

 فقط کتاب

 مرجع معتبر دانلود کتاب هاي تخصصی

Faghatketab.ir

Notes	from	the	Road

I’ve	been	a	writer	for	30	years,	having	finished	my	
first	novel	in	1986,	and	I’m	no	stranger	to	the	ups	and	downs	that	come	with	the	
business.	Heck,	even	though	my	work	won	awards	in	the	interim,	I	didn’t	truly	
break	into	publishing	until	1995	when	my	first	full-length	work	of	nonfiction	
catapulted	its	way	onto	bestseller	lists.	That	work	was	followed	by	a	dozen	other	
topsellers,	nearly	all	of	which	were	published	by	Macmillan	and	distributed	to	the	
world	by	Simon	&	Schuster,	that	is	until	the	business	turned	and	I	found	myself	at	
a	crossroads.

The	year	was	1998	and	I	turned	away	from	full-time	writing	for	a	short	while	to	
work	for	a	Seattle-based	startup.	Around	the	same	time,	I	jumped	ship	from	
Macmillan	and	an	opportunity	to	write	for	Microsoft	arose.	Microsoft	was	
working	on	a	new	series	of	books	called	Pocket	Consultants.	They	needed	a	
writer	who	could	write	fast,	clearly,	concisely,	authoritatively	and	just	as	
important	meet	crazy	timelines	not	just	once	or	a	few	times	but	always.	
Surprisingly,	always	hitting	timelines	isn’t	something	many	writers	can	do	while	
delivering	quality	work.

I	went	over	to	Microsoft	without	any	hesitation.	They	loved	my	writing	so	much

that	my	style	became	the	Pocket	Consultant	style	and	soon	I	had	not	just	one
contract	with	them	but	three,	then	four.	I	not	only	hit	my	timelines	while	writing
clearly,	concisely	and	authoritatively,	I	consistently	walloped	them.

Microsoft	loved	this.	Soon	the	Pocket	Consultants	and	I	were	synonymous.	In	the
years	that	followed,	I	wrote	dozens.	Not	only	were	the	books	read	in	print	by
millions	(thank	you,	readers!),	articles	and	extracts	from	the	books	were	posted	on
Microsoft	websites	and	read	by	millions	more.

To	all	the	readers	out	there	who	miss	my	Pocket	Consultants,	great	things	are	still
happening.	In	my	IT	Pro	Solutions	series.	In	my	Tech	Artisans	series.	In	my
Administrator’s	Reference	series.	Hang	in	there	with	me	as	I	blaze	new	trails	with
Stanek	&	Associates	and	we’ll	get	to	visit	new	places	together.

—William	R.	Stanek

Notes	from	the	Road

I	began	my	tech	career	as	an	intern	at	Stanek	
&	Associates	in	2007	and	am	currently	working	as	a	development	and	engineering	
lead	for	the	company.	While	most	were	out	enjoying	spring	break	and	summer	
vacations,	I	was	working	as	an	assistant	on	the	publishing	side	of	the	business,	
before	moving	over	to	the	technical	side	of	the	business	during	my	college	years	at	
University	of	Washington.

I’m	thankful	to	my	father	for	sharing	his	knowledge	with	me	for	the	past	ten	years.	
I’ve	learned	so	much	and	am	now	honing	my	advanced	skills	with	SQL	Server,	
Exchange	Server,	Windows	Server,	IIS,	PowerShell	and	more.	Although	I’ve	
made	contributions	to	over	a	dozen	other	books	I	worked	on	with	my	father,	this	is	
the	second	book	I	have	co-author	credit	for.

—William	R.	Stanek	Jr.

IIS	10	Web	Apps,	Security	&
Maintenance

Covers	Internet	Information	Services	(IIS)	versions	10,	8,	and	7	for
Windows	Server	2016,	2012	R2,	and	2012

Windows	10,	8.1,	and	7

IT	Pro	Solutions

William	R.	Stanek
Author	&	Series	Editor

William	R.	Stanek,	Jr.
Author

IIS	10	Web	Apps,	Security	&	Maintenance

IT	Pro	Solutions

Published	by	Stanek	&	Associates
PO	Box	362,	East	Olympia,	WA,	98540-0362
www.williamrstanek.com.

Copyright	©	2017	William	R.	Stanek.	Seattle,	Washington.
All	rights	reserved.

No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system	or	
transmitted	in	any	form	or	by	any	means,	electronic,	mechanical,	photocopying,	
recording,	scanning	or	otherwise,	except	as	permitted	by	Sections	107	or	108	of	
the	1976	United	States	Copyright	Act,	without	the	prior	written	permission	of	the	
publisher.	Requests	to	the	publisher	for	permission	should	be	sent	to	the	address	
listed	previously.

Stanek	&	Associates	is	a	trademark	of	Stanek	&	Associates	and/or	its	affiliates.	
All	other	marks	are	the	property	of	their	respective	owners.	No	association	with	
any	real	company,	organization,	person	or	other	named	element	is	intended	or	
should	be	inferred	through	use	of	company	names,	website	addresses	or	screens.

This	book	expresses	the	views	and	opinions	of	the	author.	The	information	
contained	in	this	book	is	provided	without	any	express,	statutory	or	implied	
warranties.

LIMIT	OF	LIABILITY/DISCLAIMER	OF	WARRANTY:	THE	PUBLISHER	
AND	THE	AUTHOR	MAKE	NO	REPRESENTATIONS	OR	WARRANTIES	
WITH	RESPECT	TO	THE	ACCURACY	OR	COMPLETENESS	OF	THE	
CONTENTS	OF	THIS	WORK	AND	SPECIFICALLY	DISCLAIM	ALL	
WARRANTIES,	INCLUDING	WITHOUT	LIMITATION	WARRANTIES	OF	
FITNESS	FOR	A	PARTICULAR	PURPOSE.	NO	WARRANTY	MAY	BE	
CREATED	OR	EXTENDD	BY	SALES	OR	PROMOTIONAL	MATERIALS.	THE	
ADVICE	AND	DISCUSSION	IN	THIS	BOOK	MAY	NOT	BE	SUITABLE	FOR	
EVERY	SITUATION.	THIS	WORK	IS	SOLD	WITH	THE	UNDERSTANDING	
THTAT	THE	PUBLISHER	IS	NOT	ENGAGED	IN	RENDERING	
PROFESSIONAL	SERVICES	AND	THAT	SHOULD	PROFESSIONAL

ASSISTANCE	BE	REQUIRED	THE	SERVICES	OF	A	COMPETENT
PROFESSIONAL	SHOULD	BE	SOUGHT.	NEITHER	THE	PUBLISHERS,
AUTHORS,	RESELLERS	NOR	DISTRIBUTORS	SHALL	BE	HELD	LIABLE
FOR	ANY	DAMAGES	CAUSED	OR	ALLEGED	TO	BE	CAUSE	EITHER
DIRECTLY	OR	INDIRECTLY	HEREFROM.	THE	REFERENCE	OF	AN
ORGANIZATION	OR	WEBSITE	AS	A	SOURCE	OF	FURTHER
INFORMATION	DOES	NOT	MEAN	THAT	THE	PUBLISHER	OR	THE
AUTHOR	ENDORSES	THE	INFORMATION	THE	ORGANIZATION	OR
WEBSITE	MAY	PROVIDE	OR	THE	RECOMMENDATIONS	IT	MAY	MAKE.
FURTHER,	READERS	SHOULD	BE	AWARE	THAT	WEBSITES	LISTED	IN
THIS	BOOK	MAY	NOT	BE	AVAILABLE	OR	MAY	HAVE	CHANGED	SINCE
THIS	WORK	WAS	WRITTEN.

Stanek	&	Associates	publishes	in	a	variety	of	formats,	including	print,	electronic
and	by	print-on-demand.	Some	materials	included	with	standard	print	editions
may	not	be	included	in	electronic	or	print-on-demand	editions	or	vice	versa.

Country	of	First	Publication:	United	States	of	America.

Cover	Design:	Creative	Designs	Ltd.
Editorial	Development:	Andover	Publishing	Solutions
Technical	Review:	L	&	L	Technical	Content	Services

You	can	provide	feedback	related	to	this	book	by	emailing	the	author	at
williamstanek	@	aol.com.	Please	use	the	name	of	the	book	as	the	subject	line.

Version:	1.0.0.1c

Note I	may	periodically	update	this	text	and	the	version	number	shown
above	will	let	you	know	which	version	you	are	working	with.	If	there’s	a
specific	feature	you’d	like	me	to	write	about	in	an	update,	message	me	on
Facebook	(http://facebook.com/williamstanekauthor).	Please	keep	in	mind
readership	of	this	book	determines	how	much	time	I	can	dedicate	to	it.

Thank	you	for	buying	this	book…

Find	out	about	special	offers,	free	book	giveaways,	amazing	deals,	and	exclusive
content.	Plus	get	updates	on	favorite	books	and	more	when	you	join	William
Stanek	on	Facebook	at	facebook.com/William.Stanek.Author.	William’s	on	twitter
at	twitter.com/williamstanek.

Connect	with	Will	by	visiting	him	on	LinkedIn	@	linkedin.com/in/will-stanek/.

Table	of	Contents

Notes	from	the	Road
How	to	Use	This	Guide
Print	Readers
Digital	Book	Readers
Support	Information
Conventions	&	Features
Share	&	Stay	in	Touch

Chapter	1	Running	IIS	Applications
Managing	ISAPI	and	CGI	Application	Settings
Understanding	ISAPI	Applications
Configuring	ISAPI	and	CGI	Restrictions
Configuring	ISAPI	Filters
Configuring	CGI	Settings

Managing	ASP	Settings
Controlling	ASP	Behavior
Customizing	Request	Handling	for	ASP
Optimizing	Caching	for	ASP
Customizing	COM+	Execution	for	ASP
Configuring	Session	State	for	ASP
Configuring	Debugging	and	Error	Handling	for	ASP

Managing	ASP.NET	Settings
Configuring	Session	State	Settings	for	ASP.NET
Configuring	SMTP	E-Mail	Settings
Configuring	Key/Value	Pairs	for	ASP.NET	Applications
Configuring	Settings	for	ASP.NET	Pages	and	Controls
Registering	Custom	Controls
Configuring	ASP.NET	Settings	for	Pages	and	Controls

Connecting	to	Data	Sources

Managing	.NET	Framework	Settings
Configuring	.NET	Providers
Configuring	.NET	Trust	Levels
Configuring	.NET	Profiles
Configuring	.NET	Roles
Configuring	.NET	Users
Configuring	.NET	Compilation
Configuring	.NET	Globalization

Chapter	2	Managing	Applications	and	Application	Pools
Defining	Custom	Applications
Managing	Custom	IIS	Applications
Viewing	Applications
Configuring	Default	Settings	for	New	Applications
Creating	Applications
Converting	Existing	Directories	to	Applications
Changing	Application	Settings
Configuring	Output	Caching	for	Applications
Deleting	IIS	Applications

Managing	ASP.NET	and	the	.NET	Framework
Installing	ASP.NET	and	the	.NET	Framework
Deploying	ASP.NET	Applications
Uninstalling	.NET	Versions

Working	with	Application	Pools
Viewing	Application	Pools
Configuring	Default	Settings	for	New	Application	Pools
Creating	Application	Pools
Changing	Application	Pool	Settings
Assigning	Applications	to	Application	Pools
Configuring	Application	Pool	Identities

Chapter	3	Managing	Worker	Processes	and	Performance
Starting,	Stopping,	and	Recycling	Worker	Processes	Manually

Starting	and	Stopping	Worker	Processes	Manually
Recycling	Worker	Processes	Manually
Configuring	Worker	Process	Startup	and	Shutdown	Time	Limits

Configuring	Multiple	Worker	Processes	for	Application	Pools
Configuring	Worker	Process	Recycling
Recycling	Automatically	by	Time	and	Number	of	Requests
Recycling	Automatically	by	Memory	Usage

Maintaining	Application	Health	and	Performance
Configuring	CPU	Monitoring
Configuring	Failure	Detection	and	Recovery
Shutting	Down	Idle	Worker	Processes
Limiting	Request	Queues
Deleting	IIS	Application	Pools

Chapter	4	Enhancing	Web	Server	Security
Managing	Windows	Security
Working	with	User	and	Group	Accounts
IIS	User	and	Group	Essentials
Managing	the	IIS	Service	Logon	Accounts
Managing	the	Internet	Guest	Account
Working	with	File	and	Folder	Permissions
File	and	Folder	Permission	Essentials
Viewing	File	and	Folder	Permissions
Setting	File	and	Folder	Permissions

Working	with	Group	Policies
Group	Policy	Essentials
Setting	Account	Policies	for	IIS	Servers
Setting	Auditing	Policies

Managing	IIS	Security
Configuring	Handler	Mappings	for	Applications
Setting	Authentication	Modes
Understanding	Authentication

Enabling	and	Disabling	Authentication
Setting	Authorization	Rules	for	Application	Access
Configuring	IP	Address	and	Domain	Name	Restrictions
Managing	Feature	Delegation	and	Remote	Administration
Creating	and	Configuring	IIS	Manager	User	Accounts
Configuring	IIS	Manager	Permissions
Configuring	Feature	Delegation

Chapter	5	Using	Active	Directory	Certificate	Services
Understanding	SSL
Using	SSL	Encryption
Using	SSL	Certificates
Understanding	SSL	Encryption	Strength

Working	with	Active	Directory	Certificate	Services
Understanding	Active	Directory	Certificate	Services
Installing	Active	Directory	Certificate	Services
Accessing	Certificate	Services	in	a	Browser
Starting	and	Stopping	Certificate	Services
Backing	Up	and	Restoring	the	CA
Creating	CA	Backups
Recovering	CA	Information

Configuring	Certificate	Request	Processing
Approving	and	Declining	Pending	Certificate	Requests
Generating	Certificates	Manually	in	the	Certification	Authority	Snap-In
Revoking	Certificates
Reviewing	and	Renewing	the	Root	CA	Certificate

Chapter	6	Managing	Certificates	and	SSL
Creating	and	Installing	Certificates
Creating	Certificate	Requests
Submitting	Certificate	Requests	to	Third-Party	Authorities
Submitting	Certificate	Requests	to	Certificate	Services
Processing	Pending	Requests	and	Installing	Site	Certificates

Working	with	SSL
Configuring	SSL	Ports
Adding	the	CA	Certificate	to	the	Client	Browser’s	Root	Store
Confirming	that	SSL	Is	Correctly	Enabled
Resolving	SSL	Problems
Ignoring,	Accepting,	and	Requiring	Client	Certificates
Requiring	SSL	for	All	Communications

Chapter	7	Performance	Tuning,	Monitoring,	and	Tracing
Monitoring	IIS	Performance	and	Activity
Why	Monitor	IIS?
Getting	Ready	to	Monitor

Detecting	and	Resolving	IIS	Errors
Examining	the	Access	Logs
Examining	the	Windows	Event	Logs
Examining	the	Trace	Logs
Tracing	Failed	Requests
Enabling	and	Configuring	Failed	Request	Tracing
Creating	and	Managing	Trace	Rules

Monitoring	IIS	Performance	and	Reliability
Using	Monitoring	Tools
Choosing	Counters	to	Monitor

Tuning	Web	Server	Performance
Monitoring	and	Tuning	Memory	Usage
Monitoring	and	Tuning	Processor	Usage
Monitoring	and	Tuning	Disk	I/O
Monitoring	and	Tuning	Network	Bandwidth	and	Connectivity

Strategies	for	Improving	IIS	Performance
Removing	Unnecessary	Applications	and	Services
Optimizing	Content	Usage
Optimizing	ISAPI,	ASP,	and	ASP.NET	Applications
Optimizing	IIS	Caching,	Queuing,	and	Pooling

Chapter	8	IIS	Backup	and	Recovery
Backing	Up	the	IIS	Configuration
Understanding	IIS	Configuration	Backups
Managing	the	IIS	Configuration	History
Viewing	IIS	Configuration	Backups
Creating	IIS	Configuration	Backups
Removing	IIS	Configuration	Backups
Restoring	IIS	Server	Configurations
Rebuilding	Corrupted	IIS	Installations

Backing	Up	and	Recovering	Server	Files
Turning	on	the	Backup	Feature
Working	with	Windows	Server	Backup
Setting	Basic	Performance	Options
Scheduling	Server	Backups
Backing	up	a	Server
Protecting	a	Server	Against	Failure
Configuring	Recovery	Options

Recovering	Files	and	Folders

How	to	Use	This	Guide

This	book	is	designed	to	provide	the	tools	and	guidance	you	need	to	get	the	most
out	of	Internet	Information	Services	(IIS).	The	first	chapter,	Running	IIS
Applications,	takes	you	through	the	essentials	for	working	with	web	apps.
Following	this	are	chapters	that	will	take	an	in-depth	look	at	specific	tasks	and
aspects	of	web	apps.

Not	only	has	William	Stanek	been	developing	expert	solutions	and	writing
professionally	about	IIS	for	many	years,	he’s	also	written	a	number	of	bestselling
books	on	IIS,	web	publishing	and	web	servers.	In	this	book,	William	shares	his
extensive	knowledge,	delivering	ready	answers	for	day-to-day	usage	while
zeroing	in	on	core	commands	and	techniques.

As	with	all	books	in	the	IT	Pro	Solutions	series,	this	book	is	written	especially
for	IT	professionals	working	with,	supporting,	and	managing	specific	versions	of
Microsoft	products.	Here,	this	means	the	IIS	versions	that	shipped	with	various
Windows	operating	systems,	including:

IIS	10,	which	is	part	of	Windows	10	and	Windows	Server	2016.
IIS	8,	which	is	part	of	Windows	8.1,	Windows	Server	2012	and	Windows

Server	2012	R2.
IIS	7,	which	is	part	of	early	Windows	and	Windows	Server	operating

systems,	including	Windows	7,	Windows	Server	2008,	and	Windows	Server
2008	R2.

Odds	are,	if	you	are	using	any	of	these	operating	systems,	these	are	the	versions	of	
IIS	available.	Keep	in	mind,	however,	that	Microsoft	releases	IIS	versions	with	
different	major	and	minor	version	numbers.	While	the	first	major	release	of	the	
product	has	the	.0	minor	version,	the	second	major	release	typically	has	the	.5	
minor	version.	This	is	why	you’ll	see	that	IIS	7.0	and	IIS	7.5	are	both	available,	
as	are	IIS	8.0	and	IIS	8.5,	IIS	10.0,	etc.

Don’t	worry	if	you	are	working	with	a	dot	revision	version	of	IIS.	All	versions	of	
IIS	available	for	all	current	versions	of	Windows	and	Windows	Server	are	
substantially	similar.	You	can	hone	your	skills	with	any	base	version	and	use	these	
skills	with	any	higher	version.

Print	Readers

Print	editions	of	this	book	include	an	index	and	some	other	elements	not	available
in	the	digital	edition.	Updates	to	this	book	are	available	online.	Visit
http://www.williamrstanek.com/iis/	to	get	any	updates.	This	content	is	available
to	all	readers.

Digital	Book	Readers

Digital	editions	of	this	book	are	available	at	all	major	retailers,	at	libraries	upon
request	and	with	many	subscription	services.	If	you	have	a	digital	edition	of	this
book	that	you	downloaded	elsewhere,	such	as	a	file	sharing	site,	you	should	know
that	the	author	doesn’t	receive	any	royalties	or	income	from	such	downloads.

Support	Information

Every	effort	has	been	made	to	ensure	the	accuracy	of	the	contents	of	this	book.	As
corrections	are	received	or	changes	are	made,	they	will	be	added	to	the	online
page	for	the	book	available	at:

http://www.williamrstanek.com/iis/

If	you	have	comments,	questions,	or	ideas	regarding	the	book,	or	questions	that	are
not	answered	by	visiting	the	site	above,	send	them	via	e-mail	to:

williamstanek@aol.com

It’s	important	to	keep	in	mind	that	Microsoft	software	product	support	is	not
offered.	If	you	have	questions	about	Microsoft	software	or	need	product	support,
please	contact	Microsoft.

Microsoft	also	offers	software	product	support	through	the	Microsoft	Knowledge
Base	at:

http://support.microsoft.com/

Conventions	&	Features

This	book	uses	a	variety	of	elements	to	help	keep	the	text	clear	and	easy	to	follow.
You’ll	find	code	terms	and	listings	in	monospace, 	except	when	you	are	told	to
actually	enter	or	type	a	command.	In	that	case,	the	command	appears	in	bold.
When	new	terms	are	introduced	and	defined,	they	are	put	it	in	italics.

The	first	letters	of	the	names	of	menus,	dialog	boxes,	user	interface	elements,	and
commands	are	capitalized.	Example:	the	Add	Roles	And	Features	Wizard.	This
book	also	has	notes,	tips	and	other	sidebar	elements	that	provide	additional
details	on	points	that	need	emphasis.

Keep	in	mind	that	throughout	this	book,	where	click,	right-click	or	double-click	is
used,	you	also	can	use	touch	equivalents:	tap,	press	and	hold,	or	double	tap.	Also,
when	using	a	device	without	a	physical	keyboard,	you	are	able	to	enter	text	by
using	the	onscreen	keyboard.	If	a	device	has	no	physical	keyboard,	simply	touch
an	input	area	on	the	screen	to	display	the	onscreen	keyboard.

Share	&	Stay	in	Touch

The	marketplace	for	technology	books	has	changed
substantially	over	the	past	few	years.	In	addition	to	becoming	increasingly
specialized	and	segmented,	the	market	has	been	shrinking	rapidly,	making	it
extremely	difficult	for	books	to	find	success.	To	ensure	the	books	you	need	for
your	career	remain	available,	raise	your	voice	and	support	this	work.

Without	support	from	you,	the	reader,	future	books	will	not	be	possible.	Your
voice	matters.	If	you	found	the	book	to	be	useful,	informative	or	otherwise	helpful,
please	take	the	time	to	let	others	know	by	sharing	about	the	book	online.

To	stay	in	touch,	use	Facebook	or	Twitter.	Your	messages	and	comments	about	the
book,	especially	suggestions	for	improvements	and	additions,	are	always
welcome.	If	there	is	a	topic	you	think	should	be	covered	in	the	book,	write	to	the
email	address	provided.

IMPORTANT	 The	focus	of	this	book	is	on	putting	IIS	to	work.	If	you	need	
help	learning	the	core	features	of	IIS,	you	should	refer	to	the	companion	
book:	IIS	10:	IT	Pro	Solutions.

MORE	INFO	 The	success	and	sales	of	this	book	determine	how	much

time	the	authors	can	dedicate	to	updates,	revisions	and	extras.	Your
suggestions	are	always	welcome.	If	you	have	recommendations	for	additions
or	changes	to	this	book,	please	write.	Be	sure	to	reference	the	full	title	and
edition	of	the	book	in	your	initial	correspondence.

Chapter	1
Running	IIS	Applications

Not	long	ago,	when	Web	sites	were	primarily	static	Hypertext	Markup	Language
(HTML)	pages,	the	most	serious	problems	facing	Web	administrators	were
configuring	multiple	sites	on	the	same	server	and	keeping	the	server	running
without	failure.	With	the	growing	importance	of	Web	servers	not	just	on	the
Internet	but	also	everywhere	within	the	organization,	different	issues	have
emerged.	Web	servers	must	do	more—and	not	just	with	respect	to	handling	and
responding	to	requests.	Web	servers	must	provide	services,	host	applications,	and
serve	dynamic	content,	all	of	which	IIS	can	do	using	Internet	Server	Application
Programming	Interface	(ISAPI)	applications,	Common	Gateway	Interface	(CGI)
programs,	Active	Server	Pages	(ASP)	applications,	and	Microsoft	ASP.NET
applications.

Managing	ISAPI	and	CGI	Application	Settings

ISAPI	and	CGI	are	two	basic	types	of	IIS	applications.	ISAPI	provides	the	core
functionality	for	IIS	when	applications	use	classic	pipeline	mode.	ISAPI	acts	as	a
layer	over	IIS	that	can	be	extended	using	ISAPI	applications,	Active	Server	Pages
(ASP),	ASP.NET,	and	third-party	extensions.	CGI	programs	pass	information	to
servers	through	environment	variables	that	capture	user	input	in	forms	in	addition
to	details	about	the	user,	the	user’s	browser,	and	the	user’s	operating	system.

Understanding	ISAPI	Applications

Although	ISAPI	applications	are	being	replaced	by	the	new	IIS	modules	API,	IIS
maintains	support	for	ISAPI	applications.	ISAPI	applications	fall	into	two
categories:

ISAPI	filters
ISAPI	extensions

You	can	use	both	filters	and	extensions	to	modify	the	behavior	of	IIS.	ISAPI	filters	
are	dynamic-link	libraries	(DLLs	or	executables	that	are	loaded	into	memory	
when	the	World	Wide	Web	Publishing	Service	is	started	and	remain	in	memory	
until	the	IIS	server	is	shut	down.	ISAPI	filters	are	triggered	when	a	Web	server	
event	occurs	on	the	IIS	server.	For	example,	an	ISAPI	filter	can	control	which	
files	are	mapped	to	a	URL,	modify	the	response	sent	by	the	server,	and	perform	
other	actions	to	modify	the	behavior	of	the	server.

You	can	apply	ISAPI	filters	globally	or	locally.	Global	filters	affect	all	IIS	Web	
sites	running	on	a	server	and	are	loaded	into	memory	when	the	World	Wide	Web	
Publishing	Service	is	started.	Local	filters	are	called	site	filters.	Site	filters	affect	
a	single	IIS	Web	site	and	can	be	dynamically	loaded	into	memory	when	a	request	
that	uses	such	a	filter	is	made	to	the	site.

ISAPI	filters	aren’t	ideal	choices	when	you	need	to	perform	long-running	
operations,	such	as	database	queries,	or	when	you	want	to	process	the	entire	body	
of	requests.	In	these	instances,	ISAPI	extensions	work	better.

Like	ISAPI	filters,	ISAPI	extensions	are	defined	as	DLLs	or	executables.	Unlike	
global	filters,	which	are	loaded	with	the	World	Wide	Web	Publishing	Service,	
extensions	are	loaded	on	demand	and	are	executed	in	response	to	client	requests.	
Normally,	ISAPI	extensions	are	used	to	process	the	data	received	in	requests	for	
specific	types	of	files.	For	example,	when	a	client	makes	a	request	for	a	file	that	
has	an	.asp	extension,	IIS	uses	the	Asp.dll	ISAPI	extension	to	process	the	contents	
of	ASP	and	return	the	results	to	the	client	for	display.	IIS	provides	classic
ASP.NET	functionality	through	an	ISAPI	filter	(aspnet_filter.dll,	which	in	turn	
calls	an	ISAPI	extension	(aspnet_isapi.dll.

When	you	install	ASP	and	ASP.NET,	default	ISAPI	extensions	are	configured	for	
use	on	the	Web	server.	ISAPI	extensions	are	configured	to	respond	to	specific

types	of	Hypertext	Transfer	Protocol	(HTTP)	requests	or	all	HTTP	requests	for
files	with	a	specific	file	extension.	Table	1-1	summarizes	the	key	types	of	HTTP
requests.

TABLE	1-1	HTTP	Request	Types	Use	with	ISAPI	Extensions
DELETE A	request	to	delete	a	resource.	This	request	normally

isn’t	allowed	unless	the	user	has	specific	privileges	on	the
Web	site.

GET A	request	to	retrieve	a	resource.	The	standard	request
for	retrieving	files.

HEAD A	request	for	an	HTTP	header.	The	return	request
doesn’t	contain	a	message	body.

OPTIONS A	request	for	information	about	communications	options.
POST A	request	to	submit	data	as	a	new	subordinate	of	a

resource.	It	is	typically	used	for	posting	data	from	filled-
out	forms.

PUT A	request	to	store	the	enclosed	data	with	the	resource
identifier	specified.	It	is	typically	used	when	uploading
files	through	HTTP.

TRACE A	request	to	trace	the	client’s	submission	for	testing	or
debugging.

Configuring	ISAPI	and	CGI	Restrictions

ISAPI	and	CGI	restrictions	control	the	ISAPI	and	CGI	extensions	that	are	allowed
to	run	on	a	Web	server.	You	configure	restrictions	only	at	the	server	configuration
level.	In	IIS	Manager,	to	view	currently	configured	restrictions	as	either	a	CGI
(.exe)	or	an	ISAPI	(.dll)	file	extension,	select	the	server	node,	and	then	double-
click	the	ISAPI	And	CGI	Restrictions	feature.	On	the	ISAPI	And	CGI	Restrictions
page,,	extensions	are	listed	by:

Description A	brief	description	or	friendly	name	for	the	related	ISAPI	or
CGI	application.
Restriction The	restriction	status.	If	an	extension	is	permitted	to	run,	its
restriction	status	is	listed	as	Allowed.	Otherwise,	its	restriction	status	is
listed	as	Not	Allowed.
Path The	execution	path	for	the	related	ISAPI	or	CGI	application.

Some	of	the	commonly	allowed	extensions	you’ll	see	include:

ASP.DLL This	ISAPI	extension	implements	ASP	functionality.
ASPNET_ISAPI.DLL This	ISAPI	extension	provides	the	processing
functions	for	ASP.NET	in	classic	pipeline	mode.
OCSPISAPI.DLL This	ISAPI	extension	implements	the	certification	status
protocol	for	Certificate	Services.
MSW3PRT.DLL This	ISAPI	extension	provides	the	processing	functions
for	Internet	printing.

NOTE Because	the	ASPNET_ISAPI.DLL	extension	is	version-specific,
you	may	see	multiple	versions	of	the	extension	registered.	Specifically,
there’ll	be	one	extension	for	each	version	of	the	Microsoft	.NET	Framework
configured.	Remove	older	versions	of	this	extension	only	when	you	are	sure
they	are	no	longer	in	use.

By	default,	only	extensions	listed	as	Allowed	can	run	on	the	server.	You	can
modify	this	configuration	to	allow	unspecified	CGI	modules,	unspecified	ISAPI
modules,	or	both	to	run	without	restriction.	To	modify	this	behavior,	as	may	be
necessary	during	development	or	temporarily	for	troubleshooting,	you	can	allow
unspecified	extensions	to	run	by	completing	the	following	steps:

1. In	IIS	Manager,	select	the	server	node,	and	then	double-click	ISAPI	And
CGI	Restrictions.

2. In	the	Actions	pane,	click	Edit	Feature	Settings.	The	Edit	ISAPI	And	CGI
Restrictions	Settings	dialog	box	appears.

3. You	can	now	allow	unspecified	CGI	modules,	unspecified	ISAPI	modules,
or	both	to	run	by	selecting	the	related	check	boxes.	To	prevent	unspecified
CGI	modules,	unspecified	ISAPI	modules,	or	both	from	running,	clear	the
related	check	boxes.	When	you	are	finished,	click	OK	to	save	your	settings.

CAUTION Allowing	unspecified	modules	to	run	on	a	Web	server	is	a
serious	security	risk.	To	prevent	possible	malicious	use	of	the	extension
functionality,	you	should	rarely	allow	unspecified	modules	to	run	on	a	Web
server.

You	can	configure	an	Allowed	or	Not	Allowed	restriction	for	an	extension	by
completing	the	following	steps:

1. In	IIS	Manager,	select	the	server	node,	and	then	double-click	ISAPI	And
CGI	Restrictions.

2. In	the	Actions	pane,	click	Add.	The	Add	ISAPI	Or	CGI	Restriction	dialog
box	appears.

3. Click	the	selection	button	to	the	right	of	the	ISAPI	Or	CGI	Path	text	box,	and
then	in	the	Open	dialog	box,	select	the	executable	to	configure	as	either	a
CGI	(.exe)	or	an	ISAPI	(.dll)	file	extension.

4. If	you	wish,	type	a	description	of	the	extension.
5. To	allow	the	extension	to	run,	select	the	Allow	Extension	Path	To	Execute

check	box.	To	prevent	the	extension	from	running,	do	not	select	this	check

box.	Click	OK	to	add	the	restriction.

You	can	work	with	restrictions	in	a	variety	of	other	ways,	as	follows:

To	change	a	currently	set	restriction	from	Allowed	to	Not	Allowed,	click	the
extension,	and	then	in	the	Actions	pane,	click	Deny.
To	change	a	currently	set	restriction	from	Not	Allowed	to	Allowed,	click	the
extension,	and	then	in	the	Actions	pane,	click	Allow.
To	modify	an	extension’s	execution	path,	description,	and	restriction	status,
click	the	extension,	and	then	in	the	Actions	pane,	click	Edit.	In	the	Edit	ISAPI
Or	CGI	Restriction	dialog	box,	make	the	necessary	changes	to	the	restriction
configuration,	and	then	click	OK.
To	remove	an	extension	from	the	restriction	list,	click	the	extension,	and	then
in	the	Actions	pane,	click	Remove.	When	prompted,	click	Yes.

By	using	the	IIS	command-line	administration	tool,	you	can	configure	ISAPI	and
CGI	restrictions	by	using	the	Set	Config	command	and	the	IsapiCgiRestriction
section	of	the	configuration	file.	Sample	1-1	provides	the	syntax	and	usage.

SAMPLE	1-1 	Configuring	ISAPI	and	CGI	Restrictions	Syntax	and	Usage

Syntax
appcmd	set	config	["ConfigPath"]	/section:IsapiCgiRestriction
[/notListedIsapisAllowed:true|false]
[/notListedCgisAllowed:true|false]

Usage
appcmd	set	config	"Default	Web	Site"	/section:IsapiCgiRestriction
/notListedIsapisAllowed:true	/notListedCgisAllowed:true

Configuring	ISAPI	Filters

ISAPI	filters	are	DLLs	that	enhance	the	functionality	provided	by	IIS.	In	IIS
Manager,	you	can	view	currently	configured	filters	by	selecting	a	server	or	site
node	and	then	double-clicking	the	ISAPI	Filters	feature.	On	the	ISAPI	Filters
page,	you’ll	see	a	list	of	defined	filters	listed	by	name,	executable,	and	entry	type.
Local	entries	are	configured	at	the	level	you	are	working	with.	Inherited	entries
are	configured	at	a	higher	level	of	the	configuration	hierarchy.

When	you’ve	configured	a	server	to	use	ASP.NET,	the	standard	filter	you’ll	see	is
aspnet_filter.dll,	which	enables	classic	pipeline	mode.	Because	this	filter	is
version-specific,	you	may	see	multiple	versions	of	the	extension	registered.
Specifically,	there’ll	be	one	extension	for	each	version	of	the	.NET	Framework
configured.	Remove	older	versions	of	this	extension	only	when	you	are	sure	they
are	no	longer	in	use.	Typically,	no	other	standard	filters	are	configured.

You	can	configure	an	ISAPI	filter	for	use	by	completing	the	following	steps:

1. In	IIS	Manager,	select	the	server	node,	and	then	double-click	ISAPI	Filters.
2. In	the	Actions	pane,	click	Add.	This	displays	the	Add	ISAPI	Filter	dialog

box.
3. In	the	Filter	Name	text	box,	type	a	descriptive	name	for	the	filter.
4. Click	the	selection	button	to	the	right	of	the	Executable	text	box,	in	the	Open

dialog	box,	select	the	filter’s	DLL,	and	then	click	OK	to	add	the	filter.

You	can	edit,	rename,	or	remove	ISAPI	filters	by	using	the	following	techniques:

To	modify	an	ISAPI	filter’s	executable	path,	click	the	filter	entry	you	want	to
modify,	and	then	click	Edit.	In	the	Edit	ISAPI	Filter	dialog	box,	click	the
selection	button	to	the	right	of	the	Executable	text	box,	in	the	Open	dialog
box,	select	the	filter’s	DLL,	and	then	click	OK	to	save	your	changes.
To	rename	a	filter,	click	the	filter	entry	to	select	it,	and	then	click	Rename.
Type	the	new	name	for	the	filter,	and	then	press	Enter.
To	remove	a	filter	that	is	no	longer	needed,	click	the	filter	entry	you	want	to
remove,	and	then	click	Remove.	When	prompted,	click	Yes.

Configuring	CGI	Settings

You	can	control	the	way	CGI	applications	are	executed	by	using	the	settings	on	the
CGI	configuration	page.	You	can	set	a	time-out	value	for	CGI	applications,	isolate
CGI	applications	in	their	own	console	window,	or	configure	CGI	applications	to
run	at	the	system	or	user	level.

To	view	the	currently	configured	CGI	settings,	in	IIS	Manager,	navigate	to	the
level	of	the	configuration	hierarchy	you	want	to	manage,	and	then	access	the	CGI
page	by	double-clicking	the	CGI	feature.	On	the	CGI	page,	you	can	configure	the
way	CGI	applications	are	used	by	using	the	following	techniques:

You	can	modify	the	time-out	for	CGI	applications	by	typing	the	desired	time-
out	in	the	Time-Out	text	box.	Use	the	hh:mm:ss	format	where	hh	is	for	hours,
mm	is	for	minutes,	and	ss	is	for	seconds.	The	default	value	is	00:15:00	(15
minutes).	In	most	cases,	you’ll	want	a	relatively	short	time-out	value.	The
reason	for	this	is	that	when	CGI	applications	time	out,	IIS	removes	the	related
process	and	frees	up	the	resources	it	used.	Increase	the	time-out	period	only
when	users	are	experiencing	problems	with	long-running	requests	that	are
processed	through	CGI	applications.
You	can	specify	whether	each	CGI	application	runs	in	a	separate	console
window	by	setting	the	Use	New	Console	For	Each	Invocation	option.	The
default	value	is	False.	If	the	value	is	set	to	True,	each	CGI	application	creates
a	new	console	window	when	started,	which	isolates	each	application	and
prevents	problems	with	one	CGI	application	from	affecting	another	CGI
application	(in	most	cases).	However,	because	creating	a	new	console
window	for	each	CGI	application	uses	additional	resources	on	the	server,
there	is	a	trade-off	to	be	made	between	application	isolation	and	resource
usage.
You	can	specify	whether	a	CGI	application	process	is	created	in	the	system
context	or	in	the	context	of	the	requesting	user	by	using	the	Impersonate	User
feature.	The	default	value	is	True.	When	True,	IIS	creates	CGI	application
processes	in	the	context	of	the	requesting	user.	When	False,	IIS	creates	CGI
application	processes	in	the	system	context.	Run	CGI	applications	in	a	system
context	only	when	there	is	a	specific	need	to	do	so,	such	as	when	an
application	requires	the	additional	permissions	available	to	the	system	user.
Otherwise,	run	CGI	applications	in	the	user	context	to	enhance	security	and
reduce	the	possibility	of	malicious	use	of	elevated	privileges.

By	using	the	IIS	command-line	administration	tool,	you	can	configure	CGI	settings
by	using	the	Set	Config	command	and	the	Cgi	section	of	the	configuration	file.
Sample	1-2	provides	the	syntax	and	usage.

SAMPLE	1-2 	Configuring	CGI	Settings	Syntax	and	Usage

Syntax
appcmd	set	config	["ConfigPath"]	/section:Cgi
[/createCGIWithNewConsole:true|false]
[/createProcessAsUser:true|false]
[/timeout:	"hh:mm:ss"

Usage
appcmd	set	config	"Default	Web	Site"	/section:Cgi
/createCGIWithNewConsole:true	/createProcessAsUser:true
/timeout:	"00:10:00"

Managing	ASP	Settings

ASP	is	a	server-side	scripting	environment	used	to	create	dynamic	Web	
applications.	An	ASP	application	is	a	collection	of	resource	files	and	components	
that	are	grouped	logically.	Logically	grouping	files	and	components	as	an	
application	allows	IIS	to	share	data	within	the	application	and	to	run	the	
application	as	a	shared,	pooled,	or	isolated	process.	You	can	have	multiple	
applications	per	Web	site,	and	you	can	configure	each	application	differently.

IIS	resource	files	include	ASP	pages,	HTML	pages,	GIF	images,	JPEG	images,	
and	other	types	of	Web	documents.	An	ASP	page	is	a	file	that	ends	with	the	.asp	
extension	that	includes	HTML,	a	combination	of	HTML	and	scripting,	or	only	
scripting.	Scripts	within	ASP	pages	can	be	intended	for	processing	by	a	client	
browser	or	the	server	itself.	Scripts	designed	to	be	processed	on	the	server	are	
called	server-side	scripts	and	can	be	written	using	Microsoft	Visual	Basic	
Scripting	Edition	(VBScript,	Microsoft	JScript,	or	any	other	scripting	language	
available	on	the	server.

ASP	provides	an	object-based	scripting	environment.	Server-side	scripts	use	the	
built-in	objects	to	perform	common	tasks,	such	as	tracking	session	state,	managing	
errors,	and	reading	HTTP	requests	sent	by	clients.	ASP	scripts	can	also	use	
Component	Object	Model	(COM	components.	Prebuilt	components	are	available	
in	the	standard	IIS	installation	and	are	included	in	the
%SystemRoot%\System32\Inetsrv	directory	on	the	IIS	server.

Controlling	ASP	Behavior

To	view	the	currently	configured	ASP	behavior	settings,	in	IIS	Manager,	navigate
to	the	level	of	the	configuration	hierarchy	you	want	to	manage,	and	then	access	the
ASP	page,	by	double-clicking	the	ASP	feature.	On	the	ASP	page,	you’ll	find	a
variety	of	settings	under	the	Behavior	node.

For	ASP,	buffering	is	a	key	option	that	affects	server	performance	and	resource
usage.	When	buffering	is	enabled,	as	per	the	default	setting,	IIS	completely
processes	ASP	pages	before	sending	content	to	the	client	browser.	When	buffering
is	disabled,	IIS	returns	output	to	the	client	browser	as	the	page	is	processed.	The
advantage	to	buffering	is	that	it	allows	IIS	to	respond	dynamically	to	events	that
occur	while	processing	the	page.	IIS	can	take	one	of	the	following	actions:

Abort	sending	a	page	or	transfer	the	user	to	a	different	page
Clear	the	buffer	and	send	different	content	to	the	user
Change	HTTP	header	information	from	anywhere	in	your	ASP	script

A	disadvantage	of	buffering	is	that	users	have	to	wait	for	the	entire	script	to	be
processed	before	content	is	delivered	to	their	browser.	If	a	script	is	long	or
complex,	the	user	might	have	to	wait	for	a	long	time	before	seeing	the	page.	To
counter	potential	delays	associated	with	buffering,	developers	often	insert	Flush
commands	at	key	positions	within	the	script.	If	your	development	team	does	this,
they	should	be	aware	that	this	causes	additional	connection	requests	between	the
client	and	server,	which	might	also	cause	performance	problems.

Other	options	that	control	the	behavior	of	ASP	include	Code	Page,	Enable	
Chunked	Encoding,	Enable	HTML	Fallback,	Enable	Parent	Paths,	Locale	ID,	
Restart	On	Config	Change,	and	Script	Language.	Code	Page	sets	the	default	code	
page	that	IIS	should	use	when	working	with	non-Unicode	character	data.	The	
default	setting	is	zero	(0,	which	indicates	that	IIS	should	use	the	code	page	used	
by	the	server	for	storing	and	displaying	non-Unicode	character	data.

Enable	Chunked	Encoding	determines	whether	HTTP	1.1	chunked	transfer	
encoding	is	enabled.	The	default	is	True.	All	HTTP	1.1–compliant	applications,	
such	as	Web	browsers,	support	chunked	encoding.	With	chunked	encoding,	IIS	
transfers	the	body	of	responses	as	a	series	of	message	chunks,	each	with	its	own	
size	indicator,	following	by	an	optional	trailer	containing	entity-header	fields.	
This	allows	dynamically	generated	content	to	be	transferred	along	with	the	
information	necessary	for	the	recipient	to	verify	that	it	has	received	the	full	
message.	If	chunked	encoding	is	disabled,	IIS	transfers	responses	to	requests	using	
standard	encoding,	and	client	browsers	have	no	way	to	verify	that	the	full	
response	has	been	received.	If	chunked	encoding	is	enabled,	IIS	transfers	
responses	to	requests	by	using	chunked	encoding,	and	client	browsers	can	verify	
that	the	full	response	has	been	received.

Enable	HTML	Fallback	determines	whether	HTML	is	used	as	a	fallback	when	the	
ASP	request	queue	is	full.	The	default	is	True.	When	set	to	True	and	the	request	
queue	is	full,	ASP	will	substitute	an	HTML	file	that	has	_asp	added	to	the	file	
name	and	return	the	file	if	found.	For	example,	if	the	name	of	the	requested	.asp	
file	is	inventory.asp,	the	name	of	the	.htm	file	that	is	returned	will	be
inventory_asp.htm.	If	the	file	does	not	exist	or	you’ve	disabled	fallback	and	the	
request	queue	is	full,	IIS	returns	a	500.13	(Web	Server	is	too	busy	HTTP	error	to	
the	client.

Enable	Parent	Paths	determines	whether	ASP	pages	allows	paths	relative	to	
parent	directories	in	addition	to	the	current	directory.	The	default	is	False.	When	
enabled,	ASP	pages	can	use	relative	paths	to	access	parent	directories	of	the	
current	directory.	For	example,	a	script	could	reference	../Build.htm,	where	“..”	is	
a	reference	to	the	current	directory’s	parent	directory.	When	disabled,	ASP	pages	
cannot	use	parent	paths.

Locale	ID	sets	the	default	locale	identifier	(LCID	for	an	application.	Locale	
identifiers	control	the	formatting	of	numbers,	currencies,	dates,	and	times.	The	
default	setting	is	zero	(0),	which	indicates	that	IIS	should	use	the	locale	identifier

used	by	the	server.

Restart	On	Config	Change	determines	whether	IIS	automatically	restarts	ASP
applications	when	you	change	critical	configuration	properties	that	affect	how
applications	are	used.	The	default	is	True.	To	restart	an	application,	IIS	stops	and
then	starts	the	application.	This	means	that	all	resources	used	by	the	application
are	freed.	This	also	means,	however,	that	any	requests	currently	being	processed
will	fail	and	that	new	requests	for	the	application	aren’t	processed	until	the
application	is	started.

Script	Language	sets	the	default	scripting	language	for	ASP	pages.	Two	scripting
engines	are	installed	with	a	standard	IIS	installation.	These	scripting	engines	are
for	VBScript	and	JScript.	You	can	reference	these	scripting	engines	by	using	the
values	VBScript	and	JScript,	respectively.	The	default	scripting	language	in	a
standard	IIS	installation	is	VBScript.	In	ASP	pages,	you	can	override	the	default
language	by	using	the	<%@LANGUAGE%>	directive.

You	manage	ASP	behavior	settings	by	completing	the	following	steps:

1. In	IIS	Manager,	navigate	to	the	level	of	the	configuration	hierarchy	you	want
to	manage,	and	then	access	the	ASP	page	by	double-clicking	the	ASP
feature.

2. On	the	ASP	page,	under	Behavior,	set	the	following	options	to	configure
ASP	behavior:	Code	Page,	Enable	Buffering,	Enable	Chunked	Encoding,
Enable	HTML	Fallback,	and	Enable	Parent	Paths.

3. On	the	ASP	page,	under	Compilation,	use	the	Script	Language	option	to	set
the	default	scripting	language.

4. In	the	Actions	pane,	click	Apply.

By	using	the	IIS	command-line	administration	tool,	you	can	configure	ASP
behavior	settings	by	using	the	Set	Config	command	and	the	ASP	section	of	the
configuration	file.	Sample	1-3	provides	the	syntax	and	usage.

SAMPLE	1-3 	Configuring	ASP	Behavior	Settings	Syntax	and	Usage

Syntax
appcmd	set	config	["ConfigPath"]	/section:Asp
[/codepage:	"CodePage"]
[/bufferingOn:	true|false]
[/enableChunkedEncoding:	true|false]

[/enableAspHtmlFallback:	true|false]
[/enableParentPaths:	true|false]
[/lcid:	"LocaleID"]
[/enableApplicationRestart:	true|false]
[/scriptLanguage:	"ScriptLanguage"]

Usage
appcmd	set	config	"Default	Web	Site"	/section:Asp
/bufferingOn:	true	/enableChunkedEncoding:	true

Customizing	Request	Handling	for	ASP

Many	different	options	control	the	way	ASP	handles	and	responds	to	requests.	To	
view	the	related	ASP	settings,	in	IIS	Manager,	navigate	to	the	level	of	the	
configuration	hierarchy	you	want	to	manage,	and	then	access	the	ASP	page	by	
double-clicking	the	ASP	feature.	On	the	ASP	page,	under	Behavior,	expand	the	
Limits	Properties	node	to	see	the	related	properties.

Client	Connection	Test	Interval	sets	the	period	of	time	a	request	should	be	queued.	
If	the	request	is	queued	longer	than	the	specified	time,	ASP	checks	to	determine	
whether	the	client	is	still	connected	before	running	a	request.	If	the	client	is	no	
longer	connected,	the	request	is	not	processed	and	is	deleted	from	the	queue.	The	
default	is	00:00:03	(3	seconds.

Maximum	Requesting	Entity	Body	Limit	determines	the	maximum	number	of	bytes	
allowed	in	the	entity-body	of	an	ASP	request.	The	default	is	200,000	bytes	(195	
KB.	If	the	maximum	value	is	exceeded,	IIS	truncates	the	request	or	generates	an	
error.

Queue	Length	determines	the	maximum	number	of	concurrent	ASP	requests	that	
are	permitted	in	the	ASP	request	queue.	The	default	is	3000.	IIS	does	not	allow	
any	new	requests	when	the	queue	has	reached	the	maximum	value.	If	you’ve	
disabled	HTML	fallback	and	the	request	queue	is	full,	IIS	returns	a	500.13	(Web	
Server	is	too	busy	HTTP	error	to	the	client.

Request	Queue	Timeout	sets	the	period	of	time	that	an	ASP	request	is	allowed	to	
wait	in	the	queue.	The	default	is	00:00:00	(infinite,	allowing	a	request	to	be	
queued	indefinitely.	If	you	set	a	specific	time-out,	IIS	removes	requests	older	than	
the	time-out	period	automatically	and	does	not	attempt	to	process	them.	All	
requests	that	wait	in	the	queue	are	also	subject	to	the	Client	Connection	Test	
Interval.

Response	Buffering	Limit	sets	the	maximum	size	of	the	ASP	response	buffer.	If	
response	buffering	is	enabled,	this	property	controls	the	maximum	number	of	bytes	
that	an	ASP	page	can	write	to	the	response	buffer	before	a	flush	occurs.	The	
default	is	4,194,304	bytes	(4096	KB.

Script	Timeout	determines	the	default	length	of	time	that	IIS	allows	an	ASP	script	
to	run	before	attempting	to	stop	the	script	and	writing	an	event	to	the	Windows

event	log.	The	default	is	00:01:30	(90	seconds).

Threads	Per	Processor	Limit	determines	the	maximum	number	of	worker	threads
per	processor	that	IIS	can	create	to	handle	ASP	requests.	The	default	is	25.	Once
the	per-processor	thread	limit	is	reached,	IIS	will	not	generate	new	threads	to
handle	ASP	requests.	This	doesn’t	necessarily	mean	that	request	processing	will
fail.	Worker	processes	associated	with	application	pools	are	responsible
ultimately	for	handling	requests.	Worker	processes	can	use	additional	threads	to
improve	responsiveness	and	handling	of	requests.	If	no	new	threads	are	available,
worker	processes	must	handle	requests	by	using	currently	allocated	threads.

You	can	customize	request	handling	for	ASP	by	completing	the	following	steps:

1. In	IIS	Manager,	navigate	to	the	level	of	the	configuration	hierarchy	you	want
to	manage	and	then	access	the	ASP	page	by	double-clicking	the	ASP	feature.

2. On	the	ASP	page,	under	Behavior,	expand	the	Limits	Properties	node	by
double-clicking	it.

3. Use	the	Limit	Properties	to	configure	request	handling	for	ASP.
4. In	the	Actions	pane,	click	Apply.

By	using	the	IIS	command-line	administration	tool,	you	can	configure	request-
handling	settings	by	using	the	Set	Config	command	and	the	Asp\limits	section	of
the	configuration	file.	Sample	1-4	provides	the	syntax	and	usage.

SAMPLE	1-4 	Configuring	Request	Handling	Settings	Syntax	and	Usage

Syntax
appcmd	set	config	["ConfigPath"]	/section:Asp
[/limits.queueConnectionTestTime:	"hh:mm:ss"]
[/limits.maxRequestEntityAllowed:	"RequestLimit"]
[/limits.requestQueueMax:	"QueueLength"]
[/limits.queueTimeout:	"hh:mm:ss"]
[/limits.bufferingLimit:	"BufferingLimit"]
[/limits.scriptTimeout:	"hh:mm:ss"]
[/limits.processorThreadMax:	"ThreadLimit"]

Usage
appcmd	set	config	"Default	Web	Site"	/section:Asp
/limits.queueConnectionTestTime:	"00:00:05"
/limits.requestQueueMax:	"5000"

Optimizing	Caching	for	ASP

IIS	compiles	ASP	pages	at	run	time	when	they’re	first	requested,	and	then	the
compiled	code	is	stored	in	the	file	cache	where	it	can	be	reused	without
recompiling.	The	way	IIS	caches	ASP	pages	depends	on	these	caching	properties:

Cache	Directory	Path Sets	the	name	of	the	directory	that	ASP	uses	to	store
compiled	ASP	templates	to	disk	after	overflow	of	the	in-memory	cache.	The
default	is	%SystemDrive%	\Inetpub\Temp\ASP	Compiled	Templates.
Enable	Type	Library	Caching Determines	whether	Type	Library	caching
is	enabled.	The	default	value,	True,	enables	Type	Library	caching.
Maximum	Disk	Cached	Files Sets	the	maximum	number	of	compiled	ASP
templates	that	can	be	stored	on	disk.	The	default	value	is	2000.	The	valid
range	is	from	0	to	2147483647	files.
Maximum	Memory	Cached	Files Sets	the	maximum	number	of
precompiled	script	files	to	cache	in	memory.	The	default	value	is	500	files.
The	valid	range	is	from	0	to	2147483647	files.
Maximum	Script	Engines	Cached Sets	the	maximum	number	of	scripting
engines	that	IIS	will	keep	cached	in	memory.	The	default	value	is	250	cached
scripting	engines.	The	valid	range	is	from	0	to	2147483647	script	engines.

You	can	optimize	caching	for	ASP	by	completing	the	following	steps:

1. In	IIS	Manager,	navigate	to	the	level	of	the	configuration	hierarchy	you	want
to	manage	and	then	access	the	ASP	page	by	double-clicking	the	ASP	feature.

2. On	the	ASP	page,	expand	the	Caching	Properties	node	by	double-clicking	it.
3. In	Caching	Properties,	configure	caching	settings	for	ASP.
4. In	the	Actions	pane,	click	Apply.

By	using	the	IIS	command-line	administration	tool,	you	can	configure	caching
settings	by	using	the	Set	Config	command	and	the	Asp\session	section	of	the
configuration	file.	Sample	1-5	provides	the	syntax	and	usage.

SAMPLE	1-5 	Configuring	Caching	Settings	Syntax	and	Usage

Syntax
appcmd	set	config	["ConfigPath"]	/section:Asp
[/session.diskTemplateCacheDirectory:	"DirectoryPath"]
[/session.enableTypelibCache:	true|false]

[/session.maxDiskTemplateCacheFiles:	"NumFiles"
[/session.scriptFileCacheSize:	"CacheSize"
[/session.scriptEngineCacheMax:	"NumEngines"

Usage
appcmd	set	config	"Default	Web	Site"	/section:Asp
/session.enableTypelibCache:	true
/session.maxDiskTemplateCacheFiles:	"2500"

Customizing	COM+	Execution	for	ASP

ASP	can	use	different	types	of	Component	Object	Model	components.	The	way
those	components	are	used	depends	on	these	Com	Plus	Properties	for	ASP:

Enable	Side	By	Side	Component Determines	whether	COM+	side-by-side
assemblies	are	enabled.	When	True,	ASP	applications	can	use	COM+	side-
by-side	assemblies	to	specify	which	version	of	a	system	DLL	or	COM
component	to	use.	The	default	is	False.
Enable	Tracker Determines	whether	the	COM+	tracker	is	enabled.	When
True,	you	can	debug	applications	by	using	the	COM+	tracker.	The	default	is
False.
Execute	In	MTA Determines	whether	ASP	can	run	scripts	in	a
multithreaded	execution	mode.	The	default	is	False.	When	True,	ASP	can	use
multiple	threads	to	execute	scripts	(but	scripts	must	be	designed	for	and
compliant	with	multithreading).
Honor	Component	Threading	Model Determines	whether	IIS	examines
the	threading	model	of	any	components	that	your	application	creates.	The
default	is	False.	If	True,	IIS	checks	the	threading	model	of	any	components
that	your	application	creates	to	ensure	that	it	is	appropriate.	Otherwise,	IIS
does	not	check	the	threading	model.
Partition	ID When	COM+	partitioning	is	used,	Partition	ID	sets	the	GUID
of	the	COM+	partition.	This	value	is	not	used	when	COM+	partitioning	is
disabled.
Side	By	Side	Component When	side-by-side	execution	is	enabled,	sets	the
name	of	the	COM+	application.	This	value	is	not	used	when	side-by-side
execution	is	disabled.
Use	Partition Determines	whether	COM+	partitioning	is	used	to	isolate
applications	into	their	own	COM+	partitions.	When	this	property	is	set	to
True,	you	must	specify	a	value	for	the	Partition	ID	element.

You	can	customize	the	way	ASP	uses	COM+	components	by	completing	the
following	steps:

1. In	IIS	Manager,	navigate	to	the	level	of	the	configuration	hierarchy	you	want
to	manage,	and	then	access	the	ASP	page	by	double-clicking	the	ASP
feature.

2. On	the	ASP	page,	under	Services,	expand	the	Com	Plus	Properties	node	by

double-clicking	it.
3. Use	Com	Plus	Properties	to	configure	COM+	component	handling	for	ASP.
4. In	the	Actions	pane,	click	Apply.

By	using	the	IIS	command-line	administration	tool,	you	can	configure	COM+
settings	by	using	the	Set	Config	command	and	the	Asp\comPlus	section	of	the
configuration	file.	Sample	1-6	provides	the	syntax	and	usage.

SAMPLE	1-6 	Configuring	COM+	Handling	Settings	Syntax	and	Usage

Syntax
appcmd	set	config	["ConfigPath"]	/section:Asp
[/comPlus.appServiceFlags:	true|false]
[/comPlus.appServiceFlags:	true|false]
[/comPlus.executeInMta:	true|false]
[/comPlus.trackThreadingModel:	true|false]
[/comPlus.partitionID:	"PartitionGUID"]
[/comPlus.sxsName:	"AppName"]
[/comPlus.usePartition:	true|false]

Usage
appcmd	set	config	"Default	Web	Site"	/section:Asp
	/comPlus.appServiceFlags:	true
/comPlus.executeInMta:	true

Configuring	Session	State	for	ASP

Session	state	plays	a	significant	role	in	IIS	performance	and	resource	usage.	When
session	state	is	enabled,	IIS	creates	a	session	for	each	user	who	accesses	an	ASP
or	ASP.NET	application.	Session	information	is	used	to	track	the	user	within	the
application	and	to	pass	user	information	from	one	page	to	another.	For	example,
your	company	might	want	to	track	individual	user	preferences	within	an
application,	and	you	can	use	sessions	to	do	this.

By	default,	IIS	uses	in-process	session	state	management.	The	way	sessions	work
in	this	mode	is	fairly	straightforward.	The	first	time	a	user	requests	an	ASP	or
ASP.NET	page	with	a	specified	application,	IIS	generates	one	of	the	following:

A	Session	object	containing	all	values	set	for	the	user	session,	including	an
identifier	for	the	code	page	used	to	display	the	dynamic	content,	a	location
identifier,	a	session	ID,	and	a	time-out	value
A	Session.Contents	collection,	which	contains	all	the	items	that	the
application	has	set	in	the	session
A	Session.StaticObjects	collection,	which	contains	the	static	objects	defined
for	the	application

The	Session	object	and	its	associated	properties	are	stored	in	memory	on	the	
server.	The	user’s	session	ID	is	passed	to	the	user’s	browser	as	a	cookie.	As	long	
as	the	browser	accepts	cookies,	the	session	ID	is	passed	back	to	the	server	on	
subsequent	requests.	This	is	true	even	if	the	user	requests	a	page	in	a	different	
application.	The	same	ID	is	used	in	order	to	reduce	the	number	of	cookies	sent	to	
the	browser.	If	the	browser	doesn’t	accept	cookies,	the	session	ID	can’t	be	
maintained,	and	IIS	can’t	track	the	user	session	by	using	this	technique.	In	this	
case,	you	could	track	the	session	state	on	the	server.

Session	state	is	enabled	by	default	for	all	IIS	applications.	By	default,	sessions	
time	out	in	20	minutes.	This	means	that	if	a	user	doesn’t	request	or	refresh	a	page	
within	20	minutes,	the	session	ends	and	IIS	removes	the	related	Session	object	
from	memory.	Worker	process	recycling	can	affect	session	management.	If	a	
worker	process	is	recycled	or	otherwise	cleared	out	of	memory,	the	session	state	
could	be	lost.	If	this	happens,	you	won’t	be	able	to	recover	the	session	data.

As	you	might	imagine,	tracking	sessions	can	use	valuable	system	resources.	You

can	reduce	resource	usage	by	reducing	the	time-out	interval	or	disabling	session
tracking	altogether.	Reducing	the	time-out	interval	allows	sessions	to	expire	more
quickly	than	usual.	Disabling	session	tracking	tells	IIS	that	sessions	shouldn’t	be
automatically	created.	You	can	still	start	sessions	manually	within	the	application.
Simply	place	the	<%@ENABLESESSIONSTATE	=	True%>	directive	in
individual	ASP	pages.

For	ASP	pages,	you	control	session	state	management	by	using	the	ASP	feature.	In
IIS	Manager,	navigate	to	the	level	of	the	configuration	hierarchy	you	want	to
manage,	and	then	display	the	ASP	page	by	double-clicking	the	ASP	feature.	On	the
ASP	page,	expand	the	Session	Properties	node	by	double-clicking	it.	You	can	then
use	the	following	Session	properties	to	manage	caching	for	ASP:

Enable	Session	State Determines	whether	session	state	persistence	is
enabled	for	applications.	The	default	is	True.
Maximum	Sessions Sets	the	maximum	number	of	concurrent	sessions	that
IIS	will	allow.	The	default	is	4294967295.
New	ID	On	Secure	Connection Determines	whether	IIS	generates	a	new
cookie	when	a	transition	from	a	non-secure	to	a	secure	connection	is	made.
The	default	is	True,	and	in	most	cases,	you’ll	want	to	keep	this	value.
Timeout Sets	the	period	of	time	that	IIS	maintains	a	session	object	after	the
last	request	associated	with	the	object	is	made.	The	default	is	00:20:00.	For	a
high-usage	application	in	which	you	expect	users	to	move	quickly	from	page
to	page,	you	might	want	to	set	a	fairly	low	time-out	value,	such	as	5	or	10
minutes.	On	the	other	hand,	if	it’s	critical	that	the	user’s	session	is	maintained
to	complete	a	transaction,	you	might	want	to	set	a	long	time-out	value,	such	as
60	minutes.

By	using	the	IIS	command-line	administration	tool,	you	can	configure	session	state	
settings	by	using	the	Set	Config	command	and	the	Asp\session	section	of	the	
configuration	file.	Sample	1-7	provides	the	syntax	and	usage.

SAMPLE	1-7	 Configuring	Session	State	Settings	for	ASP	Syntax	and	Usage

Syntax
appcmd	set	config	["ConfigPath"]	/section:Asp
[/session.allowSessionState:	true|false]
[/session.max:	"MaxSessions"
	[/session.keepSessionIdSecure:	true|false]
[/session.timeout:	"hh:mm:ss"

Usage
appcmd	set	config	"Default	Web	Site"	/section:Asp
	/session.allowSessionState:	true
/session.timeout:	"00:15:00"

Configuring	Debugging	and	Error	Handling	for	ASP

One	of	the	best	ways	to	troubleshoot	an	IIS	application	is	to	enable	debugging.
Debugging	is	handled	through	server-side	and	client-side	configuration	settings.
Server-side	debugging	allows	IIS	to	throw	errors	while	processing	ASP	pages
and	to	display	a	prompt	that	allows	you	to	start	the	Microsoft	Script	Debugger.
You	can	then	use	the	debugger	to	examine	your	ASP	pages.	Client-side	debugging
involves	sending	debugging	information	to	the	client	browser.	You	can	then	use
this	information	to	help	determine	what’s	wrong	with	IIS	and	the	related	ASP
page.

You	can	use	the	following	debugging	options	to	help	you	detect	and	diagnose
problems.	Calculate	Line	Numbers	determines	whether	ASP	should	calculate	and
store	the	line	number	of	each	executed	line	of	code.	The	default	is	True.	If	set	to
True,	ASP	can	report	the	line	number	on	which	an	error	occurred	during
execution.	Otherwise,	ASP	does	not	report	the	line	number	in	error	reports.

Catch	COM	Component	Exceptions	determines	whether	ASP	pages	trap
exceptions	thrown	by	COM	components.	The	default	is	True.	If	set	to	True,	ASP
attempts	to	catch	exceptions,	which	prevents	the	exception	from	being	handled
elsewhere,	such	as	the	scripting	engine	or	the	IIS	worker	process.	If	set	to	False,
ASP	does	not	attempt	to	catch	exceptions,	which	could	lead	to	the	exception	being
handled	elsewhere	and	could	also	cause	termination	of	the	worker	process.

Other	debugging	options	are:

Enable	Client-Side	Debugging Determines	whether	debugging	is	enabled
for	ASP	on	the	client.	The	default	is	False.	If	set	to	True,	client-side
debugging	is	enabled,	which	may	be	necessary	for	troubleshooting	and
diagnostics.
Enable	Log	Error	Requests Determines	whether	IIS	writes	ASP	errors	to
the	IIS	log	files.	The	default	is	True.	If	set	to	True,	IIS	writes	ASP	errors	to
the	IIS	log	files.
Enable	Server-Side	Debugging Determines	whether	debugging	is	enabled
for	ASP	on	the	server.	The	default	is	False.	If	set	to	True,	server-side
debugging	is	enabled,	which	may	be	necessary	for	troubleshooting	and
diagnostics.
Log	Errors	To	NT	Log Determines	whether	IIS	writes	ASP	errors	to	the

Windows	event	logs.	The	default	is	False.	If	set	to	True,	IIS	writes	ASP
errors	to	the	Windows	event	logs,	which	may	be	necessary	for
troubleshooting	and	diagnostics.
Run	On	End	Functions	Anonymously Determines	whether	the
SessionOnEnd	and	ApplicationOnEnd	global	ASP	functions	should	be	run	as
the	anonymous	user.	The	default	is	True.	If	set	to	True,	the	functions	are	run	as
the	anonymous	user.	If	set	to	False,	the	functions	are	not	run	at	all.
Script	Error	Message Sets	the	error	message	to	send	to	the	browser	if
specific	debugging	errors	are	not	sent	to	the	client.	The	default	message	sent
is	“An	error	occurred	on	the	server	when	processing	the	URL.	Please	contact
the	system	administrator.”
Send	Errors	To	Browser Determines	whether	IIS	writes	ASP	errors	to
client	browsers.	The	default	is	False.	If	set	to	True,	IIS	writes	ASP	errors	to
client	browsers,	such	as	may	be	necessary	for	troubleshooting	and
diagnostics.

You	manage	debugging	and	error	handling	settings	by	completing	the	following
steps:

1. In	IIS	Manager,	navigate	to	the	level	of	the	configuration	hierarchy	you	want
to	manage,	and	then	access	the	ASP	page	by	double-clicking	the	ASP
feature.

2. On	the	ASP	page,	under	Compilation,	expand	the	Debugging	Properties	node
by	double-clicking	it.

3. On	the	ASP	page,	under	Compilation,	set	the	Debugging	Properties	options
to	configure	the	way	ASP	should	debug	and	handle	errors.

4. In	the	Actions	pane,	click	Apply.

CAUTION Server-side	debugging	of	ASP	applications	is	designed	for
development	and	staging	servers	and	not	necessarily	for	production	servers.
If	you	enable	server-side	debugging	on	a	production	server,	you	might	notice
a	severe	decrease	in	performance	for	the	affected	application.

By	using	the	IIS	command-line	administration	tool,	you	can	configure	debugging	
settings	by	using	the	Set	Config	command	and	the	ASP	section	of	the	configuration	
file.	Sample	1-8	provides	the	syntax	and	usage.

SAMPLE	1-8	 Configuring	Debugging	for	ASP	Syntax	and	Usage

Syntax

appcmd	set	config	["ConfigPath"]	/section:Asp
[/calcLineNumber:	true|false]
[/exceptionCatchEnable:	true|false]
[/appAllowClientDebug:	true|false]
[/logErrorRequests:	true|false]
[/appAllowDebugging:	true|false]
[/errorsToNTLog:	true|false]
[/runOnEndAnonymously:	true|false]
[/scriptErrorMessage:	true|false]
[/scriptErrorSentToBrowser:	true|false]

Usage
appcmd	set	config	"Default	Web	Site"	/section:Asp
/exceptionCatchEnable:	true
/errorsToNTLog:	true

Managing	ASP.NET	Settings

ASP.NET	moves	away	from	the	reliance	on	ISAPI	and	ASP	to	provide	a	reliable
framework	for	Web	applications	that	takes	advantage	of	the	Microsoft	.NET
Framework.	ASP.NET	is,	in	fact,	a	set	of	.NET	technologies	for	creating	Web
applications.	With	ASP.NET,	developers	can	write	the	executable	parts	of	their
pages	using	any	.NET-compliant	language,	including	Microsoft	Visual	C#,
Microsoft	Visual	Basic,	and	Microsoft	JScript.

Unlike	ASP,	ASP.NET	has	components	that	are	precompiled	prior	to	run	time.
These	precompiled	components	are	called	assemblies.	Compiled	assemblies	not
only	load	and	run	faster	than	ASP	pages,	but	they	also	are	more	secure.	Whereas
ASP.NET	can	process	requests	in	either	classic	pipeline	mode	or	integrated
pipeline	mode,	only	the	integrated	mode	allows	IIS	to	process	requests	directly.

NOTE  Server-level	configuration	changes	for	ASP.NET	features	are	made
in	the	Web.config	file	in	the
%SystemRoot%\Microsoft.NET\Framework\Framework	Version
\Config	folder,	where	FrameworkVersion	is	the	version	of	the	.NET
Framework	you	are	using,	such	as	V4.0.30319	or	V4.0.30319.	Site-level
and	application-level	configuration	changes	for	ASP.NET	features	are	made
in	the	Web.config	file	stored	in	the	site	or	application	folder.

Configuring	Session	State	Settings	for	ASP.NET

In	the	default	configuration,	IIS	manages	session	state	for	ASP.NET	in	much	the
same	way	as	it	manages	session	state	for	ASP.	Beyond	the	basic	settings,
however,	you	have	many	more	options.	For	ASP.NET	pages,	you	use	the	Enable
Session	State	setting	of	the	Pages	And	Controls	feature	as	the	master	control	to
turn	on	or	off	session	state	management	or	to	configure	IIS	to	use	a	read-only
session	state.	You	use	the	Session	State	feature	to	fine	tune	how	session	state
management	is	used.

By	default,	IIS	maintains	session	state	in	process	as	does	ASP.	Each	ASP.NET
application	configured	on	your	server	can	have	its	own	session	state	settings.
When	you’ve	activated	the	ASP.NET	State	Service	and	configured	it	to	start
automatically,	you	can	use	out-of-process	session	state	management	for	ASP.NET.
Out-of-process	state	management	ensures	that	session	state	information	is
preserved	when	an	application’s	worker	process	is	recycled.	You	can	configure
out-of-process	state	management	to	use	a	State	Server	or	a	Microsoft	SQL	Server
database.	Before	you	configure	a	SQL	Server	for	session	state,	you	must	run	the
InstallSqlState.sql	script	on	the	server.	By	default,	this	script	is	stored	in
%SystemRoot%\Microsoft.NET\Framework\FrameworkVersion,	where
FrameworkVersion	is	the	version	of	the	.NET	Framework	you	are	using,	such	as
V4.0.30319	or	V4.0.30319.

You	turn	on	or	off	session	state	management	or	use	a	read-only	session	state	by
following	these	steps:

1. In	IIS	Manager,	navigate	to	the	level	of	the	configuration	hierarchy	you	want
to	manage,	and	then	display	the	Pages	And	Controls	page	by	double-clicking
the	Pages	And	Controls	feature.

2. On	the	Pages	And	Controls	page,	the	Enable	Session	State	text	box	shows
the	current	session	state.	As	necessary,	change	this	setting	to	False	to
disable	session	state	maintenance,	True	to	enable	session	state	maintenance,
or	ReadOnly	to	use	a	read-only	session	state.

3. In	the	Actions	pane,	click	Apply	to	save	your	settings.

Once	you’ve	enabled	a	ReadWrite	or	ReadOnly	session	state,	you	can	use	the
settings	of	the	Session	State	feature	to	optimize	the	session	state	configuration.
Follow	these	steps:

1. In	IIS	Manager,	navigate	to	the	level	of	the	configuration	hierarchy	you	want
to	manage,	and	then	display	the	Session	State	page	by	double-clicking	the
Session	State	feature.

2. On	the	Session	State	Mode	Settings	frame	in	the	main	pane,,	use	the
following	options	to	set	the	session	state	mode:
Not	Enabled Select	this	option	to	disable	session	state.
In	Process Select	this	option	to	store	session	state	data	for	a	managed-code
application	in	the	worker	process	where	the	application	runs.	This	is	the
default	setting.
Custom Select	this	option	to	configure	IIS	to	use	a	custom	provider	to
handle	session	state	for	ASP.NET	applications.
State	Server Select	this	option	to	enable	the	ASP.NET	State	Service	and
store	session	state	data	outside	the	worker	process	where	the	application
runs.	The	ASP.NET	State	Service	stores	the	session	state	in	an	internal
database	by	default	or	in	a	database	of	your	choosing.	You	must	start	the
service	and	configure	it	for	automatic	startup.
SQL	Server Select	this	option	to	configure	IIS	to	use	a	SQL	Server
database	to	store	session	state	data	instead	of	storing	it	in	the	worker	process

where	the	application	runs.	The	ASP.NET	State	Service	stores	the	session
state	in	the	SQL	Server	database	you	designate.	You	must	start	the	service	and
configure	it	for	automatic	startup.

3. With	the	State	Server	or	SQL	Server	option,	the	Connection	String	text	box
sets	the	connection	string	that	is	used	to	connect	to	the	state	server	or	SQL
Server.	If	you	click	the	related	selection	drop-down	list,	you	can	choose	a
previously	created	connection	string	to	use.	If	you	click	the	related	Create
button,	you	create	the	required	connection	string	by	using	the	Create
Connection	String	dialog	box.

4. With	the	State	Server	or	SQL	Server	option	enabled,	the	related	Time-Out
text	box	sets	the	time,	in	seconds,	that	the	connection	will	be	maintained.
The	default	for	a	state	server	is	10	seconds.	The	default	for	a	server	running
SQL	Server	is	30	seconds.

5. With	the	SQL	Server	option	enabled,	you	can	select	the	Enable	Custom
Database	check	box	to	enable	a	custom	SQL	Server	database	for	storing
session	state	data.

6. On	the	Cookie	Settings	pane,	in	the	Mode	drop-down	list,	select	the	desired
item	to	specify	how	cookies	are	used	to	store	session	state	data.	The	items
are:
Auto	Detect IIS	uses	cookies	if	the	browser	supports	cookies	and	cookie
support	is	enabled.	Otherwise,	IIS	doesn’t	use	cookies.
Use	Cookies Allows	IIS	to	track	the	session	state	by	using	cookies.	IIS

passes	the	session	state	in	cookies	for	all	requests	between	a	client	browser
and	the	Web	server.	Because	cookies	do	not	require	redirection,	cookies
allow	you	to	track	session	state	more	efficiently	than	any	of	the	methods	that
do	not	use	cookies.	Using	cookies	also	has	several	other	advantages.	Cookies
allow	users	to	bookmark	Web	pages,	and	they	ensure	that	state	is	retained	if	a
user	leaves	one	site	to	visit	another	and	then	returns	to	the	original	site.
Use	Device	Profile IIS	uses	cookies	if	the	device	profile	supports	cookies
regardless	of	whether	cookie	support	is	enabled	or	disabled.	The	only	time
that	IIS	doesn’t	use	cookies	is	when	the	device	profile	indicates	that	the
browser	doesn’t	support	cookies.
Use	URI IIS	inserts	the	session	ID	as	a	query	string	in	the	Uniform
Resource	Identifier	(URI)	request,	and	then	the	URI	is	redirected	to	the
originally	requested	URL.	Because	the	changed	URI	request	is	used	for	the
duration	of	the	session,	no	cookie	is	necessary.

7. Keep	the	following	in	mind	when	you	are	specifying	how	cookies	are	used
to	store	session	state	data:
When	you	use	the	Auto-Detect	cookie,	Use	Device	Profile,	or	Use	URI
modes,	the	Regenerate	Expired	Session	ID	check	box	is	selected
automatically.	This	ensures	that	IIS	rejects	and	reissues	session	IDs	that	do
not	have	active	sessions.	You	should	require	that	expired	session	IDs	be
regenerated	because	this	ensures	that	IIS	expires	and	regenerates	tokens,
which	gives	a	potential	attacker	less	time	to	capture	a	cookie	and	gain	access
to	server	content.	If	you	want	to	disable	session	ID	regeneration,	as	may	be
necessary	when	initially	testing	a	new	deployment	in	a	development
environment,	clear	this	check	box.	Be	sure	to	re-enable	this	feature	later	to
enhance	server	security.
When	you	use	the	Auto-Detect	cookie,	Use	Cookies,	or	Use	Device	Profile
modes,	the	entry	in	the	Time-Out	(In	Minutes)	text	box	sets	the	period	of	time
that	IIS	maintains	a	session	object	after	the	last	request	associated	with	the
object	is	made.	The	default	time-out	is	20	minutes.	For	a	high-usage
application	in	which	you	expect	users	to	move	quickly	from	page	to	page,	you
might	want	to	set	a	fairly	low	time-out	value,	such	as	5	or	10	minutes.	On	the
other	hand,	if	it’s	critical	that	the	user’s	session	is	maintained	to	complete	a
transaction,	you	might	want	to	set	a	long	time-out	value,	such	as	60	minutes.
When	you	use	the	Auto-Detect	cookie,	Use	Cookies,	or	Use	Device	Profile
modes,	the	Name	text	box	sets	a	name	for	the	cookie.	The	default	is
ASP.NET_SessionId.	To	enhance	security,	you	may	want	to	change	this	value
to	a	name	that	isn’t	as	readily	identifiable	as	the	session	ID.

The	Use	Hosting	Identity	For	Impersonation	option	enables	Windows
authentication	for	remote	connections	using	the	host	process	identity.
Typically,	this	is	the	setting	you	want	to	use	to	ensure	that	IIS	can	read	and
write	session	state	data.

8. In	the	Actions	pane,	click	Apply	to	save	your	settings.

Configuring	SMTP	E-Mail	Settings

E-mail	services	are	an	important	part	of	most	Internet,	intranet,	and	extranet	server
operations.	Often,	you’ll	find	that	applications	installed	on	a	server	generate	e-
mail	messages	that	need	to	be	delivered.	For	this	purpose,	IIS	includes	the	Simple
Mail	Transfer	Protocol	(SMTP)	feature	so	that	IIS	can	deliver	e-mail	messages
for	Web	applications	that	use	the	System.Net.Mail	API.	The	configuration	restricts
the	sending	of	messages	that	are	generated	by	remote	users,	which	include	the
Internet	Guest	account	and	any	other	named	user	on	the	Web	server.	The
configuration	also	restricts	relaying	of	e-mail	through	SMTP.

SMTP	is	just	one	of	several	components	that	make	up	a	typical	e-mail	system.
Current	versions	of	Windows	Server	include	the	optional	SMTP	Server	feature	to
provide	a	more	robust	solution.	However,	if	you	want	to	receive	e-mail	and	store
it	on	the	server	so	that	users	and	applications	can	retrieve	it,	you	need	to	install	a
full-featured	messaging	server	in	the	enterprise,	such	as	Microsoft	Exchange
Server.

You	can	use	the	SMTP	E-mail	feature	in	two	key	ways.	You	can	use	this	feature	to
deliver	e-mail	messages	generated	by	applications	to	a	specific	SMTP	server
running	on	the	local	system	or	a	remote	server.	Or	you	can	use	this	feature	to	drop
e-mail	directly	into	the	pickup	directory	for	later	processing	by	an	application	or
for	direct	processing	by	an	SMTP	server	running	on	the	local	system.	Because
SMTP	servers	monitor	their	pickup	directories	continuously	for	new	messages,
any	message	placed	in	this	directory	is	picked	up	and	transferred	to	a	queue
directory	for	further	processing	and	delivery.

E-mail	messages	have	To,	Cc,	Bcc,	and	From	fields	to	determine	how	the	message
should	be	handled.	To,	Cc,	and	Bcc	fields	are	used	to	determine	where	the
message	should	be	delivered.	The	From	field	indicates	the	origin	of	the	message.
E-mail	addresses,	such	as	williams@tech.imaginedlands.com,	have	three
components:

An	e-mail	account,	such	as	williams
An	at	symbol	(@),	which	separates	the	account	name	from	the	domain	name
An	e-mail	domain,	such	as	tech.imaginedlands.com

The	key	component	that	determines	how	the	server	handles	messages	is	the	e-mail

or	service	domain.	Service	domains	can	be	either	local	or	remote.	A	local	service
domain	is	a	Domain	Name	System	(DNS)	domain	that’s	serviced	locally	by	the
server.	A	remote	service	domain	is	a	DNS	domain	that’s	serviced	by	another
server	or	mail	gateway.

You	can	deliver	e-mail	to	a	locally	hosted	or	remote	SMTP	server	by	completing
the	following	steps:

1. In	IIS	Manager,	navigate	to	the	level	of	the	configuration	hierarchy	you	want
to	manage,	and	then	display	the	SMTP	E-Mail	page	by	double-clicking	the
SMTP	E-Mail	feature.

2. On	the	SMTP	E-Mail	page,	in	the	E-Mail	Address	text	box,	type	the	address
you	want	to	use	as	the	default	address	from	which	e-mail	messages	are	sent.

3. Select	the	Deliver	E-Mail	To	SMTP	Server	option.
4. In	the	SMTP	Server	text	box,	type	the	fully	qualified	domain	name	of	the

SMTP	server,	such	as	mailer5.imaginedlands.com.	Or	select	the	Use
Localhost	check	box	to	set	the	name	of	the	SMTP	server	to	localhost,
allowing	System.Net.Mail	to	send	e-mail	directly	to	the	SMTP	server	on	the
local	computer.

5. In	the	Port	text	box,	type	the	TCP	port	number	to	use	to	connect	to	the	SMTP
server.	The	standard	TCP	port	for	SMTP	is	25,	so	this	is	the	default	and
recommended	setting.

6. The	Authentication	Settings	options	allow	you	to	specify	the	authentication
mode	and	credentials.	If	your	SMTP	server	does	not	require	authentication,

choose	Not	Required.	Otherwise,	choose	one	of	the	following	options:

Windows Choose	this	to	use	the	application	identity	for	connecting	to	the
SMTP	server.
Specify	Credentials Choose	this	to	specify	a	user	name	and	password	for
connecting	to	the	SMTP	server.	Credentials	are	sent	as	clear	text	across	the
network.	To	specify	credentials,	click	Set.	Type	the	user	name,	type	and	then
confirm	the	user	password,	and	then	click	OK.

7. In	the	Actions	pane,	click	Apply	to	save	your	settings.

You	can	deliver	e-mail	to	a	pickup	directory	by	completing	the	following	steps:

1. In	IIS	Manager,	navigate	to	the	level	of	the	configuration	hierarchy	you	want
to	manage,	and	then	display	the	SMTP	E-Mail	page	by	double-clicking	the
SMTP	E-Mail	feature.

2. On	the	SMTP	E-Mail	page,	in	the	E-Mail	Address	text	box,	type	the	address
you	want	to	use	as	the	default	address	from	which	e-mail	messages	are	sent.

3. Select	the	Store	E-Mail	In	Pickup	Directory	option,	and	then	click	Browse.
4. Use	the	Browse	For	Folder	dialog	box	to	specify	the	location	of	the	pickup

directory,	and	then	click	OK.
5. In	the	Actions	pane,	click	Apply	to	save	your	settings.

Configuring	Key/Value	Pairs	for	ASP.NET	Applications

When	you	are	working	with	managed	code	applications,	you	may	need	to	store
information	used	by	an	application	as	key/value	pairs	in	the	application’s
Web.config	file.	Storing	application	settings	in	this	way	ensures	that	the	stored
values	can	be	accessed	from	anywhere	within	the	application.	If	you	store
application	settings	at	the	server	or	site	level,	multiple	applications	could	access
and	use	the	same	settings.	With	this	in	mind,	you	can	view	and	work	with
key/value	pairs	for	applications	by	completing	the	following	steps:

1. In	IIS	Manager,	navigate	to	the	level	of	the	configuration	hierarchy	you	want
to	manage.

2. Access	the	Application	Settings	page	by	double-clicking	the	Application
Settings	feature.

3. In	the	main	pane,	you’ll	see	a	list	of	the	currently	defined	key/value	pairs.
Be	sure	to	note	whether	the	entry	type	is	listed	as	local	or	inherited.	Local
entries	are	configured	at	the	level	you	are	working	with.	Inherited	entries
are	configured	at	a	higher	level	of	the	configuration	hierarchy.

4. Use	the	following	techniques	to	work	with	application	settings:
Add	a	setting Click	Add.	In	the	Add	Application	Setting	dialog	box,	type
the	name	and	value	for	the	application	setting,	and	then	click	OK.
Edit	a	setting Click	the	setting	you	want	to	modify,	and	then	click	Edit.	In
the	Edit	Application	Setting	dialog	box,	type	the	desired	name	and	value	for
the	application	setting,	and	then	click	OK.
Remove	a	setting Click	the	setting	you	want	to	remove,	and	then	click
Remove.	When	prompted	to	confirm	the	action,	click	Yes.

Configuring	Settings	for	ASP.NET	Pages	and	Controls

Web	applications	that	use	ASP.NET	include	Web	pages	to	provide	the	user
interface	and	controls	to	provide	drop-in	functionality.	As	with	ASP,	you	can
optimize	the	way	ASP.NET	is	used	through	a	variety	of	configuration	settings.	You
can	also	make	additional	functionality	available	by	registering	custom	controls
that	applications	can	use.

Registering	Custom	Controls

Managed	code	applications	can	use	any	custom	controls	that	are	registered	for	use
with	IIS.	As	an	administrator,	you	probably	won’t	need	to	install	controls,	but	you
may	need	to	validate	control	configurations.	To	view	currently	registered	controls,
in	IIS	Manager,	navigate	to	the	level	of	the	configuration	hierarchy	you	want	to
manage,	double-click	the	Pages	And	Controls	feature,	and	then	in	the	Actions
pane,	click	Register	Controls.	In	the	main	pane,	you	should	then	see	a	list	of	the
currently	registered	controls.	Controls	are	listed	by	tag	prefix,	associated	source
or	assembly,	and	entry	type.	Local	entries	are	configured	at	the	level	you	are
working	with.	Inherited	entries	are	configured	at	a	higher	level	of	the
configuration	hierarchy.

You	can	add	a	custom	control	by	following	these	steps:

1. In	IIS	Manager,	navigate	to	the	level	of	the	configuration	hierarchy	you	want
to	manage,	double-click	the	Pages	And	Controls	feature,	and	then,	in	the
Actions	pane,	click	Register	Controls.

2. In	IIS	Manager,	on	the	Controls	Page,	click	Add	Custom	Control.
3. In	the	Tag	Prefix	text	box,	type	the	tag	prefix	assigned	to	the	control,	such	as

aspx.
4. In	the	Namespace	text	box,	type	the	ASP.NET	namespace	in	which	the

custom	control	type	is	defined,	such	as
System.Web.UI.WebControls.WebParts.

5. In	the	Assembly	text	box,	type	the	assembly	details	associated	with	the
custom	control.	This	includes	the	control’s	top-level	namespace,	version,
culture,	and	any	additional	information	required	to	register	the	assembly
properly,	such	as	its	public	key	token.	Then	click	OK.

You	can	edit	registered	control	entries	by	clicking	the	control	entry	you	want	to
modify	and	then	clicking	Edit.	In	the	Edit	Custom	Control	dialog	box,	modify	the
settings	as	necessary,	and	then	click	OK	to	save	your	changes.	To	remove	a
registration	entry	for	a	custom	control	that	is	no	longer	needed,	click	the	control
entry	you	want	to	remove,	and	then	click	Remove.	When	prompted	to	confirm	the
action,	click	Yes.

Configuring	ASP.NET	Settings	for	Pages	and	Controls

You	can	modify	the	way	ASP.NET	is	used	by	Web	applications	by	using	the
configuration	settings	on	the	Pages	And	Controls	page	in	IIS	Manager.	To	access
this	page,	navigate	to	the	level	of	the	configuration	hierarchy	you	want	to	manage,
and	then	double-click	the	Pages	And	Controls	feature.

Table	1-2	summarizes	the	available	ASP.NET	settings	for	pages	and	controls.	In
the	related	server,	site,	or	application	Web.config	file,	you	manage	these	settings
by	using	the	sessionState	configuration	section.

TABLE	1-2	Settings	for	Pages	and	Controls
Base	Type	for	Pages
(pageBaseType)

Sets	the	base	type	that	.aspx	pages	inherit	by	default.
The	default	value	in	most	cases	is	System.Web.UI.Page.
This	value	can	be	overridden	by	the	Inherits	attribute.

Base	Type	for	User
Controls
(userControlBaseType)

Sets	the	base	type	that	user	controls	inherit	by	default.
The	default	value	in	most	cases	is
System.Web.UI.UserControl.

Buffer	(buffer) Determines	whether	.aspx	pages	and	.ascx	controls	use
response	buffering.	The	default	setting	is	True.	When
True,	IIS	uses	response	buffering	in	much	the	same	way

as	it	uses	response	buffering	for	ASP.
Compilation	Mode
(compilationMode)

Determines	whether	an	ASP.NET	page	or	control	should
be	compiled	at	run	time.	The	default	is	Always,	which
ensures	that	pages	and	controls	are	always	compiled	at
run	time.	A	value	of	Never	specifies	that	pages	and
controls	are	not	compiled	and	should	be	interpreted
instead.	A	value	of	Auto	allows	IIS	to	compile	pages	and
controls	as	necessary	and	otherwise	set	them	to	be
interpreted.

Enable	Authenticated	View
State
(enableViewStateMAC)

Determines	whether	ASP.NET	should	run	a	message
authentication	code	(MAC)	on	the	page’s	view	state
when	the	page	is	posted	back	from	the	client.	The	default
setting	is	True.

Enable	Session	State
(enableSessionState)

Specifies	whether	and	how	IIS	maintains	session	state
information	for	ASP.NET	applications.	The	default
setting	is	True.	When	True,	IIS	maintains	session	state
information	for	ASP.NET.	Alternately,	you	can	use	a
value	of	ReadOnly	to	have	IIS	maintain	non-editable,
read-only	session	state	data.	If	you	don’t	want	IIS	to
maintain	session	state	information	for	ASP.NET,
configure	this	setting	to	False.

Enable	View	State
(enableViewState)

Determines	whether	the	page	maintains	the	view	state
and	the	view	state	of	any	server	controls	it	contains	when
the	current	page	request	ends.	The	default	setting	is
True.

Master	Page	File
(masterPageFile)

Sets	an	optional	master	page	path	relative	to	the	local
configuration	file.	This	allows	applications	to	reference
locations	in	the	master	page	path	by	name	rather	than	full
file	path.

Maximum	Page	State	Field
Length
(maxPageStateFieldLength)

Sets	the	maximum	number	of	characters	for	individual
view	state	fields.	When	the	value	is	greater	than	zero	(0),
IIS	breaks	the	view	state	field	into	chunks	that	are	less
than	the	specified	length.	Clients	receive	this	chunked
view	state	as	a	series	of	view	state	fields	rather	than	a
single,	possibly	very	long	view	state	field.	When	the	value
is	set	to	-1,	IIS	does	not	chunk	the	view	state	field	and
instead	sends	the	entire	value	to	the	client	in	a	single	view
state	field.

Namespaces	(namespaces) Specifies	the	namespaces	included	for	all	pages.	IIS
imports	these	namespaces	during	assembly	pre-
compilation.	If	you	expand	the	Namespaces	node,	you’ll
see	a	list	of	namespaces	that	will	be	imported.

Style	Sheet	Theme
(styleSheetTheme)

Sets	the	optional	name	of	the	theme	folder	that	IIS	will
use	to	apply	a	theme	before	control	declarations.	You	can
specify	a	theme	to	apply	after	control	declaration	by
using	the	theme	attribute.

Theme	(theme) Sets	the	optional	name	for	the	theme	that	is	used	for
pages	that	are	in	the	scope	of	the	configuration	file.	The

specified	theme	must	exist	as	either	an	application	or	a
global	theme.	If	the	theme	does	not	exist,	IIS	generates
an	HttpException	exception.

Validate	Request
(validateRequest)

Determines	whether	ASP.NET	validates	requests	to
screen	for	potentially	dangerous	or	malicious	input.	The
default	setting	is	True,	which	causes	ASP.NET	to
validate	input	from	client	browsers.	Although	you	should
rarely	disable	validation,	you	can	do	so	by	using	a	value
of	False.

You	can	configure	the	list	of	namespaces	that	IIS	imports	during	assembly	pre-
compilation	by	completing	the	following	steps:

1. To	view	currently	configured	Pages	And	Controls	settings,	in	IIS	Manager,
navigate	to	the	level	of	the	configuration	hierarchy	you	want	to	manage,	and
then	double-click	the	Pages	And	Controls	feature.

2. On	the	Pages	And	Controls	page,	expand	the	Namespaces	node	to	display	a
list	of	namespaces	that	will	be	included	during	assembly	pre-compilation.

3. If	you	click	the	Namespaces	entry,	IIS	Manager	displays	a	selection	button
on	the	far	right	side	of	the	second	column.	Clicking	this	button	displays	the
String	Collection	Editor	dialog	box,	which	you	can	use	to	edit	the	imported
namespace	values.	Edit	the	namespace	entries	as	necessary.	Add	additional
namespaces	by	typing	each	additional	namespace	on	a	separate	line.

4. When	you	are	finished	editing	namespace	values,	click	OK.	In	the	Actions
pane,	apply	the	changes	to	the	configuration	by	clicking	Apply.

Connecting	to	Data	Sources

IIS	can	store	connection	strings	used	by	managed	code	applications	to	connect	to
local	and	remote	data	sources,	which	can	include	SQL	Server	databases	and	other
types	of	databases.	To	view	currently	configured	connection	strings,	in	IIS
Manager,	navigate	to	the	level	of	the	configuration	hierarchy	you	want	to	manage,
and	then	access	the	Connection	Strings	page	by	double-clicking	the	Connection
Strings	feature.	In	the	main	pane,	you’ll	see	a	list	of	the	currently	defined
connection	strings.	Local	entries	are	configured	at	the	level	you	are	working	with.
Inherited	entries	are	configured	at	a	higher	level	of	the	configuration	hierarchy.

You	can	create	a	connection	string	for	SQL	Server	by	completing	the	following
steps:

1. In	IIS	Manager,	navigate	to	the	level	of	the	configuration	hierarchy	you	want
to	manage,	and	then	access	the	Connection	Strings	page	by	double-clicking
the	Connection	Strings	feature.

2. On	the	Connection	Strings	page,	in	the	Actions	pane,	click	Add.	This
displays	the	Add	Connection	String	dialog	box.

3. In	the	Name	text	box,	type	the	name	of	the	connection	string,	such	as
SqlServerCustDb.	This	name	must	be	the	same	name	that	you	reference	in
your	application	code	to	retrieve	data	that	uses	this	connection	string.	You
cannot	change	the	name	later	without	re-creating	the	connection	string.

4. In	the	Server	text	box,	type	the	name	of	the	SQL	server	that	hosts	the
database.

5. In	the	Database	text	box,	type	the	name	of	the	SQL	server	database.
6. Select	one	of	the	following	Credentials	options	to	specify	the	security

credentials	that	are	used	to	connect	to	the	database:
Use	Windows	Integrated	Security Configures	the	connection	string	so	that
the	application	uses	the	current	Windows	identity	established	on	the	operating
system	thread	to	access	the	SQL	Server	database.	Use	this	option	to	pass
through	authenticated	Windows	domain	credentials	to	the	database.

NOTE  You	can	use	integrated	security	only	when	SQL	Server	runs	on	the
same	computer	as	IIS	or	when	you’ve	configured	delegation	between
computers.	Additionally,	all	application	users	must	be	in	the	same	domain	so
that	their	credentials	are	available	to	IIS.

Specify	Credentials Configures	the	connection	string	to	use	a	specific	SQL
Server	user	name	and	password.	Use	this	option	when	you	do	not	want	to
pass	through	user	credentials	to	the	database	for	authentication.	After	you
select	Specify	Credentials,	click	Set	in	the	Set	Credentials	dialog	box,	type
the	SQL	Server	user	name	to	use	for	the	connection.	After	you	type	and	then
confirm	the	password	for	this	user,	click	OK.

7. Click	OK	to	close	the	Add	Connection	String	dialog	box.

You	can	create	a	custom	connection	string	for	other	types	of	database	servers	by
completing	the	following	steps:

1. In	IIS	Manager,	navigate	to	the	level	of	the	configuration	hierarchy	you	want
to	manage,	and	then	access	the	Connection	Strings	page	by	double-clicking
the	Connection	Strings	feature.

2. On	the	Connection	Strings	page,	in	the	Actions	pane,	click	Add.	This
displays	the	Add	Connection	String	dialog	box,	with	the	Custom	option
enabled.

3. In	the	Name	text	box,	type	the	name	of	the	connection	string,	such	as
LocalSqlServer.	This	name	must	be	the	same	name	that	you	reference	in
your	application	code	to	retrieve	data	that	uses	this	connection	string.	You

cannot	change	the	name	later	without	re-creating	the	connection	string.
4. Select	the	Custom	option,	and	then	type	the	connection	string.	The

connection	string	should	by	formatted	as	appropriate	for	the	type	of	database
to	which	you	are	connecting.	Your	organization’s	application	developer	or
database	administrator	should	be	able	to	provide	the	required	connection
string.	The	following	example	connects	to	a	local	SQL	Express	database,
which	is	stored	in	the	aspnetdb.mdf	file:

Data	source=.\SQLEXPRESS;Integrated	Security=SSPI;
AttachDBFilename=|DataDirectory|aspnetdb.mdf;User	Instance=true

5. Click	OK	to	close	the	Add	Connection	String	dialog	box.

To	edit	an	existing	connection	string,	select	the	string	that	you	want	to	modify,	and
then	click	Edit.	In	the	Edit	Connection	String	dialog	box,	modify	the	settings	as
necessary,	and	then	click	OK	to	save	your	changes.	To	remove	a	connection	string
that	is	no	longer	needed,	select	the	connection	string	you	want	to	remove,	and	then
click	Remove.	When	prompted	to	confirm	the	action,	click	Yes.

Managing	.NET	Framework	Settings

In	ASP.NET	applications,	you	can	use	the	functions	and	features	provided	by	the
.NET	Framework	to	establish	connections	to	databases,	control	access	to
applications,	and	much	more.	Key	configuration	areas	for	connecting	to	databases
include	Connection	Strings	and	.NET	Providers.	Key	configuration	areas	for
controlling	applications	include:	.NET	Profiles,	.NET	Users,	and	.NET	Roles.
You	can	also	configure	settings	for	.NET	Trust	Levels,	.NET	Compilation,	and
.NET	Globalization.

Configuring	.NET	Providers

When	you	have	managed	code	applications	that	use	provider-based	services	to
store	data	in	a	database	or	other	data	store,	you’ll	need	to	configure	.NET
providers	to	manage	.NET	roles,	.NET	users,	and	.NET	profiles.	.NET	providers
have	helper	functions	that	allow	managed	code	applications	to	connect	to
databases	by	using	previously	defined	connection	strings	and	perform	the
necessary	management	tasks	for	working	with	.NET	roles,	.NET	users,	and	.NET
profiles.

Because	.NET	roles,	.NET	users,	and	.NET	profiles	all	have	different	purposes,
different	.NET	providers	are	required	for	working	with	each	of	these	features:

.NET	Roles	providers	supply	an	interface	between	the	ASP.NET	role
management	service	and	role	data	sources.
.NET	Users	providers	supply	an	interface	between	the	ASP.NET	membership
service	and	membership	data	sources.
.NET	Profile	providers	supply	an	interface	between	the	ASP.NET	profile
service	and	profile	data	sources.

To	view	the	default	.NET	providers	and	any	additional	providers	that	you’ve
created,	in	IIS	Manager,	navigate	to	the	level	of	the	configuration	hierarchy	you
want	to	manage,	and	then	double-click	the	Providers	feature.	On	the	Providers
page,	in	the	Feature	drop-down	list,	choose	the	type	of	.NET	provider	you	want	to
view	and	manage.	Associated	providers	are	listed	by:

Name Show	the	descriptive	name	that	is	assigned	to	the	provider	for	easy
identification.
Type Shows	the	.NET	type	for	the	provider.	All	providers	are	implemented
in	managed	code.
Entry	Type Shows	the	scope	of	the	provider	as	either	Local	or	Inherited.

Table	1-3	provides	an	overview	of	the	default	.NET	providers	that	are	available
when	you’ve	enabled	ASP.NET	for	application	development.

TABLE	1-3	Default	.NET	Providers
AspNetSqlRoleProvider For	working	with	.NET	roles	stored	in	the	Windows

Internal	Database	associated	with	the	IIS	installation.
.NET	type:	System.Web.Security.	SqlRoleProvider.

AspNetWindowsTokenRoleProvider For	working	with	Windows	security	tokens	associated
with	.NET	roles.	.NET	type:	System.Web.Security.
WindowsTokenRoleProvider.

AspNetSqlMembershipProvider For	managing	.NET	user	memberships	stored	in	the
Windows	Internal	Database	associated	with	the	IIS
installation.	.NET	type:	System.Web.Security.
SqlMembershipProvider.

AspNetSqlProfileProvider For	managing	.NET	profiles	stored	in	the	Windows
Internal	Database	associated	with	the	IIS	installation.
.NET	type:	System.Web.Profile.	SqlProfileProvider.

You	can	configure	additional	.NET	providers	for	managing	.NET	roles,	.NET
users,	and	.NET	profiles	stored	in	a	database	or	other	data	store	by	following
these	steps:

1. Each	.NET	provider	requires	a	connection	string	to	the	data	source	you	want
to	use.	If	you	haven’t	already	created	the	required	connection	string	as
discussed	in	the	“Connecting	To	Data	Sources”	section	earlier	in	this
chapter,	do	so	now.

2. On	the	Providers	page	in	IIS	Manager,	in	the	Feature	drop-down	list,	select
the	feature	you	want	to	manage	with	the	provider.	Choose	.NET	Roles	if	you
want	to	use	the	provider	to	create	or	manage	.NET	Roles	in	the	related	data
source.	Choose	.NET	Users	if	you	want	to	use	the	provider	to	create	or
manage	.NET	Users	in	the	related	data	source.	Choose	.NET	Profile	if	you
want	to	use	the	provider	to	create	or	manage	.NET	Profiles	in	the	related
data	source.

3. In	the	Actions	pane,	click	Add.	This	displays	the	Add	Provider	dialog	box.
4. In	the	Type	selection	drop-down	list,	choose	the	.NET	type	to	associate	with

the	.NET	provider,	such	as	AuthorizationStoreRoleProvider.
5. In	the	Name	text	box,	type	a	unique	name	for	the	.NET	provider,	such	as

AspNet	AuthorizationStoreRoleProvider.

6. If	you	are	creating	a	.NET	provider	for	.NET	users,	use	the	Behavior
options	to	specify	these	profile	properties:
EnablePasswordReset	for	enabling	the	password	reset	functionality
EnablePasswordRetrieval	for	enabling	password	retrieval	from	a	data	store
RequiresQuestionAndAnswer	for	requiring	a	security	question	and	correct
answer	to	reset	a	user	password
RequiresUniqueEmail	for	requiring	a	unique	e-mail	address	for	each	user
StorePasswordInSecureFormat	for	storing	the	user	password	in	a	secure
(encrypted)	format

7. Click	in	the	ConnectionStringName	text	box	to	activate	the	related	selection
list.	In	the	drop-down	list,	choose	the	previously	created	connection	string
that	the	.NET	provider	should	use.

8. The	entry	in	the	ApplicationName	text	box	sets	the	virtual	path	of	a	specific
application	that	uses	the	provider.	If	you	do	not	specify	a	value,	the	value	is
set	at	run	time	to	that	of	the	current	application	making	the	connection
request,	per	HttpContext.Current.Request.ApplicationPath.

9. In	the	Description	text	box,	type	an	optional	description	of	the	provider,	and
then	click	OK.

Although	you	cannot	edit	or	remove	default	.NET	providers,	you	can	edit,	rename,

or	remove	any	.NET	providers	you’ve	created:

To	edit	user-created	.NET	providers,	click	the	provider	entry	you	want	to
modify,	and	then	click	Edit.	In	the	Edit	Provider	dialog	box,	modify	the
settings	as	necessary,	and	then	click	OK	to	save	your	changes.
To	rename	a	user-created	provider,	click	the	provider	entry	to	select	it,	and
then	click	Rename.	Type	the	new	name	for	the	provider,	and	then	press	Enter.
To	remove	an	entry	for	a	user-created	provider	that	is	no	longer	needed,	click
the	provider	entry	you	want	to	remove,	and	then	click	Remove.	When
prompted	to	confirm	the	action,	click	Yes.

Configuring	.NET	Trust	Levels

The	active	.NET	Trust	Level	sets	the	level	of	trust	that	is	applied	to	managed
modules,	handlers,	and	applications.	The	trust	levels	you	can	use	for	servers,
sites,	and	applications	follow:

Full	(internal) Indicates	that	ASP.NET	applications	are	fully	trusted.	This
grants	application	permissions	to	access	any	resource	that	is	subject	to
operating	system	security	and	allows	all	privileged	operations.
High	(web_hightrust.config) Indicates	that	ASP.NET	applications	are
highly	trusted.	This	restricts	application	permissions	so	that	an	application
cannot	perform	any	of	the	following	actions:	call	unmanaged	code,	call
serviced	components,	write	to	the	event	log,	access	Microsoft	Message
Queuing	(MSMQ)	service	queues,	or	access	data	sources.
Medium	(web_mediumtrust.config) Indicates	that	ASP.NET	applications
are	moderately	trusted.	This	restricts	application	permissions	so	that	in
addition	to	not	being	able	to	perform	any	of	the	actions	restricted	by	the	High
trust	level,	an	application	cannot	perform	any	of	the	following	tasks	by
default:	access	files	outside	the	application	directory,	access	the	registry,	or
make	network	or	Web	service	calls.
Low	(web_lowtrust.config) Indicates	that	ASP.NET	applications	are
somewhat	trusted.	This	restricts	application	permissions	so	that	in	addition	to
not	being	able	to	perform	any	of	the	actions	restricted	by	the	High	and
Medium	trust	levels,	an	application	cannot	perform	either	of	the	following
tasks	by	default:	write	to	the	file	system	or	call	the	Assert	method.
Minimal	(web_minimaltrust.config) Indicates	that	ASP.NET	applications
are	minimally	trusted.	This	restricts	application	permissions	so	that	it	has
only	execute	permissions.	No	other	permissions	are	granted	by	default.

You	can	configure	the	.NET	trust	level	for	a	server,	site,	or	application	by
completing	the	following	steps:

1. In	IIS	Manager,	navigate	to	the	level	of	the	configuration	hierarchy	you	want
to	manage,	and	then	display	the	.NET	Trust	Levels	page	by	double-clicking
the	.NET	Trust	Levels	feature.

2. On	the	.NET	Trust	Levels	page,	in	the	Trust	Level	drop-down	list,	set	the
desired	trust	level.	Click	Apply	to	save	your	settings.

In	the	related	server,	site,	or	application	Web.config	file,	you	can	configure	the
trust	level	by	using	the	level	attribute	of	the	trust	configuration	section.	The	valid
values	are:	Full,	High,	Medium,	Low,	and	Minimal.

Configuring	.NET	Profiles

.NET	profiles	allow	you	to	store	any	custom	information	that	applications	require.
Generally	speaking,	you’ll	have	two	types	of	properties:	global	properties	that
you	want	to	use	for	all	applications,	and	application-specific	properties	that	apply
only	to	a	specific	application.	You	can	make	it	easier	to	work	with	properties	by
grouping	similar	properties.	You	can	do	this	according	to	the	application	they	are
used	with	or	according	to	how	the	property	is	used.

In	IIS	Manager,	you	can	view	currently	configured	properties	for	.NET	profiles	by
double-clicking	the	.NET	Profile	feature.	This	feature	is	available	only	at	or
below	a	site	level.	On	the	.NET	Profile	page,	you’ll	see	a	list	of	the	currently
defined	properties.	Local	entries	are	configured	at	the	level	you	are	working	with.
Inherited	entries	are	configured	at	a	higher	level	of	the	configuration	hierarchy.

You	can	work	with	.NET	profiles	in	a	variety	of	ways:

To	disable	or	enable	the	.NET	Profile	feature,	in	the	Actions	pane,	click
Disable	or	Enable.
To	set	the	default	provider	for	.NET	profiles,	in	the	Actions	pane,	click	Set
Default	Provider,	select	a	default	provider,	and	then	click	OK.	By	default,
ASP.NET	uses	a	SqlProfileProvider	instance	named
AspNetSqlProfileProvider	to	connect	to	a	SQL	Server	database	on	the	local
computer.	A	Windows	Internal	Database	is	provided	for	this	purpose.
To	create	a	group	container	for	properties,	in	the	Actions	pane,	click	Add
Group,	type	a	group	name,	and	then	click	OK.
When	you	select	a	group,	you	can	add	a	new	property	to	the	group	by	clicking
Add	Property	To	Group,	providing	the	property	details,	and	then	clicking	OK.
To	add	a	property	without	placing	it	in	a	group,	click	Add	Property,	provide
the	property	details,	and	then	click	OK.
When	you	select	a	property,	you	can	edit,	rename,	or	remove	it	by	configuring
the	related	settings	in	the	Actions	pane.

You	can	set	the	following	details	for	profile	properties:

Name Sets	the	name	of	the	profile	property.
Data	Type Sets	the	data	type	of	the	property.	This	can	be	either	a	common
data	type	such	as	String,	or	a	custom	data	type.

Default	Value Sets	the	default	value	of	the	property.
Serialization	Option Sets	the	serialization	formatting	for	the	property	as
string,	binary,	XML,	or	provider-specific.

Properties	can	also	be	read-only	and	accessible	to	anonymous	users.

Configuring	.NET	Roles

.NET	Roles	allow	you	to	group	a	set	of	users	and	perform	security-related
operations,	such	as	authorization,	on	a	whole	set	of	users.	In	IIS	Manager,	to	view
currently	configured	.NET	Roles,	double-click	the	.NET	Roles	feature.	This
feature	is	available	at	or	below	a	site	level	only.	On	the	.NET	Roles	page,	enable
roles	that	are	currently	disabled	by	clicking	Enable	in	the	Actions	pane.	You’ll	see
a	list	of	the	currently	defined	roles.	Roles	are	listed	by	name	and	by	the	number	of
users	assigned	to	a	role.

You	can	work	with	.NET	Roles	in	a	variety	of	ways:

To	set	the	default	provider	for	.NET	profiles,	in	the	Actions	pane,	click	Set
Default	Provider,	select	a	default	provider,	and	then	click	OK.	By	default,	the
ASP.NET	Role	Manager	uses	a	SqlRoleProvider	instance	named
AspNetSqlRoleProvider,	which	stores	role	information	in	a	SQL	Server
database.	A	Windows	Internal	Database	is	provided	for	this	purpose.
To	define	a	role,	in	the	Actions	pane,	click	Add,	provide	the	necessary	role
details,	and	then	click	OK.	The	role	uses	the	default	provider	automatically.
To	change	the	default	provider	for	a	role,	click	the	role	you	want	to	edit,	and
then	click	Edit.	In	the	Edit	.NET	Role	dialog	box,	select	the	default	provider
to	use,	and	then	click	OK.

NOTE The	ASP.NET	Role	Manager	is	designed	to	support	custom	role
and	user	assignment	and	cannot	be	used	to	manage	Windows	users	and
groups.	This	is	why	the	default	provider	is	set	as	SqlRoleProvider	and	not
as	WindowsTokenRoleProvider.	SqlRoleProvider	supports	custom	user	and
role	assignment	through	SQL	Server	and	is	ideally	suited	to	medium	and
large	deployments.	The	WindowsTokenRoleProvider	uses	role	information
based	on	Windows	domain	accounts	and	is	useful	only	if	your	application
runs	on	a	network	in	which	all	users	have	domain	accounts.	The
WindowsTokenRoleProvider	relies	on	Windows	authentication	to	determine
the	groups	in	which	a	user	is	allowed	to	be	a	member.

Configuring	.NET	Users

You	can	use	.NET	Users	to	help	you	manage	user	identities	that	are	defined	for
applications.	.NET	Users	can	be	used	to	perform	authentication,	authorization,	and
other	security-related	operations.

To	view	currently	configured	.NET	Users,	in	IIS	Manager,	double-click	the	.NET
Users	feature.	This	feature	is	available	at	or	below	a	site	level	only.	On	the	.NET
Users	page,	you’ll	see	a	list	of	the	currently	defined	users.	Users	are	listed	by
name,	e-mail	address,	date	created,	and	last	login.

You	can	work	with	.NET	Users	in	a	variety	of	ways:

To	set	the	default	provider	for	.NET	users,	in	the	Actions	pane	,	click	Set
Default	Provider,	select	a	default	provider,	and	then	click	OK.	By	default,	the
ASP.NET	Users	Manager	uses	a	SqlMembershipProvider	instance	named
AspNetSqlMembershipProvider,	which	stores	user	information	in	a	SQL
Server	database.	A	Windows	Internal	Database	is	provided	for	this	purpose.
To	create	a	user,	in	the	Actions	pane,	click	Add.,	and	then	follow	the	wizard
prompts.	You’ll	need	to	supply	the	user	name	and	default	e-mail	address.
Type	and	then	confirm	the	password	for	the	user.	You	can	also	select	or	type	a
security	question	and	provide	an	answer	for	this	question.	If	the
RequiresQuestionAndAnswer	property	is	set	for	the	.NET	Users	provider,
this	question	and	answer	can	be	used	to	reset	the	user	password.
To	specify	the	roles	to	associate	with	a	.NET	user,	select	a	user,	and	then	in
the	Actions	pane,	click	Add	.	Then	use	the	options	provided	to	specify	the
roles	associated	with	the	user.
To	change	the	default	provider	for	a	user,	click	the	user	you	want	to	edit,	and
then	click	Edit.	In	the	Edit	.NET	Users	Settings	dialog	box,	select	the	default
provider	to	use,	and	then	click	OK.

Configuring	.NET	Compilation

.NET	Compilation	properties	allow	you	to	manage	the	way	IIS	performs	batch
compilations	of	ASP.NET	application	code.	In	IIS	Manager,	to	view	currently
configured	.NET	compilation	settings,	navigate	to	the	level	of	the	configuration
hierarchy	you	want	to	manage,	and	then	double-click	the	.NET	Compilation
feature.	On	the	.NET	Compilation	page,	you’ll	see	a	list	of	the	currently	defined
settings.	These	settings	are	used	as	described	in	Table	1-4.	In	the	related	server,
site,	or	application	Web.config	file,	you	can	use	the	compilation	configuration
section	to	configure	these	settings.

TABLE	1-4	.NET	Compilation	Settings
Assemblies	(assemblies) Specifies	the	assemblies	to	include	during

compilation.	If	you	expand	the	Assemblies
node,	you’ll	see	a	list	of	assemblies	that	will	be
included.	Click	Select	to	edit	the	assemblies
list.

Batch	Compilations	(batch) Determines	whether	batch	processing	is
supported.	The	default	is	True,	enabling	batch
compilation.	To	disable	batch	compilation,	use
a	value	of	False.

Code	Sub	Directories Specifies	the	subdirectories	that	contain	code.
If	you	expand	the	Code	Sub	Directories	node,
you’ll	see	a	list	of	subdirectories	that	will	be
included.	Click	Select	to	edit	the	subdirectories
list.

Debug	(debug) Determines	whether	the	debugger	is	enabled
or	disabled.	The	default	is	False,	disabling
debugging.	To	enable	debugging,	use	a	value
of	True.

Default	Language
(defaultLanguage)

Sets	the	default	programming	language	to	use
in	dynamic	compilation	files.	The	default	is
Visual	Basic	(“vb”).	You	can	also	select	C#.

Explicit	Compile	Option	(explicit) Determines	whether	to	set	the	Visual	Basic
explicit	compile	option.	The	default	is	True.	If
True,	all	variables	must	be	declared	explicitly
by	using	a	Dim,	Private,	Public,	or	ReDim
statement.	To	remove	the	requirement	for
explicit	declarations,	use	a	value	of	False.

Maximum	File	Size
(maxBatchGeneratedFileSize)

Sets	the	maximum	size,	in	kilobytes,	of	the
generated	source	files	per	batched
compilation.	The	default	is	1000	KB.	If	a
source	file	exceeds	the	maximum	size,	the

compiler	reverts	to	single	compilation	mode
for	the	source	file.

Maximum	Size	of	Batch
(maxBatchSize)

Sets	the	maximum	number	of	pages	per
batched	compilation.	The	default	is	1000.
When	ASP.NET	reaches	the	maximum
number	of	files,	it	closes	the	current	batch
session	and	starts	a	new	one	as	necessary.

Number	of	Recompiles
(numRecompilesBeforeAppRestart)

Specifies	the	number	of	dynamic	recompiles
of	resources	that	can	occur	before	IIS	restarts
the	application.	The	default	is	15.	If	this	value
is	reached,	IIS	restarts	the	application.

Strict	Compile	Option	(strict) Determines	whether	to	set	the	Visual	Basic
strict	compile	option.	The	default	is	False,
meaning	that	the	strict	compile	option	is	not
set.

Timeout	(batchTimeout) Sets	the	time-out	period	for	batch	compilation.
If	compilation	cannot	be	completed	in	the
time-out	period,	the	compiler	reverts	to	single
compilation	mode	for	the	current	page.	The
default	is	00:15:00	(15	minutes).

Temporary	Directory
(tempDirectory)

Sets	the	directory	to	use	for	temporary	file
storage	during	compilation.	The	default	value
is	an	empty	string,	which	allows	ASP.NET	to
use	its	default	working	directory.

Url	Line	Pragmas	(urlLinePragmas) Determines	whether	the	line	pragmas	(used	to
introduce	machine-dependent	code	in	a
controlled	fashion)	generated	by	ASP.NET
should	use	URLs	instead	of	physical	paths.
The	default	is	False,	meaning	that	ASP.NET
will	use	physical	paths.	To	use	URLs	instead,
use	a	value	of	True.

You	can	configure	the	list	of	assemblies	to	use	during	.NET	Compilation	by
completing	the	following	steps:

1. To	view	currently	configured	.NET	compilation	settings,	in	IIS	Manager,
navigate	to	the	level	of	the	configuration	hierarchy	you	want	to	manage,	and
then	double-click	the	.NET	Compilation	feature.

2. On	the	.NET	Compilation	page,	expand	the	Assemblies	node	to	display	a
list	of	assemblies	that	will	be	included	for	compilation.

3. If	you	click	the	Assemblies	entry,	IIS	Manager	displays	a	selection	button	on
the	far	right	side	of	the	second	column.	Clicking	this	button	displays	the
String	Collection	Editor	dialog	box,	which	you	can	use	to	edit	the	included
assemblies.	Edit	the	assembly	entries	as	necessary.	Add	additional
assemblies	by	entering	each	additional	assembly	on	a	separate	line.	Enter	*

as	the	last	entry	to	include	all	other	assemblies.
4. When	you	are	finished	editing	assembly	values,	click	OK.	In	the	Actions

pane,	click	Apply	to	apply	the	changes	to	the	configuration.

Configuring	.NET	Globalization

IIS	is	capable	of	supporting	multiple	language	environments.	Globalization	is	the
process	of	internationalizing	application	code,	then	localizing	the	application	to
other	languages	and	cultures.	With	applications	that	have	been	globalized,	IIS	can
present	application	content	in	the	appropriate	encoding	and	format	for	the	client
locale.

You	can	configure	globalization	options	to	support	globalized	applications	on	the
.NET	Globalization	page.	To	access	this	page,	in	IIS	Manager,	navigate	to	the
level	of	the	configuration	hierarchy	you	want	to	manage,	and	then	double-click	the
.NET	Globalization	feature.	On	the	.NET	Globalization	page,	you’ll	see	a	list	of
the	currently	defined	settings.	These	settings	are	used	as	described	in	Table	1-5.	In
the	related	server,	site,	or	application	Web.config	file,	you	can	configure	these
settings	by	using	the	globalization	configuration	section.

TABLE	1-5	.NET	Globalization	Settings
Culture	(culture) Sets	the	default	culture	for	processing	incoming	Web

requests.
Enable	Client	Based
Culture
(enableClientBasedCulture)

Determines	whether	the	client	culture	settings	are
evaluated.	The	default	is	False,	meaning	that	the	client
culture	settings	are	not	evaluated.	If	True,	ASP.NET	sets
the	Culture	and	UICulture	properties	based	on	the
AcceptLanguage	header	field	value	that	is	sent	by	the
client	browser.

File	(fileEncoding) Sets	default	the	file	encoding	for	.aspx,	.asmx,	and	.asax
file	parsing.	Unicode	and	UTF-8	files	that	are	saved	with
the	byte-order	mark	prefix	are	automatically	recognized,
regardless	of	the	value	for	this	attribute.	The	default	file
encoding	in	the	U.S.	is	Windows-1252.

Requests
(requestEncoding)

Sets	the	assumed	encoding	for	incoming	requests,
including	posted	data	and	query	strings.	If	a	request
includes	a	request	header	that	contains	an	Accept-
Charset	attribute,	the	value	of	this	attribute	overrides	this
setting.	The	default	encoding	is	UTF-8.	In	most	case,
requests,	response	headers,	and	responses	encoding
should	be	set	in	the	same	way.

Response	Headers
(responseHeaderEncoding)

Sets	the	content	encoding	of	response	headers.	The
default	encoding	is	UTF-8.

Responses
(responseEncoding)

Sets	the	content	encoding	of	responses.	The	default
encoding	is	UTF-8.

UI	Culture	(uiCulture)

Sets	the	default	UI	culture	for	use	in	processing	incoming
Web	requests.

Chapter	2
Managing	Applications	and	Application	Pools

The	previous	chapter	discussed	the	essentials	for	customizing	the	application
environment.	That	chapter’s	focus	was	broad	and	discussed	issues	related	to	all
types	of	applications	that	you	can	host	on	IIS.	In	this	chapter,	I	focus	on	advanced
application	configuration	issues	that	are	specific	to	running	dynamic	applications,
such	as:

Managing	.NET	configurations
Creating	applications	and	application	pools
Configuring	multiple	worker	processes	for	applications
Recycling	worker	processes	manually	and	automatically
Optimizing	application	performance

As	you	might	expect,	the	discussion	in	this	chapter	applies	primarily	when	you	are
working	with	Active	Server	Pages	(ASP)	and	Microsoft	ASP.NET,	and	you	must
be	logged	on	as	an	administrator	or	run	commands	as	an	administrator	to	perform
the	tasks	this	chapter	discusses.

Defining	Custom	Applications

You	use	IIS	Manager	to	configure	custom	applications.	As	part	of	the	standard
installation,	Web	sites	have	a	prespecified	application	that	allows	you	to	run
custom	programs	without	making	changes	to	the	environment.	You	could,	for
example,	copy	your	ASP	files	to	a	site’s	base	directory	and	run	them	without
creating	a	separate	application.	Here,	the	ASP	application	runs	as	a	default
application	within	the	context	of	the	site’s	application	pool.

Each	application	has	a	starting	point.	The	starting	point	sets	the	logical	namespace
for	the	application.	That	is,	the	starting	point	determines	the	files	and	folders	that
are	included	in	the	application.	Every	file	and	folder	in	the	starting	point	is
considered	part	of	the	application.

You	can	set	application	starting	points	for	the	following:

An	entire	site
A	directory
A	virtual	directory

When	you	specify	a	site-wide	application,	all	files	in	all	the	Web	site’s
subdirectories	are	considered	to	be	a	part	of	the	application.	When	you	specify	an
application	for	a	standard	or	virtual	directory	within	a	site,	all	files	in	all
subdirectories	in	this	directory	are	considered	part	of	the	application	and	are	no
longer	considered	to	be	a	part	of	the	site	application.

To	get	better	control	over	sites	and	related	applications,	you	should	configure
separate	contexts	for	key	applications.	Application	contexts	are	specified	using
basic	and	advanced	application	settings.	Basic	application	settings	include	the
following:

Alias Sets	the	relative	URL	path	for	the	application.
Physical	Path Sets	the	base	directory	for	the	application.	All	files	in	all
subdirectories	of	the	base	directory	are	considered	to	be	part	of	the
application.
Application	Pool Determines	which	application	pool	is	used	with	the
application.	You	can	configure	multiple	application	pools,	and	each	can	have
a	different	worker	process	configuration.

Advanced	application	settings	include	Physical	Path	Credentials	and	Physical
Path	Credentials	Logon	Type.	Physical	Path	Credentials	sets	the	credentials	for
the	user	identity	that	should	be	impersonated	when	IIS	accesses	application	files
on	a	remote	share.	If	you	need	to	use	alternate	credentials	to	connect	to	the	remote
server	specified	in	a	Universal	Naming	Convention	(UNC)	path,	you	can	specify
user	credentials	or	use	the	default	pass-through	authentication	mode.	With	pass-
through	authentication,	IIS	uses	the	credentials	of	the	requesting	user.	For
authenticated	requests,	IIS	uses	the	logged	on	credentials	of	the	authenticated	user.
For	non-authenticated	requests,	IIS	uses	the	Internet	Guest	account
(IUSR_hostname).

Physical	Path	Credentials	Logon	Type	specifies	the	type	of	logon	operation	to
perform	when	acquiring	the	user	token	necessary	to	access	the	physical	path.	The
logon	types	you	can	use	are	as	follows:

ClearText IIS	uses	a	clear-text	logon	to	acquire	the	user	token.	As	IIS
passes	the	logon	user	call	over	the	back	end	on	an	internal	network,	using	a
clear-text	call	typically	is	sufficient.	This	is	the	default	logon	type.
Interactive IIS	uses	an	interactive	logon	to	acquire	the	user	token.	This
gives	the	related	account	the	Interactive	identity	for	the	logon	session	and
makes	it	appear	that	the	user	is	logged	on	locally.
Batch IIS	uses	a	batch	logon	to	acquire	the	user	token.	This	gives	the
related	account	the	Batch	identity	for	the	logon	session	and	makes	it	appear
that	the	user	is	accessing	the	remote	server	as	a	batch	job.
Network IIS	uses	a	network	logon	to	acquire	the	user	token.	This	gives	the
related	account	the	Network	identity	for	the	logon	session	and	makes	it
appear	that	the	user	is	accessing	the	remote	server	over	the	network.

These	basic	and	advanced	settings	create	an	application	context	within	which	an
application	runs.	Application	contexts	are	specified	at	the	directory	level.	All
files	in	all	subdirectories	of	an	application’s	base	directory	are	considered	to	be
part	of	the	application.	Because	of	this,	one	way	to	create	applications	is	to
follow	these	steps:

1. In	File	Explorer,	create	a	directory	that	will	act	as	the	application’s	starting
point,	and	then	set	appropriate	Windows	access	permissions	on	the
directory.

2. Use	IIS	Manager	to	create	an	application	that	maps	to	the	physical	directory.
3. Configure	application	settings	for	the	directory	as	described	in	the	“Creating

Applications”	section	later	in	this	chapter.

Because	IIS	Manager	now	allows	you	to	create	a	required	physical	directory	and
set	Windows	permissions,	you	can	also	create	applications	by	using	the	following
technique:

1. Use	IIS	Manager	to	create	an	application	that	maps	to	a	new	directory.
2. Configure	application	settings	for	the	directory	as	described	in	the	“Creating

Applications”	section	later	in	this	chapter.
3. In	IIS	Manager,	use	the	application’s	Edit	Permissions	setting	to	set

appropriate	Windows	access	permissions	on	the	directory.

Managing	Custom	IIS	Applications

As	part	of	the	standard	installation,	all	Web	sites	created	in	IIS	have	a	default
application	that’s	set	as	a	site-wide	application,	meaning	that	its	starting	point	is
the	base	directory	for	the	Web	site.	The	default	application	allows	you	to	run
custom	applications	that	use	the	preconfigured	application	settings.	You	don’t
need	to	make	any	changes	to	the	environment.	You	can,	however,	achieve	better
control	by	specifying	applications	with	smaller	scope,	and	the	sections	that	follow
tell	you	how	to	do	this.

Viewing	Applications

To	view	all	applications	associated	with	a	site,	in	IIS	Manager,	select	the	site
node,	and	then	in	the	Actions	pane,	click	View	Applications.	You’ll	then	see	the
applications	created	within	the	site.

These	applications	are	listed	by:

Virtual	Path Lists	the	virtual	path	to	the	application	within	the	site	context
Physical	Path Lists	the	physical	path	to	the	base	directory	for	the
application
Site Lists	the	site	to	which	the	application	belongs
Application	Pool Lists	the	application	pool	in	which	the	application	runs

With	the	IIS	command-line	administration	tool,	you	can	list	applications	by	using
the	List	App	command.	Sample	2-1	provides	the	syntax	and	usage.

SAMPLE	2-1 	List	App	Syntax	and	Usage

Syntax
appcmd	list	app	[[/app.name:]AppNameOrURL]	[/site.name:"SiteName"]
[/apppool.name:"AppPoolName"][/path:	"VirtualPath"]
[/parameter1:value1	...]

Usage
appcmd	list	app	"Default	Web	Site/Sales"

appcmd	list	apps	/site.name:"Default	Web	Site"

appcmd	list	apps	/apppool.name:"DefaultAppPool"

appcmd	list	apps	/path:/Sales

Configuring	Default	Settings	for	New	Applications

In	a	standard	configuration,	new	applications	are	configured	to	use	the	default
application	pool,	pass-through	authentication,	and	clear	text	for	the	logon	type.	If
you	use	the	same	settings	for	most	applications,	you	may	want	to	modify	the
default	settings.	To	do	this,	follow	these	steps:

1. In	IIS	Manager,	select	the	site	node	you	want	to	work	with,	and	then	in	the
Actions	pane,	click	View	Applications.

2. On	the	Applications	page,	in	the	Actions	pane,	click	Set	Application
Defaults.

3. The	Application	Pool	text	box	lists	the	current	default	application	pool.	To
change	the	default	value,	click	the	selection	button.	In	the	Select	Application
Pool	dialog	box,	select	the	application	pool	to	use	in	the	Application	Pool
drop-down	list,	and	then	click	OK.

4. The	Physical	Path	Credentials	text	box	is	blank	by	default	to	indicate	that	IIS
uses	pass-through	authentication.	If	you	need	to	use	alternate	credentials	to
connect	to	the	remote	server	specified	in	a	UNC	path,	click	the	selection
button.	In	the	Connect	As	dialog	box,	choose	Specific	User,	and	then	click
Set.	In	the	Set	Credentials	dialog	box,	type	the	name	of	the	user	account	to
use	for	authentication,	type	and	confirm	the	account	password,	and	then
click	OK.

5. The	Physical	Path	Credentials	Logon	Type	text	box	lists	the	default	type	of
logon	operation	to	perform	when	acquiring	the	user	token	necessary	to
access	the	physical	path.	The	logon	types	you	can	use	are	ClearText,
Interactive,	Batch,	and	Network.	Click	OK	to	save	your	settings.

With	the	IIS	command-line	administration	tool,	you	can	configure	the	default	
application	pool	by	using	the	applicationPool	attribute	of	the	applicationDefaults	
configuration	section.	You	can	configure	the	Physical	Path	Credentials	and	
Physical	Path	Credentials	Logon	Type	by	using	the	username,	password,	and	
logonMethod	attributes	of	the	virtualDirectoryDefaults	configuration	section.	
Samples	2-2	and	2-3	provide	the	syntax	and	usage.

SAMPLE	2-2	 Setting	the	Default	Application	Pool	Syntax	and	Usage

Syntax
appcmd	set	config	["ConfigPath"]	/section:applicationDefaults

[/applicationPool:"AppPoolName"]

Usage
appcmd	set	config	"Default	Web	Site"	/section:applicationDefaults
/applicationPool:"Standard	App	Pool"

SAMPLE	2-3 	Configuring	Default	Path	Settings	Syntax	and	Usage

Syntax
appcmd	set	config	["ConfigPath"]	/section:virtualDirecdtoryDefaults
[/userName:"UserName"]	[/password:"Password"]
[/logonMethod:"LogonType"]

Usage
appcmd	set	config	"Default	Web	Site"
/section:virtualDirecdtoryDefaults	/logonMethod:"ClearText"

Creating	Applications

IIS	applications	are	collections	of	resource	files	and	components	that	are	grouped
together	to	take	advantage	of	key	IIS	features.	You	can	create	an	application	by
completing	the	following	steps:

1. In	IIS	Manager,	right-click	the	site,	directory,	or	virtual	directory	under
which	you	want	to	create	the	application,	and	then	select	Add	Application.

2. In	the	Alias	text	box,	type	the	relative	URL	of	the	application.	For	example,
if	you	are	creating	the	application	under	the	default	Web	site	at
http://www.reagentpress.com	and	set	the	alias	as	Inventory,	the	application
can	be	accessed	using	the	URL	http://www.reagentpress.com/Inventory.

CAUTION Make	sure	you	use	an	appropriate	alias.	You	cannot	change	an
application’s	alias.

3. The	default	application	pool	is	listed	in	the	Application	Pool	text	box.
Although	you	can	use	the	default	application	pool,	it’s	better	to	create	pools
for	specific	types	of	applications.	To	do	so,	click	the	Select	button.	In	the
Select	Application	Pool	dialog	box,	select	the	application	pool	to	use	in	the
Application	Pool	drop-down	list,	and	then	click	OK.

NOTE When	you	select	an	application	pool	in	the	Select	Application	Pool

dialog	box,	the	Microsoft	.NET	Framework	version	and	pipeline	mode	are
listed	as	properties.	Be	sure	to	select	an	application	pool	using	the
appropriate	.NET	Framework	version	and	pipeline	mode.

4. In	the	Physical	Path	text	box,	type	the	path	to	the	physical	directory	where
the	application	content	is	stored,	or	click	the	selection	button	to	the	right	of
the	Physical	Path	text	box	to	search	for	a	directory.	The	directory	must	be
created	before	you	can	select	it.	If	necessary,	in	the	Browse	For	Folder
dialog	box,	click	Make	New	Folder	to	create	the	directory	before	you	select
it.	However,	don’t	forget	about	checking	and	setting	permissions	at	the
operating	system	level	as	discussed	in	Chapter	4,	“Enhancing	Web	Server
Security.”

5. If	you	need	to	use	alternate	credentials	to	connect	to	the	remote	server
specified	in	a	UNC	path,	click	Connect	As.	In	the	Connect	As	dialog	box,
choose	Specific	User,	and	then	click	Set.	In	the	Set	Credentials	dialog	box,
type	the	name	of	the	user	account	to	use	for	authentication,	type	and	confirm
the	account	password,	and	then	click	OK	twice.

TIP When	you	set	logon	credentials	for	an	application,	the	account	name
you	provide	must	exist.	By	default,	IIS	Manager	sets	the	logon	type	to
ClearText.	This	means	that	IIS	will	use	clear	text	when	acquiring	the	user
token	necessary	to	access	the	physical	path.	Because	IIS	passes	the	logon
user	call	over	the	back	end	on	an	internal	network,	using	a	clear-text	call
typically	is	sufficient.	By	editing	an	application’s	properties,	you	also	have
the	option	to	set	the	logon	type	to	Interactive,	Batch,	or	Network.	See	the
“Changing	Application	Settings”	section	later	in	this	chapter	for	more
information.

With	the	IIS	command-line	administration	tool,	you	can	create	applications	by
using	the	Add	App	command.	Sample	2-4	provides	the	syntax	and	usage.

SAMPLE	2-4 	Add	App	Syntax	and	Usage

Syntax
appcmd	add	app	/site.name:	"ParentSiteName"	/path:	"VirtualPath"
/physicalPath:	"Path"

Usage
appcmd	add	app	/site.name:"Default	Web	Site"	/path:	"/Sales"
/physicalPath:	"c:\inetpub\wwwroot\Sales"

When	you	create	an	application,	a	related	virtual	directory	is	created
automatically.	You	can	use	this	virtual	directory	to	set	the	logon	type	and
credentials	for	an	application.	The	related	command	is	Add	Vdir.	Sample	2-5
provides	the	syntax	and	usage.

SAMPLE	2-5 	Setting	the	Logon	Type	and	Credentials	Syntax	and	Usage

Syntax
appcmd	add	vdir	/app.name:"ParentAppName"	/path:	"VirtualPath"
[/physicalPath:	"Path"]	[/logonMethod:Method]	[/userName:User]
[/password:Password]

Usage
appcmd	add	vdir	/app.name:"Default	Web	Site/Sales"	/path:"/Support"
/physicalPath:"c:\support"

appcmd	add	vdir	/app.name:"Sales	Site/"	/path:"/Invoices"
/physicalPath:"c:\salesroot\invoices"	/logonMethod:ClearText
/userName:SupportUser	/password:RainyDayz

Converting	Existing	Directories	to	Applications

Existing	physical	and	virtual	directories	can	be	easily	converted	to	applications,
giving	them	separate	contexts.	To	convert	a	directory	to	an	application,	follow
these	steps:

1. In	IIS	Manager,	right-click	the	directory	or	virtual	directory	that	you	want	to
convert	to	an	application,	and	then	select	Convert	To	Application.	This
displays	the	Add	Application	dialog	box..	The	application	alias	and
physical	path	are	set	automatically	based	on	the	directory	you	selected	and
cannot	be	changed.

2. The	default	application	pool	is	listed	in	the	Application	Pool	text	box.	To
use	a	different	application	pool,	click	the	Select	button.	In	the	Select
Application	Pool	dialog	box,	select	the	application	pool	to	use	in	the
Application	Pool	drop-down	list,	and	then	click	OK.

3. If	you	need	to	use	alternate	credentials	to	connect	to	the	remote	server
specified	in	a	UNC	path,	click	Connect	As.	In	the	Connect	As	dialog	box,
choose	Specific	User,	and	then	click	Set.	In	the	Set	Credentials	dialog	box,
type	the	name	of	the	user	account	to	use	for	authentication,	type	and	confirm
the	account	password,	and	then	click	OK	twice.

With	the	IIS	command-line	administration	tool,	you	can	convert	a	directory	to	an
application	in	the	same	way	as	you	create	an	application.	See	Samples	2-4	and	2-
5	for	examples.

Changing	Application	Settings

An	application’s	alias	(virtual	path)	cannot	be	changed.	You	can	change	any	other
application’s	settings	by	following	these	steps:

1. In	IIS	Manager,	select	the	site	node	you	want	to	work	with,	and	then	in	the
Actions	pane,	click	View	Applications.

2. On	the	Applications	page,	click	the	application	you	want	to	work	with,	and
then	do	one	or	both	of	the	following:
To	edit	the	application’s	basic	settings	(which	includes	all	settings	except	the
logon	type),	select	the	application,	and	then,	in	the	Actions	pane,	click	Basic
Settings.	This	displays	the	Edit	Application	dialog	box,	which	you	can	use	to
change	the	application	settings	in	much	the	same	way	as	you	set	them	in	the
first	place	by	using	the	Add	Application	dialog	box.
To	edit	the	application’s	advanced	settings,	in	the	Actions	pane,	click
Advanced	Settings.	This	displays	the	Advanced	Settings	dialog	box,	which
you	can	use	to	change	the	application	settings.

3. Applications	can	have	associated	virtual	directories.	To	view	and	manage
the	virtual	directories	associated	with	an	application,	select	the	application
you	want	to	work	with,	and	then	click	View	Virtual	Directories.	You	can
now	work	with	the	virtual	directories	associated	with	the	previously
selected	application.

With	the	IIS	command-line	administration	tool,	you	can	change	application	
settings	via	the	virtual	directory	associated	with	the	application.	See	Sample	2-6	
for	the	related	syntax	and	usage.	Several	application	settings	are	configurable	only	
from	a	command	prompt.	These	settings	control	the	bindings	and	protocols	that	are	
enabled	for	an	application.	You	also	can	specify	whether	the	application	should	
start	automatically	and	the	related	autostart	provider	that	the	Windows	Process	
Activation	Service	will	use.

SAMPLE	2-6	 Set	Application	Attributes	Syntax	and	Usage

Syntax
appcmd	set	app	[/app.name:]AppNameOrURL	
[/bindings:value1	...]	
[/enabledProtocols:value1	...]
[/serviceAutoStartEnabled:	true|false]

[/serviceAutoStartProvider:	"ProviderName"]

Usage
appcmd	set	app	"Default	Web	Site/Sales"	/bindings:
http://www.imaginedlands.com:8080

appcmd	set	app	"Default	Web	Site/Sales"	/enabledProtocols:http

Configuring	Output	Caching	for	Applications

Output	caching	improves	performance	by	returning	a	processed	copy	of	a	served
content	from	cache,	resulting	in	reduced	overhead	on	the	server	and	faster
response	times.	IIS	supports	output	caching	in	both	user	mode	and	kernel	mode.
Kernel-mode	caching	is	enabled	by	default	to	ensure	that	cached	responses	are
served	from	the	kernel	rather	than	from	IIS	user	mode,	giving	IIS	an	extra	boost	in
performance	and	increasing	the	number	of	requests	IIS	can	process.	Whether	an
individual	application	uses	user-mode	caching	or	kernel-mode	caching	depends
on	the	application	configuration	as	well	as	the	caching	rules	that	you	define.

With	the	attributes	of	the	Caching	configuration	section,	you	can	control	the	way
caching	is	used.	Sample	2-7	provides	the	syntax	and	usage.	The	enabled	attribute
turns	user-mode	output	caching	on	or	off.	If	set	to	True,	user	mode	is	enabled	for
output	caching.	Otherwise,	user-mode	output	caching	is	disabled.	The
enableKernelModeCache	attribute	controls	whether	kernel-mode	output	caching
is	enabled.	If	set	to	True,	kernel	mode	is	enabled	for	output	caching.	Otherwise,
kernel-mode	caching	is	disabled.	The	maxCacheSize	attribute	sets	the	maximum
size,	in	megabytes,	of	the	in-memory	cache	used	for	both	the	user-mode	and
kernel-mode	caches.	If	this	attribute	is	set	to	zero	(0),	IIS	uses	half	the	available
physical	or	virtual	memory	(whichever	is	less)	for	caching.	maxResponseSize	sets
the	maximum	size,	in	bytes,	of	responses	that	can	be	stored	in	the	output	cache	for
both	the	user-mode	and	kernel-mode	caches.	The	default	value	is	262144	bytes
(256	KB).	If	the	response	size	is	large	than	this	value,	the	response	is	not	stored	in
the	output	cache.

NOTE  At	the	server	level,	you	set	the	master	caching	configuration	and	all
the	configuration	options	are	available.	At	other	configuration	levels,	you
can	control	only	whether	output	caching,	kernel	caching,	or	both	are	enabled.

SAMPLE	2-7 	Configuring	Output	Caching	Syntax	and	Usage

Syntax
appcmd	set	config	["ConfigPath"]	/section:caching
[/enabled:true|false]	[/enableKernelModeCache:true|false]
[/maxCacheSize:"MaxStoredCacheInMB"]
[/maxResponseSize:"MaxSizeInBytes"]

Usage
appcmd	set	config	"Default	Web	Site"	/section:caching

/enableKernelModeCache:true

In	IIS	Manager,	you	can	configure	the	maximum	cached	response	size	and	cache
size	limit	for	output	caching	by	completing	the	following	steps:

1. Navigate	to	the	level	of	the	configuration	hierarchy	you	want	to	manage,	and
then	double-click	the	Output	Caching	feature.

2. On	the	Output	Caching	page,	click	Edit	Feature	Settings.	This	displays	the
Edit	Output	Cache	Settings	dialog	box.

3. If	you	are	working	at	the	server	configuration	level,	you	can	configure	user-
mode	and	kernel-mode	caching:
To	enable	user-mode	caching,	select	Enable	Cache.	Clear	this	option	to
disable	user-mode	caching.
To	enable	kernel-mode	caching,	select	Enable	Kernel	Cache.	Clear	this
option	to	disable	kernel-mode	caching.

4. In	the	Maximum	Cached	Response	Size	text	box,	type	the	maximum	cached
response	size	in	bytes.	The	default	value,	262144	bytes	(256	KB),	is
appropriate	in	many	instances.	However,	if	your	site	has	applications	which
can	return	large	responses,	such	as	database	result	sets,	you’ll	want	to
increase	this	value	accordingly.

5. To	have	IIS	manage	the	cache	size,	clear	the	Cache	Size	Limit	check	box.	To
set	a	specific	limit,	select	this	check	box,	and	then	type	a	limit	value	in
megabytes	(MB).	Click	OK	to	save	your	settings.

TIP  On	a	dedicated	Web	server,	you	can	set	a	specific	cache	limit	to
allow	IIS	to	use	more	than	half	of	the	available	physical	or	virtual	memory.

Before	you	do	this,	however,	you	should	determine	memory	usage	baselines
for	the	server	through	monitoring.	On	a	non-dedicated	server,	you	can	set	a
specific	cache	limit	of	less	than	half	of	the	available	physical	or	virtual
memory	to	ensure	that	memory	is	available	for	other	applications	running	on
the	server.	In	this	configuration,	you	sacrifice	IIS	performance	and
responsiveness	to	ensure	other	applications	can	run	on	the	server.

You	can	also	create	output-caching	rules	that	control	how	IIS	performs	output
caching	for	specific	types	of	files.	You	can	cache	files	until	they	change	or	until	a
specified	time	interval	has	elapsed.	You	also	can	have	multiple	cached	versions
of	files	based	on	query	string	variables	or	HTTP	headers.	For	example,	you	may
want	to	allow	multiple	cached	versions	of	files	based	on	locale.	This	would
allow	IIS	to	store	different	language	versions	of	a	file	in	cache.

The	best	way	to	configure	output-caching	rules	is	as	follows:

At	the	server	level,	you	set	the	caching	rules	that	you	want	to	apply	to	all	sites
and	applications	running	on	the	server.
At	the	site	and	application	level,	you	set	the	remote	caching	rules	that	you	do
not	want	to	apply	at	that	level.
At	the	site	and	application	level,	you	add	caching	rules	as	necessary	that	use
the	default	settings	for	cache	monitoring.

In	IIS	Manager,	you	can	create	an	output	caching	by	completing	the	following
steps:

1. Navigate	to	the	level	of	the	configuration	hierarchy	you	want	to	manage,	and
then	double-click	the	Output	Caching	feature.	Keep	in	mind	that	you	can
customize	the	caching	process	only	at	the	server	level.	At	other	levels,	you
can	apply	only	the	default	settings.

2. On	the	Output	Caching	page,	click	Add.	This	displays	the	Add	Cache	Rule
dialog	box.

3. In	the	File	Extension	text	box,	type	the	file	extension	for	which	the	rule	will
be	applied,	such	as	.aspx	or	.axd.

NOTE  Be	sure	to	use	the	correct	file	extension.	You	cannot	change	the	file
extension	later.	Because	of	this,	you	would	need	to	delete	and	then	re-create
the	rule	using	the	correct	file	extension.

4. To	prevent	user-mode	caching	for	this	file	extension,	select	the	User-Mode
Caching	check	box	and	then	select	Prevent	All	Caching.	To	enable	and
configure	user-mode	caching,	select	the	User-Mode	Caching	check	box	and
then	perform	one	or	more	of	the	following	actions	as	necessary:
Once	IIS	caches	a	file,	it	monitors	the	file	to	determine	whether	the	cache
needs	to	be	updated.	To	configure	monitoring	based	on	change	notifications,
select	the	Using	File	Change	Notifications	option.	To	configure	monitoring
for	a	specified	time	interval,	select	At	Time	Intervals,	and	then	type	an
appropriate	time	interval,	such	as	00:01:00.
IIS	can	cache	multiple	versions	of	files	based	on	query	string	variables.	To
allow	multiple	versions	of	files	to	be	cached	based	on	the	language,	click
Advanced.	Select	the	Query	String	Variables	check	box,	and	then	type	Locale.
To	allow	multiple	versions	of	files	to	be	cached	based	on	regional	settings,
select	the	Query	String	Variables	check	box,	and	then	type	Culture.	Separate
multiple	values	with	a	comma	and	a	space.
IIS	can	cache	multiple	versions	of	files	based	on	HTTP	headers.	To	allow
multiple	versions	of	files	to	be	cached	based	on	a	header	value,	click
Advanced.	Select	the	Headers	check	box,	and	then	type	the	header	keyword,

such	as	Accept-Language	or	Accept-Charset.	Separate	multiple	values	with	a
comma	and	a	space.

5. To	prevent	kernel-mode	caching	for	this	file	extension,	select	the	Kernel-
Mode	Caching	check	box	and	then	select	Prevent	All	Caching.	To	enable
and	configure	user-mode	caching,	select	the	User-Mode	Caching	check	box
and	then	configure	file	cache	monitoring.	Once	IIS	caches	a	file,	it	monitors
the	file	to	determine	whether	the	cache	needs	to	be	updated.	To	configure
monitoring	based	on	change	notifications,	select	the	Using	File	Change
Notifications	option.	To	configure	monitoring	for	a	specified	time	interval,
select	At	Time	Intervals,	and	then	type	an	appropriate	time	interval,	such	as
00:01:00.

6. Click	OK	to	create	the	cache	rule.

You	can	work	with	cache	rules	in	a	variety	of	other	ways:

To	modify	the	rule	definition,	click	the	rule,	and	then	click	Edit.	In	the	Edit
Cache	Rule	dialog	box,	make	the	necessary	changes	to	the	rule,	and	then	click
OK.
To	block	an	inherited	rule	so	that	IIS	doesn’t	apply	at	the	current
configuration	level,	click	the	rule,	and	then	click	Remove.
To	remove	a	rule	permanently,	click	the	rule	in	the	originating	configuration
level,	and	then	in	the	Actions	pane,	click	Remove.	When	prompted	to	confirm
the	action,	click	Yes.

Deleting	IIS	Applications

If	you	find	that	you	no	longer	need	an	application,	you	should	remove	it	to	free	up
the	resources	that	it’s	using.	Deleting	an	application	removes	the	application
context	only;	it	does	not	remove	the	underlying	directories	or	content.

To	delete	an	application,	follow	these	steps:

1. In	IIS	Manager,	select	the	site	node	you	want	to	work	with,	and	then	in	the
Actions	pane,	click	View	Applications.

2. On	the	Applications	page,	click	the	application	you	want	to	remove,	and
then	in	the	Actions	pane,	click	Remove.

3. When	prompted	to	confirm	that	you	want	to	remove	the	application,	click
Yes.

With	the	IIS	command-line	administration	tool,	you	can	delete	an	application	by
using	the	Delete	App	command.	Sample	2-8	provides	the	syntax	and	usage.

SAMPLE	2-8 	Delete	App	Syntax	and	Usage

Syntax
appcmd	delete	app	[/app.name:]AppNameOrURL

Usage
appcmd	delete	app	"Default	Web	Site/Sales"

Managing	ASP.NET	and	the	.NET	Framework

Every	Web	administrator	should	become	intimately	familiar	with	ASP.NET	and
the	.NET	Framework.	You	should	know	how	to	configure	and	manage	the	related
components	and	applications.	As	you’ve	seen	in	Chapter	1,	ASP.NET	and	.NET
Framework	configurations	are	fairly	complex.	To	ensure	success,	you’ll	need	to
work	closely	with	your	organization’s	engineers	and	developers	during	planning,
staging,	and	deployment.

Installing	ASP.NET	and	the	.NET	Framework

To	use	applications	that	incorporate	the	.NET	Framework,	you	must	install
ASP.NET	on	your	IIS	servers.	ASP.NET	is	the	central	Windows	component	that	
allows	an	IIS	server	to	run	ASP.NET	applications.	Like	the	.NET	Framework,	
ASP.NET	technology	is	advancing	rapidly.	Several	implementations	of	ASP.NET	
are	already	available,	and	many	more	will	be	developed	in	the	coming	months	and	
years.

Unlike	many	application	implementations,	in	which	you	have	to	remove	previous	
application	or	component	versions	before	installing	new	applications	or	
components,	you	don’t	have	to	remove	previous	versions	of	ASP.NET.	The	reason	
is	that	the	.NET	Framework	supports	side-by-side	execution	of	applications	and	
components	running	different	versions	of	ASP.NET.	Side-by-side	execution	is	
made	possible	because	applications	and	the	components	they	use	run	within	
isolated	process	boundaries.	Each	worker	process	runs	its	own	instance	of	the	
ASP.NET	components	that	it	needs	and	is	isolated	from	other	processes.

You	can	install	multiple	versions	of	ASP.NET	on	an	IIS	server.	You	enable	the	
default	version	of	ASP.NET	and	.NET	by	installing	and	enabling	the	ASP.NET	
and	.NET	Extensibility	role	services.	You	can	install	additional	versions	of	
ASP.NET	on	an	IIS	server.	Typically,	you	do	this	by	running	the	.NET	Framework	
setup	program	for	the	version	you	want	to	install.	Installing	a	newer	version	of	the	
.NET	Framework	could	reconfigure	ASP.NET	applications	installed	on	the	IIS	
server	to	use	the	version	you’re	installing.	Specifically,	this	happens	when	the	
version	you’re	installing	is	a	new	version	that	represents	a	minor	revision	(as	
determined	by	the	version	number.	For	example,	if	ASP.NET	applications	are	
currently	configured	to	use	ASP.NET	version	4.0.30319	and	you’re	installing	a	
newer	version,	ASP.NET	applications	would	be	configured	to	use	components	in	
the	new	version	automatically.	Here,	30319	represents	the	build	number,	and	4.0	
are	the	major	and	minor	version	numbers,	respectively.

After	you	install	a	new	version	of	the	.NET	Framework,	you’ll	need	to	ensure	that	
IIS	is	configured	properly	so	that	the	new	version	of	ASP.NET	it	contains	can	be	
used	in	both	the	Classic	and	Integrated	pipeline	modes.	You	do	this	by	ensuring	
that	the	related	aspnet_filter.dll	is	added	as	an	ISAPI	filter	and	that	the	related	
aspnet_isapi.dll	is	allowed	as	an	ISAPI	and	CGI	restriction.	Each	version	of	the	
.NET	Framework	installed	on	a	server	has	different	components	and	tools.	The

base	directory	for	the	.NET	Framework	is
%SystemRoot%\Microsoft.NET\Framework.	Below	the	base	directory,	you’ll
find	separate	subdirectories	for	each	version	of	the	.NET	Framework	you’ve
installed.

One	of	the	tools	in	the	version	subdirectory	is	the	ASP.NET	IIS	Registration	tool.
This	tool	controls	the	mapping	of	ASP.NET	applications	to	a	specific	ASP.NET
version.	If	you	want	to	install	an	additional	ASP.NET	version	so	that	it	can	be
used	on	the	server,	you	can	use	this	tool	to	do	it.	Complete	the	following	steps:

1. On	the	desktop,	right-click	the	Windows	logo.
2. Click	Command	Prompt	(Admin)	.
3. At	the	command	prompt,	type	cd

%SystemRoot%\Microsoft.NET\Framework,	and	then	press	Enter.
4. Run	the	dir	command	to	obtain	a	directory	listing.	Note	the	available

version	subdirectories,	and	then	change	to	the	directory	containing	the
ASP.NET	version	you	want	to	use.

5. List	the	installed	versions	of	ASP.NET	and	view	how	those	versions	are
configured	by	running	aspnet_regiis	-lv	and	then	aspnet_regiis	-lk.	Then	do
one	of	the	following:
If	you	want	all	application	pools	to	use	this	ASP.NET	version	(as	long	as	it’s
a	newer	version	and	represents	a	compatible	build	as	determined	by	the
version	and	build	number),	run	aspnet_regiis	-i.
If	you	want	to	register	this	ASP.NET	version	on	the	server	but	don’t	want	to
reconfigure	application	pools	to	use	it,	run	aspnet_regiis	-ir.

TIP  It’s	important	to	note	that	each	version	of	ASP.NET	installed	on	a
server	has	a	separate	set	of	performance	counter	objects.	Because	of	this,	if
you	want	to	monitor	a	particular	ASP.NET	application’s	performance,	you’ll
need	to	configure	monitoring	of	the	performance	counter	objects	specific	to
the	version	of	ASP.NET	used	by	the	application.

Deploying	ASP.NET	Applications

Now	that	you’ve	configured	the	application	directory	structure,	you’re	ready	to	
deploy	your	ASP.NET	applications.	To	deploy	applications,	copy	the	necessary	
ASP.NET	files,	such	as	.asmx	or	.aspx	files,	to	the	application	directory.	
Application	binaries	and	assemblies	(DLLs	are	copied	to	the	Bin	subdirectory	
for	the	application.

Any	time	you	need	to	update	or	change	the	files	in	the	deployment	directory,	
simply	copy	the	new	versions	of	the	ASP.NET	files	and	binaries	to	the	
appropriate	directory.	When	you	do	this,	ASP.NET	automatically	detects	that	files	
have	been	updated.	In	response,	ASP.NET	compiles	a	new	version	of	the	
application	and	loads	it	into	memory	as	necessary	to	handle	new	requests.	Any	
current	requests	are	handled	without	interruption	by	the	previously	created	
application	instance.	When	that	application	instance	is	no	longer	needed,	it’s	
removed	from	memory.

ASP.NET	handles	changes	to	the	Web.config	file	in	the	same	way.	If	you	modify	
the	Web.config	file	or	application	pool	properties	while	IIS	is	running,	ASP.NET	
compiles	a	new	version	of	the	application	and	loads	it	into	memory	as	necessary	
to	handle	new	requests.	Any	current	requests	are	handled	without	interruption	by	
the	previously	created	application	instance.	When	that	application	instance	is	no	
longer	needed,	it’s	removed	from	memory.

Uninstalling	.NET	Versions

Sometimes	you	no	longer	want	an	older	version	of	ASP.NET	to	run	on	a	server.	In
this	case	you	can	uninstall	the	unneeded	ASP.NET	version.	When	you	uninstall	an
older	version	of	ASP.NET,	ASP.NET	applications	that	used	the	version	are
reconfigured	so	that	they	use	the	highest	remaining	version	of	ASP.NET	that’s
compatible	with	the	version	you’re	uninstalling.

Remember,	the	version	number	determines	compatibility.	If	no	other	compatible
versions	are	installed,	applications	that	used	the	version	of	ASP.NET	you’re
uninstalling	are	left	in	an	unconfigured	state,	which	might	cause	the	entire	contents
of	ASP.NET	pages	to	be	served	directly	to	clients,	thereby	exposing	the	code
those	pages	contain.

If	you	want	to	uninstall	an	additional	version	of	ASP.NET,	follow	these	steps:

1. On	the	desktop,	right-click	the	Windows	logo.
2. Click	Command	Prompt	(Admin).
3. At	the	command	prompt,	type	cd	%SystemRoot%\Microsoft.NET

\Framework,	and	then	press	Enter.
4. Run	the	dir	command	to	obtain	a	directory	listing.	Note	the	available

version	subdirectories	and	then	change	to	the	directory	containing	the
ASP.NET	version	you	want	to	remove.

5. List	the	installed	versions	of	ASP.NET	and	view	how	those	versions	are
configured	by	running	aspnet_regiis	-lv	and	then	running	aspnet_regiis	-lk.

6. To	uninstall	the	ASP.NET	version	whose	components	are	in	the	current
subdirectory,	run	aspnet_regiis	-u.	This	uninstalls	the	ASP.NET	version	and
the	performance	counter	objects	used	by	the	ASP.NET	version.

NOTE  If	you	want	to	uninstall	all	ASP.NET	versions	installed	on	a	server,
run	aspnet_regiis	-ua.

Working	with	Application	Pools

Application	pools	set	boundaries	for	applications	and	specify	the	configuration
settings	that	applications	they	contain	use.	Every	application	pool	has	a	set	of	one
or	more	worker	processes	assigned	to	it.	These	worker	processes	specify	the
memory	space	that	applications	use.	By	assigning	an	application	to	a	particular
application	pool,	you’re	specifying	that	the	application:

Can	run	in	the	same	context	as	other	applications	in	the	application
pool All	applications	in	a	particular	application	pool	use	the	same	worker
process	or	processes,	and	these	worker	processes	define	the	isolation
boundaries.	These	applications	must	use	the	same	version	of	ASP.NET.	If
applications	in	the	same	application	pool	use	different	versions	of	ASP.NET,
errors	will	occur	and	the	worker	processes	might	not	run.
Should	use	the	application	pool	configuration	settings Configuration
settings	are	applied	to	all	applications	assigned	to	a	particular	application
pool.	These	settings	control	recycling	of	worker	processes,	failure	detection
and	recovery,	CPU	monitoring,	and	much	more.	Application	pool	settings
should	be	optimized	to	work	with	all	applications	they	contain.

The	sections	that	follow	provide	techniques	for	creating,	configuring,	and
optimizing	application	pools.

Viewing	Application	Pools

You	manage	application	pools	on	a	per-server	basis.	In	IIS	Manager,	you	can
view	all	the	application	pools	configured	on	a	server	by	expanding	the	server
node	and	then	clicking	the	Application	Pools	node.	You’ll	then	see	a	list	of
applications	created	within	the	site.

These	applications	are	listed	by:

Name Lists	the	name	of	the	application	pool
Status Lists	the	status	of	an	application	pool	as	Started	or	Stopped
.NET	CLR	Version Lists	the	.NET	CLR	version	that	the	application	pool
uses
Managed	Pipeline	Mode Lists	the	request	processing	mode	used	by	the
application	as	Integrated	or	Classic
Identity Lists	the	account	under	which	the	application	pool	runs,	such	as
NetworkService
Applications Lists	the	number	of	applications	that	are	configured	to	run	in
the	application	pool

With	the	IIS	command-line	administration	tool,	you	can	list	a	server’s	application
pools	by	running	the	List	AppPool	command.	Sample	2-9	provides	the	syntax	and
usage.

SAMPLE	2-9 	List	AppPool	Syntax	and	Usage

Syntax
appcmd	list	apppool	[[/apppool.name:]”AppPoolName”]
[/managedRuntimeVersion:”Version”]
[/managedPipelineMode:	Integrated|Classic]
[/queueLength:”queueLength”]
[/autoStart:true|false]
[/managedRuntimeLoader	"ManagedLoader"]
[/CLRConfigFile	"AppPoolConfigFile"]
[/startMode	"AlwaysRunning"	|	"OnDemand"]

Usage
Appcmd	list	apppool

appcmd	list	apppool	“DefaultAppPool”	

appcmd	list	apppool	/autoStart:false

Several	utility	commands	are	provided	to	help	you	work	with	application	pools
and	track	their	worker	processes.	With	the	List	Wp	command,	you	can	list	the
worker	processes	currently	running	on	a	server.	Sample	2-10	provides	the	syntax
and	usage.

SAMPLE	2-10	 List	Wp	Syntax	and	Usage

Syntax
appcmd	list	wp	[[/process.name:]”ProcessID”]	[/wp.name:“ProcessID”]
[/apppool.name:“AppPoolName”]

Usage
appcmd	list	wp

appcmd	list	wp	“4291”

appcmd	list	wp	/apppool.name:“DefaultAppPool”

With	the	List	Request	command,	you	can	list	the	requests	currently	executing	on	a	
server	and	optionally	find	requests	that	have	been	executing	for	longer	than	a	
specified	time	in	milliseconds.	Sample	2-11	provides	the	syntax	and	usage.

SAMPLE	2-11	 List	Request	Syntax	and	Usage

Syntax
appcmd	list	request	[[/process.name:]”ProcessID”]
[/request.name:	“ProcessID”]	[/site.name:”SiteName”]
[/wp.name:”WpName”]	[/apppool.name:”AppPoolName”]
[/elapsed:Milliseconds]

Usage
appcmd	list	request

appcmd	list	request	/wp.name:4125

appcmd	list	request	/apppool.name:DefaultAppPool

appcmd	list	request	/site.name:”Default	Web	Site”

Configuring	Default	Settings	for	New	Application	Pools

In	a	standard	configuration,	new	application	pools	are	configured	to	use	a	number
of	settings	that	determine	exactly	how	an	application	pool	works.	If	you	use	the
same	settings	for	most	application	pools,	you	may	want	to	modify	the	default
settings.	To	do	this,	follow	these	steps:

In	IIS	Manager,	expand	the	node	for	the	server	you	want	to	work	with,	and
then	click	the	Application	Pools	node.
On	the	Application	Pools	page,	in	the	Actions	pane,	click	Set	Application
Pool	Defaults.
In	the	Application	Pool	Defaults	dialog	box,	configure	the	default	settings	for
application	pools,	and	then	click	OK.

Table	2-1	provides	a	summary	of	the	default	settings	for	application	pools.	Each	
setting	is	listed	alphabetically	according	to	its	related	configuration	area,	such	as	
CPU	or	Process	Model.	With	the	IIS	command-line	administration	tool,	you	can	
configure	these	settings	using	the	following	syntax:

appcmd	set	config	/section:applicationPools
/applicationPoolDefaults.SubAttribute:Value

where	SubAttribute	is	a	listed	sub	attribute	and	Value	is	the	desired	value,	such	
as:

appcmd	set	config	/section:applicationPools
/applicationPoolDefaults.enable32BitAppOnWin64:true

All	time	intervals	are	set	hh:mm:ss	format.	These	same	sub	attributes	are	used	
with	application	pools	when	you	want	to	configure	their	settings	from	a	command	
prompt.	To	configure	settings	for	an	individual	application	pool,	use	the	following	
syntax:

appcmd	set	apppool	“AppPoolName”	/[Attribute.]SubAttribute :Value

where	AppPoolName	is	the	name	of	the	application	pool,	Attribute	is	a	listed	
attribute,	SubAttribute	is	a	listed	sub	attribute,	and	Value	is	the	desired	value,	such	
as:

appcmd	set	apppool	“CustServicesAppPool”	/cpu.resetInterval:30

NOTE  Hyphens	are	added	in	this	table	for	readability.	Sub	attribute	names
do	not	have	hyphens	in	actual	usage.

Table	2-1	Settings	for	Configuring	Application	Pools
GENERAL

clrConfigFile Sets	the	.NET	configuration	file	for	a	pre-loaded
application	pool.

enable32BitAppOnWin64 When	True,	enables	32-bit	applications	to	run	using	32-
bits	on	a	64-bit	system.

.NET	Framework	Version
(managedRuntimeVersion)

Sets	the	.NET	Framework	version.

Managed	Runtime	Loader Sets	the	managed	loader	to	use	for	pre-loading	the
application.	The	default	is	webengine4.dll.

Managed	Pipeline	Mode
(managedPipelineMode)

Sets	the	managed	pipeline	mode

Name	(name) Sets	the	application	pool	name.
Queue	Length	(queueLength) Sets	the	maximum	number	of	queued	requests.
Start	Automatically	(autoStart) When	True,	the	application	pool	starts	when	it	is	created

or	when	IIS	starts.
Start	Mode	(startMode) Sets	the	startup	type	for	a	pre-loaded	application	pool	as

either	“AlwaysRunning”	or	“OnDemand”.
CPU

Limit	(cpu.limit) Sets	the	maximum	CPU	time	in	1/1000th	of	a	percent
that	the	worker	processes	in	an	application	pool	can	use
over	the	limit	interval.

Limit	Action	(cpu.action) Sets	the	action	IIS	takes	if	the	CPU	limit	is	reached	as
either	NoAction	for	logging	only	or	KillW3WP	to	stop	the
application	pool	for	the	duration	of	the	limit	interval.

Limit	Interval	(cpu.resetInterval) Sets	the	period	of	time	in	minutes	for	tracking	the	CPU
limit	or	resetting	an	application	pool	if	a	limit	is	reached.

Processor	Affinity	Enabled
(cpu.smpAffinitized)

When	True,	forces	worker	processes	for	an	application	to
run	on	specific	CPUs.

Processor	Affinity	Mask
(cpu.smpProcessorAffinityMask)

Sets	a	hexadecimal	mask	that	controls	which	CPUs
worker	processes	are	associated	with	when	processor
affinity	is	enabled.

PROCESS	MODEL

passAnonymousToken When	True,	allows	passing	an	anonymous	user	token.
processModel.manualGroupMembership When	True,	allows	manual	group	membership

assignment.
Identity	(processModel.identityType) Sets	the	user	account	under	which	the	worker	processes

run.The	default	identity	is	the	ApplicationPoolIdentity.

Idle	Time-Out	(processModel.idleTimeout) Sets	the	amount	of	time	a	worker	process	can	remain	idle
before	it	shuts	down.

Load	User	Profile
(processModel.loadUserProfile)

When	True,	IIS	loads	the	user	profile	for	the	application
pool	identity.

logonType Set	the	logon	type	for	the	process	identity.
Maximum	Worker	Processes
(processModel.maxProcesses)

Sets	the	maximum	number	of	worker	processes.

Password	(processModel.password) Sets	the	password	for	a	“SpecificUser”	identity.
Available	in	UI	when	you	are	setting	credentials.

Ping	Enabled
(processModel.pingingEnabled)

When	True,	IIS	periodically	checks	worker	processes	to
ensure	that	they	are	active.

Ping	Maximum	Response	Time
(processModel.pingResponseTime)

Sets	the	maximum	time	that	a	worker	process	is	given	to
respond	to	a	ping.	If	this	time	is	exceeded,	IIS	terminates
the	process.

Ping	Period	(processModel.pingInterval) Sets	the	interval	between	pings.
Shutdown	Time	Limit
(processModel.shutdownTimeLimit)

Sets	the	maximum	amount	of	time	a	worker	process	is
given	to	finish	processing	requests	and	shutdown.	If	this
time	is	exceeded,	IIS	terminates	the	process.

Startup	Time	Limit
(processModel.startupTimeLimit)

Sets	the	maximum	amount	of	time	a	worker	process	is
given	to	start	and	initialize.	If	this	time	is	exceeded,	IIS
terminates	the	process.

UserName	(processModel.userName) Sets	user	name	for	the	“SpecificUser”	identity.	Available
in	UI	when	you	are	setting	credentials.

PROCESS	ORPHANING

Enabled	(failure.orphan	WorkerProcess) When	True,	a	nonresponsive	worker	process	is
abandoned	instead	of	terminated.	This	allows	debugging
and	should	be	used	only	during	troubleshooting.

Executable	(failure.orphan	ActionExe) Sets	the	executable	to	run	when	a	worker	process	is
abandoned,	such	as	%SystemDrive%\Dbgtools\Ntsd.exe.

Executable	Parameters	(failure.orphan
ActionParams)

Sets	the	parameters	to	pass	to	the	executable	that	is	run
when	a	worker	process	is	abandoned.

RECYCLING

Disable	Overlapping	Recycle
(recycling.disallowOverlappingRotation)

If	an	application	does	not	support	multiple	instances,	set
this	value	to	True.	When	True,	IIS	waits	for	an	existing
process	to	exit	before	starting	another	process	during
recycling.

Disable	Recycling	for	Configuration
Changes	(recycling.disallow
RotationOnConfigChange)

When	True,	IIS	doesn’t	recycle	the	application	pool	when
the	configuration	is	changed	(and	as	a	result	some
changes	aren’t	applied	until	a	later	restart).

Generate	Recycle	Event	Log	Entry
(recycling.logEventOnRecycle)

Determines	the	types	of	events	that	IIS	logs	when
recycling	application	pools.

Private	Memory	Limit Sets	the	maximum	amount	of	private	memory	in	kilobytes

(recycling.periodicRestart.privateMemory) that	a	worker	process	can	use	before	IIS	recycles	it.	Use
a	value	of	zero	to	set	no	limit.

Regular	Time	Interval
(recycling.periodicRestart.time)

Sets	the	period	of	time	in	minutes	after	which	IIS
routinely	recycles	an	application	pool.	Use	a	value	of	zero
to	set	a	regular	recycling	interval.

Request	Limit
(recycling.periodicRestart.requests)

Sets	the	maximum	requests	an	application	pool	can
process	before	IIS	recycles	it.	Use	a	value	of	zero	to	set
no	limit.

Specific	Times
(recycling.periodicRestart.schedule.
[value='timespan']	.value

(Sets	specific	times	when	the	application	pool	is
recycled.)

Virtual	Memory	Limit
(recycling.periodicRestart.memory)

Sets	the	maximum	amount	of	virtual	memory	in	kilobytes
that	a	worker	process	can	use	before	IIS	recycles	it.	Use
a	value	of	zero	to	set	no	limit.

RAPID-FAIL	PROTECTION

“Service	Unavailable”	Response	Type
(failure.loadBalancerCapabilities)

When	rapid-fail	protection	is	enabled,	determines	how
“Service	Unavailable”	errors	are	handled.	With
HttpdLevel,	an	HTTP	503	error	is	returned.	With
TcpLevel,	IIS	resets	the	connection.

Enabled	(failure.rapidFailProtection) When	True,	rapid-fail	protection	is	enabled.
Failure	Interval
(failure.rapidFailProtectionInterval)

When	rapid-fail	protection	is	enabled,	sets	the	time
interval	during	which	the	maximum	number	of	failures
must	occur	before	the	application	pool	is	shut	down.

Maximum	Failures
(failure.rapidFailProtectionMaxCrashes)

When	rapid-fail	protection	is	enabled,	sets	the	maximum
number	of	failures	permitted	in	the	failure	interval	before
the	application	pool	is	shut	down.

Shutdown	Executable
(failure.autoShutdownExe)

When	rapid-fail	protection	is	enabled,	sets	the	executable
to	run	when	an	application	pool	is	shut	down.

Shutdown	Executable	Parameters
(failure.autoShutdownParams)

When	rapid-fail	protection	is	enabled,	sets	the	parameters
to	pass	to	the	executable	to	run	when	an	application	pool
is	shut	down.

Creating	Application	Pools

Application	pools	specify	the	isolation	boundaries	for	Web	applications.	You	can
use	application	pools	to	optimize	the	performance,	recovery,	and	monitoring	of
Web	applications.	An	application’s	scope	can	range	from	an	entire	Web	site	to	a
single	virtual	directory.	This	means	that	you	can	specify	default	applications	for
Web	sites	that	your	IIS	server	hosts,	and	you	can	specify	Web	applications	with
very	specific	scopes.

To	create	an	application	pool,	follow	these	steps:

1. In	IIS	Manager,	expand	the	node	for	the	server	you	want	to	work	with,	and
then	click	the	Application	Pools	node.

2. On	the	Application	Pools	page,	in	the	Actions	pane,	click	Add	Application
Pool.	This	displays	the	Add	Application	Pool	dialog	box.

3. In	the	Name	text	box,	type	the	name	of	the	application	pool.	The	name
should	be	short	but	descriptive.

TIP  You	might	want	to	number	the	application	pools	to	identify	them
uniquely.	For	example,	you	might	create	AppPool	#1,	AppPool	#2,	and	so
on.	Or	you	might	want	to	identify	the	purpose	of	the	application	pool	in	the
name.	For	example,	you	might	have	CustRegPool,	ProdCatPool,	and
TechNetPool.

4. You	can	now	use	the	.NET	CLR	Version	drop-down	list	to	select	the	.NET
CLR	version	that	the	application	pool	should	use.	If	the	application	pool	is
not	for	ASP.NET	applications	and	has	no	managed	code	components,	you
can	select	No	Managed	Code.

5. In	the	Managed	Pipeline	Mode	drop-down	list,	you	can	choose	either	the
Integrated	or	Classic	pipeline	mode.	If	an	application	pool	uses	Classic
mode,	IIS	processes	the	requests	in	the	application	pool	by	using	separate
processing	pipelines	for	IIS	and	ISAPI.	If	an	application	pool	uses
Integrated	mode,	IIS	processes	the	requests	in	an	application	pool	by	using
an	integrated	processing	pipeline	for	IIS	and	ASP.NET.

6. By	default,	the	application	pool	is	configured	to	start	as	soon	as	you	click
OK,	and	it	is	also	configured	to	start	automatically	whenever	you	start	IIS.	If
you’d	rather	start	the	application	pool	manually,	clear	the	Start	Application
Pool	Immediately	check	box.

7. Click	OK	to	create	the	application	pool.

With	the	IIS	command-line	administration	tool,	you	can	create	an	application	pool	
by	using	the	Add	AppPool	command.	Sample	2-12	provides	the	syntax	and	usage.	
Attributes	listed	in	Table	2-1	are	valid	also.	The	only	mandatory	attribute	is	the	
application	pool	name.	If	you	don’t	set	additional	attributes,	AppCmd	uses	the	
current	default	settings	to	determine	the	appropriate	values.

SAMPLE	2-12	 Add	AppPool	Syntax	and	Usage

Syntax
appcmd	add	apppool	/name:"AppPoolName"
[/managedRuntimeVersion:"Version"]
[/managedPipelineMode:	Integrated|Classic]
[/queueLength:"queueLength"]
[/autoStart:true|false]

Usage
Appcmd	add	apppool	/name:CustServicesAppPool
/managedPipelineMode:	Integrated

Appcmd	add	apppool	/name:CustServicesAppPool
/autoStart:false

Changing	Application	Pool	Settings

In	IIS	Manager,	you	can	change	application	pool	settings	on	the	Application	Pools
page.	To	rename	an	application	pool,	click	the	entry	to	select	it,	and	then	click
Rename.	Type	the	new	name	for	the	application	pool,	and	then	press	Enter.

You	can	change	any	other	application	pool	settings	by	following	these	steps:

1. In	IIS	Manager,	expand	the	node	for	the	server	you	want	to	work	with,	and
then	click	the	Application	Pools	node.

2. On	the	Application	Pools	page,	click	the	application	pool	you	want	to	work
with,	and	then	do	one	of	the	following:
To	edit	the	application	pool’s	basic	settings,	in	the	Actions	pane,	click	Basic
Settings.	This	displays	the	Edit	Application	Pool	dialog	box,	which	you	can
use	to	change	the	application	pool’s	.NET	Framework,	version,	managed
pipeline	mode,	and	startup	setting.
To	edit	the	application	pool’s	advanced	settings,	in	the	Actions	pane,	click
Advanced	Settings.	This	displays	the	Advanced	Settings	dialog	box,	which
you	can	use	to	change	all	application	pool	settings.

3. Application	pools	can	have	associated	applications.	To	view	and	manage
the	applications	associated	with	an	application	pool,	click	the	application
pool	you	want	to	work	with,	and	then	click	View	Applications.	You	can	now
work	with	the	applications	associated	with	the	previously	selected
application	pool.

With	the	IIS	command-line	administration	tool,	you	can	change	basic	application
pool	settings	by	using	the	Set	AppPool	command.	See	Sample	2-13	for	the	related
syntax	and	usage.	Attributes	listed	in	Table	2-1	are	valid	as	well.

SAMPLE	2-13	 Set	AppPool	Syntax	and	Usage

Syntax
appcmd	set	apppool	[/apppool.name:]"AppPoolName"
[/managedRuntimeVersion:"Version"]
[/managedPipelineMode:	Integrated|Classic]
[/queueLength:"queueLength"]
[/autoStart:true|false]
[/managedRuntimeLoader	"ManagedLoader"]
[/CLRConfigFile	"AppPoolConfigFile"]

[/startMode	"AlwaysRunning"	|	"OnDemand"]

Usage
Appcmd	set	apppool	/name:CustServicesAppPool
	/managedRuntimeVersion:"v2.0"

Appcmd	set	apppool	/name:CustServicesAppPool
/queueLength:"1100"

Assigning	Applications	to	Application	Pools

Applications	assigned	to	the	same	pool	share	the	same	configuration	settings.
These	settings	control	recycling	of	worker	processes	used	by	applications	in	the
pool,	failure	detection	and	recovery,	the	identity	under	which	the	worker
processes	run,	and	more.	You	should	assign	applications	to	the	same	pool	only
when	they	have	similar	requirements.	If	an	application	has	unique	requirements,
you	might	want	to	assign	it	to	a	separate	application	pool	that’s	used	only	by	that
application.

To	assign	an	application	to	an	application	pool,	follow	these	steps:

1. In	IIS	Manager,	select	the	node	for	the	site	you	want	to	work	with,	and	then
in	the	Actions	pane,	click	View	Applications.

2. On	the	Web	Applications	page,	click	the	application	you	want	to	work	with,
and	then	click	Basic	Settings.	This	displays	the	Edit	Application	dialog	box.

3. The	Application	Pool	text	box	lists	the	application	pool	currently	associated
with	the	application.	To	change	this	value,	click	the	Select	button.	In	the
Select	Application	Pool	dialog	box,	select	the	application	pool	to	use	in	the
Application	Pool	list.	Then	click	OK	twice	to	save	your	settings.

Applications	assigned	to	the	same	application	pool	can’t	use	different	versions	of
ASP.NET.	If	you	assign	applications	that	use	different	ASP.NET	versions	to	the
same	pool,	the	worker	process	might	not	run	at	all.

Configuring	Application	Pool	Identities

The	application	pool	identity	determines	the	account	under	which	the	application
pool’s	worker	processes	run.	Application	pools	run	under	the
ApplicationPoolIdentity	account	by	default	and	access	resources	as	the	“IIS
AppPool\AppPoolName”	identity.	These	individual,	isolated	identities	allow	you
to	specify	permissions	that	pertain	only	to	the	identity	under	which	the	application
pool	is	running.

If	a	particular	application	needs	additional	permissions	or	privileges,	it’s	a	good
idea	to	create	a	separate	application	pool	for	that	application	and	then	configure
the	application	pool	identity	to	use	an	account	that	has	those	permissions.	In	most
cases	you	should	use	one	of	the	other	predefined	accounts,	such	as	Local	Service
or	Local	System,	but	you	can	also	use	the	IWAM	account	or	any	other	account	that
you	configure.

To	configure	the	application	pool	identity,	follow	these	steps:

1. In	IIS	Manager,	expand	the	node	for	the	server	you	want	to	work	with,	and
then	click	the	Application	Pools	node.

2. On	the	Application	Pools	page,	click	the	application	pool	you	want	to	work
with,	and	then	click	Advanced	Settings.

3. Under	Process	Model,	click	the	Identity	entry,	and	then	click	the	related
selection	button.

4. Do	one	of	the	following:
If	you	want	to	use	the	built-in	Network	Service,	Local	Service,	or	Local
System	accounts,	select	Built-in	Account,	and	then	in	the	drop-down	list,
select	the	appropriate	account.	Click	OK	and	skip	the	remaining	steps.
If	you	want	to	specify	a	user	account,	select	Custom	Account,	and	then	click
Set.	In	the	Set	Credentials	dialog	box,	type	the	user	name	for	the	account.
Type	and	then	confirm	the	account	password,	and	then	click	OK	twice.

MORE	INFO  For	detailed	information	on	working	with	the	Network
Service,	Local	Service,	Local	System,	and	accounts,	see	the	section	titled
“IIS	User	and	Group	Essentials”	in	Chapter	4.

Chapter	3
Managing	Worker	Processes	and	Performance

Each	application	pool	can	have	a	different	worker	process	configuration.	Worker
processes	associated	with	application	pools	perform	request	handling.	When
additional	threads	are	available,	worker	processes	can	use	the	additional	threads
to	improve	responsiveness	and	overall	application	performance.	When	additional
processes	aren’t	available,	worker	processes	must	handle	requests	by	using
currently	allocated	threads.

Starting,	Stopping,	and	Recycling	Worker	Processes	Manually

Sometimes	you	might	want	to	restart	or	recycle	the	worker	processes	that	an
application	pool	is	using.	You	might	want	to	do	this	if	you	suspect	that	an
application	is	leaking	memory	or	is	otherwise	affecting	server	performance	or	if
users	are	experiencing	undetermined	or	intermittent	problems.

Starting	and	Stopping	Worker	Processes	Manually

When	you	stop	worker	processes	for	an	application	pool,	the	related	IIS
processes	(W3wp.exe)	are	terminated,	and	as	a	result,	all	resources	used	by	the
worker	processes	are	freed.	This	also	means,	however,	that	any	requests	currently
being	processed	will	fail	and	that	new	requests	for	the	applications	aren’t
processed	until	you	start	the	application	pool	again,	at	which	time	Http.sys	looks
for	requests	in	the	application	pool	queue	and	then	starts	new	worker	processes	as
necessary	to	handle	any	pending	requests.

The	World	Wide	Web	service	can	also	stop	an	application	pool.	Typically,	this
occurs	when	rapid-fail	protection	is	triggered,	meaning	that	there	were	a	certain
number	of	worker	process	failures	in	a	specified	time	period.	In	the	standard
configuration,	five	worker	process	failures	within	a	five-minute	interval	trigger
rapid-fail	protection.	Application	pools	can	also	be	stopped	when	they’re
configured	to	use	a	nonexistent	identity	or	if	different	applications	use	different
versions	of	ASP.NET.

To	stop	and	then	start	an	application	pool,	follow	these	steps:

1. In	IIS	Manager,	expand	the	node	for	the	server	you	want	to	work	with,	and
then	click	the	Application	Pools	node.

2. On	the	Application	Pools	page,	click	the	application	pool	you	want	to	stop,
and	then	click	Stop.

3. Worker	processes	used	by	applications	in	the	application	pool	are
terminated.	To	start	request	processing	for	applications	in	the	pool,	click	the
application	pool,	and	then	click	Start.

TIP  Clients	trying	to	access	an	application	in	a	stopped	application	pool
might	see	an	HTTP	Error	503:	Service	Unavailable	message.	If	users	tell
you	they’re	seeing	this	message,	and	you	haven’t	stopped	the	application
pool,	check	to	see	if	the	application	pool	is	started.	If	it	isn’t,	start	it,	and
then	check	the	error	logs	to	determine	what	happened	while	closely
monitoring	for	additional	failures.

With	the	IIS	command-line	administration	tool,	you	can	start	and	stop	application
pools	by	using	the	Start	AppPool	and	Stop	AppPool	commands	respectively.	See
Samples	3-1	and	3-2	for	the	related	syntax	and	usage.	The	Wait	attribute

determines	whether	AppCmd	waits	for	the	application	pool	to	start	or	stop	before
returning.	When	you	wait	for	the	application	pool	to	start	or	stop,	you	can	use	the
timeout	attribute	to	specify	the	maximum	amount	of	time	in	milliseconds	to	wait.

SAMPLE	3-1 	Start	AppPool	Syntax	and	Usage

Syntax
appcmd	start	apppool	[[/apppool.name:]"AppPoolName"]	[/wait]
[/timeout:WaitTimeMilliseconds]

Usage
appcmd	start	apppool	"MyAppPool"

SAMPLE	3-2 	Stop	AppPool	Syntax	and	Usage

Syntax
appcmd	start	apppool	[[/apppool.name:]"AppPoolName"]	[/wait]
[/timeout:WaitTimeMilliseconds]	

Usage
appcmd	stop	apppool	"MyAppPool"

Recycling	Worker	Processes	Manually

An	alternative	to	abruptly	terminating	worker	processes	used	by	an	application
pool	is	to	mark	them	for	recycling.	Worker	processes	that	are	actively	processing
requests	continue	to	run	while	IIS	starts	new	worker	processes	to	replace	them.
Once	the	new	worker	processes	are	started,	Http.sys	directs	incoming	requests	to
the	new	worker	processes,	and	the	old	worker	processes	are	able	to	continue
handling	requests	until	they	shut	down.	With	this	approach,	you	minimize	any
service	interruptions	while	ensuring	that	any	resources	used	by	old	worker
processes	are	eventually	freed.

With	recycling,	the	startup	and	shutdown	processes	can	be	limited	by	the	Startup
Time	Limit	and	Shutdown	Time	Limit	values	set	for	the	application	pool.	If	IIS
can’t	start	new	worker	processes	within	the	set	time	limit,	a	service	interruption
would	occur	because	IIS	would	be	unable	to	direct	requests	to	the	new	processes.
If	IIS	stops	old	worker	processes	when	the	shutdown	time	limit	is	reached	and
those	processes	are	still	handling	requests,	a	service	interruption	would	occur
because	the	requests	wouldn’t	be	processed	further.

To	recycle	the	worker	processes	used	by	an	application	pool,	follow	these	steps:

1. In	IIS	Manager,	expand	the	node	for	the	server	you	want	to	work	with,	and
then	click	the	Application	Pools	node.

2. On	the	Application	Pools	page,	click	the	application	pool	you	want	to
recycle,	and	then	click	Recycle.

Worker	process	can	also	be	recycled	automatically	under	certain	conditions.	For
example,	you	can	specify	times	of	day	to	recycle	worker	processes	in	a	comma-
separated	list.	Or	you	can	specify	a	fixed	time	interval,	such	as	every	240	minutes,
every	8192	requests	or	both.	To	recycle	the	worker	processes	automatically	based
on	conditions,	follow	these	steps:

1. In	IIS	Manager,	expand	the	node	for	the	server	you	want	to	work	with,	and
then	click	the	Application	Pools	node.

2. On	the	Application	Pools	page,	click	the	application	pool	you	want	to
recycle,	and	then	click	Recycling.

3. Set	the	specific	conditions	for	recycling	and	then	click	Next	and	then	click
Finish.

With	the	IIS	command-line	administration	tool,	you	can	recycle	application	pools
by	using	the	Recycle	AppPool	command.	See	Sample	3-3	for	the	related	syntax
and	usage.

SAMPLE	3-3 	Recycle	AppPool	Syntax	and	Usage

Syntax
appcmd	recycle	apppool	[[/apppool.name:]"AppPoolName"]
[/parameter1:value1	...]

Usage
appcmd	recycle	apppool	"MyAppPool"

Configuring	Worker	Process	Startup	and	Shutdown	Time	Limits

Whenever	IIS	starts	or	shuts	down	worker	processes,	it	attempts	to	do	so	within
prescribed	time	limits.	The	goal	is	to	ensure	timely	startup	of	worker	processes	so
that	Http.sys	can	direct	incoming	requests	to	new	worker	processes	and	shut	down
old	worker	processes	after	they	complete	the	processing	of	existing	requests.

Graceful	startup	and	shutdown	of	worker	processes,	however,	is	dependent	on	the
amount	of	time	allowed	for	startup	and	shutdown.	If	these	values	are	set	too	low,
service	might	be	interrupted—a	new	worker	process	might	not	get	started	in	time
to	accept	incoming	requests,	or	an	old	worker	process	might	be	terminated	before
it	can	finish	processing	requests.	If	these	values	are	set	too	high,	system	resources
might	be	tied	up	waiting	for	a	transition	that	isn’t	possible.	An	existing	worker
process	might	be	nonresponsive,	or	the	server	might	be	unable	to	allocate
additional	resources	to	start	new	worker	processes	while	the	old	processes	are
still	running.

REAL	WORLD	 Listen	carefully	to	user	complaints	about	failed	requests,	
time-outs,	and	other	errors.	Frequent	complaints	can	be	an	indicator	that	you	
need	to	take	a	close	look	at	the	worker	process	recycling	configuration	as	
discussed	in	the	“Configuring	Worker	Process	Recycling”	section	later	in	
this	chapter.	If	you	believe	you’ve	optimized	worker	process	recycling	but	
users	are	still	experiencing	problems,	take	a	look	at	the	startup	and	
shutdown	time	limits.

Ideally,	you’ll	select	a	balanced	startup	and	shutdown	time	that	reflects	the	
server’s	load	and	the	importance	of	the	applications	in	the	application	pool.	
By	default,	the	startup	and	shutdown	time	limits	are	both	set	to	90	seconds.	
Here	are	some	rules	of	thumb	for	setting	startup	and	shutdown	time	limits:

For	application	pools	with	applications	that	have	long-running	processes,	
such	as	those	that	require	extensive	computations	or	extended	database	
lookups,	you	might	want	to	reduce	the	startup	time	limit	and	extend	the	
shutdown	time	limit,	particularly	if	the	server	consistently	experiences	a	
moderate	or	heavy	load.

For	application	pools	in	which	it’s	more	important	to	ensure	that	the	service	
is	responsive	than	to	ensure	that	all	requests	go	through,	you	might	want	to	
reduce	both	the	startup	and	shutdown	time	limits,	particularly	if	applications

have	known	problems,	such	as	memory	leaks	or	frequent	hangs.

To	configure	worker	process	startup	and	shutdown	time	limits,	complete	the
following	steps:

1. In	IIS	Manager,	expand	the	node	for	the	server	you	want	to	work	with,	and
then	click	the	Application	Pools	node.

2. On	the	Application	Pools	page,	click	the	application	pool	you	want	to	work
with,	and	then	click	Advanced	Settings.

3. Under	Process	Model,	in	the	Startup	Time	Limit	and	Shutdown	Time	Limit
fields,	set	the	maximum	time	allowed	for	worker	process	startup	and
shutdown	respectively	(in	seconds).	Click	OK.

Configuring	Multiple	Worker	Processes	for	Application	Pools

Multiple	worker	processes	running	in	their	own	context	can	share	responsibility
for	handling	requests	for	an	application	pool.	This	configuration	is	also	referred
to	as	a	Web	garden.	When	you	set	up	a	Web	garden,	each	new	request	is	assigned
to	a	worker	process	according	to	a	round-robin	scheme.	Round-robin	is	a	load
balancing	technique	used	to	spread	the	workload	among	the	worker	processes	that
are	available.

NOTE  It’s	important	to	note	that	worker	processes	aren’t	started
automatically	and	don’t	use	resources	until	they’re	needed.	Rather,	they’re
started	as	necessary	to	meet	the	demand	based	on	incoming	requests.	For
example,	if	you	configure	a	maximum	of	five	worker	processes	for	an
application	pool,	there	may	be	at	any	given	time	from	zero	to	five	worker
processes	running	in	support	of	applications	placed	in	that	application	pool.

If	a	single	application	is	placed	in	an	application	pool	serviced	by	multiple	
worker	processes,	all	available	worker	processes	will	handle	requests	queued	for	
the	application.	This	is	a	multiple	worker	process—single	application	
configuration,	and	it’s	best	used	when	you	want	to	improve	the	application’s	
request-handling	performance	and	reduce	any	possible	contention	for	resources	
with	other	applications.	In	this	case	the	application	might	have	heavy	usage	during	
peak	periods	and	moderate-to-heavy	usage	during	other	times,	or	individuals	
using	the	application	might	have	specific	performance	expectations	that	must	be	
met	if	possible.

If	multiple	applications	are	placed	in	an	application	pool	serviced	by	multiple	
worker	processes,	all	available	worker	processes	handle	requests	queued	for	any	
applicable	application.	This	is	a	multiple	worker	process—multiple	application	
configuration,	and	it’s	best	used	when	you	want	to	improve	request-handling	
performance	and	reduce	resource	contention	for	multiple	applications	but	don’t	
want	to	dedicate	resources	to	any	single	application.	In	this	case	the	various	
applications	in	the	application	pool	might	have	different	peak	usage	periods	or	
might	have	varying	resource	needs.

To	configure	multiple	worker	processes	for	an	application	pool,	follow	these	
steps:

1. In	IIS	Manager,	expand	the	node	for	the	server	you	want	to	work	with,	and
then	click	the	Application	Pools	node.

2. On	the	Application	Pools	page,	click	the	application	pool	you	want	to	work
with,	and	then	click	Advanced	Settings.

3. Under	Process	Model,	in	the	Maximum	Worker	Processes	text	box,	specify
the	number	of	worker	processes	that	the	application	pool	should	use,	and
then	click	OK.

REAL	WORLD When	you	assign	multiple	worker	processes	to	a	busy
application	pool,	keep	in	mind	that	each	worker	process	uses	server
resources	when	it’s	started	and	might	affect	the	performance	of	applications
in	other	application	pools.	Adding	worker	processes	won’t	resolve	latency
issues	caused	by	network	communications	or	bandwidth,	and	it	can	reduce
the	time	it	takes	to	process	requests	only	if	those	requests	were	queued	and
waiting	and	not	being	actively	processed.	A	poorly	engineered	application
will	still	respond	poorly,	and	at	some	point,	you’d	need	to	look	at	optimizing
the	application	code	for	efficiency	and	speed.

Configuring	Worker	Process	Recycling

Manual	recycling	of	worker	processes	might	work	when	you’re	troubleshooting,
but	on	a	day-to-day	basis	you	probably	don’t	have	time	to	monitor	resource	usage
and	responsiveness	for	worker	processes.	For	IIS	to	handle	worker	process
recycling	for	you,	you’ll	want	to	configure	some	type	of	automatic	worker	process
recycling.	Automatic	worker	process	recycling	can	be	configured	to	occur:

After	a	specific	time	period Recycles	worker	processes	based	on	the
amount	of	time	they’ve	been	running.	This	is	best	used	when	applications
have	known	problems	running	for	extended	periods	of	time.
When	a	certain	number	of	requests	are	processed Recycles	worker
processes	based	on	the	number	of	requests	processed.	This	is	best	used	when
applications	fail	based	on	usage.
At	specific	scheduled	times	during	the	day Recycles	worker	processes
based	on	a	defined	schedule.	This	is	best	used	when	applications	have	known
problems	running	for	extended	periods	of	time	and	you	don’t	want	processes
to	be	recycled	during	a	peak	usage	period.	Here,	you’d	schedule	recycling
when	you	expect	application	usage	to	be	at	its	lowest	for	the	day.
When	memory	usage	grows	to	a	specific	point Recycles	worker
processes	when	they	use	a	certain	amount	of	virtual	(paged)	or	private
(nonpaged)	memory.	This	is	best	used	when	applications	have	known	or
suspected	memory	leaks.

The	sections	that	follow	discuss	techniques	for	configuring	automatic	worker	
process	recycling.	When	you	configure	recycling,	keep	in	mind	that	unless	you	
disable	overlapped	recycling,	active	worker	processes	continue	to	run	while	IIS	
starts	new	worker	processes	to	replace	them.	Once	the	new	worker	processes	are	
started,	Http.sys	directs	incoming	requests	to	the	new	worker	processes,	and	the	
old	worker	processes	are	able	to	continue	handling	requests	until	they	shut	down.	
The	startup	and	shutdown	processes	can	be	limited	by	the	Startup	Time	Limit	and	
Shutdown	Time	Limit	values	set	for	the	application	pool.	If	these	values	are	set	
inappropriately,	new	worker	processes	might	not	start,	and	old	worker	processes	
might	shut	down	before	they’ve	finished	processing	current	requests.

Recycling	Automatically	by	Time	and	Number	of	Requests

When	applications	have	known	problems	running	for	extended	periods	of	time	and
handling	requests	in	peak	loads,	you	probably	want	to	configure	automatic
recycling	by	time,	by	number	of	requests,	or	both.	To	configure	automatic
recycling	by	time	and	number	of	requests,	follow	these	steps:

1. In	IIS	Manager,	expand	the	node	for	the	server	you	want	to	work	with,	and
then	click	the	Application	Pools	node.

2. On	the	Application	Pools	page,	click	the	application	pool	you	want	to	work
with,	and	then	click	Advanced	Settings.

3. If	any	application	running	in	the	application	pool	does	not	support	multiple
instances,	set	Disable	Overlapped	Recycle	to	True.	Otherwise,	you’ll	want
to	allow	overlapped	recycling	(in	most	cases)	by	setting	this	option	to
False.

4. To	recycle	worker	processes	after	a	specified	period	of	time,	select	Regular
Time	Interval	(In	Minutes),	and	then	type	the	number	of	minutes	that	you
want	to	elapse	before	worker	processes	are	recycled.

TIP  In	most	cases	it’s	prudent	to	schedule	worker	process	recycling	to
take	place	at	specific	off-peak	usage	times	rather	than	to	set	hard	limits
based	on	run	time	or	number	of	requests	handled.	If	you	schedule	recycling,
you	control	when	recycling	occurs	and	can	be	reasonably	sure	that	it	won’t
occur	when	the	application	usage	is	high.

5. To	recycle	a	worker	process	after	processing	a	specified	number	of
requests,	select	Request	Limit,	and	then	type	the	number	of	requests	that	you
want	to	be	processed	before	the	worker	process	is	recycled.

6. To	recycle	worker	processes	according	to	a	specific	schedule,	select
Specific	Times,	and	then	click	the	related	selection	button.	You	can	use	the
TimeSpan	Collection	Editor	to:
Add	a	scheduled	recycle	time Click	Add.	In	the	right	pane	under
TimeSpan,	click	in	the	Value	text	box.	Set	a	recycle	time	on	a	24-hour	clock.
Edit	a	scheduled	recycle	time Click	the	recycle	time	you	want	to	change,
and	then	in	the	right	pane,	under	TimeSpan,	in	the	Value	text	box,	type	the
desired	recycle	time.
Remove	a	scheduled	recycle	time Click	the	recycle	time	you	want	to

delete,	and	then	click	Remove.
Save	the	scheduled	recycle	times Click	OK	to	close	the	TimeSpan
Collection	Editor	and	save	your	recycle	times.

7. Click	OK	to	apply	the	settings.

Recycling	Automatically	by	Memory	Usage

When	applications	have	known	or	suspected	memory	leaks,	you	probably	want	to
configure	automatic	recycling	based	on	virtual	or	private	memory	usage.	To
configure	automatic	recycling	of	worker	processes	based	on	memory	usage,
follow	these	steps:

1. In	IIS	Manager,	expand	the	node	for	the	server	you	want	to	work	with,	and
then	click	the	Application	Pools	node.

2. On	the	Application	Pools	page,	click	the	application	pool	you	want	to	work
with,	and	then	click	Advanced	Settings.

3. Virtual	memory	usage	refers	to	the	amount	of	paged	memory	written	to	disk
that	the	worker	process	uses.	To	limit	virtual	memory	usage	and
automatically	recycle	a	worker	process	when	this	limit	is	reached,	select
Virtual	Memory	Limit	(KB),	and	then	type	the	virtual	memory	limit	in	the
corresponding	field.

TIP  In	most	cases,	you’ll	want	to	establish	the	baseline	virtual	and	private
memory	usage	for	an	application	before	configuring	memory	recycling.	If
you	don’t	do	this,	you	might	find	that	worker	processes	are	being	recycled	at
the	most	inopportune	times,	such	as	when	the	server	is	experiencing	peak
usage	loads.	A	good	rule	of	thumb	is	to	allow	private	memory	usage	of	at
least	1.5	times	the	baseline	usage	you	see	and	to	allow	virtual	memory	usage
of	at	least	2	times	the	private	memory	usage.	For	example,	if	your	baseline
memory	usage	monitoring	shows	that	the	application	typically	uses	128	MB
of	private	memory	and	96	MB	of	virtual	memory,	you	might	allow	memory
usage	of	up	to	at	least	192	MB	for	private	memory	and	256	MB	for	virtual
memory.

4. Private	memory	usage	refers	to	the	amount	of	physical	RAM	that	the	worker
process	uses.	To	limit	private	memory	usage	and	automatically	recycle	a
worker	process	when	this	limit	is	reached,	select	Private	Memory	Limit
(KB),	and	then	in	the	corresponding	field,	type	the	memory	limit.	Then	click
OK	to	apply	the	settings.

Maintaining	Application	Health	and	Performance

Maintaining	the	health	and	performance	of	Web	applications	is	an	important	part
of	your	job	as	a	Web	administrator.	Fortunately,	IIS	has	many	built-in	functions	to
make	this	task	easier,	including:

CPU	monitoring	and	automated	shutdown	of	runaway	worker	processes
Worker	process	failure	detection	and	recovery
Request	queue	limiting	to	prevent	server	flooding
Idle	worker	process	shutdown	to	recover	resources

Each	of	these	tasks	is	discussed	in	the	sections	that	follow.

Configuring	CPU	Monitoring

Typically,	when	a	process	consistently	uses	a	high	percentage	of	CPU	time,	there’s
a	problem	with	the	process.	The	process	might	have	failed	or	might	be	running
rampant	on	the	system.	You	can	configure	IIS	to	monitor	CPU	usage	and	perform
either	of	the	following	CPU	performance	monitoring	options:

Take	No	Action	(NoAction) IIS	logs	the	CPU	maximum	usage	event	in	the
System	event	log	but	takes	no	corrective	action.
Shut	Down	the	Worker	Process	(KillW3wp) IIS	logs	the	event	and
requests	that	the	application	pool’s	worker	processes	be	recycled,	based	on
the	Shutdown	Time	Limit,	set	in	the	Process	Model	section.

To	enable	and	configure	IIS	to	monitor	the	CPU	usage	of	worker	processes,
follow	these	steps:

1. In	IIS	Manager,	expand	the	node	for	the	server	you	want	to	work	with,	and
then	click	the	Application	Pools	node.

2. On	the	Application	Pools	page,	click	the	application	pool	you	want	to	work
with,	and	then	click	Advanced	Settings.

3. Under	CPU,	in	the	Limit	field,	set	the	maximum	percentage	of	CPU	usage
that	triggers	event	logging,	worker	process	recycling,	or	both,	in	1/1000ths
of	a	percent.

TIP  Typically,	you’ll	want	to	set	a	value	to	at	least	90000	(90	percent).
However,	to	ensure	that	worker	processes	are	recycled	only	when	they’re
blocking	other	processes,	you	should	set	the	value	to	100000	(100	percent).

4. Use	the	Limit	Interval	(In	Minutes)	to	specify	how	often	IIS	checks	the	CPU
usage.

CAUTION  In	most	cases	you	won’t	want	to	check	the	CPU	usage	more
frequently	than	every	five	minutes.	If	you	monitor	the	CPU	usage	more
frequently,	you	might	waste	resources	that	could	be	better	used	by	other
processes.

5. Next,	choose	one	of	the	following:
If	you	want	to	log	the	CPU	usage	event	but	not	have	IIS	attempt	to	shut	down
worker	processes,	in	the	Limit	Action	list,	select	NoAction.

If	you	want	to	log	the	CPU	usage	event	and	have	IIS	attempt	to	shut	down	the
worker	processes	used	by	the	application	pool,	in	the	Limit	Action	list,	select
KillW3wp.

6. Click	OK.

If	you	want	to	disable	CPU	monitoring,	follow	these	steps:

1. In	IIS	Manager,	expand	the	node	for	the	server	you	want	to	work	with,	and
then	click	the	Application	Pools	node.

2. On	the	Application	Pools	page,	click	the	application	pool	you	want	to	work
with,	and	then	click	Advanced	Settings.

3. Disable	CPU	monitoring	by	setting	the	Limit	Interval	to	zero	(0),	and	then
click	OK.

Configuring	Failure	Detection	and	Recovery

You	can	configure	application	pools	to	monitor	the	health	of	their	worker
processes.	This	monitoring	includes	processes	that	detect	worker	process	failure
and	then	take	action	to	recover	or	prevent	further	problems	on	the	server.

Process	pinging	is	central	to	health	monitoring.	With	process	pinging,	IIS
periodically	checks	to	see	if	worker	processes	are	responsive.	This	means	that	IIS
sends	a	ping	request	at	a	specified	interval	to	each	worker	process.	If	a	worker
process	fails	to	respond	to	the	ping	request,	either	because	it	doesn’t	have
additional	threads	available	for	processing	incoming	requests	or	because	it’s	hung
up,	IIS	flags	the	worker	process	as	unhealthy.	If	the	worker	process	is	in	an	idle
but	unresponsive	state,	IIS	terminates	it	immediately,	and	a	replacement	worker
process	is	created.	Otherwise,	the	worker	process	is	marked	for	recycling	as
discussed	previously	in	this	chapter.

To	configure	health	monitoring,	complete	the	following	steps:

1. In	IIS	Manager,	expand	the	node	for	the	server	you	want	to	work	with,	and
then	click	the	Application	Pools	node.

2. On	the	Application	Pools	page,	click	the	application	pool	you	want	to	work
with,	and	then	click	Advanced	Settings.

3. To	enable	process	pinging,	set	Ping	Enable	to	True,	and	then	use	the	Ping
Period	and	Ping	Maximum	Response	Time	options	to	set	the	ping	interval
and	the	maximum	time	to	wait	for	a	ping	response	in	seconds.	Here	are
some	guidelines:
For	low-priority	applications	or	applications	that	are	used	infrequently,	you
might	want	to	use	intervals	of	several	minutes.	This	ensures	that	the
responsiveness	of	applications	is	checked	only	as	often	as	necessary	and	that
IIS	waits	an	appropriate	amount	of	time	for	a	response.
On	a	busy	server	or	a	server	with	many	configured	applications,	you	might
want	to	set	longer	intervals	than	usual.	This	will	reduce	resource	usage	due	to
ping	requests	and	give	the	application	pool	longer	to	respond.
For	high-priority	applications	in	which	it’s	critical	that	applications	run	and
be	responsive,	you	might	want	to	set	a	ping	interval	of	five	minutes	or	less
and	a	maximum	response	time	of	one	minute	(60	seconds)	or	less.	This
ensures	that	the	application	pool	is	checked	frequently	and	that	the

responsiveness	of	applications	is	checked	frequently.
4. To	improve	responsiveness	for	important	applications	by	preventing	idle

processes	from	being	shut	down	after	a	specified	period	of	time,	set	Idle
Time-out	to	zero	(0).

5. Click	OK.

You	can	also	configure	application	pools	for	rapid-fail	protection.	When	rapid-
fail	protection	is	enabled,	IIS	stops	an	application	pool	if	there	are	a	certain
number	of	worker	process	failures	in	a	specified	time	period.	In	the	standard
configuration,	five	worker	process	failures	within	a	five-minute	interval	trigger
rapid-fail	protection.

To	configure	rapid-fail	protection,	complete	the	following	steps:

1. In	IIS	Manager,	expand	the	node	for	the	server	you	want	to	work	with,	and
then	click	the	Application	Pools	node.

2. On	the	Application	Pools	page,	click	the	application	pool	you	want	to	work
with,	and	then	click	Advanced	Settings.

3. To	enable	rapid-fail	protection,	under	Rapid-Fail	Protection,	set	Enabled	to
True.

4. To	cause	IIS	to	stop	the	application	pool	if	there	are	a	certain	number	of
worker	process	failures	in	a	specified	time	period,	set	the	Failure	Interval
and	Maximum	Failures	options	respectively.

5. Set	the	Service	Unavailable	Response	Type	option	to	HttpLevel	to	have	IIS
return	an	HTTP	503	error	when	the	application	pool	is	stopped	because	of
rapid-fail	protection.	Set	this	option	to	TcpLevel	to	have	IIS	reset	the
connection	otherwise.

6. Click	OK	to	save	your	settings.

NOTE  Keep	in	mind	that	these	monitoring	and	recovery	techniques	aren’t
perfect,	but	they’re	helpful.	They	won’t	detect	all	types	of	failures.	For
instance,	they	won’t	detect	problems	with	the	application	code,	such	as
conditions	that	cause	the	application	to	return	an	internal	error,	and	they
won’t	detect	a	nonblocking	error	state,	such	as	when	the	worker	process	can
allocate	new	threads	but	is	unable	to	process	current	threads.

Shutting	Down	Idle	Worker	Processes

Although	worker	processes	start	on	demand	based	on	incoming	requests,	and	thus
resources	are	allocated	only	when	necessary,	worker	processes	don’t	free	up	the
resources	they	use	until	they’re	shut	down.	In	a	standard	configuration,	worker
processes	are	shut	down	after	they’ve	been	idle	for	20	minutes.	This	ensures	that
any	physical	or	virtual	memory	used	by	the	worker	process	is	made	available	to
other	processes	running	on	the	server,	which	is	especially	important	if	the	server
is	busy.

TIP  Shutting	down	idle	worker	processes	is	a	good	idea	in	most
instances,	and	if	system	resources	are	at	a	premium,	you	might	even	want
idle	processes	shut	down	sooner	than	20	minutes.	For	example,	on	a
moderately	busy	server	with	many	configured	sites	and	applications	and	on
which	there	are	intermittent	resource	issues,	reducing	the	idle	time-out	could
resolve	the	problems	with	resource	availability.

CAUTION  Shutting	down	idle	worker	processes	can	have	unintended
consequences.	For	example,	on	a	dedicated	server	with	ample	memory	and
resources,	shutting	down	idle	worker	processes	clears	cached	components
out	of	memory.	These	components	must	be	reloaded	into	memory	when	the
worker	process	starts	and	requires	them,	which	might	make	the	application
seem	unresponsive	or	sluggish.

To	configure	the	idle	process	shutdown	time,	follow	these	steps:

1. In	IIS	Manager,	expand	the	node	for	the	server	you	want	to	work	with,	and
then	click	the	Application	Pools	node.

2. On	the	Application	Pools	page,	click	the	application	pool	you	want	to	work
with,	and	then	click	Advanced	Settings.

3. Choose	one	of	the	following:
To	allow	idle	processes	to	be	shut	down	after	a	specified	period	of	time,	set
Idle	Time-Out	to	the	desired	shutdown	time	in	minutes.
To	prevent	idle	processes	from	being	shut	down	after	a	specified	period	of
time,	set	Idle	Time-Out	to	zero	(0).

4. Click	OK.

Limiting	Request	Queues

When	hundreds	or	thousands	of	new	requests	pour	into	an	application	pool’s
request	queue,	the	IIS	server	can	become	overloaded	and	overwhelmed.	To
prevent	this	from	occurring,	you	can	limit	the	length	of	the	request	queue.	Once	a
queue	limit	is	set,	IIS	checks	the	queue	size	each	time	before	adding	a	new	request
to	the	queue.	If	the	queue	limit	has	been	reached,	IIS	rejects	the	request	and	sends
the	client	an	HTTP	Error	503:	Service	Unavailable	message.

REAL	WORLD The	standard	limit	for	the	default	application	pool	is	1000
requests.	On	a	moderately	sized	server	with	few	applications	configured,
this	might	be	a	good	choice.	However,	on	a	server	with	multiple	CPUs	and
lots	of	RAM,	this	value	might	be	too	low.	On	a	server	with	limited
resources	or	many	applications	configured,	this	value	might	be	too	high.

To	configure	the	request	queue	limit,	follow	these	steps:

1. In	IIS	Manager,	expand	the	node	for	the	server	you	want	to	work	with,	and
then	click	the	Application	Pools	node.

2. On	the	Application	Pools	page,	click	the	application	pool	you	want	to	work
with,	and	then	click	Advanced	Settings.

3. Perform	one	of	the	following:
To	specify	and	enforce	a	request	queue	limit,	set	the	Queue	Length	to	the
desired	limit.
To	remove	the	request	queue	limit,	set	the	Queue	Length	option	to	zero	(0).

4. Click	OK.

NOTE  Requests	that	are	already	queued	remain	queued	even	if	you	change
the	queue	limit	to	a	value	that’s	less	than	the	current	queue	length.	The	only
consequence	here	would	be	that	new	requests	wouldn’t	be	added	to	the
queue	until	the	current	queue	length	is	less	than	the	queue	limit.

Deleting	IIS	Application	Pools

If	you	find	that	you	no	longer	need	an	application	pool,	you	can	remove	it	by
following	these	steps:

1. In	IIS	Manager,	expand	the	node	for	the	server	you	want	to	work	with,	and
then	click	the	Application	Pools	node.

2. On	the	Application	Pools	page,	click	the	application	pool	you	want	to
remove,	and	then	in	the	Actions	pane,	click	Remove.

3. When	prompted	to	confirm	that	you	want	to	remove	the	application,	click
Yes.

With	the	IIS	command-line	administration	tool,	you	can	delete	an	application	pool
by	using	the	Delete	AppPool	command.	Sample	3-4	provides	the	syntax	and
usage.

SAMPLE	3-4 	Delete	AppPool	Syntax	and	Usage

Syntax
appcmd	delete	apppool	[[/apppool.name:]"AppPoolName"]

Usage
appcmd	delete	apppool	"CustServicesAppPool"

Chapter	4
Enhancing	Web	Server	Security

As	you’ve	seen	throughout	this	book,	security	features	are	integrated	into	many
areas	of	Internet	Information	Services	(IIS).	In	this	chapter,	you’ll	learn	how	to
manage	areas	of	Web	server	security	that	we	have	not	yet	discussed.	Web	servers
have	different	security	considerations	from	those	of	standard	Windows	Server
configurations.	On	a	Web	server,	you	have	three	levels	of	security:

Windows	security At	the	operating	system	level,	you	create	user	and	group
accounts,	configure	access	permissions	for	files	and	directories,	and	set
policies.
IIS	security At	the	level	of	Internet	Information	Services	(IIS),	you	set
content	permissions,	authentication	controls,	and	delegated	privileges.
.NET	security At	the	application	level,	you	can	control	access	to	managed
code	applications	by	using	the	security	features	built	into	the	Microsoft	.NET
Framework.

Windows	security,	IIS	security,	and	.NET	security	can	be	completely	integrated.
The	integrated	security	model	allows	you	to	use	authentication	based	on	user	and
group	membership	in	addition	to	standard	Internet-based	authentication.	It	also
allows	you	to	use	a	layered	permission	model	to	determine	access	rights	and
permissions	for	applications	and	content.	Before	users	can	access	files	and
directories,	you	must	ensure	that	the	appropriate	users	and	groups	have	access	at
the	operating	system	level.	Then	you	must	set	IIS	security	permissions	that	grant
permissions	for	content	that	IIS	controls.	Finally,	you	can	use	.NET	Profile,	.NET
Users,	and	.NET	Roles	to	manage	top-level	access	to	managed	code	applications.

Managing	Windows	Security

Before	setting	IIS	security	permissions,	you	use	operating	system	tools	to	perform
the	following	security	tasks:

Create	and	manage	accounts	for	users	and	groups
Configure	access	permissions	for	files	and	folders
Set	group	policies	for	users	and	groups

Each	of	these	topics	is	discussed	in	the	sections	that	follow.

Working	with	User	and	Group	Accounts

Windows	Server	provides	user	accounts	and	group	accounts.	User	accounts
determine	permissions	and	privileges	for	individuals.	Group	accounts	determine
permissions	and	privileges	for	multiple	users.

IIS	User	and	Group	Essentials

You	can	set	user	and	group	accounts	at	the	local	computer	level	or	at	the	domain
level.	Local	accounts	are	specific	to	an	individual	computer	and	aren’t	valid	on
other	machines	or	in	a	domain	unless	you	specifically	grant	permissions.	Domain
accounts,	on	the	other	hand,	are	valid	throughout	a	domain,	which	makes	resources
in	the	domain	available	to	the	account.	Typically,	you’ll	use	specific	accounts	for
specific	purposes:

Use	local	accounts	when	your	IIS	servers	aren’t	part	of	a	domain	or	you	want
to	limit	access	to	a	specific	computer.
Use	domain	accounts	when	the	servers	are	part	of	a	Windows	domain	and	you
want	users	to	be	able	to	access	resources	throughout	that	domain.

User	accounts	that	are	important	on	IIS	servers	include:

Local	System By	default,	all	standard	IIS	services	log	on	using	the	local
system	account.	This	account	is	part	of	the	Administrators	group	on	the	Web
server	and	has	all	user	rights	on	the	Web	server.	If	you	configure	application
pools	to	use	this	account,	the	related	worker	processes	have	full	access	to	the
server	system,	which	may	present	a	serious	security	risk.
Local	Service A	limited-privilege	account	that	grants	access	to	the	local
system	only.	The	account	is	part	of	the	Users	group	on	the	Web	server	and	has
the	same	rights	as	the	Network	Service	account,	except	that	it	is	limited	to	the
local	computer.	Configure	application	pools	to	use	this	account	when	worker
processes	don’t	need	to	access	other	servers.
Network	Service By	default,	all	applications	log	on	using	the	network
service	account.	When	IIS	is	using	out-of-process	session	state	management,
the	ASP.NET	State	Service	also	uses	this	account	by	default.	This	account	is
part	of	the	Users	group	on	the	Web	server	and	provides	fewer	permissions
and	privileges	than	the	Local	System	account	(but	more	than	the	Local
Service	account).	Specifically,	processes	running	under	this	account	can
interact	throughout	a	network	by	using	the	credentials	of	the	computer
account.
IUSR_ComputerName Internet	guest	account	used	by	anonymous	users	to
access	Internet	sites.	The	account	grants	anonymous	users	limited	user	rights
and	is	also	known	as	the	anonymous	user	identity.

When	you	install	IIS,	the	IIS_IUSRS	group	is	also	created.	If	you	use	a	specific
user	identity	for	an	application	pool,	you	must	make	this	identity	a	member	of	the
IIS_IUSRS	group	to	ensure	that	the	account	has	appropriate	access	to	resources.
See	the	section	“Configuring	Application	Pool	Identities”	in	Chapter	2,
“Managing	Applications	and	Application	Pools,”	for	details	on	configuring	the
application	pool	identity.

You	can	make	changes	to	these	accounts	if	necessary.	For	added	security,	you	can
configure	IIS	to	use	different	accounts	from	the	standard	accounts	provided.	You
can	also	create	additional	accounts.

Managing	the	IIS	Service	Logon	Accounts

The	standard	IIS	services	use	the	local	system	account	to	log	on	to	the	server.
Using	the	local	system	account	allows	the	services	to	run	system	processes	and
perform	system-level	tasks.	You	really	shouldn’t	change	this	configuration	unless
you	have	very	specific	needs	or	want	to	have	strict	control	over	the	IIS	logon
account’s	privileges	and	rights.	If	you	decide	not	to	use	this	account,	you	can
reconfigure	the	logon	account	for	an	IIS	service	by	completing	the	following
steps:

1. In	the	Computer	Management	console,	in	the	left	pane,	connect	to	the	IIS
server	whose	services	you	want	to	manage.

2. Expand	the	Services	And	Applications	node	by	clicking	the	plus	sign	(+)
next	to	it,	and	then	choose	Services.

3. In	the	right	pane,	right-click	the	service	you	want	to	configure,	and	then
choose	Properties.

4. Click	the	Log	On	tab.

5. Choose	one	of	the	following:
If	the	service	should	log	on	using	the	system	account	(the	default	for	most

services),	select	Local	System	Account.
If	the	service	should	log	on	using	a	specific	user	account,	select	This
Account.	Be	sure	to	type	an	account	name	and	password	in	the	appropriate
fields.	Click	the	Browse	button	to	search	for	a	user	account	if	necessary.

6. Click	OK.

MORE	INFO  If	you	use	a	specific	user	identity	for	a	service,	you’ll	need
to	assign	privileges	and	logon	rights	to	the	account	you	use.

Managing	the	Internet	Guest	Account

You	manage	the	Internet	Guest	account	at	the	IIS	security	level	and	at	the	Windows
security	level.	At	the	IIS	security	level,	you	specify	the	user	account	to	use	for
anonymous	access.	Normally,	you	manage	anonymous	access	at	the	server	or	site
level,	and	all	related	files	and	directories	inherit	the	settings	you	use.	You	can
change	this	behavior	for	individual	files	and	directories	as	necessary.

To	change	the	configuration	of	the	anonymous	user	account	for	an	entire	server	or
another	configuration	level,	complete	the	following	steps:

1. In	IIS	Manager,	navigate	to	the	level	of	the	configuration	hierarchy	you	want
to	manage,	and	then	double-click	Authentication.

2. On	the	Authentication	page,	in	the	main	pane,	click	Anonymous
Authentication,	and	then	in	the	Actions	pane,	click	Edit.

3. The	IUSR_ComputerName	account	is	the	default	Internet	guest	account.
Choose	one	of	the	following	based	on	the	user	account	you	want	to	specify:
If	you	want	to	specify	a	different	user	account,	select	Specific	User,	and	then
click	Set.	In	the	Set	Credentials	dialog	box,	type	the	user	name	for	the
account.	Type	and	then	confirm	the	account	password,	and	then	click	OK
twice.
If	you	want	to	use	the	application	pool	identity	rather	than	a	specific	user
account,	select	Application	Pool	Identity,	and	then	click	OK.

NOTE When	Anonymous	Access	is	enabled,	users	don’t	have	to	log	on
using	a	user	name	and	password.	IIS	automatically	logs	the	user	on	using	the
anonymous	account	information	provided	for	the	resource.	If	Anonymous
Authentication	isn’t	listed	as	Enabled	on	the	Authentication	page,	the
resource	is	configured	for	named	account	access	only.	To	enable	anonymous
access,	click	Anonymous	Authentication,	and	then	in	the	Actions	pane,	click
Enable.	However,	you	should	do	this	only	if	you’re	sure	that	the	resource
doesn’t	need	to	be	protected.

At	the	Windows	security	level,	you	perform	all	other	account	management	tasks,
including:

Enabling	or	disabling	accounts
Unlocking	the	account	after	it	has	been	locked	out

Changing	group	membership

Working	with	File	and	Folder	Permissions

Every	folder	and	file	used	by	IIS	can	have	different	access	permissions.	You	set
these	access	permissions	at	the	Windows	security	level.	The	sections	that	follow
provide	an	overview	of	permissions.	You’ll	learn	the	basics,	including	how	to
view	and	set	permissions.

File	and	Folder	Permission	Essentials

The	basic	permissions	you	can	assign	to	files	and	folders	are	summarized	in	Table
4-1.	The	basic	permissions	are	created	by	combining	special	permissions,	such	as
Traverse	Folder	and	Execute	File,	into	a	single	easily	managed	permission.	If	you
want	granular	control	over	file	or	folder	access,	you	can	use	advanced
permissions	to	assign	special	permissions	individually.

TABLE	4-1	File	and	Folder	Permissions	Used	by	Windows	Server
Read With	folders,	permits	viewing	and	listing	files	and

subfolders.	With	files,	permits	viewing	or	accessing	the
file’s	contents

Write With	folders,	permits	adding	files	and	subfolders.	With
files,	permits	writing	to	a	file

Read	And	Execute With	folders,	permits	viewing	and	listing	files	and
subfolders	and	executing	files;	inherited	by	files	and
folders.	With	files,	permits	viewing	and	accessing	the
file’s	contents	and	executing	the	file.

List	Folder	Contents With	folders,	permits	viewing	and	listing	files	and
subfolders	and	executing	files;	inherited	by	folders	only.

Modify With	folders,	permits	reading	and	writing	of	files	and
subfolders;	allows	deletion	of	the	folder.	With	files,
permits	reading	and	writing	of	the	file;	allows	deletion	of
the	file

Full	Control With	folders,	permits	reading,	writing,	changing,	and
deleting	files	and	subfolders.	With	files,	permits	reading,
writing,	changing,	and	deleting	the	file.

Whenever	you	work	with	file	and	folder	permissions,	you	should	keep	the
following	in	mind:

Read	is	the	only	permission	needed	to	run	scripts.	Execute	permission

applies	only	to	executables.
Read	access	is	required	to	access	a	shortcut	and	its	target.
Giving	a	user	permission	to	write	to	a	file	but	not	to	delete	it	doesn’t	prevent
the	user	from	deleting	the	file’s	contents.	A	user	can	still	delete	the	contents.
If	a	user	has	full	control	over	a	folder,	the	user	can	delete	files	in	the	folder
regardless	of	the	permission	of	the	files.

IIS	uses	the	following	users	and	groups	to	configure	file	and	folder	access:

Administrators Allows	administrators	to	access	IIS	resources.
Creator	Owner Allows	the	account	that	created	a	resource	to	access	the
resource.
System Allows	the	local	system	to	access	the	resource.
Users Allows	named	accounts	to	access	the	resource	(including	the	Local
Service	and	Network	Service	accounts,	which	are	user	accounts).
IIS_IUSRS Allows	you	to	set	specific	permission	for	special	identities	that
are	members	of	the	IIS_IUSRS	group.	To	prevent	malicious	users	from
gaining	access	to	files	and	modifying	them,	you	can	deny	this	account	Full
Control,	Modify,	and	Write	permission	on	important	directories.

When	you	grant	Read	permission	to	these	users	and	groups,	anyone	who	has
access	to	your	Internet	or	intranet	Web	site	will	be	able	to	access	the	files	and
folders.	If	you	want	to	restrict	access	to	certain	files	and	folders,	you	should	set
specific	user	and	group	permissions	and	then	use	authenticated	access	rather	than
anonymous	access.	With	authenticated	access,	IIS	authenticates	the	user	before
granting	access	and	then	uses	the	Windows	permissions	to	determine	what	files
and	folders	the	user	can	access.

As	you	evaluate	the	permissions,	you	might	want	to	apply	to	files	and	folders	used
by	IIS,	refer	to	Table	4-2.	This	table	provides	general	guidelines	for	assigning
permissions	based	on	content	type.

TABLE	4-2	General	Guidelines	for	Permissions	Based	on	Content	Type
CGI	scripts	and
executables	(.exe,
.dll,	.cmd)

Users	(Execute),	Administrators	(Full	Control),	System
(Full	Control)

Dynamic	content
(.asp,	.aspx,	.vbs,	.js,
.pl)

Users	(Read	Only),	Administrators	(Full	Control),	System
(Full	Control)

Include	files	(.inc,
.shtm,	.shtml,	.stm)

Users	(Read	Only,	Deny	Write),	Administrators	(Full
Control),	System	(Full	Control)

Static	content	(.txt,
.rtf,	.gif,	.jpg,	.jpeg,
.htm,	.html,	.doc,	.ppt,
.xls)

Users	(Read	Only,	Deny	Write),	Administrators	(Full
Control),	System	(Full	Control)

Instead	of	setting	permissions	on	individual	files,	you	should	organize	content	by
type	in	subdirectories.	For	example,	if	your	Web	site	used	static,	script,	and
dynamic	content,	you	could	create	subdirectories	called	WebStatic,	WebScripts,
and	WebDynamic.	You	would	then	store	static,	script,	and	dynamic	content	in
these	directories	and	assign	permissions	on	a	per-directory	basis.	Don’t	forget	to
consider	whether	it’s	prudent	to	specifically	deny	a	permission,	such	as	Full
Control,	Modify,	or	Write.

Viewing	File	and	Folder	Permissions

You	view	security	permissions	for	files	and	folders	in	File	Explorer	or	in	IIS
Manager	by	completing	the	following	steps:

1. Open	File	Explorer	or	IIS	Manager	as	appropriate.	In	File	Explorer,	right-
click	the	file	or	folder	you	want	to	work	with,	and	then	select	Properties.	In
IIS	Manager,	navigate	to	the	site	node	or	folder	node	you	want	to	work	with,
and	then	in	the	Actions	pane,	click	Edit	Permissions.

2. You	should	now	see	the	Properties	dialog	box	for	the	file	or	folder	you
previously	selected.	On	the	General	tab,	be	sure	to	note	any	NTFS
attributes,	such	as	Read	only	or	Hidden,	that	are	being	applied,	because	you
might	need	to	change	these.

3. Select	the	Security	tab.	In	the	Group	Or	User	Names	list	box,	select	the	user,
computer,	or	group	whose	permissions	you	want	to	view.	If	check	boxes	in
the	Permissions	For	list	are	dimmed,	it	means	that	the	permissions	are
inherited	from	a	parent	object.

Setting	File	and	Folder	Permissions

You	can	set	permissions	for	files	and	folders	by	completing	the	following	steps:

1. Open	File	Explorer	or	IIS	Manager	as	appropriate.	In	File	Explorer,	right-
click	the	file	or	folder	you	want	to	work	with,	and	then	select	Properties.	In
IIS	Manager,	navigate	to	the	site	node	or	folder	node	you	want	to	work	with,
and	then	in	the	Actions	pane,	click	Edit	Permissions.

2. In	the	Properties	dialog	box,	select	the	Security	tab,	select	a	user,	computer,

or	group,	and	then	click	Edit.	This	displays	an	editable	version	of	the
Security	tab.

3. Users	or	groups	that	already	have	access	to	the	file	or	folder	are	listed	in	the
Group	Or	User	Names	list	box.	You	can	change	permissions	for	these	users
and	groups	by	doing	the	following:

Select	the	user	or	group	you	want	to	change.
Use	the	Permissions	For	list	box	to	grant	or	deny	access	permissions.

NOTE  Inherited	permissions	are	dimmed.	If	you	want	to	override	an
inherited	permission,	select	the	opposite	permission.	For	example,	if,
because	of	inheritance,	a	user	is	granted	a	permission	you	don’t	want	that
user	to	have,	you	could	override	the	inheritance	by	explicitly	denying	the
permission	in	the	Permissions	For	list	box.

4. Click	Add	to	set	access	permissions	for	additional	users,	contacts,
computers,	or	groups.	This	displays	the	Select	Users,	Computers,	Or	Groups
dialog	box.	You	can	select	computer	accounts	and	configure	their
permissions	only	if	you	are	a	member	of	a	domain.

\

5. In	the	Select	Users,	Computers,	Or	Groups	dialog	box,	select	the	users,
computers,	or	groups	for	which	you	want	to	set	access	permissions,	and	then
click	OK.

6. In	the	Group	Or	User	Names	list	box,	select	the	user,	computer,	or	group	you
want	to	configure,	and	then	use	the	fields	in	the	Permissions	For	list	box	to
allow	or	deny	permissions.	Repeat	for	other	users,	computers,	or	groups.

7. Click	OK	when	you’re	finished.

Working	with	Group	Policies

Group	policies	are	another	aspect	of	Windows	security	that	you	need	to
understand.	You’ll	use	group	policies	to	automate	key	security	administration
tasks	and	to	manage	IIS	resources	more	effectively.	Group	policies	for	sites,
domains,	and	organizational	units	(OUs)	can	be	configured	only	for	computer,
group,	and	user	accounts	that	are	part	of	a	domain.

Group	Policy	Essentials

Group	policies	provide	central	control	over	privileges,	permissions,	and
capabilities	of	users	and	computers.	You	can	think	of	a	policy	as	a	set	of	rules	that
you	can	apply	to	multiple	computers	and	to	multiple	users.	Because	computers	can
be	a	part	of	larger	organizational	groups,	you	can	apply	multiple	policies.	The
order	in	which	policies	are	applied	is	extremely	important	in	determining	which
rules	are	enforced	and	which	rules	are	not.

When	multiple	policies	are	in	place,	the	policies	are	applied	in	the	following
order:

1. Local	group	policies	that	affect	the	local	computer	only
2. Site	group	policies	that	affect	all	computers	that	are	part	of	the	same	site,

which	can	include	multiple	domains
3. Domain	policies	that	affect	all	computers	in	a	specific	domain
4. Organizational	unit	policies	that	affect	all	computers	in	an	organizational

unit
5. Child	organizational	unit	policies	that	affect	all	computers	in	a

subcomponent	of	an	organizational	unit

As	successive	policies	are	applied,	the	rules	in	those	policies	override	the	rules	
set	in	the	previous	policy.	For	example,	domain	policy	settings	have	precedence	
over	the	local	Group	Policy	settings.	Exceptions	allow	you	to	block,	override,	and	
disable	policy	settings.	A	discussion	of	exceptions	is	outside	the	scope	of	this	
book.

Policy	settings	are	divided	into	two	broad	categories:	those	that	affect	computers	
and	those	that	affect	users.	Computer	policies	are	applied	during	system	startup.	
User	policies	are	applied	during	logon.

Two	graphical	user	interface	(GUI)	tools	are	provided	for	managing	Active
Directory	Group	Policy:	Group	Policy	Object	Editor	and	Group	Policy
Management	Console.	Although	both	are	used	to	manage	Active	Directory	Group
Policy,	you	can	think	of	Group	Policy	Object	Editor	as	a	basic	editor	and	Group
Policy	Management	Console	as	an	advanced	editor.	By	using	Group	Policy	Object
Editor,	you	can	view	and	configure	policy	settings	for	a	specific	Group	Policy
Object	(GPO).	By	using	Group	Policy	Management	Console,	you	can	view,
configure,	and	manage	policy	settings	for	Group	Policy	Objects	in	any	forest	and
domain	to	which	you	can	connect	and	have	appropriate	administrator	permissions.
Management	features	in	Group	Policy	Management	Console	enable	you	to	import,
export,	back	up,	and	restore	GPOs.	You	can	also	use	Group	Policy	Management
Console	to	plan	Group	Policy	changes	and	to	determine	how	group	policies	are
being	applied	to	particular	computers	and	users.

To	use	the	Group	Policy	Object	Editor	and	related	features	to	access	and	use	site,
domain,	and	OU	policies,	complete	the	following	steps:

1. For	sites,	open	the	Active	Directory	Sites	and	Services	console	to	create	a
GPO	that	is	linked	to	the	site.	For	domains	and	OUs,	open	the	Active
Directory	Users	and	Computers	console	to	create	a	GPO	that	is	linked	to	the
domain	or	OU.

2. In	the	left	pane	of	the	appropriate	Active	Directory	window,	right-click	the
site,	domain,	or	OU	for	which	you	want	to	create	or	manage	Group	Policy.
Then	on	the	shortcut	menu,	select	Properties.	The	Properties	dialog	box
opens.

3. In	the	Properties	dialog	box,	click	the	Group	Policy	tab.	You	can	now:
Create	a	new	policy To	create	a	new	policy,	click	New.	Type	a	name	for
the	policy,	and	then	press	Enter.	Then	click	Edit	to	configure	the	new	policy.
Edit	an	existing	policy To	edit	an	existing	policy,	select	the	policy,	and
then	click	Edit.	You	can	then	edit	the	policy	settings.
Change	the	priority	of	a	policy To	change	the	priority	of	a	policy,	click	the
Up	or	Down	button	to	change	its	position	in	the	Group	Policy	Object	Links
list.

The	Group	Policy	Management	Console	is	included	with	Windows	Server.	To	use	
the	Group	Policy	Management	Console	and	related	features	to	access	and	work	
with	site,	domain,	and	OU	policies,	complete	the	following	steps:

1.	 When	you	add	the	Group	Policy	Management	feature	using	the	Add	Roles

And	Feature	Wizard,	the	Group	Policy	Management	Console	is	available	by
clicking	Group	Policy	Management	on	the	Tools	menu	in	Server	Manager.	,

2. In	the	MMC,	you’ll	see	two	top-level	nodes:	Group	Policy	Management	(the
label	for	the	console	root)	and	Forest	(a	node	representing	the	forest	to
which	you	are	currently	connected).	When	you	expand	the	Forest	node,
you’ll	then	see	the	following	nodes:

Domains Provides	access	to	the	policy	settings	for	domains	in	the	related
forest.	By	default,	you	are	connected	to	your	logon	domain	and	can	add
connections	to	other	domains.	If	you	expand	a	domain,	you’ll	be	able	to
access	Default	Domain	Policy,	the	Domain	Controllers	OU	(and	the	related
Default	Domain	Controllers	Policy),	and	Group	Policy	Objects	defined	in	the
domain.
Sites Provides	access	to	the	policy	settings	for	sites	in	the	forest.	Sites	are
hidden	by	default.
Group	Policy	Modeling Provides	access	to	the	Group	Policy	Modeling
Wizard,	which	you	can	use	to	help	you	plan	policy	deployment	and	simulate
settings	for	testing	purposes.	The	wizard	also	provides	access	to	any	saved
policy	models.
Group	Policy	Results Provides	access	to	the	Group	Policy	Results	Wizard.
For	each	domain	to	which	you	are	connected,	you	have	all	the	related	Group
Policy	Objects	and	OUs	available	to	work	with	in	one	location.

3. You	can	now:
Create	a	new	policy Right-click	the	site,	domain,	or	OU	you	want	to	work
with,	and	then	select	Link	An	Existing	GP	or	Create	And	Link	A	GPO	Here	as
appropriate.	In	the	New	GPO	dialog	box,	type	a	descriptive	name	for	the	new
GPO,	and	then	click	OK.	The	GPO	is	now	created	and	linked	to	the	site,
domain,	or	OU.	Right-click	the	GPO,	and	then	choose	Edit.	This	opens	the
Group	Policy	Object	Editor.	You	can	then	edit	the	policy	settings.
Edit	an	existing	policy Expand	the	site,	domain,	or	OU	node	in	which	the
related	policy	is	stored.	Right-click	the	policy,	and	then	choose	Edit.	This
opens	the	Group	Policy	Object	Editor.

You	manage	local	group	policies	for	an	individual	computer	(except	on	domain
controllers)	by	completing	the	following	steps:

1. Right-click	the	Windows	logo,	then	click	Command	Prompt	(Admin).
2. At	the	command	prompt,	type	mmc.	This	opens	an	empty	Microsoft

Management	Console	(MMC).
3. On	the	File	menu,	select	Add/Remove	Snap-In.
4. In	the	Add	Or	Remove	Snap-In	dialog	box,	under	Available	Snap-Ins,	select

Local	Group	Policy	Object	Editor,	and	then	click	Add.
5. By	default,	the	editor	works	with	the	local	computer’s	Group	Policy	Object

(GPO),	so	you	need	only	click	Finish	to	accept	this	as	the	default.
6. Click	OK.	You	can	now	manage	the	local	policy	on	the	selected	computer.

TIP  There	is	another	way	to	start	the	Group	Policy	Object	Editor	for	the
local	computer:	Press	the	Windows	key,	type	gpedit.msc	in	the	Search	box,
and	then	press	Enter.

Group	policies	for	passwords,	account	lockout,	and	auditing	are	essential	to	your
Web	server’s	security.	Guidelines	for	password	policies	are	as	follows:

Set	a	minimum	password	age	for	all	accounts.	I	recommend	2–3	days.
Set	a	maximum	password	age	for	all	accounts.	I	recommend	30	days.
Set	a	minimum	password	length.	I	suggest	the	minimum	be	set	at	eight
characters	to	start.
Enable	secure	passwords	by	enforcing	password	complexity	requirements.
Enforce	password	history.	I	recommend	using	a	value	of	5	or	more.

Guidelines	for	account	lockout	policies	include	the	following:

Set	an	account	lockout	threshold.	In	most	cases	accounts	should	be	locked
after	five	bad	attempts.
Set	account	lockout	duration.	In	most	cases	you’ll	want	to	lock	out	accounts
indefinitely.
Reset	the	lockout	threshold	after	30–60	minutes.

Guidelines	for	auditing	include	the	following:

Audit	system	event	success	and	failure
Audit	logon	event	success	and	failure
Audit	failed	object	access	attempts
Audit	successful	and	failed	policy	changes
Audit	successful	and	failed	account	management
Audit	successful	and	failed	account	logon

Techniques	for	managing	these	policies	are	examined	in	the	sections	that	follow.

Setting	Account	Policies	for	IIS	Servers

You	can	set	account	policies	by	completing	the	following	steps:

1. Access	the	group	policy	container	you	want	to	work	with	as	described	in	the
“Group	Policy	Essentials”	section	of	this	chapter.	Expand	the	Computer
Configuration	node,	then	Windows	Settings,	then	Security	Settings,	and
finally,	Account	Policies.

2. You	can	now	manage	account	policies.	For	domains,	sites,	and	OUs,	you’ll
have	Password	Policy,	Account	Lockout	Policy,	and	Kerberos	Policy	nodes.
For	local	computers,	you’ll	have	Password	Policy	and	Account	Lockout
Policy	nodes	only.

3. To	configure	a	policy,	double-click	its	entry	or	right-click	it	and	select
Properties.	This	opens	a	Properties	dialog	box	for	the	policy.	Then	do	one
of	the	following:
For	a	local	policy,	the	Properties	dialog	box	will	be	different	from	that	for	a
site,	domain,	or	OU.	Use	the	appropriate	fields	to	configure	the	local	policy.
Skip	the	remaining	steps;	they	apply	to	global	group	policies.
For	a	site,	domain,	or	OU,	all	policies	are	either	defined	or	not	defined—that
is,	they’re	either	configured	for	use	or	not	configured	for	use.	A	policy	that
isn’t	defined	in	the	current	container	could	be	inherited	from	another
container.

4. Select	or	clear	the	Define	This	Policy	Setting	check	box	to	determine
whether	a	policy	is	defined.

5. Policies	can	have	additional	fields	for	configuring	the	policy.	Often,	these
fields	have	the	following	option	buttons:
Enabled Turns	on	the	policy	restriction
Disabled Turns	off	the	policy	restriction

Setting	Auditing	Policies

Auditing	is	the	best	way	to	track	what’s	happening	on	your	IIS	server.	You	can	use	
auditing	to	collect	information	related	to	resource	usage,	such	as	file	access,	
system	logon,	and	system	configuration	changes.	Whenever	an	action	occurs	that	
you’ve	configured	for	auditing,	the	action	is	written	to	the	system’s	security	log,	
where	it’s	stored	for	your	review.	You	access	the	security	log	from	Windows	
Event	Viewer.

You	can	set	auditing	policies	by	completing	the	following	steps:

1. Access	the	Group	Policy	container	you	want	to	work	with	as	described	in
the	“Group	Policy	Essentials”	section	in	this	chapter.	Expand	the	Computer
Configuration	node,	Windows	Settings,	Security	Settings,	and	Local
Policies.	Then	select	Audit	Policy.

2. You	now	have	access	to	the	following	auditing	options:
Audit	Account	Logon	Events Tracks	events	related	to	user	logon	and
logoff.
Audit	Account	Management Tracks	account	management.	Events	are
generated	anytime	user,	computer,	or	group	accounts	are	created,	modified,	or
deleted.
Audit	Directory	Service	Access Tracks	access	to	the	Active	Directory
service.	Events	are	generated	whenever	users	or	computers	access	the
directory.
Audit	Logon	Events Tracks	events	related	to	user	logon,	logoff,	and
remote	connections	to	network	systems.
Audit	Object	Access Tracks	system	resource	usage	for	files,	directories,
shares,	printers,	and	Active	Directory	objects.
Audit	Policy	Change Tracks	changes	to	user	rights,	auditing,	and	trust
relationships.
Audit	Privilege	Use Tracks	the	use	of	user	rights	and	privileges,	such	as
the	right	to	back	up	files	and	directories,	but	doesn’t	track	system	logon	or
logoff.
Audit	Process	Tracking Tracks	system	processes	and	the	resources	they
use.
Audit	System	Events Tracks	system	startup,	shutdown,	and	restart,	in
addition	to	actions	that	affect	system	security	or	the	security	log.

3. To	configure	an	auditing	policy,	double-click	its	entry	or	right-click	it	and
select	Properties.	This	opens	a	Properties	dialog	box	for	the	policy.

4. Select	Define	These	Policy	Settings,	and	then	select	the	Success	check	box,
the	Failure	check	box,	or	both.	Success	logs	successful	events,	such	as
successful	logon	attempts.	Failure	logs	failed	events,	such	as	failed	logon
attempts.

5. Click	OK	when	you’re	finished.

Managing	IIS	Security

After	setting	operating	system	security,	use	IIS	security	to	set	the	Web	server	and
execute	permissions	for	content	by:

Configuring	handler	mappings
Configuring	authentication	methods
Setting	authorization	rules	for	application	access
Controlling	access	by	IP	address	or	Internet	domain	name
Managing	feature	delegation	and	remote	administration

Each	of	these	topics	is	discussed	in	the	sections	that	follow.	When	working	with
this	myriad	of	security	features,	keep	in	mind	that	all	these	related	features
collectively	determine	whether	IIS	grants	access	to	a	particular	client	and	user.
For	example,	if	the	client	IP	address	or	domain	name	is	denied	access,	a	user
won’t	be	able	to	log	in	to	get	authenticated.

Configuring	Handler	Mappings	for	Applications

Handler	mappings	are	used	to	specify	the	ISAPI	extensions,	CGI	programs,	IIS
modules,	and	managed	types	that	are	available	to	handle	incoming	requests.	Each
type	of	content	that	IIS	can	work	with	has	a	specific	handler	mapping.	A	handler
mapping	identifies	the	module	used	to	process	requests	for	files	with	a	specific
file	extension	or	a	specific	file	name.	IIS	Setup	creates	handler	mappings
automatically	when	you	install	and	enable	related	role	services	or	modules.

To	view	the	general	handler	mappings,	in	IIS	Manager,	navigate	to	the	level	of	the
configuration	hierarchy	you	want	to	manage,	and	then	double-click	the	Handler
Mappings	feature.	On	the	Handler	Mappings	page,	you’ll	see	the	configured
handler	mappings.

These	handler	mappings	are	listed	by:

Name The	name	of	the	handler	mapping.
Path The	file	extension	or	file	name	for	which	the	handler	will	process	a
response.
State The	current	state	as	either	Enabled	or	Disabled.	If	a	handler	requires
a	type	of	access	that	is	not	enabled	in	the	access	policy	at	that	level,	the
handler	is	disabled.
Path	Type The	type	of	path	to	which	the	handler	is	mapped:

File,	if	the	mapping	applies	to	a	file
Directory,	if	the	mapping	applies	to	a	directory
Unspecified,	if	the	mapping	does	not	apply	to	a	specific	path	type
Handler The	module	or	managed	type	that	responds	to	the	request	as
specified	in	the	mapping.
Entry	Type The	type	of	entry	as	either	Local	or	Inherited.

You	can	configure	and	manage	three	general	types	of	handler	mappings:

Mappings	for	IIS	modules Allow	IIS	to	process	specific	requests	through
IIS	modules	configured	on	the	Web	server.	For	example,	the
PageHandlerFactory-ISAPI-2.0	handler	mapping	specifies	that	the
IsapiModule	handler	process	requests	for	.aspx	files	when	IIS	is	using
Classic	mode.
Mappings	for	managed	handlers Allow	IIS	to	process	specific	requests
through	handlers	written	in	managed	code.	For	example,	the
PageHandlerFactory-Integrated	handler	mapping	specifies	that	the
System.Web.UI.PageHandlerFactory	handler	process	requests	for	.aspx	files
when	IIS	is	using	Integrated	mode.
Mappings	for	scripts	and	executables Allow	IIS	to	process	specific
requests	through	ISAPI	filters	and	extensions	permitted	to	run	on	the	Web
server.	For	example,	the	ASPClassic	handler	mapping	specifies	that	the
IsapiModule	handler	process	requests	for	.asp	files.

NOTE  Script	maps	provide	backward	compatibility	with	earlier	versions
of	IIS.	Executables	must	be	written	to	the	CGI	specification,	and	dynamic
link	libraries	must	support	the	ISAPI	extension	interfaces.	If	you	map	a	type
of	request	to	an	.exe	file,	the	CgiModule	will	load	the	associated	executable
when	a	request	enters	the	server	and	it	matches	the	handler	mapping.	If	you
map	a	type	of	request	to	a	.dll	file,	IsapiModule	will	load	the	DLL	when	a
request	enters	the	server	and	it	matches	the	handler	mapping.	For	example,
IIS	includes	a	handler	mapping	for	Active	Server	Pages	(ASP).	All	requests
for	.asp	files	are	processed	by	asp.dll,	which	is	loaded	by	IsapiModule
because	asp.dll	is	an	ISAPI	extension.

You	can	create	handler	mappings	by	completing	the	following	steps:

1. IIS	Manager,	navigate	to	the	level	of	the	configuration	hierarchy	you	want	to
manage,	and	then	double-click	the	Handler	Mappings	feature.

2. On	the	Handler	Mappings	page,	click	Add	Managed	Handler,	Add	Script
Map,	or	Add	Module	Mapping	as	appropriate	for	the	type	of	handler
mapping	you	are	creating.

NOTE  By	default,	when	you	add	a	managed	handler,	the	handler	will	run
only	in	application	pools	configured	to	use	Integrated	mode.	To	allow	the
new	managed	handler	to	be	used	in	Classic	mode,	you	must	add	the	handler
to	the	<httphandlers>	section	in	the	Web.config	file.

3. In	the	Request	Path	text	box,	type	a	file	name	extension	or	file	name	with	an
extension	for	which	you	want	the	handler	to	process	requests.	File
extensions	don’t	have	to	have	file	type	associations	at	the	operating	system
level	and	can	have	more	than	three	characters.	If	you	wanted	the	handler	to
process	all	requests	made	for	files	with	the	extension	.zip,	type	*.zip.
Alternatively,	if	you	want	the	handler	to	run	all	requests	made	for	a	specific
file,	type	the	file	name	and	its	extension,	such	as	Custom.zip.
For	a	managed	handler,	in	the	Type	drop-down	list,	select	the	class	type	of
the	managed	handler,	such	as	System.Web.DefaultHttpHandler.
For	a	module	map,	in	the	Module	drop-down	list,	select	the	module	that	will
process	related	requests,	such	as	FastCgiModule.
For	a	script	map	and	optionally	for	a	module	map,	in	the	Executable	text	box,
specify	the	script	or	executable	that	will	process	related	requests.	Click	the
selection	button	to	the	right	of	the	Executable	text	box	to	display	the	Open
dialog	box,	which	you	can	use	to	select	the	executable.	The	executable	must
be	in	a	directory	that’s	accessible	to	IIS,	such	as	the
%SystemRoot%\System32	or	%SystemRoot%\System32\Inetsrv	directory.

4. In	the	Name	text	box,	type	a	descriptive	name	for	the	handler	mapping.
5. Click	the	Request	Restrictions	button	to	open	the	Request	Restrictions

dialog	box	and	specify	additional,	optional	restrictions	for	the	handler
mapping.	The	Request	Restrictions	dialog	box	has	three	tabs:
Mapping Use	the	settings	on	the	Mapping	tab	to	limit	the	ways	the	handler
can	be	invoked.	Select	the	Invoke	Handler	Only	If	Request	Is	Mapped	To
check	box,	and	then	choose	File	to	limit	the	handler	to	file	requests,	Folder	to
limit	the	handler	to	folder	requests,	or	File	Or	Folder	to	limit	the	handler	to
file	or	folder	requests.
Verbs Use	the	settings	on	the	Verbs	tab	to	limit	the	HTTP	request	types	that
can	be	used	to	invoke	the	handler.	Either	allow	all	HTTP	verbs	to	be	used,	or
specify	a	list	of	allowed	HTTP	verbs,	such	as	GET,	HEAD,	POST,	and

DEBUG.	For	a	detailed	list	of	HTTP	request	types,	refer	to	Table	1-1	in
Chapter	1,	“Running	IIS	Applications.”
Access Access	policy,	together	with	a	handler’s	required	access	setting,
determines	whether	a	handler	can	run.	The	access	policy	for	handlers	can	be
set	to	grant	read,	write,	script,	and	execute	permissions.	If	a	handler	requires
a	permission	that	is	not	enabled	in	the	access	policy,	the	handler	will	be
disabled,	and	unless	there	is	another	handler	that	can	process	the	request,	all
requests	that	are	processed	by	that	handler	will	fail.

6. Click	OK	twice	to	close	all	open	dialog	boxes	and	create	the	handler
mapping.

To	configure	access	policy	that	specifies	the	type	of	access	permissions	allowed
for	handlers	at	the	current	configuration	level,	click	Edit	Feature	Permissions,	and
then,	in	the	Edit	Feature	Permissions	dialog	box,	select	the	allowed	permissions
or	clear	the	denied	permissions	in	the	Permissions	list.	When	you	select	a
permission	check	box	in	the	Edit	Feature	Permissions	dialog	box,	the	State	column
on	the	Handler	Mappings	page	displays	Enabled	for	the	handlers	that	are	enabled
by	the	selection.	Similarly,	when	you	clear	a	selection	in	the	Edit	Feature
Permissions	dialog	box,	the	State	column	on	the	Handler	Mappings	page	displays
Disabled	for	the	handlers	that	are	disabled	by	the	selection.	You	can	preview	the
handlers	that	are	enabled	or	disabled	by	viewing	the	Handler	Mappings	page.	If
you	click	OK,	any	changes	you’ve	made	to	permissions	are	saved.	If	you	click
Cancel	instead	of	OK,	any	changes	you’ve	made	are	not	saved.

You	can	edit,	rename,	or	remove	handler	mappings	by	using	the	following
techniques:

To	modify	a	handler	mapping’s	settings,	click	the	handler	mapping	you	want
to	modify,	and	then	click	Edit.	In	the	Edit	dialog	box,	make	the	necessary
changes,	and	then	click	OK.
To	rename	a	handler	mapping,	click	the	entry	to	select	it,	and	then	click
Rename.	Type	the	new	name	for	the	filter,	and	then	press	Enter.
To	remove	a	handler	mapping	that	is	no	longer	needed,	click	the	entry	you
want	to	remove,	and	then	click	Remove.	When	prompted	to	confirm	the
action,	click	Yes.

Setting	Authentication	Modes

Authentication	modes	control	access	to	IIS	resources.	You	can	use	authentication
to	allow	anonymous	access	to	public	resources,	to	create	secure	areas	within	a
Web	site,	and	to	create	controlled	access	to	Web	sites	and	applications.	When
authentication	is	enabled,	IIS	uses	the	account	credentials	supplied	by	a	user	to
determine	whether	the	user	has	access	to	a	resource	and	to	determine	which
permissions	the	user	has	been	granted.

Understanding	Authentication

The	authentication	modes	available	on	a	Web	server	depend	on	the	authentication
modules	you’ve	installed	and	enabled	for	use.	A	complete	list	of	related	modules
is	provided	in	Chapter	2	of	Web	Server	Administration:	The	Personal	Trainer
but	a	basic	list	of	authentication	modes	follows:

Anonymous	authentication With	anonymous	authentication,	IIS
automatically	logs	users	on	with	an	anonymous	or	guest	account.	This	allows
users	to	access	resources	without	being	prompted	for	user	name	and
password	information.	Because	the	first	request	all	browsers	send	to	a	Web
server	is	for	anonymous	access,	you	must	disable	anonymous	authentication	at
the	appropriate	configuration	level	if	you	want	to	restrict	access	to	content.
ASP.NET	Impersonation With	ASP.NET	Impersonation,	a	managed	code
application	can	run	as	either	the	user	authenticated	by	IIS	or	a	designated
account	that	you	specify	when	configuring	this	mode.
Basic	authentication With	basic	authentication,	users	are	prompted	for
logon	information.	When	it’s	entered,	this	information	is	transmitted
unencrypted	(as	clear	text)	across	the	network.	If	you’ve	configured	secure
communications	on	the	server	as	described	in	the	“Working	with	SSL”
section	of	Chapter	6,	“Managing	Certificates	and	SSL,”	you	can	require
clients	to	use	Secure	Sockets	Layer	(SSL).	When	you	use	SSL	with	basic
authentication,	the	logon	information	is	encrypted	before	transmission.
Active	Directory	Client	Certificate	authentication With	Client
Certificate	authentication,	IIS	can	map	Active	Directory	client	certificates	for
authentication	across	multiple	servers.	This	lets	IIS	automatically	authenticate
clients	without	using	other	authentication	methods.	If	you	enable	this	mode,
you	cannot	use	IIS	certificate	mapping	for	any	other	sites	hosted	on	the	server.
Digest	authentication With	digest	authentication,	user	credentials	are

transmitted	securely	between	clients	and	servers.	Digest	authentication	is	a
feature	of	HTTP	1.1	and	uses	a	technique	that	can’t	be	easily	intercepted	and
decrypted.	This	feature	is	available	only	when	IIS	is	configured	on	a	server
that	is	part	of	an	Active	Directory	domain.	The	client	is	required	to	use	a
domain	account.
IIS	Client	Certificate	mapping	authentication With	IIS	Client	Certificate
authentication,	IIS	can	map	client	certificates	for	authentication	across
multiple	servers.	This	lets	IIS	automatically	authenticate	clients	without	using
other	authentication	methods.	If	you	enable	this	mode,	you	cannot	use	Active
Directory	Client	Certificate	mapping	for	any	other	sites	hosted	on	the	server.
Integrated	Windows	authentication With	integrated	Windows
authentication,	IIS	uses	standard	Windows	security	to	validate	the	user’s
identity.	Instead	of	prompting	for	a	user	name	and	password,	clients	relay	the
logon	credentials	that	users	supply	when	they	log	on	to	Windows.	These
credentials	are	fully	encrypted	without	the	need	for	SSL,	and	they	include	the
user	name	and	password	needed	to	log	on	to	the	network.	The	only	Web
browsers	that	support	Integrated	Windows	Authentication	are	versions	of
Internet	Explorer.
ASP.NET	Forms-based	authentication With	ASP.NET	Forms-based
authentication,	you	manage	client	registration	and	authentication	at	the
application	level	instead	of	relying	on	the	authentication	mechanisms	in	IIS.
As	the	mode	name	implies,	users	register	and	provide	their	credentials	using
a	login	form.	By	default,	this	information	is	passed	as	clear	text.	To	avoid
this,	you	should	use	SSL	encryption	for	the	login	page	and	other	internal
application	pages.

By	default,	only	anonymous	authentication	is	enabled	for	IIS	resources.
Anonymous	authentication	is	enabled	as	part	of	the	server	core.	You	can	apply
authentication	on	a	global	or	local	basis.	You	configure	global	authentication
modes	via	the	server	configuration	level.	You	set	local	authentication	modes	at	the
site,	application,	directory,	or	file	configuration	level.

Before	you	start	working	with	authentication	modes,	you	should	keep	the
following	in	mind:

When	you	combine	anonymous	access	with	authenticated	access,	users	have
full	access	to	resources	that	are	accessible	anonymously	via	the	Internet	guest
account.	If	this	account	doesn’t	have	access	to	a	resource,	IIS	attempts	to
authenticate	the	user	using	the	authentication	techniques	you’ve	specified.	If

these	authentication	methods	fail,	the	user	is	denied	access	to	the	resource.
When	you	disable	anonymous	access,	you’re	telling	IIS	that	all	user	requests
must	be	authenticated	using	the	authentication	modes	you’ve	specified.	Once
the	user	is	authenticated,	IIS	uses	the	user’s	account	credentials	to	determine
access	rights.
When	you	combine	basic	authentication	with	integrated	or	digest
authentication,	Internet	Explorer	attempts	to	use	integrated	Windows
authentication	or	digest	authentication	before	using	basic	authentication.	This
means	that	users	who	can	be	authenticated	using	their	current	account
credentials	won’t	be	prompted	for	a	user	name	and	password.

In	addition,	before	you	can	use	digest	authentication,	you	must	enable	reversible
password	encryption	for	each	account	that	will	connect	to	the	server	using	this
authentication	technique.	IIS	and	the	user’s	Web	browser	use	reversible
encryption	to	manage	secure	transmission	and	unencryption	of	user	information.
To	enable	reversible	encryption,	follow	these	steps:

1. To	start	Active	Directory	Users	And	Computers,	click	the	Tools	menu	in
Server	Manager,	and	then	click	Active	Directory	Users	And	Computers.

2. Double-click	the	user	name	that	you	want	to	use	with	digest	authentication.
3. On	the	Account	tab,	under	Account	Options,	select	Store	Password	Using

Reversible	Encryption,	and	then	click	OK.
4. Repeat	steps	1–3	for	each	account	that	you	want	to	use	with	digest

authentication.

Enabling	and	Disabling	Authentication

You	can	enable	or	disable	anonymous	access	to	resources	at	the	server,	site,
application,	directory,	or	file	level.	If	you	enable	anonymous	access,	users	can
access	resources	without	having	to	authenticate	themselves	(as	long	as	the
Windows	permissions	on	the	resource	allow	this).	If	you	disable	anonymous
access,	users	must	authenticate	themselves	before	accessing	resources.
Authentication	can	occur	automatically	or	manually	depending	on	the	browser
used	and	the	account	credentials	the	user	previously	entered.

You	can	enable	or	disable	authentication	at	a	particular	configuration	level	by
completing	the	following	steps:

1. In	IIS	Manager,	navigate	to	the	level	of	the	configuration	hierarchy	you	want

to	manage,	and	then	double-click	the	Authentication	feature.
2. On	the	Authentication	page,	you	should	now	see	the	available	authentication

modes.	If	a	mode	you	want	to	use	is	not	available,	you’ll	need	to	install	and
enable	the	related	module	through	Server	Manager.

3. To	enable	or	disable	anonymous	access,	select	Anonymous	Authentication,
and	then	click	Enable	or	Disable	as	appropriate.

4. Select	and	then	use	the	related	Enable,	Disable,	and	Edit	links	in	the	Actions
pane	to	configure	the	authentication	methods	you	want	to	use.	Keep	the
following	in	mind:
Disabling	basic	authentication	might	prevent	some	clients	from	accessing
resources	remotely.	Clients	can	log	on	only	when	you	enable	an	authentication
method	that	they	support.
A	default	domain	isn’t	set	automatically.	If	you	enable	basic	authentication,
you	can	choose	to	set	a	default	domain	that	should	be	used	when	no	domain
information	is	supplied	during	the	logon	process.	Setting	the	default	domain	is
useful	when	you	want	to	ensure	that	clients	authenticate	properly.
With	basic	and	digest	authentication,	you	can	optionally	specify	the	realm	that
can	be	accessed.	Essentially,	a	realm	is	the	DNS	domain	name	or	Web
address	that	will	use	the	credentials	that	have	been	authenticated	against	the
default	domain.	If	default	domain	and	realm	are	set	to	the	same	value,	the
internal	Windows	domain	name	may	be	exposed	to	external	users	during	the
user	name	and	password	challenge/response.

With	Windows	authentication	you	can	use	advanced	settings	to	either	accept
or	require	extended	protection.	With	extended	protection,	channel-binding

data	is	encoded	using	a	Channel	Binding	Token	and	service-binding	data	is
encoded	using	a	Service	Principal	Name.
If	you	enable	ASP.NET	Impersonation,	you	can	specify	the	identity	to
impersonate.	By	default,	IIS	uses	pass-through	authentication	and	the	identity
of	the	authenticated	user	is	impersonated.	You	can	also	specify	a	specific	user
if	necessary.
If	you	enable	forms	authentication,	you	can	set	the	login	URL	and	cookies
settings	used	for	authentication.

Setting	Authorization	Rules	for	Application	Access

You	can	use	authorization	rules	to	control	access	to	Web	content.	An	authorization
rule	specifies	which	users,	roles,	and	groups	are	allowed	to	or	restricted	from
accessing	content	at	a	specific	configuration	level.	The	two	types	of	authorization
rules	are:

Allow	Authorization	Rules Grants	access	to	Web	content	at	a	specific
configuration	level
Deny	Authorization	Rules Denies	access	to	Web	content	at	a	specific
configuration	level

To	view	the	current	authorization	rules	at	a	particular	configuration	level,	navigate
to	the	level	of	the	configuration	hierarchy	you	want	to	manage,	and	then	double-
click	the	.NET	Authorization	Rules	feature.	On	the	.NET	Authorization	Rules
page,	you’ll	then	see	a	list	of	applicable	authorization	rules	listed	by:

Mode Lists	the	type	of	rule	as	either	Allow	or	Deny.
Users Lists	the	user	types,	names,	or	groups	to	which	the	rule	applies.
Roles Lists	the	user	roles	to	which	the	rule	applies.
Verbs Lists	the	HTTP	verbs	to	which	the	rule	applies.	Applicable	only
when	a	rule	is	limited	to	specific	HTTP	verbs.
Entry	Type Lists	the	entry	type	as	Local	or	Inherited.

You	can	set	an	Allow	or	Deny	authorization	rule	by	completing	the	following
steps:

1. In	IIS	Manager,	navigate	to	the	level	of	the	configuration	hierarchy	you	want
to	manage,	and	then	double-click	the	Authentication	Rules	feature.

2. On	the	Authorization	Rules	page,	you	should	now	see	the	currently
configured	authorization	rules.

3. You	can	now	set	an	authorization	rule.	To	add	an	allow	rule,	click	Add
Allow	Rule.	To	add	a	deny	rule,	click	Add	Deny	Rule.

4. Use	the	options	in	the	dialog	box	to	specify	the	users	to	which	the	rule
applies.	With	regard	to	users,	these	rules	can	be	applied	to:
All	users,	meaning	that	both	anonymous	and	authenticated	users	are	either
granted	or	denied	access

Anonymous	users,	meaning	that	all	anonymous	unauthenticated	users	are
either	granted	or	denied	access
Specified	roles	or	user	groups,	meaning	that	authenticated	users	who	are
members	of	specific	Windows	roles	and	user	groups	are	either	granted	or
denied	access
Specified	users,	meaning	that	specific	authenticated	users	are	either	granted
or	denied	access

5. Authorization	rules	can	be	applied	to	all	HTTP	requests	or	to	requests	only
with	specific	HTTP	verbs,	such	as	GET	and	POST.	To	apply	the	rule	to
specific	HTTP	verbs,	select	the	Apply	This	Rule	To	Specific	Verbs	check
box,	and	then	type	the	verbs	to	use	in	a	comma-separated	list.

6. Click	OK	to	set	the	rule.

You	can	edit	or	remove	authorization	rules	by	using	the	following	techniques:

To	modify	a	rule’s	settings,	click	the	authorization	rule	you	want	to	modify,
and	then	click	Edit.	In	the	Edit	dialog	box,	make	the	necessary	changes,	and
then	click	OK.
To	remove	a	rule	that	is	no	longer	needed,	click	the	entry	you	want	to	remove,
and	then	click	Remove.	When	prompted	to	confirm	the	action,	click	Yes.

Configuring	IP	Address	and	Domain	Name	Restrictions

By	default,	IIS	resources	are	accessible	to	all	IP	addresses,	computers,	and
domains,	which	present	a	security	risk	that	might	allow	your	server	to	be	misused.
To	control	use	of	resources,	you	might	want	to	grant	or	deny	access	by	IP	address,
network	ID,	or	domain.	When	you	grant	or	deny	access,	keep	the	following	in
mind:

Granting	access	allows	a	computer	to	make	requests	for	resources	but	doesn’t
necessarily	allow	users	to	work	with	resources.	If	you	require	authentication,
users	still	need	to	authenticate	themselves.
Denying	access	to	resources	prevents	a	computer	from	accessing	those
resources.	Therefore,	users	of	the	computer	can’t	access	the	resources—even
if	they	could	have	authenticated	themselves	with	a	user	name	and	password.

You	can	establish	or	remove	restrictions	globally	at	the	server	level	and	for
individual	sites,	applications,	and	directories.	The	three	types	of	restriction
settings	are:

General	Restriction	settings Determine	whether	unspecified	clients	are
allowed	or	denied	access	and	whether	domain	name	restrictions	are	enabled
or	disabled.	An	unspecified	client	is	a	computer	for	which	there	is	no	other
restriction	rule.
Allow	Restriction	rules Grant	access	to	a	specific	IP	address,	a	range	of	IP
addresses,	or	a	specific	domain	name.
Deny	Authorization	rules Deny	access	to	a	specific	IP	address,	a	range	of
IP	addresses,	or	a	specific	domain	name.

IP	address	ranges	are	set	based	on	the	IP	address	for	the	network	ID	and	the	
related	subnet	mask	or	prefix.	With	standard	classful	networks,	the	network	ID	is	
the	.0	address	for	the	network,	such	as	192.168.1.0.	By	default,	domain	name	
restrictions	are	disabled.	The	reason	for	this	is	that	when	you	grant	or	deny	access	
by	domain,	IIS	must	perform	a	reverse	Domain	Name	System	(DNS	lookup	on	
each	connection	to	determine	whether	the	connection	comes	from	the	domain.	
These	reverse	lookups	can	severely	increase	response	times	for	the	first	query	
each	user	sends	to	your	site.

To	view	the	current	restriction	rules	at	a	particular	configuration	level,	navigate	to

the	level	of	the	configuration	hierarchy	you	want	to	manage,	and	then	double-click
the	IP	And	Domain	Restrictions	feature.	On	the	IP	And	Domain	Restrictions	page,
you’ll	see	a	list	of	applicable	restriction	rules	listed	by:

Mode Lists	the	type	of	rule	as	either	Allow	or	Deny
Requestor Lists	the	specific	IP	address,	IP	address	range,	or	domain	to
which	the	rule	applies
Entry	Type Lists	the	entry	type	as	Local	or	Inherited

You	can	configure	the	general	restriction	settings	by	completing	the	following
steps:

1. In	IIS	Manager,	navigate	to	the	level	of	the	configuration	hierarchy	you	want
to	manage,	and	then	double-click	the	IP	And	Domain	Restrictions	feature.

2. On	the	IP	And	Domain	Restrictions	page,	in	the	Actions	pane,	click	Edit
Feature	Settings.

3. Set	the	restriction	rule	for	unspecified	clients,	that	is,	clients	that	do	not	fall
under	any	other	restriction	rule.	To	grant	access	to	unspecified	clients,	set
the	Access	For	Unspecified	Clients	drop-down	list	to	Allow.	To	deny
access	to	unspecified	clients,	set	the	Access	For	Unspecified	Clients	drop-
down	list	to	Deny.

4. To	allow	domain	name	restrictions	to	be	used	in	addition	to	IP	address
restrictions,	select	the	Enable	Domain	Name	Restrictions	check	box.

5. Click	OK	to	configure	the	restriction	settings.

You	can	set	an	allow	or	deny	restriction	by	completing	the	following	steps:

1. In	IIS	Manager,	navigate	to	the	level	of	the	configuration	hierarchy	you	want
to	manage,	and	then	double-click	the	IP	And	Domain	Restrictions	feature.

2. On	the	IP	And	Domain	Restrictions	page,	you	should	now	see	the	currently
configured	IP	address	and	domain	restrictions.

3. You	can	now	specify	a	restriction.	To	add	an	allow	restriction,	click	Add
Allow	Entry.	To	add	a	deny	restriction,	click	Add	Deny	Entry.

4. Create	the	Allow	Access	or	Deny	Access	list.	The	settings	you	can	specify
for	each	option	are	as	follows:
For	a	single	computer,	select	Specific	IP	Address,	and	then	type	the	IP
address	for	the	computer,	such	as	192.168.5.50.
For	groups	of	computers,	select	IP	Address	Range,	and	then	type	the	subnet
address,	such	as	192.168.0.0,	and	the	subnet	mask	or	prefix,	such	as
255.255.255.0.
For	a	domain	name,	select	Domain	Name,	and	then	type	the	fully	qualified
domain	name	(FQDN),	such	as	eng.microsoft.com.	(Domain	name
restrictions	must	be	enabled.)

5. Click	OK	to	create	the	rule.

To	remove	a	rule	that	is	no	longer	needed,	click	the	entry	you	want	to	remove,	and
then	click	Remove.	When	prompted	to	confirm	the	action,	click	Yes.

Managing	Feature	Delegation	and	Remote	Administration

The	Web	Management	Service	(WMSVC)	enables	remote	and	delegated
management	of	IIS	using	IIS	Manager	based	on	either	Windows	credentials	only
or	Windows	credentials	and	IIS	Manager	credentials.	In	addition	to	the
Management	Service	feature,	discussed	in	Chapter	3	of	Web	Server
Administration:	The	Personal	Trainer,	you	can	use	the	following	IIS	features	to
control	the	way	delegation	and	remote	administration	works:

IIS	Manager	Users
IIS	Manager	Permissions
Feature	Delegation

Each	of	these	features	is	discussed	in	the	sections	that	follow.	When	working	with
these	features,	keep	in	mind	that	they	are	used	with	IIS	Manager	for	the	purposes
of	delegation	and	remote	administration.	For	local	logon,	any	administrator	user
can	use	IIS	Manager	for	administration	of	a	local	Web	server.	Furthermore,	any
user	with	direct	access	to	content	and	configuration	files	can	manipulate	those
files	as	appropriate	for	the	file	system	permissions	they’ve	been	granted.

Creating	and	Configuring	IIS	Manager	User	Accounts

The	IIS	Manager	Users	feature	allows	you	to	create	accounts	for	individuals	that
act	as	Web	site	or	Web	application	administrators	when	using	IIS	Manager	for
remote	administration.	When	you	specify	an	IIS	manager,	you	set	the	permitted
user	name	and	password	for	the	user,	creating	an	IIS	Manager	account.	You	can
then	manage	this	account	in	IIS	Manager.	Options	are	available	for	enabling,
disabling,	and	removing	accounts	as	and	for	changing	account	passwords.

By	default,	IIS	Manager	permissions	are	based	on	Windows	credentials.	If	you
want	to	allow	IIS	Manager	accounts	to	also	be	used,	you	must	enable	this	option
by	completing	the	following	steps:

1. In	IIS	Manager,	select	the	server	node,	and	then	double-click	Management
Service.

2. On	the	Management	Service	page,	the	Identity	Credentials	options	control
whether	IIS	Manager	accounts	can	be	used.	Do	one	of	the	following:
If	the	Management	Service	is	currently	running	and	the	Windows	Credentials

Or	IIS	Manager	Credentials	option	is	not	selected,	in	the	Actions	pane,	click
Stop.	Select	the	Windows	Credentials	Or	IIS	Manager	Credentials	option,
click	Apply,	and	then	click	Start.
If	the	Management	Service	is	not	running	and	has	not	been	configured,	see
Chapter	3	of	Web	Server	Administration:	The	Personal	Trainer.

You	can	configure	IIS	managers	only	at	the	server	configuration	level.	To	create
and	configure	IIS	managers,	follow	these	steps:

1. In	IIS	Manager,	select	the	server	node,	and	then	double-click	the	IIS
Manager	Users	feature.

2. On	the	IIS	Manager	Users	page,	you	should	now	see	the	currently	configured
IIS	managers	listed	by	user	name	and	account	status.

3. To	create	an	IIS	manager,	in	the	Actions	pane,	click	Add	User.	In	the	Add
User	dialog	box,	type	the	desired	user	name	for	the	account.	Type	and
confirm	the	account	password,	and	then	click	OK.

4. You	can	work	with	IIS	manager	accounts	by	using	the	following	techniques:
To	change	an	account	password,	click	the	user	name	you	want	to	modify,	and
then	click	Change	Password.	In	the	Change	Password	dialog	box,	type	and
confirm	the	account	password,	and	then	click	OK.
To	disable	an	account	so	that	it	cannot	be	used,	click	the	user	name,	and	then
click	Disable.
To	enable	an	account,	click	the	user	name,	and	then	click	Enable.
To	remove	an	account	that	is	no	longer	needed,	click	the	user	name	that	you
want	to	remove,	and	then	click	Remove.	When	prompted	to	confirm	the
action,	click	Yes.

Configuring	IIS	Manager	Permissions

IIS	Manager	permissions	control	who	can	perform	remote	administration	in	IIS
Manager.	You	configure	IIS	Manager	permissions	for	individual	sites,
applications,	or	directories.	Any	permissions	you	apply	at	the	site,	application,	or
directory	level	also	automatically	apply	to	all	lower	configuration	levels.

To	grant	a	user	permission	to	manage	IIS	remotely	using	IIS	Manager,	follow	these
steps:

1. In	IIS	Manager,	select	the	configuration	level	below	the	server	node	for
which	you	are	configuring	remote	administration,	and	then	double-click	the

IIS	Manager	Permissions	feature.
2. On	the	IIS	Manager	Permissions	page,	you	should	now	see	a	list	of	users

who	have	been	delegated	remote	administration	privileges	in	IIS	Manager.
To	see	only	users	with	permissions	for	a	selected	site,	click	Show	Only	Site
Users.

3. In	the	Actions	pane,	click	Allow	User.	In	the	Allow	User	dialog	box,	choose
one	of	the	following	options:
Windows Choose	Windows	if	you	want	to	configure	permissions	based	on
a	Windows	account.
IIS	Manager Choose	IIS	Manager	if	you	want	to	configure	permissions
based	on	an	IIS	Manager	account.

4. Click	Select.	Use	the	dialog	box	provided	to	choose	the	account	to	use,	and
then	click	OK.

To	deny	a	user	permission	to	manage	IIS	remotely	using	IIS	Manager,	follow	these
steps:

1. In	IIS	Manager,	select	the	configuration	level	below	the	server	node	for
which	you	are	configuring	remote	administration,	and	then	double-click	the
IIS	Manager	Permissions	feature.

2. On	the	IIS	Manager	Permissions	page,	you	should	now	see	a	list	of	users
who	have	been	delegated	remote	administration	privileges	in	IIS	Manager.
To	see	only	users	with	permissions	for	a	selected	site,	click	Show	Only	Site
Users.

3. Click	the	user	account	that	should	no	longer	have	administration	permissions
at	or	below	the	selected	level,	and	then	click	Deny	User.

Configuring	Feature	Delegation

Feature	Delegation	settings	configure	the	delegation	state	at	the	server	level	or	for	
individual	sites	for	lower	configuration	levels	in	IIS	Manager.	These	settings	also	
determine	the	state	of	the	related	section	in	the	applicationHost.config	file.	To	
configure	Feature	Delegation	for	all	sites	on	a	server,	you	configure	feature	
delegation	at	the	server	level.	To	configure	Feature	Delegation	for	all	application	
and	directories	within	a	site,	you	configure	feature	delegation	at	the	site	level.

Each	feature,	with	two	noted	exceptions,	has	one	of	the	following	delegation	
states:

Read/Write Enables	remote	administrators	to	view	and	change	the	feature.
It	also	unlocks	the	configuration	section	in	the	applicationHost.config	file,
allowing	settings	for	this	feature	to	be	read	from	and	written	to	web.config
files.
Read	Only Enables	remote	administrators	to	view	but	not	change	the
feature.	It	also	locks	the	configuration	section	in	the	applicationHost.config
file,	preventing	settings	for	this	feature	to	be	read	from	and	written	to
web.config	files.
Not	Delegated Prevents	remote	administrators	from	viewing	or	changing
the	feature.	Also	locks	the	configuration	section	in	the	applicationHost.config
file,	preventing	settings	for	this	feature	to	be	read	from	and	written	to
Web.config	files.

With	the	.NET	Roles	and	.NET	Users	features,	you’ll	see	the	delegation	state
specified	as	either	Configuration	Read/Write	or	Configuration	Read	Only.	These
settings	work	the	same	as	Read/Write	and	Read	Only	but	are	distinguished	from
other	features	because	configuration	information	can	come	not	only	from
configuration	files,	but	also	from	a	database.

You	can	configure	the	delegation	state	by	completing	the	following	steps:

1. Open	IIS	Manager.	To	configure	the	delegation	state	at	the	server	level	for
all	lower	configuration	levels,	select	the	server	node,	and	then	double-click
Feature	Delegation.	To	configure	the	delegation	state	of	an	individual	site,

select	the	server	node,	double-click	Feature	Delegation,	and	then	in	the
Actions	pane,	click	Custom	Site	Configuration.	On	the	Feature	Delegation	or
Custom	Site	Delegation	page,	you	should	now	see	the	delegation	state	for
each	feature	in	IIS	Manager.

2. You	can	now	use	the	following	techniques	to	manage	delegation:

To	change	the	delegation	state,	select	the	feature	you	want	to	work	with,	and
then	configure	the	Actions	pane	options	to	set	the	delegation	state	as
Read/Write,	Read	Only,	Configuration	Read/Write,	Configuration	Read	Only,
or	Not	Delegated.
When	you	are	working	with	the	Custom	Web	Site	Delegation	page,	you	can
reset	a	feature	to	its	inherited	value	by	selecting	the	feature	and	then	clicking
Reset	To	Inherited.
To	reset	the	delegation	state	for	all	IIS	features	to	their	original	state	(as	per
the	default	value	in	schema),	click	Reset	All	Delegation.

Chapter	5
Using	Active	Directory	Certificate	Services

Active	Directory	Certificate	Services	and	Secure	Sockets	Layer	(SSL)	provide	an
extra	layer	of	security	for	your	Web	server.	You	use	Certificate	Services	and	SSL
to	protect	sensitive	information	such	as	passwords,	credit	card	numbers,	or
payment	information.	Certificate	Services	and	SSL	protect	sensitive	information
by	encrypting	the	data	sent	between	client	browsers	and	your	server.	Encryption
is	the	process	of	encoding	information	by	using	a	mathematical	algorithm	that
makes	it	difficult	for	anyone	other	than	the	intended	recipient	to	view	the	original
information.

Internet	Information	Services	(IIS)	transfers	encrypted	data	to	a	client	browser	by
using	the	SSL	protocol.	With	SSL,	servers	and	clients	can	use	certificates	to
provide	proof	of	identity	prior	to	establishing	a	secure	connection.	Once	a
connection	is	established,	clients	and	servers	use	the	secure	SSL	channel	to
transfer	information.	This	information	is	encrypted	using	a	technique	that	the
clients	and	servers	can	interpret	to	extract	the	original	information.

Understanding	SSL

SSL	enables	encrypted	data	transfers	between	client	browsers	and	Web	servers.
The	sections	that	follow	provide	an	overview	on	how	SSL	works	and	how	it’s
used.

Using	SSL	Encryption

As	stated	previously,	encryption	is	the	process	of	encoding	information	by	using	a
mathematical	algorithm	that	makes	it	difficult	for	anyone	other	than	the	intended
recipient	to	view	the	original	information.	The	encryption	algorithm	uses	a
mathematical	value,	called	a	key,	to	scramble	the	data	so	that	the	key	must	be	used
to	recover	the	data.

Many	techniques	are	available	for	encrypting	information	so	that	it	can	be
exchanged.	Some	encryption	techniques	use	a	combination	of	public	and	private
keys—the	public	key	can	be	shared	and	the	private	key	can’t.	Some	encryption
techniques	use	shared	secret	keys	that	are	transferred	between	authenticated
systems.	SSL	uses	a	technique	called	public	key	encryption,	which	combines
private,	public,	and	shared	secret	(session)	keys.

In	public	key	encryption,	there	are	three	keys:

A	public	key	that’s	available	to	any	application	that	requests	it
A	private	key	that’s	known	only	to	its	owner
A	session	key	that’s	created	using	public	and	private	key	data

IIS	uses	the	public	key	encryption	component	in	SSL	to	establish	sessions	between
clients	and	servers.	You	should	use	SSL	whenever	you	want	to	provide	additional
protection	for	data	that’s	transferred	between	clients	and	servers.	Some	specific
instances	in	which	you	might	want	to	use	Certificate	Services	and	SSL	follow:

When	you	remotely	manage	the	Web	server	by	using	the	Administration	Web
site	or	operator	administration	pages
When	your	Web	site	has	secure	areas	that	contain	sensitive	company
documents
When	your	Web	site	has	pages	that	collect	sensitive	personal	or	financial
information	from	visitors
When	your	Web	site	processes	orders	for	goods	or	services	and	you	collect
credit	or	other	personal	information	from	customers

With	SSL,	users	connect	to	Web	pages	by	using	a	secure	Uniform	Resource	
Locator	(URL	that	begins	with	https://.	The	https	designator	tells	the	browser	to	
try	to	establish	a	secure	connection	with	IIS.	SSL	connections	for	Web	pages	are	
made	on	port	443	by	default,	but	you	can	change	the	port	designator	as	necessary.

As	you	set	out	to	work	with	SSL,	keep	in	mind	that	you	can’t	use	host	headers	with
SSL.	With	SSL,	Hypertext	Transfer	Protocol	(HTTP)	requests	are	encrypted,	and
the	host	header	name	within	the	encrypted	request	can’t	be	used	to	determine	the
correct	site	to	which	a	request	must	be	routed.

After	the	client	browser	contacts	the	server	by	using	a	secure	URL,	the	server
sends	the	browser	its	public	key	and	server	certificate.	Next,	the	client	and	server
negotiate	the	level	of	encryption	to	use	for	secure	communications.	The	server
always	attempts	to	use	the	highest	level	of	encryption	it	supports.	Once	the
encryption	level	is	established,	the	client	browser	creates	a	session	key	and	uses
the	server’s	public	key	to	encrypt	this	information	for	transmission.	Anyone
intercepting	the	message	at	this	point	wouldn’t	be	able	to	read	the	session	key—
only	the	server’s	private	key	can	decrypt	the	message.

The	IIS	server	uses	its	private	key	to	decrypt	the	message	sent	by	the	client.	The
SSL	session	between	the	client	and	the	server	is	now	established.	The	session	key
can	be	used	to	encrypt	and	decrypt	data	transmitted	between	the	client	and	server.

To	recap,	secure	SSL	sessions	are	established	using	the	following	technique:

1. The	user’s	Web	browser	contacts	the	server	by	using	a	secure	URL.
2. The	IIS	server	sends	the	browser	its	public	key	and	server	certificate.
3. The	client	and	server	negotiate	the	level	of	encryption	to	use	for	the	secure

communications.
4. The	client	browser	encrypts	a	session	key	with	the	server’s	public	key	and

sends	the	encrypted	data	back	to	the	server.
5. The	IIS	server	uses	its	private	key	to	decrypt	the	message	sent	by	the	client,

and	the	session	is	established.
6. Both	the	client	and	the	server	use	the	session	key	to	encrypt	and	decrypt

transmitted	data.

Using	SSL	Certificates

Not	reflected	in	the	previous	discussion	is	the	way	in	which	SSL	uses	certificates.
You	can	think	of	a	certificate	as	an	identity	card	that	contains	information	needed
to	establish	the	identity	of	an	application	or	user	over	a	network.	Certificates
enable	Web	servers	and	users	to	authenticate	one	another	before	establishing	a
connection.	Certificates	also	contain	keys	needed	to	establish	SSL	sessions
between	clients	and	servers.

In	most	cases	certificates	used	by	IIS,	Web	browsers,	and	Certificate	Services
conform	to	the	X.509	standard.	For	this	reason,	they’re	often	referred	to	as	X.509
certificates.	Different	versions	of	the	X.509	standard	have	been	issued	(see	RFC
3280	for	more	information	on	this	standard),	and	these	versions	have	been	revised
from	time	to	time.	Two	types	of	X.509	certificates	are	used:

Client	certificates,	which	contain	identifying	information	about	a	client
Server	certificates,	which	contain	identifying	information	about	a	server

Certificate	authorities	issue	both	types	of	certificates.	A	certificate	authority	(CA)
is	a	trusted	agency	responsible	for	confirming	the	identity	of	users,	organizations,
and	their	servers	and	then	issuing	certificates	that	confirm	these	identities.	Before
issuing	a	client	certificate,	CAs	require	that	you	provide	information	that
identifies	you,	your	organization,	and	the	client	application	you’re	using.	Before
issuing	a	server	certificate,	CAs	require	that	you	provide	information	that
identifies	your	organization	and	the	server	you’re	using.

When	you’re	choosing	CAs	to	create	your	server	certificates,	you	have	several
options.	If	you	use	Certificate	Services,	your	organization	can	act	as	its	own	CA.
When	you	act	as	your	own	CA,	you	use	the	following	process	to	enable	SSL	on
your	Web	server:

1. Install	Active	Directory	Certificate	Services	on	a	server	in	the	domain,	and
then	generate	the	root	CA	certificate.

2. Generate	a	certificate	request	file	for	each	Web	site	on	your	server	that	has	a
unique	name,	and	then	use	the	certificate	request	files	to	create	server
certificates	for	your	Web	sites.

3. Install	the	certificates	and	then	enable	SSL	on	each	applicable	Web	site.
4. Client	browsers	won’t	recognize	and	trust	your	root	CA	certificate.	To	get

browsers	to	trust	the	root	CA,	the	user	must	install	the	certificate	in	the
browser’s	authorities	store.

5. Initiate	SSL	connections	by	using	URLs	that	begin	with	https://.

Instead	of	using	your	own	CAs,	you	can	use	third-party	CAs—and	there’s	an
advantage	to	doing	so.	The	third-party	authority	can	vouch	for	your	identity,	and
dozens	of	vendors	are	already	configured	as	trusted	CAs	in	Web	browsers.	In
most	versions	of	Microsoft	Internet	Explorer,	you	can	obtain	a	list	of	trusted
authorities	by	completing	the	following	these	general	steps:

1. On	the	Tools	menu,	select	Internet	Options.	The	Internet	Options	dialog	box
appears.

2. On	the	Content	tab,	click	Certificates.	The	Certificates	dialog	box	appears.
3. On	the	Trusted	Root	Certification	Authorities	tab.	you	should	now	see	a	list

of	trusted	root	CAs.

When	you	use	a	trusted	third-party	authority,	you	follow	a	different	procedure	on
your	Web	server	to	enable	SSL	than	when	you	act	as	your	own	root	CA:

1. Create	a	certificate	request	file	for	each	Web	site	on	your	server	that	has	a
unique	name.

2. Submit	the	certificate	request	files	to	a	trusted	third-party	authority	such	as
Verisign.	The	CA	will	process	the	requests	and	send	you	certificates.

3. Complete	the	certificate	request	by	installing	the	certificate,	and	then	enable
SSL	on	each	applicable	Web	site.

4. Client	browsers	initiate	SSL	sessions	by	using	a	secure	URL	beginning	with
https://.

Regardless	of	whether	you	act	as	your	own	CA	or	use	a	trusted	CA,	you	still	must	
manage	the	server	certificates,	and	you	use	Active	Directory	Certificate	Services	
to	do	this.	Server	certificates	can	expire	or	be	revoked,	if	necessary.	For	example,	
if	your	organization	is	an	Internet	service	provider	(ISP	that	issues	its	own	
certificates,	you	might	want	your	customers’	server	certificates	to	expire	annually.	
This	forces	customers	to	update	their	certificate	information	at	least	once	a	year	to	
ensure	that	it’s	current.	You	also	might	want	to	revoke	a	certificate	when	a	
customer	cancels	service.

Understanding	SSL	Encryption	Strength

An	SSL	session’s	encryption	strength	is	directly	proportional	to	the	number	of	bits	
in	the	session	key.	This	means	that	session	keys	with	a	greater	number	of	bits	are	
considerably	more	difficult	to	crack	and,	thus,	are	more	secure.

The	most	commonly	used	encryption	levels	for	SSL	sessions	are	40-bit,	128-bit,	
and	256-bit.	Encryption	at	the	40-bit	level	is	adequate	for	most	needs,	including	e-
commerce.	Encryption	at	the	128-bit	level	provides	added	protection	for	e-
commerce.	Encryption	at	the	256-bit	level	provides	superior	protection	for	
sensitive	personal	and	financial	information.	Most	versions	of	Windows	Server	
shipped	in	the	United	States	are	configured	with	256-bit	encryption.

Don’t	confuse	the	encryption	level	for	SSL	sessions	(the	strength	of	the	session	
key	expressed	as	bits	with	the	encryption	level	for	SSL	certificates	(the	strength	
of	the	certificate’s	public	and	private	keys	expressed	as	bits.	Most	encryption	
keys	(public	and	private	have	a	bit	length	of	512	or	higher.	When	a	user	attempts	
to	establish	an	SSL	session	with	your	Web	server,	the	user’s	browser	and	the	
server	use	the	bit	length	of	their	encryption	keys	to	determine	the	strongest	level	of	
encryption	possible.	If	the	encryption	keys	use	512	bits,	the	level	of	encryption	is	
set	to	40	bits.	If	the	encryption	keys	use	1024	bits,	the	level	of	encryption	is	set	to	
128	bits.	If	the	encryption	keys	use	2048	bits,	the	level	of	encryption	is	set	to	256	
bits.	Other	key	bit	lengths	and	encryption	levels	are	available.

Working	with	Active	Directory	Certificate	Services

Active	Directory	Certificate	Services	allows	you	to	issue	and	revoke	digital
certificates.	You	can	use	these	certificates	to	enable	SSL	sessions	and	to
authenticate	the	identity	of	your	intranet,	extranet,	or	Internet	Web	site.

Understanding	Active	Directory	Certificate	Services

Active	Directory	Certificate	Services	is	a	Windows	service	that	runs	on	a
designated	certificate	server.	Certificate	servers	can	be	configured	as	one	of	four
types	of	CAs:

Enterprise	root	CA The	certificate	server	at	the	root	of	the	hierarchy	for	a
Windows	domain.	It’s	the	most	trusted	CA	in	the	enterprise	and	must	be	a
member	of	the	Active	Directory	service	and	have	access	to	it.
Enterprise	subordinate	CA A	certificate	server	that	will	be	a	member	of
an	existing	CA	hierarchy.	It	can	issue	certificates	but	must	obtain	its	own	CA
certificate	from	the	enterprise	root	CA.
Stand-alone	root	CA The	certificate	server	at	the	root	of	a	non-enterprise
hierarchy.	It’s	the	most	trusted	CA	in	its	hierarchy	and	doesn’t	need	access	to
Active	Directory.
Stand-alone	subordinate	CA A	certificate	server	that	will	be	a	member	of
an	existing	non-enterprise	hierarchy.	It	can	issue	certificates	but	must	obtain
its	own	CA	certificate	from	the	stand-alone	root	CA	in	its	hierarchy.

Certificate	servers	aren’t	required	to	be	dedicated	to	Active	Directory	Certificate
Services	and	can	be	the	same	servers	you	use	for	Web	publishing.	However,	it’s	a
good	idea	to	designate	specific	servers	in	your	domain	that	will	act	as	certificate
servers	and	to	use	these	servers	only	for	that	purpose.

REAL	WORLD To	safeguard	the	root	CA	from	malicious	users,	you
should	create	multiple	levels	in	the	CA	hierarchy.	For	example,	in	an
enterprise,	you’d	set	up	an	enterprise	root	CA	and	then	set	up	one	or	more
enterprise	subordinate	CAs.	You’d	then	issue	certificates	to	users	and
computers	only	through	the	subordinate	CAs.	This	safeguard	should	help
ensure	that	the	root	CA’s	private	key	can’t	be	easily	compromised.

Once	you	install	Active	Directory	Certificate	Services	on	a	computer,	you’re
limited	in	what	you	can	and	can’t	do	with	the	computer.	Specifically,	you	can’t	do
the	following:

You	can’t	rename	a	computer	that	has	Certificate	Services	installed.
You	can’t	change	the	domain	membership	of	a	computer	that	has	Certificate
Services	installed.

You	manage	Certificate	Services	by	using	a	Microsoft	Management	Console
(MMC) snap-in	called	the	Certificate	Authority	snap-in	and	a	Web-based	Active
Server	Pages	(ASP)	application	that	can	be	accessed	in	a	standard	Web	browser.
In	the	snap-in,	you	have	full	control	over	Certificate	Services.	The	Web-based
application,	on	the	other	hand,	is	used	primarily	to	retrieve	Certificate	Revocation
Lists	(CRLs),	to	request	certificates,	and	to	check	on	pending	certificates.	You	can
access	the	Web-based	application	from	the	following	URL:
http://hostname/certsrv.

In	the	Certification	Authority	snap-in’s	main	window,	there	are	several	containers
under	the	root	authority.	These	containers	are	used	as	follows:

Revoked	Certificates Contains	all	certificates	that	have	been	issued	and
then	revoked.
Issued	Certificates Contains	all	certificates	that	have	been	approved	and
issued	by	the	Certificate	Services	administrator.
Pending	Requests Contains	all	pending	certificate	requests	for	this	CA.	If
you’re	an	administrator	on	the	certificate	server,	you	can	approve	requests	by
right-clicking	them	and	selecting	Issue.	The	default	configuration	is	to	process
requests	automatically,	which	means	that	no	administrator	involvement	is
required.
Failed	Requests Contains	any	declined	certificate	requests	for	this	CA.	If
you’re	an	administrator	on	the	certificate	server,	you	can	deny	requests	by
right-clicking	them	and	selecting	Deny.

NOTE  The	label	for	the	root	node	of	the	snap-in	is	set	to	the	name	of	the
CA.	In	the	example,	the	CA	name	is	Corporate	Root	CA.

Certificate	Templates Contains	a	set	of	certificate	templates	that	are
configured	for	different	intended	purposes.	These	templates	provide	basic
rules	for	the	various	types	of	certificates.	To	install	additional	certificate
templates,	right-click	Certificate	Templates,	select	New,	and	then	click
Certificate	Template	To	Issue.	(Certificate	Templates	are	available	only	with
enterprise	root	and	subordinate	CAs.)

Installing	Active	Directory	Certificate	Services

If	the	server	isn’t	running	IIS	and	you	want	to	be	able	to	retrieve	CRLs	to	request
certificates	or	to	check	on	pending	certificates	through	a	browser,	you	must	install
IIS	prior	to	installing	Active	Directory	Certificate	Services.	To	install	Active
Directory	Certificate	Services,	complete	the	following	steps:

1. Log	on	to	the	certificate	server	by	using	an	account	with	Administrator
privileges	or,	if	you’re	creating	an	enterprise	CA,	Enterprise	Administrator
privileges.

2. Start	Server	Manager	by	clicking	the	Server	Manager	icon	on	the	taskbar	or
by	clicking	the	Server	Manager	tile	on	the	Start	screen.

3. In	Server	Manager,	click	Manage	then	click	Add	Roles	And	Features.	This
starts	the	Add	Role	And	Features	Wizard.	If	the	Before	You	Begin	page
appears,	click	Next.

4. On	the	Select	Role	Services	page,	select	Active	Directory	Certificate
Services,	and	then	click	Next	twice.	Read	the	introductory	message,	and
then	click	Next.

5. The	Certificate	Authority	role	service	is	selected	by	default.	Select	these
additional	role	services	to	install	as	necessary:	Certificate	Authority	Web
Enrollment	and	Online	Certificate	Status	Protocol.

6. On	the	Confirm	Installations	Selections	page	you	can	view	a	summary	of	the
features	you	have	selected	to	be	installed.	When	you	have	confirmed	you
wish	to	install	these	features,	click	Install.	When	the	Add	Roles	And
Features	wizard	finishes	the	installation,	click	the	Configure	Active
Directory	Certificate	Services	On	The	Destination	Server	link.

7. If	you	have	installed	a	role	service	requiring	local	Administrator	or
Enterprise	Admin	credentials,	you	will	see	the	Specify	Credentials	To
Configure	Role	Services	page.	To	set	the	account	whose	credentials	you
will	use	to	set	up	the	role	services	you	have	installed,	click	Change.	In	the
Windows	Security	dialog	box,	provide	the	user	name	and	password	for	the
account	with	the	necessary	rights	and	click	Ok.	Then,	click	Next.

8. On	the	Select	Role	Services	To	Configure	page,	confirm	the	role	services
you	wish	to	install	by	clicking	the	related	box	for	the	role	service.	If	you
attempt	to	select	role	services	that	cannot	be	installed	simultaneously,	you
will	see	a	related	Error	dialog	box.	When	you	have	confirmed	the	role

services	you	wish	to	install,	click	Next.
9. On	the	Specify	Setup	Type	page,	select	the	setup	type	as	enterprise	or	stand-

alone,	and	then	click	Next.
10. On	the	Specify	CA	Type	page,	specify	the	CA	type	as	either	root	CA	or

subordinate	CA.
11. All	CAs	must	have	a	private	key	to	generate	and	issue	certificates.	On	the

Specify	The	Type	Of	The	Private	Key	page,	select	Create	A	New	Private
Key,	and	then	click	Next.

12. Use	the	settings	on	the	Specify	The	Crytpographic	Options	page	to	select	a
cryptographic	provider,	hash	algorithm,	and	bit	length	for	the	CA’s	private
key.	Ensure	that	your	selections	are	appropriate	for	the	CA’s	intended	use.	If
you	are	unsure,	accept	the	default	settings.	Click	Next	when	you	are	ready	to
continue.

13. On	the	Specify	The	Name	Of	The	CA	page,	type	the	common	name	for	the
CA,	such	as	Corporate	Root	CA.	As	necessary,	set	the	distinguished	name
suffix	for	the	CA	name,	and	then	click	Next.

14. On	the	Specify	The	Validity	Period	page,	set	the	CA	certificate’s	expiration
date.	Most	CA	certificates	are	valid	for	at	least	five	years.	Click	Next.

15. Specify	the	storage	location	for	the	configuration	database	and	log.	By
default,	the	certificate	database	and	log	are	stored	in	the
%SystemRoot%\System32\CertLog	folder.	Click	Next.

TIP  If	hundreds	or	thousands	of	users	use	your	CA,	you	might	want	the
database	and	log	files	to	be	stored	on	separate	drives.	By	placing	these	files
on	separate	drives,	you	can	improve	the	CA’s	performance	and
responsiveness.	In	all	cases	the	database	and	log	files	should	be	on	NTFS
volumes.	This	ensures	that	the	security	permissions	can	be	set	to	restrict
access	to	these	files	by	user	account.

16. Click	Configure	to	complete	the	process.	When	the	installation	completes,
click	Close.	If	you	selected	multiple	role	services	in	the	Add	Roles	and
Features	Wizard,	you	will	see	the	AD	CS	Configuration	dialog	box.	You	can
configure	the	additional	role	services	by	pressing	Yes.	If	you	installed
Certificate	Services	on	a	computer	running	IIS,	you	can	configure	these
services	for	Web	access	(as	described	in	the	section	“Accessing	Certificate
Services	in	a	Browser,”	immediately	following).

Accessing	Certificate	Services	in	a	Browser

When	you	install	Certificate	Services	on	a	computer	running	IIS,	the	default	(or
primary)	Web	site	is	updated	so	that	you	can	perform	key	certificate	tasks	through
a	Web	browser.	These	tasks	include:

Retrieving	CRLs
Requesting	certificates
Checking	on	pending	certificates

The	structures	that	make	Web-based	requests	possible	are	files	configured	for	use
in	the	two	following	virtual	directories:

CertSrv Contains	files	necessary	for	Web-based	access	to	Certificate
Services.	It	is	located	in	%SystemRoot%\System32\CertSrv	by	default.	This
directory	is	set	up	as	a	pooled	application	called	CertSrv.
CertEnroll Contains	files	necessary	for	controlling	Certificate	Services.	It
is	located	in	%SystemRoot%\System32\CertSrv\CertEnroll	by	default.

TIP  If	these	directories	aren’t	available	for	some	reason,	you	can	create
virtual	directories	that	map	aliases	to	their	physical	locations.	At	a
command	prompt,	type	certutil	–vroot.	The	command-line	utility	Certutil
creates	the	necessary	virtual	directories	for	you	and	maps	them	to	their
default	locations.

Once	you’ve	configured	Web-based	access	to	Certificate	Services,	you	can	access
these	services	by	typing	http://hostname/certsrv/,	where	hostname	is	the	Domain
Name	System	(DNS)	or	NetBIOS	name	of	the	host	server,	such	as
ca.microsoft.com	or	CASrvr.

Starting	and	Stopping	Certificate	Services

Active	Directory	Certificate	Services	runs	as	a	Windows	service	on	the
certificate	server.	You	can	stop	and	start	this	service	on	a	local	system	by
completing	the	following	steps:

1. On	the	Tools	menu	in	Server	Manager,	click	Certification	Authority	to	open
the	Certification	Authority	snap-in.

2. Right-click	the	root	node	for	the	CA,	and	then	select	All	Tasks.
3. Select	Stop	Service	to	stop	Certificate	Services.
4. Select	Start	Service	to	start	Certificate	Services.

You	can	stop	and	start	services	on	a	remote	system	by	completing	the	following
steps:

1. On	the	Tools	menu	in	Server	Manager,	click	Certification	Authority	to	open
the	Certification	Authority	snap-in.

2. Right-click	the	Certification	Authority	node,	and	then	on	the	shortcut	menu,
select	Retarget	Certification	Authority.	The	Certification	Authority	dialog
box	appears.

3. Select	Another	Computer,	type	the	name	of	the	computer	to	which	you	want
to	connect,	and	then	click	Finish.	You	can	also	type	the	server’s	Internet
Protocol	(IP)	address	or	fully	qualified	domain	name	(FQDN),	or	you	can
click	Browse	to	search	for	the	computer.

4. In	the	Certification	Authority	snap-in,	right-click	the	root	node	for	the	CA,
and	then	select	All	Tasks.

5. Select	Stop	Service	to	stop	Certificate	Services.
6. Select	Start	Service	to	start	Certificate	Services.

Backing	Up	and	Restoring	the	CA

If	your	organization	publishes	its	own	CA,	you	should	back	up	the	CA	information
routinely.	Backing	up	the	CA	information	ensures	that	you	can	recover	critical	CA
data,	including:

CA	private	key	and	certificate
CA	configuration	information
CA	log	and	pending	request	queue

You	can	perform	two	types	of	backups	through	the	Certification	Authority	snap-in:

Standard Creates	a	full	copy	of	certificate	database,	logs,	and	pending
request	queues.
Incremental Creates	a	partial	copy	of	certificate	database,	logs,	and
pending	request	queues.	This	copy	contains	only	the	changes	since	the	last
standard	backup.

In	a	very	large	CA	implementation,	you	can	perform	incremental	backups	of	the
database,	logs,	and	queues	by	selecting	Perform	Incremental	Backups.	To	use
incremental	backups,	you	must	do	the	following:

1. First	perform	a	standard	backup.
2. Perform	successive	incremental	backups	at	later	dates.

When	you	use	incremental	backups,	you	must	also	restore	incrementally.	To	do
this,	complete	the	following	steps:

1. Stop	Certificate	Services.
2. Restore	the	last	standard	backup.
3. Restore	each	incremental	backup	in	order.
4. Start	Certificate	Services.

Creating	CA	Backups

To	back	up	the	CA	information	on	your	certificate	server,	complete	the	following
steps:

1. Create	a	folder	that	Certificate	Services	can	use	to	store	the	backup

information.	This	directory	must	be	empty,	and	you	should	create	it	on	the
local	machine	where	Certificate	Services	is	installed.

2. Start	the	Certification	Authority	snap-in,	right-click	the	root	node	for	the
CA,	choose	All	Tasks,	and	then	select	Back	Up	CA.	This	starts	the
Certification	Authority	Backup	Wizard.

NOTE  	Certificate	Services	must	be	running	when	you	back	up	the	CA.	If
the	service	isn’t	running,	you’ll	see	a	prompt	asking	you	if	you	want	to	start
the	service.	Click	OK.

3. Click	Next,	and	then	select	the	items	you	want	to	back	up.	The	options	are:
Private	Key	And	CA	Certificate
Certificate	Database	And	Certificate	Database	Log

4. If	this	is	an	incremental	backup,	select	Perform	Incremental	Backup.
Incremental	backups	can	be	performed	only	when	backing	up	the	certificate
database	and	log.

5. In	the	Back	Up	To	This	Location	field,	type	the	file	path	to	the	backup
folder,	or	click	Browse	to	search	for	this	folder.	If	you	specify	a	folder	that
doesn’t	exist,	you’ll	be	given	the	option	of	creating	it.

6. Click	OK	or	Next.	Type	and	then	confirm	a	password	that	will	be	used	to
protect	the	private	key	and	CA	certificate	files.

7. Click	Next,	and	then	click	Finish.	The	wizard	creates	a	backup	of	the
selected	data.

Recovering	CA	Information

If	you	ever	need	to	recover	the	CA	information,	you	can	do	this	by	completing	the
following	steps:

1. The	Certificate	Services	can’t	be	running	when	you	restore	the	CA.	In	the
Certification	Authority	snap-in,	right-click	the	root	node	for	the	CA,	choose
All	Tasks,	and	then	select	Stop	Service.

2. Right-click	the	root	node	a	second	time,	choose	All	Tasks,	and	then	select
Restore	CA.	This	starts	the	Certification	Authority	Restore	Wizard.

3. Click	Next,	and	then	select	the	items	you	want	to	restore.	The	options	are:
Private	Key	And	CA	Certificate
Certificate	Database	And	Certificate	Database	Log

4. In	the	Restore	From	This	Location	field,	type	the	file	path	to	the	backup
folder,	or	click	Browse	to	search	for	this	folder.	You	should	always	restore
the	last	complete	backup	before	restoring	any	incremental	backups.

5. Click	Next.	Type	the	password	used	to	protect	the	CA	files,	and	then	click
Next	again.

6. Click	Finish.	The	wizard	restores	the	selected	data	and	starts	the	Certificate
Services	service.

Configuring	Certificate	Request	Processing

Unlike	early	versions	of	Certificate	Services,	the	version	shipping	with	IIS	is
configured	for	autoenrollment	by	default.	This	means	that	authorized	users	can
request	a	certificate,	and	the	CA	automatically	processes	the	certificate	request	so
that	the	user	can	immediately	install	the	certificate.

If	you	want	to	view	or	change	the	default	request	processing	policy,	follow	these
steps:

1. On	the	Tools	menu	in	Server	Manager,	click	Certification	Authority	to	open
the	Certification	Authority	snap-in.

2. Right-click	the	CA	node,	and	then	select	Properties.	The	Properties	dialog
box	appears.

3. On	the	Policy	Module	tab,	click	Properties.
4. If	you	want	to	process	requests	manually,	select	“Set	The	Certificate

Request	Status	To	Pending.	The	Administrator	Must	Explicitly	Issue	The
Certificate.”

5. If	you	want	the	CA	to	process	requests	automatically,	select	Follow	The
Settings	In	The	Certificate	Template,	If	Applicable.	Otherwise,
Automatically	Issue	The	Certificate.

6. Click	OK	twice.

Approving	and	Declining	Pending	Certificate	Requests

If	you’ve	configured	the	CA	so	that	certificates	must	be	manually	processed,
you’ll	find	that	pending	certificate	requests	are	displayed	in	the	Certification
Authority	snap-in’s	Pending	Requests	container.

You	can	approve	pending	requests	by	completing	the	following	steps:

1. On	theTools	menu	in	Server	Manager,	click	Certification	Authority	to	open
the	Certification	Authority	snap-in.

2. Select	the	Pending	Requests	container.	You	will	see	a	list	of	pending
requests	if	there	are	any.

3. Right-click	the	request	that	you	want	to	approve,	choose	All	Tasks,	and	then
select	Issue.

4. Certificate	Services	generates	a	certificate	based	on	the	request	and	places
this	certificate	in	the	Issued	Certificates	container.

5. Certificates	are	valid	for	one	year.	After	this	period	they	must	be	renewed.

You	can	decline	pending	certificate	requests	by	doing	the	following:

1. In	Administrative	Tools,	click	Certification	Authority	to	open	the
Certification	Authority	snap-in.

2. Select	the	Pending	Requests	container.	You	should	see	a	list	of	pending
requests.

3. Right-click	the	request	that	you	want	to	decline,	choose	All	Tasks,	and	then
select	Deny.

4. When	prompted	to	confirm	the	action,	select	Yes.

CAUTION  Denied	requests	are	moved	to	the	Failed	Requests	container
and	can’t	be	restored.	The	user	must	resubmit	a	new	request.

Generating	Certificates	Manually	in	the	Certification	Authority	Snap-
In

Once	you’ve	issued	a	certificate,	you	can	manually	create	the	certificate	file	that
you	need	to	install.	To	do	this,	complete	the	following	steps:

1. On	the	Tools	menu	in	Server	Manager,	click	Certification	Authority	to	open
the	Certification	Authority	snap-in.

2. Select	the	Issued	Certificates	container.	You	should	see	a	list	of	certificates
issued	by	this	root	CA,	if	any.

3. Right-click	the	certificate	that	you	want	to	generate,	and	then	select	Open.
The	Certificate	dialog	box	appears.

4. On	the	Details	tab,	select	Copy	To	File.	The	Certificate	Export	Wizard
opens.	Click	Next.

5. Select	the	Base-64	Encoded	X.509	(.CER)	export	file	format,	and	then	click
Next.

6. Specify	the	name	of	the	file	you	want	to	export.	Be	sure	to	use	.cer	as	the
file	extension.	Click	Browse	if	you	want	to	use	the	Save	As	dialog	box	to
set	the	file	location	and	name.

7. Click	Next,	and	then	click	Finish.	After	the	Certificate	Export	Wizard
confirms	that	the	certificate	was	successfully	exported,	click	OK.	You	can
now	install	the	certificate	file	as	described	in	the	“Processing	Pending
Requests	and	Installing	Site	Certificates”	section	of	Chapter	6.

Revoking	Certificates

Server	certificates	are	valid	for	one	year	and	can	be	revoked	if	necessary.
Typically,	you	revoke	a	certificate	when	there’s	a	change	in	the	site’s	status	or
when	the	customer	for	whom	you	issued	the	certificate	cancels	the	service
subscription.	To	revoke	a	certificate,	complete	the	following	steps:

1. On	the	Tools	menu	in	Server	Manager,	click	Certification	Authority	to	open
the	Certification	Authority	snap-in.

2. Select	the	Issued	Certificates	container.	You	should	see	a	list	of	issued
certificates.

3. Right-click	the	certificate	that	you	want	to	revoke,	choose	All	Tasks,	and
then	select	Revoke	Certificate.	The	Certificate	Revocation	dialog	box
appears.

4. In	the	Reason	Code	drop-down	list,	select	a	reason	for	the	revocation,	and
then	click	Yes.	The	CA	marks	the	certificate	as	revoked	and	moves	it	to	the
Revoked	Certificates	container.

By	default,	CAs	publish	CRLs	weekly	and	CRL	changes	daily.	You	can	change
this	setting	through	the	Revoked	Certificates	Properties	dialog	box	by	performing
the	following	steps:

1. On	theTools	menu	in	Server	Manager,	click	Certification	Authority	to	open
the	Certification	Authority	snap-in.

2. Right-click	the	Revoked	Certificates	container,	select	Properties,	and	then	in
the	CRL	Publication	Interval	fields,	set	a	new	interval	for	publishing	the
CRL	and	CRL	changes.	Then	click	OK.

Reviewing	and	Renewing	the	Root	CA	Certificate

The	root	CA	certificate	is	valid	for	the	period	that	was	specified	when	the
certificate	was	created.	To	view	the	expiration	date	or	to	review	the	certificate
properties,	complete	the	following	steps:

1. On	the	Tools	menu	in	Server	Manager,	click	Certification	Authority	to	open
the	Certification	Authority	snap-in.

2. Right-click	the	root	node	for	the	CA,	and	then	select	Properties.	This
displays	the	Root	CA	Properties	dialog	box.

3. On	the	General	tab,	click	View	Certificate.
4. Use	the	Certificate	dialog	box	to	review	the	root	CA	certificate’s	properties,

including	the	valid	from	and	to	dates.

The	root	CA	certificate	is	usually	valid	for	five	years.	If	you’re	approaching	the
end	of	the	five-year	period,	you	should	renew	the	certificate.	You	should	also
renew	the	root	CA	certificate	if	one	of	the	following	situations	exists:

The	signing	key	is	compromised.
A	program	requires	a	new	signing	key	to	be	used	with	a	new	certificate.
The	current	CRL	is	too	big	and	you	want	to	move	some	of	the	information	to	a
new	CRL.

When	you	renew	the	root	CA	certificate,	you	can	generate	new	public	and	private
keys.	Do	this	if	the	key	has	been	compromised	or	a	new	key	is	required.

To	renew	the	root	CA	certificate,	complete	the	following	steps:

1. Log	on	locally	to	the	CA	server.
2. Right-click	the	root	node	for	the	CA	again,	choose	All	Tasks,	and	then	select

Renew	CA	Certificate.
3. If	prompted	to	stop	Certificate	Services,	click	Yes.	Certificate	Services

can’t	be	running	when	you	renew	the	CA.	The	Renew	CA	Certificate	dialog
box	appears.

4. In	the	Renew	CA	Certificate	dialog	box,	select	Yes	if	you	want	to	generate	a
new	public	and	private	key	pair.	Otherwise,	select	No.

5. Click	OK.	Certificate	Services	is	restarted	automatically	and	a	new

certificate	is	issued.

Chapter	6
Managing	Certificates	and	SSL

Web	servers	and	clients	can	use	SSL	certificates	to	provide	proof	of	identity	prior
to	establishing	secure	connections.	Once	secure	connections	are	established,	web
servers	and	client	use	the	secure	channel	to	transfer	encrypted	information.
Generally,	certificates	used	by	IIS	and	browser	clients	conform	to	the	X.509
standard.

Creating	and	Installing	Certificates

You	have	two	options	for	creating	and	installing	certificates.	You	can	use	your
own	Certificate	Services	to	generate	your	certificates,	or	you	can	use	a	trusted
third-party	authority.	When	you	use	Certificate	Services,	you	manage	the
certificate	creation,	expiration,	and	revocation	process.	When	you	create
certificates	through	trusted	third-party	authorities,	you	let	the	trusted	authority
manage	the	certificate	creation,	expiration,	and	revocation	process.	Either	way,
the	basic	tasks	you	need	to	perform	to	create	and	install	a	certificate	are	as
follows:

1. Create	a	certificate	request.
2. Submit	the	request	to	the	authority	of	your	choice	or	to	your	own	root

authority.
3. When	you	receive	the	response	from	the	authority,	process	the	pending

request	and	install	the	certificate.
4. Ensure	that	SSL	is	enabled	and	that	secure	communications	are	configured

properly.

Creating	Certificate	Requests

Each	Web	site	hosted	on	your	Web	server	needs	a	separate	certificate	if	you	want
SSL	to	work	properly.	The	first	step	in	the	certificate	creation	process	is	to
generate	a	certificate	request.

You	can	generate	a	self-signed	certificate	request	by	following	these	steps:

1. In	IIS	Manager,	select	the	server	node,	and	then	double-click	the	Server
Certificates	feature.

2. On	the	Server	Certificates	page,	you’ll	see	a	list	of	certificates	that	the	Web
server	can	use.	In	the	Actions	pane,	click	Create	Self-Signed	Certificate.

3. In	the	Specify	Friendly	Name	dialog	box,	type	a	friendly	name	for	the
certificate,	such	as	Default	Web	Site,	and	then	click	OK	to	create	the	self-
signed	certificate.

You	can	generate	a	certificate	request	to	submit	to	CAs	by	completing	the
following	steps:

1. In	IIS	Manager,	select	the	server	node,	and	then	double-click	the	Server
Certificates	feature.

2. On	the	Server	Certificates	page,	you’ll	see	a	list	of	certificates	that	the	Web
server	can	use.	In	the	Actions	pane,	click	Create	Certificate	Request.

3. Set	the	following	properties:
Common	Name Sets	your	Web	site’s	common	name.	When	the	certificate	is
used	on	an	intranet	(or	internal	network),	the	common	name	may	be	one	word,
and	it	can	also	be	the	server’s	NetBIOS	name,	such	as	CorpIntranet.	When	the
certificate	will	be	used	on	the	Internet,	the	common	name	must	be	a	valid
DNS	name,	such	as	www.imaginedlands.com.
Organization Sets	your	company’s	legal	name,	such	as	Microsoft
Corporation.
Organizational	Unit Sets	the	division	in	your	company	responsible	for	the
certificate,	such	as	Technology	Department.

NOTE  Third-party	authorities	will	use	the	organization	name,	the	site’s
common	name,	and	the	geographical	information	you	supply	to	validate	your
request	for	a	certificate.	If	you	don’t	type	this	information	correctly,	you

won’t	be	issued	a	certificate.

City/Locality Type	the	city	or	locality	in	which	your	company	is	located.
State/Province Type	the	full	name	of	the	state	or	province	in	which	your
company	is	located.
Country/Region Select	the	country	or	region	for	your	company.

CAUTION  Don’t	use	abbreviations	when	typing	geographic	data.	Some
authorities	won’t	accept	abbreviated	geographic	information,	and	you’ll
have	to	resubmit	your	request.

4. Click	Next.
5. Use	the	options	on	the	Cryptographic	Service	Provider	Properties	page	to

select	a	cryptographic	provider,	hash	algorithm,	and	bit	length	for	the
certificate’s	private	key.	Ensure	that	your	selections	are	appropriate	for	the
certificate’s	intended	use.	If	you	are	unsure,	accept	the	default	settings.	Click
Next	when	you	are	ready	to	continue.

6. You	need	to	specify	the	file	name	and	path	for	the	certificate	request	file,
such	as	C:\certreq.txt.	Type	a	new	path,	or	click	the	selection	button	to
select	a	path	and	file	name	in	the	Specify	Save	As	File	Name	dialog	box.

7. Click	Finish	to	complete	the	request	generation	process.

REAL	WORLD The	common	name	is	typically	composed	of	Host	+

Domain	Name,	such	as	www.imaginedlands.com	or
products.imaginedlands.com.	Certificates	are	specific	to	the	common	name
that	they	have	been	issued	to	at	the	Host	level.	The	common	name	must	be
the	same	as	the	Web	address	you’ll	be	accessing	when	connecting	to	a
secure	site.	For	example,	a	certificate	for	the	domain	imaginedlands.com
will	receive	a	warning	if	accessing	a	site	named	www.imaginedlands.com
or	services.imaginedlands.com	because	www.imaginedlands.com	and
services.imaginedlands.com	are	different	from	imaginedlands.com.	You’d
need	to	create	a	certificate	for	the	correct	common	name.

Submitting	Certificate	Requests	to	Third-Party	Authorities

After	you	create	a	CSR,	you	can	submit	it	to	a	third-party	authority	such	as	
Verisign.	The	CSR	is	stored	as	American	Standard	Code	of	Information	
Interchange	(ASCII	text	in	the	file	you	specified	in	Step	6	in	the	“Creating	
Certificate	Requests”	section.	It	contains	your	site’s	public	key	and	your	
identification	information.	When	you	open	this	file,	you’ll	find	the	encrypted	
contents	of	the	request,	such	as:

--BEGIN	NEW	CERTIFICATE	REQUEST--
MIXCCDCCAnECAQAwczERMA8GA1UEAxMIZW5nc3ZyMDExEzARBgNVBAsTClRlY2hu	
b2xvZ3kxEzARBgNVBAoTCkRvbWFpbi5Db20xEjAQBgNVBAcTCVZhbmNvdXZlcjET	
MBEGA3UECBMKV2FzaGluZ3RvbjELMAkGA1UEBhMCVVMwgZ8wDQYJKoZIhvcNAQEB	
BQADgY0AMIGJAoGBALElbrvIZNRB+gvkdcf9b7tNns24hB2Jgp5BhKi4NXc/twR7
C+GuDnyTqRs+C2AnNHgb9oQkpivqQNKh2+N18bKU3PEZUzXH0pxxjhaiT8aMFJhi
3bFvD+gTCQrw5BWoV9/Ff5Ud3EF5TRQ2WJZ+JluQQewo/mXv5ZnbHsM+aLy3AgMB	
AAGgggFTMBoGCisGAQQBgjcNAgMxDBYKNS4wLjIxOTUuMjA1BgorBgEEAYI3AgEO	
MScwJTAOBgNVHQ8BAf8EBAMCBPAwEwYDVR0lBAwwCgYIKwYWWQUHAwEwgf0GCisG	
AQQBgjcNAgIxge4wgesCAQEeWgBNAGkAYwByAG8AcwBvAGYAdAAgAFIAUwBBACAA	
UwBDAGgAYQBuAG4AZQBsACAAQwByAHkAcAB0AG8AZwByAGEAcABoAGkAYwAgAFAA	
cgBvAHYAaQBkAGUAcgOBiQBfE24DPqBwFplR15/xZDY8Cugoxbyymtwq/tAPZ6dz	
Pr9Zy3MNnkKQbKcsbLR/4t9/tWJIMmrFhZonrx12qBfICoiKUXreSK89OILrLEto
1frm/dycoXHhStSsZdm25vszv827FKKk5bRW/vIIeBqfKnEPJHOnoiG6UScvgA8Q	
fgAAAAAVVAAAMA0GCSqGSIb3DQEBBQUAA4GBAFZc6K4S04BMUnR/8Ow3J/MS3TYi	
HAvFuxnjGOCefTq8Sakzvq+uazUO3waBqHxZ1f32qGr7karoD+fq8dX27nmh0zpp
RzlDXrxR35mMC/yP/fpLmLb5lsxOt1379PdS4trvWUFkfY93/CkUi+nrQt/uZHY3
N0SThxf73VkfbsE3
--END	NEW	CERTIFICATE	REQUEST--

Most	CAs	require	you	to	submit	the	certificate	request	as	part	of	a	formal	site	
registration	process.	In	this	registration	process	you’ll	be	asked	to	submit	the	
request	file	in	an	e-mail	message	or	through	an	online	form.	When	using	e-mail,	
you	simply	attach	the	request	file	to	the	message	and	send	it.	When	using	an	online	
form,	you	can	copy	the	entire	text	of	the	request—including	the	BEGIN	and	END	
statements—to	the	clipboard	and	paste	this	into	the	online	form.	You	can	use	
Microsoft	Notepad	to	do	this.	Or	you	might	be	able	to	browse	for	the	file	to	insert	
and	let	the	server	paste	the	data	into	the	form	for	you.

After	the	CA	reviews	your	certificate	request,	the	CA	either	approves	or	declines	
it.	If	the	CA	approves	the	request,	you’ll	receive	an	e-mail	message	with	the

signed	certificate	attached	or	a	notice	to	visit	a	location	where	you	can	retrieve	
the	signed	certificate.	The	certificate	is	an	ASCII	text	file	that	you	can	view	in	
Notepad,	and	it	can	be	decrypted	only	with	the	private	key	you	generated	
previously.	As	before,	the	contents	of	the	file	are	encrypted	and	include	BEGIN	
and	END	statements,	as	in	this	example:

--BEGIN	CERTIFICATE--
MXXCWjCCAgQCEDlpyIenknxBt43eUZ7JF9YwDQYJK	oZIhvcNAQEEBQAwgakxFjAU	
BgNERAoTDVZlcmlTaWduLCBJbmMxRzBFBgNVBAsTP	nd3dy52ZXJpc2lnbi5jb20v	
cmVwb3NpdG9yeS9UZXN0Q1BTIEluY29ycC4gQnkgU	mVmLiBMaWFiLiBMVEQuMUYw	
RAYDVQQLEz1G45IgVmVyaVNpZ24gYXV0aG9yaXplZ	CB0ZXN0aW5nIG9ubHkuIeev	
IGFzc3VyYW5jZXMgKEM345MxOTk3MB4XDTAwMTEwN	zAwMDAwMFoXDTAwMTEyMTIz	
NTk1OVowczELMAkGA1UEBhMCVVMxEzARBgNVBAgTC	ldhc2hpbmd0b24xEjAQBgNV	
BAcUCVZhbmNvdXZlcjETMBEGA1UEChQKRG9tYWluL	kNvbTETMBEGA1UECxQKVGVj	
aG5vbG9neTERMA8GA1UEAxQIZW5nc3ZyQWEwgZ8wD	QYJKoZIhvcNAQEBBQADgY0A	
MIGJAoGBALElbrvIZNRB+gvkdcf9b7tNns24hB2Jgp5BhKi4NXc/	twR7C+GuDnyT
qRs+C2AnNHgb9oQkpivqQNKh2+N18bKU3PEZUzXH0	prtyhaiT8aMFJhi3bFvD+gT
CQrw5BWoV9/Ff5Ud3EF5TRQ2WJZ+JluQQewo/	mXnTZnbHsM+aLy3AgMBAAEwDQYJ	
KoZIhvcNAQEEBQADQQCQIrhq5UmsPYzwzKVHIiLDD	nkYunbhUpSNaBfUSYdvlAU1
Ic/37OrdN/E1ZmOut0MbCWIXKr0Jk5q8F6Tlbqwe
--END	CERTIFICATE—

Save	the	certificate	file	to	a	location	that	you	can	access	when	using	IIS	Manager.	
You	should	use	.cer	as	the	file	extension.	Then	process	and	install	the	certificate	
as	described	in	the	“Processing	Pending	Requests	and	Installing	Site	Certificates”	
section	of	this	chapter.

Submitting	Certificate	Requests	to	Certificate	Services

After	you	create	a	CSR,	you	can	submit	it	to	Active	Directory	Certificate	Services
by	using	the	Web-based	interface.	To	do	this,	complete	the	following	steps:

1. The	CSR	is	stored	as	ASCII	text	in	the	file	you	specified	in	Step	6	in	the
“Creating	Certificate	Requests”	section.	Open	this	file	in	Notepad	and	copy
the	entire	text	of	the	request,	including	the	BEGIN	and	END	statements,	to
the	clipboard	(press	Ctrl+A	and	then	press	Ctrl+C).

2. You’re	now	ready	to	submit	the	request	to	Certificate	Services.	Start	your
Web	browser,	and	then	type	in	the	Certificate	Services	URL,	such	as
http://ca.imaginedlands.com/certsrv/.	You	should	see	the	main	page	for
Certificate	Services.	If	you	don’t,	you	might	not	have	configured	Web	access
correctly.

3. Select	Request	A	Certificate.
4. On	the	Request	A	Certificate	page,	select	Advanced	Certificate	Request.
5. Select	Submit	A	Certificate	Request	Using	A	Base-64-Encoded	…	Request.

This	option	tells	Certificate	Services	that	you’re	going	to	submit	a	request
that’s	Base64-encoded.

6. Paste	the	request	into	the	Saved	Request	field	(press	Ctrl+V).
7. Click	Submit.	If	you’ve	completed	this	process	correctly,	the	final	page

shows	you	that	your	request	has	been	received	and	is	pending	approval	by
the	CA.	If	there’s	a	problem	with	the	request,	you’ll	see	an	error	page	telling
you	to	contact	your	administrator	for	further	assistance.	On	the	error	page
you	can	click	Details	to	get	more	information	on	the	error.	You	might	need	to
re-create	the	certificate	request	or	go	back	to	ensure	that	you	haven’t
accidentally	inserted	additional	spacing	or	characters	in	the	request
submission.

8. If	you’re	also	the	CA,	you	can	use	the	Certification	Authority	snap-in	to
handle	the	request.	See	the	“Approving	and	Declining	Pending	Certificate
Requests”	section	of	Chapter	5.

Once	the	request	has	been	approved,	use	the	Web-based	interface	to	retrieve	the
signed	certificate.	To	do	this,	complete	the	following	steps:

1. Start	your	Web	browser,	and	then	type	in	the	Certificate	Services	URL,	such
as	http://ca.imaginedlands.com/certsrv/.

2. Click	View	The	Status	Of	A	Pending	Certificate	Request.
3. You	should	see	a	list	of	pending	requests.	Requests	are	listed	with	a

description	and	a	date/time	stamp.	Click	the	request	for	the	site	you	want	to
work	with.

NOTE  If	you	can’t	access	the	certificate	file	online,	you	can	have	the
certificate	administrator	generate	the	certificate	manually.	See	the
“Generating	Certificates	Manually	in	the	Certification	Authority	Snap-In”
section	of	Chapter	5.

4. If	a	certificate	has	been	issued	for	the	request,	you	should	see	a	page	stating
that	the	certificate	you	requested	was	issued	to	you.	On	this	page,	select
Base	64	Encoded,	and	then	click	Download	Certificate.

5. You	should	see	a	File	Download	dialog	box.	Click	Save.
6. Use	the	Save	As	dialog	box	to	select	a	save	location	for	the	certificate	file,

click	Save,	then	Close.	You	should	use	.cer	as	the	file	extension.	Then
process	and	install	the	certificate	as	described	in	the	section	“Processing
Pending	Requests	and	Installing	Site	Certificates,”	immediately	following.

TIP  The	default	save	location	is	the	Downloads	subfolder	in	your	user
data	folder.	I	recommend	placing	all	certificate	files	and	requests	in	a
common	folder	on	the	Web	server’s	local	file	system.	You	should	safeguard
this	folder	so	that	only	administrators	have	access.

Processing	Pending	Requests	and	Installing	Site	Certificates

Once	you	receive	the	certificate	back	from	the	authority,	you	can	install	it	by
completing	the	following	steps:

1. In	IIS	Manager,	select	the	server	node,	and	then	double-click	the	Server
Certificates	feature.

2. On	the	Server	Certificates	page,	you’ll	see	a	list	of	certificates	that	the	Web
server	can	use.	In	the	Actions	pane,	click	Complete	Certificate	Request.

3. Type	the	path	and	file	name	to	the	certificate	file	returned	by	the	authority,	or
click	the	selection	button	to	search	for	the	file.

4. Type	a	friendly	name	for	the	certificate,	such	as	Default	Web	Site.
5. Click	OK.	Check	the	SSL	configuration,	and	manage	the	certificate	as

necessary.

Working	with	SSL

Installing	a	site	certificate	automatically	enables	SSL	so	that	it	can	be	used,	but
you	might	need	to	change	the	default	settings.	You’ll	need	to	configure	and
troubleshoot	SSL	as	necessary.

Configuring	SSL	Ports

Once	you	install	a	certificate	on	a	Web	site,	you	can	use	a	site’s	bindings	to
change	the	SSL	port	the	site	uses.	To	add	a	binding	for	SSL,	follow	these	steps:

1. In	IIS	Manager,	navigate	to	the	Sites	node	by	double-clicking	the	icon	for	the
computer	you	want	to	work	with,	and	then	double-clicking	Sites.

2. In	the	left	pane,	select	the	node	for	the	site	you	want	to	work	with.
3. In	the	Actions	pane,	click	Bindings.	In	the	Site	Bindings	dialog	box,	you’ll

see	a	list	of	the	site’s	current	bindings.
4. Click	Add.	In	the	Add	Site	Binding	dialog	box,	select	HTTPS	as	the	Type.
5. Port	443	is	used	for	SSL	by	default.	As	necessary,	change	the	port	value	in

the	appropriate	text	box.
6. On	the	SSL	Certificate	list,	select	the	SSL	certificate	the	site	should	use.

Click	OK,	and	then	click	Close.

Chapter	6,	“Configuring	Web	Sites	and	Directories,”	in	Web	Server
Administration:	The	Personal	Trainer	provides	a	more	detailed	discussion	about
site	bindings.	A	site	can	have	multiple	SSL	identities	(meaning	that	the	site	can
answer	on	different	SSL	ports).	The	SSL	port	configured	in	the	Web	Site	tab	is	the
one	the	site	responds	to	by	default.	All	other	SSL	ports	must	be	specified	in	the
browser	request.	For	example,	if	you	configure	SSL	for	ports	443,	444,	and	445,	a
request	for	https://yoursite/	is	handled	by	port	443	automatically,	but	you	must
specify	the	other	ports	to	use	them,	such	as	https://yoursite:445/.

Adding	the	CA	Certificate	to	the	Client	Browser’s	Root	Store

Most	root	CA	certificates	issued	by	third-party	CAs	are	configured	as	trusted	CAs
in	Web	browsers.	However,	if	you’re	acting	as	your	own	CA	or	are	using	a	self-
signed	certificate,	client	browsers	won’t	recognize	and	trust	your	certificate.	To
get	browsers	to	trust	the	certificate,	the	user	must	install	the	certificate	in	the
browser’s	authorities	store.	The	exact	procedure	to	use	depends	on	the	browser
type	and	version.

Confirming	that	SSL	Is	Correctly	Enabled

Secure	connections	can	be	established	only	when	the	browser	connects	to	the
server	by	using	a	secure	URL	beginning	with	https://.	Browsers	display	a	warning
if	any	embedded	content	(such	as	images)	on	a	secure	Web	page	are	retrieved
using	an	insecure	(http://)	connection.	This	warning	tells	users	that	some	of	the
content	on	the	page	is	insecure	and	asks	them	if	they	want	to	continue.

Once	you’ve	enabled	SSL	on	your	server,	you	should	confirm	that	SSL	is	working
and	that	the	encryption	level	is	set	properly.	The	exact	procedure	to	use	depends
on	the	browser	type	and	version.

Resolving	SSL	Problems

If	SSL	isn’t	working,	ensure	that	you’ve	installed	the	server	certificate	on	the
correct	Web	site	and	that	you’ve	enabled	SSL	on	the	site.	These	steps	should
resolve	a	server-based	SSL	problem.

If	the	encryption	level	isn’t	what	you	expected,	you	should	check	to	ensure	that	the
browser	supports	the	encryption	level	you’re	using.	If	a	browser	supports	256-bit
encryption	and	the	encryption	level	in	use	according	to	the	browser	is	128-bit,	the
problem	is	the	server	certificate.	The	server	certificate	must	be	upgraded	to	256-
bit	encryption.

Ignoring,	Accepting,	and	Requiring	Client	Certificates

Client	certificates	allow	users	to	authenticate	themselves	through	their	Web
browser.	You	might	want	to	use	client	certificates	if	you	have	a	secure	external
Web	site,	such	as	an	extranet.	If	a	Web	site	accepts	or	requires	client	certificates,
you	can	configure	client	certificate	mappings	that	permit	access	control	to
resources	based	on	client	certificates.	A	client	certificate	mapping	can	be	mapped
to	a	specific	Windows	account	using	a	one-to-one	mapping,	or	it	can	be	mapped
based	on	rules	you	specify.

By	default,	IIS	doesn’t	accept	or	require	client	certificates.	You	can	change	this
behavior.	Keep	in	mind	that	accepting	client	certificates	isn’t	the	same	as
requiring	client	certificates.	When	a	site	requires	client	certificates,	the	site	is
secured	for	access	using	SSL	only	and	can’t	be	accessed	using	standard	HTTP.
When	a	site	accepts	client	certificates	rather	than	requiring	them,	the	site	can	use
either	HTTP	or	Hypertext	Transfer	Protocol	Secure	(HTTPS)	for	communications.

To	configure	client	certificate	usage,	follow	these	steps:

1. In	IIS	Manager,	select	the	Web	site	you	want	to	manage,	and	then	double-
click	the	SSL	Settings	feature.

2. If	you	want	to	require	SSL	(and	preclude	the	use	of	insecure
communications),	select	Require	SSL.	Optionally,	you	can	also	select
Require	128-Bit	SSL	if	your	server	has	a	128-bit	encryption	installed	and
enabled.

3. Under	Client	Certificates,	select	the	Ignore,	Accept,	or	Require	option	as
necessary,	and	then	click	Apply	to	save	your	settings.

NOTE  You	can	require	client	certificates	only	when	secure	SSL
communications	are	also	required.	Because	of	this,	you	must	select	the
Require	SSL	check	box	when	you	want	to	require	client	certificates.	If	you
want	to	map	client	certificates	to	Windows	user	accounts,	enable	Active
Directory	Client	Certificate	Authentication	at	the	server	level.

Requiring	SSL	for	All	Communications

In	some	cases	you’ll	want	to	create	sites	that	can	be	accessed	using	only	secure
communications.	You	can	do	this	by	requiring	SSL	and	prohibiting	the	use	of
insecure	communications.	To	require	SSL	for	communications	with	a	Web	site,
follow	these	steps:

1. In	IIS	Manager,	select	the	Web	site	you	want	to	manage,	and	then	double-
click	the	SSL	Settings	feature.

2. If	you	want	to	require	SSL	(and	preclude	the	use	of	insecure
communications),	select	Require	SSL.	Optionally,	you	can	also	select
Require	128-Bit	if	your	server	has	a	128-bit	encryption	installed	and
enabled.	Click	Apply	to	save	your	settings.

Chapter	7
Performance	Tuning,	Monitoring,	and	Tracing

Monitoring,	performance	tuning,	and	tracing	are	essential	parts	of	Web
administration.	You	monitor	servers	to	ensure	that	they’re	running	smoothly	and	to
troubleshoot	problems	as	they	occur.	You	tune	the	performance	of	servers	to
achieve	optimal	performance	based	on	the	current	system	resources	and	traffic
load.	When	you	have	problems	that	cannot	be	resolved	by	performance	tuning	or
diagnosed	through	standard	monitoring,	you	can	use	tracing	to	get	detailed
diagnostic	information	about	failed	requests	that	allows	you	to	track	a	request
from	its	start,	through	individual	filter	and	module	notifications,	to	its	end.	With
the	addition	of	performance	statistics,	authentication	and	authorization	details,	and
internal	tracing	of	Microsoft	ASP.NET	pages,	failed	request	tracing	is	the
definitive	power	tool	for	determining	the	exact	cause	of	request	failure	whether
you	are	developing	or	deploying	new	applications,	Web	pages,	or	Web	sites.

Monitoring	IIS	Performance	and	Activity

Windows	Server	includes	several	tools	that	you	can	use	to	monitor	Internet
Information	Services	(IIS).	The	key	tools	are	the	Performance	Monitor,	Reliability
Monitor,	Microsoft	Windows	event	logs,	and	the	IIS	access	logs.	You’ll	often	use
the	results	of	your	monitoring	to	optimize	IIS.	Monitoring	IIS	isn’t	something	you
should	do	haphazardly.	You	need	to	have	a	clear	plan—a	set	of	goals	that	you
hope	to	achieve.	Let’s	look	at	some	reasons	that	you	might	want	to	monitor	IIS	and
the	tools	you	can	use	to	do	this.

Why	Monitor	IIS?

Troubleshooting	performance	problems	is	a	key	reason	for	monitoring.	For
example,	users	might	be	having	problems	connecting	to	the	server,	and	you	might
want	to	monitor	the	server	to	troubleshoot	these	problems.	Here,	your	goals	would
be	to	track	down	the	problem	by	using	the	available	monitoring	resources	and	then
to	solve	it.

Another	common	reason	for	wanting	to	monitor	IIS	is	to	use	the	results	to	improve
server	performance.	Improving	server	performance	can	reduce	the	need	for	costly
additional	servers	or	additional	hardware	components,	such	as	CPUs	and	memory.
This	allows	you	to	squeeze	additional	processing	power	out	of	the	server	and
budget	for	when	you	really	must	purchase	new	servers	and	components.

To	achieve	optimal	performance,	you	must	identify	performance	bottlenecks,
maximize	throughput,	and	minimize	the	time	it	takes	for	Web	applications	to
process	user	requests.	You	achieve	this	by:

Monitoring	memory	and	CPU	usage	and	taking	appropriate	steps	to	reduce	the
load	on	the	server,	as	necessary.	Other	processes	running	on	the	server	might
be	using	memory	and	CPU	resources	needed	by	IIS.	Resolve	this	issue	by
stopping	nonessential	services	and	moving	support	applications	to	a	different
server.
Resolving	hardware	issues	that	might	be	causing	problems.	If	slow	disk
drives	are	delaying	file	reads,	work	on	improving	disk	input/output	(I/O).	If
the	network	cards	are	running	at	full	capacity,	install	additional	network
cards	for	performing	activities	such	as	backups	or	load	balancing.
Optimizing	Web	pages	and	applications	running	on	IIS.	You	should	test	Web
pages	and	IIS	applications	to	ensure	that	the	source	code	performs	as
expected.	Eliminate	unnecessary	procedures	and	optimize	inefficient
processes.

Unfortunately,	there	are	often	tradeoffs	to	be	made	when	it	comes	to	resource
usage.	For	example,	as	the	number	of	users	accessing	IIS	grows,	you	might	not	be
able	to	reduce	the	network	traffic	load,	but	you	might	be	able	to	improve	server
performance	by	optimizing	Web	pages	and	IIS	applications.

TIP  Don’t	overlook	the	value	of	IIS	failed	request	tracing	in	your

optimization	efforts	for	dynamic	pages.	In	a	failed	request	trace,	the
Performance	View	shows	the	exact	duration	of	each	step	in	the	request
handling	process,	and	other	views	can	also	provide	important	clues	about
processing	delays.

Getting	Ready	to	Monitor

Before	you	start	monitoring	IIS,	you	should	establish	baseline	performance
metrics	for	your	server.	To	do	this,	measure	server	performance	at	various	times
and	under	different	load	conditions.	You	can	then	compare	the	baseline
performance	with	subsequent	performance	to	determine	how	IIS	is	performing.
Performance	metrics	that	are	well	above	the	baseline	measurements	might	indicate
areas	where	the	server	needs	to	be	optimized	or	reconfigured.

After	you	establish	the	baseline	metrics,	you	should	formulate	a	monitoring	plan.
A	comprehensive	monitoring	plan	involves	the	following	steps:

1. Determine	which	server	resources	should	be	monitored	to	help	you
accomplish	your	goal.

2. Set	filters	to	reduce	the	amount	of	information	collected.
3. Configure	performance	counters	to	measure	the	resource	usage.
4. Log	the	usage	data	so	that	it	can	be	analyzed.
5. Analyze	the	usage	data	and	replay	the	data	as	necessary	to	find	a	solution.

These	procedures	are	examined	later	in	this	chapter	in	the	“Monitoring	IIS
Performance	and	Reliability”	section.	Although	in	most	cases	you	should	develop
a	monitoring	plan,	there	are	times	when	you	might	not	want	to	go	through	all	these
steps	to	monitor	IIS.	In	this	case,	use	the	steps	that	make	sense	for	your	situation.

The	primary	tools	you’ll	use	to	monitor	IIS	are:

Windows	Performance	Monitor Configure	counters	to	watch	resource
usage	over	time.	Use	the	usage	information	to	gauge	the	performance	of	IIS
and	determine	areas	that	can	be	optimized.
Windows	Reliability	Monitor Tracks	changes	to	the	system	and	compares
them	to	changes	in	system	stability,	thus	giving	you	a	graphical	representation
of	the	relationship	between	changes	in	the	system	configuration	and	changes
in	system	stability.
IIS	Access	logs Use	information	in	the	access	logs	to	find	problems	with
pages,	applications,	and	IIS.	Entries	logged	with	a	status	code	beginning	with
a	4	or	5	indicate	a	potential	problem.	Access	logs	can	be	written	in	several
different	formats,	including	IIS	log	file	format,	National	Center	for
Supercomputing	Applications	(NCSA)	Common	Log	File	Format,	and	World

Wide	Web	Consortium	(W3C)	Extended	Log	File	Format.
Windows	Event	logs Use	information	in	the	event	logs	to	troubleshoot
system-wide	problems,	including	those	from	the	operating	system,	IIS,	and
other	configured	applications.	The	primary	logs	you’ll	want	to	work	with	are
the	System,	Security,	and	Application	event	logs.

Detecting	and	Resolving	IIS	Errors

IIS	records	errors	in	three	locations:	the	IIS	access	logs,	the	Windows	event	logs,
and	the	failed	request	trace	logs.	In	the	access	logs,	you’ll	find	information	related
to	missing	resources,	failed	authentication,	and	internal	server	errors.	In	the	event
logs,	you’ll	find	IIS	errors,	failed	authentication,	IIS	application	errors,	and	errors
related	to	other	applications	running	on	the	server.	In	the	failed	request	trace	logs,
you’ll	find	detailed	diagnostic	traces	of	specific	types	of	failed	requests.

Examining	the	Access	Logs

Access	logs	are	created	when	you	enable	logging	as	discussed	in	Chapter	9	of
Web	Server	Administration:	The	Personal	Trainer.	Every	time	someone	requests
a	file	from	a	site,	an	entry	goes	into	the	access	log,	making	the	access	log	a
running	history	of	resource	requests.	Because	each	entry	has	a	status	code,	you	can
examine	entries	to	determine	the	success	or	failure	of	a	request.	Failed	requests
have	a	status	code	beginning	with	a	4	or	5.

The	most	common	error	you’ll	see	is	a	404	error,	which	indicates	that	a	resource
wasn’t	found	at	the	expected	location.	You	can	correct	this	problem	by:

Placing	the	file	in	the	expected	location.
Renaming	the	file	if	the	current	name	is	different	than	expected.
Modifying	the	linking	file	to	reflect	the	file’s	correct	name	and	location.

If	you	want	to	find	the	access	log	for	a	particular	site,	select	the	node	for	the	
server	you	want	to	manage	in	IIS	Manager.	If	the	server	you	want	to	use	isn’t	
listed,	connect	to	it.	In	the	main	pane,	the	Logging	feature	is	listed	under	IIS	when	
you	group	by	area.	Double-click	Logging	to	open	this	feature.	You	should	now	see	
the	current	top-level	logging	configuration.

The	Directory	field	shows	the	base	directory	for	this	site’s	access	logs.	The	
default	base	directory	is	%SystemDrive%\Inetpub\Logs\LogFiles.	You’ll	find	the	
site’s	logs	in	a	subdirectory	of	the	base	directory.	Typically,	subdirectories	for	
sites	are	named	W3SVCN	where	N	is	the	index	number	of	the	service	or	a	random	
tracking	value.	An	example	of	such	a	subdirectory	name	is	W3CSVC1.

The	current	log	is	the	file	in	this	subdirectory	with	the	most	recent	date	and	time	
stamp.	All	other	logs	are	archive	files	that	could	be	moved	to	a	history	directory.

Now	that	you	know	where	the	log	files	are	located	for	the	site,	you	can	search	for	
errors	in	the	log	file.	Because	logs	are	stored	as	either	American	Standard	Code	
of	Information	Interchange	(ASCII	text	or	Unicode	Transformation	Format	8
(UTF-8,	one	way	to	do	this	would	be	to	open	a	log	in	Microsoft	Notepad	or	
another	text	editor	and	search	for	error	codes,	such	as	404.	Another	way	to	search	
for	errors	would	be	to	use	the	FIND	command	from	a	command-prompt	window	
to	search	the	log	files.	At	an	elevated	command	prompt,	you	could	search	for	404	
errors	in	any	log	file	within	the	current	directory	by	using	the	following	command:

find	"404"	*

Once	you	identify	missing	files,	you	can	use	any	of	the	previously	recommended
techniques	to	resolve	the	problem.

NOTE  I	use	the	term	elevated	command	prompt	to	refer	to	a	command
prompt	being	run	with	administrator	credentials.	To	run	a	command	prompt
as	an	administrator,	right-click	the	Windows	logo,	then	click	Command
Prompt	(Admin).	When	prompted,	provide	consent	for	elevation	by	clicking
Continue	or	providing	the	appropriate	administrator	credentials.	Then	click
OK.

Examining	the	Windows	Event	Logs

Windows	event	logs	provide	historical	information	that	can	help	you	track	down
problems	with	services,	processes,	and	applications.	The	Windows	Event	Log
service	controls	the	events	that	are	tracked.	When	this	service	is	started,	user
actions	and	resource	usage	events	can	be	tracked	through	the	event	logs.	Two
general	types	of	log	files	are	used:

Windows	logs Logs	that	the	operating	system	uses	to	record	general	system
events	related	to	applications,	security,	setup,	and	system	components
Application	and	service	logs Logs	that	specific	applications	and	services
use	to	record	application-specific	or	service-specific	events

You	access	the	Windows	event	logs	by	completing	the	following	steps:

1. On	the	Tools	menu	in	Server	Manager,	click	Event	Viewer.	This	starts	Event
Viewer.

2. Event	Viewer	displays	logs	for	the	local	computer	by	default.	If	you	want	to
view	logs	on	a	remote	computer,	right-click	Event	Viewer	in	the	console
tree	(left	pane),	and	then	select	Connect	To	Another	Computer.	In	the	Select
Computer	dialog	box,	type	the	name	of	the	computer	you	want	to	access,	and
then	click	OK.

TIP  You	can	connect	to	another	server	also	by	using	alternate	credentials.
To	do	this,	select	the	Connect	As	Another	User	check	box,	and	then	click	Set
User.	After	you	select	or	type	the	account	name	to	use	in	the	form
DOMAIN\UserName,	such	as	IMAGINEDL\WilliamS,	type	the	account
password,	and	then	click	OK.

3. You	can	now	work	with	the	server’s	event	logs	in	the	following	ways:
To	view	all	errors	and	warnings	for	all	logs,	expand	Custom	Views,	and	then
select	Administrative	Events.	In	the	main	pane	you	should	now	see	a	list	of
all	warning	and	error	events	for	the	server.
To	view	all	errors	and	warnings	for	a	specific	server	role,	expand	Custom
Views,	expand	ServerRoles,	and	then	select	the	role	to	view.	In	the	main	pane
you	should	now	see	a	list	of	all	warning	and	error	events	for	the	selected
role.
To	view	events	in	a	specific	log,	expand	the	Windows	Logs	node,	the

Applications	And	Services	Logs	node,	or	both	nodes.	Select	the	log	you	want
to	view,	such	as	Application	or	System.

4. Use	the	information	in	the	Source	column	to	determine	which	service	or
process	logged	a	particular	event.

Entries	in	the	main	pane	of	Event	Viewer	provide	a	quick	overview	of	when,
where,	and	how	an	event	occurred.	To	obtain	detailed	information	on	an	event,
review	the	details	provided	on	the	General	tab	in	the	lower	portion	of	the	main
window.	The	event	level	or	keyword	precedes	the	date	and	time	of	the	event.
Event	levels	include:

Information An	informational	event,	which	is	generally	related	to	a
successful	action.
Audit	Success An	event	related	to	the	successful	execution	of	an	action.
Audit	Failure An	event	related	to	the	failed	execution	of	an	action.
Warning A	warning.	Details	for	warnings	are	often	useful	in	preventing
future	system	problems.
Error An	error,	such	as	the	failure	of	a	service	to	start.

NOTE Warnings	and	errors	are	the	two	key	types	of	events	that	you’ll
want	to	examine	closely.	Whenever	these	types	of	events	occur	and	you’re
unsure	of	the	cause,	review	the	detailed	event	description.

In	addition	to	level,	date,	and	time	logged,	the	summary	and	detailed	event	entries
provide	the	following	information:

Source The	application,	service,	or	component	that	logged	the	event
Event	ID Generally	a	numeric	identifier	for	the	specific	event,	which	could
be	helpful	when	searching	knowledge	bases
Task	Category The	category	of	the	event,	which	is	almost	always	set	to
None	but	is	sometimes	used	to	further	describe	the	related	action,	such	as	a
process	or	a	service
User The	user	account	that	was	logged	on	when	the	event	occurred,	if
applicable
Computer The	name	of	the	computer	on	which	the	event	occurred
Description In	the	detailed	entries,	a	text	description	of	the	event
Data In	the	detailed	entries,	any	data	or	error	code	output	by	the	event

The	sources	you’ll	want	to	look	for	include	those	summarized	in	Table	7-1.

TABLE	7-1	Key	Event	Sources	for	Tracking	IIS	Issues
.NET	Runtime Microsoft	.NET	Framework	service
.NET	Runtime
Optimization	Service

Microsoft	.NET	Framework	optimization	processes

Active	Server	Pages
(ASP)

Applications	and	ASP	engines

ASP.NET ASP.NET	State	Service	and	other	ASP.NET	processes
CertificateServicesClient Authorization	and	authentication	through	the	Certificate

Services	client
CertificationAuthority Certificate	Authorities	(CAs)
Hostable	Web	Core Web	Management	Service
IISADMIN IIS	Admin	Service
IIS-IISManager Management	and	configuration	processes	performed	in

IIS	Manager
IISInfoCtrs IIS	information	counters
IIS-W3SVC-
PerfCounters

World	Wide	Web	Service	performance	counters

IIS-W3SVC-WP World	Wide	Web	Service	worker	processes
MSDTC Microsoft	Distributed	Transaction	Coordinator	service
MSDTC	Client Client	processes	when	using	MS	DTC

If	you	want	to	see	a	particular	type	of	event,	you	can	filter	the	log	by	completing
the	following	steps:

1. In	Event	Viewer,	select	the	log	you	want	to	work	with.
2. In	the	Actions	pane	or	on	the	Action	menu,	click	Filter	Current	Log.	This

opens	the	dialog	box	shown	in	Figure	7-2.
3. From	the	Logged	drop-down	list,	select	the	included	time	frame	for	logged

events.	You	can	choose	to	include	events	from	the	Last	Hour,	Last	12	Hours,
Last	24	Hours,	Last	7	Days,	Last	30	Days	or	a	Custom	Range.

4. Select	the	desired	Event	Level	check	boxes	to	specify	the	level	of	events	to
include.	Select	Verbose	to	get	additional	detail.

5. From	the	Event	Sources	drop-down	list,	select	the	event	sources	to	include,
such	as	.NET	Runtime	and	Active	Server	Pages,	and	then	click	OK.

6. You	should	now	see	a	filtered	list	of	events.	Review	these	events	carefully
and	take	steps	to	correct	any	problems	that	exist.	To	clear	the	filter	and	see
all	events	for	the	log,	in	the	Actions	pane,	click	Clear	Filter.

Examining	the	Trace	Logs

Trace	logs	allow	you	to	track	a	failed	request	from	its	start,	through	internal	IIS	
notifications	and	authentication	requests,	to	its	end.	Because	tracing	failed	
requests	can	degrade	a	server’s	performance,	you	should	enable	failed	request	
tracing	only	when	you	need	to	perform	detailed	diagnostics	for	troubleshooting.	
Once	you’ve	diagnosed	an	issue,	you	should	then	disable	failed	request	tracing.

Tracing	Failed	Requests

Failed	request	tracing	is	designed	to	help	administrators	and	developers	more	
easily	identify	and	track	failed	requests.	In	previous	versions	of	IIS,	you	could	
check	for	certain	HTTP	error	codes	in	the	IIS	logs	to	identify	failed	requests,	but	
you	could	not	easily	get	detailed	trace	information	that	would	help	resolve	related	
issues.	With	IIS,	request	traces	can	be	logged	automatically	when	an	error	code	is	
generated	or	when	the	time	taken	for	a	request	exceeds	a	specified	duration.	For	
general	tracing	for	debugging	or	other	purposes,	you	can	also	configure	general	
tracing	on	a	per-URL	basis.

To	perform	traces,	the	HTTP	Tracing	role	service	must	be	installed	and	enabled	
on	the	IIS	server.	Although	you	can	configure	the	types	of	failed	requests	to	trace	
globally	for	all	Web	sites	and	applications	on	a	server,	you	enable	and	configure	
failed	request	tracing	at	the	site	level.	Unlike	other	types	of	logging,	each	failed	
request	is	stored	in	a	separate	file	in	the	logging	directory.

Because	trace	files	are	named	sequentially,	starting	with	FR000001.xml,	the	file	
for	the	most	recent	failed	request	is	the	one	with	the	highest	numeric	suffix	and	the	
most	recent	date	and	time	stamp.	Also	in	the	trace	directory	is	an	XSL	style	sheet	
(FREB.xsl	that	specifies	the	formatting	for	trace	files	when	displayed	in	a	Web	
browser,	such	as	Internet	Explorer.

You	control	the	way	tracing	works	by	instituting	Failed	Request	Tracing	Rules.	In	
IIS	Manager,	you	can	view	the	currently	configured	trace	rules	for	a	server,	site,	
virtual	directory,	or	application	by	selecting	the	node	for	the	level	you	want	to	
manage	and	then	in	the	main	pane,	double-clicking	Failed	Request	Tracing	Rules.	
When	you	are	working	with	failed	request	tracing	rules,	rules	listed	as	Local	are	
created	at	the	level	you	selected.	Rules	listed	as	Inherited	are	created	at	a	higher	
level.

IIS	traces	a	request	whenever	the	trace	rule	criteria	are	reached.	With	each	trace
rule,	you	must	specify	precisely	the	types	of	failures	to	track	according	to	the
following	criteria:

Path The	URL	path	to	trace,	which	can	contain	one	wildcard	at	most	and
must	be	within	the	context	of	the	level	at	which	the	definition	is	enabled.	For
example,	you	could	use	the	path	*.aspx	to	trace	failed	requests	for	ASP.NET
pages,	or	you	could	use	the	path	page*	to	trace	failed	requests	for	any	type	of
document	whose	name	begins	with	page,	such	as	page1.asp,	paged.aspx,	or
pages.htm.
Condition The	conditions	under	which	a	request	should	be	traced,	including
event	severity	(Error,	Critical	Error,	or	Warning),	HTTP	status	code,	and
Time	Taken.	For	general	tracing,	you	can	also	trace	information	and	other
non-error	events.
Trace	Provider The	functional	area	for	tracing	according	to	the	provider
that	traces	a	request,	including	ASP,	ASP.NET,	ISAPI	extension,	and	WWW
server.

Failed	requests	can	be	traced	through	one	or	more	of	the	following	providers:

ASP Traces	the	failed	request	through	Active	Server	Pages
(%Windir%\System32\Inetsrv\Asp.dll).	Use	this	provider	when	you	want	to
trace	the	start	and	completion	of	ASP	requests.
ASP.NET Traces	the	failed	request	through	ASP.NET

(%SystemRoot%\Microsoft.NET\Framework\v4.0.39319\Aspnet_isapi.dll	or
%SystemRoot%\Microsoft.NET\Framework\v4.0.39319\Webengine.dll).	Use
this	provider	when	you	want	to	see	transitions	into	and	out	of	managed	code.
This	includes	requests	for	.aspx	pages	and	any	other	request	processed
through	managed	modules,	such	as	forms-based	authentication	for	static
content.
ISAPI	Extension Traces	the	failed	request	through	ISAPI	extension	for
ASP.NET	(%SystemRoot%\Microsoft.NET\Framework
\v4.0.39319\Aspnet_filter.dll).	Use	this	provider	when	you	want	to	trace	the
transition	of	a	request	into	and	out	of	an	ISAPI	extension	process.
WWW	Server Traces	the	failed	request	through	the	IIS	server	core.	Use
this	provider	when	you	want	to	trace	requests	through	IIS	worker	processes.

When	you	specify	a	provider	to	use,	you	can	set	the	tracking	verbosity	as:

General Trace	general	information	about	a	request.
Critical	Errors Trace	critical	errors	related	to	a	request.
Errors Trace	standard	errors	related	to	a	request.
Warnings Trace	warnings	related	to	a	request.
Information Trace	information	events	related	to	a	request.
Verbose Trace	all	available	information	and	errors	related	to	a	request.

By	using	ASP.NET,	you	can	specify	the	area	within	managed	modules	to	trace	as
any	combination	of	the	following:

Infrastructure Traces	the	failed	request	through	ASP.NET	infrastructure.
Use	when	you	want	to	trace	events	that	are	related	primarily	to	entering	and
leaving	various	parts	of	the	ASP.NET	infrastructure.
Module Traces	the	failed	request	through	HTTP	pipeline-related	modules,
managed	modules,	or	both.	Use	when	you	want	to	trace	events	that	are	logged
when	a	request	enters	and	leaves	HTTP	pipeline	and/or	managed	modules.
Page Traces	page	load,	trace	write,	and	trace	warn	events	for	failed
requests.	Use	when	you	want	to	generate	trace	events	that	correspond	to
specific	ASP.NET	page–related	events.
AppServices Traces	the	failed	request	through	application	services.	Use
when	you	want	to	trace	events	logged	as	part	of	the	application	services
functionality.

By	using	WWW	Server,	you	can	specify	the	area	within	the	IIS	server	core	to
trace	as	any	combination	of	the	following:

Authentication Traces	the	failed	request	through	authentication-related
modules.	Use	when	you	want	to	trace	authentication	attempts,	including	the
name	of	the	authenticated	user,	the	authentication	method,	and	the	results	of
the	authentication	attempt.
Security Traces	the	failed	request	through	system	security.	Use	when	you
want	to	trace	events	when	requests	are	rejected	by	the	server	for	security-
related	reasons,	such	as	when	a	client	is	denied	access	to	a	resource	because
of	insufficient	permissions.
Filter Traces	the	failed	request	through	the	IsapiFilterModule,	the
RequestFilteringModule,	or	both.	Use	when	you	want	to	determine	how	long
it	takes	an	ISAPI	filter	to	process	requests.
StaticFile Traces	the	failed	request	through	the	StaticFile	module.	Use
when	you	want	to	trace	how	long	it	takes	requests	for	static	files	to	be
completed	or	to	see	how	filters	might	be	changing	requests.
CGI Traces	the	failed	request	through	the	CgiModule.	Use	when	a	request
is	made	for	a	CGI	file	and	you	want	to	trace	execution	through	the
CgiModule.
Compression Traces	the	failed	request	through	the
StaticCompressionModule	or	the	DynamicCompressionModule.	Use	when	a
response	is	compressed	and	you	want	to	trace	execution	through	these
compression-related	modules.
Cache Traces	the	failed	request	through	cache-related	modules.	Use	when
you	want	to	generate	trace	events	for	cache	operations	associated	with	a
request.
RequestNotifications Traces	the	failed	request	through	the
RequestMonitorModule.	Use	when	you	want	to	capture	all	request
notifications	from	start	to	completion.

Enabling	and	Configuring	Failed	Request	Tracing

You	can	enable	and	configure	failed	request	tracing	for	a	site	by	completing	the
following	steps:

1. In	IIS	Manager,	select	the	node	for	the	server	you	want	to	manage.	If	the
server	you	want	to	use	isn’t	listed,	connect	to	it.

2. In	the	main	pane,	when	you	group	by	area,	the	Failed	Request	Tracing	Rules
feature	is	listed	under	IIS.	Double-click	Failed	Request	Tracing	Rules	to
open	this	feature.	You	should	now	see	the	currently	set	rules	for	failed
request	tracing	(if	any).	Rules	listed	as	Local,	under	Entry	Type,	are	set	for

the	site	you	selected.	Rules	listed	as	Inherited	are	set	at	the	server	level.
3. In	the	Actions	pane,	click	Edit	Site	Tracing.	This	displays	the	Failed

Request	Tracing	Settings	dialog	box.

4. If	trace	logging	is	currently	disabled,	all	logging	options	are	unavailable	and
cannot	be	selected.	To	enable	trace	logging	select	the	Enable	checkbox	in
the	Failed	Request	Tracing	Settings	dialog	box.

5. By	default,	trace	log	files	are	located	in	a	subdirectory	under
%SystemDrive%\	Inetpub\Logs\FailedReqLogfiles.	If	you	want	to	change
the	default	logging	directory,	in	the	Directory	field,	type	the	directory	path,
or	click	the	selection	button	to	look	for	a	directory	that	you	want	to	use.

6. Unlike	other	types	of	logging,	each	failed	request	is	stored	in	a	separate	file
in	the	logging	directory.	Type	a	value	in	the	Maximum	Number	Of	Trace
Files	text	box	to	specify	the	maximum	number	of	trace	files	to	store	at	one
time,	and	then	click	OK	to	save	your	settings.

REAL	WORLD When	the	maximum	value	is	reached,	IIS	deletes	an	old
trace	file	before	creating	a	new	one.	The	default	maximum	number	of	trace
files	is	50.	Although	you	should	rarely	perform	live	tracing	on	a	production
server	(because	doing	so	could	degrade	performance	considerably),	you
may	need	to	raise	this	value	on	a	busy	enterprise	server	to	ensure	that	files
are	available	for	the	types	of	failed	requests	you	want	to	track.

Creating	and	Managing	Trace	Rules

You	can	create	a	trace	rule	by	completing	the	following	steps:

1. In	IIS	Manager,	access	the	Failed	Request	Tracing	Rules	feature	for	the

server,	site,	virtual	directory,	or	application	you	want	to	manage.
2. In	the	Actions	pane,	click	Add.	This	starts	the	Add	Failed	Request	Tracing

Rule	Wizard.
3. Specify	the	type	of	content	to	trace	as	one	of	the	following,	and	then	click

Next:
All	Content	(*) Configures	tracing	for	all	file	requests	that	match	the	rule
criteria.
ASP.NET Configures	tracing	for	all	ASP.NET	file	requests	that	match	the
rule	criteria	and	have	the	.aspx	file	extension.
ASP Configures	tracing	for	all	ASP	file	requests	that	match	the	rule	criteria
and	have	the	.asp	file	extension.
Custom Configures	tracing	based	on	the	value	entered,	which	can	contain,
at	most,	one	wildcard	character.	The	valid	characters	are	A–Z,	a–z,	+,	–,	.,	/
and	the	wildcard	character	(*).

TIP  Trace	rules	must	be	unique.	You	can	create	only	one	trace	rule	for	*,
*.aspx,	and	*.asp.	You	can	create	only	one	trace	rule	for	each	unique	custom
trace	path.

4. Specify	one	or	more	of	the	following	conditions	under	which	IIS	should
trace	a	request,	and	then	click	Next:

Status	Code(s) Select	the	related	check	box,	and	then	type	the	HTTP	status
codes	and	substatus	code	combinations	to	trace.	Use	a	period	between	an
HTTP	status	code	and	its	optional	substatus	code.	Use	a	comma	to	separate
multiple	entries.	A	request	meets	this	condition	if	it	causes	IIS	to	generate	any
one	of	the	listed	status	codes.
Time	Taken	(In	Seconds) Select	the	related	check	box,	and	then	type	a
Time	Taken	value	in	seconds.	A	request	meets	this	condition	if	it	takes	longer
to	process	the	response	than	the	specified	value.	This	condition	must	be
selected	with	another	condition.
Event	Severity Select	the	related	check	box,	and	then	choose	a	severity
level	of	events	to	trace.	The	severity	levels	you	can	choose	from	are	Error,
Critical	Error,	and	Warning.	A	request	meets	this	condition	if	it	causes	IIS	to
generate	one	or	more	events	with	the	specified	severity	level.	This	condition
must	be	selected	with	another	condition.

5. Specify	the	providers	to	trace	by	selecting	or	clearing	providers.
6. To	select	a	provider,	select	its	check	box.	Then	in	the	Verbosity	drop-down

list,	you	can	set	the	types	of	related	events	to	trace,	or	you	can	elect	to	trace
all	related	events	for	that	provider.	The	Verbosity	drop-down	list	is
designed	so	that	when	you	select	a	level,	all	preceding	levels	in	the	list	are
included.	For	example,	if	you	select	Errors,	General	and	Critical	Errors	are
also	included	because	they	precede	General	in	the	list.	The	default	level	is

Verbose,	which	as	the	last	level	in	the	list,	includes	all	the	others.

The	Verbosity	drop-down	list	contains	the	following	levels:
General Includes	general	informational	events	that	provide	context
information	for	the	request	activity,	such	as	GENERAL_REQUEST_START
(which	logs	the	URL	and	the	verb	for	the	request)	and
GENERAL_REQUEST_END	(which	logs	the	bytes	sent	and	bytes	received),
HTTP	status	code,	and	substatus	code	generated.	General	includes
GENERAL_,	FILTER_,	and	MODULE_	that	do	not	contain	warnings	or
errors.	It	does	not	include	other	notification	or	informational	events,	such	as
those	that	begin	with	PRE_BEGIN_,	NOTIFY_,	or	AUTH_.
Critical	Errors Includes	critical	error	events	that	provide	information
about	actions	that	cause	a	process	to	end	or	that	are	about	to	cause	a	process
to	end.	As	a	result	of	critical	errors,	IIS	generally	stops	processing	a	request.
Errors Includes	general	errors	that	provide	information	about	components
that	encounter	an	error	when	running	and	cannot	continue	to	process	requests.
As	a	result	of	general	errors,	IIS	usually	stops	processing	a	request.
Warnings Includes	warning	events	that	provide	information	about
components	that	encounter	a	warning	when	running	but	can	continue	to
process	requests.
Information Includes	informational	events	that	provide	general	information
about	requests.	Information	includes	all	informational	events	but	does	not

include	notification	events,	such	as	those	that	begin	with	PRE_BEGIN_	or
NOTIFY_.
Verbose Includes	all	events	and	notifications	to	provide	detailed
information	about	requests	from	start	to	finish.

REAL	WORLD To	get	a	complete	picture	of	a	request	from	start	to	finish,
you’ll	need	to	use	the	Verbosity	level	of	Verbose.	However,	as	you	track
additional	types	of	events	and	notifications,	IIS	generates	more	and	more
information	about	a	request,	resulting	in	increasing	resource	usage.	For
example,	on	a	server	with	most	role	services	enabled,	IIS	generated	115–
175	KB	of	data	for	a	failed	request	at	a	Verbose	level.	On	the	other	hand,
with	a	Warnings	level	(which	includes	General,	Critical	Errors,	Errors,	and
Warnings)	IIS	generated	trace	files	of	8–12	KB.	And	with	an	Information
level	(which	includes	General,	Critical	Errors,	Errors,	Warnings,	and
Information)	IIS	generated	trace	files	of	29–52	KB.

7. When	you	select	the	ASPNET	or	WWW	Server	provider	in	the	Areas
section,	select	the	check	box(es)	for	the	specific	areas	to	track.	By	default,
all	areas	are	selected.

8. Click	Finish	to	create	the	trace	rule.

To	edit	an	existing	trace	rule,	in	the	main	pane,	click	the	rule,	and	then	in	the
Actions	pane,	select	Edit.	To	remove	a	trace	rule,	in	the	main	pane,	select
Remove,	and	then	click	Yes	to	confirm	that	you	want	to	remove	the	rule.	If	you
remove	a	rule	at	a	level	lower	than	the	one	for	which	it	was	originally	set,	you
delete	the	rule	only	at	that	level	of	the	configuration	hierarchy.

Monitoring	IIS	Performance	and	Reliability

Performance	tuning	is	as	much	an	art	as	it	is	a	science.	You	often	tune	performance
based	on	trial	and	error.	You	adjust	the	server,	monitor	the	server’s	performance
over	time,	and	then	gauge	the	success	of	the	updated	settings.	If	things	aren’t
working	as	expected,	you	adjust	the	settings	again.	In	an	ideal	world,	while	tuning
server	performance,	you’d	have	staging	or	development	servers	that	are	similar	in
configuration	to	your	production	servers.	Then	once	you’ve	made	adjustments	that
worked	in	staging,	you	could	configure	these	changes	on	the	production	servers.

Using	Monitoring	Tools

The	Resource	Monitor	console	is	the	tool	of	choice	for	checking	current	resource
iage.	To	access	a	stand-alone	console,	click	Resource	Monitor	on	the	Tools	menu
in	Server	Manager.The	resource	usage	statistics	are	broken	down	into	four
categories:

CPU	Usage The	summary	details	show	the	current	CPU	utilization	and	the
maximum	CPU	utilization.	If	you	expand	the	CPU	entry	below	the	graph	(by
clicking	the	options	button),	you’ll	see	a	list	of	currently	running	executables
including	name,	process	ID,	description,	number	of	threads	used,	current	CPU
utilization,	and	average	CPU	utilization.
Disk	Usage The	summary	details	show	the	number	of	kilobytes	per	second
being	read	from	or	written	to	disk	and	the	highest	percentage	usage.	If	you
expand	the	Disk	entry	below	the	graph	(by	clicking	the	options	button),	you’ll
see	a	list	of	currently	running	executables	that	are	performing	or	have
performed	I/O	operations	including	name,	process	ID,	description,	file	being
read	or	written,	number	of	bytes	being	read	per	minute,	number	of	bytes	being
written	per	minute,	I/O	priority,	and	the	associated	disk	response	time.
Network	Usage The	summary	details	show	the	current	network	bandwidth
utilization	in	kilobytes	and	the	percentage	of	total	bandwidth	utilization.	If
you	expand	the	Network	entry	below	the	graph	(by	clicking	the	options
button),	you	see	a	list	of	currently	running	executables	that	are	transferring	or
have	transferred	data	on	the	network,	including	name,	process	ID,	IP	address
being	contacted,	number	of	bytes	being	sent	per	minute,	number	of	bytes
received	per	minute,	and	total	bytes	sent	or	received	per	minute.
Memory	Usage The	summary	details	show	the	current	memory	utilization
and	the	number	of	hard	faults	occurring	per	second.	If	you	expand	the	Memory
entry	below	the	graph	(by	clicking	the	options	button),	you’ll	see	a	list	of
currently	running	executables	including	name,	process	ID,	hard	faults	per
minute,	commit	memory	in	kilobytes,	working	set	memory	in	kilobytes,
shareable	memory	in	kilobytes,	and	private	(non-shareable)	memory	in
kilobytes.

Two	additional	Monitoring	tools	are:

Performance	Monitor
Reliability	Monitor

Performance	Monitor,	available	on	the	Tools	menu	in	Server	Manager,	graphically	
displays	statistics	for	the	set	of	performance	parameters	you’ve	selected	for	
display.	These	performance	parameters	are	referred	to	as	counters.	When	you	
install	IIS	on	a	system,	Performance	Monitor	is	updated	with	a	set	of	counters	for	
tracking	IIS	performance.	You	can	further	update	these	counters	when	you	install	
additional	services	and	add-ons	for	IIS.

Performance	Monitor	creates	a	graph	depicting	the	counters	you’re	tracking.	The	
update	interval	for	this	graph	is	configurable	but	is	set	to	1	second	by	default.	As	
you’ll	see	when	you	work	with	Performance	Monitor,	the	tracking	information	is	
most	valuable	when	you	record	performance	information	in	a	log	file	so	that	it	can	
be	replayed.	Also,	you	can	use	Performance	Monitor	to	configure	alerts	that	send	
messages	when	certain	events	occur,	such	as	when	an	automatic	IIS	restart	is	
triggered.

Reliability	Monitor,	tracks	changes	to	the	server	and	compares	them	to	changes	in
system	stability.	In	this	way,	you	can	see	a	graphical	representation	of	the
relationship	between	changes	in	the	system	configuration	and	changes	in	system
stability.	By	recording	software	installation,	software	removal,	application
failures,	hardware	failures,	Windows	failures,	and	key	events	regarding	the
configuration	of	the	server,	you	can	see	a	timeline	of	changes	in	both	the	server
and	its	reliability,	and	then	you	can	use	this	information	to	pinpoint	changes	that
are	causing	problems	with	stability.	For	example,	if	you	see	a	sudden	drop	in
stability,	you	can	click	a	data	point	and	then	expand	the	related	data	set,	such	as
Application	Failures	or	Hardware	Failures,	to	find	the	specific	event	that	caused
the	drop	in	stability.

Open	Reliability	Monitor	by	following	these	steps:

1. In	Control	Panel,	click	System	And	Security	and	then	click	Action	Center.
2. In	Action	Center,	expand	the	Maintenance	panel	by	clicking	the	expand

button	(or	simply	clicking	the	panel	heading).	Next,	click	View	Reliablity
History.

Windows	Server	includes	Data	Collector	Sets	and	Reports.	Data	Collector	Sets
allow	you	to	specify	sets	of	performance	objects	and	counters	that	you	want	to
track.	Once	you’ve	created	a	Data	Collector	Set,	you	can	easily	start	or	stop
monitoring	of	the	performance	objects	and	counters	included	in	the	set.	In	a	way,
this	makes	Data	Collector	Sets	similar	to	the	performance	logs	used	in	earlier

releases	of	Windows.	However,	Data	Collector	Sets	are	much	more	sophisticated.
A	single	data	set	can	be	used	to	generate	multiple	performance	counters	and	trace
logs.	You	can	also:

Assign	access	controls	to	manage	who	can	access	collected	data.
Create	multiple	run	schedules	and	stop	conditions	for	monitoring.
Use	data	managers	to	control	the	size	of	collected	data	and	reporting.
Generate	reports	based	on	collected	data.

In	the	Performance	Monitor	console,	you	can	review	currently	configured	Data
Collector	Sets	and	reports	under	the	Data	Collector	Sets	and	Reports	nodes
respectively.	You’ll	find	data	sets	and	reports	that	are	user-defined	and	system-
defined.	User-defined	data	sets	are	created	by	users	for	general	monitoring	and
performance	tuning.	System-defined	data	sets	are	created	by	the	operating	system
to	aid	in	automated	diagnostics.

Choosing	Counters	to	Monitor

The	Performance	Monitor	tool	displays	information	only	for	counters	you’re
tracking.	IIS	counters	are	related	to	different	IIS	services;	several	hundred	IIS
counters	are	available	in	total.	Counters	are	organized	into	object	groupings.	For
example,	all	ASP-related	counters	are	associated	with	the	Active	Server	Pages
performance	object.	You’ll	also	find	object	counters	for	other	services.	A	list	of
the	main	IIS-related	counter	objects	follows:

ASP.NET Object	counters	for	general	tracking	of	ASP.NET	applications,
application	requests,	and	worker	processes
ASP.NET	Applications Object	counters	for	tracking	the	ASP.NET
application	queue	and	other	specific	ASP.NET	application	counters
ASP.NET	State	Service Object	counters	for	tracking	ASP.NET	sessions
Active	Server	Pages Object	counters	for	ASP	scripts	and	applications
running	on	the	server
HTTP	Service,	HTTP	Service	Request	Queues,	HTTP	Service	URL
Groups Object	counters	for	URLs,	cached	URLs,	HTTP	requests,	and	other
HTTP-related	functions	of	IIS
Internet	Information	Services	Global Object	counters	for	all	Internet
services	(WWW,	FTP,	SMTP,	NNTP,	and	so	on)	running	on	the	server
Web	Service Object	counters	for	the	World	Wide	Web	Publishing	Service
Web	Service	Cache Object	counters	that	provide	detailed	information	on
the	cache	used	by	the	Web	service,	including	cache	for	metadata,	files,
memory,	and	Uniform	Resource	Identifiers	(URIs)

The	easiest	way	to	learn	about	these	counters	is	to	read	the	explanations	available
in	the	Add	Counters	dialog	box.	Start	the	Performance	Monitor	tool,	then	on	the
toolbar,	click	the	Add	button,	and	then	in	the	Available	Counters	list,	expand	an
object.	Select	the	Show	Description	check	box,	and	then	scroll	through	the	list	of
counters	for	this	object.

TIP Multiple	versions	of	ASP.NET	can	be	installed.	As	a	result,	the
ASP.NET	and	ASP	Applications	counter	objects	have	version-specific
instances.	Use	the	counter	objects	for	the	specific	ASP.NET	versions	you
want	to	track.

When	Performance	Monitor	is	monitoring	a	particular	object,	it	can	track	all

instances	of	all	counters	for	that	object.	Instances	are	individual	occurrences	of	a
particular	counter;	multiple	occurrences	can	exist.	For	example,	when	you	track
counters	for	the	Web	Service	object,	you	often	have	a	choice	of	tracking	all	Web
site	instances	or	specific	Web	site	instances.	Following	this,	if	you	configured
CorpWeb,	CorpProducts,	and	CorpServices	sites,	you	could	use	Web	Service
counters	to	track	a	specific	Web	site	instance	or	multiple	Web	site	instances.

To	select	which	counters	you	want	to	monitor,	complete	the	following	steps:

1. In	the	Performance	Monitor	console,	expand	Monitoring	Tools,	and	then
select	Performance	Monitor.

2. Performance	Monitor	has	several	views	and	view	types.	Ensure	that	you	are
viewing	current	activity	by	clicking	the	View	Current	Activity	button	on	the
toolbar	or	pressing	Ctrl+T.	To	switch	between	the	view	types	(Line,
Histogram	Bar,	and	Report),	click	the	Change	Graph	Type	button	or	press
Ctrl+G.

3. To	add	counters,	on	the	toolbar,	click	Add,	or	press	Ctrl+I.	This	displays	the
Add	Counters	dialog	box.

4. In	the	Select	Counters	From	Computer	list	box	type	the	Universal	Naming
Convention	(UNC)	name	of	the	IIS	server	you	want	to	work	with,	such	as
\\ENGSVR01,	or	choose	<Local	computer>	to	work	with	the	local
computer.

NOTE  You’ll	need	to	be	at	least	a	member	of	the	Performance	Monitor
Users	group	in	the	domain	or	the	local	computer	to	perform	remote
monitoring.	When	you	use	performance	logging,	you’ll	need	to	be	at	least	a
member	of	the	Performance	Log	Users	group	in	the	domain	or	the	local
computer	to	work	with	performance	logs	on	remote	computers.

5. In	the	Available	Counters	pane,	Performance	Objects	are	listed
alphabetically.	If	you	select	an	object	by	clicking	it,	all	related	counters	are
selected.	If	you	expand	an	object	entry,	you	can	see	all	the	related	counters
and	can	then	add	individual	counters	by	selecting	them,	and	then	clicking
Add.	For	example,	you	could	expand	the	entry	for	the	Active	Server	Pages
object	and	then	select	Requests	Failed	Total,	Requests	Not	Found,	Requests
Queued,	and	Requests	Total	counters.

6. When	you	select	an	object	or	any	of	its	counters,	you	see	the	related
instances.	Choose	All	Instances	to	select	all	counter	instances	for
monitoring.	Or	select	one	or	more	counter	instances	to	monitor.	For

example,	you	could	select	instances	of	Anonymous	Users/Sec	for	individual
Web	sites	or	for	all	Web	sites.

7. When	you’ve	selected	an	object	or	a	group	of	counters	for	an	object	and	the
object	instances,	click	Add	to	add	the	counters	to	the	graph.	Repeat	Steps	5
to	7	to	add	other	performance	parameters.	Click	OK	when	you’re	finished.

TIP  Don’t	try	to	chart	too	many	counters	or	counter	instances	at	once.
You’ll	make	the	display	too	difficult	to	read,	and	you’ll	use	system	resources
—namely,	CPU	time	and	memory—that	might	affect	server	responsiveness.

Tuning	Web	Server	Performance

Now	that	you	know	how	to	monitor	your	Web	servers,	let’s	look	at	how	you	can
tune	the	operating	system	and	hardware	performance.	I’ll	examine	the	following
areas:

Memory	usage	and	caching
Processor	utilization
Disk	I/O
Network	bandwidth	and	connectivity

Monitoring	and	Tuning	Memory	Usage

Memory	is	often	the	source	of	performance	problems,	and	you	should	always	rule
out	memory	problems	before	examining	other	areas	of	the	system.	One	of	the	key
reasons	memory	can	be	such	a	problem	has	to	do	with	caching.	Caching	improves
performance	by	returning	a	processed	copy	of	a	requested	Web	page	from	cache,
resulting	in	reduced	overhead	on	the	server	and	faster	response	times.	IIS	supports
several	levels	of	caching,	including	output	caching	in	user	mode	and	output
caching	in	kernel	mode.	When	kernel-mode	caching	is	enabled,	cached	responses
are	served	from	the	kernel	rather	than	from	IIS	user	mode,	giving	IIS	an	extra
boost	in	performance	and	increasing	the	number	of	requests	IIS	can	process.
Improperly	configured	caching	settings,	however,	can	degrade	performance	either
by	using	too	much	memory	on	a	server	with	a	relatively	small	amount	of	free
memory	or	using	too	little	memory	on	a	server	with	a	relatively	large	amount	of
free	memory.

The	configuration	of	the	HttpCacheModule	controls	the	way	output	caching	works
for	static	files	and	non-managed	code.	OutputCacheModule	provides	output
caching	for	managed	code.	IIS	uses	cache	in	other	ways	as	well.
FileCacheModule	is	used	to	cache	file	handles.	TokenCacheModule	is	used	to
cache	security	tokens	for	password-based	authentication.	UriCacheModule	is	used
to	cache	URL-specific	server	state	information.	You’ll	find	more	information	on
server	output	caching	in	Chapter	2,	“Managing	Applications	and	Application
Pools.”

A	server’s	physical	and	virtual	memory	configuration	can	also	present	a	problem.
Adding	memory	when	there’s	a	caching	or	virtual	memory	problem	on	the	server
won’t	solve	performance	problems.	Because	of	this,	you	should	always	check	for
memory,	caching,	and	virtual	memory	problems	at	the	same	time.	Table	7-2
provides	an	overview	of	counters	that	you’ll	want	to	track	to	uncover	memory,
caching,	and	virtual	memory	(paging)	bottlenecks.	The	table	is	organized	by	issue
category.

TABLE	7-2	Uncovering	Memory-Relasted	Bottlenecks
Physical	and	virtual
memory	usage

Memory\Available	Kbytes	is	the	amount	of	physical	
memory	available	to	processes	running	on	the	server.	
Memory\Committed	Bytes	is	the	amount	of	committed	
virtual	memory.	If	the	server	has	very	little	available	
memory,	you	might	need	to	add	memory	to	the	system.	
In

general,	you	want	the	available	memory	to	be	no	less	than
5	percent	of	the	total	physical	memory	on	the	server.	If
the	server	has	a	high	ratio	of	committed	bytes	to	total
physical	memory	on	the	system,	you	might	also	need	to
add	memory.	In	general,	you	want	the	committed	bytes
value	to	be	no	more	than	75	percent	of	the	total	physical
memory.

Memory	caching Memory\Cache	Bytes	represents	the	total	size	of	the	file
system	cache.	Internet	Information	Services
Global\Current	File	Cache	Memory	Usage	represents	the
current	memory	used	by	the	IIS	file	cache.	Internet
Information	Services	Global\File	Cache	Hits	%
represents	the	ratio	of	cache	hits	to	total	cache	requests
and	reflects	how	well	the	settings	for	the	IIS	file	cache
are	working.	A	site	with	mostly	static	files	should	have	a
very	high	cache	hit	percentage	(70–85	percent).	Internet
Information	Services	Global\File	Cache	Flushes	tells	you
how	quickly	IIS	is	flushing	files	out	of	cache.	If	flushes
are	occurring	too	quickly,	you	might	need	to	increase	the
time-to-live	value	for	cached	objects	(ObjectCacheTTL).
If	flushes	are	occurring	too	slowly,	you	might	be	wasting
memory	and	might	need	to	decrease	the	time-to-live
value	for	cached	objects.

Memory	page	faults A	page	fault	occurs	when	a	process	requests	a	page	in
memory	and	the	system	can’t	find	it	at	the	requested
location.	If	the	requested	page	is	elsewhere	in	memory,
the	fault	is	called	a	soft	page	fault.	If	the	requested	page
must	be	retrieved	from	disk,	the	fault	is	called	a	hard
page	fault.	Most	processors	can	handle	large	numbers	of
soft	faults.	Hard	faults,	however,	can	cause	significant
delays.	Page	Faults/sec	is	the	overall	rate	at	which	the
processor	handles	all	types	of	page	faults.	Pages
Input/sec	is	the	total	number	of	pages	read	from	disk	to
resolve	hard	page	faults.	Page	Reads/sec	is	the	total	disk
reads	needed	to	resolve	hard	page	faults.	Pages	Input/sec
will	be	greater	than	or	equal	to	Page	Reads/sec	and	can
give	you	a	good	idea	of	your	hard	page	fault	rate.	If	there
is	a	large	number	of	hard	page	faults,	you	might	need	to
increase	the	amount	of	memory	or	reduce	the	cache	size
on	the	server.	Memory	used	by	IIS	can	be	controlled	by
modifying	cache	settings.

Memory	paging These	counters	track	the	number	of	bytes	in	the	paged	
and	nonpaged	pool.	The	paged	pool	is	an	area	of	system	
memory	for	objects	that	can	be	written	to	disk	when	they	
aren’t	used.	The	nonpaged	pool	is	an	area	of	system	
memory	for	objects	that	can’t	be	written	to	disk.	If	the	
paged	pool’s	size	is	large	relative	to	the	total	amount	of	
physical	memory	on	the	system,	you	might	need	to	add	
memory	to	the	system.	If	the	nonpaged	pool’s	size	is	
large	relative	to	the	total	amount	of	virtual	memory	
allocated	to	the	server,	you	might	want	to	increase	the

virtual	memory	size.

Monitoring	and	Tuning	Processor	Usage

The	CPU	does	the	actual	processing	of	information	on	your	server.	As	you
examine	a	server’s	performance,	you	should	focus	on	the	CPUs	after	memory
bottlenecks	have	been	eliminated.	If	the	server’s	processors	are	the	performance
bottleneck,	adding	memory,	drives,	or	network	connections	won’t	overcome	the
problem.	Instead,	you	might	need	to	upgrade	the	processors	to	faster	clock	speeds
or	add	processors	to	increase	the	server’s	processing	capacity.	You	could	also
move	processor-intensive	applications,	such	as	Microsoft	SQL	Server,	to	another
server.

Before	you	decide	to	upgrade	or	add	CPUs,	you	should	rule	out	problems	with
memory	and	caching.	If	signs	still	point	to	a	processor	problem,	you	should
monitor	the	performance	counters	discussed	in	Table	7-3.	Be	sure	to	monitor	these
counters	for	each	CPU	installed	on	the	server.

Table	7-3	Uncovering	Processor-Related	Bottlenecks
Thread	queuing System\Processor	Queue	Length	displays	the	number	of

threads	waiting	to	be	executed.	These	threads	are	queued
in	an	area	shared	by	all	processors	on	the	system.
Generally,	you	want	a	relative	few	queued	threads	per
processor.	Otherwise,	you	may	need	to	upgrade	or	add
processors.

CPU	usage Processor\%	Processor	Time	displays	the	percentage	of
time	the	selected	CPU	is	executing	a	non-idle	thread.
You	should	track	this	counter	separately	for	all	processor
instances	on	the	server.	If	the	%	Processor	Time	values
are	high	while	the	network	interface	and	disk	I/O
throughput	rates	are	relatively	low,	you’ll	need	to	upgrade
or	add	processors.

ASP	performance Active	Server	Pages\Request	Wait	Time,	Active	Server	
Pages\Requests	Queued,	Active	Server	Pages\Requests	
Rejected,	and	Active	Server	Pages\Requests/sec	indicate	
the	relative	performance	of	IIS	when	working	with	ASP.	
Active	Server	Pages\Request	Wait	Time	is	the	number	of	
milliseconds	the	most	recent	request	was	waiting	in	the	
queue.	Active	Server	Pages\Requests	Queued	is	the	
number	of	requests	waiting	to	be	processed.	Active	
Server	Pages\Requests	Rejected	is	the	total	number	of	
requests	not	executed	because	there	weren’t	resources	
to	process	them.	Active	Server	Pages\Requests/sec	is	
the	number	of	requests	executed	per	second.	In	general,	
you	don’t	want	to	see	requests	waiting	in	the	queue,	and,

if	requests	are	queuing,	the	wait	time	should	be	very	low.
You	also	don’t	want	to	see	requests	rejected	because
resources	aren’t	available.	Consider	and	treat	these
problems	relative	to	the	number	of	requests	handled	per
second.	You	might	notice	some	variance	under	peak
loads.	To	resolve	these	issues	you	might	need	to	upgrade
or	add	processors.

REAL	WORLD In	many	cases	a	single	server	might	not	be	sufficient	to
handle	the	network	traffic	load.	If	that	happens,	you	might	need	to	scale	your
site	across	multiple	servers.	For	example,	you	could	replicate	the	site	to
additional	servers	and	then	distribute	the	traffic	across	these	servers	by
using	a	load	balancer.	If	you	already	have	a	multiple-server	Web	farm,	you
could	add	Web	servers.

Monitoring	and	Tuning	Disk	I/O

With	today’s	high-speed	disks,	the	disk	throughput	rate	is	rarely	the	cause	of	a
bottleneck.	That	said,	however,	accessing	memory	is	much	faster	than	accessing
disks.	So	if	the	server	has	to	do	a	lot	of	disk	reads	and	writes,	the	server’s	overall
performance	can	be	degraded.	To	reduce	the	amount	of	disk	I/O,	you	want	the
server	to	manage	memory	very	efficiently	and	page	to	disk	only	when	necessary.
You	monitor	and	tune	memory	usage	as	discussed	previously	in	the	“Monitoring
and	Tuning	Memory	Usage”	section	of	this	chapter.

Beyond	the	memory	tuning	discussion,	you	can	monitor	some	counters	to	gauge
disk	I/O	activity.	Specifically,	you	should	monitor	the	counters	discussed	in	Table
7-4.

Table	7-4	Uncovering	Drive-Related	Bottlenecks
Overall	drive
performance

Use	PhysicalDisk\%	Disk	Time	in	conjunction	with
Processor\%	Processor	Time	and	Network
Interface\Bytes	Total/sec.	If	the	%	Disk	Time	value	is
high	and	the	processor	and	network	connection	values
aren’t	high,	the	system’s	hard	disk	drives	might	be
creating	a	bottleneck.	Be	sure	to	monitor	%	Disk	Time
for	all	hard	disk	drives	on	the	server.

Disk	I/O Use	PhysicalDisk\Disk	Writes/sec;	PhysicalDisk\Disk
Reads/sec;	PhysicalDisk	\Avg.	Disk	Write	Queue
Length;	PhysicalDisk\Avg.	Disk	Read	Queue	Length;
Physical	Disk\Current	Disk	Queue	Length.	The	number
of	writes	and	reads	per	second	tells	you	how	much	disk
I/O	activity	there	is.	The	write	and	read	queue	lengths	tell
you	how	many	write	or	read	requests	are	waiting	to	be
processed.	In	general,	you	want	there	to	be	very	few
waiting	requests.	Keep	in	mind	that	the	request	delays
are	proportional	to	the	length	of	the	queues	minus	the
number	of	drives	in	a	redundant	array	of	independent
disks	(RAID)	set.

Monitoring	and	Tuning	Network	Bandwidth	and	Connectivity

No	other	factor	weighs	more	in	a	visitor’s	perceived	performance	of	your	Web
site	than	the	network	that	connects	your	server	to	the	visitor’s	computer.	The
delay,	or	latency,	between	the	time	a	request	is	made	and	the	time	it’s	received
can	make	all	the	difference.	If	there’s	a	high	degree	of	latency,	it	doesn’t	matter	if
you	have	the	fastest	server	on	the	planet.	The	user	experiences	a	delay	and
perceives	that	your	Web	site	is	slow.

Generally	speaking,	the	latency	experienced	by	the	user	is	beyond	your	control.
It’s	a	function	of	the	type	of	connection	the	user	has	and	the	route	the	request	takes
through	the	Internet	to	your	server.	Your	server’s	total	capacity	to	handle	requests
and	the	amount	of	bandwidth	available	to	your	servers	are	factors	under	your
control,	however.	Network	bandwidth	availability	is	a	function	of	your
organization’s	connection	to	the	Internet.	Network	capacity	is	a	function	of	the
network	cards	and	interfaces	configured	on	the	servers.

A	typical	server	network	card	is	equipped	to	handle	a	1-gigabit-per-second
(Gbps)	or	10	Gbps	connection	with	fair	efficiency,	which	is	much	more	traffic
than	the	typical	site	experiences	and	much	more	traffic	than	the	typical	server	can
handle.	Because	of	this,	your	organization’s	bandwidth	availability	is	typically	the
limiting	factor.	If	you	have	a	dedicated	T1	for	your	Web	servers,	your	servers
have	1.544	Mbps	of	bandwidth	availability.	If	you	have	multiple	T1s	or	a	T3,	the
bandwidth	available	to	your	servers	could	range	from	3	Mbps	to	45	Mbps.

To	determine	the	throughput	and	current	activity	on	a	server’s	network	cards,	you
can	check	the	following	performance	counters:

Network	Interface\Bytes	Received/sec
Network	Interface\Bytes	Sent/sec
Network	Interface\Bytes	Total/sec
Network	Interface\Current	Bandwidth

If	the	total	bytes-per-second	value	is	more	than	50	percent	of	the	total	capacity	
under	average	load	conditions,	your	server	might	have	problems	under	peak	load	
conditions.	You	might	want	to	ensure	that	operations	that	take	a	lot	of	network	
bandwidth,	such	as	backups,	are	performed	on	a	separate	interface	card.	Keep	in	
mind	that	you	should	compare	these	values	in	conjunction	with	PhysicalDisk\%

Disk	Time	and	Processor\%	Processor	Time.	If	the	process	time	and	disk	time
values	are	low	but	the	network	values	are	very	high,	there	might	be	a	capacity
problem.

IIS	provides	several	ways	to	restrict	bandwidth	usage	and	to	improve	bandwidth-
related	performance.	These	features	are	as	follows:

Bandwidth	throttling  You	can	restrict	bandwidth	usage	by	enabling
bandwidth	throttling	and	limiting	the	maximum	number	of	allowable
connections.	Bandwidth	throttling	restricts	the	total	bandwidth	available	to	a
service	or	to	individual	sites.	Because	users	will	be	denied	service	when	the
bandwidth	limits	are	exceeded,	you	should	enable	these	features	only	when
you’re	sure	that	this	setting	is	acceptable.	Before	you	restrict	bandwidth,	you
should	monitor	the	network	interface	object	counters	discussed	earlier	in	this
chapter.	If	these	counters	indicate	a	possible	problem,	restricting	bandwidth
is	one	answer.
Connection	limitations  Connection	limitations	restrict	the	total	number	of
allowable	connections	to	a	service.	Because	users	might	be	denied	service
when	these	values	are	exceeded,	you	should	enable	these	features	only	when
you’re	sure	that	this	setting	is	acceptable.	Before	you	restrict	the	number	of
connections	to	a	server,	you	should	monitor	the	network	interface	object
counters	discussed	earlier	in	this	chapter.	If	these	counters	indicate	a	possible
problem,	connection	limitation	is	one	answer.
HTTP	compression With	HTTP	compression	enabled,	the	Web	server
compresses	files	before	sending	them	to	client	browsers.	File	compression
reduces	the	amount	of	information	transferred	between	the	server	and	the
client,	which	in	turn	can	reduce	network	bandwidth	usage,	network	capacity,
and	transfer	time.	For	HTTP	compression	to	work,	it	must	be	enabled,	and	the
client	browser	must	support	HTTP	1.1.	Although	most	current	browsers
support	HTTP	1.1	and	have	the	feature	enabled	by	default,	older	browsers
might	not	support	HTTP	1.1.	Older	browsers	will	still	be	able	to	retrieve
files	from	your	site,	but	they	won’t	be	taking	advantage	of	HTTP
compression.	Before	you	enable	compression,	you	should	monitor	the	current
processor	usage	on	the	server.	HTTP	compression	adds	to	the	overhead	on
the	server,	which	means	that	it	will	increase	overall	processor	utilization.	If
your	site	uses	dynamic	content	extensively	and	process	utilization	(%
Processor	Time)	is	already	high,	you	might	want	to	upgrade	or	add
processors	before	enabling	HTTP	compression.

MORE	INFO  For	additional	details,	see	Chapter	6	and	Chapter	7	in	Web

Server	Administration:	The	Personal	Trainer.

Strategies	for	Improving	IIS	Performance

In	this	section	I	examine	strategies	you	can	use	to	improve	the	performance	of	IIS.
The	focus	of	this	section	is	on	improving	the	overall	responsiveness	of	IIS	and	not
the	underlying	server	hardware.

Removing	Unnecessary	Applications	and	Services

One	of	the	most	obvious	ways	to	improve	IIS	performance	is	to	remove	resource
drains	on	the	server.	Start	by	removing	applications	that	might	be	affecting	the
performance	of	IIS,	including:

SQL	Server
Microsoft	Exchange	Server
File	and	print	services
UNIX	services

If	necessary,	move	these	applications	and	services	to	a	separate	server.	This	will
give	IIS	more	resources	to	work	with.	For	applications	that	you	can’t	move,	see	if
there’s	a	way	to	run	the	applications	only	during	periods	of	relatively	low	activity.
For	example,	if	you’re	running	server	backups	daily,	see	if	you	can	schedule
backups	to	run	late	at	night	when	user	activity	is	low.

System	services	are	another	area	you	can	examine	to	see	if	there	are	unnecessary
resource	drains.	Every	service	running	on	the	server	uses	resources	that	can	be
used	in	other	ways.	You	should	stop	services	that	aren’t	necessary	and	set	them	to
start	manually.	Before	you	stop	any	service,	you	should	check	for	dependencies	to
ensure	that	your	server	isn’t	adversely	affected.

If	you	have	dedicated	IIS	servers,	remove	roles,	roles	services,	and	features	that
aren’t	required.

Optimizing	Content	Usage

Your	server’s	responsiveness	is	tied	directly	to	the	content	you’re	publishing.	You
can	often	realize	substantial	performance	benefits	by	optimizing	the	way	content	is
used.	IIS	can	handle	both	static	and	dynamic	content.	Although	static	content	is
passed	directly	to	the	requesting	client,	dynamic	content	must	be	processed	before
it	can	be	passed	to	the	client.	This	places	a	resource	burden	on	the	server	that	you
can	reduce	by	using	static	content.

NOTE  I’m	not	advocating	replacing	all	dynamic	content	with	static
content.	Dynamically	generated	content	is	a	powerful	tool	for	building	highly
customized	and	full-featured	sites.	However,	if	there	are	places	where
you’re	using	dynamic	content	for	no	specific	reason,	you	might	want	to
rethink	this	strategy.

When	you	use	static	content,	keep	in	mind	that	you	should	set	expire	headers	
whenever	possible.	Expire	headers	allow	the	related	files	to	be	stored	in	the	
client’s	cache,	and	this	can	greatly	improve	performance	on	repeat	visits	when	the	
original	content	hasn’t	changed.	For	details	on	setting	expire	headers,	see	Chapter	
7	in	Web	Server	Administration:	The	Personal	Trainer.

With	dynamic	content,	you	should	limit	your	use	of	Common	Gateway	Interface	
(CGI	applications.	CGI	applications	require	more	processor	and	memory	
resources	than	their	Internet	Server	Application	Programming	Interface	(ISAPI,	
Active	Server	Pages	(ASP,	and	ASP.NET	counterparts.	Because	of	this,	you	
should	replace	or	convert	CGI	applications	with	or	to	ISAPI,	ASP,	or	ASP.NET.	
An	alternate	is	to	install	FastCGI—a	more	robust	version	of	CGI	that	is	available	
as	an	add-on	module	for	IIS.

Whenever	you	work	with	ISAPI,	ASP,	or	ASP.NET	applications,	try	to	push	as	
much	of	the	processing	load	onto	the	client	as	possible.	This	reduces	the	server	
resource	requirements	and	greatly	improves	application	responsiveness.	One	
example	of	pushing	processing	to	the	client	is	to	use	client-side	scripting	to	
evaluate	form	submissions	before	data	is	sent	to	the	server.	This	technique	
reduces	the	number	of	times	information	is	sent	between	the	client	and	the	server;	
therefore,	it	can	greatly	improve	the	application’s	overall	performance.

To	improve	content-related	performance,	you	might	also	want	to	do	the	following:

Analyze	the	way	content	is	organized	on	your	hard	disk	drives. In	most
cases	you	should	keep	related	content	files	on	the	same	logical	partitions	of	a
disk.	Keeping	related	files	together	improves	IIS	file	caching.
Defragment	your	drives	periodically. 	 Over	time,	drives	can	become
fragmented,	and	this	decreases	read/write	performance.	To	correct	this,
defragment	your	server’s	drives	periodically.	Many	defragmentation	tools
allow	you	to	automate	this	process	so	that	you	can	configure	a	scheduled	job
to	automatically	defragment	drives	without	needing	administrator
intervention.
Reduce	the	size	of	content	files. The	larger	the	file	size,	the	more	time	it
takes	to	send	the	file	to	a	client.	If	you	can	optimize	your	source	Hypertext
Markup	Language	(HTML)	or	ASP	code	and	reduce	the	file	size,	you	can
increase	your	Web	server’s	performance	and	responsiveness.	Some	of	the
biggest	bandwidth	users	are	multimedia	files.	Compress	image,	video,	or
audio	files	by	using	an	appropriate	compression	format	whenever	possible.
Store	log	files	on	separate	disks	from	content	files. Logging	activity	can
reduce	the	responsiveness	of	a	busy	server.	One	way	to	correct	this	is	to	store
access	logs	on	a	different	physical	drive	from	the	one	storing	your	site’s
content	files.	In	this	way,	disk	writes	for	logging	are	separate	from	the	disk
reads	or	writes	for	working	with	content	files,	which	can	greatly	improve	the
overall	server	responsiveness.
Log	only	essential	information. Trying	to	log	too	much	information	can
also	slow	down	a	busy	server.	By	using	the	World	Wide	Web	Consortium
(W3C)	extended	logging	format,	you	can	reduce	logging	overhead	by	logging
only	the	information	that	you	need	in	order	to	generate	reports	and	by
removing	logging	for	nonessential	information.	With	any	type	of	logging,	you
can	reduce	logging	overhead	by	organizing	different	types	of	content
appropriately	and	then	disabling	logging	on	directories	containing	content
whose	access	doesn’t	need	to	be	logged.	For	example,	you	could	place	all
your	image	files	in	a	directory	called	Images	and	then	disable	logging	on	this
directory.

MORE	INFO  Techniques	for	configuring	logging	are	discussed	in	Chapter
9	of	Web	Server	Administration:	The	Personal	Trainer.	If	your	organization
has	large	IIS	installations	running	dozens	or	hundreds	of	IIS	sites	per	server,
you	should	consider	using	centralized	binary	logging,	which	is	also
discussed	in	that	chapter.

Optimizing	ISAPI,	ASP,	and	ASP.NET	Applications

Improperly	configured	and	poorly	optimized	applications	can	be	major	resource
drains	on	an	IIS	server.	To	get	the	most	from	the	server,	you	need	to	optimize	the
way	applications	are	configured.	Do	the	following	to	optimize	applications:

Enable	type	library	caching. IIS	can	cache	type	libraries	used	by
applications	in	memory.	This	allows	frequently	used	type	libraries	to	be
accessed	quickly.	You	can	control	caching	with	the	enableTypelibCache
attribute	of	the	system.webServer/asp/cache	element.
Manage	application	buffering	and	flushes	appropriately. Application
buffering	allows	all	output	from	an	application	to	be	collected	in	the	buffer
before	being	sent	to	the	client.	This	cuts	down	on	network	traffic	and
response	times.	However,	users	don’t	receive	data	until	the	page	is	finished
executing,	which	can	give	the	perception	that	a	site	isn’t	very	responsive.	You
can	control	application	buffering	by	using	the	BufferingOn	attribute	of	the
system.webServer/asp	element.
Disable	application	debugging. Application	debugging	slows	IIS
performance	considerably.	You	should	use	debugging	only	for
troubleshooting.	Otherwise,	you	should	disable	debugging.	You	can	control
debugging	by	using	the	appAllowClientDebug	and	appAllowDebug	attributes
of	the	system.webServer/asp	element.
Optimize	application	performance. You	can	configure	ASP	and	ASP.NET
applications	to	shut	down	idle	processes,	limit	memory	leaks	and	outages,
and	rapidly	detect	failures.	For	more	information,	see	Chapter	3.
Manage	session	configuration	appropriately. As	the	usage	of	your	server
changes,	so	should	the	session	management	configuration.	By	default,	session
management	is	enabled	for	all	applications.	If	your	applications	don’t	use
sessions,	however,	you’re	wasting	system	resources.	Instead	of	enabling
sessions	by	default,	you	should	disable	sessions	by	default	and	then	enable
sessions	for	individual	applications.	You	can	control	sessions	with	the
allowSessionState,	keepSessionIdSecure,	max,	and	timeout	attributes	of	the
system.webServer/asp/session	element.
Set	a	meaningful	session	time-out. The	session	time-out	value	is
extremely	important	in	determining	the	amount	of	resources	used	in	session
management.	Set	this	value	accurately.	Sessions	should	time	out	after	an
appropriate	period.	Configure	session	time-out	by	using	the	timeout	attribute
of	the	system.webServer/asp/session	element.

Set	appropriate	script	and	connection	time-out	values. ASP	scripts	and
user	connections	should	time	out	at	an	appropriate	interval.	By	default,	ASP
scripts	time	out	after	90	seconds	and	user	connections	are	queued	indefinitely
(but	checked	every	3	seconds	to	make	sure	they’re	still	valid).	Zombie	scripts
and	open	connections	use	resources	and	can	reduce	the	server’s
responsiveness.	To	reduce	this	drain,	set	appropriate	time-outs	based	on	the
way	your	site	is	used.	You	can	control	script	and	connection	time-outs	by
using	the	scriptTimeout,	queueConnectionTestTime,	queueTimeout,	and
requestQueueMax	attributes	of	the	system.webServer/asp/limits	element.

Optimizing	IIS	Caching,	Queuing,	and	Pooling

IIS	uses	many	memory-resident	caches	and	queues	to	manage	resources.	If	you
make	extensive	use	of	dynamic	content	or	have	a	heavily	trafficked	site,	you
should	optimize	the	way	these	caches	and	queues	work	for	your	environment.	You
might	want	to	do	the	following:

Consider	changing	application	pool	queue	length. Whenever	requests	for
applications	come	in,	the	HTTP	listener	(Http.sys)	picks	them	up	and	passes
them	to	an	application	request	queue.	To	prevent	large	numbers	of	requests
from	queuing	up	and	flooding	the	server,	each	application	request	queue	has	a
default	maximum	amount	of	concurrent	requests.	If	this	value	doesn’t	meet
your	needs,	you	can	modify	it	by	using	the	queueLength	attribute	of	the
system.applicationHost/applicationPools	element’s	add	collection.	In	most
cases	you’ll	want	to	set	this	value	to	the	maximum	number	of	connection
requests	you	want	the	server	to	maintain.
Consider	changing	the	maximum	processor	threads	for	ASP. By	default,
IIS	limits	to	25	the	maximum	number	of	work	threads	per	processor	that	IIS
can	create	to	handle	ASP	requests.	You	can	use	the	processorThreadMax
attribute	of	the	system.webServer/asp/limits	element	to	increase	or	decrease
this	value	as	appropriate.
Consider	changing	the	maximum	worker	processes	for	application
pools. By	default,	IIS	limits	to	1	the	maximum	number	of	work	processes
that	IIS	can	create	to	handle	ASP	requests	for	an	application	pool.	If	this
value	doesn’t	meet	your	needs,	you	can	modify	it	by	using	the	maxProcesses
attribute	of	the	system.applicationHost/applicationPools	element’s	add
collection.
Consider	changing	the	Output	Cache	settings. By	default,	IIS	uses	up	to
50	percent	of	the	server’s	available	physical	memory.	This	value	ensures	that
IIS	works	well	with	other	applications	that	might	be	running	on	the	server.	If
the	server	is	dedicated	to	IIS	or	has	additional	memory	available,	you	might
want	to	increase	this	setting	to	allow	IIS	to	use	more	memory.	To	control	IIS
file	caching,	you	can	use	the	maxCacheSize	attribute	of	the
system.webServer/caching	element.
Consider	changing	the	maximum	cached	file	size. By	default,	IIS	caches
only	files	that	are	262,144	bytes	or	less	in	size.	If	you	have	large	data	files	or
multimedia	files	that	are	accessed	frequently,	you	might	want	to	increase	this
value	to	allow	IIS	to	cache	larger	files.	Keep	in	mind	that	with	file	sizes	over

this	size	you’ll	reach	a	point	at	which	caching	won’t	significantly	improve
performance.	The	reason	for	this	is	that	with	small	files	the	overhead	of
reading	from	disk	rather	than	the	file	cache	is	significant,	but	with	large	files
the	disk	read	might	not	be	the	key	factor	in	determining	overall	performance.
To	control	the	maximum	cached	file	size,	you	can	use	the	maxResponseSize
attribute	of	the	system.webServer/caching	element.
Consider	adjusting	the	Time	to	Live	(TTL)	value	for	cached	resources. 
By	default,	IIS	purges	from	cache	any	resources	that	haven’t	been	requested
within	the	last	30	seconds.	If	you	have	additional	memory	on	the	server,	you
might	want	to	increase	this	value	so	that	files	aren’t	removed	from	cache	as
quickly.	To	control	the	TTL	value	for	cached	resources,	you	can	use	the
duration	attribute	of	the	add	collection	for	the
system.webServer/caching/profiles	element.

TIP  If	you	have	a	dedicated	server	running	only	IIS,	you	might	want	to
consider	allowing	resources	to	remain	in	cache	until	they	are	overwritten
(due	to	maxCacheSize	limits).	In	this	case,	you	would	set	an	unlimited
duration	by	using	a	value	of	00:00:00.

Consider	modifying	the	ASP	template	cache. The	ASP	template	cache
controls	the	number	of	ASP	pages	that	are	cached	in	memory.	By	default,	IIS
will	cache	up	to	2,000	files.	This	typically	is	enough	on	a	site	with	lots	of
ASP	content.	Template	cache	entries	can	reference	one	or	more	entries	in	the
ASP	Script	Engine	Cache.	To	control	template	caching,	you	set	the
maxDiskTemplateCacheFiles	attribute	of	the	system.webServer/asp/cache
element.
Consider	modifying	the	script	engine	cache. The	ASP	Script	Engine
Cache	is	an	area	of	memory	directly	accessible	to	the	scripting	engines	used
by	IIS.	As	such,	the	preferred	area	for	IIS	to	retrieve	information	from	is	the
script	engine	cache.	By	default,	the	script	engine	cache	can	hold	up	to	250
entries.	To	control	script	engine	caching,	you	set	the	scriptEngineCacheMax
attribute	of	the	system.webServer/asp/cache	element.

Chapter	8
IIS	Backup	and	Recovery

When	you	back	up	an	Internet	Information	Services	(IIS)	server,	you	need	to	look
at	the	IIS	configuration	in	addition	to	the	system	configuration.	This	means	that	you
must	do	the	following:

Save	the	IIS	configuration	whenever	you	change	the	properties	of	the	IIS
installation.
Maintain	several	configuration	backups	as	an	extra	precaution.
Periodically	back	up	the	server	by	using	a	comprehensive	backup	procedure,
such	as	the	one	outlined	in	this	chapter.

Backing	up	an	IIS	server	by	using	this	technique	gives	you	several	recovery
options.	You	can:

Recover	the	IIS	configuration	settings	for	sites	and	virtual	servers	by	using
the	IIS	configuration	backup	you’ve	created.
Recover	a	corrupted	IIS	installation	by	reinstalling	IIS	and	then	recovering
the	last	working	IIS	configuration.
Restore	the	server,	its	data	files,	and	its	IIS	configuration	by	recovering	the
system	from	archives.
Perform	a	partial	server	restore	to	retrieve	missing	or	corrupted	files	from
archives.

The	sections	that	follow	examine	backing	up	and	recovering	IIS	server
configurations	and	data	files.

Backing	Up	the	IIS	Configuration

Backing	up	the	IIS	configuration	is	an	important	part	of	any	Web	administrator’s
job.	Before	you	get	started,	take	a	moment	to	learn	the	key	concepts	that’ll	help
you	every	step	of	the	way.

Understanding	IIS	Configuration	Backups

IIS	configuration	backups	contain	metadata	that	describes	the	configuration
settings	used	by	IIS	modules,	Web	sites,	applications,	and	virtual	directories.	IIS
uses	the	metadata	to	restore	values	for	all	resource	properties	on	a	server.	IIS	also
uses	this	information	to	maintain	the	run	state	of	the	server.	Therefore,	if	you	save
the	IIS	configuration	and	then	restore	the	configuration	later,	the	IIS	configuration
settings	are	restored	and	the	IIS	resources	are	also	returned	to	their	original	state.

I	recommend	that	you	create	an	IIS	configuration	backup	every	time	you	make	IIS
configuration	changes	and	before	you	make	major	changes	that	affect	the
availability	of	resources.	Because	IIS	has	new	configuration	architecture,	creating
and	managing	IIS	configuration	backups	is	fundamentally	different	than	with
previous	editions	of	IIS.	Throughout	this	chapter,	I’ll	refer	to	backups	of	IIS
server	configuration	and	content	configuration	simply	as	IIS	configuration
backups.	However,	the	distinction	between	server	configuration	and	content
configuration	is	an	important	one.

Server	configuration	backups	include:

Automated	backups	of	applicationHost.config	created	by	IIS	and	stored	in	the
configuration	history	under	%SystemDrive%\Inetpub\History	by	default
Administrator	generated	backups	of	the	server’s	current	configuration	and
running	state	stored	under	%SystemRoot%\System32\Inetsrv\Backup	by
default

IIS	automatically	creates	a	backup	of	applicationHost.config	when	you	make
configuration	changes.	This	history	captures	the	last	10	configuration	changes
made	on	the	server	in	sequentially	numbered	CFGHISTORY	subdirectories	of
%SystemDrive%\Inetpub\History.	When	you	change	the	configuration,	IIS	does	the
following:

1. Deletes	the	oldest	configuration	history	subdirectory	under
%SystemDrive%\Inetpub\History.

2. Creates	a	new	configuration	history	subdirectory	under
%SystemDrive%\Inetpub\History.

3. Writes	a	copy	of	applicationHost.config	to	the	newly	created	subdirectory.

As	you	continue	to	make	configuration	changes,	IIS	does	not	track	every
individual	change.	Instead,	after	the	first	configuration	change,	IIS	stores	the
current	configuration	every	2	minutes.	Thus,	if	you	make	a	series	of	changes	to	the
IIS	configuration	over	a	period	of	10	minutes,	IIS	would	track	the	configuration
changes	by	creating	up	to	five	configuration	history	files.

As	an	IIS	administrator,	you	can	create	backups	of	an	IIS	server’s	current
configuration	and	running	state.	IIS	stores	these	backups	by	default	in	a
subdirectory	of	%SystemRoot%\System32\Inetsrv\Backup.	Administrator-
generated	backups	generally	can	include	the	following	configuration	files:

Administration.config Stores	the	current	configuration	for	delegation	and
management
ApplicationHost.config Stores	the	current	configuration	and	running	state
of	the	server	plus	all	applications,	application	pools,	and	virtual	directories
created	on	the	server
Mbschema.xml Stores	the	metabase	schema	for	legacy	IIS
Metabase.xml Stores	the	metabase	for	legacy	IIS
Redirection.config Stores	redirection	configuration

NOTE  IIS	10	uses	the	metabase	only	for	backwards	compatibility	with
FTP	services	as	designed	for	legacy	IIS.	Metabase	files	are	stored	as	part	of
the	configuration	only	when	you’ve	installed	the	IIS	metabase	compatibility
and	FTP	Server	role	services.

Content	configuration	backups	include	copies	of	the	Web.config	files	that	modify	
the	default	configuration	for	Web	site,	application,	and	directory	roots.	Neither	the	
automated	IIS	backup	process	nor	the	manual	administrator	backup	process	
creates	backup	copies	of	Web.config	files.	Because	of	this,	you	must	use	a	
separate	backup	or	copy	process	to	create	copies	of	Web.config	files.

Assuming	that	you’ve	installed	the	IIS	server	root	under	%SystemDrive%\Inetpub	
(per	the	default	configuration,	you	can	quickly	obtain	a	list	of	all	Web.config	files	
used	on	a	server	by	running	the	command-line	script	shown	in	Listing	8-1.

LISTING	8-1	 Script	for	Web.config	Files
@echo	off
@title	"Listing	IIS	web.config	files	to	working.txt"
cls
color	07
echo	**	>	working.txt

echo	"Listing	of	web.config	files	as	of:"	>>	working.txt
date	/t	>>	working.txt
echo	**	>>	working.txt
echo	*	>>	working.txt
for	/r	%SystemDrive%\inetpub	% 	%B	in	(web.config)	do
(echo	%%B	>>	working.txt)
echo	Done...listing	contents	of	working.txt...
echo	*
type	working.txt
echo	*

Sample	Output
**	
"Listing	of	web.config	files	as	of:"	
Fri	12/21/2015
**	
*
C:\inetput\wwwroot\web.config
C:\inetput\wwwroot\Sales\web.config
C:\inetput\wwwroot\Support\web.config
C:\inetput\wwwroot\Reports\web.config
*

The	heart	of	this	basic	script	is	the	following	For	loop:

for	/r	%SystemDrive%\inetpub	%%B	in	(web.config)	do	(echo	%%B	>>
working.txt)

This	For	loop	looks	recursively	in	subdirectories	of	%SystemDrive%\Inetpub	for
instances	of	files	named	Web.config	and	then	writes	the	full	path	of	each	file	in
turn	to	a	text	file	in	the	current	directory	called	working.txt.	If	you	created	the	IIS
server	root	in	another	location,	simply	substitute	that	location	for
%SystemDrive%\Inetpub	when	running	the	script.	%%B	is	an	iteration	variable
that	tracks	the	current	working	value.	In	this	script,	%%B	tracks	an	instance	of	a
file	path	where	there’s	a	Web.config	file	on	the	server.

The	other	statements	in	the	script	are	there	for	aesthetics.	They	provide	additional
details	on	the	command	line	and	in	the	working	file	itself.	Knowing	this,	you	could
also	run	the	For	loop	at	the	command	prompt	by	typing	the	following:

for	/r	%SystemDrive%\inetpub	%B	in	(web.config)	do	(echo	%B	>>
working.txt)

NOTE  See	the	syntax	change	for	the	iteration	variable.	You	reference

iteration	variables	in	scripts	by	using	%%	notation	and	at	a	command	line	by
using	%	notation.

IIS	configuration	backups	can	help	you	in	many	situations.	You	can:

Recover	deleted	resources References	to	all	site,	application	pool,	virtual
directory,	and	application	instances	running	on	the	server	are	stored	with	the
configuration	backup.	If	you	delete	a	site,	application	pool,	virtual	directory,
or	application,	you	can	restore	the	necessary	resource	references	by	restoring
the	configuration	files.
Restore	resource	properties All	configuration	settings	of	sites,
application	pools,	virtual	directories,	and	applications	are	stored	in	the
configuration	backup.	If	you	change	properties,	you	can	recover	the	previous
IIS	settings	from	backup.
Recover	global	settings	and	module	configuration Global	properties	and
module	configuration	settings	are	stored	in	configuration	backups.	This	means
that	you	can	recover	default	settings	for	the	server	and	modules	from	backup.
Rebuild	a	damaged	IIS	installation If	the	IIS	installation	is	corrupted	and
you	can’t	repair	it	through	normal	means,	you	can	rebuild	the	IIS	installation.
You	do	this	by	uninstalling	IIS,	reinstalling	IIS,	and	then	using	the
configuration	backup	to	restore	the	IIS	settings.	See	the	“Rebuilding
Corrupted	IIS	Installations”	section	of	this	chapter	for	details.

Backup	files	created	by	IIS	are	simply	copies	of	the	original	configuration	files.
This	means	that	you	can	open	them	in	a	standard	text	editor	to	view	or	modify
their	settings	as	you	would	with	any	of	the	other	configuration	files.

Managing	the	IIS	Configuration	History

You	can	manage	the	way	IIS	creates	automatic	backups	of	configuration	changes
by	running	the	IIS	command-line	administration	tool’s	Set	Config	command	and
the	configHistory	section	of	the	applicationHost.config	file.	The	available
attributes	for	this	configuration	section	are:

Enabled Controls	whether	configuration	history	tracking	is	turned	on	or	off.
By	default,	this	attribute	is	set	to	True.	To	turn	off	configuration	history
tracking,	set	this	attribute	to	False.

NOTE  Typically,	you’d	want	to	turn	off	the	configuration	history	only
when	you	are	doing	extensive	testing	or	debugging	of	applications	and	don’t
want	any	of	these	changes	tracked.	When	you	are	finished	testing	or
debugging,	you	should	re-enable	configuration	history.

Path Sets	the	directory	to	which	IIS	writes	configuration	history.	The
default	is	%SystemDrive%\Inetpub\History.
maxHistories Sets	the	maximum	number	of	history	files	to	track.	The
default	is	10.
Period Sets	the	interval	at	which	IIS	writes	configuration	history	as	you
continue	to	make	changes.	The	default	interval	is	every	2	minutes.

NOTE  You	can	use	maxHistories	and	Period	to	optimize	history	tracking
for	the	way	you	work	with	IIS.	For	example,	if	you	want	to	maintain	more
history	information	and	find	that	you	often	modify	history	over	extended
periods,	you	may	want	to	increase	maxHistories	and	increase	the	write
period.	In	this	way,	IIS	will	retain	more	history	files	and	make	fewer	history
files	when	you	modify	the	running	configuration	over	long	periods.

Sample	8-1	provides	the	syntax	and	usage	for	working	with	configuration	history.
Note	that	period	values	are	set	in	hh:mm:ss	format	where	the	h	position	is	for
hours,	the	m	position	is	for	minutes,	and	the	s	position	is	for	seconds.

SAMPLE	8-1 	Managing	the	Configuration	History	Syntax	and	Usage

Syntax
appcmd	set	config	/section:configHistory
[/enabled:	true|false]	[/path:	"DestPath"]
[/maxHistories:	"NumHistories"]

[/period:	"HH:MM:SS"

Usage	to	Modify	History	Tracking
appcmd	set	config	/section:configHistory
/maxHistories:	"25"	/period:	"00:05:00"

Usage	to	Disable	History	Tracking
appcmd	set	config	/section:configHistory	/enabled:false

Viewing	IIS	Configuration	Backups

IIS	stores	configuration	backups	by	default	in	the
%SystemDrive%\Inetpub\History	directory.	Each	subdirectory	in	this	directory
contains	the	files	for	a	specific	configuration	backup.	By	using	the	IIS	command-
line	administration	tool,	you	can	list	configuration	backups	by	running	the	List
Backup	command.	Sample	8-2	provides	the	syntax	and	usage.	As	the	syntax
shows,	you	can	list	all	backups	or	a	specific	backup.	You	list	a	specific	backup	to
determine	if	that	specific	backup	exists.	Appcmd	doesn’t	provide	other	details
about	a	backup,	however.

SAMPLE	8-2 	List	Backup	Syntax	and	Usage

Syntax
appcmd	list	backup	[/backup.name:]"BackupName"]

Usage
appcmd	list	backup

appcmd	list	backup	"101217_583921"

Creating	IIS	Configuration	Backups

Each	IIS	server	has	a	configuration	that	must	be	backed	up	to	ensure	that	IIS	can	
be	recovered	in	case	of	problems.	You	can	create	backups	at	the	server,	site,	or	
virtual	directory	level.

At	the	server	level,	you	create	a	configuration	backup	of	all	sites,	application	
pools,	applications,	and	virtual	directories	on	the	server	by	using	the	IIS	
command-line	administration	tool	and	the	Add	Backup	command.	Sample	8-3	
provides	the	syntax	and	usage.	If	you	do	not	provide	a	backup	name,	AppCmd	
generates	a	name	using	a	date	time	stamp	that	tracks	the	year,	month,	date,	and	time	
to	the	second,	such	as	20170415T143535.

SAMPLE	8-3	 Add	Backup	Syntax	and	Usage

Syntax
appcmd	add	backup	[/name:"BackupName"]

Usage
appcmd	add	backup

appcmd	add	backup	/name:"10-12-17_CurrentSet"

After	you	back	up	the	IIS	configuration,	you	should	also	back	up	the	content	
configuration,	that	is,	the	individual	Web.config	files	for	sites,	applications,	and	
virtual	directories.	Listing	8-1	provides	a	script	for	listing	each	Web.config	file	
on	the	server.

Removing	IIS	Configuration	Backups

As	you	create	configuration	backups,	you	create	more	and	more	configuration
backup	subdirectories	and	files	on	the	server.	You	can	delete	backups	by
removing	the	related	subdirectories,	which	are	stored	by	default	under
%SystemDrive%\Inetpub\History.

By	using	the	IIS	command-line	administration	tool,	you	can	delete	individual
configuration	backups	by	running	the	Remove	Backup	command.	Sample	8-4
provides	the	syntax	and	usage.	As	the	syntax	shows,	you	must	provide	the	name	of
the	backup	configuration	to	delete.

SAMPLE	8-4 	Delete	Backup	Syntax	and	Usage

Syntax
appcmd	delete	backup	[/backup.name:]"BackupName"

Usage
appcmd	delete	backup

appcmd	delete	backup	/backup.name:"10-12-17_CurrentSet"

Restoring	IIS	Server	Configurations

You	can	restore	IIS	from	backup	configuration	files.	When	you	do	this,	the
previous	property	settings	and	state	are	restored	for	all	sites,	application	pools,
applications,	and	virtual	directories.	Recovering	the	configuration	won’t	repair	a
corrupted	IIS	installation.	To	repair	a	corrupted	installation,	follow	the	technique
outlined	in	the	“Rebuilding	Corrupted	IIS	Installations”	section	of	this	chapter.

When	you	restore	IIS	from	a	backup	configuration,	the	IIS	command-line
administration	tool	stops	the	server,	copies	the	backup	configuration	files	over	the
existing	configuration	files,	and	then	starts	the	server.	IIS	then	loads	the	current	run
state	from	these	files	on	startup.	Stopping	and	then	starting	IIS	is	a	precaution	to
ensure	that	the	full	state	of	the	server	is	reset.	If	AppCmd	did	not	stop	and	start	the
server,	some	settings	that	require	restart	would	not	be	applied	until	you	manually
restarted	the	server	process.	For	example,	if	the	access	log	settings	in	the	backup
configuration	are	different	from	those	in	the	running	configuration,	the	restored
access	log	settings	are	applied	only	when	the	server	process	is	restarted.

TIP  Restoring	the	IIS	configuration	doesn’t’	restore	content	configuration,
which	may	include	additional	settings	that	need	to	be	restored.	Thus,	to
restore	the	configuration	fully,	you	many	need	to	copy	the	backup	Web.config
files	to	their	original	locations.

By	using	the	IIS	command-line	administration	tool,	you	can	restore	a	configuration	
backup	by	running	the	Restore	Backup	command.	Sample	8-5	provides	the	syntax	
and	usage.	As	the	syntax	shows,	you	must	provide	the	name	of	the	backup	
configuration	to	restore.	Optionally,	you	can	specify	whether	AppCmd	stops	the	
server	before	restoring	the	configuration.	Because	stopping	and	starting	the	server	
causes	all	server	processes	to	be	recycled,	this	could	cause	issues	with	user	
sessions	and	applications.

SAMPLE	8-5	 Restore	Backup	Syntax	and	Usage

Syntax
appcmd	restore	backup	[/backup.name:]"BackupName"	[/stop:true|false]

Usage
appcmd	restore	backup	"10-12-17_CurrentSet"

appcmd	restore	backup	"10-12-17_CurrentSet"	/stop:false

Rebuilding	Corrupted	IIS	Installations

A	corrupt	IIS	installation	can	cause	problems	with	your	IIS	sites,	application
pools,	applications,	and	virtual	directories.	Resources	might	not	run.	IIS	might	not
respond	to	commands.	IIS	might	freeze	intermittently.	To	correct	these	problems,
you	might	need	to	rebuild	the	IIS	installation.	Rebuilding	the	IIS	installation	is	a
lengthy	process	that	requires	a	complete	outage	of	the	server.	The	outage	can	last
from	5	to	15	minutes	or	more.

You	rebuild	a	corrupt	IIS	installation	by	completing	the	following	steps:

1. Log	on	locally	to	the	computer	on	which	you	want	to	rebuild	IIS.	Make	sure
to	use	an	account	with	Administrator	privileges.

2. Create	a	new	backup	of	the	server	configuration	and	content	configuration
by	using	the	techniques	discussed	previously	in	this	chapter.

3. Start	Server	Manager	by	clicking	the	Server	Manager	icon	on	the	taskbar	or
by	clicking	the	Server	Manager	tile	on	the	Start	screen.

4. In	Server	Manager,	click	Manage,	and	then	select	Remove	Roles	And
Features.	This	starts	the	Remove	Roles	And	Features	Wizard.

5. On	the	Remove	Server	Roles	page,	Setup	selects	the	currently	installed
roles.	To	remove	a	role,	clear	the	related	check	box.	When	you	are	finished
selecting	roles	to	remove,	click	Next	twice,	and	then	click	Remove.

6. In	Server	Manager,	click	Manage,	and	then	select	Add	Roles	And	Features.
This	starts	the	Add	Roles	And	Features	Wizard.

7. On	the	Select	Server	Roles	page,	Setup	makes	the	currently	selected	roles
dimmed	so	that	you	cannot	select	them.	To	add	a	role,	select	it	in	the	Roles
list.	When	you	are	finished	selecting	roles	to	add,	click	Next	twice,	and	then
click	Install.

8. Restore	the	server	configuration	by	using	the	IIS	command-line
administration	tool	and	the	Restore	Backup	command.	This	restores	the	IIS
server	configuration.

9. Restore	the	content	configuration	by	copying	the	Web.config	files	to	the
appropriate	locations.

Backing	Up	and	Recovering	Server	Files

Windows	Server	provides	a	utility	called	Windows	Server	Backup	for	creating
server	backups.	You	use	Windows	Server	Backup	to	perform	common	backup	and
recovery	tasks.	Other	features	include	startup	and	recovery	options	and	a	facility
for	making	recovery	disks.

NOTE  The	focus	of	this	book	is	on	IIS	administration	and	not	Windows
Server	administration.	A	full	discussion	of	backup,	recovery,	and
troubleshooting	the	operating	system	is	beyond	the	scope	of	this	book.

Turning	on	the	Backup	Feature

Windows	Server	Backup	is	provided	as	an	add-on	component	for	the	operating
system.	In	earlier	versions	of	Microsoft	Windows,	you	use	the	Add/Remove
Windows	Components	application	of	Add	Or	Remove	Programs	to	add	or	remove
operating	system	components.	In	Windows	Server,	operating	system	components
are	considered	Windows	features	that	can	be	turned	on	or	off	rather	than	added	or
removed.

To	turn	on	the	Backup	feature,	follow	these	steps:

1. Start	Server	Manager	by	clicking	the	Server	Manager	icon	on	the	taskbar	or
by	clicking	the	Server	Manager	tile	on	the	Start	screen.

2. In	Server	Manager,	select	the	Local	Server	node	to	view	a	list	of	installed
features	in	the	Roles	And	Features	section	in	the	main	pane.	If	Windows
Server	Backup	is	not	listed	as	an	installed	feature,	click	Tasks	and	then
click	Add	Roles	And	Features.	This	starts	the	Add	Features	Wizard.

3. On	the	Select	Features	page,	select	the	Windows	Server	Backup	check	box.
4. Click	Next,	and	then	click	Install.
5. When	the	installation	process	finishes,	click	Close	to	close	the	Add

Features	Wizard.

You	can	now	use	Windows	Server	Backup	on	the	server.

Working	with	Windows	Server	Backup

Once	you’ve	turned	on	the	Windows	Server	Backup	feature,	you	can	access	the
related	utility	on	the	Tools	menu	in	Server	Manager.	The	first	time	you	use
Windows	Server	Backup,	you	may	want	to	configure	basic	performance	settings
and	create	a	backup	schedule.	Basic	performance	settings	control	whether
Windows	Server	Backup	performs	full	or	incremental	backups	by	default.	A
backup	schedule	allows	you	to	configure	Windows	Server	Backup	to	back	up	the
server	automatically	according	to	a	recurring	schedule,	such	as	once	daily	or
twice	daily.	You	also	can	back	up	a	server	manually.

To	perform	backup	and	recovery	operations,	you	must	have	certain	permissions
and	user	rights.	Members	of	the	Administrators	and	Backup	Operators	groups
have	full	authority	to	back	up	and	restore	any	type	of	file,	regardless	of	who	owns
the	file	and	the	permissions	set	on	it.	File	owners	and	those	that	have	been	given
control	over	files	can	also	back	up	files,	but	only	those	that	they	own	or	those	for
which	they	have	Read,	Read	And	Execute,	Modify,	or	Full	Control	permissions.

NOTE  Keep	in	mind	that	although	local	accounts	can	work	only	with	local
systems,	domain	accounts	have	domain-wide	privileges.	Therefore,	a
member	of	the	local	administrators	group	can	work	with	files	only	on	the
local	system,	but	a	member	of	the	domain	administrators	group	can	work
with	files	throughout	the	domain.

Windows	Server	Backup	can	perform	two	general	types	of	backups:

Full
Incremental

With	a	full	(normal	backup,	Windows	Server	Backup	backs	up	all	files	that	have	
been	selected	and	then	clears	the	archive	bit.	If	a	file	is	later	changed,	the	
operating	system	sets	the	archive	bit	to	mark	the	file	as	needing	backup.	With	full	
backups,	you	always	have	a	full	set	of	data,	but	the	backup	process	takes	longer	
than	with	incremental	backups	because	you	are	backing	up	more	data.	When	you	
run	only	full	backups,	you	restore	a	server	by	restoring	the	most	recent	full	
backup.

With	an	incremental	backup,	Windows	Server	Backup	backs	up	only	files	that

have	changed	since	the	most	recent	full	or	incremental	backup.	Windows	Server	
Backup	determines	that	a	file	needs	to	be	backed	up	incrementally	based	on	the	
file	having	its	archive	bit	set.	With	incremental	backups,	the	first	backup	on	the	
server	will	always	be	a	full	backup	and	then	successive	backups	will	be	
incremental	backups.	Because	incremental	backups	back	up	only	files	that	have	
changed	since	the	most	recent	full	or	incremental	backup,	incremental	backups	are	
usually	smaller	than	full	backups	and	can	therefore	be	created	more	quickly.

In	most	cases,	you’ll	want	to	create	full	backups	of	a	server	at	least	once	a	week	
and	then	supplement	this	with	daily	incremental	backups.	Restoring	a	server	from	
incremental	backups	can	be	much	slower	than	restoring	a	server	from	a	full	
backup.	With	incremental	backups,	you	restore	a	server	by	restoring	the	most	
recent	full	backup	and	then	restoring	each	incremental	backup	created	since	the	
most	recent	full	backup.	For	example,	you	create	a	full	backup	on	Sunday	and	
incremental	backups	Monday	through	Saturday.	If	the	server	fails	on	Friday,	prior	
to	creating	Friday’s	incremental	backup,	you	restore	the	server	by	applying	
Sunday’s	full	backup	and	the	incremental	backups	from	Monday,	Tuesday,	
Wednesday,	and	Thursday.

Although	you	can	back	up	to	shared	volumes	and	DVD	media	manually,	you	will	
need	a	separate,	dedicated	hard	disk	for	running	scheduled	backups.	After	you	
configure	a	disk	for	scheduled	backups,	the	backup	utilities	automatically	manage	
the	disk	usage	and	reuse	the	space	of	older	backups	when	creating	new	backups.	
Once	you	schedule	backups,	you’ll	need	to	check	periodically	to	ensure	that	
backups	are	being	performed	as	expected	and	that	the	backup	schedule	meets	
current	needs.

Setting	Basic	Performance	Options

By	default,	Windows	Server	Backup	always	performs	a	full	backup	of	all	physical
drives	on	the	server.	Both	internal	and	external	drives	are	included	in	the	backup
as	long	as	the	drives	are	formatted	as	NTFS.

You	can	change	the	default	settings	so	that	Windows	Backup	Server	performs
incremental	backups	of	all	internal	drives	on	the	server	or	selectively	performs	a
full	or	incremental	backup	depending	on	the	drive.	With	full	backups,	you	can
perform	a	full	Volume	Shadow	Copy	Service	(VSS)–based	backup	or	a	copy
backup.	With	full	VSS	backups,	VSS	is	used	to	perform	block-level	(image)
backups,	which	ensures	that	the	backup	includes	files	that	are	being	written	to	by
the	operating	system	or	user	processes,	such	as	application	data.	When	you
perform	a	copy	backup,	application	data	is	not	included	in	the	backup,	and	you
then	also	must	use	a	third-party	backup	utility	to	back	up	applications.	With
scheduled	backups,	Windows	performs	copy	backups.	With	manual	backups,	you
can	specify	whether	you	want	to	perform	a	full	VSS	or	copy	backups.	Although
Windows	Server	Backup	does	not	currently	enable	you	to	specify	that	you	want	to
perform	a	full	backup	weekly	or	monthly	(for	instance),	and	then	incremental
backups	once	or	twice	daily	(for	instance),	this	functionality	probably	will	be
added	in	a	future	service	pack.

You	can	view	or	change	the	default	options	by	completing	the	following	steps:

1. On	the	Tools	menu	in	Server	Manager,	click	Windows	Server	Backup.
2. In	the	Actions	Pane	or	on	the	Action	menu,	select	Configure	Performance

Settings.	The	Optimize	Backup	Performance	dialog	box	appears.
3. Choose	an	appropriate	default	backup	option.	If	you	choose	Custom,	you	can

set	the	backup	options	and	type	for	each	supported	drive.	With	a	custom
backup	option,	you	also	can	exclude	drives.	However,	drives	that	contain
the	operating	system	or	applications	must	always	be	selected	for	backup.

4. Click	OK	to	save	the	default	settings.

Scheduling	Server	Backups

Scheduling	a	backup	allows	you	to	back	up	a	server	automatically	according	to	a
specified	schedule.	You	create	a	backup	schedule	for	a	server	by	completing	the
following	steps:

1. On	the	Tools	menu	in	Server	Manager,	click	Windows	Server	Backup.
2. In	the	Actions	Pane	or	on	the	Action	menu,	select	Backup	Schedule.	When

the	Backup	Schedule	Wizard	starts,	click	Next.
3. You	can	use	the	Select	Backup	Configuration	page	to	perform	either	a	full

server	backup,	which	includes	all	supported	drives,	or	a	custom	server
backup,	in	which	some	drives	are	excluded	from	the	backup.	Note	that	the
size	of	the	full	backup	is	listed.	To	continue,	do	one	of	the	following:
To	perform	a	full	server	backup	of	all	supported	drives	to	include	both
internal	and	external	drives,	select	Full	Server,	and	then	click	Next.	Drives
that	are	formatted	as	NTFS	or	ReFS	are	included	in	the	backup	set.	Drives
that	are	formatted	as	FAT,	FAT32,	or	another	file	system	are	not	included	in
the	backup	set.
To	selectively	backup	drives,	select	Custom,	and	then	click	Next.	On	the
Select	Items	For	Backup	page,	click	Add	Items,	and	then	select	the	check
boxes	for	the	drives	you	want	to	include	and	clear	the	check	boxes	for	drives
you	want	to	exclude.	You	must	always	include	drives	that	contain	the
operating	system	and	applications.

4. On	the	Specify	Backup	Time	page,	specify	how	often	you	want	to	run
backups.	You	can	schedule	backups	to	run	once	a	day	at	a	specified	time	or
multiple	times	a	day	at	specified	times.	Click	Next.

TIP When	scheduling	your	backups,	keep	in	mind	that	you	typically	will
want	to	perform	backups	during	off-peak	times	because	the	backup	process
could	result	in	reduced	responsiveness	to	user	requests.	Also	keep	in	mind
that	a	full	backup	of	a	server	can	take	several	hours	to	complete	(as	can
incremental	backups	that	include	many	gigabytes	of	data).

5. On	the	Specify	Destination	Type,	specify	whether	you	want	to	backup	to	a
dedicated	hard	disk,	a	designated	volume	or	shared	network	folder	and	then
click	Next.	You’ll	then	need	to	specify	the	destination	disk,	volume	or
shared	folder	to	use.	For	optimal	performance,	a	dedicated	disk	gives	the

best	results,	but	means	the	disk	can’t	be	used	for	other	purposes.
6. On	the	Confirmation	page,	review	the	backup	schedule	and	details,	and	then

click	Finish.	The	server	must	be	turned	on	at	the	scheduled	run	time	for
automated	backups	to	work.

Backing	up	a	Server

You	can	use	the	Backup	Wizard	to	back	up	a	server	manually	at	any	time	by
completing	the	following	steps:

1. On	the	Tools	menu	in	Server	Manager,	select	Windows	Server	Backup.
2. In	the	Actions	Pane	or	on	the	Action	menu,	select	Backup	Once.
3. On	the	Backup	Options	page,	choose	Different	Options,	and	then	click	Next.
4. On	the	Specify	Backup	Configuration	page,	you	can	choose	to	perform	either

a	full	server	backup	that	includes	all	supported	drives	or	a	custom	server
backup	in	which	some	drives	are	excluded	from	the	backup.	To	continue,	do
one	of	the	following,	and	then	click	Next:
To	perform	a	full	server	backup	of	all	supported	drives	to	include	both
internal	and	external	drives,	select	Full	Server,	and	then	click	Next.	Drives
that	are	formatted	as	NTFS	or	ReFS	are	included	in	the	backup	set.	Drives
that	are	formatted	as	FAT,	FAT32,	or	another	file	system	are	not	included	in
the	backup	set.
To	selectively	back	up	drives,	select	Custom,	and	then	click	Next.	On	the
Select	Items	For	Backup	page,	click	Add	Items,	then	select	the	check	boxes
for	the	drives	you	want	to	include	and	clear	the	check	boxes	for	drives	you
want	to	exclude.	You	must	always	include	drives	that	contain	the	operating
system	and	applications.

5. You	can	store	the	backup	on	a	local	drive	or	on	a	remote	shared	folder.	With
either	selection,	you’ll	need	to	specify	a	backup	location.

6. On	the	Confirmation	page,	review	the	backup	schedule	and	details,	and	then
click	Backup.	The	Backup	Once	Wizard	will	then	create	a	shadow	copy	of
the	drives	you	are	backing	up.	This	allows	the	wizard	to	back	up	files	that
are	being	written	to	by	the	operating	system	or	user	processes.	Click
Backup.

On	the	Backup	Progress	page,	you’ll	see	the	status	of	the	backup	and	the	amount	of	
data	transferred.	The	backup	is	complete	when	the	backup	status	reaches	100	
percent.	If	you	click	Close,	the	backup	will	continue	to	run	in	the	background,	and	
you	can	review	the	final	backup	status	for	errors	or	other	issues	in	Server	
Manager.	Simply	double-click	the	backup	entry	under	Messages.

Protecting	a	Server	Against	Failure

Backing	up	a	server	is	one	way	of	protecting	a	server	against	failure.	Windows
Server	has	a	built-in	recovery	feature	that	automatically	runs	if	a	server	fails	to
start	or	experiences	a	fatal	system	error	(also	known	as	a	STOP	error).	For	some
of	these	features	to	work,	you	may	need	the	original	Windows	installation	disk.
Additionally,	computer	manufacturers	increasingly	are	including	recovery	features
as	part	of	a	comprehensive	hardware	option.	These	features	can	also	be	used	to
recover	the	operating	system	to	a	bootable	state.	If	these	features	fail,	Windows
Server	2012	and	Windows	Server	2012	R2	provide	other	protection	features,
including:

Startup	and	recovery	options
Recovery	disks

The	sections	that	follow	discuss	how	to	configure	these	recovery	options.

Configuring	Recovery	Options

Startup	and	recovery	options	control	the	way	Windows	Server	starts	and	handles
failures.	You	can	manage	startup	and	recovery	options	by	completing	these	steps:

1. From	the	desktop,	press	the	Windows	key	+	I,	then	click	Control	Panel.	In
Control	Panel,	click	System	And	Security,	and	then	click	System.

2. In	the	System	console,	in	the	left	pane,	click	Advanced	System	Settings.	On
the	Advanced	tab,	under	Startup	And	Recovery,	click	Settings.	This	opens
the	Startup	And	Recovery	dialog	box.

3. If	the	server	has	multiple	bootable	operating	systems,	you	can	set	the	default
operating	system	by	selecting	one	of	the	operating	systems	in	the	Default
Operating	System	drop-down	list.	These	options	change	the	configuration
settings	that	Windows	Boot	Manager	uses.

4. At	the	startup	of	a	computer	with	multiple	bootable	operating	systems,
Windows	Server	displays	the	startup	configuration	menu	for	30	seconds	by
default.	To	boot	immediately	to	the	default	operating	system,	clear	the	Time
To	Display	List	Of	Operating	Systems	check	box.	To	display	the	available
options	for	a	specific	amount	of	time,	select	the	Time	To	Display	List	Of
Operating	Systems	check	box,	and	then	set	the	desired	time	delay	in
seconds.

5. When	the	system	is	in	a	recovery	mode	and	is	booting,	a	list	of	recovery
options	might	appear.	To	boot	immediately	using	the	default	recovery
option,	clear	the	Time	To	Display	Recovery	Options	When	Needed	check
box.	To	display	the	available	recovery	options	for	a	specific	amount	of
time,	select	the	Time	To	Display	Recovery	Options	When	Needed	check
box,	and	then	set	a	time	delay	in	seconds.

6. System	Failure	options	control	what	happens	when	the	system	encounters	a
STOP	error.	The	available	options	for	the	System	Failure	area	are	as
follows:

Write	an	Event	to	the	System	Log Logs	the	error	in	the	System	log,
which	allows	you	to	review	the	error	later	using	the	Event	Viewer.
Automatically	Restart Select	this	check	box	to	have	the	system	attempt	to
reboot	when	a	fatal	system	error	occurs.
Write	Debugging	Information Choose	the	type	of	debugging	information	to
write	to	a	dump	file	if	a	fatal	error	occurs.	You	can	then	use	the	dump	file	to
diagnose	system	failures.
Dump	File Sets	the	location	for	the	dump	file.	The	default	dump	locations
are	%SystemRoot%\Minidump	for	small	memory	dumps	and
%SystemRoot%\MEMORY.DMP	for	all	other	memory	dumps.
Overwrite	Any	Existing	File Ensures	that	any	existing	dump	files	are
overwritten	if	a	new	STOP	error	occurs.

7. Click	OK	to	save	your	settings.

The	Windows	Recovery	Environment	includes	the	following	tools:

Windows	Complete	PC	Restore Allows	you	to	recover	a	server’s
operating	system	or	perform	a	full	system	recovery.	With	an	operating	system
or	full	system	recovery,	make	sure	your	backup	data	is	available	and	that	you
can	log	on	with	an	account	that	has	the	appropriate	permissions.	With	a	full
system	recovery,	keep	in	mind	that	existing	data	that	was	not	included	in	the
original	backup	will	be	deleted	when	you	recover	the	system,	including	any
in-use	volumes	that	were	not	included	in	the	backup.
Windows	Memory	Diagnostics	Tools Allows	you	to	diagnose	a	problem
with	the	server’s	physical	memory.	Three	different	levels	of	memory	testing
can	be	performed:	basic,	standard,	or	exhaustive.

You	can	also	access	a	command	prompt.	This	command	prompt	gives	you	access
to	the	command-line	tools	available	during	installation	as	well	as	to	these

additional	programs:

On-screen	Keyboard	(x:\sources\setuposk.exe) Allows	you	to	enter
keystrokes	using	the	on-screen	keyboard.
Rollback	wizard	(x:\sources\rollback.exe) Normally	the	Rollback	wizard
starts	automatically	if	Windows	Setup	encounters	a	problem	during
installation.
Startup	Repair	wizard	(x:\sources\recovery\StartRep.exe) Normally
this	tool	starts	automatically	on	boot	failure	if	Windows	detects	an	issue	with
the	boot	sector,	the	boot	manager,	or	the	boot	configuration	data	(BCD)	store.
Startup	Recovery	Options	(x:\sources\recovery\recenv.exe) Allows
you	to	start	the	Startup	Recovery	Options	wizard.	If	you	previously	entered
the	wrong	recovery	settings,	you	can	provide	different	options.

You	can	recover	a	server’s	operating	system	or	perform	a	full	system	recovery	by
following	these	steps:

1. Insert	the	recovery	disc	into	the	DVD	drive	and	turn	on	the	computer.	If
needed,	press	the	required	key	to	boot	from	the	disc.	The	Install	Windows
Wizard	should	appear.

2. Specify	the	language	settings	to	use,	and	then	click	Next.
3. Click	Repair	Your	Computer.	Setup	searches	the	hard	disk	drives	for	an

existing	Windows	installation	and	then	displays	the	results	in	the	System
Recovery	Options	Wizard.	If	you	are	recovering	the	operating	system	onto
separate	hardware,	the	list	should	be	empty	and	there	should	be	no	operating
system	on	the	computer.	Click	Next.

4. On	the	System	Recovery	Options	page,	click	Windows	Complete	PC
Restore.	This	starts	the	Windows	Complete	PC	Restore	Wizard.

Recovering	Files	and	Folders

You	can	recover	files	and	folders	from	a	backup	by	completing	the	following
steps:

1. On	the	Tools	menu	in	Server	Manager,	select	Windows	Server	Backup.
2. In	the	Actions	Pane	or	on	the	Action	menu,	select	Recover.	The	Recovery

Wizard	starts.
3. On	the	Getting	Started	page,	choose	This	Server.
4. On	the	Select	Backup	Date	page,	note	the	earliest	and	latest	available

backup	dates,	and	then	use	the	calendar	view	provided	to	select	a	date	for
recovery.	Click	Next.

TIP  Backup	copies	are	available	for	dates	shown	in	bold	in	the	calendar
view.	If	there	are	multiple	backup	times	on	a	date,	select	a	specific	backup
from	the	Time	drop-down	list.	Note	the	backup	target	and	status	of	the
selected	backup.	The	target	disk	must	be	available	online	to	recover	files
and	applications.

5. On	the	Select	Recovery	Type	page,	select	Files	And	Folders	to	recover
specific	files	and	folders	from	a	backup,	and	then	click	Next.

6. On	the	Select	Items	To	Recover	page,	expand	the	server,	volume,	and	folder
nodes	to	find	the	files	and	folders	to	recover.	You	can	recover	only	one
folder/file	set	at	a	time.	When	you	select	a	folder	by	clicking	it,	the	folder
and	all	its	related	subfolders	and	files	are	selected	for	recovery.	Click	the
folder	you	want	to	recover,	such	as	Inetpub,	and	then	click	Next.

7. On	the	Specify	Recovery	Options	page,	use	the	Restore	Destination	options
to	choose	the	restore	location	and	the	click	Next.	The	options	are:
Original	Location Restores	data	to	the	location	from	which	it	was	backed
up.
Alternate	Location Restores	data	to	a	location	that	you	designate,
preserving	the	existing	directory	structure.	After	you	select	this	option,	type
the	folder	path	to	use,	or	click	Browse	to	select	the	folder	path.

8. Select	one	of	the	following	options	to	specify	how	you	want	to	restore	files,
and	then	click	Next:
Create	Copies	So	I	Have	Both	Versions	Of	The	File	Or	Folder Select

this	option	if	you	don’t	want	to	copy	over	existing	files.	With	this	option,
you’ll	have	copies	of	the	recovered	files	in	the	recovery	destination	and	will
need	to	review	the	files	to	see	which	files	you	want	to	use.	In	most	cases,	you
won’t	want	to	use	this	option	if	you	are	restoring	multiple	files	to	the	original
location,	because	this	would	cause	many	duplicate	files	to	be	created	(and
you’d	probably	need	to	use	File	Explorer	to	clean	up	all	the	duplicates).
Overwrite	Existing	Files	With	Recovered	Files Select	this	option	to
replace	all	existing	files	on	disk	with	files	from	the	backup	and	to	restore
deleted	files	that	do	not	otherwise	exist	at	the	recovery	location.	This	option
allows	you	to	recover	files	and	folders	to	a	previous	state	(the	state	the	files
were	in	when	the	backup	was	created).	Files	that	were	deleted	from	the
recovery	location	are	also	restored.
Don’t	Recover	Any	Existing	Files	And	Folders Select	this	option	to
recover	only	files	that	do	not	exist	at	the	recovery	destination.	This	allows
you	to	recover	deleted	files	without	overwriting	existing	files.	If	you
accidentally	removed	files	from	a	folder,	this	is	a	good	option	to	use	to
recover	only	those	accidentally	removed	files.

9. By	default,	Restore	Security	Settings	is	selected.	This	ensures	that	the
Recovery	Wizard	restores	the	original	security	settings	for	files	and	folders.
If	you	don’t	want	to	restore	the	original	security	settings,	clear	this	check
box.	The	Recovery	Wizard	will	then	use	the	default	security	settings	for	the
recovery	folder.	Click	Next

10. On	the	Confirmation	page,	review	the	items	that	will	be	recovered,	and	then
click	Finish.	The	Recovery	Wizard	will	then	recover	the	selected	items.	On
the	Recovery	Progress	page,	you’ll	see	the	status	of	the	recovery	and	the
amount	of	data	transferred	for	each	item.	Click	Recover.

11. The	recovery	is	complete	when	the	recovery	status	reaches	100	percent.
Click	Close	to	finish	the	wizard.

	Notes from the Road
	How to Use This Guide
	Print Readers
	Digital Book Readers
	Support Information
	Conventions & Features
	Share & Stay in Touch

	Chapter 1 Running IIS Applications
	Managing ISAPI and CGI Application Settings
	Understanding ISAPI Applications
	Configuring ISAPI and CGI Restrictions
	Configuring ISAPI Filters
	Configuring CGI Settings

	Managing ASP Settings
	Controlling ASP Behavior
	Customizing Request Handling for ASP
	Optimizing Caching for ASP
	Customizing COM+ Execution for ASP
	Configuring Session State for ASP
	Configuring Debugging and Error Handling for ASP

	Managing ASP.NET Settings
	Configuring Session State Settings for ASP.NET
	Configuring SMTP E-Mail Settings
	Configuring Key/Value Pairs for ASP.NET Applications
	Configuring Settings for ASP.NET Pages and Controls
	Registering Custom Controls
	Configuring ASP.NET Settings for Pages and Controls

	Connecting to Data Sources

	Managing .NET Framework Settings
	Configuring .NET Providers
	Configuring .NET Trust Levels
	Configuring .NET Profiles
	Configuring .NET Roles
	Configuring .NET Users
	Configuring .NET Compilation
	Configuring .NET Globalization

	Chapter 2 Managing Applications and Application Pools
	Defining Custom Applications
	Managing Custom IIS Applications
	Viewing Applications
	Configuring Default Settings for New Applications
	Creating Applications
	Converting Existing Directories to Applications
	Changing Application Settings
	Configuring Output Caching for Applications
	Deleting IIS Applications

	Managing ASP.NET and the .NET Framework
	Installing ASP.NET and the .NET Framework
	Deploying ASP.NET Applications
	Uninstalling .NET Versions

	Working with Application Pools
	Viewing Application Pools
	Configuring Default Settings for New Application Pools
	Creating Application Pools
	Changing Application Pool Settings
	Assigning Applications to Application Pools
	Configuring Application Pool Identities

	Chapter 3 Managing Worker Processes and Performance
	Starting, Stopping, and Recycling Worker Processes Manually
	Starting and Stopping Worker Processes Manually
	Recycling Worker Processes Manually
	Configuring Worker Process Startup and Shutdown Time Limits

	Configuring Multiple Worker Processes for Application Pools
	Configuring Worker Process Recycling
	Recycling Automatically by Time and Number of Requests
	Recycling Automatically by Memory Usage

	Maintaining Application Health and Performance
	Configuring CPU Monitoring
	Configuring Failure Detection and Recovery
	Shutting Down Idle Worker Processes
	Limiting Request Queues
	Deleting IIS Application Pools

	Chapter 4 Enhancing Web Server Security
	Managing Windows Security
	Working with User and Group Accounts
	IIS User and Group Essentials
	Managing the IIS Service Logon Accounts
	Managing the Internet Guest Account
	Working with File and Folder Permissions
	File and Folder Permission Essentials
	Viewing File and Folder Permissions
	Setting File and Folder Permissions

	Working with Group Policies
	Group Policy Essentials
	Setting Account Policies for IIS Servers
	Setting Auditing Policies

	Managing IIS Security
	Configuring Handler Mappings for Applications
	Setting Authentication Modes
	Understanding Authentication
	Enabling and Disabling Authentication

	Setting Authorization Rules for Application Access
	Configuring IP Address and Domain Name Restrictions
	Managing Feature Delegation and Remote Administration
	Creating and Configuring IIS Manager User Accounts
	Configuring IIS Manager Permissions
	Configuring Feature Delegation

	Chapter 5 Using Active Directory Certificate Services
	Understanding SSL
	Using SSL Encryption
	Using SSL Certificates
	Understanding SSL Encryption Strength

	Working with Active Directory Certificate Services
	Understanding Active Directory Certificate Services
	Installing Active Directory Certificate Services
	Accessing Certificate Services in a Browser
	Starting and Stopping Certificate Services
	Backing Up and Restoring the CA
	Creating CA Backups
	Recovering CA Information

	Configuring Certificate Request Processing
	Approving and Declining Pending Certificate Requests
	Generating Certificates Manually in the Certification Authority Snap-In
	Revoking Certificates
	Reviewing and Renewing the Root CA Certificate

	Chapter 6 Managing Certificates and SSL
	Creating and Installing Certificates
	Creating Certificate Requests
	Submitting Certificate Requests to Third-Party Authorities
	Submitting Certificate Requests to Certificate Services
	Processing Pending Requests and Installing Site Certificates

	Working with SSL
	Configuring SSL Ports
	Adding the CA Certificate to the Client Browser’s Root Store
	Confirming that SSL Is Correctly Enabled
	Resolving SSL Problems
	Ignoring, Accepting, and Requiring Client Certificates
	Requiring SSL for All Communications

	Chapter 7 Performance Tuning, Monitoring, and Tracing
	Monitoring IIS Performance and Activity
	Why Monitor IIS?
	Getting Ready to Monitor

	Detecting and Resolving IIS Errors
	Examining the Access Logs
	Examining the Windows Event Logs
	Examining the Trace Logs
	Tracing Failed Requests
	Enabling and Configuring Failed Request Tracing
	Creating and Managing Trace Rules

	Monitoring IIS Performance and Reliability
	Using Monitoring Tools
	Choosing Counters to Monitor

	Tuning Web Server Performance
	Monitoring and Tuning Memory Usage
	Monitoring and Tuning Processor Usage
	Monitoring and Tuning Disk I/O
	Monitoring and Tuning Network Bandwidth and Connectivity

	Strategies for Improving IIS Performance
	Removing Unnecessary Applications and Services
	Optimizing Content Usage
	Optimizing ISAPI, ASP, and ASP.NET Applications
	Optimizing IIS Caching, Queuing, and Pooling

	Chapter 8 IIS Backup and Recovery
	Backing Up the IIS Configuration
	Understanding IIS Configuration Backups
	Managing the IIS Configuration History
	Viewing IIS Configuration Backups
	Creating IIS Configuration Backups
	Removing IIS Configuration Backups
	Restoring IIS Server Configurations
	Rebuilding Corrupted IIS Installations

	Backing Up and Recovering Server Files
	Turning on the Backup Feature
	Working with Windows Server Backup
	Setting Basic Performance Options
	Scheduling Server Backups
	Backing up a Server
	Protecting a Server Against Failure
	Configuring Recovery Options

	Recovering Files and Folders

