_bs lazs

Faghatketab.ir

FaEII"E'tKF.'tab N

O'REILLY"

Laravel

ning

Up & RL

A Framework for

Matt Stauffer

9

O'REILLY"

Laravel: Up & Running

What sets Laravel apart from other PHP web frameworks?
Speed and simplicity, for starters. This rapid application
development framework and its ecosystem of tools let you
quickly build new sites and applications with clean, readable
code. Fully updated to cover Laravel 5.8, the second edition of
this practical guide provides the definitive introduction to one
of today’s most popular web frameworks.

Matt Stauffer, a leading teacher and developer in the Laravel
community, delivers a high-level overview and concrete
examples to help experienced PHP web developers get started
with this framework right away. This updated edition also
covers Laravel Dusk and Horizon and provides information
about community resources and other noncore Laravel
packages.

Dive into features, including:

e Blade, Laravel's powerful custom templating tool

* Tools for gathering, validating, normalizing, and filtering us-
er-provided data

¢ The Elogquent ORM for working with application databases

¢ Therole of the llluminate request object in the application
lifecycle

e PHPUniIt, Mockery, and Dusk for testing your PHP code
e Tools for writing JSON and RESTful APIs

* Interfaces for filesystem access, sessions, cookies, caches,
and search

¢ Tools forimplementing queues, jobs, events, and WebSocket
event publishing

“Learning a framework
is hard, but in Laravel:
Up & Running, Matt
Stauffer feels like your
smart developer friend
looking over your
shoulder to guide and
encourage you through
the process.”

—Samantha Geitz
Senior Full-Stack Engineer at Shelterluv

Matt Stauffer is a developer and

a teacher. He is a partner and
technical director at Tighten, blogs
at mattstauffer.com, and hosts the
Laravel Podcast and the Five-Minute
Geek Show.

PHP IL
l'i|:|.l' m

US $4999 CAN $6599
ISBN: 978-1-492-04121-4

VNN i
AN Moo

81492

Twitter: @oreillymedia
facebook.com/oreilly

SECOND EDITION

Laravel: Up & Running

A Framework for Building Modern PHP Apps

Matt Stauffer

Bejng - Boston « Farnham - Sebastopol - Tokyo @Y RIIMNY

Laravel: Up & Running
by Matt Stauffer

Copyright © 2019 Matt Stauffer. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Alicia Young Indexer: WordCo Indexing Services, Inc.
Production Editor: Christopher Faucher Interior Designer: David Futato
Copyeditor: Rachel Head Cover Designer: Karen Montgomery
Proofreader: Amanda Kersey lllustrator: Rebecca Demarest

December 2016: First Edition

April 2019: Second Edition

Revision History for the Second Edition
2019-04-01: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492041214 for release details.

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. Laravel: Up ¢ Running, the cover
image, and related trade dress are trademarks of O'Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-492-04121-4
[LSI]

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492041214

This book is dedicated to my family.
Mia, my little princess and bundle of joy and energy.
Malachi, my little prince and adventurer and empath.
Tereva, my inspiration, encourager, upgrader, pusher, rib.

Why Use a Framework?
“T'll Just Build It Myself”
Consistency and Flexibility
A Short History of Web and PHP Frameworks
Ruby on Rails
The Influx of PHP Frameworks
The Good and the Bad of Codelgniter
Laravel 1, 2, and 3
Laravel 4
Laravel 5
What’s So Special About Laravel?
The Philosophy of Laravel
How Laravel Achieves Developer Happiness
The Laravel Community
How It Works
Why Laravel?

. Setting Up a Laravel Development Environment. . .

System Requirements

Composer

Local Development Environments
Laravel Valet
Laravel Homestead

Creating a New Laravel Project

Table of Contents

—

O N QN Ul Ul b s W W WD NN~

11
12
12
12
13
13

Installing Laravel with the Laravel Installer Tool 14

Installing Laravel with Composer’s create-project Feature
Lambo: Super-Powered “Laravel New”
Laravel’s Directory Structure
The Folders
The Loose Files
Configuration
The .env File
Up and Running
Testing
TL;DR

Routingand Controllers...........covviriiiiiiriiiiiiiieiinrennnenns

A Quick Introduction to MVC, the HTTP Verbs, and REST
What Is MVC?
The HTTP Verbs
What Is REST?
Route Definitions
Route Verbs
Route Handling
Route Parameters
Route Names
Route Groups
Middleware
Path Prefixes
Fallback Routes
Subdomain Routing
Namespace Prefixes
Name Prefixes
Signed Routes
Signing a Route
Modifying Routes to Allow Signed Links
Views
Returning Simple Routes Directly with Route::view()
Using View Composers to Share Variables with Every View
Controllers
Getting User Input
Injecting Dependencies into Controllers
Resource Controllers
API Resource Controllers
Single Action Controllers
Route Model Binding
Implicit Route Model Binding

14
14
15
16
17
18
19
21
21
22

23
23
23
24
25
26
28
28
29
31
33
34
36
36
37
37
38
38
39
40
40
41
42
42
45
46
47
49
49
50
50

vi

| Table of Contents

Custom Route Model Binding 51

Route Caching 52
Form Method Spoofing 52
HTTP Verbs in Laravel 52
HTTP Method Spoofing in HTML Forms 53
CSREF Protection 53
Redirects 55
redirect()->to() 56
redirect()->route() 56
redirect()->back() 57
Other Redirect Methods 57
redirect()->with() 57
Aborting the Request 59
Custom Responses 60
response()->make() 60
response()->json() and ->jsonp() 60
response()->download(), ->streamDownload(), and ->file() 60
Testing 61
TL;DR 62
. BladeTemplating........covvriiiiiiii i i i i e 63
Echoing Data 64
Control Structures 65
Conditionals 65
Loops 65
Template Inheritance 68
Defining Sections with @section/@show and @yield 68
Including View Partials 70
Using Stacks 72
Using Components and Slots 73
View Composers and Service Injection 75
Binding Data to Views Using View Composers 76
Blade Service Injection 79
Custom Blade Directives 80
Parameters in Custom Blade Directives 81
Example: Using Custom Blade Directives for a Multitenant App 82
Easier Custom Directives for “if” Statements 83
Testing 83
TL;DR 84
. Databasesand Eloquent...........covuiiiiiiiiiiiiiiriiieeiierinerenaeennnns 87
Configuration 87

Table of Contents | vii

Database Connections
Other Database Configuration Options
Defining Migrations
Running Migrations
Seeding
Creating a Seeder
Model Factories
Query Builder
Basic Usage of the DB Facade
Raw SQL
Chaining with the Query Builder
Transactions
Introduction to Eloquent
Creating and Defining Eloquent Models
Retrieving Data with Eloquent
Inserts and Updates with Eloquent
Deleting with Eloquent
Scopes

Customizing Field Interactions with Accessors, Mutators, and Attribute

Casting
Eloquent Collections
Eloquent Serialization
Eloquent Relationships

Child Records Updating Parent Record Timestamps

Eloquent Events
Testing
TL;DR

Frontend Components.coovveiiieeinireneeenneennnns

Laravel Mix
Mix Folder Structure
Running Mix
What Does Mix Provide?
Frontend Presets and Auth Scaffolding
Frontend Presets
Auth Scaffolding
Pagination
Paginating Database Results
Manually Creating Paginators
Message Bags
Named Error Bags
String Helpers, Pluralization, and Localization

88
89
90
97
98
98
99
105
105
106
107
116
117
119
120
122
126
128

131
135
137
139
152
154
155
157

159
159
161
161
162
169
169
170
170
170
171
172
174
174

viii

| Table of Contents

The String Helpers and Pluralization 174

Localization 175
Testing 179
Testing Message and Error Bags 179
Translation and Localization 179
TL;DR 180
. Collectingand Handling UserData.coovviiiiiiiiiiiiinnnennnnnnss 181
Injecting a Request Object 181
$request->all() 182
$request->except() and $request->only() 182
$request->has() 183
$request->input() 183
$request->method() and ->isMethod() 184
Array Input 184
JSON Input (and $request->json()) 185
Route Data 186
From Request 186
From Route Parameters 186
Uploaded Files 187
Validation 189
validate() on the Request Object 189
Manual Validation 192
Custom Rule Objects 192
Displaying Validation Error Messages 193
Form Requests 194
Creating a Form Request 194
Using a Form Request 195
Eloquent Model Mass Assignment 196
{{ Versus {!! 197
Testing 197
TL;DR 199
. Artisanand Tinker. ... 201
An Introduction to Artisan 201
Basic Artisan Commands 202
Options 203
The Grouped Commands 203
Writing Custom Artisan Commands 206
A Sample Command 208
Arguments and Options 209
Using Input 211

Table of Contents | ix

Prompts

Output

Writing Closure-Based Commands
Calling Artisan Commands in Normal Code
Tinker
Laravel Dump Server
Testing
TL;DR

User Authentication and Authorization..............ccovvvvvvnen..

The User Model and Migration
Using the auth() Global Helper and the Auth Facade
The Auth Controllers
RegisterController
LoginController
ResetPasswordController
ForgotPasswordController
VerificationController
Auth::routes()
The Auth Scaffold
“Remember Me”
Manually Authenticating Users
Manually Logging Out a User
Invalidating Sessions on Other Devices
Auth Middleware
Email Verification
Blade Authentication Directives
Guards
Changing the Default Guard
Using Other Guards Without Changing the Default
Adding a New Guard
Closure Request Guards
Creating a Custom User Provider
Custom User Providers for Nonrelational Databases
Auth Events
Authorization (ACL) and Roles
Defining Authorization Rules
The Gate Facade (and Injecting Gate)
Resource Gates
The Authorize Middleware
Controller Authorization
Checking on the User Instance

213
214
215
216
217
218
219
219

221
222
225
226
226
227
229
229
229
229
231
232
233
233
233
234
235
236
236
237
237
237
238
238
239
239
240
240
241
242
243
243
245

X

Table of Contents

Blade Checks 246

Intercepting Checks 246
Policies 247
Testing 249
TL;DR 252
. Requests, Responses, and Middleware.coovviiiiiiiiiiiiinnnnn.. 253
Laravel’s Request Lifecycle 253
Bootstrapping the Application 254
Service Providers 255
The Request Object 257
Getting a Request Object in Laravel 257
Getting Basic Information About a Request 258
The Response Object 262
Using and Creating Response Objects in Controllers 263
Specialized Response Types 264
Laravel and Middleware 269
An Introduction to Middleware 269
Creating Custom Middleware 270
Binding Middleware 272
Passing Parameters to Middleware 275
Trusted Proxies 276
Testing 277
TL;DR 278
. TheContainer............oviiiiiiiiiiiiiiii 279
A Quick Introduction to Dependency Injection 279
Dependency Injection and Laravel 281
The app() Global Helper 281
How the Container Is Wired 282
Binding Classes to the Container 283
Binding to a Closure 283
Binding to Singletons, Aliases, and Instances 284
Binding a Concrete Instance to an Interface 285
Contextual Binding 286
Constructor Injection in Laravel Framework Files 287
Method Injection 287
Facades and the Container 289
How Facades Work 289
Real-Time Facades 291
Service Providers 291
Testing 292

Table of Contents | xi

12.

TL;DR

=53 1 N
Testing Basics
Naming Tests
The Testing Environment
The Testing Traits
RefreshDatabase
WithoutMiddleware
DatabaseMigrations
DatabaseTransactions
Simple Unit Tests
Application Testing: How It Works
TestCase
HTTP Tests
Testing Basic Pages with $this->get() and Other HTTP Calls
Testing JSON APIs with $this->getJson() and Other JSON HTTP Calls
Assertions Against $response
Authenticating Responses
A Few Other Customizations to Your HTTP Tests
Handling Exceptions in Application Tests
Database Tests
Using Model Factories in Tests
Seeding in Tests
Testing Other Laravel Systems
Event Fakes
Bus and Queue Fakes
Mail Fakes
Notification Fakes
Storage Fakes
Mocking
A Quick Introduction to Mocking
A Quick Introduction to Mockery
Faking Other Facades
Testing Artisan Commands
Asserting Against Artisan Command Syntax
Browser Tests
Choosing a Tool
Testing with Dusk
TL;DR

293

295
296
300
301
301
302
302
302
302
303
304
304
305
305
306
306
309
310
310
311
312
312
312
312
314
315
316
317
318
318
318
321
322
322
323
324
324
335

Xii

| Table of Contents

13, WHEING APIS. .ottt i it ettt ittt ii e cie e enaeanss 337

The Basics of REST-Like JSON APIs 337
Controller Organization and JSON Returns 339
Reading and Sending Headers 342
Sending Response Headers in Laravel 343
Reading Request Headers in Laravel 343
Eloquent Pagination 344
Sorting and Filtering 345
Sorting Your API Results 346
Filtering Your API Results 347
Transforming Results 348
Writing Your Own Transformer 349
Nesting and Relationships with Custom Transformers 350
API Resources 352
Creating a Resource Class 352
Resource Collections 354
Nesting Relationships 355
Using Pagination with API Resources 356
Conditionally Applying Attributes 357
More Customizations for API Resources 357
API Authentication with Laravel Passport 357
A Brief Introduction to OAuth 2.0 358
Installing Passport 358
Passport’s API 360
Passport’s Available Grant Types 360
Managing Clients and Tokens with the Passport API and Vue Components 368
Passport Scopes 371
Deploying Passport 373
API Token Authentication 373
Customizing 404 Responses 374
Triggering the Fallback Route 374
Testing 374
Testing Passport 375
TL;DR 375
14. Storageand Retrieval..........covuiiiuiiiiiiiiiiiiiiiiiiiiiierieeeeaenns 377
Local and Cloud File Managers 377
Configuring File Access 377
Using the Storage Facade 378
Adding Additional Flysystem Providers 380
Basic File Uploads and Manipulation 380
Simple File Downloads 382

Table of Contents | xiii

15.

Sessions
Accessing the Session
Methods Available on Session Instances
Flash Session Storage
Cache
Accessing the Cache
Methods Available on Cache Instances
Cookies
Cookies in Laravel
Accessing the Cookie Tools
Logging
When and Why to Use Logs
Writing to the Logs
Log Channels
Full-Text Search with Laravel Scout
Installing Scout
Marking Your Model for Indexing
Searching Your Index
Queues and Scout
Performing Operations Without Indexing
Conditionally Indexing Models
Manually Triggering Indexing via Code
Manually Triggering Indexing via the CLI
Testing
File Storage
Session
Cache
Cookies
Log
Scout
TL;DR

Mail and Notifications.oovvviirininiii i

Mail
“Classic” Mail
Basic “Mailable” Mail Usage
Mail Templates
Methods Available in build()
Attachments and Inline Images
Markdown Mailables
Rendering Mailables to the Browser
Queues

382
383
383
385
386
386
387
388
388
389
391
392
392
393
396
396
397
397
397
398
398
398
398
399
399
400
401
402
403
403
404

405
405
406
406
409
410
410
411
413
414

Xiv

| Table of Contents

Local Development 415
Notifications 416
Defining the via() Method for Your Notifiables 419
Sending Notifications 419
Queueing Notifications 420
Out-of-the-Box Notification Types 421
Testing 424
Mail 425
Notifications 425
TL;DR 426
16. Queues, Jobs, Events, Broadcasting, and the Scheduler......................... 427
Queues 427
Why Queues? 428
Basic Queue Configuration 428
Queued Jobs 428
Controlling the Queue 435
Queues Supporting Other Functions 436
Laravel Horizon 436
Events 437
Firing an Event 437
Listening for an Event 439
Broadcasting Events over WebSockets, and Laravel Echo 442
Configuration and Setup 443
Broadcasting an Event 443
Receiving the Message 446
Advanced Broadcasting Tools 448
Laravel Echo (the JavaScript Side) 452
Scheduler 457
Available Task Types 457
Available Time Frames 458
Defining Time Zones for Scheduled Commands 459
Blocking and Overlap 460
Handling Task Output 460
Task Hooks 461
Testing 461
TL;DR 463
17. Helpersand Collections.c.vveuieerieeiieriieriieeieennernnerennnns 465
Helpers 465
Arrays 465
Strings 467
Table of Contents | xv

Application Paths

URLs

Miscellaneous
Collections

The Basics

A Few Methods
TL;DR

18. The Laravel ECOSYStem.covuuiiriiiiiiiiieiiieiieeieeeneeenneennans
Tools Covered in This Book
Valet
Homestead
The Laravel Installer
Mix
Dusk
Passport
Horizon
Echo
Tools Not Covered in This Book
Forge
Envoyer
Cashier
Socialite
Nova
Spark
Lumen
Envoy
Telescope
Other Resources

469
470
472
475
475
477
481

483
483
483
484
484
484
484
484
484
485
485
485
485
486
486
486
487
487
487
488
488

xvi | Table of Contents

Preface

The story of how I got started with Laravel is a common one: I had written PHP for
years, but I was on my way out the door, pursuing the power of Rails and other
modern web frameworks. Rails in particular had a lively community, a perfect combi-
nation of opinionated defaults and flexibility, and the power of Ruby Gems to lever-
age prepackaged common code.

Something kept me from jumping ship, and I was glad for that when I found Laravel.
It offered everything I was drawn to in Rails, but it wasn’t just a Rails clone; this was
an innovative framework with incredible documentation, a welcoming community,
and clear influences from many languages and frameworks.

Since that day I've been able to share my journey of learning Laravel through blog-
ging, podcasting, and speaking at conferences; I've written dozens of apps in Laravel
for work and side projects; and I've met thousands of Laravel developers online and
in person. I have plenty of tools in my development toolkit, but I am honestly happi-
est when I sit down in front of a command line and type laravel new projectiName.

What This Book Is About

This is not the first book about Laravel, and it won't be the last. I don't intend for this
to be a book that covers every line of code or every implementation pattern. I don’t
want this to be the sort of book that goes out of date when a new version of Laravel is
released. Instead, its primary purpose is to provide developers with a high-level over-
view and concrete examples to learn what they need to work in any Laravel codebase
with any and every Laravel feature and subsystem. Rather than mirroring the docs, I
want to help you understand the foundational concepts behind Laravel.

Laravel is a powerful and flexible PHP framework. It has a thriving community and a
wide ecosystem of tools, and as a result it's growing in appeal and reach. This book is
for developers who already know how to make websites and applications and want to
learn how to do so well in Laravel.

Xvii

Laravel's documentation is thorough and excellent. If you find that I don’t cover any
particular topic deeply enough for your liking, I encourage you to visit the online
documentation and dig deeper into that particular topic.

I think you will find the book a comfortable balance between high-level introduction
and concrete application, and by the end you should feel comfortable writing an
entire application in Laravel, from scratch. And, if I did my job well, you'll be excited
to try.

Who This Book Is For

This book assumes knowledge of basic object-oriented programming practices, PHP
(or at least the general syntax of C-family languages), and the basic concepts of the
Model-View-Controller (MVC) pattern and templating. If you've never made a
website before, you may find yourself in over your head. But as long as you have
some programming experience, you dont have to know anything about Laravel
before you read this book—we’ll cover everything you need to know, from the sim-
plest “Hello, world!”

Laravel can run on any operating system, but there will be some bash (shell) com-
mands in the book that are easiest to run on Linux/macOS. Windows users may have
a harder time with these commands and with modern PHP development, but if you
follow the instructions to get Homestead (a Linux virtual machine) running, you'll be
able to run all of the commands from there.

How This Book Is Structured

This book is structured in what I imagine to be a chronological order: if you're build-
ing your first web app with Laravel, the early chapters cover the foundational compo-
nents you'll need to get started, and the later chapters cover less foundational or more
esoteric features.

Each section of the book can be read on its own, but for someone new to the frame-
work, I've tried to structure the chapters so that it’s actually very reasonable to start
from the beginning and read until the end.

Where applicable, each chapter will end with two sections: “Testing” and “TL;DR” If
youre not familiar, “TL;DR” means “too long; didn’t read” These final sections will
show you how to write tests for the features covered in each chapter and will give a
high-level overview of what was covered.

The book is written for Laravel 5.8, but will cover features and syntax changes back to
Laravel 5.1.

xviii | Preface

https://laravel.com/docs
https://laravel.com/docs

About the Second Edition

The first edition of Laravel: Up & Running came out in November 2016 and covered
Laravel versions 5.1 to 5.3. This second edition adds coverage for 5.4 to 5.8 and Lara-
vel Dusk and Horizon, and adds an 18th chapter about community resources and
other non-core Laravel packages that weren’t covered in the first 17 chapters.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows code text that should be replaced with user-supplied values or by values
determined by context.

{Italic in braces}
Shows file names or file pathways that should be replaced with user-supplied val-
ues or by values determined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Preface | xix

Because this book covers Laravel from versions 5.1 to 5.8, you'll find markers
throughout the book indicating version-specific comments. Generally speaking, the
indicator is showing the version of Laravel a feature was introduced in (so you'll see a
5.3 next to a feature that’s only accessible in Laravel 5.3 and higher).

0'Reilly Online Learning

o » For almost 40 years, O’Reilly Media has provided technology
O RE I LLY and business training, knowledge, and insight to help compa-

nies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/laravel-up-and-running-2e.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xx | Preface

http://oreilly.com
http://oreilly.com
http://bit.ly/laravel-up-and-running-2e
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments for the First Edition

This book would not have happened without the gracious support of my amazing
wife, Tereva, or the understanding (“Daddy’s writing, buddy!”) of my son Malachi.
And while she wasn’t explicitly aware of it, my daughter Mia was around for almost
the entire creation of the book, so this book is dedicated to the whole family. There
were many, many long evening hours and weekend Starbucks trips that took me away
from them, and I couldn’t be more grateful for their support and also their presence
just making my life awesome.

Additionally, the entire Tighten family has supported and encouraged me through the
writing of the book, several colleagues even editing code samples (Keith Damiani,
editor extraordinaire) and helping me with challenging ones (Adam Wathan, King of
the Collection Pipeline). Dan Sheetz, my partner in Tighten crime, has been gracious
enough to watch me while away many a work hour cranking on this book and was
nothing but supportive and encouraging; and Dave Hicking, our operations manager,
helped me arrange my schedule and work responsibilities around writing time.

Taylor Otwell deserves thanks and honor for creating Laravel—and therefore creating
so many jobs and helping so many developers love our lives that much more. He
deserves appreciation for how he’s focused on developer happiness and how hard he’s
worked to have empathy for developers and to build a positive and encouraging com-
munity. But I also want to thank him for being a kind, encouraging, and challenging
friend. Taylor, you're a boss.

Thanks to Jeffrey Way, who is one of the best teachers on the internet. He originally
introduced me to Laravel and introduces more people every day. He’s also, unsurpris-
ingly, a fantastic human being whom I'm glad to call a friend.

Thank you to Jess D’Amico, Shawn McCool, Ian Landsman, and Taylor for seeing
value in me as a conference speaker early on and giving me a platform to teach from.
Thanks to Dayle Rees for making it so easy for so many to learn Laravel in the early
days.

Thanks to every person who put their time and effort into writing blog posts about
Laravel, especially early on: Eric Barnes, Chris Fidao, Matt Machuga, Jason Lewis,
Ryan Tablada, Dries Vints, Maks Surguy, and so many more.

And thanks to the entire community of friends on Twitter, IRC, and Slack whove
interacted with me over the years. I wish I could name every name, but I would miss
some and then feel awful about missing them. You all are brilliant, and 'm honored
to get to interact with you on a regular basis.

Thanks to my O’Reilly editor, Ally MacDonald, and all of my technical editors: Keith
Damiani, Michael Dyrynda, Adam Fairholm, and Myles Hyson.

Preface | xxi

And, of course, thanks to the rest of my family and friends, who supported me
directly or indirectly through this process—my parents and siblings, the Gainesville
community, other business owners and authors, other conference speakers, and the
inimitable DCB. I need to stop writing because by the time I run out of space here I'll
be thanking my Starbucks baristas.

Acknowledgments for the Second Edition

The second edition is very similar to the first, so all of the previous acknowledgments
are still valid. But I've gotten help from a few new people this time around. My tech-
nical proofreaders have been Tate Pefaranda, Andy Swick, Mohamed Said, and
Samantha Geitz, and my new O’Reilly editor has been Alicia Young, who's kept me on
task through a lot of changes in my life and the Laravel community over the last year.
Matt Hacker on the Atlas team answered all my stupid AsciiDoc formatting ques-
tions, including about the surprisingly difficult formatting for the __() method.

And I couldn’t have made it through the process of writing a second edition without
the help of my research assistant, Wilbur Powery. Wilbur was willing to sift through
the last several years’ worth of changelogs and pull requests and announcements and
match each feature up with the current structure of the book, and he even tested
every single code example in the book in Laravel 5.7 (and then, later, 5.8) so that I
could focus my limited time and energy on writing the new and updated segments.

Also, my daughter, Mia, is out of her mama’s belly now. So, let’s just add her joy and
energy and love and cuteness and adventurous spirit to my list of sources of inspira-
tion.

xxii | Preface

CHAPTER 1
Why Laravel?

In the early days of the dynamic web, writing a web application looked a lot different
than it does today. Developers then were responsible for writing the code for not just
the unique business logic of our applications, but also each of the components that
are so common across sites—user authentication, input validation, database access,
templating, and more.

Today, programmers have dozens of application development frameworks and thou-
sands of components and libraries easily accessible. It's a common refrain among pro-
grammers that, by the time you learn one framework, three newer (and purportedly
better) frameworks have popped up intending to replace it.

“Tust because it’s there” might be a valid justification for climbing a mountain, but
there are better reasons to choose to use a specific framework—or to use a framework
at all. It’s worth asking the question, why frameworks? More specifically, why Laravel?

Why Use a Framework?

It’s easy to see why it’s beneficial to use the individual components, or packages, that
are available to PHP developers. With packages, someone else is responsible for
developing and maintaining an isolated piece of code that has a well-defined job, and
in theory that person has a deeper understanding of this single component than you
have time to have.

Frameworks like Laravel—and Symfony, Lumen, and Slim—prepackage a collection
of third-party components together with custom framework “glue” like configuration
files, service providers, prescribed directory structures, and application bootstraps.
So, the benefit of using a framework in general is that someone has made decisions
not just about individual components for you, but also about how those components
should fit together.

“I'll Just Build It Myself”

Let’s say you start a new web app without the benefit of a framework. Where do you
begin? Well, it should probably route HTTP requests, so you now need to evaluate all
of the HTTP request and response libraries available and pick one. Then you’ll have
to pick a router. Oh, and you’ll probably need to set up some form of routes configu-
ration file. What syntax should it use? Where should it go? What about controllers?
Where do they live, and how are they loaded? Well, you probably need a dependency
injection container to resolve the controllers and their dependencies. But which one?

Furthermore, if you do take the time to answer all those questions and successfully
create your application, what's the impact on the next developer? What about when
you have four such custom framework-based applications, or a dozen, and you have
to remember where the controllers live in each, or what the routing syntax is?

Consistency and Flexibility

Frameworks address this issue by providing a carefully considered answer to the
question “Which component should we use here?” and ensuring that the particular
components chosen work well together. Additionally, frameworks provide conven-
tions that reduce the amount of code a developer new to the project has to under-
stand—if you understand how routing works in one Laravel project, for example, you
understand how it works in all Laravel projects.

When someone prescribes rolling your own framework for each new project, what
they’re really advocating is the ability to control what does and doesn't go into your
applications foundation. That means the best frameworks will not only provide you
with a solid foundation, but also give you the freedom to customize to your hearts
content. And this, as I'll show you in the rest of this book, is part of what makes Lara-
vel so special.

A Short History of Web and PHP Frameworks

An important part of being able to answer the question “Why Laravel?” is under-
standing Laravel’s history—and understanding what came before it. Prior to Laravel’s
rise in popularity, there were a variety of frameworks and other movements in PHP
and other web development spaces.

Ruby on Rails

David Heinemeier Hansson released the first version of Ruby on Rails in 2004, and
it’s been hard to find a web application framework since then that hasn’t been influ-
enced by Rails in some way.

2 | Chapter 1: Why Laravel?

Rails popularized MVC, RESTful JSON APIs, convention over configuration, Active-
Record, and many more tools and conventions that had a profound influence on the
way web developers approached their applications—especially with regard to rapid
application development.

The Influx of PHP Frameworks

It was clear to most developers that Rails and similar web application frameworks
were the wave of the future, and PHP frameworks, including those admittedly imitat-
ing Rails, started popping up quickly.

CakePHP was the first in 2005, and it was soon followed by Symfony, Codelgniter,
Zend Framework, and Kohana (a Codelgniter fork). Yii arrived in 2008, and Aura
and Slim in 2010. 2011 brought FuelPHP and Laravel, both of which were not quite
Codelgniter offshoots, but instead proposed as alternatives.

Some of these frameworks were more Rails-y, focusing on database object-relational
mappers (ORMs), MVC structures, and other tools targeting rapid development.
Others, like Symfony and Zend, focused more on enterprise design patterns and
ecommerce.

The Good and the Bad of Codelgniter

CakePHP and Codelgniter were the two early PHP frameworks that were most
open about how much their inspiration was drawn from Rails. Codelgniter quickly
rose to fame and by 2010 was arguably the most popular of the independent PHP
frameworks.

Codelgniter was simple, easy to use, and boasted amazing documentation and a
strong community. But its use of modern technology and patterns advanced slowly;
and as the framework world grew and PHP’s tooling advanced, Codelgniter started
falling behind in terms of both technological advances and out-of-the-box features.
Unlike many other frameworks, Codelgniter was managed by a company, and it was
slow to catch up with PHP 5.3’ newer features like namespaces and the moves to Git-
Hub and later Composer. It was in 2010 that Taylor Otwell, Laravel’s creator, became
dissatisfied enough with Codelgniter that he set off to write his own framework.

Laravel 1, 2, and 3

The first beta of Laravel 1 was released in June 2011, and it was written completely
from scratch. It featured a custom ORM (Eloquent); closure-based routing (inspired
by Ruby Sinatra); a module system for extension; and helpers for forms, validation,
authentication, and more.

A Short History of Web and PHP Frameworks | 3

Early Laravel development moved quickly, and Laravel 2 and 3 were released in
November 2011 and February 2012, respectively. They introduced controllers, unit
testing, a command-line tool, an inversion of control (IoC) container, Eloquent rela-
tionships, and migrations.

Laravel 4

With Laravel 4, Taylor rewrote the entire framework from the ground up. By this
point Composer, PHP’s now-ubiquitous package manager, was showing signs of
becoming an industry standard, and Taylor saw the value of rewriting the framework
as a collection of components, distributed and bundled together by Composer.

Taylor developed a set of components under the code name Illuminate and, in May
2013, released Laravel 4 with an entirely new structure. Instead of bundling the
majority of its code as a download, Laravel now pulled in the majority of its compo-
nents from Symfony (another framework that released its components for use by oth-
ers) and the Illuminate components through Composer.

Laravel 4 also introduced queues, a mail component, facades, and database seeding.
And because Laravel was now relying on Symfony components, it was announced
that Laravel would be mirroring (not exactly, but soon after) the six-monthly release
schedule Symfony follows.

Laravel 5

Laravel 4.3 was scheduled to release in November 2014, but as development pro-
gressed it became clear that the significance of its changes merited a major release,
and Laravel 5 was released in February 2015.

Laravel 5 featured a revamped directory structure, removal of the form and HTML
helpers, the introduction of the contract interfaces, a spate of new views, Socialite for
social media authentication, Elixir for asset compilation, Scheduler to simplify cron,
dotenv for simplified environment management, form requests, and a brand new
REPL (read-evaluate-print loop). Since then it’s grown in features and maturity, but
there have been no major changes like in previous versions.

What's So Special About Laravel?

So what is it that sets Laravel apart? Why is it worth having more than one PHP
framework at any time? They all use components from Symfony anyway, right? Lets
talk a bit about what makes Laravel “tick”

4 | Chapter 1:Why Laravel?

The Philosophy of Laravel

You only need to read through the Laravel marketing materials and READMEs to
start seeing its values. Taylor uses light-related words like “Illuminate” and “Spark”

And then there are these: “Artisans” “Elegant” Also, these: “Breath of fresh air”
“Fresh start” And finally: “Rapid” “Warp speed.”

The two most strongly communicated values of the framework are to increase devel-
oper speed and developer happiness. Taylor has described the “Artisan” language as
intentionally contrasting against more utilitarian values. You can see the genesis of
this sort of thinking in his 2011 question on StackExchange in which he stated,
“Sometimes I spend ridiculous amounts of time (hours) agonizing over making code
‘look pretty”—just for the sake of a better experience of looking at the code itself.
And he’s often talked about the value of making it easier and quicker for developers
to take their ideas to fruition, getting rid of unnecessary barriers to creating great
products.

Laravel is, at its core, about equipping and enabling developers. Its goal is to provide
clear, simple, and beautiful code and features that help developers quickly learn, start,
and develop, and write code that’s simple, clear, and lasting.

The concept of targeting developers is clear across Laravel materials. “Happy devel-
opers make the best code” is written in the documentation. “Developer happiness
from download to deploy” was the unofficial slogan for a while. Of course, any tool or
framework will say it wants developers to be happy. But having developer happiness
as a primary concern, rather than secondary, has had a huge impact on Laravel’s style
and decision-making progress. Where other frameworks may target architectural
purity as their primary goal, or compatibility with the goals and values of enterprise
development teams, Laravel’s primary focus is on serving the individual developer.
That doesn’t mean you can’t write architecturally pure or enterprise-ready applica-
tions in Laravel, but it won't have to be at the expense of the readability and compre-
hensibility of your codebase.

How Laravel Achieves Developer Happiness

Just saying you want to make developers happy is one thing. Doing it is another, and
it requires you to question what in a framework is most likely to make developers
unhappy and what is most likely to make them happy. There are a few ways Laravel
tries to make developers’ lives easier.

First, Laravel is a rapid application development framework. That means it focuses on
a shallow (easy) learning curve and on minimizing the steps between starting a new
app and publishing it. All of the most common tasks in building web applications,
from database interactions to authentication to queues to email to caching, are made
simpler by the components Laravel provides. But Laravel's components aren't just

What's So Special About Laravel? | 5

http://bit.ly/2dT5kmS

great on their own; they provide a consistent API and predictable structures across
the entire framework. That means that, when you're trying something new in Laravel,
youre more than likely going to end up saying, “... and it just works.

This doesn’t end with the framework itself, either. Laravel provides an entire ecosys-
tem of tools for building and launching applications. You have Homestead and Valet
for local development, Forge for server management, and Envoyer for advanced
deployment. And there’s a suite of add-on packages: Cashier for payments and sub-
scriptions, Echo for WebSockets, Scout for search, Passport for API authentication,
Dusk for frontend testing, Socialite for social login, Horizon for monitoring queues,
Nova for building admin panels, and Spark to bootstrap your SaaS. Laravel is trying
to take the repetitive work out of developers’ jobs so they can do something unique.

Next, Laravel focuses on “convention over configuration”—meaning that if youre
willing to use Laravel’s defaults, you’ll have to do much less work than with other
frameworks that require you to declare all of your settings even if youre using the
recommended configuration. Projects built on Laravel take less time than those built
on most other PHP frameworks.

Laravel also focuses deeply on simplicity. It’s possible to use dependency injection and
mocking and the Data Mapper pattern and repositories and Command Query
Responsibility Segregation and all sorts of other more complex architectural patterns
with Laravel, if you want. But while other frameworks might suggest using those tools
and structures on every project, Laravel and its documentation and community lean
toward starting with the simplest possible implementation—a global function here, a
facade there, ActiveRecord over there. This allows developers to create the simplest
possible application to solve for their needs, without limiting its usefulness in com-
plex environments.

An interesting source of how Laravel is different from other PHP frameworks is that
its creator and its community are more connected to and inspired by Ruby and Rails
and functional programming languages than by Java. Theres a strong current in
modern PHP to lean toward verbosity and complexity, embracing the more Java-
esque aspects of PHP. But Laravel tends to be on the other side, embracing expressive,
dynamic, and simple coding practices and language features.

The Laravel Community

If this book is your first exposure to the Laravel community, you have something spe-
cial to look forward to. One of the distinguishing elements of Laravel, which has con-
tributed to its growth and success, is the welcoming, teaching community that
surrounds it. From Jeffrey Way’s Laracasts video tutorials to Laravel News to Slack
and IRC and Discord channels, from Twitter friends to bloggers to podcasts to the
Laracon conferences, Laravel has a rich and vibrant community full of folks whove

6 | Chapter1: Why Laravel?

https://laracasts.com/
https://laravel-news.com/

been around since day one and folks who are just starting their own “day one” And
this isn't an accident:

From the very beginning of Laravel, I've had this idea that all people want to feel like
they are part of something. It’s a natural human instinct to want to belong and be
accepted into a group of other like-minded people. So, by injecting personality into a
web framework and being really active with the community, that type of feeling can
grow in the community.

—Taylor Otwell, Product and Support interview

Taylor understood from the early days of Laravel that a successful open source project
needed two things: good documentation and a welcoming community. And those
two things are now hallmarks of Laravel.

How It Works

Up until now, everything I've shared here has been entirely abstract. What about the
code, you ask? Let’s dig into a simple application (Example 1-1) so you can see what
working with Laravel day to day is actually like.

Example 1-1. “Hello, World” in routes/web.php
<?php

Route::get('/', function () {
return 'Hello, World!';
s

The simplest possible action you can take in a Laravel application is to define a route
and return a result any time someone visits that route. If you initialize a brand new
Laravel application on your machine, define the route in Example 1-1, and then serve
the site from the public directory, you'll have a fully functioning “Hello, World” exam-
ple (see Figure 1-1).

Hello, World!

Figure 1-1. Returning “Hello, World!” with Laravel

It looks very similar with controllers, as you can see in Example 1-2.

How ItWorks | 7

Example 1-2. “Hello, World” with controllers

// File: routes/web.php
<?php

Route::get('/', 'WelcomeController@index');

// File: app/Http/Controllers/WelcomeController.php
<?php

namespace App\Http\Controllers;

class WelcomeController extends Controller

{
public function index()
{
return 'Hello, World!';
}
}

And if youre storing your greetings in a database, it'll also look pretty similar (see
Example 1-3).

Example 1-3. Multigreeting “Hello, World” with database access

// File: routes/web.php
<?php

use App\Greeting;

Route::get('create-greeting', function () {
Sgreeting = new Greeting;
Sgreeting->body = 'Hello, World!';
$Sgreeting->save();

H;
Route::get('first-greeting', function () {

return Greeting::first()->body;

K

// File: app/Greeting.php
<?php

namespace App;
use Illuminate\Database\Eloquent\Model;

class Greeting extends Model

{
}

/7

8 | Chapter 1: Why Laravel?

// File: database/migrations/2015_07_19 010000_create_greetings_table.php
<?php

use Illuminate\Database\Schema\Blueprint;
use Illuminate\Database\Migrations\Migration;

class CreateGreetingsTable extends Migration

{
public function up()
{

Schema: :create('greetings', function (Blueprint S$table) {
Stable->bigIncrements('id');
$table->string('body');
Stable->timestamps();

b

}
public function down()
{
Schema: :dropIfExists('greetings');
}
}

Example 1-3 might be a bit overwhelming, and if so, just skip over it. You'll learn
about everything that’s happening here in later chapters, but you can already see that
with just a few lines of code, you can set up database migrations and models and pull
records out. It’s just that simple.

Why Laravel?

So—why Laravel?

Because Laravel helps you bring your ideas to reality with no wasted code, using
modern coding standards, surrounded by a vibrant community, with an empowering
ecosystem of tools.

And because you, dear developer, deserve to be happy.

Why Laravel? | 9

CHAPTER 2

Setting Up a Laravel
Development Environment

Part of PHP’s success has been because it’s hard to find a web server that can’t serve
PHP. However, modern PHP tools have stricter requirements than those of the past.
The best way to develop for Laravel is to ensure a consistent local and remote server
environment for your code, and thankfully, the Laravel ecosystem has a few tools
for this.

System Requirements

Everything we'll cover in this chapter is possible with Windows machines, but you'll
need dozens of pages of custom instructions and caveats. I'll leave those instructions
and caveats to actual Windows users, so the examples here and in the rest of the book
will focus on Unix/Linux/macOS developers.

Whether you choose to serve your website by installing PHP and other tools on your
local machine, serve your development environment from a virtual machine via
Vagrant or Docker, or rely on a tool like MAMP/WAMP/XAMPP, your development
environment will need to have all of the following installed in order to serve Laravel
sites:

o PHP >= 7.1.3 for Laravel versions 5.6 to 5.8, PHP >= 7.0.0 for version 5.5, PHP
>= 5.6.4 for version 5.4, PHP between 5.6.4 and 7.1.* for version 5.3, or PHP >=
5.5.9 for versions 5.2 and 5.1

o OpenSSL PHP extension
« PDO PHP extension
o Mbstring PHP extension

n

« Tokenizer PHP extension

« XML PHP extension (Laravel 5.3 and higher)

o Ctype PHP extension (Laravel 5.6 and higher)

+ JSON PHP extension (Laravel 5.6 and higher)

o BCMath PHP extension (Laravel 5.7 and higher)

Composer

Whatever machine youre developing on will need to have Composer installed glob-
ally. If youre not familiar with Composer, it’s a tool that’s at the foundation of most
modern PHP development. Composer is a dependency manager for PHP, much like
NPM for Node or RubyGems for Ruby. But like NPM, Composer is also the founda-
tion of much of our testing, local script loading, installation scripts, and much more.
You'll need Composer to install Laravel, update Laravel, and bring in external depen-
dencies.

Local Development Environments

For many projects, hosting your development environment using a simpler toolset
will be enough. If you already have MAMP or WAMP or XAMPP installed on your
system, that will likely be fine to run Laravel. You can also just run Laravel with PHP’s
built-in web server, assuming your system PHP is the right version.

All you really need to get started is the ability to run PHP. Everything past that is up
to you.

However, Laravel offers two tools for local development, Valet and Homestead, and
we'll cover both briefly. If youre unsure of which to use, I'd recommend using Valet
and just becoming briefly familiar with Homestead; however, both tools are valuable
and worth understanding.

Laravel Valet

If you want to use PHP’s built-in web server, your simplest option is to serve every
site from a localhost URL. If you run php -S localhost:8000 -t public from your
Laravel site’s root folder, PHP’s built-in web server will serve your site at http://local-
host:8000/. You can also run php artisan serve once you have your application set
up to easily spin up an equivalent server.

But if you're interested in tying each of your sites to a specific development domain,
you'll need to get comfortable with your operating system’s hosts file and use a tool
like dnsmasq. Let’s instead try something simpler.

12 | Chapter2: Setting Up a Laravel Development Environment

https://getcomposer.org/
http://bit.ly/2eNPJ5T

If you're a Mac user (there are also unofficial forks for Windows and Linux), Laravel
Valet takes away the need to connect your domains to your application folders. Valet
installs dnsmasq and a series of PHP scripts that make it possible to type laravel
new myapp &% open myapp.test and for it to just work. You’ll need to install a few
tools using Homebrew, which the documentation will walk you through, but the steps
from initial installation to serving your apps are few and simple.

Install Valet—see the docs for the latest installation instructions—and point it at one
or more directories where your sites will live. I ran valet park from my ~/Sites direc-
tory, which is where I put all of my under-development apps. Now, you can just
add .test to the end of the directory name and visit it in your browser.

Valet makes it easy to serve all folders in a given folder as {foldername}.test using
valet park, to serve just a single folder using valet 1link, to open the Valet-served
domain for a folder using valet open, to serve the Valet site with HTTPS using
valet secure, and to open an ngrok tunnel so you can share your site with others
with valet share.

Laravel Homestead

Homestead is another tool you might want to use to set up your local development
environment. It’s a configuration tool that sits on top of Vagrant (which is a tool for
managing virtual machines) and provides a preconfigured virtual machine image that
is perfectly set up for Laravel development and mirrors the most common production
environment that many Laravel sites run on. Homestead is also likely the best local
development environment for developers running Windows machines.

The Homestead docs are robust and kept constantly up to date, so I'll just refer you to
them if you want to learn how it works and how to get it set up.

Vessel

It's not an official Laravel project, but Chris Fidao of Servers for
Hackers and Shipping Docker has created a simple tool for creating
Docker environments for Laravel development called Vessel. Take a
look at the Vessel documentation to learn more.

Creating a New Laravel Project

There are two ways to create a new Laravel project, but both are run from the com-
mand line. The first option is to globally install the Laravel installer tool (using Com-
poser); the second is to use Composer’s create-project feature.

You can learn about both options in greater detail on the Installation documentation
page, but I'd recommend the Laravel installer tool.

Creating a New Laravel Project | 13

http://bit.ly/2U7uy7b
http://bit.ly/2FwQ7EZ
https://serversforhackers.com/
https://serversforhackers.com/
https://shippingdocker.com/
https://vessel.shippingdocker.com/
http://bit.ly/2HFzBFY
http://bit.ly/2HFzBFY

Installing Laravel with the Laravel Installer Tool

If you have Composer installed globally, installing the Laravel installer tool is as sim-
ple as running the following command:

composer global require "laravel/installer"

Once you have the Laravel installer tool installed, spinning up a new Laravel project
is simple. Just run this command from your command line:

laravel new projectName

This will create a new subdirectory of your current directory named {projectName}
and install a bare Laravel project in it.

Installing Laravel with Composer’s create-project Feature

Composer also offers a feature called create-project for creating new projects with
a particular skeleton. To use this tool to create a new Laravel project, issue the follow-
ing command:

composer create-project laravel/laravel projectName

Just like the installer tool, this will create a subdirectory of your current directory
named {projectName} that contains a skeleton Laravel install, ready for you to
develop.

Lambo: Super-Powered “Laravel New”

Because I often take the same series of steps after creating a new Laravel project, I
made a simple script called Lambo that automates those steps every time I create a
new project.

Lambo runs laravel new and then commits your code to Git, sets up your .env cre-
dentials with reasonable defaults, opens the project in a browser, and (optionally)
opens it in your editor and takes a few other helpful build steps.

14 | Chapter2: Setting Up a Laravel Development Environment

http://bit.ly/2TCcQo8

You can install Lambo using Composer’s global require:
composer global require tightenco/lambo
And you can use it just like laravel new:

cd Sites
lambo my-new-project

Laravel’s Directory Structure

When you open up a directory that contains a skeleton Laravel application, you'll see
the following files and directories:

app/
bootstrap/
config/
public/
resources/
routes/
storage/
tests/
vendor/
.editorconfig
.env
.env.example
.gitattributes
.gitignore
artisan
composer. json
composer . lock
package. json
phpunit.xml
readme.md
server.php
webpack.mix. js

Different Build Tools in Laravel Prior to 5.4

In projects created prior to Laravel 5.4, you'll likely see a gulpfile.js
instead of webpack.mix.js; this shows the project is running Laravel
Elixir instead of Laravel Mix.

Let’s walk through them one by one to get familiar.

Laravel's Directory Structure | 15

http://bit.ly/2JCToYp
http://bit.ly/2JCToYp
http://bit.ly/2U4X09P

The Folders

The root directory contains the following folders by default:

app

Where the bulk of your actual application will go. .Models, controllers, com-
mands, and your PHP domain code all go in here.

bootstrap
Contains the files that the Laravel framework uses to boot every time it runs.

config

Where all the configuration files live.

database
Where database migrations, seeds, and factories live.

public
The directory the server points to when it’s serving the website. This contains
index.php, which is the front controller that kicks off the bootstrapping process
and routes all requests appropriately. It's also where any public-facing files like
images, stylesheets, scripts, or downloads go.

resources
Where files that are needed for other scripts live. Views, language files, and
(optionally) Sass/Less/source CSS and source JavaScript files live here.

routes
Where all of the route definitions live, both for HTTP routes and “console
routes,” or Artisan commands.

storage
Where caches, logs, and compiled system files live.

tests
Where unit and integration tests live.

vendor
Where Composer installs its dependencies. It’s Git-ignored (marked to be exclu-
ded from your version control system), as Composer is expected to run as a part
of your deploy process on any remote servers.

16 | Chapter2: Setting Up a Laravel Development Environment

The Loose Files

The root directory also contains the following files:

.editorconfig
Gives your IDE/text editor instructions about Laravel’s coding standars (e.g., the
size of indents, the charset, and whether to trim trailing whitespace). You'll see
this in any Laravel apps running 5.5 and later.

.env and .env.example
Dictate the environment variables (variables that are expected to be different in
each environment and are therefore not committed to version con-
trol). .env.example is a template that each environment should duplicate to create
its own .env file, which is Git-ignored.

.gitignore and .gitattributes
Git configuration files.

artisan
Allows you to run Artisan commands (see Chapter 8) from the command line.

composer.json and composer.lock
Configuration files for Composer; composer.json is user-editable and com-
poser.lock is not. These files share some basic information about the project and
also define its PHP dependencies.

package.json
Like composer.json but for frontend assets and dependencies of the build system;
it instructs NPM on which JavaScript-based dependencies to pull in.

phpunit.xml

A configuration file for PHPUnit, the tool Laravel uses for testing out of the box.

readme.md
A Markdown file giving a basic introduction to Laravel. You won't see this file if
you use the Laravel installer.

server.php

A backup server that tries to allow less-capable servers to still preview the Laravel
application.

webpack.mix.js
The (optional) configuration file for Mix. If you're using Elixir, you'll instead see
gulpfile.js. These files are for giving your build system directions on how to com-
pile and process your frontend assets.

Laravel's Directory Structure | 17

Configuration

The core settings of your Laravel application—database connection settings, queue
and mail settings, etc.—live in files in the config folder. Each of these files returns a
PHP array, and each value in the array is accessible by a config key that is comprised
of the filename and all descendant keys, separated by dots (.).

So, if you create a file at config/services.php that looks like this:

// config/services.php
<?php
return [
'sparkpost' => [
'secret' => 'abcdefg',
1,
1;

you can access that config variable using config('services.sparkpost.secret').

Any configuration variables that should be distinct for each environment (and there-
fore not committed to source control) will instead live in your .env files. Let’s say you
want to use a different Bugsnag API key for each environment. Youd set the config
file to pull it from .env:

// config/services.php
<?php
return [
'bugsnag' => [
'api_key' => env('BUGSNAG_API_KEY'),
1,
1;
This env() helper function pulls a value from your .env file with that same key. So
now, add that key to your .env (settings for this environment) and .env.example (tem-
plate for all environments) files:

In .env
BUGSNAG_API_KEY=01nfp9813410942

In .env.example
BUGSNAG_API_KEY=

Your .env file will already contain quite a few environment-specific variables needed
by the framework, like which mail driver youll be using and what your basic database
settings are.

18 | Chapter2: Setting Up a Laravel Development Environment

Using env() Outside of Config Files

Certain features in Laravel, including some caching and optimiza-
tion features, aren’t available if you use env() calls anywhere out-
side of config files.

The best way to pull in environment variables is to set up config
items for anything you want to be environment-specific. Have
those config items read the environment variables, and then refer-
ence the config variables anywhere within your app:

// config/services.php
return [
'bugsnag' => [
'key' => env('BUGSNAG_API_KEY'),
1,
1;

// In controller, or whatever
$bugsnag = new Bugsnag(config('services.bugsnag.key'));

The .env File

Let’s take a quick look at the default contents of the .env file. The exact keys will vary
depending on which version of Laravel you're using, but take a look at Example 2-1 to
see what they look like in 5.8.

Example 2-1. The default environment variables in Laravel 5.8

APP_NAME=Laravel
APP_ENV=1local

APP_KEY=

APP_DEBUG=true
APP_URL=http://localhost

LOG_CHANNEL=stack

DB_CONNECTION=mysql
DB_HOST=127.0.0.1
DB_PORT=3306
DB_DATABASE=homestead
DB_USERNAME=homestead
DB_PASSWORD=secret

BROADCAST_DRIVER=1og
CACHE_DRIVER=f1le
QUEUE_CONNECTION=sync
SESSION_DRIVER=f1ile
SESSION_LIFETIME=120

REDIS_HOST=127.0.0.1

Configuration | 19

REDIS_PASSWORD=null
REDIS_PORT=6379

MAIL_DRIVER=smtp
MAIL_HOST=smtp.mailtrap.io
MAIL_PORT=2525
MAIL_USERNAME=null
MAIL_PASSWORD=null
MAIL_ENCRYPTION=null

AWS_ACCESS_KEY_ID=
AWS_SECRET_ACCESS_KEY=

PUSHER_APP_ID=
PUSHER_APP_KEY=
PUSHER_APP_SECRET=
PUSHER_APP_CLUSTER=mt1

MIX_PUSHER_APP_KEY="${PUSHER_APP_KEY}"
MIX_PUSHER_APP_CLUSTER="${PUSHER_APP_CLUSTER}"

I won't go into all of them, because quite a few are just groups of authentication infor-
mation for various services (Pusher, Redis, DB, Mail). Here are two important envi-
ronment variables you should know about, though:

APP_KEY
A randomly generated string that’s used to encrypt data. If this is ever empty, you
may run into the error “No application encryption key has been specified” In
that case, just run php artisan key:generate and Laravel will generate one for
you.

APP_DEBUG
A Boolean determining whether the users of this instance of your application
should see debug errors—great for local and staging environments, terrible for
production.

The rest of the non-authentication settings (BROADCAST_DRIVER, QUEUE_CONNECTION,
etc.) are given default values that work with as little reliance on external services as
possible, which is perfect for when you’re getting started.

When you start your first Laravel app, the only change you'll likely want to make for
most projects is to the database configuration settings. I use Laravel Valet, so I change
DB_DATABASE to the name of my project, DB_USERNAME to root, and DB_PASSWORD to
an empty string:

DB_DATABASE=myProject

DB_USERNAME=root
DB_PASSWORD=

20 | Chapter2: Setting Up a Laravel Development Environment

Then, I create a database with the same name as my project in my favorite MySQL
client, and I'm ready to go.

Up and Running

Youre now up and running with a bare Laravel install. Run git init, commit the
bare files with git add . and git commit, and you're ready to start coding. Thats it!
And if youre using Valet, you can run the following commands and instantly see
your site live in your browser:

laravel new myProject && cd myProject && valet open
Every time I start a new project, these are the steps I take:

laravel new myProject

cd myProject

git init

git add .

git commit -m "Initial commit"
I keep all of my sites in a ~/Sites folder, which I have set up as my primary Valet direc-
tory, so in this case I'd instantly have myProject.test accessible in my browser with no
added work. I can edit .env and point it to a particular database, add that database in
my MySQL app, and I'm ready to start coding. And remember, if you use Lambo, all
of these steps are already taken for you.

Testing

In every chapter after this, the “Testing” section at the end of the chapter will show
you how to write tests for the feature or features that were covered. Since this chapter
doesn’'t cover a testable feature, let’s talk tests quickly. (To learn more about writing
and running tests in Laravel, head over to Chapter 12.)

Out of the box, Laravel brings in PHPUnit as a dependency and is configured to run
the tests in any file in the tests directory whose name ends with Test.php (for example,
tests/UserTest.php).

So, the simplest way to write tests is to create a file in the tests directory with a name
that ends with Test.php. And the easiest way to run them is to run ./vendor/bin/
phpunit from the command line (in the project root).

If any tests require database access, be sure to run your tests from the machine where
your database is hosted—so if youre hosting your database in Vagrant, make sure to
ssh into your Vagrant box to run your tests from there. Again, you can learn about
this and much more in Chapter 12.

UpandRunning | 21

Also, some of the testing sections will use testing syntax and features that you will not
be familiar with yet if you're reading the book for the first time. If code in any of the
testing sections is confusing, just skip it and come back to it after you've had a chance
to read the testing chapter.

TL;DR

Since Laravel is a PHP framework, it’s very simple to serve it locally. Laravel also pro-
vides two tools for managing your local development: a simpler tool called Valet that
uses your local machine to provide your dependencies, and a preconfigured Vagrant
setup named Homestead. Laravel relies on and can be installed by Composer and
comes out of the box with a series of folders and files that reflect both its conventions
and its relationship with other open source tools.

22 | Chapter2: Setting Up a Laravel Development Environment

CHAPTER 3
Routing and Controllers

The essential function of any web application framework is to take requests from a
user and deliver responses, usually via HTTP(S). This means defining an application’s
routes is the first and most important project to tackle when learning a web frame-
work; without routes, you have little to no ability to interact with the end user.

In this chapter we will examine routes in Laravel; you'll see how to define them, how
to point them to the code they should execute, and how to use Laravel’s routing tools
to handle a diverse array of routing needs.

A Quick Introduction to MVC, the HTTP Verbs, and REST

Most of what we'll talk about in this chapter references how Model-View—Controller
(MVC) applications are structured, and many of the examples we'll be looking at use
REST-ish route names and verbs, so let’s take a quick look at both.

What Is MV(C?

In MVC, you have three primary concepts:

model
Represents an individual database table (or a record from that table)—think
“Company” or “Dog”

view
Represents the template that outputs your data to the end user—think “the login
page template with this given set of HTML and CSS and JavaScript”

23

controller
Like a traffic cop, takes HTTP requests from the browser, gets the right data out
of the database and other storage mechanisms, validates user input, and eventu-
ally sends a response back to the user.

In Figure 3-1, you can see that the end user will first interact with the controller by
sending an HTTP request using their browser. The controller, in response to that
request, may write data to and/or pull data from the model (database). The controller
will then likely send data to a view, and then the view will be returned to the end user
to display in their browser.

Figure 3-1. A basic illustration of MVC

We'll cover some use cases for Laravel that don't fit this relatively simplistic way of
looking at application architecture, so don’t get hung up on MVC, but this will at least
get you ready to approach the rest of this chapter as we talk about views and control-
lers.

The HTTP Verbs

The most common HTTP verbs are GET and POST, followed by PUT and DELETE. There
are also HEAD, OPTIONS, and PATCH, and two others that are pretty much never used in
normal web development, TRACE and CONNECT.

Here’s a quick rundown:

GET
Request a resource (or a list of resources).

HEAD
Ask for a headers-only version of the GET response.

POST
Create a resource.

24 | Chapter3:Routing and Controllers

PUT
Overwrite a resource.

PATCH
Modity a resource.

DELETE
Delete a resource.

OPTIONS
Ask the server which verbs are allowed at this URL.

Table 3-1 shows the actions available on a resource controller (more on these in
“Resource Controllers” on page 47). Each action expects you to call a specific URL
pattern using a specific verb, so you can get a sense of what each verb is used for.

Table 3-1. The methods of Laravel’s resource controllers

Verb URL Controller method Name Description

GET tasks index() tasks.index Show all tasks

GET tasks/create create() tasks.create Show the create task form

POST tasks store() tasks.store Accept form submission from the create
task form

GET tasks/{task} show() tasks.show Show one task

GET tasks/ edit() tasks.edit Edit one task

{task}/edit

PUT/PATCH tasks/{task} update() tasks.update Accept form submission from the edit task
form

DELETE tasks/{task} destroy() tasks.destroy Delete one task

What Is REST?

We'll cover REST in greater detail in “The Basics of REST-Like JSON APIs” on page
337, but as a brief introduction, it’s an architectural style for building APIs. When we
talk about REST in this book, we’ll mainly be referencing a few characteristics, such
as:

« Being structured around one primary resource at a time (e.g., tasks)

« Consisting of interactions with predictable URL structures using HT'TP verbs (as
seen in Table 3-1)

 Returning JSON and often being requested with JSON

A Quick Introduction to MVC, the HTTP Verbs, and REST | 25

There’s more to it, but usually “RESTful” as it'll be used in this book will mean “pat-
terned after these URL-based structures so we can make predictable calls like
GET /tasks/14/edit for the edit page” This is relevant (even when not building
APIs) because Laravel’s routing structures are based around a REST-like structure, as
you can see in Table 3-1.

REST-based APIs follow mainly this same structure, except they don't have a create
route or an edit route, since APIs just represent actions, not pages that prep for the
actions.

Route Definitions

In a Laravel application, you will define your web routes in routes/web.php and your
API routes in routes/api.php. Web routes are those that will be visited by your end
users; API routes are those for your API, if you have one. For now, we'll primarily
focus on the routes in routes/web.php.

Routes File Location in Laravel Prior to 5.3

In projects running versions of Laravel prior to 5.3, there will be
only one routes file, located at app/Http/routes.php.

The simplest way to define a route is to match a path (e.g., /) with a closure, as seen
in Example 3-1.

Example 3-1. Basic route definition

// routes/web.php
Route::get('/', function () {
return 'Hello, World!';

s

What's a Closure?

Closures are PHP’s version of anonymous functions. A closure is a function that you
can pass around as an object, assign to a variable, pass as a parameter to other func-
tions and methods, or even serialize.

You've now defined that if anyone visits / (the root of your domain), Laravel’s router
should run the closure defined there and return the result. Note that we return our
content and don’t echo or print it.

26 | (Chapter3:Routing and Controllers

A Quick Introduction to Middleware

You might be wondering, “Why am I returning ‘Hello, World!”
instead of echoing it?”

There are quite a few answers, but the simplest is that there are a
lot of wrappers around Laravel's request and response cycle,
including something called middleware. When your route closure
or controller method is done, it’s not time to send the output to the
browser yet; returning the content allows it to continue flowing
through the response stack and the middleware before it is
returned back to the user.

Many simple websites could be defined entirely within the web routes file. With a few
simple GET routes combined with some templates, as illustrated in Example 3-2, you
can serve a classic website easily.

Example 3-2. Sample website

Route::get('/', function () {

s

return view('welcome');

Route::get('about', function () {

s

return view('about');

Route::get('products', function () {

s

return view('products');

Route::get('services', function () {

s

return view('services');

Static Calls

If you have much experience developing with PHP, you might be
surprised to see static calls on the Route class. This is not actually a
static method per se, but rather service location using Laravels
facades, which we'll cover in Chapter 11.

If you prefer to avoid facades, you can accomplish these same defi-
nitions like this:

Srouter->get('/', function () {
return 'Hello, World!';

19K

Route Definitions

27

Route Verbs

You might've noticed that we've been using Route::get() in our route definitions.
This means were telling Laravel to only match for these routes when the HTTP
request uses the GET action. But what if it's a form POST, or maybe some JavaScript
sending PUT or DELETE requests? There are a few other options for methods to call on
a route definition, as illustrated in Example 3-3.

Example 3-3. Route verbs

Route::get('/', function () {
return 'Hello, World!';

s

Route::post('/', function () {
// Handle someone sending a POST request to this route

s

Route::put('/', function () {
// Handle someone sending a PUT request to this route

s

Route::delete('/", function () {
// Handle someone sending a DELETE request to this route

s

Route::any('/', function () {
// Handle any verb request to this route

s

Route: :match(['get', 'post'], '/', function () {
// Handle GET or POST requests to this route

s

Route Handling

As you've probably guessed, passing a closure to the route definition is not the only
way to teach it how to resolve a route. Closures are quick and simple, but the larger
your application gets, the clumsier it becomes to put all of your routing logic in one
file. Additionally, applications using route closures can’t take advantage of Laravel’s
route caching (more on that later), which can shave up to hundreds of milliseconds
off of each request.

The other common option is to pass a controller name and method as a string in
place of the closure, as in Example 3-4.

28 | (Chapter3:Routing and Controllers

Example 3-4. Routes calling controller methods
Route::get('/', 'WelcomeController@index');

This is telling Laravel to pass requests to that path to the index() method of the
App\Http\Controllers\WelcomeController controller. This method will be passed
the same parameters and treated the same way as a closure you might've alternatively
put in its place.

Laravel’s Controller/Method Reference Syntax

Laravel has a convention for how to refer to a particular method in a given controller:
ControllerName@methodName. Sometimes this is just a casual communication con-
vention, but it’s also used in real bindings, like in Example 3-4. Laravel parses what’s
before and after the @ and uses those segments to identify the controller and method.
Laravel 5.7 also introduced the “tuple” syntax (Route::get('/', [WelcomeControl
ler::class, 'index'])) but it’s still common to use ControllerName@methodName
to describe a method in written communication.

Route Parameters

If the route you're defining has parameters—segments in the URL structure that are
variable—it’s simple to define them in your route and pass them to your closure (see
Example 3-5).

Example 3-5. Route parameters

Route::get('users/{id}/friends', function ($id) {
//
bs

You can also make your route parameters optional by including a question mark (?)
after the parameter name, as illustrated in Example 3-6. In this case, you should also
provide a default value for the route’s corresponding variable.

Example 3-6. Optional route parameters

Route::get('users/{id?}', function ($id = 'fallbackId') {
//
b

Route Definitions | 29

And you can use regular expressions (regexes) to define that a route should only
match if a parameter meets particular requirements, as in Example 3-7.

Example 3-7. Regular expression route constraints

Route::get('users/{id}"', function ($id) {
//
})->where('id', '[0-9]+');

Route: :get('users/{username}', function (Susername) {

//

})->where('username', '[A-Za-z]+');

Route::get('posts/{id}/{slug}', function ($id, $slug) {

//
})->where(['id" => "[0-9]+', 'slug' => '[A-Za-z]+']);

As you've probably guessed, if you visit a path that matches a route string but the
regex doesn’t match the parameter, it won’t be matched. Since routes are matched top
to bottom, users/abc would skip the first closure in Example 3-7, but it would be
matched by the second closure, so it would get routed there. On the other hand,
posts/abc/123 wouldn’t match any of the closures, so it would return a 404 (Not
Found) error.

The Naming Relationship Between Route Parameters
and Closure/Controller Method Parameters

As you can see in Example 3-5, it's most common to use the same names for your
route parameters ({1d}) and the method parameters they inject into your route defi-
nition (function ($1id)). But is this necessary?

Unless you're using route model binding, discussed later in this chapter, no. The only
thing that defines which route parameter matches with which method parameter is
their order (left to right), as you can see here:

Route: :get('users/{userId}/comments/{commentId}', function (
SthisIsActuallyTheUserld,
SthisIsReallyTheCommentId
) {
//
b

That having been said, just because you can make them different doesn’t mean you
should. T recommend keeping them the same for the sake of future developers, who
could get tripped up by inconsistent naming.

30 | Chapter3:Routing and Controllers

Route Names

The simplest way to refer to these routes elsewhere in your application is just by their
path. There’s a url() global helper to simplify that linking in your views, if you need
it; see Example 3-8 for an example. The helper will prefix your route with the full
domain of your site.

Example 3-8. The url() helper

<a href="<?php echo url('/"); ?>">
// Outputs

However, Laravel also allows you to name each route, which enables you to refer to it
without explicitly referencing the URL. This is helpful because it means you can give
simple nicknames to complex routes, and also because linking them by name means
you don’t have to rewrite your frontend links if the paths change (see Example 3-9).

Example 3-9. Defining route names

// Defining a route with name() in routes/web.php:
Route: :get('members/{id}', 'MembersController@show')->name('members.show');

// Linking the route in a view using the route() helper:
<a href="<?php echo route('members.show', ['id' => 14]); ?>">

This example illustrates a few new concepts. First, were using fluent route definition
to add the name, by chaining the name() method after the get() method. This
method allows us to name the route, giving it a short alias to make it easier to refer-
ence elsewhere.

Defining Custom Routes in Laravel 5.1

Fluent route definitions don’t exist in Laravel 5.1. You'll need to
instead pass an array to the second parameter of your route defini-
tion; check the Laravel docs to see more about how this works.
Here’s Example 3-9 in Laravel 5.1:

Route: :get('members/{id}"', [
'as' => 'members.show',
'uses' => 'MembersController@show',

D;

In our example, we've named this route members.show; resourcePlural.action is a
common convention within Laravel for route and view names.

Route Definitions | 31

http://bit.ly/2UZm1Aw

Route Naming Conventions

You can name your route anything youd like, but the common convention is to use
the plural of the resource name, then a period, then the action. So, here are the routes
most common for a resource named photo:

photos.index
photos.create
photos.store
photos.show
photos.edit
photos.update
photos.destroy

To learn more about these conventions, see “Resource Controllers” on page 47.

This example also introduced the route() helper. Just like url(), it’s intended to be
used in views to simplify linking to a named route. If the route has no parameters,
you can simply pass the route name (route('members.index')) and receive a route
string (http://myapp.com/members). If it has parameters, pass them in as an array as
the second parameter like we did in Example 3-9.

In general, I recommend using route names instead of paths to refer to your routes,
and therefore using the route() helper instead of the url() helper. Sometimes it can
get a bit clumsy—for example, if youre working with multiple subdomains—but it
provides an incredible level of flexibility to later change the application’s routing
structure without major penalty.

Passing Route Parameters to the route() Helper

When your route has parameters (e.g., users/id), you need to define those parame-
ters when you're using the route() helper to generate a link to the route.

There are a few different ways to pass these parameters. Let’s imagine a route defined

as users/userId/comments/commentId. If the user ID is 1 and the comment ID is 2,
let’s look at a few options we have available to us:

Option 1:
route('users.comments.show', [1, 2])
// http://myapp.com/users/1/comments/2
Option 2:

route('users.comments.show', ['userId' => 1, 'commentId' => 2])
// http://myapp.com/users/1/comments/2

32 | Chapter3:Routing and Controllers

Option 3:

route('users.comments.show', ['commentId' => 2, 'userId' => 1])
// http://myapp.com/users/1/comments/2

Option 4:

route('users.comments.show', ['userId' => 1, 'commentId' => 2, 'opt' => 'a'])
// http://myapp.com/users/1/comments/2?opt=a

As you can see, nonkeyed array values are assigned in order; keyed array values are
matched with the route parameters matching their keys, and anything left over is
added as a query parameter.

Route Groups

Often a group of routes share a particular characteristic—a certain authentication
requirement, a path prefix, or perhaps a controller namespace. Defining these shared
characteristics again and again on each route not only seems tedious but also can
muddy up the shape of your routes file and obscure some of the structures of
your application.

Route groups allow you to group several routes together and apply any shared config-
uration settings once to the entire group, to reduce this duplication. Additionally,
route groups are visual cues to future developers (and to your own brain) that these
routes are grouped together.

To group two or more routes together, you “surround” the route definitions with a
route group, as shown in Example 3-10. In reality, you're actually passing a closure to
the group definition, and defining the grouped routes within that closure.

Example 3-10. Defining a route group

Route: :group(function () {
Route::get('hello', function () {
return 'Hello';

b
Route::get('world', function () {
return 'World';

s
s

By default, a route group doesn't actually do anything. There’s no difference between
using the group in Example 3-10 and separating a segment of your routes with code
comments.

Route Groups | 33

Middleware

Probably the most common use for route groups is to apply middleware to a group of
routes. You'll learn more about middleware in Chapter 10, but, among other things,
they’re what Laravel uses for authenticating users and restricting guest users from
using certain parts of a site.

In Example 3-11, we're creating a route group around the dashboard and account
views and applying the auth middleware to both. In this example, this means users
have to be logged in to the application to view the dashboard or the account page.

Example 3-11. Restricting a group of routes to logged-in users only

Route: :middleware('auth')->group(function() {
Route: :get('dashboard', function () {
return view('dashboard');

b
Route::get('account', function () {
return view('account');
H;
b

Modifying Route Groups Prior to Laravel 5.4

Just like fluent route definition didn’t exist in Laravel prior to 5.2,
fluently applying modifiers like middleware, prefixes, domains, and
more to route groups wasn't possible prior to 5.4.

Here’s Example 3-11 in Laravel 5.3 and prior:

Route::group(['middleware' => 'auth'], function () {
Route::get('dashboard', function () {
return view('dashboard');

b;
Route::get('account', function () {
return view('account');
b
b;

Applying middleware in controllers

Often it’s clearer and more direct to attach middleware to your routes in the control-
ler instead of at the route definition. You can do this by calling the middleware()
method in the constructor of your controller. The string you pass to the middle
ware() method is the name of the middleware, and you can optionally chain modifier
methods (only() and except()) to define which methods will receive that middle-
ware:

34 | Chapter3:Routing and Controllers

class DashboardController extends Controller

{
public function __construct()
{
$this->middleware('auth');
$this->middleware('admin-auth")
->only('editUsers');
Sthis->middleware(' team-member')
->except('editUsers');
}
}

Note that if youre doing a lot of “only” and “except” customizations, that’s often a
sign that you should break out a new controller for the exceptional routes.

Rate limiting

If you need to limit users to only accessing any give route(s) a certain number of
times in a given time frame (called rate limiting, and most common with APIs),
there’s an out-of-the-box middleware for that in version 5.2 and above. Apply the
throttle middleware, which takes two parameters: the first is the number of tries a
user is permitted and the second is the number of minutes to wait before resetting the
attempt count. Example 3-12 demonstrates its use.

Example 3-12. Applying the rate limiting middleware to a route

Route: :middleware('auth:api', 'throttle:60,1')->group(function () {
Route::get('/profile', function () {
//
b;
s

Dynamicrate limiting. If youd like to differentiate one user’s rate limit from another’s,
you can instruct the throttle middleware to pull the tries count (its first parameter)
from the user’s Eloquent model. Instead of passing a tries count as the first parameter
of throttle, instead pass the name of an attribute on the Eloquent model, and that
attribute will be used to calculate whether the user has passed their rate limit.

So, if your user model has a plan_rate_limit attribute on it, you could use the mid-
dleware with throttle:plan_rate_limit,1.

Route Groups | 35

A Brief Introduction to Eloquent

We'll be covering Eloquent, database access, and Laravel’s query builder in depth in
Chapter 5, but there will be a few references between now and then that will make a
basic understanding useful.

Eloquent is Laravel’s ActiveRecord database object-relational mapper (ORM), which
makes it easy to relate a Post class (model) to the posts database table and get all
records with a call like Post: :all().

The query builder is the tool that makes it possible to make calls like
Post::where('active', true)->get() or even DB::table('users')->all().
You're building a query by chaining methods one after another.

Path Prefixes

If you have a group of routes that share a segment of their path—for example, if your
site’s dashboard is prefixed with /dashboard—you can use route groups to simplify
this structure (see Example 3-13).

Example 3-13. Prefixing a group of routes

Route: :prefix('dashboard')->group(function () {
Route::get('/', function () {
// Handles the path /dashboard
s
Route::get('users', function () {
// Handles the path /dashboard/users
b
s

Note that each prefixed group also has a / route that represents the root of the prefix
—in Example 3-13 that’s /dashboard.
Fallback Routes

In Laravel prior to 5.6, you could define a “fallback route” (which you need to define
at the end of your routes file) to catch all unmatched paths:

Route::any('{anything}', 'CatchAllController')->where('anything', '*');

36 | Chapter3:Routing and Controllers

E In Laravel 5.6+, you can use the Route: : fallback() method instead:

Route: :fallback(function () {
//
b

Subdomain Routing

Subdomain routing is the same as route prefixing, but it’s scoped by subdomain
instead of route prefix. There are two primary uses for this. First, you may want to
present different sections of the application (or entirely different applications) to dif-
ferent subdomains. Example 3-14 shows how you can achieve this.

Example 3-14. Subdomain routing

Route: :domain('api.myapp.com')->group(function () {
Route::get('/', function () {
//
b
b

Second, you might want to set part of the subdomain as a parameter, as illustrated in
Example 3-15. This is most often done in cases of multitenancy (think Slack or Har-
vest, where each company gets its own subdomain, like tighten.slack.co).

Example 3-15. Parameterized subdomain routing

Route: :domain('{account}.myapp.com')->group(function () {
Route::get('/', function ($account) {
//

H;
Route::get('users/{id}', function ($account, $id) {

//
19K
i3H

Note that any parameters for the group get passed into the grouped routes’ methods
as the first parameter(s).

Namespace Prefixes

When you’re grouping routes by subdomain or route prefix, it’s likely their control-
lers have a similar PHP namespace. In the dashboard example, all of the dashboard
routes’ controllers might be under a Dashboard namespace. By using the route group
namespace prefix, as shown in Example 3-16, you can avoid long controller refer-
ences in groups like "Dashboard/UsersController@index" and "Dashboard/Purcha
sesController@index".

Route Groups | 37

Example 3-16. Route group namespace prefixes

// App|\Http|Controllers|\UsersController
Route::get('/', 'UsersController@index');

Route: :namespace('Dashboard')->group(function () {
// App|\Http|Controllers\Dashboard\PurchasesController
Route::get('dashboard/purchases', 'PurchasesController@index');

s

Name Prefixes

The prefixes don’t stop there. It's common that route names will reflect the inheri-
tance chain of path elements, so users/comments/5 will be served by a route named
users.comments.show. In this case, it's common to use a route group around all of
the routes that are beneath the users.comments resource.

Just like we can prefix URL segments and controller namespaces, we can also prefix
strings to the route name. With route group name prefixes, we can define that every
route within this group should have a given string prefixed to its name. In this con-
text, were prefixing "users." to each route name, then "comments." (see
Example 3-17).

Example 3-17. Route group name prefixes

Route: :name('users.')->prefix('users')->group(function () {
Route: :name('comments.')->prefix('comments"')->group(function () {
Route::get('{id}"', function () {

})->name('show');
H;
b

Signed Routes

Many applications regularly send notifications about one-off actions (resetting a pass-
word, accepting an invitation, etc.) and provide simple links to take those actions.
Let’s imagine sending an email confirming the recipient was willing to be added to a
mailing list.

There are three ways to send that link:

1. Make that URL public and hope no one else discovers the approval URL or
modifies their own approval URL to approve someone else.

38 | Chapter3:Routing and Controllers

2. Put the action behind authentication, link to the action, and require the user to
log in if theyre not logged in yet (which, in this case, may be impossible, as many
mailing list recipients likely won’t be users).

3. “Sign” the link so that it uniquely proves that the user received the link from your
email, without them having to log in; something like http://myapp.com/invita-
tions/5816/yes?signature=030ab0ef6a8237bd86a8b8.

E One simple way to accomplish the last option is to use a feature introduced in Laravel
5.6.12 called signed URLs, which makes it easy to build a signature authentication sys-
tem for sending out authenticated links. These links are composed of the normal
route link with a “signature” appended that proves that the URL has not been
changed since it was sent (and therefore that no one has modified the URL to access
someone else’s information).

Signing a Route
In order to build a signed URL to access a given route, the route must have a name:

Route::get('invitations/{invitation}/{answer}', 'InvitationController')
->name('invitations');

To generate a normal link to this route you would use the route() helper, as we've
already covered, but you could also use the URL facade to do the same thing:
URL::route('invitations', ['invitation' => 12345, 'answer' => 'yes']).To
generate a signed link to this route, simply use the signedRoute() method instead.
And if you want to generate a signed route with an expiration, use temporarySigned
Route():

// Generate a normal link
URL::route('invitations', ['invitation' => 12345, 'answer' => 'yes']);

// Generate a signed link
URL: :signedRoute('invitations', ['invitation' => 12345, 'answer' => 'ves']);

// Generate an expiring (temporary) signed link
URL: : temporarySignedRoute(

'invitations',

now()->addHours(4),

['invitation' => 12345, 'answer' => 'yes']

);

Signed Routes | 39

Using the now() Helper

4] Since version 5.5 Laravel has offered a now() helper that’s the
= equivalent of Carbon: :now(); it returns a Carbon object repre-
sentative of today, right at this second. If youre working with Lara-
vel prior to 5.5, you can replace any instance of now() in this book
with Carbon: :now().

Carbon, if youre not familiar with it, is a datetime library that’s
included with Laravel.

Modifying Routes to Allow Signed Links

Now that you've generated a link to your signed route, you need to protect against
any unsigned access. The easiest option is to apply the signed middleware (which, if
it's not in your $routeMiddleware array in app/Http/Kernel.php, should be, backed by
Illuminate\Routing\Middleware\ValidateSignature):

Route::get('invitations/{invitation}/{answer}', 'InvitationController')
->name('invitations')
->middleware('signed');

If youd prefer, you can manually validate using the hasvalidSignature() method on
the Request object instead of using the signed middleware:

class InvitationController

{
public function __invoke(Invitation S$invitation, S$answer, Request $request)
{
if (! $request->hasValidSignature()) {
abort(403);
}
//
}
}
Views

In a few of the route closures we've looked at so far, we've seen something along the
lines of return view('account'). What’s going on here?

In the MVC pattern (Figure 3-1), views (or templates) are files that describe what
some particular output should look like. You might have views for JSON or XML or
emails, but the most common views in a web framework output HTML.

In Laravel, there are two formats of view you can use out of the box: plain PHP, or
Blade templates (see Chapter 4). The difference is in the filename: about.php will

40 | Chapter3:Routing and Controllers

be rendered with the PHP engine, and about.blade.php will be rendered with the
Blade engine.

Three Ways to Load a View

There are three different ways to return a view. For now, just con-
cern yourself with view(), but if you ever see View: :make(), it’s the
same thing, or you could inject the I1luminate\View\ViewFactory
if you prefer.

Once you've “loaded” a view with the view() helper, you have the option to simply
return it (as in Example 3-18), which will work fine if the view doesn’t rely on any
variables from the controller.

Example 3-18. Simple view() usage

Route::get('/', function () {
return view('home');

s

This code looks for a view in resources/views/home.blade.php or resources/views/
home.php, and loads its contents and parses any inline PHP or control structures until
you have just the view’s output. Once you return it, it’s passed on to the rest of the
response stack and eventually returned to the user.

But what if you need to pass in variables? Take a look at Example 3-19.

Example 3-19. Passing variables to views

Route::get('tasks', function () {
return view('tasks.index')
->with('tasks', Task::all());
s

This closure loads the resources/views/tasks/index.blade.php or resources/views/tasks/
index.php view and passes it a single variable named tasks, which contains the result
of the Task::all() method. Task::all() is an Eloquent database query you’ll learn
about in Chapter 5.

Returning Simple Routes Directly with Route::view()

E Because it’s so common for a route to just return a view with no custom data, Laravel
5.5+ allows you to define a route as a “view” route without even passing the route
definition a closure or a controller/method reference, as you can see in Example 3-20.

Views | 41

Example 3-20. Route::view()

// Returns resources/views/welcome.blade.php
Route::view('/', 'welcome');

// Passing simple data to Route::view()
Route::view('/', 'welcome', ['User' => 'Michael']);

Using View Composers to Share Variables with Every View

Sometimes it can become a hassle to pass the same variables over and over. There
may be a variable that you want accessible to every view in the site, or to a certain
class of views or a certain included subview—for example, all views related to tasks,
or the header partial.

It’s possible to share certain variables with every template or just certain templates,
like in the following code:

view()->share('variableName', 'variableValue');

To learn more, check out “View Composers and Service Injection” on page 75.

Controllers

I've mentioned controllers a few times, but until now most of the examples have
shown route closures. In the MVC pattern, controllers are essentially classes that
organize the logic of one or more routes together in one place. Controllers tend to
group similar routes together, especially if your application is structured in a tradi-
tionally CRUD-like format; in this case, a controller might handle all the actions that
can be performed on a particular resource.

What is CRUD?

CRUD stands for create, read, update, delete, which are the four pri-
mary operations that web applications most commonly provide on
a resource. For example, you can create a new blog post, you can
read that post, you can update it, or you can delete it.

It may be tempting to cram all of the application’s logic into the controllers, but it’s
better to think of controllers as the traffic cops that route HTTP requests around
your application. Since there are other ways requests can come into your application
—cron jobs, Artisan command-line calls, queue jobs, etc.—it’s wise to not rely on
controllers for much behavior. This means a controller’s primary job is to capture the
intent of an HTTP request and pass it on to the rest of the application.

42 | Chapter3:Routing and Controllers

So, let’s create a controller. One easy way to do this is with an Artisan command, so
from the command line run the following:

php artisan make:controller TasksController

Artisan and Artisan Generators

Laravel comes bundled with a command-line tool called Artisan.
Artisan can be used to run migrations, create users and other
database records manually, and perform many other manual, one-
time tasks.

Under the make namespace, Artisan provides tools for generating
skeleton files for a variety of system files. That's what allows us to
run php artisan make:controller.

To learn more about this and other Artisan features, see Chapter 8.

This will create a new file named TasksController.php in app/Http/Controllers, with the
contents shown in Example 3-21.

Example 3-21. Default generated controller
<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

class TasksController extends Controller
{

//
}

Modify this file as shown in Example 3-22, creating a new public method called
index(). We'll just return some text there.

Example 3-22. Simple controller example

<?php

namespace App\Http\Controllers;

class TasksController extends Controller

{

public function index()

{

return 'Hello, World!';

Controllers | 43

}

Then, like we learned before, we'll hook up a route to it, as shown in Example 3-23.

Example 3-23. Route for the simple controller

// routes/web.php
<?php

Route::get('/', 'TasksController@index');

That’s it. Visit the / route and you’ll see the words “Hello, World!”

Controller Namespacing

In Example 3-23 we referenced a controller that has the fully qualified class name of
App\Http\Controllers\TasksController, but we only used the class name. This
isn’t because we can simply reference controllers by their class name. Rather, we can
ignore the App\Http\Controllers\ when we reference controllers; by default, Laravel
is configured to look for controllers within that namespace.

This means that if you have a controller with the fully qualified class name of
App\Http\Controllers\API\ExercisesController, youd reference it in a route def-
inition as APT\ExercisesController.

The most common use of a controller method, then, will be something like
Example 3-24, which provides the same functionality as our route closure in
Example 3-19.

Example 3-24. Common controller method example
// TasksController.php

public function index()

{

return view('tasks.index')
->with('tasks', Task::all());
}

This controller method loads the resources/views/tasks/index.blade.php or resources/
views/tasks/index.php view and passes it a single variable named tasks, which con-
tains the result of the Task: :all() Eloquent method.

44 | Chapter 3: Routing and Controllers

Generating Resource Controllers

3] If you ever used php artisan make:controller in Laravel
= prior to 5.3, you might be expecting it to autogenerate methods
for all of the basic resource routes like create() and update(). You
can bring this behavior back in Laravel 5.3+ by passing the
- -resource flag when you create the controller:

php artisan make:controller TasksController --resource

Getting User Input

The second most common action to perform in a controller method is to take input
from the user and act on it. That introduces a few new concepts, so let’s take a look at
a bit of sample code and walk through the new pieces.

First, let’s bind our route; see Example 3-25.

Example 3-25. Binding basic form actions

// routes/web.php
Route::get('tasks/create', 'TasksController@create');
Route: :post('tasks', 'TasksController@store');

Notice that were binding the GET action of tasks/create (which shows a form for
creating a new task) and the POST action of tasks/ (which is where our form will
POST to when we're creating a new task). We can assume the create() method in our
controller just shows a form, so let’s look at the store() method in Example 3-26.

Example 3-26. Common form input controller method
// TasksController.php

public function store()

{
Task: :create(request()->only(['title', 'description']));

return redirect('tasks');

}

This example makes use of Eloquent models and the redirect() functionality, and
we'll talk about them more later, but for now let’s talk quickly about how we're getting
our data here.

We're using the request() helper to represent the HTTP request (more on that later)
and using its only() method to pull just the title and description fields the user
submitted.

Controllers | 45

We're then passing that data into the create() method of our Task model, which cre-
ates a new instance of the Task with title set to the passed-in title and description
set to the passed-in description. Finally, we redirect back to the page that shows all
tasks.

There are a few layers of abstraction at work here, which we'll cover in a second, but
know that the data coming from the only() method comes from the same pool of
data all common methods used on the Request object draw from, including all()
and get(). The set of data each of these methods is pulling from represents all user-
provided data, whether from query parameters or POST values. So, our user filled out
two fields on the “add task” page: “title” and “description.”

To break down the abstraction a bit, request()->only() takes an associative array of
input names and returns them:

request()->only(['title', 'description']);
// returns:

[
'"title' => 'Whatever title the user typed on the previous page',
'description' => 'Whatever description the user typed on the previous page',

1

And Task: :create() takes an associative array and creates a new task from it:

Task: :create([
'title' => 'Buy milk',
'description' => 'Remember to check the expiration date this time, Norbert!',
s
Combining them together creates a task with just the user-provided “title” and
“description” fields.

Injecting Dependencies into Controllers

Laravel’s facades and global helpers present a simple interface to the most useful
classes in Laravel’s codebase. You can get information about the current request and
user input, the session, caches, and much more.

But if you prefer to inject your dependencies, or if you want to use a service that
doesn’t have a facade or a helper, you'll need to find some way to bring instances of
these classes into your controller.

This is our first exposure to Laravel’s service container. For now, if this is unfamiliar,
you can think about it as a little bit of Laravel magic; or, if you want to know more
about how it’s actually functioning, you can skip ahead to Chapter 11.

All controller methods (including the constructors) are resolved out of Laravel’s con-
tainer, which means anything you typehint that the container knows how to resolve
will be automatically injected.

46 | Chapter3:Routing and Controllers

Typehints in PHP

“Typehinting” in PHP means putting the name of a class or inter-
face in front of a variable in a method signature:

public function __construct(Logger $logger) {}

This typehint is telling PHP that whatever is passed into the
method must be of type Logger, which could be either an interface

or a class.

As a nice example, what if youd prefer having an instance of the Request object
instead of using the global helper? Just typehint I1luminate\Http\Request in your
method parameters, like in Example 3-27.

Example 3-27. Controller method injection via typehinting
// TasksController.php

public function store(\Illuminate\Http\Request Srequest)

{
Task::create(Srequest->only(['title', 'description']));

return redirect('tasks');

}

So, you've defined a parameter that must be passed into the store() method. And
since you typehinted it, and since Laravel knows how to resolve that class name,
youre going to have the Request object ready for you to use in your method with no
work on your part. No explicit binding, no anything else—it’s just there as the
$request variable.

And, as you can tell from comparing Example 3-26 and Example 3-27, the request()
helper and the Request object behave exactly the same.

Resource Controllers

Sometimes naming the methods in your controllers can be the hardest part of writing
a controller. Thankfully, Laravel has some conventions for all of the routes of a tradi-
tional REST/CRUD controller (called a “resource controller” in Laravel); additionally,
it comes with a generator out of the box and a convenience route definition that
allows you to bind an entire resource controller at once.

To see the methods that Laravel expects for a resource controller, let’s generate a new
controller from the command line:

php artisan make:controller MySampleResourceController --resource

Controllers | 47

Now open app/Http/Controllers/MySampleResourceController.php. You'll see it comes
prefilled with quite a few methods. Let’s walk over what each represents. We'll use a
Task as an example.

The methods of Laravel’s resource controllers

Remember the table from earlier? Table 3-1 shows the HTTP verb, the URL, the con-
troller method name, and the name for each of these default methods that are gener-
ated in Laravel’s resource controllers.

Binding a resource controller

So, we've seen that these are the conventional route names to use in Laravel, and also
that it’s easy to generate a resource controller with methods for each of these default
routes. Thankfully, you don’t have to generate routes for each of these controller
methods by hand, if you don’t want to. There’s a trick for that, called resource control-
ler binding. Take a look at Example 3-28.

Example 3-28. Resource controller binding

// routes/web.php
Route: :resource('tasks', 'TasksController');

This will automatically bind all of the routes listed in Table 3-1 for this resource to the
appropriate method names on the specified controller. It'll also name these routes
appropriately; for example, the index() method on the tasks resource controller will
be named tasks.index().

artisan route:list

If you ever find yourself in a situation where youre wondering
what routes your current application has available, there’s a tool for
that: from the command line, run php artisan route:list and
you'll get a listing of all of the available routes (see Figure 3-2).

Figure 3-2. artisan route:list

48 | Chapter 3:Routing and Controllers

API Resource Controllers

When you're working with RESTful APIs, the list of potential actions on a resource is
not the same as it is with an HTML resource controller. For example, you can send a
POST request to an API to create a resource, but you can’t really “show a create form”
in an APL

Laravel 5.6 introduced a new way to generate an API resource controller, which has the
same structure as a resource controller except it excludes the create and edit actions.
We can generate API resource controllers by passing the --api flag when creating a
controller:

php artisan make:controller MySampleResourceController --api

Binding an API resource controller

To bind an API resource controller, use the apiResource() method instead of the
resource() method, as shown in Example 3-29.

Example 3-29. API resource controller binding

// routes/web.php
Route: :apiResource('tasks', 'TasksController');

Single Action Controllers

There will be times in your applications when a controller should only service a single
route. You may find yourself wondering how to name the controller method for that
route. Thankfully, you can point a single route at a single controller without concern-
ing yourself with naming the one method.

As you may already know, the __invoke() method is a PHP magic method that
allows you to “invoke” an instance of a class, treating it like a function and calling it.
This is the tool Laravel’s single action controllers use to allow you to point a route to a
single controller, as you can see in Example 3-30.

Example 3-30. Using the __invoke() method

// \App\Http\Controllers\UpdateUserAvatar.php
public function __invoke(User S$user)

{

// Update the user's avatar image

}

// routes/web.php
Route: :post('users/{user}/update-avatar', 'UpdateUserAvatar');

Controllers | 49

Route Model Binding

One of the most common routing patterns is that the first line of any controller
method tries to find the resource with the given ID, like in Example 3-31.

Example 3-31. Getting a resource for each route

Route: :get('conferences/{id}', function ($id) {
Sconference = Conference::findOrFail($id);

s

Laravel provides a feature that simplifies this pattern called route model binding. This
allows you to define that a particular parameter name (e.g., {conference}) will indi-
cate to the route resolver that it should look up an Eloquent database record with that
ID and then pass it in as the parameter instead of just passing the ID.

There are two kinds of route model binding: implicit and custom (or explicit).

Implicit Route Model Binding

The simplest way to use route model binding is to name your route parameter some-
thing unique to that model (e.g., name it $conference instead of $1d), then typehint
that parameter in the closure/controller method and use the same variable name
there. It’s easier to show than to describe, so take a look at Example 3-32.

Example 3-32. Using an implicit route model binding

Route::get('conferences/{conference}', function (Conference $conference) {
return view('conferences.show')->with('conference', $conference);

s

Because the route parameter ({conference}) is the same as the method parameter
($conference), and the method parameter is typehinted with a Conference model
(Conference $conference), Laravel sees this as a route model binding. Every time
this route is visited, the application will assume that whatever is passed into the URL
in place of {conference} is an ID that should be used to look up a Conference,
and then that resulting model instance will be passed in to your closure or controller
method.

50 | Chapter3:Routing and Controllers

Customizing the Route Key for an Eloquent Model

Any time an Eloquent model is looked up via a URL segment (usu-
ally because of route model binding), the default column Eloquent
will look it up by is its primary key (ID).

To change the column your Eloquent model uses for URL lookups,
add a method to your model named getRouteKeyName():
public function getRouteKeyName()

{
}

Now, a URL like conferences/{conference} will expect to get an
entry from the slug column instead of the ID, and will perform its
lookups accordingly.

return 'slug';

Implicit route model binding was added in Laravel 5.2, so you won't have access to it
L2
in5.1.

Custom Route Model Binding

To manually configure route model bindings, add a line like the one in Example 3-33
to the boot() method in App\Providers\RouteServiceProvider.

Example 3-33. Adding a route model binding

public function boot()

{
// Just allows the parent's boot() method to still run
parent: :boot();
// Perform the binding
Route: :model('event', Conference::class);
}

You've now specified that whenever a route has a parameter in its definition named
{event}, as demonstrated in Example 3-34, the route resolver will return an instance
of the Conference class with the ID of that URL parameter.

Example 3-34. Using an explicit route model binding

Route: :get('events/{event}', function (Conference $event) {
return view('events.show')->with('event', $Sevent);

s

Route Model Binding | 51

Route Caching

If you're looking to squeeze every millisecond out of your load time, you may want to
take a look at route caching. One of the pieces of Laravel’s bootstrap that can take
anywhere from a few dozen to a few hundred milliseconds is parsing the routes/* files,
and route caching speeds up this process dramatically.

To cache your routes file, you need to be using all controller, redirect, view, and
resource routes (no route closures). If your app isn’t using any route closures, you can
run php artisan route:cache and Laravel will serialize the results of your routes/*
files. If you want to delete the cache, run php artisan route:clear.

Here’s the drawback: Laravel will now match routes against that cached file instead of
your actual routes/* files. You can make endless changes to your routes files, and they
won't take effect until you run route:cache again. This means you’ll have to recache
every time you make a change, which introduces a lot of potential for confusion.

Here’s what I would recommend instead: since Git ignores the route cache file by
default anyway, consider only using route caching on your production server, and run
the php artisan route:cache command every time you deploy new code (whether
via a Git post-deploy hook, a Forge deploy command, or as a part of whatever other
deploy system you use). This way you won’t have confusing local development issues,
but your remote environment will still benefit from route caching.

Form Method Spoofing

Sometimes you need to manually define which HTTP verb a form should send as.
HTML forms only allow for GET or POST, so if you want any other sort of verb, you'll
need to specify that yourself.

HTTP Verbs in Laravel

As we've seen already, you can define which verbs a route will match in the route defi-
nition using Route: :get(), Route: :post(), Route::any(), or Route: :match(). You
can also match with Route: :patch(), Route: : put(), and Route: :delete().

But how does one send a request other than GET with a web browser? First, the
method attribute in an HTML form determines its HTTP verb: if your form has a
method of "GET", it will submit via query parameters and a GET method; if the form
has a method of "POST", it will submit via the post body and a POST method.

JavaScript frameworks make it easy to send other requests, like DELETE and PATCH.
But if you find yourself needing to submit HTML forms in Laravel with verbs other
than GET or POST, you'll need to use form method spoofing, which means spoofing the
HTTP method in an HTML form.

52 | Chapter3:Routing and Controllers

HTTP Method Spoofing in HTML Forms

To inform Laravel that the form youre currently submitting should be treated as
something other than a POST, add a hidden variable named _method with the value of
either "PUT", "PATCH", or "DELETE", and Laravel will match and route that form sub-
mission as if it were actually a request with that verb.

The form in Example 3-35, since it’s passing Laravel the method of "DELETE", will
match routes defined with Route: :delete() but not those with Route: :post().
Example 3-35. Form method spoofing

<form action="/tasks/5" method="POST">
<input type="hidden" name="_method" value="DELETE">

<!--or: -->
@method('DELETE")
</form>

CSRF Protection

If you've tried to submit a form in a Laravel application already, including the one in
Example 3-35, you've likely run into the dreaded TokenMismatchException.

By default, all routes in Laravel except “read-only” routes (those using GET, HEAD, or
OPTIONS) are protected against cross-site request forgery (CSRF) attacks by requiring
a token, in the form of an input named _token, to be passed along with each request.
This token is generated at the start of every session, and every non-read-only route
compares the submitted _token against the session token.

What is CSRF?

A cross-site request forgery is when one website pretends to be
another. The goal is for someone to hijack your users’ access to
your website, by submitting forms from their website to your web-
site via the logged-in user’s browser.

The best way around CSRF attacks is to protect all inbound routes
—POST, DELETE, etc.—with a token, which Laravel does out of
the box.

You have two options for getting around this CSRF error. The first, and preferred,
method is to add the _token input to each of your submissions. In HTML forms,
that’s simple; look at Example 3-36.

CSRF Protection | 53

Example 3-36. CSRF tokens

<form action="/tasks/5" method="POST">
<?php echo csrf_field(); 7>

<!--or: -->
<input type="hidden" name="_token" value="<?php echo csrf_token(); ?>">
<!--or: -->
@csrf
</form>

CSRF Helpers in Laravel Prior to 5.6

The @csrf Blade directive is not available in projects running ver-
sions of Laravel prior to 5.6. Instead, you’ll need to use the
csrf_field() helper function.

In JavaScript applications, it takes a bit more work, but not much. The most common
solution for sites using JavaScript frameworks is to store the token on every page in a
<meta> tag like this one:

<meta name="csrf-token" content="<?php echo csrf_token(); ?>" id="token">

Storing the token in a <meta> tag makes it easy to bind it to the correct HTTP header,
which you can do once globally for all requests from your JavaScript framework, like
in Example 3-37.

Example 3-37. Globally binding a header for CSRF

// In jQuery:
$.ajaxSetup({
headers: {
'X-CSRF-TOKEN': $('meta[name="csrf-token"]"').attr('content')

}
s

// With Axios:
window.axilos.defaults.headers.common['X-CSRF-TOKEN'] =
document.head.querySelector('meta[name="csrf-token"]");

Laravel will check the X-CSRF-TOKEN on every request, and valid tokens passed there
will mark the CSRF protection as satisfied.

Note that the Vue syntax for CSRF in this example is not necessary if youre working
with the default Vue bootstrap in a Laravel installation; it already does this work for
you.

54 | Chapter3:Routing and Controllers

Binding CSRF Tokens with Vue Resource

In projects running Laravel 5.3 and earlier and Vue, you may be
relying on a library called Vue Resource to make Ajax calls. Boot-
strapping the CSRF token into Vue Resource looks a bit different
than it does for Laravel; see the Vue Resource docs for examples.

Redirects

So far the only things we've explicitly talked about returning from a controller
method or route definition have been views. But there are a few other structures we
can return to give the browser instructions on how to behave.

First, let’s cover the redirect. You've already seen a few of these in other examples.
There are two common ways to generate a redirect; we'll use the redirect() global
helper here, but you may prefer the facade. Both create an instance of Illuminate
\Http\RedirectResponse, perform some convenience methods on it, and then
return it. You can also do this manually, but you'll have to do a little more work your-
self. Take a look at Example 3-38 to see a few ways you can return a redirect.

Example 3-38. Different ways to return a redirect

// Using the global helper to generate a redirect response
Route::get('redirect-with-helper', function () {
return redirect()->to('login');

s

// Using the global helper shortcut
Route::get('redirect-with-helper-shortcut', function () {
return redirect('login');

s

// Using the facade to generate a redirect response
Route::get('redirect-with-facade', function () {
return Redirect::to('login');

s

// Using the Route::redirect shortcut in Laravel 5.5+
Route::redirect('redirect-by-route', 'login');

Note that the redirect() helper exposes the same methods as the Redirect facade,
but it also has a shortcut; if you pass parameters directly to the helper instead of
chaining methods after it, it’s a shortcut to the to() redirect method.

Also note that the (optional) third parameter for the Route::redirect() route
helper can be the status code (e.g., 302) for your redirect.

Redirects | 55

http://bit.ly/2UbVkLz

redirect()->to()

The method signature for the to() method for redirects looks like this:
function to($to = null, $status = 302, $headers = [], $secure = null)

$to is a valid internal path, $status is the HTTP status (defaulting to 302), $headers
allows you to define which HTTP headers to send along with your redirect, and
$secure allows you to override the default choice of http versus https (which is nor-
mally set based on your current request URL). Example 3-39 shows an example of its
use.

Example 3-39. redirect()->to()

Route::get('redirect', function () {
return redirect()->to('home');

// Or same, using the shortcut:

return redirect('home');

s

redirect()->route()

The route() method is the same as the to() method, but rather than pointing to a
particular path, it points to a particular route name (see Example 3-40).

Example 3-40. redirect()->route()

Route::get('redirect', function () {
return redirect()->route('conferences.index');

s

Note that, since some route names require parameters, its parameter order is a little
different. route() has an optional second parameter for the route parameters:

function route($to = null, Sparameters = [], $status = 302, Sheaders = [])

So, using it might look a little like Example 3-41.

Example 3-41. redirect()->route() with parameters

Route::get('redirect', function () {
return redirect()->route('conferences.show', ['conference' => 99]);

s

56 | Chapter3:Routing and Controllers

redirect()->back()

Because of some of the built-in conveniences of Laravel’s session implementation,
your application will always have knowledge of what the user’s previously visited page
was. That opens up the opportunity for a redirect()->back() redirect, which simply
redirects the user to whatever page they came from. There’s also a global shortcut for
this: back().

Other Redirect Methods

The redirect service provides other methods that are less commonly used, but still
available:

home()
Redirects to a route named home. refresh()::Redirects to the same page the user

is currently on. away()::Allows for redirecting to an external URL without the
default URL validation.

secure()
Like to() with the secure parameter set to "true".

action()
Allows you to link to a controller and method in one of two ways: as a string
(redirect()->action('MyController@myMethod')) or as a tuple (redirect()-
>action([MyController::class, 'myMethod'])).

guest()
Used internally by the authentification system (discussed in Chapter 9); when a
user visits a route they’re not authenticated for, this captures the “intended” route
and then redirects the user (usually to a login page).

intended()
Also used internally by the auth system; after a successful authentication, this
grabs the “intended” URL stored by the guest() method and redirects the user
there.

redirect()->with()

While it is structured similarly to the other methods you can call on redirect(),
with() is different in that it doesn’t define where you're redirecting to, but what data
youre passing along with the redirect. When you’re redirecting users to different
pages, you often want to pass certain data along with them. You could manually flash
the data to the session, but Laravel has some convenience methods to help you with
that.

Redirects | 57

Most commonly, you can pass along either an array of keys and values or a single key
and value using with(), like in Example 3-42. This saves your with() data to the ses-
sion just for the next page load.

Example 3-42. Redirect with data

Route::get('redirect-with-key-value', function () {
return redirect('dashboard')
->with('error', true);

s

Route::get('redirect-with-array', function () {
return redirect('dashboard")
->with(['error' => true, 'message' => 'Whoops!']);

s

Chaining Methods on Redirects

As with many other facades, most calls to the Redirect facade can
accept fluent method chains, like the with() calls in Example 3-42.
You’'ll learn more about fluency in “What Is a Fluent Interface?” on
page 105.

You can also use withInput(), as in Example 3-43, to redirect with the user’s form
input flashed; this is most common in the case of a validation error, where you want
to send the user back to the form they just came from.

Example 3-43. Redirect with form input

Route::get('form', function () {
return view('form');

s

Route: :post('form', function () {
return redirect('form')
->withInput()
->with(['error' => true, 'message' => 'Whoops!']);

s

The easiest way to get the flashed input that was passed with withInput() is using the
old() helper, which can be used to get all old input (old()) or just the value for a
particular key as shown in the following example, with the second parameter as the
default if there is no old value). You'll commonly see this in views, which allows this
HTML to be used both on the “create” and the “edit” view for this form:

58 | Chapter3:Routing and Controllers

<input name="username" value="<?=
old('username', 'Default username instructions here');

?2>">
Speaking of validation, there is also a useful method for passing errors along with a
redirect response: withErrors(). You can pass it any “provider” of errors, which may
be an error string, an array of errors, or, most commonly, an instance of the Illumi-
nate Validator, which we'll cover in Chapter 10. Example 3-44 shows an example of
its use.

Example 3-44. Redirect with errors

Route::post('form', function (Illuminate\Http\Request Srequest) {
Svalidator = Validator::make($request->all(), $this->validationRules);

if (Svalidator->fails()) {
return back()
->withErrors($validator)
->withInput();
}
s

withErrors() automatically shares an $errors variable with the views of the page it’s
redirecting to, for you to handle however youd like.

The validate() Method on Requests

Don't like how Example 3-44 looks? There’s a simple and powerful
tool that will make it easy for you to clean up that code. Read more
in “validate() on the Request Object” on page 189.

Aborting the Request

Aside from returning views and redirects, the most common way to exit a route is to
abort. There are a few globally available methods (abort(), abort_if(), and
abort_unless()), which optionally take HT TP status codes, a message, and a headers
array as parameters.

As Example 3-45 shows, abort_if() and abort_unless() take a first parameter that
is evaluated for its truthiness and perform the abort depending on the result.

Example 3-45. 403 Forbidden aborts

Route: :post('something-you-cant-do', function (Illuminate\Http\Request $request) {
abort (403, 'You cannot do that!');
abort_unless($request->has('magicToken"'), 403);

Aborting the Request | 59

abort_1if($request->user()->isBanned, 403);

s

Custom Responses

There are a few other options available for us to return, so let’s go over the most com-
mon responses after views, redirects, and aborts. Just like with redirects, you can run
these methods on either the response() helper or the Response facade.

response()->make()

If you want to create an HTTP response manually, just pass your data into the first
parameter of response()->make(): for example, return response()->make(Hello,
World!). Once again, the second parameter is the HTTP status code and the third is
your headers.

response()->json() and ->jsonp()

To create a JSON-encoded HTTP response manually, pass your JSON-able content
(arrays, collections, or whatever else) to the json() method: for example return
response()->json(User::all()). Its just like make(), except it +json_encode+s
your content and sets the appropriate headers.

response()->download(), ->streamDownload(), and ->file()

To send a file for the end user to download, pass either an SplFileInfo instance or a
string filename to download(), with an optional second parameter of the download
filename: for example, return response()->download('file501751.pdf",
'myFile.pdf'), which would send a file that’s at file501751.pdf and rename it, as it’s
sent, myFile.pdf.

To display the same file in the browser (if it's a PDF or an image or something else
the browser can handle), use response()->file() instead, which takes the same
parameters as response->download().

If you want to make some content from an external service available as a download
without having to write it directly to your server’s disk, you can stream the download
using response()->streamDownload(). This method expects as parameters a closure
that echoes a string, a filename, and optionally an array of headers; see Example 3-46.

Example 3-46. Streaming downloads from external servers

return response()->streamDownload(function () {
echo DocumentService::file('myFile')->getContent();
}, 'myFile.pdf');

60 | Chapter3:Routing and Controllers

Testing

In some other communities the idea of unit-testing controller methods is common,
but within Laravel (and most of the PHP community) it’s typical to rely on applica-
tion testing to test the functionality of routes.

For example, to verify that a POST route works correctly, we can write a test like
Example 3-47.
Example 3-47. Writing a simple POST route test

// tests/Feature/AssignmentTest.php
public function test_post_creates_new_assignment()

{
S$this->post('/assignments', [
'title' => 'My great assignment',
s
$this->assertDatabaseHas('assignments', [
'title' => 'My great assignment',
s
}

Did we directly call the controller methods? No. But we ensured that the goal of this
route—to receive a POST and save its important information to the database—
was met.

You can also use similar syntax to visit a route and verify that certain text shows up
on the page, or that clicking certain buttons does certain things (see Example 3-48).

Example 3-48. Writing a simple GET route test

// AssignmentTest.php
public function test_list_page_shows_all_assignments()

{
Sassignment = Assignment::create([
"title' => 'My great assignment',
D;
Sthis->get('/assignments')
->assertSee('My great assignment');
}

Testing | 61

Different Names for Testing Methods Prior to Laravel 5.4

In projects running versions of Laravel prior to 54
assertDatabaseHas() should be replaced by seeInDatabase(),
and get() and assertSee() should be replaced by visit() and
see().

TL;DR

Laravel’s routes are defined in routes/web.php and routes/api.php. You can define the
expected path for each route, which segments are static and which are parameters,
which HTTP verbs can access the route, and how to resolve it. You can also attach
middleware to routes, group them, and give them names.

What is returned from the route closure or controller method dictates how Laravel
responds to the user. If it’s a string or a view, it’s presented to the user; if it's other sorts
of data, it’s converted to JSON and presented to the user; and if it’s a redirect, it forces
a redirect.

Laravel provides a series of tools and conveniences to simplify common routing-
related tasks and structures. These include resource controllers, route model binding,
and form method spoofing.

62 | Chapter3:Routing and Controllers

CHAPTER 4
Blade Templating

Compared to most other backend languages, PHP actually functions relatively well as
a templating language. But it has its shortcomings, and it’s also just ugly to be using
<?php inline all over the place, so you can expect most modern frameworks to offer a
templating language.

Laravel offers a custom templating engine called Blade, which is inspired by .NET’s
Razor engine. It boasts a concise syntax, a shallow learning curve, a powerful and
intuitive inheritance model, and easy extensibility.

For a quick look at what writing Blade looks like, check out Example 4-1.

Example 4-1. Blade samples

<h1>{{ $group->title }}</h1>
{!! $group->heroImageHtml() !!}

@forelse (Susers as Suser)

o {{ Suser->first_name }} {{ Suser->last_name }}

@empty

No users in this group.
@endforelse

As you can see, Blade uses curly braces for its “echo” and introduces a convention in
which its custom tags, called “directives,” are prefixed with an @. You'll use directives
for all of your control structures and also for inheritance and any custom functional-
ity you want to add.

Blade’s syntax is clean and concise, so at its core it’s just more pleasant and tidy to
work with than the alternatives. But the moment you need anything of any complex-
ity in your templates—nested inheritance, complex conditionals, or recursion—Blade

63

starts to really shine. Just like the best Laravel components, it takes complex applica-
tion requirements and makes them easy and accessible.

Additionally, since all Blade syntax is compiled into normal PHP code and then
cached, it’s fast and it allows you to use native PHP in your Blade files if you want.
However, I'd recommend avoiding usage of PHP if at all possible—usually if you need
to do anything that you can’t do with Blade or a custom Blade directive, it doesn’t
belong in the template.

Using Twig with Laravel

Unlike many other Symfony-based frameworks, Laravel doesn’t use
Twig by default. But if you're just in love with Twig, there’s a Twig
Bridge package that makes it easy to use Twig instead of Blade.

Echoing Data

As you can see in Example 4-1, {{ and }} are used to wrap sections of PHP that youd
like to echo. {{ $variable }} is similar to <?= Svariable ?> in plain PHP.

Its different in one way, however, and you mightve guessed this already: Blade
escapes all echoes by default using PHP’s htmlentities() to protect your users from
malicious script insertion. That means {{ Svariable }} is functionally equivalent to
<?= htmlentities(Svariable) ?>. If you want to echo without the escaping, use {!!
and !!} instead.

{{ and }} When Using a Frontend Templating Framework

You might've noticed that the echo syntax for Blade ({{ }}) is similar to the echo syn-
tax for many frontend frameworks. So how does Laravel know when youre writing
Blade versus Handlebars?

Blade will ignore any {{ that’s prefaced with an @. So, it will parse the first of the fol-
lowing examples, but the second will be echoed out directly:

// Parsed as Blade; the value of S$bladeVariable is echoed to the view
{{ sbladevariable }}

// @ is removed and "{{ handlebarsVariable }}" echoed to the view directly
@{{ handlebarsvariable }}

You can also wrap any large sections of script content with the @verbatim directive.

64 | Chapter4:Blade Templating

http://bit.ly/2U8dFt0
http://bit.ly/2U8dFt0
http://bit.ly/2OnrPRP

Control Structures

Most of the control structures in Blade will be very familiar. Many directly echo the
name and structure of the same tag in PHP.

There are a few convenience helpers, but in general, the control structures just look
cleaner than they would in PHP.

Conditionals

First, let’s take a look at the control structures that allow for logic.

@if

Blade’s @Lf (Scondition) compiles to <?php if (Scondition): ?>.Q@else, @elself,
and @endif also compile to the exact same style of syntax in PHP. Take a look at
Example 4-2 for some examples.

Example 4-2. @if, @else, @elseif, and @endif

@if (count($talks) === 1)
There is one talk at this time period.
@elseif (count(Stalks) === 0)
There are no talks at this time period.
@else
There are {{ count($talks) }} talks at this time period.
@endif

Just like with the native PHP conditionals, you can mix and match these how you
want. They don't have any special logic; there’s literally a parser looking for something
with the shape of @Lf (S$condition) and replacing it with the appropriate PHP code.

@unless and @endunless

@unless, on the other hand, is a new syntax that doesn’t have a direct equivalent in
PHP. It’s the direct inverse of @iLf. Qunless (Scondition) is the same as <?php if (!
$condition). You can see it in use in Example 4-3.

Example 4-3. @unless and @endunless
@unless (Suser->hasPaid())

You can complete your payment by switching to the payment tab.
@endunless

Loops
Next, let’s take a look at the loops.

Control Structures | 65

@for, @foreach, and @while

@for, @foreach, and @while work the same in Blade as they do in PHP; see Examples
4-4, 4-5, and 4-6.

Example 4-4. @for and @endfor

@for ($1 = 0; $i < $talk->slotsCount(); $i++)
The number is {{ $1 }}

@endfor

Example 4-5. @foreach and @endforeach

@foreach (Stalks as $talk)
o {{ Stalk->title }} ({{ $talk->length }} minutes)

@endforeach

Example 4-6. @while and @endwhile

@while ($item = array_pop($items))
{{ $item->orSomething() }}

@endwhile

@forelse and @endforelse

@forelse is a @foreach that also allows you to program in a fallback if the object
youre iterating over is empty. We saw it in action at the start of this chapter;
Example 4-7 shows another example.

Example 4-7. @forelse

@forelse (Stalks as S$talk)

o {{ $talk->title }} ({{ $talk->length }} minutes)

@empty

No talks this day.
@endforelse

66 | Chapter4:Blade Templating

$loop Within @foreach and @forelse

5] The @foreach and @forelse directives (introduced in Laravel 5.3) add one feature
w

that’s not available in PHP foreach loops: the $loop variable. When used within a
@foreach or @forelse loop, this variable will return a stdClass object with these

properties:

index
The 0-based index of the current item in the loop; @ would mean “first item”

iteration
The 1-based index of the current item in the loop; 1 would mean “first item”

remaining
How many items remain in the loop

count
The count of items in the loop

first
A Boolean indicating whether this is the first item in the loop

last
A Boolean indicating whether this is the last item in the loop

depth
How many “levels” deep this loop is: 1 for a loop, 2 for a loop within a loop, etc.

parent
A reference to the $loop variable for the parent loop item if this loop is within
another @foreach loop; otherwise, null

Here’s an example of how to use it:

@foreach (Spages as $page)
{{ Sloop->iteration }}: {{ $page->title }}
@if (Spage->hasChildren())

@foreach (Spage->children() as $child)
{{ S$loop->parent->iteration }}
{{ $loop->iteration }}:
{{ $child->title }}</1i>
@endforeach

@endif
</1i>
@endforeach

Control Structures |

67

Template Inheritance

Blade provides a structure for template inheritance that allows views to extend, mod-
ify, and include other views.

Let’s take a look at how inheritance is structured with Blade.

Defining Sections with @section/@show and @yield

Let’s start with a top-level Blade layout, like in Example 4-8. This is the definition of a
generic page wrapper that we'll later place page-specific content into.

Example 4-8. Blade layout

<!-- resources/views/layouts/master.blade.php -->
<html>
<head>
<title>My Site | @yield('title', 'Home Page')</title>
</head>
<body>

<div class="container"s
@yield('content')

</div>

@section('footerScripts')
<script src="app.js"></script>

@show

</body>
</html>

This looks a bit like a normal HTML page, but you can see we've yielded in two places
(title and content) and we've defined a section in a third (footerScripts). We have
three Blade directives here: @yield('content') alone, @yield('title', 'Home
Page') with a defined default, and @section/@show with actual content in it.

While they each look a little different, all three function essentially the same. All three
are defining that there’s a section with a given name (the first parameter) that can be
extended later, and all three are defining what to do if the section isn’t extended. They
do this either by providing a string fallback ('Home Page'), no fallback (which will
just not show anything if it’s not extended), or an entire block fallback (in this case,
<script src="app.js"></script>).

What'’s different? Well, clearly, @yield('content') has no default content. But addi-
tionally, the default content in @yield('title') will only be shown if it's never exten-
ded. If it is extended, its child sections will not have programmatic access to the
default value. @section/@show, on the other hand, is both defining a default
and doing so in such a way that its default contents will be available to its children,
through @parent.

68 | Chapter4:Blade Templating

Once you have a parent layout like this, you can extend it in a new template file like in
Example 4-9.

Example 4-9. Extending a Blade layout

<!-- resources/views/dashboard.blade.php -->
@extends('layouts.master')

@section('title', 'Dashboard')

@section('content')
Welcome to your application dashboard!
@endsection

@section('footerScripts')

@parent

<script src="dashboard. js"></script>
@endsection

@show Versus @endsection

You may have noticed that Example 4-8 uses @section/@show, but
Example 4-9 uses @section/@endsection. What's the difference?

Use @show when you're defining the place for a section, in the par-
ent template. Use @endsection when you're defining the content
for a template in a child template.

This child view allows us to cover a few new concepts in Blade inheritance.

@extends

In Example 4-9, with @extends('layouts.master'), we define that this view should
not be rendered on its own but that it instead extends another view. That means its
role is to define the content of various sections, but not to stand alone. It’s almost
more like a series of buckets of content, rather than an HTML page. This line also
defines that the view it’s extending lives at resources/views/layouts/master.blade.php.

Each file should only extend one other file, and the @extends call should be the first
line of the file.

@section and @endsection

With @section('title', 'Dashboard'), we provide our content for the
first section, title. Since the content is so short, instead of using @section and @end
section, were just using a shortcut. This allows us to pass the content in as the sec-

Template Inheritance | 69

ond parameter of @section and then move on. If it's a bit disconcerting to see
@section without @endsection, you could just use the normal syntax.

With @section('content') and on, we use the normal syntax to define the contents
of the content section. We'll just throw a little greeting in for now. Note, however,
that when you’re using @section in a child view, you end it with @endsection (or its
alias @stop), instead of @show, which is reserved for defining sections in parent views.

@parent

Finally, with @section('footerScripts') and on, we use the normal syntax to
define the contents of the footerScripts section.

But remember, we actually defined that content (or, at least, its “default”) already in
the master layout. So this time, we have two options: we can either overwrite the con-
tent from the parent view, or we can add to it.

You can see that we have the option to include the content from the parent by using
the @parent directive within the section. If we didn’t, the content of this section
would entirely overwrite anything defined in the parent for this section.

Including View Partials

Now that we've established the basics of inheritance, there are a few more tricks we
can perform.

@include

What if we're in a view and want to pull in another view? Maybe we have a call-to-
action “Sign up” button that we want to reuse around the site. And maybe we want to
customize the button text every time we use it. Take a look at Example 4-10.

Example 4-10. Including view partials with @include

<!-- resources/views/home.blade.php -->
<div class="content" data-page-name="{{ S$pageName }}">
<p>Here's why you should sign up for our app: It's Great.</p>

@include('sign-up-button', ['text' => 'See just how great it is'])
</div>

<!-- resources/views/sign-up-button.blade.php -->

<1 class="exclamation-icon"></i> {{ Stext }}

70 | Chapter4:Blade Templating

@include pulls in the partial and, optionally, passes data into it. Note that not only
can you explicitly pass data to an include via the second parameter of @include, but
you can also reference any variables within the included file that are available to the
including view ($pageName, in this example). Once again, you can do whatever you
want, but I would recommend you consider always explicitly passing every variable
that you intend to use, just for clarity.

You also use the @includeIf, @includelWhen, and @includeFirst directives, as shown
in Example 4-11.

Example 4-11. Conditionally including views

{{-- Include a view if it exists --}}
@includeIf('sidebars.admin', ['some' => 'data'])

{{-- Include a view if a passed variable is truth-y --}}
@includeWhen(Suser->isAdmin(), 'sidebars.admin', ['some' => 'data'])

{{-- Include the first view that exists from a given array of views --}}
@includeFirst(['customs.header', 'header'], ['some' => 'data'])

@each

You can probably imagine some circumstances in which youd need to loop over
an array or collection and @include a partial for each item. Theres a directive for
that: @each.

Let’s say we have a sidebar composed of modules, and we want to include multiple
modules, each with a different title. Take a look at Example 4-12.

Example 4-12. Using view partials in a loop with @each

<!-- resources/views/sidebar.blade.php -->
<div class="sidebar">

@each('partials.module', $modules, 'module', 'partials.empty-module')
</div>

<!-- resources/views/partials/module.blade.php -->
<div class="sidebar-module">

<h1>{{ S$module->title }}</h1>
</div>

<!-- resources/views/partials/empty-module.blade.php -->
<div class="sidebar-module">

No modules :(
</div>

Template Inheritance | 71

Consider that @each syntax. The first parameter is the name of the view partial. The
second is the array or collection to iterate over. The third is the variable name that
each item (in this case, each element in the $modules array) will be passed to the view
as. And the optional fourth parameter is the view to show if the array or collection is
empty (or, optionally, you can pass a string in here that will be used as your template).

Using Stacks

One common pattern that can be difficult to manage using basic Blade includes is

ol L
when each view in a Blade include hierarchy needs to add something to a certain sec-
tion—almost like adding an entry to an array.

The most common situation for this is when certain pages (and sometimes, more
broadly, certain sections of a website) have specific unique CSS and JavaScript files
they need to load. Imagine you have a site-wide “global” CSS file, a “jobs section” CSS
file, and an “apply for a job” page CSS file.

Blade’s stacks are built for exactly this situation. In your parent template, define a
stack, which is just a placeholder. Then, in each child template you can “push” entries
onto that stack with @push/@endpush, which adds them to the bottom of the stack in
the final render. You can also use @prepend/@endprepend to add them to the top of
the stack. Example 4-13 illustrates.

Example 4-13. Using Blade stacks

<!-- resources/views/layouts/app.blade.php -->
<html>
<head><!/-- the head --><[head>
<body>
<!-- the rest of the page -->
<script src="/css/global.css"></script>

<!-- the placeholder where stack content will be placed -->
@stack('scripts')

</body>

</html>

<!-- resources/views/jobs.blade.php -->

@extends('layouts.app')

@push('scripts')
<!-- push something to the bottom of the stack -->
<script src="/css/jobs.css"></script>

@endpush

<!-- resources/views/jobs/apply.blade.php -->
@extends('jobs"')

@prepend('scripts')

72 | Chapter4:Blade Templating

<!-- push something to the top of the stack -->
<script src="/css/jobs--apply.css"></script>
@endprepend

These generate the following result:

<html>
<head></-- the head --><[head>
<body>
<!-- the rest of the page -->
<script src="/css/global.css"></script>
<!-- the placeholder where stack content will be placed -->
<script src="/css/jobs--apply.css'"></script>
<script src="/css/jobs.css"></script>
</body>
</html>

Using Components and Slots

Laravel offers another pattern for including content between views, which was intro-
duced in 5.4: components and slots. Components make the most sense in contexts
when you find yourself using view partials and passing large chunks of content into
them as variables. Take a look at Example 4-14 for an example of a model, or popover,
that might alert the user in response to an error or other action.

Example 4-14. A modal as an awkward view partial

<!-- resources/views/partials/modal.blade.php -->
<div class="modal">

<div>{{ S$content }}</div>

<div class="close button etc"s...</div>
</div>

<!-- in another template -->

@include('partials.modal', [
'body' => '<p>The password you have provided is not valid. Here are the rules
for valid passwords: [...]</p><p>...</p>'

D
This is too much for this variable, and it’s the perfect fit for a component.

Components with slots are view partials that are explicitly designed to have big
chunks (“slots”) that are meant to get content from the including template. Take a
look at Example 4-15 to see how to refactor Example 4-14 with components and slots.

Example 4-15. A modal as a more appropriate component with slots

<!-- resources/views/partials/modal.blade.php -->
<div class="modal">

Template Inheritance | 73

<div>{{ $slot }}</div>
<div class="close button etc">...</div>
</div>

<!-- 1n another template -->
@component('partials.modal')
<p>The password you have provided is not valid.
Here are the rules for valid passwords: [...]</p>

<p>...<[a></p>
@endcomponent

As you can see in Example 4-15, the @component directive allows us to pull our
HTML out of a cramped variable string and back into the template space. The $slot
variable in our component template receives whatever content is passed in the @compo
nent directive.

Multiple slots

The method we used in Example 4-15 is called the “default” slot; whatever you pass in
between @component and @endcomponent is passed to the $slot variable. But you can
also have more than just the default slot. Let’s imagine a modal with a title, like in
Example 4-16.

Example 4-16. A modal view partial with two variables

<!-- resources/views/partials/modal.blade.php -->
<div class="modal">

<div class="modal-header"s{{ S$title }}</div>

<div>{{ $slot }}</div>

<div class="close button etc"s...</div>
</div>

You can use the @slot directive in your @component calls to pass content to slots other
than the default, as you can see in Example 4-17.

Example 4-17. Passing more than one slot to a component

@component('partials.modal')
@slot('title')
Password validation failure
@endslot

<p>The password you have provided is not valid.
Here are the rules for valid passwords: [...]</p>

<p>...<[/a></p>
@endcomponent

74 | Chapter4:Blade Templating

And if you have other variables in your view that don’t make sense as a slot, you can
still pass an array of content as the second parameter to @component, just like you can
with @include. Take a look at Example 4-18.

Example 4-18. Passing data to a component without slots
@component('partials.modal', ['class' => 'danger'])
@endcomponent

Aliasing a component to be a directive

There’s a clever trick you can use to make your components even easier to call: alias-
ing. Simply call Blade: : component() on the Blade facade—the most common loca-
tion is the boot() method of the AppServiceProvider—and pass it first the location
of the component and second the name of your desired directive, as shown in
Example 4-19.

Example 4-19. Aliasing a component to be a directive

// AppServiceProvider@boot
Blade: :component('partials.modal', 'modal');

<!-- in a template -->
@modal

Modal content here
@endmodal

Importing Facades

This is our first time working with a facade in a namespaced class.
WEe'll cover them in more depth later, but just know that if you use

— " facades in namespaced classes, which is most classes in recent ver-
sions of Laravel, you might find errors showing that the facade can-
not be found. This is because facades are just normal classes with
normal namespaces, but Laravel does a bit of trickery to make
them available from the root namespace.

So, in Example 4-19, wed need to import the I1luminate\Support
\Facades\Blade facade at the top of the file.

View Composers and Service Injection

As we covered in Chapter 3, it’s simple to pass data to our views from the route defi-
nition (see Example 4-20).

View Composers and Service Injection | 75

Example 4-20. Reminder of how to pass data to views

Route::get('passing-data-to-views', function () {
return view('dashboard')
->with('key', 'value');

s

There may be times, however, when you find yourself passing the same data over and
over to multiple views. Or you might find yourself using a header partial or some-
thing similar that requires some data; will you have to pass that data in from every
route definition that might ever load that header partial?

Binding Data to Views Using View Composers

Thankfully, there’s a simpler way. The solution is called a view composer, and it allows
you to define that any time a particular view loads, it should have certain data passed
to it—without the route definition having to pass that data in explicitly.

Lets say you have a sidebar on every page, which is defined in a partial named
partials.sidebar (resources/views/partials/sidebar.blade.php) and then included on
every page. This sidebar shows a list of the last seven posts that were published on
your site. If it's on every page, every route definition would normally have to grab
that list and pass it in, like in Example 4-21.

Example 4-21. Passing sidebar data in from every route

Route::get('home', function () {
return view('home')
->with('posts', Post::recent());

s

Route::get('about', function () {
return view('about')
->with('posts', Post::recent());

s

That could get annoying quickly. Instead, were going to use view composers to
“share” that variable with a prescribed set of views. We can do this a few ways, so let’s
start simple and move up.

Sharing a variable globally

First, the simplest option: just globally “share” a variable with every view in your
application like in Example 4-22.

76 | Chapter4:Blade Templating

Example 4-22. Sharing a variable globally

// Some service provider
public function boot()

{

view()->share('recentPosts', Post::recent());

}

If you want to use view()->share(), the best place would be the boot() method of a
service provider so that the binding runs on every page load. You can create a custom
ViewComposerServiceProvider (see Chapter 11 for more about service providers),
but for now just put it in App\Providers\AppServiceProvider in the boot()
method.

Using view()->share() makes the variable accessible to every view in the entire
application, however, so it might be overkill.

View-scoped view composers with closures

The next option is to use a closure-based view composer to share variables with a sin-
gle view, like in Example 4-23.

Example 4-23. Creating a closure-based view composer

view()->composer('partials.sidebar', function (Sview) {
Sview->with('recentPosts', Post::recent());

s

As you can see, we've defined the name of the view we want it shared with in the first
parameter (partials.sidebar) and then passed a closure to the second parameter; in
the closure we've used $view->with() to share a variable, but only with a specific
view.

View Composers for Multiple Views

Anywhere a view composer is binding to a particular view (like in Example 4-23,
which binds to partials.sidebar), you can pass an array of view names instead to
bind to multiple views.

You can also use an asterisk in the view path, as in partials.* or tasks.*:

view()->composer(
['partials.header', 'partials.footer'],
function () {
Sview->with('recentPosts', Post::recent());
}
);

View Composers and Service Injection | 77

view()->composer('partials.*', function () {
Sview->with('recentPosts', Post::recent());

s

View-scoped view composers with classes

Finally, the most flexible but also most complex option is to create a dedicated class

for your view composer.

First, lets create the view composer class. There’s no formally defined place for view
composers to live, but the docs recommend App\Http\ViewComposers. So, lets create
App\Http\ViewComposers\RecentPostsComposer like in Example 4-24.

Example 4-24. A view composer
<?php
namespace App\Http\ViewComposers;

use App\Post;
use Illuminate\Contracts\View\View;

class RecentPostsComposer

{
public function compose(View $view)
{
Sview->with('recentPosts', Post
}
}

c:recent());

As you can see, when this composer is called, it runs the compose() method, in which
we bind the posts variable to the result of running the Post model’s recent()

method.

Like the other methods of sharing variables, this view composer needs to have a bind-
ing somewhere. Again, youd likely create a custom ViewComposerServiceProvider,

but for now, as seen in Example 4-25,
\Providers\AppServiceProvider.

we'll just put it in the boot() method of App

Example 4-25. Registering a view composer in AppServiceProvider

public function boot()
{

view()->composer(
'partials.sidebar’,

\App\Http\ViewComposers\RecentPostsComposer::class

78 | (Chapter4:Blade Templating

);
}

Note that this binding is the same as a closure-based view composer, but instead of
passing a closure, we're passing the class name of our view composer. Now, every time
Blade renders the partials.sidebar view, it'll automatically run our provider and
pass the view a recentPosts variable set to the results of the recent() method on
our Post model.

Blade Service Injection

There are three primary types of data were most likely to inject into a view: collec-
tions of data to iterate over, single objects that we’re displaying on the page, and serv-
ices that generate data or views.

With a service, the pattern will most likely look like Example 4-26, where we inject an
instance of our analytics service into the route definition by typehinting it in the
route’s method signature, and then pass it into the view.

Example 4-26. Injecting services into a view via the route definition constructor

Route::get('backend/sales', function (AnalyticsService $analytics) {
return view('backend.sales-graphs')
->with('analytics', S$Sanalytics);

s

Just as with view composers, Blade’s service injection offers a convenient shortcut to
reduce duplication in your route definitions. Normally, the content of a view using
our analytics service might look like Example 4-27.

Example 4-27. Using an injected navigation service in a view
<div class="finances-display">
{{ Sanalytics->getBalance() }} / {{ S$analytics->getBudget() }}
</div>
Blade service injection makes it easy to inject an instance of a class from the container
directly from the view, like in Example 4-28.
Example 4-28. Injecting a service directly into a view
@inject('analytics', 'App\Services\Analytics')
<div class="finances-display">

{{ $analytics->getBalance() }} / {{ $analytics->getBudget() }}
</div>

View Composers and Service Injection | 79

As you can see, this @inject directive has actually made an $analytics variable
available, which were using later in our view.

The first parameter of @inject is the name of the variable youre injecting, and
the second parameter is the class or interface that you want to inject an instance of.
This is resolved just like when you typehint a dependency in a constructor elsewhere
in Laravel; if youre unfamiliar with how that works, check out Chapter 11 to learn
more.

Just like view composers, Blade service injection makes it easy to make certain data or
functionality available to every instance of a view, without having to inject it via the
route definition every time.

Custom Blade Directives

All of the built-in syntax of Blade that we've covered so far—@if, @unless, and so
on—are called directives. Each Blade directive is a mapping between a pattern (e.g.,
@if (Scondition)) and a PHP output (e.g., <?php if (Scondition): ?>).

Directives aren’t just for the core; you can actually create your own. You might think
directives are good for making little shortcuts to bigger pieces of code—for example,
using @button('buttonName') and having it expand to a larger set of button HTML.
This isn't a terrible idea, but for simple code expansion like this you might be better
off including a view partial.

Custom directives tend to be the most useful when they simplify some form of
repeated logic. Say were tired of having to wrap our code with @if
(auth()->guest()) (to check if a user is logged in or not) and we want a custom
@ifGuest directive. As with view composers, it might be worth having a custom ser-
vice provider to register these, but for now let’s just put it in the boot() method of
App\Providers\AppServiceProvider. Take a look at Example 4-29 to see what this
binding will look like.

Example 4-29. Binding a custom Blade directive in a service provider

public function boot()
{
Blade: :directive('ifGuest', function () {
return "<?php if (auth()->quest()): ?>";
b
}

We've now registered a custom directive, @LfGuest, which will be replaced with the
PHP code <?php if (auth()->guest()): ?>.

80 | Chapter4:Blade Templating

This might feel strange. You're writing a string that will be returned and then executed
as PHP. But what this means is that you can now take the complex, or ugly, or unclear,
or repetitive aspects of your PHP templating code and hide them behind clear, sim-
ple, and expressive syntax.

Custom Directive Result Caching

You might be tempted to do some logic to make your custom direc-
tive faster by performing an operation in the binding and then
embedding the result within the returned string:

Blade: :directive('ifGuest', function () {
// Antipattern! Do not copy.
$1fGuest = auth()->guest();
return "<?php if ({$ifGuest}): 7>";
D;
The problem with this idea is that it assumes this directive will be
recreated on every page load. However, Blade caches aggressively,
so you're going to find yourself in a bad spot if you try this.

Parameters in Custom Blade Directives

What if you want to accept parameters in your custom logic? Check out
Example 4-30.

Example 4-30. Creating a Blade directive with parameters

// Binding
Blade: :directive('newlinesToBr', function (Sexpression) {
return "<?php echo nl2br({Sexpression}); 7>";

s

// In use
<p>@newlinesToBr($message->body)</p>

The $expression parameter received by the closure represents whatever’s within the
parentheses. As you can see, we then generate a valid PHP code snippet and return it.

Sexpression Parameter Scoping Before Laravel 5.3

Before Laravel 5.3, the $expression parameter also included the
parentheses themselves. So, in Example 4-30, $expression (which is
$message->body in Laravel 5.3 and later) would have instead been
($message->body), and we wouldve had to write <?php echo
nl2br{Sexpression}; ?>.

Custom Blade Directives | 81

If you find yourself constantly writing the same conditional logic over and over, you
should consider a Blade directive.

Example: Using Custom Blade Directives for a Multitenant App

Lets imagine we're building an application that supports multitenancy, which means
users might be visiting the site from www.myapp.com, clientl.myapp.com, cli-
ent2.myapp.com, or elsewhere.

Suppose we have written a class to encapsulate some of our multitenancy logic and
named it Context. This class will capture information and logic about the context of
the current visit, such as who the authenticated user is and whether the user is visiting
the public website or a client subdomain.

We'll probably frequently resolve that Context class in our views and perform condi-
tionals on it, like in Example 4-31. app('context') is a shortcut to get an instance of
a class from the container, which we’ll learn more about in Chapter 11.

Example 4-31. Conditionals on context without a custom Blade directive

@if (app('context')->isPublic())

© Copyright MyApp LLC
@else

© Copyright {{ app('context')->client->name }}
@endif

What if we could simplify @Lf (app('context')->isPublic()) to just @LfPublic?
Let’s do it. Check out Example 4-32.

Example 4-32. Conditionals on context with a custom Blade directive

// Binding
Blade: :directive('ifPublic', function () {

return "<?php if (app('context')->isPublic()): ?>";
s

// In use
@ifPublic
© Copyright MyApp LLC
@else
© Copyright {{ app('context')->client->name }}
@endif

Since this resolves to a simple if statement, we can still rely on the native @else and
@endif conditionals. But if we wanted, we could also create a custom @elseIfClient
directive, or a separate @LfClient directive, or really whatever else we want.

82 | Chapter4:Blade Templating

Easier Custom Directives for “if” Statements

While custom Blade directives are powerful, the most common use for them is if
statements. So there’s a simpler way to create custom “if” directives: Blade: :1f().
Example 4-33 shows how we could refactor Example 4-32 using the Blade::if()
method:

Example 4-33. Defining a custom “if” Blade directive

// Binding

Blade: :if('ifPublic', function () {
return (app('context'))->isPublic();

b

You'll use the directives exactly the same way, but as you can see, defining them is a
bit simpler. Instead of having to manually type out PHP braces, you can just write a
closure that returns a Boolean.

Testing

The most common method of testing views is through application testing, meaning
that you're actually calling the route that displays the views and ensuring the views
have certain content (see Example 4-34). You can also click buttons or submit forms
and ensure that you are redirected to a certain page, or that you see a certain error.
(You'll learn more about testing in Chapter 12.)

Example 4-34. Testing that a view displays certain content

// EventsTest.php
public function test_list_page_shows_all_events()

{
Seventl = factory(Event::class)->create();
Sevent2 = factory(Event::class)->create();
$this->get('events')
->assertSee(Seventl->title)
->assertSee(Sevent2->title);
}

You can also test that a certain view has been passed a particular set of data, which, if
it accomplishes your testing goals, is less fragile than checking for certain text on the
page. Example 4-35 demonstrates this approach.

Testing | 83

Example 4-35. Testing that a view was passed certain content

// EventsTest.php
public function test_list_page_shows_all_events()

{
Seventl = factory(Event::class)->create();
Sevent2 = factory(Event::class)->create();

$response = Sthis->get('events');

$response->assertViewHas('events', Event::all());
$response->assertViewHasAll([

'events' => Event::all(),

'title' => 'Events Page',
D;

$response->assertViewMissing('dogs');

Different Names for Testing Methods Prior to Laravel 5.4

In projects running versions of Laravel prior to 5.4, get() and
assertSee() should be replaced by visit() and see().

In 5.3 we gained the ability to pass a closure to assertViewHas(), meaning we can
customize how we want to check more complex data structures. Example 4-36 illus-
trates how we might use this.

Example 4-36. Passing a closure to assertViewHas()

// EventsTest.php
public function test_list_page_shows_all_events()

{
Seventl = factory(Event::class)->create();
$response = $this->get("events/{ $event->id }");
$response->assertViewHas('event', function ($event) use ($eventl) {
return $event->id === $eventl->id;
H;
}

TL;DR

Blade is Laravel’s templating engine. Its primary focus is a clear, concise, and expres-
sive syntax with powerful inheritance and extensibility. Its “safe echo” brackets are
{{ and }}, its unprotected echo brackets are {!! and ! !}, and it has a series of custom
tags called directives that all begin with @ (@if and @unless, for example).

84 | Chapter4:Blade Templating

You can define a parent template and leave “holes” in it for content using @yield
and @section/@show. You can then teach its child views to extend it using
@extends('parent.view'), and define their sections using @section/@endsection.
You use @parent to reference the content of the blocK’s parent.

View composers make it easy to define that, every time a particular view or subview
loads, it should have certain information available to it. And service injection allows
the view itself to request data straight from the application container.

TLDR | 85

CHAPTER 5
Databases and Eloquent

Laravel provides a suite of tools for interacting with your applications databases,
but the most notable is Eloquent, Laravel's ActiveRecord ORM (object-relational
mapper).

Eloquent is one of Laravel’s most popular and influential features. It’s a great example
of how Laravel is different from the majority of PHP frameworks; in a world of Data-
Mapper ORMs that are powerful but complex, Eloquent stands out for its simplicity.
There’s one class per table, which is responsible for retrieving, representing, and per-
sisting data in that table.

Whether or not you choose to use Eloquent, however, you'll still get a ton of benefit
from the other database tools Laravel provides. So, before we dig into Eloquent, we'll
start by covering the basics of Laravel’s database functionality: migrations, seeders,
and the query builder.

Then we'll cover Eloquent: defining your models; inserting, updating, and deleting;
customizing your responses with accessors, mutators, and attribute casting; and
finally relationships. There’s a lot going on here, and it’s easy to get overwhelmed, but
if we take it one step at a time we’ll make it through.

Configuration

Before we get into how to use Laravel’s database tools, let’s pause for a second and go
over how to configure your database credentials and connections.

The configuration for database access lives in config/database.php and .env. Like
many other configuration areas in Laravel, you can define multiple “connections” and
then decide which the code will use by default.

87

Database Connections

By default, there’s one connection for each of the drivers, as you can see in
Example 5-1.

Example 5-1. The default database connections list
'connections' => [

'sqlite' => [
'driver' => 'sqlite',
'database' => env('DB_DATABASE', database_path('database.sqlite')),

'prefix' => ,

1

'mysql' => [
'driver' => 'mysql’,
"host' => env('DB_HOST', '127.0.0.1"),
'port' => env('DB_PORT', '3306'),
'database' => env('DB_DATABASE', 'forge'),
'username' => env('DB_USERNAME', 'forge'),
'password' => env('DB_PASSWORD', ''),
'unix_socket' => env('DB_SOCKET', '"),
'charset' => 'utfsg',
'collation' => 'utf8_unicode_ci',
'prefix' =>"'',
'strict' => false,
'engine’' => null,

1.

'pgsql’ => [
'driver' => 'pgsql’,
"host' => env('DB_HOST', '127.0.0.1"),
'port' => env('DB_PORT', '5432'),
'database' => env('DB_DATABASE', 'forge'),
'username' => env('DB_USERNAME', 'forge'),
'password' => env('DB_PASSWORD', ''),
'charset' => 'utfg',
'prefix' =>"'',

'schema' => 'public',

'sslmode' => 'prefer',

1

'sqlsrv' => [
'driver' => 'sqlsrv',
"host' => env('DB_HOST', 'localhost'),
'port' => env('DB_PORT', '1433'),
'database' => env('DB_DATABASE', 'forge'),
'username' => env('DB_USERNAME', 'forge'),
'password' => env('DB_PASSWORD', ''),
'charset' => 'utf8',

88 | Chapter5: Databases and Eloquent

'prefix' => "',

]

Nothing is stopping you from deleting or modifying these named connections or cre-
ating your own. You can create new named connections, and you’ll be able to set the
drivers (MySQL, Postgres, etc.) in them. So, while there’s one connection per driver
by default, that’s not a constraint; you could have five different connections, all with
the mysql driver, if you wanted.

Each connection allows you to define the properties necessary for connecting to and
customizing each connection type.

There are a few reasons for the idea of multiple drivers. To start with, the “connec-
tions” section as it comes out of the box is a simple template that makes it easy to start
apps that use any of the supported database connection types. In many apps, you can
pick the database connection you’ll be using, fill out its information, and even delete
the others if youd like. I usually just keep them all there, in case I might eventually
use them.

But there are also some cases where you might need multiple connections within the
same application. For example, you might use different database connections for two
different types of data, or you might read from one and write to another. Support for
multiple connections makes this possible.

Other Database Configuration Options

The config/database.php configuration section has quite a few other configuration
settings. You can configure Redis access, customize the table name used for migra-
tions, determine the default connection, and toggle whether non-Eloquent calls
return stdClass or array instances.

With any service in Laravel that allows connections from multiple sources—sessions
can be backed by the database or file storage, the cache can use Redis or Memcached,
databases can use MySQL or PostgreSQL—you can define multiple connections and
also choose that a particular connection will be the “default,” meaning it will be used
any time you don’t explicitly ask for a particular connection. Here’s how you ask for a
specific connection, if you want to:

Susers = DB::connection('secondary')->select('select * from users');
[role="less_space pagebreak-before"]' === Migrations

Modern frameworks like Laravel make it easy to define your database structure with
code-driven migrations. Every new table, column, index, and key can be defined in

Configuration | 89

code, and any new environment can be brought from bare database to your app’s per-
fect schema in seconds.

Defining Migrations

A migration is a single file that defines two things: the modifications desired when
running this migration up and, optionally, the modifications desired when running
this migration down.

“Up” and “Down” in Migrations
Migrations are always run in order by date. Every migration file is named something
like this: 2018_10_12_000000_create_users_table.php. When a new system is migra-
ted, the system grabs each migration, starting at the earliest date, and runs its up()
method—you’re migrating it “up” at this point. But the migration system also allows
you to “roll back” your most recent set of migrations. It'll grab each of them and run
its down() method, which should undo whatever changes the up migration made.

So, the up() method of a migration should “do” its migration, and the down() method
should “undo” it.

Example 5-2 shows what the default “create users table” migration that comes with
Laravel looks like.

Example 5-2. Laravel’s default “create users table” migration
<?php

use Illuminate\Database\Schema\Blueprint;
use Illuminate\Database\Migrations\Migration;

class CreateUsersTable extends Migration
{
/**
* Run the migrations.
*
* @return void
*/
public function up()
{

Schema: :create('users', function (Blueprint $table) {
Stable->bigIncrements('id');
Stable->string('name');
Stable->string('email')->unique();
Stable->timestamp('email_verified_at')->nullable();
$table->string('password');
Stable->rememberToken();

90 | Chapter5:Databases and Eloquent

$table->timestamps();
b;
}

/'k*
* Reverse the migrations.
*

* @return void
*/
public function down()

{
}

Schema: :dropIfExists('users');

Email Verification

] The email_verified_at column is only present in apps built in
= Laravel 5.7 and later. It stores a timestamp indicating when the
user verified their email address.

As you can see, we have an up() method and a down() method. up() tells the migra-
tion to create a new table named users with a few fields, and down() tells it to drop
the users table.

Creating a migration

As you will see in Chapter 8, Laravel provides a series of command-line tools you can
use to interact with your app and generate boilerplate files. One of these commands
allows you to create a migration file. You can run it using php artisan make:migra
tion, and it has a single parameter, which is the name of the migration. For example,
to create the table we just covered, you would run php artisan make:migration
create_users_table.

There are two flags you can optionally pass to this command. - -create=table_name
prefills the migration with code designed to create a table named table_name, and
--table=table_name just prefills the migration for modifications to an existing table.
Here are a few examples:

php artisan make:migration create_users_table

php artisan make:migration add_votes_to_users_table --table=users
php artisan make:migration create_users_table --create=users

Creating tables

We already saw in the default create_users_table migration that our migrations
depend on the Schema facade and its methods. Everything we can do in these migra-
tions will rely on the methods of Schema.

Configuration | 91

To create a new table in a migration, use the create() method—the first parameter is
the table name, and the second is a closure that defines its columns:
Schema: :create('users', function (Blueprint $table) {

// Create columns here

s

Creating columns

To create new columns in a table, whether in a create table call or a modify table call,
use the instance of Blueprint that’s passed into your closure:

Schema: :create('users', function (Blueprint $table) {

Stable->string('name');

s
Let’s look at the various methods available on Blueprint instances for creating col-
umns. I'll describe how they work in MySQL, but if youre using another database,
Laravel will just use the closest equivalent.

The following are the simple field Blueprint methods:

integer(colName), tinyInteger(colName), smalllnteger(colName),
mediumInteger(colName), bigInteger(colName)
Adds an INTEGER type column, or one of its many variations

string(colName, length)
Adds a VARCHAR type column with an optional length

binary(colName)
Adds a BLOB type column

boolean(colName)
Adds a BOOLEAN type column (a TINYINT(1) in MySQL)

char(colName, length)
Adds a CHAR column with an optional length

datetime(colName)
Adds a DATETIME column

decimal(colName, precision, scale)
Adds a DECIMAL column, with precision and scale—for example, dect
mal('amount', 5, 2) specifies a precision of 5 and a scale of 2

double(colName, total digits, digits after decimal)
Adds a DOUBLE column—for example, double(' tolerance', 12, 8) specifies 12
digits long, with 8 of those digits to the right of the decimal place, as in
7204.05691739

92 | Chapter5: Databases and Eloquent

enum(colName, [choiceOne, choiceTwo])
Adds an ENUM column, with provided choices

float(colName, precision, scale)
Adds a FLOAT column (same as double in MySQL)

json(colName) and jsonb(colName)
Adds a JSON or JSONB column (or a TEXT column in Laravel 5.1)

text(colName), mediumText(colName), LongText(colName)
Adds a TEXT column (or its various sizes)

time(colName)
Adds a TIME column

timestamp(colName)
Adds a TIMESTAMP column

uuid(colName)
Adds a UUID column (CHAR(36) in MySQL)

And these are the special (joined) Blueprint methods:

increments(colName) and bigIncrements(colName)
Add an unsigned incrementing INTEGER or BIG INTEGER primary key ID

timestamps() and nullableTimestamps()
Adds created_at and updated_at timestamp columns

rememberToken()
Adds a remember_token column (VARCHAR(100)) for user “remember me” tokens

softDeletes()
Adds a deleted_at timestamp for use with soft deletes

morphs(colName)
For a provided colName, adds an integer colName_id and a string colName_type
(e.g., morphs(tag) adds integer tag_id and string tag_type); for use in polymor-
phic relationships

Building extra properties fluently

Most of the properties of a field definition—its length, for example—are set as the
second parameter of the field creation method, as we saw in the previous section. But
there are a few other properties that we'll set by chaining more method calls after the
creation of the column. For example, this email field is nullable and will be placed (in
MySQL) right after the last_name field:

Configuration | 93

Schema: :table('users', function (Blueprint Stable) {
Stable->string('email')->nullable()->after('last_name');
H;

The following methods are used to set additional properties of a field:

nullable()
Allows NULL values to be inserted into this column

default('default content')
Specifies the default content for this column if no value is provided

unsigned()
Marks integer columns as unsigned (not negative or positive, but just an integer)

first() (MySQL only)
Places the column first in the column order

after(colName) (MySQL only)
Places the column after another column in the column order

unique()
Adds a UNIQUE index

primary()
Adds a primary key index

index()
Adds a basic index

Note that unique(), primary(), and index() can also be used outside of the fluent
column building context, which we'll cover later.

Dropping tables

If you want to drop a table, there’s a dropIfExists() method on Schema that takes
one parameter, the table name:

Schema: :dropIfExists('contacts');

Modifying columns

To modify a column, just write the code you would write to create the column as if it
were new, and then append a call to the change() method after it.

Required Dependency Before Modifying Columns

Before you modify any columns (or drop any columns in SQLite),
\ you'll need to run composer require doctrine/dbal.

94 | Chapter5: Databases and Eloquent

So, if we have a string column named name that has a length of 255 and we want to

change its length to 100, this is how we would write it:

Schema: :table('users', function (Blueprint Stable) {
Stable->string('name', 100)->change();
b

The same is true if we want to adjust any of its properties that aren’t defined in the

method name. To make a field nullable, we do this:

Schema: :table('contacts', function (Blueprint $table) {
Stable->string('deleted_at')->nullable()->change();
s

Here’s how we rename a column:

Schema: :table('contacts', function (Blueprint $table)
{

Stable->renameColumn('promoted', 'is_promoted');

s

And this is how we drop a column:

Schema: :table('contacts', function (Blueprint $table)

{
$table->dropColumn('votes');

s

Modifying Multiple Columns at Once in SQLite

If you try to drop or modify multiple columns within a single
\ migration closure and you are using SQLite, you’ll run into errors.

In Chapter 12 T recommend that you use SQLite for your testing
database, so even if youre using a more traditional database, you
may want to consider this a limitation for testing purposes.

However, you dont have to create a new migration for each.
Instead, just create multiple calls to Schema::table() within the
up() method of your migration:

public function up()

{

Schema: :table('contacts', function (Blueprint $table)

{
$table->dropColumn('is_promoted');

s

Schema: :table('contacts', function (Blueprint $table)

{
Stable->dropColumn('alternate_email');

b

Configuration

95

Indexes and foreign keys

We've covered how to create, modify, and delete columns. Let's move on to indexing
and relating them.

If you're not familiar with indexes, your databases can survive if you just never use
them, but they’re pretty important for performance optimization and for some data
integrity controls with regard to related tables. I'd recommend reading up on them,
but if you absolutely must, you can skip this section for now.

Adding indexes. Check out Example 5-3 for examples of how to add indexes to your
column.

Example 5-3. Adding column indexes in migrations

// After columns are created. ..

$table->primary('primary_id'); // Primary key; unnecessary if used increments()
Stable->primary(['first_name', 'last_name']); // Composite keys
$table->unique('email'); // Unique index

Stable->unique('email', 'optional_custom_1index_name'); // Unique index
$table->index('amount'); // Basic index

Stable->index('amount', 'optional_custom_index_name'); // Basic index

Note that the first example, primary(), is not necessary if youre using the
increments() or bigIncrements() methods to create your index; this will automati-
cally add a primary key index for you.

Removing indexes. We can remove indexes as shown in Example 5-4.

Example 5-4. Removing column indexes in migrations

Stable->dropPrimary('contacts_1id_primary');
$table->dropUnique('contacts_email_unique');
Stable->dropIndex('optional_custom_index_name');

// If you pass an array of column names to dropIndex, it will
// guess the index names for you based on the generation rules
Stable->dropIndex(['email', 'amount']);

Adding and removing foreign keys. To add a foreign key that defines that a particular
column references a column on another table, Laravel’s syntax is simple and clear:

Stable->foreign('user_id')->references('id')->on('users');

Here were adding a foreign index on the user_id column, showing that it references
the 1d column on the users table. Couldn’t get much simpler.

96 | Chapter5:Databases and Eloquent

If we want to specify foreign key constraints, we can do that too, with onDelete()
and onUpdate(). For example:
Stable->foreign('user_id')

->references('id")

->on('users')

->onDelete('cascade');
To drop a foreign key, we can either delete it by referencing its index name (which is
automatically generated by combining the names of the columns and tables being ref-
erenced):

Stable->dropForeign('contacts_user_1id_foreign');
or by passing it an array of the fields that it’s referencing in the local table:

Stable->dropForeign(['user_id']);

Running Migrations

Once you have your migrations defined, how do you run them? There’s an Artisan
command for that:

php artisan migrate

This command runs all “outstanding” migrations (by running the up() method on
each). Laravel keeps track of which migrations you have run and which you haven'.
Every time you run this command, it checks whether you've run all available migra-
tions, and if you haven't, it'll run any that remain.

There are a few options in this namespace that you can work with. First, you can run
your migrations and your seeds (which well cover next):

php artisan migrate --seed

You can also run any of the following commands:

migrate:install
Creates the database table that keeps track of which migrations you have and
haven’t run; this is run automatically when you run your migrations, so you can
basically ignore it.

migrate:reset
Rolls back every database migration you've run on this instance.

migrate:refresh
Rolls back every database migration you’ve run on this instance, and then runs
every migration available. It's the same as running migrate:reset and then
migrate, one after the other.

Configuration | 97

migrate:fresh
Drops all of your tables and runs every migration again. It’s the same as refresh
but doesn’t bother with the “down” migrations—it just deletes the tables and then
runs the “up” migrations again.

migrate:rollback
Rolls back just the migrations that ran the last time you ran migrate, or, with the
added option - -step=n, rolls back the number of migrations you specify.

migrate:status
Shows a table listing every migration, with a Y or N next to each showing whether
or not it has run yet in this environment.

Migrating with Homestead/Vagrant

If you're running migrations on your local machine and your .env
file points to a database in a Vagrant box, your migrations will fail.
You'll need to ssh into your Vagrant box and then run the migra-
tions from there. The same is true for seeds and any other Artisan
commands that affect or read from the database.

Seeding

Seeding with Laravel is so simple, it has gained widespread adoption as a part of nor-
mal development workflows in a way it hasn’t in previous PHP frameworks. There’s a
database/seeds folder that comes with a DatabaseSeeder class, which has a run()
method that is called when you call the seeder.

There are two primary ways to run the seeders: along with a migration, or separately.
To run a seeder along with a migration, just add - - seed to any migration call:

php artisan migrate --seed
php artisan migrate:refresh --seed

And to run it independently:

php artisan db:seed
php artisan db:seed --class=VotesTableSeeder

This will call the run() method of the DatabaseSeeder by default, or the seeder class
specified by --class.

Creating a Seeder
To create a seeder, use the make:seeder Artisan command:

php artisan make:seeder ContactsTableSeeder

98 | Chapter5: Databases and Eloquent

You'll now see a ContactsTableSeeder class show up in the database/seeds directory.
Before we edit it, let’s add it to the DatabaseSeeder class, as shown in Example 5-5, so
it will run when we run our seeders.

Example 5-5. Calling a custom seeder from DatabaseSeeder.php

// database/seeds/DatabaseSeeder.php

public function run()

{
}

Sthis->call(ContactsTableSeeder::class);

Now let’s edit the seeder itself. The simplest thing we can do there is manually insert a
record using the DB facade, as illustrated in Example 5-6.

Example 5-6. Inserting database records in a custom seeder

<?php

use Illuminate\Database\Seeder;
use Illuminate\Database\Eloquent\Model;

class ContactsTableSeeder extends Seeder

{
public function run()
{
DB::table('contacts')->insert([
'name' => 'Lupita Smith',
'email' => 'lupita@gmail.com',
D;
}
}

This will get us a single record, which is a good start. But for truly functional seeds,
you'll likely want to loop over some sort of random generator and run this insert()
many times, right? Laravel has a feature for that.

Model Factories

Model factories define one (or more) patterns for creating fake entries for your data-
base tables. By default each factory is named after an Eloquent class, but you can also
just name them after the table if youre not going to work with Eloquent. Example 5-7
shows the same factory set up both ways.

Seeding | 99

Example 5-7. Defining model factories with Eloquent class and table name keys

$factory->define(User::class, function (Faker\Generator S$faker) {
return [
'name' => S$faker->name,
1;
b

S$factory->define('users', function (Faker\Generator S$faker) {
return [
'name' => S$faker->name,
1;
b

Theoretically you can name these factories anything you like, but naming the factory
after your Eloquent class is the most idiomatic approach.

Creating a model factory

Model factories are located in database/factories. In Laravel 5.5 and later each factory
is usually defined in its own class, with a key (name) and a closure defining how to
create a new instance of the defined class. The $factory->define() method takes the
factory name as the first parameter and a closure that’s run for each generation as the
second parameter.

The Model Factory File in Laravel 5.4 and Earlier

In Laravel prior to 5.5, all factories should be defined in database/
factories/ModelFactory.php. There are no separate classes for each
factory until 5.5.

To generate a new factory class, use the Artisan make:factory command; just like
with naming the factory keys, it’s also most common to name factory classes after the
Eloquent models they’re meant to generate instances of:

php artisan make:factory ContactFactory

This will generate a new file within the database/factories directory called ContactFac-
tory.php. The simplest factory we could define for a contact might look something
like Example 5-8:

Example 5-8. The simplest possible factory definition

$factory->define(Contact::class, function (Faker\Generator S$faker) {
return [
'name' => 'Lupita Smith',
'email' => 'lupita@gmail.com',

100 | Chapter5: Databases and Eloquent

1;
s

Now we can use the factory() global helper to create an instance of Contact in our
seeding and testing:

// Create one
Scontact = factory(Contact::class)->create();

// Create many

factory(Contact::class, 20)->create();
However, if we used that factory to create 20 contacts, all 20 would have the same
information. That’s less useful.

We will get even more benefit from model factories when we take advantage of the
instance of Faker that’s passed into the closure; Faker makes it easy to randomize the
creation of structured fake data. The previous example now turns into Example 5-9.

Example 5-9. A simple factory, modified to use Faker

$factory->define(Contact::class, function (Faker\Generator S$faker) {
return [
'name' => S$faker->name,
'email' => $faker->email,
1;
b

Now, every time we create a fake contact using this model factory, all of our proper-

ties will be randomly generated.

Guaranteeing the Uniqueness of Randomly Generated Data

If you want to guarantee that the randomly generated values of any
given entry are unique compared to the other randomly generated

values during that PHP process, you can use Faker’s unique()
method:

return ['email' => $faker->unique()->email];

Using a model factory

There are two primary contexts in which we'll use model factories: testing, which
we'll cover in Chapter 12, and seeding, which we’ll cover here. Let’s write a seeder
using a model factory; take a look at Example 5-10.

Seeding | 101

http://bit.ly/2FtyJRr

Example 5-10. Using model factories

factory(Post::class)->create([
'title' => 'My greatest post ever',

D;

// Pro-level factory; but don't get overwhelmed!
factory(User::class, 20)->create()->each(function ($u) use ($post) {
$post->comments()->save(factory(Comment::class)->make([
'user_id' => Su->id,
D)
H;

To create an object, we use the factory() global helper and pass it the name of the
factory—which, as we just saw, is the name of the Eloquent class we’re generating an
instance of. That returns the factory, and then we can run one of two methods on it:
make() or create().

Both methods generate an instance of this specified model, using the definition in the
factory file. The difference is that make() creates the instance but doesn't (yet) save it
to the database, whereas create() saves it to the database instantly. You can see both
in use in the two examples in Example 5-10.

The second example will make more sense once we cover relationships in Eloquent
later in this chapter.

Overriding properties when calling a model factory. If you pass an array to either make()
or create(), you can override specific keys from the factory, like we did in
Example 5-10 to set the user_1id on the comment and to manually set the title of our
post.

Generating more than one instance with a model factory. If you pass a number as the sec-
ond parameter to the factory() helper, you can specify that youre creating more
than one instance. Instead of returning a single instance, it'll return a collection of
instances. This means you can treat the result like an array, you can associate each of
its instances with another entity, or you can use other entity methods on each
instance—like we used each() in Example 5-10 to add a comment from each newly
created user.

Pro-level model factories

Now that we've covered the most common uses for and arrangements of model facto-
ries, let’s dive into some of the more complicated ways we can use them.

102 | Chapter5: Databases and Eloquent

Attaching relationships when defining model factories. Sometimes you need to create a
related item along with the item you’re creating. You can use a closure on that prop-
erty to create a related item and pull its ID, as shown in Example 5-11.

Example 5-11. Creating a related term item in a seeder

S$factory->define(Contact::class, function (Faker\Generator $faker) {
return [
'name' => 'Lupita Smith',
'email' => 'lupita@gmail.com',
'company_id' => function () {
return factory(App\Company::class)->create()->1id;
1,
I;
s

Each closure is passed a single parameter, which contains the array form of the gener-
ated item up until that point. This can be used in other ways, as demonstrated in
Example 5-12.

Example 5-12. Using values from other parameters in a seeder

S$factory->define(Contact::class, function (Faker\Generator $faker) {
return [
'name' => 'Lupita Smith',
'email' => 'lupita@gmail.com',
'company_id' => function () {
return factory(App\Company::class)->create()->1id;
}’
'company_size' => function (S$contact) {
// Uses the "company_id" property generated above
return App\Company::find($contact['company_id'])->size;
}’
1;
s

Defining and accessing multiple model factory states. Let’s go back to ContactFactory.php
(from Example 5-8 and Example 5-9) for a second. We have a base Contact factory

defined:

$factory->define(Contact::class, function (Faker\Generator S$faker) {
return [
'name' => $faker->name,
'email' => $faker-semail,
1;
b

Seeding | 103

But sometimes you need more than one factory for a class of object. What if we need
to be able to add some contacts who are very important people (VIPs)? We can use
the state() method to define a second factory state for this, as seen in Example 5-13.
The first parameter to state() is still the name of the entity youre generating, the
second is the name of your state, and the third is an array of any attributes you want
to specifically set for this state.

Example 5-13. Defining multiple factory states for the same model

$factory->define(Contact::class, function (Faker\Generator $faker) {
return [
'name' => $faker->name,
'email' => $faker-semail,
1;
b

$factory->state(Contact::class, 'vip', [
'vip' => true,

D;

If the modified attributes require more than a simple static value, you can pass a clo-
sure instead of an array as the second parameter and then return an array of the
attributes you want to modify, like in Example 5-14.

Example 5-14. Specifying a factory state with a closure

$factory->state(Contact::class, 'vip', function (Faker\Generator S$faker) {
return [
'vip' => true,
'company' => S$faker->company,
I;
b

Now, let’s make an instance of a specific state:

$vip = factory(Contact::class, 'vip')->create();

$vips = factory(Contact::class, 'vip', 3)->create();

Factory States Prior to Laravel 5.3

In projects running versions of Laravel prior to 5.3, factory states
were called factory types, and youll want to use $factory-
>defineAs() instead of $factory->state(). You can learn more
about this in the 5.2 docs.

104 | Chapter5: Databases and Eloquent

http://bit.ly/2Fmnaew

Whew. That was a lot. Don’t worry if that was tough to follow—the last bit was defi-
nitely higher-level stuft. Let’s get back down to the basics and talk about the core of
Laravel’s database tooling: the query builder.

Query Builder

Now that youre connected and you've migrated and seeded your tables, let’s get
started with how to use the database tools. At the core of every piece of Laravel’s
database functionality is the query builder, a fluent interface for interacting with sev-
eral different types of databases with a single clear API.

What Is a Fluent Interface?

A fluent interface is one that primarily uses method chaining to provide a simpler
API to the end user. Rather than expecting all of the relevant data to be passed into
either a constructor or a method call, fluent call chains can be built gradually, with
consecutive calls. Consider this comparison:

// Non-fluent:
Susers = DB::select(['table' => 'users', 'where' => ['type' => 'donor']]);

// Fluent:
Susers = DB::table('users')->where('type', 'donor')->get();

Laravel’s database architecture can connect to MySQL, Postgres, SQLite, and SQL
Server through a single interface, with just the change of a few configuration settings.

If you've ever used a PHP framework, you've likely used a tool that allows you to run
“raw” SQL queries with basic escaping for security. The query builder is that, with a
lot of convenience layers and helpers on top. So, let’s start with some simple calls.

Basic Usage of the DB Facade

Before we get into building complex queries with fluent method chaining, let’s take a
look at a few sample query builder commands. The DB facade is used both for query
builder chaining and for simpler raw queries, as illustrated in Example 5-15.

Example 5-15. Sample raw SQL and query builder usage

// Basic statement
DB::statement('drop table users');

// Raw select, and parameter binding
DB::select('select * from contacts where validated = ?', [true]);

Query Builder | 105

// Select using the fluent builder
Susers = DB::table('users')->get();

// Joins and other complex calls
DB::table('users")
->join('contacts', function ($join) {

$join->on('users.id', '=', 'contacts.user_1id')
->where('contacts.type', 'donor');
b
->get();

Raw SQL

As you saw in Example 5-15, it’s possible to make any raw call to the database using
the DB facade and the statement() method: DB::statement('SQL statement
here').

But there are also specific methods for various common actions: select(), insert(),
update(), and delete(). These are still raw calls, but there are differences. First,
using update() and delete() will return the number of rows affected, whereas
statement() won’t; second, with these methods it’s clearer to future developers
exactly what sort of statement you're making.

Raw selects

The simplest of the specific DB methods is select(). You can run it without any addi-
tional parameters:

Susers = DB::select('select * from users');

This will return a collection of stdClass objects.

Illuminate Collections

Prior to Laravel 5.3, the DB facade returned a stdClass object for methods that

return only one row (like first()) and an array for any that return multiple rows
(like all()). In Laravel 5.3+, the DB facade, like Eloquent, returns a collection for any
method that returns (or can return) multiple rows. The DB facade returns an instance
of Illuminate\Support\Collection and Eloquent returns an instance of Il1luminate
\Database\Eloquent\Collection, which extends I1luminate\Support\Collection
with a few Eloquent-specific methods.

Collection is like a PHP array with superpowers, allowing you to run map(),
filter(), reduce(), each(), and much more on your data. You can learn more about
collections in Chapter 17.

106 | Chapter5: Databases and Eloquent

Parameter bindings and named bindings

Laravel’s database architecture allows for the use of PDO parameter binding, which
protects your queries from potential SQL attacks. Passing a parameter to a statement
is as simple as replacing the value in your statement with a ?, then adding the value to
the second parameter of your call:

SusersOfType = DB::select(
'select * from users where type = ?',
[$type]

)

You can also name those parameters for clarity:
SusersOfType = DB::select(
'select * from users where type = :type',

['type' => SuserType]
);

Raw inserts
From here, the raw commands all look pretty much the same. Raw inserts look like
this:

DB::insert(
'insert into contacts (name, email) values (2, ?)',
['sally', 'sally@me.com']

);

Raw updates

Updates look like this:

ScountUpdated = DB::update(
'update contacts set status = ? where id = ?',
['donor', $id]

);

Raw deletes
And deletes look like this:

ScountDeleted = DB::delete(
'delete from contacts where archived = ?',
[true]

);

Chaining with the Query Builder

Up until now, we haven’t actually used the query builder, per se. We've just used sim-
ple method calls on the DB facade. Let’s actually build some queries.

Query Builder | 107

The query builder makes it possible to chain methods together to, you guessed it,
build a query. At the end of your chain you’ll use some method—likely get()—to
trigger the actual execution of the query you've just built.

Let’s take a look at a quick example:

SusersOfType = DB::table('users')
->where('type', Stype)
->get();

Here, we built our query—users table, $type type—and then we executed the query
and got our result.

Let’s take a look at what methods the query builder allows you to chain. The methods
can be split up into what I'll call constraining methods, modifying methods, condi-
tional methods, and ending/returning methods.

Constraining methods

These methods take the query as it is and constrain it to return a smaller subset of
possible data:

select()
Allows you to choose which columns you're selecting:

Semails = DB::table('contacts')
->select('email', 'email2 as second_email')
->get();

// or

Semails = DB::table('contacts')
->select('email')

->addSelect('email2 as second_email')
->get();

where()
Allows you to limit the scope of what’s being returned using WHERE. By default,

the signature of the where() method is that it takes three parameters—the col-
umn, the comparison operator, and the value:

$newContacts = DB::table('contact')
->where('created_at', 's', now()->subDay())
->get();

However, if your comparison is =, which is the most common comparison, you
can drop the second operator:

SvipContacts = DB::table('contacts')->where('vip',true)->get();

If you want to combine where() statements, you can either chain them after each
other, or pass an array of arrays:

108 | Chapter5: Databases and Eloquent

SnewVips = DB::table('contacts')
->where('vip', true)
->where('created_at', '>', now()->subDay());
// or
S$newVips = DB::table('contacts')->where([
['vip', true],
['created_at', '>', now()->subDay()],
D;

orWhere()
Creates simple OR WHERE statements:

SpriorityContacts = DB::table('contacts')
->where('vip', true)
->orWhere('created_at', '>', now()->subDay())
->get();

To create a more complex OR WHERE statement with multiple conditions, pass
orWhere() a closure:

$contacts = DB::table('contacts')
->where('vip', true)
->orWhere(function ($query) {
$Squery->where('created_at', '>', now()->subDay())
->where('trial', false);
b
->get();

Query Builder | 109

Potential Confusion with Multiple where() and orWhere() Calls

If you are using orWhere() calls in conjunction with multiple
where() calls, you need to be very careful to ensure the query is
doing what you think it is. This isn’t because of any fault with Lara-
vel, but because a query like the following might not do what
you expect:

ScanEdit = DB::table('users')
->where('admin', true)
->orWhere('plan', 'premium')
->where('is_plan_owner', true)
->get();
SELECT * FROM users
WHERE admin = 1
OR plan = 'premium'
AND is_plan_owner = 1;
If you want to write SQL that says “if this OR (this and this),” which
is clearly the intention in the previous example, you’ll want to pass
a closure into the orWhere() call:
ScanEdit = DB::table('users")
->where('admin', true)
->orWhere(function (Squery) {
Squery->where('plan', 'premium')
->where('is_plan_owner', true);

H
->get();

SELECT * FROM users
WHERE admin = 1
OR (plan = 'premium' AND is_plan_owner = 1);

whereBetween(colName, [low, high])
Allows you to scope a query to return only rows where a column is between two
values (inclusive of the two values):

$mediumDrinks = DB::table('drinks")
->whereBetween('size', [6, 12])
->get();

The same works for whereNotBetween(), but it will select the inverse.

whereIn(colName, [1, 2, 3])
Allows you to scope a query to return only rows where a column value is in an

explicitly provided list of options:

$ScloseBy = DB::table('contacts')
->whereIn('state', ['FL', 'GA', 'AL'])
->get();

The same works for whereNotIn(), but it will select the inverse.

110 | Chapter5: Databases and Eloquent

whereNull(colName) and whereNotNull(colName)
Allow you to select only rows where a given column is NULL or is NOT NULL,

respectively.

whereRaw()
Allows you to pass in a raw, unescaped string to be added after the WHERE state-

ment:

$goofs = DB::table('contacts')->whereRaw('id = 12345')->get()

Beware of SQL Injection!

Any SQL queries passed to whereRaw() will not be escaped. Use
this method carefully and infrequently; this is a prime opportunity
for SQL injection attacks in your app.

whereExists()
Allows you to select only rows that, when passed into a provided subquery,
return at least one row. Imagine you only want to get those users who have left at

least one comment:

Scommenters = DB::table('users')
->whereExists(function ($query) {
Squery->select('id")
->from('comments")
->whereRaw('comments.user_id = users.id');

b
->get();

distinct()
Selects only rows where the selected data is unique when compared to the other
rows in the returned data. Usually this is paired with select(), because if you
use a primary key, there will be no duplicated rows:

$lastNames = DB::table('contacts')->select('city')->distinct()->get();

Modifying methods

These methods change the way the query’s results will be output, rather than just lim-
iting its results:

orderBy(colName, direction)
Orders the results. The second parameter may be either asc (the default, ascend-

ing order) or desc (descending order):

$contacts = DB::table('contacts')
->orderBy('last_name', 'asc')

->get();

Query Builder | 111

groupBy () and having() or havingRaw()
Groups your results by a column. Optionally, having() and havingRaw() allow
you to filter your results based on properties of the groups. For example, you
could look for only cities with at least 30 people in them:

SpopulousCities = DB::table('contacts')
->groupBy('city')
->havingRaw('count(contact_1id) > 30")
->get();

skip() and take()
Most often used for pagination, these allow you to define how many rows to
return and how many to skip before starting the return—like a page number and
a page size in a pagination system:
// returns rows 31-40
$page4 = DB::table('contacts')->skip(30)->take(10)->get();

latest(colName) and oldest(colName)
Sort by the passed column (or created_at if no column name is passed) in
descending (latest()) or ascending (oldest()) order.

inRandomOrder()
Sorts the result randomly.

Conditional methods

There are two methods, available in Laravel 5.2 and later, that allow you to condition-
ally apply their “contents” (a closure you pass to them) based on the Boolean state of a
value you pass in:

when()
Given a truthy first parameter, applies the query modification contained in the
closure; given a falsy first parameter, it does nothing. Note that the first parame-
ter could be a Boolean (e.g., $ignoreDrafts, set to true or false), an optional
value ($status, pulled from user input and defaulting to null), or a closure that
returns either; what matters is that it evaluates to truthy or falsy. For example:

$status = request('status'); // Defaults to null if not set

Sposts = DB::table('posts')
->when($status, function (Squery) use (Sstatus) {
return $query->where('status', $status);
b
->get();

// or
$posts = DB::table('posts')

112 | Chapter5: Databases and Eloquent

->when($ignoreDrafts, function (Squery) {
return $query->where('draft', false);

b

->get();
You can also pass a third parameter, another closure, which will only be applied if
the first parameter is falsy.

unless()
The exact inverse of when(). If the first parameter is falsy, it will run the second
closure.

Ending/returning methods

These methods stop the query chain and trigger the execution of the SQL query.
Without one of these at the end of the query chain, your return will always just be an
instance of the query builder; chain one of these onto a query builder and you’ll
actually get a result:

get()
Gets all results for the built query:

Scontacts = DB::table('contacts')->get();
SvipContacts = DB::table('contacts')->where('vip', true)->get();

first() and firstOrFail()
Get only the first result—like get(), but with a LIMIT 1 added:

SnewestContact = DB::table('contacts')
->orderBy('created_at', 'desc')
->first();
first() fails silently if there are no results, whereas firstOrfFail() will throw an
exception.

If you pass an array of column names to either method, it will return the data for
just those columns instead of all columns.

find(id) and findOrFail(id)
Like first(), but you pass in an ID value that corresponds to the primary key to
look up. find() fails silently if a row with that ID doesn't exist, while
findOrFail() will throw an exception:

ScontactFive = DB::table('contacts')->find(5);

value()
Plucks just the value from a single field from the first row. Like first(), but if
you only want a single column:

Query Builder | 113

SnewestContactEmail = DB::table('contacts')
->orderBy('created_at', 'desc')
->value('email');

count()
Returns an integer count of all of the matching results:

$countVips = DB::table('contacts')
->where('vip', true)
->count();

min() and max()
Return the minimum or maximum value of a particular column:

ShighestCost = DB::table('orders')->max("'amount');

sum() and avg()
Return the sum or average of all of the values in a particular column:

$SaverageCost = DB::table('orders')
->where('status', 'completed')
->avg('amount');

Writing raw queries inside query builder methods with DB::raw

You've already seen a few custom methods for raw statements—for example,
select() has a selectRaw() counterpart that allows you to pass in a string for the
query builder to place after the WHERE statement.

You can also, however, pass in the result of a DB: : raw() call to almost any method in
the query builder to achieve the same result:

Scontacts = DB::table('contacts')
->select(DB::raw('*, (score * 100) AS integer_score'))
->get();
Joins

Joins can sometimes be a pain to define, and there’s only so much a framework can do
to make them simpler, but the query builder does its best. Let’s look at a sample:

Susers = DB::table('users')

->join('contacts', 'users.id', '=', 'contacts.user_id')
->select('users.*', 'contacts.name', 'contacts.status')
->get();

The join() method creates an inner join. You can also chain together multiple joins
one after another, or use leftJoin() to get a left join.

Finally, you can create more complex joins by passing a closure into the join()
method:

114 | Chapter5: Databases and Eloquent

DB::table('users")
->join('contacts', function ($join) {
$join
->on('users.id', '=', 'contacts.user_id')

->orOn('users.id', '=', 'contacts.proxy_user_1id');

H
->get();

Unions

You can union two queries (join their results together into one result set) by creating
them first and then using the union() or unionAll() method:

$first = DB::table('contacts')
->whereNull('first_name');

$contacts = DB::table('contacts')
->whereNull('last_name')
->union($first)
->get();

Inserts

The insert() method is pretty simple. Pass it an array to insert a single row or an
array of arrays to insert multiple rows, and use insertGetId() instead of insert() to
get the autoincrementing primary key ID back as a return:

$id = DB::table('contacts')->insertGetId([
'name' => 'Abe Thomas',
'email' => 'athomas1987@gmail.com',

D;

DB::table('contacts')->insert([
['name' => 'Tamika Johnson', 'email' => 'tamikaj@gmail.com'],
['name' => 'Jim Patterson', 'email' => 'james.patterson@hotmail.com'],

D;

Updates

Updates are also simple. Create your update query and, instead of get() or first(),
just use update() and pass it an array of parameters:
DB::table('contacts')

->where('points', '>', 100)

->update(['status' => 'vip']);
You can also quickly increment and decrement columns using the increment() and
decrement() methods. The first parameter of each is the column name, and the sec-
ond (optional) is the number to increment/decrement by:

DB::table('contacts')->increment('tokens', 5);
DB::table('contacts')->decrement('tokens');

Query Builder | 115

Deletes
Deletes are even simpler. Build your query and then end it with delete():

DB::table('users')
->where('last_login', '<', now()->subYear())
->delete();
You can also truncate the table, which deletes every row and also resets the autoincre-
menting ID:

DB::table('contacts')->truncate();

JSON operations

If you have JSON columns, you can update or select rows based on aspects of the
JSON structure by using the arrow syntax to traverse children:

// Select all records where the "isAdmin" property of the "options"
// JSON column is set to true
DB::table('users')->where('options->isAdmin', true)->get();

// Update all records, setting the "verified" property
// of the "options" JSON column to true
DB::table('users')->update(['options->isVerified', true]);

E This is a new feature since Laravel 5.3.

Transactions

If you're not familiar with database transactions, they’re a tool that allows you to wrap
up a series of database queries to be performed in a batch, which you can choose to
roll back, undoing the entire series of queries. Transactions are often used to ensure
that all or none, but not some, of a series of related queries are performed—if one
fails, the ORM will roll back the entire series of queries.

With the Laravel query builder’s transaction feature, if any exceptions are thrown at
any point within the transaction closure, all the queries in the transaction will be rol-
led back. If the transaction closure finishes successfully, all the queries will be com-
mitted and not rolled back.

Let’s take a look at the sample transaction in Example 5-16.

Example 5-16. A simple database transaction

DB::transaction(function () use (SuserId, $numVotes) {
// Possibly failing DB query
DB::table('users')
->where('id', SuserlId)
->update(['votes' => $SnumVotes]);

116 | Chapter5: Databases and Eloquent

// Caching query that we don't want to run if the above query fails
DB::table('votes')
->where('user_1id"', S$userlId)
->delete();
s

In this example, we can assume we had some previous process that summarized the
number of votes from the votes table for a given user. We want to cache that number
in the users table and then wipe those votes from the votes table. But, of course, we
don’t want to wipe the votes until the update to the users table has run successfully.
And we don’t want to keep the updated number of votes in the users table if the
votes table deletion fails.

If anything goes wrong with either query, the other won't be applied. That’s the magic
of database transactions.

Note that you can also manually begin and end transactions—and this applies
both for query builder queries and for Eloquent queries. Start with
DB: :beginTransaction(), end with DB: :commit(), and abort with DB: : rol1Back():

DB: :beginTransaction();
// Take database actions

if ($badThingsHappened {
DB::rollBack();
}

// Take other database actions

DB::commit();

Introduction to Eloquent

Now that we've covered the query builder, lets talk about Eloquent, Laravel’s flagship
database tool that’s built on the query builder.

Eloquent is an ActiveRecord ORM, which means it’s a database abstraction layer that
provides a single interface to interact with multiple database types. “ActiveRecord”
means that a single Eloquent class is responsible for not only providing the ability to
interact with the table as a whole (e.g., User: :all() gets all users), but also represent-
ing an individual table row (e.g., $sharon = new User). Additionally, each instance is
capable of managing its own persistence; you can call $sharon->save() or
$sharon->delete().

Eloquent has a primary focus on simplicity, and like the rest of the framework, it
relies on “convention over configuration” to allow you to build powerful models with
minimal code.

Introduction to Eloquent | 117

For example, you can perform all of the operations in Example 5-18 with the model
defined in Example 5-17.

Example 5-17. The simplest Eloquent model
<?php
use Illuminate\Database\Eloquent\Model;

class Contact extends Model {}

Example 5-18. Operations achievable with the simplest Eloquent model

// In a controller
public function save(Request S$request)

{
// Create and save a new contact from user input
Scontact = new Contact();
Scontact->first_name = Srequest->input('first_name');
Scontact->last_name = $request->input('last_name');
Sconatct->email = $request->input('email');
Scontact->save();
return redirect('contacts');
}
public function show($ScontactId)
{
// Return a JSON representation of a contact based on a URL segment;
// if the contact doesn't exist, throw an exception
return Contact::findOrFail($contactId);
}
public function vips()
{
// Unnecessarily complex example, but still possible with basic Eloquent
// class; adds a "formalName" property to every VIP entry
return Contact::where('vip', true)->get()->map(function (Scontact) {
Scontact->formalName = "The exalted {$contact->first_name} of the
{Scontact->last_name}s";
return $contact;
b
}

How? Convention. Eloquent assumes the table name (Contact becomes contacts),
and with that you have a fully functional Eloquent model.

Let’s cover how we work with Eloquent models.

118 | Chapter5: Databases and Eloquent

Creating and Defining Eloquent Models

First, let’s create a model. There’s an Artisan command for that:
php artisan make:model Contact

This is what we'll get, in app/Contact.php:
<2php
namespace App;

use Illuminate\Database\Eloquent\Model;

class Contact extends Model
{
//

}

Creating a Migration Along with Your Model

If you want to automatically create a migration when you create
your model, pass the -m or --migration flag:

php artisan make:model Contact --migration

Table name

The default behavior for table names is that Laravel “snake cases” and pluralizes your
class name, so SecondaryContact would access a table named secondary_contacts.
If youd like to customize the name, set the $table property explicitly on the model:

protected $table = 'contacts_secondary';

Primary key

Laravel assumes, by default, that each table will have an autoincrementing integer pri-
mary key, and it will be named 1id.

If you want to change the name of your primary key, change the $primaryKey prop-
erty:

protected $primaryKey = 'contact_id';
And if you want to set it to be nonincrementing, use:

public S$incrementing = false;

Introduction to Eloquent | 119

Timestamps

Eloquent expects every table to have created_at and updated_at timestamp col-
umns. If your table won’t have them, disable the $timestamps functionality:

public Stimestamps = false;

You can customize the format Eloquent uses to store your timestamps to the database
by setting the $dateFormat class property to a custom string. The string will be
parsed using PHP’s date() syntax, so the following example will store the date as sec-
onds since the Unix epoch:

protected $dateFormat = 'U';

Retrieving Data with Eloquent

Most of the time you pull data from your database with Eloquent, you’ll use static
calls on your Eloquent model.

Let’s start by getting everything:
$SallContacts = Contact::all();
That was easy. Let’s filter it a bit:
SvipContacts = Contact::where('vip', true)->get();

We can see that the Eloquent facade gives us the ability to chain constraints, and
from there the constraints get very familiar:

S$newestContacts = Contact::orderBy('created_at', 'desc')
->take(10)
->get();
It turns out that once you move past the initial facade name, youre just working
with Laravel’s query builder. You can do a lot more—well cover that soon—but
everything you can do with the query builder on the DB facade you can do on your
Eloquent objects.

Getone

Like we covered earlier in the chapter, you can use first() to return only the first
record from a query, or find() to pull just the record with the provided ID. For
either, if you append “OrFail” to the method name, it will throw an exception if there
are no matching results. This makes findOrFail() a common tool for looking up an
entity by a URL segment (or throwing an exception if a matching entity doesn’t exist),
like you can see in Example 5-19.

120 | Chapter5: Databases and Eloquent

Example 5-19. Using an Eloquent OrFail() method in a controller method

// ContactController
public function show($contactlId)
{

return view('contacts.show')
->with('contact', Contact::findOrFail($contactId));
}

Any method intended to return a single record (first(), firstorfFail(), find(), or
findorFail()) will return an instance of the Eloquent class. So, Contact::first()
will return an instance of the class Contact with the data from the first row in the
table filling it out.

Exceptions

As you can see in Example 5-19, we don’t need to catch Eloquent’s
model not found exception (Illuminate\Database\Eloquent
\ModelNotFoundException) in our controllers; Laravels routing
system will catch it and throw a 404 for us.

You could, of course, catch that particular exception and handle it,
if youd like.

Get many

get() works with Eloquent just like it does in normal query builder calls—build a
query and call get() at the end to get the results:

SvipContacts = Contact::where('vip', true)->get();

However, there is an Eloquent-only method, all(), which you'll often see people use
when they want to get an unfiltered list of all data in the table:

$Scontacts = Contact::all();

Using get() Instead of all()

Any time you can use all(), you could use get(). Contact: :get()
has the same response as Contact::all(). However, the moment
you start modifying your query—adding a where() filter, for exam-
ple—all() will no longer work, but get() will continue working.

So, even though all() is very common, I'd recommend using
get() for everything, and ignoring the fact that all() even exists.

The other thing that’s different about Eloquent’s get() method (versus all()) is that,
prior to Laravel 5.3, it returned an array of models instead of a collection. In 5.3 and
later, they both return collections.

Introduction to Eloquent | 121

Chunking responses with chunk()

If you've ever needed to process a large amount (thousands or more) of records at a
time, you may have run into memory or locking issues. Laravel makes it possible to
break your requests into smaller pieces (chunks) and process them in batches, keep-
ing the memory load of your large request smaller. Example 5-20 illustrates the use of
chunk() to split a query into “chunks” of 100 records each.

Example 5-20. Chunking an Eloquent query to limit memory usage

Contact: :chunk(100, function (Scontacts) {
foreach ($contacts as Scontact) {
// Do something with Scontact

}
s
Aggregates

The aggregates that are available on the query builder are available on Eloquent quer-
ies as well. For example:

ScountVips = Contact::where('vip', true)->count();
$sumVotes = Contact::sum('votes');
$averageSkill = User::avg('skill_level');

Inserts and Updates with Eloquent

Inserting and updating values is one of the places where Eloquent starts to diverge
from normal query builder syntax.

Inserts

There are two primary ways to insert a new record using Eloquent.

First, you can create a new instance of your Eloquent class, set your properties man-
ually, and call save() on that instance, like in Example 5-21.

Example 5-21. Inserting an Eloquent record by creating a new instance

Scontact = new Contact;
Scontact->name = 'Ken Hirata';
Scontact->email = 'ken@hirata.com';
Scontact->save();

// or

$contact = new Contact([
'name' => 'Ken Hirata',
'email' => 'ken@hirata.com',

122 | Chapter5: Databases and Eloquent

D;

Scontact->save();

// or

Scontact = Contact: :make([
'name' => 'Ken Hirata',
'email' => 'ken@hirata.com',

s

Scontact->save();

Until you save(), this instance of Contact represents the contact fully—except it has
never been saved to the database. That means it doesn't have an 1id, if the application
quits it won’t persist, and it doesn’t have its created_at and updated_at values set.

You can also pass an array to Model::create(), as shown in Example 5-22. Unlike
make(), create() saves the instance to the database as soon as it’s called.

Example 5-22. Inserting an Eloquent record by passing an array to create()

Scontact = Contact::create([
'name' => 'Keahi Hale',
'email' => 'halek481@yahoo.com',

D;

Also be aware that in any context where you are passing an array (to new Model(),
Model: :make(), Model: :create(), or Model: :update()), every property you set via
Model::create() has to be approved for “mass assignment,” which we’ll cover
shortly. This is not necessary with the first example in Example 5-21, where you
assign each property individually.

Note that if youre using Model: :create(), you don’t need to save() the instance—
that’s handled as a part of the model’s create() method.

Updates

Updating records looks very similar to inserting. You can get a specific instance,
change its properties, and then save, or you can make a single call and pass an array
of updated properties. Example 5-23 illustrates the first approach.

Example 5-23. Updating an Eloquent record by updating an instance and saving

$Scontact = Contact::find(1);
Scontact->email = 'natalie@parkfamily.com';
Scontact->save();

Introduction to Eloquent | 123

Since this record already exists, it will already have a created_at timestamp and an
id, which will stay the same, but the updated_at field will be changed to the current
date and time. Example 5-24 illustrates the second approach.

Example 5-24. Updating one or more Eloquent records by passing an array to the
update() method

Contact: :where('created_at', '<', now()->subYear())
->update(['longevity' => 'ancient']);

// or

Scontact = Contact::find(1);
$Scontact->update(['longevity' => 'ancient']);

This method expects an array where each key is the column name and each value is
the column value.

Mass assignment

We've looked at a few examples of how to pass arrays of values into Eloquent class
methods. However, none of these will actually work until you define which fields are
“fillable” on the model.

The goal of this is to protect you from (possibly malicious) user input accidentally
setting new values on fields you don’t want changed. Consider the common scenario
in Example 5-25.

Example 5-25. Updating an Eloquent model using the entirety of a request’s input
// ContactController
public function update(Contact $contact, Request S$request)

{
}

Scontact->update($request->all());

If youre not familiar with the Illuminate Request object, Example 5-25 will take
every piece of user input and pass it to the update() method. That all() method
includes things like URL parameters and form inputs, so a malicious user could easily
add some things in there, like 1d and owner_1d, that you likely don’t want updated.

Thankfully, that won't actually work until you define your models fillable fields. You
can either whitelist the fillable fields, or blacklist the “guarded” fields to determine
which fields can or cannot be edited via “mass assignment”—that is, by passing an
array of values into either create() or update(). Note that nonfillable properties can

124 | Chapter5: Databases and Eloquent

still be changed by direct assignment (e.g., $contact->password = ‘'abc';).
Example 5-26 shows both approaches.

Example 5-26. Using Eloquents fillable or guarded properties to define mass-assignable
fields

class Contact

{

protected $fillable = ['name', 'email'];

// or

protected $guarded = ['id', 'created_at', 'updated_at', 'owner_id'];
}

Using Request::only() with Eloquent Mass Assignment

In Example 5-25, we needed Eloquent’s mass assignment guard
because we were using the all() method on the Request object to
pass in the entirety of the user input.

Eloquent’s mass assignment protection is a great tool here, but
there’s also a helpful trick to keep you from accepting any old input
from the user.

The Request class has an only() method that allows you to pluck
only a few keys from the user input. So now you can do this:

Contact::create(Srequest->only('name', 'email'));

firstOrCreate() and firstOrNew()

Sometimes you want to tell your application, “Get me an instance with these proper-
ties, or if it doesn’t exist, create it” This is where the first0r*() methods come in.

The firstOrCreate() and firstOrNew() methods take an array of keys and values as
their first parameter:

Scontact = Contact::firstOrCreate(['email' => 'luis.ramos@myacme.com']);

They’ll both look for and retrieve the first record matching those parameters, and if
there are no matching records, they’ll create an instance with those properties;
firstOorCreate() will persist that instance to the database and then return it, while
firstOrNew() will return it without saving it.

If you pass an array of values as the second parameter, those values will be added to
the created entry (if it’s created) but wont be used to look up whether the entry exists.

Introduction to Eloquent | 125

Deleting with Eloquent

Deleting with Eloquent is very similar to updating with Eloquent, but with (optional)
soft deletes, you can archive your deleted items for later inspection or even recovery.

Normal deletes

The simplest way to delete a model record is to call the delete() method on the
instance itself:

Scontact = Contact::find(5);

$contact->delete();
However, if you only have the ID, there’s no reason to look up an instance just to
delete it; you can pass an ID or an array of IDs to the model’s destroy() method to
delete them directly:

Contact::destroy(1);

// or
Contact::destroy([1, 5, 7]1);

Finally, you can delete all of the results of a query:

Contact: :where('updated_at', '<', now()->subYear())->delete();

Soft deletes

Soft deletes mark database rows as deleted without actually deleting them from the
database. This gives you the ability to inspect them later, to have records that show
more than “no information, deleted” when displaying historic information, and to
allow your users (or admins) to restore some or all data.

The hard part about handcoding an application with soft deletes is that every query
you ever write will need to exclude the soft-deleted data. Thankfully, if you use Elo-
quent’s soft deletes, every query you ever make will be scoped to ignore soft deletes by
default, unless you explicitly ask to bring them back.

Eloquent’s soft delete functionality requires a deleted_at column to be added to the
table. Once you enable soft deletes on that Eloquent model, every query you ever
write (unless you explicitly include soft-deleted records) will be scoped to ignore soft-
deleted rows.

When Should | Use Soft Deletes?

Just because a feature exists, it doesn't mean you should always use it. Many folks in
the Laravel community default to using soft deletes on every project just because the
feature is there. There are real costs to soft deletes, though. It’s pretty likely that, if you
view your database directly in a tool like Sequel Pro, youll forget to check the

126 | Chapter5: Databases and Eloquent

deleted_at column at least once. And if you don't clean up old soft-deleted records,
your databases will get larger and larger.

Here’s my recommendation: don’t use soft deletes by default. Instead, use them when
you need them, and when you do, clean out old soft deletes as aggressively as you can
using a tool like Quicksand. The soft delete feature is a powerful tool, but not worth
using unless you need it.

Enabling soft deletes. You enable soft deletes by doing three things: adding the
deleted_at column in a migration, importing the SoftDeletes trait in the model,
and adding the deleted_at column to your $dates property. Theres a
softDeletes() method available on the schema builder to add the deleted_at col-
umn to a table, as you can see in Example 5-27. And Example 5-28 shows an Elo-
quent model with soft deletes enabled.

Example 5-27. Migration to add the soft delete column to a table

Schema: :table('contacts', function (Blueprint $table) {
Stable->softDeletes();
D

Example 5-28. An Eloquent model with soft deletes enabled

<?php

use Illuminate\Database\Eloquent\Model;
use Illuminate\Database\Eloquent\SoftDeletes;

class Contact extends Model

{
use SoftDeletes; // use the trait

protected $dates = ['deleted_at']; // mark this column as a date
}

Once you make these changes, every delete() and destroy() call will now set the
deleted_at column on your row to be the current date and time instead of deleting
that row. And all future queries will exclude that row as a result.

Querying with soft deletes. So, how do we get soft-deleted items?

First, you can add soft-deleted items to a query:

SallHistoricContacts = Contact::withTrashed()->get();

Introduction to Eloquent | 127

https://github.com/tightenco/quicksand

Next, you can use the trashed() method to see if a particular instance has been soft-
deleted:

if (Scontact->trashed()) {
// do something
}

Finally, you can get only soft-deleted items:

$SdeletedContacts = Contact::onlyTrashed()->get();
Restoring soft-deleted entities. If you want to restore a soft-deleted item, you can run
restore() on an instance or a query:

$contact->restore();

// or

Contact::onlyTrashed()->where('vip', true)->restore();
Force-deleting soft-deleted entities. You can delete a soft-deleted entity by calling
forceDelete() on an entity or query:

Scontact->forceDelete();

// or

Contact::onlyTrashed()->forceDelete();

Scopes

We've covered “filtered” queries, meaning any query where we’re not just returning
every result for a table. But every time we've written them so far in this chapter, it’s
been a manual process using the query builder.

Local and global scopes in Eloquent allow you to define prebuilt “scopes” (filters) that
you can use either every time a model is queried (“global”) or every time you query it
with a particular method chain (“local”).

Local scopes
Local scopes are the simplest to understand. Let’s take this example:
SactiveVips = Contact::where('vip', true)->where('trial', false)->get();

First of all, if we write this combination of query methods over and over, it will get
tedious. But additionally, the knowledge of how to define someone being an “active
VIP” is now spread around our application. We want to centralize that knowledge.
What if we could just write this?

SactiveVips = Contact::activeVips()->get();

128 | Chapter5: Databases and Eloquent

We can—it’s called a local scope. And it’s easy to define on the Contact class, as you
can see in Example 5-29.

Example 5-29. Defining a local scope on a model

class Contact

{
public function scopeActiveVips(Squery)
{
return $Squery->where('vip', true)->where('trial', false);
}

To define a local scope, we add a method to the Eloquent class that begins with
“scope” and then contains the title-cased version of the scope name. This method is
passed a query builder and needs to return a query builder, but of course you can
modify the query before returning—that’s the whole point.

You can also define scopes that accept parameters, as shown in Example 5-30.

Example 5-30. Passing parameters to scopes

class Contact

{
public function scopeStatus($query, S$status)
{
return $query->where('status', $status);
}

And you use them in the same way, just passing the parameter to the scope:

$friends = Contact::status('friend')->get();

Global scopes

Remember how we talked about soft deletes only working if you scope every query on
the model to ignore the soft-deleted items? That’s a global scope. And we can define
our own global scopes, which will be applied on every query made from a given
model.

There are two ways to define a global scope: using a closure or using an entire class.
In each, you'll register the defined scope in the model’s boot() method. Let’s start
with the closure method, illustrated in Example 5-31.

Example 5-31. Adding a global scope using a closure

class Contact extends Model

{

Introduction to Eloquent | 129

protected static function boot()

{
parent: :boot();
static::addGlobalScope('active', function (Builder $builder) {
Sbuilder->where('active', true);
b;
}

That’s it. We just added a global scope named active, and now every query on this
model will be scoped to only rows with active set to true.

Next, let’s try the longer way, as shown in Example 5-32. Create a class that imple-
ments I1luminate\Database\Eloquent\Scope, which means it will have an apply()
method that takes an instance of a query builder and an instance of the model.

Example 5-32. Creating a global scope class
<?php

namespace App\Scopes;

use Illuminate\Database\Eloquent\Scope;
use Illuminate\Database\Eloquent\Model;

use Illuminate\Database\Eloquent\Builder;

class ActiveScope implements Scope

{
public function apply(Builder $builder, Model $model)
{
return $builder->where('active', true);
}
}

To apply this scope to a model, once again override the parent’s boot() method and
call addGlobalScope() on the class using static, as shown in Example 5-33.

Example 5-33. Applying a class-based global scope
<?php

use App\Scopes\ActiveScope;
use Illuminate\Database\Eloquent\Model;

class Contact extends Model

{

protected static function boot()

{
parent: :boot();

130 | Chapter5: Databases and Eloquent

static::addGlobalScope(new ActiveScope);

Contact with No Namespace

You may have noticed that several of these examples have used the
class Contact, with no namespace. This is abnormal, and I've only
done this to save space in the book. Normally even your top-level
models would live at something like App\Contact.

Removing global scopes. There are three ways to remove a global scope, and all three
use the withoutGlobalScope() or withoutGlobalScopes() methods. If youre
removing a closure-based scope, the first parameter of that scope’s addGlobalScope()
registration will be the key you used to enable it:

$allContacts = Contact::withoutGlobalScope('active')->get();

If youre removing a single class-based global scope, you can pass the class name to
withoutGlobalScope() or withoutGlobalScopes():

Contact: :withoutGlobalScope(ActiveScope::class)->get();

Contact: :withoutGlobalScopes([ActiveScope::class, VipScope::class])->get();
Or, you can just disable all global scopes for a query:

Contact: :withoutGlobalScopes()->get();

Customizing Field Interactions with Accessors, Mutators, and
Attribute Casting

Now that we've covered how to get records into and out of the database with Elo-
quent, let’s talk about decorating and manipulating the individual attributes on your
Eloquent models.

Accessors, mutators, and attribute casting all allow you to customize the way individ-
ual attributes of Eloquent instances are input or output. Without using any of these,
each attribute of your Eloquent instance is treated like a string, and you can’t have any
attributes on your models that don't exist on the database. But we can change that.

Accessors

Accessors allow you to define custom attributes on your Eloquent models for when
you are reading data from the model instance. This may be because you want to
change how a particular column is output, or because you want to create a custom
attribute that doesn’t exist in the database table at all.

Introduction to Eloquent | 131

You define an accessor by writing a method on your model with the following struc-
ture: get{PascalCasedPropertyName}Attribute. So, if your property name is
first_name, the accessor method would be named getFirstNameAttribute.

Let’s try it out. First, we'll decorate a preexisting column (Example 5-34).

Example 5-34. Decorating a preexisting column using Eloquent accessors

// Model definition:
class Contact extends Model

{
public function getNameAttribute($value)
{
return $value ?: '(No name provided)';
}
}

// Accessor usage:
$name = $contact->name;

But we can also use accessors to define attributes that never existed in the database, as
seen in Example 5-35.
Example 5-35. Defining an attribute with no backing column using Eloquent accessors

// Model definition:
class Contact extends Model

{
public function getFullNameAttribute()
{
return $this->first_name . ' ' . S$this->last_name;
}
}

// Accessor usage:
$fullName = Scontact->full_name;

Mutators

Mutators work the same way as accessors, except they’re for determining how to pro-
cess setting the data instead of getting it. Just like with accessors, you can use them to
modify the process of writing data to existing columns, or to allow for setting col-
umns that don't exist in the database.

You define a mutator by writing a method on your model with the following struc-
ture: set{PascalCasedPropertyName}Attribute. So, if your property name is
first_name, the mutator method would be named setFirstNameAttribute.

132 | Chapter5: Databases and Eloquent

Lets try it out. First, well add a constraint to updating a preexisting column
(Example 5-36).
Example 5-36. Decorating setting the value of an attribute using Eloquent mutators

// Defining the mutator
class Order extends Model

{
public function setAmountAttribute($value)
{
S$this->attributes['amount'] = Svalue > 0 ? Svalue : 0;
}
}

// Using the mutator
Sorder->amount = '15';

This reveals that the way mutators are expected to “set” data on the model is by set-
ting it in $this->attributes with the column name as the key.

Now let’s add a proxy column for setting, as shown in Example 5-37.

Example 5-37. Allowing for setting the value of a nonexistent attribute using Eloquent
mutators

// Defining the mutator
class Order extends Model

{
public function setWorkgroupNameAttribute($workgroupName)
{
S$this->attributes['email'] = "{$workgroupName}@ourcompany.com";
}
}

// Using the mutator
Sorder->workgroup_name = 'jstott';

As you can probably guess, it’s relatively uncommon to create a mutator for a non-
existent column, because it can be confusing to set one property and have it change a
different column—but it is possible.

Attribute casting

You can probably imagine writing accessors to cast all of your integer-type fields as
integers, encode and decode JSON to store in a TEXT column, or convert TINYINT @
and 1 to and from Boolean values.

Thankfully, there’s a system for that in Eloquent already. It’s called attribute casting,
and it allows you to define that any of your columns should always be treated, both

Introduction to Eloquent | 133

on read and on write, as if they are of a particular data type. The options are listed in
Table 5-1.

Table 5-1. Possible attribute casting column types

Type Description

int|integer Casts with PHP (int)

real|float|double C(asts with PHP (float)

string Casts with PHP (string)

bool|boolean Casts with PHP (bool)

object Parses to/from JSON, as a stdClass object

array Parses to/from JSON, as an array

collection Parses to/from JSON, as a collection

date|datetime Parses from database DATETIME to Carbon, and back
timestamp Parses from database TIMESTAMP to Carbon, and back

Example 5-38 shows how you use attribute casting in your model.

Example 5-38. Using attribute casting on an Eloquent model

class Contact

{
protected $casts = [
'vip' => 'boolean',
'children_names' => 'array',
'birthday' => 'date',
I;
}
Date mutators

You can choose for particular columns to be mutated as timestamp columns by
adding them to the dates array, as seen in Example 5-39.

Example 5-39. Defining columns to be mutated as timestamps

class Contact

{
protected $dates = [
'met_at’',
1;
}

By default, this array contains created_at and updated_at, so adding entries to
dates just adds them to the list.

134 | Chapter5: Databases and Eloquent

However, there’s no difference between adding columns to this list and adding them
to $this->casts as timestamp, so this is becoming a bit of an unnecessary feature
now that attribute casting can cast timestamps (new since Laravel 5.2).

Eloquent Collections

When you make any query call in Eloquent that has the potential to return multiple
rows, instead of an array they’ll come packaged in an Eloquent collection, which is a
specialized type of collection. Let’s take a look at collections and Eloquent collections,
and what makes them better than plain arrays.

Introducing the base collection

Laravel’s Collection objects (Il1luminate\Support\Collection) are a little bit like
arrays on steroids. The methods they expose on array-like objects are so helpful that,
once you've been using them for a while, you’ll likely want to pull them into non-
Laravel projects—which you can, with the Tightenco/Collect package.

The simplest way to create a collection is to use the collect() helper. Either pass an
array in, or use it without arguments to create an empty collection and then push
items into it later. Let’s try it:

$collection = collect([1, 2, 31);
Now let’s say we want to filter out any even numbers:

$odds = Scollection->reject(function ($item) {
return $item % 2 === 0;

s

Or what if we want to get a version of the collection where each item is multiplied by
10?2 We can do that as follows:

$multiplied = Scollection->map(function (Sitem) {
return $item * 10;

s

We can even get only the even numbers, multiply them all by 10, and reduce them to
a single number by sum():

$sum = Scollection
->filter(function ($item) {
return $item % 2 == 0;
})->map(function (S$item) {
return $item * 10;

1 ->sum();
As you can see, collections provide a series of methods, which can optionally be
chained, to perform functional operations on your arrays. They provide the same
functionality as native PHP methods like array_map() and array_reduce(), but you

Introduction to Eloquent | 135

https://github.com/tightenco/collect

don’t have to memorize PHP’s unpredictable parameter order, and the method chain-
ing syntax is infinitely more readable.

There are more than 60 methods available on the Collection class, including meth-
ods like max(), whereIn(), flatten(), and flip(), and there’s not enough space to
cover them all here. We'll talk about more in Chapter 17, or you can check out the
Laravel collections docs to see all of the methods.

Collections in the Place of Arrays

Collections can also be used in any context (except typehinting)
where you can use arrays; they allow for iteration, so you can pass
them to foreach, and they allow for array access, so if they’re keyed
you can try $a = $collection['a'].

What Eloquent collections add

Each Eloquent collection is a normal collection, but extended for the particular needs
of a collection of Eloquent results.

Once again, there’s not enough room here to cover all of the additions, but they’re
centered around the unique aspects of interacting with a collection not just of generic
objects, but objects meant to represent database rows.

For example, every Eloquent collection has a method called modelKeys() that returns
an array of the primary keys of every instance in the collection. find($1d) looks for
an instance that has the primary key of $id.

One additional feature available here is the ability to define that any given model
should return its results wrapped in a specific class of collection. So, if you want to
add specific methods to any collection of objects of your Order model—possibly
related to summarizing the financial details of your orders—you could create a cus-
tom OrderCollection that extends Illuminate\Database\Eloquent\Collection,
and then register it in your model, as shown in Example 5-40.

Example 5-40. Custom Collection classes for Eloquent models

class OrderCollection extends Collection

{
public function sumBillableAmount()
{
return $this->reduce(function (Scarry, Sorder) {
return $carry + (Sorder->billable ? $Sorder->amount : 0);
1, 0);
}
}

136 | Chapter5: Databases and Eloquent

https://laravel.com/docs/master/collections

class Order extends Model

{
public function newCollection(array S$models = [])
{
return new OrderCollection($models);
}

Now, any time you get back a collection of Orders (e.g., from Order::all()), it'll
actually be an instance of the OrderCollection class:

Sorders = Order::all();
$billableAmount = S$orders->sumBillableAmount();

Eloquent Serialization

Serialization is what happens when you take something complex—an array, or an
object—and convert it to a string. In a web-based context, that string is often JSON,
but it could take other forms as well.

Serializing complex database records can be, well, complex, and this is one of the
places many ORMs fall short. Thankfully, you get two powerful methods for free with
Eloquent: toArray() and toJson(). Collections also have toArray() and toJson(),
so all of these are valid:

ScontactArray = Contact::first()->toArray();
ScontactJson = Contact::first()->toJson();
ScontactsArray = Contact::all()->toArray();
ScontactsJson = Contact::all()->toJson();

You can also cast an Eloquent instance or collection to a string ($string = (string)
$contact;), but both models and collections will just run toJson() and return
the result.

Returning models directly from route methods

Laravel’s router eventually converts everything routes return to a string, so there’s a
clever trick you can use. If you return the result of an Eloquent call in a controller, it
will be automatically cast to a string, and therefore returned as JSON. That means a
JSON-returning route can be as simple as either of the ones in Example 5-41.

Example 5-41. Returning JSON from routes directly

// routes/web.php

Route::get('api/contacts', function () {
return Contact::all();

s

Introduction to Eloquent | 137

Route::get('api/contacts/{id}', function ($id) {
return Contact::findOrFail($id);
s

Hiding attributes from JSON

It’s very common to use JSON returns in APIs, and it’s very common to want to hide
certain attributes in these contexts, so Eloquent makes it easy to hide any attributes
every time you cast to JSON.

You can either blacklist attributes, hiding the ones you list:

class Contact extends Model

{

public $hidden = ['password', 'remember_token'];
or whitelist attributes, showing only the ones you list:

class Contact extends Model

{

public $visible = ['name', 'email', 'status'];
This also works for relationships:

class User extends Model

{

public $hidden = ['contacts'];

public function contacts()

{

return $this->hasMany(Contact::class);

}

Loading the Contents of a Relationship

By default, the contents of a relationship are not loaded when
you get a database record, so it doesn’t matter whether you hide
them or not. But, as you'll learn shortly, it's possible to get a record
with its related items, and in this context, those items will not be
included in a serialized copy of that record if you choose to hide
that relationship.

In case you're curious now, you can get a User with all contacts—
assuming you’ve set up the relationship correctly—with the follow-
ing call:

Suser = User::with('contacts')->first();

There might be times when you want to make an attribute visible just for a single call.
That’s possible, with the Eloquent method makeVisible():

Sarray = S$user->makeVisible('remember_token')->toArray();

138 | Chapter5: Databases and Eloquent

Adding a Generated Column to Array and JSON Output

If you have created an accessor for a column that doesn't exist—for
example, our full_name column from Example 5-35—add it to
the $appends array on the model to add it to the array and JSON
output:

class Contact extends Model

{
protected $appends = ['full_name'];

public function getFullNameAttribute()
{

}

return "{S$this->first_name} {$this->last_name}";

Eloquent Relationships

In a relational database model, it’s expected that you will have tables that are related to
each other—hence the name. Eloquent provides simple and powerful tools to make
the process of relating your database tables easier than ever before.

Many of our examples in this chapter have been centered around a user who has
many contacts, a relatively common situation.

In an ORM like Eloquent, you would call this a one-to-many relationship: the one
user has many contacts.

If it was a CRM where a contact could be assigned to many users, then this would be
a many-to-many relationship: many users can be related to one contact, and each user
can be related to many contacts. A user has and belongs to many contacts.

If each contact can have many phone numbers, and a user wanted a database of every
phone number for their CRM, you would say the user has many phone numbers
through contacts—that is, a user has many contacts, and the contact has many phone
numbers, so the contact is sort of an intermediary.

And what if each contact has an address, but youre only interested in tracking one
address? You could have all the address fields on the Contact, but you might also cre-
ate an Address model—meaning the contact has one address.

Finally, what if you want to be able to star (favorite) contacts, but also events? This
would be a polymorphic relationship, where a user has many stars, but some may be
contacts and some may be events.

So, let’s dig into how to define and access these relationships.

Introduction to Eloquent | 139

One to one

Let’s start simple: a Contact has one PhoneNumber. This relationship is defined in
Example 5-42.

Example 5-42. Defining a one-to-one relationship

class Contact extends Model

{
public function phoneNumber()
{
return $this->hasOne(PhoneNumber::class);
}

As you can tell, the methods defining relationships are on the Eloquent model itself
($this->hasOne()) and take, at least in this instance, the fully qualified class name of
the class that you're relating them to.

How should this be defined in your database? Since we've defined that the Contact
has one PhoneNumber, Eloquent expects that the table supporting the PhoneNumber
class (likely phone_numbers) has a contact_id column on it. If you named it some-
thing different (for instance, owner_id), you'll need to change your definition:

return $this->hasOne(PhoneNumber::class, 'owner_id');
Here’s how we access the PhoneNumber of a Contact:

Scontact = Contact::first();
$contactPhone = $contact->phoneNumber;

Notice that we define the method in Example 5-42 with phoneNumber(), but
we access it with ->phoneNumber. That’s the magic. You could also access it with
->phone_number. This will return a full Eloquent instance of the related PhoneNumber
record.

But what if we want to access the Contact from the PhoneNumber? There’s a method
for that, too (see Example 5-43).

Example 5-43. Defining a one-to-one relationship’s inverse

class PhoneNumber extends Model

{
public function contact()
{
return $this->belongsTo(Contact::class);
}

Then we access it the same way:

Scontact = $phoneNumber->contact;

140 | Chapter5: Databases and Eloquent

Inserting Related ltems

Each relationship type has its own quirks for how to relate models,
but here’s the core of how it works: pass an instance to save(), or
an array of instances to saveMany(). You can also pass properties to

create() or createMany() and they’ll make new instances for you:

Scontact = Contact::first();

$phoneNumber = new PhoneNumber;
$phoneNumber ->number = 8008675309;

$contact->phoneNumbers()->save($phoneNumber);

// or

$Scontact->phoneNumbers()->saveMany([
PhoneNumber: : find(1),
PhoneNumber::find(2),

s

// or

$contact->phoneNumbers()->create([
'number' => '+13138675309',

s

// or

$contact->phoneNumbers()->createMany([

['number' => '+13138675309'],
['number' => '+15556060842'],
IDH

E The createMany() method is only available in Laravel 5.4 and

later.

One to many

The one-to-many relationship is by far the most common. Let’s take a look at how to

define that our User has many Contacts (Example 5-44).

Example 5-44. Defining a one-to-many relationship

class User extends Model

{
public function contacts()
{
return $this->hasMany(Contact::class);
}

Introduction to Eloquent

141

Once again, this expects that the Contact model’s backing table (likely contacts) has
a user_1id column on it. If it doesn't, override it by passing the correct column name
as the second parameter of hasMany().

We can get a User’s Contacts as follows:

Suser = User::first();

SusersContacts = $user->contacts;
Just like with one to one, we use the name of the relationship method and call it as if
it were a property instead of a method. However, this method returns a collection
instead of a model instance. And this is a normal Eloquent collection, so we can have
all sorts of fun with it:

$donors = Suser->contacts->filter(function ($contact) {
return $contact->status == 'donor';

b
S$lifetimeValue = $contact->orders->reduce(function (Scarry, Sorder) {

return $carry + Sorder->amount;

}, 0);

Just like with one to one, we can also define the inverse (Example 5-45).

Example 5-45. Defining a one-to-many relationships inverse

class Contact extends Model

{
public function user()
{
return $this->belongsTo(User::class);
}

And just like with one to one, we can access the User from the Contact:

SuserName = Scontact->user->name;

142 | Chapter5: Databases and Eloquent

Attaching and Detaching Related Items from the Attached Item

Most of the time we attach an item by running save() on the par-
ent and passing in the related item, as in
$user->contacts()->save($contact). But if you want to perform
these behaviors on the attached (“child”) item, you can use
associate() and dissociate() on the method that returns the
belongsTo relationship:

$Scontact = Contact::first();

Scontact->user()->associate(User::first());
Scontact->save();

// and later

Scontact->user()->dissociate();
$Scontact->save();

Using relationships as query builders. Until now, we've taken the method name (e.g.,
contacts()) and called it as if were a property (e.g., Suser->contacts). What hap-
pens if we call it as a method? Instead of processing the relationship, it will return a
pre-scoped query builder.

So if you have User 1, and you call its contacts() method, you will now have a
query builder prescoped to “all contacts that have a field user_id with the value of 17
You can then build out a functional query from there:

Sdonors = $user->contacts()->where('status', 'donor')->get();
Selecting only records that have a related item. You can choose to select only records
that meet particular criteria with regard to their related items using has():
SpostsWithComments = Post::has('comments')->get();
You can also adjust the criteria further:
$postsWithManyComments = Post::has('comments', '>=', 5)->get();
You can nest the criteria:
SusersWithPhoneBooks = User::has('contacts.phoneNumbers')->get();
And finally, you can write custom queries on the related items:

// Gets all contacts with a phone number containing the string "867-5309"

$jennyIGotYourNumber = Contact::whereHas('phoneNumbers', function ($query) {
Squery->where('number', 'like', '%867-5309%"');

s

Introduction to Eloquent | 143

Has many through

hasManyThrough() is really a convenience method for pulling in relationships of a
relationship. Think of the example I gave earlier, where a User has many Contacts
and each Contact has many PhoneNumbers. What if you want to get a user’s list of
contact phone numbers? That’s has-many-through relation.

This structure assumes that your contacts table has a user_1id to relate the contacts
to the users and the phone_numbers table has a contact_1id to relate it to the contacts.
Then, we define the relationship on the User as in Example 5-46.

Example 5-46. Defining a has-many-through relationship

class User extends Model

{
public function phoneNumbers()
{
return $this->hasManyThrough(PhoneNumber::class, Contact::class);
}

Youd access this relationship using $user->phone_numbers, and as always you can
customize the relationship key on the intermediate model (with the third parameter
of hasManyThrough()) and the relationship key on the distant model (with the fourth
parameter).

Has one through

hasOneThrough() is just like hasManyThrough(), but instead of accessing many
related items through intermediate items, youre only accessing a single related item
through a single intermediate item.

What if each user belonged to a company, and that company had a single phone num-
ber, and you wanted to be able to get a user’s phone number by pulling their compa-
ny’s phone number? That’s hasOneThrough().

Example 5-47. Defining a has-one-through relationship

class User extends Model

{
public function phoneNumber()
{
return $this->hasOneThrough(PhoneNumber::class, Company::class);
}

144 | Chapter5: Databases and Eloquent

Many to many

This is where things start to get complex. Let’s take our example of a CRM that allows
a User to have many Contacts, and each Contact to be related to multiple Users.

First, we define the relationship on the User as in Example 5-48.

Example 5-48. Defining a many-to-many relationship

class User extends Model

{
public function contacts()
{
return $this->belongsToMany(Contact::class);
}
}

And since this is many to many, the inverse looks exactly the same (Example 5-49).

Example 5-49. Defining a many-to-many relationship’s inverse

class Contact extends Model

{
public function users()
{
return $this->belongsToMany(User::class);
}
}

Since a single Contact can’t have a user_id column and a single User can't have a
contact_id column, many-to-many relationships rely on a pivot table that connects
the two. The conventional naming of this table is done by placing the two singular
table names together, ordered alphabetically, and separating them by an underscore.

So, since were linking users and contacts, our pivot table should be named
contacts_users (if youd like to customize the table name, pass it as the second
parameter to the belongsToMany() method). It needs two columns: contact_id and
user_id.

Just like with hasMany(), we get access to a collection of the related items, but this

time it’s from both sides (Example 5-50).

Example 5-50. Accessing the related items from both sides of a many-to-many
relationship

Suser = User::first();

Suser->contacts->each(function (Scontact) {

Introduction to Eloquent | 145

// do something
b

Scontact = Contact::first();

Scontact->users->each(function (Suser) {
// do something
s

Sdonors = $user->contacts()->where('status', 'donor')->get();

Getting data from the pivot table. One thing that’s unique about many to many is that
it’s our first relationship that has a pivot table. The less data you have in a pivot table,
the better, but there are some cases where it’s valuable to store information in your
pivot table—for example, you might want to store a created_at field to see when this
relationship was created.

In order to store these fields, you have to add them to the relationship definition, like
in Example 5-51. You can define specific fields using withPivot() or add created_at
and updated_at timestamps using withTimestamps().

Example 5-51. Adding fields to a pivot record

public function contacts()

{
return $this->belongsToMany(Contact::class)
->withTimestamps()
->withPivot('status', 'preferred_greeting');
}

When you get a model instance through a relationship, it will have a pivot property
on it, which will represent its place in the pivot table you just pulled it from. So, you
can do something like Example 5-52.

Example 5-52. Getting data from a related item’s pivot entry
Suser = User::first();

Suser->contacts->each(function (Scontact) {
echo sprintf(
'Contact associated with this user at: %s',
Scontact->pivot->created_at
);
b

If youd like, you can customize the pivot key to have a different name using the as()
method, as shown in Example 5-53.

146 | Chapter5: Databases and Eloquent

Example 5-53. Customizing the pivot attribute name

// User model
public function groups()

{
return $this->belongsToMany(Group::class)
->withTimestamps()
->as('membership');
}

// Using this relationship:
User::first()->groups->each(function (Sgroup) {
echo sprintf(
'User joined this group at: %s',
$group->membership->created_at
);
b

Unique Aspects of Attaching and Detaching

Many-to-Many Related Items

Since your pivot table can have its own properties, you need to be able to set those
properties when youre attaching a many-to-many related item. You can do that by

passing an array as the second parameter to save():

Suser = User::first();
Scontact = Contact::first();

Suser->contacts()->save($contact, ['status' => 'donor']);

Additionally, you can use attach() and detach() and, instead of passing in an
instance of a related item, you can just pass an ID. They work just the same as save()
but can also accept an array of IDs without you needing to rename the method to

something like attachMany():

Suser = User::first();
Suser->contacts()->attach(1);

Suser->contacts()->attach(2, ['status' => 'donor']);

Suser->contacts()->attach([1, 2, 3]);
Suser->contacts()->attach([

1 => ['status' => 'donor'],

2)

3)
IDH

Suser->contacts()->detach(1);
Suser->contacts()->detach([1, 2]);

Suser->contacts()->detach(); // Detaches all contacts

If your goal is not to attach or detach, but instead just to invert whatever the current
attachment state is, you want the toggle() method. When you use toggle(), if the

Introduction to Eloquent

147

given ID is currently attached, it will be detached; and if it is currently detached, it
will be attached:

Suser->contacts()->toggle([1, 2, 3]);
You can also use updateExistingPivot() to make changes just to the pivot record:

Suser->contacts()->updateExistingPivot($contactId, [
'status' => 'inactive',

D;

And if youd like to replace the current relationships, effectively detaching all previous
relationships and attaching new ones, you can pass an array to sync():

Suser->contacts()->sync([1, 2, 3]1);
Suser->contacts()->sync([

1 => ['status' => 'donor'],

21

3;
s

Polymorphic
Remember, our polymorphic relationship is where we have multiple Eloquent classes
corresponding to the same relationship. We're going to use Stars (like favorites) right

now. A user can star both Contacts and Events, and that’s where the name polymor-
phic comes from: there’s a single interface to objects of multiple types.

So, we'll need three tables, and three models: Star, Contact, and Event (four of each,
technically, because we'll need users and User, but we'll get there in a second). The
contacts and events tables will just be as they normally are, and the stars table will
contain id, starrable_1id, and starrable_type fields. For each Star, well be defin-
ing which “type” (e.g., Contact or Event) and which ID of that type (e.g., 1) it is.

Let’s create our models, as seen in Example 5-54.

Example 5-54. Creating the models for a polymorphic starring system

class Star extends Model

{
public function starrable()
{
return $this->morphTo();
}
}

class Contact extends Model

{

public function stars()

{

148 | Chapter5: Databases and Eloquent

return $this->morphMany(Star::class, 'starrable');

}
}
class Event extends Model
{
public function stars()
{
return $this->morphMany(Star::class, 'starrable');
}
}

So, how do we create a Star?

$contact = Contact::first();
Scontact->stars()->create();

It’s that easy. The Contact is now starred.

In order to find all of the Stars on a given Contact, we call the stars() method like
in Example 5-55.

Example 5-55. Retrieving the instances of a polymorphic relationship
Scontact = Contact::first();

$Scontact->stars->each(function (Sstar) {
// Do stuff
s

If we have an instance of Star, we can get its target by calling the method we used to
define its morphTo relationship, which in this context is starrable(). Take a look at
Example 5-56.

Example 5-56. Retrieving the target of a polymorphic instance
$stars = Star::all();

$stars->each(function (Sstar) {
var_dump(S$Sstar->starrable); // An instance of Contact or Event

s

Finally, you might be wondering, “What if I want to know who starred this contact?”
That’s a great question. It’s as simple as adding user_1id to your stars table, and then
setting up that a User has many Stars and a Star belongs to one User—a one-to-
many relationship (Example 5-57). The stars table becomes almost a pivot table
between your User and your Contacts and Events.

Introduction to Eloquent | 149

Example 5-57. Extending a polymorphic system to differentiate by user

class Star extends Model

{
public function starrable()
{
return $this->morphsTo;
}
public function user()
{
return $this->belongsTo(User::class);
}
}
class User extends Model
{
public function stars()
{
return $this->hasMany(Star::class);
}
}

That’s it! You can now run $star->user or Suser->stars to find a list of a User’s
Stars or to find the starring User from a Star. Also, when you create a new Star,
you’ll now want to pass the User:

Suser = User::first();
Sevent = Event::first();
Sevent->stars()->create(['user_id' => S$user->id]);

Many to many polymorphic

The most complex and least common of the relationship types, many-to-many poly-
morphic relationships are like polymorphic relationships, except instead of being one
to many, they’re many to many.

The most common example for this relationship type is the tag, so I'll keep it safe and
use that as our example. Let’s imagine you want to be able to tag Contacts and
Events. The uniqueness of many-to-many polymorphism is that it's many to many:
each tag may be applied to multiple items, and each tagged item might have multiple
tags. And to add to that, it’s polymorphic: tags can be related to items of several dif-
ferent types. For the database, we'll start with the normal structure of the polymor-
phic relationship but also add a pivot table.

This means we'll need a contacts table, an events table, and a tags table, all shaped
like normal with an ID and whatever properties you want, and a new taggables
table, which will have tag_1id, taggable_1id, and taggable_type fields. Each entry
into the taggables table will relate a tag with one of the taggable content types.

150 | Chapter5: Databases and Eloquent

Now let’s define this relationship on our models, as seen in Example 5-58.

Example 5-58. Defining a polymorphic many-to-many relationship

class Contact extends Model

{
public function tags()
{
return $this->morphToMany(Tag::class, 'taggable');
}
}
class Event extends Model
{
public function tags()
{
return $this->morphToMany(Tag::class, 'taggable');
}
}
class Tag extends Model
{
public function contacts()
{
return $this->morphedByMany(Contact::class, 'taggable');
}
public function events()
{
return $this->morphedByMany(Event::class, 'taggable');
}
}

Here’s how to create your first tag:

$tag = Tag::firstOrCreate(['name' => 'likes-cheese']);
Scontact = Contact::first();
$contact->tags()->attach($tag->id);

We get the results of this relationship like normal, as seen in Example 5-59.

Example 5-59. Accessing the related items from both sides of a many-to-many
polymorphic relationship

Scontact = Contact::first();

Scontact->tags->each(function ($tag) {
// Do stuff

s

Stag = Tag::first();

Introduction to Eloquent

151

$tag->contacts->each(function ($contact) {
// Do stuff
s

Child Records Updating Parent Record Timestamps

Remember, any Eloquent models by default will have created_at and updated_at
timestamps. Eloquent will set the updated_at timestamp automatically any time you
make any changes to a record.

When a related item has a belongsTo or belongsToMany relationship with another
item, it might be valuable to mark the other item as updated any time the related item
is updated. For example, if a PhoneNumber is updated, maybe the Contact it’s connec-
ted to should be marked as having been updated as well.

We can accomplish this by adding the method name for that relationship to a
$touches array property on the child class, as in Example 5-60.

Example 5-60. Updating a parent record any time the child record is updated

class PhoneNumber extends Model

{
protected $touches = ['contact'];
public function contact()
{
return $this->belongsTo(Contact::class);
}
}

Eager loading

By default, Eloquent loads relationships using “lazy loading” This means when you
first load a model instance, its related models will not be loaded along with it. Rather,
they’ll only be loaded once you access them on the model; they’re “lazy” and don’t do
any work until called upon.

This can become a problem if you're iterating over a list of model instances and each
has a related item (or items) that youre working on. The problem with lazy loading is
that it can introduce significant database load (often the N+1 problem, if youre famil-
iar with the term; if not, just ignore this parenthetical remark). For instance, every
time the loop in Example 5-61 runs, it executes a new database query to look up the
phone numbers for that Contact.

152 | Chapter5: Databases and Eloquent

Example 5-61. Retrieving one related item for each item in a list (N+1)
Scontacts = Contact::all();

foreach (Scontacts as Scontact) {
foreach (Scontact->phone_numbers as $phone_number) {
echo $phone_number ->number;
}
}

If you are loading a model instance, and you know you’ll be working with its relation-
ships, you can instead choose to “eager-load” one or many of its sets of related items:

$contacts = Contact::with('phoneNumbers')->get();

Using the with() method with a retrieval gets all of the items related to the pulled
item(s); as you can see in this example, you pass it the name of the method the rela-
tionship is defined by.

When we use eager loading, instead of pulling the related items one at a time when
theyre requested (e.g., selecting one contact’s phone numbers each time a foreach
loop runs), we have a single query to pull the initial items (selecting all contacts) and
a second query to pull all their related items (selecting all phone numbers owned by
the contacts we just pulled).

You can eager-load multiple relationships by passing multiple parameters to the
with() call:

Scontacts = Contact::with('phoneNumbers', 'addresses')->get();
And you can nest eager loading to eager-load the relationships of relationships:

Sauthors = Author::with('posts.comments')->get();

Constraining eager loads. If you want to eager-load a relationship, but not all of
the items, you can pass a closure to with() to define exactly which related items to
eager-load:

Scontacts = Contact::with(['addresses' => function (Squery) {
Squery->where('mailable', true);

3 ->get();

Lazy eager loading. 1 know it sounds crazy, because we just defined eager loading as
sort of the opposite of lazy loading, but sometimes you don’t know you want to per-
form an eager-load query until after the initial instances have been pulled. In this
context, youre still able to make a single query to look up all of the related items,
avoiding N+1 cost. We call this “lazy eager loading™:

Scontacts = Contact::all();

Introduction to Eloquent | 153

if ($showPhoneNumbers) {
Scontacts->load(' phoneNumbers"');
}
To load a relationship only when it has not already been loaded, use the
loadMissing() method (available only since Laravel 5.5):

$contacts = Contact::all();

if ($showPhoneNumbers) {
Scontacts->loadMissing('phoneNumbers');

}

Eager loading only the count

If you want to eager-load relationships but only so you can have access to the count of
items in each relationship, you can try withCount():

Sauthors = Author::withCount('posts')->get();

// Adds a "posts_count" integer to each Author with a count of that
// author's related posts

Eloquent Events

Eloquent models fire events out into the void of your application every time certain
actions happen, regardless of whether you're listening. If youre familiar with pub/
sub, it’s this same model (you'll learn more about Laravels entire event system in
Chapter 16).

Here’s a quick rundown of binding a listener to when a new Contact is created. We're
going to bind it in the boot() method of AppServiceProvider, and let’s imagine
we're notifying a third-party service every time we create a new Contact.

Example 5-62. Binding a listener to an Eloquent event

class AppServiceProvider extends ServiceProvider

{

public function boot()

{

$thirdPartyService = new SomeThirdPartyService;

Contact::creating(function ($contact) use ($thirdPartyService) {
try {
SthirdPartyService->addContact($contact);
} catch (Exception $e) {
Log::error('Failed adding contact to ThirdPartyService; canceled.');

return false; // Cancels Eloquent create()

154 | Chapter5: Databases and Eloquent

s
}

We can see a few things in Example 5-62. First, we use Modelname: :eventName() as
the method, and pass it a closure. The closure gets access to the model instance that is
being operated on. Second, we're going to need to define this listener in a service pro-
vider somewhere. And third, if we return false, the operation will cancel and the
save() or update() will be canceled.

Here are the events that every Eloquent model fires:

e creating
e created

e updating
e updated

e saving

e saved

e deleting
o deleted

e restoring
e restored

e retrieved

Most of these should be pretty clear, except possibly restoring and restored, which
fire when you're restoring a soft-deleted row. Also, saving is fired for both creating
and updating and saved is fired for both created and updated.

retrieved (available in Laravel 5.5 and later) is fired when an existing model is
retrieved from the database.

Testing

Laravel’s entire application testing framework makes it easy to test your database—
not by writing unit tests against Eloquent, but by just being willing to test your entire
application.

Take this scenario. You want to test to ensure that a particular page shows one contact
but not another. Some of that logic has to do with the interplay between the URL and
the controller and the database, so the best way to test it is an application test. You
might be thinking about mocking Eloquent calls and trying to avoid the system hit-
ting the database. Don’t do it. Try Example 5-63 instead.

Testing | 155

Example 5-63. Testing database interactions with simple application tests

public function test_active_page_shows_active_and_not_inactive_contacts()

{
SactiveContact = factory(Contact::class)->create();
$inactiveContact = factory(Contact::class)->states('inactive')->create();
Sthis->get('active-contacts')
->assertSee(SactiveContact->name)
->assertDontSee($inactiveContact->name);
}

As you can see, model factories and Laravel’s application testing features are great for
testing database calls.

Alternatively, you can look for that record directly in the database, as in
Example 5-64.

Example 5-64. Using assertDatabaseHas() to check for certain records in the database

public function test_contact_creation_works()

{
$this->post('contacts', [
'email' => 'jim@bo.com'
s
$this->assertDatabaseHas('contacts', [
'email' => 'jim@bo.com'
s
}

Eloquent and Laravel’s database framework are tested extensively. You don’t need to
test them. You don't need to mock them. If you really want to avoid hitting the data-
base, you can use a repository and then return unsaved instances of your Eloquent
models. But the most important message is, test the way your application uses your
database logic.

If you have custom accessors, mutators, scopes, or whatever else, you can also test
them directly, as in Example 5-65.

Example 5-65. Testing accessors, mutators, and scopes

public function test_full_name_accessor_works()
{
$Scontact = factory(Contact::class)->make([
'first_name' => 'Alphonse',
'last_name' => 'Cumberbund'

D;

156 | Chapter5: Databases and Eloquent

$this->assertEquals('Alphonse Cumberbund', Scontact->fullName);

}

public function test_vip_scope_filters_out_non_vips()

{
Svip = factory(Contact::class)->states('vip')->create();
$nonVip = factory(Contact::class)->create();
Svips = Contact::vips()->get();
S$this->assertTrue($vips->contains('id', $vip->id));
Sthis->assertFalse(Svips->contains('id', $nonVip->id));

}

Just avoid writing tests that leave you creating complex “Demeter chains” to assert
that a particular fluent stack was called on some database mock. If your testing starts
to get overwhelming and complex around the database layer, it’s because you're allow-
ing preconceived notions to force you into unnecessarily complex systems. Keep
it simple.

Different Names for Testing Methods Prior to Laravel 5.4

In projects running versions of Laravel prior to 5.4,
assertDatabaseHas() should be replaced by seeInDatabase()
get() should be replaced by visit(), assertSee() should be
replaced by see(), and assertDontSee() should be replaced by
dontSee().

TL;DR

Laravel comes with a suite of powerful database tools, including migrations, seeding,
an elegant query builder, and Eloquent, a powerful ActiveRecord ORM. Laravel’s
database tools don't require you to use Eloquent at all—you can access and manipu-
late the database with a thin layer of convenience without having to write SQL
directly. But adding an ORM, whether it’s Eloquent or Doctrine or whatever else, is
easy and can work neatly with Laravel’s core database tools.

Eloquent follows the Active Record pattern, which makes it simple to define a class of
database-backed objects, including which table theyre stored in and the shape of
their columns, accessors, and mutators. Eloquent can handle every sort of normal
SQL action and also complex relationships, up to and including polymorphic many-
to-many relationships.

Laravel also has a robust system for testing databases, including model factories.

DR | 157

CHAPTER 6
Frontend Components

Laravel is primarily a PHP framework, but it also has a series of components focused
on generating frontend code. Some of these, like pagination and message bags, are
PHP helpers that target the frontend, but Laravel also provides a Webpack-based
build system called Mix and some conventions around non-PHP assets.

Laravel’s Build Tools Before and After Laravel 5.4

Prior to Laravel 5.4, Laravels frontend build tool was named
Elixer, and it was based on Gulp. In 5.4 and later, the new build
tool is named Mix, and it’s based on Webpack.

Since Mix is at the core of the non-PHP frontend components, let’s start there.

Laravel Mix

Mix is a build tool that provides a simple user interface and a series of conventions on
top of Webpack. Mix’s core value proposition is simplifying the most common build
and compilation Webpack tasks by means of a cleaner API and a series of naming and
application structure conventions.

A Quick Introduction to Webpack

Webpack is a JavaScript tool designed for compiling static assets; the Webpack team
describes its purpose as bundling “modules with dependencies” together and produc-
ing “static assets.”

Webpack is similar to Gulp or Grunt in that, like Webpack, those tools are often used
for processing and bundling dependencies for websites. This will commonly include

159

https://webpack.js.org/

running a CSS preprocessor like Sass or Less or PostCSS, copying files, and concate-
nating and minifying JavaScript.

Unlike the others, Webpack is specifically focused on bundling together modules with
dependencies and producing static assets as a result. Gulp and Grunt are task run-
ners, which, like Make and Rake before them, can be used to automate any activities
that are programmable and repeatable. They all can be used to bundle assets, but
that’s not their core focus, and as a result they can be limited in some of the more
complex needs for asset bundling—for example, identifying which of the generated
assets won't be used and discarding them from the final output.

At its core, Mix is just a tool in your Webpack toolbox. The “Mix file” you’ll use to set
your configurations is simply a Webpack configuration file which lives at the root of
your project, named webpack.mix.js. However, the configuration you have to set there
is a lot simpler than most Webpack configuration is out of the box, and you’ll have to
do alot less work to get most common asset compilation tasks working.

Lets look at a common example: running Sass to preprocess your CSS styles. In a
normal Webpack environment, that might look a little bit like Example 6-1.

Example 6-1. Compiling a Sass file in Webpack, before Mix

var path = require('path');
var MiniCssExtractPlugin = require("mini-css-extract-plugin");

module.exports = {

entry: './src/sass/app.scss',
module: {
rules: [
{

test: /\.s[ac]ss$/,

use: [
MiniCssExtractPlugin.loader,
"css-loader",
"sass-loader"

1
}
1
1,
plugins: [
new MiniCssExtractPlugin({
path: path.resolve(__dirname, './dist'),
filename: 'app.css'
b
1

160 | Chapter 6: Frontend Components

Now, I've seen worse. There aren’t an unimaginable number of configuration proper-
ties, and it’s relatively clear what’s going on. But this is the sort of code that you copy
from project to project, not code you feel comfortable writing yourself or even modi-
fying to any significant degree. Working like this can get confusing and repetitive.

Let’s try that same task in Mix (Example 6-2).

Example 6-2. Compiling a Sass file in Mix
let mix = require('laravel-mix');
mix.sass('resources/sass/app.scss', 'public/css');

That’s it. And not only is it infinitely simpler, it also covers file watching, browser
syncing, notifications, prescribed folder structures, autoprefixing, URL processing,
and much more.

Mix Folder Structure

Much of Mix’s simplicity comes from the assumed directory structure. Why decide
for every new application where the source and compiled assets will live? Just stick
with Mix’s conventions, and you won’t have to think about it ever again.

Every new Laravel app comes with a resources folder, which is where Mix will expect
your frontend assets to live. Your Sass will live in resources/sass, or your Less in
resources/less, or your source CSS in resources/css, and your JavaScript will live in
resources/js. These will export to public/css and public/js.

The Assets Subdirectory Prior to Laravel 5.7

In versions of Laravel prior to 5.7, the sass, less, and js directories
were nested under the resources/assets directory instead of directly
underneath the resources directory.

Running Mix
Since Mix runs on Webpack, you’ll need to set up a few tools before using it:
1. First, you'll need Node.js installed. Visit the Node website to learn how to get it
running.

Once Node (and NPM with it) is installed once, you will not have to do this again
for each project. Now you're ready to install this project’s dependencies.

Laravel Mix | 161

http://nodejs.org/

2. Open the project root in your terminal, and run npm install to install
the required packages (Laravel ships with a Mix-ready package.json file to direct
NPM).

You're now set up! You can run npm run dev to run Webpack/Mix once, npm run
watch to listen for relevant file changes and run in response, or npm run prod to run
Mix once with production settings (such as minifying the output). You can also run
npm run watch-poll if npm run watch doesn't work in your environment, or npm
run hot for Hot Module Replacement (HMR; discussed in the next section).

What Does Mix Provide?

I've already mentioned that Mix can preprocess your CSS using Sass, Less, and/or
PostCSS. It can also concatenate any sort of files, minify them, rename them, and
copy them, and it can copy entire directories or individual files.

Additionally, Mix can process all flavors of modern JavaScript and provide autopre-
fixing, concatenation, and minification specifically as a part of the JavaScript build
stack. It makes it easy to set up Browsersync, HMR, and versioning, and there are
plug-ins available for many other common build scenarios.

The Mix documentation covers all of these options and more, but we'll discuss a few
specific use cases in the following sections.

Source maps

If youre not familiar with source maps, they work with any sort of preprocessor
to teach your browser’s web inspector which files generated the compiled source
you’re inspecting.

By default, Mix will not generate source maps for your files. But you can enable them
by chaining the sourceMaps() method after your Mix calls, as you can see in
Example 6-3.

Example 6-3. Enabling source maps in Mix

let mix = require('laravel-mix');

mix.js('resources/js/app.js', 'public/js')
.sourceMaps();

Once you configure Mix this way, you'll see the source maps appear as a .{file-
namej.map file next to each generated file.

Without source maps, if you use your browser’s development tools to inspect a partic-
ular CSS rule or JavaScript action, you'll just see a big mess of compiled code. With

162 | Chapter 6: Frontend Components

http://bit.ly/2OqiyIL

source maps, your browser can pinpoint the exact line of the source file, whether it be
Sass or JavaScript or whatever else, that generated the rule youre inspecting.

Pre- and post-processors

We've already covered Sass and Less, but Mix can also handle Stylus (Example 6-4),
and you can chain PostCSS onto any other style calls (Example 6-5).

Example 6-4. Preprocessing CSS with Stylus

mix.stylus('resources/stylus/app.styl', 'public/css');

Example 6-5. Post-processing CSS with PostCSS

mix.sass('resources/sass/app.scss', 'public/css')
.options({
postCss: [
require('postcss-css-variables')()
1
b

Preprocessorless (SS

If you don’t want to deal with a preprocessor, there’s a command for that—it will grab
all of your CSS files, concatenate them, and output them to the public/css directory,
just as if they had been run through a preprocessor. There are a few options, which
you can see in Example 6-6.

Example 6-6. Combining stylesheets with Mix

// Combines all files from resources/css
mix.styles('resources/css', 'public/css/all.css');

// Combines files from resources/css

mix.styles([
'resources/css/normalize.css',
'resources/css/app.css'’

1, 'public/css/all.css');

Concatenating JavaScript

The options available for working with normal JavaScript files are very similar to
those available for normal CSS files. Take a look at Example 6-7.

Example 6-7. Combining JavaScript files with Mix

let mix = require('laravel-mix');

Laravel Mix | 163

// Combines all files from resources/js
mix.scripts('resources/js', 'public/js/all.js');

// Combines files from resources/js

mix.scripts([
'resources/js/normalize.js',
'resources/js/app.js'

1, 'public/js/all.js');

Processing JavaScript

If you want to process your JavaScript—for example, to compile your ES6 code into
plain JavaScript—Mix makes it easy to use Webpack for this purpose (see
Example 6-8).

Example 6-8. Processing JavaScript files in Mix with Webpack
let mix = require('laravel-mix');
mix.js('resources/js/app.js', 'public/js');

These scripts look for the provided filename in resources/js and output to public/js/
app.js.

You can use more complicated aspects of Webpack’s feature set by creating a
webpack.config.js file in your project root.

Copying files or directories

To move either a single file or an entire directory, use the copy() method or the copy
Directory() method:

mix.copy('node_modules/pkgname/dist/style.css', 'public/css/pkgname.css');
mix.copyDirectory('source/images', 'public/images');

Versioning

Most of the tips from Steve Souders’s Even Faster Web Sites (O'Reilly) have made their
way into our everyday development practices. We move scripts to the footer, reduce
the number of HTTP requests, and more, often without even realizing where those
ideas originated.

One of Steve’s tips is still very rarely implemented, though, and that is setting a very
long cache life on assets (scripts, styles, and images). Doing this means there will be
fewer requests to your server to get the latest version of your assets. But it also means
that users are extremely likely to have a cached version of your assets, which will
make things get outdated, and therefore break, quickly.

164 | Chapter 6: Frontend Components

http://shop.oreilly.com/product/9780596522315.do

The solution to this is versioning. Append a unique hash to each asset’s filename every
time you run your build script, and then that unique file will be cached indefinitely—
or at least until the next build.

Whats the problem? Well, first you need to get the unique hashes generated and
appended to your filenames. But you also will need to update your views on every
build to reference the new filenames.

As you can probably guess, Mix handles that for you, and it’s incredibly simple. There
are two components: the versioning task in Mix, and the mix() PHP helper. First, you
can version your assets by running mix.version() like in Example 6-9.

Example 6-9. mix.version
let mix = require('laravel-mix');

mix.sass('resources/sass/app.scss', 'public/css')
.version();

The version of the file that’s generated is no different—it’s just named app.css and lives
in public/css.

Versioning Assets Using Query Parameters

The way versioning is handled in Laravel is a little different from
traditional versioning, in that the versioning is appended with a
query parameter instead of by modifying filenames. It still func-
tions the same way, because browsers read it as a “new” file, but it
handles a few edge cases with caches and load balancers.

Next, use the PHP mix() helper in your views to refer to that file like in
Example 6-10.

Example 6-10. Using the mix() helper in views

<link rel="stylesheet" href="{{ mix("css/app.css") }}">

// Will output something like:

<link rel="stylesheet" href="/css/app.css?id=5ee7141a759a5fb7377a">

Laravel Mix | 165

How Does Mix Versioning Work Behind the Scenes?

Mix generates a file named public/mix-manifest.json. This stores the information the

mix() helper needs to find the generated file. Here’s what a sample mix-manifest.json
looks like:

{
"[css/app.css": "/css/app.css?1d=4151cf6261b95f07227e"

}

Vue and React

Mix can handle building both Vue (with single-file components) and React compo-
nents. Mix’s default js() call handles Vue, and you can replace it with a react() call
if you want to build React components:

mix.react('resources/js/app.js', 'public/js');

If you take a look at the default Laravel sample app.js and the components it imports
(Example 6-11), you'll see that you don’t have to do anything special to work with Vue
components. A simple mix. js() call makes this possible in your app.js.

Example 6-11. App.js configured to work with Vue
window.Vue = require('vue');
Vue.component('example-component', require('./components/ExampleComponent.vue'));

const app = new Vue({
el: '#app'
bs

And if you switch to react(), this is all you need to run in your file for your first
component:
require('./components/Example');

Both presets also bring in Axios, Lodash, and Popper.js, so you don’t have to spend
any time getting your Vue or React ecosystems set up.

Hot Module Replacement

When youre writing single components with Vue or React, youre likely used to
either refreshing the page every time your build tool recompiles your components or,
if you're using something like Mix, relying on Browsersync to reload it for you.

166 | Chapter 6: Frontend Components

That’s great, but if youre working with single-page apps (SPAs), that means youre
booted back to the beginning of the app; that refresh wipes any state you had built up
as you navigated through the app.

Hot Module Replacement (HMR, sometimes called hot reloading) solves this prob-
lem. It’s not always easy to set up, but Mix comes with it enabled out of the box. HMR
works essentially as if youd taught Browsersync to not reload the entire file that was
recompiled, but instead to just reload the bits of code you changed. That means you
can get the updated code injected into your browser, but still retain the state you had
built up as you got your SPA into just the right spot for testing.

To use HMR, you’ll want to run npm run hot instead of npm run watch. In order for
it to work correctly, all of your <script> references have to be pulling the right ver-
sions of your JavaScript files. Essentially, Mix is booting up a small Node server at
localhost:8080, so if your <script> tag points to a different version of the script,
HMR won’t work.

The easiest way to achieve this is to just use the mix() helper to reference your scripts.
This helper will handle prepending either localhost:8080 if in HMR mode or your
domain if you're in a normal development mode. Here’s what it looks like inline:

<body>
<div 1d="app"></div>

<script src="{{ mix('js/app.js') }}"></script>
</body>
If you develop your applications on an HITPS connection—for example, if you run
valet secure—all your assets must also be served via an HTTPS connection. This is
a little bit trickier, so it’s best to consult the HMR docs.

Vendor extraction

The most common frontend bundling pattern, which Mix also encourages, ends up
generating a single CSS file and a single JavaScript file that encompasses both the app-
specific code for your project and the code for all its dependencies.

However, this means that vendor file updates require the entire file to be rebuilt and
recached, which might introduce an undesirable load time.

Mix makes it easy to extract all of the JavaScript from your apps dependencies into a
separate vendor.js file. Simply supply a list of the vendor’s library names to the
extract() method, chained after your js() call. Take a look at Example 6-12 to see
how it looks.

Laravel Mix | 167

http://bit.ly/2U2xvGb

Example 6-12. Extracting a vendor library into a separate file

mix.js('resources/js/app.js', 'public/js')
.extract(['vue'])

This outputs your existing app.js and then two new files: manifest.js, which gives
instructions to your browser about how to load the dependencies and app code, and
vendor.js, which contains the vendor-specific code.

It's important to load these files in the correct order in your frontend code—first
manifest.js, then vendor.js, and finally app.js:

Extracting All Dependencies Using extract() in Mix 4.0+

If your project is using Laravel Mix 4.0 or greater, you can call the
extract() method with no arguments. This will extract the entire
dependency list for your application.

<script src="{{ mix('js/manifest.js') }}"></script>
<script src="{{ mix('js/vendor.js') }}"></script>
<script src="{{ mix('js/app.js') }}"s</script>

Environment variables in Mix

As Example 6-13 shows, if you prefix an environment variable (in your .env file) with
MIX_, it will become available in your Mix-compiled files with the naming convention
process.env.ENV_VAR_NAME.

Example 6-13. Using .env variables in Mix-compiled JavaScript

In your .env file
MIX_BUGSNAG_KEY=1712389g08bq1234
MIX_APP_NAME="Your Best App Now"
// In Mix-compiled files
process.env.MIX_BUGSNAG_KEY

// For example, this code:
console.log("Welcome to " + process.env.MIX_APP_NAME);

// Will compile down to this:
console.log("Welcome to " + "Your Best App Now");

You can also access those variables in your Webpack configuration files using Node’s
dotenv package, as shown in Example 6-14.

168 | Chapter 6: Frontend Components

Example 6-14. Using .env variables in Webpack configuration files

// webpack.mix.js
let mix = require('laravel-mix');
require('dotenv').config();

let isProduction = process.env.MIX_ENV === "production";

Frontend Presets and Auth Scaffolding

As a full-stack framework, Laravel has more connections to and opinions about
frontend tooling than your average backend framework. Out of the box it provides an
entire build system, which we've already covered, but it also builds and has compo-
nents for Vue and includes Bootstrap, Axios, and Lodash.

Frontend Presets

You can get a sense of the frontend tools that come along with each new Laravel
install by taking a look at package.json, webpack.mix.js (or gulpfile.js in older versions
of Laravel), and the views, JavaScript files, and CSS files in the resources directory.
This default set of components and files is called the Vue preset, and every new Lara-
vel project comes stocked with it.

But what if youd rather work in React? What if you want Bootstrap but not all that
JavaScript? And what if you want to just rip it all out? Enter frontend presets, intro-
duced in Laravel 5.5: these are pre-baked scripts that modify or remove part or all of
the Vue- and Bootstrap-loaded default presets. You can use the presets that are pro-
vided out of the box, or you can pull in third-party presets from GitHub.

To use a built-in preset, simply run php artisan present preset_name:

php artisan preset react
php artisan preset bootstrap
php artisan preset none

There’s also a vue preset, which is what each new application has applied on a fresh
install.

Third-party frontend presets

If you're interested in creating your own preset, or using one created by another com-
munity member, that’s also possible with the frontend preset system. There’s a GitHub
organization designed to make it easy to find great third-party frontend presets, and
they’re easy to install. For most, the steps are as follows:

1. Install the package (e.g., composer require laravel-frontend-presets/tail
windcss).

Frontend Presets and Auth Scaffolding | 169

http://bit.ly/2OraXt6
http://bit.ly/2OraXt6

2. Install the preset (e.g., php artisan preset tailwindcss).

3. Just like with the built-in presets, run npm install and npm run dev.

If you want to create a preset of your own, the same organization has a skeleton
repository you can fork to make it easier.

Auth Scaffolding

Although they’re technically not a part of the frontend presets, Laravel has a series of
routes and views called the auth scaffold that are, essentially, frontend presets. If you
run php artisan make:auth, youll get a login page, a signup page, a new master
template for the “app” view of your app, routes to serve these pages, and more. Take a
look at Chapter 9 to learn more.

Pagination

For something that is so common across web applications, pagination still can be
wildly complicated to implement. Thankfully, Laravel has a built-in concept of pagi-
nation, and it’s also hooked into Eloquent results and the router by default.

Paginating Database Results

The most common place you’ll see pagination is when you are displaying the results
of a database query and there are too many results for a single page. Eloquent and the
query builder both read the page query parameter from the current page request and
use it to provide a paginate() method on any result sets; the single parameter you
should pass paginate() is how many results you want per page. Take a look at
Example 6-15 to see how this works.

Example 6-15. Paginating a query builder response

// PostsController
public function index()

{

return view('posts.index', ['posts' => DB::table('posts')->paginate(20)]);

}

Example 6-15 specifies that this route should return 20 posts per page, and will define
which “page” of results the current user is on based on the URLs page query parame-
ter, if it has one. Eloquent models all have the same paginate() method.

When you display the results in your view, your collection will now have a links()
method on it (or render() for Laravel 5.1) that will output the pagination controls,

170 | Chapter 6: Frontend Components

http://bit.ly/2U4ZLrH
http://bit.ly/2U4ZLrH

with class names from the Bootstrap component library assigned to them by default
(see Example 6-16).

Example 6-16. Rendering pagination links in a template

// posts/index.blade.php
<table>
@foreach ($Sposts as $post)
<tr><td>{{ Spost->title }}</td></tr>
@endforeach
</table>

{{ S$posts->links() }}

// By default, S$posts->links() will output something like this:
<ul class="pagination">
<11 class="page-item disabled">«</1i>
<11 class="page-item active">1l</1li>
<11 class="page-item">
2
</1i>
<11 class="page-item">
3
</1i>
<11 class="page-item">

»

</1i>

Customizing the Number of Pagination Links in Laravel 5.7 and Later

If youd like to control how many links show on either side of the
current page, projects running Laravel 5.7 and later can customize
this number easily with the onEachSide() method:

DB::table('posts')->paginate(10)->onEachSide(3);

// Outputs:
// 567 [8] 910 11

Manually Creating Paginators

If youre not working with Eloquent or the query builder, or if you're working with a
complex query (e.g., one using groupBy), you might find yourself needing to create a
paginator manually. Thankfully, you can do that with the Il1luminate\Pagination
\Paginator or Illuminate\Pagination\LengthAwarePaginator classes.

Pagination | 171

The difference between the two classes is that Paginator will only provide previous
and next buttons, but no links to each page; LengthAwarePaginator needs to know
the length of the full result so that it can generate links for each individual page. You
may find yourself wanting to use Paginator on large result sets, so your paginator
doesn’t have to be aware of a massive count of results that might be costly to run.

Both Paginator and LengthAwarePaginator require you to manually extract the sub-
set of content that you want to pass to the view. Take a look at Example 6-17 for an
example.

Example 6-17. Manually creating a paginator

use Illuminate\Http\Request;
use Illuminate\Pagination\Paginator;

Route::get('people', function (Request $request) {
Speople = [...]; // huge list of people

SperPage = 15;
SoffsetPages = $request->input('page', 1) - 1;

// The Paginator will not slice your array for you
Speople = array_slice(

$people,

SoffsetPages * $perPage,

$SperPage
);

return new Paginator(
Speople,
SperPage
);
s

E The Paginator syntax has changed over the last few versions of Laravel, so if you're
using 5.1, take a look at the docs to find the correct syntax.

Message Bags

Another common but painful feature in web applications is passing messages
between various components of the app, when the end goal is to share them with
the user. Your controller, for example, might want to send a validation message: “The
email field must be a valid email address” However, that particular message doesn’t
just need to make it to the view layer; it actually needs to survive a redirect and
then end up in the view layer of a different page. How do you structure this messag-
ing logic?

172 | Chapter 6: Frontend Components

http://bit.ly/2U6M37I

Illuminate\Support\MessageBag is a class tasked with storing, categorizing, and
returning messages that are intended for the end user. It groups all messages by key,
where the keys are likely to be something like errors and messages, and it provides
convenience methods for getting all its stored messages or only those for a particular
key and outputting these messages in various formats.

You can spin up a new instance of MessageBag manually like in Example 6-18. To be
honest though, you likely won't ever do this manually—this is just a thought exercise
to show how it works.

Example 6-18. Manually creating and using a message bag

S$messages = [
'errors' => [
'Something went wrong with edit 1!',

1,
'messages' => [
'Edit 2 was successful.',

1,
1;

S$messagebag = new \Illuminate\Support\MessageBag($messages);

// Check for errors; if there are any, decorate and echo
if (Smessagebag->has('errors')) {
echo '<ul id="errors">"';
foreach ($messagebag->get('errors', ':message</11>') as S$error) {
echo Serror;

}
echo '';

}

Message bags are also closely connected to Laravel’s validators (you’ll learn more
about these in “Validation” on page 189): when validators return errors, they actually
return an instance of MessageBag, which you can then pass to your view or attach to a
redirect using redirect('route')->withErrors($messagebag).

Laravel passes an empty instance of MessageBag to every view, assigned to the vari-
able Serrors; if you've flashed a message bag using withErrors() on a redirect, it will
get assigned to that $errors variable instead. That means every view can always
assume it has an $errors MessageBag it can check wherever it handles validation,
which leads to Example 6-19 as a common snippet developers place on every page.

Example 6-19. Error bag snippet

// partials/errors.blade.php
@if (Serrors->any())
<div class="alert alert-danger">

MessageBags | 173

@foreach (Serrors as $error)
{{ Serror }}</1i>
@endforeach

</div>
@endif

Missing $errors Variable

If you have any routes that aren’t under the web middleware group,
\ they won't have the session middleware, which means they won't
" have this $errors variable available.

Named Error Bags

Sometimes you need to differentiate message bags not just by key (notices versus
errors) but also by component. Maybe you have a login form and a signup form on
the same page; how do you differentiate them?

When you send errors along with a redirect using withErrors(), the second parame-
ter is the name of the bag: redirect('dashboard')->withErrors($validator,
'login'). Then, on the dashboard, you can use $errors->login to call all of the
methods you saw before: any(), count(), and more.

String Helpers, Pluralization, and Localization

As developers, we tend to look at blocks of text as big placeholder divs, waiting for
the client to put real content into them. Seldom are we involved in any logic inside
these blocks.

But there are a few circumstances where you’ll be grateful for the tools Laravel pro-
vides for string manipulation.

The String Helpers and Pluralization

Laravel has a series of helpers for manipulating strings. They’re available as methods
on the Str class (e.g., Str::plural()), but most also have a global helper function
(e.g., str_plural()).

The Laravel documentation covers all of them in detail, but here are a few of the most
commonly used string helpers:

e()
A shortcut for html_entities(); encodes all HTML entities for safety.

174 | Chapter 6: Frontend Components

http://bit.ly/2HQKaFC

starts_with(), ends_with(), str_contains()
Check a string (first parameter) to see if it starts with, ends with, or contains
another string (second parameter).

str_1is()
Checks whether a string (second parameter) matches a particular pattern (first
parameter)—for example, foo* will match foobar and foobaz.

str_slug()
Converts a string to a URL-type slug with hyphens.

str_plural(word, count), str_singular()
Pluralizes a word or singularizes it; English-only (e.g., str_plural('dog')
returns dogs; str_plural('dog', 1')) returns dog).

camel_case(), kebab_case(), snake_case(), studly_case(), title_case()
Convert a provided string to a different capitalization “case”

str_after(), str_before(), str_limit()
Trim a string and provide a substring. str_after() returns everything after a
given string and str_before() everything before the given string (both accept
the full string as the first parameter and the string you’re using to cut as the sec-
ond). str_limit() truncates a string (first parameter) to a given number of char-
acters (second parameter).

Localization

Localization allows you to define multiple languages and mark any strings as targets
for translation. You can set a fallback language, and even handle pluralization varia-
tions.

In Laravel, you’ll need to set an “application locale” at some point during the page
load so the localization helpers know which bucket of translations to pull from. Each
“locale” is usually connected to a translation, and will often look like “en” (for
English). You'll do this with App::setLocale($localeName), and you'll likely put it
in a service provider. For now you can just put it in the boot() method of
AppServiceProvider, but you may want to create a LocaleServiceProvider if you
end up with more than just this one locale-related binding.

Setting the Locale for Each Request

It can be confusing at first to work out how Laravel “knows” the user’s locale, or
provides translations. Most of that work is down to you as the developer. Let’s look at
a likely scenario.

String Helpers, Pluralization, and Localization | 175

You'll probably have some functionality allowing the user to choose a locale, or possi-
bly attempting to automatically detect it. Either way, your application will determine
the locale, and then you’ll store that in a URL parameter or a session cookie. Then
your service provider—something like a LocaleServiceProvider, maybe—will grab
that key and set it as a part of Laravel’s bootstrap.

So maybe your user is at http://myapp.com/es/contacts. Your LocaleServiceProvider
will grab that es string and then run App::setLocale('es'). Going forward, every
time you ask for a translation of a string, Laravel will look for the Spanish (es means
Espaniol) version of that string, which you will need to have defined somewhere.

You can define your fallback locale in config/app.php, where you should find a
fallback_locale key. This allows you to define a default language for your applica-
tion, which Laravel will use if it can’t find a translation for the requested locale.

Basic localization

So, how do we call for a translated string? There’s a helper function, __(Skey), that
will pull the string for the current locale for the passed key or, if it doesn't exist, grab it
from the default locale. In Blade you can also use the @lang() directive. Example 6-20
demonstrates how a basic translation works. We'll use the example of a “back to the
dashboard” link at the top of a detail page.

Example 6-20. Basic use of __()

// Normal PHP
<?php echo __('navigation.back'); 7>

// Blade
{{ _('navigation.back') }}

// Blade directive
@lang('navigation.back')

Let’s assume we are using the es locale right now. Laravel will look for a file in resour-
ces/lang/es/navigation.php, which it will expect to return an array. Il look for a back
key on that array, and if it exists, it'll return its value. Take a look at Example 6-21 for
a sample.

Example 6-21. Using a translation

// resources/lang/es/navigation.php
return [
'back' => 'Volver al panel',

1;

176 | Chapter 6: Frontend Components

// routes/web.php

Route: :get('/es/contacts/show/{id}"', function () {
// Setting it manually, for this example, instead of in a service provider
App::setLocale('es');
return view('contacts.show');

s

// resources/views/contacts/show.blade.php
{{ __('navigation.back') }}

The Translation Helper Prior to Laravel 5.4

In projects running versions of Laravel prior to 5.4, the __() helper
isn’t available. You will instead have to use the trans() helper,
which accesses an older translation system that works similarly to
what were describing here, but can't access the JSON translation
system.

Parameters in localization

The preceding example was relatively simple. Let’s dig into some that are more com-
plex. What if we want to define which dashboard were returning to? Take a look at
Example 6-22.

Example 6-22. Parameters in translations

// resources/lang/en/navigation.php
return [
'back' => 'Back to :section dashboard',

1;

// resources/views/contacts/show.blade.php
{{ _('navigation.back', ['section' => 'contacts']) }}

As you can see, prepending a word with a colon (:section) marks it as a placeholder
that can be replaced. The second, optional, parameter of __() is an array of values to
replace the placeholders with.

Pluralization in localization

We already covered pluralization, so now just imagine you're defining your own plu-
ralization rules. There are two ways to do it; we'll start with the simplest, as shown in
Example 6-23.

Example 6-23. Defining a simple translation with an option for pluralization

// resources/lang/en/messages.php
return [

String Helpers, Pluralization, and Localization | 177

'task-deletion' => 'You have deleted a task|You have successfully deleted tasks',

1;

// resources/views/dashboard.blade.php
@if (SnumTasksDeleted > 0)

{{ trans_choice('messages.task-deletion', $numTasksDeleted) }}
@endif

As you can see, we have a trans_choice() method, which takes the count of items
affected as its second parameter; from this it will determine which string to use.

You can also use any translation definitions that are compatible with Symfony’s much
more complex Translation component; see Example 6-24 for an example.

Example 6-24. Using the Symfony’s Translation component

// resources/lang/es/messages.php
return [
'task-deletion' => "{0} You didn't manage to delete any tasks.|" .
"[1,4] You deleted a few tasks.|" .
"[5,Inf] You deleted a whole ton of tasks.",

1;

Storing the default string as the key with JSON

One common difficulty with localization is that it’s hard to ensure there’s a good sys-
tem for defining key namespacing—for example, remembering a key nested three or
four levels deep or being unsure which key a phrase used twice in the site should use.

An alternative to the slug key/string value pair system is to store your translations
using your primary language string as the key, instead of a made-up slug. You can
indicate to Laravel that youre working this way by storing your translation files as
JSON in the resources/lang directory, with the filename reflecting the locale
(Example 6-25).

Example 6-25. Using JSON translations and the __() helper

// In Blade
{{ _('view friends list') }}

// resources/lang/es.json

{

'View friends list': 'Ver lista de amigos'

}

This is taking advantage of the fact that the __() translation helper, if it can’t find a
matching key for the current language, will just display the key. If your key is the

178 | Chapter 6: Frontend Components

string in your app’s default language, that's a much more reasonable fallback than, for
example, widgets. friends.title.

JSON Translations Unavailable Prior to Laravel 5.4

The JSON string translation format is only available in Laravel 5.4
and later.

Testing

In this chapter we focused primarily on Laravel’s frontend components. These are less
likely the objects of unit tests, but they may at times be used in your integration tests.

Testing Message and Error Bags

There are two primary ways of testing messages passed along with message and error
bags. First, you can perform a behavior in your application tests that sets a message
that will eventually be displayed somewhere, then redirect to that page and assert that
the appropriate message is shown.

Second, for errors (which is the most common use case), you can assert the session
has errors with $this->assertSessionHasErrors($bindings = []). Take a look at
Example 6-26 to see what this might look like.

Example 6-26. Asserting the session has errors

public function test_missing_email_field_errors()

{
Sthis->post('person/create', ['name' => 'Japheth']);
$this->assertSessionHasErrors(['email']);

}

In order for Example 6-26 to pass, you'll need to add input validation to that route.
We'll cover this in Chapter 7.

Translation and Localization

The simplest way to test localization is with application tests. Set the appropriate con-
text (whether by URL or session), “visit” the page with get(), and assert that you see
the appropriate content.

Testing | 179

TL;DR

As a full-stack framework, Laravel provides tools and components for the frontend as
well as the backend.

Mix is a layer in front of Webpack that makes common tasks and configurations
much simpler. Mix makes it easy to use popular CSS pre- and post-processors, com-
mon JavaScript processing steps, and much more.

Laravel also offers other internal tools that target the frontend, including tools for
implementing pagination, message and error bags, and localization.

180 | Chapter 6: Frontend Components

CHAPTER7
Collecting and Handling User Data

Websites that benefit from a framework like Laravel often don’t just serve static con-
tent. Many deal with complex and mixed data sources, and one of the most common
(and most complex) of these sources is user input in its myriad forms: URL paths,
query parameters, POST data, and file uploads.

Laravel provides a collection of tools for gathering, validating, normalizing, and fil-
tering user-provided data. We'll look at those here.

Injecting a Request Object

The most common tool for accessing user data in Laravel is injecting an instance of
the Il1luminate\Http\Request object. It offers easy access to all of the ways users
can provide input to your site: POSTed form data or JSON, GET requests (query
parameters), and URL segments.

Other Options for Accessing Request Data

There’s also a request() global helper and a Request facade, both
of which expose the same methods. Each of these options exposes
the entire Illuminate Request object, but for now we're only going
to cover the methods that specifically relate to user data.

Since were planning on injecting a Request object, let’s take a quick look at how to
get the $request object we'll be calling all these methods on:
Route::post('form', function (Illuminate\Http\Request S$Srequest) {

// Srequest->etc()
b

181

Srequest->all()

Just like the name suggests, $request->all() gives you an array containing all of the
input the user has provided, from every source. Let’s say, for some reason, you deci-
ded to have a form POST to a URL with a query parameter—for example, sending a
POST to http://myapp.com/signup?utm=12345. Take a look at Example 7-1 to see what
youd get from $request->all(). (Note that Srequest->all() also contains informa-
tion about any files that were uploaded, but we'll cover that later in the chapter.)

Example 7-1. $request->all()

<!-- GET route form view at /get-route -->
<form method="post" action="/signup?utm=12345">
@csrf

<input type="text" name="first_name">
<input type="submit">
</form>

// routes/web.php

Route::post('signup', function (Request $request) {
var_dump($request->all());

s

// Outputs:
/**
s [
* ' token' => 'CSRF token here'’,
* 'first_name' => 'value',
* 'utm' => 12345,
*]
*/

Srequest->except() and Srequest->only()

$request->except() provides the same output as $request->all(), but you can
choose one or more fields to exclude—for example, _token. You can pass it either a
string or an array of strings.

Example 7-2 shows what it looks like when we use $request->except() on the same
form as in Example 7-1.

Example 7-2. $request->except()
Route: :post('post-route', function (Request $request) {
var_dump(Srequest->except('_token'));

s

// Outputs:
/**

182 | Chapter7: Collecting and Handling User Data

* 'firstName' => 'value',
* 'utm' => 12345

*]

*/

$request->only() is the inverse of $request->except(), as you can see in
Example 7-3.

Example 7-3. $request->only()

Route: :post('post-route', function (Request $request) {
var_dump($request->only(['firstName', 'utm']));
H;

// Outputs:

/**

*[

* 'firstName' => 'value',
* 'utm' => 12345

*]

*/

Srequest->has()

With $request->has() you can detect whether a particular piece of user input is
available to you. Check out Example 7-4 for an analytics example with our utm query
string parameter from the previous examples.

Example 7-4. $request->has()

// POST route at /post-route
if ($request->has('utm')) {
// Do some analytics work

}

Srequest->input()

Whereas $request->all(), $request->except(), and $request->only() operate on
the full array of input provided by the user, $request->input() allows you to get the
value of just a single field. Example 7-5 provides an example. Note that the second
parameter is the default value, so if the user hasn’t passed in a value, you can have a
sensible (and nonbreaking) fallback.

Injecting a Request Object | 183

Example 7-5. $request->input()
Route: :post('post-route', function (Request $request) {

SuserName = S$Srequest->input('name', 'Matt');

s

Srequest->method() and ->isMethod()

$request->method() returns the HTTP verb for the request, and $request-
>isMethod() checks whether it matches the specified verb. Example 7-6 illustrates
their use.

Example 7-6. $request->method() and $request->isMethod()
$method = S$request->method();
if (Srequest->isMethod('patch')) {

// Do something if request method is PATCH
}

Array Input

Laravel also provides convenience helpers for accessing data from array input. Just
use the “dot” notation to indicate the steps of digging into the array structure, like in
Example 7-7.

Example 7-7. Dot notation to access array values in user data

<!-- GET route form view at /employees/create -->
<form method="post" action="/employees/"s>
@csrf

<input type="text" name="employees[O][firstName]">
<input type="text" name="employees[0][lastName]">
<input type="text" name="employees[1][firstName]">
<input type="text" name="employees[1][lastName]">
<input type="submit"s>

</form>

// POST route at /employees

Route: :post('employees', function (Request Srequest) {
SemployeeZeroFirstName = $request->input('employees.0.firstName');
SallLastNames = Srequest->input('employees.*.lastName');
SemployeeOne = $request->input('employees.1');
var_dump(SemployeeZeroFirstname, $allLastNames, $employeeOne);

s

// If forms filled out as "Jim" "Smith" "Bob" "Jones":
// SemployeeZeroFirstName = 'Jim';

184 | Chapter7: Collecting and Handling User Data

// SalllLastNames = ['Smith', 'Jones'];
// SemployeeOne = ['firstName' => 'Bob', 'lastName' => 'Jones'];

JSON Input (and $request->json())

So far we've covered input from query strings (GET) and form submissions (POST). But
there’s another form of user input that’'s becoming more common with the advent of
JavaScript SPAs: the JSON request. It’s essentially just a POST request with the body set
to JSON instead of a traditional form POST.

Let’s take a look at what it might look like to submit some JSON to a Laravel route,
and how to use $request->input() to pull out that data (Example 7-8).
Example 7-8. Getting data from JSON with $request->input()

POST HTTP/1.1
Content-Type:

{
"firstName": "Joe",
"lastName": "Schmoe",
"spouse": {
"firstName": "J111",
"lastName":"Schmoe"
}
}

// Post-route

Route: :post('post-route', function (Request $request) {
SfirstName = $Srequest->input('firstName');
$spouseFirstname = $request->input('spouse.firstName');

s

Since $request->input() is smart enough to pull user data from GET, POST, or JSON,
you may wonder why Laravel even offers $request->json(). There are two reasons
you might prefer $request->json(). First, you might want to just be more explicit to
other programmers working on your project about where you're expecting the data to
come from. And second, if the POST doesn’t have the correct application/json head-
ers, Srequest->input() won't pick it up as JSON, but $request->json() will.

Facade Namespaces, the request() Global Helper,
and Injecting Srequest
Any time you're using facades inside of namespaced classes (e.g., controllers), you’ll

have to add the full facade path to the import block at the top of your file (e.g., use
I1luminate\Support\Facades\Request).

Injecting a Request Object | 185

Because of this, several of the facades also have a companion global helper function. If
these helper functions are run with no parameters, they expose the same syntax as the
facade (e.g., request()->has() is the same as Request::has()). They also have a
default behavior for when you pass them a parameter (e.g., request('firstName') is
a shortcut to request()->input('firstName")).

With Request, we've been covering injecting an instance of the Request object, but
you could also use the Request facade or the request() global helper. Take a look at
Chapter 10 to learn more.

Route Data

It might not be the first thing you think of when you imagine “user data,” but the URL
is just as much user data as anything else in this chapter.

There are two primary ways you'll get data from the URL: via Request objects and via
route parameters.

From Request

Injected Request objects (and the Request facade and the request() helper) have
several methods available to represent the state of the current page’s URL, but right
now let’s focus on at getting information about the URL segments.

If you're not familiar with the idea, each group of characters after the domain in a
URL is called a segment. So, http://www.myapp.com/users/15/ has two segments: users
and 15.

As you can probably guess, we have two methods available to us:
$request->segments() returns an array of all segments, and S$request->
segment($segmentId) allows us to get the value of a single segment. Note that
segments are returned on a 1-based index, so in the preceding example, $request->
segment(1) would return users.

Request objects, the Request facade, and the request() global helper provide quite a
few more methods to help us get data out of the URL. To learn more, check out
Chapter 10.

From Route Parameters

The other primary way we get data about the URL is from route parameters, which
are injected into the controller method or closure that is serving a current route, as
shown in Example 7-9.

186 | Chapter7: Collecting and Handling User Data

Example 7-9. Getting URL details from route parameters

// routes/web.php
Route::get('users/{id}', function ($id) {

// If the user visits myapp.com/users/15/, Sid will equal 15
b

To learn more about routes and route binding, check out Chapter 3.

Uploaded Files

We've talked about different ways to interact with users’ text input, but there’s also the
matter of file uploads to consider. Request objects provide access to any uploaded files
using the $request->file() method, which takes the file’s input name as a parame-
ter and returns an instance of Symfony\Component\HttpFoundation\File\Uploaded
File. Let’s walk through an example. First, our form, in Example 7-10.

Example 7-10. A form to upload files

<form method="post" enctype="multipart/form-data"s>
@csrf
<input type="text" name="name">
<input type="file" name="profile_picture"s
<input type="submit">

</form>

Now let’s take a look at what we get from running $request->all(), as shown in
Example 7-11. Note that $request->input('profile_picture') will return null; we
need to use $request->file('profile_picture') instead.

Example 7-11. The output from submitting the form in Example 7-10

Route::post('form', function (Request S$request) {
var_dump($request->all());
s

// Output:

/[

// " _token" => "token here",

// "name" => "asdf",

// "profile_picture" => UploadedFile {},

/7]

Route: :post('form', function (Request $request) {
if (Srequest->hasFile('profile_picture')) {
var_dump(Srequest->file('profile_picture'));
}
b

Uploaded Files | 187

// Output:
// UploadedFile (details)

Validating a File Upload

As you can see in Example 7-11, we have access to $request->hasFile() to see
whether the user uploaded a file. We can also check whether the file upload was suc-
cessful by using isvValid() on the file itself:

if (Srequest->file('profile_picture')->isvValid()) {
//
}

Because isValid() is called on the file itself, it will error if the user didn’t upload a
file. So, to check for both, youd need to check for the file’s existence first:

if (Srequest->hasFile('profile_picture') &&
$request->file('profile_picture')->isvalid()) {
//

Symfony’s UploadedFile class extends PHP’s native SplFileInfo with methods
allowing you to easily inspect and manipulate the file. This list isn’t exhaustive, but it
gives you a taste of what you can do:

e guessExtension()

e getMimeType()

e store($path, SstorageDisk = default disk)

e storeAs(Spath, SnewName, SstorageDisk = default disk)
e storePublicly(Spath, SstorageDisk = default disk)

o storePubliclyAs(Spath, SnewName, $storageDisk = default disk)
o move(Sdirectory, S$newName = null)

e getClientOriginalName()

o getClientOriginalExtension()

e getClientMimeType()

¢ guessClientExtension()

e getClientSize()

e getError()

e isValid()

188 | Chapter7: Collecting and Handling User Data

E As you can see, most of the methods have to do with getting information about the
uploaded file, but there’s one that you’ll likely use more than all the others: store()
(available since Laravel 5.3), which takes the file that was uploaded with the request
and stores it in a specified directory on your server. Its first parameter is the destina-
tion directory, and the optional second parameter will be the storage disk (s3, local,
etc.) to use to store the file. You can see a common workflow in Example 7-12.

Example 7-12. Common file upload workflow

if (Srequest->hasFile('profile_picture')) {
S$path = Srequest->profile_picture->store('profiles', 's3');
auth()->user()->profile_picture = S$path;
auth()->user()->save();

}

If you need to specify the filename, you can use storeAs() instead of store(). The
first parameter is still the path; the second is the filename, and the optional third
parameter is the storage disk to use.

Proper Form Encoding for File Uploads

If you get null when you try to get the contents of a file from your
request, you might've forgotten to set the encoding type on your
form. Make sure to add the attribute enctype="multipart/form-
data" on your form:

<form method="post" enctype="multipart/form-data"s>

Validation

Laravel has quite a few ways you can validate incoming data. Well cover form
requests in the next section, so that leaves us with two primary options: validating
manually or using the validate() method on the Request object. Let’s start with the
simpler, and more common, validate().

validate() on the Request Object

The Request object has a validate() method that provides a convenient shortcut for
the most common validation workflow. Take a look at Example 7-13.

Example 7-13. Basic usage of request validation

// routes/web.php

Route::get('recipes/create', 'RecipesController@create');
Route: :post('recipes', 'RecipesController@store');

Validation | 189

// app/Http/Controllers/RecipesController.php
class RecipesController extends Controller

{
public function create()
{
return view('recipes.create');
}
public function store(Request $request)
{
$request->validate([
"title' => 'required|unique:recipes|max:125"',
'body' => 'required'
s
// Recipe is valid; proceed to save it
}
}

We only have four lines of code running our validation here, but theyre doing a lot.

First, we explicitly define the fields we expect and apply rules (here separated by the
pipe character, |) to each individually.

Next, the validate() method checks the incoming data from the $request and
determines whether or not it is valid.

If the data is valid, the validate() method ends and we can move on with the con-
troller method, saving the data or whatever else.

But if the data isn't valid, it throws a ValidationException. This contains instruc-
tions to the router about how to handle this exception. If the request is from Java-
Script (or if it's requesting JSON as a response), the exception will create a JSON
response containing the validation errors. If not, the exception will return a redirect
to the previous page, together with all of the user input and the validation errors—
perfect for repopulating a failed form and showing some errors.

(alling the validate() Method on the Controller Prior to Laravel 5.5

In projects running versions of Laravel prior to 5.5, this validation
shortcut is called on the controller (running $this->validate())
instead of on the request.

190 | Chapter7: Collecting and Handling User Data

More on Laravel’s Validation Rules

In our examples here (like in the docs) we’re using the “pipe” syntax: ' fieldname' :
'rule|otherRule|anotherRule'. But you can also use the array syntax to do the
same thing: ' fieldname': ['rule', 'otherRule', 'anotherRule'].

Additionally, you can validate nested properties. This matters if you use HTMLs array
syntax, which allows you to, for example, have multiple “users” on an HTML form,
each with an associated name. Here’s how you validate that:

Srequest->validate([
'user.name' => 'required',
'user.email' => 'required|email’',
D;
We don’t have enough space to cover every possible validation rule here, but here are
a few of the most common rules and their functions:

Require the field
required; required_if:anotherField,equalToThisValue;
required_unless:anotherField,equalToThisValue

Field must contain certain types of character
alpha; alpha_dash; alpha_num; numeric; integer

Field must contain certain patterns
email; active_url;ip

Dates

after:date; before:date (date can be any valid string that strtotime() can
handle)

Numbers
between:min,max; min:num; max: num; size:num (size tests against length for
strings, value for integers, count for arrays, or size in KB for files)

Image dimensions
dimensions:min_width=XXX; can also use and/or combine with max_width,
min_height, max_height, width, height, and ratio

Databases
exists: tableName; unique: tableName (expects to look in the same table col-
umn as the field name; see the docs for how to customize)

Validation | 191

http://bit.ly/2eMLZDl

Manual Validation

If you are not working in a controller, or if for some other reason the previously
described flow is not a good fit, you can manually create a Validator instance using
the Validator facade and check for success or failure like in Example 7-14.

Example 7-14. Manual validation

Route::get('recipes/create', function () {
return view('recipes.create');

s

Route: :post('recipes', function (Illuminate\Http\Request $request) {
S$validator = Validator::make(S$request->all(), [
'title' => 'required|unique:recipes|max:125"',
'body' => 'required'

D;

if ($Svalidator->fails()) {
return redirect('recipes/create')
->withErrors($validator)
->withInput();
}

// Recipe is valid; proceed to save it

s

As you can see, we create an instance of a validator by passing it our input as the first
parameter and the validation rules as the second parameter. The validator exposes a
fails() method that we can check against and can be passed into the withErrors()
method of the redirect.

Custom Rule Objects

If the validation rule you need doesn't exist in Laravel, you can create your own. To
create a custom rule, run php artisan make:rule RuleName and then edit that file in
app/Rules/{RuleName}.php.

You'll get two methods in your rule out of the box: passes() and message().
passes() should accept an attribute name as the first parameter and the user-
provided value as the second, and then return a Boolean indicating whether or not
this input passes this validation rule. message() should return the validation error
message; you can use :attribute as a placeholder in your message for the attribute
name.

Take a look at Example 7-15 as an example.

192 | Chapter7: Collecting and Handling User Data

Example 7-15. A sample custom rule

class WhitelistedEmailDomain implements Rule

{
public function passes($Sattribute, $value)
{
return in_array(str_after(Svalue, '@'), ['tighten.co']);
}
public function message()
{
return 'The :attribute field is not from a whitelisted email provider.';
}
1

To use this rule, just pass an instance of the rule object to your validator:

$request->validate([
'email' => new WhitelistedEmailDomain,

D;

E In projects running versions of Laravel prior to 5.5, custom val-
idation rules have to be written using Validator::extend().
You can learn more about this in the docs.

Displaying Validation Error Messages

We've already covered much of this in Chapter 6, but here’s a quick refresher on how
to display errors from validation.

The validate() method on requests (and the withErrors() method on redirects
that it relies on) flashes any errors to the session. These errors are made available to
the view you're being redirected to in the $errors variable. And remember that as a
part of Laravel’s magic, that $errors variable will be available every time you load the
view, even if it’s just empty, so you don’t have to check if it exists with isset().

That means you can do something like Example 7-16 on every page.

Example 7-16. Echo validation errors

@if (Serrors->any())
<ul id="errors"s
@foreach ($errors->all() as $error)
{{ Serror }}
@endforeach

@endif

Validation | 193

http://bit.ly/2Wl87J1

Form Requests

As you build out your applications, you might start noticing some patterns in your
controller methods. There are certain patterns that are repeated—for example, input
validation, user authentication and authorization, and possible redirects. If you find
yourself wanting a structure to normalize and extract these common behaviors out of
your controller methods, you may be interested in Laravel’s form requests.

A form request is a custom request class that is intended to map to the submission of
a form, and the request takes the responsibility for validating the request, authorizing
the user, and optionally redirecting the user upon a failed validation. Each form
request will usually, but not always, explicitly map to a single HTTP request—for
example, “Create Comment.”

Creating a Form Request
You can create a new form request from the command line:
php artisan make:request CreateCommentRequest

You now have a form request object available at app/Http/Requests/
CreateCommentRequest.php.

Every form request class provides either one or two public methods. The first is
rules(), which needs to return an array of validation rules for this request. The sec-
ond (optional) method is authorize(); if this returns true, the user is authorized to
perform this request, and if false, the user is rejected. Take a look at Example 7-17 to
see a sample form request.

Example 7-17. Sample form request
<?php
namespace App\Http\Requests;

use App\BlogPost;
use Illuminate\Foundation\Http\FormRequest;

class CreateCommentRequest extends FormRequest

{
public function authorize()
{
S$blogPostId = $this->route('blogPost');
return auth()->check() && BlogPost: :where('id', $blogPostId)
->where('user_1id', auth()->id())->exists();
}

194 | Chapter7: Collecting and Handling User Data

public function rules()

{
return [
'body' => 'required|max:1000',
1;

}

The rules() section of Example 7-17 is pretty self-explanatory, but lets look at
authorize() briefly.

We're grabbing the segment from the route named blogPost. That’s implying the
route definition for this route probably looks a bit like this: Route: :post('blog
Posts/blogPost', function () // Do stuff). As you can see, we named the route
parameter blogPost, which makes it accessible in our Request using $this-
>route('blogPost"').

We then look at whether the user is logged in and, if so, whether any blog posts exist
with that identifier that are owned by the currently logged-in user. You've already
learned some easier ways to check ownership in Chapter 5, but we'll keep it more
explicit here to keep it clean. We'll cover what implications this has shortly, but the
important thing to know is that returning true means the user is authorized to per-
form the specified action (in this case, creating a comment), and false means the
user is not authorized.

Requests Extend Userland Request Prior to Laravel 5.3

In projects running versions of Laravel prior to 5.3, form requests
extended App\Http\Requests\Request instead of Illuminate
\Foundation\Http\FormRequest

Using a Form Request

Now that we've created a form request object, how do we use it? It’s a little bit of Lara-
vel magic. Any route (closure or controller method) that typehints a form request as
one of its parameters will benefit from the definition of that form request.

Let’s try it out, in Example 7-18.

Example 7-18. Using a form request

Route: :post('comments', function (App\Http\Requests\CreateCommentRequest $request) {
// Store comment

s

Form Requests | 195

You might be wondering where we call the form request, but Laravel does it for us. It
validates the user input and authorizes the request. If the input is invalid, it'll act just
like the Request object’s validate() method, redirecting the user to the previous
page with their input preserved and with the appropriate error messages passed
along. And if the user is not authorized, Laravel will return a 403 Forbidden error and
not execute the route code.

Eloquent Model Mass Assignment

Until now, we've been looking at validating at the controller level, which is absolutely
the best place to start. But you can also filter the incoming data at the model level.

It's a common (but not recommended) pattern to pass the entirety of a form’s input
directly to a database model. In Laravel, that might look like Example 7-19.

Example 7-19. Passing the entirety of a form to an Eloquent model

Route: :post('posts', function (Request $request) {
$newPost = Post::create($request->all());
b

We're assuming here that the end user is kind and not malicious, and has kept only
the fields we want them to edit—maybe the post title or body.

But what if our end user can guess, or discern, that we have an author_id field on
that posts table? What if they used their browser tools to add an author_id field and
set the ID to be someone else’s ID, and impersonated the other person by creating
fake blog posts attributed to them?

Eloquent has a concept called “mass assignment” that allows you to either whitelist
fields that should be fillable (using the model’s $fillable property) or blacklist fields
that shouldn’t be fillable (using the model’s $guarded property) by passing them in an
array to create() or update(). See “Mass assignment” on page 124 for more infor-
mation.

In our example, we might want to fill out the model like in Example 7-20 to keep our
app safe.

Example 7-20. Guarding an Eloquent model from mischievous mass assignment

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

196 | Chapter7: Collecting and Handling User Data

class Post extends Model

{

// Disable mass assignment on the author_id field
protected $guarded = ['author_1id'];
}

By setting author_1id to guarded, we ensure that malicious users will no longer be
able to override the value of this field by manually adding it to the contents of a form
that they’re sending to our app.

Double Protection Using $request->only()

While it’s important to do a good job of protecting our models
from mass assignment, it’s also worth being careful on the assign-
ing end. Rather than using $request->all(), consider using
$request->only() so you can specify which fields youd like to
pass into your model:

Route: :post('posts', function (Request $request) {
SnewPost = Post::create(Srequest->only([
"title',
'body',
IDDK
b

{{Versus {!!

Any time you display content on a web page that was created by a user, you need to
guard against malicious input, such as script injection.

Lets say you allow your users to write blog posts on your site. You probably don’t
want them to be able to inject malicious JavaScript that will run in your unsuspecting
visitors’ browsers, right? So, you'll want to escape any user input that you show on the
page to avoid this.

Thankfully, this is almost entirely covered for you. If you use Laravel’s Blade templat-
ing engine, the default “echo” syntax ({{ SstuffToEcho }}) runs the output through
htmlentities() (PHP’s best way of making user content safe to echo) automatically.
You actually have to do extra work to avoid escaping the output, by using the {!!
SstuffToEcho !!} syntax.

Testing

If you're interested in testing your interactions with user input, youre probably most
interested in simulating valid and invalid user input and ensuring that if the input is
invalid the user is redirected, and if the input is valid it ends up in the proper place
(e.g., the database).

{{Versus{!! | 197

Laravel’s end-to-end application testing makes this simple.

Requiring BrowserKit After Laravel 5.4

If you want to work with test specific user interactions on the page
and with your forms, and you’re working in a project running Lar-
avel 5.4 or later, you'll want to pull in Laravel's BrowserKit testing
package. Simply require the package:

composer require laravel/browser-kit-testing --dev

and modify your application’s base TestCase class to extend
Laravel\BrowserKitTesting\TestCase instead of Illuminate
\Foundation\Testing\TestCase.

Let’s start with an invalid route that we expect to be rejected, as in Example 7-21.

Example 7-21. Testing that invalid input is rejected

public function test_input_missing_a_title_1is_rejected()

{
$response = Sthis->post('posts', ['body' => 'This is the body of my post']);
$response->assertRedirect();
Sresponse->assertSessionHasErrors();

}

Here we assert that after invalid input the user is redirected, with errors attached. You
can see we're using a few custom PHPUnit assertions that Laravel adds here.

Different Names for Testing Methods Prior to Laravel 5.4

Prior to Laravel 5.4, the assertRedirect() assertion was named
assertRedirectedTo().

So, how do we test our route’s success? Check out Example 7-22.

Example 7-22. Testing that valid input is processed

public function test_valid_input_should_create_a_post_in_the_database()

{
Sthis->post('posts', ['title' => 'Post Title', 'body' => 'This is the body']);
$this->assertDatabaseHas('posts', ['title' => 'Post Title']);

}

Note that if youre testing something using the database, you’ll need to learn more
about database migrations and transactions. More on that in Chapter 12.

198 | Chapter7: Collecting and Handling User Data

Different Names for Testing Methods Prior to Laravel 5.4

In projects that are running versions of Laravel prior to 5.4,
assertDatabaseHas() should be replaced by seeInDatabase().

TL;DR

There are a lot of ways to get the same data: using the Request facade, using the
request() global helper, and injecting an instance of Illuminate\Http\Request.
Each exposes the ability to get all input, some input, or specific pieces of data, and
there can be some special considerations for files and JSON input.

URI path segments are also a possible source of user input, and they’re also accessible
via the request tools.

Validation can be performed manually with Validator::make(), or automatically
using the validate() request method or form requests. Each automatic tool, upon
failed validation, redirects the user to the previous page with all old input stored and
errors passed along.

Views and Eloquent models also need to be protected from nefarious user input. Pro-
tect Blade views using the double curly brace syntax ({{ }}), which escapes user
input, and protect models by only passing specific fields into bulk methods using
$request->only() and by defining the mass assignment rules on the model itself.

TLDR | 199

CHAPTER 8
Artisan and Tinker

From installation onward, modern PHP frameworks expect many interactions to take
place on the command line. Laravel provides three primary tools for command-line
interaction: Artisan, a suite of built-in command-line actions with the ability to add
more; Tinker, a REPL or interactive shell for your application; and the installer, which
we've already covered in Chapter 2.

An Introduction to Artisan

If you've been reading through this book chapter by chapter, you've already learned
how to use Artisan commands. They look something like this:

php artisan make:controller PostsController

If you look in the root folder of your application, you’ll see that artisan is actually just
a PHP file. That's why you're starting your call with php artisan; you're passing that
file into PHP to be parsed. Everything after that is just passed into Artisan as argu-
ments.

Symfony Console Syntax

Artisan is actually a layer on top of the Symfony Console compo-
nent; so, if youre familiar with writing Symfony Console com-
mands, you should feel right at home.

Since the list of Artisan commands for an application can be changed by a package or
by the specific code of the application, it's worth checking every new application you
encounter to see what commands are available.

201

http://bit.ly/2fVqOT8
http://bit.ly/2fVqOT8

To get a list of all available Artisan commands, you can run php artisan list from
the project root (although if you just run php artisan with no parameters, it will do
the same thing).

Basic Artisan Commands

There’s not enough space here to cover all of the Artisan commands, but we'll cover
many of them. Let’s get started with the basic commands:

clear-compiled
Removes Laravel's compiled class file, which is like an internal Laravel cache; run
this as a first resort when things are going wrong and you don’t know why

down, up
Puts your application in “maintenance mode” in order for you to fix an error, run
migrations, or whatever else and restore an application from maintenance mode,
respectively

dump-server (5.7+)
Starts the dump server (see “Laravel Dump Server” on page 218) to collect and
output dumped variables

env
Displays which environment Laravel is running in at the moment; it’s the equiva-
lent of echoing app() ->environment() in-app

help
Provides help for a command; for example, php artisan help commandName

migrate
Runs all database migrations

optimize
Clears and refreshes the configuration and route files

preset
Changes out the frontend scaffolding for another

serve
Pins up a PHP server at localhost:8000 (you can customize the host and/or
port with --host and - -port)

tinker
Brings up the Tinker REPL, which we'll cover later in this chapter

202 | Chapter8: Artisan and Tinker

Changes to the Artisan Commands List Over time

The list of Artisan commands and their names have changed in
small ways over the lifetime of Laravel. I'll try to note any time
they’ve changed, but everything here is current for Laravel 5.8. If
you're not working in 5.8, the best way to see what’s available to you
is to run php artisan from your application.

Options

Before we cover the rest of the commands, let’s look at a few notable options you can
pass any time you run an Artisan command:

-q
Suppresses all output

-v, -vv, and -vvv
Specify the level of output verbosity (normal, verbose, and debug)

--no-interaction
Suppresses interactive questions, so the command won't interrupt automated
processes running it

--env
Allows you to define which environment the Artisan command should operate in
(local, production, etc.).

--version
Shows you which version of Laravel your application is running on.

You've probably guessed from looking at these options that Artisan commands are
intended to be used much like basic shell commands: you might run them manually,
but they can also function as a part of some automated process at some point.

For example, there are many automated deploy processes that might benefit from cer-
tain Artisan commands. You might want to run php artisan config:cache every
time you deploy an application. Flags like -q and - -no-1interaction ensure that your
deploy scripts, not attended by a human being, can keep running smoothly.

The Grouped Commands

The rest of the commands available out of the box are grouped by context. We won't
cover them all here, but we'll cover each context broadly:

Basic Artisan Commands | 203

app
This just contains app:name, which allows you to replace every instance of the
default top-level App\ namespace with a namespace of your choosing; for exam-
ple, php artisan app:name MyApplication.I recommend avoiding this feature
and keeping your app’s root namespace as App.

auth
All we have here is auth:clear-resets, which flushes all of the expired pass-
word reset tokens from the database.

cache
cache:clear clears the cache, cache:forget removes an individual item from
the cache, and cache:table creates a database migration if you plan to use the
database cache driver.

config
config:cache caches your configuration settings for faster lookup; to clear the
cache, use config:clear.

db
db:seed seeds your database, if you have configured database seeders.

event
event:generate builds missing event and event listener files based on the defini-
tions in EventServiceProvider. You'll learn more about events in Chapter 16.

key
key:generate creates a random application encryption key in your .env file.

Rerunning artisan key:generate Means Losing Some
Encrypted Data

If you run php artisan key:generate more than once on
your application, every currently logged-in user will be logged
out. Additionally, any data you have manually encrypted will
no longer be decryptable. To learn more, check out the article
“APP_KEY and You” by fellow Tightenite Jake Bathman.

make
make:auth scaffolds out the views and corresponding routes for a landing page, a
user dashboard, and login and register pages.

All the rest of the make: actions create a single item, and have parameters that
vary accordingly. To learn more about any individual command’s parameters, use
help to read its documentation.

204 | Chapter8: Artisan and Tinker

http://bit.ly/2U972qd

For example, you could run php artisan help make:migration and learn that
you can pass --create=tableNameHere to create a migration that already has
the create table syntax in the file, as shown here: php artisan make:migration
create_posts_table --create=posts.

migrate

The migrate command used to run all migrations was mentioned earlier, but
there are several other migration-related commands. You can create the migra
tions table (to keep track of the migrations that are executed) with
migrate:install, reset your migrations and start from scratch with
migrate:reset, reset your migrations and run them all again with
migrate:refresh, roll back just one migration with migrate:rollback, drop all
tables and rerun all the migrations with migrate:fresh, or check the status of
your migrations with migrate:status.

notifications
notifications:table generates a migration that creates the table for database
notifications.

package
E In versions of Laravel prior to 5.5, including a new Laravel-specific package in
your app requires registering it manually in config/app.php. However, in 5.5 it’s
possible for Laravel to “autodiscover” those packages so you don’t have to man-

ually register them. package:discover rebuilds Laravel’s “discovered” manifest of
the service providers from your external packages.

queue
We'll cover Laravel’s queues in Chapter 16, but the basic idea is that you can push
jobs up into remote queues to be executed one after another by a worker. This
command group provides all the tools you need to interact with your queues, like
queue: listen to start listening to a queue, queue: table to create a migration for
database-backed queues, and queue:flush to flush all failed queue jobs. There
are quite a few more, which you’ll learn about in Chapter 16.

route
If you run route:list, you'll see the definitions of every route defined in the
application, including each route’s verb(s), path, name, controller/closure action,
and middleware. You can cache the route definitions for faster lookups with
route:cache and clear your cache with route:clear.

schedule
WE'll cover Laravel’s cron-like scheduler in Chapter 16, but in order for it to
work, you need to set the system cron to run schedule:run once a minute:

Basic Artisan Commands | 205

* % % * * php [home/myapp.com/artisan schedule:run >> /dev/null 2>&1

As you can see, this Artisan command is intended to be run regularly in order to
power a core Laravel service.

session
session:table creates a migration for applications using database-backed ses-
sions.

storage
storage:link creates a symbolic link from public/storage to storage/app/public.
This is a common convention in Laravel apps, to make it easy to put user uploads
(or other files that commonly end up in storage/app) somewhere where they’ll be
accessible at a public URL.

vendor
Some Laravel-specific packages need to “publish” some of their assets, either so
that they can be served from your public directory or so that you can modify
them. Either way, these packages register these “publishable assets” with Laravel,
and when you run vendor : publish, it publishes them to their specified locations.

view
Laravel’s view rendering engine automatically caches your views. It usually does a
good job of handling its own cache invalidation, but if you ever notice it’s gotten
stuck, run view:clear to clear the cache.

Writing Custom Artisan Commands

Now that we've covered the Artisan commands that come with Laravel out of the box,
let’s talk about writing your own.

First, you should know: there’s an Artisan command for that! Running php artisan
make:command YourCommandName generates a new Artisan command in app/Console/
Commands/{YourCommandNamej}.php.

php artisan make:command

E The command signature for make:command has changed a few
times. It was originally command:make, but for a while in 5.2 it
was console:make and then make:console.

Finally, in 5.3, it was settled: all of the generators are under the
make: namespace, and the command to generate new Artisan com-
mands is now make: command.

206 | Chapter8: Artisan and Tinker

Your first argument should be the class name of the command, and you can option-
ally pass a --command parameter to define what the terminal command will be (e.g.,
appname:action). So, let’s do it:

php artisan make:command WelcomeNewUsers --command=email:newusers

Take a look at Example 8-1 to see what you’ll get.

Example 8-1. The default skeleton of an Artisan command
<?php

namespace App\Console\Commands;

use Illuminate\Console\Command;

class WelcomeNewUsers extends Command
{
/**
* The name and signature of the console command
*

* @var string
*/

protected $signature = 'email:newusers';

/**
* The console command description
*

* @var string
*/

protected $description = 'Command description';

/**
* Create a new command instance
*

* @return void

*/
public function __construct()
{
parent::__construct();
}
/**

* Execute the console command
*

* @return mixed
*/
public function handle()
{
//

Writing Custom Artisan Commands | 207

}

As you can see, it’s very easy to define the command signature, the help text it shows
in command lists, and the command’s behavior on instantiation (__construct())
and on execution (handle()).

Manually Binding Commands Prior to Laravel 5.5

In projects running versions of Laravel prior to 5.5, commands had
to be manually bound into app\Console\Kernel.php. If your app is
running an older version of Laravel, just add the fully qualified
class name for your command to the $commands array in that file
and it'll be registered:

protected $commands = [
\App\Console\Commands\WelcomeNewUsers: :class,

1;

A Sample Command

We haven't covered mail or Eloquent yet in this chapter (see Chapter 15 for mail and
Chapter 5 for Eloquent), but the sample handle() method in Example 8-2 should
read pretty clearly.

Example 8-2. A sample Artisan command handle() method

class WelcomeNewUsers extends Command

{
public function handle()
{
User: :signedUpThisWeek()->each(function (Suser) {
Mail::to(Suser)->send(new WelcomeEmail);
b;
}

Now every time you run php artisan email:newusers, this command will grab
every user that signed up this week and send them the welcome email.

If you would prefer injecting your mail and user dependencies instead of using
facades, you can typehint them in the command constructor, and Laravel’s container
will inject them for you when the command is instantiated.

Take a look at Example 8-3 to see what Example 8-2 might look like using depend-
ency injection and extracting its behavior out to a service class.

208 | Chapter8: Artisan and Tinker

Example 8-3. The same command, refactored

class WelcomeNewUsers extends Command

{
public function __construct(UserMailer SuserMailer)
{
parent::__construct();
$this->userMailer = $SuserMailer
}
public function handle()
{
Sthis->userMailer->welcomeNewUsers();
}

Keep It Simple

It is possible to call Artisan commands from the rest of your code, so you can use
them to encapsulate chunks of application logic.

However, the Laravel docs recommend instead packaging the application logic into a
service class and injecting that service into your command. Console commands are
seen as being similar to controllers: they’re not domain classes; they’re traffic cops
that just route incoming requests to the correct behavior.

Arguments and Options

The $signature property of the new command looks like it might just contain the
command name. But this property is also where you'll define any arguments and
options for the command. There’s a specific, simple syntax you can use to add argu-
ments and options to your Artisan commands.

Before we dig into that syntax, take a look at an example for some context:

protected $signature = 'password:reset {userId} {--sendEmail}';

Writing Custom Artisan Commands | 209

Arguments—required, optional, and/or with defaults

To define a required argument, surround it with braces:
password:reset {userId}

To make the argument optional, add a question mark:
password:reset {userId?}

To make it optional and provide a default, use:

password:reset {userId=1}

Options—required values, value defaults, and shortcuts

Options are similar to arguments, but they’re prefixed with -- and can be used with
no value. To add a basic option, surround it with braces:

password:reset {userId} {--sendEmail}

If your option requires a value, add an = to its signature:
password:reset {userId} {--password=}

And if you want to pass a default value, add it after the =:

password:reset {userId} {--queue=default}

Array arguments and array options

Both for arguments and for options, if you want to accept an array as input, use the
* character:

password:reset {userIds*}

password:reset {--ids=*}

Using array arguments and parameters looks a bit like Example 8-4.

Example 8-4. Using array syntax with Artisan commands

// Argument
php artisan password:reset 1 2 3

// Option
php artisan password:reset --ids=1 --ids=2 --ids=3

Array Arguments Must Be the Last Argument

Since an array argument captures every parameter after its defini-
tion and adds them as array items, an array argument has to be the
last argument within an Artisan command’s signature.

210 | Chapter8: Artisan and Tinker

Input descriptions

Remember how the built-in Artisan commands can give us more information about
their parameters if we use artisan help? We can provide that same information
about our custom commands. Just add a colon and the description text within the
curly braces, like in Example 8-5.

Example 8-5. Defining description text for Artisan arguments and options

protected $signature = 'password:reset
{userId : The ID of the user}
{--sendEmail : Whether to send user an email}';

Using Input

Now that we've prompted for this input, how do we use it in our command’s
handle() method? We have two sets of methods for retrieving the values of argu-
ments and options.

argument() and arguments()

$this->arguments() returns an array of all arguments (the first array item will be the
command name). $this->argument() called with no parameters returns the same
response; the plural method, which I prefer, is just available for better readability, and
is only available after Laravel 5.3.

To get just the value of a single argument, pass the argument name as a parameter to
$this->argument(), as shown in Example 8-6.

Example 8-6. Using $this->arguments() in an Artisan command

// With definition "password:reset {userId}"
php artisan password:reset 5

// Sthis->arguments() returns this array

"command": "password:reset",
"userId": "5",

]

// Sthis->argument('userId') returns this string
ngn
option() and options()

$this->options() returns an array of all options, including some that will by default
be false or null. $this->option() called with no parameters returns the same

Writing Custom Artisan Commands | 211

response; again, the plural method, which I prefer, is just available for better readabil-
ity and is only available after Laravel 5.3.

To get just the value of a single option, pass the argument name as a parameter to
$this->option(), as shown in Example 8-7.

Example 8-7. Using $this->options() in an Artisan command

// With definition "password:reset {--userId=}"
php artisan password:reset --userId=5

// Sthis->options() returns this array
[
"userId" => "5",
"help" => false,
"quiet" => false,
"verbose" => false,
"version" => false,
"ansi" => false,
"no-ansi" => false,
"no-interaction" => false,
"env" => null,

]

// Sthis->option('userId') returns this string
ngn

Example 8-8 shows an Artisan command using argument() and option() in its
handle() method.

Example 8-8. Getting input from an Artisan command

public function handle()
{

// ALl arguments, including the command name
Sarguments = $this->arguments();

// Just the 'userId' argument
Suserid = $this->argument('userId');

// ALl options, including some defaults like 'no-interaction' and 'env'
Soptions = $this->options();

// Just the 'sendEmail' option
$sendEmail = $this->option('sendEmail');

212 | Chapter8: Artisan and Tinker

Prompts

There are a few more ways to get user input from within your handle() code,
and they all involve prompting the user to enter information during the execution of
your command:

ask()
Prompts the user to enter freeform text:

Semail = Sthis->ask('What is your emaill address?');

secret()
Prompts the user to enter freeform text, but hides the typing with asterisks:

$password = $this->secret('What is the DB password?');

confirm()
Prompts the user for a yes/no answer, and returns a Boolean:

if (Sthis->confirm('Do you want to truncate the tables?')) {
//
}

All answers except y or Y will be treated as a “no””

anticipate()
Prompts the user to enter freeform text, and provides autocomplete suggestions.
Still allows the user to type whatever they want:

$album = S$this->anticipate('What is the best album ever?', [
"The Joshua Tree", "Pet Sounds", "What's Going On"

D;

choice()
Prompts the user to choose one of the provided options. The last parameter is the
default if the user doesn’t choose:

Swinner = $this->choice(
'Who is the best football team?',
['Gators', 'Wolverines'],
0

);
Note that the final parameter, the default, should be the array key. Since we

passed a nonassociative array, the key for Gators is 0. You could also key your
array, if youd prefer:

Swinner = $this->choice(
'Who is the best football team?',
['gators' => 'Gators', 'wolverines' => 'Wolverines'],

Writing Custom Artisan Commands | 213

'gators’

);
Output

During the execution of your command, you might want to write messages to
the user. The most basic way to do this is to use $this->info() to output basic green
text:

$this->info('Your command has run successfully.');

You also have available the comment() (orange), question() (highlighted teal),
error() (highlighted red), and line() (uncolored) methods to echo to the command
line.

Please note that the exact colors may vary from machine to machine, but they try to
be in line with the local machine’s standards for communicating to the end user.

Table output

The table() method makes it simple to create ASCII tables full of your data. Take a
look at Example 8-9.

Example 8-9. Outputting tables with Artisan commands
Sheaders = ['Name', 'Email'];

Sdata = [
['Dhriti', 'dhriti@amrit.com'],
['Moses', 'moses@gutierez.com'],

1;

// Or, you could get similar data from the database:
Sdata = App\User::all(['name', 'email'])->toArray();

Sthis->table($headers, $data);

Note that Example 8-9 has two sets of data: the headers, and the data itself. Both con-
tain two “cells” per “row”; the first cell in each row is the name, and the second is the
email. That way the data from the Eloquent call (which is constrained to pull only
name and email) matches up with the headers.

Take a look at Example 8-10 to see what the table output looks like.

214 | Chapter8: Artisan and Tinker

Example 8-10. Sample output of an Artisan table

L R R +
| Name | Email

L R R +
| Dhriti | dhriti@amrit.com |
| Moses | moses@gutierez.com |
e R +
Progress bars

If you've ever run npm install, you've seen a command-line progress bar before.
Let’s build one in Example 8-11.

Example 8-11. Sample Artisan progress bar

StotalUnits = 10;
Sthis->output->progressStart(Stotalunits);

for ($1 = 0; $1 < StotalUnits; $i++) {
sleep(1);

Sthis->output->progressAdvance();

}
$this->output->progressFinish();

What did we do here? First, we informed the system how many “units” we needed
to work through. Maybe a unit is a user, and you have 350 users. The bar will then
divide the entire width it has available on your screen by 350, and increment it
by 1/350th every time you run progressAdvance(). Once youre done, run
progressFinish() so that it knows it’s done displaying the progress bar.

Writing Closure-Based Commands

4 If youd prefer to keep your command definition process simpler, you can write com-

' mands as closures instead of classes by defining them in routes/console.php. Every-
thing we discuss in this chapter will apply the same way, but you will define and
register the commands in a single step in that file, as shown in Example 8-12.

Example 8-12. Defining an Artisan command using a closure

// routes/console.php
Artisan: :command(
'password:reset {userId} {--sendEmail}',
function (Suserld, $sendEmail) {
SuserId = Sthis->argument('userId');
// Do something...

Writing Custom Artisan Commands | 215

)s

Calling Artisan Commands in Normal Code

While Artisan commands are designed to be run from the command line, you can
also call them from other code.

The easiest way is to use the Artisan facade. You can either call a command using
Artisan::call() (which will return the command’s exit code) or queue a command
using Artisan::queue().

Both take two parameters: first, the terminal command (password:reset); and sec-
ond, an array of parameters to pass it. Take a look at Example 8-13 to see how it
works with arguments and options.

Example 8-13. Calling Artisan commands from other code

Route::get('test-artisan', function () {
SexitCode = Artisan::call('password:reset', [
'userId' => 15,
'--sendEmail' => true,

D;
s

As you can see, arguments are passed by keying to the argument name, and options
with no value can be passed true or false.

E In Laravel 5.8+, you can call Artisan commands much more
naturally from your code. Just pass the same string youd call
from the command line into Artisan::call():

Artisan::call('password:reset 15 --sendEmail')

You can also call Artisan commands from other commands using $this->call(),
(which is the same as Artisan::call()) or $this->callSilent(), which is the same
but suppresses all output. See Example 8-14 for an example.

Example 8-14. Calling Artisan commands from other Artisan commands

public function handle()
{

$this->callSilent('password:reset', [
'userId' => 15,

D;

216 | Chapter8: Artisan and Tinker

Finally, you can inject an instance of the Illuminate\Contracts\Console\Kernel
contract, and use its call() method.

Tinker

Tinker is a REPL, or read-eval-print loop. If you've ever used IRB in Ruby, you’ll be
familiar with how a REPL works.

REPLs give you a prompt, similar to the command-line prompt, that mimics a “wait-
ing” state of your application. You type your commands into the REPL, hit Return,
and then expect what you typed to be evaluated and the response printed out.

Example 8-15 provides a quick sample to give you a sense of how it works and how it
might be useful. We start the REPL with php artisan tinker and are then presented
with a blank prompt (>>>); every response to our commands is printed on a line pref-
aced with =>.

Example 8-15. Using Tinker
$ php artisan tinker

>>> Suser = new App\User;

=> App\User: {}

>>> $user->email = 'matt@mattstauffer.com’;

=> "matt@mattstauffer.com"

>>> Suser->password = bcrypt('superSecret');

=> "$2y$10STWPGBC7e8d1bvI1q5kv. VDUGFYDNE9gANT4mleuB3htIY2dxcQfQ5"
>>> $user->save();

=> true

As you can see, we created a new user, set some data (hashing the password with
berypt() for security), and saved it to the database. And this is real. If this were a
production application, we would’ve just created a brand new user in our system.

This makes Tinker a great tool for simple database interactions, for trying out new
ideas, and for running snippets of code when itd be a pain to find a place to put them
in the application source files.

Tinker is powered by Psy Shell, so check that out to see what else you can do with
Tinker.

Tinker | 217

http://psysh.org/

Laravel Dump Server

One common method of debugging the state of your data during development is to
use Laravel’s dump() helper, which runs a decorated var_dump() on anything you pass
to it. This is fine, but it can often run into view issues.

In projects running Laravel 5.7 and later, you can now enable the Laravel dump
server, which catches those dump() statements and displays them in your console
instead of rendering them to the page.

To run the dump server in your local console, navigate to your project’s root directory
and run php artisan dump-server:

$ php artisan dump-server

Laravel Var Dump Server

[OK] Server listening on tcp://127.0.0.1:9912

// Quit the server with CONTROL-C.

Now, try using the dump() helper function in your code somewhere. To test it out, try
this code in your routes/web.php file:

Route::get('/', function () {
dump('Dumped Value');

return 'Hello World';
b

Without the dump server, youd see both the dump and your “Hello World” But with
the dump server running, you'll only see “Hello World” in the browser. In your con-
sole, you'll see that the dump server caught that dump(), and you can inspect it there:

GET http://myapp.test/

date Tue, 18 Sep 2018 22:43:10 +0000
controller "Closure"

source web.php on line 20

file routes/web.php

"Dumped Value"

218 | Chapter8: Artisan and Tinker

Testing

Since you know how to call Artisan commands from code, it’s easy to do that in a test
and ensure that whatever behavior you expected to be performed has been performed
correctly, as in Example 8-16. In our tests, we use $this->artisan() instead of Arti
san: :call() because it has the same syntax but adds a few testing-related assertions.

Example 8-16. Calling Artisan commands from a test

public function test_empty_log_command_empties_logs_table()

{
DB::table('logs')->insert(['message' => 'Did something']);
$this->assertCount(1, DB::table('logs')->get());
Sthis->artisan('logs:empty'); // Same as Artisan::call('logs:empty');
Sthis->assertCount(0, DB::table('logs')->get());

}

In projects running Laravel 5.7 and later, you can chain on a few new assertions to
your $this->artisan() calls that make it even easier to test Artisan commands—not
just the impact they have on the rest of your app, but also how they actually operate.
Take a look at Example 8-17 to see an example of this syntax.

Example 8-17. Making assertions against the input and output of Artisan commands

public function testItCreatesANewUser()
{

$this->artisan('myapp:create-user')
->expectsQuestion("What's the name of the new user?", "Wilbur Powery")
->expectsQuestion("What's the email of the new user?", "wilbur@thisbook.co")
->expectsQuestion("What's the password of the new user?", "secret")
->expectsOutput("User Wilbur Powery created!");

$this->assertDatabaseHas('users', [
'email' => 'wilbur@thisbook.co'
s
}

TL:DR

Artisan commands are Laravel’s command-line tools. Laravel comes with quite a few
out of the box, but it’s also easy to create your own Artisan commands and call them
from the command line or your own code.

Tinker is a REPL that makes it simple to get into your application environment and
interact with real code and real data, and the dump server lets you debug your code
without stopping the code’s execution.

Testing | 219

CHAPTER 9
User Authentication and Authorization

Setting up a basic user authentication system—including registration, login, sessions,
password resets, and access permissions—can often be one of the more time-
consuming pieces of creating the foundation of an application. It’s a prime candidate
for extracting functionality out to a library, and there are quite a few such libraries.

But because of how much authentication needs vary across projects, most authentica-
tion systems grow bulky and unusable quickly. Thankfully, Laravel has found a way to
make an authentication system that’s easy to use and understand, but flexible enough
to fit in a variety of settings.

Every new install of Laravel has a create_users_table migration and a User model
built in out of the box. Laravel offers an Artisan make:auth command that seeds a
collection of authentication-related views and routes. And every install comes with
a RegisterController, a LoginController, a ForgotPasswordController, and a
ResetPasswordController. The APIs are clean and clear, and the conventions
all work together to provide a simple—and seamless—authentication and authoriza-
tion system.

Differences in Auth Structure in Laravel Before 5.3

E Note that in Laravel 5.1 and 5.2, most of this functionality lived

in the AuthController; in 5.3 and higher, this functionality has
been split out into multiple controllers. Many of the specifics we'll
cover here about how to customize redirect routes, auth guards,
and such are different in 5.1 and 5.2 (though all the core function-
ality is the same). So, if youre on 5.1 or 5.2 and want to change
some of the default authentication behaviors, you'll likely need to
dig a bit into your AuthController to see how exactly you should
customize it.

221

The User Model and Migration

When you create a new Laravel application, the first migration and model you’ll see
are the create_users_table migration and the App\User model. Example 9-1 shows,
straight from the migration, the fields you’ll get in your users table.

Example 9-1. Laravel’s default user migration

Schema: :create('users', function (Blueprint S$table) {
Stable->bigIncrements('id');
Stable->string('name');
Stable->string('email')->unique();
Stable->string('password');
$table->rememberToken();

Stable->timestamps();

b

We have an autoincrementing primary key ID, a name, a unique email, a password, a
“remember me” token, and created and modified timestamps. This covers everything
you need to handle basic user authentication in most apps.

The Difference Between Authentication and Authorization

Authentication means verifying who someone is, and allowing
them to act as that person in your system. This includes the login
and logout processes, and any tools that allow the users to identify
themselves during their time using the application.

Authorization means determining whether the authenticated user is
allowed (authorized) to perform a specific behavior. For example,
an authorization system allows you to forbid any non-
administrators from viewing the site’s earnings.

The User model is a bit more complex, as you can see in Example 9-2. The App\User
class itself is simple, but it extends the Illuminate\Foundation\Auth\User class,
which pulls in several traits.

Example 9-2. Laravel’s default User model

<?php
// App\User

namespace App;
use Illuminate\Notifications\Notifiable;

use Illuminate\Contracts\Auth\MustVerifyEmail;
use Illuminate\Foundation\Auth\User as Authenticatable;

222 | Chapter9: User Authentication and Authorization

class User extends Authenticatable

{

}

use Notifiable;

/**
* The attributes that are mass assignable.
*

* @var array
*/
protected $fillable = [
'name', 'email', 'password',

1;

/'k*
* The attributes that should be hidden for arrays.

*

* @var array
*/
protected $hidden = [
'password', 'remember_token',

1;

/**
* The attributes that should be cast to native types.
*
* @var array
*/
protected $casts = [
'email_verified_at' => 'datetime',

1;

<?php
// Illuminate|Foundation\Auth\User

namespace Illuminate\Foundation\Auth;

use
use
use
use
use
use
use
use

IlTluminate\Auth\Authenticatable;

Illuminate\Auth\MustVerifyEmail;

IlTluminate\Database\Eloquent\Model;
Illuminate\Auth\Passwords\CanResetPassword;
IlTluminate\Foundation\Auth\Access\Authorizable;
Illuminate\Contracts\Auth\Authenticatable as AuthenticatableContract;
Illuminate\Contracts\Auth\Access\Authorizable as AuthorizableContract;
Illuminate\Contracts\Auth\CanResetPassword as CanResetPasswordContract;

class User extends Model implements

AuthenticatableContract,
AuthorizableContract,
CanResetPasswordContract

The User Model and Migration

223

use Authenti