
ing into game consoles less attractive because the games contain only tokens —
not real money. The tokens have value only inside the arcade. (Also, any lost or
misplaced tokens mean a profit for the house; a nice benefit if you’re issuing the
tokens.)

Multiple proposed standards for Ethereum tokens in the form of Ethereum Request
for Comments (ERC) documents exist. Ten of these proposals have been accepted to
become Ethereum Improvement Proposals (EIP). ERC-20 (now EIP-20) defines one
of the early standards for defining tokens for Ethereum. You’ll use the ERC/EIP-
20 standard for your tokens.

150 PART 3 Building Ethereum Distributed Blockchain Apps

ERC and EIP are used interchangeably. Technically, EIP refers to finalized ERC
documents. However, even though a proposal is finalized, such as EIP-20, you
still will see it referred to as ERC-20.

Your token smart contract will allow participants to acquire tokens and then
transfer them to other participants in exchange for moving products along the
supply chain. To complete this process, you need several data items and functions.
The data items you’ll define follow:

» totalSupply: The total number of tokens in circulation

» name: A descriptive name for your token

» decimals: The number of decimals to use when displaying token amounts

» symbol: A short identifier for your token

» balances: The current balance of each participating account, mapped to the
account’s address

» allowed: A list of number of tokens authorized for transfer between accounts,
mapped to the sender’s address

Your token smart contract will define six functions that allow users to manage
token transfers. The functions you’ll define are as follows:

» totalSupply(): Returns the current total number of tokens

» balanceOf(): Returns the current balance, in tokens, of a specific account

» allowance(): Returns the remaining number of tokens that are allowed to be
transferred from a specific source account to a specific target account

» transfer(): Transfers tokens from the caller to a specified target account

» approve(): Sets a number of tokens that are allowed to be transferred from
a specific source account to a specific target account

» transferFrom(): Transfers tokens from a specified source account to a
specified target account

Supply chain smart contract
Your second smart contract will contain the data and functionality to manage the
product, participant, and product transfer data. In other words, it will handle all
supply chain activity that isn’t related to payment. As you learn how to implement
supply chain functionality, you’ll probably think of more things that you’d like
your dApp to handle. That’s okay. The smart contracts you’ll develop in this book
are just a starting point. You can extend them to handle many more use cases.

CHAPTER 9 Writing Your Own Smart Contracts with Solidity 151

To store the supply chain data necessary for managing product migration toward
consumers, you’ll define the following data items:

» product structure: This data item stores data that defines a unique product
(model number, part number, serial number, product owner, cost, manufac-
tured time).

» participant structure: The participant structure stores data that defines a
unique participant (user name, password, participant type, Ethereum address).

» registration structure: The registration structure stores data that records a
transfer of a product from one owner to another as the product moves
toward the consumer (product ID, owner ID, transaction time, product owner
Ethereum address).

» p_id: The product ID uniquely identifies a product and is mapped to a
product structure.

» u_id: The participant ID uniquely identifies a participant and is mapped to a
participant structure.

» r_id: The registration ID uniquely identifies a registration and is mapped to a
registration structure.

Now that you know the data and functions you’ll need in your smart contracts, the
next step is to start writing code in Solidity.

Creating New Smart Contracts
In this section you create the files you need to implement the token and supply
chain smart contracts. To get started, follow these steps to create a new project
named SupplyChain, initialize it in Truffle, and launch VS Code for your new project:

You learn how to create projects, initialize them in Truffle, and use VS Code to edit
files and code for projects in Chapters 5 and 7. Review those chapters if you need
details for each step. (If you’d rather download the project files instead of creating
a new empty project, go to www.dummies.com/go/ethereumfd and extract the
project archive file to a directory of your choice.)

1. Open a command shell or PowerShell window.

2. Type the following to create a new project folder:

mkdir SupplyChain

152 PART 3 Building Ethereum Distributed Blockchain Apps

3. Change the current folder to the new project folder:

cd SupplyChain

4. Initialize the new project in Truffle:

truffle init

5. Launch VS Code for the new SupplyChain project:

code .

In VS Code, create three new smart contracts as follows. Click or tap SUPPLYCHAIN,
then Contracts, and then the New File button next to SUPPLYCHAIN. Type the fol-
lowing filenames to create each new file (make sure your filenames appear under
Contracts and look exactly like these). (If you download the project files, you don’t
have to do this.)

» erc20Interface.sol

» erc20Token.sol

» SupplyChain.sol

Now click or tap SUPPLYCHAIN and then Contracts to display your contracts. Your
VS Code Explorer view should look like Figure 9-1.

FIGURE 9-1:
Supply chain

starting smart
contracts in

VS Code.

CHAPTER 9 Writing Your Own Smart Contracts with Solidity 153

Don’t worry if you mistype a filename. Changing filenames in VS Code is easy. Just
click or tap the filename in VS Code Explorer, and press F2. Now you can type the
new filename. If you created your files in the wrong folder, you can fix that in VS
Code as well. Just drag them to the right place (under Contracts).

ERC-20 token interface
The first file you’ll edit is the interface for the ERC-20 token. An interface looks
just like a smart contract but doesn’t contain any executable code. Developers use
interfaces to define minimum functionality for groups of programs. When you
define an interface, you define the minimum data items and functions that you
want to be common among smart contracts that implement the interface.

ERC-20 tokens aren’t the only type of tokens in Ethereum. Another token stan-
dard that looks like it may challenge ERC-20’s popularity is ERC-223. You can find
out more about the ERC-223 token standard at https://medium.com/kinblog/
the-new-erc223-token-standard-8dddbf1a5909.

In our case, we’re going to use the standard ERC-20 (or EIP-20) token interface.
Every ERC-20 token that uses this interface is guaranteed to have the same mini-
mum data and functions. That’s the purpose of an interface. Your implementation
may have more data and functions, but you can count on the fact that it has at
least everything defined in the interface. In fact, if you use an interface and forget
to define a data item or function, the compiler generates an error and refuses to
compile the program.

To make sure that your token complies with the ERC-20 token standard, you use
the ERC-20 token interface. Click or tap the erc20Interface.sol tab in VS Code and
enter the following code:

// --

// ERC Token Standard #20 Interface

// https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

// --

pragma solidity ^0.4.24;

contract ERC20Interface {

 uint256 public totalSupply;

 function totalSupply() public view returns (uint);

 function balanceOf(address tokenOwner) public view returns (uint balance);

 function allowance(address tokenOwner, address spender) public view returns

(uint remaining);

154 PART 3 Building Ethereum Distributed Blockchain Apps

 function transfer(address to, uint tokens) public returns (bool success);

 function approve(address spender, uint tokens) public returns (bool

success);

 function transferFrom(address from, address to, uint tokens) public returns

(bool success);

 event Transfer(address indexed from, address indexed to, uint tokens);

 event Approval(address indexed tokenOwner, address indexed spender, uint

tokens);

}

This interface defines the single variable, six functions, and two events that every
token contract must implement to support the ERC-20 token standard. You’ll
learn what each line of code does in the next section, where you implement the
interface. At this point, just note that each line of code defines a variable, a func-
tion, or an event. There is no code that actually does anything.

ERC-20 token smart contract
After you define the interface, you can implement the code to make your token
smart contract work. Click or tap the erc20Token.sol tab in VS Code and enter the
following code:

// --

///Implements EIP20 token standard: https://github.com/ethereum/EIPs/blob/

master/EIPS/eip-20.md

// --

pragma solidity ^0.4.24;

import "./erc20Interface.sol";

contract ERC20Token is ERC20Interface {

}

You learned about the pragma statement in Chapter 7. The import statement tells
Solidity to open an external file and read it into this file to compile it, just as if you
had copied the contents of erc20Interface.sol into this file. You can use the import
statement as your projects grow to help you keep any single source code file from
growing too large to manage easily. If any source code file starts to get too big, you
can spilt it into multiple smaller files and import the pieces in the main file.

The last line in the code segment defines the smart contract. You use the contract
statement to define a smart contract named ERC20Token. When you define the
contract as ERC20token is ERC20Interface, you are telling Solidity that you

CHAPTER 9 Writing Your Own Smart Contracts with Solidity 155

intend to implement ERC20Interface in this file. Therefore, the compiler will check
to make sure that every item defined in the interface is implemented in this file.

The first step to make your token work is to add the data items you’ll need. Add
the following code between the two curly braces (after the contract statement):

 uint256 constant private MAX_UINT256 = 2**256 - 1;

 mapping (address => uint256) public balances;

 mapping (address => mapping (address => uint256)) public allowed;

 uint256 public totalSupply; // Total number of tokens

 string public name; // Descriptive name (i.e. For Dummies Token)

 uint8 public decimals; // How many decimals to use to display amounts

 string public symbol; // Short identifier for token (i.e. FDT)

These lines of source code define the data you’ll store on the blockchain for your
token. The first data item, MAX_UINT256, is defined as a constant, which means
that the value you assign to it can’t be changed at runtime. Solidity uses the **
symbol to denote exponentiation, so 3 squared is 3**2 in Solidity. The value of 2
raised to the 256 power minus 1 is stored in the MAX_UINT256 constant. Defining
MAX_UINT256 is a convenient way to store the largest possible value in a uint256
variable.

The balances and allowed data items are mappings. They exist to make it easy to
look up a balance or a list of token transfer allowances for an Ethereum account
address. The remaining data items are state variables that describe attributes of
your token.

State variables are stored in the blockchain, and storing data in the blockchain
costs gas. So you can conserve gas by minimizing how much and how often you
store blockchain data. Don’t define more state variables than you need. It is good
practice to declare the smallest uint size for the data you’ll store, which is why the
decimal variable is defined as uint8. When you define more complex data using
structs, size matters even more.

Supply chain smart contract
The next step in writing developing your supply chain dApp is to begin the defi-
nition of the supply chain smart contract. Click or tap the SupplyChain.sol tab in
VS Code and enter the following code:

pragma solidity ^0.4.24;

contract supplyChain {

156 PART 3 Building Ethereum Distributed Blockchain Apps

 uint32 public p_id = 0; // Product ID

 uint32 public u_id = 0; // Participant ID

 uint32 public r_id = 0; // Registration ID

}

This smart contract starts like the other smart contracts you’ve seen so far. Inside
the contract body, you define three state variables to store the highest ID for
products, participants, and registrations. The next sections define the details of
each type of supply chain data.

Product structure
The product structure defines the details for each unique product. Type the fol-
lowing code after the state variable definitions in the preceding section:

 struct product {

string modelNumber;

string partNumber;

string serialNumber;

address productOwner;

uint32 cost;

uint32 mfgTimeStamp;

 }

 mapping(uint32 => product) public products;

In addition to the product structure, the products mapping allows users to look
up a product from its product ID (p_id).

Participant structure
The participant structure defines the details for each unique participant. Type the
following code after the products mapping in the preceding section:

 struct participant {

string userName;

string password;

string participantType;

address participantAddress;

 }

 mapping(uint32 => participant) public participants;

In addition to the participant structure, the participants mapping allows users
to lookup a participant from its participant ID (u_id).

CHAPTER 9 Writing Your Own Smart Contracts with Solidity 157

Registration structure
The registration structure defines the details for each unique registration. A reg-
istration is defined as the point in time when a product’s owner changes from one
participant to another. Each registration represents a product moving along the
supply chain.

Type the following code after the participants mapping in the preceding section:

 struct registration {

uint32 productId;

uint32 ownerId;

uint32 trxTimeStamp;

address productOwner;

 }

 mapping(uint32 => registration) public registrations; // Registrations by

Registration ID (r_id)

 mapping(uint32 => uint32[]) public productTrack; // Registrations by

Product ID (p_id) / Movement track for a product

In addition to the product structure, the registrations mapping allows users to
look up a registration from its registration ID (r_id). The productTrack mapping
returns the supply chain movement history for a specified product (p_id).

Coding Primary Functions
After defining the basic contract structure and data items, the next step in devel-
oping your smart contracts is to write the code for each smart contract function.
Functions provide the actions of your smart contracts and define what your smart
contracts can do.

ERC-20 token functions
To define the actions your ERC-20 token smart contract should carry out, you
need to define its functions and provide the code for the body of each function.
Remember that your ERC-20 token smart contract implements an interface, so
you have to at least define the functions required in the interface. Note that you
can define more functions than those in the interface.

Click or tap the erc20Token.sol tab in VS Code and enter the code for each of the
following functions. (Start entering function source code after the symbol state
variable definition.)

158 PART 3 Building Ethereum Distributed Blockchain Apps

ERC-20 token constructor
A constructor is a special type of function that runs when the smart contract is
deployed to the blockchain. In the constructor, you place initialization steps that
are executed only when the contract is first stored in the blockchain. In the case of
the ERC-20 token, the constructor initializes the token’s attributes and allocates
the supply of tokens to the Ethereum address that deploys the smart contract.

Enter the following code to define the smart contract’s constructor:

 constructor(uint256 _initialAmount, string _tokenName,

uint8 _decimalUnits, string _tokenSymbol) public {

balances[msg.sender] = _initialAmount; // The creator owns all tokens

totalSupply = _initialAmount; // Update total token supply

name = _tokenName; // Token name

decimals = _decimalUnits; // Number of decimals

symbol = _tokenSymbol; // Token symbol

 }

You can use any naming convention for function parameters and variables. Many
Solidity developers use the underscore character as the first character for function
parameter names. That convention makes it easy to tell whether a data item is a
variable or a parameter passed into a function. In this book, parameter names
start with the underscore character.

The constructor code for the ERC-20 token is simple. When you deploy the smart
contract code to the blockchain, the smart contract assigns the token data items
to the provided parameters and assigns all initial tokens to the Ethereum account
address that deployed the smart contract.

Defining the transfer() function
The transfer() function transfers tokens from the calling address to a specified
address. Enter the following code after the constructor:

 function transfer(address _to, uint256 _value) public returns (bool

success) {

require(_value >= 0,"Cannot transfer negative amount.");

require(balances[msg.sender] >= _value,"Insufficient funds.");

balances[msg.sender] -= _value;

balances[_to] += _value;
return true;

 }

The transfer() function introduces the Solidity require() function, which pre-
vents functions from continuing unless a specific condition is met. If the require()

CHAPTER 9 Writing Your Own Smart Contracts with Solidity 159

condition is not satisfied, it returns a message to the caller and refunds any unused
gas. It provides a polite way to stop smart contract execution. In the case of the
transfer() function, you can transfer tokens only if the sender has a sufficient
balance to transfer. The require() condition validates that the sender has at least
as many tokens as the transfer requires; otherwise, it returns the "Insufficient
funds." string.

If the sender does have the required funds, you decrease the balance of the sender
and increase the balance of the receiver by the amount to transfer, and then return
a true value that tells the caller that the transfer was completed successfully.

Defining the transferFrom() function
The transferFrom() function transfers tokens from one specified address to
another specified address. Enter the following code after the transfer() function:

 function transferFrom(address _from, address _to, uint256 _value) public

returns (bool success) {

uint256 allowance = allowed[_from][msg.sender];

require(balances[_from] >= _value && allowance >= _value,"Insufficient

funds.");

balances[_from] -= _value;

balances[_to] += _value;
if (allowance < MAX_UINT256) {

allowed[_from][msg.sender] -= _value;

}

return true;

 }

The transferFrom() function transfers up to a pre-approved amount from one
address to another. The function looks up the pre-approved amount from the
allowed mapping and stores that value in the allowance variable. The function
calls the require() function to verify that the sender has a sufficient token
 balance to transfer, and then adjusts the balances of the sender and receiver. The
last step is to query the allowance variable and, if it is set, subtract the amount
transferred from the remaining allowance.

Defining the balanceOf() function
The balanceOf() function returns the number of tokens owned by a specified
address. Enter the following code after the transferFrom() function:

 function balanceOf(address _owner) public view returns (uint256 balance) {

return balances[_owner];

 }

160 PART 3 Building Ethereum Distributed Blockchain Apps

Defining the approve() function
The approve() function grants permission to transfer a specified number of
tokens from one address to another specified address. Enter the following code
after the balanceOf() function:

 function approve(address _spender, uint256 _value) public returns (bool

success) {

allowed[msg.sender][_spender] = _value;

return true;

 }

Defining the allowance() function
Th allowance() function returns the remaining number of approved tokens that
can be transferred from one address to another specified address. Enter the fol-
lowing code after the approve() function:

 function allowance(address _owner, address _spender) public view returns

(uint256 remaining) {

return allowed[_owner][_spender];

 }

Defining the totalsupply() function
The totalSupply() function returns the total number of tokens in circulation.
Enter the following code after the allowance() function:

 function totalSupply() public view returns (uint256 totSupp) {

return totalSupply;

 }

Supply chain functions
To define the functionality of your supply chain smart contract, you need to define
its functions and provide the code for the body of each function.

Click or tap the SupplyChain.sol tab in VS Code and enter the code for each of the
following functions. (Start entering function source code after the productTrack
mapping definition.)

CHAPTER 9 Writing Your Own Smart Contracts with Solidity 161

Defining the participant functions
The createParticipant() function increments the participant ID (u_id), creates
a new participant, and sets its attributes to the passed-in parameters. Enter the
following code after the productTrack mapping:

 function createParticipant(string _name, string _pass, address _pAdd,

string _pType) public returns (uint32){

uint32 userId = u_id++;
participants[userId].userName = _name ;

participants[userId].password = _pass;

participants[userId].participantAddress = _pAdd;

participants[userId].participantType = _pType;

return userId;

 }

The getParticipantDetails() function returns the attributes of the specified par-
ticipant (p_id). Enter the following code after the createParticipant() function:

 function getParticipantDetails(uint32 _p_id) public view returns

(string,address,string) {

return (participants[_p_id].userName,participants[_p_id].participantAddr

ess,participants[_p_id].participantType);

 }

Defining the product functions
The createProduct() function increments the product ID (p_id), creates a new
product, and sets its attributes to the passed-in values. Enter the following code
after the getParticipantDetails() function:

 function createProduct(uint32 _ownerId, string _modelNumber, string _

partNumber, string _serialNumber, uint32 _productCost) public returns

(uint32) {

if(keccak256(abi.encodePacked(participants[_ownerId].participantType))

== keccak256("Manufacturer")) {

uint32 productId = p_id++;

products[productId].modelNumber = _modelNumber;

products[productId].partNumber = _partNumber;

products[productId].serialNumber = _serialNumber;

products[productId].cost = _productCost;

products[productId].productOwner = participants[_ownerId].

participantAddress;

162 PART 3 Building Ethereum Distributed Blockchain Apps

products[productId].mfgTimeStamp = uint32(now);

return productId;

}

return 0;

 }

Unlike many other languages, you can’t directly compare strings in Solidity. You
have to first calculate a hash value of the string and then compare that number to
the hash value of another string. If the two hash values are equal, the strings are
equal. Solidity includes the keccak256() function to calculate hashes. To calculate
a hash value that you can use in a comparison, you have to call the convert to
string function by using the api.encodePacked() function, and then call the kec-
cak256() function on the encoded string.

The getProductDetails() function returns the attributes of the specified product
(p_id). Enter the following code after the createProduct() function:

 function getProductDetails(uint32 _productId) public view returns

(string,string,string,uint32,address,uint32){

return (products[_productId].modelNumber,products[_productId].partNumber,

products[_productId].serialNumber,products[_productId].cost,

products[_productId].productOwner,products[_productId].

mfgTimeStamp);

 }

Defining the supply chain movement functions
The transferToOwner() function records movement along the supply chain. This
function transfers the ownership of a specified product from one supply chain
participant to another. It creates a new registrations struct, based on r_id, assigns
its data items from the passed-in parameters, and pushes the new struct onto the
productTrack list. Enter the following code after the getProductDetails()
function:

 function transferToOwner(uint32 _user1Id ,uint32 _user2Id, uint32 _prodId)

public returns(bool) {

participant memory p1 = participants[_user1Id];

participant memory p2 = participants[_user2Id];

uint32 registration_id = r_id++;

registrations[registration_id].productId = _prodId;

registrations[registration_id].productOwner = p2.participantAddress;

registrations[registration_id].ownerId = _user2Id;

CHAPTER 9 Writing Your Own Smart Contracts with Solidity 163

registrations[registration_id].trxTimeStamp = uint32(now);

products[_prodId].productOwner = p2.participantAddress;

productTrack[_prodId].push(registration_id);

return (true);

 }

You define two local variables, p1 and p2, to temporarily hold the source and tar-
get participant data. However, Solidity would create these by default as storage
variables because they directly reference storage structs. You have to tell Solidity
to make these variable local by using the memory modifier. That reduces the gas
cost of your smart contract.

The getProductTrack() function returns the registration history for a specified
product. This function shows the path a product has taken along the supply chain
from its original producer. This function provides the current status of any prod-
uct in the supply chain. Enter the following code after the transferToOwner()
function:

 function getProductTrack(uint32 _prodId) external view returns (uint32[]) {

return productTrack[_prodId];

 }

The getRegistrationDetails() function returns the attributes of the specified
registration (r_id). Enter the following code after the getProductTrack()
function:

 function getRegistrationDetails(uint32 _regId) public view returns

(uint32,uint32,address,uint32) {

registration memory r = registrations[_regId];

return (r.productId,r.ownerId,r.productOwner,r.trxTimeStamp);

 }

Using Events
Smart contract code runs on each EVM across the Ethereum network. It is essen-
tially server-side code. One of the difficulties you encounter when running server-
side code is communicating with the client. Smart contracts don’t just run
arbitrarily — they have to be called by a client or another smart contract.

164 PART 3 Building Ethereum Distributed Blockchain Apps

Communication is pretty easy when a client or smart contract calls another smart
contract function. The caller sends input parameters and waits to receive any
return values.

One of the more interesting features of Solidity is that its functions can return
multiple values. Many languages allow functions to return only a single value, so
developers have to figure out ways to pack multiple data items into return strings
and unpack them on the client side. Take a look at your getProductDetails() and
getParticipantDetails() functions in the SupplyChain.sol file to see how Solid-
ity passes back multiple return values.

Sometimes the caller doesn’t want to wait around for a function to finish. Many
programs operate under a different flow control model. In an event-driven model,
one program waits for something to happen and then responds. VS Code operates
in an event-driven model. Figure 9-2 shows VS Code as you edit the SupplyChain.
sol smart contract.

Your VS Code window should look like the one in the figure. The program is run-
ning, but it isn’t doing much right now. In fact, VS Code is waiting on you to do
something. After you launch VS Code and open SupplyChain.sol, VS Code just
waits for you to tell it what to do. You can type text into the editor, click or tap
menu items or buttons, or press function keys of control key combinations.

You can code event-driven programs in Solidity, too. Solidity allows you to define
events in your smart contracts and then trigger those events whenever you want to.
If your calling program is waiting, or listening, for these events, it can respond to
the events and carry out some of its own functions. In the case of VS Code, it is

FIGURE 9-2:
Editing

 SupplyChain.sol
in VS Code.

CHAPTER 9 Writing Your Own Smart Contracts with Solidity 165

listening for many events, including the Ctrl+S keystroke event. When VS Code
sees that the Ctrl-S event has occurred, it runs its Save File function. You can code
your smart contracts the same way.

Event-driven programming is often described as a publish-subscribe approach to
program flow. The called programs generate, or publish, events when interesting
things happen. The called program doesn’t care what programs are listening for
the events, if any. Publishing events allows the called programs to communicate
asynchronously with any listening programs. Programs that want to listen for, and
respond to, events must subscribe to those events. It works just like subscribing
to a local newspaper. The newspaper publishes a paper every day, but only its
subscribers receive the paper.

There are three steps to implanting events in Solidity:

1. Define the event.

Use the Solidity event statement to define the event, give it a name, and define
the data it passes when it triggers.

2. Trigger the event.

Use the Solidity emit statement to trigger a previously defined event and pass
data to it.

3. Receive and respond to the event.

You learn how to receive and respond to events in Chapter 10.

Defining events
Your supply chain smart contracts will use three events. The ERC-20 token inter-
face requires that you implement two of the events, and you’ll define the other
one in the main supply chain smart contract.

Click or tap the erc20Interface.sol tab in VS Code to switch to the ERC-20 interface
code. Look at the last two lines of code:

 event Transfer(address indexed from, address indexed to, uint tokens);

 event Approval(address indexed tokenOwner, address indexed spender,

uint tokens);

These lines define the Transfer and Approval events. When the Transfer event
triggers, it tells any program that is listening for this event that a transfer has just
occurred, and that the transfer consisted of send tokens from one address to
another. When the Approval event triggers, it tells any program that is listening
for this event that a new approval was just authorized for a token owner to

166 PART 3 Building Ethereum Distributed Blockchain Apps

transfer up to some number of tokens to a specific sender. It is up to the listening
programs to do something with these events. Your smart contracts need to only
define and trigger the events.

Click or tap the SupplyChain.sol tab in VS Code to switch to the supply chain smart
contract code. Scroll down to the definitions for the two mappings after the reg-
istrations struct. This should be around line 35. Type the following text on a
new line:

 event Transfer(uint32 productId);

After you enter this new code, the last few lines of your SupplyChain.sol code
should look like Figure 9-3.

You will use your new Transfer event every time you create a new registration.
That means you’ll use the event to let any listening program know that a product
has just been transferred from one supply chain participant to another. The
Transfer event sends the transferred product ID to the listening program to tell
it what product just moved. The event mechanism makes it easy for external pro-
grams to monitor changes that your smart contracts carry out.

Triggering events
After you define the events you’ll need in your smart contracts, the next step is to
trigger each event at the right time. All you really have to do here is trigger the
event in your code when you carry out the action you want to communicate. In
other words, you should trigger the Transfer event at the point where your code
carries out the transfer action.

In Solidity, you use the emit statement to trigger an event. When you use the emit
statement, it is like calling a function. You tell Solidity what event to trigger, and
then you provide parameter values, as you do with a function.

Click or tap the erc20Interface.sol tab in VS Code to switch to the ERC-20 smart
contract code. Update your transfer(), transferFrom(), and approve() func-
tions to include the emit statements shown here (new code is in bold):

FIGURE 9-3:
Defining an event

in VS Code.

CHAPTER 9 Writing Your Own Smart Contracts with Solidity 167

 function transfer(address _to, uint256 _value) public returns

(bool success) {

require(balances[msg.sender] >= _value,"Insufficient funds for transfer

source.");

balances[msg.sender] -= _value;

balances[_to] += _value;
emit Transfer(msg.sender, _to, _value);

return true;

 }

 function transferFrom(address _from, address _to, uint256 _value) public

returns (bool success) {

uint256 allowance = allowed[_from][msg.sender];

require(balances[_from] >= _value && allowance >= _value,"Insufficient

allowed funds for transfer source.");

balances[_to] += _value;
balances[_from] -= _value;

if (allowance < MAX_UINT256) {

allowed[_from][msg.sender] -= _value;

}

emit Transfer(_from, _to, _value);

return true;

 }

 function approve(address _spender, uint256 _value) public returns

(bool success) {

allowed[msg.sender][_spender] = _value;

emit Approval(msg.sender, _spender, _value);

return true;

 }

You can call the emit statement anywhere in your smart contract code. In your
ERC-20 token smart contract, you have added the emit statement in three places
to signal that some notable action has just occurred.

Click or tap the SupplyChain.sol tab in VS Code to switch to the supply chain smart
contract code. Update your transferToOwner() function to include the emit
statement shown here (new code is in bold):

 function transferToOwner(uint32 _user1Id ,uint32 _user2Id, uint32 _prodId)

onlyOwner(_prodId) public returns(bool) {

participant memory p1 = participants[_user1Id];

participant memory p2 = participants[_user2Id];

uint32 registration_id = r_id++;

registrations[registration_id].productId = _prodId;

168 PART 3 Building Ethereum Distributed Blockchain Apps

registrations[registration_id].productOwner = p2.participantAddress;

registrations[registration_id].ownerId = _user2Id;

registrations[registration_id].trxTimeStamp = uint32(now);

products[_prodId].productOwner = p2.participantAddress;

productTrack[_prodId].push(registration_id);

emit Transfer(_prodId);

return (true);

 }

Introducing Ownership
One of the difficulties you’ll encounter when developing blockchain applications
is restricting the execution of sensitive functions. Remember that your smart con-
tract code runs on all EVMs. All EVMs have the complete code for your smart con-
tracts, so limiting execution requires careful planning.

Modifiers can make data items and functions unavailable for external entities to
access or run. Don’t make the mistake of thinking modifiers make smart contracts
secure. They can help reduce the availability to external programs, but they don’t
provide complete security. Remember that data on a public blockchain is there for
anyone to see.

Every smart contract invocation has a caller address. Each EVM knows which
account carries out each action. In Solidity, you can access the calling account by
referencing msg.sender. Open the erc20Token.sol smart contract and look at the
first line of the constructor body:

 constructor(uint256 _initialAmount, string _tokenName,

uint8 _decimalUnits, string _tokenSymbol) public {

balances[msg.sender] = _initialAmount; // The creator owns all tokens

totalSupply = _initialAmount; // Update total token supply

name = _tokenName; // Token name

decimals = _decimalUnits; // Number of decimals

symbol = _tokenSymbol; // Token symbol

 }

The first thing you do when the constructor executes (that is, when you deploy
this smart contract), is to assign the total initial number of tokens to the calling
address’s balance value. Solidity stores the value of the caller’s address in the msg.
sender value, so you can use that to refer to the sender in your code.

CHAPTER 9 Writing Your Own Smart Contracts with Solidity 169

You can use the msg.sender value also to define ownership and enforce access
restrictions in your smart contract code. In your supply chain smart contract, you
don’t want anyone to be able to transfer a product to another participant. Doing so
would allow one participant to steal products from others. The transfer process in
your supply chain smart contract transfers the ownership of a product as the
product moves along the supply chain. It makes sense that only the current owner
should be allowed to transfer a product to another owner.

Ownership is a common concern when buying and selling products. If you sell a
car, you have to sign the title over to the new owner. Possession of the car’s title
proves ownership. As the car’s current owner, you must ensure that no one else
can transfer the title of your car to another owner.

Solidity provides modifiers to help make the task of enforcing ownership easier. A
modifier is like a lightweight function. It has a name, input parameters, and a
body, but it doesn’t support return values.

Open the SupplyChain.sol smart contract in VS Code and add the following code
after the createProduct() function:

 modifier onlyOwner(uint32 _productId) {

require(msg.sender == products[_productId].productOwner);

_;

 }

This code defines the onlyOwner modifier. You can use this modifier on any func-
tion to allow only a product’s current owner to execute that function. The modifier
takes a product ID as an input parameter and checks to see if the msg.sender is
the same address as the product’s current owner address. If the two values match,
the modifier is satisfied and the function proceeds. If the two address values do
not match, msg.sender is not allowed to run the function and control returns to
the caller.

When you write modifiers, don’t forget to add the _; line as the last line in the
modifier body. This tells Solidity to proceed to the function that you have modi-
fied. You’ll only get to that line if the modifier body is satisfied (that is, the condi-
tion in the body is true.)

170 PART 3 Building Ethereum Distributed Blockchain Apps

You invoke modifiers by adding them to existing functions. Scroll to the trans-
ferToOwner() function in the supply chain smart contract code and add the
onlyOwner(_prodId) modifier to the function header. Your modified function
header should look like this:

 function transferToOwner(uint32 _user1Id ,uint32 _user2Id, uint32 _prodId)

onlyOwner(_prodId) public returns(bool) {

This modifier tells Solidity that before you execute the transferToOwner() func-
tion, execute the onlyOwner() modifier. The modifier determines whether the
function caller (msg.sender) is the owner of product prodId. If msg.sender is the
product owner, the transferToOwner() function proceeds. If not, it just returns
without transferring the product.

You can use modifiers to carry out any validation steps that should occur before
you run code in a function. Validating ownership is one of the more common uses
of modifiers.

Designing for Security
Solidity smart contract code can be as insecure as any other software. Just because
your code runs in a blockchain environment doesn’t mean that it’s secure. You
have to keep security in mind throughout the entire software development pro-
cess. Although you need to consider many things when developing secure soft-
ware in any environment, developing blockchain dApps requires that you pay
special attention to the distributed nature of the blockchain.

For a great online resource for Ethereum Smart Contract Security Best Practices,
go to https://consensys.github.io/smart-contract-best-practices. Read
through the explanations and recommendations in this resource for a more com-
plete understanding of security issues in Ethereum application development.

When you’re developing Ethereum dApps, you’ll have to avoid many security
weaknesses. Table 9-1 lists a few of the most common security mistakes new
Ethereum developers tend to overlook.

CHAPTER 9 Writing Your Own Smart Contracts with Solidity 171

Implementing Minimal Functionality
If you’ve followed the discussion throughout this chapter, your ERC-20 and sup-
ply chain smart contracts should be complete and clean. That is, they should com-
pile with no errors. In VS Code, press the F5 key to start the Solidity compiler.
Figure 9-4 shows the results of the Solidity compiler.

Note that the Output tab shows a warning. In the SupplyChain.sol smart contract’s
transferToOwner() function, you defined the p1 variable but never used it in the
function.

The compiler warns you that you left an unused variable in your code. Although
this is a harmless warning, don’t make a habit of ignoring compiler warnings.
They exist for good reasons, and you should fix each one.

Click or tap the Problems tab to see a list of all problems the compile encountered,
as shown in Figure 9-5. Click or tap any problem. VS Code highlights the problem
and highlights the line in your source code that corresponds to the problem. If you
hover your cursor over the problem or the line of code, more help appears in a
pop-up. VS Code provides multiple ways to help you identify and fix problems
with your code.

TABLE 9-1	 Common Ethereum Security Mistakes
Security Mistake Description How to Avoid

Lack of randomness Because smart contract code runs on every EVM,
generating random numbers can cause code to
run differently on different EVMs.

Use only random numbers
that do not affect stored data
or smart contract execution
flow.

Allowing re-entrancy The call function forwards all the received gas
to the called function. If your code allows a func-
tion to run multiple times before changing state
data, that code could allow multiple changes,
such as multiple withdrawals.

Always update state data
before transferring control to
another function.

Not checking for over-
flow and underflow

Incrementing an integer larger than its maximum
value or decrementing an integer smaller than
the minimum value causes an error that reverts
a smart contract.

Always check to make sure
that increment and decre-
ment operations do not over-
flow or underflow.

Permitting delegate-
call with visible
functions

Delegatecall allows a smart contract to exe-
cute a function from another contract, running it
using the calling contract’s address. Public or
external functions that modify state may be able
to do so without being detected.

Limit the use of public and
external functions that mod-
ify state data.

172 PART 3 Building Ethereum Distributed Blockchain Apps

If your smart contracts don’t compile cleanly, review the code to make sure that what
you entered is exactly what you see in the book. Pay attention to capitalization — it
matters. Another common problem is copying code and pasting it into an editor.
Make sure that you copied just what you expected, and look closely at copied quotes.
In many cases, copied and pasted quotes result in a quote that won’t compile. If you
suspect that problem, just backspace over any pasted quotes and type them directly.

Because it is so easy to introduce minor errors that can stop code from compiling,
keep your code as simple as possible As you develop your own smart contracts,
implement only the minimal functionality first. You can always add more features
after you get the simple code working.

FIGURE 9-5:
Compiler

problems.

FIGURE 9-4:
Compiler output.

4Testing and
Deploying
Ethereum Apps

IN THIS PART . . .

Test Ethereum apps.

Debug and maintain your Ethereum apps.

Integrate legacy applications with Ethereum apps.

CHAPTER 10 Testing Ethereum Apps 175

Chapter 10
Testing Ethereum Apps

In Chapter 9, you learn about writing smart contract software in Solidity.
Although writing source code is the most visible phase in the software develop-
ment lifecycle, it is only one part of the complete process. Of course, before you

write any code, you should spend time planning and designing your application.
Those phases should leave you with a clear specification document that contains
the requirements your software must satisfy. After you have an application that
compiles, you’re ready to test it to see whether it does what it’s supposed to do.

Testing software is more than just seeing whether it runs without obvious errors.
Testing software ensures that it does what it is supposed to do, doesn’t do what it
isn’t supposed to do, and fulfills the requirements set for the software in the first
place.

All too often, a customer agrees to pay for software that does tasks A, B, and C, but
ends up getting a different program that carries out tasks C, D, and E. It may be
somewhat similar to what was intended, but software developers have a tendency
to augment customer requests or at least interpret the needs differently. Software
testing doesn’t alter or control the scope of a software project, but it does help
validate that the software meets its design goals. Meeting design goals ensures
that all stakeholders in the software development process are satisfied with the
result of the development process. Testing is the only way to see if your software
really does what it’s supposed to do. In this chapter you learn how to test your
smart contracts in a blockchain environment.

IN THIS CHAPTER

» Planning to test your application

» Deploying your application to a test
blockchain

» Fixing bugs

» Managing source code

176 PART 4 Testing and Deploying Ethereum Apps

Understanding Ethereum dApp Testing
Testing software that runs in a blockchain environment is a little different from
testing traditional software applications. Because smart contract code runs in the
EVM, you must have an EVM running first. Then you compile your smart contracts
and deploy them to your blockchain. After that, you create transactions that call
your smart contracts and cause them to carry out tasks. With careful planning,
your tests should be able to simulate how your smart contracts will operate in a
production environment.

Writing tests from the beginning
The smart contract testing process must start even before you write any software.
Waiting to develop tests until after you write the code will take longer and leave
more potential gaps in your test coverage. The best time to design tests for your
software is when you define the requirements for your software because it makes
you think through the code execution and boundaries, which results in better code
design. For example If you know you’ll be testing to see if you can overflow a vari-
able, you’ll likely be more apt to write the code up front that doesn’t overflow.

Choosing the right test blockchain
You have several blockchain options for testing your smart contracts, and each
one has advantages and disadvantages. Table 10-1 lists the smart contract test
blockchain options and the pros and cons of each one.

Most smart contract developers test their software first using a local private net-
work and then using a public test network. Then they finally deploy to the live
blockchain. Using this graduated approach makes it possible to find and fix many
of the bugs found in smart contracts before deploying the code to networks, where
many users can see it and you have to pay for transactions.

TABLE 10-1	 Smart contract test blockchain options
Type of blockchain Pros Cons

Live, public The environment is live — no
simulations

Slow transactions; costly

Test, public (for example,
Ropsten)

Similar to a live environment, but
far less costly

Somewhat slow transactions; little or no
mining activity

Local, private (for exam-
ple, Ganache)

Fast, free transactions; easy to
reset to a new blockchain

No mining activity; difficult to simulate the
effect of many network nodes

CHAPTER 10 Testing Ethereum Apps 177

Learning the steps in the testing lifecycle
The process of testing smart contracts is the same, regardless of the type of net-
work you choose. You’ll follow these steps over and over again to test your smart
contracts running on the Ethereum blockchain:

1. Write smart contract code and test cases.

2. Compile code.

3. Deploy code to a blockchain.

4. Run test cases.

5. Identify failure causes and propose changes to address failures.

6. Go to Step 1.

Although most software developers think that the code they write the first time is
correct, testing often finds bugs. These bugs can be the result of sloppy program-
ming, a lack of understanding of what was requested, or simply oversights.
Regardless of the cause, bugs allow software to operate in ways that do not meet
its design goals.

Testing should be thorough enough to execute software in a manner that validates
how it operates in a variety of situations. These situations should simulate the
activities of both benevolent and malicious users. For every bug encountered, you
must try to determine the cause of the flaw, and then return as much information
as possible to developers so that they can change the application to remove all
flaws found in testing. This process often iterates multiple times, until all tests
complete successfully, at which point your software is ready for production.

Testing for software quality
Test cases can be simple commands to check how well functions work or elaborate
sets of programs and scripts that run automatically to exercise your smart con-
tract functions. Either way, the point is to run your software in a way that lets you
validate that it works as intended and helps you identify any gaps in
functionality.

Don’t skimp on testing your smart contract code. Any code that you deploy to the
live blockchain is immutable — and so are any bugs. The only way to mitigate
bugs in smart contract code is to just stop using that code.

If you do deploy smart contracts with bugs, you’ll have to tell your clients to stop
using the bad code and use the new, fixed code that you deployed to a new address.
You’ll need to do this in a way that ensures that all old data written to the

blockchain (before you fixed your bug) is still valid and accessible, and that the old
buggy smart contract code is never used again. In short, it is much easier to find
all bugs in testing before you deploy to a live blockchain.

Deploying a dApp to a Test
Ethereum Blockchain

Before you can test your smart contracts, you must deploy them to the blockchain.
In the last section, you learned that you can use multiple blockchains to test your
smart contracts. In Chapter 5, you downloaded and installed the Ganache personal
blockchain. You’ll use that blockchain for your initial smart contract tests. Ganache
makes it easy to set up and launch your own personal blockchain, which works
well as a live blockchain simulator.

Telling Truffle to use the Ganache
blockchain
The first step in setting up tests on a private local blockchain is to let Truffle know
how to connect to the blockchain network. In Chapter 7, you set up a new project
and modified the truffle-config.js file to tell Truffle to use the Ganache block-
chain. You’ll need to edit the truffle-config.js file for each project you use to write
smart contract code, including the supplyChain project you used in Chapter 9 and
will continue to use in this chapter.

Follow these steps to hook up Truffle and Ganache:

1. Get the blockchain address from the Ganache settings window.

Launch Ganache, and then click or tap the gear (Settings) icon, in the upper-
right corner of the Ganache window. Note the hostname, port number, and
network ID values. Figure 10-1 is the Ganache settings window with default
values. You can also get the host name and port number from the main
window. The RPC SERVER value displays the host name and port number
separated by a colon.

2. Launch Visual Studio Code (VS Code) for your project (SupplyChain).

Open a Windows Command prompt or PowerShell (my favorite) and navigate
to your project directory (SupplyChain.) From here, just enter the following
command:

code .

178 PART 4 Testing and Deploying Ethereum Apps

CHAPTER 10 Testing Ethereum Apps 179

The code command launches VS Code, and the period tells VS Code to use the
current directory as the current project.

3. Modify your Truffle project configuration file to reference the Ganache
blockchain.

Click or tap truffle-config.js on the left side of your VS Code window to open
the file. Add the sections shown in Figure 10-2. Then save the file (choose
File ➪  Save or press Ctrl+S).

FIGURE 10-1:
Ganache settings

window.

FIGURE 10-2:
Modified Truffle

project
 configuration file.

180 PART 4 Testing and Deploying Ethereum Apps

When you finish editing the truffle.js file, the uncommented lines (lines that don’t
start with /*, *, or */) should look like this:

module.exports = {
 networks: {
 development: {

host: "127.0.0.1",
port: 7545,
network_id: "*" // Match any network id

 }
 }
};

Deploying your code to the
Ganache blockchain
After Truffle knows to use the Ganache blockchain, you can deploy your smart
contract code to the Ganache test blockchain. Truffle will deploy your smart con-
tracts based on JavaScript instruction files you place in the migrations folder.

Make sure that you have a file in your migrations folder named 2_contracts_
migrations.js with the following contents:

var erc20Token = artifacts.require("./erc20Token.sol");
var SupplyChain = artifacts.require("./SupplyChain.sol");

module.exports = function(deployer) {
 deployer.deploy(erc20Token, 10000, "MGS Token", 18, "MGS");
 deployer.deploy(SupplyChain);
};

Although you can enter the following commands from any Windows command
prompt or PowerShell, you can also use the Terminal tab in VS Code (which gives
you access to Windows PowerShell from within VS Code.) All three options let you
type operating system commands. (Make sure that your SupplyChain project
folder is your current folder.)

If you don’t see a terminal tab at the bottom of your VS Code window, choose
 Terminal ➪ New Terminal from the menu bar.

At the command prompt, type the following to compile your code and deploy it to
the Ganache blockchain:

 truffle deploy --reset

CHAPTER 10 Testing Ethereum Apps 181

This command returns the addresses of each newly deployed smart contract.
The --reset option tells Truffle to replace your smart contracts if they have
already been deployed. After you deploy each of your smart contracts, you’re ready
to start testing them.

Writing Tests for Ethereum dApps
You have three common options for writing tests for Solidity smart contracts:

» Command line interaction

» Solidity smart contracts

» JavaScript

To define tests, command line interaction and Solidity smart contracts use the
Solidity language, and the third option uses the JavaScript language. In this
section, you learn how to write tests using Solidity at the command line and
JavaScript. The main advantage of using Solidity is that you’ll be using the same
language for testing that you used to develop your code.

The third option, JavaScript, is also a popular option for writing tests. The Java
Script approach provides many more options for writing complex test cases.

Testing using the command line
If you need to carry out a simple test of a smart contract, command line testing
may be sufficient. It’s quick and flexible but not easily repeatable. You should be
writing formal test cases for each smart contract as you develop the smart con-
tract. You’ll learn about how to do that in the next section. However, you will
commonly need to create a quick test to see if some aspect of your smart contract
is doing what it should be doing. Command line testing may be the easiest way to
create a simple, one-time test.

The first step in creating a command line test is to get the smart contract’s
address. You need that address to access any of the smart contract’s public data or
functions. Take a look at the output you saw when you deployed your smart con-
tracts. Figure 10-3 shows the output of deploying the SupplyChain contracts.

Note the two Saving artifacts. . . messages. Those messages tell you that Truffle
saved the addresses and other descriptive information related to each deployed
smart contract. If you want to find the address of any deployed contract, you only
have to ask Truffle for it.

182 PART 4 Testing and Deploying Ethereum Apps

You can interact with your smart contracts from the Truffle console. From your
operating system command prompt, type the following command to start the
Truffle console:

truffle console

From here, you’ll enter your commands to test smart contracts.

Remember that you can enter commands at the Windows command prompt, at
the Windows PowerShell, or by using the Terminal tab in VS Code. As long as your
current folder is your project folder, you can enter commands in any of these three
shells.

At a truffle console prompt, enter the following command:

supplyChain.deployed().then(function(instance) {return instance })

This command tells Truffle to search the artifacts for deployed smart contracts
and return the address of the smart contract named supplyChain in the variable
named instance. After you know the address of your smart contract, you can
access its data and functions.

The next step is to access your smart contract’s data and functions to see if your
code is operating properly. In general, you want to write tests that ensure that
your code is doing what it should be doing and doesn’t do anything it shouldn’t
do. The second goal is much harder to accomplish. You need to think of all the
things users could try that could cause your code to do things it shouldn’t do.

Here is a brief list of things you should test for with each smart contract:

» Overflows and underflows: Make sure that your code doesn’t allow num-
bers to become larger than the largest valid value or smaller than the smallest
valid value. Either situation will cause an error.

» Valid return values: Ensure that each function returns values that are valid
for the caller. In some cases the return value is calculated. Your tests should
ensure that any calculated return values are always valid.

FIGURE 10-3:
Deployment

output.

CHAPTER 10 Testing Ethereum Apps 183

» Boundary conditions: Always test that your code handles data that meets or
exceeds expected limits.

» Iteration limits: Test each looping structure to ensure that it doesn’t iterate
more times than you intend and burn up all your gas.

» Input and output data formats: Test your code to make sure that it handles
data provided or returned in unexpected formats.

» Input and output data validation: Ensure that your code either sanitizes or
rejects invalid characters or sequences of characters.

After you know the objectives for testing your code, you can invoke your smart
contract’s functions and examine the return values. If you need to provide differ-
ent Ethereum account addresses, remember that Ganache provides you with ten
addresses by default. Figure 10-4 shows the main Ganache window with the first
seven accounts listed.

Note in the figure that the balance of the first account is lower than the rest.
You used the first account by default to deploy your smart contracts. The cost of
deploying those smart contracts was deducted from that account’s ETH balance.

FIGURE 10-4:
Ganache

accounts list.

184 PART 4 Testing and Deploying Ethereum Apps

You’ll use the account addresses from Ganache to define supplyChain partici-
pants. Enter the following three commands at the Truffle console prompt to create
three supplyChain participants:

supplyChain.deployed().then(function(instance) {return instance.createParticipan

t("A","passA","0x436f6e677261747320796f7520666f756e642045",

"Manufacturer") });

supplyChain.deployed().then(function(instance) {return instance.createParticipan

t("B","passB","0x6173746572206567672120452d6d61696c20676d",

"Supplier") });

supplyChain.deployed().then(function(instance) {return instance.createParticipan

t("C","passC","0x61726b40676d61726b2e636f6d20746f2077696e",

"Consumer") });

You can look at the details returned from each of these commands to see what
happened, but you don’t need to read through everything at this point. The easiest
way to see if your functions worked as planned is to ask your smart contract to tell
you. You wrote a function to return to you the details of a participant, so you can
use that function to see if your data was stored. Type these commands to get the
participant details for the three participants you just created:

supplyChain.deployed().then(function(instance) {return instance.

getParticipantDetails(0)});

supplyChain.deployed().then(function(instance) {return instance.

getParticipantDetails(1)});

supplyChain.deployed().then(function(instance) {return instance.

getParticipantDetails(2)});

Figure 10-5 shows the output from these three commands. The output isn’t pretty,
but you can see that the three participants you created are all there.

You can use the syntax of these commands to write your own simple tests to see
how your smart contracts function. Before you learn about more complex tests,
you’ll need to know one important feature of command line testing. Enter these
commands to add a product, and then transfer that product to participant B (the
supplier):

FIGURE 10-5:
Results of

getParticipant
Details().

CHAPTER 10 Testing Ethereum Apps 185

supplyChain.deployed().then(function(instance) {return instance.createProduct(0,

"prodABC", "100", "123", 11) });

supplyChain.deployed().then(function(instance) {return instance.transferToOwner

(0, 1, 0) });

Now you want to transfer product 0 from the supplier (participant 1) to the con-
sumer (participant 2). But the transferToOwner() function allows only the prod-
uct’s owner to transfer ownership to another owner. By default, all commands you
enter at the Truffle console run as the first Ganache account. If you want to run a
test command as another account (and you do), you have to tell Truffle. Enter the
following command to transfer product 0 from the supplier (participant 1) to the
consumer (participant 2):

supplyChain.deployed().then(function(instance) {return instance.transferToOwner

(1, 2, 0, {from: "0x6173746572206567672120452d6d61696c20676d"

}) });

Adding the from: clause allows you to use a different address as the transaction’s
sender.

Writing test cases in JavaScript
You can test your smart contracts from the command line, but your options are
limited. Every time you test your code, you have to either type each command or
copy it from a saved file. A much better way to test code is to write test cases for
each contract as you write the contract. If you do this, Truffle will help you organ-
ize your test cases and run them at the same time. That way, you can run compre-
hensive tests any time you make changes to your smart contracts.

Note that your project folder includes a subfolder named test, which is where you’ll
put your test code. But you don’t have to create any script files to test your code on
your own. Truffle will help you get started. Enter the following commands at the
operating system command prompt (with your project folder as the current folder)
to create initial test files for the ERC-20 token and supplyChain smart contracts:

truffle create test erc20token
truffle create test supplyChain

Click or tap the test folder in VS Code Explorer. You should see two new files, erc-
20token.js and supply_chain.js. These two new files are the starting JavaScript
test cases that Truffle created for you. You enter your test case statements into
each of these files to test your smart contracts. Open each of these JavaScript files
in VS Code. The default files don’t do much. They just fetch the deployed address
of the smart contract and then return. You can add code in these files to run func-
tions, access blockchain data, and run your smart contracts through their paces.

186 PART 4 Testing and Deploying Ethereum Apps

The first step in making these test cases functional is to import the smart contract
you’re testing. Open the supply_chain.js file and add the following line of code to
the top:

var SupplyChain = artifacts.require('./SupplyChain.sol');

This line of code fetches the address of the deployed smart contract and stores it
in the SupplyChain variable. After the test case has the smart contract address,
you can automate many of the tests you ran at the command line. Replace the
remaining lines in the supply_chain.js file with the following lines of code to
carry out the same tests from the previous section:

contract('SupplyChain', async accounts => {

 it("should create a Participant", async () => {

 let instance = await SupplyChain.deployed();

 let participantId = await

instance.createParticipant("A","passA","0x436f6e677261747320796f

7520666f756e642045","Manufacturer");

 let participant = await instance.participants(0);

 assert.equal(participant[0], "A");

 assert.equal(participant[2], "Manufacturer");

 participantId = await

instance.createParticipant("B","passB","0x6173746572206567672120

452d6d61696c20676d","Supplier");

 participant = await instance.participants(1);

 assert.equal(participant[0], "B");

 assert.equal(participant[2], "Supplier");

 participantId = await

instance.createParticipant("C","passC","0x61726b40676d61726b2e63

6f6d20746f2077696e","Consumer");

 participant = await instance.participants(2);

 assert.equal(participant[0], "C");

 assert.equal(participant[2], "Consumer");

 });

 it("should return Participant details", async () => {

 let instance = await SupplyChain.deployed();

 let participantDetails = await instance.getParticipantDetails(0);

 assert.equal(participantDetails[0], "A");

 instance = await SupplyChain.deployed();

 participantDetails = await instance.getParticipantDetails(1);

 assert.equal(participantDetails[0], "B");

CHAPTER 10 Testing Ethereum Apps 187

 instance = await SupplyChain.deployed();

 participantDetails = await instance.getParticipantDetails(2);

 assert.equal(participantDetails[0], "C");

 })

});

One of the advantages of using JavaScript over command line tests is that you can
not only run functions and access blockchain data, but also test data to see if it
matches expected values. That’s what the assert() function does. You can see
that both the participant mapping and the getParticipantDetails() function
returns structures of data. JavaScript can access individual data items as if they
were in an array. That’s why participant[2] refers to the participantType from
the participant data structure.

You can carry out many more complex types of tests using JavaScript. This brief
introduction just scratches the surface.

After you have you test cases written using JavaScript, Truffle will run them all
with one command. Enter the truffle test command at the operating system
command prompt to run all your test cases. Figure 10-6 shows the output of a
successful run of the tests just listed.

Each time you change a smart contract, you can run your test cases to ensure that
your application meets its design goals and runs without errors. If your tests do
encounter errors, you’ll see which test failed, along with information that helps
you determine why it failed and what you need to do to fix the problem.

Logging and Handling Errors
Unlike many other languages, Solidity doesn’t provide a direct way to output mes-
sages to a log file that you can use to test your code and follow along with its exe-
cution. Most languages let you at least output messages to a console or local file,
but not in an Ethereum environment.

FIGURE 10-6:
Truffle test

results.

188 PART 4 Testing and Deploying Ethereum Apps

If Solidity allowed you to write to a local file, you could write to the filesystems of
every EVM — outside the blockchain. Writing to every EVM’s local filesystem
would increase the workload and decrease the security of participating nodes and
make running a blockchain node less desirable. Because you can’t just write mes-
sages to local files, you have to carefully design your smart contracts to report
errors and status to clients in other ways.

Handling errors in Solidity
Client software can determine if any return data was sent back from the EVM, and
what the return code was. If a smart contract returns as a result of a revert() or
a failed require(), the EVM can send a string, but your smart contract code has
to send something that makes sense and the client UI has to use it to determine
what happened. Following is an example of a simple smart contract and test code
that uses a try/catch block to handle errors:

Here is the code for the basicMath smart contract, which is stored in the
contracts/BasicMath.sol file:

pragma solidity ^0.4.24;

contract basicMath {

 uint256 constant private MAX_UINT256 = 2**256 - 1;

 function add(uint256 _numberA, uint256 _numberB) public pure returns(uint256) {

return _numberA + _numberB;
 }

}

Here is the code for the JavaScript test case code to test the basicMath smart con-
tract, which is stored in the test/basic_math.sol file:

contract('BasicMath', function(accounts) {

 it('the sum should not overflow', async () => {

 try {

// Try to add 2^256 and 5 (should overflow and throw an exception)

const addResult = contractInstance.add((2**256 - 1), 5)

assert.ok(false, 'Threw an exception instead of overflowing.')

 } catch(error) {

assert.ok(true, 'Caught the exception.')

 }

 })

});

CHAPTER 10 Testing Ethereum Apps 189

In the preceding example, the try/catch structure can catch errors from the EVM
and determine what to do with them. It is important that client software handle
errors, but it is even more important that your smart contracts handle as much as
possible without resorting to generic error conditions. As much as possible, your
code should use the revert() and require() functions, which means your code is
anticipating problems and handling them in a way that you have thought through
and included in your application design. That’s why writing test cases while you
write smart contracts makes sense. The more you plan for errors, the better your
smart contracts will be in handling those errors.

Logging activity in smart contracts
Although Ethereum does not have a traditional logging facility, the event feature
comes pretty close. In fact, some careful planning can give you good execution
information without having to pay full price for storage access. Every time you
emit an event, that event and its parameters are stored in a blockchain block. You
can query the blockchain for events, and even get a list of all events in an address
range. You can use that information as a lightweight application logging feature.

In Chapters 11 and 12, you learn about integrating your smart contracts with other
software. You’ll always need some external software, generally some type of client
software, to invoke smart contract functionality. One of the things client software
can do is wait for events to occur.

Recall that you created a single event for your supplyChain smart contract. That
event triggers every time your transfer a product from one participant in the
blockchain to another. You could write the following JavaScript code to do that:

var transferEvent = SupplyChain.Transfer({_prodId});

transferEvent.watch(function(err, result) {
 if (err) {
 console.log(err)
 return;
 }
 // return result.args to UI
})

This code responds only to transfers that occur after the code runs. But if you want
to see any prior transfers for a product, you can use the event indexing feature of
Ethereum. You first have to change your event definition. In the SupplyChain.sol
file, change the Transfer event definition to this:

event Transfer(uint32 indexed productId);

190 PART 4 Testing and Deploying Ethereum Apps

Adding the indexed keywork tells Ethereum that this event should be stored in a
way that is easy to find. You can index up to three arguments for each event. Your
JavaScript code can use the indexed arguments to fetch ranges of event data. Just
change the first line of your event watcher code to the following to fetch all prior
Transfer events:

var depositEvent = cryptoExContract.Deposit({_prodId,
{fromBlock: 0, toBlock: 'latest'});});

Adding the fromBlock and toBlock modifiers tells the EVM to search multiple
blocks for Transfer events and returns the details of each event. Using events this
way can provide valuable runtime logging. And, as an added feature, event data is
far less costly than storage.

Fixing Bugs in a dApp
You test your code so you can identify flaws in it. Software flaws, or bugs, are any
bits of code that do not function the way they are supposed to. Bugs that cause
errors are generally easy to spot, but silent bugs — those that do not cause com-
piler or runtime errors — can be much harder to find.

The first step in removing bugs from your smart contracts is getting all of your
smart contracts to compile. That step should fix syntax errors, which are errors in
the way you write statements in the language itself that the compiler can find and
report. A syntax error could be a mistyped line of code or a missing parenthesis.
The Solidity compiler will find obvious errors as well as code that might cause a
future error. For example, if you define a variable but never use it, the compiler
will generate a warning. You could ignore the warning, but it is poor practice or a
mistake to define a variable that is not used. The best approach is to modify your
code to remove all compiler warnings.

The other type of bug is a semantics error, in which a line of code is syntactically
correct and does not generate compiler warnings, but the code doesn’t generate
the result you expect. Many times, this type of error shows up only under certain
conditions. Successfully finding semantic errors is the main reason testing is cru-
cial to the development process. You don’t want bad code to make it to production,
especially in a blockchain environment. Testing should be as extensive as possible
to find as many of the bugs in your code as possible before you deploy that code to
a live blockchain. The quality of your smart contracts is directly related to the
quality of your testing.

CHAPTER 11 Deploying and Maintaining Ethereum Apps 191

Chapter 11
Deploying and
Maintaining
Ethereum Apps

In Chapter 10 you find out how to test your dApp. You learn how to deploy your
smart contracts to a test blockchain and then interact with them. You see how
smart contracts respond to different types of data and how to call smart con-

tract functions. Your tests are an important part of the software development
lifecycle. You should test your smart contracts thoroughly before you allow them
to be deployed to a production environment.

After you complete thorough testing, you’re ready to make the transition to pro-
duction. It’s time to deploy your code to a live blockchain, called mainnet. Your live
environment may be the main live Ethereum blockchain, another public Ethereum
blockchain, or perhaps your own organization’s private blockchain. Each block-
chain has its own characteristics and provides a different operating ecosystem.
You must understand the target environment for your dApp when you design its
functionality.

Deploying a dApp isn’t the last step. As with all software, tasks are required to
maintain the dApp’s ongoing operation. It’s important to validate your smart
contracts and ensure that they’re working properly in the live environment. You’ll

IN THIS CHAPTER

» Anticipating differences between test
and live blockchains

» Preparing an app for live blockchain
deployment

» Deploying to a live blockchain

» Maintaining a blockchain app

192 PART 4 Testing and Deploying Ethereum Apps

also likely need to update features or perhaps fix newly discovered bugs in your
code. When this happens, you need a plan to address the process of updating your
code, testing the new functionality, and then deploying the new code to replace
the old code. You learn about all these tasks in this chapter.

Test Blockchain Options versus
Live Blockchains

In Chapter 10 you test your smart contracts by using the Ganache test blockchain.
This blockchain is a common choice for the initial testing of Ethereum blockchain
code because you can control the testing environment and can easily clean up to
start testing again without having leftover data from previous tests. Although one
of the basic features of blockchain technology is that blocks are immutable, some-
times it’s necessary in testing to just remove everything you’ve done and start
over. Although a clean redo isn’t possible on a live blockchain, you can do it pretty
easily if you’re using a local blockchain that you control, such as Ganache.

You may have noticed that every time you quit Ganache, you lose all blocks
on your test blockchain. By default, Ganache starts with a new blockchain every
time it starts. Although this behavior makes it easy to start over for testing, some-
time you want to save your blockchain between Ganache sessions. To do so,
use ganache-cli --db /path/to/db to specify a location for Ganache to save the
blockchain state. When you start Ganache again, it will initialize its new block-
chain from the previously saved state, instead of creating a new blockchain.

Testing with the Ganache blockchain
Ganache does a great job of simulating how your smart contract code will execute.
In fact, it provides the local blockchain and the EVM that executes the code.
Although the pieces are good at simulating a live blockchain, it can’t realistically
simulate the effect of other nodes on the blockchain network. Real blockchain
networks have miners and other nodes that communicate and share information
around the network. Transactions almost always take longer to complete on a live
network than on a test network because a live network has more participants and
more work to do.

When you start Ganache, you automatically get the same 10 accounts by default,
and each account starts with a balance of 100 ETH. Ganache sets up these defaults
to make it fast and easy to start testing your code. You can easily change these

CHAPTER 11 Deploying and Maintaining Ethereum Apps 193

defaults in the Ganache settings page if you need more or different accounts, or if
your accounts need more ETH.

Ganache also defaults to automining mode, which means that the Ganache EVM
processes each transaction as soon as it is received. Although testing your smart
contracts without having to wait for each test is helpful, it isn’t realistic. When
running on a live blockchain, transactions aren’t processed until a miner adds
them to a new block and then satisfies the consensus requirement. Remember
that Ethereum uses the Proof of Work (PoW) consensus protocol, so miners com-
pete to find a nonce value that, when hashed with the previous block’s header,
results in a hash value that satisfies the current complexity requirements.

Ethereum adjusts the difficulty of the hashing process with each block to ensure
that new blocks are added to the Ethereum blockchain every 10 to 19 seconds. If
blocks get added faster than every 10 seconds, the difficulty is increased, and if
blocks take 20 seconds or longer, the difficulty is reduced. As miners join or drop
off the network, the relative available mining computing power changes and can
affect how fast miners can mine new blocks. Advances in hardware and software
techniques can also affect mining capabilities. Regardless of the available com-
puting power, the Ethereum blockchain automatically reacts to keep the mining
rate within 10 to 19 seconds per block.

Your Ganache test blockchain can either automine or provide a simulated delay. If
you turn off Ganache’s Automine option in the settings window, you can enter the
number of seconds for Ganache to wait between mining new blocks. This wait
time helps to simulate the delay your code will encounter on a live blockchain.
Figure 11-1 shows the Ganache settings window with Automine turned off and a
delay of 14 seconds between block creations.

Deploying your code to other
test blockchains
Although Ganache can help simulate block mining delays, the artificial delays are
constant and don’t reflect what you’ll encounter in a live blockchain environment.
Also, it’s difficult to share your code with other developers or testers when you use
only a local test blockchain. Therefore, the next step in testing your smart con-
tracts for a live environment is to use one of the several public test blockchains.
Most blockchain software developers choose a public test blockchain after testing
code locally using Ganache or some other blockchain simulator. A public test
blockchain allows more people to get involved in the development and testing
process.

Public test blockchains are closer to a true live blockchain but still don’t give you
the exact experience. Public test blockchains do consist of multiple nodes, as

194 PART 4 Testing and Deploying Ethereum Apps

you’ll find on the live blockchain, but the mining process is simulated. Addition-
ally, different test blockchains use different consensus protocols. The most popu-
lar public test blockchains you’ll encounter follow:

» Ropsten: A test blockchain similar to the live Ethereum blockchain

» Rinkeby: An alternative test blockchain that uses a different consensus
algorithm and steady block generation time

» Kovan: A test blockchain similar to Rinkeby but with a faster block genera-
tion time

Test blockchains give you the ability to deploy and run your code in environments
that are close to live environments. You can pay for your code to execute with
cheap or free money. The ability to generate ether or request as much of it as you
want for free makes it possible to run as many tests as you need but can also lull
you into a false sense of wellness. It’s easy to ignore the effect of gas cost when
you don’t have to pay for it. Test networks are great at evaluating code function-
ality but don’t require the same gas conservation skills that live networks do.

Ropsten
The Ropsten test blockchain is one of the most popular test blockchains. It uses a
PoW consensus algorithm similar to the one that the public live Ethereum block-
chain uses. Miners can earn a small amount of ETH for mining new blocks, and

FIGURE 11-1:
Ganache settings

window with
Automine
disabled.

CHAPTER 11 Deploying and Maintaining Ethereum Apps 195

new blocks are added to the Ropsten blockchain approximately every 30 seconds.
Geth and Parity Ethereum blockchain clients support Ropsten, and it is a good
choice if you want to observe the effect of mining on your smart contracts.

Rinkeby
The Rinkeby test blockchain uses a different consensus algorithm than the live pub-
lic Ethereum and Ropsten blockchains. Rinkeby uses a Proof of Authority (PoA)
consensus algorithm and adds new blocks to its blockchain every 15 seconds.
Before you can get ether, PoA requires that you prove your existence. All ether is
pre-mined and you simply withdraw the amount you need from a faucet after
proving your existence, generally by posting to a social media outlet and providing
the evidence of the post. (A faucet is simply a mechanism that dispenses free
ether.) Geth supports Rinkeby but not Parity.

Kovan
If you’ve decided to use the Parity client, you can choose the Kovan test blockchain.
Kovan supports Parity but not Geth. It uses the same PoA algorithm as Rinkeby,
but adds new blocks at a faster rate of every 4 seconds.

Anticipating Differences in Live
Environments

Regardless which test blockchain you choose, it will only be a simulation of a live
blockchain. In a live blockchain environment, miners compete for the reward paid
to add new blocks. You will likely encounter many more miners and more node
diversity in a live blockchain environment. This diversity can lead to unexpected
delays and even an unexpected transaction order. A transaction that pays a higher
reward because it uses more gas could be selected by miners before an earlier
transaction that doesn’t pay as well.

These considerations are just some of the ones to take into account when transi-
tioning from a test environment to a live environment. Thorough testing will
identify most of your software’s flaws, but there will always be a leftover that you
won’t find until you deploy to a production blockchain. That’s why maintaining
your software after you deploy it is still important.

The biggest difference between test networks and mainnet, the live network, is
that mainnet uses real money. All of the ether you use for testing on test networks
is essentially worthless. You can get more by changing your configuration for local

196 PART 4 Testing and Deploying Ethereum Apps

blockchain, or by requesting it from a test network faucet. Before you deploy any-
thing to mainnet, however, the account you use must own real ether. You can
purchase that through any exchange, such as coinbase.com, but it has to be in
your account before you try to deploy your dApp.

The other primary difference with mainnet (or public test networks) is that all
changes you make to the blockchain are immutable and persist forever. If you
deploy a smart contract with a bug, you’ll never be able to change it. The best you
can do is to deploy a new version of your smart contract with the bug removed,
and then ensure that no one uses the smart contract at the old address. And in the
case of mainnet, you’ll have to pay real money to deploy a new version of your
code, which is another good reason to invest in thorough testing before you deploy
your code.

Preparing Your Configuration for
Deploying to Different Networks

You already know how to set up Truffle to deploy to the Ganache blockchain.
Before you can deploy to a public test network or mainnet, you have to extend the
Truffle configuration to support more networks. To make most of the changes,
you edit the contents of your truffle-config.js file. You need to tell Truffle how
to connect to each of the networks you’ll use to deploy your code.

One of the pieces of information that Truffle needs is the account to use when
accessing the network. You’ve already seen how to use Ethereum addresses to
determine ownership. When you use Ganache, Truffle records the Ganache
accounts in an array named eth.accounts[]. If you don’t provide an account,
Truffle assumes that you’re using the first account from Ganache, which is stored
in eth.accounts[0]. This approach keeps you from having to manage accounts
during development and initial testing.

When you want to use a public test network or mainnet, you have to use a valid
address on each network. The good news is that Ethereum addresses are generic
and valid on any network. However, remember that any crypto-assets you own
are network-specific. If you 100 ETH on Ropsten, that doesn’t mean you own 100
ETH on mainnet. You can use the same account for multiple networks, but crypto-
assets owned by that account are not shared across networks.

One easy way to manage access to multiple networks without having to set up full
nodes for each one yourself is to sign up for an Infura account. Infura maintains

CHAPTER 11 Deploying and Maintaining Ethereum Apps 197

their own infrastructure that provides easy access to multiple blockchain net-
works. Infura accounts allow you to deploy code and interact with mainnet, Rop-
sten, RinkeBy, and Kovan networks. Your Infura account provides you with unique
project keys (API keys) for multiple projects that you create. You use each project
key to manage a unique dApp. Navigate to https://infura.io to explore Infura’s
offerings and set up your own account.

Launch VS Code for your SupplyChain project and click or tap the New File button
next to SupplyChain in Explorer, then type secrets.js and press Enter. A new file is
created in the project root directory named secrets.js. You’ll use this new file to
store sensitive account information.

Make sure that you protect this file and don’t share it with anyone. If you publish
your code to any other location, make sure that you exclude the secrets.js file from
any publish operations.

Type the following text in the editor for the secrets.js file:

var infuraProjectID = "Project ID from Infura";
var accountPK = "Your Ethereum account private key";
var mainnetPK = accountPK;
var ropstenPK = accountPK;
module.exports = {infuraProjectID: infuraProjectID, mainnetPK:

mainnetPK, ropstenPK: ropstenPK};

Replace “Project ID from Infura” with the project ID that you got for the project
you created on the Infura website. Also replace “Your Ethereum account private
key” with the private key for the Ethereum account you want to use. In this case,
use the same account for the Ropsten and mainnet networks.

The secrets.js file stores the private key (or keys) for blockchain network access,
but you need another component to securely use your private key to access crypto-
assets. To accomplish that task, you need a wallet provider that Truffle can call.
Open a Windows command prompt or a Windows PowerShell window, and type
the following command to install the Truffle wallet provider:

npm install truffle-hdwallet-provider

Next, click or tap truffle-config.js in Explorer to open the truffle-config.js file in
the VS Code editor. Replace the contents of the truffle-config.js file with the fol-
lowing text:

let secrets = require('./secrets');

const WalletProvider = require("truffle-hdwallet-provider");

198 PART 4 Testing and Deploying Ethereum Apps

const Wallet = require('ethereumjs-wallet');

let mainNetPrivateKey = new Buffer(secrets.mainnetPK, "hex");
let mainNetWallet = Wallet.fromPrivateKey(mainNetPrivateKey);
let mainNetProvider = new WalletProvider(mainNetWallet,

"https://mainnet.infura.io/");
let ropstenPrivateKey = new Buffer(secrets.ropstenPK, "hex");
let ropstenWallet = Wallet.fromPrivateKey(ropstenPrivateKey);
let ropstenProvider = new WalletProvider(ropstenWallet,

"https://ropsten.infura.io/");

module.exports = {
 networks: {
 development: { host: "localhost", port: 7545,

network_id: "*", gas: 4465030 },
 ropsten: { provider: ropstenProvider,

network_id: "3", gas: 4465030 },
 live: { provider: mainNetProvider,

network_id: "1", gas: 7500000 }
 }
};

Previously, you defined only a network named development. The development
network connects to your locally running Ganache blockchain. The new networks
definition you just added now supports Ganache, Ropsten, and mainnet. The code
before the networks section uses the Truffle wallet provider to instantiate objects
that provide access to the Ropsten and mainnet blockchain networks. After you set
up your Truffle configuration file, Truffle handles the rest.

For more information on configuring Truffle for other networks, navigate to
https://truffleframework.com/tutorials/using-infura-custom-provider.

Deploying a dApp
After you decide on a test network or are ready to deploy to mainnet, you need to
complete just three steps to get your code deployed to the blockchain:

1. Get some ether.

You must have enough ether to at least pay for the transaction to save your
smart contracts to the blockchain.

2. Compile your code.

Ensure that all your code cleanly compiles into bytecode.

CHAPTER 11 Deploying and Maintaining Ethereum Apps 199

3. Deploy your code.

Submit your smart contract code to your chosen blockchain.

Getting enough ether
You get ether in your account to pay for deployments and any other blockchain use
in two ways. Just ask for ether or buy it. If you’re deploying to mainnet, you’ll
have to buy ether. You can buy ether from any exchange that supports Ethereum
(such as Coinbase, Gemini, or CEX-IO), and then you can use your wallet to man-
age access to your ether. (See Chapter 5 for more on wallets and exchanges.)

If you’re not sure where to buy ether, check out the Coin Central resource on buy-
ing ether and how to select an exchange. Navigate to https://coincentral.com/
how-to-buy-ethereum-and-best-exchange-ratings to find this resource.

If you’re deploying to a test network, you can just ask that network for some free
ether. Because there isn’t any value associated with ether on a test network, get-
ting what you need for free is easy. The common technique for getting ether for a
test network is to request it from that network’s faucet. Each test network has its
own method getting ether from its faucet.

Getting ether for the Ropsten network
The Ropsten network ether faucet is the most straightforward. You simply navi-
gate to https://faucet.ropsten.be, enter your account address, and click or tap
Send Me Test Ether. In a matter of minutes your account balance shows that you
now own Ropsten ether. Figure 11-2 shows the Ropsten Ethereum faucet.

FIGURE 11-2:
Ropsten network
Ethereum faucet.

200 PART 4 Testing and Deploying Ethereum Apps

Getting ether for the Rinkeby network
Getting ether for the Rinkeby network from its faucet requires a few more steps.
You can’t simply enter your address. Rinkeby attempts to discourage malicious
users by requiring simple authentication for ether requests. To satisfy the authen-
tication requirements, you initiate ether requests from a social media account by
sending a tweet or publishing a public post on Google+ or Facebook that includes
your account. Navigate to https://www.rinkeby.io/#faucet to read the full
Rinkeby faucet instructions or to provide a social media URL with your Ethereum
address. Figure 11-3 shows the Rinkeby Ethereum faucet.

Getting ether for the Kovan network
The Kovan network requires that you have a valid GitHub account before you can
request ether for their network. Navigate to https://faucet.kovan.network and
log in with your GitHub credentials. Then enter your Ethereum account address to
initiate the ether request. To remind you that Kovan is a test network, they call
their ether Kovan Ethere, or KETH. Figure 11-4 shows the Kovan Ethereum faucet
(after you log in with your GitHub credentials).

FIGURE 11-3:
Rinkeby network
Ethereum faucet.

FIGURE 11-4:
Kovan network

Ethereum faucet.

CHAPTER 11 Deploying and Maintaining Ethereum Apps 201

Verifying your ether
In Chapter 6, you installed the MetaMask Ethereum wallet. MetaMask makes it
easy to manage accounts and crypto-assets from any of the networks you learned
about in this chapter. You can change from one network to another by simply
selecting a different network from the network drop-down list.

Launch MetaMask in Google Chrome and click or tap the network list in the upper-
left corner of the MetaMask window. Figure 11-5 shows the networks you can
choose in MetaMask.

If you have a GitHub account, you can log in to the Kovan faucet and request ether.
If you don’t know your account address, MetaMask will copy it to your clipboard
for you. From the network drop-down list, select Kovan Test Network. You should
see your current account balance. Click or tap the menu icon (three dots on the
right side of the window) and then click or tap Copy Address to Clipboard (see
Figure 11-6). You can then paste your address into the appropriate input field in
the Kovan faucet web page.

After a few minutes, 1.000 ETH will appear in your Kovan Test Net account in
MetaMask. From the network drop-down list, select Kovan Test Network to see
your updated account balance, as shown in Figure 11-7.

FIGURE 11-5:
MetaMask
Ethereum

network choices.

202 PART 4 Testing and Deploying Ethereum Apps

FIGURE 11-6:
MetaMask Copy

Address to
Clipboard option.

FIGURE 11-7:
Kovan account

balance in
MetaMask.

CHAPTER 11 Deploying and Maintaining Ethereum Apps 203

Compiling your code
Although the deployment process will ensure that all of your code is compiled, it’s
always a good idea to make sure that everything compiles before trying to deploy.
Truffle makes compiling easy. Simply type the following command at a Windows
command prompt or Windows PowerShell in the desired project root folder:

truffle compile

This command will compile all contracts in the current project that have changed
since the last compile. If you want to compile all contracts, even if they haven’t
changed, type the following command:

truffle compile --all

You can also specify the target network when you compile. Truffle will save com-
pile artifacts to the specified network. You should always include the target net-
work option after you define multiple networks in truffle-config.js. Type the
following command to compile all contracts and store compile artifacts to the
development network:

truffle compile --all --network development

After you’re ready to compile for the live network, type the following command to
compile all contracts and store compile artifacts to the live network:

truffle compile --all --network live

All of your code must compile cleanly (and be thoroughly tested) before moving to
the next step of deployment.

Deploying your code
Truffle makes the process of deploying your contracts to a network easy too.
You’ve already accomplished the hard work of setting up your account, acquiring
ether, and configuring Truffle to interact with your desired networks. Now all you
have to do is tell Truffle what network you want to use when you deploy your code.

In Truffle, the process of creating a transaction to write your contract to the
blockchain is called both migration and deployment. That’s why the migrate and
deploy commands do the same thing. You can use either one. Regardless of the
keyword you use, Truffle looks in the migrations folder under your project’s root
folder to find out what contracts to deploy (or migrate) to the network. Truffle
runs the JavaScript files it finds in the migrations folder in alphabetical order.

204 PART 4 Testing and Deploying Ethereum Apps

When you’re ready to deploy your contracts, type one of the following commands
to deploy your code to the development network (your Ganache local
blockchain).

truffle migrate --network development

or

truffle deploy --network development

Figure 11-8 shows the output from deploying the SupplyChain project contracts to
the local development network.

Note that Truffle found existing versions of each contract, replaced each one, and
reported the new address for each contract. The last line of output tells you that
Truffle is saving the artifacts of the deployment operation on the blockchain.
You’ve already seen how you can query the artifacts and find the current addresses
of smart contracts. That’s how blockchain users find the contracts they want to
interact with.

After you have successfully deployed your fully tested smart contracts, your appli-
cation is available to anyone else to examine and run. Your blockchain app is now
part of Ethereum blockchain history.

FIGURE 11-8:
The result of the
Truffle deploy

command.

CHAPTER 12 Integrating Non-Blockchain Apps with Ethereum 205

Chapter 12
Integrating Non-
Blockchain Apps
with Ethereum

Although you can build entirely blockchain-based applications, it is far
more likely that your applications will be a combination of traditional and
blockchain components. You learn in Chapter 3 that some use cases lend

themselves well to blockchain apps but others do not. In this book, we chose to
highlight one use case, supply chain, because blockchain offers clear advantages
over traditional methods. However, even a comprehensive supply chain applica-
tion will likely run partially as a traditional application and partially on the
blockchain.

Many emerging blockchain apps consist of core components that operate as smart
contracts and other components that operate as traditional applications that
interact with users and provide supporting functionality. This hybrid approach to
application development requires the capability to integrate the two different
development models. In other words, to develop hybrid applications that run par-
tially on the blockchain, you need to know how to design them to talk with each
other and operate seamlessly.

IN THIS CHAPTER

» Exploring differences between
blockchain and databases

» Identifying differences between
blockchain and traditional
applications

» Integrating traditional applications
with Ethereum

» Testing and deploying integrated
blockchain apps

206 PART 4 Testing and Deploying Ethereum Apps

Distributed application design and development isn’t new. In fact, some of the
difficulties with distributed applications led to the need for technologies like
blockchain. Remember that blockchain technology doesn’t solve all application
problems, but it does have its place. Now that you know how to develop dApps for
the Ethereum blockchain, in this chapter you learn how to integrate your smart
contracts with applications that do not include blockchain technology. The capa-
bility to integrate blockchain and non-blockchain applications makes it possible
to develop applications that use the right technology for a wide range of needs.

Comparing Blockchain and
Database Storage

In Chapter 2, you learn about some of the differences between storing data in a
blockchain and a database. Both technologies can store data, but clear differences
exist between the two. One of the first obstacles you might encounter when asked
to integrate blockchain with an existing application is determining what data you
should migrate to the blockchain.

Traditional applications store most of their data in a database. Databases provide
fast access to shared data. Blockchains can also provide access to shared data, but
they may not be as fast as a database. As you learn in Chapter 2, there are other
differences as well. It is important that you understand the relative strengths of
each data storage technique to make good design decisions for integrating block-
chain into your organization.

When you begin the design process for integrating new blockchain apps with
existing non-blockchain apps, determine the best home for each type of data
based on how you plan to use it. For example, it doesn’t make sense to store on the
blockchain low-importance data that you update regularly. However, if it is
important that you maintain a historical record of all changes to that data, the
blockchain might be a good place for it. Always remember that a cost is associated
with writing to the blockchain.

The rest of this section lists the most important features that highlight the differ-
ences between databases and blockchains. Understanding the effect of each dif-
ference will help you to design hybrid integrated applications that meet your
organization’s goals.

CHAPTER 12 Integrating Non-Blockchain Apps with Ethereum 207

Locating control
Databases are central repositories of data that are shared by a collection of local
and remote clients. The database administrator controls access to the database
and manages changes to the database’s content and format. Although clients
external to the database owner’s organization may be permitted to access and
update the data, a central authority controls the database and its content.

Blockchains are ledgers of data shared among many nodes. There is no central
copy of the blockchain data. All copies are the same. The blockchain technology
guarantees that each node verifies the integrity of the blockchain data and can
easily detect unauthorized changes. With public blockchains, any node, and its
users, can access the blockchain data without requiring specific permission do to
so. Permissioned, or private, blockchains impose access restrictions and a more
traditional central access control model.

Imposing data format
Databases (at least relational databases) are collections of tables that each contain
data in similar formats. Each row of data in a relational database has the
same data format. Likewise, each column of a table contains a list of items of the
same data type. A database’s schema describes the format of the tables in that
database. The database administrator maintains the database schema and con-
trols any changes to it. Database applications can count on the fact that when they
read data from the database, it conforms to the current database schema.

Blockchain does not enforce any data format for data stored in its blocks. Smart con-
tracts may define formats for the data each one stores, but any block on the block-
chain may contain transaction data created by many different smart contracts.

Updating data
Traditional databases support the classic CRUD operations: Create, Read, Update,
and Delete. Databases depend on the capability of each client, based on granted
permissions, to be able to create and manage data in the database. Part of the data
management process includes the capability to update and delete data. The cur-
rent state of the database stores only the latest version of any table row’s data.
The capability to overwrite data reduces redundancy and confusion over multiple
data versions.

Blockchain technology supports only two operations: verifying a transaction and
writing data to the blockchain. After you write data to the blockchain, it is immu-
table. Blockchain technology does not support update and delete operations. The

208 PART 4 Testing and Deploying Ethereum Apps

only way you can update data is to add new data to the blockchain that supersedes
the previous data version.

Optimizing performance
Database vendors include new performance features with every new release. The
goal is to provide the fastest access to data stored in the database. Database appli-
cation developers routinely analyze their database queries to ensure that they are
optimizing their code for the fastest data access. In most cases, slow queries are
viewed as defects and become candidates for modification.

Blockchain technology is not generally focused on performance. In fact, block-
chain has sometimes been referred to as a slow database. Although this compari-
son is incomplete and unfair, it is generally accurate in that blockchain data access
is slower than equivalent database access. The distributed nature of blockchain
data, along with its integrity guarantees, mean that blockchain data storage will
continue to be slower than database storage for the foreseeable future.

Protecting confidentiality
Traditional databases benefit from their central control. The database administra-
tor can restrict access to any data to only authorized individuals. Most database
management systems provide built-in table and row-based permissions, and
some include column-based permissions as well. And most current database
management systems provide mechanisms to encrypt part or all of the data in a
database. These features can make it easy to enforce confidentiality.

A public (permissionless) blockchain does not enforce access controls for its data.
Any user who has access to a blockchain network node can view the data the
blockchain stores. Some blockchain apps use encryption to enforce confidential-
ity, but managing keys in a distributed, trustless environment is challenging.
These challenges have minimized widespread adoption of data encryption for
blockchain data. Private, or permissioned, blockchains can provide a general level
of confidentiality. Users must have blockchain access granted to them to access
the private blockchain. However, after a user gains access to the Ethereum block-
chain, that user can access all blocks, just like in a public Ethereum blockchain.

Paying for storage
Many people view traditional database storages as free and blockchain storage as
costing cryptocurrency. This view is only partly correct. Although it is true that
every database operation does not have a direct cost associated with it, the infra-
structure on which the database operates is not free. Setting up and running a

CHAPTER 12 Integrating Non-Blockchain Apps with Ethereum 209

database server requires a substantial investment. Hardware, software licensing,
software development, and personnel costs can be high.

Blockchain apps have software development costs but generally far lower infra-
structure requirements. To compensate nodes for contributing to the infrastruc-
ture and mining operations, each transaction costs a small amount of
cryptocurrency. In the case of costs, both technologies require investment.

Providing integrity and transparency
Traditional databases do not provide data integrity or transparency by default.
Multiple users can modify data, and even overwrite each other’s changes. Further,
most database management systems do not log all data changes by default. These
problems are well-known and have resulted in extensions to database access lan-
guages and database management system to support integrity and transparency.
Database transactions can help define scope of work to maintain a steady database
state. For granular integrity, database administrators can enforce strict rules on
who can modify data, and concurrent control mechanisms such as locking can
help avoid data write collisions. To provide more transparency, many database
management systems provide the capability to log selected data modifications in
separate tables, providing audit trails for later inspection.

The fundamental design of blockchain technology provides integrity and trans-
parency by default. The consensus mechanism provides sanctioned integrity for
every write to the blockchain. And because the blockchain is immutable, it auto-
matically keeps every version of every data item written to any block.

Protecting resilience
A central database is the core data repository of many organizations. Although a
central database is convenient, it provides a Single Point of Failure (SPoF). Failure
of the database means no user can get the data he or she need and the application
stops working. For some organizations, that situation would be catastrophic.
Many organizations invest heavily in hardware, software, and personnel to main-
tain current separate copies of their data for disaster purposes. Creating an infor-
mation ecosystem that is resilient to failures of its primary data repository is
expensive.

Blockchain technology depends on the distribution of a ledger across many nodes.
Because the network nodes trust each copy of the ledger, that data is accessible
through any node on the network. If any node fails, all of the other nodes can con-
tinue to operate and the data is still available. The design of blockchain technology
provides resilience by default.

210 PART 4 Testing and Deploying Ethereum Apps

Table 12-1 summarizes the differences between storing data in a database and on
a blockchain.

Contrasting Execution and Flow in
Blockchain dApps and Traditional
Applications

A big difference doesn’t exist between traditional distributed applications and
blockchain dApps. With traditional applications and distributed dApps, the soft-
ware sets up an initial state, waits for user input, and responds to that input. The
main difference is in where the application code operates and what component
handles validation.

Traditional applications mostly operate on a small number of computers. Although
some programs operate entirely on a single computer, it is more common for
functionality to be split up among at least two computers. In this architecture,
some parts of the application, such as the code that interacts with the user, runs
on the client computer, while other code, such as code that interacts with a data-
base, runs on a server computer. This client-server architecture is an older but
still common architecture for software applications.

TABLE 12-1	 Database Storage versus Blockchain Storage
Feature Traditional Database Blockchain

Locating control Centralized control; one central data-
base copy

Decentralized control; complete copy of
the blockchain on each node

Imposing data format Data schema defines data format No schema; each smart contract
decides how to store its data

Updating data Create, Read, Update, Delete (CRUD) Read, Write

Optimizing
performance

Optimized for short response time and
high-throughput

Not optimized for performance

Protecting
confidentiality

Centrally managed permissions No default confidentiality for pubic
blockchains

Paying for storage Up-front infrastructure costs Per-transaction costs

Providing integrity
and transparency

Dependent on DBMS and application Consensus and immutability provide
integrity

Providing resilience Possible with substantial investment Complete copy of the blockchain stored
on each node

CHAPTER 12 Integrating Non-Blockchain Apps with Ethereum 211

Over the last two decades, reliance on the Internet and its resources has grown
fast — and that growth is constantly accelerating. Internet resources were once
primarily endpoints or information sources, but now a growing number of
resources are computational components. Today, you can write applications that
mostly call functions that run on other servers. That changes the overall flow of
today’s applications. Instead of just executing a series of steps on a client or
server, tasks may run on many remote computers or devices.

Blockchain dApps are really extensions of the distributed application model, with
one important difference: Smart contract code runs not on one node but on all
nodes. And any transaction that you create for the blockchain has to wait until a
miner selects it and successfully completes the requirements of the blockchain to
write that block to the blockchain.

The response time for any blockchain can be far longer than writing data to any
other storage location. Although this longer write cycle may not change the flow
of your application, it can affect how users perceive and use the application. You
have to be aware of how blockchain operates to anticipate slower writes to the
blockchain.

Whenever possible, avoid making users wait for blockchain operations to com-
plete before moving on. You might have to redesign your user interface to allow
users to carry out some tasks, but inform them that other tasks take longer. Per-
haps you can allow users to submit data for the blockchain, and then allow them
to do other things within the application while you’re waiting for the blockchain
return status. After your application receives a blockchain return status, it can
alert the user and provide a way for the user to view the status and choose to move
to another step in the application.

When integrating distributed application components, one of the most important
factors is considering how new components will affect users. A large part of your
design activities should involve developing a design that best meets the needs of
your users.

Designing Goals for Incorporating
Blockchain into an Existing Application

The first item to consider when planning to integrate multiple applications is to
define your goals for the integration. You have to be able to clearly explain why
you’re integrating the applications in the first place. If you can’t explain your
reasons for starting an integration project, you’ll likely encounter problems.

212 PART 4 Testing and Deploying Ethereum Apps

Although blockchain technology is one of the most talked about innovations of
the last decade, that fact isn’t a good enough reason to embrace it. You learn in
Chapter 3 about different use cases for blockchain technology. They aren’t the
only ones, but they are examples of where blockchain can fit well.

No mandatory goals exist for integrating blockchain technology into another
application, but a few high-level objectives should be part of any integration
 project. The following list is a collection of goals you should resolve for every
migration project, especially those that involve integrating blockchain compo-
nents. You can use this list as an initial checklist when planning to integrate
blockchain technology with your existing applications:

» Address application shortcomings. Integrating any non-blockchain applica-
tion with blockchain technology should solve one or more ongoing problems
with the existing application. If your traditional application doesn’t have any
unresolved problems, integrating a new technology may have little value. New
technology should always be a way to solve existing problems.

» Introduce previously unavailable features. Your application may be fine
as it is but unable to provide new functionality that your users want. For
example, integrating a blockchain supply chain application could allow your
users to see where their products are along the supply chain and trace
purchased products back to their origin. Providing functionality that was
previous unavailable is a potential reason to integrate blockchain technology.

» Enhance the user experience. Integrating any new technology should
enhance the overall user experience, not harm it. You could argue that the
previous supply chain example fits this category too. Giving users more
visibility into the supply chain path provides a more complete picture of
product status and enhances the user experience. This goal is also a warning
that blockchain integration should avoid creating obstacles for users that
reduce the application’s usefulness.

» Reduce operational costs. One of the main features of blockchain technol-
ogy is its capability to offer disintermediation, which is the reduction of the
reliance on intermediaries to control and manage transfers of items of value
from one party to another. Blockchain technology should be able to offer
ways to eliminate at least some of the middlemen in business transactions.
With fewer middlemen charging service fees, overall operational costs of
blockchain applications should be lower. Your design specifications should
include statements of how much operational cost the integrated blockchain
app components should reduce.

» Enhance auditability and compliance. One of the most obvious advantages
of blockchain technology is in the context of auditing. The process of auditing
organizations for compliance to various standards or regulatory requirements

CHAPTER 12 Integrating Non-Blockchain Apps with Ethereum 213

includes examining audit trails that represent organizational activities. You
learn in Chapter 1 that blockchains are immutable, and all data ever written
to it is maintained in its original state. Therefore, the data you move to a
blockchain will automatically create its own audit trail. You can easily trace
all of the data that any account has changed.

The most important goal when designing a blockchain integration solution is to
articulate clear reasons why blockchain is better than what you have today. What
does a blockchain solution offer that is superior to what you use today? If you
can’t clearly explain the specific reasons why blockchain is better, it probably isn’t
any better. As cool as blockchain is, it must solve a problem before it has value in
any organization.

After you decide what you want the blockchain integration to provide, the next step
is to decide how the integrated applications will work together to provide the fea-
tures you want. Designing your integration has two starting points: You have
existing smart contracts that provide the functionality that you want, or you must
develop new smart contracts from scratch. Each approach has its own challenges.

Using existing smart contracts
It’s a good idea to design the integration as if you were designing your smart con-
tracts from scratch. If you already have smart contracts that provide the function-
ality you want, you will already have a map of the data you need to provide and the
functionality you can access. Even if you have existing smart contracts in place
(perhaps you purchased code from a software vendor or acquired open-source
code), you may still have the ability to modify and extend your smart contract code.

If you can change any existing smart contract code, start with the existing smart
contract functions and data items, and add data and functionality as needed. If
you can’t modify the smart contract code you’ll use, you must modify your exist-
ing application to conform to the smart contract requirements.

Developing your own smart contracts
Another approach to developing an integrated blockchain solution is to start with
the existing traditional application and no smart contract code. This requires more
design effort but gives you the most flexibility. If you choose this approach, care-
fully consider what you want to move to the blockchain. Remember that you have
to pay for transactions in a blockchain environment, and those transactions will
complete more slowly than in a traditional database application environment.

214 PART 4 Testing and Deploying Ethereum Apps

For example, if you plan to migrate your core supply chain functionality to an
Ethereum public blockchain to provide transparency, define the minimum data
and functionality you’ll need to accomplish that task. Don’t put more in the block-
chain environment than you really need. If you aren’t careful in what you put on
the blockchain, you could increase operational costs, slow down your users, and
leak more information than you intended. Always start with simple, streamlined
features that you deploy to the blockchain, and build from there.

Identifying Interface Data and
Transaction Requirements

You start developing a blockchain interface by examining your existing environ-
ment and the goals of your project. You learned in the previous section that the
degree of flexibility in your design depends on whether you have smart contract
code to start with, and whether you can modify it. Once you know your starting
point and what abilities you have to modify code in each environment, you can
design the data and functional requirements for your interface.

An interface definition basically answers three questions:

» What do you want the interface to do?

» What data must you provide to the interface?

» What data will the interface return to you?

You answer the first question by defining smart contract functions. If your first
requirement is to create a new product, you’ll probably need a function named
createProduct(). It’s a good idea to name your functions as verbs, because they
carry out actions. In most cases, your functions will create items, get items (that
is, fetch and return data), or change the state of some items. (Of course, changing
the state of any data really means adding some new data to the blockchain.) You
should define all of the actions your new integrated blockchain dApp must carry
out and define a function for each one.

After you define each of your new functions, you can answer the second question
by defining the input parameters each function needs to carry out its intended
purpose. As you design your interface, validate that all required data is either
already available in the traditional application, can be generated by the traditional
application, or is available by some other means in the blockchain environment.
Don’t add data into your design unless you can provide that data.

CHAPTER 12 Integrating Non-Blockchain Apps with Ethereum 215

Finally, you must specify what data each function returns to the traditional appli-
cation. You must identify what data your traditional application needs to maintain
integrity with the blockchain data. In this case, some redundancy is required, as
in the case of unique identification tokens, and other redundancy may be desired.
For example, you may decide to keep copies of supply chain registrations in your
local database to support fast lookups for your application’s users. Remember that
if you do store any redundant data, you have to takes steps to ensure that it stays
current and correct. You should only store redundant blockchain data if you can
identify specific value in doing so.

After you define all functions, input requirements, and output requirements, you
will be ready to write or modify the code to create your integrated blockchain
application solution.

Creating or Modifying Contracts
to Provide Data Interface

The process of writing smart contract code should be a smooth one, as long as you
invested in the design process. A well-designed application is far easier to write
than one that lacks a detailed design specification. The output of the design phase
should include detailed function definitions, along with input and output require-
ments, and specifications of what each function does and the state and local data
each one needs to operate.

You’ll find that coding smart contracts with a detailed specification is little more
than translating requirements into another language, Solidity. The design process
is more than a simple translation exercise, but it is important that the design
phase addresses as many of the development requirements as possible. A good
design document leaves few questions for developers to answer. Comprehensive
design documents give developers the ability to focus on the most efficient and
effective ways to implement the required functionality.

Testing Integrated dApps
Proper testing of integrated applications is an extension of individual testing of each
participant application. In other words, you still have to test each individual appli-
cation first. You should completely test all functionality of your traditional applica-
tion, and then completely test your blockchain dApp. The testing requirements for
integrated dApps depend on properly working components as a foundation.

216 PART 4 Testing and Deploying Ethereum Apps

After you’ve completed the testing each application component, you can move to
integration testing. Integration testing is much like full dApp testing. You have to
develop tests that run in the context of your existing application. Your integration
tests should generate calls to each function you defined as part of the blockchain
interface. Your tests should create normal calls, invalid calls, and calls that pass
boundary data. Invalid calls include the following:

» Wrong function name

» Wrong number or format of input parameters

» Out of range or bad input data

» Input data containing boundary values

» Wrong expected output parameters

» Attempt to call a function that isn’t visible

» Smart contract function properly completed with return codes

» Set a timeout for a function call that is too short

» Reverse a transaction

Your calling application and smart contract code should properly handle each of
these situations without generating failures or crashes. Your tests should ensure
that all errors are handled in a manner that does not interrupt the normal flow of
the application.

Deploying Integrated dApps
Finally, after you are through the testing phase and ready to move your new inte-
grated application to production, it’s time to deploy to a live blockchain. The
deployment steps for the blockchain dApp are the same as the ones you used when
you deployed your supply chain dApp. Truffle makes the deployment process easy.
The difference is in the synchronization between the application components.

Because your traditional application will call functions in the blockchain dApp,
you can’t update your traditional application until the dApp is deployed.

Technically, you can deploy the traditional application before deploying the dApp,
as long as your updated traditional application has some configuration control
that disables any interaction with the dApp. After you deploy the dApp, you change
the configuration to allow the traditional application to communicate with the
new dApp.

CHAPTER 12 Integrating Non-Blockchain Apps with Ethereum 217

Here are the three simple steps to deploying all of the components of an inte-
grated blockchain app:

1. Deploy your fully tested dApp.

2. Deploy your fully tested updated traditional application.

3. Run any maintenance utilities required to synchronize initial data.

After both sides are up and running, you can (and should) run real-time tests to
ensure that everything works in the live environment. The deployment process
should be the easiest step in the process. As long as you start with a solid design,
integrating traditional applications with blockchain dApps is an effective way to
take advantage of blockchain’s many benefits.

5The Part of Tens

IN THIS PART . . .

Explore ten free Ethereum resources.

Learn ten design principles for developing
decentralized blockchain apps.

Survey ten top Ethereum projects.

Chapter 13
Ten Free Ethereum
Resources

Many free resources are available to help you develop advanced Ethereum
dApps. In Chapter 4 you learn about different tools in four categories:
blockchain client, test blockchain, testing framework, and IDE. You don’t

have to search very hard to find lots of free resources in nearly every category. In
Chapter 6 you learn about different options for establishing your Ethereum wallet,
some of which are free. The options in those chapters are worth exploring. In
Chapters 5 and 6 you install five free tools to help you develop and manage
Ethereum dApps. Because you’ve already learned about five effective free tools in
Chapters 5 and 6, I won’t cover them again in this chapter.

In Dummies Part of Tens fashion, in this chapter you learn about ten more free
tools to help you create your own Ethereum blockchain dApps. Some of the
resources in this chapter are alternatives to the tools you used in the book’s
examples, and other complement the tools you’re already using. Each of the
resources in this chapter has unique features and should be on your list of interest-
ing research ideas. They’re all free and they’re all worthwhile additions to your
Ethereum development toolbox.

IN THIS CHAPTER

» Examining top free Ethereum
frameworks

» Exploring free Ethereum IDEs

» Interacting with the Ethereum
blockchain for free

» Keeping your dApps secure for free

» Highlighting great free resources to
learn Ethereum

CHAPTER 13 Ten Free Ethereum Resources 221

222 PART 5 The Part of Tens

Exploring Alternative Ethereum
Development Frameworks

You use the Truffle framework for the examples in this book. Although Truffle is
the most common framework in use, it isn’t the only one. Depending on your
needs and preferences, you should look at a couple alternatives. At the end of the
day, choose the development framework that fits most closely with your experi-
ence and makes developing dApps for Ethereum as frustration-free as possible.

Managing you development with Populus
The Populus framework provides many of the same features as Truffle. However,
because Truffle focuses on the JavaScript environment, you have to write lots of
JavaScript code to automate tasks, test, and maintain dApps using Truffle. That’s
fine if you have lots of experience with JavaScript and are comfortable in the envi-
ronment. But if you don’t know JavaScript or don’t want to invest time to learn it,
you may want to look at a framework based on something else.

Populus is a Python-based Ethereum development framework. If you have Python
experience or just like working with Python, Populus may be worth looking into.
You can get Populus by navigating to https://populus.readthedocs.io/en/
latest. This web page includes a quick start guide, documentation, and instruc-
tions on installing and using Populus. If you like Python, try out Populus to see
how it compares with Truffle.

Populus requires that you have Python already installed. Because the Python 2.7
End of Life (EOL) is scheduled for November 2020, you should install Python
 version 3. Go to https://populus.readthedocs.io/en/latest to find the most
current Python version for your operating system.

Exploring Ethereum blockchain
containers with Cliquebait
Cliquebait is another Ethereum development framework alternative to Truffle.
Instead of running a blockchain environment natively on your computer’s operat-
ing system, Cliquebait uses Docker containers, which are similar to a lightweight
virtual machines. Docker allows you to launch multiple containers, all running as
separate virtual machines (VMs), with far less overhead than running multiple
standard VMs. Each standard VM that you launch runs a full copy of an operating

system, along with virtual copies of the hardware that the VM’s operating system
needs to run. A container, such as a Docker container, runs only the operating
system components and virtual hardware that the programs need. The result is
virtualization with lower resource requirements.

Cliquebait provides a Docker image that provides a single-node Ethereum block-
chain that you can use to develop and test your smart contracts. It also supports
launching multiple Docker containers to simulate a multi-node blockchain, all
running on your computer.

Docker must be installed before you can install and run Cliquebait. Go to https://
docs.docker.com/docker-for-windows/install for instructions on download-
ing and installing Docker. After you have Docker installed, go to https://github.
com/f-o-a-m/cliquebait for instructions in using Cliquebait.

Selecting a Free Integrated Development
Environment

The IDE you choose to write code will be the most visible tool in your dApp devel-
opment toolkit. You’ll spend more time using (or fighting) your IDE, so finding
the right one is crucial to being productive. The best IDE is in the eye of the
beholder. You should try several IDEs and choose the one that is most comfortable
to you.

Developing Solidity code with Atom
Atom, like the Visual Studio Code IDE you used in the book’s examples, isn’t
strictly a blockchain-based IDE. It’s a powerful general-purpose IDE with Solidity
plug-ins. When you add the Etheratom plug-in, you get syntax highlighting, code
completion, and the capability to call the Solidity compiler with a single
keystroke.

Figure 13-1 is the main Atom interface. It looks and feels much like VS Code, with
a character of its own. You can get the Atom IDE at https://atom.io. After
installing Atom, go to https://atom.io/packages/etheratom for instructions on
installing the Etheratom plug-in.

CHAPTER 13 Ten Free Ethereum Resources 223

224 PART 5 The Part of Tens

Going online with Remix
An alternative to installing an IDE on your own computer is to use a browser-
based IDE. Remix is a popular IDE that you can access from any web browser. It
enables you to write code in Solidity, and then deploy to a blockchain. With Remix,
you can easily select a specific Solidity compiler version, along with many features
and options you’ll find helpful when developing dApps in Solidity.

To get started with Remix, navigate to https://remix.ethereum.org. You can
add code from your local computer or you can write it right from the Remix editor.
Figure 13-2 shows Remix with the SupplyChain.sol smart contract you created in
Chapter 9.

Keeping it simple with EthFiddle
Another web-based Solidity IDE is EthFiddle. EthFiddle is a great choice for a
straightforward web-based IDE for writing and compiling Solidity smart contracts.
Unlike Remix, EthFiddle doesn’t provide a way to deploy your code. Figure 13-3
shows the SupplyChain.sol smart contract you created in Chapter 9 in the EthFiddle
IDE. Navigate to https://ethfiddle.com to get started in EthFiddle.

FIGURE 13-1:
Atom IDE main

desktop.

FIGURE 13-2:
Remix web-
based IDE.

FIGURE 13-3:
EthFiddle

web-based IDE.

CHAPTER 13 Ten Free Ethereum Resources 225

226 PART 5 The Part of Tens

Exploring Ethereum Clients and APIs
After you write your smart contract code, you’ll need to deploy it to an Ethereum
client and then be able to access the blockchain to test and invoke your code after
it’s in production. As with frameworks and IDEs, many high-quality free resources
are available.

Swapping your Ethereum client to Parity
Parity is an Ethereum client that runs a node on an Ethereum blockchain network.
Although geth, the Ethereum client you used for the exercises in this book, is more
popular, Parity is a good alternative that boasts several advantages over geth,
including the following:

» Faster: Syncs the full Ethereum blockchain in just hours and is built to reduce
CPU and network load.

» Lower disk space use: Prunes the Ethereum blocks to use less local disk
space.

» Web-based GUI: Provides easy-to-access features through a user-friendly
web-browser interface.

Navigate to https://www.parity.io/ethereum to get started with Parity. If you
want to use the Parity UI, navigate to https://github.com/Parity-JS/shell/
releases to find the latest release. Figure 13-4 shows a newly installed Parity
UI. Note that the first time you run the Parity UI, it runs Parity and starts the sync
process with the live Ethereum network.

Interacting with Ethereum
by using Web3.js
In Chapter 10 you discover how to interact with your smart contracts. Although
the techniques you learn make it possible to access blockchain data and run your
functions, they aren’t elegant. By far the most common way to interact with Ethe-
reum smart contracts is through a collection of libraries written in JavaScript
named Web3.js. You can write code in JavaScript or any language that supports
JavaScript calls. From there, Web3.js makes it easy to interact with Ethereum data
and functions.

Navigate to https://github.com/ethereum/web3.js to get the latest version of
Web3.js, and go to https://web3js.readthedocs.io for the latest Web3.js
documentation.

If you’re looking for a good Web3.js tutorial, go to www.dappuniversity.com/
articles/web3-js-intro and check out Dapp Tutorial’s introduction.

Focusing on Wallets and Security
Security is always a concern when developing Ethereum dApps. The nature of
blockchain technology makes the deliberate focus on security a required design
goal. Building security into dApps depends on having the right building blocks and
a solid method to maintain security after deployment. Two free resources that
help you write and maintain secure dApps are the Mist wallet and the OpenZep-
pelin security library.

Protecting your crypto-assets in Mist
Mist is both an Ethereum wallet and an Ethereum browser. Mist is the official wal-
let for Ethereum, developed by the Ethereum Foundation. It also provides access
to dApps, similar to the way popular web browsers give you access to websites
around the Internet. Mist does more than just browse blockchain apps; it provides
a suite of tools for interacting with the Ethereum network. With Mist, you can
generate smart contracts, pool cryptocurrency, and share information among
participants who don’t trust one another. Mist attempts to make Ethereum block-
chain access as easy as possible.

FIGURE 13-4:
Parity UI.

CHAPTER 13 Ten Free Ethereum Resources 227

228 PART 5 The Part of Tens

To get started with Mist, use a traditional web browser to navigate to https://
github.com/ethereum/mist/releases and download the latest Mist release for
your operating system. After you install Mist, you can launch the browser to create
an account or interact with the Ethereum blockchain with a variety of tools.

Securing your dApps with OpenZeppelin
One of the hardest parts of developing smart contracts in an Ethereum environ-
ment is making them secure from the beginning. Although it may be easy to con-
sider security from the beginning of the design phase, writing secure smart
contract code is more difficult. The OpenZeppelin library is a collection of Solidity
code that helps you to implement secure code in your smart contracts.

You can import OpenZeppelin in your smart contracts and then take advantage of
the many implementations of Ethereum standards, such as ERC-20 tokens,
instead of having to implement them yourself. OpenZeppelin keeps you from hav-
ing to reinvent the security wheel in your Solidity smart contract code.

To get started with OpenZeppelin, navigate to https://openzeppelin.org for
instructions on installing and using this valuable library.

Learning More About Developing
Ethereum dApps

You learned a lot about Solidity and developing dApps for the Ethereum block-
chain in this book. If you want to learn more about Ethereum development and
have a lot of fun in the process, check out CryptoZombies. CryptoZombies is a step-
by-step Solidity tutorial in which you develop a blockchain-based game involving
a zombie army you create. As you gain experience, your zombies level up and gain
new skills. Navigate to https://cryptozombies.io to get started building your
own Ethereum game — and zombie army.

CHAPTER 14 Ten Design Principles for Distributed Blockchain Apps 229

Chapter 14
Ten Design Principles
for Distributed
Blockchain Apps

Blockchain technology is a disruptive, transformative approach to the way
we manage data. It promises to radically change how we carry out tasks that
handle sensitive information in shared environments. Critical operations

on sensitive data historically required a strong central authority to convince data
owners to trust the environment enough to allow it to manage their data.

One of the more difficult obstacles that every blockchain dApp must overcome is
building trust. Users have to trust that the software running on the blockchain
includes solid measures to provide security and protect privacy before they’ll sup-
ply sensitive personal and business data. You can go a long way toward building
this trust by adhering to several basic design guidelines. If you follow the ten
design goals for blockchain applications presented in this chapter, you’ll help
encourage your users to trust your application enough to use it and rely on it.

IN THIS CHAPTER

» Keeping users happy

» Making your dApp effective and
efficient

» Focusing on trust

» Providing the right amount of help

230 PART 5 The Part of Tens

Designing for Trust
One of the primary reasons most organizations move toward blockchain solutions
is its capability to share data among nodes that do not trust one another. If you
think about it, that really sets a high bar for dApp developers. To develop a suc-
cessful dApp, you have to convince your users to trust your software with their
data as you send it to a large number of other nodes that you don’t trust (and they
don’t trust, either).

Trust is normally (but not always) transitive. (Yes, I’m taking you back to math
class. If A = B, and B = C, then A = C. You’re welcome.) This is the most common
way we, as humans, deal with trust. If I trust Mary, and Joe trusts me, then Joe is
probably fine with trusting Mary. Let’s assume I’m a food critic. Joe trusts that I
recommend good food. If I post that I really like Mary’s peach pie, then Joe will be
more likely to try her peach pie since Joe trusts my taste in food. But that doesn’t
track with a trustless environment. In the case of blockchain dApps, your users
trust you, but you don’t trust others in your own blockchain network.

Your first design goal is a high-level objective that you have to keep as a top-of-
mind motivator for all decisions. Many of the subsequent design goals support
this one: Design your dApps for trust. That goal means you want to consider what
your users wan, and what makes them feel that they can trust your dApp.

Users have to know that you’ll take care of their data. Your dApp should not hide
anything and should make it easy to check up on what’s happening. It should
clearly communicate good and bad information and provide an overall sense of
well-being. Although that’s a tall order for software, it’s necessary to build trust.

The most important aspect of designing for trust is understanding who your users
are and what makes them feel comfortable. In short, know your users. Know what
they want and how you can convince them that you aren’t going to waste their
time or take advantage of their trust in you.

Enforcing Consistency
One of the easiest ways to avoid confusion is to limit the options and conflicting
experiences in your dApps. Microsoft learned long ago the power in consistency.
They developed standards for how to interact with users, and explored and defined
every aspect of creating a user interface. That’s why Microsoft applications feel
similar to one another. If you’ve used one Microsoft application, you’ll recognize
at least the general user interface in other Microsoft applications. (And if you’ve

CHAPTER 14 Ten Design Principles for Distributed Blockchain Apps 231

used Microsoft products for a while, you’ll remember the huge disruption Micro-
soft caused when they converted to a tile-based user interface — largely because
everyone was so comfortable with the legacy Microsoft interface.)

For example, if you want to find the current version of a Windows program you’re
running, you can almost always click or tap Help, then click or tap the About menu
item on the Help menu. Figure 14-1 shows the About menu item in VS Code. The
About menu item exists in pretty much every Windows application and shows
basic information, including the version number, of the program you’re running.
That simple example of user interface consistency makes it easy for anyone to find
application information without having to hunt for it.

Figure 14-2 shows the About dialog box in VS Code. You’ll find release information
for most Windows applications by clicking or tapping Help ➪ About. That’s the
power of consistency.

FIGURE 14-1:
Help ➪  About

menu item
in VS Code.

FIGURE 14-2:
VS Code About

dialog box.

232 PART 5 The Part of Tens

Your dApps should define clear standards for every user interaction. When you ask
your users to provide input, do it in the same way throughout your dApp. When a
user enters a product ID in multiple places, the input field should look the same in
each location. Use the same colors, fonts, and input method to give your dApp a
consistent look and feel. Another area in which you’ll find consistency in GUI apps
is keyboard shortcuts. You can almost always use Ctrl-C to copy highlighted text
and Ctrl-V to paste that text in a new location. Consistent keyboard shortcuts
make it even easier to learn and use new software.

In the same way, standardize all output. Error messages and alerts are prime areas
for standardization. When possible, use common input and output layers, so that
all input and output uses the same set of functions. The entire dApp will look more
consistent.

You’re trying to encourage your users to keep using your dApp. A dApp that pres-
ents a consistent user interface is one the builds trust. Consistency also makes it
easier for your users to learn how to use your software, and an application that is
easy to learn is one that users will likely prefer and accept.

Removing Doubt through Transparency
One of the reasons why users distrust an application is that they don’t really
understand it. The users provide their data but aren’t sure what happens after
that. They don’t know where their data goes, and whether it’s even still some-
where in the system. This feeling of putting data into a black box can be even
stronger with blockchain dApps.

As blockchain technology becomes more popular, overall awareness of its features
is increasing. That means many of your users will know that your dApp sends
their data to many other computers, potentially all over the world. One of the
hurdles you will have to overcome is convincing your users that you are protecting
their sensitive data.

Clearly communicate what data your dApp needs, why it needs each type of data,
and what you do with it. You won’t need to convey this information every time you
prompt for data, but it should be available the first time you interact with a new
user and on demand thereafter. You should also make it easy for users to see what
they have done (and what your dApp has done with their data.) Providing trans-
parency at each step gives users a sense of confidence.

Make it easy for your users to drill down and get verification of actions. This level
of transparency gives users the confidence that your dApp is doing what it claims

CHAPTER 14 Ten Design Principles for Distributed Blockchain Apps 233

to do, and can reduce the concern that your dApp is hiding something. Depending
on the level of user concern and your own design guidelines, you can build trans-
parency into each workflow or into on demand functions to allow power users to
drill down at will.

Providing Feedback, Guidance,
and Setting Expectations

The next design goal is providing feedback and guidance and setting expectations.
This goal is a logical extension of transparency. Whereas transparency makes
transaction and workflow details readily available to users, feedback, guidance,
and expectation setting puts transparency into the normal workflow. Instead of
just allowing users to see what happened, you should present them with inform-
ative feedback at every significant workflow step.

For example, if you are a manufacturer and have just transferred the ownership of
a new tractor to a shipper, your new supply chain dApp may give you a message
“You just transferred tractor with serial number ABC-12345 to Unified
Shipping — Transaction number 456778.” Of course, you’d probably get more
details for a capital item transfer, but you get the idea. The dApp provided feed-
back that essentially says “Hey, good job. Here’s what you did.” Informative feed-
back is the first step in convincing users to trust your dApp. The feedback gives
them the assurance that they’re using the software correctly.

You can extend the feedback example to inform users of the next step as well. In
the tractor example, your feedback message could also include a “Do you want to
release the title now?” message with the option to click or tap a button to go to the
next step. End-of-task prompts like this help to ensure that users understand the
proper workflow and give them the impression that the software is helping them
do their jobs correctly. When software makes users more effective, it goes a long
way toward building trust. Everyone loves software that makes them look good!

Handling Mistakes with Class
Face it, errors happen. And sometimes those errors are big ones. I hope you found
all the big errors in your software during testing. (You did test exhaustively,
right?) If you did, most of the errors you encounter in production will be user
errors.

234 PART 5 The Part of Tens

When you handle user errors, try to avoid any notifications that subtly say “You
messed up!” Focus on resolving the situation, not placing blame.

You probably remember using your first GPS device in a car. In the early days of
GPS, if you deviated from the suggested route, you heard a fairly stern “Rerout-
ing” message. The voice might as well have said “You’re not going where I told
you. Hang on, I’ll tell you how to get back to what I told you in the first place.”
Error messages should inform users as to what has happened but focus on what to
do next. Yes, the GPS did that, but it was generally after a subtle scolding. Don’t
scold your users.

On the other hand, don’t spend too much time focusing on errors. Overly verbose
error messages can be confusing and take too long to read. Get to the point. Always
design error handling from the user perspective. Give users everything they need
to respond quickly and decisively to errors, and nothing more.

Error messages help end users understand what is happening, and also help sup-
port personnel when they’re troubleshooting. Design your error messaging sys-
tem so that it provides necessary user messages as well as more verbose messages
on demand for troubleshooting and investigations.

Remember that the blockchain is immutable, so any errors that make it into a
block will always be there. Your dApp should resolve user issues with data before
storing that data to the blockchain. The trick to handling errors is to guide users
to the right solution without slowing them down. That requires attention to who
your users are, how they use your dApp, and what they need to resolve a problem.
One of your design goals should be to provide error handling that meets your
users’ needs in all cases.

Designing Functions that Focus
on User Actions, Not Data

Functions provide the actions of your smart contracts. One way to look at smart
contracts is that they are made up of data (nouns) and actions (verbs). Framing
smart contracts in this way makes it easier to describe and design them, and gen-
erally results in an application that flows well from a user perspective.

Because all applications exist to meet some users’ requirements, it makes sense to
design software in light of the user. At the highest level, if a user wants to create
a new order, your should start with a function named createNewOrder(). You
might change things as you refine your design, but starting with a user perspec-
tive helps to maintain authenticity with the software’s goals. Designing technical

CHAPTER 14 Ten Design Principles for Distributed Blockchain Apps 235

components that fulfill user goals also helps to avoid deviating too far from high-
level functional goals.

Many of today’s software development organizations depend on methods that
start with user stories. As a developer, you’ll be asked to produce software that
fulfils a requirement that looks like “As a user, I want to ____.” Starting your
smart contract with a function that matches what users want to do (that is, the
filled-in blank from the preceding statement), is a good design strategy for mak-
ing user-friendly software.

Every function doesn’t have to map directly to user actions, but your high-level
functions should look like they satisfy user stories. You will always need lower-
level task-oriented or data-oriented functions to carry out the technical steps of
any task. It’s okay if those functions don’t map directly to user stories. But your
lower-level functions should all play parts in the functions that users interact
with. As a very general rule of thumb, your public functions should look a lot like
user story responses.

Storing Data Based on User Actions,
Not Data Structures

Users may not interact directly with data, but you should still attempt to organize
data based on user requirements. This general goal is more a rule of thumb. Use
this goal when initially designing your smart contract data requirements. You’ll
likely need to refine the design and change it, but starting with data mapped to
user requests helps your software stay true to user requirements.

For instance, if you’re designing software to create and maintain orders, start
with a Solidity struct statement that defines an order the way a user sees it. An
order can be a collection of fields that describe it, such as order number, order
date, customer order, instructions, and a list of order lines. Order lines contain
fields such as product number, price, and quantity. You can define this as a struct
of variables and a list of order line structs.

Regardless of the technical details of how you define data, the main purpose of
this goal is to consider how users will use data, and try to present the data that
way. If you make orders directly available to users to promote transparency in
your software, you want to make the orders as easy to access as possible. You
don’t want to promote transparency and then make users work hard to figure out
what your data means. Making data easy to access and understand will build even
more trust.

236 PART 5 The Part of Tens

Keeping It Simple
You have many things to consider when designing a dApp. Although focusing on
users should help direct design decisions, the tendency is to attempt to meet every
user need. If left unchecked, this desire to do it all will make your software overly
complex and difficult to use. Giving users lots of choices sounds like a good goal
at first, but an overwhelmed user is not going to like (or use) your software.

The general-purpose adage “keep it simple, stupid” is still relevant. It’s a stern
reminder that simplicity is far smarter than complexity. You may have heard that
“a confused mind always says no,” but you want your users to accept and use your
dApp. You want them to find that your software makes them more effective and
efficient. To achieve those goals, you have to make understanding and using your
software easy and clear.

Simplicity starts with the user interface, but it doesn’t stop there. Every aspect of
your application’s functional and data design must be as simple as possible. Don’t
try to do too much. Instead, determine what your users need and want most, and
do that. Prioritize the functionality that will make your software stand out. Keep-
ing it simple takes more work, but often results in a focused, consistent product
that users will use.

Expecting Blockchain Access
to Be Expensive

Another handy design goal that will help you avoid post-development rework is
pretending from the beginning that storing data on the blockchain is expensive.
Because in reality, it is. For many of us who started programming way back when
Y2K was far in the future, storage is much cheaper today than it used to be. Most
developers today don’t have to worry about data size or where to store it. Block-
chain is changing all that. Now, instead of having tons of cheap and fast storage
available, you have to pay as you go.

Expensive storage isn’t a new thing in blockchain, but it can be easy to forget. If
you remind yourself that storage is expensive early on, you’ll be more likely to
think about storage options more thoroughly. For example, do you need to store
the city and state where a product will be shipped? City and state are both depen-
dent on zip code (or postal code in more generic settings.) You can store the zip
code in the shipping address, and then just look up the corresponding city and
state using an online API at runtime.

CHAPTER 14 Ten Design Principles for Distributed Blockchain Apps 237

Separating data such as the zip code example may not make sense for your appli-
cation, but you’ll always benefit from thinking through your data storage options.
The most expensive storage options are almost always the result of poor design
planning. Don’t design blockchain dApps the same way you design traditional
database applications. They just aren’t the same. Design with a different mindset
and you’ll end up with a better software product.

Staying Out of the User’s Way
Earlier goals in this chapter focus on your users’ needs. A good application meets
the most important user needs in a way that helps them be more effective and
efficient. However, your design should consider not only what your application
does but also what it doesn’t do.

Every application has constraints and limitations. This design goal focuses on
another thing that your application doesn’t do: It doesn’t get in the user’s way.
Simply put, your application should help users, not slow them down. Your user
interface should help users do their jobs, and the transitions between user inter-
face elements should be intuitive and instructive when necessary.

Sometimes you’ll have to take data from users, and then store it on the block-
chain. (You remember that this is expensive, right?) Because you know that you’re
going to make users pay to store data on the blockchain, don’t make them wait for
it as well. Whenever possible, let your users do something productive while the
function that handles their data operates in the background. This might be a good
place in your code to use events.

Do everything you can to avoid becoming an obstacle to your users. Nobody likes
to wait. Design with thought and your product will have a much better chance of
meeting your users’ needs.

Chapter 15
Top Ten Ethereum
Projects

Blockchain technology in general, and Ethereum in particular, is rapidly
growing in popularity. Increasing numbers of organizations are embracing
Ethereum for new projects. The variety of projects that use Ethereum as

their foundation is almost limitless. A quick look at the State of the dApps website
shows how many Ethereum projects exist in different categories and how popular
they are. Navigate to www.stateofthedapps.com/ to explore a large number of
popular dApps. This resource is a great way to stay current on trending dApps.

This chapter lists ten of the top Ethereum projects. Although these projects are
just a small representative sample of what is out there, they will give you some
exposure to what others are doing with Ethereum. I hope these projects give you
some ideas for new and exciting ways that Ethereum can help transform your
organization.

In spite of the diversity of functionality in each project in this chapter, they are all
built on Ethereum. Each project uses smart contracts running on the EVM to carry
out functionality and the Ethereum blockchain to store state data.

IN THIS CHAPTER

» Predicting future events

» Playing games and collecting
cryptocollectibles

» Exchanging and paying with
cryptocurrencies

» Identifying yourself and blockchain-
tweeting about it

» Finding jobs and computing power

CHAPTER 15 Top Ten Ethereum Projects 239

240 PART 5 The Part of Tens

Predicting Future Events with Gnosis
Gnosis is one of the many innovative companies using Ethereum in interesting
ways. Gnosis provides a platform for prediction markets. The Gnosis Olympia
product is the alpha version of their platform. Using Olympia, participants get an
initial balance of OLY tokens, pretend money they can use in Olympia, which they
use to make predictions on a variety of topics. Participants can win GNO tokens for
making successful predictions.

Participants who set up predictions associate the prediction with an oracle, for
outcome validation. For example, the true value of a specific stock price at a spe-
cific date and time is easily validated by comparing the prediction with published
stock prices. The stock price data source would be the oracle that the stock price
prediction uses for validation.

Gnosis Olympia provides the platform for participants to determine the probabil-
ity of some outcome. You can use Olympia to determine an expected value of some
item of value. Knowing an item’s value gives you more leverage in negotiations.

Another possible use case is with elections. Distributed prediction markets could
emerge to provide better forecasts of upcoming elections. Political polling has
undergone criticism for a lack of precision, and emerging products could help
increase their accuracy.

You can find out more about Gnosis on their website at https://blog.gnosis.pm.

Crowdsourcing Event Predictions in Augur
Augur is another offering in the prediction market category. Like Gnosis, partici-
pants can record events and then provide a prediction on the outcome of the event.
Augur rewards participants with REP tokens in exchange for providing accurate
data related to the event and for voting with the majority.

Augur is based on crowdsourced data and gets more accurate with the inclusion of
participant data. That’s why submitting accurate data results in a reward. An oracle
validates event data and outcome, but the emphasis is still on crowdsourced input.

Augur is completely decentralized and depends on smart contracts and the Ethe-
reum blockchain to operate. Its goal is to provide a global portal that generates
better forecasts about the outcome of any future event that enjoys widespread
global interest.

To learn more about Augur navigate to their website at www.augur.net.

Managing Decentralized Organizations
with Aragon

Aragon is a platform dedicated to helping manage decentralized organizations,
which often suffer from a lack of infrastructure and functionality. Aragon partici-
pants purchase Aragon Network Tokens (ANT) from one of several popular cryp-
tocurrency exchanges, and use ANT to pay for Aragon services.

Aragon facilitates distributed autonomous organization governance, fundraising,
and accounting. For example, Aragon participants can pose questions to their
organization for voting. The Aragon environment handles all of the details of
managing the voting process, resulting in verified election outcomes. Voting is
just one of the features of the platform.

The Aragon project has as its goals to empower decentralized organization par-
ticipants by promoting participation and providing financial transparency. Ara-
gon enables organizations to exist outside the traditional hierarchical, centralized
model.

You can find out more about Aragon on their website at https://aragon.org/.

Breeding and Collecting Cryptokitties
Ethereum isn’t just about cryptocurrency and business function. You can find
some fun games in the Ethereum space as well. Cryptokitties, one of the first
Ethereum-based games, is still popular. This revolutionary game introduced
blockchain-based cryptocollectibles. That’s right. Cryptokitties are collectable.

Each cryptokitty is unique. Technically, each cryptokitty is an ERC-721 token and
has a unique set of cattributes (cryptokitty DNA) that come from each cryptok-
itty’s parents. That’s right, you don’t create cryptokitties; you breed them. And
just like in real life (well, kind of), you can either trust genetic luck to create a
rare and valuable cryptokitty, or you can pay a siring fee to another cryptokitty
for the capability to breed using their cryptokitties. Each cryptokitty has a differ-
ent value, based on the rarity of its cattributes. In the past, some cryptokitties
with rare cattributes (and a favorable ETH exchange rate) sold for over
$100,000 USD.

CHAPTER 15 Top Ten Ethereum Projects 241

242 PART 5 The Part of Tens

Figure 15-1 shows the Cryptokitties website with examples of a few cryptokitties,
each with its own unique cattributes. To learn more about cryptokitties, navigate
to their website at www.cryptokitties.co.

Exchanging Tokens with IDEX
You learn how to create your own ERC-20 token in Chapter 9, but you don’t learn
much about how to buy tokens. Thousands of ERC-20 tokens are in use. Before
you can use a token to pay for something, you have to acquire it. Some tokens are
free, but others must be purchased. To purchase a token, you must exchange cur-
rency or cryptocurrency, so you need an organization that provides exchange
services.

IDEX is a decentralized exchange (DEX) that specializes in trading between ETH
and ERC-20 tokens. It confirms transactions in its smart contract, without wait-
ing for Ethereum block mining. IDEX’s capability to confirm transactions in real
time allows traders to trade continuously. Orders are recorded on the Ethereum
blockchain in the order in which they were received, but traders don’t have to wait
for their tokens. They receive them as soon as their order is approved by the smart
contract.

Figure 15-2 shows the IDEX website with a list of the most active Ethereum
 ERC-20 tokens. To learn more about IDEX, navigate to their website at https://
idex.market.

FIGURE 15-1:
Cryptokitties

website.

Creating Your Digital Identity with uPort
The uPort dApp is an innovative initiative with a simple purpose: to provide a
decentralized identity for everyone, stored on the Ethereum blockchain. Users
register their identity through uPort. Once authenticated, users can use the uPort
digital identity to sign digital contracts and interact with other services that
require validated identities.

The uPort dApp has scores of potential uses. One of the most visible needs uPort
could help address is in providing people who have lost physical identification
items to still provide proof of identity when required. Survivors of catastrophic
events often have no identification with them. Accessing an immutable digital
identification could help alleviate this problem. Digital identities could help with
immigration, voting, and other cases where identification is required.

To learn more about uPort, navigate to their website at www.uport.me.

Sharing Your Thoughts on the
Blockchain with EtherTweet

As its name suggests, EtherTweet is a blockchain alternative to Twitter. The main
difference is that EtherTweet is censorship free because all messages are stored on
the Ethereum blockchain. You can post up to 160 characters.

FIGURE 15-2:
IDEX website.

CHAPTER 15 Top Ten Ethereum Projects 243

244 PART 5 The Part of Tens

Although prices change based on the current value of ether, creating an Ether-
Tweet account costs about 2 cents and each tweet costs about one third of a cent.
Figure 15-3 shows the EtherTweet website with instructions on using their web
interface to post and read tweets. To learn more about EtherTweet, navigate to
their website at http://ethertweet.net.

Searching for Jobs with EthLance
EthLance is a distributed platform for freelancers and employers to find each
other, engage in jobs, and transfer payment in ether. EthLance is part of the dis-
trict0x network, which is a collective of decentralized marketplaces and commu-
nities. One of EthLance’s outstanding features is that it does not collect any fees.

Membership in EthLance is free, and both freelancers and employers can use the
network to match personnel with open jobs. Once work is complete, employers
can pay freelancers directly using ether. The entire EthLance platform runs in
Ethereum. The transparent nature of EthLance and its zero fees model make it a
great resource for self-employed individuals.

Figure 15-4 shows the EthLance website with their “how it works” graphic show-
ing how freelances and employers can use the services. To learn more about Eth-
Lance, navigate to their website at https://ethlance.com.

FIGURE 15-3:
EtherTweet web

interface.

Using TenX to Pay with Cryptocurrency
TenX allows customers to use ether and other cryptocurrencies at retailers to pay
for purchases around the world. Although most retailers don’t directly support
cryptocurrencies yet, TenX created their own line of crypto debit cards and credit
cards that link up with its proprietary crypto wallet. The TenX cards provide the
bridge between cryptocurrencies and traditional payment vehicles.

TenX records all payment transactions on the blockchain, and has plans for a
larger network that will allow apps to communicate across multiple blockchains.

Figure 15-5 shows the TenX website with an image of their TenX debit card. To
learn more about TenX, navigate to their website at https://tenx.tech/en.

FIGURE 15-4:
EthLance website
with participation

description.

FIGURE 15-5:
TenX debit card.

CHAPTER 15 Top Ten Ethereum Projects 245

246 PART 5 The Part of Tens

Buying and Selling Computing
Power with Golem

The last innovative Ethereum project is Golem. Golem is a decentralized market-
place for buying and selling computing power. Whether you have excess comput-
ing power that you’d like to sell, or you need to temporarily rent more computing
power to complete a project, Golem can help. You can use Golem supercomputers
after paying in native GNT token, or you can earn GNT for letting others use your
excess computing power.

Figure 15-6 shows the Golem website. To learn more about Golem, navigate to
their website at https://golem.network.

FIGURE 15-6:
Golem website.

Index 247

Index
Symbols
^ (caret) symbol, Solidity smart

contracts, 134

A
access control, data storage, 207
access modifiers, Solidity
constant access modifier,

143–144
pure access modifier, 144
view access modifier, 143

Accounts window, Ganache, 85
active chain, 35
address data type, 138
allowance() function

ERC-20 tokens, 160
payment token smart

contract, 150
allowed data item, payment

token smart contract, 150
ANT (Aragon Network

Tokens), 241
Apollo 11 moon landing, 22
applications

coding/development phase,
development lifecycle,
73–74

dApps, 18
block structure, 60–64
deploying, 191–204
design principles, 229–237
development tools, 69–73
gas units, 68–69
learning resources, 228
overview, 59–60
smart contracts, 64–65,

66–67

traditional apps versus,
210–211

deploying code
compiling code, 203
ether, 199–202
to Ganache test blockchain,

192–193
integrated dApps, 216–217
to live blockchain

environment, 195–196
overview, 191–192
preparing configuration for,

196–198
to public test blockchains,

193–195
smart contracts, 118–119,

120–122
with Truffle, 203–204

digital identity management,
49–51

device identities, 50
ERC-725 standard, 51
fraud and identity theft,

50–51
overview, 49–50

financial services, 45–49
banking, 46–48
escrow, 48
ICOs, 48–49
overview, 45–46

governance, 54–56
government spending, 55
notary, 56
policy development, 55
tax payment, 54–55
voting, 55, 240

industry, 51–54
energy, 52–53

healthcare, 52
overview, 51
supply chain, 53–54

overview, 43–45
testing

command line testing,
181–185

compilers and testing
frameworks, 72

debugging, 190
error handling, 188–189
Ethereum, 17
with Ganache, 178–181
integration testing, 215–216
with JavaScript, 185–187
logging activity, 189–190
overview, 175
testing blockchain, 72, 83–86
testing lifecycle, 177
testing quality, 177–178
writing tests from

beginning, 176
writing code

Ganache test environment,
113–114

gas units, 124
smart contracts, 115–124
Truffle project, 110–113

approve() function
ERC-20 tokens, 160
payment token smart

contract, 150
Aragon, 241
Aragon Network Tokens

(ANT), 241
assert() function, 146
Atom, 73, 223–224
Augur, 240

authentication step, digital
identity, 49

automining mode, Ganache,
84, 193

B
balanceOf() function

ERC-20 tokens, 159
payment token smart

contract, 150
balances data item, payment

token smart contract, 150
Bamboo language, 66
banking applications

cryptocurrency, 46–47
overview, 46
real estate, 47–48

Beneficiary field, headers, 62
bitcoin, 10, 28–29
Bitcoin Magazine, 10
Block number field, headers, 62
blockchain clients

Cpp-ethereum, 71
for developing dApps, 18
Ethereumjs-lib, 71
Geth, 71
installing, 79–83
overview, 70–71
Parity, 71
Pyethapp, 71

blockchain technology. See also
blockchains

building apps, 18–19
distributed processing, 21–28

bitcoin, 28–29
defined, 21
overview, 22–24
problems with, 24–27
solutions to problems, 27–28

Ethereum, 10–11
general discussion, 7–10
overview, 1, 21–22

blockchains
active chain, 35
blockchain storage versus

database storage, 206–210
access control, 207
cost, 208–209
data format, 207
data integrity, 209
optimizing performance, 208
overview, 206
permissions, 208
resilience, 209–210
transparency, 209
updating data, 207–208

building, 33–36
consensus, 33–34
consistency, 35–36
immutability, 34–35

content data, 31
cryptographic hash, 30
data storage, 36–39
direct interaction, 40
immutability, 40
incorporating into existing

application, 211–214
overview, 211–213
smart contracts, 213–214

nonce value, 30–31
overview, 30–31
protecting visibility, 31–32
reducing transaction costs,

39–40
replication, 41
transferring value without

trust, 39
transparency, 41

blocks
body, 61
defined, 60
genesis blocks, 30
headers, 61–62

Beneficiary field, 62
Block number field, 62

defined, 61
Difficulty field, 62
Extra data field, 62
Gas limit field, 62
Gas used field, 62
Logs bloom field, 62
Mix hash field, 62
Nonce field, 62
Previous hash field, 61–62
Receipt root field, 62
State root field, 62
Timestamp field, 62
Transaction root field, 62

miners, 60
nonce value, 60
overview, 9–10
transactions, 63–64
uncle blocks, 60–61

body, of blocks, 61
bool data type, 138
boundary conditions,

testing, 183
Bread wallet, 102
Buterin, Vitalik, 10
byte data type, 138

C
caret (^) symbol, Solidity smart

contracts, 134
CLI (command-line interface), 78
clients, Ethereum

APIs and, 226–227
client interface, 17

client-server processing
architecture, 23

Cliquebait, 72, 222–223
code editors and IDEs

Atom, 73
for developing dApps, 18
EthFiddle, 73, 224–225
installing, 91–94
overview, 72

248 Ethereum For Dummies

Pragma, 73
Remix, 73, 224–225
Superblocks Lab, 73
Vim Solidity, 73
Visual Studio Code, 73, 92–94

coding
coding/development phase,

development lifecycle,
73–74

deploying code
compiling code, 203
ether, 199–202
to Ganache test blockchain,

192–193
integrated dApps, 216–217
to live blockchain

environment, 195–196
overview, 191–192
preparing configuration for,

196–198
to public test blockchains,

193–195
smart contracts, 118–119,

120–122
with Truffle, 203–204

writing code
Ganache test environment,

113–114
gas units, 124
smart contracts, 115–124
Truffle project, 110–113

Coinbase web wallet, 101
Coinomi wallet, 102
cold wallets, 97–98
command line testing, 181–185
command-line interface (CLI), 78
comments section, Solidity

smart contracts, 133,
134–135

compilers and testing
frameworks

for developing dApps, 18
Embark, 72
Populus, 72

Remix, 72
Solidity compile (solcjs), 72
Solidity compiler (solc), 72
Truffle, 72

compiling code
deploying dApps and, 203
smart contracts, 119–120

computing power
marketplaces, 246

conditional statements, smart
contracts, 144

consensus
Delegated Byzantine Fault

Tolerance consensus
protocol, 34

Delegated Proof of Stake
consensus protocol, 34

Proof of Authority consensus
algorithm, 195

Proof of Stake consensus
protocol, 33

Proof of Work consensus
protocol, 11–12, 33

consistency
blockchains, 35–36
as dApp design goal, 230–232

constant access modifier,
Solidity, 143

constructor code, ERC-20
tokens, 158

content data, 30–31
contract section, Solidity smart

contracts, 133, 135–136
cost

blockchain storage versus
database storage, 208–209

reducing transaction costs,

CRUD operations, 36–38, 207
cryptocollectibles, Cryptokitties

game, 241–242
cryptocurrency

banking applications, 46–47
bitcoin, 10, 28–29
cryptocurrency ATMs, 13
defined, 12

cryptographic hash, 30
Cryptokitties game, 241–242
CryptoZombies, 228

D
DAOs (decentralized

autonomous organizations)
Aragon management

platform, 241
defined, 16

dApps (decentralized
applications), 18. See also
smart contracts; testing
software

block structure, 60–64
blocks, 60
headers, 61–62
miners, 60
nonce value, 60
transactions, 63–64
uncle blocks, 60–61

deploying, 191–204
compiling code, 203
ether, 199–202
to Ganache test blockchain,

192–193
to live blockchain

environment, 195–196
overview, 191–192
preparing configuration for,

196–198
to public test blockchains,

193–195
with Truffle, 203–204

Index 249

39–40
transaction fees, 141–142

Cpp-ethereum, 71
createParticipant()

function, supply chain, 161
createProduct() function,

supply chain, 161–162
crowdsourcing, 240

dApps (decentralized
applications) (continued)

design principles, 229–237
avoiding obstacles for

users, 237
consistency, 230–232
data storage with user

focus, 235
error handling, 233–234
expensive storage, 236–237
feedback, 233
functions with user focus,

234–235
guidance, 233
setting expectations, 233
simplicity, 236
transparency, 232–233
trust, 229–230

development tools, 69–73
gas units, 68–69
learning resources, 228
overview, 59–60
smart contracts

overview, 64–65
Solidity language, 66–67

traditional apps versus,
210–211

Data field, transactions, 64
data formats

blockchain storage versus
database storage, 207

testing, 183
data integrity, 209
data storage

blockchain storage versus
database storage, 206–210

access control, 207
cost, 208–209
data format, 207
data integrity, 209
optimizing performance, 208
overview, 206

permissions, 208
resilience, 209–210
transparency, 209
updating data, 207–208

in blockchains, 38–39
expensive nature of, 236–237
smart contracts, 136–140
storing and synchronizing data

in multiple locations, 26,
27–28

in traditional database, 36–38
user focus, 235

data types, Solidity
address data type, 138
bool data type, 138
byte data type, 138
enum data type, 138
int data type, 138
mapping data type, 138
overview, 137
string data type, 138
uint data type, 138

data validation, testing, 183
database management systems.

See DBMSs
dBFT (Delegated Byzantine

Fault Tolerance) consensus
protocol, 34

DBMSs (database management
systems)

blockchain storage versus

locking, 37
optimistic concurrency

control, 37
timestamp ordering, 37

debugging software, 190
decentralized applications. See

dApps
decentralized autonomous

organizations (DAOs)
Aragon management

platform, 241
defined, 16

decimals data item, payment
token smart contract, 150

Delegated Byzantine Fault
Tolerance (dBFT) consensus
protocol, 34

Delegated Proof of Stake (DPoS)
consensus protocol, 34

democracy governance mode,
blockchain technology, 9–10

denial of service (DoS) attacks,
140–141

deploying code
compiling code, 203
ether, 199–202
to Ganache test blockchain,

192–193
integrated dApps, 216–217
to live blockchain

environment, 195–196
overview, 191–192
preparing configuration for,

196–198
to public test blockchains,

193–195
smart contracts, 118–119,

120–122
with Truffle, 203–204

deployment phase, in
development lifecycle,
73–74

desktop wallets
defined, 98
Exodus, 101

250 Ethereum For Dummies

database storage, 206–210
access control, 207
cost, 208–209
data format, 207
data integrity, 209
optimizing performance, 208
overview, 206
permissions, 208
resilience, 209–210
transparency, 209
updating data, 207–208

MetaMask, 101
Mist, 101, 227–228

determinism, 133
development frameworks,

222–223
Cliquebait, 222–223
Populus, 222
Truffle, 72

connecting to Ganache
blockchain, 178–180

creating project, 110–111
deploying dApps with,

203–204
downloading and installing,

86–91
editing config file, 111–113

development lifecycle, 73–75
deployment phase, 73–74
planning phase, 73–74
testing phase, 73–74

development tools
blockchain clients, 70–71

Cpp-ethereum, 71
Ethereumjs-lib, 71
Geth, 71
installing, 79–83
Parity, 71
Pyethapp, 71

code editors and IDEs, 72–73
Atom, 73
EthFiddle, 73
installing, 91–94
Pragma, 73
Remix, 73
Superblocks Lab, 73
Vim Solidity, 73
Visual Studio Code, 73

compilers and testing
frameworks, 72

Embark, 72
installing, 86–91
Populus, 72
Remix, 72

Solidity compile, 72
Solidity compiler, 72
Truffle, 72

Ethereum, 17, 18
Ethereum blockchain client,

70–71
overview, 69–70, 77–79
smart contracts, 75
testing blockchain

Cliquebait, 72
Ganache, 72
installing, 83–86
Local Ethereum Network, 72
Truffle, 72

device identities, 50
Difficulty field, headers, 62
digital identity management

applications, 49–51
device identities, 50
ERC-725 standard, 51
fraud and identity theft,

50–51
overview, 49–50
uPort dApp, 243

disintermediation, Ethereum,
11, 212

distributed processing, 21–28
bitcoin, 28–29
communicating between

remote processes
problem, 25–26
solution, 27–28

coordinating multiple
computers

problem, 26–27
solution, 27–28

defined, 21
launching remote processes

problem, 26
solution, 27–28

overview, 22–24
storing and synchronizing data

in multiple locations
problem, 26

solution, 27–28
Docker containers, 222–223
DoS (denial of service) attacks,

140–141
do-while statement, smart

contracts, 145
downloading

Ganache, 83–86
Geth, 80–83
Truffle, 86–91
Visual Studio Code, 92–94

DPoS (Delegated Proof of Stake)
consensus protocol, 34

E
ecosystem (environment). See

also dApps
block structure, 60–64
Ethereum

blockchain, 17
client interface, 17
development tools, 17, 18
Ethereum Virtual Machine

(EVM), 17
exchanges, 17
testing, 17
wallet, 17

Ethereum virtual machine,
67–68

gas units, 68–69
smart contracts

development, 73–75
overview, 64–65
Solidity language, 66–67

EHR (electronic health
record), 52

EIP (Ethereum Improvement
Proposals), 149–150

elections
prediction markets, 240
voting applications, 55

electronic health record
(EHR), 52

Index 251

Embark, 72
energy applications, 52–53
enum data type, 138
ERC (Ethereum Request for

Comments), 149–150
ERC-20 tokens

functions, 157–160
allowance() function, 160
approve() function, 160
balanceOf() function, 159
constructor, 158
overview, 157
totalSupply()

function, 160
transfer() function,

158–159
transferFrom()

function, 159
interface, 153–154
smart contracts, 154–155
standard, 49, 130

ERC-725 token standard, 51
error handling

dApp design goal, 233–234
smart contracts, 145–146
testing software, 188–189

escrow applications, 48
ETHAddress wallet, 103
ether (ETH)

buying, 13–15
defined, 10
for Kovan network, 200
for Rinkeby network, 200
for Ropsten network, 199
spending, 15
trading, 13–15
verifying, 201–202

Etheratom plug-in, 223
Ethereum. See also smart

contracts
consensus, 11–12
decentralized autonomous

organizations

Aragon management
platform, 241

defined, 16
development tools, 18
ecosystem (environment), 17
ether (ETH)

buying, 13–15
defined, 10
for Kovan network, 200
for Rinkeby network, 200
for Ropsten network, 199
spending, 15
trading, 13–15
verifying, 201–202

free resources for, 221
clients and APIs, 226–227
dApp development, 228
development frameworks,

222–223
integrated development

environments, 223–225
wallets and security, 227–228

initial coin offerings, 16–17,
48–49

integrating non-blockchain
apps with, 205–217

Keccak-256 hash function, 30
mining, 12
nonce value, 30–31
overview, 10–11
top projects, 239–246

Aragon, 241
Augur, 240
Cryptokitties game, 242
EtherTweet, 244
EthLance, 244
Gnosis, 240
Golem, 246
IDEX, 242
TenX, 245
uPort dApp, 243

Ethereum Foundation, 78
Ethereum Improvement

Proposals (EIP), 149–150

Ethereum Natural Specification
(NatSpec) directive, 135

Ethereum Request for
Comments (ERC), 149–150

Ethereum Virtual Machine
(EVM), 12–13, 17, 67–68,
168–170

Ethereum wallets. See wallets
Ethereum Yellow Paper, 141
Ethereumjs-lib, 71
EtherTweet, 243–244
EthFiddle, 73, 224–225
EthLance, 244–245
event-driven programming, 165
events

defining, 165–166
implementing, 163–165
triggering, 166–168

EVM (Ethereum Virtual
Machine), 12–13, 17, 67–68,
168–170

exceptions, handling, 145–146
exchanges

defined, 17
pure currency exchanges, 46
token exchange services,

242–243
Exodus wallet, 101
external visibility modifier,

Solidity, 143
Extra data field, headers, 62

F
feedback

dApp design goal of
providing, 233

policy development app, 55
financial services applications,

45–49
banking, 46–48

cryptocurrency, 46–47
overview, 46
real estate, 47–48

escrow accounts, 48

252 Ethereum For Dummies

ICOs, 48–49
overview, 45–46

flow of execution statements
do-while statement, 145
if-else statement, 144
for statement, 145
While statement, 144

fraud, reducing, 50–51
full client nodes, 70
functions

ERC-20 tokens, 157–160
allowance() function, 160
approve() function, 160
balanceOf() function, 159
constructor, 158
overview, 157
totalSupply()

function, 160
transfer() function,

158–159
transferFrom()

function, 159
supply chain, 160–163

movement functions,
162–163

overview, 160
participant functions, 161
product functions, 161–162

G
Ganache, 72

Accounts window, 85
automining mode, 84, 193
deploying dApps to, 192–193
downloading and installing,

83–86
Google Analytics tracking, 84
Settings window, 85, 112, 179
testing software with, 178–181
writing code, 113–114

Gas limit field
headers, 62
transactions, 63

Gas price field, transactions, 63
gas units

block headers, 62
dApps, 68–69
Ethereum transactions, 63, 124
smart contracts, 140–142

Gas used field, headers, 62
genesis blocks, 30
Geth (Go Ethereum)

downloading and installing,
80–83

overview, 71
syncmode option, 81–82

getParticipantDetails()
function, supply chain, 161

getProductDetails()
function, supply chain, 162

getProductTrack() function,
supply chain, 163

getRegistrationDetails()
function, supply chain, 163

Gnosis, 240
Gnosis Olympia, 240
Go Ethereum. See Geth
Golem, 246
Google Analytics tracking, 84
governance applications, 54–56

government spending, 55
notary, 56
policy development, 55
tax payment, 54–55
voting, 55, 240

graphical user interface (GUI), 78
Guarda wallet, 101

H
hardware wallets

handling, 99
KeepKey, 103
Ledger Nano S, 103
overview, 102
Trezor, 103

headers, block

Beneficiary field, 62
Block number field, 62
defined, 61
Difficulty field, 62
Extra data field, 62
Gas limit field, 62
Gas used field, 62
Logs bloom field, 62
Mix hash field, 62
Nonce field, 62
Previous hash field, 61–62
Receipt root field, 62
State root field, 62
Timestamp field, 62
Transaction root field, 62

healthcare applications, 52
Hello World smart contract, 115,

117–119
hot wallets, 97–98

I
ICOs (initial coin offerings),

16–17, 48–49
identification step, digital

identity, 49
identity management, 49–51

device identities, 50
ERC-725 standard, 51
fraud and identity theft, 50–51
overview, 49–50
uPort dApp, 243

IDEs (integrated development
environments), 223–225

Atom, 73, 223–224
for developing dApps, 18
EthFiddle, 73, 224–225
installing, 91–94
Pragma, 73
Remix, 73, 224–225
Superblocks Lab, 73
Vim Solidity, 73
Visual Studio Code, 73, 92–94

Index 253

IDEX, 242–243
if-else statement, smart

contracts, 144
immutability, blockchains, 9,

34–35, 40
import section, Solidity smart

contracts, 133, 135
industry applications, 51–54

energy, 52–53
healthcare, 52
overview, 51
supply chain, 53–54

Infura accounts, 196–197
initial coin offerings (ICOs),

16–17, 48–49
installing

Ganache, 83–86
Geth, 80–83
Truffle, 86–91
Visual Studio Code, 92–94

int data type, 138
integrated development

environments (IDEs)
Atom, 73, 223–224
for developing dApps, 18
EthFiddle, 73, 224–225
installing, 91–94
Pragma, 73
Remix, 73, 224–225
Superblocks Lab, 73
Vim Solidity, 73
Visual Studio Code, 73, 92–94

integration testing, 215–216
internal visibility modifier,

Solidity, 143
Internet of Things (IoT), 50
interprocess communication

(IPC), 26, 27
invoking code, 122–124
IoT (Internet of Things), 50
IPC (interprocess

communication), 26, 27
iteration limits, testing, 183
iteration statements (loops), 144

J
JavaScript

testing software with, 185–187
Web3.js, 226

Jaxx wallet, 102
job search platforms, 244–245

K
Keccak-256 hash function, 30,

96, 162
KeepKey wallet, 103
Kovan test blockchain

ether for, 200
overview, 195

L
Ledger Nano S wallet, 103
ledgers, 9
light client nodes, 70
Lisp-like language (LLL), 66
live blockchain environment,

deploying dApps to,
195–196

Local Ethereum Network, 72
locking, DBMS, 37
logging activity, testing software,

189–190
Logs bloom field, headers, 62
loops (iteration statements), 144

M
mainnet, 18, 191, 195–199
mapping data type, 138
MetaMask wallet, 101, 104–106,

201–202
Microsoft

consistency, 230–231
Visual Studio Code, 73, 92–94

migration, 203. See also
deploying code

miners, 60, 141

mining, 12, 60–61
Mist wallet, 101, 227–228
Mix hash field, headers, 62
mobile wallets, 98, 102

Bread, 102
Coinomi, 102
defined, 98
Jaxx, 102

modifiers, Solidity
access modifiers, 143–144
constant access

modifier, 143
pure access modifier, 144
view access modifier, 143

visibility modifiers,
142–144

external visibility
modifier, 143

internal visibility
modifier, 143

private visibility
modifier, 143

public visibility
modifier, 143

movement functions, supply
chain, 162–163

getProductTrack()
function, 163

getRegistrationDetails()
function, 163

transferToOwner() function,
162–163

multiline comments, Solidity
smart contracts, 134

Mutan language, 66
MyEtherWallet, 101, 103

N
Nakamoto, Satoshi, 8, 28–29
name data item, payment token

smart contract, 150
NatSpec (Ethereum Natural

Specification) directive, 135
NodeJS environment, 87–89

254 Ethereum For Dummies

nodes
blockchain technology, 9–10
full client nodes, 70
light client nodes, 70

Nonce field
block headers, 62
transactions, 63

nonce value, 30–31, 60
notary applications, 56
n-tier processing

architecture, 23

O
online resources

Aragon, 241
Atom, 223
Augur, 240
cheat sheet, 2–3
Cliquebait, 223
configuring Truffle for different

networks, 198
Cryptokitties game, 242
CryptoZombies, 228
Dapp Tutorial, 227
Docker, 223
Etheratom plug-in, 223
Ethereum Smart Contract

Security Best Practices, 170
Ethereum website, 78
EtherTweet, 244
EthFiddle, 224
EthLance, 244
Gnosis, 240
Golem, 246
IDEX, 242
Mist, 228
OpenZeppelin, 228
Parity, 226
Populus, 222
Python, 222
Remix, 224
State of the dApps, 239

TenX, 245
uPort dApp, 243
Web3.js, 226

OpenZeppelin, 228
optimistic concurrency control,

DBMS, 37
overflows, testing for, 182
ownership, smart contracts,

168–170

P
paper wallets

ETHAddress, 103
MyEtherWallet, 103
overview, 99–100

parallel processing, 23
Parity, 71, 226–227
participant functions, supply

chain, 161
participant structure, supply

chain smart contract,
151, 156

payment services, 245
peer-to-peer processing

architecture, 24
permissions, data storage, 208
planning phase, in development

lifecycle, 73–74
PoA (Proof of Authority)

consensus algorithm, 195
policy development

applications, 55
Populus, 72, 222
PoS (Proof of Stake) consensus

protocol, 33
PoW (Proof of Work) consensus

protocol, 11–12, 33
pragma directive, Solidity smart

contracts, 133, 134
Pragma IDE, 73
prediction markets

Augur platform for, 240
Gnosis platform for, 240

Previous hash field, headers,
61–62

private blockchains, 31–32,
208

private visibility modifier,
Solidity, 143

product functions, supply chain,
161–162

createProduct() function,
161–162

getProductDetails()
function, 162

product structure, supply
chain smart contract,
151, 156

product tracking, 52–53
product tracking applications,

52–53
Proof of Authority (PoA)

consensus algorithm, 195
Proof of Stake (PoS) consensus

protocol, 33
Proof of Work (PoW) consensus

protocol, 11–12, 33
public blockchains

confidentiality, 208
overview, 31–32
public test blockchains,

deploying dApps to,
193–195

Kovan, 195
overview, 193–194
Rinkeby, 195
Ropsten, 194–195

public visibility modifier,
Solidity, 143

publish-subscribe approach,
program flow, 165

pure access modifier,
Solidity, 144

pure currency exchanges, 46.
See also financial services
applications

Pyethapp, 71
Python, 222

Index 255

R
real estate applications, 47–48
Receipt root field, headers, 62
registration structure, supply

chain smart contract,
151, 157

Remix, 72, 73, 224–225
Remote Method Invocation

(RMI), 27
Remote Procedure Call (RPC), 27
remote processes

communicating between,
25–26, 27–28

launching, 26, 27–28
replication, blockchains, 41
require() function

error handling, 146
testing software, 189

resilience
blockchain storage versus

database storage, 209–210
blockchains, 41

return values, testing for, 182
revert() function

error handling, 146
testing software, 189

Rinkeby test blockchain
ether for, 200
overview, 195

RMI (Remote Method
Invocation), 27

Ropsten test blockchain
ether for, 199
overview, 194–195

RPC (Remote Procedure Call), 27

S
schema, database, 207
security

Ethereum wallet, 227–228
smart contracts, 170–171

semantics errors, 190
Serpent language, 66

Settings window, Ganache, 85,
112, 179

Signature field, transactions, 63
Single Point of Failure

(SPoF), 209
single-line comments, Solidity

smart contracts, 134
smart contracts

access modifiers, 143–144
constant access

modifier, 143
pure access modifier, 144
view access modifier, 143

coding, 116–117
compiling code, 119–120
creating new contracts,

151–157
ERC-20 token interface,

153–154
ERC-20 token smart contract,

154–155
overview, 151–153
supply chain smart contract,

155–157
data storage, 136–140
defined, 9
deploying code, 118–119,

120–122
designing, 115
designing integration and,

213–214
development lifecycle, 73–75
Ethereum, 12–13
events, 163–168

defining, 165–166
implementing, 163–165
triggering, 166–168

flow of execution statements,
144–145

functions, 157–163
ERC-20 token, 157–160
supply chain, 160–163

gas units, 140–142
handling errors and

exceptions, 145–146

invoking code, 122–124
minimal functionality, 171–172
modifying to provide data

interface, 215
overview, 64–65, 125–126
ownership, 168–170
security, 170–171
Solidity, 66–67, 132–136

comments section, 134–135
contract section, 135–136
import section, 135
overview, 133
pragma directive, 134

supply chain
asset management, 130–132
obstacles to implementing,

127–129
overview, 126–127, 148–151
payment services, 129–130
payment token smart

contract, 149–150
supply chain smart contract,

150–151
Turing complete, 65
visibility modifiers, 142–144

smart meters, 52–53
software testing

command line testing,
181–185

compilers and testing
frameworks, 72

Embark, 72
installing, 86–91
Populus, 72
Remix, 72
Solidity compile, 72
Solidity compiler, 72
Truffle, 72

debugging, 190
error handling, 188–189
Ethereum, 17
with Ganache, 178–181
integration testing, 215–216

256 Ethereum For Dummies

with JavaScript, 185–187
logging activity, 189–190
overview, 175
testing blockchain

Cliquebait, 72
Ganache, 72
installing, 83–86
Local Ethereum Network, 72
Truffle, 72

testing lifecycle, 177
testing quality, 177–178
writing tests from

beginning, 176
software wallets

cold wallets, 97–98
desktop wallets

defined, 98
Exodus, 101
MetaMask, 101
Mist, 101, 227–228

hot wallets, 97–98
mobile wallets

Bread, 102
Coinomi, 102
defined, 98
Jaxx, 102

web wallets
Coinbase, 101
defined, 98
Guarda, 101
MyEtherWallet, 101
overview, 100

solc (Solidity compiler), 72
solcjs (Solidity compile), 72
Solidity, 228, 235. See also smart

contracts
access modifiers, 143–144
constant access

modifier, 143
pure access modifier, 144
view access modifier, 143

data storage, 136–140

data types
address data type, 138
bool data type, 138
byte data type, 138
enum data type, 138
int data type, 138
mapping data type, 138
overview, 137
string data type, 138
uint data type, 138

keccak256() function, 162
smart contracts, 66–67,

132–136
comments section, 134–135
contract section, 135
import section, 135
overview, 132–133
pragma directive, 134

visibility modifiers, 142–144
external visibility

modifier, 143
internal visibility

modifier, 143
private visibility

modifier, 143
public visibility

modifier, 143
Solidity compile (solcjs), 72
Solidity compiler (solc), 72
source code editor, 18. See also

code editors and IDEs
SPoF (Single Point of

Failure), 209
State of the dApps, 239
State root field, headers, 62
storage, of data

blockchain storage versus
database storage, 206–210

access control, 207
cost, 208–209
data format, 207
data integrity, 209
optimizing performance, 208
overview, 206

permissions, 208
resilience, 209–210
transparency, 209
updating data, 207–208

in blockchains, 38–39
expensive nature of, 236–237
smart contracts, 136–140
storing and synchronizing data

in multiple locations, 26,
27–28

in traditional database, 36–38
user focus, 235

string data type, 138
struct statements, 235
Superblocks Lab, 73
supply chain applications, 53–54

functions, 160–163
movement functions,

162–163
overview, 160
participant functions, 161
product functions, 161–162

overview, 148–151
payment token smart contract,

149–150
smart contracts

asset management, 130–132
obstacles to implementing,

127–129
overview, 126–127
payment services, 129–130

supply chain smart contract,
150–151

supply chain smart contracts,
155–157

overview, 155–156
participant structure, 151, 156
product structure, 151, 156
registration structure, 151, 157
smart contracts, 126–132

symbol data item, payment
token smart contract, 150

syncmode option, Geth, 81–82
syntax errors, 190

Index 257

T
tax payment applications, 54–55
TenX, 15, 245
test blockchains

deploying dApps to, 192–196
installing, 83–86
Kovan test blockchain

ether for, 200
overview, 195

Rinkeby test blockchain
ether for, 200
overview, 195

Ropsten test blockchain
ether for, 199
overview, 194–195

testing environment, installing,
86–91

testing phase, in development
lifecycle, 73–74

testing software
command line testing,

181–185
compilers and testing

frameworks, 72
Embark, 72
installing, 86–91
Populus, 72
Remix, 72
Solidity compile, 72
Solidity compiler, 72
Truffle, 72

debugging, 190
error handling, 188–189
Ethereum, 17
with Ganache, 178–181
integration testing, 215–216
with JavaScript, 185–187
logging activity, 189–190
overview, 175
testing blockchain

Cliquebait, 72
Ganache, 72

installing, 83–86
Local Ethereum Network, 72
Truffle, 72

testing lifecycle, 177
testing quality, 177–178
writing tests from

beginning, 176
three-tier processing

architecture, 23
Timestamp field, headers, 62
timestamp ordering, DBMS, 37
To field, transactions, 63
token exchange services,

242–243
tokens, Ethereum

defined, 130
ERC-20 tokens

functions, 157–160
interface, 153–154
smart contracts, 154–155
standard, 49, 130

totalSupply data item,
payment token smart
contract, 150

totalSupply() function
ERC-20 tokens, 160
payment token smart

contract, 150
traceable data history, 45
Transaction root field,

headers, 62
transactions, Ethereum

Data field, 64
fees, 141–142
To field, 63
Gas limit field, 63, 124
Gas price field, 63, 124
Nonce field, 63
Signature field, 63
Value field, 64

transfer() function
ERC-20 tokens, 158–159
payment token smart

contract, 150

transferFrom() function
ERC-20 tokens, 159
payment token smart

contract, 150
transferToOwner() function,

supply chain smart
contract, 162–163

transparency
blockchain storage versus

database storage, 209
blockchains, 41
as dApp design goal, 232–233
Ethereum applications, 44–45
government spending

applications, 55
supply chain applications, 53

Trezor wallet, 103
triggering events, 166–168
Truffle, 72

connecting to Ganache
blockchain, 178–180

creating project, 110–111
deploying dApps with, 203–204
downloading and installing,

86–91
editing config file, 111–113

try/catch structure, testing
software, 189

Turing complete smart
contracts, 65

Twitter, blockchain alternative
to, 243–244

U
uint data type, 138
uncle blocks, 60–61
underflows, testing for, 182
uPort dApp, 243
users, dApp design goals for

avoiding obstacles, 237
consistency, 230–232
data storage, 235–237
error handling, 233–234

258 Ethereum For Dummies

expectation setting, 233
feedback, 233
functions with user focus,

234–235
guidance, 233
simplicity, 236
transparency, 232–233
trust, 229–230

V
Value field, transactions, 64
view access modifier,

Solidity, 143
Vim Solidity, 73
Viper language, 66
visibility modifiers, Solidity,

142–143
external visibility

modifier, 143
internal visibility

modifier, 143
overview, 142–143
private visibility modifier,

143
public visibility modifier, 143

Visual Studio Code, 73, 92–94
voting applications, 55, 240

W
wallets

defined, 17
hardware wallets

handling, 99
KeepKey wallet, 103
Ledger Nano S wallet, 103
overview, 102
Trezor wallet, 103

MetaMask, 104–106
Mist, 101, 227–228
overview, 95–96
paper wallets

ETHAddress, 103
MyEtherWallet, 103
overview, 99–100

security and, 227–228
software wallets, 97–98

cold wallets, 97–98
desktop wallets, 98, 101
hot wallets, 97–98

mobile wallets, 98, 102
web wallets, 98, 100–101

web wallets
defined, 98
Guarda, 101
MyEtherWallet, 101
overview, 100

Web3.js, 226–227
While statement, smart

contracts, 144
Wirex, 15
writing code

Ganache, 113–114
gas units, 124
smart contracts

coding, 116–117
compiling code, 119–120
deploying code, 118–119,

120–122
designing, 115
invoking code, 122–124

Truffle project, 110–113
creating, 110–111
editing config file, 111–113

Index 259

About the Author
Michael G. Solomon, PhD, CISSP, PMP, CISM, PenTest+ is a security, privacy,
blockchain, and data science author, consultant, and speaker who specializes in
leading teams in achieving and maintaining secure and effective IT environments.
As an IT professional and consultant since 1987, Dr. Solomon has led project teams
for many Fortune 500 companies and has authored and contributed to more than
20 books and numerous training courses. From 1998 until 2001, he served a Com-
puter Science instructor in the Kennesaw State University’s Computer Science and
Information Sciences (CSIS) department, is a Professor of Cyber Security and
Global Business with Blockchain Technology at the University of the Cumber-
lands, and holds a PhD in Computer Science and Informatics from Emory
University.

Dedication
I want to thank God for blessing me so richly with such a wonderful family, and I
want to thank my family for their support throughout the years. My best friend
and wife of over three decades, Stacey, is my biggest cheerleader and supporter
through many professional and academic projects. I would not be who I am with-
out her.

And both our sons have always been sources of support and inspiration. To Noah,
who still challenges me, keeps me sharp, and tries to keep me relevant, and Isaac,
who left us far too early. We miss you, son.

Author’s Acknowledgments
All quality projects of any size are team efforts. I greatly appreciate and value the
input from this book’s project team, Specifically, my technical editor, G. Mark
Hardy, provided valuable input to keep what you find in this book technically
accurate, and the project manager, Susan Pink, did an astounding job throughout
the project of keeping us all on track and making sure that I had what I needed to
keep writing. Good PMs aren’t as plentiful as you’d think.

Publisher’s Acknowledgments

Executive Editor: Steve Hayes

Project Editor: Susan Pink

Copy Editor: Susan Pink

Technical Editor: G. Mark Hardy

Editorial Assistant: Matt Lowe

Sr. Editorial Assistant: Cherie Case

Production Editor: G. Vasanth Koilraj

Cover Image: © myella/iStock.com

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part 1 Getting to Know Blockchain and Ethereum
	Chapter 1 Introducing Ethereum
	Describing Blockchain Technology
	Introducing Ethereum
	Exploring Ethereum’s Consensus, Mining, and Smart Contracts
	Buying, Spending, and Trading Ether
	Getting Started with DAO and ICO
	Exploring the Ethereum Ecosystem
	Delving into Development Tools
	Building Blockchain Apps

	Chapter 2 Learning about Blockchain
	Exploring Distributed Applications
	Digging into distributed processing
	Exploring problems with distributed processing
	Presenting some solutions to distributed processing problems

	Examining the Bitcoin Solution to the Distributed Dilemma
	Describing Blockchains
	Examining blockchain details
	Protecting blockchain visibility

	Building Blockchains
	Agreeing to add blocks
	Making blocks immutable
	Reviewing the building process
	Keeping all blockchains consistent

	Understanding How Blockchains and Databases Store Data Differently
	Storing data in a traditional database
	Storing data in a blockchain

	Effectively Using Blockchains
	Transferring value without trust
	Reducing transaction costs by eliminating middlemen
	Increasing efficiency through direct interaction
	Maintaining complete transaction history
	Increasing resilience through replication
	Providing transparency

	Chapter 3 Exploring Use Cases for Ethereum
	Diving Into Ethereum Applications
	Exploring Financial Services
	Banking
	Creating Ethereum escrow applications
	Examining ICOs

	Establishing Digital Identity Management
	Managing individual and device identities
	Reducing fraud and identity theft
	Examining the ERC-725 standard and beyond

	Examining Industry Applications
	Healthcare
	Energy
	Supply chain

	Enabling Effective Governance
	Tax payment
	Government spending
	Voting
	Policy development
	Notary

	Part 2 Setting Up Your Ethereum Development Environment
	Chapter 4 Examining the Ethereum Ecosystem and Development Lifecycle
	Exploring the Ethereum Blockchain Block Structure
	Describing Smart Contracts
	Introducing Solidity, the Language of Smart Contracts
	Working with the Ethereum Virtual Machine
	Fueling Your Code with Gas
	Surveying Tools for Developing, Testing, and Deploying Ethereum Apps
	Ethereum blockchain client
	Development and testing blockchain
	Compiler and testing framework
	Source code editor/IDE

	Describing the Ethereum Development Lifecycle
	Introducing Smart Contract Development Tools

	Chapter 5 Getting and Configuring Ethereum Development Tools
	Examining Why Multiple Ethereum Development Tools Are Available
	Downloading, Installing, and Configuring All the Pieces
	Installing the blockchain client
	Installing the test blockchain
	Installing the testing environment
	Installing the IDE

	Chapter 6 Establishing an Ethereum Wallet
	Unlocking the Secrets of an Ethereum Wallet
	Examining the Types of Ethereum Wallets
	Sorting out software wallets
	Handling hardware wallets
	Perusing paper wallets

	Choosing an Ethereum Wallet
	Software wallets
	Hardware wallets
	Paper wallets

	Installing MetaMask, an Ethereum Wallet

	Part 3 Building Ethereum Distributed Blockchain Apps
	Chapter 7 Building Your First Ethereum Apps
	Validating Your Ethereum Development Environment
	Creating a Truffle project
	Editing the Truffle config file

	Exploring the Ganache Test Environment
	Designing Simple Smart Contracts
	Coding Your First Smart Contract
	Running Your First Smart Contract
	Writing your code
	Compiling your code
	Deploying your code
	Invoking your code’s functions

	Paying as You Go

	Chapter 8 Learning about Smart Contracts
	Introducing Supply Chain and Common Challenges
	Describing supply chain
	Explaining difficulties when implementing a supply chain

	Examining How Blockchain Can Help Resolve Supply Chain Problems
	Describing a Blockchain Supply Chain Solution
	Paying for supply chain services
	Managing assets on the supply chain

	Digging into Solidity
	Describing Basic Smart Contract Syntax
	Declaring valid compiler version
	Commenting your code
	Importing external code
	Defining your smart contracts

	Handling Data in Solidity
	Learning about Computation and Gas
	Exploring Access Modes and Visibility o fSmart Contract Functions and Data
	Controlling Execution Flow
	Handling Errors and Exceptions

	Chapter 9 Writing Your Own Smart Contracts with Solidity
	Reviewing Supply Chain Design Specification
	Payment token smart contract
	Supply chain smart contract

	Creating New Smart Contracts
	ERC-20 token interface
	ERC-20 token smart contract
	Supply chain smart contract

	Coding Primary Functions
	ERC-20 token functions
	Supply chain functions

	Using Events
	Defining events
	Triggering events

	Introducing Ownership
	Designing for Security
	Implementing Minimal Functionality

	Part 4 Testing and Deploying Ethereum Apps
	Chapter 10 Testing Ethereum Apps
	Understanding Ethereum dApp Testing
	Writing tests from the beginning
	Choosing the right test blockchain
	Learning the steps in the testing lifecycle
	Testing for software quality

	Deploying a dApp to a Test Ethereum Blockchain
	Telling Truffle to use the Ganache blockchain
	Deploying your code to the Ganache blockchain

	Writing Tests for Ethereum dApps
	Testing using the command line
	Writing test cases in JavaScript

	Logging and Handling Errors
	Handling errors in Solidity
	Logging activity in smart contracts

	Fixing Bugs in a dApp

	Chapter 11 Deploying and Maintaining Ethereum Apps
	Test Blockchain Options versus Live Blockchains
	Testing with the Ganache blockchain
	Deploying your code to other test blockchains

	Anticipating Differences in Live Environments
	Preparing Your Configuration for Deploying to Different Networks
	Deploying a dApp
	Getting enough ether
	Compiling your code
	Deploying your code

	Chapter 12 Integrating Non-Blockchain Apps with Ethereum
	Comparing Blockchain and Database Storage
	Locating control
	Imposing data format
	Updating data
	Optimizing performance
	Protecting confidentiality
	Paying for storage
	Providing integrity and transparency
	Protecting resilience

	Contrasting Execution and Flow in Blockchain dApps and Traditional Applications
	Designing Goals for Incorporating Blockchain into an Existing Application
	Using existing smart contracts
	Developing your own smart contracts

	Identifying Interface Data and Transaction Requirements
	Creating or Modifying Contracts to Provide Data Interface
	Testing Integrated dApps
	Deploying Integrated dApps

	Part 5 The Part of Tens
	Chapter 13 Ten Free Ethereum Resources
	Exploring Alternative Ethereum Development Frameworks
	Managing you development with Populus
	Exploring Ethereum blockchain containers with Cliquebait

	Selecting a Free Integrated Development Environment
	Developing Solidity code with Atom
	Going online with Remix
	Keeping it simple with EthFiddle

	Exploring Ethereum Clients and APIs
	Swapping your Ethereum client to Parity
	Interacting with Ethereum by using Web3.js

	Focusing on Wallets and Security
	Protecting your crypto-assets in Mist
	Securing your dApps with OpenZeppelin

	Learning More About Developing Ethereum dApps

	Chapter 14 Ten Design Principles for Distributed Blockchain Apps
	Designing for Trust
	Enforcing Consistency
	Removing Doubt through Transparency
	Providing Feedback, Guidance, and Setting Expectations
	Handling Mistakes with Class
	Designing Functions that Focus on User Actions, Not Data
	Storing Data Based on User Actions, Not Data Structures
	Keeping It Simple
	Expecting Blockchain Access to Be Expensive
	Staying Out of the User’s Way

	Chapter 15 Top Ten Ethereum Projects
	Predicting Future Events with Gnosis
	Crowdsourcing Event Predictions in Augur
	Managing Decentralized Organizations with Aragon
	Breeding and Collecting Cryptokitties
	Exchanging Tokens with IDEX
	Creating Your Digital Identity with uPort
	Sharing Your Thoughts on the Blockchain with EtherTweet
	Searching for Jobs with EthLance
	Using TenX to Pay with Cryptocurrency
	Buying and Selling Computing Power with Golem

	Index

