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Foreword

There is an old line that Linux kernel developers like to throw out when they are feeling
grumpy: “User space is just a test load for the kernel.”

By muttering this line, the kernel developers aim to wash their hands of all responsibility
for any failure to run user-space code as well as possible. As far as they’re concerned,
user-space developers should just go away and fix their own code, as any problems are
definitely not the kernel’s fault.

To prove that it usually is not the kernel that is at fault, one leading Linux kernel devel‐
oper has been giving a “Why User Space Sucks” talk to packed conference rooms for
more than three years now, pointing out real examples of horrible user-space code that
everyone relies on every day. Other kernel developers have created tools that show how
badly user-space programs are abusing the hardware and draining the batteries of un‐
suspecting laptops.

But while user-space code might be just a “test load” for kernel developers to scoff at, it
turns out that all of these kernel developers also depend on that user-space code every
day. If it weren’t present, all the kernel would be good for would be to print out alternating
ABABAB patterns on the screen.

Right now, Linux is the most flexible and powerful operating system that has ever been
created, running everything from the tiniest cell phones and embedded devices to more
than 90 percent of the world’s top 500 supercomputers. No other operating system has
ever been able to scale so well and meet the challenges of all of these different hardware
types and environments.

And along with the kernel, code running in user space on Linux can also operate on all
of those platforms, providing the world with real applications and utilities people
rely on.

In this book, Robert Love has taken on the unenviable task of teaching the reader about
almost every system call on a Linux system. In so doing, he has produced a tome that
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will allow you to fully understand how the Linux kernel works from a user-space
perspective, and also how to harness the power of this system.

The information in this book will show you how to create code that will run on all of
the different Linux distributions and hardware types. It will allow you to understand
how Linux works and how to take advantage of its flexibility.

In the end, this book teaches you how to write code that doesn’t suck, which is the best
thing of all.

—Greg Kroah-Hartman
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Preface

This book is about system programming on Linux. System programming is the practice
of writing system software, which is code that lives at a low level, talking directly to the
kernel and core system libraries. Put another way, the topic of the book is Linux system
calls and low-level functions such as those defined by the C library.

While many books cover system programming for Unix systems, few tackle the subject
with a focus solely on Linux, and fewer still address the very latest Linux releases and
advanced Linux-only interfaces. Moreover, this book benefits from a special touch: I
have written a lot of code for Linux, both for the kernel and for system software built
thereon. In fact, I have implemented some of the system calls and other features covered
in this book. Consequently, this book carries a lot of insider knowledge, covering not
just how the system interfaces should work, but how they actually work and how you
can use them most efficiently. This book, therefore, combines in a single work a tutorial
on Linux system programming, a reference manual covering the Linux system calls, and
an insider’s guide to writing smarter, faster code. The text is fun and accessible, and
regardless of whether you code at the system level on a daily basis, this book will teach
you tricks that will enable you to be a better software engineer.

Audience and Assumptions
The following pages assume that the reader is familiar with C programming and the
Linux programming environment—not necessarily well-versed in the subjects, but at
least acquainted with them. If you are not comfortable with a Unix text editor—Emacs
and vim being the most common and highly regarded—start playing with one. You’ll
also want to be familiar with the basics of using gcc, gdb, make, and so on. Plenty of
other books on tools and practices for Linux programming are out there; Appendix B
at the end of this book lists several useful references.

I’ve made few assumptions about the reader’s knowledge of Unix or Linux system pro‐
gramming. This book will start from the ground up, beginning with the basics, and
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winding its way up to the most advanced interfaces and optimization tricks. Readers of
all levels, I hope, will find this work worthwhile and learn something new. In the course
of writing the book, I certainly did.

Similarly, I make few assumptions about the persuasion or motivation of the reader.
Engineers wishing to program (better) at the system level are obviously targeted, but
higher-level programmers looking for a stronger foundation will also find a lot to in‐
terest them. Merely curious hackers are also welcome, for this book should satiate that
hunger, too. This book aims to cast a net wide enough to satisfy most programmers.

Regardless of your motives, above all else, have fun.

Contents of This Book
This book is broken into 11 chapters and two appendices.
Chapter 1, Introduction and Essential Concepts

This chapter serves as an introduction, providing an overview of Linux, system
programming, the kernel, the C library, and the C compiler. Even advanced users
should visit this chapter.

Chapter 2, File I/O
This chapter introduces files, the most important abstraction in the Unix environ‐
ment, and file I/O, the basis of the Linux programming mode. It covers reading
from and writing to files, along with other basic file I/O operations. The chapter
culminates with a discussion on how the Linux kernel implements and manages
files.

Chapter 3, Buffered I/O
This chapter discusses an issue with the basic file I/O interfaces—buffer size man‐
agement—and introduces buffered I/O in general, and standard I/O in particular,
as solutions.

Chapter 4, Advanced File I/O
This chapter completes the I/O troika with a treatment on advanced I/O interfaces,
memory mappings, and optimization techniques. The chapter is capped with a
discussion on avoiding seeks and the role of the Linux kernel’s I/O scheduler.

Chapter 5, Process Management
This chapter introduces Unix’s second most important abstraction, the process, and
the family of system calls for basic process management, including the venerable
fork.

Chapter 6, Advanced Process Management
This chapter continues the treatment with a discussion of advanced process man‐
agement, including real-time processes.
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Chapter 7, Threading
This chapter discusses threads and multithreaded programming. It focuses on
higher-level design concepts. It includes an introduction to the POSIX threading
API, known as Pthreads.

Chapter 8, File and Directory Management
This chapter discusses creating, moving, copying, deleting, and otherwise manag‐
ing files and directories.

Chapter 9, Memory Management
This chapter covers memory management. It begins by introducing Unix concepts
of memory, such as the process address space and the page, and continues with a
discussion of the interfaces for obtaining memory from and returning memory to
the kernel. The chapter concludes with a treatment on advanced memory-related
interfaces.

Chapter 10, Signals
This chapter covers signals. It begins with a discussion of signals and their role on
a Unix system. It then covers signal interfaces, starting with the basic and conclud‐
ing with the advanced.

Chapter 11, Time
This chapter discusses time, sleeping, and clock management. It covers the basic
interfaces up through POSIX clocks and high-resolution timers.

Appendix A
The first appendix reviews many of the language extensions provided by gcc and
GNU C, such as attributes for marking a function constant, pure, or inline.

Appendix B
This bibliography of recommended reading lists both useful supplements to this
work, and books that address prerequisite topics not covered herein.

Versions Covered in This Book
The Linux system interface is definable as the application binary interface and appli‐
cation programming interface provided by the triplet of the Linux kernel (the heart of
the operating system), the GNU C library (glibc), and the GNU C Compiler (gcc—now
formally called the GNU Compiler Collection, but we are concerned only with C). This
book covers the system interface defined by Linux kernel version 3.9, glibc version 2.17,
and gcc version 4.8. Interfaces in this book should be forward compatible with newer
versions of the kernel, glibc, and gcc. That is, newer versions of these components should
continue to obey the interfaces and behavior documented in this book. Similarly, many
of the interfaces discussed in this book have long been part of Linux and are thus back‐
ward compatible with older versions of the kernel, glibc, and gcc.
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If any evolving operating system is a moving target, Linux is a rabid cheetah. Progress
is measured in days, not years, and frequent releases of the kernel and other components
constantly morph the playing field. No book can hope to capture such a dynamic beast
in a timeless fashion.

Nonetheless, the programming environment defined by system programming is set in
stone. Kernel developers go to great pains not to break system calls, the glibc developers
highly value forward and backward compatibility, and the Linux toolchain generates
compatible code across versions. Consequently, while Linux may be constantly on the
go, Linux system programming remains stable, and a book based on a snapshot of the
system, especially at this point in Linux’s lifetime, has immense staying power. What I
am trying to say is simple: don’t worry about system interfaces changing and buy this
book!

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon signifies a warning or caution.

Most of the code in this book is in the form of brief, but reusable, code snippets. They
look like this:
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while (1) {
int ret;

ret = fork ();
if (ret == −1)

perror ("fork");
}

Great pains have been taken to provide code snippets that are concise but usable. No
special header files, full of crazy macros and illegible shortcuts, are required. Instead of
building a few gigantic programs, this book is filled with many simple examples. As the
examples are descriptive and fully usable, yet small and clear, I hope they will provide
a useful tutorial on the first read, and remain a good reference on subsequent passes.

Nearly all the examples in this book are self-contained. This means you can easily copy
them into your text editor and put them to use. Unless otherwise mentioned, all the
code snippets should build without any special compiler flags. (In a few cases, you need
to link with a special library.) I recommend the following command to compile a source
file:

$ gcc -Wall -Wextra -O2 -g -o snippet snippet.c

This compiles the source file snippet.c into the executable binary snippet, enabling many
warning checks, significant but sane optimizations, and debugging. The code in this
book should compile using this command without errors or warnings—although of
course, you might have to build a skeleton program around the snippet first.

When a section introduces a new function, it is in the usual Unix manpage format, which
looks like this:

#include <fcntl.h>

int posix_fadvise (int fd, off_t pos, off_t len, int advice);

The required headers, and any needed definitions, are at the top, followed by a full
prototype of the call.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of example code from
this book into your product’s documentation does require permission.
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We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Linux System Programming, Second Edition,
by Robert Love (O’Reilly). Copyright 2013 Robert Love, 978-1-449-33953-1.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Because the snippets in this book are numerous but short, they are not available in an
online repository.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers ex‐
pert content in both book and video form from the world’s leading
authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/Linux_Sys_2E.
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To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1

Introduction and Essential Concepts

This book is about system programming, which is the practice of writing system
software. System software lives at a low level, interfacing directly with the kernel and
core system libraries. Your shell and your text editor, your compiler and your debugger,
your core utilities and system daemons are all system software. But so are the network
server, the web server, and the database. These components are entirely system software,
primarily if not exclusively interfacing with the kernel and the C library. Other software
(such as high-level GUI applications) lives at a higher level, delving into the low level
only on occasion. Some programmers spend all day every day writing system software;
others spend only part of their time on this task. There is no programmer, however, who
does not benefit from an understanding of system programming. Whether it is the
programmer’s raison d'être, or merely a foundation for higher-level concepts, system
programming is at the heart of all software that we write.

In particular, this book is about system programming on Linux. Linux is a modern Unix-
like system, written from scratch by Linus Torvalds and a loose-knit community of
programmers around the globe. Although Linux shares the goals and philosophy of
Unix, Linux is not Unix. Instead, Linux follows its own course, diverging where desired
and converging only where practical. The core of Linux system programming is the
same as on any other Unix system. Beyond the basics, however, Linux differentiates
itself—in comparison with traditional Unix systems, Linux supports additional system
calls, behaves distinctly, and offers new features.

System Programming
Traditionally, all Unix programming was system-level programming. Unix systems his‐
torically did not include many higher-level abstractions. Even programming in a de‐
velopment environment such as the X Window System exposed in full view the core
Unix system API. Consequently, it can be said that this book is a book on Linux pro‐
gramming in general. But note that this book does not cover the Linux programming

1



environment —for example, there is no tutorial on make in these pages. What is covered
is the system programming API exposed on a modern Linux machine.

We can compare and contrast system programming with application programming,
which differ in some important aspects but are quite similar in others. System pro‐
gramming’s hallmark is that the system programmer must have an acute awareness of
the hardware and the operating system on which they work. Where system programs
interface primarily with the kernel and system libraries, application programs also in‐
terface with high-level libraries. These libraries abstract away the details of the hardware
and operating system. Such abstraction has several goals: portability with different sys‐
tems, compatibility with different versions of those systems, and the construction of
higher-level toolkits that are easier to use, more powerful, or both. How much of a given
application uses system versus high-level libraries depends on the level of the stack at
which the application was written. Some applications are written exclusively to higher-
level abstractions. But even these applications, far from the lowest levels of the system,
benefit from a programmer with knowledge of system programming. The same good
practices and understanding of the underlying system inform and benefit all forms of
programming.

Why Learn System Programming
The preceding decade has witnessed a trend in application programming away from
system-level programming and toward very high-level development, either through
web software (such as JavaScript), or through managed code (such as Java). This de‐
velopment, however, does not foretell the death of system programming. Indeed, some‐
one still has to write the JavaScript interpreter and the Java VM, which are themselves
system programming. Furthermore, the developer writing Python or Ruby or Scala can
still benefit from knowledge of system programming, as an understanding of the soul
of the machine allows for better code no matter where in the stack the code is written.

Despite this trend in application programming, the majority of Unix and Linux code is
still written at the system level. Much of it is C and C++ and subsists primarily on
interfaces provided by the C library and the kernel. This is traditional system program‐
ming—Apache, bash, cp, Emacs, init, gcc, gdb, glibc, ls, mv, vim, and X. These applica‐
tions are not going away anytime soon.

The umbrella of system programming often includes kernel development, or at least
device driver writing. But this book, like most texts on system programming, is uncon‐
cerned with kernel development. Instead, it focuses on user-space system-level pro‐
gramming, that is, everything above the kernel (although knowledge of kernel internals
is a useful adjunct to this text). Device driver writing is a large, expansive topic, best
tackled in books dedicated to the subject.
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What is the system-level interface, and how do I write system-level applications in
Linux? What exactly do the kernel and the C library provide? How do I write optimal
code, and what tricks does Linux provide? What interesting system calls are provided
in Linux compared to other Unix variants? How does it all work? Those questions are
at the center of this book.

Cornerstones of System Programming
There are three cornerstones of system programming in Linux: system calls, the C
library, and the C compiler. Each deserves an introduction.

System Calls
System programming starts and ends with system calls. System calls (often shortened
to syscalls) are function invocations made from user space—your text editor, favorite
game, and so on—into the kernel (the core internals of the system) in order to request
some service or resource from the operating system. System calls range from the fa‐
miliar, such as read() and write(), to the exotic, such as get_thread_area() and
set_tid_address().

Linux implements far fewer system calls than most other operating system kernels. For
example, a count of the x86-64 architecture’s system calls comes in at around 300, com‐
pared with the suspected thousands of system calls on Microsoft Windows. In the Linux
kernel, each machine architecture (such as Alpha, x86-64, or PowerPC) can augment
the standard system calls with its own. Consequently, the system calls available on one
architecture may differ from those available on another. Nonetheless, a very large subset
of system calls—more than 90 percent—is implemented by all architectures. It is this
shared subset, these common interfaces, that we cover in this book.

Invoking system calls
It is not possible to directly link user-space applications with kernel space. For reasons
of security and reliability, user-space applications must not be allowed to directly execute
kernel code or manipulate kernel data. Instead, the kernel must provide a mechanism
by which a user-space application can “signal” the kernel that it wishes to invoke a system
call. The application can then trap into the kernel through this well-defined mechanism
and execute only code that the kernel allows it to execute. The exact mechanism varies
from architecture to architecture. On i386, for example, a user-space application exe‐
cutes a software interrupt instruction, int, with a value of 0x80. This instruction causes
a switch into kernel space, the protected realm of the kernel, where the kernel executes
a software interrupt handler—and what is the handler for interrupt 0x80? None other
than the system call handler!
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The application tells the kernel which system call to execute and with what parameters
via machine registers. System calls are denoted by number, starting at 0. On the i386
architecture, to request system call 5 (which happens to be open()), the user-space
application stuffs 5 in register eax before issuing the int instruction.

Parameter passing is handled in a similar manner. On i386, for example, a register is
used for each possible parameter—registers ebx, ecx, edx, esi, and edi contain, in order,
the first five parameters. In the rare event of a system call with more than five parameters,
a single register is used to point to a buffer in user space where all of the parameters are
kept. Of course, most system calls have only a couple of parameters.

Other architectures handle system call invocation differently, although the spirit is the
same. As a system programmer, you usually do not need any knowledge of how the
kernel handles system call invocation. That knowledge is encoded into the standard
calling conventions for the architecture, and handled automatically by the compiler and
the C library.

The C Library
The C library (libc) is at the heart of Unix applications. Even when you’re programming
in another language, the C library is most likely in play, wrapped by the higher-level
libraries, providing core services, and facilitating system call invocation. On modern
Linux systems, the C library is provided by GNU libc, abbreviated glibc, and pronounced
gee-lib-see or, less commonly, glib-see.

The GNU C library provides more than its name suggests. In addition to implementing
the standard C library, glibc provides wrappers for system calls, threading support, and
basic application facilities.

The C Compiler
In Linux, the standard C compiler is provided by the GNU Compiler Collection (gcc).
Originally, gcc was GNU’s version of cc, the C Compiler. Thus, gcc stood for GNU C
Compiler. Over time, support was added for more and more languages. Consequently,
nowadays gcc is used as the generic name for the family of GNU compilers. However,
gcc is also the binary used to invoke the C compiler. In this book, when I talk of gcc, I
typically mean the program gcc, unless context suggests otherwise.

The compiler used in a Unix system—Linux included—is highly relevant to system
programming, as the compiler helps implement the C standard (see “C Language
Standards” on page 8) and the system ABI (see “APIs and ABIs” on page 5).
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C++
This chapter focuses on C as the lingua franca of system programming, but C++ plays
a significant role.

To date, C++ has taken a backseat to C in system programming. Historically, Linux
developers favored C over C++: core libraries, daemons, utilities, and of course the Linux
kernel are all written in C. Where the ascendancy of C++ as a “better C” is all but
universal in most non-Linux environments, in Linux C++ plays second fiddle to C.

Nonetheless, in much of this book, you can replace “C” with “C++” without issue. In‐
deed, C++ is an excellent alternative to C, suitable for any system programming task: C
++ code can link to C code, invoke Linux system calls, and utilize glibc.

C++ programming adds two more cornerstones to the system programming founda‐
tion: the standard C++ library and the GNU C++ compiler. The standard C++ library
implements C++ system interfaces and the ISO C++11 standard. It is provided by the
libstdc++ library (sometimes written libstdcxx). The GNU C++ compiler is the standard
compiler for C++ code on Linux systems. It is provided by the g++ binary.

APIs and ABIs
Programmers are naturally interested in ensuring their programs run on all of the sys‐
tems that they have promised to support, now and in the future. They want to feel secure
that programs they write on their Linux distributions will run on other Linux distribu‐
tions, as well as on other supported Linux architectures and newer (or earlier) Linux
versions.

At the system level, there are two separate sets of definitions and descriptions that impact
portability. One is the application programming interface (API), and the other is the
application binary interface (ABI). Both define and describe the interfaces between dif‐
ferent pieces of computer software.

APIs
An API defines the interfaces by which one piece of software communicates with an‐
other at the source level. It provides abstraction by providing a standard set of
interfaces——usually functions—that one piece of software (typically, although not
necessarily, a higher-level piece) can invoke from another piece of software (usually a
lower-level piece). For example, an API might abstract the concept of drawing text on
the screen through a family of functions that provide everything needed to draw the
text. The API merely defines the interface; the piece of software that actually provides
the API is known as the implementation of the API.
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It is common to call an API a “contract.” This is not correct, at least in the legal sense of
the term, as an API is not a two-way agreement. The API user (generally, the higher-
level software) has zero input into the API and its implementation. It may use the API
as-is, or not use it at all: take it or leave it! The API acts only to ensure that if both pieces
of software follow the API, they are source compatible; that is, that the user of the API
will successfully compile against the implementation of the API.

A real-world example of an API is the interfaces defined by the C standard and imple‐
mented by the standard C library. This API defines a family of basic and essential func‐
tions, such as memory management and string-manipulation routines.

Throughout this book, we will rely on the existence of various APIs, such as the standard
I/O library discussed in Chapter 3. The most important APIs in Linux system pro‐
gramming are discussed in the section “Standards” on page 7.

ABIs
Whereas an API defines a source interface, an ABI defines the binary interface between
two or more pieces of software on a particular architecture. It defines how an application
interacts with itself, how an application interacts with the kernel, and how an application
interacts with libraries. Whereas an API ensures source compatibility, an ABI ensures
binary compatibility, guaranteeing that a piece of object code will function on any system
with the same ABI, without requiring recompilation.

ABIs are concerned with issues such as calling conventions, byte ordering, register use,
system call invocation, linking, library behavior, and the binary object format. The call‐
ing convention, for example, defines how functions are invoked, how arguments are
passed to functions, which registers are preserved and which are mangled, and how the
caller retrieves the return value.

Although several attempts have been made at defining a single ABI for a given archi‐
tecture across multiple operating systems (particularly for i386 on Unix systems), the
efforts have not met with much success. Instead, operating systems—Linux included—
tend to define their own ABIs however they see fit. The ABI is intimately tied to the
architecture; the vast majority of an ABI speaks of machine-specific concepts, such as
particular registers or assembly instructions. Thus, each machine architecture has its
own ABI on Linux. In fact, we tend to call a particular ABI by its machine name, such
as Alpha, or x86-64. Thus, the ABI is a function of both the operating system (say, Linux)
and the architecture (say, x86-64).

System programmers ought to be aware of the ABI but usually need not memorize it.
The ABI is enforced by the toolchain—the compiler, the linker, and so on—and does
not typically otherwise surface. Knowledge of the ABI, however, can lead to more op‐
timal programming and is required if writing assembly code or developing the toolchain
itself (which is, after all, system programming).
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The ABI is defined and implemented by the kernel and the toolchain.

Standards
Unix system programming is an old art. The basics of Unix programming have existed
untouched for decades. Unix systems, however, are dynamic beasts. Behavior changes
and features are added. To help bring order to chaos, standards groups codify system
interfaces into official standards. Numerous such standards exist but, technically speak‐
ing, Linux does not officially comply with any of them. Instead, Linux aims toward
compliance with two of the most important and prevalent standards: POSIX and the
Single UNIX Specification (SUS).

POSIX and SUS document, among other things, the C API for a Unix-like operating
system interface. Effectively, they define system programming, or at least a common
subset thereof, for compliant Unix systems.

POSIX and SUS History
In the mid-1980s, the Institute of Electrical and Electronics Engineers (IEEE) spear‐
headed an effort to standardize system-level interfaces on Unix systems. Richard
Stallman, founder of the Free Software movement, suggested the standard be named
POSIX (pronounced pahz-icks), which now stands for Portable Operating System
Interface.

The first result of this effort, issued in 1988, was IEEE Std 1003.1-1988 (POSIX 1988,
for short). In 1990, the IEEE revised the POSIX standard with IEEE Std 1003.1-1990
(POSIX 1990). Optional real-time and threading support were documented in, respec‐
tively, IEEE Std 1003.1b-1993 (POSIX 1993 or POSIX.1b), and IEEE Std 1003.1c-1995
(POSIX 1995 or POSIX.1c). In 2001, the optional standards were rolled together with
the base POSIX 1990, creating a single standard: IEEE Std 1003.1-2001 (POSIX 2001).
The latest revision, released in December 2008, is IEEE Std 1003.1-2008 (POSIX 2008).
All of the core POSIX standards are abbreviated POSIX.1, with the 2008 revision being
the latest.

In the late 1980s and early 1990s, Unix system vendors were engaged in the “Unix Wars,”
with each struggling to define its Unix variant as the Unix operating system. Several
major Unix vendors rallied around The Open Group, an industry consortium formed
from the merging of the Open Software Foundation (OSF) and X/Open. The Open
Group provides certification, white papers, and compliance testing. In the early 1990s,
with the Unix Wars raging, The Open Group released the Single UNIX Specification
(SUS). SUS rapidly grew in popularity, in large part due to its cost (free) versus the high
cost of the POSIX standard. Today, SUS incorporates the latest POSIX standard.

The first SUS was published in 1994. This was followed by revisions in 1997 (SUSv2)
and 2002 (SUSv3). The latest SUS, SUSv4, was published in 2008. SUSv4 revises and
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combines IEEE Std 1003.1-2008 and several other standards. Throughout this book, I
will mention when system calls and other interfaces are standardized by POSIX. I men‐
tion POSIX and not SUS because the latter subsumes the former.

C Language Standards
Dennis Ritchie and Brian Kernighan’s famed book, The C Programming Language
(Prentice Hall), acted as the informal C specification for many years following its 1978
publication. This version of C came to be known as K&R C. C was already rapidly
replacing BASIC and other languages as the lingua franca of microcomputer program‐
ming. Therefore, to standardize the by-then quite popular language, in 1983 the Amer‐
ican National Standards Institute (ANSI) formed a committee to develop an official
version of C, incorporating features and improvements from various vendors and the
new C++ language. The process was long and laborious, but ANSI C was completed in
1989. In 1990, the International Organization for Standardization (ISO) ratified ISO
C90, based on ANSI C with a small handful of modifications.

In 1995, the ISO released an updated (although rarely implemented) version of the C
language, ISO C95. This was followed in 1999 with a large update to the language, ISO
C99, that introduced many new features, including inline functions, new data types,
variable-length arrays, C++-style comments, and new library functions. The latest ver‐
sion of the standard is ISO C11, the most significant feature of which is a formalized
memory model, enabling the portable use of threads across platforms.

On the C++ front, ISO standardization was slow in arriving. After years of development
—and forward-incompatible compiler release—the first C standard, ISO C98, was
ratified in 1998. While it greatly improved compatibility across compilers, several as‐
pects of the standard limited consistency and portability. ISO C++03 arrived in 2003.
It offered bug fixes to aid compiler developers but no user-visible changes. The next and
most recent ISO standard, C++11 (formerly C++0x in suggestion of a more optimistic
release date), heralded numerous language and standard library additions and im‐
provements—so many, in fact, that many commentators suggest C++11 is a distinct
language from previous C++ revisions.

Linux and the Standards
As stated earlier, Linux aims toward POSIX and SUS compliance. It provides the inter‐
faces documented in SUSv4 and POSIX 2008, including real-time (POSIX.1b) and
threading (POSIX.1c) support. More importantly, Linux strives to behave in accordance
with POSIX and SUS requirements. In general, failing to agree with the standards is
considered a bug. Linux is believed to comply with POSIX.1 and SUSv3, but as no official
POSIX or SUS certification has been performed (particularly on each and every revision
of Linux), we cannot say that Linux is officially POSIX- or SUS-compliant.
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1. Experienced Linux users might remember the switch from a.out to ELF, the switch from libc5 to glibc, gcc
changes, C++ template ABI breakages, and so on. Thankfully, those days are behind us.

With respect to language standards, Linux fares well. The gcc C compiler is ISO C99-
compliant; support for C11 is ongoing. The g++ C++ compiler is ISO C++03-compliant
with support for C++11 in development. In addition, gcc and g++_ implement exten‐
sions to the C and C++ languages. These extensions are collectively called GNU C, and
are documented in Appendix A.

Linux has not had a great history of forward compatibility,1 although these days it fares
much better. Interfaces documented by standards, such as the standard C library, will
obviously always remain source compatible. Binary compatibility is maintained across
a given major version of glibc, at the very least. And as C is standardized, gcc will always
compile legal C correctly, although gcc-specific extensions may be deprecated and even‐
tually removed with new gcc releases. Most importantly, the Linux kernel guarantees
the stability of system calls. Once a system call is implemented in a stable version of the
Linux kernel, it is set in stone.

Among the various Linux distributions, the Linux Standard Base (LSB) standardizes
much of the Linux system. The LSB is a joint project of several Linux vendors under the
auspices of the Linux Foundation (formerly the Free Standards Group). The LSB extends
POSIX and SUS, and adds several standards of its own; it attempts to provide a binary
standard, allowing object code to run unmodified on compliant systems. Most Linux
vendors comply with the LSB to some degree.

This Book and the Standards
This book deliberately avoids paying lip service to any of the standards. Far too fre‐
quently, Unix system programming books must stop to elaborate on how an interface
behaves in one standard versus another, whether a given system call is implemented on
this system versus that, and similar page-filling bloat. This book, however, is specifically
about system programming on a modern Linux system, as provided by the latest ver‐
sions of the Linux kernel (3.9), gcc (4.8), and C library (2.17).

As system interfaces are generally set in stone—the Linux kernel developers go to great
pains to never break the system call interfaces, for example—and provide some level of
both source and binary compatibility, this approach allows us to dive into the details of
Linux’s system interface unfettered by concerns of compatibility with numerous other
Unix systems and standards. This sole focus on Linux also enables this book to offer in-
depth treatment of cutting-edge Linux-specific interfaces that will remain relevant and
valid far into the future. The book draws upon an intimate knowledge of Linux and of
the implementation and behavior of components such as gcc and the kernel, to provide
an insider’s view full of the best practices and optimization tips of an experienced
veteran. 
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2. Plan9, an operating system born of Bell Labs, is often called the successor to Unix. It features several innovative
ideas, and is an adherent of the everything-is-a-file philosophy.

Concepts of Linux Programming
This section presents a concise overview of the services provided by a Linux system. All
Unix systems, Linux included, provide a mutual set of abstractions and interfaces. In‐
deed, these commonalities define Unix. Abstractions such as the file and the process,
interfaces to manage pipes and sockets, and so on, are at the core of a Unix system.

This overview assumes that you are familiar with the Linux environment: I presume
that you can get around in a shell, use basic commands, and compile a simple C program.
This is not an overview of Linux or its programming environment, but rather of the
foundation of Linux system programming.

Files and the Filesystem
The file is the most basic and fundamental abstraction in Linux. Linux follows the
everything-is-a-file philosophy (although not as strictly as some other systems, such as
Plan 9).2 Consequently, much interaction occurs via reading of and writing to files, even
when the object in question is not what you would consider a normal file.

In order to be accessed, a file must first be opened. Files can be opened for reading,
writing, or both. An open file is referenced via a unique descriptor, a mapping from the
metadata associated with the open file back to the specific file itself. Inside the Linux
kernel, this descriptor is handled by an integer (of the C type int) called the file
descriptor, abbreviated fd. File descriptors are shared with user space, and are used
directly by user programs to access files. A large part of Linux system programming
consists of opening, manipulating, closing, and otherwise using file descriptors.

Regular files
What most of us call “files” are what Linux labels regular files. A regular file contains
bytes of data, organized into a linear array called a byte stream. In Linux, no further
organization or formatting is specified for a file. The bytes may have any values, and
they may be organized within the file in any way. At the system level, Linux does not
enforce a structure upon files beyond the byte stream. Some operating systems, such as
VMS, provide highly structured files, supporting concepts such as records. Linux does
not.

Any of the bytes within a file may be read from or written to. These operations start at
a specific byte, which is one’s conceptual “location” within the file. This location is
called the file position or file offset. The file position is an essential piece of the metadata
that the kernel associates with each open file. When a file is first opened, the file position

10 | Chapter 1: Introduction and Essential Concepts



is zero. Usually, as bytes in the file are read from or written to, byte-by-byte, the file
position increases in kind. The file position may also be set manually to a given value,
even a value beyond the end of the file. Writing a byte to a file position beyond the end
of the file will cause the intervening bytes to be padded with zeros. While it is possible
to write bytes in this manner to a position beyond the end of the file, it is not possible
to write bytes to a position before the beginning of a file. Such a practice sounds non‐
sensical, and, indeed, would have little use. The file position starts at zero; it cannot be
negative. Writing a byte to the middle of a file overwrites the byte previously located at
that offset. Thus, it is not possible to expand a file by writing into the middle of it. Most
file writing occurs at the end of the file. The file position’s maximum value is bounded
only by the size of the C type used to store it, which is 64 bits on a modern Linux system.

The size of a file is measured in bytes and is called its length. The length, in other words,
is simply the number of bytes in the linear array that make up the file. A file’s length can
be changed via an operation called truncation. A file can be truncated to a new size
smaller than its original size, which results in bytes being removed from the end of the
file. Confusingly, given the operation’s name, a file can also be “truncated” to a new size
larger than its original size. In that case, the new bytes (which are added to the end of
the file) are filled with zeros. A file may be empty (that is, have a length of zero), and
thus contain no valid bytes. The maximum file length, as with the maximum file posi‐
tion, is bounded only by limits on the sizes of the C types that the Linux kernel uses to
manage files. Specific filesystems, however, may impose their own restrictions, imposing
a smaller ceiling on the maximum length.

A single file can be opened more than once, by a different or even the same process.
Each open instance of a file is given a unique file descriptor. Conversely, processes can
share their file descriptors, allowing a single descriptor to be used by more than one
process. The kernel does not impose any restrictions on concurrent file access. Multiple
processes are free to read from and write to the same file at the same time. The results
of such concurrent accesses rely on the ordering of the individual operations, and are
generally unpredictable. User-space programs typically must coordinate amongst them‐
selves to ensure that concurrent file accesses are properly synchronized.

Although files are usually accessed via filenames, they actually are not directly associated
with such names. Instead, a file is referenced by an inode (originally short for informa‐
tion node), which is assigned an integer value unique to the filesystem (but not neces‐
sarily unique across the whole system). This value is called the inode number, often
abbreviated as i-number or ino. An inode stores metadata associated with a file, such as
its modification timestamp, owner, type, length, and the location of the file’s data—but
no filename! The inode is both a physical object, located on disk in Unix-style filesys‐
tems, and a conceptual entity, represented by a data structure in the Linux kernel.
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3. Temporal locality is the high likelihood of an access to a particular resource being followed by another access
to the same resource. Many resources on a computer exhibit temporal locality.

Directories and links
Accessing a file via its inode number is cumbersome (and also a potential security hole),
so files are always opened from user space by a name, not an inode number. Directo‐
ries are used to provide the names with which to access files. A directory acts as a
mapping of human-readable names to inode numbers. A name and inode pair is called
a link. The physical on-disk form of this mapping—for example, a simple table or a hash
—is implemented and managed by the kernel code that supports a given filesystem.
Conceptually, a directory is viewed like any normal file, with the difference that it con‐
tains only a mapping of names to inodes. The kernel directly uses this mapping to
perform name-to-inode resolutions.

When a user-space application requests that a given filename be opened, the kernel
opens the directory containing the filename and searches for the given name. From the
filename, the kernel obtains the inode number. From the inode number, the inode is
found. The inode contains metadata associated with the file, including the on-disk lo‐
cation of the file’s data.

Initially, there is only one directory on the disk, the root directory. This directory is
usually denoted by the path /. But, as we all know, there are typically many directories
on a system. How does the kernel know which directory to look in to find a given
filename?

As mentioned previously, directories are much like regular files. Indeed, they even have
associated inodes. Consequently, the links inside of directories can point to the inodes
of other directories. This means directories can nest inside of other directories, forming
a hierarchy of directories. This, in turn, allows for the use of the pathnames with which
all Unix users are familiar—for example, /home/blackbeard/concorde.png.

When the kernel is asked to open a pathname like this, it walks each directory entry
(called a dentry inside of the kernel) in the pathname to find the inode of the next entry.
In the preceding example, the kernel starts at /, gets the inode for home, goes there, gets
the inode for blackbeard, runs there, and finally gets the inode for concorde.png. This
operation is called directory or pathname resolution. The Linux kernel also employs a
cache, called the dentry cache, to store the results of directory resolutions, providing for
speedier lookups in the future given temporal locality.3

A pathname that starts at the root directory is said to be fully qualified, and is called an
absolute pathname. Some pathnames are not fully qualified; instead, they are provided
relative to some other directory (for example, todo/plunder). These paths are called
relative pathnames. When provided with a relative pathname, the kernel begins the
pathname resolution in the current working directory. From the current working
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directory, the kernel looks up the directory todo. From there, the kernel gets the inode
for plunder. Together, the combination of a relative pathname and the current working
directory is fully qualified.

Although directories are treated like normal files, the kernel does not allow them to be
opened and manipulated like regular files. Instead, they must be manipulated using a
special set of system calls. These system calls allow for the adding and removing of links,
which are the only two sensible operations anyhow. If user space were allowed to ma‐
nipulate directories without the kernel’s mediation, it would be too easy for a single
simple error to corrupt the filesystem.

Hard links
Conceptually, nothing covered thus far would prevent multiple names resolving to the
same inode. Indeed, this is allowed. When multiple links map different names to the
same inode, we call them hard links.

Hard links allow for complex filesystem structures with multiple pathnames pointing
to the same data. The hard links can be in the same directory, or in two or more different
directories. In either case, the kernel simply resolves the pathname to the correct inode.
For example, a specific inode that points to a specific chunk of data can be hard linked
from /home/bluebeard/treasure.txt and /home/blackbeard/to_steal.txt.

Deleting a file involves unlinking it from the directory structure, which is done simply
by removing its name and inode pair from a directory. Because Linux supports hard
links, however, the filesystem cannot destroy the inode and its associated data on every
unlink operation. What if another hard link existed elsewhere in the filesystem? To
ensure that a file is not destroyed until all links to it are removed, each inode contains
a link count that keeps track of the number of links within the filesystem that point to
it. When a pathname is unlinked, the link count is decremented by one; only when it
reaches zero are the inode and its associated data actually removed from the filesystem.

Symbolic links
Hard links cannot span filesystems because an inode number is meaningless outside of
the inode’s own filesystem. To allow links that can span filesystems, and that are a bit
simpler and less transparent, Unix systems also implement symbolic links (often short‐
ened to symlinks).

Symbolic links look like regular files. A symlink has its own inode and data chunk, which
contains the complete pathname of the linked-to file. This means symbolic links can
point anywhere, including to files and directories that reside on different filesystems,
and even to files and directories that do not exist. A symbolic link that points to a
nonexistent file is called a broken link.
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Symbolic links incur more overhead than hard links because resolving a symbolic link
effectively involves resolving two files: the symbolic link and then the linked-to file.
Hard links do not incur this additional overhead—there is no difference between ac‐
cessing a file linked into the filesystem more than once and one linked only once. The
overhead of symbolic links is minimal, but it is still considered a negative.

Symbolic links are also more opaque than hard links. Using hard links is entirely trans‐
parent; in fact, it takes effort to find out that a file is linked more than once! Manipulating
symbolic links, on the other hand, requires special system calls. This lack of transparency
is often considered a positive, as the link structure is explicitly made plain, with symbolic
links acting more as shortcuts than as filesystem-internal links.

Special files
Special files are kernel objects that are represented as files. Over the years, Unix systems
have supported a handful of different special files. Linux supports four: block device
files, character device files, named pipes, and Unix domain sockets. Special files are a
way to let certain abstractions fit into the filesystem, continuing the everything-is-a-file
paradigm. Linux provides a system call to create a special file.

Device access in Unix systems is performed via device files, which act and look like
normal files residing on the filesystem. Device files may be opened, read from, and
written to, allowing user space to access and manipulate devices (both physical and
virtual) on the system. Unix devices are generally broken into two groups: character
devices and block devices. Each type of device has its own special device file.

A character device is accessed as a linear queue of bytes. The device driver places bytes
onto the queue, one by one, and user space reads the bytes in the order that they were
placed on the queue. A keyboard is an example of a character device. If the user types
“peg,” for example, an application would want to read from the keyboard device the p,
the e, and, finally, the g, in exactly that order. When there are no more characters left to
read, the device returns end-of-file (EOF). Missing a character, or reading them in any
other order, would make little sense. Character devices are accessed via character device
files.

A block device, in contrast, is accessed as an array of bytes. The device driver maps the
bytes over a seekable device, and user space is free to access any valid bytes in the array,
in any order—it might read byte 12, then byte 7, and then byte 12 again. Block devices
are generally storage devices. Hard disks, floppy drives, CD-ROM drives, and flash
memory are all examples of block devices. They are accessed via block device files.

Named pipes (often called FIFOs, short for “first in, first out”) are an interprocess com‐
munication (IPC) mechanism that provides a communication channel over a file de‐
scriptor, accessed via a special file. Regular pipes are the method used to “pipe” the
output of one program into the input of another; they are created in memory via a
system call and do not exist on any filesystem. Named pipes act like regular pipes but
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are accessed via a file, called a FIFO special file. Unrelated processes can access this file
and communicate.

Sockets are the final type of special file. Sockets are an advanced form of IPC that allow
for communication between two different processes, not only on the same machine, but
even on two different machines. In fact, sockets form the basis of network and Internet
programming. They come in multiple varieties, including the Unix domain socket,
which is the form of socket used for communication within the local machine. Whereas
sockets communicating over the Internet might use a hostname and port pair for iden‐
tifying the target of communication, Unix domain sockets use a special file residing on
a filesystem, often simply called a socket file.

Filesystems and namespaces
Linux, like all Unix systems, provides a global and unified namespace of files and di‐
rectories. Some operating systems separate different disks and drives into separate
namespaces—for example, a file on a floppy disk might be accessible via the pathname
A:\plank.jpg, while the hard drive is located at C:\. In Unix, that same file on a floppy
might be accessible via the pathname /media/floppy/plank.jpg or even via /home/
captain/stuff/plank.jpg, right alongside files from other media. That is, on Unix, the
namespace is unified.

A filesystem is a collection of files and directories in a formal and valid hierarchy. File‐
systems may be individually added to and removed from the global namespace of files
and directories. These operations are called mounting and unmounting. Each filesystem
is mounted to a specific location in the namespace, known as a mount point. The root
directory of the filesystem is then accessible at this mount point. For example, a CD
might be mounted at /media/cdrom, making the root of the filesystem on the CD ac‐
cessible at /media/cdrom. The first filesystem mounted is located in the root of the
namespace, /, and is called the root filesystem. Linux systems always have a root filesys‐
tem. Mounting other filesystems at other mount points is optional.

Filesystems usually exist physically (i.e., are stored on disk), although Linux also sup‐
ports virtual filesystems that exist only in memory, and network filesystems that exist on
machines across the network. Physical filesystems reside on block storage devices, such
as CDs, floppy disks, compact flash cards, or hard drives. Some such devices are parti‐
onable, which means that they can be divided up into multiple filesystems, all of which
can be manipulated individually. Linux supports a wide range of filesystems—certainly
anything that the average user might hope to come across—including media-specific
filesystems (for example, ISO9660), network filesystems (NFS), native filesystems
(ext4), filesystems from other Unix systems (XFS), and even filesystems from non-Unix
systems (FAT).

The smallest addressable unit on a block device is the sector. The sector is a physical
attribute of the device. Sectors come in various powers of two, with 512 bytes being
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4. This is an artificial kernel limitation in the name of simplicity which may go away in the future.

5. This approach was first pioneered by Bell Labs’ Plan 9.

quite common. A block device cannot transfer or access a unit of data smaller than a
sector and all I/O must occur in terms of one or more sectors.

Likewise, the smallest logically addressable unit on a filesystem is the block. The block
is an abstraction of the filesystem, not of the physical media on which the filesystem
resides. A block is usually a power-of-two multiple of the sector size. In Linux, blocks
are generally larger than the sector, but they must be smaller than the page size (the
smallest unit addressable by the memory management unit, a hardware component).4

Common block sizes are 512 bytes, 1 kilobyte, and 4 kilobytes.

Historically, Unix systems have only a single shared namespace, viewable by all users
and all processes on the system. Linux takes an innovative approach and supports per-
process namespaces, allowing each process to optionally have a unique view of the sys‐
tem’s file and directory hierarchy.5 By default, each process inherits the namespace of
its parent, but a process may elect to create its own namespace with its own set of mount
points and a unique root directory.

Processes
If files are the most fundamental abstraction in a Unix system, processes are the runner
up. Processes are object code in execution: active, running programs. But they’re more
than just object code—processes consist of data, resources, state, and a virtualized
computer.

Processes begin life as executable object code, which is machine-runnable code in an
executable format that the kernel understands. The format most common in Linux is
called Executable and Linkable Format (ELF). The executable format contains metadata,
and multiple sections of code and data. Sections are linear chunks of the object code that
load into linear chunks of memory. All bytes in a section are treated the same, given the
same permissions, and generally used for similar purposes.

The most important and common sections are the text section, the data section, and the
bss section. The text section contains executable code and read-only data, such as con‐
stant variables, and is typically marked read-only and executable. The data section con‐
tains initialized data, such as C variables with defined values, and is typically marked
readable and writable. The bss section contains uninitialized global data. Because the C
standard dictates default values for global C variables that are essentially all zeros, there
is no need to store the zeros in the object code on disk. Instead, the object code can
simply list the uninitialized variables in the bss section, and the kernel can map the zero
page (a page of all zeros) over the section when it is loaded into memory. The bss section
was conceived solely as an optimization for this purpose. The name is a historic relic;
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it stands for block started by symbol. Other common sections in ELF executables are the
absolute section (which contains nonrelocatable symbols) and the undefined section (a
catchall).

A process is also associated with various system resources, which are arbitrated and
managed by the kernel. Processes typically request and manipulate resources only
through system calls. Resources include timers, pending signals, open files, network
connections, hardware, and IPC mechanisms. A process’s resources, along with data
and statistics related to the process, are stored inside the kernel in the process’s process
descriptor.

A process is a virtualization abstraction. The Linux kernel, supporting both preemptive
multitasking and virtual memory, provides every process both a virtualized processor
and a virtualized view of memory. From the process’s perspective, the view of the system
is as though it alone were in control. That is, even though a given process may be sched‐
uled alongside many other processes, it runs as though it has sole control of the system.
The kernel seamlessly and transparently preempts and reschedules processes, sharing
the system’s processors among all running processes. Processes never know the differ‐
ence. Similarly, each process is afforded a single linear address space, as if it alone were
in control of all of the memory in the system. Through virtual memory and paging, the
kernel allows many processes to coexist on the system, each operating in a different
address space. The kernel manages this virtualization through hardware support pro‐
vided by modern processors, allowing the operating system to concurrently manage the
state of multiple independent processes.

Threads
Each process consists of one or more threads of execution (usually simplified to
threads). A thread is the unit of activity within a process. In other words, a thread is the
abstraction responsible for executing code and maintaining the process’s running state.

Most processes consist of only a single thread; they are called single-threaded. Processes
that contain multiple threads are said to be multithreaded. Traditionally, Unix programs
have been single-threaded, owing to Unix’s historic simplicity, fast process creation
times, and robust IPC mechanisms, all of which mitigate the desire for threads.

A thread consists of a stack (which stores its local variables, just as the process stack
does on nonthreaded systems), processor state, and a current location in the object code
(usually stored in the processor’s instruction pointer). The majority of the remaining
parts of a process are shared among all threads, most notably the process address space.
In this manner, threads share the virtual memory abstraction while maintaining the
virtualized processor abstraction.

Internally, the Linux kernel implements a unique view of threads: they are simply normal
processes that happen to share some resources. In user space, Linux implements threads
in accordance with POSIX 1003.1c (known as Pthreads). The name of the current Linux
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thread implementation, which is part of glibc, is the Native POSIX Threading Library
(NPTL). We’ll discuss threads more in Chapter 7.

Process hierarchy
Each process is identified by a unique positive integer called the process ID (pid). The
pid of the first process is 1, and each subsequent process receives a new, unique pid.

In Linux, processes form a strict hierarchy, known as the process tree. The process tree
is rooted at the first process, known as the init process, which is typically the init program.
New processes are created via the fork() system call. This system call creates a duplicate
of the calling process. The original process is called the parent; the new process is called
the child. Every process except the first has a parent. If a parent process terminates before
its child, the kernel will reparent the child to the init process.

When a process terminates, it is not immediately removed from the system. Instead,
the kernel keeps parts of the process resident in memory to allow the process’s parent
to inquire about its status upon terminating. This inquiry is known as waiting on the
terminated process. Once the parent process has waited on its terminated child, the
child is fully destroyed. A process that has terminated, but has not yet been waited upon,
is called a zombie. The init process routinely waits on all of its children, ensuring that
reparented processes do not remain zombies forever.

Users and Groups
Authorization in Linux is provided by users and groups. Each user is associated with a
unique positive integer called the user ID (uid). Each process is in turn associated with
exactly one uid, which identifies the user running the process, and is called the process’s
real uid. Inside the Linux kernel, the uid is the only concept of a user. Users, however,
refer to themselves and other users through usernames, not numerical values. User‐
names and their corresponding uids are stored in /etc/passwd, and library routines map
user-supplied usernames to the corresponding uids.

During login, the user provides a username and password to the login program. If given
a valid username and the correct password, the login program spawns the user’s login
shell, which is also specified in /etc/passwd, and makes the shell’s uid equal to that of the
user. Child processes inherit the uids of their parents.

The uid 0 is associated with a special user known as root. The root user has special
privileges, and can do almost anything on the system. For example, only the root user
can change a process’s uid. Consequently, the login program runs as root.

In addition to the real uid, each process also has an effective uid, a saved uid, and a
filesystem uid. While the real uid is always that of the user who started the process, the
effective uid may change under various rules to allow a process to execute with the rights
of different users. The saved uid stores the original effective uid; its value is used in
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deciding what effective uid values the user may switch to. The filesystem uid, which is
usually equal to the effective uid, is used for verifying filesystem access.

Each user belongs to one or more groups, including a primary or login group, listed
in /etc/passwd, and possibly a number of supplemental groups, listed in /etc/group. Each
process is therefore also associated with a corresponding group ID (gid), and has a real
gid, an effective gid, a saved gid, and a filesystem gid. Processes are generally associated
with a user’s login group, not any of the supplemental groups.

Certain security checks allow processes to perform certain operations only if they meet
specific criteria. Historically, Unix has made this decision very black-and-white:
processes with uid 0 had access, while no others did. Recently, Linux has replaced this
security system with a more general capabilities system. Instead of a simple binary check,
capabilities allow the kernel to base access on much more fine-grained settings.

Permissions
The standard file permission and security mechanism in Linux is the same as that in
historic Unix.

Each file is associated with an owning user, an owning group, and three sets of permis‐
sion bits. The bits describe the ability of the owning user, the owning group, and ev‐
erybody else to read, write, and execute the file; there are three bits for each of the three
classes, making nine bits in total. The owners and the permissions are stored in the file’s
inode.

For regular files, the permissions are rather obvious: they specify the ability to open a
file for reading, open a file for writing, or execute a file. Read and write permissions are
the same for special files as for regular files, although what exactly is read or written is
up to the special file in question. Execute permissions are ignored on special files. For
directories, read permission allows the contents of the directory to be listed, write per‐
mission allows new links to be added inside the directory, and execute permission allows
the directory to be entered and used in a pathname. Table 1-1 lists each of the nine
permission bits, their octal values (a popular way of representing the nine bits), their
text values (as ls might show them), and their corresponding meanings.

Table 1-1. Permission bits and their values
Bit Octal value Text value Corresponding permission

8 400 r-------- Owner may read

7 200 -w------- Owner may write

6 100 --x------ Owner may execute

5 040 ---r----- Group may read

4 020 ----w---- Group may write

3 010 -----x--- Group may execute
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Bit Octal value Text value Corresponding permission

2 004 ------r-- Everyone else may read

1 002 -------w- Everyone else may write

0 001 --------x Everyone else may execute

In addition to historic Unix permissions, Linux also supports access control lists (ACLs).
ACLs allow for much more detailed and exacting permission and security controls, at
the cost of increased complexity and on-disk storage.

Signals
Signals are a mechanism for one-way asynchronous notifications. A signal may be sent
from the kernel to a process, from a process to another process, or from a process to
itself. Signals typically alert a process to some event, such as a segmentation fault or the
user pressing Ctrl-C.

The Linux kernel implements about 30 signals (the exact number is architecture-
dependent). Each signal is represented by a numeric constant and a textual name. For
example, SIGHUP, used to signal that a terminal hangup has occurred, has a value of 1
on the x86-64 architecture.

Signals interrupt an executing process, causing it to stop whatever it is doing and im‐
mediately perform a predetermined action. With the exception of SIGKILL (which al‐
ways terminates the process), and SIGSTOP (which always stops the process), processes
may control what happens when they receive a signal. They can accept the default action,
which may be to terminate the process, terminate and coredump the process, stop the
process, or do nothing, depending on the signal. Alternatively, processes can elect to
explicitly ignore or handle signals. Ignored signals are silently dropped. Handled signals
cause the execution of a user-supplied signal handler function. The program jumps to
this function as soon as the signal is received. When the signal handler returns, the
control of the program resumes at the previously interrupted instruction. Because of
the asynchrony of signals, signal handlers must take care not to stomp on the code that
was interrupted, by executing only async-safe (also called signal-safe) functions.

Interprocess Communication
Allowing processes to exchange information and notify each other of events is one of
an operating system’s most important jobs. The Linux kernel implements most of the
historic Unix IPC mechanisms—including those defined and standardized by both
System V and POSIX—as well as implementing a mechanism or two of its own.

IPC mechanisms supported by Linux include pipes, named pipes, semaphores, message
queues, shared memory, and futexes.
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Headers
Linux system programming revolves around a handful of headers. Both the kernel itself
and glibc provide the headers used in system-level programming. These headers include
the standard C fare (for example, <string.h>), and the usual Unix offerings (say,
<unistd.h>).

Error Handling
It goes without saying that checking for and handling errors are of paramount impor‐
tance. In system programming, an error is signified via a function’s return value and
described via a special variable, errno. glibc transparently provides errno support for
both library and system calls. The vast majority of interfaces covered in this book will
use this mechanism to communicate errors.

Functions notify the caller of errors via a special return value, which is usually −1 (the
exact value used depends on the function). The error value alerts the caller to the oc‐
currence of an error but provides no insight into why the error occurred. The errno
variable is used to find the cause of the error.

This variable is declared in <errno.h> as follows:

extern int errno;

Its value is valid only immediately after an errno-setting function indicates an error
(usually by returning −1), as it is legal for the variable to be modified during the suc‐
cessful execution of a function.

The errno variable may be read or written directly; it is a modifiable lvalue. The value
of errno maps to the textual description of a specific error. A preprocessor #define also
maps to the numeric errno value. For example, the preprocessor define EACCES equals
1, and represents “permission denied.” See Table 1-2 for a listing of the standard defines
and the matching error descriptions.

Table 1-2. Errors and their descriptions
Preprocessor define Description

E2BIG Argument list too long

EACCES Permission denied

EAGAIN Try again

EBADF Bad file number

EBUSY Device or resource busy

ECHILD No child processes

EDOM Math argument outside of domain of function

EEXIST File already exists
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Preprocessor define Description

EFAULT Bad address

EFBIG File too large

EINTR System call was interrupted

EINVAL Invalid argument

EIO I/O error

EISDIR Is a directory

EMFILE Too many open files

EMLINK Too many links

ENFILE File table overflow

ENODEV No such device

ENOENT No such file or directory

ENOEXEC Exec format error

ENOMEM Out of memory

ENOSPC No space left on device

ENOTDIR Not a directory

ENOTTY Inappropriate I/O control operation

ENXIO No such device or address

EPERM Operation not permitted

EPIPE Broken pipe

ERANGE Result too large

EROFS Read-only filesystem

ESPIPE Invalid seek

ESRCH No such process

ETXTBSY Text file busy

EXDEV Improper link

The C library provides a handful of functions for translating an errno value to the
corresponding textual representation. This is needed only for error reporting, and the
like; checking and handling errors can be done using the preprocessor defines and errno
directly.

The first such function is perror():

#include <stdio.h>

void perror (const char *str);
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This function prints to stderr (standard error) the string representation of the current
error described by errno, prefixed by the string pointed at by str, followed by a colon.
To be useful, the name of the function that failed should be included in the string. For
example:

if (close (fd) == −1)
perror ("close");

The C library also provides strerror() and strerror_r(), prototyped as:

#include <string.h>

char * strerror (int errnum);

and:

#include <string.h>

int strerror_r (int errnum, char *buf, size_t len);

The former function returns a pointer to a string describing the error given by
errnum. The string may not be modified by the application but can be modified by
subsequent perror() and strerror() calls. Thus, it is not thread-safe.

The strerror_r() function is thread-safe. It fills the buffer of length len pointed at by
buf. A call to strerror_r() returns 0 on success, and −1 on failure. Humorously, it sets
errno on error.

For a few functions, the entire range of the return type is a legal return value. In those
cases, errno must be zeroed before invocation and checked afterward (these functions
promise to only return a nonzero errno on actual error). For example:

errno = 0;
arg = strtoul (buf, NULL, 0);
if (errno)

perror ("strtoul");

A common mistake in checking errno is to forget that any library or system call can
modify it. For example, this code is buggy:

if (fsync (fd) == −1) {
fprintf (stderr, "fsync failed!\n");
if (errno == EIO)

fprintf (stderr, "I/O error on %d!\n", fd);
}
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If you need to preserve the value of errno across function invocations, save it:

if (fsync (fd) == −1) {
const int err = errno;
fprintf (stderr, "fsync failed: %s\n", strerror (errno));
if (err == EIO) {

/* if the error is I/O-related, jump ship */
fprintf (stderr, "I/O error on %d!\n", fd);
exit (EXIT_FAILURE);

}
}

In single-threaded programs, errno is a global variable, as shown earlier in this section.
In multithreaded programs, however, errno is stored per-thread, and is thus thread-
safe.

Getting Started with System Programming
This chapter looked at the fundamentals of Linux system programming and provided
a programmer’s overview of the Linux system. The next chapter discusses basic file
I/O. This includes, of course, reading from and writing to files; however, because Linux
implements many interfaces as files, file I/O is crucial to a lot more than just, well, files.

With the preliminaries behind us, it is time to dive into actual system programming.
Let’s go! 
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CHAPTER 2

File I/O

This and the subsequent three chapters cover files. Because so much of a Unix system
is represented as files, these chapters discuss the crux of a Unix system. This chapter
covers the basics of file I/O, detailing the system calls that comprise the simplest and
most common ways to interact with files. The next chapter covers standard I/O from
the standard C library; Chapter 4 continues the coverage with a treatment of the more
advanced and specialized file I/O interfaces. Chapter 8 rounds out the discussion by
addressing the topic of file and directory manipulation.

Before a file can be read from or written to, it must be opened. The kernel maintains a
per-process list of open files, called the file table. This table is indexed via nonnegative
integers known as file descriptors (often abbreviated fds). Each entry in the list contains
information about an open file, including a pointer to an in-memory copy of the file’s
backing inode and associated metadata, such as the file position and access modes. Both
user space and kernel space use file descriptors as unique cookies: opening a file returns
a file descriptor, while subsequent operations (reading, writing, and so on) take the file
descriptor as their primary argument.

File descriptors are represented by the C int type. Not using a special type is often
considered odd, but is, historically, the Unix way. Each Linux process has a maximum
number of files that it may open. File descriptors start at 0 and go up to one less than
this maximum value. By default, the maximum is 1,024, but it can be configured as high
as 1,048,576. Because negative values are not legal file descriptors, −1 is often used to
indicate an error from a function that would otherwise return a valid file descriptor.

Unless the process explicitly closes them, every process by convention has at least three
file descriptors open: 0, 1, and 2. File descriptor 0 is standard in (stdin), file descriptor
1 is standard out (stdout), and file descriptor 2 is standard error (stderr). Instead of
referencing these integers directly, the C library provides the preprocessor defines
STDIN_FILENO, STDOUT_FILENO, and STDERR_FILENO, respectively. Normally, stdin is
connected to the terminal’s input device (usually the user’s keyboard) and stdout and
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stderr are connected to the terminal’s display. Users can redirect these standard file
descriptors and even pipe the output of one program into the input of another. This is
how the shell implements redirections and pipes.

File descriptors can reference more than just regular files. Indeed, file descriptors are
used for accessing device files and pipes, directories and futexes, FIFOs and sockets—
following the everything-is-a-file philosophy, just about anything you can read or write
is accessible via a file descriptor.

By default, a child process receives a copy of its parent’s file table. The list of open files
and their access modes, current file positions, and other metadata are the same, but a
change in one process—say, the child closing a file—does not affect the other process’s
file table. While this is the typical behavior, as you’ll see in Chapter 5, it is possible for
the child and parent to share the parent’s file table (as threads do).

Opening Files
The most basic method of accessing a file is via the read() and write() system calls.
Before a file can be accessed, however, it must be opened via an open() or creat() call.
Once done using the file, it should be closed using the system call close().

The open() System Call
A file is opened and a file descriptor is obtained with the open() system call:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open (const char *name, int flags);
int open (const char *name, int flags, mode_t mode);

The open() system call maps the file given by the pathname name to a file descriptor,
which it returns on success. The file position is to the start of the file (zero) and the file
is opened for access according to the flags given by flags.

Flags for open()

The flags argument is the bitwise-OR of one or more flags. It must contain an access
mode, which is one of O_RDONLY, O_WRONLY, or O_RDWR. Respectively, these arguments
request that the file be opened only for reading, only for writing, or for both reading
and writing.

For example, the following code opens /home/kidd/madagascar for reading:

int fd;

fd = open ("/home/kidd/madagascar", O_RDONLY);
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if (fd == −1)
/* error */

A file opened only for reading cannot be written to, and vice versa. The process issuing
the open() system call must have sufficient permissions to obtain the access requested.
For example, if a file is read-only to a given user, then a process owned by that user can
open that file O_RDONLY but not O_WRONLY or O_RDWR.

On top of the access mode, the flags argument may be bitwise-ORed with zero or more
of the following values, modifying the behavior of the open request:
O_APPEND

The file will be opened in append mode. That is, before each write, the file position
will be updated to point to the end of the file. This occurs even if another process
has written to the file after the issuing process’s last write, thereby changing the file
position (see “Append Mode” on page 38).

O_ASYNC

A signal (SIGIO by default) will be generated when the specified file becomes read‐
able or writable. This flag is available only for FIFOs, pipes, sockets, and terminals,
not for regular files.

O_CLOEXEC

Sets the close-on-exec flag on the opened file. Upon executing a new process, the
file will automatically be closed. This obviates needing to call fcntl() to set the flag
and eliminates a race condition. This flag is only available in Linux kernel 2.6.23
and later.

O_CREAT

If the file denoted by name does not exist, the kernel will create it. If the file already
exists, this flag has no effect unless O_EXCL is also given.

O_DIRECT

The file will be opened for direct I/O (see “Direct I/O” on page 45).

O_DIRECTORY

If name is not a directory, the call to open() will fail. This flag is used internally by
the opendir() library call.

O_EXCL

When given with O_CREAT, this flag will cause the call to open() to fail if the file
given by name already exists. This is used to prevent race conditions on file creation.
If O_CREAT is not also provided, this flag has no meaning.

O_LARGEFILE

The given file will be opened using 64-bit offsets, allowing the manipulation of files
larger than two gigabytes. This is implied on 64-bit architectures.
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O_NOATIME+
The given file’s last access time is not updated upon read. This flag is useful for
backup, indexing, and similar programs that read every file on a system, to prevent
significant write activity resulting from updating the inodes of each read file. This
flag is only available in Linux kernel 2.6.8 and later.

O_NOCTTY

If the given name refers to a terminal device (say, /dev/tty), it will not become the
process’s controlling terminal, even if the process does not currently have a con‐
trolling terminal. This flag is not frequently used.

O_NOFOLLOW

If name is a symbolic link, the call to open() will fail. Normally, the link is resolved,
and the target file is opened. If other components in the given path are links, the
call will still succeed. For example, if name is /etc/ship/plank.txt, the call will fail if
plank.txt is a symbolic link. It will succeed, however, if etc or ship is a symbolic link,
so long as plank.txt is not.

O_NONBLOCK

If possible, the file will be opened in nonblocking mode. Neither the open() call,
nor any other operation will cause the process to block (sleep) on the I/O. This
behavior may be defined only for FIFOs.

O_SYNC

The file will be opened for synchronous I/O. No write operation will complete until
the data has been physically written to disk; normal read operations are already
synchronous, so this flag has no effect on reads. POSIX additionally defines O_DSYNC
and O_RSYNC; on Linux, these flags are synonymous with O_SYNC (see “The O_SYNC
Flag” on page 43).

O_TRUNC

If the file exists, it is a regular file, and the given flags allow for writing, the file will
be truncated to zero length. Use of O_TRUNC on a FIFO or terminal device is ignored.
Use on other file types is undefined. Specifying O_TRUNC with O_RDONLY is also un‐
defined, as you need write access to the file in order to truncate it.

For example, the following code opens for writing the file /home/teach/pearl. If the file
already exists, it will be truncated to a length of zero. Because the O_CREAT flag is not
specified, if the file does not exist, the call will fail:

int fd;

fd = open ("/home/teach/pearl", O_WRONLY | O_TRUNC);
if (fd == −1)

/* error */
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1. The mount options bsdgroups or sysvgroups.

Owners of New Files
Determining which user owns a new file is straightforward: the uid of the file’s owner
is the effective uid of the process creating the file.

Determining the owning group is more complicated. The default behavior is to set the
file’s group to the effective gid of the process creating the file. This is the System V
behavior, which is the behavioral model for much of Linux, and thus the standard Linux
modus operandi.

To be difficult, however, BSD defined its own behavior: the file’s group is set to the gid
of the parent directory. This behavior is available on Linux via a mount-time option1—
it is also the behavior that will occur on Linux by default if the file’s parent directory has
the set group ID (setgid) bit set. Although most Linux systems will use the System V
behavior (where new files receive the gid of the creating process), the possibility of the
BSD behavior (where new files receive the gid of the parent directory) implies that code
that strongly cares about a newly created file’s owning group needs to manually set said
group via the fchown() system call (see Chapter 8).

Thankfully, you often need not care what group owns a file.

Permissions of New Files
Both of the previously given forms of the open() system call are valid. The mode argu‐
ment is ignored unless a file is created; it is required if O_CREAT is given. If you forget to
provide the mode argument when using O_CREAT, the results are undefined and often
quite ugly—so don’t forget!

When a file is created, the mode argument provides the permissions of the newly created
file. The mode is not checked on this particular open of the file, so you can perform
operations that contradict the assigned permissions, such as opening the file for writing
but assigning the file read-only permissions.

The mode argument is the familiar Unix permission bitset, such as octal 0644 (owner
can read and write, everyone else can only read). Technically speaking, POSIX says the
exact values are implementation-specific, allowing different Unix systems to lay out the
permission bits however they desired. Every Unix system, however, has implemented
the permission bits in the same way. Thus, while technically nonportable, specifying
0644 or 0700 will have the same effect on any system you are likely to come across.

Nonetheless, to compensate for the nonportability of bit positions in the mode, POSIX
introduced the following set of constants that may be binary-ORed together and sup‐
plied for the mode argument:
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S_IRWXU

Owner has read, write, and execute permission.

S_IRUSR

Owner has read permission.

S_IWUSR

Owner has write permission.

S_IXUSR

Owner has execute permission.

S_IRWXG

Group has read, write, and execute permission.

S_IRGRP

Group has read permission.

S_IWGRP

Group has write permission.

S_IXGRP

Group has execute permission.

S_IRWXO

Everyone else has read, write, and execute permission.

S_IROTH

Everyone else has read permission.

S_IWOTH

Everyone else has write permission.

S_IXOTH

Everyone else has execute permission.

The actual permission bits that hit the disk are determined by binary-ANDing the mode
argument with the complement of the user’s file creation mask (umask). The umask is
a process-specific attribute that is usually set via the login shell but is modifiable by the
umask() call, allowing the user to modify the permissions placed on newly created files
and directories. The bits in the umask are turned off in the mode argument given to
open(). Thus, the usual umask of 022 would cause a mode argument of 0666 to become
0644. As a system programmer, you normally do not take into consideration the umask
when setting permissions—the umask exists to allow users to limit the permissions that
their programs set on new files.

30 | Chapter 2: File I/O



As an example, the following code opens the file given by file for writing. If the file
does not exist, assuming a umask of 022, it is created with the permissions 0644 (even
though the mode argument specifies 0664). If it does exist, it is truncated to zero length:

int fd;

fd = open (file, O_WRONLY | O_CREAT | O_TRUNC,
S_IWUSR | S_IRUSR | S_IWGRP | S_IRGRP | S_IROTH);

if (fd == −1)
/* error */

Trading portability (in theory at least) for readability, we could have written the fol‐
lowing, to identical effect :

int fd;

fd = open (file, O_WRONLY | O_CREAT | O_TRUNC, 0664);
if (fd == −1)

/* error */

The creat() Function
The combination of O_WRONLY | O_CREAT | O_TRUNC is so common that a system call
exists to provide just that behavior:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int creat (const char *name, mode_t mode);

Yes, this function’s name is missing an e. Ken Thompson, the creator of
Unix, once joked that the missing letter was his largest regret in the
design of Unix.

The following typical creat() call,

int fd;

fd = creat (filename, 0644);
if (fd == −1)

/* error */

is identical to

int fd;

fd = open (filename, O_WRONLY | O_CREAT | O_TRUNC, 0644);
if (fd == −1)

/* error */
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2. Recall that system calls are defined on a per-architecture basis. Thus, while x86-64 has a creat() system call,
Alpha does not. You can use creat() on any architecture, of course, but it may be a library function instead
of having its own system call.

On most Linux architectures,2 creat() is a system call, even though it can be imple‐
mented in user space as simply:

int creat (const char *name, int mode)
{

return open (name, O_WRONLY | O_CREAT | O_TRUNC, mode);
}

This duplication is a historic relic from when open() had only two arguments. Today,
creat() remains a system call for backward compatibility. New architectures can im‐
plement creat() as a library call invoking open() as shown.

Return Values and Error Codes
Both open() and creat() return a file descriptor on success. On error, both return −1,
and set errno to an appropriate error value (Chapter 1 discussed errno and listed the
potential error values). Handling an error on file open is not complicated, as generally
there will have been few or no steps performed prior to the open that need to be undone.
A typical response would be prompting the user for a different filename or simply ter‐
minating the program. 

Reading via read()
Now that you know how to open a file, let’s look at how to read it. In the following
section, we will examine writing.

The most basic—and common—mechanism used for reading is the read() system call,
defined in POSIX.1:

#include <unistd.h>

ssize_t read (int fd, void *buf, size_t len);

Each call reads up to len bytes into the memory pointed at by buf from the current file
offset of the file referenced by fd. On success, the number of bytes written into buf is
returned. On error, the call returns −1 and sets errno. The file position is advanced by
the number of bytes read from fd. If the object represented by fd is not capable of seeking
(for example, a character device file), the read always occurs from the “current” position.

Basic usage is simple. This example reads from the file descriptor fd into word. The
number of bytes read is equal to the size of the unsigned long type, which (for Linux
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at least) is 4 bytes on 32-bit Linux systems, and 8 bytes on 64-bit systems. On return,
nr contains the number of bytes read, or −1 on error:

unsigned long word;
ssize_t nr;

/* read a couple bytes into 'word' from 'fd' */
nr = read (fd, &word, sizeof (unsigned long));
if (nr == −1)

/* error */

There are two problems with this naïve implementation: the call might return without
reading all len bytes, and it could produce certain actionable errors that this code does
not check for and handle. Code such as this, unfortunately, is very common. Let’s see
how to improve it.

Return Values
It is legal for read() to return a positive nonzero value less than len. This can happen
for a number of reasons: less than len bytes may have been available, the system call
may have been interrupted by a signal, the pipe may have broken (if fd references a
pipe), and so on.

The possibility of a return value of 0 is another consideration when using read(). The
read() system call returns 0 to indicate end-of-file (EOF); in this case, of course, no
bytes were read. EOF is not considered an error (and hence is not accompanied by a −1
return value); it simply indicates that the file position has advanced past the last valid
offset in the file and thus there is nothing else to read. If, however, a call is made for len
bytes, but no bytes are available for reading, the call will block (sleep) until the bytes
become available (assuming the file descriptor was not opened in nonblocking mode;
see “Nonblocking Reads” on page 35). Note that this is different from returning EOF.
That is, there is a difference between “no data available” and “end of data.” In the EOF
case, the end of the file was reached. In the case of blocking, the read is waiting for more
data—say, in the case of reading from a socket or a device file.

Some errors are recoverable. For example, if a call to read() is interrupted by a signal
before any bytes are read, it returns −1 (a 0 could be confused with EOF), and errno is
set to EINTR. In that case, you can and should resubmit the read.

Indeed, a call to read() can result in many possibilities:

• The call returns a value equal to len. All len read bytes are stored in buf. The results
are as intended.

• The call returns a value less than len, but greater than zero. The read bytes are
stored in buf. This can occur because a signal interrupted the read midway; an error
occurred in the middle of the read; more than zero, but less than len bytes’ worth
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of data was available; or EOF was reached before len bytes were read. Reissuing the
read (with correspondingly updated buf and len values) will read the remaining
bytes into the rest of the buffer or indicate the cause of the problem.

• The call returns 0. This indicates EOF. There is nothing to read.
• The call blocks because no data is currently available. This won’t happen in non‐

blocking mode.
• The call returns −1, and errno is set to EINTR. This indicates that a signal was re‐

ceived before any bytes were read. The call can be reissued.
• The call returns −1, and errno is set to EAGAIN. This indicates that the read would

block because no data is currently available, and that the request should be reissued
later. This happens only in nonblocking mode.

• The call returns −1, and errno is set to a value other than EINTR or EAGAIN. This
indicates a more serious error. Simply reissuing the read is unlikely to succeed.

Reading All the Bytes
These possibilities imply that the previous trivial, simplistic use of read() is not suitable
if you want to handle all errors and actually read all len bytes (at least up to an EOF).
To do that, you need a loop, and a handful of conditional statements:

ssize_t ret;

while (len != 0 && (ret = read (fd, buf, len)) != 0) {
if (ret == −1) {

if (errno == EINTR)
continue;

perror ("read");
break;

}

len -= ret;
buf += ret;

}

This snippet handles all five conditions. The loop reads len bytes from the current file
position of fd into buf, which of course must be at least len bytes in length. It continues
reading until it reads all len bytes, or until EOF is reached. If more than zero, but less
than len bytes are read, len is reduced by the amount read, buf is increased by the
amount read, and the call is reissued. If the call returns −1, and errno equals EINTR, the
call is reissued without updating the parameters. If the call returns −1, and errno is set
to anything else, perror() is called to print a description to standard error and the loop
terminates.
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Partial reads are not only legal, but common. Innumerable bugs derive from program‐
mers not properly checking for and handling short read requests. Do not add to the list!

Nonblocking Reads
Sometimes, programmers do not want a call to read() to block when there is no data
available. Instead, they prefer that the call return immediately, indicating that no data
is available. This is called nonblocking I/O; it allows applications to perform I/O, po‐
tentially on multiple files, without ever blocking, and thus missing data available in
another file.

Consequently, an additional errno value is worth checking: EAGAIN. As discussed pre‐
viously, if the given file descriptor was opened in nonblocking mode (if O_NONBLOCK was
given to open(); see “Flags for open()” on page 26) and there is no data to read, the
read() call will return −1 and set errno to EAGAIN instead of blocking. When performing
nonblocking reads, you must check for EAGAIN or risk confusing a serious error with
the mere lack of data. For example, you might use code like the following:

char buf[BUFSIZ];
ssize_t nr;

start:
nr = read (fd, buf, BUFSIZ);
if (nr == −1) {

if (errno == EINTR)
goto start; /* oh shush */

if (errno == EAGAIN)
/* resubmit later */

else
/* error */

}

Handling the EAGAIN case like we did the EINTR case (with a goto
start) would make little sense. We might as well not have used non‐
blocking I/O. The point of nonblocking I/O is to catch the EAGAIN and
do other, useful work.

Other Error Values
The other error codes refer to programming errors or (for EIO) low-level problems.
Possible errno values after a failure on read() include:
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EBADF

The given file descriptor is invalid or is not open for reading.

EFAULT

The pointer provided by buf is not inside the calling process’s address space.

EINVAL

The file descriptor is mapped to an object that does not allow reading.

EIO

A low-level I/O error occurred.

Size Limits on read()
The size_t and ssize_t types are mandated by POSIX. The size_t type is used for
storing values used to measure size in bytes. The ssize_t type is a signed version of
size_t (the negative values are used to connote errors). On 32-bit systems, the backing
C types are usually unsigned int and int, respectively. Because the two types are often
used together, the potentially smaller range of ssize_t places a limit on the range of
size_t.

The maximum value of a size_t is SIZE_MAX; the maximum value of an ssize_t is
SSIZE_MAX. If len is larger than SSIZE_MAX, the results of the call to read() are unde‐
fined. On most Linux systems, SSIZE_MAX is LONG_MAX, which is 2,147,483,647 on a 32-
bit machine. That is relatively large for a single read but nonetheless something to keep
in mind. If you use the previous read loop as a generic super read, you might want to
do something like this:

if (len > SSIZE_MAX)
len = SSIZE_MAX;

A call to read() with a len of zero results in the call returning immediately with a return
value of 0.

Writing with write()
The most basic and common system call used for writing is write(). write() is the
counterpart of read() and is also defined in POSIX.1:

#include <unistd.h>

ssize_t write (int fd, const void *buf, size_t count);

A call to write() writes up to count bytes starting at buf to the current position of the
file referenced by the file descriptor fd. Files backed by objects that do not support
seeking (for example, character devices) always write starting at the “head.”
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On success, the number of bytes written is returned, and the file position is updated in
kind. On error, −1 is returned and errno is set appropriately. A call to write() can return
0, but this return value does not have any special meaning; it simply implies that zero
bytes were written.

As with read(), the most basic usage is simple:

const char *buf = "My ship is solid!";
ssize_t nr;

/* write the string in 'buf' to 'fd' */
nr = write (fd, buf, strlen (buf));
if (nr == −1)

/* error */

But again, as with read(), this usage is not quite right. Callers also need to check for
the possible occurrence of a partial write:

unsigned long word = 1720;
size_t count;
ssize_t nr;

count = sizeof (word);
nr = write (fd, &word, count);
if (nr == −1)

/* error, check errno */
else if (nr != count)

/* possible error, but 'errno' not set */

Partial Writes
The write() system call is less likely to return a partial write than the read() system
call is to return a partial read. Also, there is no EOF condition for a write() system call.
For regular files, write() is guaranteed to perform the entire requested write, unless an
error occurs.

Consequently, for regular files, you do not need to perform writes in a loop. However,
for other file types—say, sockets—a loop may be required to guarantee that you really
write out all of the requested bytes. Another benefit of using a loop is that a second call
to write() may return an error revealing what caused the first call to perform only a
partial write (although, again, this situation is not very common). Here is an example:

ssize_t ret, nr;

while (len != 0 && (ret = write (fd, buf, len)) != 0) {
if (ret == −1) {

if (errno == EINTR)
continue;

perror ("write");
break;
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}

len -= ret;
buf += ret;

}

Append Mode
When fd is opened in append mode (via O_APPEND), writes do not occur at the file
descriptor’s current file position. Instead, they occur at the current end of the file.

For example, assume that two processes intend to write to the end of the same file. This
is common: consider a log of events shared among many processes. At the start, their
file positions are correctly set to the end of the file. The first process writes to the end
of the file. Without append mode, once the second process attempts the same, it will
end up writing not to the end of the file, but to the offset that was the end of the file,
before the data that the first process wrote. This means that multiple processes can never
append to the same file without explicit synchronization between them because they
will encounter race conditions.

Append mode avoids this problem. It ensures that the file position is always set to the
end of the file so all writes always append, even when there are multiple writers. You
can think of it as an atomic update to the file position preceding each write request. The
file position is then updated to point at the end of the newly written data. This will not
matter to the next call to write(), as it updates the file position automatically, but it
might matter if you next call read() for some odd reason.

Append mode makes a lot of sense for certain tasks, such as the aforementioned writing
out of log files, but little sense for much else.

Nonblocking Writes
When fd is opened in nonblocking mode (via O_NONBLOCK), and the write as issued
would normally block, the write() system call returns −1 and sets errno to EAGAIN. The
request should be reissued later. Generally, this does not occur with regular files.

Other Error Codes
Other notable errno values include:
EBADF

The given file descriptor is not valid or is not open for writing.

EFAULT

The pointer provided by buf points outside of the process’s address space.
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EFBIG

The write would have made the file larger than per-process maximum file, or in‐
ternal implementation, limits.

EINVAL

The given file descriptor is mapped to an object that is not suitable for writing.

EIO

A low-level I/O error occurred.

ENOSPC

The filesystem backing the given file descriptor does not have sufficient space.

EPIPE

The given file descriptor is associated with a pipe or socket whose reading end is
closed. The process will also receive a SIGPIPE signal. The default action for the
SIGPIPE signal is to terminate the receiving process. Therefore, processes receive
this errno value only if they explicitly ask to ignore, block, or handle this signal.

Size Limits on write()
If count is larger than SSIZE_MAX, the results of the call to write() are undefined.

A call to write() with a count of zero results in the call returning immediately with a
return value of 0.

Behavior of write()
When a call to write() returns, the kernel has copied the data from the supplied buffer
into a kernel buffer, but there is no guarantee that the data has been written out to its
intended destination. Indeed, write calls return much too fast for that to be the case.
The disparity in performance between processors and hard disks would make such
behavior painfully obvious.

Instead, when a user-space application issues a write() system call, the Linux kernel
performs a few checks and then simply copies the data into a buffer. Later, in the back‐
ground, the kernel gathers up all of the dirty buffers, which are buffers that contain data
newer than what is on disk, sorts them optimally, and writes them out to disk (a process
known as writeback). This allows write calls to occur relatively fast, returning almost
immediately. It also allows the kernel to defer writes to more idle periods and batch
many writes together.

The delayed writes do not change POSIX semantics. For example, if a read is issued for
a piece of just-written data that lives in a buffer and is not yet on disk, the request will
be satisfied from the buffer and not cause a read from the “stale” data on disk. This
behavior further improves performance, as the read is satisfied from an in-memory
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cache without having to go to disk. The read and write requests interleave as intended,
and the results are as expected—that is, if the system does not crash before the data
makes it to disk! Even though an application may believe that a write has occurred
successfully, in the event of a system crash, the data will never make it to disk.

Another issue with delayed writes is the inability to enforce write ordering. Although
an application may take care to order its write requests in such a way that they hit the
disk in a specific order, the kernel will reorder the write requests as it sees fit, primarily
for reasons of performance. This is normally a problem only if the system crashes, as
eventually all of the buffers are written back and the final state of the file is as intended.
The vast majority of applications are not actually concerned with write ordering.
Databases are a rare use case concerned with ordering; they want to ensure that write
operations are ordered such that the database is never in an inconsistent state.

A final problem with delayed writes is the reporting of certain I/O errors. Any I/O error
that occurs during writeback—say, a physical drive failure—cannot be reported back to
the process that issued the write request. Indeed, dirty buffers inside the kernel are not
associated with processes at all. Multiple processes may have dirtied the data contained
in a single buffer, and processes may exit after writing data to a buffer but before that
data is written back to disk. Besides, how would you communicate to a process that a
write failed ex post facto?

Given these potential issues, the kernel attempts to minimize the risks of deferred writes.
To ensure that data is written out in a timely manner, the kernel institutes a maximum
buffer age and writes out all dirty buffers before they mature past the given value. Users
can configure this value via /proc/sys/vm/dirty_expire_centisecs. The value is specified
in centiseconds (one hundredths of a second).

It is also possible to force the writeback of a given file’s buffer, or even to make all writes
synchronous. These topics are discussed in the next section, “Synchronized I/O”.

Later in this chapter, “Kernel Internals” on page 62 will cover the Linux kernel’s buffer
writeback subsystem in depth.

Synchronized I/O
Although synchronizing I/O is an important topic, the issues associated with delayed
writes should not be overstated. Buffering writes provides a significant performance
improvement, and consequently, any operating system even halfway deserving the mark
“modern” implements delayed writes via buffers. Nonetheless, there are times when
applications want to control when data hits the disk. For those uses, the Linux kernel
provides a handful of options that allow performance to be traded for synchronized
operations.
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fsync() and fdatasync()
The simplest method of ensuring that data has reached the disk is via the fsync() system
call, standardized by POSIX.1b:

#include <unistd.h>

int fsync (int fd);

A call to fsync() ensures that all dirty data associated with the file mapped by the file
descriptor fd are written back to disk. The file descriptor fd must be open for writing.
The call writes back both data and metadata, such as creation timestamps and other
attributes contained in the inode. It will not return until the hard drive says that the data
and metadata are on the disk.

In the presence of hard disks with write caches, it is not possible for fsync() to know
whether the data is physically on the disk. The hard drive can report that the data was
written, but the data may in fact reside in the drive’s write cache. Fortunately, data in a
hard disk’s cache should be committed to the disk in short order.

Linux also provides the system call fdatasync():

#include <unistd.h>

int fdatasync (int fd);

This system call does the same thing as fsync(), except that it only flushes data and
metadata required to properly access the file in the future. For example, a call to fdata
sync() will flush a file’s size, since you need that to read the file correctly. The call does
not guarantee that nonessential metadata is synchronized to disk, and is therefore po‐
tentially faster. Most use cases do not consider metadata such as the file modification
timestamp part of their essential transaction and thus fdatasync() is sufficient for their
needs and potentially faster.

fsync() always results in at least two I/O operations: one to write back
the modified data and one to update the inode’s modification time‐
stamp. Because the inode and the file’s data may not be adjacent on disk
—and thus require an expensive seek operation—and most concerns
over proper transaction ordering do not include metadata that isn’t es‐
sential to properly access the file in the future (such as the modification
timestamp), fdatasync() is an easy performance win.

Both functions are used the same way, which is very simple:

int ret;

ret = fsync (fd);
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if (ret == −1)
/* error */

or when using fdatasync()

int ret;

/* same as fsync, but won't flush non-essential metadata */
ret = fdatasync (fd);
if (ret == −1)

/* error */

Neither function guarantees that any updated directory entries containing the file are
synchronized to disk. This implies that if a file’s link has recently been updated, the file’s
data may successfully reach the disk but not the associated directory entry, rendering
the file unreachable. To ensure that any updates to the directory entry are also committed
to disk, fsync() must also be called on a file descriptor opened against the file’s directory.

Return values and error codes

On success, both calls return 0. On failure, both calls return −1 and set errno to one of
the following three values:
EBADF

The given file descriptor is not a valid file descriptor open for writing.

EINVAL

The given file descriptor is mapped to an object that does not support synchroni‐
zation.

EIO

A low-level I/O error occurred during synchronization. This represents a real I/O
error, and is often the place where such errors are caught.

In some versions of Linux, a call to fsync() may fail because fsync() is not implemented
by the backing filesystem, even when fdatasync() is implemented. Paranoid applica‐
tions may want to try fdatasync() if fsync() returns EINVAL. For example:

if (fsync (fd) == −1) {
/*
* We prefer fsync(), but let's try fdatasync()
* if fsync() fails, just in case.
*/
if (errno == EINVAL) {

if (fdatasync (fd) == −1)
perror ("fdatasync");

} else
perror ("fsync");

}
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3. With the same caveat as before: the hard drive may lie and inform the kernel that the buffers reside on disk
when they actually are still in the disk’s cache.

Because POSIX requires fsync(), but labels fdatasync() as optional, the fsync()
system call should always be implemented for regular files on any of the common Linux
filesystems. Atypical file types (perhaps those in which there is no metadata to syn‐
chronize) or strange filesystems may implement only fdatasync(), however.

sync()
Less optimal, but wider in scope, the old-school sync() system call is provided for
synchronizing all buffers to disk:

#include <unistd.h>

void sync (void);

The function has no parameters and no return value. It always succeeds and, upon
return, all buffers—both data and metadata—are guaranteed to reside on disk.3

The standards do not require sync() to wait until all buffers are flushed to disk before
returning; they require only that the call initiates the process of committing all buffers
to disk. For this reason, it is often recommended to invoke sync() multiple times to
ensure that all data is safely on disk. Linux, however, does wait until all buffers are
committed. Therefore, a single sync() is sufficient.

The only real use for sync() is in the implementation of the sync utility. Applications
should use fsync() and fdatasync() to commit to disk the data of only the requisite
file descriptors. Note that sync() may take several minutes or longer to complete on a
busy system.

The O_SYNC Flag
The O_SYNC flag may be passed to open(), indicating that all I/O on the file should be
synchronized:

int fd;

fd = open (file, O_WRONLY | O_SYNC);
if (fd == −1) {

perror ("open");
return −1;

}

Read requests are always synchronized. If they weren’t, the validity of the read data in
the supplied buffer would be unknown. However, as discussed previously, calls to
write() are normally not synchronized. There is no relation between the call returning
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and the data being committed to disk. The O_SYNC flag forces the relationship, ensuring
that calls to write() perform synchronized I/O.

One way of looking at O_SYNC is that it forces an implicit fsync() after each write()
operation, before the call returns. These are indeed the semantics provided, although
the Linux kernel implements O_SYNC a bit more efficiently.

O_SYNC results in slightly worse user and kernel times (time spent in user and kernel
space, respectively) for write operations. Moreover, depending on the size of the file
being written, O_SYNC can cause an increase in total elapsed time of one or two orders
of magnitude because all I/O wait time (time spent waiting for I/O to complete) is
incurred by the process. The increase in cost is huge, so synchronized I/O should be
used only after exhausting all possible alternatives.

Normally, applications that need guarantees that write operations have hit the disk
use fsync() or fdatasync(). These tend to incur less cost than O_SYNC, as they can be
called less often (i.e., only after certain critical operations have completed).

O_DSYNC and O_RSYNC
POSIX defines two other synchronized-I/O-related open() flags: O_DSYNC and
O_RSYNC. On Linux, these flags are defined to be synonymous with O_SYNC; they provide
the same behavior.

The O_DSYNC flag specifies that only normal data be synchronized after each write op‐
eration, not metadata. Think of it as causing an implicit fdatasync() after each write
request. Because O_SYNC provides stronger guarantees, aliasing O_DSYNC to it involves
no loss in functionality; there’s only a potential performance loss from the stronger
requirements provided by O_SYNC.

The O_RSYNC flag specifies the synchronization of read requests as well as write requests.
It must be used with one of O_SYNC or O_DSYNC. As mentioned earlier, reads are already
synchronized—they do not return until they have something to give the user, after all.
The O_RSYNC flag stipulates that any side effects of a read operation be synchronized,
too. This means that metadata updates resulting from a read must be written to disk
before the call returns. In practical terms, this requirement most likely means only that
the file access time must be updated in the on-disk copy of the inode before the call to
read() returns. Linux defines O_RSYNC to be the same as O_SYNC, although this does not
make much sense (one is not a subset of the other as with O_DSYNC and O_SYNC). There
is currently no way in Linux to obtain the proper behavior of O_RSYNC; the closest a
developer can come is invoking fdatasync() after each read() call. This behavior is
rarely needed, though.
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Direct I/O
The Linux kernel, like any modern operating system kernel, implements a complex layer
of caching, buffering, and I/O management between devices and applications (see
“Kernel Internals” on page 62). A high-performance application may wish to bypass this
layer of complexity and perform its own I/O management. Rolling your own I/O system
is usually not worth the effort, though, and in fact the tools available at the operating-
system level are likely to achieve much better performance than those available at the
application level. Still, database systems often prefer to perform their own caching and
want to minimize the presence of the operating system as much as feasible.

Providing the O_DIRECT flag to open() instructs the kernel to minimize the presence of
I/O management. When this flag is provided, I/O will initiate directly from user-space
buffers to the device, bypassing the page cache. All I/O will be synchronous; operations
will not return until completed.

When performing direct I/O, the request length, buffer alignment, and file offsets must
all be integer multiples of the underlying device’s sector size—generally, this is 512 bytes.
Before the 2.6 Linux kernel, this requirement was stricter: in 2.4, everything must be
aligned on the filesystem’s logical block size (often 4 KB). To remain compatible, appli‐
cations should align to the larger (and potentially less convenient) logical block size.

Closing Files
After a program has finished working with a file descriptor, it can unmap the file de‐
scriptor from the associated file via the close() system call:

#include <unistd.h>

int close (int fd);

A call to close() unmaps the open file descriptor fd and disassociates the file from the
process. The given file descriptor is then no longer valid, and the kernel is free to reuse
it as the return value to a subsequent open() or creat() call. A call to close() returns
0 on success. On error, it returns −1 and sets errno appropriately. Usage is simple:

if (close (fd) == −1)
perror ("close");

Note that closing a file has no bearing on when the file is flushed to disk. To ensure that
a file is committed to disk before closing it, an application needs to make use of one of
the synchronization options discussed earlier in “Synchronized I/O” on page 40.

Closing a file does have some side effects, though. When the last open file descriptor
referring to a file is closed, the data structure representing the file inside the kernel is
freed. When this data structure is freed, it unpins the in-memory copy of the inode
associated with the file. If nothing else is pinning the inode, it too may be freed from
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memory (it may stick around because the kernel caches inodes for performance reasons,
but it need not). If a file has been unlinked from the disk but was kept open before it
was unlinked, it is not physically removed until it is closed and its inode is removed
from memory. Therefore, calling close() may also result in an unlinked file finally
being physically removed from the disk.

Error Values
It is a common mistake to not check the return value of close(). This can result in
missing a crucial error condition because errors associated with deferred operations
may not manifest until later, and close() can report them.

There are a handful of possible errno values on failure. Other than EBADF (the given file
descriptor was invalid), the most important error value is EIO, indicating a low-level I/
O error probably unrelated to the actual close. Regardless of any reported error, the file
descriptor, if valid, is always closed, and the associated data structures are freed.

Although POSIX allows it, close() will never return EINTR. The Linux kernel devel‐
opers know better.

Seeking with lseek()
Normally, I/O occurs linearly through a file, and the implicit updates to the file position
caused by reads and writes are all the seeking that is needed. Some applications, however,
want to jump around in a file, providing random rather than linear access. The lseek()
system call is provided to set the file position of a file descriptor to a given value. Other
than updating the file position, it performs no other action, and initiates no I/O
whatsoever:

#include <sys/types.h>
#include <unistd.h>

off_t lseek (int fd, off_t pos, int origin);

The behavior of lseek() depends on the origin argument, which can be one of the
following:
SEEK_CUR

The current file position of fd is set to its current value plus pos, which can be
negative, zero, or positive. A pos of zero returns the current file position value.

SEEK_END

The current file position of fd is set to the current length of the file plus pos, which
can be negative, zero, or positive. A pos of zero sets the offset to the end of the file.
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SEEK_SET

The current file position of fd is set to pos. A pos of zero sets the offset to the
beginning of the file.

The call returns the new file position on success. On error, it returns −1 and errno is set
as appropriate.

For example, to set the file position of fd to 1825:

off_t ret;

ret = lseek (fd, (off_t) 1825, SEEK_SET);
if (ret == (off_t) −1)

/* error */

Alternatively, to set the file position of fd to the end of the file:

off_t ret;

ret = lseek (fd, 0, SEEK_END);
if (ret == (off_t) −1)

/* error */

As lseek() returns the updated file position, it can be used to find the current file
position via a SEEK_CUR to zero:

int pos;

pos = lseek (fd, 0, SEEK_CUR);
if (pos == (off_t) −1)

/* error */
else

/* 'pos' is the current position of fd */

By far, the most common uses of lseek() are seeking to the beginning, seeking to the
end, or determining the current file position of a file descriptor.

Seeking Past the End of a File
It is possible to instruct lseek() to advance the file pointer past the end of a file. For
example, this code seeks to 1,688 bytes beyond the end of the file mapped by fd:

int ret;

ret = lseek (fd, (off_t) 1688, SEEK_END);
if (ret == (off_t) −1)

/* error */

On its own, seeking past the end of a file does nothing—a read request to the newly
created file position will return EOF. If a write request is subsequently made to this
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position, however, new space will be created between the old length of the file and the
new length, and it will be padded with zeros.

This zero padding is called a hole. On Unix-style filesystems, holes do not occupy any
physical disk space. This implies that the total size of all files on a filesystem can add up
to more than the physical size of the disk. Files with holes are called sparse files. Sparse
files can save considerable space and enhance performance because manipulating the
holes does not initiate any physical I/O.

A read request to the part of a file in a hole will return the appropriate number of zeros.

Error Values
On error, lseek() returns −1 and errno is set to one of the following four values:
EBADF

The given file descriptor does not refer to an open file descriptor.

EINVAL

The value given for origin is not one of SEEK_SET, SEEK_CUR, or SEEK_END, or the
resulting file position would be negative. The fact that EINVAL represents both of
these errors is unfortunate. The former is almost assuredly a compile-time pro‐
gramming error, whereas the latter can represent a more insidious runtime logic
error.

EOVERFLOW

The resulting file offset cannot be represented in an off_t. This can occur only on
32-bit architectures. Currently, the file position is updated; this error indicates just
that it is impossible to return it.

ESPIPE

The given file descriptor is associated with an unseekable object, such as a pipe,
FIFO, or socket.

Limitations
The maximum file positions are limited by the size of the off_t type. Most machine
architectures define this to be the C long type, which on Linux is always the word size
(usually the size of the machine’s general-purpose registers). Internally, however, the
kernel stores the offsets in the C long long type. This poses no problem on 64-bit
machines, but it means that 32-bit machines can generate EOVERFLOW errors when per‐
forming relative seeks.
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Positional Reads and Writes
In lieu of using lseek(), Linux provides two variants of the read() and write() system
calls. Both receive the file position from which to read or write. Upon completion, they
do not update the file position.

The read form is called pread():

#define _XOPEN_SOURCE 500

#include <unistd.h>

ssize_t pread (int fd, void *buf, size_t count, off_t pos);

This call reads up to count bytes into buf from the file descriptor fd at file position pos.

The write form is called pwrite():

#define _XOPEN_SOURCE 500

#include <unistd.h>

ssize_t pwrite (int fd, const void *buf, size_t count, off_t pos);

This call writes up to count bytes from buf to the file descriptor fd at file position pos.

These calls are almost identical in behavior to their non-p brethren, except that they
completely ignore the current file position; instead of using the current position, they
use the value provided by pos. Also, when done, they do not update the file position. In
other words, any intermixed read() and write() calls could potentially corrupt the
work done by the positional calls.

Both positional calls can be used only on seekable file descriptors, which include regular
files. They provide semantics similar to preceding a read() or write() call with a call
to lseek(), with three differences. First, these calls are easier to use, especially when
doing a tricky operation such as moving through a file backward or randomly. Second,
they do not update the file pointer upon completion. Finally, and most importantly, they
avoid any potential races that might occur when using lseek().

Because threads share file tables and the current file position is stored in the shared file
table, it is possible for one thread in a program to update the file position after a different
thread’s call to lseek() but before its read or write operation executed. In other words,
lseek() is inherently racy when you have two or more threads in a process all manip‐
ulating the same file descriptor. Such race conditions can be avoided by using the
pread() and pwrite() system calls.
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Error Values
On success, both calls return the number of bytes read or written. A return value of 0
from pread() indicates EOF; from pwrite(), a return value of 0 indicates that the call
did not write anything. On error, both calls return −1 and set errno appropriately. For
pread(), any valid read() or lseek() errno value is possible. For pwrite(), any valid
write() or lseek() value is possible.

Truncating Files
Linux provides two system calls for truncating the length of a file, both of which are
defined and required (to varying degrees) by various POSIX standards. They are:

#include <unistd.h>
#include <sys/types.h>

int ftruncate (int fd, off_t len);

and:

#include <unistd.h>
#include <sys/types.h>

int truncate (const char *path, off_t len);

Both system calls truncate the given file to the length given by len. The ftruncate()
system call operates on the file descriptor given by fd, which must be open for writing.
The truncate() system call operates on the filename given by path, which must be
writable. Both return 0 on success. On error, they return −1 and set errno as appropriate.

The most common use of these system calls is to truncate a file to a size smaller than its
current length. Upon successful return, the file’s length is len. The data previously ex‐
isting between len and the old length is discarded and no longer accessible via a read
request.

The functions can also be used to “truncate” a file to a larger size, similar to the seek
plus write combination described earlier in “Seeking Past the End of a File” on page
47. The extended bytes are filled with zeros.

Neither operation updates the current file position.

For example, consider the file pirate.txt of length 74 bytes with the following contents:

Edward Teach was a notorious English pirate.
He was nicknamed Blackbeard.

From the same directory, running the following program:

#include <unistd.h>
#include <stdio.h>
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4. Mainloops should be familiar to anyone who has written GUI applications—for example, GNOME applica‐
tions utilize a mainloop provided by GLib, their base library. A mainloop allows multiple events to be watched
for and responded to from a single blocking point.

int main()
{

int ret;

ret = truncate ("./pirate.txt", 45);
if (ret == −1) {

perror ("truncate");
return −1;

}

return 0;
}

results in a file of length 45 bytes with the following contents:

Edward Teach was a notorious English pirate.

Multiplexed I/O
Applications often need to block on more than one file descriptor, juggling I/O between
keyboard input (stdin), interprocess communication, and a handful of files. Modern
event-driven graphical user interface (GUI) applications may contend with literally
hundreds of pending events via their mainloops.4

Without the aid of threads—essentially servicing each file descriptor separately—a sin‐
gle process cannot reasonably block on more than one file descriptor at the same time.
Working with multiple file descriptors is fine, so long as they are always ready to be read
from or written to. But as soon as one file descriptor that is not yet ready is encountered
—say, if a read() system call is issued, and there is not yet any data—the process will
block, no longer able to service the other file descriptors. It might block for just a few
seconds, making the application inefficient and annoying the user. However, if no data
becomes available on the file descriptor, it could block forever. Because file descriptors’
I/O is often interrelated—think pipes—it is quite possible for one file descriptor not to
become ready until another is serviced. Particularly with network applications, which
may have many sockets open simultaneously, this is potentially quite a problem.

Imagine blocking on a file descriptor related to interprocess communication while stdin
has data pending. The application won’t know that keyboard input is pending until the
blocked IPC file descriptor ultimately returns data—but what if the blocked operation
never returns?
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Earlier in this chapter, we looked at nonblocking I/O as a solution to this problem. With
nonblocking I/O, applications can issue I/O requests that return a special error condi‐
tion instead of blocking. However, this solution is inefficient for two reasons. First, the
process needs to continually issue I/O operations in some arbitrary order, waiting for
one of its open file descriptors to be ready for I/O. This is poor program design. Second,
it would be much more efficient if the program could sleep, freeing the processor for
other tasks, to be woken up only when one or more file descriptors were ready to perform
I/O.

Enter multiplexed I/O.

Multiplexed I/O allows an application to concurrently block on multiple file descriptors
and receive notification when any one of them becomes ready to read or write without
blocking. Multiplexed I/O thus becomes the pivot point for the application, designed
similarly to the following activity:

1. Multiplexed I/O: Tell me when any of these file descriptors become ready for I/O.
2. Nothing ready? Sleep until one or more file descriptors are ready.
3. Woken up! What is ready?
4. Handle all file descriptors ready for I/O, without blocking.
5. Go back to step 1.

Linux provides three multiplexed I/O solutions: the select, poll, and epoll interfaces. We
will cover the first two here, and the last, which is an advanced Linux-specific solution,
in Chapter 4.

select()
The select() system call provides a mechanism for implementing synchronous
multiplexing I/O:

#include <sys/select.h>

int select (int n,
fd_set *readfds,
fd_set *writefds,
fd_set *exceptfds,
struct timeval *timeout);

FD_CLR(int fd, fd_set *set);
FD_ISSET(int fd, fd_set *set);
FD_SET(int fd, fd_set *set);
FD_ZERO(fd_set *set);

A call to select() blocks until the given file descriptors are ready to perform I/O, or
until an optionally specified timeout has elapsed.
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5. This is because select() and poll() are level-triggered and not edge-triggered. epoll(), which we’ll discuss
in Chapter 4, can operate in either mode. Edge-triggered operation is simpler but allows I/O events to be
missed if care is not taken.

The watched file descriptors are broken into three sets, each waiting for a different event.
File descriptors listed in the readfds set are watched to see if data is available for reading
(that is, if a read operation will complete without blocking). File descriptors listed in
the writefds set are watched to see if a write operation will complete without blocking.
Finally, file descriptors in the exceptfds set are watched to see if an exception has
occurred, or if out-of-band data is available (these states apply only to sockets). A given
set may be NULL, in which case select() does not watch for that event.

On successful return, each set is modified such that it contains only the file descriptors
that are ready for I/O of the type delineated by that set. For example, assume two file
descriptors, with the values 7 and 9, are placed in the readfds set. When the call returns,
if 7 is still in the set, that file descriptor is ready to read without blocking. If 9 is no longer
in the set, it is probably not readable without blocking. (I say probably here because it
is possible that data became available after the call completed. In that case, a subsequent
call to select() will return the file descriptor as ready to read.)5

The first parameter, n, is equal to the value of the highest-valued file descriptor in any
set, plus one. Consequently, a caller to select() is responsible for checking which given
file descriptor is the highest-valued and passing in that value plus one for the first
parameter.

The timeout parameter is a pointer to a timeval structure, which is defined as follows:

#include <sys/time.h>

struct timeval {
long tv_sec; /* seconds */
long tv_usec; /* microseconds */

};

If this parameter is not NULL, the call to select() will return after tv_sec seconds and
tv_usec microseconds, even if no file descriptors are ready for I/O. On return, the state
of this structure across various Unix systems is undefined, and thus it must be reini‐
tialized (along with the file descriptor sets) before every invocation. Indeed, current
versions of Linux modify this parameter automatically, setting the values to the time
remaining. Thus, if the timeout was set for 5 seconds, and 3 seconds elapsed before a
file descriptor became ready, tv.tv_sec would contain 2 upon the call’s return.

If both values in the timeout are set to zero, the call will return immediately, reporting
any events that were pending at the time of the call, but not waiting for any subsequent
events.
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The sets of file descriptors are not manipulated directly, but are instead managed
through helper macros. This allows Unix systems to implement the sets however they
want. Most systems, however, implement the sets as simple bit arrays.

FD_ZERO removes all file descriptors from the specified set. It should be called before
every invocation of select():

fd_set writefds;

FD_ZERO(&writefds);

FD_SET adds a file descriptor to a given set, and FD_CLR removes a file descriptor from
a given set:

FD_SET(fd, &writefds);    /* add 'fd' to the set */
FD_CLR(fd, &writefds);    /* oops, remove 'fd' from the set */

Well-designed code should never have to make use of FD_CLR, and it is rarely, if ever,
used.

FD_ISSET tests whether a file descriptor is part of a given set. It returns a nonzero integer
if the file descriptor is in the set and 0 if it is not. FD_ISSET is used after a call from
select() returns to test whether a given file descriptor is ready for action:

if (FD_ISSET(fd, &readfds))
/* 'fd' is readable without blocking! */

Because the file descriptor sets are statically created, they impose a limit on the maxi‐
mum number of file descriptors and the largest-valued file descriptor that may be placed
inside them, both of which are given by FD_SETSIZE. On Linux, this value is 1,024. We
will look at the ramifications of this limit later in this chapter.

Return values and error codes

On success, select() returns the number of file descriptors ready for I/O, among all
three sets. If a timeout was provided, the return value may be 0. On error, the call returns
−1, and errno is set to one of the following values:
EBADF

An invalid file descriptor was provided in one of the sets.

EINTR

A signal was caught while waiting, and the call can be reissued.

EINVAL

The parameter n is negative, or the given timeout is invalid.

ENOMEM

Insufficient memory was available to complete the request.
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select() example
Let’s consider an example program, trivial but fully functional, to illustrate the use of
select(). This example blocks waiting for input on stdin for up to 5 seconds. Because
it watches only a single file descriptor, it is not actually multiplexing I/O, but the usage
of the system call is made clear:

#include <stdio.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>

#define TIMEOUT 5 /* select timeout in seconds */
#define BUF_LEN 1024    /* read buffer in bytes */

int main (void)
{

struct timeval tv;
fd_set readfds;
int ret;

/* Wait on stdin for input. */
FD_ZERO(&readfds);
FD_SET(STDIN_FILENO, &readfds);

/* Wait up to five seconds. */
tv.tv_sec = TIMEOUT;
tv.tv_usec = 0;

/* All right, now block! */
ret = select (STDIN_FILENO + 1,

&readfds,
NULL,
NULL,
&tv);

if (ret == −1) {
perror ("select");
return 1;

} else if (!ret) {
printf ("%d seconds elapsed.\n", TIMEOUT);
return 0;

}

/*
* Is our file descriptor ready to read?
* (It must be, as it was the only fd that
* we provided and the call returned
* nonzero, but we will humor ourselves.)
*/
if (FD_ISSET(STDIN_FILENO, &readfds)) {

char buf[BUF_LEN+1];
int len;
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/* guaranteed to not block */
len = read (STDIN_FILENO, buf, BUF_LEN);
if (len == −1) {

perror ("read");
return 1;

}

if (len) {
buf[len] = '\0';
printf ("read: %s\n", buf);

}

return 0;
}

fprintf (stderr, "This should not happen!\n");
return 1;

}

Portable sleeping with select()

Because select() has historically been more readily implemented on various Unix
systems than a mechanism for subsecond-resolution sleeping, it is often employed as a
portable way to sleep by providing a non-NULL timeout but NULL for all three sets:

struct timeval tv;

tv.tv_sec = 0;
tv.tv_usec = 500;

/* sleep for 500 microseconds */
select (0, NULL, NULL, NULL, &tv);

Linux provides interfaces for high-resolution sleeping. We will cover these in
Chapter 11.

pselect()

The select() system call, first introduced in 4.2BSD, is popular, but POSIX defined its
own solution, pselect(), in POSIX 1003.1g-2000 and later in POSIX 1003.1-2001:

#define _XOPEN_SOURCE 600
#include <sys/select.h>

int pselect (int n,
fd_set *readfds,
fd_set *writefds,
fd_set *exceptfds,
const struct timespec *timeout,
const sigset_t *sigmask);
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/* these are the same as those used by select() */
FD_CLR(int fd, fd_set *set);
FD_ISSET(int fd, fd_set *set);
FD_SET(int fd, fd_set *set);
FD_ZERO(fd_set *set);

There are three differences between pselect() and select():

• pselect() uses the timespec structure, not the timeval structure, for its time
out parameter. The timespec structure uses seconds and nanoseconds, not seconds
and microseconds, providing theoretically superior timeout resolution. In practice,
however, neither call reliably provides even microsecond resolution.

• A call to pselect() does not modify the timeout parameter. Consequently, this
parameter does not need to be reinitialized on subsequent invocations.

• The select() system call does not have the sigmask parameter. With respect to
signals, when this parameter is set to NULL, pselect() behaves like select().

The timespec structure is defined as follows:

#include <sys/time.h>

struct timespec {
long tv_sec; /* seconds */
long tv_nsec; /* nanoseconds */

};

The primary motivator behind the addition of pselect() to Unix’s toolbox was the
addition of the sigmask parameter, which attempts to solve a race condition between
waiting on file descriptors and signals (signals are covered in depth in Chapter 10).
Assume that a signal handler sets a global flag (as most do), and the process checks this
flag before a call to select(). Now, assume that the signal arrives after the check, but
before the call. The application may block indefinitely and never respond to the set flag.
The pselect() call solves this problem by allowing an application to call pselect(),
providing a set of signals to block. Blocked signals are not handled until they are un‐
blocked. Once pselect() returns, the kernel restores the old signal mask.

Until the 2.6.16 kernel, the Linux implementation of pselect() was not a system call,
but a simple wrapper around select(), provided by glibc. This wrapper minimized—
but did not totally eliminate—the risk of this race condition occurring. With the intro‐
duction of a true system call, the race is gone.

Despite the (relatively minor) improvements in pselect(), most applications continue
to use select(), either out of habit or in the name of greater portability.
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poll()
The poll() system call is System V’s multiplexed I/O solution. It solves several defi‐
ciencies in select(), although select() is still often used (most likely out of habit, or
in the name of portability):

#include <poll.h>

int poll (struct pollfd *fds, nfds_t nfds, int timeout);

Unlike select(), with its inefficient three bitmask-based sets of file descriptors, poll()
employs a single array of nfds pollfd structures, pointed to by fds. The structure is
defined as follows:

#include <poll.h>

struct pollfd {
int fd; /* file descriptor */
short events;     /* requested events to watch */
short revents;    /* returned events witnessed */

};

Each pollfd structure specifies a single file descriptor to watch. Multiple structures may
be passed, instructing poll() to watch multiple file descriptors. The events field of
each structure is a bitmask of events to watch for on that file descriptor. The user sets
this field. The revents field is a bitmask of events that were witnessed on the file de‐
scriptor. The kernel sets this field on return. All of the events requested in the events
field may be returned in the revents field. Valid events are as follows:
POLLIN

There is data to read.

POLLRDNORM

There is normal data to read.

POLLRDBAND

There is priority data to read.

POLLPRI

There is urgent data to read.

POLLOUT

Writing will not block.

POLLWRNORM

Writing normal data will not block.

POLLWRBAND

Writing priority data will not block.
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POLLMSG

A SIGPOLL message is available.

In addition, the following events may be returned in the revents field:
POLLER

Error on the given file descriptor.

POLLHUP

Hung up event on the given file descriptor.

POLLNVAL

The given file descriptor is invalid.

These events have no meaning in the events field and you should not pass them in that
field because they are always returned if applicable. With poll(), unlike select(), you
need not explicitly ask for reporting of exceptions.

POLLIN | POLLPRI is equivalent to select()’s read event, and POLLOUT | POLLWR
BAND is equivalent to select()’s write event. POLLIN is equivalent to POLLRDNORM |
POLLRDBAND, and POLLOUT is equivalent to POLLWRNORM.

For example, to watch a file descriptor for both readability and writability, we would set
events to POLLIN | POLLOUT. On return, we would check revents for these flags in the
structure corresponding to the file descriptor in question. If POLLIN were set, the file
descriptor would be readable without blocking. If POLLOUT were set, the file descriptor
would be writable without blocking. The flags are not mutually exclusive: both may be
set, signifying that both reads and writes will return instead of blocking on that file
descriptor.

The timeout parameter specifies the length of time to wait, in milliseconds, before
returning regardless of any ready I/O. A negative value denotes an infinite timeout. A
value of 0 instructs the call to return immediately, listing any file descriptors with pend‐
ing ready I/O, but not waiting for any further events. In this manner, poll() is true to
its name, polling once, and immediately returning.

Return values and error codes

On success, poll() returns the number of file descriptors whose structures have non‐
zero revents fields. It returns 0 if the timeout occurred before any events occurred. On
failure, −1 is returned, and errno is set to one of the following:
EBADF

An invalid file descriptor was given in one or more of the structures.

EFAULT

The pointer to fds pointed outside of the process’s address space.
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EINTR

A signal occurred before any requested event. The call may be reissued.

EINVAL

The nfds parameter exceeded the RLIMIT_NOFILE value.

ENOMEM

Insufficient memory was available to complete the request.

poll() example

Let’s look at an example program that uses poll() to simultaneously check whether a
read from stdin and a write to stdout will block:

#include <stdio.h>
#include <unistd.h>
#include <poll.h>

#define TIMEOUT 5 /* poll timeout, in seconds */

int main (void)
{

struct pollfd fds[2];
int ret;

/* watch stdin for input */
fds[0].fd = STDIN_FILENO;
fds[0].events = POLLIN;

/* watch stdout for ability to write (almost always true) */
fds[1].fd = STDOUT_FILENO;
fds[1].events = POLLOUT;

/* All set, block! */
ret = poll (fds, 2, TIMEOUT * 1000);
if (ret == −1) {

perror ("poll");
return 1;

}

if (!ret) {
printf ("%d seconds elapsed.\n", TIMEOUT);
return 0;

}

if (fds[0].revents & POLLIN)
printf ("stdin is readable\n");

if (fds[1].revents & POLLOUT)
printf ("stdout is writable\n");
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return 0;
}

Running this, we get the following, as expected:

$ ./poll
stdout is writable

Running it again, but this time redirecting a file into standard in, we see both events:

$ ./poll < ode_to_my_parrot.txt
stdin is readable
stdout is writable

If we were using poll() in a real application, we would not need to reconstruct the
pollfd structures on each invocation. The same structure may be passed in repeatedly;
the kernel will handle zeroing the revents field as needed.

ppoll()

Linux provides a ppoll() cousin to poll(), in the same vein as pselect(). Unlike
pselect(), however, ppoll() is a Linux-specific interface:

#define _GNU_SOURCE

#include <poll.h>

int ppoll (struct pollfd *fds,
nfds_t nfds,
const struct timespec *timeout,
const sigset_t *sigmask);

As with pselect(), the timeout parameter specifies a timeout value in seconds and
nanoseconds, and the sigmask parameter provides a set of signals for which to wait.

poll() Versus select()
Although they perform the same basic job, the poll() system call is superior to
select() for a handful of reasons:

• poll() does not require that the user calculate and pass in as a parameter the value
of the highest-numbered file descriptor plus one.

• poll() is more efficient for large-valued file descriptors. Imagine watching a single
file descriptor with the value 900 via select()—the kernel would have to check
each bit of each passed-in set, up to the 900th bit.

• select()’s file descriptor sets are statically sized, introducing a trade-off: they are
small, limiting the maximum file descriptor that select() can watch, or they are
inefficient. Operations on large bitmasks are not efficient, especially if it is not
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6. If a bitmask is generally sparsely populated, each word composing the mask can be checked against zero; only
if that operation returns false need each bit be checked. This work is wasted, however, if the bitmask is densely
populated.

known whether they are sparsely populated.6 With poll(), one can create an array
of exactly the right size. Only watching one item? Just pass in a single structure.

• With select(), the file descriptor sets are reconstructed on return, so each subse‐
quent call must reinitialize them. The poll() system call separates the input
(events field) from the output (revents field), allowing the array to be reused
without change.

• The timeout parameter to select() is undefined on return. Portable code needs
to reinitialize it. This is not an issue with pselect(), however.

The select() system call does have a few things going for it, though:

• select() is more portable, as some Unix systems do not support poll().
• select() provides better timeout resolution: down to the microsecond wheres
poll() provides only millisecond resolution. Both ppoll() and pselect() theo‐
retically provide nanosecond resolution but, in practice, none of these calls reliably
provides even microsecond resolution.

Superior to both poll() and select() is the epoll interface, a Linux-specific multi‐
plexing I/O solution that we’ll look at in Chapter 4. 

Kernel Internals
This section looks at how the Linux kernel implements I/O, focusing on three primary
subsystems of the kernel: the virtual filesystem (VFS), the page cache, and page write‐
back. Together, these subsystems help make I/O seamless, efficient, and optimal.

In Chapter 4, we will look at a fourth subsystem, the I/O
scheduler.

The Virtual Filesystem
The virtual filesystem, occasionally also called a virtual file switch, is a mechanism of
abstraction that allows the Linux kernel to call filesystem functions and manipulate
filesystem data without knowing—or even caring about—the specific type of filesystem
being used.

62 | Chapter 2: File I/O



7. Yes, in C.

The VFS accomplishes this abstraction by providing a common file model, which is the
basis for all filesystems in Linux. Via function pointers and various object-oriented
practices,7 the common file model provides a framework to which filesystems in the
Linux kernel must adhere. This allows the VFS to generically make requests of the
filesystem. The framework provides hooks to support reading, creating links, synchro‐
nizing, and so on. Each filesystem then registers functions to handle the operations of
which it is capable.

This approach forces a certain amount of commonality between filesystems. For ex‐
ample, the VFS talks in terms of inodes, superblocks, and directory entries. A filesystem
not of Unix origins, possibly devoid of Unix-like concepts such as inodes, simply has to
cope. Indeed, cope they do: Linux supports filesystems such as FAT and NTFS without
issues.

The benefits of the VFS are enormous. A single system call can read from any filesystem
on any medium; a single utility can copy from any one filesystem to any other. All
filesystems support the same concepts, the same interfaces, and the same calls. Every‐
thing just works—and works well.

When an application issues a read() system call, it takes an interesting journey. The C
library provides definitions of the system call that are converted to the appropriate trap
statements at compile time. Once a user-space process is trapped into the kernel, passed
through the system call handler, and handed to the read() system call, the kernel figures
out what object backs the given file descriptor. The kernel then invokes the read function
associated with the backing object. For filesystems, this function is part of the filesystem
code. The function then does its thing—for example, physically reading the data from
the filesystem—and returns the data to the user-space read() call, which then returns
to the system call handler, which copies the data back to user space, where the read()
system call returns and the process continues to execute.

To system programmers, the ramifications of the VFS are important. Programmers need
not worry about the type of filesystem or media on which a file resides. Generic system
calls—read(), write(), and so on—can manipulate files on any supported filesystem
and on any supported media.

The Page Cache
The page cache is an in-memory store of recently accessed data from an on-disk
filesystem. Disk access is painfully slow, particularly relative to today’s processor speeds.
Storing requested data in memory allows the kernel to fulfill subsequent requests for
the same data from memory, avoiding repeated disk access.
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The page cache exploits the concept of temporal locality, a type of locality of reference,
which says that a resource accessed at one point has a high probability of being accessed
again in the near future. The memory consumed to cache data on its first access therefore
pays off, as it prevents future expensive disk accesses.

The page cache is the first place that the kernel looks for filesystem data. The kernel
invokes the memory subsystem to read data from the disk only when it isn’t found in
the cache. Thus, the first time any item of data is read, it is transferred from the disk
into the page cache, and is returned to the application from the cache. If that data is
then read again, it is simply returned from the cache. All operations transparently ex‐
ecute through the page cache, ensuring that its data is relevant and always valid.

The Linux page cache is dynamic in size. As I/O operations bring more and more data
into memory, the page cache grows larger and larger, consuming any free memory. If
the page cache eventually does consume all free memory and an allocation is committed
that requests additional memory, the page cache is pruned, releasing its least-used pages
to make room for “real” memory usage. This pruning occurs seamlessly and automat‐
ically. A dynamically sized cache allows Linux to use all of the memory in the system
and cache as much data as possible.

Often, however, it would make more sense to swap to disk a seldom-used page of process
memory than it would to prune an oft-used piece of the page cache that could well be
reread into memory on the next read request (swapping allows the kernel to store data
on the disk to allow a larger memory footprint than the machine has RAM). The Linux
kernel implements heuristics to balance the swapping of data versus the pruning of the
page cache (and other in-memory reserves). These heuristics might decide to swap data
out to disk in lieu of pruning the page cache, particularly if the data being swapped out
is not in use.

The swap-versus-cache balance is tuned via /proc/sys/vm/swappiness. This virtual file
has a value from 0 to 100, with a default of 60. A higher value implies a stronger pref‐
erence toward keeping the page cache in memory, and swapping more readily. A lower
value implies a stronger preference toward pruning the page cache and not swapping.

Another form of locality of reference is sequential locality, which says that data is often
referenced sequentially. To take advantage of this principle, the kernel also implements
page cache readahead. Readahead is the act of reading extra data off the disk and into
the page cache following each read request—in effect, reading a little bit ahead. When
the kernel reads a chunk of data from the disk, it also reads the following chunk or two.
Reading large sequential chunks of data at once is efficient, as the disk usually need not
seek. In addition, the kernel can fulfill the readahead request while the process is ma‐
nipulating the first chunk of read data. If, as often happens, the process goes on to submit
a new read request for the subsequent chunk, the kernel can hand over the data from
the initial readahead without having to issue a disk I/O request.
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As with the page cache, the kernel manages readahead dynamically. If it notices that a
process is consistently using the data that was read in via readahead, the kernel grows
the readahead window, thereby reading ahead more and more data. The readahead
window may be as small as 16 KB, and as large as 128 KB. Conversely, if the kernel
notices that readahead is not resulting in any useful hits—that is, that the application is
seeking around the file and not reading sequentially—it can disable readahead entirely.

The presence of a page cache is meant to be transparent. System programmers generally
cannot optimize their code to better take advantage of the fact that a page cache exists—
other than, perhaps, not implementing such a cache in user space themselves. Normally,
efficient code is all that is needed to best utilize the page cache. Utilizing readahead, on
the other hand, is possible. Sequential file I/O is always preferred to random access,
although it’s not always feasible.

Page Writeback
As discussed earlier in “Behavior of write()” on page 39, the kernel defers writes via
buffers. When a process issues a write request, the data is copied into a buffer, and the
buffer is marked dirty, denoting that the in-memory copy is newer than the on-disk
copy. The write request then simply returns. If another write request is made to the same
chunk of a file, the buffer is updated with the new data. Write requests elsewhere in the
same file generate new buffers.

Eventually the dirty buffers need to be committed to disk, synchronizing the on-disk
files with the data in memory. This is known as writeback. It occurs in two situations:

• When free memory shrinks below a configurable threshold, dirty buffers are written
back to disk so that the now-clean buffers may be removed, freeing memory.

• When a dirty buffer ages beyond a configurable threshold, the buffer is written back
to disk. This prevents data from remaining dirty indefinitely.

Writebacks are carried out by a gang of kernel threads named flusher threads. When
one of the previous two conditions is met, the flusher threads wake up and begin com‐
mitting dirty buffers to disk until neither condition is true.

There may be multiple flusher threads instantiating writebacks at the same time. This
is done to capitalize on the benefits of parallelism and to implement congestion avoid‐
ance. Congestion avoidance attempts to keep writes from getting backed up while wait‐
ing to be written to any one block device. If dirty buffers from different block devices
exist, the various flusher threads will work to fully use each block device. This fixes a
deficiency in earlier kernels: the predecessor to flusher threads (pdflush and before that,
bdflush) could spend all of its time waiting on a single block device, while other block
devices sat idle. On a modern machine, the Linux kernel can now keep a very large
number of disks saturated.
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Buffers are represented in the kernel by the buffer_head data structure. This data
structure tracks various metadata associated with the buffer, such as whether the buffer
is clean or dirty. It also contains a pointer to the actual data. This data resides in the page
cache. In this manner, the buffer subsystem and the page cache are unified.

In early versions of the Linux kernel—before 2.4—the buffer subsystem was separate
from the page cache, and thus there was both a page and a buffer cache. This implied
that data could exist in the buffer cache (as a dirty buffer) and the page cache (as cached
data) at the same time. Naturally, synchronizing these two separate caches took some
effort. The unified page cache introduced in the 2.4 Linux kernel was a welcomed
improvement.

Deferred writes and the buffer subsystem in Linux enable fast writes at the expense of
the risk of data loss on power failure. To avoid this risk, paranoid and critical applications
can use synchronized I/O (discussed earlier in this chapter).

Conclusion
This chapter discussed the basics of Linux system programming: file I/O. On a system
such as Linux, which strives to represent as much as possible as a file, it’s very important
to know how to open, read, write, and close files. All of these operations are classic Unix
and are represented in many standards.

The next chapter tackles buffered I/O and the standard C library’s standard I/O inter‐
faces. The standard C library is not just a convenience; buffering I/O in user space
provides crucial performance improvements.
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CHAPTER 3

Buffered I/O

Recall from Chapter 1 that the block is an abstraction representing the smallest unit of
storage on a filesystem. Inside the kernel, all filesystem operations occur in terms of
blocks. Indeed, the block is the lingua franca of I/O. Consequently, no I/O operation
may execute on an amount of data less than the block size or that is not an integer
multiple of the block size. If you only want to read a byte, too bad: you’ll have to read a
whole block. Want to write 4.5 blocks worth of data? You’ll need to write 5 blocks, which
implies reading that partial block in its entirety, updating only the half you’ve changed,
and then writing back the whole block.

You can see where this is leading: partial block operations are inefficient. The operating
system has to “fix up” your I/O by ensuring that everything occurs on block-aligned
boundaries and rounding up to the next largest block. Unfortunately, this is not how
user-space applications are generally written. Most applications operate in terms of
higher-level abstractions, such as fields and strings, whose size varies independently of
the block size. At its worst, a user-space application might read and write but a single
byte at a time! That’s a lot of waste. Each of those one-byte writes is actually writing a
whole block.

The situation is exacerbated by the extraneous system calls required to read, say, a single
byte 1,024 times rather than a single 1,024-byte block all at once. The solution to this
pathological performance problem is user-buffered I/O, a way for applications to read
and write data in whatever amounts feel natural but have the actual I/O occur in units
of the filesystem block size.

User-Buffered I/O
Programs that have to issue many small I/O requests to regular files often perform user-
buffered I/O. This refers to buffering done in user space, either manually by the appli‐
cation or transparently in a library, not to buffering done by the kernel. As discussed in
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Chapter 2, for reasons of performance, the kernel buffers data internally by delaying
writes, coalescing adjacent I/O requests, and reading ahead. Through different means,
user buffering also aims to improve performance.

Consider an example using the user-space program dd:

dd bs=1 count=2097152 if=/dev/zero of=pirate

Because of the bs=1 argument, this command will copy two megabytes from the de‐
vice /dev/zero (a virtual device providing an endless stream of zeros) to the file pirate
in 2,097,152 one-byte chunks. That is, it will copy the data via about two million read
and write operations—one byte at a time.

Now consider the same two megabyte copy, but using 1,024 byte blocks:

dd bs=1024 count=2048 if=/dev/zero of=pirate

This operation copies the same two megabytes to the same file, yet issues 1,024 times
fewer read and write operations. The performance improvement is huge, as you can see
in Table 3-1. Here, I’ve recorded the time taken (using three different measures) by four
dd commands that differed only in block size. Real time is the total elapsed wall clock
time, user time is the time spent executing the program’s code in user space, and system
time is the time spent executing system calls in kernel space on the process’s behalf.

Table 3-1. Effects of block size on performance
Block size Real time User time System time

1 byte 18.707 seconds 1.118 seconds 17.549 seconds

1,024 bytes 0.025 seconds 0.002 seconds 0.023 seconds

1,130 bytes 0.035 seconds 0.002 seconds 0.027 seconds

Using 1,024 byte chunks results in an enormous performance improvement compared
to the single byte chunk. However, the table also demonstrates that using a larger block
size—which implies even fewer system calls—can result in performance degradation if
the operations are not performed in multiples of the disk’s block size. Despite requiring
fewer calls, the 1,130 byte requests end up generating unaligned requests, and are there‐
fore less efficient than the 1,024 byte requests.

Taking advantage of this performance boon requires prior knowledge of the physical
block size. The results in the table show the block size is most likely 1,024, an integer
multiple of 1,024, or a divisor of 1,024. In the case of /dev/zero, the block size is actually
4,096 bytes.
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Block Size
In practice, blocks are usually 512, 1,024, 2,048, 4,096, or 8,192 bytes in size.

As Table 3-1 demonstrates, a large performance gain is realized simply by performing
operations in chunks that are integer multiples or divisors of the block size. This is
because the kernel and hardware speak in terms of blocks. Thus, using the block size or
a value that fits neatly inside of a block guarantees block-aligned I/O requests and pre‐
vents extraneous work inside the kernel.

Figuring out the block size for a given device is easy using the stat() system call (cov‐
ered in Chapter 8) or the stat(1) command. It turns out, however, that you generally do
not need to know the actual block size.

The primary goal in picking a size for your I/O operations is to not pick an oddball size
such as 1,130. No block in the history of Unix has been 1,130 bytes, and choosing such
a size for your operations will result in unaligned I/O after the first request. Using any
integer multiple or divisor of the block size, however, prevents unaligned requests. So
long as your chosen size keeps everything block-aligned, performance will be good.
Larger multiples will simply result in fewer system calls.

Therefore, the easiest choice is to perform I/O using a large buffer size that is a common
multiple of the typical block sizes. Both 4,096 and 8,192 bytes work great.

So perform all your I/O in 4 or 8KB chunks and everything is great? Not so fast. The
problem, of course, is that programs rarely deal in terms of blocks. Programs work with
fields, lines, and single characters, not abstractions such as blocks. User-buffered I/O
closes the gap between the filesystem, which speaks in blocks, and the application, which
talks in its own abstractions. How it works is simple, yet very powerful: as data is written,
it is stored in a buffer inside the program’s address space. When the buffer reaches a set
size, called the buffer size, the entire buffer is written out in a single write operation.
Likewise, data is read using buffer-sized, block-aligned chunks. The application’s
various-sized read requests are served not directly from the filesystem, but via the
chunks of the buffer. As the application reads more and more, data is handed out from
the buffer piece-by-piece. Ultimately, when the buffer is empty, another large block-
aligned chunk is read in. In this manner, although the application reads and writes in
whatever odd sizes it chooses, data is buffered such that only large, block-aligned reads
and writes are actually issued to the filesystem. The end result is fewer system calls for
larger amounts of data, all aligned on block boundaries. Huge performance benefits
ensue.
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It is possible to implement user buffering by hand in your own programs. Indeed, many
mission-critical applications do just that. The vast majority of programs, however, make
use of the popular standard I/O library (part of the standard C library) or the iostream
library (part of the standard C++ library), which provides a robust and capable user-
buffering solution.

Standard I/O
The standard C library provides the standard I/O library (often simply called stdio),
which in turn provides a platform-independent, user-buffering solution. The standard
I/O library is simple to use, yet powerful.

Unlike programming languages such as FORTRAN, the C language does not include
any built-in support or keywords providing any functionality more advanced than flow
control, arithmetic, and so on—there’s certainly no inherent support for I/O. As the C
programming language progressed, users developed standard sets of routines to provide
core functionality, such as string manipulation, mathematical routines, time and date
functionality, and I/O. Over time, these routines matured, and with the ratification of
the ANSI C standard in 1989 (C89) they were eventually formalized as the standard C
library. Although C95, C99, and C11 added several new interfaces, the standard I/O
library has remained relatively untouched since its creation in 1989.

The remainder of this chapter discusses user-buffered I/O as it pertains to file I/O, and
is implemented in the standard C library—that is, opening, closing, reading, and writing
files via the standard C library. Whether an application will use standard I/O, a home-
rolled user-buffering solution, or straight system calls is a decision that developers must
make carefully after weighing their application’s needs and behavior.

The C standards always leave some details up to each implementation, and implemen‐
tations often add additional features. This chapter, as with the rest of this book, docu‐
ments the interfaces and behavior as they are implemented in glibc on a modern Linux
system. Where Linux deviates from the standard, this is noted.

File Pointers
StandardI/O routines do not operate directly on file descriptors. Instead, they use their
own unique identifier, known as the file pointer. Inside the C library, the file pointer
maps to a file descriptor. The file pointer is represented by a pointer to the FILE typedef,
which is defined in <stdio.h>.
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FILE: Why the Caps?
The FILE name is often derided for its ugly use of all-caps, which is
particularly egregious given that the C standard (and consequently
most application’s own coding styles) use all-lowercase names for func‐
tions and types. The peculiarity lies in history: standard I/O was orig‐
inally written as macros. Not only FILE but all of the methods in the
library were implemented as a set of macros. The style at the time, which
remains common to this day, is to give macros all-caps names. As the
C language progressed and standard I/O was ratified as an official part,
most of the methods were reimplemented as proper functions and FILE
became a typedef. But the uppercase remains.

In standard I/O parlance, an open file is called a stream. Streams may be opened for
reading (input streams), writing (output streams), or both (input/output streams).

Opening Files
Files are opened for reading or writing via fopen():

#include <stdio.h>

FILE * fopen (const char *path, const char *mode);

This function opens the file path with the behavior given by mode and associates a new
stream with it.

Modes
The mode argument describes how to open the given file. It is one of the following strings:
r

Open the file for reading. The stream is positioned at the start of the file.

r+

Open the file for both reading and writing. The stream is positioned at the start of
the file.

w

Open the file for writing. If the file exists, it is truncated to zero length. If the file
does not exist, it is created. The stream is positioned at the start of the file.

w+

Open the file for both reading and writing. If the file exists, it is truncated to zero
length. If the file does not exist, it is created. The stream is positioned at the start
of the file.
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a

Open the file for writing in append mode. The file is created if it does not exist. The
stream is positioned at the end of the file. All writes will append to the file.

a+

Open the file for both reading and writing in append mode. The file is created if it
does not exist. The stream is positioned at the end of the file. All writes will append
to the file.

The given mode may also contain the character b, although this value
is always ignored on Linux. Some operating systems treat text and bi‐
nary files differently, and the b mode instructs the file to be opened in
binary mode. Linux, as with all POSIX-conforming systems, treats text
and binary files identically.

Upon success, fopen() returns a valid FILE pointer. On failure, it returns NULL and sets
errno appropriately.

For example, the following code opens /etc/manifest for reading and associates it with
stream: 

FILE *stream;

stream = fopen ("/etc/manifest", "r");
if (!stream)

/* error */

Opening a Stream via File Descriptor
The function fdopen() converts an already open file descriptor (fd) to a stream:

#include <stdio.h>

FILE * fdopen (int fd, const char *mode);

The possible modes are the same as for fopen() and must be compatible with the modes
originally used to open the file descriptor. The modes w and w+ may be specified, but
they will not cause truncation. The stream is positioned at the file position associated
with the file descriptor.

Once a file descriptor is converted to a stream, I/O should no longer be directly per‐
formed on the file descriptor. It is, however, legal to do so. Note that the file descriptor
is not duplicated, but is merely associated with a new stream. Closing the stream will
close the file descriptor as well.
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On success, fdopen() returns a valid file pointer; on failure, it returns NULL and sets
errno appropriately.

For example, the following code opens the file /home/kidd/map.txt via the open() sys‐
tem call and then uses the backing file descriptor to create an associated stream:

FILE *stream;
int fd;

fd = open ("/home/kidd/map.txt", O_RDONLY);
if (fd == -1)

/* error */

stream = fdopen (fd, "r");
if (!stream)

/* error */

Closing Streams
The fclose() function closes a given stream:

#include <stdio.h>

int fclose (FILE *stream);

Any buffered and not-yet-written data is first flushed. On success, fclose() returns 0.
On failure, it returns EOF and sets errno appropriately.

Closing All Streams
The fcloseall() function closes all streams associated with the current process, in‐
cluding standard in, standard out, and standard error:

#define _GNU_SOURCE

#include <stdio.h>

int fcloseall (void);

Before closing, all streams are flushed. The function always returns 0; it is Linux-specific.

Reading from a Stream
Now that we know how to open and close streams, let’s look at doing something useful:
first reading from, and then writing to, them.

The standard C library implements multiple functions for reading from an open stream,
ranging from the common to the esoteric. This section will look at three of the most
popular approaches to reading: reading one character at a time, reading an entire line
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at a time, and reading binary data. To read from a stream, it must have been opened as
an input stream with the appropriate mode; that is, any valid mode except w or a.

Reading a Character at a Time
Often, the ideal I/O pattern is simply reading one character at a time. The function
fgetc() is used to read a single character from a stream:

#include <stdio.h>

int fgetc (FILE *stream);

This function reads the next character from stream and returns it as an unsigned
char cast to an int. The casting is done to have a sufficient range for notification of
end-of-file or error: EOF is returned in such conditions. The return value of fgetc()
must be stored in an int. Storing it in a char is a common but dangerous mistake, as
you’ll lose the ability to detect errors.

The following example reads a single character from stream, checks for errors, and then
prints the result as a char:

int c;

c = fgetc (stream);
if (c == EOF)

/* error */
else

printf ("c=%c\n", (char) c);

The stream pointed at by stream must be open for reading.

Putting the character back
Standard I/O provides a function for pushing a character back onto a stream, allowing
you to “peek” at the stream and return the character if it turns out that you don’t want
it:

#include <stdio.h>

int ungetc (int c, FILE *stream);

Each call pushes back c, cast to an unsigned char, onto stream. On success, c is re‐
turned; on failure, EOF is returned. A subsequent read from stream will return c. If
multiple characters are pushed back, they are returned in the reverse order, last in/first
out like a stack—that is, the more recently pushed character is returned first. The C
standard dictates that only one pushback is guaranteed to succeed without intervening
read requests. Some implementations, in turn, allow only a single pushback; Linux
allows an infinite number of pushbacks, so long as memory is available. One pushback,
of course, always succeeds.
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If you make an intervening call to a seeking function (see “Seeking a Stream” on page
80) after calling ungetc() but before issuing a read request, it will cause all pushed-back
characters to be discarded. This is true among threads in a single process, as threads
share the buffer.

Reading an Entire Line
The function fgets() reads a string from a given stream:

#include <stdio.h>

char * fgets (char *str, int size, FILE *stream);

This function reads up to one less than size bytes from stream and stores the results in
str. A null character (\0) is stored in the buffer after the last byte read in. Reading stops
after an EOF or a newline character is reached. If a newline is read, the \n is stored in str.

On success, str is returned; on failure, NULL is returned.

For example:

char buf[LINE_MAX];

if (!fgets (buf, LINE_MAX, stream))
/* error */

POSIX defines LINE_MAX in <limits.h>: it is the maximum size of input line that POSIX
line-manipulating interfaces can handle. Linux’s C library has no such limitation—lines
may be of any size—but there is no way to communicate that with the LINE_MAX defi‐
nition. Portable programs can use LINE_MAX to remain safe; it is set relatively high on
Linux. Linux-specific programs need not worry about limits on the sizes of lines.

Reading arbitrary strings

Often, the line-based reading of fgets() is useful. Nearly as often, it is annoying.
Sometimes, developers want to use a delimiter other than the newline. Other times,
developers do not want a delimiter at all—and rarely do developers want the delimiter
stored in the buffer! In retrospect, the decision to store the newline in the returned
buffer rarely appears correct.

It is not hard to write an fgets() replacement that uses fgetc(). For example, this
snippet reads the n − 1 bytes from stream into str, and then appends a \0 character:

char *s;
int c;

s = str;
while (--n > 0 && (c = fgetc (stream)) != EOF)
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*s++ = c;
*s = '\0';

The snippet can be expanded to also stop reading at a delimiter, given by the integer d
(which cannot be the null character in this example):

char *s;
int c = 0;

s = str;
while (--n > 0 && (c = fgetc (stream)) != EOF && (*s++ = c) != d)

;

if (c == d)
*--s = '\0';

else
*s = '\0';

Setting d to \n would provide behavior similar to fgets(), minus storing the newline
in the buffer.

Depending on the implementation of fgets(), this variant is probably slower, as it issues
repeated function calls to fgetc(). This is not the same problem exhibited by our orig‐
inal dd example, however! Although this snippet incurs additional function call over‐
head, it does not incur the system call overhead and unaligned I/O penalty burdened
on dd with bs=1. The latter are much larger problems.

Reading Binary Data
For some applications, reading individual characters or lines is insufficient. Sometimes,
developers want to read and write complex binary data, such as C structures. For this,
the standard I/O library provides fread():

#include <stdio.h>

size_t fread (void *buf, size_t size, size_t nr, FILE *stream);

A call to fread() will read up to nr elements of data, each of size bytes, from stream
into the buffer pointed at by buf. The file pointer is advanced by the number of bytes
read.

The number of elements read (not the number of bytes read!) is returned. The function
indicates failure or EOF via a return value less than nr. Unfortunately, it is impossible to
know which of the two conditions occurred without using ferror() and feof() (see
“Errors and End-of-File” on page 83).

Because of differences in variable sizes, alignment, padding, and byte order, binary data
written with one application may not be readable by a different application, or even by
the same application on a different machine.
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Issues of Alignment
All machine architectures have data alignment requirements. Programmers tend to
think of memory as simply an array of bytes. Our processors, however, do not read and
write from memory in byte-sized chunks. Instead, processors access memory with a
specific granularity, such as 2, 4, 8, or 16 bytes. Since each process’s address space starts
at address 0, processes must initiate access from an address that is an integer multiple
of the granularity.

Consequently, C variables must be stored at and accessed from aligned addresses. In
general, variables are naturally aligned, which refers to the alignment that corresponds
to the size of the C data type. For example, a 32-bit integer is aligned on a 4-byte bound‐
ary. In other words, on most architectures, an int is be stored at a memory address that
is evenly divisible by four.

Accessing misaligned data has various penalties, which depend on the machine archi‐
tecture. Some processors can access misaligned data, but with a performance penalty.
Other processors cannot access misaligned data at all, and attempting to do so causes a
hardware exception. Worse, some processors silently drop the low-order bits in order
to force the address to be aligned, almost certainly resulting in unintended behavior.

Normally, the compiler naturally aligns all data, and alignment is not a visible issue to
the programmer. Dealing with structures, performing memory management by hand,
saving binary data to disk, and communicating over a network may bring alignment
issues to the forefront. System programmers, therefore, ought to be well versed in these
issues.

Chapter 9 addresses alignment in greater depth.

The simplest example of fread() is reading a single element of linear bytes from a given
stream:

char buf[64];
size_t nr;

nr = fread (buf, sizeof(buf), 1, stream);
if (nr == 0)

/* error */

We will look at examples that are more complicated when we study the write counterpart
to fread(), fwrite(). 

Writing to a Stream
As with reading, the standard C library defines several functions for writing to an open
stream. This section will look at three of the most popular approaches to writing: writing
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a single character, writing a string of characters, and writing binary data. Such varied
writing approaches are ideally suited to buffered I/O. To write to a stream, it must have
been opened as an output stream with the appropriate mode, that is, any valid mode
except r.

Writing a Single Character
The counterpart of fgetc() is fputc():

#include <stdio.h>

int fputc (int c, FILE *stream);

The fputc() function writes the byte specified by c (cast to an unsigned char) to the
stream pointed at by stream. Upon successful completion, the function returns c.
Otherwise, it returns EOF, and errno is set appropriately.

Use is simple:

if (fputc ('p', stream) == EOF)
/* error */

This example writes the character p to stream, which must be open for writing.

Writing a String of Characters
The function fputs() is used to write an entire string to a given stream:

#include <stdio.h>

int fputs (const char *str, FILE *stream);

A call to fputs() writes all of the null-terminated string pointed at by str to the stream
pointed at by stream. On success, fputs() returns a nonnegative number. On failure,
it returns EOF.

The following example opens the file for writing in append mode, writes the given string
to the associated stream, and then closes the stream:

FILE *stream;

stream = fopen ("journal.txt", "a");
if (!stream)

/* error */

if (fputs ("The ship is made of wood.\n", stream) == EOF)
/* error */

if (fclose (stream) == EOF)
/* error */
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Writing Binary Data
Individual characters and lines will not cut it when programs need to write complex
data. To directly store binary data such as C variables, standard I/O provides fwrite():

#include <stdio.h>

size_t fwrite (void *buf,
size_t size,
size_t nr,
FILE *stream);

A call to fwrite() will write to stream up to nr elements, each size bytes in length,
from the data pointed at by buf. The file pointer will be advanced by the total number
of bytes written.

The number of elements (not the number of bytes!) successfully written will be returned.
A return value less than nr denotes error.

Sample Program Using Buffered I/O
Now let’s look at an example—a complete program, in fact—that integrates many of the
interfaces we have covered thus far in this chapter. This program first defines struct
pirate and then declares two variables of that type. The program initializes one of the
variables and subsequently writes it out to disk via an output stream to the file data. Via
a different stream, the program reads the data back in from data directly to the other
instance of struct pirate. Finally, the program writes the contents of the structure to
standard out:

#include <stdio.h>

int main (void)
{

FILE *in, *out;
struct pirate {

char name[100]; /* real name */
unsigned long   booty;     /* in pounds sterling */
unsigned int    beard_len; /* in inches */

} p, blackbeard = { "Edward Teach", 950, 48 };

out = fopen ("data", "w");
if (!out) {

perror ("fopen");
return 1;

}

if (!fwrite (&blackbeard, sizeof (struct pirate), 1, out)) {
perror ("fwrite");
return 1;
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}

if (fclose (out)) {
perror ("fclose");
return 1;

}

in = fopen ("data", "r");
if (!in) {

perror ("fopen");
return 1;

}

if (!fread (&p, sizeof (struct pirate), 1, in)) {
perror ("fread");
return 1;

}

if (fclose (in)) {
perror ("fclose");
return 1;

}

printf ("name=\"%s\" booty=%lu beard_len=%u\n",
p.name, p.booty, p.beard_len);

return 0;
}

The output is, of course, the original values:

name="Edward Teach" booty=950 beard_len=48

Again, it’s important to bear in mind that because of differences in variable sizes, align‐
ment, and so on, binary data written with one application may not be readable by other
applications. That is, a different application—or even the same application on a different
machine—may not be able to correctly read back the data written with fwrite(). In
our example, consider the ramifications if the size of unsigned long changed, or if the
amount of padding varied. These things are guaranteed to remain constant only on a
particular machine type with a particular ABI.

Seeking a Stream
Often, it is useful to manipulate the current stream position. Perhaps the application is
reading a complex record-based file and needs to jump around. Alternatively, perhaps
the stream needs to be reset to position zero. Whatever the case, standard I/O provides
a family of interfaces equivalent in functionality to the system call lseek() (discussed
in Chapter 2). The fseek() function, the most common of the standard I/O seeking
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interfaces, manipulates the file position of stream in accordance with offset and
whence:

#include <stdio.h>

int fseek (FILE *stream, long offset, int whence);

If whence is set to SEEK_SET, the file position is set to offset. If whence is set to
SEEK_CUR, the file position is set to the current position plus offset. If whence is set to
SEEK_END, the file position is set to the end of the file plus offset.

Upon successful completion, fseek() returns 0, clears the EOF indicator, and undoes
the effects (if any) of ungetc(). On error, it returns −1, and errno is set appropriately.
The most common errors are invalid stream (EBADF) and invalid whence argument
(EINVAL).

Alternatively, standard I/O provides fsetpos():

#include <stdio.h>

int fsetpos (FILE *stream, fpos_t *pos);

This function sets the stream position of stream to pos. It works the same as fseek()
with a whence argument of SEEK_SET. On success, it returns 0. Otherwise, it returns −1,
and errno is set as appropriate. This function (along with its counterpart fgetpos(),
which we will cover shortly) is provided solely for other (non-Unix) platforms that have
complex types representing the stream position. On those platforms, this function is
the only way to set the stream position to an arbitrary value, as the C long type is
presumably insufficient. Linux-specific applications need not use this interface, al‐
though they may, if they want to be portable to all possible platforms.

Standard I/O also provides rewind(), as a shortcut:

#include <stdio.h>

void rewind (FILE *stream);

The invocation:

rewind (stream);

resets the position back to the start of the stream. It is equivalent to:

fseek (stream, 0, SEEK_SET);

except that it also clears the error indicator.

Note that rewind() has no return value and thus cannot directly communicate error
conditions. Callers wishing to ascertain the existence of an error should clear errno
before invocation, and check to see whether the variable is nonzero afterward. For
example:
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errno = 0;
rewind (stream);
if (errno)

/* error */

Obtaining the Current Stream Position
Unlike lseek(), fseek() does not return the updated position. A separate interface is
provided for this purpose. The ftell() function returns the current stream position of
stream:

#include <stdio.h>

long ftell (FILE *stream);

On error, it returns −1 and errno is set appropriately.

Alternatively, standard I/O provides fgetpos():

#include <stdioh.h>

int fgetpos (FILE *stream, fpos_t *pos);

Upon success, fgetpos() returns 0, and places the current stream position of stream
in pos. On failure, it returns −1 and sets errno appropriately. Like fsetpos(), fget
pos() is provided solely for non-Unix platforms with complex file position types. 

Flushing a Stream
The standard I/O library provides an interface for writing out the user buffer to the
kernel, ensuring that all data written to a stream is flushed via write(). The fflush()
function provides this functionality:

#include <stdio.h>

int fflush (FILE *stream);

On invocation, any unwritten data in the stream pointed to by stream is flushed to the
kernel. If stream is NULL, all open input streams in the process are flushed. On success,
fflush() returns 0. On failure, it returns EOF, and errno is set appropriately.

To understand the effect of fflush(), you have to understand the difference between
the buffer maintained by the C library and the kernel’s own buffering. All of the calls
described in this chapter work with a buffer that is maintained by the C library, which
resides in user space, not kernel space. That is where the performance improvement
comes in—you are staying in user space and therefore running user code, not issuing
system calls. A system call is issued only when the disk or some other medium has to
be accessed.
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fflush() merely writes the user-buffered data out to the kernel buffer. The effect is the
same as if user buffering was not employed and write() was used directly. It does not
guarantee that the data is physically committed to any medium—for that need, use
something like fsync() (see “Synchronized I/O” on page 40). For situations where you
are concerned with ensuring that your data is commited to the backing store, you will
want to call fflush(), followed immediately by fsync(): that is, first ensure that the
user buffer is written out to the kernel and then ensure that the kernel’s buffer is written
out to disk.

Errors and End-of-File
Some of the standard I/O interfaces, such as fread(), communicate failures back to the
caller poorly, as they provide no mechanism for differentiating between error and end-
of-file. With these calls, and on other occasions, it can be useful to check the status of a
given stream to determine whether it has encountered an error or reached the end of a
file. Standard I/O provides two interfaces to this end. The function ferror() tests
whether the error indicator is set on stream:

#include <stdio.h>

int ferror (FILE *stream);

The error indicator is set by other standard I/O interfaces in response to an error con‐
dition. The function returns a nonzero value if the indicator is set, and 0 otherwise.

The function feof() tests whether the EOF indicator is set on stream:

#include <stdio.h>

int feof (FILE *stream);

The EOF indicator is set by other standard I/O interfaces when the end of a file is reached.
This function returns a nonzero value if the indicator is set, and 0 otherwise.

The clearerr() function clears the error and the EOF indicators for stream:

#include <stdio.h>

void clearerr (FILE *stream);

It has no return value, and cannot fail (there is no way to know whether an invalid stream
was provided). You should make a call to clearerr() only after checking the error and
EOF indicators, as they will be discarded irretrievably afterward. For example:

/* 'f' is a valid stream */

if (ferror (f))
printf ("Error on f!\n");
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if (feof (f))
printf ("EOF on f!\n");

clearerr (f);

Obtaining the Associated File Descriptor
Sometimes it is advantageous to obtain the file descriptor backing a given stream. For
example, it might be useful to perform a system call on a stream, via its file descriptor,
when an associated standard I/O function does not exist. To obtain the file descriptor
backing a stream, use fileno():

#include <stdio.h>

int fileno (FILE *stream);

Upon success, fileno() returns the file descriptor associated with stream. On failure,
it returns −1. This can only happen when the given stream is invalid, in which case, the
function sets errno to EBADF.

Intermixing standard I/O calls with system calls is not normally advised. Programmers
must exercise caution when using fileno() to ensure their file descriptor—based
actions do not conflict with the user buffering. Particularly, a good practice is to flush
the stream before manipulating the backing file descriptor. You should almost never
intermix file descriptor and stream-based I/O operations.

Controlling the Buffering
Standard I/O implements three types of user buffering and provides developers with an
interface for controlling the type and size of the buffer. The different types of user
buffering serve different purposes and are ideal for different situations.
Unbuffered

No user buffering is performed. Data is submitted directly to the kernel. As this
disables user buffering, negating any benefit, this option is not commonly used,
with a lone exception: standard error, by default, is unbuffered.

Line-buffered
Buffering is performed on a per-line basis. With each newline character, the buffer
is submitted to the kernel. Line buffering makes sense for streams being output to
the screen, since messages printed to the screen are delimited with newlines. Con‐
sequently, this is the default buffering used for streams connected to terminals, such
as standard out.
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Block-buffered
Buffering is performed on a per-block basis, where a block is a fixed number of
bytes. This is the type of buffering discussed at the beginning of this chapter and it
is ideal for files. By default, all streams associated with files are block-buffered.
Standard I/O uses the term full buffering for block buffering.

Most of the time, the default buffering type is correct and optimal. However, standard
I/O does provide an interface for controlling the type of buffering employed:

#include <stdio.h>

int setvbuf (FILE *stream, char *buf, int mode, size_t size);

The setvbuf() function sets the buffering type of stream to mode, which must be one
of the following:
_IONBF

Unbuffered

_IOLBF

Line-buffered

_IOFBF

Block-buffered

Except with _IONBF, in which case buf and size are ignored, buf may point to a buffer
of size bytes that standard I/O will use as the buffer for the given stream. If buf is
NULL, a buffer of the size you specify is allocated automatically by glibc.

The setvbuf() function must be called after opening the stream but before any other
operations have been performed on it. It returns 0 on success, and a nonzero value
otherwise.

The supplied buffer, if any, must exist when the stream is closed. A common mistake is
to declare the buffer as an automatic variable in a scope that ends before the stream is
closed. Particularly, be careful not to provide a buffer local to main() and then fail to
explicitly close the streams. For example, the following is a bug:

#include <stdio.h>

int main (void)
{

char buf[BUFSIZ];

/* set stdin to block-buffered with a BUFSIZ buffer */
setvbuf (stdout, buf, _IOFBF, BUFSIZ);
printf ("Arrr!\n");

return 0;
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1. Normally, eliminating locking will lead to an assortment of problems. But some programs might implement
their thread safety strategy to delegate all I/O to a single thread, a form of thread confinement. In that case,
there is no need for the overhead of locking.

/* 'buf' exits scope and is freed, but stdout isn't closed until later */
}

This class of bug can be prevented by explicitly closing the stream before exiting the
scope or by making buf a global variable.

Generally, developers need not mess with the buffering on a stream. With the exception
of standard error, terminals are line-buffered, and that makes sense. Files are block-
buffered, and that, too, makes sense. The default buffer size for block buffering is
BUFSIZ, defined in <stdio.h>, and it is usually an optimal choice (a large multiple of a
typical block size).

Thread Safety
Threads are the units of execution within a process. Most processes have a single thread.
Processes, however, can boast multiple threads, each executing their own code. We call
such processes multithreaded. One way to conceptualize a multithreaded process is as
multiple processes that share an address space. Without explicit coordination, threads
can run at any time, interleaving in any way. On a multiprocessor system, two or more
threads in the same process may even run concurrently. Threads can overwrite shared
data unless care is taken to synchronize access to the data (a practice called locking) or
make it thread-local (a practice called thread confinement).

Operating systems that support threads provide locking mechanisms (programming
constructs that ensure mutual exclusion) to ensure that threads do not stomp on each
other’s feet. Standard I/O uses these mechanisms, ensuring that multiple threads in a
single process may issue concurrent standard I/O calls—even against the same stream!
—without the concurrent operations trampling on each other. Still, they are not always
adequate. For example, sometimes you want to lock a group of calls, enlarging the critical
region (the chunk of code that runs without interference from another thread) from one
I/O operation to several. In other situations, you may want to eliminate locking alto‐
gether to improve efficiency.1 In this section, we will discuss how to do both.

The standard I/O functions are inherently thread-safe. Internally, they associate a lock,
a lock count, and an owning thread with each open stream. Any given thread must
acquire the lock and become the owning thread before issuing any I/O requests. Two
or more threads operating on the same stream cannot interleave standard I/O opera‐
tions, and thus, within the context of single function calls, standard I/O operations are
atomic.
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Of course, in practice, many applications require greater atomicity than at the level of
individual function calls. For example, imagine multiple threads in a single process
issuing write requests. As the standard I/O functions are thread-safe, the individual
writes will not interleave and result in garbled output. That is, even if two threads each
issue a write request at the same time, locking will ensure that one write request com‐
pletes before the other. But what if the process wants to issue several write requests in
a row, all without the risk of another thread’s write requests interleaving not just the
individual request, but the set of requests as a whole? To allow for this, standard I/O
provides a family of functions for individually manipulating the lock associated with a
stream.

Manual File Locking
The function flockfile() waits until stream is no longer locked, bumps the lock count,
and then acquires the lock, becoming the owning thread of the stream, and returns:

#include <stdio.h>

void flockfile (FILE *stream);

The function funlockfile() decrements the lock count associated with stream:

#include <stdio.h>

void funlockfile (FILE *stream);

If the lock count reaches zero, the current thread relinquishes ownership of the stream.
Another thread is now able to acquire the lock.

These calls can nest. That is, a single thread can issue multiple flockfile() calls, and
the stream will not unlock until the process issues a corresponding number of funlock
file() calls.

The ftrylockfile() function is a nonblocking version of flockfile():

#include <stdio.h>

int ftrylockfile (FILE *stream);

If stream is currently locked, ftrylockfile() does nothing and immediately returns
a nonzero value. If stream is not currently locked, it acquires the lock, bumps the lock
count, becomes the owning thread of stream, and returns 0.

Let’s consider an example. Let’s say we want to write out several lines to a file, ensuring
that the lines are written out without interleaving write operations from other threads:

flockfile (stream);

fputs ("List of treasure:\n", stream);
fputs ("    (1) 500 gold coins\n", stream);
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fputs ("    (2) Wonderfully ornate dishware\n", stream);

funlockfile (stream);

Although the individual fputs() operations could never race with other I/O—for ex‐
ample, we would never end up with anything interleaving with “List of treasure”—
another standard I/O operation from another thread to this same stream could inter‐
leave between two fputs() calls. Ideally, an application is designed such that multiple
threads are not submitting I/O to the same stream. If your application does need to do
so, however, and you need an atomic region greater than a single function, flock
file() and friends can save the day.

Unlocked Stream Operations
There is a second reason for performing manual locking on streams. With the finer-
grained and more precise control of locking that only the application programmer can
provide, it might be possible to minimize the overhead of locking and to improve per‐
formance. To this end, Linux provides a family of functions, cousins to the usual stan‐
dard I/O interfaces, that do not perform any locking whatsoever. They are, in effect, the
unlocked counterparts to standard I/O:

#define _GNU_SOURCE

#include <stdio.h>

int fgetc_unlocked (FILE *stream);
char *fgets_unlocked (char *str, int size, FILE *stream);
size_t fread_unlocked (void *buf, size_t size, size_t nr,

FILE *stream);
int fputc_unlocked (int c, FILE *stream);
int fputs_unlocked (const char *str, FILE *stream);
size_t fwrite_unlocked (void *buf, size_t size, size_t nr,

FILE *stream);
int fflush_unlocked (FILE *stream);
int feof_unlocked (FILE *stream);
int ferror_unlocked (FILE *stream);
int fileno_unlocked (FILE *stream);
void clearerr_unlocked (FILE *stream);

These functions all behave identically to their locked cousins, except that they do not
check for or acquire the lock associated with the given stream. If locking is required, it
is the responsibility of the programmer to ensure that the lock is manually acquired and
released.
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Relegating I/O
There is a sizable performance win from using the unlocked standard
I/O functions. Moreover, there’s a nontrivial amount of code simplicity
in not having to worry about locking complex operations with
flockfile(). When designing your application, consider relegating all
I/O to a single thread (or all I/O to a pool of threads, where each stream
is mapped to exactly one thread in the pool).

Although POSIX does define some unlocked variants of the standard I/O functions,
none of the above functions are defined by POSIX. They are all Linux-specific, although
various other Unix systems support a subset.

We’ll discuss threads thoroughly in Chapter 7.

Critiques of Standard I/O
As widely used as standard I/O is, some experts point to flaws in it. Some of the functions,
such as fgets(), are occasionally inadequate and ill-designed. Other functions, such as
gets(), are so horrendous that they have been all but evicted from the standards.

The biggest complaint with standard I/O is the performance impact from the double
copy. When reading data, standard I/O issues a read() system call to the kernel, copying
the data from the kernel to the standard I/O buffer. When an application then issues a
read request via standard I/O using, say, fgetc(), the data is copied again, this time
from the standard I/O buffer to the supplied buffer. Write requests work in the opposite
fashion: the data is copied once from the supplied buffer to the standard I/O buffer and
then later from the standard I/O buffer to the kernel via write().

An alternative implementation could avoid the double copy by having each read request
return a pointer into the standard I/O buffer. The data could then be read directly, inside
of the standard I/O buffer, without ever needing an extraneous copy. In the event that
the application did want the data in its own local buffer—perhaps to write to it—it could
always perform the copy manually. This implementation would provide a “free” inter‐
face, allowing applications to signal when they are done with a given chunk of the read
buffer.

Writes would be a bit more complicated, but the double copy could still be avoided.
When issuing a write request, the implementation would record the pointer. Ultimately,
when ready to flush the data to the kernel, the implementation could walk its list of
stored pointers, writing out the data. This could be done using scatter-gather I/O, via
writev(), and thus incur only a single system call. (We will discuss scatter-gather I/O
in the next chapter.)
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Highly optimal user-buffering libraries exist, solving the double copy problem with
implementations similar to what we’ve just discussed. Alternatively, some developers
choose to implement their own user-buffering solutions. But despite these alternatives,
standard I/O remains popular.

Conclusion
Standard I/O is a user-buffering library provided as part of the standard C library.
Modulo a few flaws, it is a powerful and very popular solution. Many C programmers,
in fact, know nothing but standard I/O. Certainly, for terminal I/O, where line-based
buffering is ideal, standard I/O is the only game in town. You don’t often use write()
to print to standard out!

Standard I/O—and user buffering in general, for that matter—makes sense when any
of the following are true:

• You could conceivably issue many system calls, and you want to minimize the
overhead by combining many calls into few.

• Performance is crucial, and you want to ensure that all I/O occurs in block-sized
chunks on block-aligned boundaries.

• Your access patterns are character- or line-based, and you want interfaces to make
such access easy without issuing extraneous system calls.

• You prefer a higher-level interface to the low-level Linux system calls.

The most flexibility, however, exists when you work directly with the Linux system calls.
In the next chapter, we will look at advanced forms of I/O and the associated system
calls.
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CHAPTER 4

Advanced File I/O

In Chapter 2, we looked at the basic I/O system calls in Linux. These calls form not only
the basis of file I/O, but also the foundation of virtually all communication on Linux.
In Chapter 3, we looked at how user-space buffering is often needed on top of the basic
I/O system calls, and we studied a specific user-space buffering solution, C’s standard
I/O library. In this chapter, we’ll look at the advanced I/O system calls that Linux
provides:
Scatter/gather I/O

Allows a single call to read from or write data to many buffers at once; useful for
bunching together fields of different data structures to form one I/O transaction.

Epoll
Improves on the poll() and select() system calls described in Chapter 2; useful
when hundreds of file descriptors need to be polled from a single thread.

Memory-mapped I/O
Maps a file into memory, allowing file I/O to occur via simple memory manipula‐
tion; useful for certain patterns of I/O.

File advice
Allows a process to provide hints to the kernel on the process’s intended uses for a
file; can result in improved I/O performance.

Asynchronous I/O
Allows a process to issue I/O requests without waiting for them to complete; useful
for juggling heavy I/O workloads without the use of threads.

The chapter will conclude with a discussion of performance considerations and the
kernel’s I/O subsystems.
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Scatter/Gather I/O
Scatter/gather I/O is a method of input and output where a single system call writes to
a vector of buffers from a single data stream, or, alternatively, reads into a vector of
buffers from a single data stream. This type of I/O is so named because the data is
scattered into or gathered from the given vector of buffers. An alternative name for this
approach to input and output is vectored I/O. In comparison, the standard read and
write system calls that we covered in Chapter 2 provide linear I/O.

Scatter/gather I/O provides several advantages over linear I/O methods:
More natural coding pattern

If your data is naturally segmented—say, the fields of a predefined structure—
vectored I/O allows for intuitive manipulation.

Efficiency
A single vectored I/O operation can replace multiple linear I/O operations.

Performance
In addition to a reduction in the number of issued system calls, a vectored I/O
implementation can provide improved performance over a linear I/O implemen‐
tation via internal optimizations.

Atomicity
In contrast with multiple linear I/O operations, a process can execute a single vec‐
tored I/O operation with no risk of interleaving I/O from another process.

readv() and writev()
POSIX 1003.1-2001 defines, and Linux implements, a pair of system calls that imple‐
ment scatter/gather I/O. The Linux implementation satisfies all of the goals listed in the
previous section.

The readv() function reads count segments from the file descriptor fd into the buffers
described by iov:

#include <sys/uio.h>

ssize_t readv (int fd,
const struct iovec *iov,
int count);

The writev() function writes at most count segments from the buffers described by
iov into the file descriptor fd:
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1. Note that other Unix systems may set errno to EINVAL if count is 0. This is explicitly allowed by the standards,
which say that EINVAL may be set if that value is 0 or that the system can handle the zero case in some other
(nonerror) way.

#include <sys/uio.h>

ssize_t writev (int fd,
const struct iovec *iov,
int count);

The readv() and writev() functions behave the same as read() and write(), respec‐
tively, except that multiple buffers are read from or written to.

Each iovec structure describes an independent disjoint buffer, which is called a segment:
#include <sys/uio.h>

struct iovec {
void *iov_base;    /* pointer to start of buffer */
size_t iov_len;    /* size of buffer in bytes */

};

A set of segments is called a vector. Each segment in the vector describes the address
and length of a buffer in memory to or from which data should be written or read. The
readv() function fills each buffer of iov_len bytes completely before proceeding to the
next buffer. The writev() function always writes out all full iov_len bytes before pro‐
ceeding to the next buffer. Both functions always operate on the segments in order,
starting with iov[0], then iov[1], and so on, through iov[count-1].

Return values

On success, readv() and writev() return the number of bytes read or written, respec‐
tively. This number should be the sum of all count iov_len values. On error, the system
calls return −1 and set errno as appropriate. These system calls can experience any of
the errors of the read() and write() system calls, and will, upon receiving such errors,
set the same errno codes. In addition, the standards define two other error situations.

First, because the return type is an ssize_t, if the sum of all count iov_len values is
greater than SSIZE_MAX, no data will be transferred, −1 will be returned, and errno will
be set to EINVAL.

Second, POSIX dictates that count must be larger than zero and less than or equal to
IOV_MAX, which is defined in <limits.h>. In Linux, IOV_MAX is currently 1024. If count
is 0, the system calls return 0.1 If count is greater than IOV_MAX, no data is transferred,
the calls return −1, and errno is set to EINVAL.
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Optimizing the Count
During a vectored I/O operation, the Linux kernel must allocate internal
data structures to represent each segment. Normally, this allocation oc‐
curs dynamically, based on the size of count. As an optimization, how‐
ever, the Linux kernel creates a small array of segments on the stack that
it uses if count is sufficiently small, negating the need to dynamically
allocate the segments and thereby providing a small boost in perfor‐
mance. This threshold is currently eight, so if count is less than or equal
to 8, the vectored I/O operation occurs in a very memory-efficient
manner off of the process’s kernel stack.
Most likely, you won’t have a choice about how many segments you need
to transfer at once in a given vectored I/O operation. If you are flexible,
however, and are debating over a small value, choosing a value of eight
or less definitely improves efficiency.

writev() example
Let’s consider a simple example that writes out a vector of three segments, each con‐
taining a string of a different size. This self-contained program is complete enough to
demonstrate writev(), yet simple enough to serve as a useful code snippet:

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
#include <sys/uio.h>

int main ()
{

struct iovec iov[3];
ssize_t nr;
int fd, i;

char *buf[] = {
"The term buccaneer comes from the word boucan.\n",
"A boucan is a wooden frame used for cooking meat.\n",
"Buccaneer is the West Indies name for a pirate.\n" };

fd = open ("buccaneer.txt", O_WRONLY | O_CREAT | O_TRUNC);
if (fd == −1) {

perror ("open");
return 1;

}

/* fill out three iovec structures */
for (i = 0; i < 3; i++) {

iov[i].iov_base = buf[i];
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iov[i].iov_len = strlen(buf[i]) + 1;
}
/* with a single call, write them all out */
nr = writev (fd, iov, 3);
if (nr == −1) {

perror ("writev");
return 1;

}
printf ("wrote %d bytes\n", nr);

if (close (fd)) {
perror ("close");
return 1;

}

return 0;
}

Running the program produces the desired result:

$ ./writev
wrote 148 bytes

As does reading the file:

$ cat buccaneer.txt
The term buccaneer comes from the word boucan.
A boucan is a wooden frame used for cooking meat.
Buccaneer is the West Indies name for a pirate.

readv() example

Now, let’s consider an example program that uses the readv() system call to read from
the previously generated text file using vectored I/O. This self-contained example is
likewise simple yet complete:

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/uio.h>

int main ()
{

char foo[48], bar[51], baz[49];
struct iovec iov[3];
ssize_t nr;
int fd, i;

fd = open ("buccaneer.txt", O_RDONLY);
if (fd == −1) {

perror ("open");
return 1;
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}

/* set up our iovec structures */
iov[0].iov_base = foo;
iov[0].iov_len = sizeof (foo);
iov[1].iov_base = bar;
iov[1].iov_len = sizeof (bar);
iov[2].iov_base = baz;
iov[2].iov_len = sizeof (baz);

/* read into the structures with a single call */
nr = readv (fd, iov, 3);
if (nr == −1) {

perror ("readv");
return 1;

}

for (i = 0; i < 3; i++)
printf ("%d: %s", i, (char *) iov[i].iov_base);

if (close (fd)) {
perror ("close");
return 1;

}

return 0;
}

Running this program after running the previous program produces the following
results:

$ ./readv
0: The term buccaneer comes from the word boucan.
1: A boucan is a wooden frame used for cooking meat.
2: Buccaneer is the West Indies name for a pirate.

Implementation

A naïve implementation of readv() and writev() could be implemented in user space
as a simple loop, something similar to the following:

#include <unistd.h>
#include <sys/uio.h>

ssize_t naive_writev (int fd, const struct iovec *iov, int count)
{

ssize_t ret = 0;
int i;

for (i = 0; i < count; i++) {
ssize_t nr;

errno = 0;
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2. Epoll was introduced in the 2.5.44 development kernel and the interface was finalized as of 2.5.66. It is Linux-
specific.

nr = write (fd, iov[i].iov_base, iov[i].iov_len);
if (nr == −1) {

if (errno == EINTR)
continue;

ret = −1;
break;

}
ret += nr;

}

return ret;
}

Thankfully, this is not the Linux implementation: Linux implements readv() and
writev() as system calls and internally performs scatter/gather I/O. In fact, all I/O inside
the Linux kernel is vectored; read() and write() are implemented as vectored I/O with
a vector of only one segment. 

Event Poll
Recognizing the limitations of both poll() and select(), the 2.6 Linux kernel2 intro‐
duced the event poll (epoll) facility. While more complex than the two earlier interfaces,
epoll solves the fundamental performance problem shared by both of them and adds
several new features.

Both poll() and select() (discussed in Chapter 2) require the full list of file descriptors
to watch on each invocation. The kernel must then walk the list of each file descriptor
to be monitored. When this list grows large—it may contain hundreds or even thou‐
sands of file descriptors—walking the list on each invocation becomes a scalability
bottleneck.

Epoll circumvents this problem by decoupling the monitor registration from the actual
monitoring. One system call initializes an epoll context, another adds monitored file
descriptors to or removes them from the context, and a third performs the actual event
wait.

Creating a New Epoll Instance
An epoll context is created via epoll_create1():

#include <sys/epoll.h>

int epoll_create1 (int flags);
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/* deprecated. use epoll_create1() in new code. */
int epoll_create (int size);

A successful call to epoll_create1() instantiates a new epoll instance and returns a file
descriptor associated with the instance. This file descriptor has no relationship to a real
file; it is just a handle to be used with subsequent calls using the epoll facility. The flags
parameter allows the modification of epoll behavior. Currently, only EPOLL_CLOEXEC is
a valid flag. It enables close-on-exec behavior.

On error, the call returns −1 and sets errno to one of the following:
EINVAL

Invalid flags parameter.

EMFILE

The user has reached their limit on the total number of open files.

ENFILE

The system has reached its limit on the total number of open files.

ENOMEM

Insufficient memory was available to complete the operation.

epoll_create() is a deprecated, older variant of epoll_create1(). It does not accept
any flags. Instead, it takes a size argument, which is unused. size used to provide a
hint about the number of file descriptors to be watched; nowadays the kernel dynami‐
cally sizes the required data structures and this parameter just needs to be greater than
zero. If it is not, EINVAL is returned. New applications should only use this variant if
they need to target systems running before epoll_create1() was introduced in Linux
kernel 2.6.27 and glibc 2.9.

A typical call is:

int epfd;

epfd = epoll_create1 (0);
if (epfd < 0)

perror ("epoll_create1");

The file descriptor returned from epoll_create1() should be destroyed via a call to
close() after polling is finished.

Controlling Epoll
The epoll_ctl() system call can be used to add file descriptors to and remove file
descriptors from a given epoll context:

#include <sys/epoll.h>

int epoll_ctl (int epfd,
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int op,
int fd,
struct epoll_event *event);

The header <sys/epoll.h> defines the epoll_event structure as:

struct epoll_event {
__u32 events;  /* events */
union {

void *ptr;
int fd;
__u32 u32;
__u64 u64;

} data;
};

A successful call to epoll_ctl() controls the epoll instance associated with the file
descriptor epfd. The parameter op specifies the operation to be taken against the file
associated with fd. The event parameter further describes the behavior of the operation.

Here are valid values for the op parameter:
EPOLL_CTL_ADD

Add a monitor on the file associated with the file descriptor fd to the epoll instance
associated with epfd, per the events defined in event.

EPOLL_CTL_DEL

Remove a monitor on the file associated with the file descriptor fd from the epoll
instance associated with epfd.

EPOLL_CTL_MOD

Modify an existing monitor of fd with the updated events specified by event.

The events field in the epoll_event structure lists which events to monitor on the given
file descriptor. Multiple events can be bitwise-ORed together. Here are valid values:
EPOLLERR

An error condition occurred on the file. This event is always monitored, even if it’s
not specified.

EPOLLET

Enables edge-triggered behavior for the monitor of the file (see “Edge- Versus Level-
Triggered Events” on page 103). The default behavior is level-triggered.

EPOLLHUP

A hangup occurred on the file. This event is always monitored, even if it’s not
specified.

EPOLLIN

The file is available to be read from without blocking.
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EPOLLONESHOT

After an event is generated and read, the file is automatically no longer monitored.
A new event mask must be specified via EPOLL_CTL_MOD to reenable the watch.

EPOLLOUT

The file is available to be written to without blocking.

EPOLLPRI

There is urgent out-of-band data available to read.

The data field inside the event_poll structure is for the user’s private use. The contents
are returned to the user upon receipt of the requested event. The common practice is
to set event.data.fd to fd, which makes it easy to look up which file descriptor caused
the event.

Upon success, epoll_ctl() returns 0. On failure, the call returns −1 and sets errno to
one of the following values:
EBADF

epfd is not a valid epoll instance, or fd is not a valid file descriptor.

EEXIST

op was EPOLL_CTL_ADD, but fd is already associated with epfd.

EINVAL

epfd is not an epoll instance, epfd is the same as fd, or op is invalid.

ENOENT

op was EPOLL_CTL_MOD, or EPOLL_CTL_DEL, but fd is not associated with epfd.

ENOMEM

There was insufficient memory to process the request.

EPERM

fd does not support epoll.

As an example, to add a new watch on the file associated with fd to the epoll instance
epfd, you would write:

struct epoll_event event;
int ret;

event.data.fd = fd; /* return the fd to us later (from epoll_wait) */
event.events = EPOLLIN | EPOLLOUT;

ret = epoll_ctl (epfd, EPOLL_CTL_ADD, fd, &event);
if (ret)

perror ("epoll_ctl");
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To modify an existing event on the file associated with fd on the epoll instance epfd,
you would write:

struct epoll_event event;
int ret;

event.data.fd = fd; /* return the fd to us later */
event.events = EPOLLIN;

ret = epoll_ctl (epfd, EPOLL_CTL_MOD, fd, &event);
if (ret)

perror ("epoll_ctl");

Conversely, to remove an existing event on the file associated with fd from the epoll
instance epfd, you would write:

struct epoll_event event;
int ret;

ret = epoll_ctl (epfd, EPOLL_CTL_DEL, fd, &event);
if (ret)

perror ("epoll_ctl");

Note that the event parameter can be NULL when op is EPOLL_CTL_DEL, as there is no
event mask to provide. Kernel versions before 2.6.9, however, erroneously check for this
parameter to be non-NULL. For portability to these older kernels, you should pass in a
valid non-NULL pointer; it will not be touched. Kernel 2.6.9 fixed this bug.

Waiting for Events with Epoll
The system call epoll_wait() waits for events on the file descriptors associated with
the given epoll instance:

#include <sys/epoll.h>

int epoll_wait (int epfd,
struct epoll_event *events,
int maxevents,
int timeout);

A call to epoll_wait() waits up to timeout milliseconds for events on the files associ‐
ated with the epoll instance epfd. Upon success, events points to memory containing
epoll_event structures describing each event—such as file ready to be written to or
read from—up to a maximum of maxevents events. The return value is the number of
events, or −1 on error, in which case errno is set to one of the following:
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EBADF

epfd is not a valid file descriptor.

EFAULT

The process does not have write access to the memory pointed at by events.

EINTR

The system call was interrupted by a signal before it could complete or the timeout
expired.

EINVAL

epfd is not a valid epoll instance, or maxevents is equal to or less than 0.

If timeout is 0, the call returns immediately, even if no events are available, in which
case the call will return 0. If the timeout is −1, the call will not return until an event is
available.

When the call returns, the events field of the epoll_event structure describes the events
that occurred. The data field contains whatever the user set it to before invocation of
epoll_ctl().

A full epoll_wait() example looks like this:

#define MAX_EVENTS    64

struct epoll_event *events;
int nr_events, i, epfd;

events = malloc (sizeof (struct epoll_event) * MAX_EVENTS);
if (!events) {

perror ("malloc");
return 1;

}

nr_events = epoll_wait (epfd, events, MAX_EVENTS, −1);
if (nr_events < 0) {

perror ("epoll_wait");
free (events);
return 1;

}

for (i = 0; i < nr_events; i++) {
printf ("event=%ld on fd=%d\n",

events[i].events,
events[i].data.fd);
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/*
* We now can, per events[i].events, operate on
* events[i].data.fd without blocking.
*/

}

free (events);

We will cover the functions malloc() and free() in Chapter 9.

Edge- Versus Level-Triggered Events
If the EPOLLET value is set in the events field of the event parameter passed to
epoll_ctl(), the watch on fd is edge-triggered, as opposed to level-triggered.

Consider the following events between a producer and a consumer communicating over
a Unix pipe:

1. The producer writes 1 KB of data onto a pipe.
2. The consumer performs an epoll_wait() on the pipe, waiting for the pipe to con‐

tain data and thus be readable.

With a level-triggered watch, the call to epoll_wait() in step 2 will return immediately,
showing that the pipe is ready to read. With an edge-triggered watch, this call will not
return until after step 1 occurs. That is, even if the pipe is readable at the invocation of
epoll_wait(), the call will not return until the data is written onto the pipe.

Level-triggered is the default behavior. It is how poll() and select() behave, and it is
what most developers expect. Edge-triggered behavior requires a different approach to
programming, commonly utilizing nonblocking I/O, and careful checking for EAGAIN.

Edge Triggered
The terminology “edge-triggered” is borrowed from electrical engineering. A level-
triggered interrupt is issued whenever a line is asserted. An edge-triggered interrupt is
caused only during the rising or falling edge of the change in assertion. Level-triggered
interrupts are useful when the state of the event (the asserted line) is of interest. Edge-
triggered interrupts are useful when the event itself (the line being asserted) is of interest.

Assume you have a file descriptor from which you are reading. With level-triggered
epoll behavior, you’ll receive a notification so long as the file descriptor is ready for
reading. It is the level of the line that causes notification. With edge-triggered, you’ll
receive the notification but once, when the data first becomes readable: it is the edge, or
the change, that causes notification. 
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Mapping Files into Memory
As an alternative to standard file I/O, the kernel provides an interface that allows an
application to map a file into memory, meaning that there is a one-to-one correspond‐
ence between a memory address and a word in the file. The programmer can then access
the file directly through memory, identically to any other chunk of memory-resident
data—it is even possible to allow writes to the memory region to transparently map
back to the file on disk.

POSIX.1 standardizes—and Linux implements—the mmap() system call for mapping
objects into memory. This section will discuss mmap() as it pertains to mapping files into
memory to perform I/O; in Chapter 9, we will visit other applications of mmap().

mmap()
A call to mmap() asks the kernel to map len bytes of the object represented by the file
descriptor fd, starting at offset bytes into the file, into memory. If addr is included, it
indicates a preference to use that starting address in memory. The access permissions
are dictated by prot, and additional behavior can be given by flags:

#include <sys/mman.h>

void * mmap (void *addr,
size_t len,
int prot,
int flags,
int fd,
off_t offset);

The addr parameter offers a suggestion to the kernel of where best to map the file. It is
only a hint; most users pass 0. The call returns the actual address in memory where the
mapping begins.

The prot parameter describes the desired memory protection of the mapping. It may
be either PROT_NONE, in which case the pages in this mapping may not be accessed (rarely
useful!), or a bitwise OR of one or more of the following flags:
PROT_READ

The pages may be read.

PROT_WRITE

The pages may be written.

PROT_EXEC

The pages may be executed.

104 | Chapter 4: Advanced File I/O



3. Copy-on-write is a concept related to process creation and is described in “Copy-on-write” on page 146.

The desired memory protection must not conflict with the open mode of the file. For
example, if the program opens the file read-only, prot must not specify PROT_WRITE.

Protection Flags, Architectures, and Security
While POSIX defines three protection bits (read, write, and execute), some architectures
support only a subset of these. It is common, for example, for a processor to not differ‐
entiate between the actions of reading and executing. In that case, the processor may
have only a single “read” flag. On those systems, PROT_READ implies PROT_EXEC. Until
recently, the x86 architecture was one such system.

Of course, relying on such behavior is not portable. Portable programs should always
set PROT_EXEC if they intend to execute code in the mapping.

The reverse situation is one reason for the prevalence of buffer overflow attacks: even
if a given mapping does not specify execution permission, the processor may allow
execution anyway.

Recent x86 processors have introduced the NX (no-execute) bit, which allows for read‐
able, but not executable, mappings. On these newer systems, PROT_READ no longer
implies PROT_EXEC.

The flags argument describes the type of mapping and some elements of its behavior.
It is a bitwise OR of the following values:
MAP_FIXED

Instructs mmap() to treat addr as a requirement, not a hint. If the kernel is unable
to place the mapping at the given address, the call fails. If the address and length
parameters overlap an existing mapping, the overlapped pages are discarded and
replaced by the new mapping. As this option requires intimate knowledge of the
process address space, it is nonportable, and its use is discouraged.

MAP_PRIVATE

States that the mapping is not shared. The file is mapped copy-on-write, and any
changes made in memory by this process are not reflected in the actual file, or in
the mappings of other processes.3

MAP_SHARED

Shares the mapping with all other processes that map this same file. Writing into
the mapping is equivalent to writing to the file. Reads from the mapping will reflect
the writes of other processes.
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Either MAP_SHARED or MAP_PRIVATE must be specified, but not both. Other, more ad‐
vanced flags are discussed in Chapter 9.

When you map a file descriptor, the file’s reference count is incremented. Therefore,
you can close the file descriptor after mapping the file, and your process will still have
access to it. The corresponding decrement of the file’s reference count will occur when
you unmap the file, or when the process terminates.

As an example, the following snippet maps the file backed by fd, beginning with its first
byte, and extending for len bytes, into a read-only mapping:

void *p;

p = mmap (0, len, PROT_READ, MAP_SHARED, fd, 0);
if (p == MAP_FAILED)

perror ("mmap");

Figure 4-1 shows the effects of parameters supplied with mmap() on the mapping be‐
tween a file and a process’s address space.

Figure 4-1. Mapping a file into a process’s address space

The page size
The page is the unit of granularity for the memory management unit (MMU). Conse‐
quently it is the smallest unit of memory that can have distinct permissions and behavior.
The page is the building block of memory mappings, which in turn are the building
blocks of the process address space.
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The mmap() system call operates on pages. Both the addr and offset parameters must
be aligned on a page-sized boundary. That is, they must be integer multiples of the page
size.

Mappings are, therefore, integer multiples of pages. If the len parameter provided by
the caller is not aligned on a page boundary—perhaps because the underlying file’s size
is not a multiple of the page size—the mapping is rounded up to the next full page. The
bytes inside this added memory, between the last valid byte and the end of the mapping,
are zero-filled. Any read from that region will return zeros. Any writes to that memory
will not affect the backing file, even if it is mapped as MAP_SHARED. Only the original len
bytes are ever written back to the file.

The standard POSIX method of obtaining the page size is with sysconf(), which can
retrieve a variety of system-specific information:

#include <unistd.h>

long sysconf (int name);

A call to sysconf() returns the value of the configuration item name, or −1 if name is
invalid. On error, the call sets errno to EINVAL. Because −1 may be a valid value for some
items (e.g., limits, where −1 means no limit), it may be wise to clear errno before invo‐
cation and check its value after.

POSIX defines _SC_PAGESIZE (and a synonym, _SC_PAGE_SIZE) to be the size of a page,
in bytes. Therefore, obtaining the page size at runtime is simple:

long page_size = sysconf (_SC_PAGESIZE);

Linux also provides the getpagesize() function:

#include <unistd.h>

int getpagesize (void);

A call to getpagesize() will likewise return the size of a page, in bytes. Usage is even
simpler than sysconf():

int page_size = getpagesize ();

Not all Unix systems support this function; it was dropped from the 1003.1-2001 revi‐
sion of the POSIX standard. It is included here for completeness.

The page size is also statically stored in the macro PAGE_SIZE, which is defined in <sys/
user.h>. Thus, a third way to retrieve the page size is:

int page_size = PAGE_SIZE;
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Unlike the first two options, however, this approach retrieves the system page size at
compile time and not runtime. Some architectures support multiple machine types with
different page sizes, and some machine types even support multiple page sizes them‐
selves! A single binary should be able to run on all machine types in a given
architecture—that is, you should be able to build it once and run it everywhere. Hard-
coding the page size would nullify that possibility. Consequently, you should determine
the page size at runtime. Because addr and offset are usually 0, this requirement is not
overly difficult to meet.

Moreover, future kernel versions will likely not export this macro to user space. We
cover it in this chapter due to its frequent presence in Unix code, but you should not
use it in your own programs. The sysconf() approach is your best bet for portability
and future compatibility.

Return values and error codes

On success, a call to mmap() returns the location of the mapping. On failure, the call
returns MAP_FAILED and sets errno appropriately. A call to mmap() never returns 0.

Possible errno values include:
EACCES

The given file descriptor is not a regular file, or the mode with which it was opened
conflicts with prot or flags.

EAGAIN

The file has been locked via a file lock.

EBADF

The given file descriptor is not valid.

EINVAL

One or more of the parameters addr, len, or off are invalid.

ENFILE

The system-wide limit on open files has been reached.

ENODEV

The filesystem on which the file to map resides does not support memory mapping.

ENOMEM

The process does not have enough memory.

EOVERFLOW

The result of addr+len exceeds the size of the address space.

EPERM

PROT_EXEC was given, but the filesystem is mounted noexec.
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Associated signals
Two signals are associated with mapped regions:
SIGBUS

This signal is generated when a process attempts to access a region of a mapping
that is no longer valid—for example, because the file was truncated after it was
mapped.

SIGSEGV

This signal is generated when a process attempts to write to a region that is mapped
read-only. 

munmap()
Linux provides the munmap() system call for removing a mapping created with mmap():

#include <sys/mman.h>

int munmap (void *addr, size_t len);

A call to munmap() removes any mappings that contain pages located anywhere in the
process address space starting at addr, which must be page-aligned, and continuing for
len bytes. Once the mapping has been removed, the previously associated memory
region is no longer valid, and further access attempts result in a SIGSEGV signal.

Normally, munmap() is passed the return value and the len parameter from a previous
invocation of mmap().

On success, munmap() returns 0; on failure, it returns −1, and errno is set appropriately.
The only standard errno value is EINVAL, which specifies that one or more parameters
were invalid.

As an example, the following snippet unmaps any memory regions with pages contained
in the interval [addr,addr+len]:

if (munmap (addr, len) == −1)
perror ("munmap");

Mapping Example
Let’s consider a simple example program that uses mmap() to print a file chosen by the
user to standard out:

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/mman.h>
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int main (int argc, char *argv[])
{

struct stat sb;
off_t len;
char *p;
int fd;

if (argc < 2) {
fprintf (stderr, "usage: %s <file>\n", argv[0]);
return 1;

}

fd = open (argv[1], O_RDONLY);
if (fd == −1) {

perror ("open");
return 1;

}

if (fstat (fd, &sb) == −1) {
perror ("fstat");
return 1;

}

if (!S_ISREG (sb.st_mode)) {
fprintf (stderr, "%s is not a file\n", argv[1]);
return 1;

}

p = mmap (0, sb.st_size, PROT_READ, MAP_SHARED, fd, 0);
if (p == MAP_FAILED) {

perror ("mmap");
return 1;

}

if (close (fd) == −1) {
perror ("close");
return 1;

}

for (len = 0; len < sb.st_size; len++)
putchar (p[len]);

if (munmap (p, sb.st_size) == −1) {
perror ("munmap");
return 1;

}

return 0;
}
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The only unfamiliar system call in this example should be fstat(), which we will cover
in Chapter 8. All you need to know at this point is that fstat() returns information
about a given file. The S_ISREG() macro can check some of this information so that we
can ensure that the given file is a regular file (as opposed to a device file or a directory)
before we map it. The behavior of nonregular files when mapped depends on the backing
device. Some device files are mmap-able; other nonregular files are not mmap-able and
will set errno to EACCES.

The rest of the example should be straightforward. The program is passed a filename
as an argument. It opens the file, ensures it is a regular file, maps it, closes it, prints the
file byte-by-byte to standard out, and then unmaps the file from memory.

Advantages of mmap()
Manipulating files via mmap() has a handful of advantages over the standard read() and
write() system calls. Among them are:

• Reading from and writing to a memory-mapped file avoids the extraneous copy
that occurs when using the read() or write() system calls, where the data must be
copied to and from a user-space buffer.

• Aside from any potential page faults, reading from and writing to a memory-
mapped file does not incur any system call or context switch overhead. It is as simple
as accessing memory.

• When multiple processes map the same object into memory, the data is shared
among all the processes. Read-only and shared writable mappings are shared in
their entirety; private writable mappings have their not-yet-COW (copy-on-write)
pages shared.

• Seeking around the mapping involves trivial pointer manipulations. There is no
need for the lseek() system call.

For these reasons, mmap() is a smart choice for many applications.

Disadvantages of mmap()
There are a few points to keep in mind when using mmap():

• Memory mappings are always an integer number of pages in size. Thus, the differ‐
ence between the size of the backing file and an integer number of pages is “wasted”
as slack space. For small files, a significant percentage of the mapping may be wasted.
For example, with 4 KB pages, a 7-byte mapping wastes 4,089 bytes.

• The memory mappings must fit into the process’s address space. With a 32-bit
address space, a large number of various-sized mappings can result in
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fragmentation of the address space, making it hard to find large free contiguous
regions. This problem, of course, is much less apparent with a 64-bit address space.

• There is overhead in creating and maintaining the memory mappings and associ‐
ated data structures inside the kernel. This overhead is generally obviated by the
elimination of the double copy mentioned in the previous section, particularly for
larger and frequently accessed files.

For these reasons, the benefits of mmap() are most greatly realized when the mapped file
is large (and thus any wasted space is a small percentage of the total mapping), or when
the total size of the mapped file is evenly divisible by the page size (and thus there is no
wasted space).

Resizing a Mapping
Linux provides the mremap() system call for expanding or shrinking the size of a given
mapping. This function is Linux-specific:

#define _GNU_SOURCE

#include <sys/mman.h>

void * mremap (void *addr, size_t old_size,
size_t new_size, unsigned long flags);

A call to mremap() expands or shrinks mapping in the region [addr,addr+old_size)
to the new size new_size. The kernel can potentially move the mapping at the same
time, depending on the availability of space in the process’s address space and the value
of flags.

The opening [ in [addr,addr+old_size) indicates that the region starts
with (and includes) the low address, whereas the closing ) indicates that
the region stops just before (does not include) the high address. This
convention is known as interval notation.

The flags parameter can be either 0 or MREMAP_MAYMOVE, which specifies that the kernel
is free to move the mapping if needed to perform the requested resizing. A large resizing
is more likely to succeed if the kernel can move the mapping.

Return values and error codes

On success, mremap() returns a pointer to the newly resized memory mapping. On
failure, it returns MAP_FAILED and sets errno to one of the following:
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EAGAIN

The memory region is locked and cannot be resized.

EFAULT

Some pages in the given range are not valid pages in the process’s address space, or
there was a problem remapping the given pages.

EINVAL

An argument was invalid.

ENOMEM

The given range cannot be expanded without moving (and MREMAP_MAYMOVE was
not given), or there is not enough free space in the process’s address space.

Libraries such as glibc often use mremap() to implement an efficient realloc(), which
is an interface for resizing a block of memory originally obtained via malloc(). For
example:

void * realloc (void *addr, size_t len)
{

size_t old_size = look_up_mapping_size (addr);
void *p;

p = mremap (addr, old_size, len, MREMAP_MAYMOVE);
if (p == MAP_FAILED)

return NULL;
return p;

}

This would work only if all malloc() allocations were unique anonymous mappings;
nonetheless, it stands as a useful example of the performance gains to be had. The
example assumes the libc provides a look_up_mapping_size() function.

The GNU C library does use mmap() and family for performing some memory alloca‐
tions. We will look at that topic in depth in Chapter 9.

Changing the Protection of a Mapping
POSIX defines the mprotect() interface to allow programs to change the permissions
of existing regions of memory:

#include <sys/mman.h>

int mprotect (const void *addr,
size_t len,
int prot);

A call to mprotect() will change the protection mode for the memory pages contained
in [addr,addr+len), where addr is page-aligned. The prot parameter accepts the same
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values as the prot given to mmap(): PROT_NONE, PROT_READ, PROT_WRITE, and
PROT_EXEC. These values are not additive; if a region of memory is readable and prot
is set to only PROT_WRITE, the call will make the region only writable.

On some systems, mprotect() may operate only on memory mappings previously cre‐
ated via mmap(). On Linux, mprotect() can operate on any region of memory.

Return values and error codes

On success, mprotect() returns 0. On failure, it returns −1, and sets errno to one of the
following:
EACCES

The memory cannot be given the permissions requested by prot. This can happen,
for example, if you attempt to set the mapping of a file opened read-only to writable.

EINVAL

The parameter addr is invalid or not page-aligned.

ENOMEM

Insufficient kernel memory is available to satisfy the request, or one or more pages
in the given memory region are not a valid part of the process’s address space.

Synchronizing a File with a Mapping
POSIX provides a memory-mapped equivalent of the fsync() system call that we dis‐
cussed in Chapter 2:

#include <sys/mman.h>

int msync (void *addr, size_t len, int flags);

A call to msync() flushes back to disk any changes made to a file mapped via mmap(),
synchronizing the mapped file with the mapping. Specifically, the file or subset of a file
associated with the mapping starting at memory address addr and continuing for len
bytes is synchronized to disk. The addr argument must be page-aligned; it is generally
the return value from a previous mmap() invocation.

Without invocation of msync(), there is no guarantee that a dirty mapping will be written
back to disk until the file is unmapped. This is different from the behavior of write(),
where a buffer is dirtied as part of the writing process and queued for writeback to disk.
When writing into a memory mapping, the process directly modifies the file’s pages in
the kernel’s page cache without kernel involvement. The kernel may not synchronize
the page cache and the disk anytime soon.

The flags parameter controls the behavior of the synchronizing operation. It is a bitwise
OR of the following values:
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MS_SYNC

Specifies that synchronization should occur synchronously. The msync() call will
not return until all pages are written back to disk.

MS_ASYNC

Specifies that synchronization should occur asynchronously. The update is sched‐
uled, but the msync() call returns immediately without waiting for the writes to
take place.

MS_INVALIDATE

Specifies that all other cached copies of the mapping be invalidated. Any future
access to any mappings of this file will reflect the newly synchronized on-disk
contents.

One of MS_ASYNC or MS_SYNC must be specified, but not both.

Usage is simple:

if (msync (addr, len, MS_ASYNC) == −1)
perror ("msync");

This example asynchronously synchronizes (say that 10 times fast) to disk the file map‐
ped in the region [addr,addr+len).

Return values and error codes

On success, msync() returns 0. On failure, the call returns −1 and sets errno appropri‐
ately. The following are valid errno values:
EINVAL

The flags parameter has both MS_SYNC and MS_ASYNC set, a bit other than one of
the three valid flags is set, or addr is not page-aligned.

ENOMEM

The given memory region (or part of it) is not mapped. Note that Linux will return
ENOMEM, as POSIX dictates, when asked to synchronize a region that is only partly
unmapped, but it will still synchronize any valid mappings in the region.

Before version 2.4.19 of the Linux kernel, msync() returned EFAULT in place of ENOMEM.

Giving Advice on a Mapping
Linux provides a system call named madvise() to let processes give the kernel advice
and hints on how they intend to use a mapping. The kernel can then optimize its be‐
havior to take advantage of the mapping’s intended use. While the Linux kernel
dynamically tunes its behavior and generally provides optimal performance without
explicit advice, providing such advice can ensure the desired caching and readahead
behavior for some workloads.
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A call to madvise() advises the kernel on how to behave with respect to the pages in
the memory map starting at addr, and extending for len bytes:

#include <sys/mman.h>

int madvise (void *addr,
size_t len,
int advice);

If len is 0, the kernel will apply the advice to the entire mapping that starts at addr. The
parameter advice delineates the advice, which can be one of:
MADV_NORMAL

The application has no specific advice to give on this range of memory. It should
be treated as normal.

MADV_RANDOM

The application intends to access the pages in the specified range in a random
(nonsequential) order.

MADV_SEQUENTIAL

The application intends to access the pages in the specified range sequentially, from
lower to higher addresses.

MADV_WILLNEED

The application intends to access the pages in the specified range in the near future.

MADV_DONTNEED

The application does not intend to access the pages in the specified range in the
near future.

The actual behavior modifications that the kernel takes in response to this advice are
implementation-specific: POSIX dictates only the meaning of the advice, not any po‐
tential consequences. The Linux kernel from 2.6 onward behaves as follows in response
to the advice values:
MADV_NORMAL

The kernel behaves as usual, performing a moderate amount of readahead.

MADV_RANDOM

The kernel disables readahead, reading only the minimal amount of data on each
physical read operation.

MADV_SEQUENTIAL

The kernel performs aggressive readahead.

MADV_WILLNEED

The kernel initiates readahead, reading the given pages into memory.
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MADV_DONTNEED

The kernel frees any resources associated with the given pages and discards any
dirty and not-yet-synchronized pages. Subsequent accesses to the mapped data will
cause the data to be paged in from the backing file or (for anonymous mappings)
zero-fill the requested pages.

MADV_DONTFORK

Do not copy these pages into the child process across a fork. This flag, available
only in Linux kernel 2.6.16 and later, is needed when managing DMA pages and
rarely otherwise.

MADV_DOFORK+
Undo the behavior of MADV_DONTFORK.

Typical usage is:

int ret;

ret = madvise (addr, len, MADV_SEQUENTIAL);
if (ret < 0)

perror ("madvise");

This call instructs the kernel that the process intends to access the memory region
[addr,addr+len) sequentially.

Readahead
When the Linux kernel reads files off the disk, it performs an optimization known as
readahead: when a request is made for a given chunk of a file, the kernel also reads the
following chunk of the file. If a request is subsequently made for that chunk—as is the
case when reading a file sequentially—the kernel can return the requested data imme‐
diately. Because disks have track buffers (basically, hard disks perform their own reada‐
head internally), and because files are generally laid out sequentially on disk, this
optimization is low cost.

Some readahead is usually advantageous, but optimal results depend on the question
of how much readahead to perform. A sequentially accessed file may benefit from a
larger readahead window, while a randomly accessed file may find readahead to be
worthless overhead.

As discussed in “Kernel Internals” on page 62, the kernel dynamically tunes the size of
the readahead window in response to the hit rate inside that window. More hits imply
that a larger window would be advantageous; fewer hits suggest a smaller window. The
madvise() system call allows applications to influence the window size right off the bat.
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Return values and error codes

On success, madvise() returns 0. On failure, it returns −1, and errno is set appropriately.
The following are valid errors:
EAGAIN

An internal kernel resource (probably memory) was unavailable. The process can
try again.

EBADF

The region exists but does not map a file.

EINVAL

The parameter len is negative, addr is not page-aligned, the advice parameter is
invalid, or the pages were locked or shared with MADV_DONTNEED.

EIO

An internal I/O error occurred with MADV_WILLNEED.

ENOMEM

The given region is not a valid mapping in this process’s address space, or
MADV_WILLNEED was given, but there is insufficient memory to page in the given
regions. 

Advice for Normal File I/O
In the previous subsection, we looked at providing advice on memory mappings. In this
section, we will look at providing advice to the kernel on normal file I/O. Linux provides
two interfaces for such advice giving: posix_fadvise() and readahead().

The posix_fadvise() System Call
The first advice interface, as its name alludes, is standardized by POSIX 1003.1-2003:

#include <fcntl.h>

int posix_fadvise (int fd,
off_t offset,
off_t len,
int advice);

A call to posix_fadvise() provides the kernel with the hint advice on the file descriptor
fd in the interval [offset,offset+len). If len is 0, the advice will apply to the range
[offset,length of file]. Common usage is to specify 0 for len and offset, applying
the advice to the entire file.

The available advice options are similar to those for madvise(). Exactly one of the
following should be provided for advice:
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POSIX_FADV_NORMAL

The application has no specific advice to give on this range of the file. It should be
treated as normal.

POSIX_FADV_RANDOM

The application intends to access the data in the specified range in a random (non‐
sequential) order.

POSIX_FADV_SEQUENTIAL

The application intends to access the data in the specified range sequentially, from
lower to higher addresses.

POSIX_FADV_WILLNEED

The application intends to access the data in the specified range in the near future.

POSIX_FADV_NOREUSE

The application intends to access the data in the specified range in the near future,
but only once.

POSIX_FADV_DONTNEED

The application does not intend to access the pages in the specified range in the
near future.

As with madvise(), the actual response to the given advice is implementation-specific
—even different versions of the Linux kernel may react dissimilarly. The following are
the current responses:
POSIX_FADV_NORMAL

The kernel behaves as usual, performing a moderate amount of readahead.

POSIX_FADV_RANDOM

The kernel disables readahead, reading only the minimal amount of data on each
physical read operation.

POSIX_FADV_SEQUENTIAL

The kernel performs aggressive readahead, doubling the size of the readahead
window.

POSIX_FADV_WILLNEED

The kernel initiates readahead to begin reading into memory the given pages.

POSIX_FADV_NOREUSE

Currently, the behavior is the same as for POSIX_FADV_WILLNEED; future kernels
may perform an additional optimization to exploit the “use once” behavior. This
hint does not have an madvise() complement.
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POSIX_FADV_DONTNEED

The kernel evicts any cached data in the given range from the page cache. Note that
this hint, unlike the others, is different in behavior from its madvise() counterpart.

As an example, the following snippet instructs the kernel that the entire file represented
by the file descriptor fd will be accessed in a random, nonsequential manner:

int ret;

ret = posix_fadvise (fd, 0, 0, POSIX_FADV_RANDOM);
if (ret == −1)

perror ("posix_fadvise");

Return values and error codes

On success, posix_fadvise() returns 0. On failure, −1 is returned, and errno is set to
one of the following values:
EBADF

The given file descriptor is invalid.

EINVAL

The given advice is invalid, the given file descriptor refers to a pipe, or the specified
advice cannot be applied to the given file.

The readahead() System Call
The posix_fadvise() system call is new to the 2.6 Linux kernel. The readahead()
system call was previously available to provide behavior identical to the
POSIX_FADV_WILLNEED hint. Unlike posix_fadvise(), readahead() is a Linux-specific
interface:

#define _GNU_SOURCE

#include <fcntl.h>

ssize_t readahead (int fd,
off64_t offset,
size_t count);

A call to readahead() populates the page cache with the region [offset,offset
+count) from the file descriptor fd.

Return values and error codes

On success, readahead() returns 0. On failure, it returns −1, and errno is set to one of
the following values:
EBADF

The given file descriptor is invalid or not open for reading.
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EINVAL

The given file descriptor does not map to a file that supports readahead.

Advice Is Cheap
A handful of common application workloads can readily benefit from a little well-
intentioned advice to the kernel. Such advice can go a long way toward mitigating the
burden of I/O. With hard disks being so slow, and modern processors being so fast,
every little bit helps, and good advice can go a long way.

Before reading a chunk of a file, a process can provide the POSIX_FADV_WILLNEED hint
to instruct the kernel to read the file into the page cache. The I/O will occur asynchro‐
nously in the background. When the application ultimately accesses the file, the oper‐
ation can complete without generating blocking I/O.

Conversely, after reading or writing a lot of data—say, while continuously streaming
video to disk—a process can provide the POSIX_FADV_DONTNEED hint to instruct the
kernel to evict the given chunk of the file from the page cache. A large streaming op‐
eration can continually fill the page cache. If the application never intends to access the
data again, this means the page cache will be filled with superfluous data, at the expense
of potentially more useful data. Thus, it makes sense for a streaming video application
to periodically request that streamed data be evicted from the cache.

A process that intends to read in an entire file can provide the POSIX_FADV_SEQUENTIAL
hint, instructing the kernel to perform aggressive readahead. Conversely, a process that
knows it is going to access a file randomly, seeking to and fro, can provide the
POSIX_FADV_RANDOM hint, instructing the kernel that readahead will be nothing but
worthless overhead.

Synchronized, Synchronous, and Asynchronous Operations
Unix systems use the terms synchronized, nonsynchronized, synchronous, and asyn‐
chronous freely, without much regard to the fact that they are confusing—in English,
the differences between “synchronous” and “synchronized” do not amount to much!

A synchronous write operation does not return until the written data is—at least—stored
in the kernel’s buffer cache. A synchronous read operation does not return until the
read data is stored in the user-space buffer provided by the application. On the other
side of the coin, an asynchronous write operation may return before the data even leaves
user space; an asynchronous read operation may return before the read data is available.
That is, the operations may not actually take place when requested, but only be queued
for later. Of course, in this case, some mechanism must exist for determining when the
operation has actually completed and with what level of success.
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4. Read operations are technically also nonsynchronized, like write operations, but the kernel ensures that the
page cache contains up-to-date data. That is, the page cache’s data is always identical to or newer than the
data on disk. In this manner, the behavior in practice is always synchronized. There is little argument for
behaving any other way.

A synchronized operation is more restrictive and safer than a merely synchronous
operation. A synchronized write operation flushes the data to disk, ensuring that
the on-disk data is always synchronized vis-à-vis the corresponding kernel buffers. A
synchronized read operation always returns the most up-to-date copy of the data, pre‐
sumably from the disk.

In sum, the terms synchronous and asynchronous refer to whether I/O operations wait
for some event (e.g., storage of the data) before returning. The terms synchronized and
nonsynchronized, meanwhile, specify exactly what event must occur (e.g., writing the
data to disk).

Normally, Unix write operations are synchronous and nonsynchronized; read opera‐
tions are synchronous and synchronized.4 For write operations, every combination of
these characteristics is possible, as Table 4-1 illustrates.

Table 4-1. Synchronicity of write operations
Synchronized Nonsynchronized

Synchronous Write operations do not return until the data is
flushed to disk. This is the behavior if O_SYNC is
specified during file open.

Write operations do not return until the data is stored in
kernel buffers. This is the usual behavior.

Asynchronous Write operations return as soon as the request is
queued. Once the write operation ultimately
executes, the data is guaranteed to be on disk.

Write operations return as soon as the request is queued.
Once the write operation ultimately executes, the data is
guaranteed to at least be stored in kernel buffers.

Read operations are always synchronized, as reading stale data makes little sense. Such
operations can be either synchronous or asynchronous, however, as illustrated in
Table 4-2.

Table 4-2. Synchronicity of read operations
Synchronized

Synchronous Read operations do not return until the data, which is up-to-date, is stored in the provided buffer (this is the
usual behavior).

Asynchronous Read operations return as soon as the request is queued, but when the read operation ultimately executes,
the data returned is up-to-date.

In Chapter 2, we discussed how to make writes synchronized (via the O_SYNC flag) and
how to ensure that all I/O is synchronized as of a given point (via fsync() and friends).
Now, let’s look at what it takes to make reads and writes asynchronous.
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Asynchronous I/O
Performing asynchronous I/O requires kernel support at the very lowest layers. POSIX
1003.1-2003 defines the aio interfaces, which Linux fortunately implements. The aio
library provides a family of functions for submitting asynchronous I/O and receiving
notification upon its completion: 

#include <aio.h>

/* asynchronous I/O control block */
struct aiocb {

int aio_fildes; /* file descriptor */
int aio_lio_opcode; /* operation to perform */
int aio_reqprio; /* request priority offset */
volatile void *aio_buf; /* pointer to buffer */
size_t aio_nbytes; /* length of operation */
struct sigevent aio_sigevent; /* signal number and value */

/* internal, private members follow... */
};

int aio_read (struct aiocb *aiocbp);
int aio_write (struct aiocb *aiocbp);
int aio_error (const struct aiocb *aiocbp);
int aio_return (struct aiocb *aiocbp);
int aio_cancel (int fd, struct aiocb *aiocbp);
int aio_fsync (int op, struct aiocb *aiocbp);
int aio_suspend (const struct aiocb * const cblist[],

int n,
const struct timespec *timeout);

I/O Schedulers and I/O Performance
In a modern system, the relative performance gap between disks and the rest of the
system is quite large—and widening. The worst component of disk performance is the
process of moving the read/write head from one part of the disk to another, an operation
known as a seek. In a world where many operations are measured in a handful of pro‐
cessor cycles (which might take all of a third of a nanosecond each), a single disk seek
can average over 8 milliseconds—still a small number, to be sure, but 25 million times
longer than a single processor cycle!

Given the disparity in performance between disk drives and the rest of the system, it
would be incredibly crude and inefficient to send I/O requests to the disk in the order
in which they are issued. Therefore, modern operating system kernels implement I/O
schedulers, which work to minimize the number and size of disk seeks by manipulating
the order in which I/O requests are serviced and the times at which they are serviced.
I/O schedulers work hard to lessen the performance penalties associated with disk
access.
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5. Limits on the absolute size of this block number are largely responsible for the various limits on total drive
sizes over the years.

Disk Addressing
To understand the role of an I/O scheduler, some background information is necessary.
Hard disks address their data using the familiar geometry-based addressing of cylinders,
heads, and sectors, or CHS addressing. A hard drive is composed of multiple platters,
each consisting of a single disk, spindle, and read/write head. You can think of each
platter as a CD (or record), and the set of platters in a disk as a stack of CDs. Each platter
is divided into ring-like tracks, like on a CD. Each track is then divided into an integer
number of sectors.

To locate a specific unit of data on a disk, the drive’s logic requires three pieces of in‐
formation: the cylinder, head, and sector values. The cylinder value specifies the track
on which the data resides. If you lay the platters on top of one another, a given track
forms a cylinder through each platter. In other words, a cylinder is represented by a
track at the same distance from the center on each disk. The head value identifies the
exact read/write head (and thus the exact platter) in question. The search is now nar‐
rowed down to a single track on a single platter. The disk then uses the sector value to
identify an exact sector on the track. The search is now complete: the hard disk knows
what platter, what track, and what sector to look in for the data. It can position the read/
write head of the correct platter over the correct track and read from or write to the
requisite sector.

Thankfully, modern hard disks do not force computers to communicate with their disks
in terms of cylinders, heads, and sectors. Instead, contemporary hard drives map a
unique block number (also called physical blocks or device blocks) over each cylinder/
head/sector triplet—effectively, a block maps to a specific sector. Modern operating
systems can then address hard drives using these block numbers—a process known
as logical block addressing (LBA)—and the hard drive internally translates the block
number into the correct CHS address.5 Although nothing guarantees it, the block-to-
CHS mapping tends to be sequential: logical block n tends to be physically adjacent on
disk to logical block n + 1. This sequential mapping is important, as we shall soon see.

Filesystems, meanwhile, exist only in software. They operate on their own units, known
as logical blocks (sometimes called filesystem blocks, or, confusingly, just blocks). The
logical block size must be an integer multiple of the physical block size. In other words,
a filesystem’s logical blocks map to one or more of a disk’s physical blocks.

The Life of an I/O Scheduler
I/O schedulers perform two basic operations: merging and sorting. Merging is the pro‐
cess of taking two or more adjacent I/O requests and combining them into a single
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request. Consider two requests, one to read from disk block 5, and another to read from
disk blocks 6 through 7. These requests can be merged into a single request to read from
disk blocks 5 through 7. The total amount of I/O might be the same, but the number of
I/O operations is reduced by half.

Sorting, the more important of the two operations, is the process of arranging pending
I/O requests in ascending block order. For example, given I/O operations to blocks 52,
109, and 7, the I/O scheduler would sort these requests into the ordering 7, 52, and 109.
If a request was then issued to block 81, it would be inserted between the requests to
blocks 52 and 109. The I/O scheduler would then dispatch the requests to the disk in
the order that they exist in the queue: 7, then 52, then 81, and finally 109.

In this manner, the disk head’s movements are minimized. Instead of potentially hap‐
hazard movements—here to there and back, seeking all over the disk—the disk head
moves in a smooth, linear fashion. Because seeks are the most expensive part of disk
I/O, performance is improved.

Helping Out Reads
Each read request must return up-to-date data. Thus, if the requested data is not in the
page cache, the reading process must block until the data can be read from disk—a
potentially lengthy operation. We call this performance impact read latency.

A typical application might initiate several read I/O requests in a short period. Because
each request is individually synchronized, the later requests are dependent on the earlier
ones’ completion. Consider reading every file in a directory. The application opens the
first file, reads a chunk of it, waits for data, reads another chunk, and so on, until the
entire file is read. Then the application starts again, on the next file. The requests become
serialized: a subsequent request cannot be issued until the current request completes.

This is in stark contrast to write requests, which (in their default, nonsynchronized state)
need not initiate any disk I/O until some time in the future. Thus, from the perspective
of a user-space application, write requests stream, unencumbered by the performance
of the disk. This streaming behavior only compounds the problem for reads: as writes
stream, they can hog the kernel and disk’s attention. This phenomenon is known as
the writes-starving-reads problem.

If an I/O scheduler always sorted new requests by the order of insertion, it would be
possible to starve requests to far-off blocks indefinitely. Consider our previous example.
If new requests were continually issued to blocks in, say, the 50s, the request to block
109 would never be serviced. Because read latency is critical, this behavior would greatly
hurt system performance. Thus, I/O schedulers employ a mechanism to prevent
starvation.
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6. Yes, the man has an I/O scheduler named after him. I/O schedulers are sometimes called elevator algorithms
because they solve a problem similar to that of keeping an elevator running smoothly.

A simple approach—such as the one taken by the 2.4 Linux kernel’s I/O scheduler, the
Linus Elevator6—is to simply stop insertion-sorting if there is a sufficiently old request
in the queue. This trades overall performance for per-request fairness and, in the case
of reads, improves latency. The problem is that this heuristic is a bit too simplistic.
Recognizing this, the 2.6 Linux kernel witnessed the demise of the Linus Elevator and
unveiled several new I/O schedulers in its place.

The Deadline I/O Scheduler
The Deadline I/O Scheduler was introduced to solve the problems with the 2.4 I/O
scheduler and traditional elevator algorithms in general. The Linus Elevator maintains
a sorted list of pending I/O requests. The I/O request at the head of the queue is the next
one to be serviced. The Deadline I/O Scheduler keeps this queue but kicks things up a
notch by introducing two additional queues: the read FIFO queue and the write FIFO
queue. The items in each of these queues are sorted by submission time (effectively, the
first in is the first out). The read FIFO queue, as its name suggests, contains only read
requests. The write FIFO queue, likewise, contains only write requests. Each request in
the FIFO queues is assigned an expiration value. The read FIFO queue has an expiration
time of 500 milliseconds. The write FIFO queue has an expiration time of 5 seconds.

When a new I/O request is submitted, it is insertion-sorted into the standard queue and
placed at the tail of its respective (read or write) FIFO queue. Normally, the hard drive
is sent I/O requests from the head of the standard sorted queue. This maximizes global
throughput by minimizing seeks, as the normal queue is sorted by block number (as
with the Linus Elevator).

When the item at the head of one of the FIFO queues grows older than the expiration
value associated with its queue, however, the I/O scheduler stops dispatching I/O re‐
quests from the standard queue and begins servicing requests from that queue—the
request at the head of the FIFO queue is serviced, plus a couple of extras for good
measure. The I/O scheduler needs to check and handle only the requests at the head of
the queue, as those are the oldest requests.

In this manner, the Deadline I/O Scheduler can enforce a soft deadline on I/O requests.
Although it makes no promise that an I/O request will be serviced before its expiration
time, the I/O scheduler generally services requests near their expiration times. Thus,
the Deadline I/O Scheduler continues to provide good global throughput without starv‐
ing any one request for an unacceptably long time. Because read requests are given
shorter expiration times, the writes-starving-reads problem is minimized.
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The Anticipatory I/O Scheduler
The Deadline I/O Scheduler’s behavior is good, but not perfect. Recall our discussion
on read dependency. With the Deadline I/O Scheduler, the first read request in a series
of reads is serviced in short order, at or before its expiration time, and the I/O scheduler
then returns to servicing I/O requests from the sorted queue—so far, so good. But what
if the application then swoops in and hits us with another read request? Eventually its
expiration time will also approach, and the I/O scheduler will submit it to the disk,
which will seek over to promptly handle the request, then seek back to continue handling
requests from the sorted queue. This seeking back and forth can continue for some time
because many applications exhibit this behavior. While latency is kept to a minimum,
global throughput is not very good because the read requests keep coming in, and the
disk has to keep seeking back and forth to handle them. Performance would be improved
if the disk just took a break to wait for another read and did not move away to service
the sorted queue again. But, unfortunately, by the time the application is scheduled and
submits its next dependent read request, the I/O scheduler has already shifted gears.

The problem again stems from those darn dependent reads. Each new read request is
issued only when the previous one is returned, but by the time the application receives
the read data, is scheduled to run, and submits its next read request, the I/O scheduler
has moved on and begun servicing other requests. This results in a wasted pair of seeks
for each read: the disk seeks to the read, services it, and then seeks back. If only there
was some way for the I/O scheduler to know—to anticipate—that another read would
soon be submitted to the same part of the disk, instead of seeking back and forth, it
could wait in anticipation of the next read. Saving those awful seeks certainly would be
worth a few milliseconds of waiting.

This is exactly how the Anticipatory I/O Scheduler operates. It began life as the Deadline
I/O Scheduler but was gifted with the addition of an anticipation mechanism. When a
read request is submitted, the Anticipatory I/O Scheduler services it within its deadline,
as usual. Unlike the Deadline I/O Scheduler, however, the Anticipatory I/O Scheduler
then sits and waits, doing nothing, for up to 6 milliseconds. Chances are good that the
application will issue another read to the same part of the filesystem during those six
milliseconds. If so, that request is serviced immediately, and the Anticipatory I/O
Scheduler waits some more. If 6 milliseconds go by without a read request, the Antic‐
ipatory I/O Scheduler decides it has guessed wrong and returns to whatever it was doing
before (i.e., servicing the standard sorted queue). If even a moderate number of requests
are anticipated correctly, a great deal of time—two expensive seeks’ worth at each go—
is saved. Because most reads are dependent, the anticipation pays off much of the time.
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7. The following text discusses the CFQ I/O Scheduler as it is currently implemented. Previous incarnations
did not use timeslices or the anticipation heuristic, but operated in a similar fashion.

The CFQ I/O Scheduler
The Completely Fair Queuing (CFQ) I/O Scheduler works to achieve similar goals,
albeit via a different approach.7 With CFQ, each process is assigned its own queue, and
each queue is assigned a timeslice. The I/O scheduler visits each queue in a round-robin
fashion, servicing requests from the queue until the queue’s timeslice is exhausted, or
until no more requests remain. In the latter case, the CFQ I/O Scheduler will then sit
idle for a brief period—by default, 10 ms—waiting for a new request on the queue. If
the anticipation pays off, the I/O scheduler avoids seeking. If not, the waiting was in
vain, and the scheduler moves on to the next process’s queue.

Within each process’s queue, synchronized requests (such as reads) are given priority
over nonsynchronized requests. In this manner, CFQ favors reads and prevents the
writes-starving-reads problem. Due to the per-process queue setup, the CFQ I/O
Scheduler is fair to all processes while still providing good global performance.

The CFQ I/O Scheduler is well suited to most workloads, and makes an excellent first
choice.

The Noop I/O Scheduler
The Noop I/O Scheduler is the most basic of the available schedulers. It performs no
sorting whatsoever, only basic merging. It is used for specialized devices that do not
require (or that perform) their own request sorting.

Solid-State Drives
Solid-state drives (SSDs) such as flash drives grow more popular each year. Whole classes
of devices, such as mobile phones and tablets, have no rotational storage devices; ev‐
erything is flash. SSDs such as flash drives have significantly lower seek times than classic
hard drives, as there is no rotational cost to finding a given block of data. Instead, SSDs
are referenced not unlike random-access memory: while it can be more efficient to read
large chunks of contiguous data in one fell swoop, there isn’t a penalty for accessing data
elsewhere on the drive.

Consequently, the benefits of sorting I/O requests are significantly smaller (if not zero)
for solid-state drives and the utility of I/O schedulers is less for such devices. Many
systems thus use the Noop I/O Scheduler for solid-state storage, as it provides merging
(which is beneficial) but not sorting. Systems, however, that wish to optimize for inter‐
active performance prefer the fairness of the CFQ I/O Scheduler, even for SSDs.
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8. One should apply the techniques discussed here only to I/O-intensive, mission-critical applications. Sorting
the I/O requests—assuming there is even anything to sort—of applications that do not issue many such
requests is silly and unneeded.

Selecting and Configuring Your I/O Scheduler
The default I/O scheduler is selectable at boot time via the iosched kernel command-
line parameter. Valid options are as, cfq, deadline, and noop. The I/O scheduler is also
runtime-selectable on a per-device basis via /sys/block/[device]/queue/scheduler, where
device is the block device in question. Reading this file returns the current I/O sched‐
uler; writing one of the valid options to this file sets the I/O scheduler. For example, to
set the device hda to the CFQ I/O Scheduler, one would do the following:

# echo cfq > /sys/block/hda/queue/scheduler

The directory /sys/block/[device]/queue/iosched contains files that allow the adminis‐
trator to retrieve and set tunable values related to the I/O scheduler. The exact options
depend on the current I/O scheduler. Changing any of these settings requires root
privileges.

A good programmer writes programs that are agnostic to the underlying I/O subsystem.
Nonetheless, knowledge of this subsystem can surely help one write optimal code.

Optimzing I/O Performance
665.180bBecause disk I/O is so slow relative to the performance of other components
in the system, yet I/O is such an important aspect of modern computing, maximizing
I/O performance is crucial.

Minimizing I/O operations (by coalescing many smaller operations into fewer larger
operations), performing block-size-aligned I/O, or using user buffering (see Chap‐
ter 3) are important tools in the system programmer’s kit. Similarly, taking advantage
of advanced I/O techniques, such as vectored I/O, positional I/O (see Chapter 2), and
asynchronous I/O, are important patterns to consider when system programming.

The most demanding mission-critical and I/O-intense applications, however, can em‐
ploy additional tricks to maximize performance. Although the Linux kernel, as dis‐
cussed previously, utilizes advanced I/O schedulers to minimize dreaded disk seeks,
user-space applications can work toward the same end, in a similar fashion, to further
improve performance.

Scheduling I/O in user space
I/O-intensive applications that issue a large number of I/O requests and need to extract
every ounce of performance can sort and merge their pending I/O requests, performing
the same duties as the Linux I/O scheduler.8
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Why perform the same work twice, if you know the I/O scheduler will sort requests
block-wise, minimizing seeks and allowing the disk head to move in a smooth, linear
fashion? Consider an application that submits a large number of unsorted I/O requests.
These requests arrive in the I/O scheduler’s queue in a generally random order. The
I/O scheduler does its job, sorting and merging the requests before sending them out
to the disk—but the requests start hitting the disk while the application is still generating
I/O and submitting requests. The I/O scheduler is able to sort only a subset of requests
at a time.

Therefore, if an application is generating many requests—particularly if they are for
data all over the disk—it can benefit from sorting the requests before submitting them,
ensuring they reach the I/O scheduler in the desired order.

A user-space application is not bestowed with access to the same information as the
kernel, however. At the lowest levels inside the I/O scheduler, requests are already
specified in terms of physical disk blocks. Sorting them is trivial. But, in user space,
requests are specified in terms of files and offsets. User-space applications must probe
for information and make educated guesses about the layout of the filesystem.

Given the goal of determining the most seek-friendly ordering given a list of I/O requests
to specific files, user-space applications have a couple of options. They can sort based
on:

• The full path
• The inode number
• The physical disk block of the file

Each of these options involves a trade-off. Let’s look at each briefly.

Sorting by path
Sorting by the pathname is the easiest, yet least effective, way of approximating a block-
wise sort. Due to the layout algorithms used by most filesystems, the files in each di‐
rectory—and thus the directories sharing a parent directory—tend to be adjacent on
disk. The probability that files in the same directory were created around the same time
only amplifies this characteristic.

Sorting by path, therefore, roughly approximates the physical locations of files on the
disk. It is certainly true that two files in the same directory have a better chance of being
located near each other than two files in radically different parts of the filesystem. The
downside of this approach is that it fails to take into account fragmentation: the more
fragmented the filesystem, the less useful is sorting by path. Even ignoring fragmenta‐
tion, a path-wise sort only approximates the actual block-wise ordering. On the upside,
a path-wise sort is at least somewhat applicable to all filesystems. No matter the approach
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to file layout, temporal locality suggests a path-wise sort will be at least mildly accurate.
It is also an easy sort to perform.

Sorting by inode
Inodes are Unix constructs that contain the metadata associated with individual files.
While a file’s data may consume multiple physical disk blocks, each file has exactly one
inode, which contains information such as the file’s size, permissions, owner, and so on.
We will discuss inodes in depth in Chapter 8. For now, you need to know two facts: that
every file has an inode associated with it and that the inodes are assigned unique
numbers.

Sorting by inode is better than sorting by path, assuming that the relation:

file i's inode number < file j's inode number

implies, in general, that:

physical blocks of file i < physical blocks of file j

This is certainly true for Unix-style filesystems such as ext3 and ext4. Anything is pos‐
sible for filesystems that do not employ actual inodes, but the inode number (whatever
it may map to) is still a good first-order approximation.

Obtaining the inode number is done via the stat() system call, also discussed in Chap‐
ter 8. Given the inode associated with the file involved in each I/O request, the requests
can be sorted in ascending order by inode number.

Here is a simple program that prints out the inode number of a given file:

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>

/*
* get_inode - returns the inode of the file associated
* with the given file descriptor, or −1 on failure
*/
int get_inode (int fd)
{

struct stat buf;
int ret;

ret = fstat (fd, &buf);
if (ret < 0) {

perror ("fstat");
return −1;

}

return buf.st_ino;

I/O Schedulers and I/O Performance | 131



}

int main (int argc, char *argv[])
{

int fd, inode;

if (argc < 2) {
fprintf (stderr, "usage: %s <file>\n", argv[0]);
return 1;

}

fd = open (argv[1], O_RDONLY);
if (fd < 0) {

perror ("open");
return 1;

}

inode = get_inode (fd);
printf ("%d\n", inode);

return 0;
}

The get_inode() function is easily adaptable for use in your programs.

Sorting by inode number has a few upsides: the inode number is easy to obtain, is easy
to sort on, and is a good approximation of the physical file layout. The major downsides
are that fragmentation degrades the approximation, that the approximation is just a
guess, and that the approximation is less accurate for non-Unix filesystems. Nonetheless,
this is the most commonly used method for scheduling I/O requests in user space.

Sorting by physical block
The best approach to designing your own elevator algorithm, of course, is to sort by
physical disk block. As discussed earlier, each file is broken up into logical blocks, which
are the smallest allocation units of a filesystem. The size of a logical block is filesystem-
dependent; each logical block maps to a single physical block. We can thus find the
number of logical blocks in a file, determine what physical blocks they map to, and sort
based on that.

The kernel provides a method for obtaining the physical disk block from the logical
block number of a file. This is done via the ioctl() system call, discussed in Chap‐
ter 8, with the FIBMAP command:

ret = ioctl (fd, FIBMAP, &block);
if (ret < 0)

perror ("ioctl");

Here, fd is the file descriptor of the file in question, and block is the logical block whose
physical block we want to determine. On successful return, block is replaced with the
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physical block number. The logical blocks passed in are zero-indexed and file-relative.
That is, if a file is made up of eight logical blocks, valid values are 0 through 7.

Finding the logical-to-physical-block mapping is thus a two-step process. First, we must
determine the number of blocks in a given file. This is done via the stat() system call.
Second, for each logical block, we must issue an ioctl() request to find the corre‐
sponding physical block.

Here is a sample program to do just that for a file passed in on the command line:

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <linux/fs.h>

/*
* get_block - for the file associated with the given fd, returns
* the physical block mapping to logical_block
*/
int get_block (int fd, int logical_block)
{

int ret;

ret = ioctl (fd, FIBMAP, &logical_block);
if (ret < 0) {

perror ("ioctl");
return −1;

}

return logical_block;
}

/*
* get_nr_blocks - returns the number of logical blocks
* consumed by the file associated with fd
*/
int get_nr_blocks (int fd)
{

struct stat buf;
int ret;

ret = fstat (fd, &buf);
if (ret < 0) {

perror ("fstat");
return −1;

}
return buf.st_blocks;

}
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/*
* print_blocks - for each logical block consumed by the file
* associated with fd, prints to standard out the tuple
* "(logical block, physical block)"
*/
void print_blocks (int fd)
{

int nr_blocks, i;

nr_blocks = get_nr_blocks (fd);
if (nr_blocks < 0) {

fprintf (stderr, "get_nr_blocks failed!\n");
return;

}

if (nr_blocks == 0) {
printf ("no allocated blocks\n");
return;

} else if (nr_blocks == 1)
printf ("1 block\n\n");

else
printf ("%d blocks\n\n", nr_blocks);

for (i = 0; i < nr_blocks; i++) {
int phys_block;

phys_block = get_block (fd, i);
if (phys_block < 0) {

fprintf (stderr, "get_block failed!\n");
return;

}
if (!phys_block)

continue;

printf ("(%u, %u) ", i, phys_block);
}

putchar ('\n');
}

int main (int argc, char *argv[])
{

int fd;

if (argc < 2) {
fprintf (stderr, "usage: %s <file>\n", argv[0]);
return 1;

}

fd = open (argv[1], O_RDONLY);
if (fd < 0) {

perror ("open");
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return 1;
}

print_blocks (fd);

return 0;
}

Because files tend to be contiguous, and it would be difficult (at best) to sort our I/O
requests on a per-logical-block basis, it makes sense to sort based on the location of just
the first logical block of a given file. Consequently, get_nr_blocks() is not needed, and
our applications can sort based on the return value from:

get_block (fd, 0);

The downside of FIBMAP is that it requires the CAP_SYS_RAWIO capability—effectively,
root privileges. Consequently, nonroot applications cannot make use of this approach.
Further, while the FIBMAP command is standardized, its actual implementation is left
up to the filesystems. While common systems such as ext2 and ext3 support it, a more
esoteric beast may not. The ioctl() call will return EINVAL if FIBMAP is not supported.

Among the pros of this approach, however, is that it returns the actual physical disk
block at which a file resides, which is exactly what you want to sort on. Even if you sort
all I/O to a single file based on the location of just one block (the kernel’s I/O scheduler
sorts each individual request on a block-wise basis), this approach comes very close to
the optimal ordering. The root requirement, however, is a bit of a nonstarter for
many. 

Conclusion
Over the course of the last three chapters, we have touched on all aspects of file I/O in
Linux. In Chapter 2, we looked at the basics of Linux file I/O—really, the basis of Unix
programming—with system calls such as read(), write(), open(), and close(). In
Chapter 3, we discussed user-space buffering and the standard C library’s implemen‐
tation thereof. In this chapter, we discussed various facets of advanced I/O, from the
more-powerful-but-more-complex I/O system calls to optimization techniques and the
dreaded performance-sucking disk seek.

In the next two chapters, we will look at process management: creating, destroying, and
managing processes. Onward!
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CHAPTER 5

Process Management

As discussed in Chapter 1, processes are, after files, the most fundamental abstraction
in a Unix system. As object code in execution—active, alive, running programs—
processes are more than just assembly language; they consist of data, resources, state,
and a virtualized computer.

In this chapter, we will look at the fundamentals of the process, from creation to ter‐
mination. The basics have remained relatively unchanged since the earliest days of Unix.
It is here, in the subject of process management, that the longevity and forward thinking
of Unix’s original design shines brightest. Unix took an interesting path, one seldom
traveled, separating the creation of a new process from the act of loading a new binary
image. Although the two tasks are performed in tandem much of the time, the division
has allowed a great deal of freedom for experimentation and evolution for each of the
tasks. This road less traveled has survived to this day, and while most operating systems
offer a single system call to start up a new program, Unix requires two: a fork and an
exec. But before we cover those system calls, let’s look more closely at the process itself.

Programs, Processes, and Threads
A binary is compiled, executable code lying dormant on a storage medium such as a
disk. Colloquially, we may also use the term program; large and significant binaries we
might call applications. /bin/ls and /usr/bin/X11 are both binaries.

A process is a running program. A process includes the binary image, loaded into mem‐
ory, but also much more: an instance of virtualized memory, kernel resources such as
open files, a security context such as an associated user, and one or more threads. A
thread is the unit of activity inside of a process. Each thread has its own virtualized
processor, which includes a stack, processor state such as registers, and an instruction
pointer.
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In a single threaded process, the process is the thread. There is one instance of virtualized
memory and one virtualized processor. In a multithreaded process, there are multiple
threads. As the virtualization of memory is associated with the process, the threads all
share the same memory address space.

The Process ID
733.510bEach process is represented by a unique identifier, the process ID (frequently
shortened to pid). The pid is guaranteed to be unique at any single point in time. That
is, while at time t+0 there can be only one process with the pid 770 (if any process at all
exists with such a value), there is no guarantee that at time t+1 a different process won’t
exist with pid 770. Essentially, however, most programs presume that the kernel does
not readily reissue process identifiers—an assumption that, as you will see shortly, is
fairly safe. And, of course, from the view of a process, its pid never changes.

The idle process, which is the process that the kernel “runs” when there are no other
runnable processes, has the pid 0. The first process that the kernel executes after booting
the system, called the init process, has the pid 1. Normally, the init process on Linux is
the init program. We use the term “init” to refer to both the initial process that the kernel
runs, and the specific program used for that purpose.

Unless the user explicitly tells the kernel what process to run (through the init kernel
command-line parameter), the kernel has to identify a suitable init process on its own—
a rare example where the kernel dictates policy. The Linux kernel tries four executables,
in the following order:

1. /sbin/init: The preferred and most likely location for the init process.
2. /etc/init: Another likely location for the init process.
3. /bin/init: A fallback location for the init process.
4. /bin/sh: The location of the Bourne shell, which the kernel tries to run if it fails to

find an init process.

The first of these processes that exists is executed as the init process. If all four processes
fail to execute, the Linux kernel halts the system with a panic.

After the handoff from the kernel, the init process handles the remainder of the boot
process. Typically, this includes initializing the system, starting various services, and
launching a login program.

Process ID Allocation
By default, the kernel imposes a maximum process ID value of 32768. This is for com‐
patibility with older Unix systems, which used signed 16-bit types for process IDs.
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System administrators can set the value higher via /proc/sys/kernel/pid_max, trading a
larger pid space for reduced compatibility.

The kernel allocates process IDs to processes in a strictly linear fashion. If pid 17 is the
highest number currently allocated, pid 18 will be allocated next, even if the process last
assigned pid 17 is no longer running when the new process starts. The kernel does not
reuse process ID values until it wraps around from the top—that is, earlier values will
not be reused until the value in /proc/sys/kernel/pid_max is allocated. Therefore, while
Linux makes no guarantee of the uniqueness of process IDs over a long period, its
allocation behavior does provide at least short-term comfort in the stability and unique‐
ness of pid values.

The Process Hierarchy
The process that spawns a new process is known as the parent; the new process is known
as the child. Every process is spawned from another process (except, of course, the init
process). Therefore, every child has a parent. This relationship is recorded in each pro‐
cess’s parent process ID (ppid), which is the pid of the child’s parent.

Each process is owned by a user and a group. This ownership is used to control access
rights to resources. To the kernel, users and groups are mere integer values. Through
the files /etc/passwd and /etc/group, these integers are mapped to the human-readable
names with which Unix users are familiar, such as the user root or the group wheel
(generally speaking, the Linux kernel has no interest in human-readable strings, and
prefers to identify objects with integers). Each child process inherits its parent’s user
and group ownership.

Each process is also part of a process group, which simply expresses its relationship to
other processes and should not be confused with the aforementioned user/group con‐
cept. Children normally belong to the same process groups as their parents. In addition,
when a shell starts up a pipeline (e.g., when a user enters ls | less), all the commands in
the pipeline go into the same process group. The notion of a process group makes it
easy to send signals to or get information on an entire pipeline, as well as all children
of the processes in the pipeline. From the perspective of a user, a process group is closely
related to a job.

pid_t
Programmatically, the process ID is represented by the pid_t type, which is defined in
the header file <sys/types.h>. The exact backing C type is architecture-specific and
not defined by any C standard. On Linux, however, pid_t is generally a typedef to the
C int type.
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Obtaining the Process ID and Parent Process ID
The getpid() system call returns the process ID of the invoking process:

#include <sys/types.h>
#include <unistd.h>

pid_t getpid (void);

The getppid() system call returns the process ID of the invoking process’s parent:

#include <sys/types.h>
#include <unistd.h>

pid_t getppid (void);

Neither call will return an error. Consequently, usage is trivial:

printf ("My pid=%jd\n", (intmax_t) getpid ());
printf ("Parent's pid=%jd\n", (intmax_t) getppid ());

Here, we typecast the return value to intmax_t, which is a C/C++ type guaranteed to
be capable of storing any signed integer value on the system. In other words, it is as large
or larger than all other signed integer types. Coupled with a printf() modifier (%j),
this approach lets us safely print integers represented by a typedef. Prior to intmax_t
there was no portable way to do this (if your system lacks intmax_t, you can assume
pid_t is an int, which is true on most Unix systems).

Running a New Process
In Unix, the act of loading into memory and executing a program image is separate
from the act of creating a new process. One system call loads a binary program into
memory, replacing the previous contents of the address space, and begins execution of
the new program. This is called executing a new program, and the functionality is pro‐
vided by the exec family of calls.

A different system call is used to create a new process, which initially is a near-duplicate
of its parent process. Often, the new process immediately executes a new program. The
act of creating a new process is called forking, and this functionality is provided by the
fork() system call. Two acts—first a fork to create a new process, and then an exec to
load a new binary into that process—are thus required to execute a new program in a
new process. We will cover the exec calls first, then fork().

The Exec Family of Calls
There is no single exec function; instead, there is a family of exec functions built on a
single system call. Let’s first look at the simplest of these calls, execl():
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#include <unistd.h>

int execl (const char *path,
const char *arg,
...);

A call to execl() replaces the current process image with a new one by loading into
memory the program pointed at by path. The parameter arg is the first argument to
this program. The ellipsis signifies a variable number of arguments—the execl() func‐
tion is variadic, which means that additional arguments may optionally follow, one by
one. The list of arguments must be NULL-terminated.

For example, the following code replaces the currently executing program with /bin/vi:
int ret;

ret = execl ("/bin/vi", "vi", NULL);
if (ret == −1)

perror ("execl");

Note that we follow the Unix convention and pass “vi” as the program’s first argument.
The shell puts the last component of the path, the “vi,” into the first argument when it
forks/execs processes, so a program can examine its first argument, argv[0], to discover
the name of its binary image. In many cases, several system utilities that appear as
different names to the user are in fact a single program with hard links for their multiple
names. The program uses the first argument to determine its behavior.

As another example, if you wanted to edit the file /home/kidd/hooks.txt, you could
execute the following code:

int ret;

ret = execl ("/bin/vi", "vi", "/home/kidd/hooks.txt", NULL);
if (ret == −1)

perror ("execl");

Normally, execl() does not return. A successful invocation ends by jumping to the
entry point of the new program, and the just-executed code no longer exists in the
process’s address space. On error, however, execl() returns −1 and sets errno to indicate
the problem. We will look at the possible errno values later in this section.

A successful execl() call changes not only the address space and process image, but
certain other attributes of the process:

• Any pending signals are lost.
• Any signals that the process is catching (see Chapter 10) are returned to their default

behavior, as the signal handlers no longer exist in the process’s address space.
• Any memory locks (see Chapter 9) are dropped.
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• Most thread attributes are returned to the default values.
• Most process statistics are reset.
• Anything related to the process’s memory address space, including any mapped

files, is cleared.
• Anything that exists solely in user space, including features of the C library, such

as atexit() behavior, is cleared.

Some properties of the process, however, do not change. For example, the pid, parent
pid, priority, and owning user and group all remain the same.

Normally, open files are inherited across an exec. This means the newly executed pro‐
gram has full access to all of the files open in the original process, assuming it knows
the file descriptor values. However, this is often not the desired behavior. The usual
practice is to close files before the exec, although it is also possible to instruct the kernel
to do so automatically via fcntl().

The rest of the family

In addition to execl(), there are five other members of the exec family:

#include <unistd.h>

int execlp (const char *file,
const char *arg,
...);

int execle (const char *path,
const char *arg,
...,
char * const envp[]);

int execv (const char *path, char *const argv[]);

int execvp (const char *file, char *const argv[]);

int execve (const char *filename,
char *const argv[],
char *const envp[]);

The mnemonics are simple. The l and v delineate whether the arguments are provided
via a list or an array (vector). The p denotes that the user’s full path is searched for the
given file. Commands using the p variants can specify just a filename, so long as it is
located in the user’s path. Finally, the e notes that a new environment is also supplied
for the new process. Curiously, although there is no technical reason for the omission,
the exec family contains no member that both searches the path and takes a new envi‐
ronment. This is probably because the p variants were implemented for use by shells,
and shell-executed processes generally inherit their environments from the shell.
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The following snippet uses execvp() to execute vi, as we did previously, relying on the
fact that vi is in the user’s path:

int ret;

ret = execvp ("vi", "vi", "/home/kidd/hooks.txt", NULL);
if (ret == −1)

perror ("execvp");

Security Risk with execlp() and execvp()
Set-group-ID and set-user-ID programs—processes that run as the
group or user of their binary’s owner and not the group or user of their
invoker, respectively—should never invoke the shell or operations that
in turn invoke the shell. Doing so opens a security hole as the invoking
user may set environment variables to manipulate the behavior of the
shell. The most common form of this attack is path injection, in which
the attacker sets the PATH variable to cause the process to execlp() a
binary of the attacker’s choosing, effectively allowing the attacker to run
any program with the credentials of the set-group-ID or set-user-ID
program.

The members of the exec family that accept an array work about the same, except that
an array is constructed and passed in instead of a list. The use of an array allows the
arguments to be determined at runtime. As with the variadic list of arguments, the array
must be NULL-terminated.

The following snippet uses execv() to execute vi, as we did previously:

const char *args[] = { "vi", "/home/kidd/hooks.txt", NULL };
int ret;

ret = execv ("/bin/vi", args);
if (ret == −1)

perror ("execvp");

In Linux, only one member of the exec family is a system call. The rest are wrappers in
the C library around the system call. Because variadic system calls would be difficult to
implement and because the concept of the user’s path exists solely in user space, the only
option for the lone system call is execve(). The system call prototype is identical to the
user call.

Error values

On success, the exec system calls do not return. On failure, the calls return −1 and set
errno to one of the following values:
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E2BIG

The total number of bytes in the provided arguments list (arg) or environment
(envp) is too large.

EACCES

The process lacks search permission for a component in path; path is not a regular
file; the target file is not marked executable; or the filesystem on which path or file
resides is mounted noexec.

EFAULT

A given pointer is invalid.

EIO

A low-level I/O error occurred (this is bad).

EISDIR

The final component in path, or the interpreter, is a directory.

ELOOP

The system encountered too many symbolic links in resolving path.

EMFILE

The invoking process has reached its limit on open files.

ENFILE

The system-wide limit on open files has been reached.

ENOENT

The target of path or file does not exist, or a needed shared library does not exist.

ENOEXEC

The target of path or file is an invalid binary or is intended for a different machine
architecture.

ENOMEM

There is insufficient kernel memory available to execute a new program.

ENOTDIR

A nonfinal component in path is not a directory.

EPERM

The filesystem on which path or file resides is mounted nosuid, the user is not
root, and path or file has the suid or sgid bit set.

ETXTBSY

The target of path or file is open for writing by another process.
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The fork() System Call
A new process running the same image as the current one can be created via the fork()
system call:

#include <sys/types.h>
#include <unistd.h>

pid_t fork (void);

A successful call to fork() creates a new process, identical in almost all aspects to the
invoking process. Both processes continue to run, returning from fork() as if nothing
special had happened.

The new process is called the “child” of the original process, which in turn is called the
“parent.” In the child, a successful invocation of fork() returns 0. In the parent, fork()
returns the pid of the child. The child and the parent process are identical in nearly
every facet, except for a few necessary differences:

• The pid of the child is, of course, newly allocated and different from that of the
parent.

• The child’s parent pid is set to the pid of its parent process.
• Resource statistics are reset to zero in the child.
• Any pending signals are cleared and not inherited by the child (see Chapter 10).
• Any acquired file locks are not inherited by the child.

On error, a child process is not created, fork() returns −1, and errno is set appropriately.
There are two possible errno values, with three possible meanings:
EAGAIN

The kernel failed to allocate certain resources, such as a new pid, or the
RLIMIT_NPROC resource limit (rlimit) has been reached (see Chapter 6).

ENOMEM

Insufficient kernel memory was available to complete the request.

Use is simple:

pid_t pid;

pid = fork ();
if (pid > 0)

printf ("I am the parent of pid=%d!\n", pid);
else if (!pid)

printf ("I am the child!\n");
else if (pid == −1)

perror ("fork");
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The most common usage of fork() is to create a new process in which a new binary
image is then loaded—think a shell running a new program for the user or a process
spawning a helper program. First the process forks a new process, and then the child
executes a new binary image. This “fork plus exec” combination is frequent and simple.
The following example spawns a new process running the binary /bin/windlass:

pid_t pid;

pid = fork ();
if (pid == −1)

perror ("fork");

/* the child ... */
if (!pid) {

const char *args[] = { "windlass", NULL };
int ret;

ret = execv ("/bin/windlass", args);
if (ret == −1) {

perror ("execv");
exit (EXIT_FAILURE);

}
}

The parent process continues running with no change, other than that it now has a new
child. The call to execv() changes the child to running the /bin/windlass program.

Copy-on-write
In early Unix systems, forking was simple, even naïve. Upon invocation, the kernel
created copies of all internal data structures, duplicated the process’s page table entries,
and then performed a page-by-page copy of the parent’s address space into the child’s
new address space. Unfortunately, this page-by-page copy is time-consuming.

Modern Unix systems have superior behavior. Instead of a wholesale copy of the parent’s
address space, modern Unix systems such as Linux employ copy-on-write (COW) pages.

Copy-on-write is a lazy optimization strategy designed to mitigate the overhead of du‐
plicating resources. The premise is simple: if multiple consumers request read access to
their own copies of a resource, duplicate copies of the resource need not be made.
Instead, each consumer can be handed a pointer to the same resource. So long as no
consumer attempts to modify its “copy” of the resource, the illusion of exclusive access
to the resource remains, and the overhead of a copy is avoided. If a consumer does
attempt to modify its copy of the resource, at that point, the resource is transparently
duplicated, and the copy is given to the modifying consumer. The consumer, never the
wiser, can then modify its copy of the resource while the other consumers continue to
share the original, unchanged version. Hence the name: the copy occurs only on write.
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The primary benefit is that if a consumer never modifies its copy of the resource, a copy
is never needed. The general advantage of lazy algorithms—that they defer expensive
actions until the last possible moment—also applies.

In the specific example of virtual memory, copy-on-write is implemented on a per-page
basis. Thus, so long as a process does not modify all of its address space, a copy of the
entire address space is not required. At the completion of a fork, the parent and child
believe that they each have a unique address space, while in fact they are sharing the
parent’s original pages—which in turn may be shared with other parent or child pro‐
cesses, and so on!

The kernel implementation is simple. The pages are marked as read-only and as copy-
on-write in the kernel’s page-related data structures. If either process attempts to modify
a page, a page fault occurs. The kernel then handles the page fault by transparently
making a copy of the page; at this point, the page’s copy-on-write attribute is cleared,
and it is no longer shared. Because modern machine architectures provide hardware-
level support for copy-on-write in their memory management units (MMUs), this dance
is simple and easy to implement.

Copy-on-write has yet a bigger benefit in the case of forking. Because a large percentage
of forks are followed by an exec, copying the parent’s address space into the child’s
address space is often a complete waste of time: if the child summarily executes a new
binary image, its previous address space is wiped out. Copy-on-write optimizes for this
case.

vfork()
Before the arrival of copy-on-write pages, Unix designers were concerned with the
wasteful address-space copy during a fork that is immediately followed by an exec. BSD
developers therefore unveiled the vfork() system call in 3.0BSD:

#include <sys/types.h>
#include <unistd.h>

pid_t vfork (void);

A successful invocation of vfork() has the same behavior as fork(), except that the
child process must immediately issue a successful call to one of the exec functions or
exit by calling _exit() (discussed in the next section). The vfork() system call avoids
the address space and page table copies by suspending the parent process until the child
terminates or executes a new binary image. In the interim, the parent and the child share
—without copy-on-write semantics—their address space and page table entries. In fact,
the only work done during a vfork() is the duplication of internal kernel data structures.
Consequently, the child must not modify any memory in the address space.

The vfork() system call is a relic and should never have been implemented on Linux,
although it should be noted that even with copy-on-write, vfork() is faster than fork()
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1. Although not currently part of the Linux kernel, a patch implementing copy-on-write shared page table entries
has been floated on the Linux Kernel Mailing List (lkml). Should it be merged, there would be absolutely no
benefit to using vfork().

 because the page table entries need not be copied.1 Nonetheless, the advent of copy-on-
write pages weakens any argument for an alternative to fork(). Indeed, until the 2.2.0
Linux kernel, vfork() was simply a wrapper around fork(). As the requirements for
vfork() are weaker than the requirements for fork(), such a vfork() implementation
is feasible.

Strictly speaking, no vfork() implementation is bug-free. Consider the situation if the
exec call were to fail: the parent would be suspended indefinitely while the child figured
out what to do or until it exited. Programs should prefer straight fork(). 

Terminating a Process
POSIX and C89 both define a standard function for terminating the current process:

#include <stdlib.h>

void exit (int status);

A call to exit() performs some basic shutdown steps, then instructs the kernel to ter‐
minate the process. This function has no way of returning an error—in fact, it never
returns at all. Therefore, it does not make sense for any instructions to follow the exit()
call.

The status parameter is used to denote the process’s exit status. Other programs—as
well as the user at the shell—can check this value. Specifically, status & 0377 is returned
to the parent. We will look at retrieving the return value later in this chapter.

EXIT_SUCCESS and EXIT_FAILURE are defined as portable ways to represent success and
failure. On Linux, 0 typically represents success; a nonzero value, such as 1 or −1, cor‐
responds to failure.

Consequently, a successful exit is as simple as this one-liner:

exit (EXIT_SUCCESS);

Before terminating the process, the C library performs the following shutdown steps,
in order:

1. Call any functions registered with atexit() or on_exit(), in the reverse order of
their registration. (We will discuss these functions later in this chapter.)

2. Flush all open standard I/O streams (see Chapter 3).

148 | Chapter 5: Process Management



3. Remove any temporary files created with the tmpfile() function.

These steps finish all the work the process needs to do in user space, so exit() invokes
the system call _exit() to let the kernel handle the rest of the termination process:

#include <unistd.h>

void _exit (int status);

When a process exits, the kernel cleans up all of the resources that it created on the
process’s behalf that are no longer in use. This includes, but is not limited to, allocated
memory, open files, and System V semaphores. After cleanup, the kernel destroys the
process and notifies the parent of its child’s demise.

Applications can call _exit() directly, but such a move seldom makes sense: most ap‐
plications need to do some of the cleanup provided by a full exit, such as flushing the
stdout stream. Note, however, that vfork() users should call _exit(), and not exit(),
after a fork.

In a redundant stroke of redundancy, the ISO C99 standard added the _Exit() function,
which has identical behavior to _exit():

#include <stdlib.h>

void _Exit (int status);

Other Ways to Terminate
The classic way to end a program is not via an explicit system call, but by simply “falling
off the end” of the program. In the case of C or C++, this happens when the main()
function returns. The “falling off the end” approach, however, still invokes a system call:
the compiler simply inserts an implicit call to exit() after its own shutdown code. It is
good coding practice to explicitly return an exit status, either via exit(), or by returning
a value from main(). The shell uses the exit value for evaluating the success or failure
of commands. Note that a successful return is exit(0), or a return from main() of 0. 

A process can also terminate if it is sent a signal whose default action is to terminate the
process. Such signals include SIGTERM and SIGKILL (see Chapter 10).

A final way to end a program’s execution is by incurring the wrath of the kernel. The
kernel can kill a process for executing an illegal instruction, causing a segmentation
violation, running out of memory, consuming more resources that allowed, and so on.

atexit()
POSIX 1003.1-2001 defines, and Linux implements, the atexit() library call, used to
register functions to be invoked upon process termination:
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#include <stdlib.h>

int atexit (void (*function)(void));

A successful invocation of atexit() registers the given function to run during normal
process termination, that is, when a process is terminated via either exit() or a return
from main(). If a process invokes an exec function, the list of registered functions is
cleared (as the functions no longer exist in the new process’s address space). If a process
terminates via a signal, the registered functions are not called.

The given function takes no parameters, and returns no value. A prototype has the form:

void my_function (void);

Functions are invoked in the reverse order that they are registered. That is, the functions
are stored in a stack, and the last in is the first out (LIFO). Registered functions must
not call exit() lest they begin an endless recursion. If a function needs to end the
termination process early, it should call _exit(). Such behavior is not recommended,
however, as a potentially important shutdown function may then not run.

The POSIX standard requires that atexit() support at least ATEXIT_MAX registered
functions and that this value be at least 32. The exact maximum may be obtained via
sysconf() and the value of _SC_ATEXIT_MAX:

long atexit_max;

atexit_max = sysconf (_SC_ATEXIT_MAX);
printf ("atexit_max=%ld\n", atexit_max);

On success, atexit() returns 0. On error, it returns −1.

Here’s a simple example:

#include <stdio.h>
#include <stdlib.h>

void out (void)
{

printf ("atexit() succeeded!\n");
}

int main (void)
{

if (atexit (out))
fprintf(stderr, "atexit() failed!\n");

return 0;
}
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on_exit()
SunOS 4 defined its own equivalent to atexit(), and Linux’s glibc supports it:

#include <stdlib.h>

int on_exit (void (*function)(int, void *), void *arg);

This function works the same as atexit(), but the registered function’s prototype is
different:

void my_function (int status, void *arg);

The status argument is the value passed to exit() or returned from main(). The arg
argument is the second parameter passed to on_exit(). Care must be taken to ensure
that the memory pointed at by arg is valid when the function is ultimately invoked.

The latest version of Solaris no longer supports this function. You should use the
standards-compliant atexit() instead.

SIGCHLD
When a process terminates, the kernel sends the signal SIGCHLD to the parent. By default,
this signal is ignored, and no action is taken by the parent. Processes can elect to handle
this signal, however, via the signal() or sigaction() system calls. These calls, and the
rest of the wonderful world of signals, are covered in Chapter 10.

The SIGCHLD signal may be generated and dispatched at any time, as a child’s termination
is asynchronous with respect to its parent. But often, the parent wants to learn more
about its child’s termination or even explicitly wait for the event’s occurrence. This is
possible with the system calls discussed next.

Waiting for Terminated Child Processes
Receiving notification via a signal is nice, but many parents want to obtain more infor‐
mation when one of their child processes terminates—for example, the child’s return
value.

If a child process were to entirely disappear when terminated, as one might expect, no
remnants would remain for the parent to investigate. Consequently, the original de‐
signers of Unix decided that when a child dies before its parent, the kernel should put
the child into a special process state. A process in this state is known as a zombie. Only
a minimal skeleton of what was once the process—some basic kernel data structures
containing potentially useful data—is retained. A process in this state waits for its parent
to inquire about its status (a procedure known as waiting on the zombie process). Only
after the parent obtains the information preserved about the terminated child does the
process formally exit and cease to exist even as a zombie.
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The Linux kernel provides several interfaces for obtaining information about termi‐
nated children. The simplest such interface, defined by POSIX, is wait():

#include <sys/types.h>
#include <sys/wait.h>

pid_t wait (int *status);

A call to wait() returns the pid of a terminated child or −1 on error. If no child has
terminated, the call blocks until a child terminates. If a child has already terminated,
the call returns immediately. Consequently, a call to wait() in response to news of a
child’s demise—say, upon receipt of a SIGCHLD—will always return without blocking.

On error, there are two possible errno values:
ECHILD

The calling process does not have any children.

EINTR

A signal was received while waiting, and the call returned early.

If not NULL, the status pointer contains additional information about the child. Because
POSIX allows implementations to define the bits in status as they see fit, the standard
provides a family of macros for interpreting the parameter:

#include <sys/wait.h>

int WIFEXITED (status);
int WIFSIGNALED (status);
int WIFSTOPPED (status);
int WIFCONTINUED (status);

int WEXITSTATUS (status);
int WTERMSIG (status);
int WSTOPSIG (status);
int WCOREDUMP (status);

Either of the first two macros may return true (a nonzero value), depending on how the
process terminated. The first, WIFEXITED, returns true if the process terminated
normally—that is, if the process called _exit(). In this case, the macro WEXITSTATUS
provides the low-order eight bits that were passed to _exit().

WIFSIGNALED returns true if a signal caused the process’s termination (see Chapter 10
for further discussion on signals). In this case, WTERMSIG returns the number of the signal
that caused the termination, and WCOREDUMP returns true if the process dumped core in
response to receipt of the signal. WCOREDUMP is not defined by POSIX, although many
Unix systems, Linux included, support it.

WIFSTOPPED and WIFCONTINUED return true if the process was stopped or continued,
respectively, and is currently being traced via the ptrace() system call. These conditions
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are generally applicable only when implementing a debugger, although when used with
waitpid() (see the following subsection), they are used to implement job control, too.
Normally, wait() is used only to communicate information about a process’s termina‐
tion. If WIFSTOPPED is true, WSTOPSIG provides the number of the signal that stopped
the process. WIFCONTINUED is not defined by POSIX, although future standards define
it for waitpid(). As of the 2.6.10 Linux kernel, Linux provides this macro for wait(),
too.

Let’s look at an example program that uses wait() to figure out what happened to its
child:

#include <unistd.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/wait.h>

int main (void)
{

int status;
pid_t pid;

if (!fork ())
return 1;

pid = wait (&status);
if (pid == −1)

perror ("wait");

printf ("pid=%d\n", pid);

if (WIFEXITED (status))
printf ("Normal termination with exit status=%d\n",

WEXITSTATUS (status));

if (WIFSIGNALED (status))
printf ("Killed by signal=%d%s\n",

WTERMSIG (status),
WCOREDUMP (status) ? " (dumped core)" : "");

if (WIFSTOPPED (status))
printf ("Stopped by signal=%d\n",

WSTOPSIG (status));

if (WIFCONTINUED (status))
printf ("Continued\n");

return 0;
}

This program forks a child, which immediately exits. The parent process then executes
the wait() system call to determine the status of its child. The process prints the child’s
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2. Defined in the header <stdlib.h>.

pid, and how it died. Because in this case the child terminated by returning from
main(), we know that we will see output similar to the following:

$ ./wait
pid=8529
Normal termination with exit status=1

If, instead of having the child return, we have it call abort(),2 which sends itself the
SIGABRT signal, we will instead see something resembling the following:

$ ./wait
pid=8678
Killed by signal=6

Waiting for a Specific Process
Observing the behavior of child processes is important. Often, however, a process has
multiple children, and does not wish to wait for all of them, but rather for a specific
child process. One solution would be to make multiple invocations of wait(), each time
noting the return value. This is cumbersome, though—what if you later wanted to check
the status of a different terminated process? The parent would have to save all of the
wait() output in case it needed it later.

If you know the pid of the process you want to wait for, you can use the waitpid()
system call:

#include <sys/types.h>
#include <sys/wait.h>

pid_t waitpid (pid_t pid, int *status, int options);

The waitpid() call is a more powerful version of wait(). Its additional parameters
allow for fine-tuning.

The pid parameter specifies exactly which process or processes to wait for. Its values
fall into four camps:
< −1

Wait for any child process whose process group ID is equal to the absolute value of
this value. For example, passing −500 waits for any process in process group 500.

−1

Wait for any child process. This is the same behavior as wait().
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0

Wait for any child process that belongs to the same process group as the calling
process.

> 0

Wait for any child process whose pid is exactly the value provided. For example,
passing 500 waits for the child process with pid 500.

The status parameter works identically to the sole parameter to wait() and can be
operated on using the macros discussed previously.

The options parameter is a binary OR of zero or more of the following options:
WNOHANG

Do not block, but return immediately if no matching child process has already
terminated (or stopped or continued).

WUNTRACED

If set, the WIFSTOPPED bit in the returned status parameter is set, even if the calling
process is not tracing the child process. This flag allows for the implementation of
more general job control, as in a shell.

WCONTINUED

If set, the WIFCONTINUED bit in the returned status parameter is set even if the calling
process is not tracing the child process. As with WUNTRACED, this flag is useful for
implementing a shell.

On success, waitpid() returns the pid of the process whose state has changed. If
WNOHANG is specified, and the specified child or children have not yet changed state,
waitpid() returns 0. On error, the call returns −1, and errno is set to one of three values:
ECHILD

The process or processes specified by the pid argument do not exist or are not
children of the calling process.

EINTR

The WNOHANG option was not specified, and a signal was received while waiting.

EINVAL

The options argument is invalid.

As an example, assume your program wants to grab the return value of the specific child
with pid 1742 but return immediately if the child has not yet terminated. You might
code up something similar to the following:

int status;
pid_t pid;

pid = waitpid (1742, &status, WNOHANG);
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if (pid == −1)
perror ("waitpid");

else {
printf ("pid=%d\n", pid);

if (WIFEXITED (status))
printf ("Normal termination with exit status=%d\n",

WEXITSTATUS (status));

if (WIFSIGNALED (status))
printf ("Killed by signal=%d%s\n",

WTERMSIG (status),
WCOREDUMP (status) ? " (dumped core)" : "");

}

As a final example, note the following usage of wait():

wait (&status);

This is identical to the following usage of waitpid(): 

waitpid (−1, &status, 0);

Even More Waiting Versatility
753.400bFor applications that require even greater versatility in their waiting-for-
children functionality, the XSI extension to POSIX defines, and Linux provides,
waitid():

#include <sys/wait.h>

int waitid (idtype_t idtype,
id_t id,
siginfo_t *infop,
int options);

As with wait() and waitpid(), waitid() is used to wait for and obtain information
about the status change (termination, stopping, continuing) of a child process. It pro‐
vides even more options, but it offers them with the trade-off of greater complexity.

Like waitpid(), waitid() allows the developer to specify what to wait for. However,
waitid() accomplishes this task with not one, but two parameters. The idtype and id
arguments specify which children to wait for, accomplishing the same goal as the sole
pid argument in waitpid(). idtype may be one of the following values:
P_PID

Wait for a child whose pid matches id.

P_GID

Wait for a child whose process group ID matches id.
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3. Indeed, the siginfo_t structure is very complicated on Linux. For its definition, see /usr/include/bits/sigin‐
fo.h. We will study this structure in more detail in Chapter 10.

P_ALL

Wait for any child; id is ignored.

The id argument is the rarely seen id_t type, which is a type representing a generic
identification number. It is employed in case future implementations add a new id
type value and supposedly offers greater insurance that the predefined type will be able
to hold the newly created identifier. The type is guaranteed to be sufficiently large to
hold any pid_t. On Linux, developers may use it as if it were a pid_t. For example, you
may directly provide pid_t values or numeric constants for an id_t. Pedantic pro‐
grammers, however, are free to typecast.

The options parameter is a binary OR of one or more of the following values:
WEXITED

The call will wait for children (as determined by id and idtype) that have
terminated.

WSTOPPED

The call will wait for children that have stopped execution in response to receipt of
a signal.

WCONTINUED

The call will wait for children that have continued execution in response to receipt
of a signal.

WNOHANG

The call will never block, but will return immediately if no matching child process
has already terminated (or stopped, or continued).

WNOWAIT

The call will not remove the matching process from the zombie state. The process
may be waited upon in the future.

Upon successfully waiting for a child, waitid() fills in the infop parameter, which must
point to a valid siginfo_t type. The exact layout of the siginfo_t structure is
implementation-specific,3 but a handful of fields are valid after a call to waitid(). That
is, a successful invocation will ensure that the following fields are filled in:
si_pid

The child’s pid.

si_uid

The child’s uid.
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si_code

Set to one of CLD_EXITED, CLD_KILLED, CLD_STOPPED, or CLD_CONTINUED in response
to the child terminating, dying via signal, stopping via signal, or continuing via
signal, respectively.

si_signo

Set to SIGCHLD.

si_status

If si_code is CLD_EXITED, this field is the exit code of the child process. Otherwise,
this field is the number of the signal delivered to the child that caused the state
change.

On success, waitid() returns 0. On error, waitid() returns −1, and errno is set to one
of the following values:
ECHLD

The process or processes delineated by id and idtype do not exist.

EINTR

WNOHANG was not set in options, and a signal interrupted execution.

EINVAL

The options argument or the combination of the id and idtype arguments is
invalid.

The waitid() function provides additional, useful semantics not found in wait() and
waitpid(). In particular, the information retrievable from the siginfo_t structure may
prove quite valuable. If such information is not needed, however, it may make more
sense to stick to the simpler functions, which are supported on a wider range of systems
and thus are portable to more non-Linux systems.

BSD Wants to Play: wait3() and wait4()
While waitpid() derives from AT&T’s System V Release 4, BSD takes its own route
and provides two other functions used to wait for a child to change state:

#include <sys/types.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/wait.h>

pid_t wait3 (int *status,
int options,
struct rusage *rusage);

pid_t wait4 (pid_t pid,
int *status,
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int options,
struct rusage *rusage);

The 3 and 4 come from the fact that these two functions are three- and four-parameter
versions, respectively, of wait(). Berkeley reserved its creative facilities for other en‐
deavors, apparently.

The functions work similarly to waitpid(), with the exception of the rusage argument.
The following wait3() invocation:

pid = wait3 (status, options, NULL);

is equivalent to the following waitpid() call:

pid = waitpid (−1, status, options);

While the following wait4() invocation:

pid = wait4 (pid, status, options, NULL);

is equivalent to this waitpid() call:

pid = waitpid (pid, status, options);

That is, wait3() waits for any child to change state, and wait4() waits for the specific
child identified by the pid parameter to change state. The options argument behaves
the same as with waitpid().

As mentioned earlier, the big difference between these calls and waitpid() is the rusage
parameter. If it is non-NULL, the function fills out the pointer at rusage with information
about the child. This structure provides information about the child’s resource usage:

#include <sys/resource.h>

struct rusage {
struct timeval ru_utime; /* user time consumed */
struct timeval ru_stime; /* system time consumed */
long ru_maxrss;   /* maximum resident set size */
long ru_ixrss;    /* shared memory size */
long ru_idrss;    /* unshared data size */
long ru_isrss;    /* unshared stack size */
long ru_minflt;   /* page reclaims */
long ru_majflt;   /* page faults */
long ru_nswap;    /* swap operations */
long ru_inblock;  /* block input operations */
long ru_oublock;  /* block output operations */
long ru_msgsnd;   /* messages sent */
long ru_msgrcv;   /* messages received */
long ru_nsignals; /* signals received */
long ru_nvcsw;    /* voluntary context switches */
long ru_nivcsw;   /* involuntary context switches */

};
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4. wait3() was included in the original Single UNIX Specification, but it has since been removed.

I will address resource usage further in the next chapter.

On success, these functions return the pid of the process that changed state. On failure,
they return −1 and set errno to one of the same error values returned by waitpid().

Because wait3() and wait4() are not POSIX-defined,4 it is advisable to use them only
when resource-usage information is critical. Despite the lack of POSIX standardization,
however, nearly every Unix system supports these two calls.

Launching and Waiting for a New Process
Both ANSI C and POSIX define an interface that couples spawning a new process and
waiting for its termination—think of it as synchronous process creation. If a process is
spawning a child only to immediately wait for its termination, it makes sense to use this
interface:

#define _XOPEN_SOURCE    /* if we want WEXITSTATUS, etc. */
#include <stdlib.h>

int system (const char *command);

The system() function is so named because the synchronous process invocation is
called shelling out to the system. It is common to use system() to run a simple utility or
shell script, often with the explicit goal of simply obtaining its return value.

A call to system() invokes the command provided by the command parameter, including
any additional arguments. The command parameter is suffixed to the arguments /bin/sh
-c. In this sense, the parameter is passed wholesale to the shell.

On success, the return value is the return status of the command as provided by
wait(). Consequently, the exit code of the executed command is obtained via WEXIT
STATUS. If invoking /bin/sh itself failed, the value given by WEXITSTATUS is the same as
that returned by exit(127). Because it is also possible for the invoked command to
return 127, there is no surefire method to check whether the shell itself returned that
error. On error, the call returns −1.

If command is NULL, system() returns a nonzero value if the shell /bin/sh is available, and
0 otherwise.

During execution of the command, SIGCHLD is blocked, and SIGINT and SIGQUIT
are ignored. Ignoring SIGINT and SIGQUIT has several implications, particularly if
system() is invoked inside a loop. If calling system() from within a loop, you should
ensure that the program properly checks the exit status of the child. For example:
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do {
int ret;

ret = system ("pidof rudderd");
if (WIFSIGNALED (ret) &&

(WTERMSIG (ret) == SIGINT ||
WTERMSIG (ret) == SIGQUIT))

break; /* or otherwise handle */
} while (1);

Implementing system() using fork(), a function from the exec family, and wait
pid() is a useful exercise. You should attempt this yourself, as it ties together many of
the concepts of this chapter. In the spirit of completeness, however, here is a sample
implementation:

/*
* my_system - synchronously spawns and waits for the command
* "/bin/sh -c <cmd>".
*
 * Returns −1 on error of any sort, or the exit code from the
* launched process. Does not block or ignore any signals.
*/
int my_system (const char *cmd)
{

int status;
pid_t pid;

pid = fork ();
if (pid == −1)

return −1;
else if (pid == 0) {

const char *argv[4];

argv[0] = "sh";
argv[1] = "-c";
argv[2] = cmd;
argv[3] = NULL;
execv ("/bin/sh", argv);

exit (−1);
}

if (waitpid (pid, &status, 0) == −1)
return −1;

else if (WIFEXITED (status))
return WEXITSTATUS (status);

return −1;
}

Note that this example does not block or disable any signals, unlike the official
system(). This behavior may be better or worse, depending on your program’s situation,
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but leaving at least SIGINT unblocked is often smart because it allows the invoked com‐
mand to be interrupted in the way a user normally expects. A better implementation
could add additional pointers as parameters that, when non-NULL, signify errors cur‐
rently differentiable from each other. For example, one might add fork_failed and
shell_failed.

Security Risks with system()
The system() system call suffers the same security issues as execlp()
and execvp() (see previous discussion). You should never invoke sys
tem() from a set-group-ID or set-user-ID program as an attacker may
manipulate environment variables (most commonly PATH) to gain es‐
calated privileges. Our handwritten system() replacement, as it uses
the shell, is also vulnerable.
To avoid this attack vector, set-group-ID and set-user-ID programs
should invoke the desired external binary manually via fork() and
execl() without use of the shell. Not invoking an external binary at all
is an even better practice!

Zombies
As discussed earlier, a process that has terminated but has not yet been waited upon by
its parent is called a “zombie.” Zombie processes continue to consume system resources,
although only a small percentage—enough to maintain a mere skeleton of what they
once were. These resources remain so that parent processes that want to check up on
the status of their children can obtain information relating to the life and termination
of those processes. Once the parent does so, the kernel cleans up the process for good
and the zombie ceases to exist.

However, anyone who has used Unix for a good while is sure to have seen zombie
processes sitting around. These processes, often called ghosts, have irresponsible pa‐
rents. If your application forks a child process, it is your application’s responsibility
(unless it is short-lived, as you will see shortly) to wait on the child, even if it will merely
discard the information gleaned. Otherwise, all of your process’s children will become
ghosts and live on, crowding the system’s process listing and generating disgust at your
application’s sloppy implementation.

What happens, however, if the parent process dies before the child, or if it dies before
it has a chance to wait on its zombie children? Whenever a process terminates, the Linux
kernel walks a list of its children and reparents all of them to the init process (the process
with a pid value of 1). This guarantees that no process is ever without an immediate
parent. The init process, in turn, periodically waits on all of its children, ensuring that
none remain zombies for too long—no ghosts! Thus, if a parent dies before its children
or does not wait on its children before exiting, the child processes are eventually
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reparented to init and waited upon, allowing them to fully exit. Although doing so is
still considered good practice, this safeguard means that short-lived processes need not
worry excessively about waiting on all of their children.

Users and Groups
As mentioned earlier in this chapter and discussed in Chapter 1, processes are associated
with users and groups. The user and group identifiers are numeric values represented
by the C types uid_t and gid_t, respectively. The mapping between numeric values and
human-readable names—as in the root user having the uid 0—is performed in user
space using the files /etc/passwd and /etc/group. The kernel deals only with the numeric
values.

In a Linux system, a process’s user and group IDs dictate the operations that the process
may undertake. Processes must therefore run under the appropriate users and groups.
Many processes run as the root user. However, best practices in software development
encourage the doctrine of least-privileged rights, meaning that a process should execute
with the minimum level of rights possible. This requirement is dynamic: if a process
requires root privileges to perform an operation early in its life but does not require
these extensive privileges thereafter, it should drop root privileges as soon as possible.
To this end, many processes—particularly those that need root privileges to carry out
certain operations—often manipulate their user or group IDs.

Before we can look at how this is accomplished, we need to cover the complexities of
user and group IDs.

Real, Effective, and Saved User and Group IDs

The following discussion focuses on user IDs, but the text applies
equally to group IDs.

There are, in fact, not one, but four user IDs associated with a process: the real, effective,
saved, and filesystem user IDs. The real user ID is the uid of the user who originally ran
the process. It is set to the real user ID of the process’s parent, and does not change
during an exec call. Normally, the login process sets the real user ID of the user’s login
shell to that of the user, and all of the user’s processes continue to carry this user ID. The
superuser (root) may change the real user ID to any value, but no other user can change
this value.

The effective user ID is the user ID that the process is currently wielding. Permission
verifications normally check against this value. Initially, this ID is equal to the real user
ID, because when a process forks, the effective user ID of the parent is inherited by the
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child. Furthermore, when the process issues an exec call, the effective user is usually
unchanged. But it is during the exec call that the key difference between real and effective
IDs emerges: by executing a setuid (suid) binary, the process can change its effective
user ID. To be exact, the effective user ID is set to the user ID of the owner of the program
file. For instance, because the /usr/bin/passwd file is a setuid file and root is its owner,
when a normal user’s shell spawns a process to exec this file, the process takes on the
effective user ID of root regardless of who the executing user is.

Nonprivileged users may set the effective user ID to the real or the saved user ID, as
you’ll see momentarily. The superuser may set the effective user ID to any value.

The saved user ID is the process’s original effective user ID. When a process forks, the
child inherits the saved user ID of its parent. Upon an exec call, however, the kernel sets
the saved user ID to the effective user ID, thereby making a record of the effective user
ID at the time of the exec. Nonprivileged users may not change the saved user ID; the
superuser can change it to the same value as the real user ID.

What is the point of all these values? The effective user ID is the value that matters: it’s
the user ID that is checked in the course of validating a process’s credentials. The real
user ID and saved user ID act as surrogates or potential user ID values that nonroot
processes are allowed to switch to and from. The real user ID is the effective user ID
belonging to the user actually running the program, and the saved user ID is the effective
user ID from before a suid binary caused a change during exec.

Changing the Real or Saved User or Group ID
The user and group IDs are set via two system calls:

#include <sys/types.h>
#include <unistd.h>

int setuid (uid_t uid);
int setgid (gid_t gid);

A call to setuid() sets the effective user ID of the current process. If the current effective
user ID of the process is 0 (root), the real and saved user IDs are also set. The root user
may provide any value for uid, thereby setting all three of the user ID values to uid. A
nonroot user is allowed only to provide the real or saved user ID for uid. In other words,
a nonroot user can only set the effective user ID to one of those values.

On success, setuid() returns 0. On error, the call returns −1, and errno is set to one of
the following values:
EAGAIN

uid is different from the real user ID, and setting the real user ID to uid will put
the user over its RLIM_NPROC rlimit (which specifies the number of processes that a
user may own).
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EPERM

The user is not root, and uid is neither the effective nor the saved user ID.

The preceding discussion also applies to groups—simply replace setuid() with
setgid() and uid with gid.

Changing the Effective User or Group ID
Linux provides two POSIX-mandated functions for setting the effective user and group
IDs of the currently executing process:

#include <sys/types.h>
#include <unistd.h>

int seteuid (uid_t euid);
int setegid (gid_t egid);

A call to seteuid() sets the effective user ID to euid. Root may provide any value for
euid. Nonroot users may set the effective user ID only to the real or saved user ID. On
success, seteuid() returns 0. On failure, it returns −1 and sets errno to EPERM, which
signifies that the current process is not owned by root, and that euid is equal to neither
the real nor the saved user ID.

Note that in the nonroot case, seteuid() and setuid() behave the same. It is thus
standard practice and a good idea to always use seteuid() unless your process tends
to run as root, in which case setuid() makes more sense.

The preceding discussion also applies to groups—simply replace seteuid() with
setegid(), and euid with egid.

Changing the User and Group IDs, BSD Style
BSD settled on its own interfaces for setting the user and group IDs. Linux provides
these interfaces for compatibility:

#include <sys/types.h>
#include <unistd.h>

int setreuid (uid_t ruid, uid_t euid);
int setregid (gid_t rgid, gid_t egid);

A call to setreuid() sets the real and effective user IDs of a process to ruid and euid,
respectively. Specifying a value of −1 for either parameter leaves the associated user ID
unchanged. Nonroot processes are only allowed to set the effective user ID to the real
or saved user ID and the real user ID to the effective user ID. If the real user ID is changed,
or if the effective user ID is changed to a value not equal to the previous real user ID
value, the saved user ID is changed to the new effective user ID. At least, that’s how Linux
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and most other Unix systems react to such changes; the behavior is left undefined by
POSIX.

On success, setreuid() returns 0. On failure, it returns −1 and sets errno to EPERM,
which signifies that the current process is not owned by root, and that euid is equal to
neither the real nor the saved user ID or that ruid is not equal to the effective user ID.

The preceding discussion also applies to groups—simply replace setreuid() with se
tregid(), ruid with rgid, and euid with egid.

Changing the User and Group IDs, HP-UX Style
You may feel the situation is quickly becoming parody, but HP-UX, Hewlett-Packard’s
Unix system, has also introduced its own mechanisms for setting a process’s user and
group IDs. Linux follows along and provides these interfaces, which are useful if you
want to maintain portability to HP-UX:

#define _GNU_SOURCE
#include <unistd.h>

int setresuid (uid_t ruid, uid_t euid, uid_t suid);
int setresgid (gid_t rgid, gid_t egid, gid_t sgid);

A call to setresuid() sets the real, effective, and saved user IDs to ruid, euid, and
suid, respectively. Specifying a value of −1 for any of the parameters leaves its value
unchanged.

The root user may set any user ID to any value. Nonroot users may set any user ID to
the current real, effective, or saved user ID. On success, setuid() returns 0. On error,
the call returns −1, and errno is set to one of the following values:
EAGAIN

uid does not match the real user ID, and setting the real user ID to uid will put the
user over its RLIM_NPROC rlimit (which specifies the number of processes that a user
may own).

EPERM

The user is not root and attempted to set new values for the real, effective, or saved
user ID that did not match one of the current real, effective, or saved user IDs.

The preceding discussion also applies to groups—simply replace setresuid() with
setresgid(), ruid with rgid, euid with egid, and suid with sgid.

Preferred User/Group ID Manipulations
Nonroot processes should use seteuid() to change their effective user IDs. Root pro‐
cesses should use setuid() if they wish to change all three user IDs and seteuid() if
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they wish to temporarily change just the effective user ID. These functions are simple
and behave in accordance with POSIX, properly taking into account saved user IDs.

Despite providing additional functionality, the BSD and HP-UX style functions do not
allow for any useful changes that setuid() and seteuid() do not.

Support for Saved User IDs
The existence of the saved user and group IDs is mandated by IEEE Std 1003.1-2001
(POSIX 2001), and Linux has supported these IDs since the early days of the 1.1.38
kernel. Programs written only for Linux may rest assured of the existence of the saved
user IDs. Programs written for older Unix systems should check for the macro
_POSIX_SAVED_IDS before making any references to a saved user or group ID.

In the absence of saved user and group IDs, the preceding discussions are still valid; just
ignore any parts of the rules that mention the saved user or group ID.

Obtaining the User and Group IDs
These two system calls return the real user and group IDs, respectively:

#include <unistd.h>
#include <sys/types.h>

uid_t getuid (void);
gid_t getgid (void);

They cannot fail. Likewise, these two system calls return the effective user and group
IDs, respectively:

#include <unistd.h>
#include <sys/types.h>

uid_t geteuid (void);
gid_t getegid (void);

These two system calls cannot fail, either.

Sessions and Process Groups
Each process is a member of a process group, which is a collection of one or more pro‐
cesses generally associated with each other for the purposes of job control. The primary
attribute of a process group is that signals may be sent to all processes in the group: a
single action can terminate, stop, or continue all processes in the same process group.

Each process group is identified by a process group ID (pgid) and has a process group
leader. The process group ID is equal to the pid of the process group leader. Process
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groups exist so long as they have one remaining member. Even if the process group
leader terminates, the process group continues to exist.

When a new user first logs into a machine, the login process creates a new session that
consists of a single process, the user’s login shell. The login shell functions as the session
leader. The pid of the session leader is used as the session ID. A session is a collection
of one or more process groups. Sessions arrange a logged-in user’s activities and asso‐
ciate that user with a controlling terminal, which is a specific tty device that handles the
user’s terminal I/O. Consequently, sessions are largely the business of shells. In fact,
nothing else really cares about them.

While process groups provide a mechanism to address signals to all of their members,
making job control and other shell functions easy, sessions exist to consolidate logins
around controlling terminals. Process groups in a session are divided into a single
foreground process group and zero or more background process groups. When a user exits
a terminal, a SIGQUIT is sent to all processes in the foreground process group. When a
network disconnect is detected by a terminal, a SIGHUP is sent to all processes in the
foreground process group. When the user enters the interrupt key (generally Ctrl-C), a
SIGINT is sent to all processes in the foreground process group. Thus, sessions make
managing terminals and logins easier for shells.

As a review, say a user logs into the system and her login shell, bash, has the pid 1700.
The user’s bash instance is now the sole member and leader of a new process group,
with the process group ID 1700. This process group is inside a new session with the
session ID 1700, and bash is the sole member and the leader of this session. New com‐
mands that the user runs in the shell run in new process groups within session 1700.
One of these process groups—the one connected directly to the user and in control of
the terminal—is the foreground process group. All the other process groups are back‐
ground process groups.

On a given system, there are many sessions: one for each user login session and others
for processes not tied to user login sessions, such as daemons. Daemons tend to create
their own sessions to avoid the issues of association with other sessions that may exit.

Each of these sessions contains one or more process groups, and each process group
contains at least one process. Process groups that contain more than one process are
generally implementing job control.

A command on the shell such as this one:

$ cat ship-inventory.txt | grep booty | sort

results in one process group containing three processes. This way, the shell can signal
all three processes in one fell swoop. Because the user has typed this command on the
console without a trailing ampersand, we can also say that this process group is in the
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foreground. Figure 5-1 illustrates the relationship between sessions, process groups,
processes, and controlling terminals.

Figure 5-1. Relationship between sessions, process groups, processes, and controlling
terminals

Linux provides several interfaces for setting and retrieving the session and process group
associated with a given process. These are primarily of use for shells, but can also be
useful to processes such as daemons that want to get out of the business of sessions and
process groups altogether.

Session System Calls
Shells create new sessions on login. They do so via a special system call, which makes
creating a new session easy:

#include <unistd.h>

pid_t setsid (void);

A call to setsid() creates a new session, assuming that the process is not already a
process group leader. The calling process is made the session leader and sole member
of the new session, which has no controlling tty. The call also creates a new process
group inside the session and makes the calling process the process group leader and
sole member. The new session’s and process group’s IDs are set to the calling process’s
pid.

In other words, setsid() creates a new process group inside of a new session and makes
the invoking process the leader of both. This is useful for daemons, which do not want
to be members of existing sessions or to have controlling terminals, and for shells, which
want to create a new session for each user upon login.
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On success, setsid() returns the session ID of the newly created session. On error, the
call returns −1. The only possible errno code is EPERM, which indicates that the process
is currently a process group leader. The easiest way to ensure that any given process is
not a process group leader is to fork, have the parent terminate, and have the child
perform the setsid(). For example:

pid_t pid;

pid = fork ();
if (pid == −1) {

perror ("fork");
return −1;

} else if (pid != 0)
exit (EXIT_SUCCESS);

if (setsid () == −1) {
perror ("setsid");
return −1;

}

Obtaining the current session ID, while less useful, is also possible:

#define _XOPEN_SOURCE 500
#include <unistd.h>

pid_t getsid (pid_t pid);

A call to getsid() returns the session ID of the process identified by pid. If the pid
argument is 0, the call returns the session ID of the calling process. On error, the call
returns −1. The only possible errno value is ESRCH, indicating that pid does not corre‐
spond to a valid process. Note that other Unix systems may also set errno to EPERM,
indicating that pid and the invoking process do not belong to the same session; Linux
does not return this error and happily returns the session ID of any process.

Usage of getsid() is uncommon and is primarily for diagnostic purposes:

pid_t sid;

sid = getsid (0);
if (sid == −1)

perror ("getsid"); /* should not be possible */
else

printf ("My session id=%d\n", sid);

Process Group System Calls
A call to setpgid() sets the process group ID of the process identified by pid to pgid:

#define _XOPEN_SOURCE 500
#include <unistd.h>
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int setpgid (pid_t pid, pid_t pgid);

The current process is used if the pid argument is 0. If pgid is 0, the process ID of the
process identified by pid is used as the process group ID.

On success, setpgid() returns 0. Success is contingent on several conditions:

• The process identified by pid must be the calling process, or a child of the calling
process that has not issued an exec call and is in the same session as the calling
process.

• The process identified by pid must not be a session leader.
• If pgid already exists, it must be in the same session as the calling process.
• pgid must be nonnegative.

On error, the call returns −1 and sets errno to one of the following error codes:
EACCES

The process identified by pid is a child of the calling process that has already invoked
exec.

EINVAL

pgid is less than 0.

EPERM

The process identified by pid is a session leader or is in a different session from the
calling process. Alternatively, an attempt was made to move a process into a process
group inside a different session.

ESRCH

pid is not the current process, 0, or a child of the current process.

As with sessions, obtaining a process’s process group ID is possible, although less useful:

#define _XOPEN_SOURCE 500
#include <unistd.h>

pid_t getpgid (pid_t pid);

A call to getpgid() returns the process group ID of the process identified by pid. If pid
is 0, the process group ID of the current process is used. On error, it returns −1 and sets
errno to ESRCH, the only possible value, indicating that pid is an invalid process
identifier.

As with getsid(), usage is largely for diagnostic purposes:

pid_t pgid;
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pgid = getpgid (0);
if (pgid == −1)

perror ("getpgid"); /* should not be possible */
else

printf ("My process group id=%d\n", pgid);

Obsolete Process Group Functions
Linux supports two older interfaces from BSD for manipulating or obtaining the process
group ID. As they are less useful than the previously discussed system calls, new pro‐
grams should use them only when portability is stringently required. setpgrp() can be
used to set the process group ID:

#include <unistd.h>

int setpgrp (void);

This invocation:

if (setpgrp () == −1)
perror ("setpgrp");

is identical to the following invocation:

if (setpgid (0,0) == −1)
perror ("setpgid");

Both attempt to assign the current process to the process group with the same number
as the current process’s pid, returning 0 on success, and −1 on failure. All of the errno
values of setpgid() are applicable to setpgrp(), except ERSCH.

Similarly, a call to getpgrp() can be used to retrieve the process group ID:

#include <unistd.h>

pid_t getpgrp (void);

This invocation:

pid_t pgid = getpgrp ();

is identical to:

pid_t pgid = getpgid (0);

Both return the process group ID of the calling process. The function getpgid() cannot
fail. 

Daemons
A daemon is a process that runs in the background, not connecting to any controlling
terminal. Daemons are normally started at boot time, are run as root or some other

172 | Chapter 5: Process Management



special user (such as apache or postfix), and handle system-level tasks. As a convention,
the name of a daemon often ends in d (as in crond and sshd), but this is not required or
even universal.

The name derives from Maxwell’s demon, an 1867 thought experiment
by the physicist James Maxwell. Daemons are also supernatural beings
in Greek mythology, existing somewhere between humans and the gods
and gifted with powers and divine knowledge. Unlike Judeo-Christian
demons, the Greek daemon need not be evil. Indeed, the daemons of
mythology were often aides to the gods, performing tasks that the den‐
izens of Mount Olympus found themselves unwilling to do—much as
Unix daemons perform tasks that foreground users would rather avoid.

A daemon has two general requirements: it must run as a child of init and it must not
be connected to a terminal.

In general, a program performs the following steps to become a daemon:

1. Call fork(). This creates a new process, which will become the daemon.
2. In the parent, call exit(). This ensures that the original parent (the daemon’s

grandparent) is satisfied that its child terminated, that the daemon’s parent is no
longer running, and that the daemon is not a process group leader. This last point
is a requirement for the successful completion of the next step.

3. Call setsid(), giving the daemon a new process group and session, both of which
have it as leader. This also ensures that the process has no associated controlling
terminal (as the process just created a new session and will not assign one).

4. Change the working directory to the root directory via chdir(). This is done be‐
cause the inherited working directory can be anywhere on the filesystem. Daemons
tend to run for the duration of the system’s uptime, and you don’t want to keep some
random directory open and thus prevent an administrator from unmounting the
filesystem containing that directory.

5. Close all file descriptors. You do not want to inherit open file descriptors, and,
unaware, hold them open.

6. Open file descriptors 0, 1, and 2 (standard in, standard out, and standard error)
and redirect them to /dev/null.

Following these rules, here is a program that daemonizes itself:

#include <sys/types.h>
#include <sys/stat.h>
#include <stdlib.h>
#include <stdio.h>
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#include <fcntl.h>
#include <unistd.h>
#include <linux/fs.h>

int main (void)
{

pid_t pid;
int i;

/* create new process */
pid = fork ();
if (pid == −1)

return −1;
else if (pid != 0)

exit (EXIT_SUCCESS);

/* create new session and process group */
if (setsid () == −1)

return −1;

/* set the working directory to the root directory */
if (chdir ("/") == −1)

return −1;

/* close all open files--NR_OPEN is overkill, but works */
for (i = 0; i < NR_OPEN; i++)

close (i);

/* redirect fd's 0,1,2 to /dev/null */
open ("/dev/null", O_RDWR);     /* stdin */
dup (0); /* stdout */
dup (0); /* stderror */

/* do its daemon thing... */

return 0;
}

Most Unix systems provide a daemon() function in their C library that automates these
steps, turning the cumbersome into the simple:

#include <unistd.h>

int daemon (int nochdir, int noclose);

If nochdir is nonzero, the daemon will not change its working directory to the root
directory. If noclose is nonzero, the daemon will not close all open file descriptors.
These options are useful if the parent process already set up these aspects of the dae‐
monizing procedure. Normally, though, one passes 0 for both of these parameters.

On success, the call returns 0. On failure, the call returns −1, and errno is set to a valid
error code from fork() or setsid().
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Conclusion
In this chapter, we covered the fundamentals of Unix process management, from process
creation to process termination. In the next chapter, we will cover more advanced pro‐
cess management interfaces, including interfaces for changing the scheduling behavior
of processes. 
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CHAPTER 6

Advanced Process Management

Chapter 5 explained what a process is and what parts of the system it encompasses, along
with system calls to create, control, and destroy it. This chapter builds on those concepts,
beginning with a discussion of the Linux process scheduler and its scheduling algorithm,
and then presenting advanced process management interfaces. These system calls ma‐
nipulate the scheduling behavior of a process, influencing the scheduler’s behavior in
pursuit of an application or user-dictated goal.

Process Scheduling
The process scheduler is the kernel subsystem that divides the finite resource of processor
time among a system’s processes. In other words, the process scheduler (or simply the
scheduler) is the component of a kernel that selects which process to run next. In de‐
ciding which processes can run and when, the scheduler is responsible for maximizing
processor usage while simultaneously providing the illusion that multiple processes are
executing concurrently and seamlessly.

In this chapter, we will talk a lot about runnable processes. A runnable process is one
that is not blocked; a blocked process is one that is sleeping, waiting for I/O from the
kernel. Processes that interact with users, read and write files heavily, or respond to
network events tend to spend a lot of time blocked while they wait for resources to
become available, and they are not runnable during those periods. Given only one
runnable process, the job of a process scheduler is trivial: run that process! A scheduler
proves its worth, however, when there are more runnable processes than processors. In
such a situation, some processes will run while others must wait their turn. Deciding
which processes run, when, and for how long is the process scheduler’s fundamental
responsibility.

An operating system on a single-processor machine is multitasking if it can interleave
the execution of multiple processes, providing the illusion that more than one process
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is running at the same time. On multiprocessor machines, a multitasking operating
system allows processes to actually run in parallel, on different processors. A nonmul‐
titasking operating system, such as DOS, can run only one application at a time.

Multitasking operating systems come in two variants: cooperative and preemptive. Linux
implements the latter form of multitasking, where the scheduler decides when one pro‐
cess is to stop running and a different process is to resume. We call the act of suspending
a running process in lieu of another one preemption. The length of time a process is
allowed to run before the scheduler preempts it is known as the process’s timeslice, so
called because the scheduler allocates the process a “slice” of the processor’s time.

In cooperative multitasking, conversely, a process does not stop running until it vol‐
untarily decides to do so. Voluntarily suspending itself is called yielding. Ideally, pro‐
cesses yield often, but the operating system is unable to enforce this behavior. A rude
or broken program can run long enough to break the illusion of multitasking, or even
indefinitely so as to bring down the entire system. Due to the shortcomings of this
approach, modern operating systems are almost universally preemptively multitasked;
Linux is no exception.

Linux’s process scheduler has changed over the years. The current process scheduler,
available since Linux kernel version 2.6.23, is called the Completely Fair Scheduler (CFS).
The name derives from the scheduler’s adoption of fair queuing, a scheduling algorithm
that attempts to enforce fair access to a resource among contending consumers. CFS is
drastically unlike any other Unix process scheduler, including its predecessor, the O(1)
process scheduler. We will further discuss CFS in “The Completely Fair Scheduler” on
page 180.

Timeslices
The timeslice that the process scheduler allots to each process is an important variable
in the overall behavior and performance of a system. If timeslices are too large, processes
must wait a long time in between executions, minimizing the appearance of concurrent
execution. The user may become frustrated at the perceptible delay. Conversely, if the
timeslices are too small, a significant proportion of the system’s time is spent switching
from one application to another, and benefits such as temporal locality are lost.

Consequently, determining an ideal timeslice is not easy. Some operating systems give
processes large timeslices, hoping to maximize system throughput and overall perfor‐
mance. Other operating systems give processes very small timeslices, hoping to provide
a system with excellent interactive performance. As we will see, CFS answers the “what
size timeslice” question in a very odd way: by abolishing timeslices.
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I/O- Versus Processor-Bound Processes
Processes that continually consume all of their available timeslices are considered
processor-bound. Such processes are hungry for CPU time and will consume all that the
scheduler gives them. The simplest example is an infinite loop:

// 100% processor-bound
while (1)
  ;

Other, less extreme examples include scientific computations, mathematical calcula‐
tions, and image processing.

On the other hand, processes that spend more time blocked waiting for some resource
than executing are considered I/O-bound. I/O-bound processes are often issuing and
waiting for file or network I/O, blocking on keyboard input, or waiting for the user to
move the mouse. Examples of I/O-bound applications include file utilities that do very
little except issue system calls asking the kernel to perform I/O, such as cp or mv, and
many GUI applications, which spend a great deal of time waiting for user input.

Processor- and I/O-bound applications differ in the type of scheduler behavior from
which they most benefit. Processor-bound applications crave the largest timeslices pos‐
sible, allowing them to maximize cache hit rates (via temporal locality) and get their
jobs done as quickly as possible. In contrast, I/O-bound processes do not necessarily
need large timeslices because they typically run for only very short periods before issuing
I/O requests and blocking on some kernel resource. I/O-bound processes, however, do
benefit from prioritized attention from the scheduler. The quicker such an application
can restart after blocking and dispatch more I/O requests, the better it can utilize the
system’s hardware. Further, if the application was waiting for user input, the faster it is
scheduled, the greater the user’s perception of seamless execution will be.

Juggling the needs of processor- and I/O-bound processes is not easy. In reality, most
applications are some mix of I/O- and processor-bound. Audio/video encoding/decod‐
ing is a good example of a type of application that defies categorization. Many games
are also quite mixed. It is not always possible to identify the proclivity of a given appli‐
cation, and, at any point in time, a given process may behave in one way only to behave
in another way later.

Preemptive Scheduling
In traditional Unix process scheduling, all runnable processes are assigned a timeslice.
When a process exhausts its timeslice, the kernel suspends it and begins running a
different process. If there are no runnable processes on the system, the kernel takes the
set of processes with exhausted timeslices, replenishes their timeslices, and begins run‐
ning them again. And so the process repeats, with processes continually entering and
exiting the runnable process list as they are created or terminate, block on I/O, or wake
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up from sleep. In this fashion, all processes eventually get to run, even if there are higher-
priority processes on the system—the lower-priority processes just have to wait for the
higher-priority processes to exhaust their timeslices or block. This behavior formulates
an important but tacit rule of Unix scheduling: all processes must make forward
progress.

The Completely Fair Scheduler
The Completely Fair Scheduler (CFS) is a significant departure from traditional Unix
process schedulers. In most Unix systems, including Linux before CFS’s introduction,
there were two fundamental per-process variables in process scheduling: priority and
timeslice. As discussed in the previous section, in traditional process schedulers, pro‐
cesses are assigned a timeslice that represents the “slice” of the processor allotted to that
process. Processes may run until they exhaust that timeslice. Similarly, processes are
assigned a priority. The process scheduler runs higher-priority processes before lower-
priority ones. The algorithm is very simple and worked very well for early time-sharing
Unix systems. It performs less admirably on systems requiring good interactive perfor‐
mance and fairness, such as today’s modern desktops and mobile devices.

CFS introduces a quite different algorithm called fair scheduling that eliminates time‐
slices as the unit of allotting access to the processor. Instead of timeslices, CFS assigns
each process a proportion of the processor’s time. The algorithm is simple: CFS starts
by assigning N processes each 1/N of the processor’s time. CFS then adjusts this allot‐
ment by weighting each process’s proportion by its nice value. Processes with the default
nice value of zero have a weight of one, so their proportion is unchanged. Processes
with a smaller nice value (higher priority) receive a larger weight, increasing their frac‐
tion of the processor, while process’s with a larger nice value (lower priority) receive a
smaller weight, decreasing their fraction of the processor.

CFS now has a weighted proportion of processor time assigned to each process. To
determine the actual length of time each process runs, CFS needs to divide the propor‐
tions into a fixed period. That period is called the target latency, as it represents the
scheduling latency of the system. To understand the target latency, let’s assume it is set
to 20 milliseconds and that there are two runnable processes of the same priority. Thus,
each process has the same weight and is assigned the same proportion of the processor,
10 milliseconds. Thus, CFS will run one process for 10 milliseconds, then the other for
10 milliseconds, and then repeat. If there are 5 runnable processes on the system, CFS
will run each for 4 milliseconds.

So far, so good. But what if we have, say, 200 processes? With a target latency of 20
milliseconds, CFS would run each of those processes for only 100 microseconds. Due
to the cost of context switching from one process to another, known as switching costs,
and the reduced temporal locality, the system’s overall throughput would suffer. To deal
with this situation, CFS introduces a second key variable, the minimum granularity.
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The minimum granularity is a floor on the length of time any process is run. All pro‐
cesses, regardless of their allotted proportion of the processor, will run for at least the
minimum granularity (or until they block). This helps ensure that switching costs do
not consume an unacceptably large amount of the system’s total time at the expense of
honoring the target latency. That is, when the minimum granularity kicks in, fairness
is violated. With typical values for the target latency and minimum granularity, in the
common case of a reasonable number of runnable processes, the minimum granularity
is not applied, the target latency is met, and fairness is maintained.

By assigning proportions of the processor and not fixed timeslices, CFS is able to enforce
fairness: each process gets its fair share of the processor. Moreover, CFS is able to enforce
a configurable scheduling latency, as the target latency is user-settable. On traditional
Unix schedulers, processes run for fixed timeslices known a priori, but the scheduling
latency (how often they run) is unknown. On CFS, processes run for proportions and
with a latency that is known a priori, but the timeslice is dynamic, a function of the
number of runnable processes on the system. It is a markedly different way of handling
process scheduling, solving many of the problems around interactive and I/O-bound
processes that has plagued traditional process schedulers. 

Yielding the Processor
Although Linux is a preemptively multitasked operating system, it also provides a sys‐
tem call that allows processes to explicitly yield execution and instruct the scheduler to
select a new process for execution:

#include <sched.h>

int sched_yield (void);

A call to sched_yield() results in suspension of the currently running process, after
which the process scheduler selects a new process to run, in the same manner as if the
kernel had itself preempted the currently running process in favor of executing a new
process. Note that if no other runnable process exists, which is often the case, the yielding
process will immediately resume execution. Because of this uncertainty, coupled with
the general belief that there are generally better choices, use of this system call is not
common.

On success, the call returns 0; on failure, it returns −1 and sets errno to the appropriate
error code. On Linux—and, more than likely, most other Unix systems—
sched_yield() cannot fail and thus always returns 0. A thorough programmer may
still check the return value, however:

if (sched_yield ())
perror ("sched_yield");
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Legitimate Uses
In practice, there are few legitimate uses of sched_yield() on a proper preemptive
multitasking system such as Linux. The kernel is fully capable of making the optimal
and most efficient scheduling decisions—certainly, the kernel is better equipped than
an individual application to decide what to preempt and when. This is precisely why
operating systems ditched cooperative multitasking in favor of preemptive multitasking.

Why, then, does POSIX dictate a “reschedule me” system call at all? The answer lies in
applications having to wait for external events, which may be caused by the user, a
hardware component, or another process. For instance, if one process needs to wait for
another, “just yield the processor until the other process is done” is a first-pass solution.
As an example, the implementation of a naïve consumer in a consumer/producer pair
might be similar to the following:

/* the consumer... */
do {

while (producer_not_ready ())
sched_yield ());

process_data ();
} while (!time_to_quit ());

Thankfully, Unix programmers do not tend to write code such as this. Unix programs
are normally event-driven and tend to utilize some sort of blockable mechanism (such
as a pipe) between the consumer and the producer in lieu of sched_yield(). In this
case, the consumer reads from the pipe, blocking as necessary until data is available.
The producer, in turn, writes to the pipe as fresh data becomes available. This removes
the responsibility for coordination from the user-space process, who just busy-loops,
to the kernel, who can optimally manage the situation by putting the processes to sleep
and waking them up only as needed. In general, Unix programs should aim toward
event-driven solutions that rely on blockable file descriptors.

Until recently, one situation vexingly required sched_yield(): user-space thread lock‐
ing. When a thread attempted to acquire a lock that another thread already held, the
new thread would yield the processor until the lock became available. Without kernel
support for user-space locks, this approach was the simplest and most efficient. Thank‐
fully, the modern Linux thread implementation (the Native POSIX Threading Library,
or NPTL) ushered in an optimal solution using futexes, which provide kernel support
for efficient user-space locks.

One other use for sched_yield() is “playing nicely”: a processor-intensive program
can call sched_yield() periodically, attempting to minimize its impact on the system.
While noble in pursuit, this strategy has two flaws. First, the kernel is able to make global
scheduling decisions much better than an individual process and consequently the re‐
sponsibility for ensuring smooth system operation should lie with the process scheduler,
not the processes. Second, mitigating the overhead of a processor-intensive application
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with respect to other applications is the responsibility of the user, not of individual
applications. The user can convey her relative preferences for application performance
via the nice shell command, which we will discuss later in this chapter.

Process Priorities

The discussion in this section pertains to normal, non-real-time pro‐
cesses. Real-time processes require different scheduling criteria and a
separate priority system. We will discuss real-time computing later in
this chapter.

Linux does not schedule processes willy-nilly. Instead, processes are assigned priori‐
ties that affect how long they run: recall that the proportion of processor allotted to a
process is weighted by its nice value. Unix has historically called these priorities nice
values because the idea behind them was to “be nice” to other processes on the system
by lowering a process’s priority, allowing other processes to consume more of the sys‐
tem’s processor time.

Legal nice values range from −20 to 19 inclusive, with a default value of 0. Somewhat
confusingly, the lower a process’s nice value, the higher its priority and the larger its
timeslice; conversely, the higher the value, the lower the process’s priority and the smaller
its timeslice. Increasing a process’s nice value is therefore “nice” to the rest of the system.
The numerical inversion is rather confusing. When we say a process has a “high priority”
we mean that it can run for longer than lower-priority processes, but such a process will
have a lower nice value.

nice()
Linux provides several system calls for retrieving and setting a process’s nice value. The
simplest is nice():

#include <unistd.h>

int nice (int inc);

A successful call to nice() increments a process’s nice value by inc and returns the
newly updated value. Only a process with the CAP_SYS_NICE capability (effectively, pro‐
cesses owned by root) may provide a negative value for inc, decreasing its nice value
and thereby increasing its priority. Consequently, nonroot processes may only lower
their priorities (by increasing their nice values).
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On error, nice() returns −1. However, because nice() returns the new nice value, −1
is also a successful return value. To differentiate between success and failure, you can
zero out errno before invocation and subsequently check its value. For example:

int ret;

errno = 0;
ret = nice (10);    /* increase our nice by 10 */
if (ret == −1 && errno != 0)

perror ("nice");
else

printf ("nice value is now %d\n", ret);

Linux returns only a single error code: EPERM, signifying that the invoking process at‐
tempted to increase its priority (via a negative inc value), but it does not possess the
CAP_SYS_NICE capability. Other systems also return EINVAL when inc would place the
nice value out of the range of valid values, but Linux does not. Instead, Linux silently
rounds invalid inc values up or down to the value at the limit of the allowable range, as
needed.

Passing 0 for inc is an easy way to obtain the current nice value:

printf ("nice value is currently %d\n", nice (0));

Often, a process wants to set an absolute nice value rather than a relative increment.
This can be done with code like the following:

int ret, val;

/* get current nice value */
val = nice (0);

/* we want a nice value of 10 */
val = 10 - val;
errno = 0;
ret = nice (val);
if (ret == −1 && errno != 0)

perror ("nice");
else

printf ("nice value is now %d\n", ret);

getpriority() and setpriority()
A preferable solution is to use the getpriority() and setpriority() system calls,
which allow more control but are more complex in operation:

#include <sys/time.h>
#include <sys/resource.h>

int getpriority (int which, int who);
int setpriority (int which, int who, int prio);
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These calls operate on the process, process group, or user, as specified by which and
who. The value of which must be one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, in
which case who specifies a process ID, process group ID, or user ID, respectively. If who
is 0, the call operates on the current process ID, process group ID, or user ID, respectively.

A call to getpriority() returns the highest priority (lowest numerical nice value) of
any of the specified processes. A call to setpriority() sets the priority of all specified
processes to prio. As with nice(), only a process possessing CAP_SYS_NICE may raise
a process’s priority (lower the numerical nice value). Further, only a process with this
capability can raise or lower the priority of a process not owned by the invoking user.

Like nice(), getpriority() returns −1 on error. As this is also a successful return value,
programmers should clear errno before invocation if they want to handle error condi‐
tions. Calls to setpriority() have no such problem; setpriority() always returns 0
on success and −1 on error.

The following code returns the current process’s priority:

int ret;

ret = getpriority (PRIO_PROCESS, 0);
printf ("nice value is %d\n", ret);

The following code sets the priority of all processes in the current process group to 10:

int ret;

ret = setpriority (PRIO_PGRP, 0, 10);
if (ret == −1)

perror ("setpriority");

On error, both functions set errno to one of the following values:
EACCES

The process attempted to raise the specified process’s priority but does not possess
CAP_SYS_NICE (setpriority() only).

EINVAL

The value specified by which was not one of PRIO_PROCESS, PRIO_PGRP, or
PRIO_USER.

EPERM

The effective user ID of the matched process does not match the effective user ID
of the running process, and the running process does not possess CAP_SYS_NICE
(setpriority() only).

ESRCH

No process was found matching the criteria provided by which and who. 
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1. The util-linux package is located at kernel.org. It is licensed under the GNU General Public License v2.

I/O Priorities
In addition to a scheduling priority, Linux allows processes to specify an I/O priority.
This value affects the relative priority of the processes’ I/O requests. The kernel’s I/O
scheduler (discussed in Chapter 4) services requests originating from processes with
higher I/O priorities before requests from processes with lower I/O priorities.

By default, I/O schedulers use a process’s nice value to determine the I/O priority. Ergo,
setting the nice value automatically changes the I/O priority. However, the Linux kernel
additionally provides two system calls for explicitly setting and retrieving the I/O pri‐
ority independently of the nice value:

int ioprio_get (int which, int who)
int ioprio_set (int which, int who, int ioprio)

Unfortunately, glibc does not provide a user-space interface to these system calls.
Without glibc support, usage is cumbersome at best. Further, when and if glibc support
arrives, the interfaces may differ from the system calls. Until such support is available,
there are two portable ways to manipulate a process’s I/O priority: via the nice value or
a utility such as ionice, part of the util-linux package.1

Not all I/O schedulers support I/O priorities. Specifically, the Completely Fair Queuing
(CFQ) I/O Scheduler supports them; currently, the other standard schedulers do not.
If the current I/O scheduler does not support I/O priorities, they are silently ignored.

Processor Affinity
Linux supports multiple processors in a single system. Aside from the boot process, the
bulk of the work of supporting multiple processors rests on the process scheduler. On
a multiprocessing machine, the process scheduler must decide which processes run on
each CPU.

Two challenges derive from this responsibility: the scheduler must work toward fully
utilizing all of the system’s processors because it is inefficient for one CPU to sit idle
while a process is waiting to run. However, once a process has been scheduled on one
CPU, the process scheduler should aim to schedule it on the same CPU in the future.
This is beneficial because migrating a process from one processor to another has costs.

The largest of these costs are related to the cache effects of migration. Due to the design
of modern SMP systems, most of the caches associated with each processor are separate
and distinct. That is, the data in one processor’s cache is not in another’s. Therefore, if
a process moves to a new CPU and writes new data into memory, the data in the old
CPU’s cache can become stale. Relying on that cache would now cause corruption. To
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prevent this, caches invalidate each other’s data whenever they cache a new chunk of
memory. Consequently, a given piece of data is strictly in only one processor’s cache at
any given moment (assuming the data is cached at all). When a process moves from one
processor to another, there are thus two associated costs: cached data is no longer ac‐
cessible to the process that moved, and data in the original processor’s cache must be
invalidated. Because of these costs, process schedulers attempt to keep a process on a
specific CPU for as long as possible.

The process scheduler’s two goals, of course, are potentially conflicting. If one processor
has a significantly larger process load than another—or, worse, if one processor is busy
while another is idle—it makes sense to reschedule some processes on the less-busy
CPU. Deciding when to move processes in response to such imbalances, called load
balancing, is of great importance to the performance of SMP machines.

Processor affinity refers to the likelihood of a process to be scheduled consistently on
the same processor. The term soft affinity refers to the scheduler’s natural propensity to
continue scheduling a process on the same processor. As we’ve discussed, this is a
worthwhile trait. The Linux scheduler attempts to schedule the same processes on the
same processors for as long as possible, migrating a process from one CPU to another
only in situations of extreme load imbalance. This allows the scheduler to minimize the
cache effects of migration but still ensure that all processors in a system are evenly
loaded.

Sometimes, however, the user or an application wants to enforce a process-to-processor
bond. This is often because the process is strongly cache-sensitive and desires to remain
on the same processor. Bonding a process to a particular processor and having the kernel
enforce the relationship is called setting a hard affinity.

sched_getaffinity() and sched_setaffinity()
Processes inherit the CPU affinities of their parents and, by default, processes may run
on any CPU. Linux provides two system calls for retrieving and setting a process’s hard
affinity:

#define _GNU_SOURCE

#include <sched.h>

typedef struct cpu_set_t;

size_t CPU_SETSIZE;

void CPU_SET (unsigned long cpu, cpu_set_t *set);
void CPU_CLR (unsigned long cpu, cpu_set_t *set);
int CPU_ISSET (unsigned long cpu, cpu_set_t *set);
void CPU_ZERO (cpu_set_t *set);
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int sched_setaffinity (pid_t pid, size_t setsize,
const cpu_set_t *set);

int sched_getaffinity (pid_t pid, size_t setsize,
cpu_set_t *set);

A call to sched_getaffinity() retrieves the CPU affinity of the process pid and stores
it in the special cpu_set_t type, which is accessed via special macros. If pid is 0, the call
retrieves the current process’s affinity. The setsize parameter is the size of the
cpu_set_t type, which may be used by glibc for compatibility with future changes in
the size of this type. On success, sched_getaffinity() returns 0; on failure, it returns
−1, and errno is set. Here’s an example:

cpu_set_t set;
int ret, i;

CPU_ZERO (&set);
ret = sched_getaffinity (0, sizeof (cpu_set_t), &set);
if (ret == −1)

perror ("sched_getaffinity");

for (i = 0; i < CPU_SETSIZE; i++) {
int cpu;

cpu = CPU_ISSET (i, &set);
printf ("cpu=%i is %s\n", i,

cpu ? "set" : "unset");
}

Before invocation, we use CPU_ZERO to “zero out” all of the bits in the set. We then iterate
from 0 to CPU_SETSIZE over the set. Note that CPU_SETSIZE is, confusingly, not the size
of the set: you should never pass it for setsize. Instead, it represents the number of
processors that could potentially be represented by a set. Because the current imple‐
mentation represents each processor with a single bit, CPU_SETSIZE is much larger than
sizeof(cpu_set_t). We use CPU_ISSET to check whether a given processor in the sys‐
tem, i, is bound or unbound to this process. The macro returns 0 if the processor is
unbound and a nonzero value if bound.

Only processors physically on the system are set. Thus, running this snippet on a system
with two processors will yield:

cpu=0 is set
cpu=1 is set
cpu=2 is unset
cpu=3 is unset
...
cpu=1023 is unset

As the output shows, CPU_SETSIZE (which is zero-based) is currently 1,024.

188 | Chapter 6: Advanced Process Management



We are concerned only with CPUs #0 and #1 because they are the only physical pro‐
cessors on this system. Perhaps we want to ensure that our process runs only on CPU
#0, and never on #1. This code does just that:

cpu_set_t set;
int ret, i;

CPU_ZERO (&set); /* clear all CPUs */
CPU_SET (0, &set); /* allow CPU #0 */
CPU_CLR (1, &set); /* disallow CPU #1 */
ret = sched_setaffinity (0, sizeof (cpu_set_t), &set);
if (ret == −1)

perror ("sched_setaffinity");

for (i = 0; i < CPU_SETSIZE; i++) {
int cpu;

cpu = CPU_ISSET (i, &set);
printf ("cpu=%i is %s\n", i,

cpu ? "set" : "unset");
}

We start, as always, by zeroing out the set with CPU_ZERO. We then set CPU #0 with
CPU_SET and unset (clear) CPU #1 with CPU_CLR. The CPU_CLR operation is redundant
as we just zeroed out the whole set, but it is provided for completeness.

Running this on the same two-processor system will result in slightly different output
than before:

cpu=0 is set
cpu=1 is unset
cpu=2 is unset
...
cpu=1023 is unset

Now, CPU #1 is unset. This process will run only on CPU #0, no matter what!

Four errno values are possible:
EFAULT

The provided pointer was outside of the process’s address space or otherwise invalid.

EINVAL

In this case, there were no processors physically on the system enabled in set
(sched_setaffinity() only), or setsize is smaller than the size of the kernel’s
internal data structure that represents sets of processors.
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EPERM

The process associated with pid is not owned by the current effective user ID of the
calling process, and the process does not possess CAP_SYS_NICE.

ESRCH

No process associated with pid was found.

Real-Time Systems
In computing, the term real-time is often the source of some confusion and misunder‐
standing. A system is “real-time” if it is subject to operational deadlines: minimum and
mandatory times between stimuli and responses. A familiar real-time system is the anti-
lock braking system (ABS) found on nearly all modern automobiles. In this system, when
the brake is pressed, a computer regulates the brake pressure, often applying and re‐
leasing maximum brake pressure many times a second. This prevents the wheels from
“locking up,” which can reduce stopping power or even send the car into an uncontrolled
skid. In such a system, the operational deadlines are how fast the system must respond
to a “locked” wheel condition and how quickly the system can apply brake pressure.

Most modern operating systems, Linux included, provide some level of real-time
support.

Hard Versus Soft Real-Time Systems
Real-time systems come in two varieties: hard and soft. A hard real-time system requires
absolute adherence to operational deadlines. Exceeding the deadlines constitutes failure
and is a major bug. A soft real-time system, on the other hand, does not consider over‐
running a deadline to be a critical failure.

Hard real-time applications are easy to identify: some examples are anti-lock braking
systems, military weapons systems, medical devices, and signal processing. Soft real-
time applications are not always so easy to identify. One obvious member of that group
is video-processing applications: users notice a drop in quality if their deadlines are
missed, but a few lost frames can be tolerated.

Many other applications have timing constraints that, if not met, result in a detriment
to the user experience. Multimedia applications, games, and networking programs come
to mind. What about a text editor, however? If the program cannot respond quickly
enough to keypresses, the experience is poor, and the user may grow angry or frustrated.
Is this a soft real-time application? Certainly, when the developers were writing the
application, they realized that they needed to respond to keypresses in a timely manner.
But does this count as an operational deadline? The line defining soft real-time appli‐
cations is anything but clear.
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Contrary to common belief, a real-time system is not necessarily fast. Indeed, given
comparable hardware, a real-time system is probably slower than a non-real-time
system—due to, if nothing else, the increase in overhead required to support real-time
processes. Likewise, the division between hard and soft real-time systems is independent
of the size of the operational deadlines. A nuclear reactor will overheat if the SCRAM
system does not lower the control rods within several seconds of detecting excessive
neutron flux. This is a hard real-time system with a lengthy (as far as computers are
concerned) operational deadline. Conversely, a video player might skip a frame or stut‐
ter the sound if the application cannot refill the playback buffer within 100 ms. This is
a soft real-time system with a demanding operational deadline.

Latency, Jitter, and Deadlines
Latency refers to the period from the occurrence of the stimulus until the execution of
the response. If latency is less than or equal to the operational deadline, the system is
operating correctly. In many hard real-time systems, the operational deadline and the
latency are equal—the system handles stimuli in fixed intervals, at exact times. In soft
real-time systems, the required response is less exact, and latency exhibits some amount
of variance—the aim is simply for the response to occur within the deadline.

It is often hard to measure latency because its calculation requires knowing the time
when the stimulus occurred. The ability to timestamp the stimulus, however, begs the
ability to respond to it. Therefore, many attempts at instrumenting latency do no such
thing; instead, they measure the variation in timing between responses. The variation
in timing between successive events is jitter, not latency.

For example, consider a stimulus that occurs every 10 milliseconds. To measure the
performance of our system, we might timestamp our responses to ensure that they occur
every 10 milliseconds. The deviation from this target is not latency, however—it is jitter.
What we are measuring is the variance in successive responses. Without knowing when
the stimulus occurred, we do not know the actual difference in time between stimulus
and response. Even knowing that the stimulus occurs every 10 ms, we do not know
when the first occurrence was. Perhaps surprisingly, many attempts at measuring latency
make this mistake and report jitter, not latency. To be sure, jitter is a useful metric, and
such instrumentation is probably quite useful. Nevertheless, we must call a duck a duck!

Hard real-time systems often exhibit very low jitter because they respond to stimuli
after—not within—an exact amount of time. Such systems aim for a jitter of zero and
a latency equal to the operational delay. If the latency exceeds the delay, the system fails.

Soft real-time systems are more susceptible to jitter. In these systems, the response time
is ideally within the operational delay—often much sooner, sometimes not. Jitter, there‐
fore, is often an excellent surrogate for latency as a performance metric.
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Linux’s Real-Time Support
Linux provides applications with soft real-time support via a family of system calls
defined by IEEE Std 1003.1b-1993 (often shortened to POSIX 1993 or POSIX.1b).

Technically speaking, the POSIX standard does not dictate whether the provided real-
time support is soft or hard. In fact, all the POSIX standard really does is describe several
scheduling policies that respect priorities. What sorts of timing constraints the operating
system enforces on these policies is up to the OS designers.

Over the years, the Linux kernel has gained better and better real-time support, pro‐
viding lower and lower latency and more consistent jitter, without compromising sys‐
tem performance. Much of this is because improving latency helps many classes of
application, such as desktop and I/O-bound processes, and not just real-time applica‐
tions. The improvements are also attributable to the success of Linux in embedded and
real-time systems.

Unfortunately, many of the embedded and real-time modifications that have been made
to the Linux kernel exist only in custom Linux solutions outside of the mainstream
official kernel. Some of these modifications provide further reductions in latency and
even hard real-time behavior. The following sections discuss only the official kernel
interfaces and the behavior of the mainstream kernel. Luckily, most real-time modifi‐
cations continue to utilize the POSIX interfaces. Ergo, the subsequent discussion is also
relevant on modified systems.

Linux Scheduling Policies and Priorities
The behavior of the Linux scheduler with respect to a process depends on the process’s
scheduling policy, also called the scheduling class. In addition to the normal default pol‐
icy, Linux provides two real-time scheduling policies. A preprocessor macro from the
header <sched.h> represents each policy: the macros are SCHED_FIFO, SCHED_RR, and
SCHED_OTHER.

Every process possesses a static priority, unrelated to the nice value. For normal appli‐
cations, this priority is always 0. For the real-time processes, it ranges from 1 to 99,
inclusive. The Linux scheduler always selects the highest-priority process to run (i.e.,
the one with the largest numerical static priority value). If a process is running with a
static priority of 50, and a process with a priority of 51 becomes runnable, the scheduler
will immediately preempt the running process and switch to the newly runnable process.
Conversely, if a process is running with a priority of 50, and a process with a priority of
49 becomes runnable, the scheduler will not run it until the priority-50 process blocks,
becoming unrunnable. Because normal processes have a priority of 0, any real-time
process that is runnable will always preempt a normal process and run.

192 | Chapter 6: Advanced Process Management



The first in, first out policy
The first in, first out (FIFO) class is a very simple real-time policy without timeslices. A
FIFO-classed process will continue running so long as no higher-priority process be‐
comes runnable. The FIFO class is represented by the macro SCHED_FIFO.

As the policy lacks timeslices, its rules of operation are rather simple:

• A runnable FIFO-classed process will always run if it is the highest-priority process
on the system. Particularly, once a FIFO-classed process becomes runnable, it will
immediately preempt a normal process.

• A FIFO-classed process will continue running until it blocks or calls
sched_yield(), or until a higher-priority process becomes runnable.

• When a FIFO-classed process blocks, the scheduler removes it from the list
of runnable processes. When it again becomes runnable, it is inserted at the end of
the list of processes at its priority. Thus, it will not run until any other processes of
higher or equal priority cease execution.

• When a FIFO-classed process calls sched_yield(), the scheduler moves it to the
end of the list of processes at its priority. Thus, it will not run until any other equal-
priority processes cease execution. If the invoking process is the only process at its
priority, sched_yield() will have no effect.

• When a higher-priority process preempts a FIFO-classed process, the FIFO-classed
process remains at the same location in the list of processes for its given priority.
Thus, once the higher-priority process ceases execution, the preempted FIFO-
classed process will continue executing.

• When a process joins the FIFO class, or when a process’s static priority changes, it
is put at the head of the list of processes for its given priority. Consequently, a newly
prioritized FIFO-classed process can preempt an executing process of the same
priority.

Essentially, we can say that FIFO-classed processes always run for as long as they want,
so long as they are the highest-priority processes on the system. The interesting rules
pertain to what happens among FIFO-classed processes with the same priority.

The round-robin policy
The round-robin (RR) class is identical to the FIFO class, except that it imposes addi‐
tional rules in the case of processes with the same priority. The macro SCHED_RR
represents this class.

The scheduler assigns each RR-classed process a timeslice. When an RR-classed process
exhausts its timeslice, the scheduler moves it to the end of the list of processes at
its priority. In this manner, RR-classed processes of a given priority are scheduled
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round-robin amongst themselves. If there is only one process at a given priority, the RR
class is identical to the FIFO class. In such a case, when its timeslice expires, the process
simply resumes execution.

We can think of an RR-classed process as identical to a FIFO-classed process, except
that it additionally ceases execution when it exhausts its timeslice, at which time it moves
to the end of the list of runnable processes at its priority.

Deciding whether to use SCHED_FIFO or SCHED_RR is entirely a question of intra-priority
behavior. The RR class’s timeslices are relevant only among processes of the same pri‐
ority. FIFO-classed processes will continue running unabated; RR-classed processes will
schedule amongst themselves at a given priority. In neither case will a lower-priority
process ever run if a higher-priority process exists.

The normal policy

SCHED_OTHER represents the standard scheduling policy, the default nonreal-time class.
All normal-classed processes have a static priority of 0. Consequently, any runnable
FIFO- or RR-classed process will preempt a running normal-classed process.

The scheduler uses the nice value, discussed earlier, to prioritize processes within the
normal class. The nice value has no bearing on the static priority, which remains 0.

The batch scheduling policy

SCHED_BATCH is the batch or idle scheduling policy. Its behavior is somewhat the antithesis
of the real-time policies: processes in this class run only when there are no other runn‐
able processes on the system, even if the other processes have exhausted their timeslices.
This is different from the behavior of processes with the largest nice values (i.e., the
lowest-priority processes) in that eventually such processes will run, as the higher-
priority processes exhaust their timeslices.

Setting the Linux scheduling policy

Processes can manipulate the Linux scheduling policy via sched_getscheduler() and
sched_setscheduler():

#include <sched.h>

struct sched_param {
/* ... */
int sched_priority;
/* ... */

};

int sched_getscheduler (pid_t pid);

int sched_setscheduler (pid_t pid,
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int policy,
const struct sched_param *sp);

A successful call to sched_getscheduler() returns the scheduling policy of the process
represented by pid. If pid is 0, the call returns the invoking process’s scheduling policy.
An integer defined in <sched.h> represents the scheduling policy: the first in, first out
policy is SCHED_FIFO; the round-robin policy is SCHED_RR; and the normal policy is
SCHED_OTHER. On error, the call returns −1 (which is never a valid scheduling policy),
and errno is set as appropriate.

Usage is simple:

int policy;

/* get our scheduling policy */
policy = sched_getscheduler (0);

switch (policy) {
case SCHED_OTHER:

printf ("Policy is normal\n");
break;

case SCHED_RR:
printf ("Policy is round-robin\n");
break;

case SCHED_FIFO:
printf ("Policy is first-in, first-out\n");
break;

case -1:
perror ("sched_getscheduler");
break;

default:
fprintf (stderr, "Unknown policy!\n");

}

A call to sched_setscheduler() sets the scheduling policy of the process represented
by pid to policy. Any parameters associated with the policy are set via sp. If pid is 0,
the invoking process’s policy and parameters are set. On success, the call returns 0. On
failure, the call returns −1, and errno is set as appropriate.

The valid fields inside the sched_param structure depend on the scheduling policies
supported by the operating system. The SCHED_RR and SCHED_FIFO policies require one
field, sched_priority, which represents the static priority. SCHED_OTHER does not use
any field, while scheduling policies supported in the future may use new fields. Portable
and legal programs must therefore not make assumptions about the layout of the
structure.

Setting a process’s scheduling policy and parameters is easy:
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struct sched_param sp = { .sched_priority = 1 };
int ret;

ret = sched_setscheduler (0, SCHED_RR, &sp);
if (ret == −1) {

perror ("sched_setscheduler");
return 1;

}

This snippet sets the invoking process’s scheduling policy to round-robin with a static
priority of 1. We presume that 1 is a valid priority—technically, it need not be. We will
discuss how to find the valid priority range for a given policy in an upcoming section.

Setting a scheduling policy other than SCHED_OTHER requires the CAP_SYS_NICE capa‐
bility. Consequently, the root user typically runs real-time processes. Since the 2.6.12
kernel, the RLIMIT_RTPRIO resource limit allows nonroot users to set real-time policies
up to a certain priority ceiling.

On error, four errno values are possible:
EFAULT

The pointer sp points to an invalid or inaccessible region of memory.

EINVAL

The scheduling policy denoted by policy is invalid, or a value set in sp does not
make sense for the given policy (sched_setscheduler() only).

EPERM

The invoking process does not have the necessary capabilities.

ESRCH

The value pid does not denote a running process. 

Setting Scheduling Parameters
The POSIX-defined sched_getparam() and sched_setparam() interfaces retrieve and
set the parameters associated with a scheduling policy that has already been set:

#include <sched.h>

struct sched_param {
/* ... */
int sched_priority;
/* ... */

};

int sched_getparam (pid_t pid, struct sched_param *sp);

int sched_setparam (pid_t pid, const struct sched_param *sp);
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The sched_getscheduler() interface returns only the scheduling policy, not any as‐
sociated parameters. A call to sched_getparam() returns via sp the scheduling param‐
eters associated with pid:

struct sched_param sp;
int ret;

ret = sched_getparam (0, &sp);
if (ret == −1) {

perror ("sched_getparam");
return 1;

}

printf ("Our priority is %d\n", sp.sched_priority);

If pid is 0, the call returns the parameters of the invoking process. On success, the call
returns 0. On failure, it returns −1 and sets errno as appropriate.

Because sched_setscheduler() also sets any associated scheduling parameters,
sched_setparam() is useful only to later modify the parameters:

struct sched_param sp;
int ret;

sp.sched_priority = 1;
ret = sched_setparam (0, &sp);
if (ret == −1) {

perror ("sched_setparam");
return 1;

}

On success, the scheduling parameters of pid are set according to sp, and the call returns
0. On failure, the call returns −1, and errno is set as appropriate.

If we ran the two preceding snippets in reverse order, we would see the following output:

Our priority is 1

This example again assumes that 1 is a valid priority. It is, but portable applications
should make sure. We’ll look at how to check the range of valid priorities momentarily.

Error codes

On error, four errno values are possible:
EFAULT

The pointer sp points to an invalid or inaccessible region of memory.

EINVAL

A value set in sp does not make sense for the given policy (sched_getparam() only).

Real-Time Systems | 197



EPERM

The invoking process does not have the necessary capabilities.

ESRCH

The value pid does not denote a running process.

Determining the range of valid priorities
Our previous examples have passed hardcoded priority values into the scheduling sys‐
tem calls. POSIX makes no guarantees about what scheduling priorities exist on a given
system, except to say that there must be at least 32 priorities between the minimum and
maximum values. As mentioned earlier in “Linux Scheduling Policies and Priorities”
on page 192, Linux implements a range of 1 to 99 inclusive for the two real-time sched‐
uling policies. A clean, portable program normally implements its own range of priority
values and maps them onto the operating system’s range. For instance, if you want to
run processes at four different real-time priority levels, you dynamically determine the
range of priorities and choose four values.

Linux provides two system calls for retrieving the range of valid priority values. One
returns the minimum value and the other returns the maximum:

#include <sched.h>

int sched_get_priority_min (int policy);

int sched_get_priority_max (int policy);

On success, the call sched_get_priority_min() returns the minimum, and the call
sched_get_priority_max() returns the maximum valid priority associated with the
scheduling policy denoted by policy. Upon failure, the calls both return −1. The only
possible error is if policy is invalid, in which case errno is set to EINVAL.

Usage is simple:

int min, max;

min = sched_get_priority_min (SCHED_RR);
if (min == −1) {

perror ("sched_get_priority_min");
return 1;

}

max = sched_get_priority_max (SCHED_RR);
if (max == −1) {

perror ("sched_get_priority_max");
return 1;

}

printf ("SCHED_RR priority range is %d - %d\n", min, max);
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On a standard Linux system, this snippet yields the following:

SCHED_RR priority range is 1 - 99

As discussed previously, numerically larger priority values denote higher priorities. To
set a process to the highest priority for its scheduling policy, you can do the following:

/*
* set_highest_priority - set the associated pid's scheduling
* priority to the highest value allowed by its current
* scheduling policy. If pid is zero, sets the current
* process's priority.
*
 * Returns zero on success.
 */
int set_highest_priority (pid_t pid)
{

struct sched_param sp;
int policy, max, ret;

policy = sched_getscheduler (pid);
if (policy == −1)

return −1;

max = sched_get_priority_max (policy);
if (max == −1)

return −1;

memset (&sp, 0, sizeof (struct sched_param));
sp.sched_priority = max;
ret = sched_setparam (pid, &sp);

return ret;
}

Programs typically retrieve the system’s minimum or maximum value and then use
increments of 1 (such as max-1, max-2, etc.) to assign priorities as desired.

sched_rr_get_interval()
As discussed earlier, SCHED_RR processes behave the same as SCHED_FIFO processes,
except that the scheduler assigns these processes timeslices. When a SCHED_RR process
exhausts its timeslice, the scheduler moves the process to the end of the run list for its
current priority. In this manner, all SCHED_RR processes of the same priority are executed
in a round-robin rotation. Higher-priority processes (and SCHED_FIFO processes of the
same or higher priority) will always preempt a running SCHED_RR process, regardless of
whether it has any of its timeslice remaining.

POSIX defines an interface for retrieving the length of a given process’s timeslice:
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#include <sched.h>

struct timespec {
time_t  tv_sec;     /* seconds */
long    tv_nsec;    /* nanoseconds */

};

int sched_rr_get_interval (pid_t pid, struct timespec *tp);

A successful call to the awfully named sched_rr_get_interval() saves in the time
spec structure pointed at by tp the duration of the timeslice allotted to pid and returns
0. On failure, the call returns −1, and errno is set as appropriate.

According to POSIX, this function is required to work only with SCHED_RR processes.
On Linux, however, it can retrieve the length of any process’s timeslice. Portable appli‐
cations should assume that the function works only with round-robin processes; Linux-
specific programs may exploit the call as needed. Here’s an example:

struct timespec tp;
int ret;

/* get the current task's timeslice length */
ret = sched_rr_get_interval (0, &tp);
if (ret == −1) {

perror ("sched_rr_get_interval");
return 1;

}

/* convert the seconds and nanoseconds to milliseconds */
printf ("Our time quantum is %.2lf milliseconds\n",

(tp.tv_sec * 1000.0f) + (tp.tv_nsec / 1000000.0f));

If the process is running in the FIFO class, tv_sec and tv_nsec are both 0, denoting
infinity.

Error codes

On error, three errno values are possible:
EFAULT

The memory pointed at by the pointer tp is invalid or inaccessible.

EINVAL

The value pid is invalid (for example, it is negative).

ESRCH

The value pid is valid but refers to a nonexistent process.
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Precautions with Real-Time Processes
Because of the nature of real-time processes, developers should exercise caution when
developing and debugging such programs. If a real-time program goes off the deep end,
the system can become unresponsive. Any CPU-bound loop in a real-time program—
that is, any chunk of code that does not block—will continue running ad infinitum so
long as no higher-priority real-time processes become runnable.

Consequently, designing real-time programs requires care and attention. Such pro‐
grams reign supreme and can easily bring down the entire system. Some tips and
precautions:

• Keep in mind that any CPU-bound loop will run until completion, without inter‐
ruption, if there is no higher-priority real-time process on the system. If the loop
is infinite, the system will become unresponsive.

• Because real-time processes run at the expense of everything else on the system,
special attention must be paid to their design. Take care not to starve the rest of the
system of processor time.

• Be very careful with busy waiting. If a real-time process busy-waits for a resource
held by a lower-priority process, the real-time process will busy-wait forever.

• While developing a real-time process, keep a terminal open, running as a real-time
process with a higher priority than the process in development. In an emergency,
the terminal will remain responsive and allow you to kill the runaway real-time
process. (As the terminal remains idle, waiting for keyboard input, it will not in‐
terfere with the other real-time process until you need it.)

• The chrt utility, part of the util-linux package of tools, makes it easy to retrieve and
set the real-time attributes of other processes. This tool makes it easy to launch
arbitrary programs in a real-time scheduling class, such as the aforementioned
terminal, or change the real-time priorities of existing applications.

Determinism
Real-time processes are big on determinism. In real-time computing, an action is de‐
terministic if, given the same input, it always produces the same result in the same
amount of time. Modern computers are the very definition of something that is not
deterministic: multiple levels of caches (which incur hits or misses without predicta‐
bility), multiple processors, paging, swapping, and multitasking wreak havoc on any
estimate of how long a given action will take. Sure, we have reached a point where just
about every action (modulo hard drive access) is “incredibly fast,” but simultaneously,
modern systems have also made it hard to pinpoint exactly how long a given operation
will take.
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Real-time applications often try to limit unpredictability in general and worst-case de‐
lays specifically. The following sections discuss two methods that are used to this end.

Prefaulting data and locking memory
Picture this: the hardware interrupt from the custom incoming intercontinental ballistic
missile (ICBM) monitor hits, and the device’s driver quickly copies data from the hard‐
ware into the kernel. The driver notes that a process is asleep, blocked on the hardware’s
device node, waiting for data. The driver tells the kernel to wake up the process. The
kernel, noting that this process is running with a real-time scheduling policy and a high
priority, immediately preempts the currently running process and shifts into overdrive,
determined to schedule the real-time process immediately. The scheduler switches to
running the real-time process, and context-switches into its address space. The process
is now running. The whole ordeal took 0.3 ms, well within the 1 ms worst-case accept‐
able latency period.

Now, in user space, the real-time process notes the incoming ICBM and begins pro‐
cessing its trajectory. With the ballistics calculated, the real-time process initiates the
deployment of an anti-ballistic missile system. Only another 0.1 ms have passed—quick
enough to deploy the anti-ballistic missile (ABM) response and save lives. But—oh no!
—the ABM code has been swapped to disk. A page fault occurs, the processor switches
back to kernel mode, and the kernel initiates hard disk I/O to retrieve the swapped-out
data. The scheduler puts the process to sleep until the page fault is serviced. Several
seconds elapse. It is too late.

Clearly, paging and swapping introduce quite undeterministic behavior that can wreak
havoc on a real-time process. To prevent this catastrophe, a real-time application will
often “lock” or “hardwire” all of the pages in its address space into physical memory,
prefaulting them into memory and preventing them from being swapped out. Once the
pages are locked into memory, the kernel will never swap them out to disk. Any accesses
of the pages will not cause page faults. Most real-time applications lock some or all of
their pages into physical memory.

Linux provides interfaces for both prefaulting and locking data. Chapter 4 discussed
interfaces for prefaulting data into physical memory. Chapter 9 will discuss interfaces
for locking data into physical memory.

CPU affinity and real-time processes
A second concern of real-time applications is multitasking. Although the Linux kernel
is preemptive, its scheduler is not always able to immediately reschedule one process in
favor of another. Sometimes, the currently running process is executing inside of a
critical region in the kernel, and the scheduler cannot preempt it until it exits that region.
If the process that is waiting to run is real-time, this delay may be unacceptable, quickly
overrunning the operational deadline.
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2. The SysVinit source is located at http://freecode.com/projects/sysvinit. It is licensed under the GNU General
Public License v2.

Ergo, multitasking introduces indeterminism similar in nature to the unpredictability
associated with paging. The solution with respect to multitasking is the same: eliminate
it. Of course, chances are you cannot simply abolish all other processes. If that were
possible in your environment, you probably would not need Linux to begin with—a
simple custom operating system would suffice. If, however, your system has multiple
processors, you can dedicate one or more of those processors to your real-time process
or processes. In effect, you can shield the real-time processes from multitasking.

We discussed system calls for manipulating a process’s CPU affinity earlier in this chap‐
ter. A potential optimization for real-time applications is to reserve one processor
for each real-time process and let all other processes time-share on the remaining
processor(s).

The simplest way to achieve this is to modify Linux’s init program, SysVinit,2 to do
something similar to the following before it begins the boot process:

cpu_set_t set;
int ret;

CPU_ZERO (&set);        /* clear all CPUs */
ret = sched_getaffinity (0, sizeof (cpu_set_t), &set);
if (ret == −1) {

perror ("sched_getaffinity");
return 1;

}

CPU_CLR (1, &set);      /* forbid CPU #1 */
ret = sched_setaffinity (0, sizeof (cpu_set_t), &set);
if (ret == −1) {

perror ("sched_setaffinity");
return 1;

}

This snippet grabs init’s current set of allowed processors, which we expect is all of them.
It then removes one processor, CPU #1, from the set and updates the list of allowed
processors.

Because the set of allowed processors is inherited from parent to child, and init is the
super-parent of all processes, all of the system’s processes will run with this set of allowed
processors. Consequently, no processes will ever run on CPU #1.

Next, modify your real-time process to run only on CPU #1:

cpu_set_t set;
int ret;
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3. In which case the call will set errno to EMFILE, indicating that the process hit the resource limit on the
maximum number of open files. Chapter 2 discusses the open() system call.

CPU_ZERO (&set);        /* clear all CPUs */
CPU_SET (1, &set);      /* allow CPU #1 */
ret = sched_setaffinity (0, sizeof (cpu_set_t), &set);
if (ret == −1) {

perror ("sched_setaffinity");
return 1;

}

The result is that your real-time process runs only on CPU #1 and all other processes
run on the other processors.

Resource Limits
The Linux kernel imposes several resource limits on processes. These resource limits
place hard ceilings on the amount of kernel resources that a process can consume—that
is, the number of open files, pages of memory, pending signals, and so on. The limits
are strictly enforced; the kernel will not allow an action that places a process’s resource
consumption over a hard limit. For example, if opening a file would cause a process to
have more open files than allowed by the applicable resource limit, the open() invoca‐
tion will fail.3

Linux provides two system calls for manipulating resource limits. POSIX standardized
both interfaces, but Linux supports several limits in addition to those dictated by the
standard. Limits can be checked with getrlimit() and set with setrlimit():

#include <sys/time.h>
#include <sys/resource.h>

struct rlimit {
rlim_t rlim_cur;  /* soft limit */
rlim_t rlim_max;  /* hard limit */

};

int getrlimit (int resource, struct rlimit *rlim);
int setrlimit (int resource, const struct rlimit *rlim);

Integer constants, such as RLIMIT_CPU, represent the resources. The rlimit structure
represents the actual limits. The structure defines two ceilings: a soft limit and a hard
limit. The kernel enforces soft resource limits on processes, but a process may freely
change its soft limit to any value from 0 up to and including the hard limit. A process
without the CAP_SYS_RESOURCE capability (i.e., any nonroot process) can only lower its
hard limit. An unprivileged process can never raise its hard limit, not even to a previ‐
ously higher value; lowering the hard limit is irreversible. A privileged process can set
the hard limit to any valid value.
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What the limits actually represent depends on the resource in question. If resource is
RLIMIT_FSIZE, for example, the limit represents the maximum size of a file that a process
can create, in bytes. In this case, if rlim_cur is 1,024, a process cannot create or extend
a file to a size greater than one kilobyte.

All of the resource limits have two special values: 0 and infinity. The former disables
use of the resource altogether. For example, if RLIMIT_CORE is 0, the kernel will never
create a core file. Conversely, the latter removes any limit on the resource. The kernel
denotes infinity by the special value RLIM_INFINITY, which happens to be −1 (this can
cause some confusion, as −1 is also the return value indicating error). If RLIMIT_CORE
is infinity, the kernel will create core files of any size.

The function getrlimit() places the current hard and soft limits on the resource de‐
noted by resource in the structure pointed at by rlim. On success, the call returns 0.
On failure, the call returns −1 and sets errno as appropriate.

Correspondingly, the function setrlimit() sets the hard and soft limits associated with
resource to the values pointed at by rlim. On success, the call returns 0, and the kernel
updates the resource limits as requested. On failure, the call returns −1 and sets errno
as appropriate.

The Limits
Linux currently provides 16 resource limits:
RLIMIT_AS

Limits the maximum size of a process’s address space, in bytes. Attempts to increase
the size of the address space past this limit (via calls such as mmap() and brk()) will
fail and return ENOMEM. If the process’s stack, which automatically grows as needed,
expands beyond this limit, the kernel sends the process the SIGSEGV signal. This
limit is usually RLIM_INFINITY.

RLIMIT_CORE

Dictates the maximum size of core files, in bytes. If nonzero, core files larger than
this limit are truncated to the maximum size. If 0, core files are never created.

RLIMIT_CPU

Dictates the maximum CPU time that a process can consume, in seconds. If a pro‐
cess runs for longer than this limit, the kernel sends it a SIGXCPU signal, which
processes may catch and handle. Portable programs should terminate on receipt of
this signal, as POSIX leaves undefined what action the kernel may take next. Some
systems may terminate the process if it continues to run. Linux, however, allows
the process to continue executing and continues sending SIGXCPU signals at one
second intervals. Once the process reaches the hard limit, it is sent a SIGKILL and
terminated.
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RLIMIT_DATA

Controls the maximum size of a process’s data segment and heap, in bytes. Attempts
to enlarge the data segment beyond this limit via brk() will fail and return ENOMEM.

RLIMIT_FSIZE

Specifies the maximum file size that a process may create, in bytes. If a process
expands a file beyond this size, the kernel sends the process a SIGXFSZ signal. By
default, this signal terminates the process. A process may, however, elect to catch
and handle this signal, in which case the offending system call fails and returns
EFBIG.

RLIMIT_LOCKS

Controls the maximum number of file locks that a process may hold (see Chap‐
ter 8 for a discussion of file locks). Once this limit is reached, further attempts to
acquire additional file locks should fail and return ENOLCK. Linux kernel 2.4.25,
however, removed this functionality. In current kernels, this limit is settable, but
has no effect.

RLIMIT_MEMLOCK

Specifies the maximum number of bytes of memory that a process without the
CAP_SYS_IPC capability (effectively, a nonroot process) can lock into memory via
mlock(), mlockall(), or shmctl(). If this limit is exceeded, these calls fail, and
return EPERM. In practice, the effective limit is rounded down to an integer multiple
of pages. Processes possessing CAP_SYS_IPC can lock any number of pages into
memory, and this limit has no effect. Before kernel 2.6.9, this limit was the maxi‐
mum that a process with CAP_SYS_IPC could lock into memory, and unprivileged
processes could not lock any pages whatsoever. This limit is not part of POSIX; BSD
introduced it.

RLIMIT_MSGQUEUE

Specifies the maximum number of bytes that a user may allocate for POSIX message
queues. If a newly created message queue would exceed this limit, mq_open() fails
and returns ENOMEM. This limit is not part of POSIX; it was added in kernel 2.6.8
and is Linux-specific.

RLIMIT_NICE

Specifies the maximum value to which a process can lower its nice value (raise its
priority). As discussed earlier in this chapter, normally processes can only raise their
nice values (lower their priorities). This limit allows the administrator to impose a
maximum level (nice value floor) to which processes may legally raise their prior‐
ities. Because nice values may be negative, the kernel interprets the value as 20 -
rlim_cur. Thus, if this limit is set to 40, a process can lower its nice value to the
minimum value of −20 (the highest priority). Kernel 2.6.12 introduced this limit.
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RLIMIT_NOFILE

Specifies one greater than the maximum number of file descriptors that a process
may hold open. Attempts to surpass this limit result in failure and the applicable
system call returning EMFILE. This limit is also specifiable as RLIMIT_OFILE, which
is BSD’s name for it.

RLIMIT_NPROC

Specifies the maximum number of processes that the user may have running on the
system at any given moment. Attempts to surpass this limit result in failure and
fork() will return EAGAIN. This limit is not part of POSIX; it was introduced by
BSD.

RLIMIT_RSS

Specifies the maximum number of pages that a process may have resident in mem‐
ory (known as the resident set size, or RSS). Only early 2.4 kernels enforced this
limit. Current kernels allow the setting of this limit, but it is not enforced. This limit
is not part of POSIX; BSD introduced it.

RLIMIT_RTTIME

Specifies a limit (in microseconds) on CPU time that a real-time process may con‐
sume without issuing a blocking system call. Once the process makes a blocking
system call, the CPU time is reset to zero. This prevents a runaway real-time process
from taking down the system. It was added in Linux kernel version 2.6.25 and is
Linux-specific.

RLIMIT_RTPRIO

Specifies the maximum real-time priority level a process without the CAP_SYS_NICE
capability (effectively, nonroot processes) may request. Normally, unprivileged
processes may not request any real-time scheduling class. It was added in kernel
2.6.12 and is Linux-specific.

RLIMIT_SIGPENDING

Specifies the maximum number of signals (standard and real-time) that may be
queued for this user. Attempts to queue additional signals fail, and system calls such
as sigqueue() return EAGAIN. Note that it is always possible, regardless of this limit,
to queue one instance of a not-yet-queued signal. Therefore, it is always possible to
deliver to the process a SIGKILL or SIGTERM. This limit is not part of POSIX; it is
Linux-specific.

RLIMIT_STACK

Denotes the maximum size of a process’s stack, in bytes. Surpassing this limit results
in the delivery of a SIGSEGV.

The kernel manages the resource limits on a per-process basis. A child process inherits
its limits from its parent during fork; limits are maintained across exec.
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Default limits
The default limits available to your process depend on three variables: the initial soft
limit, the initial hard limit, and your system administrator. The kernel dictates the initial
hard and soft limits; Table 6-1 lists them. The kernel sets these limits on the init process,
and because children inherit the limits of their parents, all subsequent processes inherit
the soft and hard limits of init.

Table 6-1. Default soft and hard resource limits
Resource limit Soft limit Hard limit

RLIMIT_AS RLIM_INFINITY RLIM_INFINITY

RLIMIT_CORE 0 RLIM_INFINITY

RLIMIT_CPU RLIM_INFINITY RLIM_INFINITY

RLIMIT_DATA RLIM_INFINITY RLIM_INFINITY

RLIMIT_FSIZE RLIM_INFINITY RLIM_INFINITY

RLIMIT_LOCKS RLIM_INFINITY RLIM_INFINITY

RLIMIT_MEMLOCK 8 pages 8 pages

RLIMIT_MSGQUEUE 800 KB 800 KB

RLIMIT_NICE 0 0

RLIMIT_NOFILE 1024 1024

RLIMIT_NPROC 0 (implies no limit) 0 (implies no limit)

RLIMIT_RSS RLIM_INFINITY RLIM_INFINITY

RLIMIT_RTPRIO 0 0

RLIMIT_SIGPENDING 0 0

RLIMIT_STACK 8 MB RLIM_INFINITY

Two things can change these default limits:

• Any process is free to increase a soft limit to any value from 0 to the hard limit, or
to decrease a hard limit. Children will inherit these updated limits during a fork.

• A privileged process is free to set a hard limit to any value. Children will inherit
these updated limits during a fork.

It is unlikely that a root process in a regular process’s lineage will change any hard limits.
Consequently, the first item is a much more likely source of limit changes than the
second. Indeed, the actual limits presented to a process are generally set by the user’s
shell, which the system administrator can set up to provide various limits. In the Bourne-
again shell (bash), for example, the administrator accomplishes this via the ulimit com‐
mand. Note that the administrator need not lower values; he can also raise soft limits
to the hard limits, providing users with saner defaults. This is often done with
RLIMIT_STACK, which is set to RLIM_INFINITY on many systems.
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Setting and Retrieving Limits
With the explanations of the various resource limits behind us, let’s look at retrieving
and setting limits. Retrieving a resource limit is quite simple:

struct rlimit rlim;
int ret;

/* get the limit on core sizes */
ret = getrlimit (RLIMIT_CORE, &rlim);
if (ret == −1) {

perror ("getrlimit");
return 1;

}

printf ("RLIMIT_CORE limits: soft=%ld hard=%ld\n",
rlim.rlim_cur, rlim.rlim_max);

Compiling this snippet in a larger program and running it yields the following:

RLIMIT_CORE limits: soft=0 hard=−1

We have a soft limit of 0 and a hard limit of infinity (−1 denotes RLIM_INFINITY).
Therefore, we can set a new soft limit of any size. This example sets the maximum core
size to 32 MB:

struct rlimit rlim;
int ret;

rlim.rlim_cur = 32 * 1024 * 1024; /* 32 MB */
rlim.rlim_max = RLIM_INFINITY;    /* leave it alone */
ret = setrlimit (RLIMIT_CORE, &rlim);
if (ret == −1) {

perror ("setrlimit");
return 1;

}

Error codes

On error, three errno codes are possible:
EFAULT

The memory pointed at by rlim is invalid or inaccessible.

EINVAL

The value denoted by resource is invalid, or rlim.rlim_cur is greater than
rlim.rlim_max (setrlimit() only).

EPERM

The caller did not possess CAP_SYS_RESOURCE but tried to raise the hard limit. 
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CHAPTER 7

Threading

Threading is the creation and management of multiple units of execution within a single
process. Threading is a significant source of programming error, through the intro‐
duction of data races and deadlocks. The topic of threading can—and indeed does—fill
whole books. Those works tend to focus on the myriad interfaces in a particular thread‐
ing library. While we will cover the basics of the Linux threading API, the goal of this
chapter is to go meta: How does threading fit into the system programmer’s overall
toolkit? Why use threads—and, more importantly, why not? What design patterns help
us conceptualize and build threading applications? And, finally, what are data races and
how can we prevent them?

Binaries, Processes, and Threads
Binaries are dormant programs residing on a storage medium, compiled to a format
accessible by a given operating system and machine architecture, ready to execute but
not yet in motion. Processes are the operating system abstraction representing those
binaries in action: the loaded binary, virtualized memory, kernel resources such as open
files, an associated user, and so on. Threads are the unit of execution within a process:
a virtualized processor, a stack, and program state. Put another way, processes are run‐
ning binaries and threads are the smallest unit of execution schedulable by an operating
system’s process scheduler.

A process contains one or more threads. If a process contains but one thread, there is
only a single unit of execution in the process and only one thing going on at a time. We
call such processes single threaded. They are the classic Unix process. If a process con‐
tains more than one thread, then there is more than one thing going on at once. We call
such processes multithreaded.

Modern operating systems provide two fundamental virtualized abstractions to user-
space: virtual memory and a virtualized processor. Together, they give the illusion to
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each running process that it alone consumes the machine’s resources. Virtualized mem‐
ory affords each process a unique view of memory that seamlessly maps back to physical
RAM or on-disk storage (via paging). The system’s RAM may in actuality contain the
data of 100 different running processes, but each process sees virtual memory all of its
own. A virtualized processor lets processes act as if they alone run on the system, with
the operating system hiding the fact that multiple processes are multitasking across
(perhaps) multiple processors.

Virtualized memory is associated with the process and not the thread. Thus, each pro‐
cess has a unique view of memory, but all of the threads in a given process share that
memory. Conversely, a virtualized processor is associated with threads and not pro‐
cesses. Each thread is an independently schedulable entity, allowing a single process to
“do” more than one thing at a time. Many programmers combine the two illusions of
virtualized memory and virtualized processor, but threads require you to separate them.
Threads have the illusion, as processes do, of having a processor (or several) all to
themselves. Threads, unlike processes, do not have the illusion of having memory all to
themselves—all the threads within a process share the entirety of their memory address
space.

Multithreading
What is the point of threads? We obviously need processes, since they are the abstraction
of a running program. But why decouple the unit of execution and introduce threads?
There are six primary benefits to multithreading:
Programming abstraction

Dividing up work and assigning each division to a unit of execution (a thread) is a
natural approach to many problems. Design patterns that utilize this approach in‐
clude the thread-per-connection and thread pool patterns. Programmers find these
patterns useful and intuitive. Some, however, view threads as an anti-pattern. The
inimitable Alan Cox summed this up well with the quote, “threads are for people
who can’t program state machines.” That is, there is in theory no programming
problem that is solvable with threads that isn’t solvable with a state machine.

Parallelism
In machines with multiple processors, threads provide an efficient way to achieve
true parallelism. As each thread receives its own virtualized processor and is an
independently schedulable entity, multiple threads may run on multiple processors
at the same time, improving a system’s throughput. To the extent that threads are
used to achieve parallelism—that is, there are no more threads than processors—
the “threads are for people who can’t program state machines” maxim does not
apply.
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Improving responsiveness
Even on a uniprocessor machine, multithreading can improve a process’s respon‐
siveness. In a single-threaded process, a long-running operation can prevent an
application from responding to user input, making it appear as if the application
has froze. With multithreading, such operations may be delegated to worker
threads, allowing at least one thread to remain responsive to user input and perform
UI operations.

Blocking I/O
This is related to the previous item. Without threads, blocking I/O halts the entire
process. This can be detrimental to both throughput and latency. In a multithreaded
process, individual threads may block, waiting on I/O, while other threads continue
to make forward progress. Asynchronous and nonblocking I/O are alternative sol‐
utions to threads for this issue.

Context switching
The cost of switching from one thread to a different thread within the same process
is significantly cheaper than process-to-process context switching.

Memory savings
Threads provide an efficient way to share memory yet utilize multiple units of
execution. In this manner they are an alternative to multiple processes.

For these reasons, threading is a relatively common feature of operating systems and
their applications. On some systems, such as Android, nearly every process on the sys‐
tem sports multiple threads. A decade or two ago, “threads are for people who can’t
program state machines” was quite often true, as most of the benefits of threads were
realizable through other means, such as nonblocking I/O and, yes, state machines. To‐
day, the number of processors in even the smallest of machines—even mobile devices
have multiple processors—and technologies such as multicore and simultaneous mul‐
tithreading (SMT) necessitate threads as a tool to maximize throughput in system pro‐
gramming. Now it is unimaginable to find a high-performance web service not running
with many threads on many cores.

Context Switching: Processes Versus Threads
One of the performance wins from threading comes from the inexpensive cost of context
switching from thread-to-thread within the same process (intraprocess switching). On
any system, the cost of intraprocess switching is less than the cost of interprocess
switching; the former is always a subset of the latter. This cost gap is particularly large
on systems other than Linux, where processes are costly abstractions. Hence many sys‐
tems call threads “lightweight processes.”
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On Linux, the cost of interprocess switching is not high, but intraprocess switching is
near zero: approximately the cost of entering and exiting the kernel. Processes aren’t
expensive, but threads are cheaper still.

Machine architectures impose costs to process switching that threads do not bear, as
process switching involves swapping out one virtual address space for another. On x86,
for example, the translation lookaside buffer (TLB), which is a cache mapping virtual
to physical memory addresses, must be flushed when swapping out the virtual address
space. In certain workloads, TLB misses are incredibly detrimental to system perfor‐
mance. As an extreme example, on some ARM machines, the entirety of the CPU cache
must be flushed! Threads do not bear these costs, as thread-to-thread switching does
not swap out the virtual address space.

Costs of Multithreading
Despite these benefits, multithreading is not without cost. Indeed, some of the scariest,
most nefarious bugs in the history of programming have been caused by threading.
Designing, writing, understanding, and—most treacherous of all—debugging multi‐
threading programs is significantly more difficult than with a single-threaded process.

The source of consternation with threads is also their raison d'être: multiple virtualized
processors but only one instance of virtualized memory. Put another way, a multithrea‐
ded process has multiple things going on at once (concurrency) yet all those things share
the same memory. Inevitably, the threads in a process are going to share resources—
say, the need to read from or write to the same data. Understanding how your program
works thus changes from understanding the simple sequential execution of instructions
to conceptualizing multiple threads, executing independently, with timing and ordering
that can be unpredictable yet absolutely essential to correct operation. Failing to syn‐
chronize threads can lead to corrupt output, incorrect execution, and program crash.
Because understanding and debugging multithreaded programs is so difficult, it is im‐
perative that your threading model and synchronization strategy be part of your system’s
design from day one.

Alternatives to Multithreading
Depending on your goals with multithreading, there are alternatives. For example, the
latency and I/O benefits to threading are attainable via a combination of multiplexed
I/O (see “Multiplexed I/O” on page 51), nonblocking I/O (“Nonblocking Reads” on page
35), and asynchronous I/O (“Asynchronous I/O” on page 123). These techniques allow
processes to issue I/O operations that do not block the process. If true parallelism is
your goal, N processes can achieve the same processor utilization as N threads, albeit at
some cost of increased resource consumption and context switching overhead. Con‐
versely, if memory savings is your goal, Linux provides tools to share memory in a more
limited manner than threads.
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Contemporary system programmers tend to not find these alternatives compelling.
Asynchronous I/O, for example, is often infuriating. And even if you can mitigate the
cost of multiple processes via shared memory and other shared resources, the context
switching overhead is not going anywhere. Thus, threads are common not just in system
programming, but across the stack: from the kernel up through to GUI applications.
With the increasing prevalence of multiple cores, the use of threads will only increase. 

Threading Models
There are several approaches to implementing threads on a system, with varying degrees
of functionality provided by the kernel and user space. The simplest model is realized
when the kernel provides native support for threads, and each of those kernel threads
translates directly to the user-space concept of a thread. Such a model is called 1:1
threading, as there is a one-to-one relationship between what the kernel provides and
what the user consumes. This model is also known as kernel-level threading, as the kernel
is the core of the system’s threading model.

Threading in Linux, which we will discuss in “Linux Threading Implementations” on
page 226, is 1:1. The Linux kernel implements threads simply as processes that share re‐
sources. The threading library creates a new thread via the clone() system call and the
returned “process” is directly managed as the user-space concept of a thread. That is,
on Linux, what user space calls a thread is pretty much what the kernel calls a thread,
too.

User-Level Threading
The complete opposite model is N:1 threading, also called user-level threading. Contra
kernel-level threading, in this model user space is the key to the system’s threading
support, as it implements the concept of a thread. A process with N threads will map to
a single kernel process—hence N:1. This model requires little or no kernel support but
significant user-space code, including a user-space scheduler to manage the threads and
a mechanism to catch and handle I/O in a nonblocking fashion. The benefit of user-
level threads is that context switches are nearly free, as the application itself can decide
what thread to run and when, without involving the kernel. The downside is that, as
there is only a single kernel entity backing the N threads, this model cannot utilize
multiple processors and thus is unable to provide true parallelism. On modern hard‐
ware, this is a significant downside, particularly given that the benefit of reduced-cost
context switching is of marginal value on Linux, which sports cheap context switching.

While there are user-level threading libraries for Linux, most libraries provide 1:1
threading, which is what we will discuss later in this chapter.
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Hybrid Threading
What if we combine kernel- and user-level threading? Is it possible to achieve the true
parallelism of the 1:1 model with the free context switches of the N:1 model? Indeed it
is, if you are willing to accept quite a bit of complexity. N:M threading, also known as
hybrid threading, attempts to achieve the best of both worlds: the kernel provides a
native thread concept, while user space also implements user threads. User space, per‐
haps in conjunction with the kernel, then decides how to map N user threads onto M
kernel threads, where N>=M.

Approaches differ by implementation, but the typical strategy is to not back most of the
user threads with a kernel thread. A process might contain hundreds of user threads
but only a small number of kernel threads, with that small number a function of pro‐
cessors (with at least one kernel thread for each processor enabling the full utilization
of the system) and blocking I/O. As you might imagine, this model is rather complex
to implement. Given Linux’s cheap context switches, most system developers do not feel
this approach worthwhile and the 1:1 model remains popular for Linux.

Scheduler Activations is a solution that provides kernel support for user-
level threads, enabling more performant execution of N:M threading.
It began as an academic paper out of the University of Washington and
was later adopted by both FreeBSD and NetBSD, becoming the core of
their threading implementation. Scheduler Activations allow user-
space control of and insight into the kernel’s process scheduling, which
makes the hybrid model more efficient and fixes several issues that can
crop up in an implementation unassisted by the kernel.
Both FreeBSD and NetBSD have abandoned Scheduler Activations in
preference for simpler 1:1 threading. You can view this as both a rejec‐
tion of the complexity of the N:M model and a response to the ubiquity
of the x86 architecture, which allows for relatively efficient context
switches.

Coroutines and Fibers
Coroutines and fibers provide a unit of execution even lighter in weight than the thread
(with the former being their name when they are a programming language construct,
and the latter when they are a system construct). They are, like user-level threads, user-
space phenomena but unlike user-level threads, there is little or no user-space support
for their scheduling and execution. Instead, they are cooperatively scheduled, requiring
an explicit yield in one to move to another. Coroutines and fibers are only subtly different
from subroutines (normal C/C++ functions). Indeed, you can look at subroutines as a
special case of coroutines. Coroutines and fibers are more about control of program
flow than concurrency.
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Linux does not natively support coroutines or fibers, again likely due to its already-fast
context switch speed obviating the need for a construct with superior performance to
the kernel thread. The Go programming language provides language-level support for
coroutine-like constructs in Linux, called Go-routines. Coroutines enable differing pro‐
gramming paradigms and I/O models and, although beyond the scope of this book, are
worth consideration. 

Threading Patterns
The first and most important step in building a threaded application is deciding on a
threading pattern, which will also be the processing and I/O model for your application.
There are a myriad of abstractions and implementation details to settle on, but the two
core programming patterns, of which you must pick one, are thread-per-connection and
event-driven.

Thread-per-Connection
Thread-per-connection is a programming pattern in which a unit of work is assigned to
one thread, and that thread is assigned at most one unit of work, for the duration of the
unit of work’s execution. The unit of work is however you break down your application’s
work: a request, a connection, etc. For this discussion, we’ll say “connection” as that is
the common terminology in describing this pattern.

Another way of describing this pattern is “run until completion.” A thread grabs a con‐
nection or a request and processes it until done, at which time the thread is available to
process another request anew. This has interesting implications for I/O and, indeed, I/O
is one of the large differences between this and the event-driven pattern. In thread-per-
connection, blocking I/O—indeed, any I/O—is permissible as the connection “owns”
the thread. Blocking a thread can stall only the connection causing the blocking. In this
manner, the thread-per-connection pattern uses the kernel to handle the scheduling of
work and the management of I/O.

In this pattern, the number of threads is an implementation detail. We’ve discussed
thread-per-connection thus far as if there is always a thread for every unit of work. That
can be true, but most implementations like to put a bound on the number of threads
they create. When the number of in-flight connections (and thus the number of threads)
reaches a limit, connections are either queued or rejected until the number of in-flight
connections drops below the limit.

Note there is nothing about this pattern that requires threading. Indeed, replace “thread”
with “process” and you are describing the old-school Unix server. Apache’s standard
“fork” model, for example, follows this pattern. This is also the typical pattern for I/O
in Java, although preferences are changing.
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Event-Driven Threading
The event-driven pattern is a rejoinder to the thread-per-connection pattern. Consider
the web server. In terms of computing power, modern hardware is capable of handling
significant numbers of requests at once. In the thread-per-connection pattern, that is a
lot of threads. Threads have fixed costs, most notably requiring both a kernel and user-
space stack. These fixed costs place scalability limits on the number of threads in a given
process, particularly on 32-bit systems. (The arguments against thread-per-connection
are less relevant to 64-bit systems, but sufficiently valid that event-driven is still con‐
sidered a superior choice even for 64-bit systems.) Systems might have the computing
resources to handle several thousand in-flight connections, yet hit scalability limits in
running that many concurrent threads.

In seeking an alternative, system designers noticed that most of the threads are doing a
lot of waiting: reading files, waiting for databases to return results, issuing remote pro‐
cedure calls. Indeed, recall our discussion from “Multithreading” on page 212: using
more threads than you have processors on the system does not provide any benefits to
parallelism. Instead, such uses of threads reflect a programming abstraction, an ease of
programming that can be replicated through a more formal flow of control model.

These observations begot event-driven threading. Since so much of many thread-per-
connection workloads is simply waiting, let’s decouple that waiting from threads.
Instead, issue all I/O asynchronously (see “Asynchronous I/O” on page 123) and use
multiplexed I/O (see “Multiplexed I/O” on page 51) to manage the flow of control in
the server. In this model, request processing is converted into a series of asynchronous
I/O requests and associated callbacks. These callbacks can be waited on via multiplexed
I/O; the process of doing so is called an event loop. When the I/O requests are returned,
the event loop hands the callback off to a waiting thread.

As with the thread-per-connection pattern, nothing about the event-driven pattern
need be threaded. Indeed, the event loop could simply be the fall-through when a single-
threaded process is done executing a callback. Threads need only be added to provide
true parallelism. In this model, there is no reason to have more threads than processors.

Patterns ebb and flow in popularity, but the event-driven pattern is currently the pre‐
ferred approach to designing a multithreaded server. Several popular alternatives to
Apache, for example, have developed over the last few years, all of which are event-
driven. In designing your threaded system software, I suggest you first consider the
event-driven pattern: asynchronous I/O, callbacks, an event loop, and a small thread
pool with just a thread per processor. 

Concurrency, Parallelism, and Races
Threads create two related but distinct phenomena: concurrency and parallelism. Both
are bittersweet, touching on the costs of threading as well as its benefits. Concurrency
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1. A benign race occurs when unsynchronized access leads to unpredictable but not erroneous program be‐
havior. Occasionally programmers decide not to synchronize shared data that isn’t critical, such as statistical
counters, in pursuit of performance. I recommend always synchronizing shared data.

is the ability of two or more threads to execute in overlapping time periods. Parallel‐
ism is the ability to execute two or more threads simultaneously. Concurrency can occur
without parallelism: for example, multitasking on a single processor system. Parallelism
(sometimes emphasized as true parallelism) is a specific form of concurrency requiring
multiple processors (or a single processor capable of multiple engines of execution, such
as a GPU). With concurrency, multiple threads make forward progress, but not neces‐
sarily simultaneously. With parallelism, threads literally execute in parallel, allowing
multithreaded programs to utilize multiple processors.

Concurrency is a programming pattern, a way of approaching problems. Parallelism is
a hardware feature, achievable through concurrency. Both are useful.

Race Conditions
It is concurrency that introduces most of the hardships of threading. By enabling over‐
lapping execution, threads can execute in an unpredictable order with respect to each
other. At times, this is fine. But what if threads need to share a resource? Accessing even
something as simple as a word of memory becomes a “race,” where program behavior
differs depending on which thread “gets there first.”

Formally, a race condition is a situation in which the unsynchronized access of a shared
resource by two or more threads leads to erroneous program behavior.1 The shared
resource can be anything: the system’s hardware, a kernel resource, or data in memory.
The latter is the most common form and is called a data race. The window in which a
race can occur—the region of code which should be synchronized—is called a critical
region. Races are eliminated by synchronizing threads’ access to critical regions. Before
diving into methods of synchronization, let’s discuss a couple example race conditions.

Real-world races
Imagine an automated teller machine (ATM), also called an automated banking ma‐
chine (ABM) or a cash machine. Usage is simple: you walk up, swipe your card, enter
your PIN, and enter a withdrawal amount. You then collect your money. Somewhere in
there, the bank needs to verify that you actually have the funds in your account and, if
so, deduct the amount of withdrawal. The algorithm looks something like this:

1. Does the account hold at least X units of currency?
2. If so, deduct X from the account’s balance and disburse X to the user.
3. If not, return error.
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The code in C might look something like this:

int withdraw (struct account *account, int amount)
{

const int balance = account->balance;
if (balance < amount)

return -1;
account->balance = balance - amount;

disburse_money (amount);

return 0;
}

There’s a disastrous race in here if concurrent execution is possible. Imagine if the bank
is executing this function twice, concurrently. Perhaps the customer is withdrawing
funds at the same moment the bank is processing an online bill payment or assessing
an egregious fee. What if the funds checks both happen at about the same time, before
the account balance is updated and the money is dispersed? Both disbursements can
happen, even if the account’s balance is insufficient to handle both! For example, if there
were $500 in the account and two withdraw requests came in for $200 and $400, they
could both succeed, even though that would leave the account $100 in the red, which
isn’t something the code as written was intended to permit.

In fact, there is a second race in this function. Consider the store of the updated balance
into the account structure. The two withdrawals can also race on updating the balance.
Using our previous example, we’d end up with either $300 or $100 stored as the balance.
Not only did this bank allow withdrawals to execute that should not, but it gifted this
lucky customer with up to an extra $400.

Indeed, nearly every line of this function is inside a critical region. For this bank to
survive as a viable business, it needs to synchronize access to the withdraw() function,
ensuring that even if it is executed concurrently by two or more threads, the entire
function is executed as one atomic unit: the bank needs to load the account balance,
check for available funds, and debit the balance in one indivisible transaction.

Before we look at how this bank can do that, let’s consider an example that shows just
how fundamental race conditions are. This bank withdrawal example was rather high
level: indeed, we didn’t even need to show the example code. A bank executive can
understand that if you allow accountants to credit and debit accounts concurrently, the
math can get screwed up. But race conditions exist at the most fundamental of levels,
too.

Consider this very simple line of C code:

x++;  // x is an integer

This is the post-increment operator and we all know what it does: it takes the current
value of x, increments it by one, and stores that new value back in x, with the value of
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the expression being the updated x. How this compiles to machine code depends, of
course, on the architecture, but we can imagine it might look something like this:

load x into register
add 1 to register
store register in x

Yes, even x++ is a racy operation. Imagine two threads executing x++ concurrently with
x=5. Here is a desirable outcome:

Time Thread 1 Thread 2

1 load x into register (5)

2 add 1 to register (6)

3 store register in x (6)

4 load x into register (6)

5 add 1 to register (7)

6 store register in x (7)

This, too, is desirable:

Time Thread 1 Thread 2

1 load x into register (5)

2 add 1 to register (6)

3 store register in x (6)

4 load x into register (6)

5 add 1 to register (7)

6 store register in x (7)

We are lucky if that is the outcome. Nothing prevents this:

Time Thread 1 Thread 2

1 load x into register (5)

2 add 1 to register (6)

3 load x into register (5)

4 store register in x (6)

5 add 1 to register (6)

6 store register in x (6)

Many other combinations can also lead to unintended results. These examples exhibit
concurrency but not parallelism. With parallelism, the threads can execute at the same
time, adding even more combinations of peril:
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2. Which in turn are also known as binary semaphores.

Time Thread 1 Thread 2

1 load x into register (5) load x into register (5)

2 add 1 to register (6) add 1 to register (6)

3 store register in x (6) store register in x (6)

You get the picture. Even something as simple as adding one to a variable—a single line
of C or C++—is fraught with races once we have multiple threads executing concur‐
rently. We don’t even need parallelism. A single processor machine can—and probably
will—suffer these races. Race conditions are among the largest sources of programmer
frustration and program bugs. Let’s look at how programmers handle them. 

Synchronization
The fundamental source of races is that critical regions are a window during which
correct program behavior requires that threads do not interleave execution. To prevent
race conditions, then, the programmer needs to synchronize access to that window,
ensuring mutually exclusive access to the critical region.

In computer science, we say that an operation (or set of operations) is atomic if it is
indivisible, unable to be interleaved with other operations. To the rest of the system, an
atomic operation (or operations) appears to occur instantaneously. And that’s the prob‐
lem with critical regions: they are not indivisible, they don’t occur instantaneously, they
aren’t atomic.

Mutexes
There are many techniques for making critical regions atomic, from solutions for single
instructions up through large blocks of code. The most common technique is the lock,
a mechanism for ensuring mutual exclusion within a critical region, rendering it atomic.
Because locks enforce mutual exclusion, they are known in Pthreads (and elsewhere)
as mutexes.2

A lock works similarly to its real-world namesake: imagine that a room is a critical
region. Without a lock, people (threads) can come and go from the room (critical region)
as they please. Specifically, there can be more than one person in the room at a time. So
we put a door on the room and a lock on the door. We distribute but a single key to that
door. When a person (a thread) comes to the door, they find the key sitting outside.
They use the key to open the door, they go inside, and then they lock the door from the
inside. No one else may enter. They can then go about their business in the room without
interruption. No one else may occupy the room concurrently; it is a mutually exclusive
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resource. When the person is done with the room, they unlock the door and exit, leaving
the key outside. The next person may then enter, lock the door behind them, and repeat.

A lock in the threading context works much the same. The programmer defines the lock
and makes sure to acquire it before entering the critical region. The lock implementation
ensures that only one thread can “hold” the lock at once. If it is in use by another thread,
a new thread must wait for it before continuing. When done with a critical region, you
release the lock, letting a waiting thread (if any) acquire the lock and proceed.

Recall from “Race Conditions” on page 219 our bank withdrawal example. Let’s look at
how a mutex would prevent the disastrous (at least for the bank) race condition we
studied. We will discuss the actual mutex operations provided by Pthreads later (see
“Pthread Mutexes” on page 235), but for now let’s assume we have the functions lock()
and unlock() to acquire and release, respectively, a mutex.

int withdraw (struct account *account, int amount)
{

lock ();
const int balance = account->balance;
if (balance < amount) {

unlock ();
return -1;

}
account->balance = balance - amount;
unlock ();

disburse_money (amount);

return 0;
}

We are locking only the part of the function that can race: the reading of the account
balance, the sufficient funds check, and the updating of the account balance. Once the
program knows it has a valid transaction and has updated the account balance, it can
drop the lock and thus disburse the funds without enforcing mutual exclusion. The
smaller you make the critical region, the better, as locks prevent concurrency and thus
negate the benefits of threading.

Note there is nothing magic about locks. Nothing physically enforces the mutual ex‐
clusion. Locks are akin to a gentlemen’s agreement. All threads must acquire the right
locks in the right places. Nothing prevents a thread from not acquiring a necessary lock
except conscientious programming.
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Lock Data, Not Code
One of the most important programming patterns in multithreaded
programming is lock data, not code. Although we have framed the dis‐
cussion about race conditions around critical regions, a good program‐
mer does not view code as the object of locking. You never say, “this
lock protects this function.” Instead, a good programmer associates data
with locks. Shared data has an associated lock and accessing that data
always requires that the associated lock be held.
What’s the difference? When you associate locks with code, the locking
semantics are harder to understand. Over time, the relationship be‐
tween the lock and the data can grow unclear, and programmers may
introduce new uses of the data without the appropriate lock. By asso‐
ciating locks with data, you help keep that mapping clear.

Deadlocks
The cruel irony of threads is the chain of desires begetting pain, which prompt solutions
that only beget more pain. We want threads for concurrency, but that concurrency
introduces race conditions. So we introduce mutexes, but those mutexes introduce a
new source of programming bug: the deadlock.

A deadlock is a situation in which two threads are waiting for the other to finish, and
thus neither does. In the case of mutexes, a deadlock occurs where two threads are each
waiting for a different mutex, which the other thread holds. A degenerate case is when
a single thread is blocked, waiting for a mutex that it already holds. Debugging deadlocks
is often tricky, as your program needn’t crash. Instead, it simply stops making forward
progress, as ever more of your threads wait for a day that will never come.

Multithreading Mishaps on Mars
There are many real-life tales of threading woes, but one of the more intriguing is that
of Mars Pathfinder, which in July of 1997 had successfully arrived on the Martian surface,
only to find its mission of analyzing Martian climate and geology interrupted by frequent
system resets.

Mars Pathfinder was powered by a real-time, highly threaded, embedded kernel (not
Linux). The kernel provided preemptive scheduling of threads. Like Linux, real-time
threads have priorities, and a thread of a given priority would always run before lower
priority threads. There were, among many other threads, three that are pertinent to this
bug: a low-priority thread to gather meteorological data, a medium-priority thread to
communicate with Earth, and a high-priority thread to manage storage throughout the
rover. As seen earlier in this chapter (see “Race Conditions” on page 219), synchroni‐
zation is critical to preventing data races, and thus the threads managed concurrency
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via mutexes. Notably, a mutex synchronized the low-priority meteorological thread
(which was generating data) against the high-priority storage thread (which was man‐
aging that data).

The meteorological thread ran infrequently, polling the various sensors on the space‐
craft. The thread would then acquire the mutex, write the meteorological data to the
storage subsystem, and finally release the mutex. The storage thread ran more often,
responding to system events. Before managing the storage subsystem, it too would ac‐
quire the mutex. If it were unavailable, it would sleep until the meteorological thread
released it.

So far, so good. Occasionally, however, the communication thread would wake up and
run while the meteorological thread was holding and the storage thread was waiting for
the mutex. As the communication thread was a higher priority than the meteorological
thread, the former ran at the expense of the latter. Unfortunately, the communication
thread was a long-running task: Mars is far away! Thus, for the entirety of the commu‐
nication thread’s operation, the meteorological thread was not run. This seems by de‐
sign, as dictated by the given priorities. But the meteorological thread held a resource
(the mutex) that the storage thread wanted. Consequently, a lower priority thread (com‐
munication) was indirectly running at the expense of a higher priority thread (storage).
The system would eventually notice the storage thread wasn’t making forward progress,
determine there must be an issue, and perform a system reset. This is a classic example
of a class of bugs known as priority inversion.

The fix is a technique known as priority inheritance, where the process holding a re‐
source inherits the priority of the highest priority process waiting for that resource. In
this case, the lower priority meteorological thread would have inherited the higher pri‐
ority of the storage thread for the duration it held the mutex. This would have prevented
the communication thread from preempting the meteorological thread, allowing the
quick release of the mutex and scheduling of the storage thread. If you don’t find this a
cautionary tale, stick to single-threaded programming!

Deadlock avoidance
Avoiding deadlocks is important, and the only consistent, safe way to do so is by de‐
signing locking into your multithreaded program from day one. It is important to as‐
sociate mutexes with data, not code, and have a clear hierarchy of data (and thus
mutexes). For example, a simple form of deadlock is known as the ABBA deadlock or
the deadly embrace. This occurs when one thread acquires mutex A followed by mutex
B, while another thread acquires mutex B followed by A (hence ABBA). With the right
timing, both threads can successfully acquire their first mutex: Thread 1 holds A and
Thread 2 holds B. When they then go to acquire the other mutex, they find it taken by
the other thread, and each block, waiting for the mutex’s release. Because each thread
that holds a mutex is also waiting for a mutex, neither is ever released, and the threads
deadlock.
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Fixing this requires clear rules: Mutex A must always be acquired before B. As the com‐
plexity of your program, and thus of its synchronization, grows, it only becomes more
difficult to enforce these rules. Start early and design things cleanly. 

Pthreads
The Linux kernel provides only the underlying primitives that enable threading, such
as the clone() system call. The bulk of any threading library is in user space. Many large
software projects define their own threading library: Android, Apache, GNOME, and
Mozilla all provide their own threading library, for example, and languages such as
C++11 and Java provide standard library support for threads. Nonetheless, POSIX
standardized a threading library with IEEE Std 1003.1c-1995, also known as POSIX
1995 or POSIX.1c. Developers call this standard POSIX threads or, for short, Pthreads.
Pthreads remains the predominant threading solution for both C and C++ on Unix
systems.

Linux Threading Implementations
Pthreads, as a standard, is just a bunch of words on a page. In Linux, the implementation
of that standard is provided by glibc, Linux’s C library. Over time, glibc has provided
two different implementations of Pthreads: LinuxThreads and NPTL.

LinuxThreads is Linux’s original Pthread implementation, providing 1:1 threading. It
was first included in glibc with version 2.0, although it was available as an external library
prior. LinuxThreads was designed for a kernel that provided very little support for
threading: other than the clone() system call to create a new thread, LinuxThreads
implemented POSIX threading using existing Unix interfaces. For example, LinuxTh‐
reads handles thread-to-thread communication using signals (see Chapter 10). Due to
the lack of kernel support for Pthreads, LinuxThreads required a “manager” thread to
coordinate activity, scaled poorly to large numbers of threads, and was imperfect in its
conformance to the POSIX standard.

Native POSIX Thread Library (NPTL) superseded LinuxThreads and remains the stan‐
dard Linux Pthread implementation. It was introduced in Linux 2.6 and glibc 2.3. Like
LinuxThreads, NPTL provides 1:1 threading based around the clone() system call and
the kernel’s model that threads are just like any other process, except they share certain
resources. Unlike LinuxThreads, NPTL capitalizes on additional kernel interfaces new
to the 2.6 kernel, including the futex() system call for thread synchronization, the
exit_group() system call for terminating all the threads in a process, and kernel support
for thread-local storage (TLS). NPTL resolves LinuxThreads’ nonconformance issues
and vastly improves threading scalability, allowing for the creation of thousands of
threads in a single process without slowdown.
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NGPT
A competitor and early alternative to NPTL was Next Generation POSIX
Threads (NGPT). Like NPTL, NGPT attempted to overcome the limi‐
tations of LinuxThreads and improve scalability. Unlike NPTL and
LinuxThreads, however, NGPT implemented N:M threading. As is
often the case in Linux, the simpler solution won out and NGPT is but
a sidebar in history.

Although LinuxThreads-based systems are growing a bit long in the tooth, they can still
be found. As NPTL is such a significant improvement over LinuxThreads, strongly
consider upgrading such systems to NPTL (as if you needed another reason to not use
such an ancient system) or, failing that, sticking to single-threaded programming.

The Pthread API
The Pthread API defines everything needed—albeit at a rather low level—to build a
multithreaded program. Providing over 100 interfaces, the Pthread API is large. Due to
its size and ungainliness, Pthreads is not without detractors. Nonetheless, it is the core
threading library on Unix systems and is worth learning even if you use a different
threading solution, as most are built on top of Pthreads.

The Pthread API is defined in <pthread.h>. Every function in the API is prefixed by
pthread_. For example, the function to create a thread is called pthread_create() (we
will study it soon, in “Creating Threads” on page 228). Pthread functions may be broken
into two large groupings:
Thread management

Functions to create, destroy, join, and detach threads. We will cover all of these in
this chapter.

Synchronization
Functions to manage the synchronization of threads, including mutexes, condition
variables, and barriers. We will cover mutexes in this chapter.

Linking Pthreads
Although Pthreads is provided by glibc, it is in a separate library, libpthread, and thus
requires explicit linkage. With gcc, this is automated by the -pthread flag, which ensures
the proper library is linked into your executable:

gcc -Wall -Werror -pthread beard.c -o beard

If you build and link your binary with multiple invocations to gcc you’ll want to provide
-pthread to all of them: the flag also effects the preprocessor, by setting certain pre‐
processor defines that control thread safety.
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Creating Threads
When your program is first run and executes the main() function, it is single threaded.
Indeed, other than the compiler enabling some thread safety options and the linker
linking in the Pthreads library, your process isn’t any different from any other. From
this initial thread, sometimes called the default or master thread, you must create one
or more additional threads to become multithreaded.

Pthreads provides a single function to define and launch a new thread, pthread_
create():

#include <pthread.h>

int pthread_create (pthread_t *thread,
const pthread_attr_t *attr,
void *(*start_routine) (void *),
void *arg);

Upon successful invocation, a new thread is created and begins executing the function
provided by start_routine, passed the sole argument arg. The function will store the
thread ID, used to represent the new thread, in the pthread_t pointed at by thread, if
it is not NULL (we will discuss thread IDs in the next section, “Thread IDs” on page 229).

The pthread_attr_t object pointed at by attr is used to change the default thread
attributes of the newly created thread. Most invocations of pthread_create() pass NULL
for attr, receiving the default attributes. Thread attributes let programs change many
aspects of threads, such as their stack size, schedulizing parameters, and initial detached
state. A full discussion of thread attributes is outside the scope of this chapter; the
Pthread man pages are a good resource.

The start_routine must have the following signature:

void * start_thread (void *arg);

Thus, the thread begins life by executing a function that accepts a void pointer as its
sole argument and returns a void pointer as its return value. Similar to fork(), the new
thread inherits most attributes, capabilities, and state from its parent. Unlike fork(),
threads share the resources of their parent instead of receiving a copy. The most notable
shared resource is, of course, the process address space, but threads also share (in lieu
of receiving copies of) signal handlers and open files.

Code using this function should pass -pthread to gcc. That is true for all the Pthread
functions and I won’t mention it again.

On error, pthread_create() returns a nonzero error code directly (without the use of
errno) and the contents of thread are undefined. Likely errors include:
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3. To the Linux kernel, threads are just processes that happen to share resources, so the kernel references each
thread via a unique PID, just like any other process. User-space programs can obtain this PID via the get
tid() system call, but only occasionally is this value useful. Programmers should use the Pthread ID concept
to reference their threads.

EAGAIN

The invoking process lacks sufficient resources to create a new thread. Usually this
is caused by the process hitting either a per-user or system-wide thread limit.

EINVAL

The pthread_attr_t object pointed at by attr contains invalid attributes.

EPERM

The pthread_attr_t object pointed at by attr contains attributes for which the
invoking process does not have permission to instill.

Example usage:

pthread_t tread;
int ret;

ret = pthread_create (&thread, NULL, start_routine, NULL);
if (!ret) {

errno = ret;
perror("pthread_create");
return -1;

}

/* a new thread is created and running start_routine concurrently ... */

We’ll look at a full-program example once we build up a few more techniques.

Thread IDs
The thread ID (TID) is the thread analogue to the process ID (PID). While the PID is
assigned by the Linux kernel, the TID is just assigned in the Pthread library.3 It is an
opaque type represented by pthread_t, and POSIX does not require it to be an arith‐
metic type. As we’ve seen, the TID of a new thread is provided via the thread argument
in a successful call to pthread_create(). A thread can obtain its TID at runtime via the
pthread_self() function:

#include <pthread.h>

pthread_t pthread_self (void);

Usage is simple, because the function cannot fail:

const pthread_t me = pthread_self ();
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Comparing thread IDs

Because the Pthread standard does not require pthread_t to be an arithmetic type, there
is no guarantee that the equality operator will work. Consequently, to compare thread
IDs, the Pthread library needs to provide a special interface:

#include <pthread.h>

int pthread_equal (pthread_t t1, pthread_t t2);

If the provided thread IDs are equal, pthread_equal() returns a nonzero value. If the
provided thread IDs aren’t equal, it returns 0; it cannot fail. Here’s a simple example:

int ret;

ret = pthread_equal(thing1, thing2);
if (ret != 0)

printf("The TIDs are equal!\n");
else

printf("The TIDs are unequal!\n");

Terminating Threads
The counterpart to thread creation is thread termination. Thread termination is similar
to process termination, except that when a thread terminates, the rest of the threads in
the process continue executing. In some threading patterns, such as thread-per-
connection (see “Thread-per-Connection” on page 217), threads are frequently created
and destroyed.

Threads may terminate under several circumstances, all of which have analogues to
process termination:

• If a thread returns from its start routine, it terminates. This is akin to “falling off
the end” of main().

• If a thread invokes the pthread_exit() function (discussed subsequently), it ter‐
minates. This is akin to calling exit().

• If the thread is canceled by another thread via the pthread_cancel() function, it
terminates. This is akin to being sent the SIGKILL signal via kill().

These three examples kill only the thread in question. All of the threads in a process are
killed, and thus the entire process is killed, in the following circumstances:

• The process returns from its main() function.
• The process terminates via exit().
• The process executes a new binary image via execve().
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Signals can kill a process or an individual thread, depending on how they’re issued.
Pthreads make signal handling rather complicated; it is best to minimize the use of
signals in multithreaded programs. See Chapter 10 for a full treatment of signals.

Terminating yourself
The easiest way for a thread to terminate itself is to “fall off the end” of its start routine.
Often you want to terminate a thread deep in a function call stack, far from your start
routine. For those cases, Pthreads provides pthread_exit(), the thread equivalent of
exit():

#include <pthread.h>

void pthread_exit (void *retval);

Upon invocation, the calling thread is terminated. retval is provided to any thread
waiting on the terminating thread’s death (see “Joining and Detaching Threads” on page
233), again similar to exit(). There is no chance of error.

Usage:

/* Goodbye, cruel world! */
pthread_exit (NULL);

Terminating others
Pthreads calls the termination of threads by other threads cancellation. It provides the
pthread_cancel() function to do so:

#include <pthread.h>

int pthread_cancel (pthread_t thread);

A successful call to pthread_cancel() sends a cancellation request to the thread rep‐
resented by the thread ID thread. Whether and when a thread is cancellable depends
on its cancellation state and cancellation type, respectively. On success, pthread_
cancel() returns zero. Note that success is only demonstrative of successfully process‐
ing the cancellation request. The actual termination occurs asynchronously. On error,
pthread_cancel() returns ESRCH, indicating that thread was invalid.

If and when a thread is cancellable is a bit complicated. A thread’s cancellation state is
either enabled or disabled. The default for new threads is enabled. If a thread has disabled
cancellation, the request is queued until it is enabled. Otherwise, the cancellation type
dictates when cancellation occurs. Threads can change their state via pthread_set
cancelstate():

#include <pthread.h>

int pthread_setcancelstate (int state, int *oldstate);
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4. Linux allows for a NULL oldstate, but POSIX does not. Portable programs should always pass a valid pointer
here, if only to ignore it.

5. As with pthread_setcancelstate(), it is not portable to pass NULL for oldtype, although Linux allows it.

On success, the cancellation state of the invoking thread is set to state and the old state
is stored in oldstate.4 state may be PTHREAD_CANCEL_ENABLE or PTHREAD_CAN
CEL_DISABLE, to enable or disable cancellation, respectively.

On error, pthread_setcancelstate() returns EINVAL, noting an invalid state value.

A thread’s cancellation type is either asynchronous or deferred, with the latter being the
default. With asynchronous cancellation, a thread may be killed at any point after the
issuing of a cancel request. With deferred cancellation, a thread may only be killed at
specific cancellation points, which are functions in the Pthreads or C library that rep‐
resent safe points from which to terminate the caller. Asynchronous cancellation is
useful only in certain situations because it can leave the process in an undefined state.
For example, what if the canceled thread were in the middle of a critical region? For
proper program behavior, asynchronous cancellation should be used only from threads
that take care to never use shared resources and call only signal-safe functions (see
“Guaranteed-Reentrant Functions” on page 349). Threads can change their type via
pthread_setcanceltype():

#include <pthread.h>

int pthread_setcanceltype (int type, int *oldtype);

On success, the cancellation type of the invoking thread is set to type and the old type
is stored in oldtype.5 type may be PTHREAD_CANCEL_ASYNCHRONOUS or
PTHREAD_CANCEL_DEFERRED, to use asynchronous or deferred cancellation, respectively.

On error, pthread_setcanceltype() returns EINVAL, noting an invalid type value.

Let’s consider an example of one thread terminating another. First, the to-terminate
thread enables cancellation and sets the type to deferred (these are the defaults, so this
acts only as an example):

int unused;
int ret;

ret = pthread_setcancelstate (PTHREAD_CANCEL_ENABLE, &unused);
if (ret) {

errno = ret;
perror ("pthread_setcancelstate");
return -1;

}

ret = pthread_setcanceltype (PTHREAD_CANCEL_DEFERRED, &unused);
if (ret) {
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errno = ret;
perror ("pthread_setcanceltype");
return -1;

}

Next, a different thread sends the cancellation request: 

int ret;

/* `thread' is the thread ID of the to-terminate thread */
ret = pthread_cancel (thread);
if (ret) {

errno = ret;
perror ("pthread_cancel");
return -1;

}

Joining and Detaching Threads
Given that threads can be easily created and destroyed, there must be some way to
synchronize threads against the termination of other threads—the threading equivalent
of wait(). Indeed, there is: the joining of threads.

Joining threads
Joining allows one thread to block while waiting for the termination of another:

#include <pthread.h>

int pthread_join (pthread_t thread, void **retval);

Upon successful invocation, the invoking thread is blocked until the thread specified by
thread terminates (if thread has already terminated, pthread_join() returns imme‐
diately). Once thread terminates, the invoking thread is woken up and, if retval is not
NULL, provided the return value the terminated thread passed to pthread_exit() or
returned from its start routine. We then say the threads are joined. Joining allows threads
to synchronize their execution against the lifetime of other threads. All threads in
Pthreads are peers; any thread may join any other. A single thread can join many threads
(in fact, as we’ll see, this is often how the main thread waits for the threads it has created),
but only one thread should try to join any particular thread; multiple threads should
not attempt to join with any one other.

On error, pthread_join() returns one of the following nonzero error codes:
EDEADLK

A deadlock was detected: thread is already waiting to join the caller or thread is
the caller.

EINVAL

The thread specified by thread is not joinable (see next section).
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ESRCH

The thread specified by thread is invalid.

Example usage:

int ret;

/* join with `thread' and we don't care about its return value */
ret = pthread_join (thread, NULL);
if (ret) {

errno = ret;
perror ("pthread_join");
return -1;

}

Detaching threads
By default, threads are created as joinable. Threads may, however, detach, rendering
them no longer joinable. Because threads consume system resources until joined, just
as processes consume system resources until their parent calls wait(), threads that you
do not intend to join should be detached.

#include <pthread.h>

int pthread_detach (pthread_t thread);

On success, pthread_detach() detaches the thread specified by thread and returns
zero. Results are undefined if you call pthread_detach() on a thread that is already
detached. On error, the function returns ESRCH indicating that thread is invalid.

Either pthread_join() or pthread_detach() should be called on each thread in a pro‐
cess so that system resources are released when the thread terminates. (Of course, if the
entire process exits, all threading resources are freed, but it remains good practice to
explicitly join or detach all threads.)

A Threading Example
The following full-program example ties together the interfaces discussed thus far. It
creates two threads (for a total of three), starting both threads in the same start routine,
start_thread(). It differentiates their behavior in the start routine by providing dif‐
fering arguments. It then joins both threads; if it did not, the main thread could exit
before the other threads, terminating the entire process.

#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>

void * start_thread (void *message)
{

printf ("%s\n", (const char *) message);
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return message;
}

int main (void)
{

pthread_t thing1, thing2;
const char *message1 = "Thing 1";
const char *message2 = "Thing 2";

/* Create two threads, each with a different message. */
pthread_create (&thing1, NULL, start_thread, (void *) message1);
pthread_create (&thing2, NULL, start_thread, (void *) message2);

/*
* Wait for the threads to exit. If we didn't join here,
* we'd risk terminating this main thread before the
* other two threads finished.
*/
pthread_join (thing1, NULL);
pthread_join (thing2, NULL);

return 0;
}

This is a full program. If you save it as example.c, you can compile it with this command:

gcc -Wall -O2 -pthread example.c -o example

and then run it like so:

./example

yielding:

Thing 1
Thing 2

or perhaps:

Thing 2
Thing 1

but never gibberish. Why no gibberish? Because printf() is thread-safe.

Pthread Mutexes
Recall from “Mutexes” on page 222 that the primary method of ensuring mutual ex‐
clusion is the mutex. For all their power and importance, mutexes are in fact rather easy
to use.
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Initializing mutexes

Mutexes are represented by the pthread_mutex_t object. Like most of the objects in the
Pthread API, it is meant to be an opaque structure provided to the various mutex in‐
terfaces. Although you can dynamically create mutexes, most uses are static:

/* define and initialize a mutex named `mutex' */
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

This snippet defines and initializes a mutex named mutex. That is all we have to do to
start using it.

Locking mutexes
Locking (also called acquiring) a Pthreads mutex is accomplished via the
pthread_mutex_lock() function:

#include <pthread.h>

int pthread_mutex_lock (pthread_mutex_t *mutex);

A successful call to pthread_mutex_lock() will block the calling thread until the mutex
pointed at by mutex becomes available. Once available, the calling thread will wake up
and this function will return zero. If the mutex is available on invocation, the function
will return immediately.

On error, the function returns one of the following nonzero error codes:
EDEADLK

The invoking thread already holds the requested mutex. This error code is not
guaranteed by default; attempting to acquire an already-held mutex may result in
deadlock (see “Deadlocks” on page 224).

EINVAL

The mutex pointed at by mutex is invalid.

Callers tend not to check the return value, since well-formed code should not generate
any errors at runtime. An example of usage is:

pthread_mutex_lock (&mutex);

Unlocking mutexes
The counterpart to locking is unlocking, or releasing, the mutex.

#include <pthread.h>

int pthread_mutex_unlock (pthread_mutex_t *mutex);

A successful call to pthread_mutex_unlock() releases the mutex pointed at by mutex
and returns zero. The call does not block; the mutex is released immediately.
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On error, the function returns a nonzero error code, including:
EINVAL

The mutex pointed at by mutex is invalid.

EPERM

The invoking process does not hold the mutex pointed at by mutex. This error code
is not guaranteed; attempting to release a mutex you do not hold is a bug.

As with locking, users tend not to check the return value:

pthread_mutex_unlock (&mutex);

Scoped Locks
Resource Acquisition Is Initialization (RAII) is a C++ programming pattern—one of the
most powerful patterns in the language. RAII efficiently deals with resource allocation
and deallocation by tying the lifetime of the resource to the lifetime of a scoped object.
While RAII was created to deal with resource cleanup after an exception is thrown, it is
most powerful as a way to manage resources. For example, RAII lets you create a “scoped
file” object where the file is opened when the object is created and automatically closed
when the object falls out of scope. Similarly, we can create a “scoped lock” that acquires
a mutex on creation and automatically releases the mutex when it falls out of scope:

class ScopedMutex {
    public:

ScopedMutex (pthread_mutex_t& mutex)
:mutex_ (mutex)

{
pthread_mutex_lock (&mutex_);

}

~ScopedMutex ()
{

pthread_mutex_unlock (&mutex_);
}

    private:
pthread_mutex_t& mutex_;

};

To use this, one just calls ScopedMutex m(mutex). The lock is automatically released
when m falls out of scope. This makes unwinding functions and handling errors conve‐
nient and free of goto statements.
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Mutex example
Let’s look at a simple snippet that utilizes a mutex to ensure synchronization. Recall the
banking withdraw example in “Real-world races” on page 219. Our imaginary bank
suffered a serious race condition, enabling unintended behavior. Here’s how we could
fix the withdraw function using Pthread’s mutexes:

static pthread_mutex_t the_mutex = PTHREAD_MUTEX_INITIALIZER;

int withdraw (struct account *account, int amount)
{

pthread_mutex_lock (&the_mutex);
const int balance = account->balance;
if (balance < amount) {

pthread_mutex_unlock (&the_mutex);
return -1;

}
account->balance = balance - amount;
pthread_mutex_unlock (&the_mutex);

disburse_money (amount);

return 0;
}

This example uses pthread_mutex_lock() to acquire a mutex and then pthread_mu
tex_unlock() to eventually release it. This serves to eliminate the race condition, but
it introduces a single point of contention in the bank: only one customer can withdraw
money at a time! That is quite a bottleneck; for a too-big-to-fail bank, that’s a failure.

Thus most uses of locks avoid global locks and instead associate locks with specific
instances of data structures. This is called fine-grained locking. It can make your locking
semantics more complicated, particularly around deadlock avoidance, but is key in
scaling to the number of cores on modern machines.

In this example, instead of defining a global the_mutex lock, we define a mutex inside
of the account structure, giving each account its own lock. This works well as the data
within the critical region is only the account structure. By locking only the account
being debited, we allow the bank to process other customers’ withdraws in parallel. 
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int withdraw (struct account *account, int amount)
{

pthread_mutex_lock (&account->mutex);
const int balance = account->balance;
if (balance < amount) {

pthread_mutex_unlock (&account->mutex);
return -1;

}
account->balance = balance - amount;
pthread_mutex_unlock (&account->mutex);

disburse_money (amount);

return 0;
}

Further Study
A single chapter cannot hope to do justice to the POSIX threading API, which, if we are
being kind, is a full-featured and powerful library with myriad interfaces to learn. (If
we are feeling grouchy, we might say that POSIX threads are overly complicated and
cumbersome.) Many large-scale system applications define their own threading inter‐
faces, as mechanisms such as thread pools and work queues are a more relevant level
of abstraction in system software than what POSIX provides. In that case, the back‐
ground on threading in this chapter is a perfect introduction to your in-house solution.

If you do require a deeper dive into Pthreads, I recommend the further reading in
Appendix B. The relevant man pages are also particularly helpful.

Further Study | 239





1. Interestingly, the one thing not in an inode is the file’s name! That’s stored in the directory entry.

CHAPTER 8

File and Directory Management

In Chapters 2, 3, and 4, we covered a multitude of approaches to file I/O. In this chapter,
we’ll revisit files, this time focusing not on reading from or writing to them, but rather
on manipulating and managing them and their metadata. 

Files and Their Metadata
As discussed in Chapter 1, each file is referenced by an inode, which is addressed by a
filesystem-unique numerical value known as an inode number. An inode is both a
physical object located on the disk of a Unix-style filesystem and a conceptual entity
represented by a data structure in the Linux kernel. The inode stores the metadata
associated with a file, such as the file’s access permissions, last access timestamp, owner,
group, and size, as well as the location of the file’s data.1

You can obtain the inode number for a file using the -i flag to the ls command:

$ ls -i
1689459 Kconfig    1689461 main.c     1680144 process.c  1689464 swsusp.c
1680137 Makefile   1680141 pm.c 1680145 smp.c      1680149 user.c
1680138 console.c  1689462 power.h    1689463 snapshot.c
1689460 disk.c     1680143 poweroff.c 1680147 swap.c

This output shows that, for example, disk.c has an inode number of 1689460. On this
particular filesystem, no other file will have this inode number. On a different filesystem,
however, we can make no such guarantees.

The Stat Family
Unix provides a family of functions for obtaining the metadata of a file:
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#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

int stat (const char *path, struct stat *buf);
int fstat (int fd, struct stat *buf);
int lstat (const char *path, struct stat *buf);

Each of these functions returns information about a file. stat() returns information
about the file denoted by the path path, while fstat() returns information about the
file represented by the file descriptor fd. lstat() is identical to stat(), except that in
the case of a symbolic link, lstat() returns information about the link itself and not
the target file.

Each of these functions stores information in a stat structure, which is provided by the
user. The stat structure is defined in <bits/stat.h>, which is included from <sys/
stat.h>:

struct stat {
dev_t st_dev; /* ID of device containing file */
ino_t st_ino; /* inode number */
mode_t st_mode; /* permissions */
nlink_t st_nlink;     /* number of hard links */
uid_t st_uid; /* user ID of owner */
gid_t st_gid; /* group ID of owner */
dev_t st_rdev; /* device ID (if special file) */
off_t st_size; /* total size in bytes */
blksize_t st_blksize; /* blocksize for filesystem I/O */
blkcnt_t st_blocks;   /* number of blocks allocated */
time_t st_atime; /* last access time */
time_t st_mtime; /* last modification time */
time_t st_ctime; /* last status change time */

};

In more detail, the fields are as follows:

• The st_dev field describes the device node on which the file resides (we will cover
device nodes later in this chapter). If the file is not backed by a device—for example,
if it resides on an NFS volume—this value is 0.

• The st_ino field provides the file’s inode number.
• The st_mode field provides the file’s mode bytes, which describe the file type (such

as a regular file or a directory) and the access permissions (such as world-readable).
Chapters 1 and 2 covered mode bytes and permissions.

• The st_nlink field provides the number of hard links pointing at the file. Every file
on a filesystem has at least one hard link.
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• The st_uid field provides the user ID of the user who owns the file.
• The st_gid field provides the group ID of the group who owns the file.
• If the file is a device node, the st_rdev field describes the device that this file

represents.
• The st_size field provides the size of the file, in bytes.
• The st_blksize field describes the preferred block size for efficient file I/O. This

value (or an integer multiple of it) is the optimal block size for user-buffered I/O
(see Chapter 3).

• The st_blocks field provides the number of filesystem blocks allocated to the file.
This value multiplied by the block size will be smaller than the value provided by
st_size if the file has holes (that is, if the file is a sparse file).

• The st_atime field contains the last file access time. This is the most recent time at
which the file was accessed (for example, by read() or execle()).

• The st_mtime field contains the last file modification time—that is, the last time the
file was written to.

• The st_ctime field contains the last file change time. The field contains the last time
that the file’s metadata (for example, its owner or permissions) was changed. This
is often misunderstood to be the file creation time, which is not preserved on Linux
or other Unix-style systems.

On success, all three calls return 0 and store the file’s metadata in the provided stat
structure. On error, they return −1 and set errno to one of the following:
EACCES

The invoking process lacks search permission for one of the directory components
of path (stat() and lstat() only).

EBADF

fd is invalid (fstat() only).

EFAULT

path or buf is an invalid pointer.

ELOOP

path contains too many symbolic links (stat() and lstat() only).

ENAMETOOLONG

path is too long (stat() and lstat() only).

ENOENT

A component in path does not exist (stat() and lstat() only).
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ENOMEM

There is insufficient memory available to complete the request.

ENOTDIR

A component in path is not a directory (stat() and lstat() only).

The following program uses stat() to retrieve the size of a file provided on the com‐
mand line:

#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <stdio.h>

int main (int argc, char *argv[])
{

struct stat sb;
int ret;

if (argc < 2) {
fprintf (stderr,

"usage: %s <file>\n", argv[0]);
return 1;

}

ret = stat (argv[1], &sb);
if (ret) {

perror ("stat");
return 1;

}

printf ("%s is %ld bytes\n",
argv[1], sb.st_size);

return 0;
}

Here is the result of running the program on its own source file:

$ ./stat stat.c
stat.c is 392 bytes

This program, in turn, reports the file type (such as symbolic link or block device node)
of the file given by the first argument to the program:

#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <stdio.h>

int main (int argc, char *argv[])
{

struct stat sb;
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int ret;

if (argc < 2) {
fprintf (stderr,

"usage: %s <file>\n", argv[0]);
return 1;

}

ret = stat (argv[1], &sb);
if (ret) {

perror ("stat");
return 1;

}

printf ("File type: ");
switch (sb.st_mode & S_IFMT) {
case S_IFBLK:

printf("block device node\n");
break;

case S_IFCHR:
printf("character device node\n");
break;

case S_IFDIR:
printf("directory\n");
break;

case S_IFIFO:
printf("FIFO\n");
break;

case S_IFLNK:
printf("symbolic link\n");
break;

case S_IFREG:
printf("regular file\n");
break;

case S_IFSOCK:
printf("socket\n");
break;

default:
printf("unknown\n");
break;

}

return 0;
}

Finally, this snippet uses fstat() to check whether an already opened file is on a physical
(as opposed to a network) device:

Files and Their Metadata | 245



/*
* is_on_physical_device - returns a positive
* integer if 'fd' resides on a physical device,
* 0 if the file resides on a nonphysical or
* virtual device (e.g., on an NFS mount), and
* −1 on error.
*/
int is_on_physical_device (int fd)
{

struct stat sb;
int ret;

ret = fstat (fd, &sb);
if (ret) {

perror ("fstat");
return −1;

}

return gnu_dev_major (sb.st_dev);
}

Permissions
While the stat calls can be used to obtain the permission values for a given file, two other
system calls set those values:

#include <sys/types.h>
#include <sys/stat.h>

int chmod (const char *path, mode_t mode);
int fchmod (int fd, mode_t mode);

Both chmod() and fchmod() set a file’s permissions to mode. With chmod(), path denotes
the relative or absolute pathname of the file to modify. For fchmod(), the file is given
by the file descriptor fd.

The legal values for mode, represented by the opaque mode_t integer type, are the same
as those returned by the st_mode field in the stat structure. Although the values are
simple integers, their meanings are specific to each Unix implementation. Consequently,
POSIX defines a set of constants that represent the various permissions (see “Permis‐
sions of New Files” on page 29 in Chapter 2 for full details). These constants can be
binary-ORed together to form the legal values for mode. For example, (S_IRUSR |
S_IRGRP) sets the file’s permissions as both owner- and group-readable.

To change a file’s permissions, the effective ID of the process calling chmod() or fchmod()
must match the owner of the file, or the process must have the CAP_FOWNER capability.

On success, both calls return 0. On failure, both calls return −1 and set errno to one of
the following error values:
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EACCES

The invoking process lacked search permission for a component in path (chmod()
only).

EBADF

The file descriptor fd is invalid (fchmod() only).

EFAULT

path is an invalid pointer (chmod() only).

EIO

An internal I/O error occurred on the filesystem. This is a very bad error to en‐
counter; it could indicate a corrupt disk or filesystem.

ELOOP

The kernel encountered too many symbolic links while resolving path (chmod()
only).

ENAMETOOLONG

path is too long (chmod() only).

ENOENT

path does not exist (chmod() only).

ENOMEM

There is insufficient memory available to complete the request.

ENOTDIR

A component in path is not a directory (chmod() only).

EPERM

The effective ID of the invoking process does not match the owner of the file, and
the process lacks the CAP_FOWNER capability.

EROFS

The file resides on a read-only filesystem.

This code snippet sets the file map.png to owner-readable and -writable:

int ret;

/*
* Set 'map.png' in the current directory to
* owner-readable and -writable. This is the
* same as 'chmod 600 ./map.png'.
*/
ret = chmod ("./map.png", S_IRUSR | S_IWUSR);
if (ret)

perror ("chmod");
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This code snippet does the same thing, assuming that fd represents the open file
map.png:

int ret;

/*
* Set the file behind 'fd' to owner-readable
* and -writable.
*/
ret = fchmod (fd, S_IRUSR | S_IWUSR);
if (ret)

perror ("fchmod");

Both chmod() and fchmod() are available on all modern Unix systems. POSIX requires
the former and makes the latter optional.

Ownership
In the stat structure, the st_uid and st_gid fields provide the file’s owner and group,
respectively. Three system calls allow a user to change those two values:

#include <sys/types.h>
#include <unistd.h>

int chown (const char *path, uid_t owner, gid_t group);
int lchown (const char *path, uid_t owner, gid_t group);
int fchown (int fd, uid_t owner, gid_t group);

chown() and lchown() set the ownership of the file specified by the path path. They
have the same effect, unless the file is a symbolic link: the former follows symbolic links
and changes the ownership of the link target rather than the link itself, while lchown()
does not follow symbolic links and therefore changes the ownership of the symbolic
link file instead. fchown() sets the ownership of the file represented by the fd file
descriptor.

On success, all three calls set the file’s owner to owner, set the file’s group to group, and
return 0. If either the owner or the group field is −1, that value is not set. Only a process
with the CAP_CHOWN capability (usually a root process) may change the owner of a file.
The owner of a file can change the file’s group to any group to which the user is a member;
processes with CAP_CHOWN can change the file’s group to any value.

On failure, the calls return −1, and set errno to one of the following values:
EACCES

The invoking process lacks search permission for a component in path (chown()
and lchown() only).

EBADF

fd is invalid (fchown() only).
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EFAULT

path is invalid (chown() and lchown() only).

EIO

There was an internal I/O error (this is bad).

ELOOP

The kernel encountered too many symbolic links in resolving path (chown() and
lchown() only).

ENAMETOOLONG

path is too long (chown() and lchown() only).

ENOENT

The file does not exist.

ENOMEM

There is insufficient memory available to complete the request.

ENOTDIR

A component in path is not a directory (chown() and lchown() only).

EPERM

The invoking process lacked the necessary rights to change the owner or the group
as requested.

EROFS

The filesystem is read-only.

This code snippet changes the group of the file manifest.txt in the current working
directory to officers. For this to succeed, the invoking user either must possess the
CAP_CHOWN capability or must be kidd and in the officers group:

struct group *gr;
int ret;
/*
* getgrnam() returns information on a group
* given its name.
*/
gr = getgrnam ("officers");
if (!gr) {

/* likely an invalid group */
perror ("getgrnam");
return 1;

}

/* set manifest.txt's group to 'officers' */
ret = chown("manifest.txt", -1, gr->gr_gid);
if (ret)

perror ("chown");
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Before invocation, the file’s group is crew:

$ ls -l
-rw-r--r--  1 kidd  crew  13274 May 23 09:20 manifest.txt

After invocation, the file is for the sole privilege of the officers:

$ ls -l
-rw-r--r--  1 kidd  officers 13274 May 23 09:20 manifest.txt

The file’s owner, kidd, is not changed because the code snippet passed −1 for uid.

This function sets the file represented by fd to root ownership and group:

/*
* make_root_owner - changes the owner and group of the file
* given by 'fd' to root. Returns 0 on success and −1 on
* failure.
*/
int make_root_owner (int fd)
{

int ret;

/* 0 is both the gid and the uid for root */
ret = fchown (fd, 0, 0);
if (ret)

perror ("fchown");

return ret;
}

The invoking process must have the CAP_CHOWN capability. As is par for the course with
capabilities, this generally means that it must be owned by root.

Extended Attributes
Extended attributes, also called xattrs, provide a mechanism for associating key/value
pairs with files. In this chapter, we have already discussed all sorts of key/value metadata
associated with files: the file’s size, owner, last modification timestamp, and so on. Ex‐
tended attributes allow existing filesystems to support new features that weren’t antici‐
pated in their original designs, such as mandatory access controls for security. What
makes extended attributes interesting is that user-space applications may arbitrarily
create, read from, and write to the key/value pairs.

Extended attributes are filesystem-agnostic, in the sense that applications use a standard
interface for manipulating them; the interface is not specific to any filesystem. Appli‐
cations can thus use extended attributes without concern for what filesystem the files
reside on or how the filesystem internally stores the keys and values. Still, the imple‐
mentation of extended attributes is very filesystem-specific. Different filesystems store
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2. Until the inode runs out of space, of course. Then ext4 stores extended attributes in additional filesystem
blocks.

extended attributes in quite different ways, but the kernel hides these differences, ab‐
stracting them away behind the extended attribute interface.

The ext4 filesystem, for example, stores a file’s extended attributes in empty space in the
file’s inode.2 This feature makes reading extended attributes very fast. Because the file‐
system block containing the inode is read off the disk and into memory whenever an
application accesses a file, the extended attributes are “automatically” read into memory
and can be accessed without any additional overhead.

Other filesystems, such as FAT and minixfs, do not support extended attributes at all.
These filesystems return ENOTSUP when extended attribute operations are invoked on
their files.

Keys and values
A unique key identifies each extended attribute. Keys must be valid UTF-8. They take
the form namespace.attribute. Every key must be fully qualified; that is, it must begin
with a valid namespace, followed by a period. An example of a valid key name is
user.mime_type; this key is in the user namespace with the attribute name mime_type.

Old and New Ways for a Filesystem to Store MIME Types
GUI file managers, such as GNOME’s, behave differently for files of varying types: they
offer unique icons, different default click behavior, special lists of operations to perform,
and so on. To accomplish this, the file manager has to know the format of each file. To
determine the format, systems such as Windows simply look at the file’s extension. For
reasons of both tradition and security, however, Unix systems tend to inspect the file
and interpret its type. This process is called MIME type sniffing.

Some file managers generate this information on the fly; others generate the information
once and then cache it. Those that cache the information tend to put it in a custom
database. The file manager must work to keep this database in sync with the files, which
can change without the file manager’s knowledge. A better approach is to jettison the
custom database and store such metadata in extended attributes: these are easier to
maintain, faster to access, and readily accessible by any application.

A key is either defined or undefined. If a key is defined, its value may be empty or
nonempty. That is, there is a difference between an undefined key and a defined key
with no assigned value. As we shall see, this means a special interface is required for
removing keys as assigning them an empty value is insufficient.
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The value associated with a key, if nonempty, may be any arbitrary array of bytes. Because
the value is not necessarily a string, it need not be null-terminated, although
null-termination certainly makes sense if you choose to store a C string as a key’s value.
Since the values are not guaranteed to be null-terminated, all operations on extended
attributes require the size of the value. When reading an attribute, the kernel provides
the size; when writing an attribute, you must provide the size.

Linux does not enforce any limits on the number of keys, the length of a key, the size of
a value, or the total space that can be consumed by all of the keys and values associated
with a file. Filesystems, however, have practical limits. These limits are usually mani‐
fested as constraints on the total size of all of the keys and values associated with a given
file.

With ext3, for example, all extended attributes for a given file must fit within the slack
space in the file’s inode and up to one additional filesystem block. (Older versions of
ext3 were limited to the one filesystem block, without the in-inode storage.) This equates
to a practical limit of about 1 KB to 8 KB per file, depending on the size of the filesystem’s
blocks. XFS, in contrast, has no practical limits. Even with ext3, these limits are usually
not an issue, as most keys and values are short text strings. Nonetheless, keep them in
mind—think twice before storing the entire revision control history of a project in a
file’s extended attributes!

Extended attribute namespaces
The namespaces associated with extended attributes are more than just organizational
tools. The kernel enforces different access policies depending on the namespace.

Linux currently defines four extended attribute namespaces and may define more in
the future. The current four are as follows:
system

The system namespace is used to implement kernel features that utilize extended
attributes, such as access control lists (ACLs). An example of an extended attribute
in this namespace is system.posix_acl_access. Whether users can read from or
write to these attributes depends on the security module in place. Assume at worst
that no user (including root) can even read these attributes.

security
The security namespace is used to implement security modules, such as SELinux.
Whether user-space applications can access these attributes depends, again, on the
security module in place. By default, all processes can read these attributes, but only
processes with the CAP_SYS_ADMIN capability can write to them.

trusted
The trusted namespace stores restricted information in user space. Only processes
with the CAP_SYS_ADMIN capability can read from or write to these attributes.

252 | Chapter 8: File and Directory Management



user
The user namespace is the standard namespace for use by regular processes. The
kernel controls access to this namespace via the normal file permission bits. To read
the value from an existing key, a process must have read access to the given file. To
create a new key or to write a value to an existing key, a process must have write
access to the given file. You can assign extended attributes in the user namespace
only to regular files, not to symbolic links or device files. When designing a user-
space application that uses extended attributes, this is likely the namespace you
want.

Extended Attribute Operations
POSIX defines four operations that applications may perform on a given file’s extended
attributes:

• Given a file, return a list of all of the file’s assigned extended attribute keys.
• Given a file and a key, return the corresponding value.
• Given a file, a key, and a value, assign that value to the key.
• Given a file and a key, remove that extended attribute from the file.

For each operation, POSIX provides three system calls:

• A version that operates on a given pathname; if the path refers to a symbolic link,
the target of the link is operated upon (the usual behavior).

• A version that operates on a given pathname; if the path refers to a symbolic link,
the link itself is operated upon (the standard l variant of a system call).

• A version that operates on a file descriptor (the standard f variant).

In the following subsections, we will cover all 12 combinations.

Retrieving an extended attribute
The simplest operation is returning the value of an extended attribute from a file, given
the key:

#include <sys/types.h>
#include <attr/xattr.h>

ssize_t getxattr (const char *path, const char *key,
void *value, size_t size);

ssize_t lgetxattr (const char *path, const char *key,
void *value, size_t size);

ssize_t fgetxattr (int fd, const char *key,
void *value, size_t size);

Files and Their Metadata | 253



A successful call to getxattr() stores the extended attribute with name key from the
file path in the provided buffer value, which is size bytes in length. It returns the actual
size of the value.

If size is 0, the call returns the size of the value without storing it in value. Thus, passing
0 allows applications to determine the correct size for the buffer in which to store the
key’s value. Given this size, applications can then allocate or resize the buffer as needed.

lgetxattr() behaves the same as getxattr(), unless path is a symbolic link, in which
case it returns extended attributes from the link itself rather than the target of the link.
Recall from the previous section that attributes in the user namespace cannot be applied
to symbolic links—thus, this call is rarely used.

fgetxattr() operates on the file descriptor fd; otherwise, it behaves the same as get
xattr().

On error, all three calls return −1 and set errno to one of the following values:
EACCES

The invoking process lacks search permission for one of the directory components
of path (getxattr() and lgetxattr() only).

EBADF

fd is invalid (fgetxattr() only).

EFAULT

path, key, or value is an invalid pointer.

ELOOP

path contains too many symbolic links (getxattr() and lgetxattr() only).

ENAMETOOLONG

path is too long (getxattr() and lgetxattr() only).

ENOATTR

The attribute key does not exist, or the process does not have access to the attribute.

ENOENT

A component in path does not exist (getxattr() and lgetxattr() only).

ENOMEM

There is insufficient memory available to complete the request.

ENOTDIR

A component in path is not a directory (getxattr() and lgetxattr() only).

ENOTSUP

The filesystem on which path or fd resides does not support extended attributes.
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ERANGE

size is too small to hold the value of key. As previously discussed, the call may be
reissued with size set to 0; the return value will indicate the required buffer size,
and value may be resized appropriately.

Setting an extended attribute
The following three system calls set a given extended attribute:

#include <sys/types.h>
#include <attr/xattr.h>

int setxattr (const char *path, const char *key,
const void *value, size_t size, int flags);

int lsetxattr (const char *path, const char *key,
const void *value, size_t size, int flags);

int fsetxattr (int fd, const char *key,
const void *value, size_t size, int flags);

A successful call to setxattr() sets the extended attribute key on the file path to
value, which is size bytes in length. The flags field modifies the behavior of the call.
If flags is XATTR_CREATE, the call will fail if the extended attribute already exists. If
flags is XATTR_REPLACE, the call will fail if the extended attribute does not exist. The
default behavior, which is performed if flags is 0, allows both creations and replace‐
ments. Regardless of the value of flags, keys other than key are unaffected.

lsetxattr() behaves the same as setxattr(), unless path is a symbolic link, in which
case it sets the extended attributes on the link itself, rather than on the target of the link.
Recall that attributes in the user namespace cannot be applied to symbolic links—thus,
this call is also rarely used.

fsetxattr() operates on the file descriptor fd; otherwise, it behaves the same as set
xattr().

On success, all three system calls return 0; on failure, the calls return −1 and set errno
to one of the following:
EACCES

The invoking process lacks search permission for one of the directory components
of path (setxattr() and lsetxattr() only).

EBADF

fd is invalid (fsetxattr() only).

EDQUOT

A quota limit prevents the space consumption required by the requested operation.
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EEXIST

XATTR_CREATE was set in flags, and key already exists on the given file.

EFAULT

path, key, or value is an invalid pointer.

EINVAL

flags is invalid.

ELOOP

path contains too many symbolic links (setxattr() and lsetxattr() only).

ENAMETOOLONG

path is too long (setxattr() and lsetxattr() only).

ENOATTR

XATTR_REPLACE was set in flags, and key does not exist on the given file.

ENOENT

A component in path does not exist (setxattr() and lsetxattr() only).

ENOMEM

There is insufficient memory available to complete the request.

ENOSPC

There is insufficient space on the filesystem to store the extended attribute.

ENOTDIR

A component in path is not a directory (setxattr() and lsetxattr() only).

ENOTSUP

The filesystem on which path or fd resides does not support extended attributes.

Listing the extended attributes on a file
The following three system calls enumerate the set of extended attribute keys assigned
to a given file:

#include <sys/types.h>
#include <attr/xattr.h>

ssize_t listxattr (const char *path,
char *list, size_t size);

ssize_t llistxattr (const char *path,
char *list, size_t size);

ssize_t flistxattr (int fd,
char *list, size_t size);
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A successful call to listxattr() returns a list of the extended attribute keys associated
with the file denoted by path. The list is stored in the buffer provided by list, which
is size bytes in length. The system call returns the actual size of the list, in bytes.

Each extended attribute key returned in list is terminated by a null character, so a list
might look like this:

"user.md5_sum\0user.mime_type\0system.posix_acl_default\0"

Thus, although each key is a traditional, null-terminated C string, you need the length
of the entire list (which you can retrieve from the call’s return value) to walk the list of
keys. To find out how large a buffer you need to allocate, call one of the list functions
with a size of 0; this causes the function to return the actual length of the full list of
keys. As with getxattr(), applications may use this functionality to allocate or resize
the buffer to pass for value.

llistxattr() behaves the same as listxattr(), unless path is a symbolic link, in which
case the call enumerates the extended attribute keys associated with the link itself rather
than with the target of the link. Recall that attributes in the user namespace cannot be
applied to symbolic links—thus, this call is rarely used.

flistxattr() operates on the file descriptor fd; otherwise, it behaves the same as
listxattr().

On failure, all three calls return −1 and set errno to one of the following error codes:
EACCES

The invoking process lacks search permission for one of the directory components
of path (listxattr() and llistxattr() only).

EBADF

fd is invalid (flistxattr() only).

EFAULT

path or list is an invalid pointer.

ELOOP

path contains too many symbolic links (listxattr() and llistxattr() only).

ENAMETOOLONG

path is too long (listxattr() and llistxattr() only).

ENOENT

A component in path does not exist (listxattr() and llistxattr() only).

ENOMEM

There is insufficient memory available to complete the request.
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ENOTDIR

A component in path is not a directory (listxattr() and llistxattr() only).

ENOTSUP

The filesystem on which path or fd resides does not support extended attributes.

ERANGE

size is nonzero and is insufficiently large to hold the complete list of keys. The
application may reissue the call with size set to 0 to discover the actual size of the
list. The program may then resize value and reissue the system call.

Removing an extended attribute
Finally, these three system calls remove a given key from a given file:

#include <sys/types.h>
#include <attr/xattr.h>

int removexattr (const char *path, const char *key);
int lremovexattr (const char *path, const char *key);
int fremovexattr (int fd, const char *key);

A successful call to removexattr() removes the extended attribute key from the file
path. Recall that there is a difference between an undefined key and a defined key with
an empty (zero-length) value.

lremovexattr() behaves the same as removexattr(), unless path is a symbolic link, in
which case the call removes the extended attribute key associated with the link itself
rather than with the target of the link. Recall that attributes in the user namespace cannot
be applied to symbolic links—thus, this call is also rarely used.

fremovexattr() operates on the file descriptor fd; otherwise, it behaves the same as
removexattr().

On success, all three system calls return 0. On failure, all three calls return −1 and set
errno to one of the following:
EACCES

The invoking process lacks search permission for one of the directory components
of path (removexattr() and lremovexattr() only).

EBADF

fd is invalid (fremovexattr() only).

EFAULT

path or key is an invalid pointer.
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ELOOP

path contains too many symbolic links (removexattr() and lremovexattr() on‐
ly).

ENAMETOOLONG

path is too long (removexattr() and lremovexattr() only).

ENOATTR

key does not exist on the given file.

ENOENT

A component in path does not exist (removexattr() and lremovexattr() only).

ENOMEM

There is insufficient memory available to complete the request.

ENOTDIR

A component in path is not a directory (removexattr() and lremovexattr() only).

ENOTSUP

The filesystem on which path or fd resides does not support extended attributes. 

Directories
528.80bIn Unix, a directory is a simple concept: it contains a list of filenames, each of
which maps to an inode number. Each name is called a directory entry, and each name-
to-inode mapping is called a link. A directory’s contents—what the user sees as the result
of the ls command—are a listing of all the filenames in that directory. When the user
opens a file in a given directory, the kernel looks up the filename in that directory’s list
to find the corresponding inode number. The kernel then passes that inode number to
the filesystem, which uses it to find the physical location of the file on the device.

Directories can also contain other directories. A subdirectory is a directory inside of
another directory. Given this definition, all directories are subdirectories of some parent
directory, with the exception of the directory at the very root of the filesystem tree, /.
Not surprisingly, this directory is called the root directory (not to be confused with the
root user’s home directory, /root).

A pathname consists of a filename along with one or more of its parent directories. An
absolute pathname is a pathname that begins with the root directory—for example, /usr/
bin/sextant. A relative pathname is a pathname that does not begin with the root di‐
rectory, such as bin/sextant. For such a pathname to be useful, the operating system
must know the directory to which the path is relative. The current working directory
(discussed in the next section) is used as the starting point.
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3. Note that this limit is 255 bytes, not 255 characters. Multibyte characters obviously consume more than 1 of
these 255 bytes.

4. Of course, older filesystems that Linux provides for backward compatibility, such as FAT, still carry their own
limitations. In the case of FAT, this limitation is eight characters, followed by a dot, followed by three char‐
acters. Yes, enforcing the dot as a special character inside of the filesystem is silly.

File and directory names can contain any character except /, which delineates directories
in a pathname, and null, which terminates the pathname. That said, it is standard prac‐
tice to constrain the characters in pathnames to valid printable characters under the
current locale, or even just ASCII. Since neither the kernel nor the C library enforces
this practice, however, it is up to applications to enforce the use of only valid printable
characters.

Older Unix systems limited filenames to 14 characters. Today, all modern Unix filesys‐
tems allow at least 255 bytes for each filename.3 Many filesystems under Linux allow
even longer filenames.4

Every directory contains two special directories, . and .. (called dot and dot-dot). The
dot directory is a reference to the directory itself. The dot-dot directory is a reference
to the directory’s parent directory. For example, /home/kidd/gold/.. is the same directory
as /home/kidd. The root directory’s dot and dot-dot directories point to itself—that
is, /, /., and /.. are all the same directory. Technically speaking, therefore, one could say
that even the root directory is a subdirectory—in this case, of itself.

The Current Working Directory
Every process has a current directory, which it initially inherits from its parent process.
That directory is known as the process’s current working directory (cwd). The current
working directory is the starting point from which the kernel resolves relative path‐
names. For example, if a process’s current working directory is /home/blackbeard, and
that process tries to open parrot.jpg, the kernel will attempt to open /home/blackbeard/
parrot.jpg. Conversely, if the process tries to open /usr/bin/mast, the kernel will indeed
open /usr/bin/mast. The current working directory has no impact on absolute path‐
names (that is, pathnames that start with a slash).

A process can both obtain and change its current working directory.

Obtaining the current working directory

The preferred method for obtaining the current working directory is the getcwd()
system call, which POSIX standardized:

#include <unistd.h>

char * getcwd (char *buf, size_t size);
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A successful call to getcwd() copies the current working directory as an absolute path‐
name into the buffer pointed at by buf, which is of length size bytes and returns a
pointer to buf. On failure, the call returns NULL and sets errno to one of the following
values:
EFAULT

buf is an invalid pointer.

EINVAL

size is 0, but buf is not NULL.

ENOENT

The current working directory is no longer valid. This can happen if the current
working directory has been removed.

ERANGE

size is too small to hold the current working directory in buf. The application
needs to allocate a larger buffer and try again.

Here’s an example of using getcwd():

char cwd[BUF_LEN];

if (!getcwd (cwd, BUF_LEN)) {
perror ("getcwd");
exit (EXIT_FAILURE);

}

printf ("cwd = %s\n", cwd);

POSIX dictates that the behavior of getcwd() is undefined if buf is NULL. Linux’s C
library, in this case, will allocate a buffer of length size bytes, and store the current
working directory there. If size is 0, the C library will allocate a buffer sufficiently large
to store the current working directory. It is then the application’s responsibility to free
the buffer, via free(), when it’s done with it. Because this behavior is Linux-specific,
applications that value portability or a strict adherence to POSIX should not rely on this
functionality. This feature, however, does make usage very simple! Here’s an example:

char *cwd;

cwd = getcwd (NULL, 0);
if (!cwd) {

perror ("getcwd");
exit (EXIT_FAILURE);

}

printf ("cwd = %s\n", cwd);

free (cwd);
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Linux’s C library also provides a get_current_dir_name() function, which has the same
behavior as getcwd() when passed a NULL buf and a size of 0:

#define _GNU_SOURCE
#include <unistd.h>

char * get_current_dir_name (void);

Thus, this snippet behaves the same as the previous one:

char *cwd;

cwd = get_current_dir_name ();
if (!cwd) {

perror ("get_current_dir_name");
exit (EXIT_FAILURE);

}

printf ("cwd = %s\n", cwd);

free (cwd);

Older BSD systems favored the getwd() call, which Linux provides for backward
compatibility:

#define _XOPEN_SOURCE_EXTENDED /* or _BSD_SOURCE */
#include <unistd.h>

char * getwd (char *buf);

A call to getwd() copies the current working directory into buf, which must be at least
PATH_MAX bytes in length. The call returns buf on success and NULL on failure. For
example:

char cwd[PATH_MAX];

if (!getwd (cwd)) {
perror ("getwd");
exit (EXIT_FAILURE);

}

printf ("cwd = %s\n", cwd);

For reasons of both portability and security, applications should not use getwd();
getcwd() is preferred.

Changing the current working directory
When a user first logs into her system, the login process sets her current working di‐
rectory to her home directory, as specified in /etc/passwd. Sometimes, however, a process
wants to change its current working directory. For example, a shell may want to do this
when the user types cd.
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Linux provides two system calls for changing the current working directory: one that
accepts the pathname of a directory and another that accepts a file descriptor repre‐
senting an open directory.

#include <unistd.h>

int chdir (const char *path);
int fchdir (int fd);

A call to chdir() changes the current working directory to the pathname specified by
path, which can be an absolute or a relative pathname. Similarly, a call to fchdir()
changes the current working directory to the pathname represented by the file descrip‐
tor fd, which must be opened against a directory. On success, both calls return 0. On
failure, both calls return −1.

On failure, chdir() also sets errno to one of the following values:
EACCES

The invoking process lacks search permission for one of the directory components
of path.

EFAULT

path is not a valid pointer.

EIO

An internal I/O error occurred.

ELOOP

The kernel encountered too many symbolic links while resolving path.

ENAMETOOLONG

path is too long.

ENOENT

The directory pointed at by path does not exist.

ENOMEM

There is insufficient memory available to complete the request.

ENOTDIR

One or more of the components in path is not a directory.

fchdir() sets errno to one of the following values:
EACCES

The invoking process lacks search permission for the directory referenced by fd
(i.e., the execute bit is not set). This happens if the top-level directory is readable
but not executable; open() succeeds, but fchdir() will not.
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EBADF

fd is not an open file descriptor.

Depending on the filesystem, other error values are valid for either call.

These system calls affect only the currently running process. There is no mechanism in
Unix for changing the current working directory of a different process. Therefore, the
cd command found in shells cannot be a separate process (like most commands) that
simply executes chdir() on the first command-line argument and then exits. Instead,
cd must be a special built-in command that causes the shell itself to call chdir(), chang‐
ing its own current working directory.

The most common use of getcwd() is to save the current working directory so that the
process can return to it later. For example:

char *swd;
int ret;

/* save the current working directory */
swd = getcwd (NULL, 0);
if (!swd) {

perror ("getcwd");
exit (EXIT_FAILURE);

}

/* change to a different directory */
ret = chdir (some_other_dir);
if (ret) {

perror ("chdir");
exit (EXIT_FAILURE);

}

/* do some other work in the new directory... */

/* return to the saved directory */
ret = chdir (swd);
if (ret) {

perror ("chdir");
exit (EXIT_FAILURE);

}

free (swd);

It’s better, however, to open() the current directory and then fchdir() to it later. This
approach is faster because the kernel does not store the pathname of the current working
directory in memory; it stores only the inode. Consequently, whenever the user calls
getcwd(), the kernel must generate the pathname by walking the directory structure.
Conversely, opening the current working directory is cheaper because the kernel already
has its inode available and the human-readable pathname is not needed to open a file.
The following snippet uses this approach:
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int swd_fd;

swd_fd = open (".", O_RDONLY);
if (swd_fd == −1) {

perror ("open");
exit (EXIT_FAILURE);

}

/* change to a different directory */
ret = chdir (some_other_dir);
if (ret) {

perror ("chdir");
exit (EXIT_FAILURE);

}

/* do some other work in the new directory... */

/* return to the saved directory */
ret = fchdir (swd_fd);
if (ret) {

perror ("fchdir");
exit (EXIT_FAILURE);

}

/* close the directory's fd */
ret = close (swd_fd);
if (ret) {

perror ("close");
exit (EXIT_FAILURE);

}

This is how shells implement the caching of the previous directory (for example, with
cd - in bash).

A process that does not care about its current working directory—such as a daemon—
generally sets it to / with the call chdir("/"). An application that interfaces with a user
and his data, such as a word processor, generally sets its current working directory to
the user’s home directory or to a special documents directory. Because current working
directories are relevant only in the context of relative pathnames, the current working
directory is of most utility to command-line utilities that the user invokes from the
shell. 

Creating Directories
Linux provides a single system call, standardized by POSIX, for creating new directories:

#include <sys/stat.h>
#include <sys/types.h>

int mkdir (const char *path, mode_t mode);
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A successful call to mkdir() creates the directory path, which may be relative or absolute,
with the permission bits mode (as modified by the current umask), and returns 0.

The current umask modifies the mode argument in the usual way, plus any operating-
system-specific mode bits. In Linux, the permission bits of the newly created directory
are (mode & ~umask & 01777). In other words, the umask for the process imposes
restrictions that the mkdir() call cannot override. If the new directory’s parent directory
has the set group ID (sgid) bit set, or if the filesystem is mounted with BSD group
semantics, the new directory will inherit the group affiliation from its parent. Otherwise,
the effective group ID of the process will apply to the new directory.

On failure, mkdir() returns −1 and sets errno to one of the following values:
EACCES

The parent directory is not writable by the current process, or one or more com‐
ponents of path are not searchable.

EEXIST

path already exists (and not necessarily as a directory).

EFAULT

path is an invalid pointer.

ELOOP

The kernel encountered too many symbolic links while resolving path.

ENAMETOOLONG

path is too long.

ENOENT

A component in path does not exist or is a dangling symbolic link.

ENOMEM

There is insufficient kernel memory to complete the request.

ENOSPC

The device containing path is out of space, or the user’s disk quota is over the limit.

ENOTDIR

One or more of the components in path is not a directory.

EPERM

The filesystem containing path does not support the creation of directories.

EROFS

The filesystem containing path is mounted read-only.
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Removing Directories
As the counterpart to mkdir(), the POSIX-standardized rmdir() removes a directory
from the filesystem hierarchy:

#include <unistd.h>

int rmdir (const char *path);

On success, rmdir() removes path from the filesystem and returns 0. The directory
specified by path must be empty, aside from the dot and dot-dot directories. There is
no system call that implements the equivalent of a recursive delete, as with rm -r. Such
a tool must manually perform a depth-first traversal of the filesystem, removing all files
and directories starting with the leaves, and moving back up the filesystem; rmdir()
can be used at each stage to remove a directory once its files have been removed.

On failure, rmdir() returns −1 and sets errno to one of the following values:
EACCES

Write access to the parent directory of path is not allowed, or one of the component
directories of path is not searchable.

EBUSY

path is currently in use by the system and cannot be removed. In Linux, this can
happen only if path is a mount point or a root directory (root directories need not
be mount points, thanks to chroot()!).

EFAULT

path is not a valid pointer.

EINVAL

path has the dot directory as its final component.

ELOOP

The kernel encountered too many symbolic links while resolving path.

ENAMETOOLONG

path is too long.

ENOENT

A component in path does not exist, or is a dangling symbolic link.

ENOMEM

There is insufficient kernel memory to complete the request.

ENOTDIR

One or more of the components in path is not a directory.
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ENOTEMPTY

path contains entries other than the special dot and dot-dot directories.

EPERM

The parent directory of path has the sticky bit (S_ISVTX) set, but the process’s ef‐
fective user ID is neither the user ID of said parent nor of path itself, and the process
does not have the CAP_FOWNER capability. Alternatively, the filesystem containing
path does not allow the removal of directories.

EROFS

The filesystem containing path is mounted read-only.

Usage is simple:

int ret;

/* remove the directory /home/barbary/maps */
ret = rmdir ("/home/barbary/maps");
if (ret)

perror ("rmdir");

Reading a Directory’s Contents
POSIX defines a family of functions for reading the contents of directories—that is,
obtaining a list of the files that reside in a given directory. These functions are useful if
you are implementing ls or a graphical file save dialog, if you need to operate on every
file in a given directory, or if you want to search for files in a directory that match a
given pattern.

To begin reading a directory’s contents you need to create a directory stream, which is
represented by a DIR object:

#include <sys/types.h>
#include <dirent.h>

DIR * opendir (const char *name);

A successful call to opendir() creates a directory stream representing the directory
given by name.

A directory stream is little more than a file descriptor representing the open directory,
some metadata, and a buffer to hold the directory’s contents. Consequently, it is possible
to obtain the file descriptor behind a given directory stream:

#define _BSD_SOURCE /* or _SVID_SOURCE */
#include <sys/types.h>
#include <dirent.h>

int dirfd (DIR *dir);
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A successful call to dirfd() returns the file descriptor backing the directory stream
dir. On error, the call returns −1. As the directory stream functions use this file de‐
scriptor internally, programs should not invoke calls that manipulate the file position.
dirfd() is a BSD extension and is not standardized by POSIX; programmers wishing
to proclaim their POSIX compliance should avoid it.

Reading from a directory stream

Once you have created a directory stream with opendir(), your program can begin
reading entries from the directory. To do this, use readdir(), which returns entries one
by one from a given DIR object:

#include <sys/types.h>
#include <dirent.h>

struct dirent * readdir (DIR *dir);

A successful call to readdir() returns the next entry in the directory represented by
dir. The dirent structure represents a directory entry. Defined in <dirent.h>, on
Linux, its definition is:

struct dirent {
ino_t d_ino; /* inode number */
off_t d_off; /* offset to the next dirent */
unsigned short d_reclen; /* length of this record */
unsigned char d_type; /* type of file */
char d_name[256]; /* filename */

};

POSIX requires only the d_name field, which is the name of a single file within the
directory. The other fields are optional or Linux-specific. Applications desiring porta‐
bility to other systems, or conformance to POSIX should access only d_name.

Applications successively invoke readdir(), obtaining each file in the directory, until
they find the file they are searching for or until the entire directory is read, at which
time readdir() returns NULL.

On failure, readdir() also returns NULL. To differentiate between an error and having
read all of the files, applications must set errno to 0 before each readdir() invocation
and then check both the return value and errno. The only errno value set by read
dir() is EBADF, signifying that dir is invalid. Thus, many applications do not bother to
check for errors and assume that NULL means that no more files remain.

Closing the directory stream

To close a directory stream opened with opendir(), use closedir():

#include <sys/types.h>
#include <dirent.h>
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int closedir (DIR *dir);

A successful call to closedir() closes the directory stream represented by dir, includ‐
ing the backing file descriptor, and returns 0. On failure, the function returns −1 and
sets errno to EBADF, the only possible error code, signifying that dir is not an open
directory stream.

The following snippet implements a function, find_file_in_dir(), that uses read
dir() to search a given directory for a given filename. If the file exists in the directory,
the function returns 0. Otherwise, it returns a nonzero value:

/*
* find_file_in_dir - searches the directory 'path' for a
* file named 'file'.
*
 * Returns 0 if 'file' exists in 'path' and a nonzero
* value otherwise.
*/
int find_file_in_dir (const char *path, const char *file)
{

struct dirent *entry;
int ret = 1;
DIR *dir;

dir = opendir (path);

errno = 0;
while ((entry = readdir (dir)) != NULL) {

if (strcmp(entry->d_name, file) == 0) {
ret = 0;
break;

}
}

if (errno && !entry)
perror ("readdir");

closedir (dir);
return ret;

}

System calls for reading directory contents
The previously discussed functions for reading the contents of directories are standar‐
dized by POSIX and provided by the C library. Internally, these functions use one of
two system calls, readdir() and getdents(), which are provided here for completeness:

#include <unistd.h>
#include <linux/types.h>
#include <linux/dirent.h>
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5. Finding files with a link count of 0, but whose blocks are marked as allocated is a primary job of fsck, the
filesystem checker. Such a condition can occur when a file is deleted, but remains open, and the system crashes
before the file is closed. The kernel is never able to mark the filesystem blocks as free, and thus the discrepancy
arises. Journaling filesystems eliminate this type of error.

#include <linux/unistd.h>
#include <errno.h>

/*
* Not defined for user space: need to
* use the _syscall3() macro to access.
*/
int readdir (unsigned int fd,

struct dirent *dirp,
unsigned int count);

int getdents (unsigned int fd,
struct dirent *dirp,
unsigned int count);

You do not want to use these system calls! They are obtuse and not portable. Instead,
user-space applications should use the C library’s opendir(), readdir(), and close
dir() system calls. 

Links
Recall from our discussion of directories that each name-to-inode mapping in a direc‐
tory is called a link. Given this simple definition—that a link is essentially just a name
in a list (a directory) that points at an inode—there would appear to be no reason why
multiple links to the same inode could not exist. That is, a single inode (and thus a single
file) could be referenced from, say, both /etc/customs and /var/run/ledger.

Indeed, this is the case, with one catch: because links map to inodes, and inode numbers
are specific to a particular filesystem, /etc/customs and /var/run/ledger must both reside
on the same filesystem. Within a single filesystem, there can be a large number of links
to any given file. The only limit is in the size of the integer data type used to hold the
number of links. Among various links, no one link is the “original” or the “primary”
link. All of the links enjoy the same status, pointing at the same file.

We call these types of links hard links. Files can have 0, 1, or many links. Most files have
a link count of 1—that is, they are pointed at by a single directory entry—but some files
have 2 or even more links. Files with a link count of 0 have no corresponding directory
entries on the filesystem. When a file’s link count reaches 0, the file is marked as free,
and its disk blocks are made available for reuse.5 Such a file, however, remains on the
filesystem if a process has the file open. Once no process has the file open, the file is
removed.
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The Linux kernel implements this behavior by using a link count and a usage count.
The usage count is a tally of the number of instances where the file is open. A file is not
removed from the filesystem until both the link and the usage counts hit 0.

Another type of link, the symbolic link, is not a filesystem mapping, but a higher-level
pointer that is interpreted at runtime. Such links may span filesystems—we’ll look at
them shortly.

Hard Links
The link() system call, one of the original Unix system calls, and now standardized by
POSIX, creates a new link for an existing file:

#include <unistd.h>

int link (const char *oldpath, const char *newpath);

A successful call to link() creates a new link under the path newpath for the existing
file oldpath, and then returns 0. Upon completion, both oldpath and newpath refer to
the same file—there is, in fact, no way to even tell which was the “original” link.

On failure, the call returns −1 and sets errno to one of the following:
EACCES

The invoking process lacks search permission for a component in oldpath, or the
invoking process does not have write permission for the directory containing new
path.

EEXIST

newpath already exists—link() will not overwrite an existing directory entry.

EFAULT

oldpath or newpath is an invalid pointer.

EIO

An internal I/O error occurred (this is bad!).

ELOOP

Too many symbolic links were encountered in resolving oldpath or newpath.

EMLINK

The inode pointed at by oldpath already has the maximum number of links point‐
ing at it.

ENAMETOOLONG

oldpath or newpath is too long.
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ENOENT

A component in oldpath or newpath does not exist.

ENOMEM

There is insufficient memory available to complete the request.

ENOSPC

The device containing newpath has no room for the new directory entry.

ENOTDIR

A component in oldpath or newpath is not a directory.

EPERM

The filesystem containing newpath does not allow the creation of new hard links,
or oldpath is a directory.

EROFS

newpath resides on a read-only filesystem.

EXDEV

newpath and oldpath are not on the same mounted filesystem. (Linux allows a
single filesystem to be mounted in multiple places, but even in this case, hard links
cannot be created across the mount points.)

This example creates a new directory entry, pirate, that maps to the same inode (and
thus the same file) as the existing file privateer, both of which are in /home/kidd:

int ret;

/*
* create a new directory entry,
* '/home/kidd/privateer', that points at
* the same inode as '/home/kidd/pirate'
*/
ret = link ("/home/kidd/privateer", /home/kidd/pirate");
if (ret)

perror ("link");

Symbolic Links
Symbolic links, also known as symlinks or soft links, are similar to hard links in that both
point at files in the filesystem. The symbolic link differs, however, in that it is not merely
an additional directory entry, but a special type of file altogether. This special file con‐
tains the pathname for a different file, called the symbolic link’s target. At runtime, on
the fly, the kernel substitutes this pathname for the symbolic link’s pathname (unless
using the various l versions of system calls, such as lstat(), which operate on the link
itself, and not the target). Thus, whereas one hard link is indistinguishable from another
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hard link to the same file, it is easy to tell the difference between a symbolic link and its
target file.

A symbolic link may be relative or absolute. It may also contain the special dot directory
discussed earlier, referring to the directory in which it is located, or the dot-dot directory,
referring to the parent of this directory. These sorts of “relative” symbolic links are quite
common and often rather useful.

Soft links, unlike hard links, can span filesystems. They can point anywhere, in fact!
Symbolic links can point at files that exist (the common practice) or at nonexistent files.
The latter type of link is called a dangling symlink. Sometimes, dangling symlinks are
unwanted—such as when the target of the link was deleted, but not the symlink—but
at other times, they are intentional. Symbolic links can even point at other symbolic
links. This can create loops. System calls that deal with symbolic links check for loops
by maintaining a maximum traversal depth. If that depth is surpassed, they return ELOOP.

The system call for creating a symbolic link is very similar to its hard link cousin:

#include <unistd.h>

int symlink (const char *oldpath, const char *newpath);

A successful call to symlink() creates the symbolic link newpath pointing at the target
oldpath, and then returns 0.

On error, symlink() returns −1 and sets errno to one of the following:
EACCES

The invoking process lacks search permission for a component in oldpath, or the
invoking process does not have write permission for the directory containing new
path.

EEXIST

newpath already exists—symink() will not overwrite an existing directory entry.

EFAULT

oldpath or newpath is an invalid pointer.

EIO

An internal I/O error occurred (this is bad!).

ELOOP

Too many symbolic links were encountered in resolving oldpath or newpath.

EMLINK

The inode pointed at by oldpath already has the maximum number of links point‐
ing at it.
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ENAMETOOLONG

oldpath or newpath is too long.

ENOENT

A component in oldpath or newpath does not exist.

ENOMEM

There is insufficient memory available to complete the request.

ENOSPC

The device containing newpath has no room for the new directory entry.

ENOTDIR

A component in oldpath or newpath is not a directory.

EPERM

The filesystem containing newpath does not allow the creation of new symbolic
links.

EROFS

newpath resides on a read-only filesystem.

This snippet is the same as our previous example, but it creates /home/kidd/pirate as a
symbolic link (as opposed to a hard link) to /home/kidd/privateer: 

int ret;

/*
* create a symbolic link,
* '/home/kidd/privateer', that
* points at '/home/kidd/pirate'
*/
ret = symlink ("/home/kidd/privateer", "/home/kidd/pirate");
if (ret)

perror ("symlink");

Unlinking
The converse to linking is unlinking, the removal of pathnames from the filesystem. A
single system call, unlink(), handles this task:

#include <unistd.h>

int unlink (const char *pathname);

A successful call to unlink() deletes pathname from the filesystem and returns 0. If that
name was the last reference to the file, the file is deleted from the filesystem. If, however,
a process has the file open, the kernel will not delete the file from the filesystem until
that process closes the file. Once no process has the file open, it is deleted.
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If pathname refers to a symbolic link, the link, not the target, is destroyed.

If pathname refers to another type of special file, such as a device, FIFO, or socket, the
special file is removed from the filesystem, but processes that have the file open may
continue to utilize it.

On error, unlink() returns −1 and sets errno to one of the following error codes:
EACCES

The invoking process does not have write permission for the parent directory of
pathname, or the invoking process does not have search permission for a component
in pathname.

EFAULT

pathname is an invalid pointer.

EIO

An I/O error occurred (this is bad!).

EISDIR

pathname refers to a directory.

ELOOP

Too many symbolic links were encountered in traversing pathname.

ENAMETOOLONG

pathname is too long.

ENOENT

A component in pathname does not exist.

ENOMEM

There is insufficient memory available to complete the request.

ENOTDIR

A component in pathname is not a directory.

EPERM

The system does not allow the unlinking of files.

EROFS

pathname resides on a read-only filesystem.

unlink() does not remove directories. For that, applications should use rmdir(), which
we discussed earlier (see “Removing Directories” on page 267).

To ease the wanton destruction of any type of file, the C language provides the remove()
function:
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#include <stdio.h>

int remove (const char *path);

A successful call to remove() deletes path from the filesystem and returns 0. If path is
a file, remove() invokes unlink(); if path is a directory, remove() calls rmdir().

On error, remove() returns −1 and sets errno to any of the valid error codes set by
unlink() and rmdir(), as applicable. 

Copying and Moving Files
Two of the most basic file manipulation tasks are copying and moving files, commonly
carried out via the cp and mv commands. At the filesystem level, copying is the act of
duplicating a given file’s contents under a new pathname. This differs from creating a
new hard link to the file in that changes to one file will not affect the other—that is, there
now exist two distinct copies of the file, under (at least) two different directory entries.
Moving, conversely, is the act of renaming the directory entry under which a file is
located. This action does not result in the creation of a second copy.

Copying
Although it is surprising to some, Unix does not include a system or library call to
facilitate the copying of files and directories. Instead, utilities such as cp or GNOME’s
file manager perform these tasks manually.

In copying a file src to a file named dst, the steps are as follows:

1. Open src.
2. Open dst, creating it if it does not exist, and truncating it to zero length if it does

exist.
3. Read a chunk of src into memory.
4. Write the chunk to dst.
5. Continue until all of src has been read and written to dst.
6. Close dst.
7. Close src.

If copying a directory, the individual directory and any subdirectories are created via
mkdir(); each file therein is then copied individually.
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6. Although Linux allows you to mount a device at multiple points in the directory structure, you still cannot
rename from one of these mount points to another, even though they are backed by the same device.

Moving
Unlike for copying files, Unix does provide a system call for moving files. The ANSI C
standard introduced the call for files, and POSIX standardized it for both files and
directories:

#include <stdio.h>

int rename (const char *oldpath, const char *newpath);

A successful call to rename() renames the pathname oldpath to newpath. The file’s
contents and inode remain the same. Both oldpath and newpath must reside on the
same filesystem;6 if they do not, the call will fail. Utilities such as mv handle this case by
resorting to a copy and unlink.

On success, rename() returns 0, and the file once referenced by oldpath is now refer‐
enced by newpath. On failure, the call returns −1, does not touch oldpath or newpath,
and sets errno to one of the following values:
EACCES

The invoking process lacks write permission for the parent of oldpath or new
path, search permission for a component of oldpath or newpath, or write permis‐
sion for oldpath in the case that oldpath is a directory. The last case is an issue
because rename() must update .. in oldpath if it is a directory.

EBUSY

oldpath or newpath is a mount point.

EFAULT

oldpath or newpath is an invalid pointer.

EINVAL

newpath is contained within oldpath, and thus, renaming one to the other would
make oldpath a subdirectory of itself.

EISDIR

newpath exists and is a directory, but oldpath is not a directory.

ELOOP

In resolving oldpath or newpath, too many symbolic links were encountered.

EMLINK

oldpath already has the maximum number of links to itself, or oldpath is a direc‐
tory, and newpath already has the maximum number of links to itself.
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ENAMETOOLONG

oldpath or newpath is too long.

ENOENT

A component in oldpath or newpath does not exist or is a dangling symbolic link.

ENOMEM

There is insufficient kernel memory to complete the request.

ENOSPC

There is insufficient space on the device to complete the request.

ENOTDIR

A component (aside from potentially the final component) in oldpath or new
path is not a directory, or oldpath is a directory, and newpath exists but is not a
directory.

ENOTEMPTY

newpath is a directory and is not empty.

EPERM

At least one of the paths specified in the arguments exists, the parent directory has
the sticky bit set, the invoking process’s effective user ID is neither the user ID of
the file, nor that of the parent, and the process is not privileged.

EROFS

The filesystem is marked read-only.

EXDEV

oldpath and newpath are not on the same filesystem.

Table 8-1 reviews the results of moving to and from different types of files.

Table 8-1. Effects of moving to and from different types of files
Destination is a file Destination is a directory Destination is a link Destination does

not exist

Source is a file The destination is
overwritten by the
source.

Failure with EISDIR. The file is renamed and the
destination is overwritten.

The file is renamed.

Source is a
directory

Failure with ENOTDIR. The source is renamed as the
destination if the
destination is empty; failure
with ENOTEMPTY
otherwise.

The directory is renamed,
and the destination is
overwritten.

The directory is
renamed.

Source is a link The link is renamed and
the destination is
overwritten.

Failure with EISDIR. The link is renamed and the
destination is overwritten.

The link is renamed.
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Destination is a file Destination is a directory Destination is a link Destination does
not exist

Source does not
exist

Failure with ENOENT. Failure with ENOENT. Failure with ENOENT. Failure with
ENOENT.

For all of these cases, regardless of their type, if the source and destination reside on
different filesystems, the call fails and returns EXDEV.

Device Nodes
Device nodes are special files that allow applications to interface with device drivers.
When an application performs the usual Unix I/O—opening, closing, reading, writing,
and so on—on a device node, the kernel does not handle those requests as normal file
I/O. Instead, the kernel passes such requests to a device driver. The device driver handles
the I/O operation and returns the results to the user. Device nodes provide device ab‐
straction so that applications do not need to be familiar with device specifics, or even
master special interfaces. Indeed, device nodes are the standard mechanism for access‐
ing hardware on Unix systems. Network devices are the rare exception, and over the
course of Unix’s history, some have argued that this exception is a mistake. There is,
indeed, an elegant beauty in manipulating all of a machine’s hardware using read(),
write(), and mmap() calls.

How does the kernel identify the device driver to which it should hand off the request?
Each device node is assigned two numerical values, called a major number and a minor
number. These major and minor numbers map to a specific device driver loaded into
the kernel. If a device node has a major and minor number that do not correspond to
a device driver in the kernel—which occasionally happens, for a variety of reasons—an
open() request on the device node returns −1 with errno set to ENODEV. We say that such
device nodes front nonexistent devices.

Special Device Nodes
Several device nodes are present on all Linux systems. These device nodes are part of
the Linux development environment, and their presence is considered part of the Linux
ABI.

The null device has a major number of 1 and a minor number of 3. It lives at /dev/null.
The device file should be owned by root and be readable and writable by all users. The
kernel silently discards all write requests to the device. All read requests to the file return
end-of-file (EOF).

The zero device lives at /dev/zero and has a major of 1 and a minor of 5. Like the null
device, the kernel silently discards writes to the zero device. Reading from the device
returns an infinite stream of null bytes.
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The full device, with a major of 1 and a minor of 7, lives at /dev/full. As with the zero
device, read requests return null characters (\0). Write requests, however, always trigger
the ENOSPC error, signifying that the underlying device is full.

These devices have varied purposes. They are useful for testing how an application
handles corner and problem cases—a full filesystem, for example. Because the null
and zero devices ignore writes, they also provide a no-overhead way to throw away
unwanted I/O.

The Random Number Generator
The kernel’s random number generators live at /dev/random and /dev/urandom. They
have a major number of 1 and minor numbers of 8 and 9, respectively.

The kernel’s random number generator gathers noise from device drivers and other
sources, and the kernel concatenates together and one-way hashes the gathered noise.
The result is then stored in an entropy pool. The kernel keeps an estimate of the number
of bits of entropy in the pool.

Reads from /dev/random return entropy from this pool. The results are suitable for
seeding random number generators, performing key generation, and other tasks that
require cryptographically strong entropy.

In theory, an adversary who was able to obtain enough data from the entropy pool and
successfully break the one-way hash could gain knowledge about the state of the rest of
the entropy pool. Although such an attack is currently only a theoretical possibility—
no such attacks are publicly known to have occurred—the kernel reacts to this possibility
by decrementing its estimate of the amount of entropy in the pool with each read request.
If the estimate reaches zero, the read will block until the system generates more entropy,
and the entropy estimate is large enough to satisfy the read.

/dev/urandom does not have this property; reads from the device will succeed even if
the kernel’s entropy estimate is insufficient to complete the request. Since only the most
secure of applications—such as the generation of keys for secure data exchange in GNU
Privacy Guard—should care about cryptographically strong entropy, most applications
should use /dev/urandom and not /dev/random. Reads to the latter can potentially block
for a very long time if no I/O activity occurs that feeds the kernel’s entropy pool. This
is not uncommon on diskless, headless servers.

Out-of-Band Communication
The Unix file model is impressive. With only simple read and write operations, Unix
abstracts nearly any conceivable act one could perform on an object. Sometimes, how‐
ever, programmers need to communicate with a file outside of its primary data stream.
For example, consider a serial port device. Reading from the device would read from

Out-of-Band Communication | 281



the hardware on the far end of the serial port; writing to the device would send data to
that hardware. How would a process read one of the serial port’s special status pins, such
as the data terminal ready (DTR) signal? Alternatively, how would a process set the
parity of the serial port?

The answer is to use the ioctl() system call. ioctl(), which stands for I/O control,
allows for out-of-band communication:

#include <sys/ioctl.h>

int ioctl (int fd, int request, ...);

The system call requires two parameters:
fd

The file descriptor of a file.

request

A special request code value, predefined and agreed upon by the kernel and the
process, that denotes what operation to perform on the file referenced by fd.

It may also receive one or more untyped optional parameters (usually unsigned integers
or pointers) to pass into the kernel.

The following program uses the CDROMEJECT request to eject the media tray from a CD-
ROM device, which the user provides as the first argument on the program’s command
line. This program thus functions similarly to the standard eject command:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <linux/cdrom.h>
#include <stdio.h>

int main (int argc, char *argv[])
{

int fd, ret;

if (argc < 2) {
fprintf (stderr,

"usage: %s <device to eject>\n",
argv[0]);

return 1;
}
/*
* Opens the CD-ROM device, read-only. O_NONBLOCK
* tells the kernel that we want to open the device
* even if there is no media present in the drive.
*/
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fd = open (argv[1], O_RDONLY | O_NONBLOCK);
if (fd < 0) {

perror ("open");
return 1;

}

/* Send the eject command to the CD-ROM device. */
ret = ioctl (fd, CDROMEJECT, 0);
if (ret) {

perror ("ioctl");
return 1;

}

ret = close (fd);
if (ret) {

perror ("close");
return 1;

}

return 0;
}

The CDROMEJECT request is a feature of Linux’s CD-ROM device driver. When the kernel
receives an ioctl() request, it finds the filesystem (in the case of real files) or device
driver (in the case of device nodes) responsible for the file descriptor provided and
passes on the request for handling. In this case, the CD-ROM device driver receives the
request and physically ejects the drive.

Later in this chapter, we will look at an ioctl() example that uses an optional parameter
to return information to the requesting process.

Monitoring File Events
Linux provides an interface, inotify, for monitoring files—for example, to see when they
are moved, read from, written to, or deleted. Imagine that you are writing a graphical
file manager, such as GNOME’s file manager. If a file is copied into a directory while
the file manager is displaying its contents, the file manager’s view of the directory be‐
comes inconsistent.

One solution is to continually reread the contents of the directory, detecting changes
and updating the display. This imposes a periodic overhead and is far from an elegant
solution. Worse, there is always a race between when a file is removed from or added
to the directory, and when the file manager rereads the directory.

With inotify, the kernel can push the event to the application the moment it happens.
As soon as a file is deleted, the kernel can notify the file manager. The file manager, in
response, can immediately remove the deleted file from the graphical display of the
directory.
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Many other applications are also concerned with file events. Consider a backup utility
or a data-indexing tool. inotify allows both of these programs to operate in real time:
the moment a file is created, deleted, or written to, the tools can update the backup
archive or data index.

inotify replaces dnotify, an earlier file-monitoring mechanism with a cumbersome
signals-based interface. Applications should always favor inotify over dnotify. inotify,
introduced with kernel 2.6.13, is flexible and easy to use because the same operations
that programs perform on regular files work with inotify. We cover only inotify in this
book.

Initializing inotify
Before a process can use inotify, the process must initialize it. The inotify_init()
system call initializes inotify and returns a file descriptor representing the initialized
instance:

#include <sys/inotify.h>

int inotify_init1 (int flags);

The flags parameter is usually 0, but may be a bitwise OR of the following flags:
IN_CLOEXEC

Sets close-on-exec on the new file descriptor.

IN_NONBLOCK

Sets O_NONBLOCK on the new file descriptor.

On error, inotify_init1() returns −1 and sets errno to one of the following codes:
EMFILE

The per-user limit on the maximum number of inotify instances has been reached.

ENFILE

The system-wide limit on the maximum number of file descriptors has been
reached.

ENOMEM

There is insufficient memory available to complete the request.

Let’s initialize inotify so we can use it in subsequent steps:

int fd;

fd = inotify_init1 (0);
if (fd == −1) {

perror ("inotify_init1");
exit (EXIT_FAILURE);

}
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Watches
After a process initializes inotify, it sets up watches. A watch, represented by a watch
descriptor, is a standard Unix path, and an associated watch mask, which tells the kernel
what events the process is interested in—for example, reads, writes, or both.

inotify can watch both files and directories. If watching a directory, inotify reports events
that occur on the directory itself and on any of the files residing in the directory (but
not on files in subdirectories of the watched directory—the watch is not recursive).

Adding a new watch

The system call inotify_add_watch() adds a watch for the event or events described
by mask on the file or directory path to the inotify instance represented by fd:

#include <sys/inotify.h>

int inotify_add_watch (int fd,
const char *path,
uint32_t mask);

On success, the call returns a new watch descriptor. On failure, inotify_add_watch()
returns −1 and sets errno to one of the following:
EACCES

Read access to the file specified by path is not permitted. The invoking process must
be able to read the file to add a watch to it.

EBADF

The file descriptor fd is not a valid inotify instance.

EFAULT

The pointer path is not valid.

EINVAL

The watch mask, mask, contains no valid events.

ENOMEM

There is insufficient memory available to complete the request.

ENOSPC

The per-user limit on the total number of inotify watches has been reached.

Watch masks

The watch mask is a binary OR of one or more inotify events, which <inotify.h>
defines:
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IN_ACCESS

The file was read from.

IN_MODIFY

The file was written to.

IN_ATTRIB

The file’s metadata (for example, the owner, permissions, or extended attributes)
was changed.

IN_CLOSE_WRITE

The file was closed and had been open for writing.

IN_CLOSE_NOWRITE

The file was closed and had not been open for writing.

IN_OPEN

The file was opened.

IN_MOVED_FROM

A file was moved away from the watched directory.

IN_MOVED_TO

A file was moved into the watched directory.

IN_CREATE

A file was created in the watched directory.

IN_DELETE

A file was deleted from the watched directory.

IN_DELETE_SELF

The watched object itself was deleted.

IN_MOVE_SELF

The watched object itself was moved.

The following events are also defined, grouping two or more events into a single value:
IN_ALL_EVENTS

All legal events.

IN_CLOSE

All events related to closing (currently, both IN_CLOSE_WRITE and IN_CLOSE_NOW
RITE).

IN_MOVE

All move-related events (currently, both IN_MOVED_FROM and IN_MOVED_TO).
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Now, we can look at adding a new watch to an existing inotify instance:

int wd;

wd = inotify_add_watch (fd, "/etc", IN_ACCESS | IN_MODIFY);
if (wd == −1) {

perror ("inotify_add_watch");
exit (EXIT_FAILURE);

}

This example adds a watch for all reads or writes on the directory /etc. If any file
in /etc is written to or read from, inotify sends an event to the inotify file descriptor,
fd, providing the watch descriptor wd. Let’s look at how inotify represents these
events. 

inotify Events
The inotify_event structure, defined in <inotify.h>, represents inotify events:

#include <sys/inotify.h>

struct inotify_event {
int wd; /* watch descriptor */
uint32_t mask;   /* mask of events */
uint32_t cookie; /* unique cookie */
uint32_t len;    /* size of 'name' field */
char name[];     /* nul-terminated name */

};

wd identifies the watch descriptor, as obtained by inotify_add_watch(), and mask
represents the events. If wd identifies a directory and one of the watched-for events
occurred on a file within that directory, name provides the filename relative to the
directory. In this case, len is nonzero. Note that len is not the same as the string length
of name; name can have more than one trailing null character that acts as padding to
ensure that a subsequent inotify_event is properly aligned. Consequently, you must
use len, and not strlen(), to calculate the offset of the next inotify_event structure
in an array.

Zero-Length Arrays
name is an example of a zero-length array. Zero-length arrays, also known as flexible
arrays, are a C99 language feature that allow the creation of arrays of variable length.
They have one very powerful use: embedding arrays of variable size in structures. You
can think of them as pointers whose contents are inlined at the site of the pointer itself.
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Consider the example of inotify: the obvious way to hand the filename back in this
structure is to have a name field such as, say, name[512]. But there is no maximum
filename length across all filesystems. Any value would put a limit on inotify’s utility.
Moreover, most filenames are very small, so a large buffer would incur a lot of waste for
most files. This situation is not uncommon; the classic solution is to make name a pointer,
dynamically allocate a buffer elsewhere, and point name at it. But that won’t work for a
system call. A zero-length array was the perfect solution.

For example, if wd represents /home/kidd and has a mask of IN_ACCESS, and the
file /home/kidd/canon is read from, name will equal canon, and len will be at least 6.
Conversely, if we were watching /home/kidd/canon directly with the same mask, len
would be 0 and name would be zero-length—you must not touch it.

cookie is used to link together two related but disjoint events. We will address it in a
subsequent section.

Reading inotify events
Obtaining inotify events is easy: you just read from the file descriptor associated with
the inotify instance. inotify provides a feature known as slurping, which allows you to
read multiple events with a single read request—as many as fit in the buffer provided
to read(). Because of the variable-length name field, this is the most common way to
read inotify events.

Our previous example instantiated an inotify instance, and added a watch to that
instance. Now, let’s read pending events:

char buf[BUF_LEN] __attribute__((aligned(4)));
ssize_t len, i = 0;

/* read BUF_LEN bytes' worth of events */
len = read (fd, buf, BUF_LEN);

/* loop over every read event until none remain */
while (i < len) {

struct inotify_event *event =
(struct inotify_event *) &buf[i];

printf ("wd=%d mask=%d cookie=%d len=%d dir=%s\n",
event->wd, event->mask,
event->cookie, event->len,
(event->mask & IN_ISDIR) ? "yes" : "no");

/* if there is a name, print it */
if (event->len)

printf ("name=%s\n", event->name);
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/* update the index to the start of the next event */
i += sizeof (struct inotify_event) + event->len;

}

Because the inotify file descriptor acts like a regular file, programs can monitor it via
select(), poll(), and epoll(). This allows processes to multiplex inotify events with
other file I/O from a single thread.

Advanced inotify events
In addition to the standard events, inotify can generate other events:
IN_IGNORED

The watch represented by wd has been removed. This can occur because the user
manually removed the watch or because the watched object no longer exists. We
will discuss this event in a subsequent section.

IN_ISDIR

The affected object is a directory. (If not set, the affected object is a file.)

IN_Q_OVERFLOW

The inotify queue overflowed. The kernel limits the size of the event queue to pre‐
vent unbounded consumption of kernel memory. Once the number of pending
events reaches one less than the maximum, the kernel generates this event and
appends it to the tail of the queue. No further events are generated until the queue
is read from, reducing its size below the limit.

IN_UNMOUNT

The device backing the watched object was unmounted. Thus, the object is no
longer available; the kernel will remove the watch and generate the IN_IGNORED
event.

Any watch can generate these events; the user need not set them explicitly.

Programmers must treat mask as a bitmask of pending events. Consequently, do not
check for events using direct tests of equivalence:

/* Do NOT do this! */

if (event->mask == IN_MODIFY)
printf ("File was written to!\n");

else if (event->mask == IN_Q_OVERFLOW)
printf ("Oops, queue overflowed!\n);

Instead, perform bitwise tests:

if (event->mask & IN_ACCESS)
printf ("The file was read from!\n");

if (event->mask & IN_UNMOUNTED)
printf ("The file's backing device was unmounted!\n);
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if (event->mask & IN_ISDIR)
printf ("The file is a directory!\n");

Linking together move events

The IN_MOVED_FROM and IN_MOVED_TO events each represent only half of a move: the
former represents the removal from a given location, while the latter represents the
arrival at a new location. Therefore, to be truly useful to a program that is attempting
to intelligently track files as they move around the filesystem (consider an indexer with
the intention that it not reindex moved files), processes need to be able to link the two
move events together.

Enter the cookie field in the inotify_event structure.

The cookie field, if nonzero, contains a unique value that links two events together.
Consider a process that is watching /bin and /sbin. Assume that /bin has a watch de‐
scriptor of 7 and that /sbin has a watch descriptor of 8. If the file /bin/compass is moved
to /sbin/compass, the kernel will generate two inotify events.

The first event will have wd equal to 7, mask equal to IN_MOVED_FROM, and a name of
compass. The second event will have wd equal to 8, mask equal to IN_MOVED_TO, and a
name of compass. In both events, cookie will be the same—say, 12.

If a file is renamed, the kernel still generates two events. wd is the same for both.

Note that if a file is moved from or to a directory that is not watched, the process will
not receive one of the corresponding events. It is up to the program to notice that the
second event with a matching cookie never arrives.

Advanced Watch Options
When creating a new watch, you can add one or more of the following values to mask
to control the behavior of the watch:
IN_DONT_FOLLOW

If this value is set, and if the target of path or any of its components is a symbolic
link, the link is not followed and inotify_add_watch() fails.

IN_MASK_ADD

Normally, if you call inotify_add_watch() on a file on which you have an existing
watch, the watch mask is updated to reflect the newly provided mask. If this flag is
set in mask, the provided events are added to the existing mask.

IN_ONESHOT

If this value is set, the kernel automatically removes the watch after generating the
first event against the given object. The watch is, in effect, “one shot.”
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IN_ONLYDIR

If this value is set, the watch is added only if the object provided is a directory. If
path represents a file, not a directory, inotify_add_watch() fails.

For example, this snippet only adds the watch on /etc/init.d if init.d is a directory and
if neither /etc nor /etc/init.d is a symbolic link:

int wd;

/*
* Watch '/etc/init.d' to see if it moves, but only if it is a
* directory and no part of its path is a symbolic link.
*/
wd = inotify_add_watch (fd,

"/etc/init.d",
IN_MOVE_SELF |
IN_ONLYDIR |
IN_DONT_FOLLOW);

if (wd == −1)
perror ("inotify_add_watch");

Removing an inotify Watch
As shown in this instance, you can remove a watch from an inotify instance with the
system call inotify_rm_watch():

#include <inotify.h>

int inotify_rm_watch (int fd, uint32_t wd);

A successful call to inotify_rm_watch() removes the watch represented by the
watch descriptor wd from the inotify instance (represented by the file descriptor) fd and
returns 0.

For example:

int ret;

ret = inotify_rm_watch (fd, wd);
if (ret)

perror ("inotify_rm_watch");

On failure, the system call returns −1 and sets errno to one of the following two options:
EBADF

fd is not a valid inotify instance.

EINVAL

wd is not a valid watch descriptor on the given inotify instance.
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When removing a watch, the kernel generates the IN_IGNORED event. The kernel sends
this event not only during a manual removal, but when destroying the watch as a side
effect of another operation. For example, when a watched file is deleted, any watches
on the file are removed. In all such cases, the kernel sends IN_IGNORED. This behavior
allows applications to consolidate their handling of watch removal in a single place: the
event handler for IN_IGNORED. This is useful for advanced consumers of inotify that
manage complex data structures backing each inotify watch, such as GNOME’s Beagle
search infrastructure.

Obtaining the Size of the Event Queue
The size of the pending event queue can be obtained via the FIONREAD ioctl on the inotify
instance’s file descriptor. The first argument to the request receives the size of the queue
in bytes, as an unsigned integer:

unsigned int queue_len;
int ret;

ret = ioctl (fd, FIONREAD, &queue_len);
if (ret < 0)

perror ("ioctl");
else

printf ("%u bytes pending in queue\n", queue_len);

Note that the request returns the size of the queue in bytes, and not the number of events
in the queue. A program can estimate the number of events from the number of bytes,
using the known size of the inotify_event structure (obtained via sizeof()) and a
guess at the average size of the name field. What’s more useful is that the number of bytes
pending gives the process an ideal size to read.

The header <sys/ioctl.h> defines the FIONREAD constant.

Destroying an inotify Instance
Destroying an inotify instance, and any associated watches, is as simple as closing the
instance’s file descriptor:

int ret;

/* 'fd' was obtained via inotify_init() */
ret = close (fd);
if (fd == −1)

perror ("close");

Of course, as with any file descriptor, the kernel automatically closes the file descriptor
and cleans up the resource when the process exits.
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CHAPTER 9

Memory Management

Memory is among the most basic, but also most essential, of resources available to a
process. This chapter covers the management of this resource: the allocation, manipu‐
lation, and eventual release of memory.

The verb allocate, which is the common term for obtaining memory, is a bit misleading,
as it conjures up images of rationing a scarce resource for which demand outstrips
supply. To be sure, many users would love more memory. On modern systems, however,
the problem is not really one of sharing too little among too many, but of properly using
and keeping track of the bounty.

In this chapter, you will learn about all of the approaches to allocating memory in various
regions of a program, including each method’s advantages and disadvantages. We’ll also
go over some ways to set and manipulate the contents of arbitrary memory regions and
look at how to lock memory so it remains in RAM and your program runs no risk of
having to wait for the kernel to page in data from swap space.

The Process Address Space
Linux, like any modern operating system, virtualizes its physical resource of memory.
Processes do not directly address physical memory. Instead, the kernel associates each
process with a unique virtual address space. This address space is linear, with addresses
starting at zero, increasing contiguously to some maximum value. The address space is
also flat: it exists in one space, directly accessible, without the need for segmentation.

Pages and Paging
Memory is composed of bits, of which (usually) eight make a byte. Bytes compose words,
which in turn compose pages. For the purposes of memory management, the page is
the most important of these: it is the smallest addressable unit of memory that the
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1. Some systems support multiple page sizes. For this reason, the page size is not part of the ABI. Applications
must programmatically obtain the page size at runtime. We covered doing so in Chapter 4 and will review
the topic in this chapter.

memory management unit (MMU) can manage. Thus the virtual address space is carved
up into pages. The machine architecture determines the page size. Typical sizes include
4 KB for 32-bit systems and 8 KB for 64-bit systems.1

A 32-bit address space contains roughly a million 4 KB pages; a 64-bit address space
with 8 KB pages contains several magnitudes more. A process cannot necessarily access
all of those pages; they may not correspond to anything. Thus, pages are either valid
or invalid. A valid page is associated with an actual page of data, either in physical
memory (RAM) or on secondary storage, such as a swap partition or file on disk. An
invalid page is not associated with anything and represents an unused, unallocated piece
of the address space. Accessing an invalid page results in a segmentation violation.

If a valid page is associated with data on secondary storage, a process cannot access that
page until the data is brought into physical memory. When a process attempts to access
such a page, the memory management unit generates a page fault. The kernel then
intervenes, transparently paging in the data from secondary storage to physical memory.
Because there is considerably more virtual memory than physical memory, the kernel
may have to move data out of memory to make room for the data paging in. Paging
out is the process of moving data from physical memory to secondary storage. To min‐
imize subsequent page ins, the kernel attempts to page out the data that is the least likely
to be used in the near future.

Sharing and copy-on-write
Multiple pages of virtual memory, even in different virtual address spaces owned by
different processes, may map to a single physical page. This allows different virtual
address spaces to share the data in physical memory. For example, at any given moment
there is a good chance that many processes on the system are using the standard C
library. With shared memory, each of these processes may map the library into their
virtual address space, but only one copy need exist in physical memory. As a more
explicit example, two processes may both map into memory a large database. While
both of these processes will have the database in their virtual address spaces, it will exist
in RAM only once.

The shared data may be read-only, writable, or both readable and writable. When a
process writes to a shared writable page, one of two things can happen. The simplest is
that the kernel allows the write to occur, in which case all processes sharing the page
can see the results of the write operation. Usually, allowing multiple processes to read
from or write to a shared page requires some level of coordination and synchronization

294 | Chapter 9: Memory Management



2. Recall from Chapter 5 that fork() uses copy-on-write to duplicate and share the parent’s address space with
the child.

3. The name is historic; it comes from block started by symbol.

among the processes, but at the kernel level the write “just works” and all processes
sharing the data instantly see the modifications.

Alternatively, the MMU can intercept the write operation and raise an exception; the
kernel, in response, will transparently create a new copy of the page for the writing
process, and allow the write to continue against the new page. We call this approach
copy-on-write (COW).2 Effectively, processes are allowed read access to shared data,
which saves space. But when a process wants to write to a shared page, it receives a
unique copy of that page on the fly, thereby allowing the kernel to act as if the process
always had its own private copy. As copy-on-write occurs on a page-by-page basis, with
this technique a huge file may be efficiently shared among many processes, and the
individual processes will receive unique physical pages only for those pages to which
they themselves write.

Memory Regions
The kernel arranges pages into blocks that share certain properties, such as access per‐
missions. These blocks are called mappings, memory areas, or memory regions. Certain
types of memory regions can be found in every process:

• The text segment contains a process’s program code, string literals, constant vari‐
ables, and other read-only data. In Linux, this segment is marked read-only and is
mapped in directly from the object file (the program executable or a library).

• The stack contains the process’s execution stack, which grows and shrinks dynam‐
ically as the stack depth increases and decreases. The execution stack contains local
variables and function return data. In a multithreaded process, there is one stack
per thread.

• The data segment, or heap, contains a process’s dynamic memory. This segment is
writable and can grow or shrink in size. malloc() (discussed in the next section)
can satisfy memory requests from this segment.

• The bss segment3 contains uninitialized global variables. These variables contain
special values (essentially, all zeros), per the C standard.

Linux optimizes these variables in two ways. First, because the bss segment is dedicated
to uninitialized data, the linker (ld) does not actually store the special values in the object
file. This reduces the binary’s size. Second, when this segment is loaded into memory,
the kernel simply maps it on a copy-on-write basis to a page of zeros, efficiently setting
the variables to their default values.
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Most address spaces contain a handful of mapped files, such as the pro‐
gram executable itself, the C and other shared libraries, and data files.
Take a look at /proc/self/maps, or the output from the pmap program
for an example of the mapped files in a process.

This chapter covers the interfaces that Linux provides to obtain and return memory,
create and destroy new mappings, and everything in between. 

Allocating Dynamic Memory
Memory also comes in the form of automatic and static variables, but the foundation
of any memory management system is the allocation, use, and eventual return of
dynamic memory. Dynamic memory is allocated at runtime, not compile time, in sizes
that may be unknown until the moment of allocation. As a developer, you need dynamic
memory when the amount of memory that you will need, or how long you might need
it, varies and is not known before the program runs. For example, you might want to
store in memory the contents of a file or input read in from the keyboard. Because the
size of the file is unknown, and the user may type any number of keystrokes, the size of
the buffer will vary, and you may need to make it dynamically larger as you read more
and more data.

There is no C variable that is backed by dynamic memory. For example, C does not
provide a mechanism to obtain a struct pirate_ship that exists in dynamic memory.
Instead, C provides a mechanism for allocating dynamic memory sufficient to hold a
pirate_ship structure. The programmer then interacts with the memory via a
pointer—in this case, a struct pirate_ship*.

The classic C interface for obtaining dynamic memory is malloc():

#include <stdlib.h>

void * malloc (size_t size);

A successful call to malloc() allocates size bytes of memory and returns a pointer to
the start of the newly allocated region. The contents of the memory are undefined; do
not expect the memory to be zeroed. Upon failure, malloc() returns NULL, and errno
is set to ENOMEM.

Usage of malloc() may be rather straightforward, as in this example used to allocate a
fixed number of bytes:

char *p;

/* give me 2 KB! */
p = malloc (2048);
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if (!p)
perror ("malloc");

Or this example used to allocate a structure:

struct treasure_map *map;

/*
* allocate enough memory to hold a treasure_map stucture
* and point 'map' at it
*/
map = malloc (sizeof (struct treasure_map));
if (!map)

perror ("malloc");

C automatically promotes pointers to void to any other pointer type on assignment.
Thus, these examples do not need to typecast the return value of malloc() to the lvalue’s
type used in the assignments. The C++ programming language, however, does not per‐
form automatic void pointer promotion. Consequently, users of C++ need to typecast
malloc()’s return as follows:

char *name;

/* allocate 512 bytes */
name = (char *) malloc (512);
if (!name)

perror ("malloc");

Some C programmers like to typecast the result of any function that returns a pointer
to void, malloc() included. I argue against this practice because it will hide an error if
the return value of the function ever changes to something other than a void pointer.
Moreover, such a typecast also hides a bug if a function is not properly declared. While
the former is not a risk with malloc(), the latter certainly is.

Undeclared functions default to returning an int. Integer-to-pointer
casts are not automatic and generate a warning. The typecast will sup‐
press the resulting warning.

Because malloc() can return NULL, it is vitally important that developers always check
for and handle error conditions. Many programs define and use a malloc() wrapper
that prints an error message and terminates the program if malloc() returns NULL. By
convention, developers call this common wrapper xmalloc():

/* like malloc(), but terminates on failure */
void * xmalloc (size_t size)
{

void *p;
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p = malloc (size);
if (!p) {

perror ("xmalloc");
exit (EXIT_FAILURE);

}

return p;
}

Allocating Arrays
Dynamic memory allocation may also be quite complex when the specified size is itself
dynamic. One such example is the dynamic allocation of arrays, where the size of an
array element may be fixed but the number of elements to allocate is dynamic. To sim‐
plify this scenario, C provides the calloc() function:

#include <stdlib.h>

void * calloc (size_t nr, size_t size);

A successful call to calloc() returns a pointer to a block of memory suitable for holding
an array of nr elements, each of size bytes. Consequently, the amount of memory
requested in these two calls is identical (either may end up returning more memory
than requested, but never less):

int *x, *y;

x = malloc (50 * sizeof (int));
if (!x) {

perror ("malloc");
return −1;

}

y = calloc (50, sizeof (int));
if (!y) {

perror ("calloc");
return −1;

}

The behavior, however, is not identical. Unlike malloc(), which makes no such guar‐
antees about the contents of allocated memory, calloc() zeros all bytes in the returned
chunk of memory. Thus, each of the 50 elements in the array of integers y holds the
value of 0, while the contents of the elements in x are undefined. Unless the program is
going to immediately set all 50 values, programmers should use calloc() to ensure that
the array elements are not filled with gibberish. Note that binary zero might not be the
same as floating-point zero!

298 | Chapter 9: Memory Management



On the Etymology of calloc()
There remains no original documentation on the etymology of cal
loc(). Unix historians debate the origin: Does the c stand for count,
since the function accepts a count of array elements? Or perhaps it
stands for clear, since the function zeros out memory? Take your pick.
The debate is fierce.
In pursuit of the truth, I asked Brian Kernighan, the K in K&R and early
Unix contributor, for his recollection. Brian cautioned that he didn’t
write the original function but that he believes the "c is for clear.” That
is likely as authoritative a view as we will get.

Users often want to “zero out” dynamic memory, even when not dealing with arrays.
Later in this chapter, we will consider memset(), which provides an interface for setting
every byte in a chunk of memory to a given value. Letting calloc() perform the zeroing,
however, is faster because the kernel can provide memory that is already zeroed.

On failure, like malloc(), calloc() returns NULL and sets errno to ENOMEM.

Why the standards bodies never defined an “allocate and zero” function separate from
calloc() is a mystery. Developers can easily define their own interface, however:

/* works identically to malloc(), but memory is zeroed */
void * malloc0 (size_t size)
{

return calloc (1, size);
}

Conveniently, we can combine this malloc0() with our previous xmalloc():

/* like malloc(), but zeros memory and terminates on failure */
void * xmalloc0 (size_t size)
{

void *p;

p = calloc (1, size);
if (!p) {

perror ("xmalloc0");
exit (EXIT_FAILURE);

}

return p;
}

Resizing Allocations
The C language provides an interface for resizing (making larger or smaller) existing
allocations:

Allocating Dynamic Memory | 299



#include <stdlib.h>

void * realloc (void *ptr, size_t size);

A successful call to realloc() resizes the region of memory pointed at by ptr to a new
size of size bytes. It returns a pointer to the newly sized memory, which may or may
not be the same as ptr. When enlarging a memory region, if realloc() is unable to
enlarge the existing chunk of memory by growing the chunk in situ, the function may
allocate a new region of memory size bytes in length, copy the old region into the new
one, and free the old region. On any operation, the contents of the memory region are
preserved up to the minimum of the old and the new sizes. Because of the potentiality
of a copy, a realloc() operation to enlarge a memory region can be a relatively costly
operation.

If size is 0, the effect is the same as an invocation of free() on ptr.

If ptr is NULL, the result of the operation is the same as a fresh malloc(). If ptr is non-
NULL, it must have been returned via a previous call to malloc(), calloc(), or
realloc().

On failure, realloc() returns NULL and sets errno to ENOMEM. The state of the memory
pointed at by ptr is unchanged.

Let’s consider an example of shrinking a memory region. First, we’ll use calloc() to
allocate enough memory to hold a two-element array of map structures:

struct map *p;

/* allocate memory for two map structures */
p = calloc (2, sizeof (struct map));
if (!p) {

perror ("calloc");
return −1;

}

/* use p[0] and p[1]... */

Now, let’s assume we’ve found one of the treasures and no longer need the second map,
so we decide to resize the memory and give half of the region back to the system. This
wouldn’t generally be a worthwhile operation, but it might be if the map structure were
very large and we were going to hold the remaining map for a long time:

struct map *r;

/* we now need memory for only one map */
r = realloc (p, sizeof (struct map));
if (!r) {

/* note that 'p' is still valid! */
perror ("realloc");
return −1;
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}

/* use 'r'... */

free (r);

In this example, p[0] is preserved after the realloc() call. Whatever data was there
before is still there. If the call returned failure, p is untouched and thus still valid. We
can continue using it, and will eventually need to free it. Conversely, if the call succeeded,
we ignore p, and in lieu use r. We now have the responsibility to free r when we’re done.

Freeing Dynamic Memory
Unlike automatic allocations, which are automatically reaped when the stack unwinds,
dynamic allocations are permanent parts of the process’s address space until they are
manually freed. The programmer thus bears the responsibility of returning dynamically
allocated memory to the system. (Both static and dynamic allocations, of course, dis‐
appear when the entire process exits.)

Memory allocated with malloc(), calloc(), or realloc() must be returned to the
system when no longer in use via free():

#include <stdlib.h>

void free (void *ptr);

A call to free() frees the memory at ptr. The parameter ptr must have been previously
returned by malloc(), calloc(), or realloc(). That is, you cannot use free() to free
partial chunks of memory—say, half of a chunk of memory—by passing in a pointer
halfway into an allocated block. Doing so will result in undefined memory, likely man‐
ifested as a crash.

ptr may be NULL, in which case free() silently returns. Thus, the oft-seen practice of
checking ptr for NULL before calling free() is redundant.

Let’s look at an example:

void print_chars (int n, char c)
{

int i;

for (i = 0; i < n; i++) {
char *s;
int j;

/*
* Allocate and zero an i+2 element array
* of chars. Note that 'sizeof (char)'
* is always 1.
*/
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s = calloc (i + 2, 1);
if (!s) {

perror ("calloc");
break;

}

for (j = 0; j < i + 1; j++)
s[j] = c;

printf ("%s\n", s);

/* Okay, all done. Hand back the memory. */
free (s);

}
}

This example allocates n arrays of chars containing successively larger numbers of el‐
ements, ranging from two elements (2 bytes) up to n + 1 elements (n + 1 bytes). Then,
for each array, the loop writes the character c into each byte except the last (leaving the
0 that is already in the last byte), prints the array as a string, and then frees the dynam‐
ically allocated memory.

Invoking print_chars() with n equal to 5 and c set to X, we get the following:

X
XX
XXX
XXXX
XXXXX

There are, of course, significantly more efficient ways of implementing this function.
The point, however, is that we can dynamically allocate and free memory even when
the size and the number of said allocations are known only at runtime.

Unix systems such as SunOS and SCO provide a variant of free()
named cfree(), which, depending on the system, behaves the same as
free() or receives three parameters, mirroring calloc(). In Linux,
free() can handle memory obtained from any of the allocation mech‐
anisms we have discussed thus far. cfree() should never be used, except
for backward compatibility. The Linux version is the same as free().

Note what the repercussions would be if this example did not invoke free(). The pro‐
gram would never return the memory to the system, and, even worse, it would lose its
only reference to the memory—the pointer s—thereby making it impossible to ever
access the memory. We call this type of programming error a memory leak. Memory
leaks and similar dynamic memory mistakes are among the most common, and, un‐
fortunately, the most detrimental mishaps in C programming. Because the C language
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places full responsibility for managing memory on the programmer, C programmers
must keep a fastidious eye on all memory allocations.

Another common C programming pitfall is use-after-free. This foible occurs when a
block of memory is freed and then subsequently accessed. Once free() is called on a
block of memory, a program must never again access its contents. Programmers must
be particularly careful to watch for dangling pointers: non-NULL pointers that neverthe‐
less point at invalid blocks of memory. An excellent tool to detect memory errors in
your programs is Valgrind. 

Alignment
Data alignment refers to the way data is arranged in memory. A memory address A is
said to be n-byte aligned when n is a power-of-2 and A is a multiple of n. Processors,
memory subsystems, and other components in a system have specific alignment re‐
quirements. For example, most processors operate on words and can only access mem‐
ory addresses that are word-size-aligned. Similarly, as discussed, memory management
units deal only in page-size-aligned addresses.

A variable located at a memory address that is a multiple of its size is said to be naturally
aligned. For example, a 32-bit variable is naturally aligned if it is located in memory at
an address that is a multiple of 4—in other words, if the address’s lowest two bits are 0.
Thus, a type that is 2n bytes in size must have an address with the n least-significant bits
set to 0.

Rules pertaining to alignment derive from hardware and thus differ from system to
system. Some machine architectures have very stringent requirements on the alignment
of data. Others are more lenient. Some systems generate a catchable error. The kernel
can then choose to terminate the offending process or (more likely) manually perform
the unaligned access (generally through multiple aligned accesses). This incurs a per‐
formance hit and sacrifices atomicity, but at least the process isn’t terminated. When
writing portable code, programmers must be careful to avoid violating alignment
requirements.

Allocating aligned memory
For the most part, the compiler and the C library transparently handle alignment con‐
cerns. POSIX decrees that the memory returned via malloc(), calloc(), and real
loc() be properly aligned for use with any of the standard C types. On Linux, these
functions always return memory that is aligned along an 8-byte boundary on 32-bit
systems and along a 16-byte boundary on 64-bit systems.

Occasionally, programmers require dynamic memory aligned along a larger boundary,
such as a page. While motivations vary, the most common is a need to properly align
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buffers used in direct block I/O or other software-to-hardware communication. For this
purpose, POSIX 1003.1d provides a function named posix_memalign():

/* one or the other -- either suffices */
#define _XOPEN_SOURCE 600
#define _GNU_SOURCE

#include <stdlib.h>

int posix_memalign (void **memptr,
size_t alignment,
size_t size);

A successful call to posix_memalign() allocates size bytes of dynamic memory, en‐
suring it is aligned along a memory address that is a multiple of alignment. The pa‐
rameter alignment must be a power of 2 and a multiple of the size of a void pointer.
The address of the allocated memory is placed in memptr, and the call returns 0.

On failure, no memory is allocated, memptr is undefined, and the call returns one of the
following error codes:
EINVAL

The parameter alignment is not a power of 2 or is not a multiple of the size of a
void pointer.

ENOMEM

There is insufficient memory available to satisfy the requested allocation.

Note that errno is not set; the function directly returns these errors.

Memory obtained via posix_memalign() is freed via free(). Usage is simple:

char *buf;
int ret;

/* allocate 1 KB along a 256-byte boundary */
ret = posix_memalign (&buf, 256, 1024);
if (ret) {

fprintf (stderr, "posix_memalign: %s\n",
strerror (ret));

return −1;
}

/* use 'buf'... */

free (buf);

Before POSIX defined posix_memalign(), BSD and SunOS provided the following
interfaces, respectively:

#include <malloc.h>
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void * valloc (size_t size);
void * memalign (size_t boundary, size_t size);

The function valloc() operates identically to malloc(), except that the allocated mem‐
ory is aligned along a page boundary. Recall from Chapter 4 that the system’s page size
is easily obtained via getpagesize().

The function memalign() is similar to posix_memalign. It aligns the allocation along a
boundary of boundary bytes, which must be a power of 2. In this example, both of these
allocations return a block of memory sufficient to hold a ship structure, aligned along
a page boundary:

struct ship *pirate, *hms;

pirate = valloc (sizeof (struct ship));
if (!pirate) {

perror ("valloc");
return −1;

}

hms = memalign (getpagesize (), sizeof (struct ship));
if (!hms) {

perror ("memalign");
free (pirate);
return −1;

}

/* use 'pirate' and 'hms'... */

free (hms);
free (pirate);

On Linux, memory obtained via both of these functions is freeable via free(). This may
not be the case on other Unix systems, some of which provide no mechanism for safely
freeing memory allocated with these functions. Programs concerned with portability
may have no choice but to not free memory allocated via these interfaces!

Linux programmers should use these two functions only for the purposes of portability
with older systems; posix_memalign() is superior and standardized. All three of these
interfaces are needed only if an alignment greater than that provided by malloc() is
required. 

Other alignment concerns
Alignment concerns extend beyond natural alignment of the standard types and dy‐
namic memory allocations. For example, nonstandard and complex types have more
complex requirements than the standard types. Further, alignment concerns are doubly
important when assigning values between pointers of varying types and using
typecasting.
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Nonstandard and complex data types possess alignment requirements beyond the sim‐
ple requirement of natural alignment. Four useful rules follow:

• The alignment requirement of a structure is that of its largest constituent type. For
example, if a structure’s largest type is a 32-bit integer that is aligned along a 4-byte
boundary, the structure must be aligned along at least a 4-byte boundary as well.

• Structures also introduce the need for padding, which is used to ensure that each
constituent type is properly aligned to that type’s own requirement. Thus, if a char
(with a probable alignment of 1 byte) finds itself followed by an int (with a probable
alignment of 4 bytes), the compiler will insert 3 bytes of padding between the two
types to ensure that the int lives on a 4-byte boundary. Programmers sometimes
order the members of a structure—for example, by descending size—to minimize
the space “wasted” by padding. The gcc option -Wpadded can aid in this endeavor,
as it generates a warning whenever the compiler inserts implicit padding.

• The alignment requirement of a union is that of the largest unionized type.
• The alignment requirement of an array is that of the base type. Thus, arrays carry

no requirement beyond a single instance of their type. This behavior results in the
natural alignment of all members of an array.

As the compiler transparently handles most alignment requirements, it takes a bit of
effort to expose potential issues. It is not unheard of, however, to encounter alignment
concerns when dealing with pointers and casting.

Accessing data via a pointer recast from a lesser-aligned to a larger-aligned block of data
can result in the processor loading data that is not properly aligned for the larger type.
For example, in the following code snippet, the assignment of c to badnews attempts to
read c as an unsigned long:

char greeting[] = "Ahoy Matey";
char *c = greeting[1];
unsigned long badnews = *(unsigned long *) c;

An unsigned long is naturally aligned along a 4- or 8-byte boundary; c is likely not
aligned to that same boundary. Consequently, the load of c, when typecast, causes an
alignment violation. Depending on the architecture, this can cause results ranging from
as minor as a performance hit to as major as a program crash. On machine architectures
that can detect but not properly handle alignment violations, the kernel sends the of‐
fending process the SIGBUS signal, which terminates the process. We will discuss signals
in Chapter 10.
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Examples such as this are more common than one might think. Real-world examples
will not be quite so silly in appearance, but they will likely be less obvious as well.

Strict Aliasing
This typecasting example also violates strict aliasing, one of the least-understood aspects
of C and C++. Strict aliasing is the requirement that an object is only accessed through
the actual type of that object, a qualified (e.g., const or volatile) version of the actual
type, a signed (or unsigned) version of the actual type, a struct or union that contains
the actual type among its members, or a char pointer. For example, the common pattern
of accessing a uint32_t through two uint16_t pointers violates strict aliasing.

Here’s a succinct summary: dereferencing a cast of a pointer from one type of variable to
a different type is usually a violation of the strict aliasing rule. If you have ever seen the
gcc warning, “dereferencing type-punned pointer will break strict-aliasing rules,” you
have violated the rule. Strict aliasing has been part of C++ for a long time, but it was
standardized in C only with C99. gcc, as the warning attests, enforces strict aliasing;
doing so allows it to generate more optimal code.

For the curious, the actual rules are laid out in section 6.5 of the ISO C99 standard. 

Managing the Data Segment
Unix systems historically have provided interfaces for directly managing the data seg‐
ment. However, most programs have no direct use for these interfaces because malloc()
and other allocation schemes are easier to use and more powerful. I’ll cover these in‐
terfaces here to satisfy the curious and for the rare reader who wants to implement her
own heap-based allocation mechanism:

#include <unistd.h>

int brk (void *end);
void * sbrk (intptr_t increment);

These functions derive their names from old-school Unix systems, where the heap and
the stack lived in the same segment. Dynamic memory allocations in the heap grew
upward from the bottom of the segment; the stack grew downward toward the heap
from the top of the segment. The line of demarcation separating the two was called the
break or the break point. On modern systems where the data segment lives in its own
memory mapping, we continue to label the end address of the mapping the break point.

A call to brk() sets the break point (the end of the data segment) to the address specified
by end. On success, it returns 0. On failure, it returns −1 and sets errno to ENOMEM.
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A call to sbrk() increments the end of the data segment by increment bytes, which may
be a positive or negative delta. sbrk() returns the revised break point. Thus, an
increment of 0 provides the current break point:

printf ("The current break point is %p\n", sbrk (0));

Deliberately, both POSIX and the C standard define neither of these functions. Nearly
all Unix systems, however, support one or both. Portable programs should stick to the
standards-based interfaces.

Anonymous Memory Mappings
Memory allocation in glibc uses a combination of the data segment and memory map‐
pings. The classic method of implementing malloc() is to divide the data segment into
a series of power-of-2 partitions and satisfy allocations by returning the partition that
is the closest fit to the requested size. Freeing memory is as simple as marking the
partition as “free.” If adjacent partitions are free, they can be coalesced into a single,
larger partition. If the top of the heap is entirely free, the system can use brk() to lower
the break point, shrinking the heap and returning memory to the kernel.

This algorithm is called a buddy memory allocation scheme. It has the upside of speed
and simplicity but the downside of introducing two types of fragmentation. Internal
fragmentation occurs when more memory than requested is used to satisfy an allocation.
This results in inefficient use of the available memory. External fragmentation occurs
when sufficient memory is free to satisfy a request, but it is split into two or more
nonadjacent chunks. This can result in inefficient use of memory (because a larger, less
suitable block may be used), or failed memory allocations (if no alternative block exists).

Moreover, this scheme allows one memory allocation to “pin” another, preventing a
traditional C library from returning freed memory to the kernel. Imagine that two
blocks of memory, block A and block B, are allocated. Block A sits right on the break
point, and block B sits right below A. Even if the program frees B, the C library cannot
adjust the break point until A is likewise freed. In this manner, a long-living allocation
can pin all other allocations in memory.

This is not always a concern as C libraries do not strictly return memory to the system.
Generally, the heap is not shrunk after each free. Instead, the malloc() implementation
keeps freed memory around for a subsequent allocation. Only when the size of the heap
is significantly larger than the amount of allocated memory does malloc() shrink the
data segment. A large allocation, however, can prevent this shrinkage.

Consequently, for large allocations, glibc does not use the heap. Instead, glibc creates an
anonymous memory mapping to satisfy the allocation request. Anonymous memory
mappings are similar to the file-based mappings discussed in Chapter 4, except that they
are not backed by any file—hence the “anonymous” moniker. Instead, an anonymous
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memory mapping is simply a large, zero-filled block of memory, ready for your use.
Think of it as a brand new heap, solely for a single allocation. Because these mappings
are located outside of the heap, they do not contribute to the data segment’s
fragmentation.

Allocating memory via anonymous mappings has several benefits:

• No fragmentation concerns. When the program no longer needs an anonymous
memory mapping, the mapping is unmapped, and the memory is immediately
returned to the system.

• Anonymous memory mappings are resizable, have adjustable permissions, and can
receive advice just like normal mappings (see Chapter 4).

• Each allocation exists in a separate memory mapping. There is no need to manage
the global heap.

There are also two downsides to using anonymous memory mappings rather than the
heap:

• Each memory mapping is an integer multiple of the system page size in size. Ergo,
allocations that are not integer multiples of pages in size result in wasted “slack”
space. This slack space is more of a concern with small allocations, where the wasted
space is large relative to the allocation size.

• Creating a new memory mapping incurs more overhead than satisfying allocations
from the heap, which may not involve any kernel interaction whatsoever. The
smaller the allocation, the more this overhead is detrimental.

Juggling the pros against the cons, glibc’s malloc() uses the data segment to satisfy small
allocations and anonymous memory mappings to satisfy large allocations. The thresh‐
old is configurable (see “Advanced Memory Allocation” on page 312), and may change
from one glibc release to another. Currently, the threshold is 128 KB: allocations smaller
than or equal to 128 KB derive from the heap, whereas larger allocations derive from
anonymous memory mappings.

Creating Anonymous Memory Mappings
Perhaps because you want to force the use of a memory mapping over the heap for a
specific allocation, or perhaps because you are writing your own memory allocation
system, you may want to manually create your own anonymous memory mapping—
either way, Linux makes it easy. Recall from Chapter 4 that the system call mmap() creates
a memory mapping and the system call munmap() destroys a mapping:

#include <sys/mman.h>

void * mmap (void *start,
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size_t length,
int prot,
int flags,
int fd,
off_t offset);

int munmap (void *start, size_t length);

Creating an anonymous memory mapping is actually easier than creating a file-backed
mapping, as there is no file to open and manage. The primary difference is the presence
of a special flag, signifying that the mapping is anonymous.

Let’s look at an example:

void *p;

p = mmap (NULL, /* do not care where */
512 * 1024, /* 512 KB */
PROT_READ | PROT_WRITE, /* read/write */
MAP_ANONYMOUS | MAP_PRIVATE, /* anonymous, private */
−1,                          /* fd (ignored) */
0);                          /* offset (ignored) */

if (p == MAP_FAILED)
perror ("mmap");

else
/* 'p' points at 512 KB of anonymous memory... */

For most anonymous mappings, the parameters to mmap() mirror this example, with
the exception, of course, of passing in whatever size (in bytes) the programmer desires.
The other parameters are generally as follows:

• The first parameter, start, is set to NULL, signifying that the anonymous mapping
may begin anywhere in memory that the kernel wishes. Specifying a non-NULL value
here is possible, so long as it is page-aligned, but limits portability. Rarely does a
program care where mappings exist in memory.

• The prot parameter usually sets both the PROT_READ and PROT_WRITE bits, making
the mapping readable and writable. An empty mapping is of no use if you cannot
read from and write to it. On the other hand, executing code from an anonymous
mapping is rarely desired, and allowing execution opens up an attack vector.

• The flags parameter sets the MAP_ANONYMOUS bit, making this mapping anony‐
mous, and the MAP_PRIVATE bit, making this mapping private.

• The fd and offset parameters are ignored when MAP_ANONYMOUS is set. Some older
systems, however, expect a value of −1 for fd, so it is a good idea to pass that if
portability is a concern.
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Memory obtained via an anonymous mapping looks the same as memory obtained via
the heap. One benefit to allocating from anonymous mappings is that the pages are
already filled with zeros. This occurs at no cost, because the kernel maps the application’s
anonymous pages to a zero-filled page via copy-on-write. Thus, there is no need to
memset() the returned memory. Indeed, this is one benefit to using calloc() as opposed
to malloc() followed by memset(): glibc knows that anonymous mappings are already
zeroed, and that a calloc() satisfied from a mapping does not require explicit zeroing.

The system call munmap() frees an anonymous mapping, returning the allocated mem‐
ory to the kernel:

int ret;

/* all done with 'p', so give back the 512 KB mapping */
ret = munmap (p, 512 * 1024);
if (ret)

perror ("munmap");

For a review of mmap(), munmap(), and mappings in general, see
Chapter 4. 

Mapping /dev/zero
Other Unix systems, such as BSD, do not have a MAP_ANONYMOUS flag. Instead, they
implement a similar solution by mapping a special device file, /dev/zero. This device file
provides identical semantics to anonymous memory. A mapping contains copy-on-
write pages of all zeros; the behavior is thus the same as with anonymous memory.

Linux has always provided a /dev/zero device and the ability to map it and obtain zero-
filled memory. Indeed, before the introduction of MAP_ANONYMOUS, Linux programmers
used this BSD-style approach. To provide backward compatibility with older versions
of Linux, or portability to other Unix systems, developers can still map /dev/zero in lieu
of creating an anonymous mapping. The syntax is no different from mapping any other
file:

void *p;
int fd;

/* open /dev/zero for reading and writing */
fd = open ("/dev/zero", O_RDWR);
if (fd < 0) {

perror ("open");
return −1;

}

/* map [0,page size) of /dev/zero */
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p = mmap (NULL, /* do not care where */
getpagesize (), /* map one page */
PROT_READ | PROT_WRITE, /* map read/write */
MAP_PRIVATE, /* private mapping */
fd, /* map /dev/zero */
0); /* no offset */

if (p == MAP_FAILED) {
perror ("mmap");
if (close (fd))

perror ("close");
return −1;

}

/* close /dev/zero, no longer needed */
if (close (fd))

perror ("close");

/* 'p' points at one page of memory, use it... */

Memory mapped in this manner is, of course, unmapped using munmap().

This approach involves the additional system call overhead of opening and closing the
device file. Thus, anonymous memory is a faster solution. 

Advanced Memory Allocation
Many of the allocation operations discussed in this chapter are limited and controlled
by glibc or kernel parameters that the programmer can change. To do so, use the
mallopt() call:

#include <malloc.h>

int mallopt (int param, int value);

A call to mallopt() sets the memory-management-related parameter specified by par
am to the value specified by value. On success, the call returns a nonzero value; on
failure, it returns 0. Note that mallopt() does not set errno. It also tends to always
return success, so avoid any optimism over receiving useful information from the return
value.

Linux currently supports seven values for param, all defined in <malloc.h>:
M_CHECK_ACTION

The value of the MALLOC_CHECK_ environment variable (discussed in the next
section).

M_MMAP_MAX

The maximum number of mappings that the system will create to satisfy dynamic
memory requests. When this limit is reached, the data segment will be used for all
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allocations until one of the previously created mappings is freed. A value of 0
disables all use of anonymous mappings as a basis for dynamic memory allocations.

M_MMAP_THRESHOLD

The threshold (measured in bytes) over which an allocation request will be satisfied
via an anonymous mapping instead of the data segment. Note that allocations
smaller than this threshold may also be satisfied via anonymous mappings at the
system’s discretion. A value of 0 enables the use of anonymous mappings for all
allocations, effectively disabling use of the data segment for dynamic memory
allocations.

M_MXFAST

The maximum size (in bytes) of a fast bin. Fast bins are special chunks of memory
in the heap that are never coalesced with adjacent chunks and never returned to
the system, allowing for very quick allocations at the cost of increased fragmenta‐
tion. A value of 0 disables all use of fast bins.

M_PERTURB

Enables memory poisoning, which aids in the detection of memory management
errors. If provided a nonzero value, glibc sets all allocated bytes (except those re‐
quested via calloc()) to the logical compliment of the least-significant byte in
value. This helps detect use-before-initialized errors. Moreover, glibc also sets all
freed bytes to the least-significant byte in value. This helps detect use-after-free
errors.

M_TOP_PAD

The amount of padding (in bytes) used when adjusting the size of the data segment.
Whenever glibc uses brk() to increase the size of the data segment, it can ask for
more memory than needed in the hopes of alleviating the need for an additional
brk() call in the near future. Likewise, whenever glibc shrinks the size of the data
segment, it can keep extra memory, giving back a little less than it would otherwise.
These extra bytes are the padding. A value of 0 disables all use of padding.

M_TRIM_THRESHOLD

The minimum amount of free memory (in bytes) at the top of the data segment
before glibc invokes sbrk() to return memory to the kernel.

The XPG standard, which loosely defines mallopt(), specifies three other parameters:
M_GRAIN, M_KEEP, and M_NLBLKS. Linux defines these parameters, but setting their value
has no effect. See Table 9-1 for a full listing of all valid parameters, their default values,
and their ranges of accepted values.
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Table 9-1. mallopt() parameters
Parameter Origin Default value Valid values Special values

M_CHECK_ACTION Linux-specific 0 0 – 2

M_GRAIN XPG standard Unsupported on Linux

M_KEEP XPG standard Unsupported on Linux

M_MMAP_MAX Linux-specific 64 * 1024 >= 0 0 disables use of mmap()

M_MMAP_THRESHOLD Linux-specific 128 * 1024 >= 0 0 disables use of the heap

M_MXFAST XPG standard 64 0 - 80 0 disables fast bins

M_NLBLKS XPG standard Unsupported on Linux

M_PERTURB Linux-specific 0 0 or 1 0 disables perturbation

M_TOP_PAD Linux-specific 0 >= 0 0 disables top padding

M_TRIM_THRESHOLD Linux-specific 128 * 1024 >= -1 -1 disables trimming

Programs must make any invocations of mallopt() before their first call to malloc() or
any other memory allocation interface. Usage is simple:

int ret;

/* use mmap() for all allocations over 64 KB */
ret = mallopt (M_MMAP_THRESHOLD, 64 * 1024);
if (!ret)

fprintf (stderr, "mallopt failed!\n");

Fine-Tuning with malloc_usable_size() and malloc_trim()
Linux provides a couple of functions that offer low-level control of glibc’s memory al‐
location system. The first such function allows a program to ask how many usable bytes
a given memory allocation contains:

#include <malloc.h>

size_t malloc_usable_size (void *ptr);

A successful call to malloc_usable_size() returns the actual allocation size of the
chunk of memory pointed to by ptr. Because glibc may round up allocations to fit within
an existing chunk or anonymous mapping, the usable space in an allocation can be larger
than requested. Of course, the allocation will never be smaller than requested. Here’s an
example of the function’s use:

size_t len = 21;
size_t size;
char *buf;

buf = malloc (len);
if (!buf) {

perror ("malloc");

314 | Chapter 9: Memory Management



return −1;
}

size = malloc_usable_size (buf);

/* we can actually use 'size' bytes of 'buf' ... */

The second of the two functions allows a program to force glibc to return all immediately
freeable memory to the kernel:

#include <malloc.h>

int malloc_trim (size_t padding);

A successful call to malloc_trim() shrinks the data segment as much as possible, minus
padding bytes, which are reserved. It then returns 1. On failure, the call returns 0. Nor‐
mally, glibc performs such shrinking automatically whenever the freeable memory rea‐
ches M_TRIM_THRESHOLD bytes. It uses a padding of M_TOP_PAD.

You’ll almost never want to use these two functions for anything other than debugging
or educational purposes. They are not portable and expose low-level details of glibc’s
memory allocation system to your program. 

Debugging Memory Allocations
Programs can set the environment variable MALLOC_CHECK_ to enable enhanced debug‐
ging in the memory subsystem. The additional debugging checks come at the expense
of less efficient memory allocations, but the overhead is often worth it during the de‐
bugging stage of application development.

Because an environment variable controls the debugging, there is no need to recompile
your program. For example, you can simply issue a command like the following:

$ MALLOC_CHECK_=1 ./rudder

If MALLOC_CHECK_ is set to 0, the memory subsystem silently ignores any errors. If it is
set to 1, an informative message is printed to stderr. If it is set to 2, the program is
immediately terminated via abort(). Because MALLOC_CHECK_ changes the behavior of
the running program, setuid programs ignore this variable.

Obtaining Statistics
Linux provides the mallinfo() function for obtaining statistics related to the memory
allocation system:

#include <malloc.h>

struct mallinfo mallinfo (void);
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A call to mallinfo() returns statistics in a mallinfo structure. The structure is returned
by value, not via a pointer. Its contents are also defined in <malloc.h>:

/* all sizes in bytes */

struct mallinfo {
int arena;    /* size of data segment used by malloc */
int ordblks;  /* number of free chunks */
int smblks;   /* number of fast bins */
int hblks;    /* number of anonymous mappings */
int hblkhd;   /* size of anonymous mappings */
int usmblks;  /* maximum total allocated size */
int fsmblks;  /* size of available fast bins */
int uordblks; /* size of total allocated space */
int fordblks; /* size of available chunks */
int keepcost; /* size of trimmable space */

};

Usage is simple:

struct mallinfo m;

m = mallinfo ();

printf ("free chunks: %d\n", m.ordblks);

Linux also provides the malloc_stats() function, which prints memory-related
statistics to stderr:

#include <malloc.h>

void malloc_stats (void);

Invoking malloc_stats() in a memory-intensive program yields some big numbers:

Arena 0:
system bytes     =  865939456
in use bytes     =  851988200
Total (incl. mmap):
system bytes     = 3216519168
in use bytes     = 3202567912
max mmap regions = 65536
max mmap bytes   = 2350579712

Stack-Based Allocations
Thus far, ball of the mechanisms for dynamic memory allocation that we have studied
have used the heap or memory mappings to obtain dynamic memory. We should expect
this because the heap and memory mappings are decidedly dynamic in nature. The
other common construct in a program’s address space, the stack, is where a program’s
automatic variables live.
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There is no reason, however, that a programmer cannot use the stack for dynamic
memory allocations. So long as the allocation does not overflow the stack, such an
approach should be easy and should perform quite well. To make a dynamic memory
allocation from the stack, use the alloca() system call:

#include <alloca.h>

void * alloca (size_t size);

On success, a call to alloca() returns a pointer to size bytes of memory. This memory
lives on the stack and is automatically freed when the invoking function returns. Some
implementations return NULL on failure, but most alloca() implementations cannot
fail or are unable to report failure. Failure is manifested as a stack overflow.

Usage is identical to malloc(), but you do not need to (indeed, must not) free the
allocated memory. Here is an example of a function that opens a given file in the system’s
configuration directory, which is probably /etc, but is portably determined at compile
time. The function has to allocate a new buffer, copy the system configuration directory
into the buffer, and then concatenate this buffer with the provided filename:

int open_sysconf (const char *file, int flags, int mode)
{

const char *etc = SYSCONF_DIR; /* "/etc/" */
char *name;

name = alloca (strlen (etc) + strlen (file) + 1);
strcpy (name, etc);
strcat (name, file);

return open (name, flags, mode);
}

Upon return, the memory allocated with alloca() is automatically freed as the stack
unwinds back to the invoking function. This means you cannot use this memory once
the function that calls alloca() returns! However, because you don’t have to do any
cleanup by calling free(), the resulting code is a bit cleaner. Here is the same function
implemented using malloc():

int open_sysconf (const char *file, int flags, int mode)
{

const char *etc = SYSCONF_DIR; /* "/etc/" */
char *name;
int fd;

name = malloc (strlen (etc) + strlen (file) + 1);
if (!name) {

perror ("malloc");
return −1;

}
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strcpy (name, etc);
strcat (name, file);
fd = open (name, flags, mode);
free (name);

return fd;
}

Note that you should not use alloca()-allocated memory in the parameters to a func‐
tion call because the allocated memory will then exist in the middle of the stack space
reserved for the function parameters. For example, the following is off-limits:

/* DO NOT DO THIS! */
ret = foo (x, alloca (10));

The alloca() interface has a checkered history. On many systems, it behaved poorly
or gave way to undefined behavior. On systems with a small and fixed-sized stack, using
alloca() was an easy way to overflow the stack and kill your program. On still other
systems, alloca() did not even exist. Over time, the buggy and inconsistent imple‐
mentations earned alloca() a bad reputation.

So, if your program must remain portable, you should avoid alloca(). On Linux, how‐
ever, alloca() is a wonderfully useful and underutilized tool. It performs exceptionally
well—on many architectures, an allocation via alloca() does as little as increment the
stack pointer—and handily outperforms malloc(). For small allocations in Linux-
specific code, alloca() can yield excellent performance gains.

Duplicating Strings on the Stack
A very common use of alloca() is to temporarily duplicate a string. For example:

/* we want to duplicate 'song' */
char *dup;

dup = alloca (strlen (song) + 1);
strcpy (dup, song);

/* manipulate 'dup'... */

return; /* 'dup' is automatically freed */

Because of the frequency of this need and the speed benefit that alloca() offers, Linux
systems provide variants of strdup() that duplicate the given string onto the stack:

#define _GNU_SOURCE
#include <string.h>

char * strdupa (const char *s);
char * strndupa (const char *s, size_t n);
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A call to strdupa() returns a duplicate of s. A call to strndupa() duplicates up to n
characters of s. If s is longer than n, the duplication stops at n, and the function appends
a null byte. These functions offer the same benefits as alloca(). The duplicated string
is automatically freed when the invoking function returns.

POSIX does not define the alloca(), strdupa(), or strndupa() functions, and their
record on other operating systems is spotty. If portability is a concern, use of these
functions is highly discouraged. On Linux, however, alloca() and friends perform
quite well and can provide an excellent performance boost, replacing the complicated
dance of dynamic memory allocation with a mere adjustment of the stack frame pointer.

Variable-Length Arrays
C99 introduced variable-length arrays (VLAs), which are arrays whose geometry is set
at runtime, not at compile time. GNU C has supported variable-length arrays for some
time, but now that C99 has standardized them, there is greater incentive for their use.
VLAs avoid the overhead of dynamic memory allocation in much the same way as
alloca().

Their use is exactly what you would expect:

for (i = 0; i < n; ++i) {
char foo[i + 1];

/* use 'foo'... */
}

In this snippet, foo is an array of chars of variable size i + 1. On each iteration of the
loop, foo is dynamically created and automatically cleaned up when it falls out of scope.
If we used alloca() instead of a VLA, the memory would not be freed until the function
returned. Using a VLA ensures that the memory is freed on every iteration of the loop.
Thus, using a VLA consumes at worst n bytes, whereas alloca() would consume n *
(n+1) / 2 bytes.

Using a variable-length array, we can rewrite our open_sysconf() function as follows:

int open_sysconf (const char *file, int flags, int mode)
{

const char *etc; = SYSCONF_DIR; /* "/etc/" */
char name[strlen (etc) + strlen (file) + 1];

strcpy (name, etc);
strcat (name, file);

return open (name, flags, mode);
}
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The main difference between alloca() and variable-length arrays is that memory ob‐
tained via the former exists for the duration of the function, whereas memory obtained
via the latter exists until the holding variable falls out of scope, which can be before the
current function returns. This could be welcome or unwelcome. In the for loop we just
looked at, reclaiming the memory on each loop iteration reduces net memory con‐
sumption without any side effect (we did not need the extra memory hanging around).
However, if for some reason we wanted the memory to persist longer than a single loop
iteration, using alloca() would make more f158.60sense.

Mixing alloca() and variable-length arrays in a single function can
invite peculiar behavior. Play it safe and use one or the other in a given
function. 

Choosing a Memory Allocation Mechanism
The myriad memory allocation options discussed in this chapter may leave program‐
mers wondering exactly what solution is best for a given job. In the majority of situations,
malloc() is your best bet. Sometimes, however, a different approach provides a better
tool. Table 9-2 summarizes guidelines for choosing an allocation mechanism.

Table 9-2. Approaches to memory allocation in Linux
Allocation approach Pros Cons

malloc() Easy, simple, common. Returned memory not necessarily zeroed.

calloc() Makes allocating arrays simple, zeros
returned memory.

Convoluted interface if not allocating arrays.

realloc() Resizes existing allocations. Useful only for resizing existing allocations.

brk() and sbrk() Provides intimate control over the heap. Much too low-level for most users.

Anonymous memory mappings Easy to work with, sharable, allow
developer to adjust protection level and
provide advice; optimal for large
mappings.

Suboptimal for small allocations; malloc()
automatically uses anonymous memory
mappings when optimal.

posix_memalign() Allocates memory aligned to any
reasonable boundary.

Relatively new and thus portability is
questionable; overkill unless alignment concerns
are pressing.

memalign() and valloc() More common on other Unix systems than
posix_memalign().

Not a POSIX standard, offers less alignment control
than posix_memalign().

alloca() Very fast allocation, no need to explicitly
free memory; great for small allocations.

Unable to return error, no good for large
allocations, broken on some Unix systems.

Variable-length arrays Same as alloca(), but frees memory
when array falls out of scope, not when
function returns.

Useful only for arrays; alloca() freeing
behavior may be preferable in some situations; less
common on other Unix systems than alloca().
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Finally, let us not forget the alternative to all of these options: automatic and static
memory allocations. Allocating automatic variables on the stack or global variables on
the heap is often easier and does not require that the programmer manage pointers and
worry about freeing the memory.

Manipulating Memory
The C language provides a family of functions for manipulating raw bytes of memory.
These functions operate in many ways similarly to string-manipulation interfaces such
as strcmp() and strcpy(), but they rely on a user-provided buffer size instead of the
assumption that strings are null-terminated. Note that none of these functions can re‐
turn errors. Preventing errors is up to the programmer—pass in the wrong memory
region, and there is no alternative, except the resulting segmentation violation!

Setting Bytes
Among the collection of memory-manipulating functions, the most common is easily
memset():

#include <string.h>

void * memset (void *s, int c, size_t n);

A call to memset() sets the n bytes starting at s to the byte c and returns s. A frequent
use is zeroing a block of memory:

/* zero out [s,s+256) */
memset (s, '\0', 256);

bzero() is an older, deprecated interface introduced by BSD for performing the same
task. New code should use memset(), but Linux provides bzero() for backward com‐
patibility and portability with other systems:

#include <strings.h>

void bzero (void *s, size_t n);

The following invocation is identical to the preceding memset() example:

bzero (s, 256);

Note that bzero() (along with the other b interfaces) requires the header <strings.h>
and not <string.h>.
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Do Not Use memset() if You Can Use calloc()!
Avoid allocating memory with malloc() only to immediately zero the
provided memory with memset(). While the result may be the same,
foregoing the two functions for a single calloc(), which returns zeroed
memory, is superior. Not only will you make one less function call, but
calloc() may be able to obtain already zeroed memory from the kernel.
In that case, you avoid manually setting each byte to 0, improving
performance.

Comparing Bytes
Similar to strcmp(), memcmp() compares two chunks of memory for equivalence:

#include <string.h>

int memcmp (const void *s1, const void *s2, size_t n);

An invocation compares the first n bytes of s1 to s2 and returns 0 if the blocks of memory
are equivalent, a value less than zero if s1 is less than s2, and a value greater than zero
if s1 is greater than s2.

BSD again provides a now-deprecated interface that performs largely the same task:

#include <strings.h>

int bcmp (const void *s1, const void *s2, size_t n);

An invocation of bcmp() compares the first n bytes of s1 to s2, returning 0 if the blocks
of memory are equivalent, and a nonzero value if they are different.

Because of structure padding (see “Other alignment concerns” on page 305 earlier in
this chapter), comparing two structures for equivalence via memcmp() or bcmp() is un‐
reliable. There can be uninitialized garbage in the padding that differs between two
otherwise identical instances of a structure. Consequently, code such as the following
is not safe:

/* are two dinghies identical? (BROKEN) */
int compare_dinghies (struct dinghy *a, struct dinghy *b)
{

return memcmp (a, b, sizeof (struct dinghy));
}

Instead, programmers who wish to compare structures should compare each element
of the structures, one by one. This approach allows for some optimization, but it’s def‐
initely more work than the unsafe memcmp() approach. Here’s the equivalent code:

/* are two dinghies identical? */
int compare_dinghies (struct dinghy *a, struct dinghy *b)
{

int ret;
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if (a->nr_oars < b->nr_oars)
return −1;

if (a->nr_oars > b->nr_oars)
return 1;

ret = strcmp (a->boat_name, b->boat_name);
if (ret)

return ret;

/* and so on, for each member... */
}

Moving Bytes
memmove() copies the first n bytes of src to dst, returning dst:

#include <string.h>

void * memmove (void *dst, const void *src, size_t n);

Again, BSD provides a deprecated interface for performing the same task:

#include <strings.h>

void bcopy (const void *src, void *dst, size_t n);

Note that although both functions take the same parameters, the order of the first two
is reversed in bcopy().

Both bcopy() and memmove() can safely handle overlapping memory regions (say, if
part of dst is inside of src). This allows bytes of memory to shift up or down within a
given region, for example. As this situation is rare, and a programmer would know if it
were the case, the C standard defines a variant of memmove() that does not support
overlapping memory regions. This variant is potentially faster:

#include <string.h>

void * memcpy (void *dst, const void *src, size_t n);

This function behaves identically to memmove(), except dst and src may not overlap. If
they do, the results are undefined.

Another safe copying function is memccpy():

#include <string.h>

void * memccpy (void *dst, const void *src, int c, size_t n);

The memccpy() function behaves the same as memcpy(), except that it stops copying if
the function finds the byte c within the first n bytes of src. The call returns a pointer to
the next byte in dst after c, or NULL if c was not found.
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Finally, you can use mempcpy() to step through memory:

#define _GNU_SOURCE
#include <string.h>

void * mempcpy (void *dst, const void *src, size_t n);

The mempcpy() function performs the same as memcpy(), except that it returns a pointer
to the next byte after the last byte copied. This is useful if a set of data is to be copied to
consecutive memory locations—but it’s not so much of an improvement because the
return value is merely dst + n. This function is GNU-specific.

Searching Bytes
The functions memchr() and memrchr() locate a given byte in a block of memory:

#include <string.h>

void * memchr (const void *s, int c, size_t n);

The memchr() function scans the n bytes of memory pointed at by s for the character
c, which is interpreted as an unsigned char:

#define _GNU_SOURCE
#include <string.h>

void * memrchr (const void *s, int c, size_t n);

The call returns a pointer to the first byte to match c, or NULL if c is not found.

The memrchr() function is the same as the memchr() function, except that it searches
backward from the end of the n bytes pointed at by s instead of forward from the front.
Unlike memchr(), memrchr() is a GNU extension and not part of the C language.

For more complicated search missions, the awfully named function memmem() searches
a block of memory for an arbitrary array of bytes:

#define _GNU_SOURCE
#include <string.h>

void * memmem (const void *haystack,
size_t haystacklen,
const void *needle,
size_t needlelen);

The memmem() function returns a pointer to the first occurrence of the subblock
needle, of length needlelen bytes, within the block of memory haystack, of length
haystacklen bytes. If the function does not find needle in haystack, it returns NULL.
This function is also a GNU extension.
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Frobnicating Bytes
The Linux C library provides an interface for trivially convoluting bytes of data:

#define _GNU_SOURCE
#include <string.h>

void * memfrob (void *s, size_t n);

A call to memfrob() obscures the first n bytes of memory starting at s by exclusive-ORing
(XORing) each byte with the numberf164.430 42. The call returns s.

The effect of a call to memfrob() can be reversed by calling memfrob() again on the same
region of memory. Thus, the following snippet is a no-op with respect to secret:

memfrob (memfrob (secret, len), len);

This function is in no way a proper (or even a poor) substitute for encryption; its use
is limited to the trivial obfuscation of strings. It is GNU-specific.

Locking Memory
Linux implements demand paging, which means that pages are paged in from disk as
needed and paged out to disk when no longer needed. This allows the virtual address
spaces of processes on the system to have no direct relationship to the total amount of
physical memory, as secondary storage can provide the illusion of a nearly infinite sup‐
ply of physical memory.

This paging occurs transparently, and applications generally need not be concerned
with (or even know about) the Linux kernel’s paging behavior. There are, however, two
situations in which applications may wish to influence the system’s paging behavior:
Determinism

Applications with timing constraints require deterministic behavior. If some mem‐
ory accesses result in page faults—which incur costly disk I/O operations—
applications can overrun their timing needs. By ensuring that the pages it needs are
always in physical memory and never paged to disk, an application can guarantee
that memory accesses will not result in page faults, providing consistency, deter‐
minism, and improved performance.

Security
If secrets are kept in memory, the secrets can be paged out and stored unencrypted
on disk. For example, if a user’s private key is normally stored encrypted on disk,
an unencrypted copy of the key in memory can end up in the swap file. In a high-
security environment, this behavior may be unacceptable. Applications for which
this might be a problem can ask that the memory containing the key always remain
in physical memory.
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Of course, changing the kernel’s paging behavior can result in a negative impact on
overall system performance. One application’s determinism or security may improve,
but while its pages are locked into memory, another application’s pages will be paged
out instead. The kernel, if we trust its algorithms, chooses the optimal page to page out
—that is, the page least likely to be used in the future—so when you change its behavior,
it has to swap out a suboptimal page.

Locking Part of an Address Space
POSIX 1003.1b-1993 defines two interfaces for “locking” one or more pages into phys‐
ical memory, ensuring that they are never paged out to disk. The first locks a given
interval of addresses:

#include <sys/mman.h>

int mlock (const void *addr, size_t len);

A call to mlock() locks the virtual memory starting at addr and extending for len bytes
into physical memory. On success, the call returns 0; on failure, the call returns −1 and
sets errno as appropriate.

A successful call locks all physical pages that contain [addr,addr+len) in memory. For
example, if a call specifies only a single byte, the entire page in which that byte resides
is locked into memory. The POSIX standard dictates that addr should be aligned to a
page boundary. Linux does not enforce this requirement, silently rounding addr down
to the nearest page if needed. Programs requiring portability to other systems, however,
should ensure that addr sits on a page boundary.

The valid errno codes include:
EINVAL

The parameter len is negative.

ENOMEM

The caller attempted to lock more pages than the RLIMIT_MEMLOCK resource limit
allows (see “Locking Limits” on page 328).

EPERM

The RLIMIT_MEMLOCK resource limit was 0, but the process did not possess the
CAP_IPC_LOCK capability (again, see “Locking Limits” on page 328).

A child process does not inherit the locked status of memory across a
fork(). Due to the copy-on-write behavior of address spaces in Linux,
however, a child process’s pages are effectively locked in memory until
the child writes to them.

326 | Chapter 9: Memory Management



As an example, assume that a program holds a decrypted string in memory. A process
can lock the page containing that string with code such as the following:

int ret;

/* lock 'secret' in memory */
ret = mlock (secret, strlen (secret));
if (ret)

perror ("mlock");

Locking All of an Address Space
If a process wants to lock its entire address space into physical memory, mlock() is a
cumbersome interface. For such a purpose—common to real-time applications—
POSIX defines a system call that locks an entire address space:

#include <sys/mman.h>

int mlockall (int flags);

A call to mlockall() locks all of the pages in the current process’s address space into
physical memory. The flags parameter, which is a bitwise OR of the following two
values, controls the behavior:
MCL_CURRENT

If set, this value instructs mlockall() to lock all currently mapped pages—the stack,
data segment, mapped files, and so on—into the process’s address space.

MCL_FUTURE

If set, this value instructs mlockall() to ensure that all pages mapped into the
address space in the future are also locked into memory.

Most applications specify a bitwise OR of both values.

On success, the call returns 0; on failure, it returns −1 and sets errno to one of the
following error codes:
EINVAL

The parameter flags is negative.

ENOMEM

The caller attempted to lock more pages than the RLIMIT_MEMLOCK resource limit
allows (see the later section “Locking Limits” on page 328).

EPERM

The RLIMIT_MEMLOCK resource limit was 0, but the process did not possess the
CAP_IPC_LOCK capability (again, see “Locking Limits” on page 328).
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Unlocking Memory
To unlock pages from physical memory, again allowing the kernel to swap the pages out
to disk as needed, POSIX standardizes two more interfaces:

#include <sys/mman.h>

int munlock (const void *addr, size_t len);
int munlockall (void);

The system call munlock() unlocks the pages starting at addr and extending for len
bytes. It undoes the effects of mlock(). The system call munlockall() undoes the effects
of mlockall(). Both calls return 0 on success, and on error return −1 and set errno to
one of the following:
EINVAL

The parameter len is invalid (munlock() only).

ENOMEM

Some of the specified pages are invalid.

EPERM

The RLIMIT_MEMLOCK resource limit was 0, but the process did not possess the
CAP_IPC_LOCK capability (see “Locking Limits”).

Memory locks do not nest. Therefore, a single mlock() or munlock() will unlock a
locked page, regardless of how many times the page was locked via mlock() or mlock
all().

Locking Limits
Because locking memory can affect the overall performance of the system—indeed, if
too many pages are locked, memory allocations can fail—Linux places limits on how
many pages a process may lock.

Processes possessing the CAP_IPC_LOCK capability may lock any number of pages into
memory. Processes without this capability may lock only RLIMIT_MEMLOCK bytes. By
default, this resource limit is 32 KB—large enough to lock a secret or two in memory,
but not large enough to adversely affect system performance. (Chapter 6 discusses re‐
source limits and how to retrieve and change this value.)

Is a Page in Physical Memory?
For debugging and diagnostic purposes, Linux provides the mincore() function, which
can be used to determine whether a given range of memory is in physical memory or
swapped out to disk:
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#include <unistd.h>
#include <sys/mman.h>

int mincore (void *start,
size_t length,
unsigned char *vec);

A call to mincore() provides a vector delineating which pages of a mapping are in
physical memory at the time of the system call. The call returns the vector via vec and
describes the pages starting at start (which must be page-aligned) and extending for
length bytes (which need not be page-aligned). Each byte in vec corresponds to one
page in the range provided, starting with the first byte describing the first page and
moving linearly forward. Consequently, vec must be at least large enough to contain
(length − 1 + page size) / page size bytes. The lowest-order bit in each byte is
1 if the page is resident in physical memory and 0 if it is not. The other bits are currently
undefined and reserved for future use.

On success, the call returns 0. On failure, it returns −1 and sets errno to one of the
following:
EAGAIN

Insufficient kernel resources are available to carry out the request.

EFAULT

The parameter vec points at an invalid address.

EINVAL

The parameter start is not aligned to a page boundary.

ENOMEM

[address,address+1) contains memory that is not part of a file-based mapping.

Currently, this system call works properly only for file-based mappings created with
MAP_SHARED. This greatly limits the call’s use. 

Opportunistic Allocation
Linux employs an opportunistic allocation strategy. When a process requests additional
memory from the kernel—say, by enlarging its data segment or by creating a new mem‐
ory mapping—the kernel commits to the memory without actually providing any phys‐
ical storage. Only when the process writes to the newly allocated memory does the kernel
satisfy the commitment by converting the commitment for memory to a physical allo‐
cation of memory. The kernel does this on a page-by-page basis, performing demand
paging and copy-on-writes as needed.

This behavior has several advantages. First, lazily allocating memory allows the kernel
to defer most of the work until the last possible moment—if indeed it ever has to satisfy
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the allocations. Second, because the requests are satisfied page-by-page and on demand,
only physical memory in actual use need consume physical storage. Finally, the amount
of committed memory can far exceed the amount of physical memory and even swap
space available. This last feature is called overcommitment.

Overcommitting and OOM
Overcommitting allows systems to run many more, and much larger, applications than
they could if every requested page of memory had to be backed by physical storage at
the point of allocation instead of the point of use. Without overcommitment, mapping
a 2 GB file copy-on-write would require the kernel to set aside 2 GB of storage. With
overcommitment, mapping a 2 GB file requires storage only for each page of data to
which the process actually writes. Likewise, without overcommitment, every fork()
would require enough free storage to duplicate the address space, even though the vast
majority of pages never undergo copy-on-writes.

What if, however, processes attempt to satisfy more outstanding commitments than the
system has physical memory and swap space? In that case, one or more of the satisfac‐
tions must fail. Because the kernel has already committed to the memory—the system
call requesting the commitment returned success—and a process is attempting to use
that committed memory, the kernel’s only recourse is to kill a process, freeing up avail‐
able memory.

When overcommitment results in insufficient memory to satisfy a committed request,
we say that an out of memory (OOM) condition has occurred. In response to an OOM
condition, the kernel employs the OOM killer to pick a process “worthy” of termination.
For this purpose, the kernel tries to find the least important process that is consuming
the most memory.

OOM conditions are rare—hence the huge utility in allowing overcommitment in the
first place. To be sure, however, these conditions are unwelcome, and the indeterministic
termination of a process by the OOM killer is often unacceptable.

For systems where this is the case, the kernel allows the disabling of overcommitment
via the file /proc/sys/vm/overcommit_memory, and the analogous sysctl parameter
vm.overcommit_memory.

The default value for this parameter, 0, instructs the kernel to perform a heuristic over‐
commitment strategy, overcommitting memory within reason, but disallowing egre‐
gious overcommitments. A value of 1 allows all commitments to succeed, throwing
caution to the wind. Certain memory-intensive applications, such as those in the sci‐
entific field, tend to request so much more memory than they ever need satisfied that
such an option makes sense.
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A value of 2 disables overcommitments altogether and enables strict accounting. In this
mode, memory commitments are restricted to the size of the swap area plus a config‐
urable percentage of physical memory. The configuration percentage is set via the
file /proc/sys/vm/overcommit_ratio or the analogous sysctl parameter, which is vm.over
commit_ratio. The default is 50, which restricts memory commits to the size of the
swap area plus half of the physical memory. Because physical memory contains the
kernel, page tables, system-reserved pages, locked pages, and so on, only a portion of it
is actually swappable and guaranteed to be able to satisfy commitments.

Be careful with strict accounting! Many system designers, repulsed by the notion of the
OOM killer, think strict accounting is a panacea. However, applications often perform
many unnecessary allocations that reach far into overcommitment territory, and
allowing this behavior was one of the main motivations behind virtual memory. 
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CHAPTER 10

Signals

Signals are software interrupts that provide a mechanism for handling asynchronous
events. These events can originate from outside the system, such as when the user gen‐
erates the interrupt character by pressing Ctrl-C, or from activities within the program
or kernel, such as when the process executes code that divides by zero. As a primitive
form of interprocess communication (IPC), one process can also send a signal to another
process.

The key point is not just that the events occur asynchronously—the user, for example,
can press Ctrl-C at any point in the program’s execution—but also that the program
handles the signals asynchronously. The signal-handling functions are registered with
the kernel, which invokes the functions asynchronously from the rest of the program
when the signals are delivered.

Signals have been part of Unix since the early days. Over time, however, they have
evolved, most noticeably in terms of reliability, as signals once could get lost, and in
terms of functionality, as signals may now carry user-defined payloads. At first, different
Unix systems made incompatible changes to signals. Thankfully, POSIX came to the
rescue and standardized signal handling. This standard is what Linux provides and is
what we’ll discuss here.

In this chapter, we’ll start with an overview of signals and a discussion of their use and
misuse. We’ll then cover the various Linux interfaces that manage and manipulate
signals.

Most nontrivial applications interact with signals. Even if you deliberately design your
application to not rely on signals for its communication needs—often a good idea!—
you’ll still be forced to work with signals in certain cases, such as when handling program
termination.
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Signal Concepts
Signals have a very precise lifecycle. First, a signal is raised (we sometimes also say it is
sent or generated). The kernel then stores the signal until it is able to deliver it. Finally,
once it is free to do so, the kernel handles the signal as appropriate. The kernel can
perform one of three actions, depending on what the process asked it to do:
Ignore the signal

No action is taken. There are two signals that cannot be ignored: SIGKILL and
SIGSTOP. The reason for this is that the system administrator needs to be able to
kill or stop processes, and it would be a circumvention of that right if a process
could elect to ignore a SIGKILL (making it unkillable) or a SIGSTOP (making it
unstoppable).

Catch and handle the signal
The kernel will suspend execution of the process’s current code path and jump to
a previously registered function. The process will then execute this function. Once
the process returns from this function, it will jump back to wherever it was when
it caught the signal. SIGINT and SIGTERM are two commonly caught signals. Pro‐
cesses catch SIGINT to handle the user generating the interrupt character—for
example, a terminal might catch this signal and return to the main prompt. Pro‐
cesses catch SIGTERM to perform necessary cleanup, such as disconnecting from the
network or removing temporary files, before terminating. SIGKILL and SIGSTOP
cannot be caught.

Perform the default action
This action depends on the signal being sent. The default action is often to terminate
the process. This is the case with SIGKILL, for instance. However, many signals are
provided for specific purposes that concern programmers in particular situations,
and these signals are ignored by default because many programs are not interested
in them. We will look at the various signals and their default actions shortly.

Traditionally, when a signal was delivered, the function that handled the signal had no
information about what had happened except for the fact that the particular signal had
occurred. Nowadays, the kernel can provide a lot of context to programmers who wish
to receive it. Signals, as we shall see, can even pass user-defined data.

Signal Identifiers
Every signal has a symbolic name that starts with the prefix SIG. For example, SIGINT
is the signal sent when the user presses Ctrl-C, SIGABRT is the signal sent when the
process calls the abort() function, and SIGKILL is the signal sent when a process is
forcefully terminated.
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These signals are all defined in a header file included from <signal.h>. The signals are
simply preprocessor definitions that represent positive integers—that is, every signal is
also associated with an integer identifier. The name-to-integer mapping for the signals
is implementation-dependent and varies among Unix systems, although the first dozen
or so signals are usually mapped the same way (SIGKILL is infamously signal 9 for
example). A portable program will always use a signal’s human-readable name, and
never its integer value.

The signal numbers start at 1 (generally SIGHUP) and proceed linearly upward. There
are about 31 signals in total, but most programs deal regularly with only a handful of
them. There is no signal with the value 0, which is a special value known as the null
signal. There’s really nothing important about the null signal—it doesn’t deserve a special
name—but some system calls (such as kill()) use a value of 0 as a special case.

You can generate a list of signals supported on your system with the
command kill -l.

Signals Supported by Linux
Table 10-1 lists the signals that Linux supports.

Table 10-1. Signals
Signal Description Default action

SIGABRT Sent by abort() Terminate with core dump

SIGALRM Sent by alarm() Terminate

SIGBUS Hardware or alignment error Terminate with core dump

SIGCHLD Child has terminated Ignored

SIGCONT Process has continued after being stopped Ignored

SIGFPE Arithmetic exception Terminate with core dump

SIGHUP Process’s controlling terminal was closed (most frequently, the user logged out) Terminate

SIGILL Process tried to execute an illegal instruction Terminate with core dump

SIGINT User generated the interrupt character (Ctrl-C) Terminate

SIGIO Asynchronous I/O event Terminatea

SIGKILL Uncatchable process termination Terminate

SIGPIPE Process wrote to a pipe but there are no readers Terminate

SIGPROF Profiling timer expired Terminate

SIGPWR Power failure Terminate

SIGQUIT User generated the quit character (Ctrl-\) Terminate with core dump
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1. Only the Alpha architecture defines this signal. On all other machine architectures, this signal does not exist.

Signal Description Default action

SIGSEGV Memory access violation Terminate with core dump

SIGSTKFLT Coprocessor stack fault Terminateb

SIGSTOP Suspends execution of the process Stop

SIGSYS Process tried to execute an invalid system call Terminate with core dump

SIGTERM Catchable process termination Terminate

SIGTRAP Break point encountered Terminate with core dump

SIGTSTP User generated the suspend character (Ctrl-Z) Stop

SIGTTIN Background process read from controlling terminal Stop

SIGTTOU Background process wrote to controlling terminal Stop

SIGURG Urgent I/O pending Ignored

SIGUSR1 Process-defined signal Terminate

SIGUSR2 Process-defined signal Terminate

SIGVTALRM Generated by setitimer() when called with the ITIMER_VIRTUAL flag Terminate

SIGWINCH Size of controlling terminal window changed Ignored

SIGXCPU Processor resource limits were exceeded Terminate with core dump

SIGXFSZ File resource limits were exceeded Terminate with core dump
a The behavior on other Unix systems, such as BSD, is to ignore this signal.
b The Linux kernel no longer generates this signal; it remains only for backward compatibility.

Several other signal values exist, but Linux defines them to be equivalent to other values:
SIGINFO is defined as SIGPWR,1 SIGIOT is defined as SIGABRT, and SIGPOLL and SIGLOST
are defined as SIGIO.

Now that we have a table for quick reference, let’s go over each of the signals in detail:
SIGABRT

The abort() function sends this signal to the process that invokes it. The process
then terminates and generates a core file. In Linux, assertions such as assert() call
abort() when the conditional fails.

SIGALRM

The alarm() and setitimer() (with the ITIMER_REAL flag) functions send this
signal to the process that invoked them when an alarm expires. Chapter 11 discusses
these and related functions.
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SIGBUS

The kernel raises this signal when the process incurs a hardware fault other than
memory protection, which generates a SIGSEGV. On traditional Unix systems, this
signal represented various irrecoverable errors, such as unaligned memory access.
The Linux kernel, however, fixes most of these errors automatically, without gen‐
erating the signal. The kernel does raise this signal when a process improperly
accesses a region of memory created via mmap() (see Chapter 9 for a discussion of
memory mappings). Unless this signal is caught, the kernel will terminate the pro‐
cess and generate a core dump.

SIGCHLD

Whenever a process terminates or stops, the kernel sends this signal to the process’s
parent. Because SIGCHLD is ignored by default, processes must explicitly catch and
handle it if they are interested in the lives of their children. A handler for this signal
generally calls wait(), discussed in Chapter 5, to determine the child’s pid and exit
code.

SIGCONT

The kernel sends this signal to a process when the process is resumed after being
stopped. By default, this signal is ignored, but processes can catch it if they want to
perform an action after being continued. This signal is commonly used by terminals
or editors that wish to refresh the screen.

SIGFPE

Despite its name, this signal represents any arithmetic exception, and not solely
those related to floating-point operations. Exceptions include overflows, under‐
flows, and division by zero. The default action is to terminate the process and gen‐
erate a core file, but processes may catch and handle this signal if they want. Note
that the behavior of a process and the result of the offending operation are undefined
if the process elects to continue running.

SIGHUP

The kernel sends this signal to the session leader whenever the session’s terminal
disconnects. The kernel also sends this signal to each process in the foreground
process group when the session leader terminates. The default action is to terminate,
which makes sense—the signal suggests that the user has logged out. Daemon pro‐
cesses “overload” this signal with a mechanism to instruct them to reload their
configuration files. Sending SIGHUP to Apache, for example, instructs it to reread
httpd.conf. Using SIGHUP for this purpose is a common convention but not manda‐
tory. The practice is safe because daemons do not have controlling terminals and
thus should never normally receive this signal.
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SIGILL

The kernel sends this signal when a process attempts to execute an illegal machine
instruction. The default action is to terminate the process and generate a core dump.
Processes may elect to catch and handle SIGILL, but their behavior is undefined
after its occurrence.

SIGINT

This signal is sent to all processes in the foreground process group when the user
enters the interrupt character (usually Ctrl-C). The default behavior is to terminate;
however, processes can elect to catch and handle this signal and generally do so to
clean up before terminating.

SIGIO

This signal is sent when a BSD-style asynchronous I/O event is generated. This style
of I/O is rarely used on Linux. (See Chapter 4 for a discussion of advanced I/O
techniques that are common to Linux.)

SIGKILL

This signal is sent from the kill() system call; it exists to provide system admin‐
istrators with a surefire way of unconditionally killing a process. This signal cannot
be caught or ignored, and its result is always to terminate the process.

SIGPIPE

If a process writes to a pipe but the reader has terminated, the kernel raises this
signal. The default action is to terminate the process, but this signal may be caught
and handled.

SIGPROF

The setitimer() function, when used with the ITIMER_PROF flag, generates this
signal when a profiling timer expires. The default action is to terminate the process.

SIGPWR

This signal is system-dependent. On Linux, it represents a low-battery condition
(such as in an uninterruptible power supply, or UPS). A UPS monitoring daemon
sends this signal to init, which then responds by cleaning up and shutting down the
system—hopefully before the power goes out!

SIGQUIT

The kernel raises this signal for all processes in the foreground process group when
the user provides the terminal quit character (usually Ctrl-\). The default action is
to terminate the processes and generate a core dump.

SIGSEGV

This signal, whose name derives from segmentation violation, is sent to a process
when it attempts an invalid memory access. This includes accessing unmapped
memory, reading from memory that is not read-enabled, executing code in memory
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that is not execute-enabled, or writing to memory that is not write-enabled. Pro‐
cesses may catch and handle this signal, but the default action is to terminate the
process and generate a core dump.

SIGSTOP

This signal is sent only by kill(). It unconditionally stops a process and cannot be
caught or ignored.

SIGSYS

The kernel sends this signal to a process when it attempts to invoke an invalid system
call. This can happen if a binary is built on a newer version of the operating system
(with newer versions of system calls) but then runs on an older version. Properly
built binaries that make their system calls through glibc should never receive this
signal. Instead, invalid system calls should return −1 and set errno to ENOSYS.

SIGTERM

This signal is sent only by kill(); it allows a user to gracefully terminate a process
(the default action). Processes may elect to catch this signal and clean up before
terminating, but it is considered rude to catch this signal and not terminate
promptly.

SIGTRAP

The kernel sends this signal to a process when it crosses a break point. Generally,
debuggers catch this signal, and other processes ignore it.

SIGTSTP

The kernel sends this signal to all processes in the foreground process group when
the user provides the suspend character (usually Ctrl-Z).

SIGTTIN

This signal is sent to a process that is in the background when it attempts to read
from its controlling terminal. The default action is to stop the process.

SIGTTOU

This signal is sent to a process that is in the background when it attempts to write
to its controlling terminal. The default action is to stop the process.

SIGURG

The kernel sends this signal to a process when out-of-band (OOB) data has arrived
on a socket. Out-of-band data is beyond the scope of this book.

SIGUSR1 and SIGUSR2
These signals are available for user-defined purposes; the kernel never raises them.
Processes may use SIGUSR1 and SIGUSR2 for whatever purpose they like. A common
use is to instruct a daemon process to behave differently. The default action is to
terminate the process.
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SIGVTALRM

The setitimer() function sends this signal when a timer created with the
ITIMER_VIRTUAL flag expires. Chapter 11 discusses timers.

SIGWINCH

The kernel raises this signal for all processes in the foreground process group when
the size of their terminal window changes. By default, processes ignore this signal,
but they may elect to catch and handle it if they are aware of their terminal’s window
size. A good example of a program that catches this signal is top—try resizing its
window while it is running and watch how it responds.

SIGXCPU

The kernel raises this signal when a process exceeds its soft processor limit. The
kernel will continue to raise this signal once per second until the process exits or
exceeds its hard processor limit. Once the hard limit is exceeded, the kernel sends
the process a SIGKILL.

SIGXFSZ

The kernel raises this signal when a process exceeds its file size limit. The default
action is to terminate the process, but if this signal is caught or ignored, the system
call that would have resulted in the file size limit being exceeded returns −1 and sets
errno to EFBIG.

Basic Signal Management
With the signals out of the way, we’ll now turn to how you manage them from within
your program. The simplest and oldest interface for signal management is the signal()
function. Defined by the ISO C89 standard, which standardizes only the lowest common
denominator of signal support, this system call is very basic. Linux offers substantially
more control over signals via other interfaces, which we’ll cover later in this chapter.
Because signal() is the most basic and, thanks to its presence in ISO C, quite common,
we’ll cover it first:

#include <signal.h>

typedef void (*sighandler_t)(int);

sighandler_t signal (int signo, sighandler_t handler);

A successful call to signal() removes the current action taken on receipt of the signal
signo and instead handles the signal with the signal handler specified by handler. signo
is one of the signal names discussed in the previous section, such as SIGINT or
SIGUSR1. Recall that a process can catch neither SIGKILL nor SIGSTOP, so setting up a
handler for either of these two signals makes no sense.
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The handler function must return void, which makes sense because (unlike with nor‐
mal functions) there is no standard place in the program for this function to return.
The function takes one argument, an integer, which is the signal identifier (for example,
SIGUSR2) of the signal being handled. This allows a single function to handle multiple
signals. A prototype has the form:

void my_handler (int signo);

Linux uses a typedef, sighandler_t, to define this prototype. Other Unix systems di‐
rectly use the function pointers; some systems have their own types, which may not be
named sighandler_t. Programs seeking portability should not reference the type
directly.

When it raises a signal to a process that has registered a signal handler, the kernel sus‐
pends execution of the program’s regular instruction stream and calls the signal handler.
The handler is passed the value of the signal, which is the signo originally provided to
signal().

You may also use signal() to instruct the kernel to ignore a given signal for the current
process or to reset the signal to the default behavior. This is done using special values
for the handler parameter:
SIG_DFL

Set the behavior of the signal given by signo to its default. For example, in the case
of SIGPIPE, the process will terminate.

SIG_IGN

Ignore the signal given by signo.

The signal() function returns the previous behavior of the signal, which could be a
pointer to a signal handler, SIG_DFL, or SIG_IGN. On error, the function returns
SIG_ERR. It does not set errno.

Waiting for a Signal, Any Signal
Useful for debugging and writing demonstrative code snippets, the POSIX-defined
pause() system call puts a process to sleep until it receives a signal that either is handled
or terminates the process:

#include <unistd.h>

int pause (void);

pause() returns only if a signal is received, in which case the signal is handled, and
pause() returns −1 and sets errno to EINTR. If the kernel raises an ignored signal, the
process does not wake up.
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2. Thus, pause() is only the second-simplest system call. The joint winners are getpid() and gettid(), each
only one line.

In the Linux kernel, pause() is one of the simplest system calls. It performs only
two actions. First, it puts the process in the interruptible sleep state. Next, it calls
schedule() to invoke the Linux process scheduler to find another process to run.
As the process is not actually waiting for anything, the kernel will not wake it up unless
it receives a signal. This whole ordeal consumes only two lines of C code.2

Examples
Let’s look at a couple of simple examples. This first one registers a signal handler for
SIGINT that simply prints a message and then terminates the program (as SIGINT would
do anyway):

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <signal.h>

/* handler for SIGINT */
static void sigint_handler (int signo)
{

/*
* Technically, you shouldn't use printf() in a
* signal handler, but it isn't the end of the
* world. I'll discuss why in the section
* "Reentrancy."
*/
printf ("Caught SIGINT!\n");
exit (EXIT_SUCCESS);

}

int main (void)
{

/*
* Register sigint_handler as our signal handler
* for SIGINT.
*/
if (signal (SIGINT, sigint_handler) == SIG_ERR) {

fprintf (stderr, "Cannot handle SIGINT!\n");
exit (EXIT_FAILURE);

}

for (;;)
pause ();

return 0;
}
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In the following example, we register the same handler for SIGTERM and SIGINT. We
also reset the behavior for SIGPROF to the default (which is to terminate the process)
and ignore SIGHUP (which would otherwise terminate the process):

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <signal.h>

/* handler for SIGINT and SIGTERM */
static void signal_handler (int signo)
{

if (signo == SIGINT)
printf ("Caught SIGINT!\n");

else if (signo == SIGTERM)
printf ("Caught SIGTERM!\n");

else {
/* this should never happen */
fprintf (stderr, "Unexpected signal!\n");
exit (EXIT_FAILURE);

}
exit (EXIT_SUCCESS);

}

int main (void)
{

/*
* Register signal_handler as our signal handler
* for SIGINT.
*/
if (signal (SIGINT, signal_handler) == SIG_ERR) {

fprintf (stderr, "Cannot handle SIGINT!\n");
exit (EXIT_FAILURE);

}

/*
* Register signal_handler as our signal handler
* for SIGTERM.
*/
if (signal (SIGTERM, signal_handler) == SIG_ERR) {

fprintf (stderr, "Cannot handle SIGTERM!\n");
exit (EXIT_FAILURE);

}

/* Reset SIGPROF's behavior to the default. */
if (signal (SIGPROF, SIG_DFL) == SIG_ERR) {

fprintf (stderr, "Cannot reset SIGPROF!\n");
exit (EXIT_FAILURE);

}

/* Ignore SIGHUP. */
if (signal (SIGHUP, SIG_IGN) == SIG_ERR) {
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fprintf (stderr, "Cannot ignore SIGHUP!\n");
exit (EXIT_FAILURE);

}

for (;;)
pause ();

return 0;
}

Execution and Inheritance
On fork, the child process inherits the signal actions of its parent. That is, the child
copies the registered actions (ignore, default, handle) for each signal from its parent.
Pending signals are not inherited, which makes sense: the pending signal was sent to a
specific pid, decidedly not the child.

When a process is created via one of the exec family of system calls, all signals are set to
their default actions unless the parent process is ignoring them; in that case, the newly
imaged process will also ignore those signals. Put another way, any signal caught by the
process before exec is reset to the default action after exec, and all other signals remain
the same. This makes sense because a freshly executed process does not share the address
space of its parent, and thus any registered signal handlers may not exist. Pending signals
are inherited. Table 10-2 summarizes the inheritance.

Table 10-2. Inherited signal behavior
Signal behavior Across forks Across execs

Ignored Inherited Inherited

Default Inherited Inherited

Handled Inherited Not inherited

Pending signals Not inherited Inherited

This behavior on process execution has one notable use: when the shell executes a pro‐
cess “in the background” (or when another background process executes another pro‐
cess), the newly executed process should ignore the interrupt and quit characters. Thus,
before a shell executes a background process, it should set SIGINT and SIGQUIT to
SIG_IGN. It is therefore common for programs that handle these signals to first check
to make sure they are not ignored. For example:

/* handle SIGINT, but only if it isn't ignored */
if (signal (SIGINT, SIG_IGN) != SIG_IGN) {

if (signal (SIGINT, sigint_handler) == SIG_ERR)
fprintf (stderr, "Failed to handle SIGINT!\n");

}

/* handle SIGQUIT, but only if it isn't ignored */
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if (signal (SIGQUIT, SIG_IGN) != SIG_IGN) {
if (signal (SIGQUIT, sigquit_handler) == SIG_ERR)

fprintf (stderr, "Failed to handle SIGQUIT!\n");
}

The need to set a signal behavior to check the signal behavior highlights a deficiency in
the signal() interface. Later, we will study a function that does not have this flaw.

Mapping Signal Numbers to Strings
In our examples thus far, we have hardcoded the names of the signals. But sometimes
it is more convenient (or even a requirement) that you be able to convert a signal number
to a string representation of its name. There are several ways to do this. One is to retrieve
the string from a statically defined list:

extern const char * const sys_siglist[];

sys_siglist is an array of strings holding the names of the signals supported by the
system, indexed by signal number.

An alternative is the BSD-defined psignal() interface, which is common enough that
Linux supports it, too:

#include <signal.h>

void psignal (int signo, const char *msg);

A call to psignal() prints to stderr the string you supply as the msg argument, followed
by a colon, a space, and the name of the signal given by signo. If msg is omitted, only
the signal name is printed. If signo is invalid, the printed message will say so.

A better interface is strsignal(). It is not standardized, but Linux and many non-Linux
systems support it:

#define _GNU_SOURCE
#include <string.h>

char * strsignal (int signo);

A call to strsignal() returns a pointer to a description of the signal given by signo. If
signo is invalid, the returned description typically says so (some Unix systems that
support this function return NULL instead). The returned string is valid only until the
next invocation of strsignal(), so this function is not thread-safe.

Going with sys_siglist is usually your best bet. Using this approach, we could rewrite
our earlier signal handler as follows: 

static void signal_handler (int signo)
{

printf ("Caught %s\n", sys_siglist[signo]);
}
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Sending a Signal
The kill() system call, the basis of the common kill utility, sends a signal from one
process to another:

#include <sys/types.h>
#include <signal.h>

int kill (pid_t pid, int signo);

In its normal use (i.e., if pid is greater than 0), kill() sends the signal signo to the
process identified by pid.

If pid is 0, signo is sent to every process in the invoking process’s process group.

If pid is −1, signo is sent to every process for which the invoking process has permission
to send a signal, except itself and init. We will discuss the permissions regulating signal
delivery in the next subsection.

If pid is less than −1, signo is sent to the process group -pid.

On success, kill() returns 0. The call is considered a success so long as a single signal
was sent. On failure (no signals sent), the call returns −1 and sets errno to one of the
following:
EINVAL

The signal specified by signo is invalid.

EPERM

The invoking process lacks sufficient permissions to send a signal to any of the
requested processes.

ESRCH

The process or process group denoted by pid does not exist or, in the case of a
process, is a zombie.

Permissions
In order to send a signal to another process, the sending process needs proper permis‐
sions. A process with the CAP_KILL capability (usually one owned by root) can send a
signal to any process. Without this capability, the sending process’s effective or real user
ID must be equal to the real or saved user ID of the receiving process. Put more simply,
a user can send a signal only to a process that he or she owns.

Unix systems, including Linux, define an exception for SIGCONT: a pro‐
cess can send this signal to any other process in the same session. The
user ID need not match.
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If signo is 0 (the aforementioned null signal) the call does not send a signal, but it still
performs error checking. This is useful to test whether a process has suitable permissions
to send the provided process or processes a signal.

Examples
Here’s how to send SIGHUP to the process with process ID 1722:

int ret;

ret = kill (1722, SIGHUP);
if (ret)

perror ("kill");

This snippet is effectively the same as the following invocation of the kill utility:

$ kill -HUP 1722

To check that we have permission to send a signal to 1722 without actually sending any
signal, we could do the following:

int ret;

ret = kill (1722, 0);
if (ret)

; /* we lack permission */
else

; /* we have permission */

Sending a Signal to Yourself
The raise() function is a simple way for a process to send a signal to itself:

#include <signal.h>

int raise (int signo);

This call:

raise (signo);

is equivalent to the following call:

kill (getpid (), signo);

The call returns 0 on success and a nonzero value on failure. It does not set errno.

Sending a Signal to an Entire Process Group
Another convenience function makes it easy to send a signal to all processes in a given
process group in the event that negating the process group ID and using kill() is
deemed too taxing:
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#include <signal.h>

int killpg (int pgrp, int signo);

This call:

killpg (pgrp, signo);

is equivalent to the following call:

kill (-pgrp, signo);

This holds true even if pgrp is 0, in which case killpg( ) sends the signal signo to
every process in the invoking process’s group.

On success, killpg() returns 0. On failure, it returns −1 and sets errno to one of the
following values:
EINVAL

The signal specified by signo is invalid.

EPERM

The invoking process lacks sufficient permissions to send a signal to any of the
requested processes.

ESRCH

The process group denoted by pgrp does not exist.

Reentrancy
When the kernel raises a signal, a process can be executing code anywhere. For example,
it might be in the middle of an important operation that, if interrupted, would leave the
process is an inconsistent state—say, with a data structure only half updated or a cal‐
culation only partially performed. The process might even be handling another signal.

Signal handlers cannot tell what code the process is executing when a signal hits; the
handler can run in the middle of anything. It is thus very important that any signal
handler your process installs be very careful about the actions it performs and the data
it touches. Signal handlers must take care not to make assumptions about what the
process was doing when it was interrupted. In particular, they must practice caution
when modifying global (that is, shared) data. Indeed, it is a good idea for a signal handler
never to touch global data; in an upcoming section, however, we will look at a way to
temporarily block the delivery of signals as a way to allow safe manipulation of data
shared by a signal handler and the rest of a process.

What about system calls and other library functions? What if your process is in the
middle of writing to a file or allocating memory, and a signal handler writes to the same
file or also invokes malloc()? Or what if a process is in the middle of a call to a function
that uses a static buffer, such as strsignal(), when a signal is delivered?
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Some functions are clearly not reentrant. If a program is in the middle of executing a
nonreentrant function and a signal occurs and the signal handler then invokes that same
nonreentrant function, chaos can ensue. A reentrant function is a function that is safe
to call from within itself (or concurrently, from another thread in the same process). In
order to qualify as reentrant, a function must not manipulate static data, must manip‐
ulate only stack-allocated data or data provided to it by the caller, and must not invoke
any nonreentrant function.

Guaranteed-Reentrant Functions
When writing a signal handler, you have to assume that the interrupted process could
be in the middle of a nonreentrant function (or anything else, for that matter). Thus,
signal handlers must make use only of functions that are reentrant.

Various standards have decreed lists of functions that are signal-safe: reentrant and thus
safe to use from within a signal handler. Most notably, POSIX.1-2003 and the Single
UNIX Specification dictate a list of functions that are guaranteed to be reentrant and
signal-safe on all compliant platforms. Table 10-3 lists the functions.

Table 10-3. Functions guaranteed to be safely reentrant for use in signals
abort() accept() access()

aio_error() aio_return() aio_suspend()

alarm() bind() cfgetispeed()

cfgetospeed() cfsetispeed() cfsetospeed()

chdir() chmod() chown()

clock_gettime() close() connect()

creat() dup() dup2()

execle() execve() _Exit()

_exit() fchmod() fchown()

fcntl() fdatasync() fork()

fpathconf() fstat() fsync()

ftruncate() getegid() geteuid()

getgid() getgroups() getpeername()

getpgrp() getpid() getppid()

getsockname() getsockopt() getuid()

kill() link() listen()

lseek() lstat() mkdir()

mkfifo() open() pathconf()

pause() pipe() poll()

posix_trace_event() pselect() raise()
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read() readlink() recv()

recvfrom() recvmsg() rename()

rmdir() select() sem_post()

send() sendmsg() sendto()

setgid() setpgid() setsid()

setsockopt() setuid() shutdown()

sigaction() sigaddset() sigdelset()

sigemptyset() sigfillset() sigismember()

signal() sigpause() sigpending()

sigprocmask() sigqueue() sigset()

sigsuspend() sleep() socket()

socketpair() stat() symlink()

sysconf() tcdrain() tcflow()

tcflush() tcgetattr() tcgetpgrp()

tcsendbreak() tcsetattr() tcsetpgrp()

time() timer_getoverrun() timer_gettime()

timer_settime() times() umask()

uname() unlink() utime()

wait() waitpid() write()

Many more functions are safe, but Linux and other POSIX-compliant systems guarantee
the reentrancy of only these functions.

Signal Sets
Several of the functions we will look at later in this chapter need to manipulate sets of
signals, such as the set of signals blocked by a process or the set of signals pending to a
process. The signal set operations manage these signal sets:

#include <signal.h>

int sigemptyset (sigset_t *set);

int sigfillset (sigset_t *set);
int sigaddset (sigset_t *set, int signo);

int sigdelset (sigset_t *set, int signo);

int sigismember (const sigset_t *set, int signo);

sigemptyset() initializes the signal set given by set, marking it empty (all signals ex‐
cluded from the set). sigfillset() initializes the signal set given by set, marking it
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full (all signals included in the set). Both functions return 0. You should call one of these
two functions on a signal set before further using the set.

sigaddset() adds signo to the signal set given by set, while sigdelset() removes
signo from the signal set given by set. Both return 0 on success or −1 on error, in which
case errno is set to the error code EINVAL, signifying that signo is an invalid signal
identifier.

sigismember() returns 1 if signo is in the signal set given by set, 0 if it is not, and −1
on error. In the latter case, errno is again set to EINVAL, signifying that signo is invalid.

More Signal Set Functions
The preceding functions are all standardized by POSIX and found on any modern Unix
system. Linux also provides several nonstandard functions:

#define _GNU_SOURCE
#define <signal.h>

int sigisemptyset (sigset_t *set);

int sigorset (sigset_t *dest, sigset_t *left, sigset_t *right);

int sigandset (sigset_t *dest, sigset_t *left, sigset_t *right);

sigisemptyset() returns 1 if the signal set given by set is empty and 0 otherwise.

sigorset() places the union (the binary OR) of the signal sets left and right in dest.
sigandset() places the intersection (the binary AND) of the signal sets left and right
in dest. Both return 0 on success and −1 on error, setting errno to EINVAL.

These functions are useful, but programs desiring POSIX compliance should avoid
them.

Blocking Signals
Earlier we discussed reentrancy and the issues raised by signal handlers running asyn‐
chronously, at any time. We discussed functions not to call from within a signal handler
because they themselves are not reentrant.

But what if your program needs to share data between a signal handler and elsewhere
in the program? What if there are portions of your program’s execution during which
you do not want any interruptions, including from signal handlers? We call such parts
of a program critical regions, and we protect them by temporarily suspending the de‐
livery of signals. We say that such signals are blocked. Any signals that are raised while
blocked are not handled until they are unblocked. A process may block any number of
signals; the set of signals blocked by a process is called its signal mask.
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POSIX defines, and Linux implements, a function for managing a process’s signal mask:

#include <signal.h>

int sigprocmask (int how,
const sigset_t *set,
sigset_t *oldset);

The behavior of sigprocmask() depends on the value of how, which is one of the fol‐
lowing flags:
SIG_SETMASK

The signal mask for the invoking process is changed to set.

SIG_BLOCK

The signals in set are added to the invoking process’s signal mask. In other words,
the signal mask is changed to the union (binary OR) of the current mask and set.

SIG_UNBLOCK

The signals in set are removed from the invoking process’s signal mask. In other
words, the signal is changed to the intersection (binary AND) of the current mask,
and the negation (binary NOT) of set. It is illegal to unblock a signal that is not
blocked.

If oldset is not NULL, the function places the previous signal set in oldset.

If set is NULL, the function ignores how and does not change the signal mask, but it does
place the signal mask in oldset. In other words, passing a null value as set is the way
to retrieve the current signal mask.

On success, the call returns 0. On failure, it returns −1 and sets errno to either EINVAL,
signifying that how was invalid, or EFAULT, signifying that set or oldset was an invalid
pointer.

Blocking SIGKILL or SIGSTOP is not allowed. sigprocmask() silently ignores any at‐
tempt to add either signal to the signal mask.

Retrieving Pending Signals
When the kernel raises a blocked signal, it is not delivered. We call such signals
pending. When a pending signal is unblocked, the kernel then passes it off to the process
to handle.

POSIX defines a function to retrieve the set of pending signals:

#include <signal.h>

int sigpending (sigset_t *set);
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A successful call to sigpending() places the set of pending signals in set and returns
0. On failure, the call returns −1 and sets errno to EFAULT, signifying that set is an invalid
pointer.

Waiting for a Set of Signals
A third POSIX-defined function allows a process to temporarily change its signal mask
and then wait until a signal is raised that either terminates or is handled by the process:

#include <signal.h>

int sigsuspend (const sigset_t *set);

If a signal terminates the process, sigsuspend() does not return. If a signal is raised
and handled, sigsuspend() returns −1 after the signal handler returns, setting errno
to EINTR. If set is an invalid pointer, errno is set to EFAULT.

A common sigsuspend() usage scenario is to retrieve signals that might have arrived
and been blocked during a critical region of program execution. The process first uses
sigprocmask() to block a set of signals, saving the old mask in oldset. After exiting
the critical region, the process then calls sigsuspend(), providing oldset for set. 

Advanced Signal Management
691.170bThe signal() function that we studied at the beginning of this chapter is very
basic. Because it is part of the standard C library and therefore has to reflect minimal
assumptions about the capabilities of the operating system on which it runs, it can offer
only a lowest common denominator to signal management. As an alternative, POSIX
standardizes the sigaction() system call, which provides much greater signal man‐
agement capabilities. Among other things, you can use it to block the reception of
specified signals while your handler runs, and to retrieve a wide range of data about the
system and process state at the moment a signal was raised:

#include <signal.h>

int sigaction (int signo,
const struct sigaction *act,
struct sigaction *oldact);

A call to sigaction() changes the behavior of the signal identified by signo, which can
be any value except those associated with SIGKILL and SIGSTOP. If act is not NULL, the
system call changes the current behavior of the signal as specified by act. If oldact is
not NULL, the call stores the previous (or current, if act is NULL) behavior of the given
signal there.
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The sigaction structure allows for fine-grained control over signals. The header <sys/
signal.h>, included from <signal.h>, defines the structure as follows:

struct sigaction {
void (*sa_handler)(int);   /* signal handler or action */
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_mask;          /* signals to block */
int sa_flags;              /* flags */
void (*sa_restorer)(void); /* obsolete and non-POSIX */

};

The sa_handler field dictates the action to take upon receiving the signal. As with
signal(), this field may be SIG_DFL, signifying the default action, SIG_IGN, instructing
the kernel to ignore the signal for the process, or a pointer to a signal-handling function.
The function has the same prototype as a signal handler installed by signal():

void my_handler (int signo);

If SA_SIGINFO is set in sa_flags, sa_sigaction, and not sa_handler, dictates the
signal-handling function. This function’s prototype is slightly different:

void my_handler (int signo, siginfo_t *si, void *ucontext);

The function receives the signal number as its first parameter, a siginfo_t structure as
its second parameter, and a ucontext_t structure (cast to a void pointer) as its third
parameter. It has no return value. The siginfo_t structure provides an abundance of
information to the signal handler; we will look at it shortly.

Note that on some machine architectures (and possibly other Unix systems),
sa_handler and sa_sigaction are in a union, and you should not assign values to both
fields.

The sa_mask field provides a set of signals that the system should block for the duration
of the execution of the signal handler. This allows programmers to enforce proper pro‐
tection from reentrancy among multiple signal handlers. The signal currently being
handled is also blocked unless the SA_NODEFER flag is set in sa_flags. You cannot block
SIGKILL or SIGSTOP; the call will silently ignore either in sa_mask.

The sa_flags field is a bitmask of zero, one, or more flags that change the handling of
the signal given by signo. We already looked at the SA_SIGINFO and SA_NODEFER flags;
other values for sa_flags include the following:
SA_NOCLDSTOP

If signo is SIGCHLD, this flag instructs the system to not provide notification when
a child process stops or resumes.
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SA_NOCLDWAIT

If signo is SIGCHLD, this flag enables automatic child reaping: children are not con‐
verted to zombies on termination, and the parent need not (and cannot) call wait()
on them. See Chapter 5 for a lively discussion of children, zombies, and wait().

SA_NOMASK

This flag is an obsolete non-POSIX equivalent to SA_NODEFER (discussed earlier in
this section). Use SA_NODEFER instead of this flag, but be prepared to see this value
turn up in older code.

SA_ONESHOT

This flag is an obsolete non-POSIX equivalent to SA_RESETHAND (discussed later in
this list). Use SA_RESETHAND instead of this flag, but be prepared to see this value
turn up in older code.

SA_ONSTACK

This flag instructs the system to invoke the given signal handler on an alternative
signal stack, as provided by sigaltstack(). If you do not provide an alternative
stack, the default is used—that is, the system behaves as if you did not provide this
flag. Alternative signal stacks are rare, although they are useful in some Pthreads
applications with smaller thread stacks that might be overrun by some signal han‐
dler usage. We do not further discuss sigaltstack() in this book.

SA_RESTART

This flag enables BSD-style restarting of system calls that are interrupted by signals.

SA_RESETHAND

This flag enables “one-shot” mode. The behavior of the given signal is reset to the
default once the signal handler returns.

The sa_restorer field is obsolete and no longer used in Linux. It is not part of POSIX,
anyhow. Pretend that it is not there, and do not touch it.

sigaction() returns 0 on success. On failure, the call returns −1 and sets errno to one
of the following error codes:
EFAULT

act or oldact is an invalid pointer.

EINVAL

signo is an invalid signal, SIGKILL, or SIGSTOP.

The siginfo_t Structure
The siginfo_t structure is also defined in <sys/signal.h>, as follows:
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typedef struct siginfo_t {
int si_signo; /* signal number */
int si_errno; /* errno value */
int si_code; /* signal code */
pid_t si_pid; /* sending process's PID */
uid_t si_uid; /* sending process's real UID */
int si_status;     /* exit value or signal */
clock_t si_utime;  /* user time consumed */
clock_t si_stime;  /* system time consumed */
sigval_t si_value; /* signal payload value */
int si_int; /* POSIX.1b signal */
void *si_ptr; /* POSIX.1b signal */
void *si_addr;     /* memory location that caused fault */
int si_band; /* band event */
int si_fd; /* file descriptor */

};

This structure is rife with information passed to the signal handler (if you’re using
sa_sigaction in lieu of sa_sighandler). With modern computing, many consider the
Unix signal model an awful method for performing IPC. Perhaps the problem is that
these folks are stuck using signal() when they should be using sigaction() with
SA_SIGINFO. The siginfo_t structure opens the door for wringing a lot more func‐
tionality out of signals.

There’s a lot of interesting data in this structure, including information about the process
that sent the signal and about the cause of the signal. Here is a detailed description of
each of the fields:
si_signo

The signal number of the signal in question. In your signal handler, the first argu‐
ment provides this information as well (and avoids a pointer dereference).

si_errno

If nonzero, the error code associated with this signal. This field is valid for all signals.

si_code

An explanation of why and from where the process received the signal (for example,
from kill()). We will go over the possible values in the following section. This
field is valid for all signals.

si_pid

For SIGCHLD, the pid of the process that terminated.

si_uid

For SIGCHLD, the owning uid of the process that terminated.

si_status

For SIGCHLD, the exit status of the process that terminated.
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si_utime

For SIGCHLD, the user time consumed by the process that terminated.

si_stime

For SIGCHLD, the system time consumed by the process that terminated.

si_value

A union of si_int and si_ptr.

si_int

For signals sent via sigqueue() (see “Sending a Signal with a Payload” on page 361),
the provided payload typed as an integer.

si_ptr

For signals sent via sigqueue() (see “Sending a Signal with a Payload” on page 361),
the provided payload typed as a void pointer.

si_addr

For SIGBUS, SIGFPE, SIGILL, SIGSEGV, and SIGTRAP, this void pointer contains the
address of the offending fault. For example, in the case of SIGSEGV, this field contains
the address of the memory access violation (and is thus often NULL!).

si_band

For SIGPOLL, out-of-band and priority information for the file descriptor listed in
si_fd.

si_fd

For SIGPOLL, the file descriptor for the file whose operation completed.

si_value, si_int, and si_ptr are particularly complex topics because a process can
use them to pass arbitrary data to another process. Thus, you can use them to send either
a simple integer or a pointer to a data structure (note that a pointer is not much help if
the processes do not share an address space). These fields are discussed in the upcoming
section “Sending a Signal with a Payload” on page 361.

POSIX guarantees that only the first three fields are valid for all signals. The other fields
should be accessed only when handling the applicable signal. You should access the
si_fd field, for example, only if the signal is SIGPOLL. 

The Wonderful World of si_code
The si_code field indicates the cause of the signal. For user-sent signals, the field indi‐
cates how the signal was sent. For kernel-sent signals, the field indicates why the signal
was sent.

The following si_code values are valid for any signal. They indicate how/why the signal
was sent:
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SI_ASYNCIO

The signal was sent due to the completion of asynchronous I/O (see Chapter 5).

SI_KERNEL

The signal was raised by the kernel.

SI_MESGQ

The signal was sent due to a state change of a POSIX message queue (not covered
in this book).

SI_QUEUE

The signal was sent by sigqueue() (see the next section).

SI_TIMER

The signal was sent due to the expiration of a POSIX timer (see Chapter 11).

SI_TKILL

The signal was sent by tkill() or tgkill(). These system calls are used by thread‐
ing libraries and are not covered in this book.

SI_SIGIO

The signal was sent due to the queuing of SIGIO.

SI_USER

The signal was sent by kill() or raise().

The following si_code values are valid for SIGBUS only. They indicate the type of hard‐
ware error that occurred:
BUS_ADRALN

The process incurred an alignment error (see Chapter 9 for a discussion of
alignment).

BUS_ADRERR

The process accessed an invalid physical address.

BUS_OBJERR

The process caused some other form of hardware error.

For SIGCHLD, the following values identify what the child did to generate the signal sent
to its parent:
CLD_CONTINUED

The child was stopped but has resumed.

CLD_DUMPED

The child terminated abnormally.
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CLD_EXITED

The child terminated normally via exit().

CLD_KILLED

The child was killed.

CLD_STOPPED

The child stopped.

CLD_TRAPPED

The child hit a trap.

The following values are valid for SIGFPE only. They explain the type of arithmetic error
that occurred:
FPE_FLTDIV

The process performed a floating-point operation that resulted in division by zero.

FPE_FLTOVF

The process performed a floating-point operation that resulted in an overflow.

FPE_FLTINV

The process performed an invalid floating-point operation.

FPE_FLTRES

The process performed a floating-point operation that yielded an inexact or invalid
result.

FPE_FLTSUB

The process performed a floating-point operation that resulted in an out-of-range
subscript.

FPE_FLTUND

The process performed a floating-point operation that resulted in an underflow.

FPE_INTDIV

The process performed an integer operation that resulted in division by zero.

FPE_INTOVF

The process performed an integer operation that resulted in an overflow.

The following si_code values are valid for SIGILL only. They explain the nature of the
illegal instruction execution:
ILL_ILLADR

The process attempted to enter an illegal addressing mode.

ILL_ILLOPC

The process attempted to execute an illegal opcode.
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ILL_ILLOPN

The process attempted to execute on an illegal operand.

ILL_PRVOPC

The process attempted to execute a privileged opcode.

ILL_PRVREG

The process attempted to execute on a privileged register.

ILL_ILLTRP

The process attempted to enter an illegal trap.

For all of these values, si_addr points to the address of the offense.

For SIGPOLL, the following values identify the I/O event that generated the signal:
POLL_ERR

An I/O error occurred.

POLL_HUP

The device hung up or the socket disconnected.

POLL_IN

The file has data available to read.

POLL_MSG

A message is available.

POLL_OUT

The file is capable of being written to.

POLL_PRI

The file has high-priority data available to read.

The following codes are valid for SIGSEGV, describing the two types of invalid memory
accesses:
SEGV_ACCERR

The process accessed a valid region of memory in an invalid way—that is, the
process violated memory-access permissions.

SEGV_MAPERR

The process accessed an invalid region of memory.

For either of these values, si_addr contains the offending address.

For SIGTRAP, these two si_code values identify the type of trap hit:
TRAP_BRKPT

The process hit a break point.
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TRAP_TRACE

The process hit a trace trap.

Note that si_code is a value field and not a bit field.

Sending a Signal with a Payload
As we saw in the previous section, signal handlers registered with the SA_SIGINFO flag
are passed a siginfo_t parameter. This structure contains a field named si_value,
which is an optional payload passed from the signal generator to the signal receiver.

The sigqueue() function, defined by POSIX, allows a process to send a signal with this
payload:

#include <signal.h>

int sigqueue (pid_t pid,
int signo,
const union sigval value);

sigqueue() works similarly to kill(). On success, the signal identified by signo is
queued to the process or process group identified by pid, and the function returns 0.
The signal’s payload is given by value, which is a union of an integer and a void pointer:

union sigval {
int sival_int;
void *sival_ptr;

};

On failure, the call returns −1 and sets errno to one of the following:
EAGAIN

The invoking process has reached the limit on enqueued signals.

EINVAL

The signal specified by signo is invalid.

EPERM

The invoking process lacks sufficient permissions to send a signal to any of the
requested processes. The permissions required to send a signal are the same as with
kill() (see “Sending a Signal” on page 346).

ESRCH

The process or process group denoted by pid does not exist or, in the case of a
process, is a zombie.

As with kill(), you may pass the null signal (0) for signo to test permissions.
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Signal Payload Example
This example sends the process with pid 1722 the SIGUSR2 signal with a payload of an
integer that has the value 404:

sigval value;
int ret;

value.sival_int = 404;

ret = sigqueue (1722, SIGUSR2, value);
if (ret)

perror ("sigqueue");

If process 1722 handles SIGUSR2 with an SA_SIGINFO handler, it will find signo set to
SIGUSR2, si->si_int set to 404, and si->si_code set to SI_QUEUE.

A Flaw in Unix?
Signals have a bad reputation among many Unix programmers. They are an old, anti‐
quated mechanism for kernel-to-user communication and are, at best, a primitive form
of IPC. In a world of multithreading programs and event loops, signals feel anachron‐
istic. In a system that has so impressively weathered time and that finds itself sporting
the original programming paradigm it introduced on day one, signals are a rare misstep.
I would not take the challenge of rethinking signals lightly, but a more expressive, easily
extensible, thread-safe, and file descriptor based solution seems a proper start.

Nonetheless, for better or worse, we are stuck with signals. They are the only way to
receive many notifications (such as the notification of an illegal opcode execution) from
the kernel. Additionally, signals are how Unix (and thus Linux) terminates processes
and manages the parent/child relationship. Thus, programmers must understand them
and use them.

One of the primary reasons for signals’ derogation is that it is hard to write a proper
signal handler that is safe from reentrancy concerns. If you keep your handlers simple,
however, and use only the functions listed in Table 10-3 (if you use any!), they should
be safe.

Another chink in signals’ armor is that many programmers still use signal() and
kill(), rather than sigaction() and sigqueue(), for signal management. As the last
two sections have shown, signals are significantly more powerful and expressive when
SA_SIGINFO-style signal handlers are used. Although I myself am no fan of signals,
working around their flaws and using Linux’s advanced signal interfaces eases much of
the pain (if not the whining).
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CHAPTER 11

Time

Time serves various purposes in a modern operating system, and many programs need
to keep track of it. The kernel measures the passage of time in three different ways:
Wall time (or real time)

This is the actual time and date in the real world—that is, the time as one would
read it on a clock on the wall. Processes use the wall time when interfacing with the
user or timestamping an event.

Process time
This is the time that a process spends executing on a processor. It can be a meas‐
urement of the time the process itself spent executing (user time) or the time the
kernel spent working on the process’s behalf (system time). Processes care about
process time for profiling, auditing, and statistical purposes, for example, measur‐
ing how much processor time a given algorithm took to complete. Wall time is
misleading for such uses because, given the multitasking nature of Linux, wall time
is generally greater than process time. Conversely, given multiple processors and a
threaded process, the process time can actually exceed the wall time for a given
operation!

Monotonic time
This time source is strictly linearly increasing. Most operating systems, Linux in‐
cluded, use the system’s uptime (time since boot) for this purpose. The wall time
can change—for example, because the user may set it or because the system con‐
tinually adjusts the time to combat clock skew—and additional imprecision can be
introduced through, say, leap seconds. The system uptime, on the other hand, is a
deterministic and unchangeable representation of time. The important aspect of a
monotonic time source is not the current value but the guarantee that the time
source is strictly linearly increasing and thus useful for calculating the difference
in time between two samplings.
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1. The Linux kernel now supports “tickless” operation, so this is no longer strictly true.

These three measurements of time can be represented in one of two formats:
Relative time

This is a value relative to some benchmark, such as the current instant: for example,
5 seconds from now, or 10 minutes ago. Monotonic time is useful for calculating
relative time.

Absolute time
This represents time without any such benchmark: say, noon on 25 March 1968.
Wall time is ideal for calculating absolute time.

Both relative and absolute forms of time have uses. A process might need to cancel a
request in 500 milliseconds, refresh the screen 60 times per second, or note that 7 sec‐
onds have elapsed since an operation began. All of these call for relative time calcula‐
tions. Conversely, a calendar application might save the date for the user’s toga party as
8 February, a filesystem will write out the full date and time when a file is created (rather
than “5 seconds ago”), and the user’s clock displays the Gregorian date, not the number
of seconds since the system booted.

Unix systems represent absolute time as the number of elapsed seconds since the epoch,
which is defined as 00:00:00 UTC on the morning of 1 January 1970. UTC (Coordinated
Universal Time) is roughly GMT (Greenwich Mean Time) or Zulu time. Curiously, this
means that in Unix, even absolute time is, at a low level, relative. Unix introduces a
special data type for storing “seconds since the epoch,” which we will look at in the next
section.

Operating systems track the progression of time via the software clock, a clock main‐
tained by the kernel in software. The kernel instantiates a periodic timer, known as the
system timer, that pops at a specific frequency. When a timer interval ends, the kernel
increments the elapsed time by one unit, known as a tick or a jiffy. The counter of elapsed
ticks is known as the jiffies counter. Previously a 32-bit value, jiffies is a 64-bit counter
as of the 2.6 Linux kernel.1

On Linux, the frequency of the system timer is called HZ because a preprocessor define
of the selfsame name represents it. The value of HZ is architecture-specific and not part
of the Linux ABI. Thus, programs cannot depend on or expect any given value. His‐
torically, the x86 architecture used a value of 100, meaning the system timer ran 100
times per second (that is, the system timer had a frequency of 100 hertz). This gave each
jiffy a value of 0.01 seconds. With the release of the 2.6 Linux kernel, the kernel devel‐
opers bumped the value of HZ to 1000, giving each jiffy a value of 0.001 seconds. However,
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2. HZ is also now a compile-time kernel option, with the values 100, 250, 300, and 1000 supported on the x86
architecture. Regardless, user space cannot depend on any particular value for HZ.

in version 2.6.13 and later, HZ is 250, providing each jiffy a value of 0.004 seconds.2 There
is a trade-off inherent in the value of HZ: higher values provide higher resolution but
incur greater timer overhead.

Although processes should not rely on any fixed value of HZ, POSIX defines a mechanism
for determining the system timer frequency at runtime:

long hz;

hz = sysconf (_SC_CLK_TCK);
if (hz == −1)

perror ("sysconf"); /* should never occur */

This interface is useful when a program wants to determine the resolution of the system’s
timer, but it is not needed for converting system time values to seconds because most
POSIX interfaces export measurements of time that are already converted or that are
scaled to a fixed frequency, independent of HZ. Unlike HZ, this fixed frequency is part of
the system ABI; on x86, the value is 100. POSIX functions that return time in terms of
clock ticks use CLOCKS_PER_SEC to represent the fixed frequency.

Occasionally, events conspire to turn off a computer. Sometimes, computers are even
unplugged; yet, upon boot, they have the correct time. This is because most computers
have a battery-powered hardware clock that stores the time and date while the computer
is off. When the kernel boots, it initializes its concept of the current time from the
hardware clock. Likewise, when the user shuts down the system, the kernel writes the
current time back to the hardware clock. The system’s administrator may synchronize
time at other points via the hwclock command.

Managing the passage of time on a Unix system involves several tasks, only some of
which any given process is concerned with: they include setting and retrieving the cur‐
rent wall time, calculating elapsed time, sleeping for a given amount of time, performing
high-precision measurements of time, and controlling timers. This chapter covers this
full range of time-related chores. We’ll begin by looking at the data structures with which
Linux represents time.

Time’s Data Structures
As Unix systems evolved, implementing their own interfaces for managing time, mul‐
tiple data structures came to represent the seemingly simple concept of time. These data
structures range from the simple integer to various multifield structures. We’ll cover
them here before we dive into the actual interfaces.

Time’s Data Structures | 365



The Original Representation
The simplest data structure is time_t, defined in the header <time.h>. The intention
was for time_t to be an opaque type. However, on most Unix systems, including Linux,
the type is a simple typedef to the C long type:

typedef long time_t;

time_t represents the number of elapsed seconds since the epoch. “That won’t last long
before overflowing!” is a typical response. In fact, it will last longer than you might
expect, but it indeed will overflow while plenty of Unix systems are still in use. With a
32-bit long type, time_t can represent up to 2,147,483,647 seconds past the epoch. This
suggests that we will have the Y2K mess all over again—in 2038! With luck, however,
come 22:14:07 on Monday, 18 January 2038, most systems and software will be 64-bit.

And Now, Microsecond Precision
Another issue with time_t is that a lot can happen in a single second. The timeval
structure extends time_t to add microsecond precision. The header <sys/time.h>
defines this structure as follows:

#include <sys/time.h>

struct timeval {
time_t       tv_sec;     /* seconds */
suseconds_t  tv_usec;    /* microseconds */

};

tv_sec measures seconds, and tv_usec measures microseconds. The confusing
suseconds_t is normally a typedef to an integer type.

Even Better: Nanosecond Precision
Not content with microsecond resolution, the timespec structure ups the ante to nano‐
second resolution. The header <time.h> defines this structure as follows:

#include <time.h>

struct timespec {
time_t  tv_sec; /* seconds */
long    tv_nsec; /* nanoseconds */

};

Given the choice, interfaces prefer nanosecond to microsecond resolution In addition,
the timespec structure dropped the silly suseconds_t business in favor of a simple and
unpretentious long. Consequently, since the introduction of the timespec structure,
most time-related interfaces have switched to it and thus have gained greater precision.
However, as we will see, one important function still uses timeval.
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In practice, neither structure usually offers the stated precision because the system timer
is not providing nanosecond or even microsecond resolution. Nonetheless, it’s pref‐
erable to have the resolution available in the interface so it can accommodate whatever
resolution the system does offer.

Breaking Down Time
Some of the functions that we will cover convert between Unix time and strings or
programmatically build a string representing a given date. To facilitate this process, the
C standard provides the tm structure for representing “broken-down” time in a more
human-readable format. This structure is also defined in <time.h>:

#include <time.h>

struct tm {
int tm_sec; /* seconds */
int tm_min; /* minutes */
int tm_hour; /* hours */
int tm_mday; /* the day of the month */
int tm_mon; /* the month */
int tm_year; /* the year */
int tm_wday; /* the day of the week */
int tm_yday; /* the day in the year */
int tm_isdst; /* daylight savings time? */

#ifdef _BSD_SOURCE
long tm_gmtoff; /* time zone's offset from GMT */
const char *tm_zone;  /* time zone abbreviation */

#endif /* _BSD_SOURCE */
};

The tm structure makes it easier to tell whether a time_t value of, say, 314159 is a Sunday
or a Saturday (it is the former). In terms of space, it is obviously a poor choice for
representing the date and time, but it is handy for converting to and from user-oriented
values.

The fields are as follows:
tm_sec

The number of seconds after the minute. This value normally ranges from 0 to 59,
but it can be as high as 61 to indicate up to two leap seconds.

tm_min

The number of minutes after the hour. This value ranges from 0 to 59.

tm_hour

The number of hours after midnight. This value ranges from 0 to 23.
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tm_mday

The day of the month. This value ranges from 0 to 31. POSIX does not specify the
value 0; however, Linux uses it to indicate the last day of the preceding month.

tm_mon

The number of months since January. This value ranges from 0 to 11.

tm_year

The number of years since 1900.

tm_wday

The number of days since Sunday. This value ranges from 0 to 6.

tm_yday

The number of days since 1 January. This value ranges from 0 to 365.

tm_isdst

A special value indicating whether daylight savings time (DST) is in effect at the
time described by the other fields. If the value is positive, DST is in effect. If it is 0,
DST is not in effect. If the value is negative, the state of DST is unknown.

tm_gmtoff

The offset in seconds of the current time zone from Greenwich Mean Time. This
field is present only if _BSD_SOURCE is defined before including <time.h>.

tm_zone

The abbreviation for the current time zone—for example, EST. This field is present
only if _BSD_SOURCE is defined before including <time.h>.

A Type for Process Time
The type clock_t represents clock ticks. It is an integer type, often a long. Depending
on the interface, the ticks that clock_t represent are the system’s actual timer frequency
(HZ) or CLOCKS_PER_SEC.

POSIX Clocks
Several of the system calls discussed in this chapter utilize POSIX clocks, a standard for
implementing and representing time sources. The type clockid_t represents a specific
POSIX clock, five of which Linux supports:
CLOCK_REALTIME

The system-wide real time (wall time) clock. Setting this clock requires special
privileges.
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CLOCK_MONOTONIC

A monotonically increasing clock that is not settable by any process. It represents
the elapsed time since some unspecified starting point, such as system boot.

CLOCK_MONOTONIC_RAW

Similar to CLOCK_MONOTONIC, except the clock is not eligible for slewing (correction
for clock skew). That is, if the hardware clock runs faster or slower than wall time,
it won’t be adjusted when read via this clock. This clock is Linux-specific.

CLOCK_PROCESS_CPUTIME_ID

A high-resolution, per-process clock available from the processor. For example, on
the x86 architecture, this clock uses the timestamp counter (TSC) register.

CLOCK_THREAD_CPUTIME_ID

Similar to the per-process clock, but unique to each thread in a process.

POSIX requires only CLOCK_REALTIME. Therefore, while Linux reliably provides all five
clocks, portable code should rely only on CLOCK_REALTIME.

Time Source Resolution
POSIX defines the function clock_getres() for obtaining the resolution of a given
time source:

#include <time.h>

int clock_getres (clockid_t clock_id,
struct timespec *res);

A successful call to clock_getres() stores the resolution of the clock specified by
clock_id in res if it is not NULL and returns 0. On failure, the function returns −1 and
sets errno to one of the following two error codes:
EFAULT

res is an invalid pointer.

EINVAL

clock_id is not a valid time source on this system.

The following example outputs the resolution of the five time sources discussed in the
previous section:

clockid_t clocks[] = {
CLOCK_REALTIME,
CLOCK_MONOTONIC,
CLOCK_PROCESS_CPUTIME_ID,
CLOCK_THREAD_CPUTIME_ID,
CLOCK_MONOTONIC_RAW,
(clockid_t) −1 };
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int i;

for (i = 0; clocks[i] != (clockid_t) −1; i++) {
struct timespec res;
int ret;

ret = clock_getres (clocks[i], &res);
if (ret)

perror ("clock_getres");
else

printf ("clock=%d sec=%ld nsec=%ld\n",
clocks[i], res.tv_sec, res.tv_nsec);

}

On a modern x86 system, the output resembles the following:

clock=0 sec=0 nsec=4000250
clock=1 sec=0 nsec=4000250
clock=2 sec=0 nsec=1
clock=3 sec=0 nsec=1
clock=4 sec=0 nsec=4000250

Note that 4,000,250 nanoseconds is 4 milliseconds, which is 0.004 seconds. In turn,
0.004 seconds is the resolution of the x86 system clock given an HZ value of 250, as we
discussed in the first section of this chapter. Thus, we see that both CLOCK_REALTIME and
CLOCK_MONOTONIC are tied to jiffies and the resolution provided by the system timer.
Conversely, both CLOCK_PROCESS_CPUTIME_ID and CLOCK_PROCESS_CPUTIME_ID utilize
a higher-resolution time source—on this x86 machine, the TSC, which we see provides
nanosecond resolution.

On Linux (and most other Unix systems), all of the functions that use POSIX clocks
require linking the resulting object file with librt. For example, if compiling the previous
snippet into a complete executable, you might use the following command:

$ gcc -Wall -W -O2 -lrt -g -o snippet snippet.c

Getting the Current Time of Day
Applications have several reasons for desiring the current time and date: to display it to
the user, to calculate relative or elapsed time, to timestamp an event, and so on. The
simplest and historically most common way of obtaining the current time is the time()
function:

#include <time.h>

time_t time (time_t *t);
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A call to time() returns the current time represented as the number of seconds elapsed
since the epoch. If the parameter t is not NULL, the function also writes the current time
into the provided pointer.

On error, the function returns −1 (typecast to a time_t) and sets errno appropriately.
The only possible error is EFAULT, noting that t is an invalid pointer.

For example:

time_t t;

printf ("current time: %ld\n", (long) time (&t));
printf ("the same value: %ld\n", (long) t);

A Consistent but Inaccurate View of Time
time_t’s representation of “seconds elapsed since the epoch” is not the
actual number of seconds that have passed since that fateful moment in
time. The Unix calculation assumes leap years are all years divisible by
four and ignores leap seconds altogether. The point of the time_t rep‐
resentation is not that it is accurate, but that it is consistent—and it is.

A Better Interface
The function gettimeofday() extends time() by offering microsecond resolution:

#include <sys/time.h>

int gettimeofday (struct timeval *tv,
struct timezone *tz);

A successful call to gettimeofday() places the current time in the timeval structure
pointed at by tv and returns 0. The timezone structure and the tz parameter are ob‐
solete; neither should be used on Linux. Always pass NULL for tz.

On failure, the call returns −1 and sets errno to EFAULT; this is the only possible error,
signifying that tv or tz is an invalid pointer.

For example:

struct timeval tv;
int ret;

ret = gettimeofday (&tv, NULL);
if (ret)

perror ("gettimeofday");
else

printf ("seconds=%ld useconds=%ld\n",
(long) tv.sec, (long) tv.tv_usec);
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The timezone structure is obsolete because the kernel does not manage the time zone,
and glibc refuses to use the timezone structure’s tz_dsttime field. We will look at ma‐
nipulating the time zone in a subsequent section.

An Advanced Interface
POSIX provides the clock_gettime() interface for obtaining the time of a specific time
source. More useful, however, is that the function allows for nanosecond precision:

#include <time.h>

int clock_gettime (clockid_t clock_id,
struct timespec *ts);

On success, the call returns 0 and stores the current time of the time source specified
by clock_id in ts. On failure, the call returns −1 and sets errno to one of the following:
EFAULT

ts is an invalid pointer.

EINVAL

clock_id is an invalid time source on this system.

The following example obtains the current time of all four of the standard time sources:

clockid_t clocks[] = {
CLOCK_REALTIME,
CLOCK_MONOTONIC,
CLOCK_PROCESS_CPUTIME_ID,
CLOCK_THREAD_CPUTIME_ID,
CLOCK_MONOTONIC_RAW,
(clockid_t) −1 };

int i;

for (i = 0; clocks[i] != (clockid_t) −1; i++) {
struct timespec ts;
int ret;

ret = clock_gettime (clocks[i], &ts);
if (ret)

perror ("clock_gettime");
else

printf ("clock=%d sec=%ld nsec=%ld\n",
clocks[i], ts.tv_sec, ts.tv_nsec);

}

Getting the Process Time
The times() system call retrieves the process time of the running process and its chil‐
dren, in clock ticks:
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#include <sys/times.h>

struct tms {
clock_t tms_utime;   /* user time consumed */
clock_t tms_stime;   /* system time consumed */
clock_t tms_cutime;  /* user time consumed by children */
clock_t tms_cstime;  /* system time consumed by children */

};

clock_t times (struct tms *buf);

On success, the call fills the provided tms structure pointed at by buf with the process
time consumed by the invoking process and its children. The reported times are broken
into user and system time. User time is the time spent executing code in user space.
System time is the time spent executing code in kernel space—for example, during a
system call, or a page fault. The reported times for each child are included only after the
child terminates, and the parent invokes waitpid() (or a related function) on the pro‐
cess. The call returns the number of clock ticks, monotonically increasing, elapsed since
an arbitrary but fixed point in the past. This reference point was once system boot—
thus, the times() function returned the system uptime in ticks—but the reference point
is now about 429 million seconds before system boot. The kernel developers
implemented this change to catch kernel code that could not handle the system uptime
wrapping around and hitting zero. The absolute value of this function’s return is thus
worthless; relative changes between two invocations, however, continue to have value.

On failure, the call returns −1 and sets errno as appropriate. On Linux, the only possible
error code is EFAULT, signifying that buf is an invalid pointer. 

Setting the Current Time of Day
While previous sections have described how to retrieve times, applications occasionally
also need to set the current time and date to a provided value. This is almost always
handled by a utility designed solely for this purpose, such as date.

The time-setting counterpart to time() is stime():

#define _SVID_SOURCE
#include <time.h>

int stime (time_t *t);

A successful call to stime() sets the system time to the value pointed at by t and returns
0. The call requires that the invoking user have the CAP_SYS_TIME capability. Generally,
only the root user wields this capability.

On failure, the call returns −1 and sets errno to EFAULT, signifying that t was an invalid
pointer, or EPERM, signifying that the invoking user did not possess the CAP_SYS_TIME
capability.
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Usage is very simple:

time_t t = 1;
int ret;

/* set time to one second after the epoch */
ret = stime (&t);
if (ret)

perror ("stime");

We will look at functions that make it easier to convert human-readable forms of time
to a time_t in a subsequent section.

Setting Time with Precision
The counterpart to gettimeofday() is settimeofday():

#include <sys/time.h>

int settimeofday (const struct timeval *tv,
const struct timezone *tz);

A successful call to settimeofday() sets the system time as given by tv and returns 0.
As with gettimeofday(), passing NULL for tz is the best practice. On failure, the call
returns −1 and sets errno to one of the following:
EFAULT

tv or tz points at an invalid region of memory.

EINVAL

A field in one of the provided structures is invalid.

EPERM

The calling process lacks the CAP_SYS_TIME capability.

The following example sets the current time to a Saturday in the middle of December
1979:

struct timeval tv = { .tv_sec  = 31415926,
.tv_usec = 27182818 };

int ret;

ret = settimeofday (&tv, NULL);
if (ret)

perror ("settimeofday");

An Advanced Interface for Setting the Time
Just as clock_gettime() improves on gettimeofday(), clock_settime() obsolesces
settimeofday():
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#include <time.h>

int clock_settime (clockid_t clock_id,
const struct timespec *ts);

On success, the call returns 0, and the time source specified by clock_id is set to the
time specified by ts. On failure, the call returns −1 and sets errno to one of the following:
EFAULT

ts is an invalid pointer.

EINVAL

clock_id is an invalid time source on this system.

EPERM

The process lacks the needed permissions to set the specified time source, or the
specified time source may not be set.

On most systems, the only settable time source is CLOCK_REALTIME. Thus, the only ad‐
vantage of this function over settimeofday() is that it offers nanosecond precision
(along with not having to deal with the worthless timezone structure). 

Playing with Time
Unix systems and the C language provide a family of functions for converting between
broken-down time (an ASCII string representation of time) and time_t. asctime()
converts a tm structure—broken-down time—to an ASCII string:

#include <time.h>

char * asctime (const struct tm *tm);
char * asctime_r (const struct tm *tm, char *buf);

It returns a pointer to a statically allocated string. A subsequent call to any time function
may overwrite this string; asctime() is not thread-safe.

Thus, multithreaded programs (and developers who loathe poorly designed interfaces)
should use asctime_r(). Instead of returning a pointer to a statically allocated string,
this function uses the string provided via buf, which must be at least 26 characters in
length.

Both functions return NULL in the case of error.

mktime() also converts a tm structure, but it converts it to a time_t:

#include <time.h>

time_t mktime (struct tm *tm);
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mktime() also sets the time zone via tzset(), as specified by tm. On error, it returns −1
(typecast to a time_t).

ctime() converts a time_t to its ASCII representation:

#include <time.h>

char * ctime (const time_t *timep);
char * ctime_r (const time_t *timep, char *buf);

On failure, it returns NULL. For example:

time_t t = time (NULL);

printf ("the time a mere line ago: %s", ctime (&t));

Note the lack of newline. Perhaps inconveniently, ctime() appends a newline to its
returned string.

Like asctime(), ctime() returns a pointer to a static string. As this is not thread-safe,
threaded programs should instead use ctime_r(), which operates on the buffer pro‐
vided by buf. The buffer must be at least 26 characters in length.

gmtime() converts the given time_t to a tm structure, expressed in terms of the UTC
time zone:

#include <time.h>

struct tm * gmtime (const time_t *timep);
struct tm * gmtime_r (const time_t *timep, struct tm *result);

On failure, it returns NULL.

This function statically allocates the returned structure and is thus thread-unsafe.
Threaded programs should use gmtime_r(), which operates on the structure pointed
at by result.

localtime() and localtime_r() perform functions akin to gmtime() and
gmtime_r(), respectively, but they express the given time_t in terms of the user’s time
zone:

#include <time.h>

struct tm * localtime (const time_t *timep);
struct tm * localtime_r (const time_t *timep, struct tm *result);

As with mktime(), a call to localtime() also calls tzset() and initializes the time zone.
Whether localtime_r() performs this step is unspecified.

difftime() returns the number of seconds that have elapsed between two time_t
values, cast to a double:
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#include <time.h>

double difftime (time_t time1, time_t time0);

On all POSIX systems, time_t is an arithmetic type, and difftime() is equivalent to
the following, excepting detection of overflow in the subtraction:

(double) (time1 - time0)

On Linux, because time_t is an integer type, there is no need for the cast to double. To
remain portable, use difftime().

Tuning the System Clock
Large and abrupt jumps in the wall clock time can wreak havoc on applications that
depend on absolute time for their operation. Consider as an example make, which builds
software projects as detailed by a Makefile. Each invocation of the program does not
rebuild entire source trees; if it did, in large software projects, a single changed file could
result in hours of rebuilding. Instead, make looks at the file modification timestamps
of the source file (say, wolf.c) versus the object file (wolf.o). If the source file or any of
its prerequisites, such as wolf.h, is newer than the object file, make rebuilds the source
file into an updated object file. If the source file is not newer than the object, no action
is taken.

With this in mind, consider what might happen if the user realized his clock was off by
a couple of hours and ran date to update the system clock. If the user then updated and
resaved wolf.c, we could have trouble. If the user has moved the current time backward,
wolf.c will look older than wolf.o, even though it isn’t, and no rebuild will occur.

To prevent such a debacle, Unix provides the adjtime() function, which gradually
adjusts the current time in the direction of a given delta. The intention is for background
activities such as Network Time Protocol (NTP) daemons, which constantly adjust the
time in correction of clock skew, to use adjtime() to minimize their effects on the
system. The periodic adjustment of the clock to correct for clock skew is called slewing:

#define _BSD_SOURCE
#include <sys/time.h>

int adjtime (const struct timeval *delta,
struct timeval *olddelta);

A successful call to adjtime() instructs the kernel to slowly begin adjusting the time as
stipulated by delta, and then returns 0. If the time specified by delta is positive, the
kernel speeds up the system clock by delta until the correction is fully applied. If the
time specified by delta is negative, the kernel slows down the system clock until the
correction is applied. The kernel applies all adjustments such that the clock is always
monotonically increasing and never undergoes an abrupt time change. Even with a
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negative delta, the adjustment will not move the clock backward; instead, the clock
slows down until the system time converges with the corrected time.

If delta is not NULL, the kernel stops processing any previously registered corrections.
However, the part of the correction already made, if any, is maintained. If olddelta is
not NULL, any previously registered and yet unapplied correction is written into the
provided timeval structure. Passing a NULL delta and a valid olddelta allows retrieval
of any ongoing correction.

The corrections applied by adjtime() should be small. The ideal use case is NTP, which
applies only small corrections (but a handful of seconds). Linux maintains minimum
and maximum correction thresholds of a few thousand seconds in either direction.

On error, adjtime() returns −1 and sets errno to one of these values:
EFAULT

delta or olddelta is an invalid pointer.

EINVAL

The adjustment delineated by delta is too large or too small.

EPERM

The invoking user does not possess the CAP_SYS_TIME capability.

RFC 1305 defines a significantly more powerful and correspondingly more complex
clock-adjustment algorithm than the gradual correction approach undertaken by
adjtime(). Linux implements this algorithm with the adjtimex() system call:

#include <sys/timex.h>

int adjtimex (struct timex *adj);

A call to adjtimex() reads kernel time-related parameters into the timex structure
pointed at by adj. Optionally, depending on the modes field of this structure, the system
call may additionally set certain parameters.

The header <sys/timex.h> defines the timex structure as follows:

struct timex {
int modes; /* mode selector */
long offset; /* time offset (usec) */
long freq; /* frequency offset (scaled ppm) */
long maxerror; /* maximum error (usec) */
long esterror; /* estimated error (usec) */
int status; /* clock status */
long constant; /* PLL time constant */
long precision; /* clock precision (usec) */
long tolerance; /* clock frequency tolerance (ppm) */
struct timeval time; /* current time */
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long tick; /* usecs between clock ticks */
};

The modes field is a bitwise OR of zero or more of the following flags:
ADJ_OFFSET

Set the time offset via offset.

ADJ_FREQUENCY

Set the frequency offset via freq.

ADJ_MAXERROR

Set the maximum error via maxerror.

ADJ_ESTERROR

Set the estimated error via esterror.

ADJ_STATUS

Set the clock status via status.

ADJ_TIMECONST

Set the phase-locked loop (PLL) time constant via constant.

ADJ_TICK

Set the tick value via tick.

ADJ_OFFSET_SINGLESHOT

Set the time offset via offset once with a simple algorithm like adjtime().

If modes is 0, no values are set. Only a user with the CAP_SYS_TIME capability may provide
a nonzero modes value; any user may provide 0 for modes, retrieving all of the parameters
but setting none of them.

On success, adjtimex() returns the current clock state, which is one of the following:
TIME_OK

The clock is synchronized.

TIME_INS

A leap second will be inserted.

TIME_DEL

A leap second will be deleted.

TIME_OOP

A leap second is in progress.

TIME_WAIT

A leap second just occurred.

Tuning the System Clock | 379



TIME_BAD

The clock is not synchronized.

On failure, adjtimex() returns −1 and sets errno to one of the following error codes:
EFAULT

adj is an invalid pointer.

EINVAL

One or more of modes, offset, or tick is invalid.

EPERM

modes is nonzero, but the invoking user does not possess the CAP_SYS_TIME capa‐
bility.

The adjtimex() system call is Linux-specific. Applications concerned with portability
should prefer adjtime().

RFC 1305 defines a complex algorithm, so a complete discussion of adjtimex() is out‐
side the scope of this book. For more information, see the RFC.

Sleeping and Waiting
Various functions allow a process to sleep (suspend execution) for a given amount of
time. The first such function, sleep(), puts the invoking process to sleep for the number
of seconds specified by seconds:

#include <unistd.h>

unsigned int sleep (unsigned int seconds);

The call returns the number of seconds not slept. Thus, a successful call returns 0, but
the function may return other values between 0 and seconds inclusive (if, say, a signal
interrupts the nap). The function does not set errno. Most users of sleep() do not care
about how long the process actually slept and, consequently, do not check the return
value:

sleep (7); /* sleep seven seconds */

If sleeping the entire specified time is truly a concern, you can continue calling sleep()
with its return value until it returns 0:

unsigned int s = 5;

/* sleep five seconds: no ifs, ands, or buts about it */
while ((s = sleep (s)))

;
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Sleeping with Microsecond Precision
Sleeping with whole-second granularity is pretty lame. A second is an eternity on a
modern system, so programs often want to sleep with subsecond resolution. Enter
usleep():

/* BSD version */
#include <unistd.h>

void usleep (unsigned long usec);

/* SUSv2 version */
#define _XOPEN_SOURCE 500
#include <unistd.h>

int usleep (useconds_t usec);

A successful call to usleep() puts the invoking process to sleep for usec microseconds.
Unfortunately, BSD and the Single UNIX Specification disagree on the prototype of the
function. The BSD variant receives an unsigned long and has no return value. The SUS
variant, however, defines usleep() to accept a useconds_t type and return an int. Linux
follows SUS if _XOPEN_SOURCE is defined as 500 or higher. If _XOPEN_SOURCE is undefined
or set to less than 500, Linux follows BSD.

The SUS version returns 0 on success and −1 on error. Valid errno values are EINTR, if
the nap was interrupted by a signal, or EINVAL, if usecs was too large (on Linux, the full
range of the type is valid, and thus this error will never occur).

According to the specification, the useconds_t type is an unsigned integer capable of
holding values as high as 1,000,000.

Due to the differences between the conflicting prototypes and the fact that some Unix
systems may support one or the other, but not both, it is wise never to explicitly include
the useconds_t type in your code. For maximum portability, assume that the parameter
is an unsigned int, and do not rely on usleep()’s return value:

void usleep (unsigned int usec);

Usage is then:

unsigned int usecs = 200;

usleep (usecs);

This works with either variant of the function, and checking for errors is still possible:

errno = 0;
usleep (1000);
if (errno)

perror ("usleep");
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Most programs, however, do not check for or care about usleep() errors.

Sleeping with Nanosecond Resolution
Linux deprecates the usleep() function, replacing it with nanosleep(), which provides
nanosecond resolution and a smarter interface:

#define _POSIX_C_SOURCE 199309
#include <time.h>

int nanosleep (const struct timespec *req,
struct timespec *rem);

A successful call to nanosleep() puts the invoking process to sleep for the time specified
by req and then returns 0. On error, the call returns −1 and sets errno appropriately. If
a signal interrupts the sleep, the call can return before the specified time has elapsed. In
that case, nanosleep() returns −1, and sets errno to EINTR. If rem is not NULL, the
function places the remaining time to sleep (the amount of req not slept) in rem. The
program may then reissue the call, passing rem for req (as shown later in this section).

Here are the other possible errno values:
EFAULT

req or rem is an invalid pointer.

EINVAL

One of the fields in req is invalid.

In the basic case, usage is simple:

struct timespec req = { .tv_sec = 0,
.tv_nsec = 200 };

/* sleep for 200 ns */
ret = nanosleep (&req, NULL);
if (ret)

perror ("nanosleep");

And here is an example using the second parameter to continue the sleep if interrupted:

struct timespec req = { .tv_sec = 0,
.tv_nsec = 1369 };

struct timespec rem;
int ret;

/* sleep for 1369 ns */
retry:
ret = nanosleep (&req, &rem);
if (ret) {

if (errno == EINTR) {
/* retry, with the provided time remaining */
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req.tv_sec = rem.tv_sec;
req.tv_nsec = rem.tv_nsec;
goto retry;

}
perror ("nanosleep");

}

Finally, here’s an alternative approach (perhaps more efficient, but less readable) toward
the same goal:

struct timespec req = { .tv_sec = 1,
.tv_nsec = 0 };

struct timespec rem, *a = &req, *b = &rem;

/* sleep for 1s */
while (nanosleep (a, b) && errno == EINTR) {

struct timespec *tmp = a;
a = b;
b = tmp;

}

nanosleep() has several advantages over sleep() and usleep():

• Nanosecond, as opposed to second or microsecond, resolution
• Standardized by POSIX.1b
• Not implemented via signals (the pitfalls of which are discussed later)

Despite deprecation, many programs prefer to use usleep() rather than nanosleep().
Because +nanosleep() is a POSIX standard and does not use signals, new programs
should prefer it (or the interface discussed in the next section) to sleep() and usleep().

An Advanced Approach to Sleep
As with all of the classes of time functions we have thus far studied, the POSIX clocks
family provides the most advanced sleep interface:

#include <time.h>

int clock_nanosleep (clockid_t clock_id,
int flags,
const struct timespec *req,
struct timespec *rem);

clock_nanosleep() behaves similarly to nanosleep(). In fact, this call:

ret = nanosleep (&req, &rem);

is the same as this call:

ret = clock_nanosleep (CLOCK_REALTIME, 0, &req, &rem);
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The difference lies in the clock_id and flags parameters. The former specifies the time
source to measure against. Most time sources are valid, although you cannot specify the
CPU clock of the invoking process (e.g., CLOCK_PROCESS_CPUTIME_ID); doing so would
make no sense because the call suspends execution of the process, and thus the process
time stops increasing.

What time source you specify depends on your program’s goals for sleeping. If you are
sleeping until some absolute time value, CLOCK_REALTIME may make the most sense. If
you are sleeping for a relative amount of time, CLOCK_MONOTONIC definitely is the ideal
time source.

The flags parameter is either TIMER_ABSTIME or 0. If it is TIMER_ABSTIME, the value
specified by req is treated as absolute and not relative. This solves a potential race con‐
dition. To explain the value of this parameter, assume that a process, at time T+0, wants
to sleep until time T+1. At T+0, the process calls clock_gettime() to obtain the current
time (T+0). It then subtracts T+0 from T+1, obtaining Y, which it passes to clock_nano
sleep(). Some amount of time, however, will have passed between the moment at which
the time was obtained and the moment at which the process goes to sleep. Worse, what
if the process was scheduled off the processor, incurred a page fault, or something sim‐
ilar? There is always a potential race condition in between obtaining the current time,
calculating the time differential, and actually sleeping.

The TIMER_ABSTIME flag nullifies the race by allowing a process to directly specify T+1.
The kernel suspends the process until the specified time source reaches T1 + 1. If the
specified time source’s current time already exceeds T+1, the call returns immediately.

Let’s look at both relative and absolute sleeping. The following example sleeps for 1.5
seconds:

struct timespec ts = { .tv_sec = 1, .tv_nsec = 500000000 };
int ret;

ret = clock_nanosleep (CLOCK_MONOTONIC, 0, &ts, NULL);
if (ret)

perror ("clock_nanosleep");

Conversely, the next example sleeps until an absolute value of time—which is exactly
one second from what the clock_gettime() call returns for the CLOCK_MONOTONIC time
source—is reached:

struct timespec ts;
int ret;

/* we want to sleep until one second from NOW */
ret = clock_gettime (CLOCK_MONOTONIC, &ts);
if (ret) {

perror ("clock_gettime");
return;
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}

ts.tv_sec += 1;
printf ("We want to sleep until sec=%ld nsec=%ld\n",

ts.tv_sec, ts.tv_nsec);
ret = clock_nanosleep (CLOCK_MONOTONIC, TIMER_ABSTIME,

&ts, NULL);
if (ret)

perror ("clock_nanosleep");

Most programs need only a relative sleep because their sleep needs are not very strict.
Some real-time processes, however, have very exact timing requirements and need the
absolute sleep to avoid the danger of a potentially devastating race condition.

A Portable Way to Sleep
Recall from Chapter 2 our friend select():

#include <sys/select.h>

int select (int n,
fd_set *readfds,
fd_set *writefds,
fd_set *exceptfds,
struct timeval *timeout);

As mentioned in that chapter, select() provides a portable way to sleep with sub-
second resolution. For a long time, portable Unix programs were stuck with sleep()
for their naptime needs: usleep() was not widely available, and nanosleep() was as of
yet unwritten. Developers discovered that passing select() 0 for n, NULL for all three
of the fd_set pointers, and the desired sleep duration for timeout resulted in a portable
and efficient way to put processes to sleep:

struct timeval tv = { .tv_sec = 0,
.tv_usec = 757 };

/* sleep for 757 us */
select (0, NULL, NULL, NULL, &tv);

If portability to older Unix systems is a concern, using select() may be your best bet.

Overruns
All of the interfaces discussed in this section guarantee that they will sleep at least as
long as requested (or return an error indicating otherwise). They will never return suc‐
cess without the requested delay elapsing. It is possible, however, for an interval longer
than the requested delay to pass.
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This phenomenon may be due to simple scheduling behavior—the requested time may
have elapsed, and the kernel may have woken up the process on time, but the scheduler
may have selected a different task to run.

There exists a more insidious cause, however: timer overruns. This occurs when the
granularity of the timer is coarser than the requested time interval. For example, assume
the system timer ticks in 10 ms intervals and a process requests a 1 ms sleep. The system
is able to measure time and respond to time-related events (such as waking up a process
from sleep) only at 10 ms intervals. If, when the process issues the sleep request, the
timer is 1 ms away from a tick, everything will be fine—in 1 ms, the requested time
(1 ms) will elapse, and the kernel will wake up the process. If, however, the timer hits
right as the process requests the sleep, there won’t be another timer tick for 10 ms.
Subsequently, the process will sleep an extra 9 ms! That is, there will be nine 1 ms
overruns. On average, a timer with a period of X has an overrun rate of X/2.

The use of high-precision time sources, such as those provided by POSIX clocks, and
higher values for HZ, minimize timer overrun.

Alternatives to Sleeping
If possible, you should avoid sleeping. Often, you cannot, and that’s fine—particularly
if your code is sleeping for less than a second. Code that is laced with sleeps in order to
“busy-wait” for events is usually of poor design. Code that blocks on a file descriptor,
allowing the kernel to handle the sleep and wake up the process, is better. Instead of the
process spinning in a loop until the event hits, the kernel can block the process from
execution and wake it up only when needed. 

Timers
Timers provide a mechanism for notifying a process when a given amount of time
elapses. The amount of time before a timer expires is called the delay, or the expira‐
tion. How the kernel notifies the process that the timer has expired depends on the timer.
The Linux kernel offers several types. We will study them all.

Timers are useful for several reasons. Examples include refreshing the screen 60 times
per second or canceling a pending transaction if it is still ongoing after 500 milliseconds.

Simple Alarms
alarm() is the simplest timer interface:

#include <unistd.h>

unsigned int alarm (unsigned int seconds);
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A call to this function schedules the delivery of a SIGALRM signal to the invoking process
after seconds of real time have elapsed. If a previously scheduled signal was pending,
the call cancels the alarm, replaces it with the newly requested alarm, and returns the
number of seconds remaining in the previous alarm. If seconds is 0, the previous alarm,
if any, is canceled, but no new alarm is scheduled.

Successful use of this function thus also requires registering a signal handler for the
SIGALRM signal. (Signals and signal handlers were covered in the previous chapter.) Here
is a code snippet that registers a SIGALRM handler, alarm_handler(), and sets an alarm
for five seconds:

void alarm_handler (int signum)
{

printf ("Five seconds passed!\n");
}

void func (void)
{

signal (SIGALRM, alarm_handler);
alarm (5);

pause ();
}

Interval Timers
Interval timer system calls, which first appeared in 4.2BSD, have since been standardized
in POSIX and provide more control than alarm():

#include <sys/time.h>

int getitimer (int which,
struct itimerval *value);

int setitimer (int which,
const struct itimerval *value,
struct itimerval *ovalue);

Interval timers operate like alarm(), but optionally can automatically rearm themselves
and operate in one of three distinct modes:
ITIMER_REAL

Measures real time. When the specified amount of real time has elapsed, the kernel
sends the process a SIGALRM signal.

ITIMER_VIRTUAL

Decrements only while the process’s user-space code is executing. When the speci‐
fied amount of process time has elapsed, the kernel sends the process a SIGVTALRM.
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ITIMER_PROF

Decrements both while the process is executing, and while the kernel is executing
on behalf of the process (for example, completing a system call). When the specified
amount of time has elapsed, the kernel sends the process a SIGPROF signal. This
mode is usually coupled with ITIMER_VIRTUAL so that the program can measure
user and kernel time spent by the process.

ITIMER_REAL

Measures the same time as alarm(); the other two modes are useful for profiling.

The itimerval structure allows the user to specify the amount of time until the timer
expires, as well as the expiration, if any, with which to rearm the timer upon expiration:

struct itimerval {
struct timeval it_interval;  /* next value */
struct timeval it_value;     /* current value */

};

Recall from earlier that the timeval structure provides microsecond resolution:

struct timeval {
long tv_sec;   /* seconds */
long tv_usec;  /* microseconds */

};

setitimer() arms a timer of type which with the expiration specified by it_value.
Once the time specified by it_value elapses, the kernel rearms the timer with the time
provided by it_interval. Thus, it_value is the time remaining on the current timer.
Once it_value reaches zero, it is set to it_interval. If the timer expires, and
it_interval is 0, the timer is not rearmed. Similarly, if an active timer’s it_value is set
to 0, the timer is stopped and not rearmed.

If ovalue is not NULL, the previous values for the interval timer of type which are
returned.

getitimer() returns the current values for the interval timer of type which.

Both functions return 0 on success and −1 on error, in which case errno is set to one of
the following:
EFAULT

value or ovalue is an invalid pointer.

EINVAL

which is not a valid interval timer type.

The following code snippet creates a SIGALRM signal handler (again, see Chapter 10) and
then arms an interval timer with an initial expiration of five seconds, followed by a
subsequent interval of one second:
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void alarm_handler (int signo)
{

printf ("Timer hit!\n");
}

void foo (void)
{

struct itimerval delay;
int ret;

signal (SIGALRM, alarm_handler);

delay.it_value.tv_sec = 5;
delay.it_value.tv_usec = 0;
delay.it_interval.tv_sec = 1;
delay.it_interval.tv_usec = 0;
ret = setitimer (ITIMER_REAL, &delay, NULL);
if (ret) {

perror ("setitimer");
return;

}

pause ();
}

Some Unix systems implement sleep() and usleep() via SIGALRM. alarm() and
setitimer() also use SIGALRM. Therefore, programmers must be careful not to overlap
calls to these functions; the results are undefined. For the purpose of brief waits, pro‐
grammers should use nanosleep(), which POSIX dictates will not use signals. For
timers, programmers should use setitimer() or alarm().

Advanced Timers
The most powerful timer interface, not surprisingly, hails from the POSIX clocks family.

With POSIX clocks–based timers, the acts of instantiating, initializing, and ultimately
deleting a timer are separated into three different functions: timer_create() creates
the timer, timer_settime() initializes the timer, and timer_delete() destroys it.

The POSIX clocks family of timer interfaces is undoubtedly the most
advanced but also the newest (ergo the least portable) and most com‐
plicated to use. If simplicity or portability is a prime motivator,
setitimer() is most likely a better choice.

Creating a timer

To create a timer, use timer_create():
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#include <signal.h>
#include <time.h>

int timer_create (clockid_t clockid,
struct sigevent *evp,
timer_t *timerid);

A successful call to timer_create() creates a new timer associated with the POSIX
clock clockid, stores a unique timer identification in timerid, and returns 0. This call
merely sets up the conditions for running the timer; nothing actually happens until the
timer is armed, as shown in the following section.

The following example creates a new timer keyed off the CLOCK_PROCESS_CPUTIME_ID
POSIX clock and stores the timer’s ID in timer:

timer_t timer;
int ret;

ret = timer_create (CLOCK_PROCESS_CPUTIME_ID,
NULL,
&timer);

if (ret)
perror ("timer_create");

On failure, the call returns −1, timerid is undefined, and the call sets errno to one of
the following:
EAGAIN

The system lacks sufficient resources to complete the request.

EINVAL

The POSIX clock specified by clockid is invalid.

ENOTSUP

The POSIX clock specified by clockid is valid, but the system does not support
using the clock for timers. POSIX guarantees that all implementations support the
CLOCK_REALTIME clock for timers. Whether other clocks are supported is up to the
implementation.

The evp parameter, if non-NULL, defines the asynchronous notification that occurs when
the timer expires. The header <signal.h> defines the structure. Its contents are sup‐
posed to be opaque to the programmer, but it has at least the following fields:

#include <signal.h>

struct sigevent {
union sigval sigev_value;
int sigev_signo;
int sigev_notify;
void (*sigev_notify_function)(union sigval);
pthread_attr_t *sigev_notify_attributes;
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};

union sigval {
int sival_int;
void *sival_ptr;

};

POSIX clocks–based timers allow much greater control over how the kernel notifies the
process when a timer expires, allowing the process to specify exactly which signal the
kernel will emit, or even allowing the kernel to spawn a thread and execute a function
in response to timer expiration. A process specifies the behavior on timer expiration via
sigev_notify, which must be one of the following three values:
SIGEV_NONE

A “null” notification. On timer expiration, nothing happens.

SIGEV_SIGNAL

On timer expiration, the kernel sends the process the signal specified by si
gev_signo. In the signal handler, si_value is set to sigev_value.

SIGEV_THREAD

On timer expiration, the kernel spawns a new thread (within this process) and has
it execute sigev_notify_function, passing sigev_value as its sole argument. The
thread terminates when it returns from this function. If sigev_notify_attributes
is not NULL, the provided pthread_attr_t structure defines the behavior of the new
thread.

If evp is NULL, as it was in our earlier example, the timer’s expiration notification is set
up as if sigev_notify were SIGEV_SIGNAL, sigev_signo were SIGALRM, and
sigev_value were the timer’s ID. Thus, by default, these timers notify in a manner
similar to POSIX interval timers. Via customization, though, they can do much, much
more!

The following example creates a timer keyed off CLOCK_REALTIME. When the timer ex‐
pires, the kernel will issue the SIGUSR1 signal and set si_value to the address storing
the timer’s ID:

struct sigevent evp;
timer_t timer;
int ret;

evp.sigev_value.sival_ptr = &timer;
evp.sigev_notify = SIGEV_SIGNAL;
evp.sigev_signo = SIGUSR1;
ret = timer_create (CLOCK_REALTIME,

&evp,
&timer);

if (ret)
perror ("timer_create");
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Arming a timer

A timer created by timer_create() is unarmed. To associate it with an expiration and
start the clock ticking, use timer_settime():

#include <time.h>

int timer_settime (timer_t timerid,
int flags,
const struct itimerspec *value,
struct itimerspec *ovalue);

A successful call to timer_settime() arms the timer specified by timerid with the
expiration value, which is an itimerspec structure:

struct itimerspec {
struct timespec it_interval;  /* next value */
struct timespec it_value;     /* current value */

};

As with setitimer(), it_value specifies the current timer expiration. When the timer
expires, it_value is refreshed with the value from it_interval. If it_interval is 0,
the timer is not an interval timer and will disarm once it_value expires.

Recall from earlier that the timespec structure provides nanosecond resolution:

struct timespec {
time_t  tv_sec; /* seconds */
long    tv_nsec; /* nanoseconds */

};

If flags is TIMER_ABSTIME, the time specified by value is interpreted as absolute (as
opposed to the default interpretation, where the value is relative to the current time).
This modified behavior prevents a race condition during the steps of obtaining the
current time, calculating the relative difference between that time, and a desired future
time, and arming the timer. See the discussion in the earlier section, “An Advanced
Approach to Sleep” on page 383 for details.

If ovalue is non-NULL, the previous timer expiration is saved in the provided itimer
spec. If the timer was previously disarmed, the structure’s members are all set to 0.

Using the timer value initialized earlier by timer_create(), the following example
creates a periodic timer that expires every second:

struct itimerspec ts;
int ret;

ts.it_interval.tv_sec = 1;
ts.it_interval.tv_nsec = 0;
ts.it_value.tv_sec = 1;
ts.it_value.tv_nsec = 0;
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ret = timer_settime (timer, 0, &ts, NULL);
if (ret)

perror ("timer_settime");

Obtaining the expiration of a timer

You can get the expiration time of a timer without resetting it via timer_gettime():

#include <time.h>

int timer_gettime (timer_t timerid,
struct itimerspec *value);

A successful call to timer_gettime() stores the expiration time of the timer specified
by timerid in the structure pointed at by value and returns 0. On failure, the call returns
−1 and sets errno to one of the following:
EFAULT

value is an invalid pointer.

EINVAL

timerid is an invalid timer.

For example:

struct itimerspec ts;
int ret;

ret = timer_gettime (timer, &ts);
if (ret)

perror ("timer_gettime");
else {

printf ("current sec=%ld nsec=%ld\n",
ts.it_value.tv_sec, ts.it_value.tv_nsec);

printf ("next sec=%ld nsec=%ld\n",
ts.it_interval.tv_sec, ts.it_interval.tv_nsec);

}

Obtaining the overrun of a timer
POSIX defines an interface for determining how many, if any, overruns occurred on a
given timer:

#include <time.h>

int timer_getoverrun (timer_t timerid);

On success, timer_getoverrun() returns the number of additional timer expirations
that have occurred between the initial expiration of the timer and notification to the
process—for example, via a signal—that the timer expired. For instance, in our earlier
example, where a 1 ms timer ran for 10 ms, the call would return 9.
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According to POSIX, if the number of overruns is equal to or greater than DE
LAYTIMER_MAX, the call returns DELAYTIMER_MAX. Unfortunately, Linux does not imple‐
ment this behavior: instead, once the number of timer overruns exceeds DELAYTIM
ER_MAX, it wraps back to zero and starts anew.

On failure, the function returns −1 and sets errno to EINVAL, the lone error condition,
signifying that the timer specified by timerid is invalid.

For example:

int ret;

ret = timer_getoverrun (timer);
if (ret == −1)

perror ("timer_getoverrun");
else if (ret == 0)

printf ("no overrun\n");
else

printf ("%d overrun(s)\n", ret);

Deleting a timer
Deleting a timer is easy:

#include <time.h>

int timer_delete (timer_t timerid);

A successful call to timer_delete() destroys the timer associated with timerid and
returns 0. On failure, the call returns −1, and errno is set to EINVAL, the lone error
condition, signifying that timerid is not a valid timer. 
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APPENDIX A

GCC Extensions to the C Language

The GNU Compiler Collection (GCC) provides many extensions to the C language,
some of which have proven to be of particular value to system programmers. The ma‐
jority of the additions to the C language that we’ll cover in this appendix offer ways for
programmers to provide additional information to the compiler about the behavior and
intended use of their code. The compiler, in turn, utilizes this information to generate
more efficient machine code. Other extensions fill in gaps in the C programming lan‐
guage, particularly at lower levels.

GCC provides several extensions now available in the latest C standard, ISO C11. Some
of these extensions function similarly to their C11 cousins, but ISO C11 implemented
other extensions rather differently. New code should use the standardized variants of
these features. We won’t cover such extensions here; we’ll discuss only GCC-unique
additions.

GNU C
The flavor of C supported by GCC is often called GNU C. In the 1990s, GNU C filled
in several gaps in the C language, providing features such as complex variables, zero-
length arrays, inline functions, and named initializers. But after nearly a decade, C was
finally upgraded, and with the standardization of ISO C99 and then ISO C11, GNU C
extensions grew less relevant. Nonetheless, GNU C continues to provide useful features,
and many Linux programmers still use a subset of GNU C—often just an extension or
two—in their C99- or C11-compliant code.

One prominent example of a GCC-specific code base is the Linux kernel, which is writ‐
ten strictly in GNU C. Recently, however, Intel has invested engineering effort in al‐
lowing the Intel C Compiler (ICC) to understand the GNU C extensions used by the
kernel. Consequently, many of these extensions are now growing less GCC-specific.
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Inline Functions
The compiler copies the entire code of an “inline” function into the site where the func‐
tion is called. Instead of storing the function externally and jumping to it whenever it
is called, it runs the contents of the function directly. Such behavior saves the overhead
of the function call and allows for potential optimizations at the call site because the
compiler can optimize the caller and callee together. This latter point is particularly valid
if the parameters to the function are constant at the call site. Naturally, however, copying
a function into each and every chunk of code that invokes it can have a detrimental
effect on code size. Therefore, functions should be inlined only if they are small and
simple or are not called in many different places.

For many years, GCC has supported the inline keyword, instructing the compiler to
inline the given function. C99 formalized this keyword:

static inline int foo (void) { /* ... */ }

Technically, however, the keyword is merely a hint—a suggestion to the compiler to
consider inlining the given function. GCC further provides an extension for instructing
the compiler to always inline the designated function:

static inline __attribute__ ((always_inline)) int foo (void) { /* ... */ }

The most obvious candidate for an inline function is a preprocessor macro. An inline
function in GCC will perform as well as a macro and receives type checking. For ex‐
ample, instead of this macro:

#define max(a,b) ({ a > b ? a : b; })

one might use the corresponding inline function:

static inline max (int a, int b)
{

if (a > b)
return a;

return b;
}

Programmers tend to overuse inline functions. Function call overhead on most modern
architectures—x86 in particular—is very, very low. Only the most worthy of functions
should receive consideration!

Suppressing Inlining
In its most aggressive optimization mode, GCC automatically selects functions that
appear suitable for inlining and inlines them. This is normally a good idea, but some‐
times the programmer knows that a function will perform incorrectly if inlined. One
example of this is when using __builtin_return_address (discussed later in this
appendix). To suppress inlining, use the noinline keyword:
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__attribute__ ((noinline)) int foo (void) { /* ... */ }

Pure Functions
A “pure” function is one that has no side effects and whose return value reflects only
the function’s parameters or nonvolatile global variables. Any parameter or global vari‐
able access must be read-only. Loop optimization and subexpression elimination can
be applied to such functions. Functions are marked as pure via the pure keyword:

__attribute__ ((pure)) int foo (int val) { /* ... */ }

A common example is strlen(). Given identical inputs, this function’s return value is
invariant across multiple invocations, and thus it can be pulled out of a loop and called
just once. For example, consider the following code:

/* character by character, print each letter in 'p' in uppercase */
for (i = 0; i < strlen (p); i++)

printf ("%c", toupper (p[i]));

If the compiler does not know that strlen() is pure, it would need to invoke the function
with each iteration of the loop.

Smart programmers—as well as the compiler, if strlen() were marked pure—would
write or generate code like this:

size_t len;

len = strlen (p);
for (i = 0; i < len; i++)

printf ("%c", toupper (p[i]));

Parenthetically, even smarter programmers (such as this book’s readers) would write:

while (*p)
printf ("%c", toupper (*p++));

It is illegal and indeed makes no sense for a pure function to return void, as the return
value is the sole point of such functions. An example of a nonpure function is random().

Constant Functions
A “constant” function is a stricter variant of a pure function. Such functions cannot
access global variables and cannot take pointers as parameters. Thus, the constant func‐
tion’s return value reflects nothing but the passed-by-value parameters. Additional op‐
timizations, on top of those possible with pure functions, are possible for such functions.
Math functions, such as abs(), are examples of constant functions (presuming they
don’t save state or otherwise pull tricks in the name of optimization). A programmer
marks a function constant via the const keyword:
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1. A memory alias occurs when two or more pointer variables point at the same memory address. This can
happen in trivial cases where a pointer is assigned the value of another pointer and also in more complex,
less obvious cases. If a function is returning the address of newly allocated memory, no other pointers to that
same address should exist.

__attribute__ ((const)) int foo (int val) { /* ... */ }

As with pure functions, it makes no sense for a constant function to return void.

Functions That Do Not Return
If a function does not return, perhaps because it invariantly calls exit(), the program‐
mer can mark the function with the noreturn keyword, enlightening the compiler to
that fact:

__attribute__ ((noreturn)) void foo (int val) { /* ... */ }

In turn, the compiler can make additional optimizations, with the understanding that
under no circumstances will the invoked function ever return. It does not make sense
for such a function to return anything but void.

Functions That Allocate Memory
If a function returns a pointer that can never alias1 existing memory—almost assuredly
because the function just allocated fresh memory, and is returning a pointer to it—the
programmer can mark the function as such with the malloc keyword, and the compiler
can in turn perform suitable optimizations:

__attribute__ ((malloc)) void * get_page (void)
{

int page_size;

page_size = getpagesize ();
if (page_size <= 0)

return NULL;

return malloc (page_size);
}

Forcing Callers to Check the Return Value
Not an optimization, but a programming aid, the warn_unused_result attribute in‐
structs the compiler to generate a warning whenever the return value of a function is
not stored or used in a conditional statement:

__attribute__ ((warn_unused_result)) int foo (void) { /* ... */ }
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This allows the programmer to ensure that all callers check and handle the return value
from a function where the value is of particular importance. Functions with important
but oft-ignored return values, such as read(), make excellent candidates for this
attribute. Such functions cannot return void.

Marking Functions as Deprecated
The deprecated attribute instructs the compiler to generate a warning at the call site
whenever the function is invoked:

__attribute__ ((deprecated)) void foo (void) { /* ... */ }

This helps wean programmers off deprecated and obsolete interfaces.

Marking Functions as Used
Occasionally, no code visible to a compiler invokes a particular function. Marking a
function with the used attribute instructs the compiler that the program uses that func‐
tion, despite appearances that the function is never referenced:

static __attribute__ ((used)) void foo (void) { /* ... */ }

The compiler therefore outputs the resulting assembly language and does not display a
warning about an unused function. This attribute is useful if a static function is invoked
only from handwritten assembly code. Normally, if the compiler is not aware of any
invocation, it will generate a warning, and potentially optimize away the function.

Marking Functions or Parameters as Unused
The unused attribute tells the compiler that the given function or function parameter
is unused and instructs it not to issue any corresponding warnings:

int foo (long __attribute__ ((unused)) value) { /* ... */ }

This is useful if you’re compiling with -W or -Wunused and you want to catch unused
function parameters, but you occasionally have functions that must match a predeter‐
mined signature (as is common in event-driven GUI programming or signal handlers).

Packing a Structure
The packed attribute tells the compiler that a type or variable should be packed into
memory using the minimum amount of space possible, potentially disregarding align‐
ment requirements. If specified on a struct or union, all variables therein are so packed.
If specified on just one variable, only that specific object is packed.
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The following packs all variables within the structure into the minimum amount of
space:

struct __attribute__ ((packed)) foo { ... };

As an example, a structure containing a char followed by an int would most likely find
the integer aligned to a memory address not immediately following the char, but, say,
three bytes later. The compiler aligns the variables by inserting bytes of unused padding
between them. A packed structure lacks this padding, potentially consuming less mem‐
ory but failing to meet architectural alignment requirements.

Increasing the Alignment of a Variable
As well as allowing packing of variables, GCC also allows programmers to specify an
alternative minimum alignment for a given variable. GCC will then align the specified
variable to at least this value, as opposed to the minimum required alignment dictated
by the architecture and ABI. For example, this statement declares an integer named
beard_length with a minimum alignment of 32 bytes (as opposed to the typical align‐
ment of 4 bytes on machines with 32-bit integers):

int beard_length __attribute__ ((aligned (32))) = 0;

Forcing the alignment of a type is generally useful only when dealing with hardware
that may impose greater alignment requirements than the architecture itself, or when
you are hand-mixing C and assembly code and you want to use instructions that require
specially aligned values. One example where this alignment functionality is utilized is
for storing oft-used variables on processor cache lines to optimize cache behavior. The
Linux kernel makes use of this technique.

As an alternative to specifying a certain minimum alignment, you can ask that GCC
align a given type to the largest minimum alignment that is ever used for any data type.
For example, this instructs GCC to align parrot_height to the largest alignment it ever
uses, which is probably the alignment of a double:

short parrot_height __attribute__ ((aligned)) = 5;

This decision generally involves a space/time trade-off: variables aligned in this manner
consume more space, but copying to or from them (along with other complex manip‐
ulations) may be faster because the compiler can issue machine instructions that deal
with the largest amount of memory.

Various aspects of the architecture or the system’s toolchain may impose maximum
limits on a variable’s alignment. For example, on some Linux architectures, the linker
is unable to recognize alignments beyond a rather small default. In that case, an align‐
ment provided using this keyword is rounded down to the smallest allowed alignment.
For example, if you request an alignment of 32, but the system’s linker is unable to align
to more than 8 bytes, the variable will be aligned along an 8-byte boundary.
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Placing Global Variables in a Register
GCC allows programmers to place global variables in a specific machine register, where
the variables will then reside for the duration of the program’s execution. GCC calls such
variables global register variables.

The syntax requires that the programmer specify the machine register. The following
example uses ebx:

register int *foo asm ("ebx");

The programmer must select a variable that is not function-clobbered: that is, the se‐
lected variable must be usable by local functions, saved and restored on function call
invocation, and not specified for any special purpose by the architecture or operating
system’s ABI. The compiler will generate a warning if the selected register is inappro‐
priate. If the register is appropriate—ebx, used in this example, is fine for the x86
architecture—the compiler will in turn stop using the register itself.

Such an optimization can provide huge performance boosts if the variable is frequently
used. A good example is with a virtual machine. Placing the variable that holds, say, the
virtual stack frame pointer in a register might lead to substantial gains. On the other
hand, if the architecture is starved of registers to begin with (as the x86 architecture is),
this optimization makes little sense.

Global register variables cannot be used in signal handlers or by more than one thread
of execution. They also cannot have initial values because there is no mechanism for
executable files to supply default contents for registers. Global register variable decla‐
rations should precede any function definitions.

Branch Annotation
GCC allows programmers to annotate the expected value of an expression—for exam‐
ple, to tell the compiler whether a conditional statement is likely to be true or false. GCC,
in turn, can then perform block reordering and other optimizations to improve the
performance of conditional branches.

The GCC syntax for branch notation is horrendously ugly. To make branch annotation
easier on the eyes, we use preprocessor macros:

#define likely(x)    __builtin_expect (!!(x), 1)
#define unlikely(x)  __builtin_expect (!!(x), 0)

Programmers can mark an expression as likely or unlikely true by wrapping it in
likely() or unlikely(), respectively.

The following example marks a branch as unlikely true (that is, likely to be false):
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int ret;

ret = close (fd);
if (unlikely (ret))

perror ("close");

Conversely, the following example marks a branch as likely true:

const char *home;

home = getenv ("HOME");
if (likely (home))

printf ("Your home directory is %s\n", home);
else

fprintf (stderr, "Environment variable HOME not set!\n");

As with inline functions, programmers have a tendency to overuse branch annotation.
Once you start anointing expressions, you might be tempted to mark all expressions.
Be careful, though—you should mark branches as likely or unlikely only if you know
a priori and with little doubt that the expressions will be true or false nearly all of the
time (say, with 99 percent certainty). Seldom-occurring errors are good candidates for
unlikely(). Keep in mind that a false prediction is worse than no prediction at all.

Getting the Type of an Expression
GCC provides the typeof() keyword to obtain the type of a given expression. Seman‐
tically, the keyword operates the same as sizeof(). For example, this expression returns
the type of whatever x points at:

typeof (*x)

We can use this to declare an array, y, of those types:

typeof (*x) y[42];

A popular use for typeof() is to write “safe” macros that can operate on any arithmetic
value and evaluate their parameters only once:

#define max(a,b) ({          \
typeof (a) _a = (a); \
typeof (b) _b = (b); \
_a > _b ? _a : _b; \

})

Getting the Alignment of a Type
GCC provides the keyword alignof to obtain the alignment of a given object. The value
is architecture- and ABI-specific. If the current architecture does not have a required
alignment, the keyword returns the ABI’s recommended alignment. Otherwise, the
keyword returns the minimum required alignment.
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The syntax is identical to sizeof():

__alignof__(int)

Depending on the architecture, this probably returns 4, as 32-bit integers are generally
aligned along 4-byte boundaries.

alignof() in C11 and C++11
C11 and C++11 introduced alignof(), which works identically to
alignof() but is standardized. If writing a C11 or C++11 program,
prefer alignof().

The keyword works on lvalues, too. In that case, the returned alignment is the minimum
alignment of the backing type, not the actual alignment of the specific lvalue. If the
minimum alignment was changed via the aligned attribute (described earlier, in “In‐
creasing the Alignment of a Variable” on page 400), that change is reflected by
__alignof__.

For example, consider this structure:

struct ship {
int year_built;
char cannons;
int mast_height;

};

along with this code snippet:

struct ship my_ship;

printf ("%d\n", __alignof__(my_ship.cannons));

The alignof in this snippet will return 1, even though structure padding probably
results in cannons consuming 4 bytes.

The Offset of a Member Within a Structure
GCC provides a built-in keyword for obtaining the offset of a member of a structure
within that structure. The offsetof() macro, defined in <stddef.h>, is part of the ISO
C standard. Most definitions are horrid, involving obscene pointer arithmetic and code
unfit for minors. The GCC extension is simpler and potentially faster:

#define offsetof(type, member)  __builtin_offsetof (type, member)

A call returns the offset of member within type—that is, the number of bytes, starting
from zero, from the beginning of the structure to that member. For example, consider
the following structure:

The Offset of a Member Within a Structure | 403



struct rowboat {
char *boat_name;
unsigned int nr_oars;
short length;

};

The actual offsets depend on the size of the variables and the architecture’s alignment
requirements and padding behavior. On a 32-bit machine, we might expect calling
offsetof() on struct rowboat with boat_name, nr_oars, and length to return 0, 4,
and 8, respectively.

On a Linux system, the offsetof() macro should be defined using the GCC keyword
and need not be redefined.

Obtaining the Return Address of a Function
GCC provides a keyword for obtaining the return address of the current function, or
one of the callers of the current function:

void * __builtin_return_address (unsigned int level)

The parameter level specifies the function in the call chain whose address should be
returned. A value of 0 asks for the return address of the current function, a value of 1
asks for the return address of the caller of the current function, a value of 2 asks for that
function’s caller’s return address, and so on.

If the current function is an inline function, the address returned is that of the calling
function. If this is unacceptable, use the noinline keyword (described earlier, in “Sup‐
pressing Inlining” on page 396) to force the compiler not to inline the function.

There are several uses for the __builtin_return_address keyword. One is for debug‐
ging or informational purposes. Another is to unwind a call chain in order to implement
introspection, a crash dump utility, a debugger, and so on.

Note that some architectures can return only the address of the invoking function. On
such architectures, a nonzero parameter value can result in a random return value. Thus,
any parameter other than 0 is nonportable and should be used only for debugging
purposes.

Case Ranges
GCC allows case statement labels to specify a range of values for a single block. The
general syntax is as follows:

case low ... high:

For example:
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switch (val) {
case 1 ... 10:

/* ... */
break;

case 11 ... 20:
/* ... */
break;

default:
/* ... */

}

This functionality is quite useful for ASCII case ranges, too:

case 'A' ... 'Z':

Note that there should be a space before and after the ellipsis. Otherwise, the compiler
can become confused, particularly with integer ranges. Always do the following:

case 4 ... 8:

and never this:

case 4...8:

Void and Function Pointer Arithmetic
In GCC, addition and subtraction operations are allowed on pointers of type void and
pointers to functions. Normally, ISO C does not allow arithmetic on such pointers be‐
cause the size of a “void” is a nonsensical concept and is dependent on what the pointer
is actually pointing to. To facilitate such arithmetic, GCC treats the size of the referential
object as one byte. Thus, the following snippet advances a by one:

a++; /* a is a void pointer */

The option -Wpointer-arith causes GCC to generate a warning when these extensions
are used.

More Portable and More Beautiful in One Fell Swoop
Let’s face it, the attribute syntax is not pretty. Some of the extensions we’ve looked at
in this chapter require preprocessor macros to make their use palatable, but all of them
can benefit from a sprucing up in appearance.

With a little preprocessor magic, this is not hard. Further, in the same action, we can
make the GCC extensions portable by defining them away in the case of a non-GCC
compiler (whatever that is).

To do so, stick the following code snippet in a header and include that header in your
source files:
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#if __GNUC_  _ >= 3
# undef  inline
# define inline inline __attribute_  _ ((always_inline))
# define __noinline     __attribute__ ((noinline))
# define __pure __attribute__ ((pure))
# define __const __attribute__ ((const))
# define __noreturn     __attribute__ ((noreturn))
# define __malloc __attribute__ ((malloc))
# define __must_check   __attribute__ ((warn_unused_result))
# define __deprecated   __attribute__ ((deprecated))
# define __used __attribute__ ((used))
# define __unused __attribute__ ((unused))
# define __packed __attribute__ ((packed))
# define __align(x)     __attribute__ ((aligned (x)))
# define __align_max    __attribute__ ((aligned))
# define likely(x) __builtin_expect (!!(x), 1)
# define unlikely(x)    __builtin_expect (!!(x), 0)
#else
# define __noinline     /* no noinline */
# define __pure /* no pure */
# define __const /* no const */
# define __noreturn     /* no noreturn */
# define __malloc /* no malloc */
# define __must_check   /* no warn_unused_result */
# define __deprecated   /* no deprecated */
# define __used /* no used */
# define __unused /* no unused */
# define __packed /* no packed */
# define __align(x)     /* no aligned */
# define __align_max    /* no align_max */
# define likely(x) (x)
# define unlikely(x)    (x)
#endif

For example, the following marks a function as pure, using our shortcut:

__pure int foo (void) { /* ... */ }

If GCC is in use, the function is marked with the pure attribute. If GCC is not the
compiler, the preprocessor replaces the __pure token with a no-op. Note that you can
place multiple attributes on a given definition, and thus you can use more than one of
these defines on a single definition with no problems.

Easier, prettier, and portable!
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APPENDIX B

Bibliography

This bibliography presents recommended reading related to system programming,
broken down into four subcategories. None of these works are required reading. Instead,
they represent my take on the top books on the given subject matter. If you find yourself
pining for more information on the topics discussed here, these are my favorites.

Some of these books address material with which this book assumes the reader is already
conversant, such as the C programming language. Other texts included make great
supplements to this book, such as the works covering gdb, Git, or operating system
design. Whatever the case, I recommend them all. Of course, these lists are certainly
not exhaustive—please do explore other resources.

Books on the C Programming Language
These books document the C programming language, the lingua franca of system pro‐
gramming. If you do not code C as well as you speak your native tongue, one or more
of the following works (coupled with a lot of practice!) ought to help you in that direc‐
tion. If nothing else, the first title—universally known as K&R—is a treat to read. Its
brevity reveals the simplicity of C.

The C Programming Language, 2nd ed. Brian Kernighan and Dennis Ritchie. Prentice
Hall, 1988. This book, written by the author of the C programming language and
his then coworker, is the bible of C programming.

C in a Nutshell. Peter Prinz and Tony Crawford. O’Reilly Media, 2005. A great book
covering both the C language and the standard C library.

C Pocket Reference. Peter Prinz and Ulla Kirch-Prinz. Translated by Tony Crawford.
O’Reilly Media, 2002. A concise reference to the C language, handily updated for
ANSI C99.
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Expert C Programming. Peter van der Linden. Prentice Hall, 1994. A wonderful dis‐
cussion of lesser-known aspects of the C programming language, elucidated with
an amazing wit and sense of humor. This book is rife with non sequiturs and jokes.

C Programming FAQs: Frequently Asked Questions, 2nd ed. Steve Summit. Addison-
Wesley, 1995. This beast of a book contains more than 400 frequently asked ques‐
tions (with answers) on the C programming language. Many of the FAQs beg
obvious answers in the eyes of C masters, but some of the weightier questions and
answers should impress even the most erudite of C programmers. Note there is an
online version that has likely been more recently updated.

Books on Linux Programming
The following texts cover Linux programming, including discussions of topics not cov‐
ered in this book and Linux programming tools.

Unix Network Programming, Volume 1: The Sockets Networking API. W. Richard Ste‐
vens et al. Addison-Wesley, 2003. The definitive tome on the socket API; unfortu‐
nately not specific to Linux, but fortunately recently updated for IPv6.

UNIX Network Programming, Volume 2: Interprocess Communications. W. Richard
Stevens. Prentice Hall, 1998. An excellent discussion of interprocess communica‐
tion (IPC).

PThreads Programming. Bradford Nichols et al. O’Reilly Media, 1996. A deeper refer‐
ence to the POSIX threading API, Pthreads, supplementing this book.

Managing Projects with GNU Make. Robert Mecklenburg. O’Reilly Media, 2004. An
excellent treatment on GNU Make, the classic tool for building software projects
on Linux.

Version Control with Subversion. Ben Collins-Sussman et al. O’Reilly Media, 2004. A
comprehensive take on Subversion, the successor of CVS for revision control and
source code management on Unix systems, by three of Subversion’s own authors.

Version Control with Git. Jon Loeliger et al. O’Reilly Media, 2012. A excellent intro‐
duction to Git, the sometimes confusing but always powerful distributed revision
control system.

GDB Pocket Reference. Arnold Robbins. O’Reilly Media, 2005. A handy pocket guide
to gdb, Linux’s debugger.

Linux in a Nutshell. Ellen Siever et al. O’Reilly Media, 2009. A whirlwind reference to
all things Linux, including many of the tools comprising Linux’s development
environment.
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Books on the Linux Kernel
The two titles listed here cover the Linux kernel. Reasons for investigating this topic are
threefold. First, the kernel provides the system call interface to user space and is thus
the core of system programming. Second, the behaviors and idiosyncrasies of a kernel
shed light on its interactions with the applications it runs. Finally, the Linux kernel is a
wonderful chunk of code, and these books are fun.

Linux Kernel Development. Robert Love. Addison-Wesley, 2010. My own effort in this
category is ideally suited to system programmers who want to know about the
design and implementation of the Linux kernel. Not an API reference, this book
offers a great discussion of the algorithms used and decisions made by the Linux
kernel.

Linux Device Drivers. Jonathan Corbet et al. O’Reilly Media, 2005. This is a great guide
to writing device drivers for the Linux kernel, with excellent API references. Al‐
though aimed at device drivers, the discussions will benefit programmers of any
persuasion, including system programmers merely seeking more insight into the
machinations of the Linux kernel. A great complement to my own Linux kernel
book.

Books on Operating System Design
These two works, not specific to Linux, address operating system design in the abstract.
As I’ve stressed in this book, a strong understanding of the system on which you develop
can only improve your output.

Operating System Concepts. Abraham Silberschatz et al. Prentice Hall, 2012. An excel‐
lent introduction to operating systems, their history, and their underlying algo‐
rithms. Includes an excellent set of case studies.

UNIX Systems for Modern Architectures. Curt Schimmel. Addison-Wesley, 1994. This
book, less on Unix than modern processor and cache architectures, is an excellent
introduction to how operating systems cope with the complexities of modern sys‐
tems. Although growing a bit dated, I still highly recommend it.
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/etc/manifest, 72
/root directory, 259
1:1 threading, 215–217
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A
ABIs, 6
abort() system call, 154, 334, 336

malloc() debugging and, 315
absolute pathname, 12, 259

current working directories and, 260
absolute section (process), 16
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access control lists (ACLs), 20
adjtime() function (time), 377
adjtimex() system call, 378
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on file I/O, 118–121
on file mapping, 115–118

advice parameter (madvise() system call), 116
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alloca() system call, 316–320
Alpha systems and creat() system call, 32
American National Standards Institute (ANSI),
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anti-lock braking systems (as real-time system),
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Anticipatory I/O scheduler, 127
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append mode, 38

writing files in, 78
application binary interface (ABI), 6
application programming interface (API), 5
arithmetic exception signal, 337

si_code values for, 359
arrays

dynamically allocating, 298
zero-length, 287

asctime() function (time), 375
async-safe functions, 20
asynchronous I/O, 123

events, handling, 333–362
operations, 121–123
threads vs., 214

atexit() function (processes), 149, 151
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atomic operations, 222

B
background process group, 168
backups, open() call and, 28
bash, 2
bash instance, 168
batch real-time policy, 194
bcmp() function (BSD), 322
bcopy() function (BSD), 323
Beagle search structure (GNOME), 292
binaries, 211
binary data

reading, 76
writing, 77, 79

binary interface, defining, 6
block boundaries, 69
block devices, 14

files, 14
block number, 124

sorting I/O by, 132–135
block size, 69

effects on performance, 68
block started by symbol (bss), 16
blocking

read() calls and, 33
signals, 351–353

blocking I/O, 213
blocks, 16
break point signal, 307, 339
brk() system call, 307, 313
broken links, 13
BSD

/dev/zero in, 311
data alignment in, 304
dirfd() function, 269
file ownership in, 29
process group function support in, 172
signaling asynchronous I/O events, 338
waiting for processes in, 158–160

bss section (process), 16
bss segment memory region, 295
buddy memory allocation scheme, 308
buffer size, 69
buffered I/O, 67–90

streams, 73–83
thread safety, 86–89
user-, 67–70

buffers
controlling, 84–86
directories in, 261
representation of, 66
setting type of, in stdio interface, 84

buffer_head data structure, 66
busy waiting, 201
bytes

comparing, 322
frobnicating, 325
moving, 323
searching, 324
setting, 321
stacklen, 324

bzero() function (BSD), 321

C
C language

compilers for, 4
int type, 139
libraries, 3
long type, 81
standards, 8
stdin, stdout, stderr libraries, 25
storing extended attribute values as strings,

252
The C Programming Language (Ritchie, Ker‐

nighan), 8
C++

libstdcxx, 5
malloc() and, 297

cache effect (process migration), 186
calloc() function (memory), 298, 311, 322

data alignment and, 303–305
freeing memory after, 301

cancellation points (threads), 231
capabilities system, 19
CAP_CHOWN capability, 248
CAP_DOWNER capability

changing permissions and, 246
removing directories and, 268

CAP_IPC_LOCK capability, 328
CAP_KILL capability, 346
CAP_SYS_ADMIN capability, 252
CAP_SYS_IPC capability, 206
CAP_SYS_NICE capability, 183

getpriority()/setpriority() and, 185
real-time processes and, 207
setting scheduling policy and, 196
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CAP_SYS_RAWIO capability, 135
CAP_SYS_RESOURCE capability, 204
CAP_SYS_TIME, 373
CDROMEJECT (CD-ROM device driver), 282
cfree() function (memory), 302
character devices, 14
characters

putting back, 74
reading, 74

chdir() system call, 263
child processes, 18

as zombie processes, 151, 162
fork() and, 145
signals for termination of, 337
waiting for specific, 154–156
waiting for terminated, 151–163

chmod() system call, 246–248
error codes for, 246

chown() system call, 248
chrt utility (util-linux package), 201
CHS addressing, 124
clearerr() function (streams), 83
CLOCKS_PER_SEC constant, 365, 368
clock_getres() function (time), 369
clock_gettime() function (time), 372, 374, 384
CLOCK_MONOTONIC, 370
clock_nanosleep() function (time), 383
CLOCK_PROCESS_CPUTIME_ID, 370
CLOCK_REALTIME, 370
clock_settime() function (time), 374
clock_t data structure, 368
clone() system call, 215, 226
close() system call, 45

error values for, 46
closedir() system calls (DIR objects), 269
closing streams, 73
common file model, 63
Completely Fair Queuing (CFQ) I/O scheduler,

128, 186
Completely Fair Scheduler (CFS), 178

target latency in, 180
concurrency, 214, 218–222
congestion avoidance, 65
context switching, 213
controlling terminal, 168
cookie field (inotify_event structure), 290
cooperative multitasking, 178

yielding, 181–183
Coordinated Universal Time, 364

copy-on-write, 146
core files, 205
core programming patterns, 217–218
coroutines, 216
count (vectored I/O), 94
cp utility, 2, 277
CPU_ISSET() function (cpu_set_t type), 188
CPU_SETSIZE() function (cpu_set_t type), 188
cpu_set_t type (sched.h), 188
CPU_ZERO() function (cpu_set_t type), 188
creat() system call, 31

error codes/return values for, 32
critical region of code, 86

race conditions and, 219
critical regions of code, 351
ctime() function (time), 376
ctime_r() function (time), 376
current working directory, 260–265

changing, 262–265
obtaining, 260–262
saving, 264

D
daemon() function (unistd.h), 174
daemons

creating, 173
current working directories and, 265
SIGHUP signal and, 337

dangling pointers (dynamic memory alloca‐
tion), 303

data alignment, 303
allocating for, 303–305
issues, 77
natural, 303
nonstandard/complex data types and, 305–

307
requirements for, 77
strict aliasing and, 307
typecasting and, 307

data allocation, opportunistic, 329, 331
data section (process), 16
data segments, 295, 307

padding, 313
data synchronization, 219

deadlocks, 224
mutexes, 222
race conditions and, 222–226
with Pthreads, 227
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deadlocks on threads, 224
avoiding, 225

debugging, 339
default thread, 228
demand paging, 325
dentry (directory entry), 12
detaching threads, 234
determinism, 325
device blocks, 124
device drivers, 280

writing, 2
device nodes, 280

out-of-band communication with, 281–283
random number generator, 281
rename() function and, 278

difftime() function (time), 376
DIR objects, 268
directories, 12, 260–271

copying, 277
creating, 265
current working, 260–265
legal names for, 260
links to, 271–277
moving, 278–280
reading, 268–271
removing, 267
resolution, 12

directory entry, 12, 259
directory stream, 268–271

closing, 269
reading, 269
system calls for, 270

dirfd() function (DIR), 269
dirty buffers, 39, 65

maximum buffer age, 40
disk (hardware)

addressing, 124
solid-state drives, 128

dnotify file-monitoring system, 284
dynamic memory allocation, 296, 305–307

advanced, 312–315
arrays, 298
debugging, 315
freeing, 301–303
management of, 305–307
resizing, 300
zeroing out, 299

E
EACCES (preprocessor), 21
EAGAIN errno (read() system call), 35
EBADF (streams), 81, 84
edge-triggered events, 103
effective gid, 19
effective user ID, 18, 163
EINTER errno (read() system call), 34
EINVAL (streams), 81
ELF (Executable and Linkable Format), 16
Emacs, 2
end-of-file (EOF), 14, 74, 76, 83

read() and, 33
seeking past, 47

entropy pool, 281
EOVERFLOW errors (lseek() system call), 48
EPERM, 166, 170
epoch, absolute time and, 364
epoll I/O, 97–103

controlling, 98–101
creating instance of, 97
edge- vs. level triggers, 103
waiting for events, 101–103

epoll() system call, 289
EPOLLET value (event parameter, epoll), 103
epoll_create() system call, 98
epoll_create1() system call, 97
epoll_ctl() system call, 98–101

error codes for, 100
epoll_wait() system call, 101–103
errno.h header file, 21
error handling, 21
event loop, 218

signals vs., 362
event poll I/O, 97–103

controlling, 98–101
creating instance of, 97
edge- vs. level triggers, 103
waiting for events, 101–103

event-driven threading, 218
exec family of calls, 140–142

error values of, 143
execvp(), 143
fcntl() function, 142
signal inheritance and, 344

execl() function (exec calls), 140–142
execlp() function (exec calls), 162

security risks, 143
Executable and Linkable Format (ELF), 16
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execute permissions, 19
execv() (exec calls), 146
execve() system call, 143
execvp() function (exec calls), 162

security risks, 143
exit() function (processes), 148–149

daemons and, 173
_exit() system call, 147, 149
exit_group() system call (Pthreads), 226
ext3 filesystem

extended attributes in, 252
inodes, sorting I/O by, 131

ext4 filesystem
extended attributes and, 251
inodes, sorting I/O by, 131

extended attributes, 250–259
keys/values, 251
listing, 256–258
namespaces, 252
removing, 258
retrieving, 253–255
setting, 255

external fragmentation, 308

F
fast bins, 313
FAT, 15
fchmod() system call, 246–248

error codes for, 246
fchown() system call, 29
fclose() function (streams), 73
fcloseall() function (streams), 73
fcntl() function (exec calls), 142
fdatasync() system call, 41–43

error codes, 42
O_SYNC flag [open()], 44
return values, 42

fdopen() function (streams), 72, 73
feof() function (streams), 76, 83
ferror() function (streams), 76, 83
fflush() function (streams), 82
fgetc() system call, 74

performance considerations with, 76, 89
fgetpos() function (streams), 81, 82
fgets() function (streams), 75, 89
fgetxattr() system call (extended attributes), 254
fibers, 216
FIFO classed processes, 193

open() system call and, 27

FIFO real time policy (process management),
193

FIFOs, 14
file creation mask (umask), 30
file descriptors, 10, 25

fstat() and, 242
limiting number of, 207
obtaining, 84
streams and, 72

file events, 241, 283–292
(see also inotify interface)
queue size, 292
watches, 285–287

file I/O, 25–135, 91
advice on, 118–121
appending, 38
closing, 45
copying, 277
creat() system call, 31
deleting, 13
device nodes as, 280
direct I/O, 45
ensuring full reads of, 34
event poll, 97–103
events, 283–292
inotify interface, 283–292
kernel implementation of, 62–66
large, opening, 27
legal names for, 260
links to, 271–277
mapping into memory, 104–118
metadata for, 241–259
moving, 278–280
nonblocking reads of, 35
opening, 26–32, 71
out-of-band communication with, 281–283
owners of, 29
partial reads, 35
partial writes to, 37
pointers to, 70
positional reads, 49
positional writes, 49
posix_fadvise() system call, 118–120
readahead() system call, 120
reading, 32–36
regular, 10
scatter/gather, 92–97
seeking, 46–48
setting maximum size, 206
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synchronized I/O, 40–44
truncating, 50
unlinking, 13
vectored I/O, 92–97
writing to, 36–40

file locks
manual, 87
setting allowed number of, 206

file mapping, 104–118
advice on, 115–118
mmap() system call, 104–109
munmap() system call, 109
protections, changing, 113
resizing, 112
synchronizing with, 114

file offset, 10
file pointers, 70, 73
file position, 10
file table, 25
FILE typedef (stdio.h), 70
fileno() function (stdio.h), 84
filesystem blocks, 124
filesystem gid, 19
filesystem-agnostic, 250
filesystems, 15–24, 15

native, 15
network, 15
root, 15
virtual, 15

fine-grained locking on mutexes, 238
FIONREAD ioctl (inotify), 292
flistxattr() system call (extended attributes), 257
flockfile() function (streams), 87
flusher threads (writebacks), 65
fopen() function (stdio.h), 71–72
foreground process group, 168
fork() system call, 145–148

daemons and, 173
new processes and, 140
overcommitting memory and, 330
process hierarchy and, 18
pthread_create() vs., 228
signal inheritance and, 344
status inheritance and, 326
_exit() system call and, 147

FORTRAN, 70
fputc() function (streams), 78
fputs() function (streams), 78, 88
fread() function (streams), 76, 83

free() function (buffers), 261
free() function (memory), 300, 301–303
free() system call, 317
FreeBSD, 216
fremovexattr() system call (extended attributes),

258
from stream, 76
fsck (filesystem checker), 271
fseek() function (stdio.h), 80
fseek() function (streams), 81, 82
fsetxattr() system call (extended attributes), 255
fstat() function (stat.h), 242
fsync() function (streams), 83
fsync() system call, 41–43

error codes, 42
O_SYNC flag [open()], 44
return values, 42

ftell() function (streams), 82
ftruncate() system call, 50
ftrylockfile() function (streams), 87
full device, 281
full reads, 34
functions

error handling, 21
signal-safe, 349

funlockfile() function (streams), 87
futex() system call (Pthreads), 226
fwrite() function (stdio.h), 79
fwrite() function (streams), 77, 80

G
gcc (GNU Compiler Collection), 4
gcc library, 2
gdb library, 2
getcwd() system call (current working directo‐

ries), 260–262
getdents() system call (directories), 270
getpagesize() function (Linux), 107, 305
getpgid() system call, 171
getpgrp() function (process groups), 172
getppid() system call, 140
getpriority() system call, 184–185
getrlimit() system call, 204
gets() function (streams), 89
getsid() (sessions), 170
getsid() system call, 171
gettimeofday() function (time), 371, 374
gettimer() function (time), 388
getwd() system call (BSD), 262
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getxattr() system call (extended attributes), 254
get_current_dir_name() function (C library),

262
get_threat_area() (syscalls), 3
ghosts, 162
gid, 19
glib library, 2
glibc (C library), 4
glibc library

binary compatibility and, 9
brk() and, 313
header files and, 21
mremap() and, 113
threads and, 17

global locks on mutexes, 238
gmtime() function (time), 376
GNOME file manager, 251

Beagle search, 292
copying files with, 277

GNU Compiler Collection (gcc), 4
GNU Privacy Guard, 281
Go-routines, 217
Greenwhich Mean Time, 364
group IDs (gid), 19, 163

manipulating, 166
obtaining, 167

groups, 18
of processes, 163–167

GUIs, file managers for, 251

H
hard links, 13
hard real-time systems, 190

jitter and, 191
hard resource limits, 204
hardware

device nodes and, 280
faults, signal for, 337
si_code values for errors, 358

hardware clock, 365
haystack, 324
headers, 21
heap memory region, 295
holes, creating with lseek(), 46–48
hwclock command, 365
hybrid threading, 216

I
i-number, 11
I/O

events, si_code values for, 360
kernel implementation of, 62–66
multiplexed, 51–62
page cache, 63
standard libraries, 70
synchronized, 40–44
virtual filesystem, 62
wait time, 44
writeback process, 65

I/O schedulers
Anticipatory, 127
building into applications, 129
Completely Fair Queuing (CFQ), 128
configuring, 129
in user-space, 129
merging, 124
Noop, 128
optimizing reads with, 125–128
performance of, 132–135
read latency, 125
selecting, 129
solid-state drives and, 128
sorting, 125

by block, 132–135
by node, 131
by path, 130

I/O-bound processes, 178
ID allocation (processes), 138
idle process, 138
id_t type, 157
IEEE, 7
illegal machine instructions, 338

si_code values for, 359
information node, 11
init process, 2

on startup, 138
process hierarchy and, 18

ino, 11
inode number, 11
inode, file metadata and, 241
inotify interface (files), 283–292

destroying instance of, 292
event queue size, 292
events, 287–290
initializing, 284
watches, 285–287
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inotify_add_watch() system call, 285
inotify_event structure, 287–290

move events and, 290
nonstandard, 289
reading, 288

inotify_rm_watch() system call, 291
inquiry, 18
Institute of Electrical and Electronics Engineers

(IEEE), 7
instruction pointer, 17
int (C type), 10
internal fragmentation, 308
International Organization for Standardization

(ISO), 8
interprocess communication (IPC), 14, 20
interrupt character, 338
interval notation, 112
interval timers, 387–389, 389
intmax_t, 140
intraprocess switching, 213
IN_IGNORED event (inotify events), 292
IN_MOVED_FROM event (inotify_event struc‐

ture), 290
IN_MOVED_TO event (inotify_event struc‐

ture), 290
ioctl() system call, 132, 282
ionice utility (util-linux package), 186
iostream library, 70
IPC mechanisms, 17
ISO, 8

J
Java VM, 2
JavaScript, 2

interpreter, 2
jiffies counter, 364
jitter (real-time systems), 191
joinable threads, 234

K
kernel, 2

development, 2
illegal machine instructions and, 338
Linux, 9
signals and, 334

kernel-level threading, 215–217
Kernighan, Brian, 8, 299
keys/values (extended attributes), 251

kill -l command, 335
kill() system call, 338, 346
killpg() system call, 347

L
last in/first out (streams), 74
latency (real-time systems), 191
LBA (logical block addressing), 124
lchown() system call, 248
least-privileged rights, 163
level-triggered vs. edge-triggered events, 103
lgetxattr() system call (extended attributes), 254
libc (C library), 4
libpthread library (glibc), 227
linear I/O

scatter/gather I/O vs., 92
lines, reading individually, 75
LINE_MAX (limits.h), 75
link count, 13
link() system call, 272
links, 12, 259, 271–277

broken, 13
hard, 272
lstat() and, 242
pthreads and, 227
removing, 275–277
soft, 273–275
symbolic, 13, 273–275
symlinks, 273–275

Linus Elevator I/O scheduler, 126
Linus kernel, 9
Linux Foundation, 9
Linux Standard Base (LSB), 9
listxattr() system call (extended attributes), 257
llistxattr() system call (extended attributes), 257
load balancing (multi-processor systems), 187
locality of reference, 64
localtime() function (time), 376
localtime_r() function (time), 376
lock() function (Pthreads), 223
locking threads, 86
logical block (filesystems), 124
logical block addressing (LBA), 124
login group, 19
login program, 18
login shell, 18, 168
lremovexattr() system call (extended attributes),

258
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ls command, 2, 259
-i flag, 241

LSB (Linux Standard Base), 9
lseek() system call, 46–48

error values for, 48
fseek() vs., 82
limits on, 48
race conditions with, 49
streams and, 80
zero padding with, 46–48

lsetxattr() system call (extended attributes), 255
lstat() function (stat.h), 242

M
machine architecture, 3
machine registers, 4
madvise() system call, 115–118

advice parameter, 116
error codes/return values, 118

major/minor numbers of device nodes, 280
mallinfo() function (memory), 315
malloc() interface (stdlib.h), 296

alloca() vs., 317
anonymous memory mappings vs., 309
calloc() vs., 311
data alignment and, 303–305
data segments and, 307
freeing memory after, 301

MALLOC_CHECK environmental variable, 315
malloc_stats() function (memory), 316
malloc_trim() function (memory), 315
malloc_usable_size() function (memory), 314
mallopt() function (memory), 312–314
manipulating memory, 321–325
mappings, 295

anonymous, 308–312
Mars Pathfinder mission, 224
master thread, 228
Maxwell, James, 173
Maxwell’s demon, 173
memalign() function (SunOS), 305
memccpy() function (memory), 323
memchr() function (memory), 324
memcmp() function (memory), 322
memcpy() function (memory), 323
memfrob() function (memory), 325
memmem() function (memory), 324
memmove() function (memory), 323

memory
areas, 295
invalid access, si_code values for, 360
manipulating, 321–325
pages, 293
paging, 293
regions, 295
savings, 213

memory allocation mechanisms, 320
memory locks, 325–329

limits on, 328
on entire address space, 327
on partial address space, 326
unlocking, 328

memory management, 293–331
allocation mechanisms, choosing, 320
anonymous mappings, 308–312
data alignment, 303
data segments, 307
dynamic allocation, 296
fragmentation and, 308
locking, 325–329
OOM, 330
overcommitment, 330
process address space, 293–296
virtual address space, 293–296

memory management unit (MMU), 16, 106,
147, 293

memory manipulation
comparing bytes, 322
frobnicating bytes, 325
moving bytes, 323
searching bytes, 324
setting bytes, 321
stacklen bytes, 324

memory poisoning, 313
memptr, 304
memrchr() function (memory), 324
memset() function (memory), 311, 321
metadata (files), 241–259

extended attributes, 250–259
fdatasync() and, 41
ownership, 248–250
permissions, 246–248
stat functions and, 241–245

MIME type sniffing, 251
mincore() function (memory), 328
minimum granularity (CFS), 181
mktime() function (time), 375
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mlock() system call, 326, 327
limiting memory locked by, 206

mlockall() system call, 327
limiting memory locked by, 206

mmap() system call, 104–109, 311
anonymous memory mappings and, 309
error codes for, 108
flags for, 105
page size and, 106
read()/write() vs., 111
return values for, 108
signals for, 109

mode argument (mkdir() system call), 266
mode argument (open() system call), 29–31
mode argument (strings), 71
monotonic time, 363
mount point, 15
mounting, 15
mprotect() interface, 113

error codes/return values for, 114
mremap() system call, 112
msync() function (mman.h), 114

error codes/return values for, 115
multi-processor systems

hard affinity, 187
process scheduling on, 186–190

multicore processors, 213
multiplexed I/O, 51–62, 214

poll() system call, 58
ppoll() system call, 61
pselect() system call, 56
select() system call, 52–57

multitasking operating systems, 178
multithreaded, 86
multithreaded processes, 17
multithreading, 212–215

alternatives to, 214
costs of, 214

multithreading programs vs. signals, 362
munlock() system call, 328
munlockall() system call, 328
munmap system call, 311
munmap() system call, 109

anonymous memory mappings and, 309
mutexes, 222

acquiring/locking, 236
releasing/unlocking, 236

mutexes (Pthreads), 235–238
initializing, 236

scoped locks on, 237
mv utility, 2, 278

N
N:1 threading, 215
N:M threading, 216
named pipes, 14
namespaces, 15–24, 15

global, 15
per-process, 16
unified, 15

nanosleep() function (time), 382, 385
native filesystems, 15
Native POSIX Thread Library (NPTL), 226
Native POSIX Threading Library (NPTL), 17

sched_yield() vs., 182
natural data alignment, 303
naturally aligned, 77
NetBSD, 216
network filesystems, 15
Network Time Protocol (NTP) daemons, 377
Next Generation POSIX Threads (NGPT), 227
NGPT (Next Generation POSIX Threads), 227
nice value floor, 206
nice values (processes), 183

limiting lowering of, 206
nice() system call, 183
nonblocking I/O, 214
nonblocking processes

multiplexed I/O vs., 52
open() and, 28

Noop I/O scheduler, 128
normal classed processes, 194
normal real time policy, 194
NPTL, 17
null characters, 75
null device, 280

O
offset, 80
on_exit() function, 151
OOM (out of memory), 330
open () (system call), 4
Open Group, 7
open() system call, 26–31, 73

chdir() vs., 264
error codes, 32
flags for, 26–28
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mode argument, 29–31
O_APPEND flag, 38
O_DIRECT flag, 45
O_DSYNC flag, 44
O_NONBLOCK flag, 35, 38
O_RSYNC flag, 44
O_SYNC flag, 43
return values for, 32

opendir() function (DIR objects), 268
open() system call and, 27

open_sysconf() function (memory), 319
operating systems

multitasking, 178
operational deadlines (real-time systems), 190
origin argument (lseek() system call), 46
out-of-band data, 339
overcommitment, 330
overruns, 385
O_APPEND flag (open() system call), 38
O_DIRECT flag (open() system call), 45
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